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A.1 Foreword

This professorial thesis manuscript summarizes the research I have produced since
my doctoral thesis in 2012, which is entitled “Fluctuations and response of non-
equilibrium systems”. Since then, I have worked in stochastic thermodynamics,
essentially on energy conversion, irreversible phenomena, and large deviation the-
ory. This introductory Chapter A provides an overview of my works and field of
research without going into much detail. Other chapters have a very different struc-
ture: Chapter B is almost an introductory lecture to stochastic thermodynamics
and conversion processes, Chapter C collects unpublished works providing alterna-
tive points of view on my research, while Chapter D summarizes a coherent subset
of my publications. Within stochastic thermodynamics, I have been interested in
operational applications and theoretical developments. Most often, mean behaviors
are sufficient for applications on the physics of coupled currents (which is a broader
topic than energy conversion). However, it turned out that studying fluctuations
was also inspiring for more applied topics. This is not surprising: Thermodynamics
has always progressed through constant dialogue between theory and applications.



2 Chapter A. Introduction

The title of this thesis, “Nonequilibrium fluctuations and conversion processes”,
emphasizes my objective during this first part of my career of modeling non-equilibrium
phenomena by studying the coupling between and the fluctuations of physical cur-
rents in the simplest possible ways: I have worked on Markov jump processes mainly,
on simple models with few states, on elementary interactions between many simple
systems when working on the macroscopic limit, etc. Stochastic thermodynamics
has allowed this approach by giving solid grounds to the thermodynamics of small
(and hence simple) systems. A great merit of stochastic thermodynamics is its
top-down construction. Just assuming modeling using stochastic processes, its core
reasoning is to infer a constraint on the process dynamics (called Local Detailed
Balance (LDB)) from the basic principles of thermodynamics. Since thermodynam-
ics also deals with far-from-equilibrium transformations, such as gas mixtures, gas
expansions, etc., the inferred constraints must hold far from equilibrium. The fact
that the same constraints also arise from a perturbative analysis strengthens this
theory. There is no contradiction: This does not reduce the realm of application,
for instance, by rejecting its ability to describe far-from-equilibrium phenomena. In
simple words, what can do more can do less. I will follow this line of thought when
introducing the main ingredients of stochastic thermodynamics in Chapter B. This
chapter will be devoted to the physics of coupled currents and conversion processes
at the mean level (no fluctuations).

Even within the simplifying framework of stochastic thermodynamics, the dif-
ficulty of non-equilibrium physics prevents building a non-equilibrium statistical
physics framework as achieved as the one for equilibrium systems (even when focus-
ing on Non-Equilibrium Stationary State(s) (NESS)). Apart from the nonlinearity
arising far from equilibrium, the main difficulty comes from the interplay between
time anti-symmetric observables (physical currents) and time-symmetric ones (e.g.,
activity that gives the frequency of the exchanges with the environment). Large
deviation theory offers a complete and successful framework for an asymptotically
large number of degrees of freedom, for asymptotically large durations of obser-
vation, and for both at the same time. For instance, it allows us to assess the
symmetries of current fluctuations at the global scale due to the LDB constraints
on the dynamics. However, it often requires considering a number of physical ob-
servables that grows with the number of accessible states instead of a finite number
of observables and (so-called) equations of states relating them. Chapter C presents
a subset of my works in large deviation theory, focusing on different topics such as
ensemble equivalence for given observation time or activity (unpublished), equiva-
lence between equilibrium and non-equilibrium dynamics, and quadractic bounds
for the LDF of physical currents for systems in TiPS with a connection to nonlinear
conductance matrices (unpublished).

Combining the stochastic thermodynamics of converters with methods of large
deviation theory leads to the natural question of efficiency fluctuations. The effi-
ciency of a stochastic converter fluctuates on a large interval. The ratio of stochastic
currents displays interesting large deviations with a structure different from the one
observed for extensive variables (in time or size). Fluctuations can even lead a con-
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verter to switch operating mode (e.g., for a heat engine going from mechanical power
generation to heat pumping). In Chapter D, I summarize the logic behind the var-
ious papers I have published on the consequence of Fluctuations-Relation (FR) on
efficiency statistics. Sometimes, as for the study of non-equilibrium phase transitions
in energy converters with ergodicity breaking, we will see that several preliminary
works were required before concluding. I take advantage of writing this thesis to
emphasize the connections between them.

A.2 Co-authors and Ph.D. students

The works presented in this manuscript are the result of my fruitful collaborations
with the following co-authors (number of joint publications in parenthesis)

– Hadrien Vroylandt (6), Ph.D. student from 2015 to 2018,
– Lydia Chabane (2), Ph.D. student from 2018 to 2021,
– Paul Raux (1), Ph.D. student from 2021-2024,

– Jean Baudry (1),
– Thibaud Blondel (1)
– Anthony Bonfils (1)
– Raphaël Chétrite (3),
– Damien Démoulin (1),
– Massimiliano Esposito (7),
– Christophe Goupil (1),
– Anupam Kundu (1),
– David Lacoste (9),
– Alexandre Lazarescu (1),
– Kirone Mallick (1),
– Vincent Miralles (1),
– Matteo Polettini (1),
– Simon Tusch (1),
– Christian Van den Broeck (4),
– Tim Willaert (2).

I thank them for our inspiring discussions about these joint works. Creative thinking
in physics is enthusiastic, I hope we’ll find many other occasions of collaborations.

A.3 Overview of research topics

I have already distinguished three research directions in my foreword (physics of
coupled currents, large deviation theory, efficiency fluctuations). A more precise
classification of my scientific works yields
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A.3.1 Non-equilibrium response theory [1, 2, 3, 4, 5]
A.3.2 Fluctuation relations [4, 6, 7]
A.3.3 Energy converters [1, 8, 9]
A.3.4 Non-equilibrium conductance matrix [9, 10, 11]
A.3.5 Dynamical phase transitions [8, 12]
A.3.6 Efficiency fluctuations [13, 14, 15, 16, 17]
A.3.7 Doob transformation and rectification [5, 18, 19, 20]
A.3.8 Relating equilibrium and nonequilibrium dynamics [5, 12, 18]
A.3.9 Exact computation of Cumulant Generating Function (CGF) [21, 22]

A.3.10 Thermodynamic uncertainty relation, inequality of convexity [7, 23, 10]
A.3.11 TiPS [21, 14, 19]

These topics are enumerated in the order of this chapter’s sections, giving an
overview of each of them. Citations refer to the publication list in the starting matter
and at the end of this manuscript. Some publications appear several times due to
the many topic overlaps. In Table A.1, I list some of the above topics considered for
different dynamics and time regimes, as explained in the caption. This table helps
identify future research directions.

Topic Finite time Stationary Periodic

Li
ne

ar

Response Relaxation ✓ × ✓
Fluctuation relations Relaxation ✓ × ✓
Efficiency fluctuations Gaussian currents ✓ ✓ ✓
Doob transformation × × ✓
Conductance Matrix ✓ ∼

N
on

-li
ne

ar Doob
transformation

✓ ∼

Efficiency
Fluctuations

Model Study ✓

Table A.1: Tables of topics that have been studied by myself ✓ (not exclusively!),
by others but not by myself ×, or roughly done but unpublished in peer-reviewed
journals ∼. The columns separate studies in finite times (e.g., system undergoing
a relaxation), at infinite time for stationary states (system under constant forces),
and for periodic states (systems under periodic forcing). The lines are divided into
studies using linear operators (markov generators of jump or diffusive processes) or
nonlinear operators associated with Hamiltonians. The keyword “relaxation” refers
to a quenched initial condition.

Below I provide an overview of the above research fields with many references
to the literature and to my works. I try to describe the general framework, to make
the connection between the various topics, and to indicate possible directions of
research.

In this manuscript, my research works have all the lowest citation numbers, from
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[1] to [23].

A.3.1 Non-equilibrium response theory

Response theory is a conventional technique used to study the effect of a pertur-
bation on the evolution (or on the state) of a system whose evolution (or state) is
well-known without the perturbation. For both time-dependent and independent
systems, this technique is particularly well established in many fields of physics: for
time-independent systems, simple and exact formulas exist for the first and second-
order perturbation of the spectrum and the eigenstates of a quantum mechanical
system under a perturbation of its energy levels [24]. First and second-order per-
turbation theory is also relatively simple in analytical mechanics when perturbing
an integrable system (in the adiabatic case). In this case, one can prepare the per-
turbation analysis by finding a canonical set of angle-action variables that simplifies
the integrable Hamiltonian and apply the same scheme for the perturbation part of
the Hamiltonian [25]. Using the appropriate set of variables is crucial to avoid the
fast divergence of the perturbative approach with increasing time. In the frame-
work of stochastic processes, the linear response of a system submitted to a time-
dependent perturbation is given by the Fluctuations-Dissipation Theorem (FDT),
see Ref. [26, 27]. Its time-independent version is at the core of linear irreversible
thermodynamics. We quickly discuss this in the sections on the physics of coupled
currents A.3.3 and B.2.1. Although perturbation theory is an old research topic, it
is still an active research field because it is convenient and universal as many sys-
tems remain in the linear regime (Ohm’s law, Fourier’s law, Fick law, etc.). Some
of its drawbacks also provide directions of research or refinement [28]. For instance,
in analytical mechanics, different perturbation approaches exist (adiabatic, reso-
nant, or chaotic), e.g., the adiabatic perturbation requires that the structure of the
phase space is not significantly modified after perturbation. Similar criteria must
be established for the perturbation theory of stochastic processes.

Perturbation theory is also connected to the recent investigations on Thermodynamic
Uncertainty Relations (TUR)s that originate from Gaussian bounds on the large de-
viation functions of physical currents [29, 30, 31]. TURs translate results of pertur-
bative analysis into inequalities that are true non-perturbatively. Other inequalities
can likely be found inspired by conventional results of linear response theory. For
instance, regarding the response of physical currents to a time-dependent perturba-
tion on thermodynamics forces, is it possible to write a Fluctuations-Dissipations In-
equality that would saturate into the FDT when approaching a close-to-equilibrium
regime? This would generalize the result of Ref. [32] and [33] that should be consid-
ered now with the viewpoint of TURs since answering the previous question relies
on the possibility to extend to finite time large deviation results leading to TUR.
An interesting point is also to determine how this fluctuations-dissipation inequal-
ity would relate to the generalized FDT (see Ref. [1, 2, 3, 4, 5]) giving the time-
dependent linear response close to arbitrary non-equilibrium states [34, 35, 36, 37].
Would tighter inequalities exist when considering simpler forms of the generalized
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FDT? Finally, the non-linear modeling with Hamiltonian of stochastic processes in
the large volume limit, see [20], opens possibilities to relate the response of stochastic
processes that I studied during my Ph.D. to the conventional approach of analytical
mechanics.

A.3.2 Fluctuation relations

FRs are at the foundation of stochastic thermodynamics. They are equivalent at
the global scale to the constraint on the dynamics imposed by the LDB at the mi-
croscopic scale. In words, a fluctuation relation says that during a trajectory, under
a time-dependent driving, positive entropy production is exponentially more likely
with the entropy produced than to destroy this entropy during the time-reversed
trajectory (with time-reversed driving). Historically, the first FR was obtained for
fluids under stationary shear [38, 39, 40], then for jump processes [41] and diffusive
processes [42], with many following developments, see for instance [43, 44, 45, 46].
My work on the topic extends the FR of Hatano and Sasa for NESS to the case
of TiPS and aging systems. I have related the fluctuation relations I found (and
their integrated version) to the linear response close to an arbitrary non-equilibrium
state [2]. This was also the occasion to improve the theory of linear response close
to NESS of Seifert and Speck [47, 48], more precisely regarding the definition of the
so-called local velocity of a Markov jump process.

LDB generalizes to non-equilibrium states the notion of detailed balance at-
tached to equilibrium states. It is so fundamental, both at the transitions level or
at the global level in the form of FR, that I expect future works will continue to
appear on the topic. For instance, Lazarescu has recently obtained a new kind of
FR that requires an exchange of the reservoirs [49]. Harunari, Garilli, and Polettini
have obtained a FR for partial entropy production [50], i.e., restricted to a subset of
transitions when time is counted according to the number of these considered tran-
sitions. This shows that a FR can hold even with hidden degrees of freedom and
that estimating entropy production with hidden degrees of freedom is possible [51].

A.3.3 Energy converters

The physics of coupled currents is omnipresent in valuable technologies but also in
nature in the form of various couplings (Peltier effect, electro-osmosis, osmosis, etc.).
In many frameworks, such as energy conversion, uranium enrichment, biochemical
conversion, and many more, the aim is always to generate an entropy-destroying
current (this is sometimes called negative response in perturbation theory [52, 53]).
This is only possible when using another entropy-producing process, thereby satis-
fying the second principle.

The study of individual converters displays a rich phenomenology [54], with
many different working points (pure dissipator regime, regime of active reduction of
a flow, stalling point, normal regime with current opposed to its conjugated force,
etc). Although the physics at stake is universal, the characterization of individual
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converters is often specific to each application (e.g., for water turbines, using level
lines of efficiency in the space of output power and water flow). In our lecture
notes on the physics of energy conversion, we stress that a universal characteriza-
tion is possible. We illustrate this point with some examples of power–efficiency
trade-off beyond the framework of stochastic thermodynamics at the end of Chap-
ter B. Given this universality, improvements in this characterization seem accessible
through various graphical representations of the coupling between the currents, the
forces, the input or output powers, and the overall efficiency. The description of
individual converters becomes slightly more complex when considering boundary
conditions [55, 56, 57, 58, 59], as in nodal thermodynamics [60, 61, 62, 63]. Neu-
mann (fixed current) or Dirichlet (fixed potential) conditions are often assumed.
However, mixed boundary conditions (where both current and potential achieve
non-prescribed stationary values) are significant due to the feedback of the current
onto the potential seen by the converter [64]. For instance, these mixed boundary
conditions appear due to a resistance in the system-environment coupling [60]. They
also appear in any practical application involving a network of thermodynamic de-
vices [65], e.g., in the serial connection of two thermo-electric generators [62, 11].
Stability analysis due to these feedback effects should be studied and, if possible,
compared to the textbook results on electric circuits.

Beyond the framework of energy conversion, the coupling of general thermody-
namic circuits as we considered in Ref. [11] seems promising to decompose complex
systems into simpler sub-circuits. In the long term, it could be a tool for studying
realistic circuits such as those found in intra-cellular biochemical reaction networks.
Our method generalizes the theory of steady-state electric circuits to an arbitrary
number of conserved quantities (energy, charge, matter) and thermodynamic po-
tentials (temperature, chemical or electrochemical potential, etc.). However, this
method applies neither to strongly coupled systems nor to circuit connections lead-
ing to current loops. In practice, loops are a form of strong coupling and can produce
under-determined sets of equations, i.e., floating local potentials. More importantly,
a systems dynamics is needed to compute the non-equilibrium conductance (relat-
ing physical currents of the thermodynamic device) on which is based our theory of
equivalent impedance for thermodynamic circuits. Finding a numerical or experi-
mental way of determining a non-equilibrium conductance matrix would improve the
operational use of our theory. In the same idea, developing an algorithm that auto-
mates the computation of the working point of the circuits and the global equivalent
impedance would be valuable to proceed with systems of increasing complexity.

A.3.4 Non-equilibrium conductance matrix

As aforementioned, the first-order perturbation theory of systems at equilibrium
provides the response matrix linking currents and thermodynamic forces. As such,
it could also be named a close-to-equilibrium conductance matrix. The fact that it
is proportional to the covariance matrix of currents is a central result of statistical
physics for close-to-equilibrium systems. This result has different names, depending
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on the context: Stokes-Einstein-Sutherland’s equation (link between mobility and
diffusion coefficient) [66, 67], Onsager’s reciprocity relations (stationary framework
with crossed effects) [68, 69], or the fluctuation-dissipation theorem formulated by
Green and Kubo (time-dependent framework) [70].

In our recent works [9, 10, 11], we have introduced a real matrix, symmetrically
defined and positive (or semi-positive) definite, which we call the out-of-equilibrium
conductance matrix, and which generalizes the Onsager response matrix for out-
of-equilibrium stationary states. This matrix is no longer a response matrix, as
it depends non-linearly on the thermodynamic forces. On the other hand, low-
force development obviously produces the Onsager response matrix [71]. This non-
equilibrium conductance matrix contains more information about the dynamics of
the system than the non-linear functions giving each physical current in term of
the thermodynamic forces. Indeed, there are n such functions for a system with
n currents, whereas the conductance matrix has n(n + 1)/2 non-linear coefficients
functions of thermodynamic forces.

As an illustration of this point, let’s consider a thermo-electric generator with
two independent currents: energy and electric currents. The conductance matrix
has three independent components. This makes possible to calculate a determinant
of the conductance matrix and thus a degree of coupling between the currents: a
zero determinant is synonymous of “strong coupling” between the currents. This
corresponds to a null thermal conductivity at zero electric current: heat transfer
takes place with electron transfer only, necessarily producing electric work. Before
introducing non-equilibrium conductances, it was only possible to say if a system
was in strong coupling or not, without giving the degree of this coupling as was
possible for close-to-equilibrium systems [55].

A.3.5 Dynamical phases transitions

Dynamical ensemble theory transposes the equilibrium ensemble theory to trajec-
tory ensembles, defined as the ensembles of different realizations of a stochastic
process. In the so-called “microcanonical” dynamic ensemble, the value of a dy-
namic observable is constrained to a given value. In the “canonical” ensemble, an
exponential bias on the probability of the process trajectories is introduced to shift
the mean value of this observable. As with the ensemble theory of statistical physics,
equivalence between the two ensembles means that performing calculations in either
ensemble has no effect on the result, except of course for the considered observable,
which fluctuates in the “canonical” dynamic ensemble and remains constant in the
“microcanonical” ensemble. In our work on these issues [12], we study the physi-
cal conditions associated with ensemble equivalence and the consequences of non-
equivalence. For Markov jump processes in continuous time, we show that ergodicity
guarantees ensemble equivalence. For non-ergodic systems, we adapt a method de-
veloped for equilibrium ensembles [72] to compute the asymptotic probabilities of
the observable under consideration, taking into account the initial condition that in-
fluences the long-time fluctuations due to the ergodicity breaking. We illustrate our
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results on the Ising infinite range model, characterizing magnetization and activity
fluctuations. We discuss the emergence of non-ergodicity by showing that the initial
condition is forgotten only after a time that scales exponentially with the number of
spins. In a work focusing on the mean behavior of a non-equilibrium version of this
model, called Brownian donkey model [8], we have shown that the dynamical phase
transition can lead to emergent tight coupling between two currents of a converter
enhencing its efficiency.

A.3.6 Efficiency fluctuations

I have unveiled in Ref. [13] the properties of fluctuating efficiencies, based on four
hypothesis: stationarity of dynamics, limit of long observation time of currents,
converter with two independent currents, absence of phase transition. For each
hypothesis made in Ref. [13], I have now published an article going beyond this
hypothesis. We studied efficiency fluctuations for a converter in TiPS [14]. We
considered the fluctuations of efficiency at finite time for a model with Gaussian
fluctuations of currents [15]. We extended our work to a converter with more than
two independent currents [16]. Finally, our aforementioned work on dynamical en-
sembles is motivated by the study of energy conversion in systems undergoing a
phase transition [17]. To this end, we studied the Brownian donkey model, defined
as a stochastic heat engine made up of N interacting uni-cyclic two-state machines.
This model presents a phase transition in the macroscopic limit due to emergent
ergodicity breaking [73]. Depending on N and observation time, the N -machine
heat engine may or may not explore its entire phase space. This affects the engine’s
efficiency, which fluctuates strongly over a wide range of equiprobable efficiencies
(ergodic case) or fluctuates close to several most probable values (non-ergodic case).
For this model, we were able to prove that even with a phase transition, the decay
rate of the efficiency probability distribution is maximum at the reversible efficiency,
although other efficiencies may now decay just as rapidly. This work concludes a
cycle of research started in 2013 during my post-doctorate at the University of Lux-
embourg. Chapter D reviews with more details my works on efficiency fluctuations.

A.3.7 Doob transformation and rectification

As already mentioned in section A.3.5, when studying stochastic processes it is often
interesting to ask how these systems behave given that certain observables take on
a prescribed value. This conditioning problem is well understood in the linear op-
erator formalism [74, 75, 76], i.e. for systems described by transition rate matrices
or Fokker-Planck type dynamics of many independent random walkers. For those
generators, it is possible to bias the dynamics to explore the statistics of chosen
observables. One can also rectify the dynamics using the so-called Doob transform
to determine the typical process associated with some rare fluctuations [77]. Indeed,
relying on certain spectral properties of biased linear operators, guaranteed by the
Perron-Frobenius theorem, an effective process can be found such that its path
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probability is equivalent to the conditional path probability. An extension of these
results to the non-linear Markov processes that arise when the many random walkers
are no longer independent is developed in Ref. [20]. In this case, the large-volume
limit makes it possible to define the dynamics using the Lagrangian-Hamiltonian
formalism [78, 71, 79, 80]. The Lagrangian and Hamiltonian are interpreted respec-
tively as the LDF and the CGF of these currents. For non-linear processes, the
spectral problem of the linear operator formalism to be solved in order to deter-
mine the effective process becomes an Hamilton-Jacobi equation associated with an
appropriately biased Hamiltonian. Our work on various examples (see Fig. A.2)
has enabled us to conjecture that there are two special global solutions to this
Hamilton-Jacobi equation. This conjecture replaces the Perron-Frobenius theorem
concerning the positivity of the dominant eigenvector (left and right). It applies
to a specific class of Hamiltonians called “statistic Hamiltonians” to differentiate
them with quantum Hamiltonians. In our conjecture, the positive nature of the
eigenvector is replaced by the global nature of the solution, i.e. it exists on the
whole state space, while the stable or unstable nature of the solution replaces the
notion of left/right eigenvectors. On the basis of this conjecture, we were able to
design a rectification procedure producing the effective process and its Hamiltonian.
This rectification procedure extends Doob’s transform to the Hamiltonian and La-
grangian formalism. It is based on a canonical gauge transformation of the biased
Hamiltonian, producing effective dynamics in line with the original conditioning. In
the framework developed, we were able to interpret the notion of dual dynamics as
the rectification of the dynamics obtained by time reversal. We were also able to
show that a Hamiltonian symmetry known as the “fluctuation relation”, responsi-
ble for the positivity of the mean Entropy Production Rate (EPR), is transmitted
to the biased and effective Hamiltonians. Finding a proof of our conjecture (that
goes beyond a continuous limit) seems challenging for a physicist as an expertise on
the geometry of simplectic manifold is probably needed. Another possible exten-
sion is to define the rectification of periodically driven non-linear processes, as done
for TiPS of Markov jump processes [19] and diffusive processes [79]. Here again
the challenge is to guarantee that solutions of the time dependent Hamilton-Jacobi
equation exist globally with appropriate stability. Finally, we defined in this work
extended Lagrangians and Hamiltonians for which the space of position and current
(or moments) are not of the same dimension. Fundamental results of analytical
mechanics need to be extended to this peculiar case in future works (e.g. Noether
theorem, canonical transformations and associated generating functions).

A.3.8 Relating equilibrium and nonequilibrium dynamics

Non-equilibrium stationary states (described for instance by Oono [81]) are signif-
icantly different from equilibrium stationary states: the existence of physical cur-
rents and thermodynamic forces increases the number of conjugate variables. These
conjugated variables are enough to determine the entropy production rate in the sta-
tionary state, but they do not form a complete set characterizing the fluctuations of
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Figure A.2: Trajectory in phase space for the Hamiltonian Hγ(p, z) in the case
of the Brownian donkey model [20], see A.3.7. z ∈ [0, 1] is the proportion of the
machine in the highest-energy state. The moment conjugate to z is denoted by p.
The red, magenta and blue points correspond to the fixed points of the system.
Red is the trajectory at the value of the Hamiltonian at the dominant saddle point.
This trajectory is indeed a global solution of the Hamilton-Jacobi equation. There
is a single stable global solution and a single unstable global solution that does not
diverge on the edges of the state space in either the increasing or decreasing time
direction.
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the system as it is the case in equilibrium statistical mechanics. Indeed, in the same
configuration space, many different dynamics share equal probability currents with
different [82] or equal state probabilities [83]. In any case, higher order cumulants
always differ in general [84]. In view of making equilibrium and nonequilibrium sta-
tistical mechanics as comparable as possible, it would be interesting to connect the
equilibrium fluctuations of a system to those of the same system subjected to finite
thermodynamic forces generated by different reservoirs (of heat, matter, etc). This
would be an extension beyond linear order of Onsager’s regression hypothesis. In
Ref. [5] and for a dynamics with Arrhénius rates, I found a set of observables that
allow to map exactly the equilibrium and nonequilibrium dynamics via biasing and
Doob transformation of the dynamics (see section C.2.2 for a detailed summary).
This set of observables includes the physical currents, the activity of the exchange
with the reservoirs and the states occupancy (which is not volume extensive). The
role of time-reversal symmetrical observables (occupancies and activities) has also
been raised by others [85] and motivates the introduction of nonequilibrium equiv-
alence classes in a more recent work [18]. In this work focusing on jump processes
(continuous time) on multigraphs, I have shown that dynamics belonging to the
same equivalence class share the same currents fluctuations. Equivalence classes are
defined from an equivalence relation based on an edgewise symetrization of the rate
matrices leading to an equilibrium representative of the class, see [86, 87] for similar
symetrization procedures. Interestingly, the freedom to move inside an equivalence
class comes from the different ways of splitting the thermodynamic forces on the
possible transitions. This freedom also plays a fundamental role in the local detailed
balance and in the decomposition of thermodynamic forces into a potential and a
non-conservative part [88, 89]. Another remark is that the equilibrium dynamics
from which we start (and that is driven out of equilibrium using LDB to reach
the nonequilibrium dynamics) is different from the equilibrium representative of an
equivalence class. It differs at least by the escape rates from the various states (if not
by some symmetric factors in the rate matrix). The possibility of relating those two
equilibrium dynamics via a conditioning should be considered, for instance using
the recent results of Ref. [90].

A.3.9 Exact computation of CGF

To illustrate many of the aforementioned results, I have determined the CGF of sev-
eral models. For instance, the CGF of the work received from a piecewise-constant
driving by a modulated two level system is obtained in [21]. The initial model is
purely dissipative: all the work is dumped as heat into a single thermostat. This
model was used in the following works for

– studying efficiency fluctuations of a heat engine in TiPS [14]. In this work, we
used a LDB dynamics and also extended the number of jumps of the modulated
driving.

– comparing deterministic and stochastic driving in [22], where the notion of
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work source is precisely defined as an energy source with no contribution to
the second law. Our work was further extended in Ref.[91].

– determining an effective process associated to the conditioning of a system in
TiPS [19].

Another model is transversal in my research work: The Brownian donkey model
introduced by C. Van den Broeck and B. Cleuren [73]. This is a long-range Ising
model extended to nonequilibrium using a LDB involving two heat reservoirs and
a non-conservative force. Each two-level system of this model is in fact a uni-cyclic
heat engine with strongly coupled currents: it was introduced for studying negative
response. The all to all interaction energy (and the existence of an activation barrier)
leads to a spontaneous ergodicity breaking in the large volume limit (i.e. large
number of two-states engines). This model allowed my to study

– the role of collective effects and emergent strong coupling of an machine effi-
ciency in [17]. The interaction between the heat engine suppresses the strong
coupling of each single engine. The large volume limit reintroduce this cou-
pling.

– the efficiency fluctuation of an engine undergoing a phase transition [17],

– the computation of non-convex LDF using subdominant eigenvalues in [12], a
work that extends to path ensemble Ref. [72],

– the conditioning and rectification of non-linear processes (extension of Doob
transformation in the large volume case) [20].

A.3.10 Thermodynamic uncertainty relations

The first TUR derived in [29] were obtained by finding lower bounds for the CGF
of physical currents. These bounds on the CGF lead to bounds on the current vari-
ance when computing the second cumulant from the exact CGF and from the lower
bound. Indeed, the CGF bound is quadratic in the mean current times the conju-
gated counting field. It is also proportional to the inverse of the entropy production
rate. As a result, the current variance is higher than twice the square currents di-
vided by the entropy production rate. In other words, to make possible low values of
a current variance one needs to produce entropy (so that the variance lower bound
is small). A proof of the quadratic bound on the CGF was given in [30] the same
year of the first publication on TUR. Many works followed providing bounds on the
efficiency of heat engines [92] and molecular motors [93], or on the precision of a
Brownian clock [94]. During his Ph.D. under my supervision, H. Vroylandt provided
the best quadratic bound on the CGF in Ref. [9]. This bound is actually given by
the quadratic form that is based on the nonequilibrium conductance matrix. With
this conductance matrix describing an energy converter, we were able to improve the
upper bound for the thermodynamic efficiency. The latter is smaller than a universal
function depending solely on the degree of coupling between the input and output
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currents, generalizing beyond the linear case the work of Kedem and Caplan [55].
Finally, we have shown using an ordered set of TUR that the lower bound on the
CGF becomes more accurate with the information provided on the dynamics [10].
Ultimately, with the full knowledge of the dynamics, one can obviously compute the
exact CGF.

In connection with the next section, TUR have been generalized to TiPS in
Ref. [95]. However, this TUR can be made tighter using a nonequilibrium con-
ductance matrix for TiPS that we introduce in section C.3 for physical currents
(different from the work done by conservative forces).

A.3.11 Time Periodic States

An expression of the large deviation function of occupancy and currents exists for
diffusive processes [96] and jump processes [97]. However, time translation invari-
ance is generally assumed when studying the aforementioned (see section A.3.7)
“microcanonical” dynamical ensembles with conditioned observables and “canoni-
cal” dynamical ensembles with exponential bias on trajectory probabilities to shift
the mean value of the observable under consideration [75, 76]. With L. Chabane
and R. Chétrite, we have studied the conditioning of jump processes whose transi-
tion rates are functions of the (time) period T . For sake of simplicity, we focused
on an observable A defined using a time integral of periodic functions of the same
period T . These periodic functions depend on the state of the system or the tran-
sitions performed. The optimization, constrained by the value of A, of the large
deviations function characterizing the asymptotic fluctuations of the occupancy of
each state and of empirical currents between states (after many periods) leads to
the effective Markov process. This unconstrained process typically presents the cho-
sen value of A. Alternatively, this effective process can be determined by solving
a time-dependent linear differential equation (that replaces the spectral problem of
the stationary case). All these results generalize to the periodic case, the notion of
Doob transformation specific to autonomous systems [75].

In future work, I plan to study the rectification of biased system in TiPS and at
large volume. Beyond the general case, an illustration of the rectification procedure
could be done on Brownian Donkey model submitted to a piecewise-constant driving.
The piecewise nature of the driving may allow to solve the time-dependent Hamilton-
Jacobi equation. The method will be to solve separately for each constant value of
the driving and then to associate the solutions via a matching of the boundary
conditions.
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Energy is an abstract concept that quantifies the capacity to modify the state of
a system (e.g., to increase the speed of one of its elements). According to the first
principle of thermodynamics, one of its main characteristics is to be conserved when
exchanged between two parts, albeit with a propensity to disperse in microscopic
degrees of freedom. In mechanical terms, energy transfer is the work a force performs
when moving an object, for example, in a downward gravitational field. The product
of the displacement and the force of gravity gives the work done by the weight
as it falls. At the end of the operation, the gravitational potential energy has
been reduced by the corresponding work. This potential energy is converted into
kinetic energy during the fall, and in contact with the ground, kinetic energy is itself
transformed into heat, i.e., the disordered agitation of the atoms of the object and
the ground (energy dispersion).
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Therefore, the form of energy is of prime importance: utility increases with the
concentration of energy in a few degrees of freedom. The production of useful energy
is about converting diluted energy by concentrating it in a few degrees of freedom.
This doesn’t happen spontaneously, and by the second principle of thermodynamics,
it’s necessary to use a spontaneous flow (i.e., flowing in the dispersing direction) to
drive another coupled flow against a force, producing work.

Energy on a macroscopic scale is either kinetic or potential. For a small number
of degrees of freedom, these energies are directly accessible (e.g., flywheel). They
can be converted with an efficiency close to unity, as is the case with the turbines
of hydroelectric power stations. However, at the microscopic level and when dis-
persed on many degrees of freedom, kinetic energy corresponds to thermal energy.
Concentrating it again can only be done with loss. Likewise, potential energy can
be distributed in numerous bonds (physical or chemical) and cannot be collected
directly. For instance, a thermal engine must be used to convert the potential energy
of gasoline into mechanical work.

Energy is useful when concentrated and is often available in a dilute form. Spon-
taneous flows tend to dilute energy onto many degrees of freedom, expanding the
phase space of the system, i.e., its number of configurations. The dual concept of
entropy formalizes this tendency. Entropy provides an extensive characterization of
the number of configurations. By definition, extensivity implies entropy additivity
when two different macroscopic subsystems are merged. By combinatorial analysis,
the number of configurations of a system made up of two subsystems is the product
of the number of configurations of each subsystem. Then, extensivity implies the
logarithmic growth of entropy with the number of system configurations.

The above discussion informally introduces the dual concepts of energy and
entropy. Those are central in thermodynamics, the physics of coupled currents,
and, more specifically, the physics of energy conversion. In this chapter, we quickly
introduce the stochastic thermodynamics of a Markov jump process on a simple
connected graph. We develop formally how energy conservation (first law) and
positive entropy production (second law) constrain the dynamics of the process
(that can model an energy converter). This constraint is called LDB in stochastic
thermodynamics [98, 99]. It allows us to define forces at the elementary transition
level and in far-from-equilibrium conditions. Then, before considering conversion
arbitrarily far from equilibrium, we describe the physics of coupled currents in the
linear regime. We revisit the seminal work of Kedem and Caplan [55], emphasizing
the universal trade-off between efficiency and power. Finally, we comment how the
two selected publications for this chapter [9, 11] generalize some materials of this
chapter and open many possibilities for the study of complex networks of converters.
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B.1 Stochastic thermodynamics of Markov jump pro-
cesses

B.1.1 States, transitions, and their graphical representation

We consider a system with a finite number V of states. States are labeled by
integers, generically denoted with x, y, or z. Transitions between states are denoted
e = (xy, ν) where ν indexes the channels that give different ways of moving from
state y to state x ̸= y. For example, we can switch from one state to another by
exchanging energy with a cold reservoir or hot reservoir (the index ν, in this case,
can be associated with a heat reservoir), see Fig. B.1. In a graphical representation
of the system, states are represented by points called vertices and allowed transitions
between states by lines called edges. Edges are arbitrarily oriented, with an arrow
defining the positive orientation. Microreversibility means that a transition existing
in one direction must also exist in the opposite direction. Edges are, therefore,
bidirectional. If this is not the case, the dynamic is said to be totally irreversible, a
situation excluded in stochastic thermodynamics. In general, not all transitions are
possible, i.e., some transitions are forbidden in both directions. If not, the graph
is totally connected: reaching any state from any state with just one transition
is possible. In a connected graph, finding a succession of edges connecting any
pair of states is always possible. It is customary to consider only systems with
connected graphs (disconnected subparts of a non-connected graph representing
different systems).

B.1.2 Markovian dynamics on a graph

For jump processes, the durations between transitions follow an exponential law.
The escape rate from a state (at time t), say x, is given by the sum of all jump
rates k(yx,ν) for transitions reaching y by any channel. If any, the time dependence
of jump rates is implicit in the notation. Then, a probability conservation balance
reads

px(t+ dt) =


1−

∑

y ̸=x,ν

k(yx,ν)dt


 px(t) +

∑

y ̸=x,ν

k(xy,ν)py(t)dt. (B1)
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Figure B.1: Four-state model for a system in contact with two heat reservoirs at
temperature T1 and T2, and subjected to a non-conservative force F on cycle c1.
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Accordingly, the probability of state x, denoted px = px(t), evolves in time according
to the master equation

dpx
dt

=
∑

y,ν

k(xy,ν)py. (B2)

The matrix
∑

ν kν of xy component
∑

ν k(xy,ν) is a Markov matrix: the sum of the
column elements is zero. The off-diagonal elements are positive or null, while the
diagonal elements are negative. To emphasize that the above equation is a continuity
equation, we introduce the probability current

j(xy,ν) = k(xy,ν)py − k(yx,ν)px (B3)

so that
dpx
dt

=
∑

y,ν

j(xy,ν) =
∑

e

Dx,eje (B4)

since
∑

y,ν k(yx,ν) = 0. We have used the incidence matrix D, which is such that

Dz,(xy,ν) =





+1 if z = x,

−1 if z = y,

0 otherwise.
(B5)

We sum over all oriented edges in B4: the incidence matrix provides the correct
orientation given the arbitrary orientation of edge e so that we count the probability
flow towards vertex x. The matrix D is a divergence operator on a graph ṗ = Dj.

B.1.3 LDB from the (mean) 1st and 2nd principles

The first principle of thermodynamics ensures the conservation of energy. Since
the energy of the system is a state variable, we can associate an energy εx = εx(t)

(possibly time-dependent) with each state x of the system. Given px = px(t) the
probability of state x at time t solving Eq. B4, the variation of the mean energy
with respect to time is written

d

dt
⟨ε⟩ =

d

dt

∑

x

pxεx, (B6)

=
∑

x

(
dpx
dt

εx + px
dεx
dt

)
, (B7)

=
∑

x,y,ν

j(xy,ν)εx +
∑

x

px
dεx
dt
, (B8)

=
1

2

∑

x,y,ν

j(xy,ν)(εx − εy) +
∑

x

px
dεx
dt
, (B9)

=
∑

ν

⟨qν⟩+ ⟨w⟩ , (B10)

where we use the antisymmetry j(xy,ν) = −j(yx,ν) of the probability current. The
first term in Eq. B10 corresponds to the heat currents per unit of time (positive
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Figure B.2: (Left) The state z = z(t) of the four-state system of Fig. B.1 as a
function of time: the system undergoes three transitions during which it supplies
energy to the cold reservoir at t1, then receives heat from the hot reservoir at t2,
which it returns to the same reservoir at t3. (Right) The energy of the same four-
state system as a function of time: the variation in energy is broken down into heat
exchange during jumps and work exchange during the displacement of energy levels.
For example, at the start of the trajectory, the system in state b supplies work as
its εb energy decreases.

when) received from the reservoirs, and the second to the work done by conservative
forces per unit of time (positive when received by the system). In the presence of
non-conservative forces, this energy balance is completed so that

⟨q⟩ =
∑

x,y>x,ν

j(xy,ν)(εx − εy − wnc
(xy,ν)), (B11)

⟨w⟩ =
∑

x

px
dεx
dt

+
∑

x,y>x,ν

j(xy,ν)w
nc
(xy,ν), (B12)

where wnc
e is the work (positive when) supplied by non-conservative forces to the

system during transition e. This work appears with an opposite sign in the heat,
as it reduces the energy required from the heat reservoir to achieve the transition.
Alternatively, when wnc

e is negative, the opposite is true: more heat is required to
transition to a higher energy state than just the energy difference, and the system
produces some non-conservative work. Let us emphasize that the first principle
helps to identify work and heat in the conservative case as the exchanges due to
modification of the energy levels for the first and those due to the jumps for the
second, see Fig.B.2.

The second principle guarantees that entropy production is positive. We start
with the entropy variation of the system and try to find an expression with a strictly
positive quantity and the heat flow identified in Eq. B11. The system’s entropy
includes, as usual, a Shannon entropy part based on the state’s probabilities and
a part associated with the internal entropy of each state. This internal entropy is
due to the possibility for state x to have some internal and equilibrated degrees of
freedom, made up, for example, of Ωx equiprobable and indistinguishable states,
see [8] for a concrete example. In this case Sint

x ≡ lnΩx. Thus, taking units where
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kB = 1, entropy reads

⟨s(t)⟩ =
∑

x

px(t)[S
int
x − ln px(t)]. (B13)

Internal entropy enables maintaining the same theoretical structure despite changes
in the scale of description by eliminating internal degrees of freedom assumed to
be at equilibrium [100]. For example, it is possible to construct a system with a
discrete number of states from a continuous system separated into different zones
associated with potential wells. The volume of the phase space associated with the
equilibrium states in each zone may be different and thus associated with a different
internal entropy. For autonomous systems (i.e., time-independent dynamics), the
internal entropy of the states is constant in time. The time derivative of the mean
entropy is

d

dt
⟨s(t)⟩ =

∑

x

dpx
dt

[Sint
x − ln px]−

∑

x

px
px

dpx
dt

, (B14)

=
∑

x,y,ν

k(xy,ν)py[S
int
x − ln px], (B15)

=
∑

x,y,ν

[
k(xy,ν)py − k(yx,ν)px

]
[Sint

x − ln px], (B16)

=
1

2

∑

x,y,ν

[
k(xy,ν)py − k(yx,ν)px

] [
− ln

px
py

+ Sint
x − Sint

y

]
, (B17)

=
1

2

∑

x,y,ν

j(yx,ν)

[
ln
py
px

+ Sint
x − Sint

y

]
, (B18)

where we have used the master equation and the anti-symmetry of probability cur-
rents. We now move the internal entropy term in the left-hand member and also
add and subtract on the left and right sides the logarithm of the ratio of forward
and backward transition rates:

d

dt
⟨s(t)⟩+

∑

x,y>x,ν

j(xy,ν)

[
Sint
y − Sint

x + ln
k(xy,ν)

k(yx,ν)

]
=

∑

x,y>x,ν

[
k(xy,ν)py − k(yx,ν)px

]
ln
k(xy,ν)py

k(yx,ν)px
= σ ≥ 0 (B19)

The last term, called EPR and denoted σ, is positive or zero. Indeed, if the proba-
bility current is positive, then the ratio in the logarithm is greater than 1, and the
logarithm is therefore positive as well. Otherwise, the ratio is smaller than 1, the
logarithm is negative, as is the current, and their product is positive. All summed
terms are, therefore, positive. Such a general conclusion on the sign of σ is not
accidental: its positivity in all situations supports the interpretation of an entropy
production term. The entropy balance, in full connection with the heat definition
arising from the first principle, achieves this reasoning: The first term on the left-
hand side of Eq. B19 is the system entropy increase. Then, the second term must
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be the rate of reservoir entropy production, which is the sum over ν of minus the
heat flows from reservoir ν to the system divided by Tν . Given that we already
have a definition of heat from the first principle, cf. Eq. (B11), we find the following
constraint on the transition rates

ln
k(xy,ν)

k(yx,ν)
= − 1

Tν

(
εx − εy − TνS

int
x + TνS

int
y − wnc

(xy,ν)

)
. (B20)

This equation is called the canonical LDB (no exchange of matter). Note that
the canonical LDB involves the non-conservative force and the difference in free
energy (based on internal entropy only) εx − TνS

int
x between the two states x and

y. Alternatively, the edge forces

f(xy,ν)
.
= ln

k(xy,ν)py

k(yx,ν)px
= − 1

Tν

[
(εx − Tνsx)− (εy − Tνsy)− wnc

(xy,ν)

]
. (B21)

involves instead the difference in non-equilibrium free energy εx − Tνsx. The latter
is not a state function as it is defined for each reservoir separately. Here, the entropy
of state x is sx

.
= Sint

x − ln px using the probability px. Its mean value reproduces
the system entropy defined in Eq. (B13).

With the constraint of Eq. (B20), the square bracket on the left side of Eq. B19
is exactly the heat sent to reservoir ν during transition (xy, ν). Therefore, we arrive
at the crucial fact that the LDB is the dynamical statement of the second principle
of classical thermodynamics

d

dt
⟨s(t)⟩ −

∑

ν

⟨qν⟩
Tν

= ⟨σ⟩ ≥ 0. (B22)

This principle provides an entropy balance of a non-equilibrium system in contact
with several heat reservoirs. Generalization to open systems in the grand canonical
ensemble is available in the literature [89].

B.2 Exoreversible and stationary linear converters

As we have laid the foundations of stochastic thermodynamics, we proceed with the
physics of energy conversion in its standard formulation: in the linear regime. The
physics of energy conversion is a sub-field of the physics of coupled currents when
(i) considering only two independent currents and (ii) when the output current is
a rate of work extraction. However, removing assumption (ii) leads to the same
physics, which already has many applications and universality. Indeed, one must
deal with a power-efficiency trade-off in many activities: in information technology
(fast versus efficient computers leading to two very different CPU architectures: x86
or ARM), in economics (quick and cheap, but natural resource wasting versus slow
and expensive, but natural resource preserving, e.g., in slate production), in logistic
(fast versus efficient parcel delivery), etc.

For simplicity, we focus on exoreversible machines (no dissipation through im-
perfect connection with the reservoirs) in a close-to-equilibrium stationary state.
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Machines working close to equilibrium are, by definition, weakly irreversible, which
gives them a clear advantage in terms of efficiency. Their internal entropy produc-
tion is low due to low thermodynamic forces, making it possible to linearize the
expression of currents as a function of forces. In rare cases, the relationship between
current and force is linear without needing a low-force approximation. Thanks to
the machine’s linearity, we can determine the exact efficiency-power trade-off by ob-
taining an expression relating efficiency to output power normalized by maximum
power. We did not find alssewhere in the literature this result (Eq. (B54) below)
relating efficiency and power in the linear regime, although the study of linear con-
version is a textbook topic [101]. Ref. [9] generalizes this approach to stationary
and non-linear converters: the same trade-off between power and efficiency exists,
although providing their general relation requires assuming some current-force char-
acteristics.

B.2.1 Currents and forces in linear regime

The flux-force relationship (phenomenological or from a close-to-equilibrium lin-
earization) writes

I1 = L11A1 + L12A2, (B23)

I2 = L21A1 + L22A2, (B24)

where Ii for i = 1, 2 is the ith (fundamental) current, Ai is the conjugated (founda-
mental) force, and Lij = Lji is the ij component of the Onsager conductance matrix.
The Onsager matrix is symmetrical as it relates to the covariance matrix of station-
ary currents [102]. Total EPR writes as the sum of two partial EPRs

σ = σ1 + σ2 ≥ 0, (B25)

with σi = AiIi. An entropy production has the dimension of an entropy (Joule per
Kelvin), while entropy production rates have the dimension of an entropy per unit
time (Joule per Kelvin per second). Total entropy production is the quadratic form

σ =
(
A1 A2

)
·
(
L11 L21

L21 L22

)
·
(
A1

A2

)
(B26)

This entropy production must always be positive or zero. As the matrix L is sym-
metrical, it is diagonalizable: we can perform a basis change using an orthogonal
transition matrix P T = P−1 so that entropy production is written as a sum of
squares σ = (PA)TD(PA) where D is the diagonal matrix of eigenvalues. This
implies that the eigenvalues of L are positive or zero so that for any choice of force
Ai, we have σ ≥ 0. Since the determinant of L is equal to the product of the
eigenvalues, it is positive or zero as well:

DetL ≥ 0 (B27)
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We speak of strong coupling between the currents when this determinant is zero.
Strong coupling of two physical currents means that the ratio of the currents is force-
independent. Without strong coupling, entropy production is a positive definite
quadratic form of the forces. On the other hand, all forces need not be zero to
cancel entropy production in the case of strong coupling: since the currents are
related by I1 = αI2 for a constant α, we have

σ = A1I1 +A2I2 = (A1α+A2)I2 (B28)

that is null if A1α+A2 = 0, which does not require that neither forces nor currents
are null. This apparently contradicts the definition of equilibrium states (that have
null currents and null EPR). We resolve this contradiction by considering that
strong coupling is a mathematical limit that some models can fulfill, although as an
idealization (in the same line as the reversible limit)..

B.2.2 Machine regime and efficiency

With two partial entropy productions, there are three possibilities for their respective
signs

• Both positive, purely dissipating device: σ1 ≥ 0 and σ2 ≥ 0, the system
operates as a complete heat sink, and both processes are spontaneous. (dud
engine)

• Opposite sign, functional device: σ1 ≥ 0 and σ2 ≤ 0, the system operates
in machine mode, with one spontaneous process destroying entropy for the
second process (idem in the 1 ↔ 2 exchange). (engine and inverse modes)

• Both negative: σ1 ≤ 0 and σ1 ≤ 0 is forbidden by the second law of thermo-
dynamics.

The reversible case corresponds to σ1 = −σ2 for which the second principle of
inequality (B25) is saturated. Arbitrarily, we decide that the output current is I2
and the input current is I1. Then, σ2 < 0, and entropy is destroyed by the output
flow (force opposing the current), while entropy is produced by the input flow σ1 > 0

(force aligned with the current). With those conventions, the type II efficiency is
defined by

η ≡ −I2A2

I1A1
= −σ2

σ1
. (B29)

Type II efficiencies are dimensionless and bounded by the reversible type II efficiency

ηrev = −σ2
σ1

≤ σ1
σ1

= 1. (B30)

Efficiency is positive for an operational machine and is negative for a dud engine.
For example, a refrigerator operating at high outside temperatures may no longer
be able to extract heat from the inside to the outside. The point at which heat
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Figure B.3: Operation diagram of a linear machine. Three modes can be distin-
guished: the engine mode where σ2 < 0 while σ1 > 0, the inverse mode where
σ2 > 0 while σ1 < 0, and the purely dissipating mode where σ2 > 0 and σ1 > 0

(dud engine).

extraction reaches zero is called a stalling point. In the general case, this point
corresponds to the cancellation of the I2 flow at large force A2.

To fix ideas, we choose A1 > 0, I1 > 0 and A2 > 0, I2 < 0. In this case, the type
II efficiency corresponds to the type I efficiency −I2/I1 divided by the reversible
type I efficiency A1/A2. We also have L12 = L21 < 0, but the diagonal terms Lii of
the Onsager matrix are positive so that in the absence of the other force, entropy
production remains positive. For example, at A2 = 0 we have I1 = L11A1 and
therefore σ = A1I1 = L11A

2
1 ≥ 0 which imposes L11 ≥ 0.

B.2.3 Operation diagram

The operation diagram is a graph in the space of forces A1 and A2 that indicates
the different operating modes of the device; see Fig. B.3. It is obtained by plotting
the implicit function σ2 = 0 (light blue lines) and σ1 = 0 (light yellow lines). In the
case of linear machines, we find trivially

σ2 = A2I2 = A2 (L21A1 + L22A2) = 0, (B31)

σ1 = A1I1 = A1 (L11A1 + L21A2) = 0. (B32)

The machine is in engine mode for σ2 < 0 and σ1 > 0, and hence for forces

• 0 < A2 < −L21
L22

A1 for positive output and input forces A2 and A1,

• 0 > A2 > −L21
L22

A1 for negative output and input forces A2 and A1,

when keeping in mind that L21 < 0. The machine is in inverse mode for σ2 > 0 and
σ1 < 0, and hence for forces
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• 0 < A1 < −L21
L11

A2 for positive output and input forces A2 and A1,

• 0 > A1 > −L21
L11

A2 for negative output and input forces A2 and A1.

The operation diagram of the linear machine is simple: the corresponding struc-
ture with functional, inverse, and dud modes exist in any device in the close-to-
equilibrium limit, for instance, Ref. [103] for an operation diagram including far
from equilibrium conditions and the expected structure at weak thermodynamics
forces.

B.2.4 Current-force characteristic

One way of characterizing the operation of a converter is to consider the curve
relating output current and force (at constant partial entropy production for the
input process). This curve, called current-force characteristic, is obtained by varying
the load (here the force A2) against which the converter works: at low force, the
current can take high values, but the power remains low (−σ2 = −A2I2 is small); at
high force, the converter approaches the stalling point at which the current is zero
(the converter stalls), and the power is also low.

We start by determining a relationship between the two forces, thanks to the
fact that we’re working with constant partial input entropy production

σ1 = L11A
2
1 + L12A1A2, (B33)

which we solve for A1

A1 =
−L12A2 ±

√
(L12A2)2 + 4L11σ1
2L11

. (B34)

This leads to the output current

I2 = L12

[
−L12A2 ±

√
(L12A2)2 + 4L11σ1
2L11

]
+ L12A2. (B35)

Fig. B.4 shows this current-force characteristic for a linear machine.

B.2.5 Degree of coupling and other parameters

We introduce the following parameters:

Π ≡ L1,1A
2
1, φ ≡

√
L2,2A2

2

L1,1A2
1

, and ξ ≡ L1,2√
L1,1L2,2

sign(A1A2). (B36)

Π is the intrinsic entropy production of the input process, φ is the entropy production
of the output process relative to the input process (called asymmetry in [101]), and ξ
is the degree of coupling which is related to the determinant of the Onsager matrix:

ξ ≡ L12√
L11L22

= ±
√

1− DetL

L11L22
since DetL = L11L22 − L2

12 = L11L22(1− ξ2).

(B37)
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Figure B.4: Opposite of output current (i.e. −I2) versus output force A2. The area
of a square between the curve and the abscissa and ordinate axes gives the output
power (partial entropy production −σ2). For this figure, we take dimensionless
currents and forces with L11 = 3, L12 = −1, L22 = 0.5, σ1 = 2, ξ = −0.82.

The degree of coupling is, therefore, ±1 when the determinant is zero (at strong cou-
pling). Of these three parameters, only the degree of coupling is independent of the
machine’s operating point (for linear converters only). Therefore, it characterizes
the machine in a fairly universal way. The degree of coupling determines the pos-
sibility for a machine to reach the maximum efficiency: reversibility is a necessary
but not sufficient condition.

B.2.6 Trade-off between power and efficiency

Partial entropy destruction σ2 is maximum (highest flux-force product, i.e., maxi-
mum output power −σ2 = −A2I2) when

∂(−σ2)
∂A2

= − ∂

∂A2
(L21A1 + L22A2)A2, (B38)

0 = −(L21A1 + 2L22A2), (B39)

A∗
2 = −L12A1

2L22
≥ 0. (B40)

The maximum output power is then

−σ∗2 = −(L21A1 + L22A
∗
2)A

∗
2, (B41)

−σ∗2 = L21A1
L12A1

2L22
− L22

(
L12A1

2L22

)2

, (B42)

σ∗2 =
(L12A1)

2

2L22
− (L12A1)

2

4L22
, (B43)

σ∗2 =
(L12A1)

2

4L22
≥ 0. (B44)
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Figure B.5: Type II efficiency η as a function of the power ratio x for a linear machine
with degrees of coupling |ξ| = 1, 0.95, 0.5. The blue horizontal line indicates the
efficiency at maximum power for ξ = 0.95. The red horizontal lines are the maxima
of the lobe-shaped curves and give the maximum efficiency at power below the
maximum power. The lobes flatten rapidly as |ξ| decreases towards 0.

We can also determine the value of the force A2 for a given value of partial entropy
production σ2 = (L21A1 + L22A2)A2 that is a polynomial of the second degree in
A2 with solution

A±
2 =

−L12A1 ±
√
(L12A1)2 + 4L22σ2
2L22

, (B45)

A±
2 = A∗

2 ±
|L12A1|
2L22

√
1 +

4L22σ2
(L12A1)2

, (B46)

A±
2 = A∗

2 ± |A∗
2|
√

1− σ2
σ∗2
, (B47)

A±
2 = A∗

2χ±(x) with power ratio x
.
=
σ2
σ∗2
. (B48)

Thus, the force against which the machine works is a function of the force at max-
imum power and the ratio x of operating power and maximum power. We have
introduced the function

χ±(x) = 1±
√
1− x. (B49)

Let’s now calculate a linear machine’s efficiency η(x) as a function of the ratio
x of operating power and maximum power. This efficiency writes in terms of the



28 Chapter B. Physics of energy conversion

coefficients of the Onsager matrix and the forces

η =
−L12A1A2 − L22A

2
2

L12A2A1 + L11A2
1

(B50)

η =
−L12A1A

∗
2χ± − L22F

∗2
2 χ2

±
L12A1A∗

2χ± + L11A2
1

(B51)

η =
L12A1

L12A1
2L22

χ± − L22

(
L12A1
2L22

)2
χ2
±

−L12A1
L12A1
2L22

χ± + L11A2
1

(B52)

η =
ξ2

2 χ± − ξ2

4 χ
2
±

− ξ2

2 χ± + 1
(B53)

where we used Eqs. (B48, B40). We conclude that efficiency is a bivalued function
of the machine output power

η(x) =
χ±(1− χ±/2)
2/ξ2 − χ±

(B54)

The corresponding power-efficiency graph of a linear machine is shown in Fig. B.5 for
different degrees of coupling ξ. Such graphs are, in fact, typical for energy convert-
ers even beyond the linear hypothesis. As illustrations borrowed from my lectures
on energy conversion, we provide in Fig. B.6 the power-efficiency graphs for two
simplified models of non-linear converters: a Francis turbine and an asynchronous
electric motor. It is striking that it is possible, in principle, to match the maxi-
mum efficiency with the efficiency at maximum power in a Francis turbine. This is
the case when the turbine is adapted to the maximal flow, i.e. without quadratic
dissipation when the flow is maximal. In other words, when the flow is lower, the
dissipation is quadratic in the distance to the maximal flow (chosen as the adapted
flow). For the electric motor, we consider the Joule dissipation in the stator only.
Without this dissipation (α = 0) the motor displays strong coupling.

Let’s emphasize that normalizing power by the maximum power allows us to
compare trade-offs between the power and efficiency of very different machines, but
absolute maximum powers may differ by several orders of magnitude. This is the
case for Francis turbines, which operate at a very high power compared to electric
motors.

B.2.7 Efficiency at maximum power and maximum efficiency

Efficiency at maximum power depends solely on the degree of coupling [104]. It is
obtained by taking χ± = 1 in Eq. (B54)

η(σ∗2) =
ξ2

4− 2ξ2
. (B55)

For strong coupling between input and output flows, the degree of coupling is ξ =

−1. The efficiency at maximum power is η(σ∗2) = 1/2, i.e. half the maximum
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Figure B.6: Type II efficiency η as a function of the power ratio x for (Left) a Francis
turbine and (Right) an asynchronous electric motor. For the turbine, the parameter
θ is the fraction of the flow with respect to the maximal flow. For the motor, rS is a
scaled pulsation of the stator current with ζ = −1±

√
1 + r2S , and α is a parameter

related to the degree of coupling that is proportional to the Joule dissipation in the
stator.

efficiency. Optimization of the efficiency with respect to σ2 is also possible, although
a little more computationally demanding, leading to the maximum efficiency

η∗ =

(
1−

√
1− ξ2

ξ

)2

=
1−

√
1− ξ2

1 +
√
1− ξ2

. (B56)

The second equality arises from multiplying the numerator and denominator of the
fraction on the right by 1 −

√
1− ξ2. Fig. B.5 shows that the reversible efficiency

η = 1 is out of reach when the degree of coupling is −1 < ξ < 1. In the case of
|ξ| = 1, the curve is open: it is not a lobe anymore. Maximum efficiency is achieved
at zero power only. This is the expected result for a reversible machine: for example,
a Carnot cycle is completed in infinite time so that the power supplied per unit time
is zero. The fact that power-efficiency curves are bivalued is intuitive: a unique pair
of conjugated variables exists at maximum power; in all other cases, two pairs of
conjugated variables can lead to the same output power (high current and low force,
or low current and high force).

B.3 Stationary converters

Ref. [9] generalizes the results of the previous section to stationary and non-linear
converters modeled by Markov jump processes. We assume knowing the state prob-
ability in NESS. We also use the decomposition of edge currents on cycle cur-
rents and similarly the decomposition of physical currents on fundamental currents
[105, 106, 107, 108]. We supplement in this section the result of Ref. [9] by providing
some elements on state probabilities and the decomposition of currents in NESS.
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Figure B.7: All spanning trees of the four-state model of Fig. B.1.

B.3.1 Stationary probability

The stationary probability psty is a solution of
∑

y,ν

k(xy,ν)p
st
y = 0. (B57)

This stationary probability for state y is obtained by selecting an arbitrary row x

(always the same, whatever the value of y) and isolating the minors (xy).

psty =
(−1)y+x

Z
Det

(∑

ν

kν

)

xy

, (B58)

where the subscript indicates xy minor of the matrix
∑

ν kν . We denote by Z a
normalization constant. Remark that a Markov matrix has a null determinant: its
largest eigenvalue is zero with the associated right (resp. left) eigenvector being pst

[resp. (1, . . . , 1)]. By Perron-Froebenius theorem, all other eigenvalues have negative
real parts so that the finite time probability eventually relaxes to the stationary one
(for finite V ). Relaxation from a given initial condition of the solution of the master
equation can, therefore, be pure damping or damped oscillations, but will always
converge to pst. Let’s verify Eq. (B57) for the probability vector of Eq. (B58):

∑

y,ν

k(xy,ν)p
st
y =

1

Z

∑

y,ν

k(xy,ν)(−1)y+xDet

(∑

ν

kν

)

xy

=
1

Z
Det

∑

ν

kν = 0. (B59)

The vector pst is the Froebenius eigenvector: its components are all positive, as
required for a probability vector. Indeed, the Markov generator is of rank V − 1

and hence has non-null minors. In principle, the Perron-Froebenius theorem applies
to matrices with positive coefficients. An extension exists for irreducible matrices
whose coefficients are positive or zero. Irreducibility is associated with strongly
connected graphs (i.e., there is always a path from one vertex to another and vice
versa). If the graph is unconnected, the probability of one of the disconnected parts
may be zero.

An alternative formula from graph theory exists for stationary probability; see
[109]. It is called the spanning tree formula. A spanning tree is a subset of the edge
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set that includes V − 1 edges connecting all vertices; see Fig. B.7. Choosing a root
vertex x for the spanning tree T implies orienting tree edges toward the root. We
denote the rooted spanning tree Tx. Then, the spanning tree formula reads

pstx =
1

Z

∑

Tx

∏

e∈Tx

ke, (B60)

where the sum runs on all spanning trees rooted in x. The product covers all
edges in Tx. Then, the numerator of Eq. (B60) includes all the products of V − 1

different transition rates. The same is true of the minors of the rate matrix that,
by definition, are homogeneous of degree V −1 in the transition rates, with product
involving transition rates all connecting different pairs of states. This statement
is enough to relate Eqs. (B59-B60). We emphasize that the spanning tree formula
applies to multigraphs, i.e., graphs with different edges connecting the same pair
of vertices. Since kxy

.
= Σνkxy,ν , the number of spanning trees increases with the

number of channels. This higher number of trees corresponds to the supplemental
products of rates appearing in the minors formula when developing the sum over ν
in the transition rates.

The spanning tree formula is easy to interpret as all the probability flows toward
the root, contributing positively to the probability of the corresponding state. It
is easy to calculate for systems with a low number of states V , while the minor
formula is more straightforward for systems with large V . The stationary probability
replaces the Gibbs-Boltzman probability of systems at equilibrium. However, it
is not sufficient to study the thermodynamics of non-equilibrium systems beyond
average behavior. We finally remark that the spanning tree formula leads to the
Boltzmann probability under the detailed balance condition (Eq. (B20) when all
temperatures are equal and without non-conservative forces).

B.3.2 Decomposition of stationary currents and forces

There is often a linear dependence between currents due to conservation laws, either
at the microscopic level for probability currents or at the macroscopic level for
the currents of physical quantities. This linear dependence allows using a reduced
set of currents and conjugated forces to describe a physical system without losing
anything about it as long as one knows the existing conservation laws. In table B.9,
we summarize the various notations for the current and forces used in this section.
Cycle currents or fundamental currents are obtained by selecting an independent
set of currents beyond the edge currents or the physical currents respectively. Given
the similarity between the procedure at the microscopic or macroscopic level, we
use different letters for these two cases but switch from lower to upper case when
reducing the number of independent variables.

Microscopic level– In the NESS, we write the edge forces fe as logarithms of the
probability ratio of stationary transition probability for e and −e

f(xy,ν) ≡ ln
k(xy,ν)p

st
y

k(yx,ν)pstx
. (B61)
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The edge probability current along e = (xy, ν) is the net current along the edge

j(xy,ν) ≡ k(xy,ν)p
st
x − k(yx,ν)p

st
y . (B62)

Given probability conservation, it is unsurprising that those currents are linearly
dependent (Kirchhoff currents law at each vertex). Taking one spanning tree in-
troduced in the previous section allows us to identify cycles. Starting from the
spanning tree and adding one edge of the graph creates a cycle, i.e., a path of edges
making a unique loop. The added edge is called a chord and uniquely identifies its
associated fundamental cycle; see Fig. B.8. The orientation of the chord c defines
the orientation of the associated cycle, also denoted c. It is obvious then that the
set of chords is a subset of edges. The choice of spanning tree defines a basis of
fundamental cycles (different trees lead to different bases). Each basis includes a
number of fundamental cycles equal to the number of edges in the graph that do
not belong to the spanning tree. Based on this observation, the formula relating the
number of edges E, of vertices V and of fundamental cycles C is

E = V − 1 + C (B63)

By definition of a basis, it is possible to combine the fundamental cycles to form
any other graph cycle (edges common to both graphs and of opposite orientations
are removed from the final cycle). This explains the use of the word “fundamental”
cycles as those cycles that create a basis for all cycles. In practice, a cycle c is a
vector in edge space such that the components of this vector are

ce =





+1 if e ∈ c with the same orientation
−1 if e ∈ c with the opposite orientation
0 otherwise

(B64)

Let’s call C the matrix whose columns are fundamental cycle vectors. Therefore,
the matrix C is of dimension E × C. Note that the fundamental cycles are a basis
of the kernel of the incidence matrix, so DC = 0, and the cycles are its right null
eigenvectors.

Each fundamental cycle labeled by chord c is associated with a stationary cycle
current Jc equal to the chord current of cycle c. By definition, a chord belongs to
only one fundamental cycle. Edges that are not chords belong to one or several
cycles and must sustain the sum of the currents of all the cycles they belong to.
They are linear combinations of cycle currents where the coefficients of this linear
combination are 1 or −1 according to the relative orientation of the edge and cycles:

je =
∑

c

CecJc ⇒ j = CJ (B65)

Furthermore, we define the cycle force of c by the sum of the forces on the edges
belonging to cycle c:

FT
c =

∑

e

fTe Cec ⇒ F T = fTC (B66)
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Full set Reduced set

Micro
Edge current j Cycle current J

Edge force f Cycle force F

Macro
Physical current i Fundamental current I

Local potential a Fundamental force A

Table B.9: Notation for the current and forces at the different levels of description,
from the microscopic level of edges and cycles to the macroscopic level of physical
currents exchanged with the environment and the reduced set of fundamental cur-
rents. Lower case letters are for the full set of variables and upper case letters are
for the reduced set of variables. We follow here the usual convention that j are local
currents and i are integrated currents. Ref. [11] is at the macroscopic level only and
uses the notations of this table. In Ref. [9], the notations are different; for instance,
lowercase letters are for fluctuating variables.

where T indicates transposition. This choice guarantees the unicity of the entropy
production rate expressed using edge or cycle variables

σ = fTj = fTCJ = FTJ (B67)

where the first equality is a restatement of Eq. (B19) using edge currents and forces.

a b

c d

a b

c

b

c d

Figure B.8: Spanning tree leading to cycle c1 by adding chord ab and to cycle c2 by
adding chord cd.

Macroscopic level– The above reasoning applies equally at the macroscopic level.
Let’s first define the physical currents as the sum over all cycles of the cycle currents
Jc times ΦXc the amount of Xth physical quantity (X = 1, . . . , N) received by the
system when performing cycle c:

iX =

C∑

c=1

ΦXcJc ⇒ i = ΦJ (B68)

The local potentials aX associated with each reservoir (i.e. forces at the physical
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level) are related to cycle forces by

FT
c =

N∑

X=1

aTXΦXc ⇒ FT = aTΦ, (B69)

so that the EPR remains the same whether expressed using edges, cycles, or physical
currents and their conjugated forces:

σ = FTJ = aTΦJ = aTi. (B70)

Due to conservation of physical quantities (such as energy and matter), the physical
currents are often linearly dependent according to ℓαi = 0 where ℓα are line vectors
(α = 1, . . . , λ) with a number of columns (labeled by X) corresponding to the total
number of physical currents received from the reservoirs. The matrix ℓ with compo-
nents ℓαX encodes all the system’s conservation laws. Then, we choose a subset of
N − λ physical currents, called fundamental currents, that are linearly independent
according to

iX =

N−λ∑

Y=1

SXY IY ⇒ i = SI, (B71)

where the selection matrix satisfies ℓS = 0. The column vectors of the selection
matrix define a basis of the kernel of the matrix of conservation laws. In other
words, the selection matrix reconstructs the physical currents from the fundamental
currents. It selects which currents in the basis are necessary to reconstruct each
physical current according to the conservation laws. It also selects the local poten-
tials to create fundamental forces according to

AT = aTS, (B72)

where again the EPR is the same at the physical and fundamental levels

σ = aTi = aTSI = ATI. (B73)

B.3.3 Nonlinear conductance matrices

In order to define non-linear conductances (or resistances), we now use the relations
between the currents at the various levels of description obtained in the previous
section. We start by defining a trivial relation between edge forces and currents and
export it to the higher levels. In Ref. [9], we skip the level of physical currents as in
the linear regime since Onsager’s response matrix is often given at the fundamental
level.

In the steady state, we first define the edge resistance along e transition by

re ≡
fe
je
> 0, (B74)

so that the edge force is given by f = rj, i.e. applying the resistance matrix r,
diagonal with diagonal components re, on the edge current j. The positivity of
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local resistance arises for the same reason as the positivity of entropy production in
Eq. (B19). Moreover, entropy production can be written as a quadratic form of the
currents or forces on the edges, where re are the coefficients, which must therefore
be positive. Note that re is not defined when the edge current is zero.

Then the cycle resistance matrix defined by

R = CTrC (B75)

relates cycle currents and forces since

F = CTf = CTrj = (CTrC)J = RJ . (B76)

The matrix R is a square symmetric matrix of dimension C × C given that r is
a square diagonal matrix of dimension E × E. Like for r, the cycle resistance
matrix is defined positive in accordance with the positivity of the EPR, written as
a quadratic form of the currents or forces. Hence, there is an inverse matrix called
cycle conductance matrix R−1 such that

J = R−1F . (B77)

Proceeding similarly to the level of physical currents and forces leads to the physical
conductance matrix g = ΦR−1ΦT

i = ΦJ = ΦR−1F = (ΦR−1ΦT)a = ga. (B78)

and to the fundamental conductance matrix G = S+gS+T.

I = S+i = S+ga = (S+gS+T)A = GA, (B79)

where S+ is the Moore-Penrose inverse of matrix S that exists since its columns
are independent. We stress that the nonlinear conductance matrix is a function
of the macroscopic forces A explaining why even though the current-force relation
looks linear it is in fact nonlinear. This dependence appears in the transition rates
ke via the LDB. However, the linear relationship between macroscopic forces and
currents arises naturally when developing the nonlinear conductance at first order
in fundamental forces.

The crucial point is that the nonlinear conductance matrix includes more infor-
mation about the system than simply giving currents as a function of macroscopic
forces. For instance, the determinant of the non-linear conductance matrix at the
fundamental level is accessible, enabling the generalization of the degree of coupling
between the currents (cf. B.3.4). This is impossible without nonlinear conductance
matrix when using the non-linear currents as a function of the forces. Moreover, we
have shown in Ref. [11] that given the fundamental conductances of two different
devices put in connection, one can compute the fundamental conductance of the
resulting device. This allows decomposing complex problems into several simpler
pieces that can be characterized independently and assembled together (cf. B.3.5).
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Introduction

The second law of thermodynamics prevents the thermodynamic eciency of energy 
converters to exceed the reversible eciency [1], thus ruling out perpetual motion. 
The energy converters operating close to reversible eciency have been widely studied 
[2–5]. Historically, these questions were first addressed within the framework of weakly 
irreversible thermodynamics developed by Onsager for purely resistive systems [6, 7], 
i.e. systems with fluxes and anities instantaneously related. This theory assumes local 
equilibrium and expresses physical currents (e.g. energy currents, matter currents) as 
non-linear functions of the anities and local intensive parameters [1].
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In the linear response regime near equilibrium, currents become linear function 

of the anities, which defines the so-called Onsager response matrix. The framework 
based on this response matrix has been very successful to describe thermoelectric eects 
[8, 9], to determine the degree of coupling between influx and outflux [2, 10, 11], or to 
predict the eciency at maximum power [12, 13]. This framework can also be extended 
to cover mesoscopic and nanoscale systems [14]. A key result of the response matrix 
framework is Onsager’s reciprocity relations which can be deduced from a more general 
symmetry property called fluctuation theorems [15–17]. Previous attempts to gener-
alize the notion of Onsager matrix to non-equilibrium stationary states lead to non-
symmetric Onsager matrices, so that many properties were lost for that reason [18].

In this paper, building on the work of Polettini et al [19, 20], we introduce precisely 
a non-equilibrium conductance matrix that is symmetric just as the Onsager response 
matrix, but whose coefficients are now functions of the affinities. Intuitively, such a 
conductance matrix should exist at the macroscopic scale, because it can be constructed 
by associating conductances between every pair of states from the microscopic scale up 
to the macroscopic scale. Naturally, the question whether a symmetric matrix can be 
constructed in this way even when the system is in a non-equilibrium stationary state 
requires a more careful analysis.

For this reason, we assume in a first step that such a non-equilibrium conductance 
matrix can be constructed disregarding the issue of possible non-unicity of this matrix. 
We then show that a parametrization of the thermodynamic eciency introduced by 
Kedem and Caplan [2] for machines near equilibrium still applies to a machine oper-
ating far from equilibrium. This parametrization involves the degree of coupling ξ 
between the influx and outflux, which together with the functions Π and ϕ characterize 
the dissipation and therefore also the eciency of a machine. Using this parametriza-
tion which is linked to the chosen non-equilibrium conductance matrix, we show that 
the eciency admits a general upper bound valid arbitrarily far from equilibrium, 
which only depends on the degree of coupling. We also deduce from our framework 
power-eciency inequalities that set bounds on the output power as a function of the 
machine eciency.

In a second step, we construct the non-equilibrium conductance matrix from a 
framework based on the large deviation function (LDF) of currents. In the linear regime 
near equilibrium, this LDF has a quadratic form, which is related to central results of 
Statistical Physics such Onsager relations and the Fluctuation-Dissipation theorem. In 
this framework, response and current fluctuations are connected through an equality. 
Near a non-equilibrium stationary state, the relation between fluctuations and response 
takes instead the form of an inequality, which states that currents fluctuations near a 
non-equilibrium stationary state are always more likely than those predicted by lin-
ear response analysis close to this point [21, 22]. We show that a consequence of this 
property is an inequality between the non-equilibrium conductance matrix and the 
matrix of covariances of currents, for a certain matrix order among symmetric matrices 
[23]. Remarkably, our result contains various interesting power-eciency trade-os 
[24, 25]. Hence, our approach provides a unifying framework for studying and opti-
mizing machine performance, and illustrates the relevance of the concept of the non-
equilibrium conductance matrix.
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To summarize, in the first section, we use standard thermodynamics to constrain 

the form of the non-equilibrium conductance matrix and then we exploit a param-
etrization originally developped for equilibrium systems to describe the eciency of 
macroscopic thermodynamic machines operating far from equilibrium. In the second 
section, we derive an explicit formula for this non-equilibrium conductance matrix at 
the stochastic level. In the third section, we obtain various power-eciency inequalities 
from that framework which we illustrate with two examples: a three state model of heat 
to heat converter with strongly coupled heat fluxes and a discrete model of molecular 
motor [26, 27].

1. From non-equilibrium conductance matrix to constraints on power  
and eciency

1.1. The non-equilibrium conductance matrix

Machines are systems that produce on average a current against an external force, 
usually called thermodynamic anity. This is achieved by using another current gener-
ated by its own anity. Hence, a machine generically involves two anities F1 and F2 
associated with two physical currents J1 and J2. In terms of the physical currents and 
anities, the mean entropy production rate can be written as

σ = F1J1 + F2J2, (1)
which is the sum of two partial entropy production rates denoted by σX = FXJX. We 
focus here on the steady-state regime of the machine, where all quantities introduced 
so far are time-independent. Throughout the paper, we use kB = 1 which means that 
entropy production rates have the dimension of inverse time. Physical observables, 
including currents JX, anities FX, and partial entropy production rates σX, are labeled 
with index X = 1, 2. Close to equilibrium, physical currents are linear functions of the 
anities:

�
J1

J2

�
=

�
L1,1 L1,2

L2,1 L2,2

��
F1

F2

�
, (2)

where LX,Y  are the components of the Onsager matrix L [6]. This matrix has real and 
symmetric coecients which are independent of the anities.

Beyond the linear regime, the physical currents become non-linear functions of the 
anities but it is not known whether the concept of Onsager matrix can still be used 
for systems in non-equilibrium stationary state. Let us assume for the moment that 
such a generalization exists, which we call the non-equilibrium conductance matrix G. 
By similarity with the Onsager matrix, we assume a relation of the type

�
J1

J2

�
=

�
G1,1 G1,2

G2,1 G2,2

��
F1

F2

�
, (3)

with again real and symmetric coecients. An important dierence with the previous 
case is that the coecients of the matrix G are now necessarily functions of the anities 
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F1 and F2 unlike the constant coecients of the Onsager matrix L. Importantly these 
assumptions together with equation (3) still do not define a unique matrix G.

We now specialize to a thermodynamic machine by assuming (without loss of gen-
erality) that the first process is the driving process and the second process is the output 
process. Hence the partial entropy production rate of the first process verifies σ1 � 0 
while σ2 � 0 for the second process. The thermodynamic eciency reads

η =
−σ2

σ1

. (4)
The second law imposes the positivity of the total entropy production rate σ = σ1 + σ2 � 0, 
which implies 0 � η � 1, where 0 is reached when there is no output current and 1 is 
reached for a reversible operation of the machine with vanishing entropy production 
rate σ. Now, using the above properties of the non-equilibrium conductance matrix, we 
get for the partial entropy production rates

σ1 = J1F1 = G1,1F1
2 + G1,2F1F2, (5)

σ2 = J2F2 = G2,1F1F2 + G2,2F2
2. (6)

We choose the anity dependent matrix to be positive semi-definite to guarantee the 
validity of the second law for arbitrary anities. Since G1,2 = G2,1 this means:

G1,1G2,2 � G1,2
2, (7)

for all possible anities. Using equations (5) and (6) combined with the conditions 
σ1 � 0 and σ2 � 0 leads to the inequalities

G1,1F
2
1 � −G1,2F1F2 � G2,2F

2
2 � 0, (8)

which are also valid for arbitrary anities.
The question of the existence of a non-equilibrium conductance matrix with the 

above properties can be resolved by exhibiting a particular solution. It is simple to 
check that the matrix

Gmin ≡ 1

σ

�
J2

1 J1J2

J1J2 J2
2

�
, (9)

satisfies equation (3) by construction and is positive semi-definite because its trace is 
positive and its determinant is zero. The reason for the subscript ‘min’ for this matrix, 
can be understood once we introduce a matrix order for symmetric matrices, called 
Loewner partial order [23]. This is defined in such a way that A � B means that 
A − B is a positive semi-definite matrix. This property implies that for two symmetric 
n × n matrices A and B:

A � B ⇔ ∀x ∈ Rn, xT · A · x � xT · B · x. (10)
Now, using equations (1), (3) and (8), one can show explicitly that the matrix G − Gmin 
is also a positive semi-definite matrix, because its trace is again positive and its deter-
minant is zero. Therefore, we have the general property

G � Gmin, (11)
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which justifies the name Gmin for a matrix which represents a minimum among all 
conductance matrices for the specific matrix order defined above.

1.2. General parametrization of the eciency

Thanks to the above properties of the non-equilibrium conductance matrix, we can 
introduce the functions

Π ≡ G1,1F
2
1 , ϕ ≡

�
G2,2F 2

2

G1,1F 2
1

, and ξ ≡ G1,2�
G1,1G2,2

sign(F1F2). (12)

These functions are direct generalizations of the ones used in the close-to-equilibrium 
regime [2]. The parameter Π = Π(F1, F2) determines the dissipation of the driving pro-
cess when there is no output process coupled to the driving process or when there is one 
but we choose to ignore it. In the following, we call this quantity the intrinsic dissipa-
tion of the driving process. Then ϕ = ϕ(F1, F2) is the relative intrinsic dissipation of the 
output process with respect to the driving process, and finally ξ = ξ(F1, F2) quantifies 
the degree of coupling [2, 4, 10, 13, 14]. From the constraints of equations (7) and (8), 
these functions are bounded by

Π � 0, ξ ∈ [−1, 0[, ϕ ∈ [0,−ξ], (13)
for the system to operate as a machine. If it does not, the above parametrization could 
still be used but with a modified range of the parameters, namely ϕ � 0 and ξ ∈ [−1, 1]. 
Note that we have also excluded the value ξ = 0 from our analysis which corresponds 
to having independent driving and output processes for which G1,2 = 0. In this case, 
the system cannot work as a machine because its eciency would be negative with 
η = −ϕ2 � 0. Note also that in the literature on thermoelectricity [2, 14], it is custom-
ary to use the figure of merit ZT instead of the degree of coupling. The two notions are 
simply related by ZT = ξ2/(1 − ξ2), so that ZT is a real positive number which goes to 
infinity when ξ tends to  −1.

Restricting ourselves to a working machine, we use equations (5) and (6) in the 
definition (4) of thermodynamic eciency to obtain

η = −G1,2F1F2 + G2,2F
2
2

G1,1F 2
1 + G1,2F1F2

, (14)
which can be turned into

η = −ϕ2 + ξϕ

1 + ξϕ
, (15)

with the aid of equation (12). We emphasize that with this new parametrization, the 
machine eciency does not to depend explicitly on the intrinsic dissipation Π, but only 
depends on the relative intrinsic dissipation ϕ and on the degree of coupling ξ. The 
specific dependence of the eciency on the anities is then completely transferred to ϕ 
and ξ. As we shall see below, this new parametrization of the eciency provides useful 
insights into the machine properties. One important benefit in particular is the ability 
to bound the machine eciency and output power.



Degree of coupling and eciency of energy converters far-from-equilibrium

7https://doi.org/10.1088/1742-5468/aaa8fe

J. S
tat. M

ech. (2018) 023205
1.3. Tight coupling far from equilibrium

In this section, we discuss the notion of tight coupling far-from-equilibrium based on the 
non-equilibrium conductance matrix and the (Π,ϕ, ξ) parametrization. Tight coupling 
between two entropy fluxes means that the elementary steps must produce entropy in 
constant proportion. In other words, the physical quantities corresponding to the driv-
ing and output processes must be always exchanged in the same proportion in such a 
way that the two equations in (3) are linearly dependent. The latter condition implies 
that the matrix G is of rank one, which means that it can be written in the form

G =

�
G1,1 G1,2

G2,1 G2,2

�
= G1,1

�
1 α

α α2

�
, (16)

in terms of a real coecient α. Using equation (3), one finds J1 = αJ2, thus α is pre-
cisely the proportionality factor between the two currents. Then using equation (9), one 
finds G = Gmin. Thus Gmin is the non-equilibrium conductance matrix of the system if 
it operates in the tight coupling regime. Furthermore, this shows that the inequality of 
equation (11) becomes saturated in the tight coupling regime.

Now, from equations (12) and (15), the coupling parameter reaches the value 
ξ = sign(F1F2α) = −1, because ξ ∈ [−1, 0[, and η = ϕ = |αF2/F1|. Thus, in the tight 
coupling regime, the degree of coupling reaches its minimum value.

Going back to the general case, one deduces from equation (15) that

∂η

∂ξ

����
ϕ

= −ϕ(1 − ϕ2)

(1 + ξϕ)2
, (17)

which is always negative since ϕ ∈ [0, 1]. Therefore, the eciency monotonously 
increases when ξ decreases, and the maximum value of the eciency at fixed value of 
ϕ is reached when ξ = −1, i.e. at tight coupling.

1.4. Maximum eciency as function of the degree of coupling

We now bound the eciency η = η(ξ,ϕ) of equation (15) by looking at the value of the 

function ϕ that yields the maximum eciency in equation (15) at a fixed degree of cou-

pling ξ. The condition ∂η/∂ϕ|ξ = 0 leads to a simple second degree polynomial equation

ξϕ2 + 2ϕ + ξ = 0. (18)
Multiplying the numerator and denominator of equation (15) by 2 + ξϕ and using (18), 
we find that the maximum eciency becomes ηmax = −ξϕ/(2 + ξϕ). Using the solution 
of equation (18) in this expression of ηmax, we obtain the maximal machine eciency in 
terms of the degree of coupling function ξ,

ηmax(ξ) ≡
1 −

�
1 − ξ2

1 +
�

1 − ξ2
, (19)

which is such that

ηmax(ξ) � η(ξ,ϕ) (20)
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for all ξ and ϕ in the allowed range. This inequality is illustrated in figure 4 for the 
model of molecular motor studied in section 4. As expected from the previous section, 
equation (19) also confirms that the maximum of the curve ηmax(ξ) is reached when the 
condition of tight coupling holds namely ξ = −1 since at this point ηmax = 1.

Since the maximum eciency depends only on the degree of coupling ξ, it is pos-
sible to bound the eciency by measuring the degree of coupling. For instance, if it is 
known that ξmin � ξ for all conditions of operation of the machine, then we can deduce 
from equation (20) that η � ηmax(ξmin). Note that the bound itself is not unique because 
ξ is constructed from the non-equilibrium conductance matrix which is not uniquely 
defined by equation (3); nevertheless the dependance of ηmax versus ξ is universal.

1.5. Power-eciency relations

In this section we derive two upper bounds for the entropy production rate of the out-
put process, a quantity which is the product of the output power of the machine with 
its anity. These bounds are functions of the eciency and hence are called power-
eciency relations, since they represent a constraint for reaching both high power and 
high eciency.

To obtain the first bound, we factorize G1,1F
2
1  in equation (6):

−σ2 = −G1,1F
2
1

�
G1,2F2

G1,1F1

+
G2,2F

2
2

G1,1F 2
1

�
= −Π

�
ξϕ + ϕ2

�
. (21)

From equation (15) we have −(ξϕ + ϕ2) = η(1 + ξϕ) and therefore

−σ2 = Πη (1 + ξϕ) , (22)
then using again equation (15), we can express ϕ in terms of η and ξ as

ϕ± = −ξ (η + 1)

2
± 1

2

�
(η + 1)2ξ2 − 4η, (23)

where we have used equations (19) and (20) to guarantee that ϕ is real. Inserting these 
two solutions in equation (22), we obtain

−σ±
2 = Πη

�
1 − ξ2 1 + η

2
∓ ξ

�
ξ2

4
(1 + η)2 − η

�
. (24)

This equation shows that the relation between the output entropy production rate 
−σ2 and the eciency is in general bi-valued, which means that there are two possible 
values of the output entropy production rate for the same value of the eciency. This 
relation becomes single-valued when ξ = −1, i.e. for tight coupling, since in this case 
−σ−

2  is equal to zero, and only −σ+
2  remains.

In the general case of arbitrary coupling, it is enough to upper bound −σ+
2  to 

obtain a general bound on the output entropy production rate because −σ+
2 � −σ−

2  for 
ξ ∈ [−1, 0[. Since one can also show that −σ+

2  is always a decreasing function of ξ at 
fixed η, its maximum value is reached at ξ = −1, which corresponds to the tight cou-
pling condition. When inserting ξ = −1 into the expression of −σ+

2 , we obtain the first 
inequality:
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−σ2 � Πη(1 − η). (25)
Alternatively, one can start from equation (6) and factorize G2,2F

2
2  which leads to 

σ2 = G2,2F
2
2 (1 + ξ/ϕ). Then, using again the explicit solution of ϕ as a function of ξ 

and η, one obtains an expression which when evaluated at ξ = −1 leads to the second 
inequality

−σ2 � G2,2F
2
2

1 − η

η
. (26)

Despite the apparent similarities between equations (25) and (26) with the bounds 
recently derived in [25], we would like to stress that equations (25) and (26) represent 
a dierent result because our bounds are based on the non-equilibrium conductance 
matrix using classical thermodynamics in a macroscopic and deterministic setting. In 
contrast to that, the bounds of [25] have been derived in a stochastic setting based on 
uncertainty relations. The introduction of the non-equilibrium conductance matrix, the 
parametrization of the eciency and equations (25) and (26) represent our first main 
results. In the following, we explain how to reconcile both bounds within a formalism 
of large deviation of currents.

2. Construction of the non-equilibrium conductance matrix from a large deviation 
function framework

So far, our analysis was based primarily on classical thermodynamics, where currents 
are deterministic quantities. In contrast to that, we introduce in the following a sto-
chastic thermodynamics description, in which currents become random variables. As 
far as the microscopic dynamics is concerned, we assume that it can be described as a 
Markov jump process. This Markovian dynamics admits a non-equilibrium stationary 
state. In the following, by exploiting a quadratic bound of the LDF of currents near this 
non-equilibrium stationary state, we show how to define uniquely the NE conductance 
matrix.

We denote with upper case letters average quantities and with lower case letters the 
corresponding fluctuating quantities; then the subscript indicates the level of descrip-
tion, (x, y) for an edge, c = c1, c2, . . . for cycles and X = 1, 2 for the physical quantities.

2.1. Physical, cycle and edge currents and anities

The probability per unit time to jump from the state y to state x of the machine is 
given by the rate matrix of components k(x,y) � 0. We call the couple of states (x, y) an 
oriented edge when k(x,y) > 0. We assume that if the jump from y to x is possible then 
the reverse jump also exists, i.e. k(x,y) > 0 implies that k(y,x) > 0. The stationary prob-

ability of x, denoted πx, verifies by definition 
�

y k(x,y)πy = 0. The number of oriented 
edges is |E|. The average probability current along edge (x, y) in the stationary state is

J(x,y) ≡ k(x,y)πy − k(y,x)πx, (27)
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and the edge anity

F(x,y) ≡ ln
k(x,y)πy

k(y,x)πx

. (28)
Another level of description is that of cycles which consist of several edges con-

nected together. Cycle currents are linearly connected to edge currents [11] as:

J(x,y) ≡
�

c∈C

A(x,y),cJc, (29)
where A is an |E| × |C| matrix, such that A(x,y),c is zero if the edge (x, y) does not 
belongs to the cycle c, or ±1 if it belongs to it with the sign providing the orientation. 
The columns of A form a basis of vectors called fundamental cycles, and the ensemble 
of fundamental cycles is denoted C with cardinal |C|. This set is called fundamental 
because it is a minimal set of linearly independent cycles that can generate any cycle 
of the graph [28].

Each physical thermodynamic force involved in the interaction of the machine with 
its environment has a corresponding physical (also called sometimes operational for this 
reason) current associated with it. These currents are also linearly related to the cycle 
currents as:

JX ≡
�

c∈C

φX,cJc, (30)
where φX,c represents the amount of the physical quantity X which is exchanged with 
the environment when the cycle c is run once. Note that by construction the coecients 
of the matrix φ are dimension full, depending on the choice of physical currents, unlike 
the coecients of the matrix A which are dimensionless.

The entropy production takes the same value on these three levels, thus

σ =
�

(x,y)

J(x,y)F(x,y) =
�

c

JcFc =
�

X

JXFX.
 (31)

This allows to connect the edge, cycle and physical anities through dual forms of 
equations (29) and (30) [11, 19]:

Fc =
�

(x,y)

F(x,y)A(x,y),c, (32)

Fc =
�

X

FXφX,c. (33)

2.2. Quadratic bound on large deviations

In a stochastic description of the machine, all the currents introduced above at the var-
ious levels become stochastic quantities. Let us denote j(x,y) as the edge current associ-
ated to the net number of transitions from y to x per unit time during a trajectory of 
duration t. These edge currents {j(x,y)} are fluctuating quantities which are assumed to 
obey a large deviation principle. This means that the probability P of observing them 
in a total time t decays as
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P ({j(x,y)}) �t→+∞ e−tI({j(x,y)}), (34)
where I({j(x,y)}) is the large deviation function (LDF) of the currents also called rate 
function [29].

After some manipulations of equation (3) of [22]3, a quadratic bound for the LDF 
of edge currents can be written in the form

I({j(x,y)}) � 1

4

�

(x,y)

(j(x,y) − J(x,y))
2R̄(x,y), (35)

where

R̄(x,y) ≡
F(x,y)

J(x,y)
 (36)

represents the components of a diagonal resistance matrix, i.e. an edgewise resistance. 
Now, the cycle currents jc are connected to the edge currents j(x,y) by the stochastic 

version of equation (29). Let us introduce j̃ ≡ ( jc1 , jc2 , . . . , jc|C|)
T the vector of the cycle 

currents and J̃  its mean value. When using equation (29) as a change of variable into 
equation (35), we obtain

I(j̃) � 1

4
(j̃ − J̃)T · R̃ · (j̃ − J̃), (37)

where R̃ is the cycle resistance matrix of components

R̃c,c� ≡
�

(x,y)

A(x,y),cA(x,y),c�
F(x,y)

J(x,y)

. (38)

By contracting equation (37) over cycle currents, one obtains an upper bound for 
the LDF of physical currents j1, j2. The LDF we are interested in reads

Iquad(j) =
1

4
min
{..}

�
j̃ − J̃

�T

· R̃ ·
�
j̃ − J̃

�
, (39)

where {..} denotes the minimum over currents j̃ such that j = φ · j̃, with j the vector 
of physical currents (j1, j2). Since the function to be minimized is quadratic and the 
constraints are linear, this contraction can be achieved exactly as follows: The function 
to be minimized is

fquad =
1

4

�
j̃ − J̃

�T

· R̃ ·
�
j̃ − J̃

�
− λT ·

�
j − φ · j̃

�
, (40)

where λ is a Lagrange multiplier. After minimizing fquad with respect to j̃, one obtains 
an expression of j̃ as a function of λ. Then using again the constraint j = φ · j̃, one 

finds

λ = −1

2

�
φ · R̃

−1 · φT
�−1

· (j − J) . (41)
3 More precisely, one needs to express the term σπ(y, z) of equation (3) of [22] as jπ(y, z)F (y, z) and divide jπ(y, z) 
out to obtain equation (35).
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Inserting this expression into j̃ and using it into Iquad, one obtains

Iquad(j) =
1

4
(j − J)T · R · (j − J) , (42)

where we have introduced R as the 2 × 2 resistance matrix in the basis of physical 
currents

R ≡
�
φ · R̃

−1 · φT
�−1

. (43)
In the end, we obtain the following inequality for the LDF of physical currents:

I(j) � Iquad(j). (44)
The quadratic bound on the LDF used in equation (35) has been built to respect 

the fluctuation theorem [17, 22]. Therefore, at the level of physical observables the 
quadratic bound obeys the relation

Iquad(j) − Iquad(−j) = −jT · F . (45)
Once equation (42) is inserted into this equation, we obtain j

T · R · J = jT · F  for all j, 
or equivalently R · J = F . After comparing with equation (3), we deduce the relation

G = R−1 = φ · R̃
−1 · φT, (46)

that provides a consistent definition of the conductance matrix. Also note that we have 
assumed the matrices R̃, R and G to be invertible, if it is not the case the matrix Gmin 
introduced in equation (9) should be used from the beginning. An explicit example of 
this case is provided for an unicyclic machine in the section 4.1.

In appendix, we derive an alternate route leading to equation (46), which avoids the 
last step of equation (45) but relies instead on a further change of the level of descrip-
tion from that of cycles to that of physical currents.

To summarize, the property that edge current fluctuations in non-equilibrium sta-
tionary states are more likely than those predicted by linear response analysis [21, 22] 
which is equation (35), carries out to the level of cycles and from there to the level of 
physical macroscopic currents. This approach leads to a relation between anities and 
physical macroscopic currents that defines the non-equilibrium conductance matrix. 
The construction of this matrix from a large deviation framework represents our second 
main result.

3. Implications for the thermodynamic eciency and the output power

In this section, we show how previously obtained bounds on eciency [24], and power-
eciency trade-os [25] can be derived from a framework based on the non-equilibrium 
conductance matrix.
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3.1. Inequality involving the non-equilibrium conductance matrix and the covariance ma-
trix of physical currents

We introduce the cumulant generating function (CGF) defined by

λ(γ1, γ2) ≡ lim
t→∞

1

t
ln
�
et(γ1j1+γ2j2)

�
,

 (47)
which is the Legendre transform of the LDF of the physical currents 
λ(γ1, γ2) = maxj1,j2 [γ1j1 + γ2j2 − I( j1, j2)]. Similarly, the Legendre transform of the 
quadratic LDF is λquad(γ1, γ2) ≡ maxj1,j2 [γ1j1 + γ2j2 − Iquad( j1, j2)]. From equation (44), 
we have

λquad(γ1, γ2) � λ(γ1, γ2), (48)
where λquad(γ1, γ2) can be explicitly determined using equation (42). The maximum 
with respect to j1 and j2 leads to the condition

γ =
1

2
R · (j − J) , (49)

where γ is the vector (γ1, γ2). Inserting this result into the definition of λquad and using 
the property R−1 = G, we obtain

λquad(γ) = γT · G · γ + J · γ. (50)
This equation holds for any value of the conjugated variables γ. Then, the functions λ 
and λquad have the same value at origin and the same first derivative with respect to 
γ around the origin, therefore the inequality (48) can be carried out to second order 
derivatives. The result is the following inequality

∀γ ∈ R2, γT · G · γ � 1

2
γT · C · γ, (51)

where we have introduced the covariance matrix as

CXY = Cov(jX, jY ) ≡ lim
t→∞

t [�jXjY � − �jX� �jY �] =
∂2λ

∂γX∂γY

(0, 0). (52)
Now, equation (51) simply reads G � C/2 for the matrix order introduced in equa-

tion (10). Choosing γ = (γ1, 0)T or (0, γ2)
T in equation (51) leads to the tight bounds 

derived in [20]:
G1,1F1

2 � Var(σ1)

2
, (53)

G2,2F2
2 � Var(σ2)

2
, (54)

after multiplying the inequalities by F1
2 or F2

2 respectively. These inequalities are 
satur ated in the linear regime close to equilibrium, where the non-equilibrium conduc-
tance matrix becomes the standard Onsager matrix L and the relation L = C/2 is the 
well-known fluctuation-response relation. When using the above inequalities (53) and 
(54) into (25) and (26), one obtains
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−�σ2� � Πη(1 − η) � Var(σ1)

2
η(1 − η), (55)

−�σ2� � G22(F2)
2 1 − η

η
� Var(σ2)

2

1 − η

η
. (56)

Thus we retrieve the power-eciency trade-os derived by Pietzonka and Seifert [25]
−�σ2� �

Var(σ1)

2
η(1 − η), (57)

−�σ2� �
Var(σ2)

2

1 − η

η
. (58)

3.2. From uncertainty relations to bounds on the eciency

By combining the inequality G � C/2 obtained in the previous section with equa-
tion (11), one obtains

Gmin � G � C

2
, (59)

where the first inequality on the left hand side becomes saturated only if the system 
has strongly coupled physical currents. Using again the property (10) for the matrix 
order, the relation Gmin � C/2 implies three inequalities by choosing three particular 
values of the vector x, namely (F1, 0)

T, (0, F2)
T and (F1, F2)

T. These are the so-called 
uncertainty relations [21, 22]:

�σ1�2
�σ� � Var(σ1)

2
, (60)

�σ2�2
�σ� � Var(σ2)

2
, (61)

�σ� � Var(σ)

2
. (62)

Now, we recall the definition of eciency in terms of average partial and total 
entropy production rates

η = 1 − �σ�
�σ1�

. (63)
Inserting this definition into equations (60)–(62), one recovers two known bounds on 
eciency [24]:

η � min

�
1 − 2

�σ1�
Var(σ1)

,
1

1 − 2 �σ2�
Var(σ2)

�
, (64)
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and

η � max

�
1 − Var(σ)

�σ1�
,

1

1 − Var(σ)
�σ2�

�
. (65)

Among these two inequalities, the first one namely equation (64) is probably the most 
useful one because it involves only the partial entropy production rates of process 1 or 
2, whereas equation (65) requires information on both processes which is often missing.

4. Illustration on small machines

4.1. Unicyclic engine

We start by studying a simple example of heat-to-heat converter. We consider the uni-
cyclic three states model depicted on figure 1. Each state a,b,c has a dierent energy 
Ea, Eb, Ec and each transition is connected to a dierent heat reservoir at inverse 
temper ature β1, β2, β3. The transition rates are

k(b,a) = Γe−
β1
2

(Eb−Ea), k(a,b) = Γe−
β1
2

(Ea−Eb),

k(c,b) = Γe−
β2
2

(Ec−Eb), k(b,c) = Γe−
β2
2

(Eb−Ec),

k(a,c) = Γe−
β3
2

(Ea−Ec), k(c,a) = Γe−
β3
2

(Ec−Ea),

 

(66)
where Γ is the coupling strength to the reservoirs. The system is coupled to three heat 
reservoirs, and its total entropy production rate is σ = −β1J1 − β2J2 − β3J3, where 
Ji denotes the heat flux from the heat reservoir i to the system. Using the energy 
conservation J1 + J2 + J3 = 0, we obtain the total entropy production rate σ = 
(β3 − β1)J1 + (β3 − β2)J2. We consider as driving current the heat flow J1 and output 
current the heat flow J2, and we assume that the temperatures of the reservoirs satisfy 
β3 > β1 and β3 > β2 and the energies are such that Eb > Ec > Ea. Under these condi-
tions, the driving and output currents are such that J1 > 0 and J2 < 0, and the system 
operates as a machine that transfers heat from a cold to a hot reservoir using the 

Figure 1. Sketch of the unicyclic heat to heat converter with three states a, b, and 
c. Transition a ↔ b is promoted by the heat reservoir at inverse temperature β1, 
transition b ↔ c by the heat reservoir at inverse temperature β2, and c ↔ a for β3.
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thermodynamic force generated by the transfer of heat from a hot to a cold reservoir. 
The partial entropy production rates and physical anities are then

σ1 = (β3 − β1)J1, F1 = (β3 − β1)

σ2 = (β3 − β1)J2, F2 = (β3 − β2).
 (67)

At the lower level, the system has a single cycle c1 for which we chose the orien-
tation a → b → c. Thus, the matrix of fundamental cycles A is actually the vector 
A = (1, 1, 1)T. Due to the stationary condition, the current is the same on each edge 
and is equal to the cycle current

J(b,a) = J(c,b) = J(a,c) = Jc1 =
Γ

Z

�
k(b,a)k(a,c)k(c,b) − k(a,b)k(b,c)k(c,a)

�
, (68)

where we have defined

Z = k(a,b)k(a,c) + k(a,b)k(b,c) + k(a,c)k(c,b) + k(b,a)k(b,c) + k(b,c)k(c,a)

+ k(b,a)k(a,c) + k(c,a)k(c,b) + k(c,b)k(b,a) + k(c,a)k(a,b).
 (69)

The corresponding edge anities are defined in equation (28). From the matrix of fun-
damental cycles A, we derive the cycle anity

Fc1 = (β3 − β1)(Eb − Ea) + (β3 − β2)(Ec − Eb) = ln
k(b,a)k(a,c)k(c,b)

k(a,b)k(b,c)k(c,a)

. (70)
When comparing with the physical anities F1 and F2 of equation (67), we identify 
using equation (33) the matrix

φ =

�
Eb − Ea

Ec − Eb

�
. (71)

The physical currents follow from equation (30) as J1 = Jc1(Eb − Ea) and J2 = Jc1(Ec − Eb), 
in order that the entropy production rate writes σ = Jc1Fc1 = J1F1 + J2F2.

We now turn to the conductance and resistance matrices. From the definition of the 
edge resistance matrix of equation (36), we have R̄(x,y) = F(x,y)/Jc1 since all edge prob-
ability currents are equal to the cycle current. Equation (38) yields the cycle resistance 
matrix which is the scalar

R̃ =
Fc1

Jc1

. (72)
In the end, equation (46) for the non equilibrium conductance matrix yields

G =
Jc1

Fc1

�
(Eb − Ea)

2 (Ec − Eb)(Eb − Ea)

(Ec − Eb)(Eb − Ea) (Ec − Ea)
2

�
, (73)

which is not invertible as expected for unicyclic machines. In this case, the conductance 
matrix is equal to the minimum conductance matrix Gmin defined in equation (9). In 
the end, the parameters associated to the non-equilibrium conductance matrix are:

Π = (Ea − Eb)
2(β1 − β3)

2 Jc1

Fc1

=
J2

1F 2
1

σ
, (74)
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ϕ =

����
(β2 − β3)(Eb − Ec)

(β1 − β3)(Ea − Eb)

���� =
−J2F2

J1F1

= η, (75)

ξ = −1, (76)
confirming that this system operates in the tight coupling regime.

4.2. Molecular motor

Our second example is a discrete model of a molecular motor [26, 27]. The motor has 
only two internal states and evolves on a linear discrete lattice by consuming adenosine 
triphosphate (ATP) molecules. The position of the motor is given by two variables the 
position n on the lattice and y is the number of ATP consumed, as shown in figure 2. 
The even and odd sites are denoted by a and b, respectively. Note that the lattice of a 
and b sites extends indefinitely in both directions along the n and y axis; for the spatial 
direction n, the lattice step defines the unit length. There are two physical forces act-
ing on the motor, a chemical force controlled by the chemical potential dierence of 
the hydrolysis reaction of ATP, Δµ and a mechanical force f applied directly on the 
motor. The whole system is in contact with a heat bath, and we choose to express all 
energies in units of kBT . Equilibrium corresponds to the vanishing of the two currents, 
namely the mechanical current v̄ which is the average velocity of the motor on the lat-
tice, and r the chemical current, which is its average rate of ATP consumption. Since 
the system operates cyclically, the change of internal energy in a cycle is zero and the 
first law takes the form q + rΔµ + fv̄ = 0 where q is the heat flow coming from the 
heat bath, rΔµ represents the chemical work and f v̄ represents the mechanical work; 
all quantities are evaluated in a cycle. Under these conditions, the second law takes the 
form σ = −q, and the entropy production rate takes the following form:

σ = f v̄ + rΔµ. (77)
In the normal operation of the motor, chemical energy is converted into mechanical 
energy, which means that the driving process (1) is the chemical one and the output 
process (2) the mechanical one in agreement with the choice of convention made in this 
paper. Thus, the two partial entropy production rates should be σ1 = rΔµ, with the 
chemical anity F1 = Δµ and σ2 = fv̄, with mechanical anity F2 = f.

In this model, there are four reactions between the two states, corresponding to four 
edges, with for each of them a forward or backward direction along each edge as rep-
resented in figure 3. Two of these reactions are passive and do not involve ATP while 
the other two are active and do involve ATP. Together, there are eight rates for these 
four reactions which are given by

−→ωb
−1 = α�eθ

+
b f , −→ωb

0 = ω� eθ
+
b f ,

←−ωa
1 = α�e−�+Δµ−θ−a f , ←−ωa

0 = ω� e−�−θ−a f ,
←−ωb

−1 = α e−θ−b f , ←−ωb
0 = ω e−θ−b f ,

−→ωa
1 = α e−�+Δµ+θ+

a f , −→ωa
0 = ω e−�+θ+

a f ,

 

(78)
where we have kept the original notation of [26, 27] for the rates. In the above expres-

sions, θ±
i  represent load distribution factors which are arbitrary except for the constraint 
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θ+
a + θ−b + θ−a + θ+

b = 2 [27]. Let us choose to orientate all these edges from state a to b. 
Then, the four edge currents and anities are

J(1) = πa
←−ωa

1 − πb
−→ωb

−1, F(1) = ln
←−ωa

1πa
−→ωb

−1πb

, (79)

J(2) = πa
←−ωa

0 − πb
−→ωb

0, F(2) = ln
←−ωa

0πa
−→ωb

0πb

, (80)

J(3) = πa
−→ωa

0 − πb
←−ωb

0, F(3) = ln
−→ωa

0πa
←−ωb

0πb

, (81)

J(4) = πa
−→ωa

1 − πb
←−ωb

−1, F(4) = ln
−→ωa

1πa
←−ωb

−1πb

, (82)
in terms of the stationary probabilities to be in state a or b, namely πa and πb. The 
explicit expressions of the currents in terms of the transition rates is known [26, 27].

−1 0 1
n

2 3

−1

0

1
y

b a b a b

a b a bb

b a b a b

−→ωb
0

←−ωa
0

−→ωa
0

←−ωb
0

−→ωa
1

←−ωb
−1

−→ωb
−1

←−ωa
1

Figure 2. Sketch of the state space for our discrete model of molecular motor 
specifying the transition rates. The horizontal axis provides the motor position n 
and the vertical axis the number y of consumed ATP. This figure is reproduced 
from [27] with permission from authors.

Figure 3. (a) Sketch of the eective two-state system with four edges. Edge 
orientation is head toward b. (b) Set of fundamental cycles with their orientations.
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Here, there are three cycles identified in figure 3(c). Given our convention of orienta-

tion of the edges, the edge currents and the cycle currents are related in the following 
way

J(1) = Jc1 + Jc3, (83)
J(2) = −Jc3, (84)
J(3) = Jc2, (85)
J(4) = −Jc1 − Jc2, (86)

which means that the matrix A is

A =




1 0 1

0 0 −1

0 1 0

−1 −1 0


 . (87)

The physical currents can be expressed in terms of the displacements Δn and the 
change in the number of ATP molecules Δy along each transition per unit time. For 
the four edges, these changes are

edge (1) (2) (3) (4)
Δy 1 0 0 1
Δn −1 −1 1 1

φ̄ =

�
1 0 0 1

−1 −1 1 1

�
, (88)

which defines a matrix that we denote φ̄. Then, summing the edge contributions over 
cycles gives the matrix

φ = φ̄ · A =

�
0 −1 1

−2 0 0

�
. (89)

Another approach is to identify the matrix φ by making the description at the edge 
and cycle levels matches with the one at the level of physical observables. Precisely 

the entropy production rate is σ =
�

i=1,4 J(i)F(i) at the edge level, σ =
�

i=1,3 Jci
Fci

, 

at cycle level, and σ = fv̄ + rΔµ at the level of physical currents and anities. Note 
that all edge anities and currents are not independent, with the above choice of 
transition rates, one finds the constraint on edge currents 

�
i J(i) = 0 and similarly for 

edge anities F(1) + F(3) − F(2) − F(4) = 0. These compatibility relations are essential to 
relate edge or cycle currents to the two physical currents (v̄, r). The physical currents 
are v̄ = 2(J(3) + J(4)) and r = −J(3) − J(2) in terms of the edge currents while the physi-
cal anities are 2f = F(4) − F(1) and Δµ = F(1) − F(2) in terms of the edge anities. In 
the end, the relations between the cycle anities and the physical anities read

Fc1 = −2f , (90)
Fc2 = −Δµ, (91)
Fc3 = Δµ, (92)
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in agreement with the matrix φ given in equation (89).

We now turn to the conductance and resistance matrices. From the definition of the 
edge resistance matrix below equation (35), we have

R̄ =




R̄(1) 0 0 0

0 R̄(2) 0 0

0 0 R̄(3) 0

0 0 0 R̄(4)


 , (93)

where using equations (79)–(82), we have R̄(i) = J(i)/F(i) for i = 1, . . . , 4. The cycle 
resist ance matrix is then obtain from (38)

R̃ =




R̄(1) + R̄(4) R̄(4) R̄(1)

R̄(4) R̄(3) + R̄(4) 0

R̄(1) 0 R̄(1) + R̄(2)


 . (94)

The cycle conductance matrix is the inverse of the cycle resistance matrix (94), then 
this leads using (43), to the following non-equilibrium conductance matrix

G =
1

ZG

�
(R̄(1) + R̄(4))(R̄(3) + R̄(2)) 2(R̄(4)R̄(2) − R̄(1)R̄(3))

2(R̄(4)R̄(2) − R̄(1)R̄(3)) 4(R̄(1) + R̄(2))(R̄(3) + R̄(4))

�
, (95)

with

ZG = R̄(1)R̄(4)R̄(3) + R̄(1)R̄(4)R̄(2) + R̄(1)R̄(3)R̄(2) + R̄(4)R̄(3)R̄(2). (96)
Using this matrix and the definitions of equation (12), we find the following parameters

Π =
(R̄(1) + R̄(4))(R̄(3) + R̄(2))

R̄(1)R̄(4)R̄(3) + R̄(1)R̄(4)R̄(2) + R̄(1)R̄(3)R̄(2) + R̄(4)R̄(3)R̄(2)

(Δµ)2, (97)

ϕ =

�
(R̄(1) + R̄(2))(R̄(3) + R̄(4))

(R̄(1) + R̄(4))(R̄(3) + R̄(2))

2| f |
|Δµ| , (98)

ξ =
−(R̄(4)R̄(2) − R̄(1)R̄(3))�

(R̄(1) + R̄(2))(R̄(3) + R̄(4))(R̄(1) + R̄(4))(R̄(3) + R̄(2))
,

 (99)

which are used to make the plots of figures 4 and 5.

4.3. Discussion

The maximal eciency given by equation (19) is shown as function of the degree of cou-
pling in figure 4. This maximal eciency is compared with the eciency of the molecu-
lar motor model which is analytically solvable. The corresponding comparison for the 
unicyclic engine is not shown because the degree of coupling is always  −1. In order to 
test this bound, we vary either (i) the thermodynamic forces, namely f and Δµ, which 
together characterize the distance to equilibrium, or (ii) the kinetic parameters of the 
model (α, α�, ε, θi..). The test (i) is carried out in the main figure in which either the 
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anity f is varied at fixed Δµ or vice versa, covering a large regime of conditions far 
from equilibrium. The test (ii) is carried out in the inset, by scanning over a large panel 
of kinetic parameters. Both figures confirm that the maximum eciency only depends 
on the degree of coupling. These figures also show that this maximum eciency is 
reached under some accessible conditions.

Figures 5(a) and (b) illustrate the power-eciency trade-o for the molecular motor 
and the unicyclic engine respectively, by showing the mean output entropy produc-
tion rate −�σ2� as function of the eciency η. A striking feature in these plots is that 
the entropy production rate is bi-valued for the molecular motor as explained in sec-
tion 1.5 while it is single-valued for the unicyclic engine, because the unicyclic engine 
is a tight coupled engine. In order to test the inequality of equations (25) and (26), we 
compare −�σ2� (solid line) evaluated using exact expressions of the average currents, 
with the power-eciency bounds of equations (25) and (26) (empty symbols). As shown 
in figure 5(b), these bounds become exact in the tight coupled case.

The figure also shows a comparison with the power-eciency inequalities derived 
by Pietzonka and Seifert [25] (full symbols). The variances appearing in these inequali-
ties can be evaluated from the cumulant generating function of the currents that is 
known exactly for these models [21, 26, 27]. We confirm with this figure that the new 
bound derived from the present framework is more tight than the bounds derived 
in [25], in agreement with equations (55). Note that the two bounds derived in this 
reference collapse with each other in the tight coupled case, but stay above the exact 
value except at the two extremal values of η = 0 and η = 1. Indeed, in these regions, 
the engine works near equilibrium. One reason for which the bounds of [25] are less 
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Figure 4. Illustration of the bound of equation (19) (blue solid line) for the 
molecular motor model. For a given chemical potential dierence Δµ = 15.0 
(purple circles), the force f is varied along the curve. Alternatively, for a given 
force f  =  −1 (green crosses) the chemical potential dierence is varied along the 

curve. The kinetic parameters are those of [27]: α = 0.57, α� = 1.3.10−6, ω = 3.5, 

ω� = 108.15 � = 10.81, θ+
a = 0.25, θ−a = 1.83, θ+

b = 0.08, θ−b = −0.16. Inset: Eciency 
versus degree of coupling when varying all kinetic parameters at fixed anities 
Δµ = 10.0 and f  =  −1.9. The kinetic parameters listed above are randomly chosen 
by multiplying the values used in the main figure by ex with x drawn uniformly 
within [−2, 2].
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tight than ours is that they are a consequence of uncertainty relations, which for this 
molecular motor model do not yield a particularly sharp prediction of the eciency, 
as discussed in [30].

5. Conclusion

In this work, we have developed a framework based on the notion of non-equilibrium 
conductance matrix to analyze the eciency and the output power of energy converters 
operating far from equilibrium. This matrix is initially only partially constrained by the 
dependence of the physical currents on thermodynamic anities. Nevertheless it shares 
many properties with the Onsager matrix, the two matrices are symmetric positive 
definite and become identical near equilibrium but dier otherwise. These properties 
are sucient to exploit a parametrization of the eciency introduced by Kedem and 
Kaplan for machines operating near equilibrium [2] and use it for general machines 
operating far from equilibrium. With this parametrization linked to a specific choice of 
non-equilibrium conductance matrix, we have shown that the eciency of machines is 
generally bounded by an universal expression dependent only on the degree of coupling. 
The maximum value of this bound is the reversible eciency which is only accessible to 
tight coupled machines. This result means practically that a bound on the eciency of 
a machine can be deduced from a measurement of its degree of coupling. This observa-
tion could have interesting applications for various thermodynamic devices, such as for 
instance photoelectric cells.
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Figure 5. Output entropy production rate as a function of the machine eciency 
using exact expression (solid blue line). Power-eciency bounds of equations (25) 
(green open squares), (26) (yellow open circles), (57) (magenta full squares) and 
(58) (blue full circles) for (a) the molecular motor model with Δµ = 7.0 and the 
same kinetic parameters as in figures 4 and (b) the unicyclic engine at β1 = 0.5, 
β3 = 1, Γ = 1, Ea  =  1, Eb  =  4 and Ec  =  2. For both figures, F1 is held fixed when 
varying F2.
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When a microscopic kinetic model of the machine is known, more insights into the 

eciency of the machine can be obtained. In particular, tighter bounds on the output 
power in terms of the eciency as compared to [25] follow from our approach. We have 
explained the relation between the various bounds using properties on the large devia-
tions of the currents.

This work naturally begs the question whether the non-equilibrium conductance 
matrix can itself be determined experimentally. As mentioned above the dependence 
of the physical currents on thermodynamic anities is in general insucient to define 
the conductance matrix uniquely. However we have also shown that a unique conduc-
tance matrix can be defined from the knowledge of local resistances (which make up 
the resist ance matrix) and of the weights between cycle currents and physical currents 
(which make up the φ matrix).

The framework introduced here should be useful to revisit old questions such as 
the eciency at maximum power or the role played of time reversal symmetry for the 
eciency. In this context, it would be interesting to study extensions of the present 
framework to systems in which the Onsager reciprocity relations are modified, either 
due to a magnetic field [31, 32] or because the machine operates under time-periodic 
driving [33].
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Appendix. Microscopic framework for the non-equilibrium conductance matrix

In the following, we emphasize the physical meaning of G as a conductance matrix. We 
intend to shown how to switch from the resistance matrix at the edge level to the NE 
conductance matrix at the level of physical currents.

Starting at the edge level, the resistance matrix R̄ is diagonal in the space of edges, 

with diagonal elements R̄(x,y) as defined in equation (36). The inverse of the edge resist-
ance matrix is the edge conductance matrix Ḡ = R̄

−1
. We remark that the elements 

of the resistance matrix depend on the physical anities through transition rates and 
stationary probability.

At the level of cycles, the matrix R̃ for cycle resistance introduced in equation (38) 
connects cycle anities and currents via

Fc =
�

c�

R̃c,c�Jc. (A.1)
Indeed, using equation (29) in equation (36), one may express R̃ as a function of R̄ 
since

F(x,y) =
�

c

R̄(x,y)A(x,y),cJc, (A.2)

Fc� =
�

c

�

(x,y)

(AT)c�,(x,y)R̄(x,y)A(x,y),cJc, (A.3)
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where we have used equation (32) in the second step. This leads to the cycle resistance 
matrix defined in the main text

R̃c�,c =
�

(x,y)

(AT)c,(x,y)R̄(x,y)A(x,y),c. (A.4)
Here the analogy with electric circuits holds: electrical resistances add when connected 
in series. The cycle conductance matrix G̃ is then

G̃ ≡ R̃
−1

= (AT · R̄ · A)−1 = A+ · Ḡ · AT+, (A.5)
where A+ is the Moore–Penrose pseudo inverse of the matrix of fundamental cycles A 
[34].

At the level of physical observables, the NE conductance connects currents to 
anities via

JY ≡
�

X

GY ,XFX.
 (A.6)

Considering that the amount of physical quantity Y  exchanged with the environment 
during cycle c is φY ,c and using equation (A.1), one gets

JY =
�

c

φY ,cJc =
�

c,c�

φY ,cG̃c,c�Fc =
�

X

�

c,c�

φY ,cG̃c,c�φ
T
c,XFX.

 (A.7)
Therefore, the physical conductance matrix writes

G = φ · A+ · Ḡ · (φ · A+)T, (A.8)
which is the same non-equilibrium matrix as given by equations (43)–(46). The electri-
cal analogy also holds: cycle conductances add when connected in parallel which makes 
senses when considering that the current flows from one reservoir to another through 
sequences of cycles.
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We introduce a non-linear theory of thermodynamic circuits in non-equilibrium stationary states.
The non-equilibrium conductance matrix of a composite device is obtained from the ones of its sub-
devices. This generalizes to thermodynamic devices the concept of equivalent impedance defined in
electronics. An abstract example and the serial connection of two thermoelectric generators (TEG)
with constant thermoelectric coefficients are considered. Interestingly, a current-dependent electrical
resistance emerges from this connection.

Introduction— Dividing a problem into several pieces
often simplifies its resolution. Combining this approach
with a graphical representation produces circuits made
of various sub-circuits. Circuits conveniently summa-
rize the conservation of physical quantities such as en-
ergy, momentum, charge, or chemical species. Different
kinds of circuits or graphs have emerged: bond graphs
in engineering science [1], Feynman diagrams in parti-
cle physics [2], electric circuits in electrokinetic [3, 4] or
hyper-graphs of chemical reactions in chemistry [5]. Elec-
tric power and signal processing represent the paramount
application of circuit theory, although only one conserved
quantity is usually considered. For a single (or multiple
but decoupled) potential(s), the problem has long since
been solved. Many works were devoted to coupled po-
tentials although without considering arbitrary boundary
conditions [6–10]. Neumann (fixed current) or Dirichlet
(fixed potential) conditions are often assumed but never
mixed boundary conditions where both current and po-
tential achieve non-prescribed stationary values. In this
case, real integrated balances at the boundaries, such as
entropy balance, are central in determining the station-
ary state. A non-linear theory dealing with mixed bound-
ary conditions and several conserved quantities coupled
through complex circuits is appealing. It will have deep
consequences in many scientific fields, such as biology,
chemistry, and engineering.

The treatment of conservation laws has been system-
atized within stochastic thermodynamics in Ref. [11, 12].
This breakthrough allows the foundation of a circuit
theory mixing various thermodynamic systems. For in-
stance, in the framework of chemical reaction networks,
this approach has led to an effective circuit description
of otherwise complex chemical reaction networks [13, 14].
Then, in principle, the current–concentration character-
istics of each chemical module yield the stationary cur-
rents exchanged with the environment or other modules.
However, getting rid of all internal degrees of freedom and
going beyond multivariable functions connecting currents
and forces within global characteristics call for more op-
erational methods valid for any thermodynamic system.

Non-equilibrium conductance matrices accurately

characterize thermodynamic devices while providing the
current–force relations [15, 16]. They are the multidi-
mensional generalization of the scalar current–force char-
acteristic of dipoles (e.g. current–tension for an electric
dipole). As such, they extend to vectors the concept of
impedance defined as the scalar ratio between a force
and a current. Conductance matrices generalize to non-
equilibrium stationary states Onsager’s response matri-
ces of linear irreversible thermodynamics [17–19]. It is
possible to compute them when precise modeling is avail-
able, as in stochastic thermodynamics, or from integrat-
ing a local response, as for our model of TEGs. In this
letter, the non-equilibrium conductance matrix of a com-
posite thermodynamic system is determined using those
of its two subsystems’ non-equilibrium conductance and
their conservation laws. We first explain how current
conservation at the interface allows to integrate the in-
ternal degrees of freedom, i.e. the local potentials at the
connection; second, we generalize the law of impedance
addition in a way that matches their matrix dimension
thanks to conservation laws within each subsystem.

Devices connection and internal degrees of freedom—
Fig. 1 shows three devices represented by boxes with
sets of pins P(m) = {1, 2, . . . , |P(m)|} for m = 1, 2, 3.
We denote |P(m)| the total number of pins of device
m. Without loss of generality, we focus on connect-
ing device 1 to device 2 to create device 3. Connect-
ing more devices follows from a sequence of pairwise
connections. We split the pins of each device into left

and right disjoint sets P(m) = P
(m)
l ∪ P

(m)
r to con-

nect the right pins of device 1 to the left pins of de-
vice 2 as in Fig. 1. For device 3, these connected pins
are internal: local potentials there are functions of the
external ones. The local potential vector a(m), of com-

ponent a
(m)
p (e.g., temperature, pressure, chemical po-

tential) at pin p ∈ P(m) can be set by another device
or by reservoirs of various conjugated extensive quantity
(e.g. heat, volume, chemical species). By convention, the
physical current vector i(m) has a positive p’th compo-

nent i
(m)
p when a positive amount of the corresponding

extensive quantity is received by the device m through
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FIG. 1. (Top) Separated devices 1 and 2 with their various

pins P(m) = P(m)
l ∪P(m)

r where currents i(m) and conju-

gated local potentials a(m) takes well defined values. (Bot-
tom) Merged device 3 made out of 1 and 2, with equal local
potentials a on the wire connecting 1 and 2. Current conser-
vation at connection implies i1r + i2l = 0.

pin p. Given the left/right splitting of pins, the column
vector for physical currents and local potentials write

i(m) = (i
(m)
l , i

(m)
r )T and a(m) = (a

(m)
l ,a

(m)
r )T respec-

tively, the sub-vectors with index χ = l, r including only
components on the χ side. The superscript T denotes

transposition. We notice that i(3) = (i
(1)
l , i

(2)
r )T by def-

inition. Given a(m), we assume that device m reaches a
unique stationary state with constant physical currents
i(m) that are non-linear functions of a(m). The Entropy
Production Rate (EPR) for device m in this stationary
state reads σ(m) = a(m)T i(m). Assuming no dissipation
at the interface, the EPR of device 3 is

σ(3) = a
(1)T
l i

(1)
l + a(2)T

r i(2)r = σ(1) + σ(2). (1)

The last equality requires identical local potentials on

the connection pins a
(1)
r = a

(2)
l ≡ a given the current

conservation at the interface

i(1)r + i
(2)
l = 0. (2)

Eq. (2) is a system of |P(1)
r | = |P(2)

l | equations that
must be solved to determine the internal local potentials.
This provides a as a function of the external potentials

a
(1)
l and a

(2)
r eliminating all internal degrees of freedom.

Non-equilibrium conductance for serial connection—
We focus on conductance matrices relating independent
currents to their conjugated forces. Physical currents
i(m) are linearly dependent due to the set L (m) =

{ℓ(m)
1 , ℓ

(m)
2 , . . . } of conservation laws. These linear de-

pendencies read ℓ(m)i(m) = 0 denoting ℓ(m) the matrix

whose kth line is given by ℓ
(m)
k . The row vectors in L (m)

have |P(m)| components and are linearly independent.
Given the left/right partition of P(m) for m = 1, 2, the
matrix of conservation laws splits into two submatrices

such that

ℓ(m)i(m) =
(
ℓ
(m)
l ℓ

(m)
r

)(i(m)
l

i
(m)
r

)
= 0. (3)

This will be useful in the following to relate internal and
external currents. Graphically, each conservation law of
devices m = 1, 2 can be represented as a tree graph, see
Fig. 2 and 3. We assume that after connection, the con-
servation laws of device 3 are also tree graphs, i.e. with
no internal loops. Making loops is possible in the end
by equating the local potential of two external pins, ef-
fectively connecting them and fixing the gauge freedom
with a reservoir. Using the conservation laws, we select a

subset of pins I (m) ⊂ P(m) for which currents i
(m)
p with

p ∈ I (m) are independent. This defines the basis of fun-
damental currents [12]. We denote in capital letters the

vector of fundamental currents I(m) = (i
(m)
p |p ∈ I (m))T

whose dimension is |I (m)| = |P(m)| − |L (m)|. The se-
lection matrix S(m) relates the physical and fundamen-
tal current vectors and defines the vector of fundamental
forces A(m):

i(m) = S(m)I(m), A(m) = S(m)Ta(m), (4)

such that the EPR satisfies

σ(m) = a(m)T i(m) = a(m)TS(m)I(m) = A(m)T I(m). (5)

We remark that by construction ℓ(m)S(m) = 0 and the
|I (m)| columns of the selection matrix are independent.
The non-linear characteristic of each device provides the
fundamental currents I(m) as a function of the forces
A(m)

I(m) = G(m)A(m), (6)

where G(m) = G(m)(A(m)) is a non-equilibrium conduc-
tance matrix. It is symmetric, force-dependent, and pos-
itive definite at non-equilibrium stationary state [15]. In
this state, the numerical values of the entries of matri-
ces G(1) and G(2) are known for the fundamental forces
given by Eq. (4) evaluated at a(1) = (a

(1)
l ,a)T and

a(2) = (a,a
(2)
r )T respectively. Then, Eqs. (1) and (5–

6) lead to the relation between conductance matrices

I(3)TG(3)−1
I(3) =

∑

m=1,2

I(m)TG(m)−1
I(m). (7)

This defines the inverse of the non-equilibrium conduc-
tance matrix for device 3 as

G(3)−1
=

2∑

m=1

Π(m,3)TG(m)−1
Π(m,3), (8)

provided that a matrix Π(m,3) exists for which I(m) =
Π(m,3)I(3) for m = 1, 2. Eq. (8) is our main result: it
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generalizes the concept of equivalent impedance for the
serial connection of thermodynamic devices.

In the following, we determine Π(m,3) in two steps. We
look for π(m,3) satisfying i(m) = π(m,3)i(3) and related
to the former matrix by

Π(m,3) = S(m)+π(m,3)S(3). (9)

We use S(m)+ = [S(m)TS(m)]−1S(m)T as the pseudo in-
verse of S(m) for m = 1, 2. These matrices are known
since they determine the fundamental currents in which
the conductance matrices G(1) and G(2) are given. As a
first step, we combine Eqs. (2–3) into

Lii
(1)
r = Lei

(3) with Li ≡
[
−ℓ

(1)
r

ℓ
(2)
l

]
, Le ≡

[
ℓ
(1)
l 0

0 ℓ
(2)
r

]
.

(10)
We remark that Li is full column rank since it is an
incidence matrix of a tree graph whose vertices are the
conservation laws and whose edges are the connection

pins [20]. Then, we define π = L+
i Le to obtain i

(1)
r =

πi(3) = −i
(2)
l and conclude our first step with

π(1,3) =

[
1 0
π

]
and π(2,3) =

[ −π
0 1

]
, (11)

since i
(1)
l = [1 0]i(3) and i

(2)
r = [0 1]i(3) by definition.

Second, the column of S(3) defines a basis of ker (ℓ(3))
albeit the conservation laws of the third device remain
to determine. This can be done by computing the left
null eigenvectors of Li, gathered as lines of a matrix v.
The rank-nullity theorem gives the number of lines of v:

dim (cokerLi) = |L (1)|+ |L (2)| − |P(1)
r |, (12)

since Li has |L (1)| + |L (2)| lines, |P(1)
r | columns and

rank |P(1)
r |. Given our constraints on the devices’ con-

nection, Eq. (12) also gives the cardinal of L (3). Then,
from vLi = 0 and Eq. (10), we find the conservation laws
of the third device ℓ(3) = vLe. A basis of its kernel leads
to S(3) and finally to Π(m,3).

Serial connection of two TEG— We illustrate our gen-
eral method on the serial association of two TEGs. We
chose the fundamental current and force vectors as

I(m) =

(
i
(m)
El

i
(m)
Nl

)
, A(m) =




1

T
(m)
r

− 1

T
(m)
l

µ
(m)
l

T
(m)
l

− µ(m)
r

T
(m)
r


 , (13)

where i
(m)
El and i

(m)
Nl are respectively the energy and elec-

tric currents entering device m from the left. The mag-
nitude of the electric charge of an electron is denoted
e > 0. The temperature and electrochemical potential on

the χ = l, r side of device m are denoted T
(m)
χ and µ

(m)
χ

respectively. The current–force characteristic of Eq. (6)

FIG. 2. Serial connection of two TEG. The conservation of
energy and matter implies for each device the following re-

lation: i
(m)
El + i

(m)
Er = 0 and i

(m)
Nl + i

(m)
Nr = 0. For m = 1, 2,

Sm
N ,K(m), R(m) are independent of the intensive parameters

am
p .

holds with the conductance matrix [21, 22]

G(m) =
T

(m)
l T

(m)
r

e2R(m)T̄ (m)

[
e2K(m)R(m)T̄ (m) +H(m)2 H(m)

H(m) 1

]
.

(14)
We denote R(m) the electrical resistance, K(m) the ther-

mal conductivity and S
(m)
N the Seebeck coefficient of

the mth TEG. The later appears in the coupling factor

H(m) = S
(m)
N T̄ (m) + µ̄(m) involving the average temper-

ature and electrochemical potential

T̄ (m) =
T

(m)
l + T

(m)
r

2
, µ̄(m) =

µ
(m)
l + µ

(m)
r

2
. (15)

The conservation of the currents at the interface reads
i
(1)
Er + i

(2)
El = 0 and i

(1)
Nr + i

(2)
Nl = 0. From this we deduce

T
(1)
r = T

(2)
l ≡ T and µ

(1)
r = µ

(2)
l ≡ µ:

T =
K(1)T

(1)
l +K(2)T

(2)
r + e2

2

(
R(1) +R(2)

)
i
(2)
Nl

2

K(1) +K(2) − δSN
i
(2)
Nl

(16)

µ = R∥

(
µ
(1)
l − S

(1)
N ∆T (1)

R(1)
+
µ
(2)
r + S

(2)
N ∆T (2)

R(2)

)
(17)

where δSN
= S

(2)
N − S

(1)
N , 1/R∥ = 1/R(1) + 1/R(2)

and ∆T (m) = T
(m)
r − T

(m)
l . Finally, Eq. (8) becomes

G(3)−1
= G(1)−1

+ G(2)−1
. The outcome of this equa-

tion is in fact also given by Eq. (14) for m = 3 using the
following new parameters

1

K(3)
=

2∑

m=1

1

K(m)
,

S
(3)
N

K(3)
=

2∑

m=1

S
(m)
N

K(m)
, (18)

H(3)

K(3)
=

2∑

m=1

H(m)

K(m)
, (19)

and the electrical resistance

R(3) =

[
1− δSN

i
(2)
Nl

2(K(1) +K(2))

]
2∑

m=1

R(m)+
δ2SN

T

e2(K(1) +K(2))
.

(20)
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The detailed derivation of these results will be published
in a forthcoming publication. Interestingly, R(3) depends
on the matter current and is not simply the sum of the
sub-devices resistances (excepted when δSN

= 0) as al-
ready noticed for TEGs under mixed boundary condi-
tions [23, 24].

Example of dimension matching for conductances—
We now illustrate the construction of an equivalent non-
equilibrium conductance for the devices of Fig. 3. The
first and second devices have 4 and 7 pins, 1 and 3 con-
servation laws leading to 3 and 4 fundamental currents

respectively. Their connection via i
(1)
r = (i3, i4)

T
pro-

duces a third device with 7 pins, 2 conservation laws and
5 fundamental currents. Contrarily to the serial con-
nection of TEGs, the conductance matrices’ dimensions
are all different calling for a dimensional matching. We
assume that the local potentials at the interface have al-
ready been determined and that the conductance matrix
G(m) for m = 1, 2 are known for fundamental currents
I(1) = (i2, i3, i4)

T and I(2) = (i5, i6, i7, i9)
T associated to

S(1) =




−1 −1 −1
1 0 0
0 1 0
0 0 1


 , S(2) =




−1 −1 0 0
0 0 −1 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1
0 0 0 1




.

(21)
Eq. (4) leads to physical currents i(1) = (i1, . . . , i4)

T and
i(2) = (i3, . . . , i9)

T as expected given the matrices

ℓ(1) =
[
1 1 1 1

]
, ℓ(2) =



1 0 1 1 0 0 0
0 1 0 0 1 0 0
0 0 0 0 0 1 1


 ,

(22)
for the conservation laws ℓ(m)i(m) = 0 depicted on
Fig. 3. Vertical bars emphasize the bloc decomposition

FIG. 3. Example of the serial connection of two devices. For

device m = 1 the pins are divided into P(1)
l = {1, 2} and

P(1)
r = {3, 4}. For device m = 2 the pins are divided into

P(2)
l = {3, 4} and P(2)

r = {5, 6, 7, 8, 9}.

of Eq. (3). Applying Eq. (10) to our example, we find

Le =

1 2 5 6 7 8 9


1 1 0 0 0 0 0
0 0 1 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 1



, Li =

3 4


−1 −1
1 0
0 1
0 0



,

(23)
where we indicate the pin index on top of each column.
As expected, the matrix Li is full column rank with
pseudo inverse

L+
i =

1

3

(
−1 2 −1 0
−1 −1 2 0

)
. (24)

Matrices π(m,3) for m = 1, 2 appearing in Eq. (11) read

π(1,3) =




12 02×5

− 1
3 − 1

3
2
3

2
3 − 1

3 0 0
− 1

3 − 1
3 − 1

3 − 1
3

2
3 0 0


 , (25)

π(2,3) =




1
3

1
3 − 2

3 − 2
3

1
3 0 0

1
3

1
3

1
3

1
3 − 2

3 0 0
05×2 15


 . (26)

We denote by 1n the identity square matrix of dimension
n and by 0n×m the null matrix of dimension n×m. Next,
the choice of selection matrix S(3) determines the funda-
mental basis in which G(3) is given. The column vectors
of S(3) realize a basis of ker(ℓ(3)). Let’s first determine
ℓ(3) by finding the left null eigenvectors of Li that we
gather in the lines of matrix

v =

[
1 1 1 0
0 0 0 1

]
. (27)

Then, the matrix of conservation laws arises from

ℓ(3) = vLi =

[
1 1 1 1 1 0 0
0 0 0 0 0 1 1

]
. (28)

The vector of physical currents i(3) =
(i1, i2, i5, i6, i7, i8, i9)

T is obtained from the product
of the selection matrix

S(3) =




−1 −1 −1 −1 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −1
0 0 0 0 1




(29)

with the vector of fundamental currents I(3) =
(i2, i5, i6, i7, i9)

T
. Finally, the matrices Π(m,3) for m =

1, 2 and then G(3) follow from Eqs. (8–9).
Conclusion— The connection of thermodynamic de-

vices, converting physical quantities of any kind, opens
many possibilities that must be further explored. This
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requires theoretical works to extend the notion of non-
equilibrium conductance, for instance from stationary
states to periodic steady states, or from graphs to hyper-
graphs. Current fluctuations within composite devices
are also of great interest, for instance in relation to re-
laxation toward stationary non-equilibrium. On a side
more inspired by electronics, impedance adaptation could
be generalized to allow maximal transmission across the
circuits.
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This chapter is devoted to some applications of Large Deviation Theory (LDT)
for studying the fluctuations of nonequilibrium systems. I intend to introduce my
research works by discussing them from an alternative point of view, stressing the
difficulties, proposing original results when possible, and correcting errors in the
literature (mine and of other people). In my publications, I have used LDT to
obtain exact CGF for currents in nonequilibrium systems, to unveil new fluctuation
relations, and to study efficiency fluctuations. For the latter, I refer to Chapter D
and, for the former, directly to my publications.

This chapter focuses on connecting different jump processes. The question of
relating stationary equilibrium and non-equilibrium dynamics has drawn a large
part of my research effort. I call a non-equilibrium process the one that models
the same physical system as the equilibrium one but put under different environ-
mental conditions (e.g., imposed by competing reservoirs). The non-equilibrium
process usually differs from the so-called driven process built to produce chosen
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typical values of some observables (e.g., physical currents). The latter follows from
titling (biasing) the equilibrium process and then using a Dood transformation on
the tilted operator. Compared to the non-equilibrium process, the driven process
has an additional conservative force that appears in the local detailed balance de-
fined in chapter B. Although this force is apparently not so important for the large
time asymptotic of physical currents (it produces a boundary term), it significantly
changes the symmetric part of the dynamics and, hence, the current statistics. Then,
the non-equilibrium process and driven process belong to different dynamical equiv-
alence classes, except if one adds additional constraints. This is the viewpoint that
I explore in Ref. [5].

Alternatively, one can start from given non-equilibrium processes and ask whether
they belong to the same equivalence class, i.e., with comparable statistics of physical
currents. This is the point of view described in Ref. [18] where I extend the work
of D. Andrieux to continuous time processes, see Ref. [87, 110, 111]. It relies on
introducing a root process (called equilibrium form in Ref. [18]) from a symmetriza-
tion of the rate matrix. Processes with the same root process belongs to the same
equivalence class and display comparable current fluctuations. Although going in
the opposite direction (from non-equilibrium to equilibrium processes), the conclu-
sion of this work is similar to the one of the previous paragraph. The root process
associated with a given non-equilibrium process is not equal to the process under
equilibrium conditions, i.e., with reservoirs that are not competing anymore.

In order to extend the notion of equivalence classes from discrete to continuous
time processes, I have had to consider the relation between these two kinds of dy-
namics. This led me to have a fruitful discussion with M. Polettini on Ref. [112] on
the study of large deviation in the two cases. The result of which is given in sec-
tion C.1. Extending the work of A. Budini, R. M. Turner and J. P. Garrahan [113],
I compare the spectrum for the discrete and continuous time dynamics, but also the
eigenspace in order to determine the connection between the driven processes that
can be constructed in the two cases. Section C.2 relates Markov jump processes
with Arrhénius dynamics, in- and out-of-equilibrium, via conditioning and Doob
transform. The last section comes back on nonlinear conductance matrices from the
point of view of LDT for TiPS.

C.1 Large deviation in time or activity

We start by considering an ensemble equivalence for Markov jump processes at
large number of jumps in their trajectories or for trajectories of long duration. We
show below that one can relate the two ensembles. For conditions of ensemble
equivalence and inequivalence, I refer to Ref. [12]. This section introduces my work
on dynamical equivalence classes [18] reproduced below in section C.1.4. Indeed,
given the dynamical equivalence classes for Markov chain, one can use the results
below to define indirectly such equivalence classes for Markov jump process.
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C.1.1 Equivalence of LDF for fixed time or activity

We consider a physical system modeled by a continuous-time Markov chain with
finite states. This system exchanges energy with χ heat reservoirs labeled by ν =

1 . . . χ at inverse temperatures βν = 1/(kBTν), with kB the Boltzmann constant.
For the equilibrium dynamics, ∀ν, ν ′ ∈ {1, . . . , χ}, one has βν = βν′ . We denote
generically the system states by x, y and z. The Markov matrix k =

∑
ν kν gives the

total transition rates. The matrices kν of xy component k(xy,ν) gives the transition
rates for channel ν. When observing this jump process, one can decide

(i) to fix the final observation time t which is then deterministic while the total
number of jumps (so-called activity) is a random variable,

(ii) to fix the total number of jumps N which is then deterministic while the time
of the last jump is a random variable .

The system’s state at time τ is z(τ). A state trajectory during time interval [0, t] is
denoted [z]. This trajectory includes the state z(τ) at all time τ ∈ [0, t] and the label
ν(τ) of the reservoir providing the energy at each change of state in the trajectory.
Trajectories with a fixed number of jumps N are denoted [z]N and include the same
information (time and channel of jump) as fixed duration trajectories. They are
just of random duration t[z]N , and they all have N jumps. The large deviation of
physical observables in these two situations are related. In the following, we consider
a change of variable that allows to switch from case (i) to case (ii) and vice versa.
Given that observables of interest in physics are functions of the jumps or of the
occupancy of the states, we work at the 2.5 large deviation level.

Let us start by defining the observables of level 2.5 LDF: the empirical occupancy
of state x writes

px[z]
.
=

1

t

∫ t

0
dτδx,z(τ), (C1)

along a trajectory [z]. We use the Kronecker delta δxy = 1 if x = y and is null
otherwise. Similarly, we define the empirical transition probability from a state y
to a different state x, and induced by reservoir ν by

ων
xy[z]

.
=

1

t

∑

τ∈[0,t]
δx,z(τ+dτ)δy,z(τ)δν,ν(τ). (C2)

The sum is over all time τ at which the system changes from state z(τ) to state
z(τ + dτ), exchanging energy with reservoir ν(τ). The LDF in the case (i), derived
in the appendix A of Ref. [5] reproduced in C.2.3, writes

tI(ω,p)
.
=

∑

x,y ̸=x,ν

t

[
k(xy,ν)py − ω(xy,ν) + ω(xy,ν) ln

ω(xy,ν)

k(xy,ν)py

]
. (C3)

It is finite whenever
∑

y,ν(ωxy,ν −ωyx,ν) = 0 to ensure probability conservation and
when

∑
x px = 1. This large deviation function informs on the rate at which de-

cays with time t the probability of non-typical empirical occupancies and transition
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probabilities
Probt (ω = ω[z],p = p[z]) ≍ e−tI(ω,p). (C4)

We denote Ω .
= Σxyωxy = N/t the jump frequency, i.e. the total number of jumps N

divided by the total observation time t. The time between jumps is T .
= Ω−1 = t/N .

In the two cases (i) and (ii), the jump frequency is a random variable since either
N or t is fixed. By normalizing the empirical transition probabilities into the jump
proportion

ω̊(xy,ν)
.
= ω(xy,ν)/Ω, such that

∑

x,y,ν

ω̊(xy,ν) = 1, (C5)

we can rewrite the LDF of Eq. (C3) using the change of variable (ω,p) → (Ω, ω̊,p),

tI(Ω, ω̊,p) = −Ωt+
∑

x,y ̸=x,ν

t

[
k(xy,ν)py +Ωω̊(xy,ν) ln

Ωω̊(xy,ν)

k(xy,ν)py

]
. (C6)

We define the LDF of time between jumps, of jumps proportion, and of state occu-
pancy by

NI(T , ω̊,p) = −N +
∑

x,y ̸=x,ν

N

[
T k(xy,ν)py + ω̊(xy,ν) ln

ω̊(xy,ν)

T k(xy,ν)py

]
. (C7)

It is straightforward to check that

tI(ω,p) = NI(T , ω̊,p). (C8)

A nontrivial step here is the exchange of the role (and random nature) of the final
time t and the total number of jumps N . We remark that the process is still in
continuous time, even if we use the number of jumps as an extensive parameter in
the LDF (usually used for Markov chains, i.e., in discrete time case). In other words,
the occupancy

px[z]
N .

=
1

t[z]N

∫ t[z]N

0
dτδx,z(τ), (C9)

and the random time between jumps T .
= t[z]N/N are well defined random variables.

The above LDF I(T , ω̊,p) can be used to study the level 2.5 large deviations
of the embedded Markov chain. To see this, and as a justification of our interpre-
tation that I is a LDF at fixed N , we now contract on time between jumps and on
occupancy. The optimization on T gives

0 =
∂I
∂T ⇒ 0 =

∑

x,y ̸=x,ν

[
k(xy,ν)py −

ω̊(xy,ν)

T

]
= λ · p− 1

T (C10)

where we define λy
.
=
∑

x ̸=y,ν k(xy,ν) the escape rate from state y. Given the state
occupancy p and the escape rates λ, it is expected that the optimal time between
jumps is T = 1/(λ · p). Then, the large deviation of jump proportion and state
occupancy becomes

I(ω̊,p) =
∑

x,y ̸=x,ν

ω̊(xy,ν) ln
ω̊(xy,ν)λ · p
k(xy,ν)py

. (C11)
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The optimization of this LDF on pz gives

0 =
∂I
∂pz

⇒ 0 =
∑

x,y ̸=x,ν

ω̊(xy,ν)

[
−δyz
pz

+
λz
λ · p

]
, (C12)

allowing to conclude on the connection between the optimal occupancy p and the
vector n of components nz giving the normalized number of visits of state z,

nz
.
=
∑

x,ν

ω̊(xz,ν) =
λzpz
λ · p . (C13)

This connection is mentioned in appendix A of Ref. [18] reproduced in section C.1.4
below. In the end, using the relation of Eq. (C13), we recover the LDF for the
jump proportion of a Markov chain associated to the Markov matrix of components
k(xy,ν)/λy for transition promoted by reservoir ν

I(ω̊) =
∑

x,y ̸=x,ν

ω̊(xy,ν) ln
ω̊(xy,ν)λy

k(xy,ν)ny
. (C14)

This LDF of jump proportion can be obtained directly using Sanov theorem for
the discrete-time dynamics given by k(xy,ν)/λy, see example 4.5 of Ref. [114]. We
emphasize that a Laplace transform on time t of the path probability for the jump
process leads to a path probability for the Markov chain in discrete time involving
exactly the rates k(xy,ν)/λy, see [113]. The later reference studies the ensemble
equivalence of case (i) and (ii) for jump-dependent dynamical observables based on
spectral arguments. At the level of LDF, Eq. (C8) explicit for the first time this
equivalence at the 2.5 level of large deviation, i.e., including level 2 observables
depending on p. The next section discusses the relation between cases (i) and (ii)
in the Legendre conjugated ensembles.

C.1.2 Legendre conjugated ensembles to fixed time and activity

The Legendre transforms of the LDFs of Eqs. (C6) and (C7) are defined by

Î(s, ω̊,p)
.
= −sΩ− I(Ω, ω̊,p) ⇔ tÎ = −sN − tI, (C15)

Î(h, ω̊,p) .= −hT − I(T , ω̊,p) ⇔ N Î = −ht−NI. (C16)

They are associated with Laplace transforms of the corresponding probabilities with
respect to activity or time. The Legendre transform can be done explicitly:

Î(s, ω̊,p) = exp


−s−

∑

x,y ̸=x,ν

ω̊(xy,ν) ln
ω̊(xy,ν)

k(xy,ν)py


− λ · p, (C17)

Î(h, ω̊,p) =
∑

x,y ̸=x,ν

ω̊(xy,ν) ln

[
ω̊(xy,ν)(λ · p+ h)

k(xy,ν)py

]
, (C18)
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where we have used

−s =
∂I

∂Ω
= lnΩ +

∑

x,y ̸=x,ν

ω̊(xy,ν) ln
ω̊(xy,ν)

k(xy,ν)py
, (C19)

−h =
∂I
∂T = λ · p− 1

T , (C20)

in the left part of Eqs. (C15–C16). According to Eq. (C8), cases (i) and (ii) are
equivalent when

sN + tÎ = ht+N Î ⇔ s+
Î(s, ω̊,p)

h+ λ · p =
h

h+ λ · p + Î(h, ω̊,p). (C21)

This provides the relation between s and h, making the two ensembles equivalent.
This relation is the equivalent of Eq. (44) in the Ref. [113]. Our result is expressed at
the level of LDF of jumps and occupancy variables. In contrast, the result of Budini,
Turner, and Garrahan is written for the CGF of jump variables only. Therefore, the
above relation generalizes (the classical part of) their work to the 2.5 level of large
deviation.

C.1.3 Driven processes in discrete and continuous time

In this section, we develop the equivalence of ensemble for given final time or total
number of jumps by considering the tilted processes and their Doob transforms. We
want to address the question of the commutation of two operations on the Markov
generators. The first operation consists of tilting and Doob transforming the gen-
erator to obtain the so-called driven generator (also called auxiliary or effective
generator). The second is the extraction of the embedded chain. In other words,
does the embedded chain of a continuous time-driven process (first approach) coin-
cide with the embedded chain that is later tilted and Dood transformed to obtain
a driven chain (second approach)? We show below that the two operations com-
mute, meaning that the ensemble equivalence for the statistics of chosen observables
extends to the most likely processes leading to the rare fluctuations.

In the first approach, let us use the generator k of section C.1.1 as our starting
point. The tilted generator, when counting the number of jumps (conjugated to s)
and the heat currents (conjugated to α), writes

κ(s,α)
.
=
∑

x,y,ν

kxy,νe
−s+αν(εx−εy)|x⟩⟨y| −

∑

x

λx|x⟩⟨x| (C22)

where Dirac notation |x⟩⟨y| indicates the x, y component of the matrix κ. The
highest eigenvalue of this matrix is denoted Γ = Γ(s,α) and the associated left
eigenvector is π = π(s,α). Then, the Doob transform of the tilted generator reads

K(s,α)
.
= πκπ−1 − Γ1 =

∑

x,y ̸=x

Kxy|x⟩⟨y| −
∑

x

Λx|x⟩⟨x| (C23)
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where 1 is the identity matrix and we use an abuse of notation considering that
the vector π is identified with a diagonal matrix, i.e. πxy ≃ δx,yπx. We denote by
Λx > 0 the escape rate from state x for the driven generator. The left eigenvector is
precisely the vector that allows Γ = Λx − λx for all x such that the generator K is
a Markov matrix (sum of column elements are null), see Ref. C.2.3. The embedded
chain associated to the driven generator is

K ′ .=
∑

x,y

Kxy

Λy
|x⟩⟨y|+ 1 = KΛ−1 + 1 (C24)

where in the last equality Λ is the diagonal matrix built with the vector of escape
rate. The sum of the column elements in K ′ equals 1, and all diagonal elements are
zero, as required for the Markov matrix of a discrete-time process. The extraction of
the embedded chain can be reversed by reintroducing an escape time for each state.
This procedure could be named “temporizing” a Markov chain and reads K ′L−L,
where L is a diagonal matrix of new escape rates. We remark that temporizing the
embedded chain with the escape rate of the original dynamics restores the original
Markov jump process with generator K ′Λ−Λ = K.

In the second approach, we start by tilting the generator k by counting the
final time and the heat currents, with respective counting field h > 0 and α. This
corresponds to a Laplace transform of the path probability on the final time t leading
to the tilted generator

θ(h,α)
.
=

∑

x,y ̸=x,ν

kxy,νe
αν(εx−εy)

h+ λy
|x⟩⟨y| (C25)

This tilted operator is not a Markov matrix. The highest eigenvalue of this operator
is denoted eζ with ζ

.
= ζ(h,α) and the corresponding left eigenvector l = l(h,α).

Then, the Doob transformation of this tilted operator leads to the Markov matrix

T (h,α)
.
=

lθl−1

eζ
, (C26)

where here, again, we abuse the notation l being a diagonal matrix. We emphasize
that the Doob transform of continuous and discrete times processes are different
since they must produce different Markov matrices.

Now, let us show that the two approaches yield the same dynamics

T (h,α) = K ′(s,α) (C27)

for h = Γ(s,α) or alternatively for s = ζ(h,α). We start from the conservation of
the escape rate difference, mentioned after Eq. (C23) and leading to

Γ + λy = Λy =
∑

x ̸=y,ν

πxkxy,νe
−s+αν(εx−εy)π−1

y (C28)

which is equivalent to the eigenvalue equation

πye
s =

∑

x ̸=y,ν

πx
kxy,νe

αν(εx−εy)

Γ + λy
=
∑

x,ν

πxθxy,ν(Γ,α). (C29)
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Hence, for an exponential bias of the jump process at s = ζ(h,α) and of the Markov
chain at h = Γ(s,α), the above eigenvalue equation shows the identity of the left
eigenvectors of the tilted generators κ and θ, i.e. π = l. The fact that these
generators have a common eigenstate results from Ref. [113]. From this result, using
Λy = Γ−λy for all y and s = ζ to compare Eq. (C24) and Eq. (C26), we obtain the
result announced in Eq. (C27): We conclude that the trajectories ensembles with
a given number of jumps or given final time are equivalent, and the typical events
leading to some rare fluctuations are in one to one correspondence under extraction
of the embedded chain of the driven process, or alternatively after temporizing the
driven chain to obtain the driven process.

We have shown this equivalence at the level of jump observables only (here, heat
currents). It seems possible to generalize it at the 2.5 level of large deviations (given
our work in section C.1.1). This would use the slightly more general equation of
conservation of the escape rate difference Γ = my +Λy − λy involving the so-called
escape weight vector m conjugated to occupancy, as defined in Ref. [5] of section
C.2.3. However, the quantity corresponding to the Markov chain’s escape weight
vector is unclear. It could be a counting field conjugated to the number of visits
of each state in the Markov chain. This counting field is a refinement sx of the
counting field s based on the initial state of the jump: sx counts the number of
jumps with initial state x whatever the final state. Then, the condition on ensemble
equivalence [e.g., s = ζ(h,α)] must be generalized to a vectorial equation.

Finally, the discussion of this section on the equivalence of two different ensem-
bles offers a natural comment on the duality of the large deviation theory applied
to nonequilibrium dynamics. Duality is ubiquitous in thermodynamics: The max-
imum entropy principle (for systems with given energy) is dual to the minimum
energy principle (for systems with given entropy) [115]. In analytical mechanics,
duality arises through the Lagrangian and Hamiltonian formalism. When consider-
ing stochastic processes at large volume, the results of this section on the duality
between the dynamics with a given number of jumps and the dynamics with a given
final time are directly translated to the Lagrangian and Hamiltonian formalism,
see Ref. [20]. Indeed, (minus) the Hamiltonian is conjugated to time in analytical
mechanics. It is natural that the eigenrate (i.e. the value of the Hamiltonian for
given initial conditions) and the Hamiltonian function are equivalent to the eigen-
value Γ and to the associated conserved function Γ = Λy − λy, and play the role
of the CGF. The correspondence is done in full generality in our work with L.
Chabane and A. Lazarescu, and we refer to Ref.[20] for more details. For instance,
an extension of the Perron-Frobenius theorem is conjectured to describe possible
solutions to Hamilton–Jacobi equations for a class of Hamiltonian. Then, Doob
transformations are written using Canonical transformations based on solutions of
the time-independent Hamilton-Jacobi equation, etc.
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1. Introduction

A current is intuitively a flow of a physical quantity, such as energy, matter or charges,
that changes sign upon time reversal. Currents exist in different spaces. In an abstract
state space on which state probabilities are defined, one may consider probability cur-
rents between two states. If the state space is the real space, like in the diffusion of
a single colloidal particle, a probability current can be thought of (with an ensem-
ble viewpoint) as a matter current at the microscopic scale. From such local currents
between states or given locations in space, one can define more global currents. For
instance, across a system–reservoir interface, the sum of local currents for a given
physical quantity leads to a macroscopic current through the interface.

Conservation laws strongly constrain currents at all scales, e.g. probability conser-
vation constrains probability currents while conservation of energy, matter or charges
constrain physical currents exchanged with the environment. Each conservation law cre-
ates a relation between the currents of a system, reducing the number of currents needed
to determine all currents in the stationary state by one [1]. For instance, in the frame-
work of electric circuits, the Kirchhoff currents law at each node creates a constraint
between currents in each branch of the circuit. Similarly, in the framework of stochastic
thermodynamics on a graph, currents along fundamental cycles are enough to deter-
mine the currents along any edge of the graph [2]. In the same idea, a subset of physical
currents, the so-called fundamental currents [3], are enough to determine all physical
currents exchanged with the reservoirs. Hence, there exists a freedom in the choice of
the currents to be measured so that any other current can be determined thanks to the
conservation laws.

In most applications, such as conversion or transport processes, predictions of phys-
ical currents must be done in consistency with conservation laws. Those predictions are
made on average, like in hydrodynamic theories [4] or with statistical distribution in
stochastic thermodynamics [5, 6]. The most convenient way to determine the statistics
of currents is to compute the Laplace conjugate of their probability distribution, namely
the moment generating function. However, the aforementioned freedom on the observa-
tion of currents translates here in a freedom in the specific form of the stochastic variable
whose moments are studied [7]. For instance, one may observe energy exchanges with a
heat reservoir for every transition between different states. Alternatively, one may look
at specific and well-chosen transitions only and assume that energy is exchanged exclu-
sively during those transitions, but in amounts that compensate the energy that should
have been exchanged during other transitions. In short, different splittings of physical
currents into local currents are possible, all leading to the same statistics of physical

https://doi.org/10.1088/1742-5468/ac4981 2
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currents. This freedom in the form of the studied stochastic observable corresponds to
a gauge freedom for the dynamics [7, 8]. As long as one observes over a long time a sys-
tem in its stationary state, such changes of dynamics have no effects on the trajectory
ensemble and thus on the statistics of physical currents.

This possibility of different systems sharing the same current statistics raises the
question of equivalence between the dynamics of nonequilibrium systems. This question
has been explored extensively in the last few decades for Markov processes in steady
states. Transition rates including the least possible information on the dynamics, given
the measure of some physical currents, have been derived using the maximum entropy
principle [9]. For processes conditioned on observables like physical currents, either by
filtrating the trajectory ensemble or by exponentially tilting it (with or without Doob
rectification), several asymptotically equivalent dynamics have been obtained [10–15].
In these works, the notion of non-equilibrium equivalence may refer to path ensemble
equivalence (dynamical equivalence) or to equivalence for the typical value of the observ-
able (concentration equivalence) [16]. The former equivalence implies the latter that is
hence less restrictive. As we detail in appendix A, the concentration equivalence can be
produced by two kinds of modifications of the rate matrix in the case of jump processes:
first, the stationary state probability and the probability currents are not affected by
a symmetric modification of the jump probability [17], i.e. the same modification for
each forward and backward jump probability. Second, the probability currents are not
affected as well by a modification of the mean time spent in each of the system states [18].
Nonetheless, the stationary probability has changed in this second case, e.g. it increases
for states with longer occupancy times. The dynamical equivalence is physically more
relevant, motivating us to find the practical conditions producing it, as Andrieux did for
(discrete-time) Markov chains on simple graphs [19, 20]. Indeed, defining nonequilibrium
thermodynamic potentials is sometimes possible thanks to dynamical equivalence [21].
In this case, one can connect the rare fluctuations of an equilibrium process with the
typical fluctuations of the same process put in stationary nonequilibrium by external
forces or multiple reservoirs at different intensive parameters.

Although modifying dynamics while keeping comparable statistics of physical cur-
rents has been thoroughly studied, a definition of dynamical equivalence classes is still
missing for Markov jump processes on multigraph, in continuous time, and driven out
of equilibrium by stationary forces or competing reservoirs. We aim to provide such
an operational definition in this article. In section 2, we review standard techniques to
compute cumulant generating functions based on the spectrum of tilted rate matrices.
In section 3, we find a similarity transformation connecting a (tilted) rate matrix to its
(tilted) symmetrized form called root matrix . Based on this result, we define in section 4
a non-equilibrium equivalence class by the ensemble of rate matrices with the same root
matrix chosen as the representative of the class. Thanks to the similarity transformation
with the root matrix, the identity of the spectrum of the matrices in the equivalence
class is guaranteed and so are the fluctuations of physical currents. We end this article
by illustrating the equivalence of fundamental currents fluctuations on a solvable model
of molecular motor.

Finally, from the concept of equivalence class, we see that thermodynamic forces may
appear in many ways in the dynamics with no consequences on the stationary state. In

https://doi.org/10.1088/1742-5468/ac4981 3



J.S
tat.

M
ech.

(2022)
023211

Dynamical equivalence classes for Markov jump processes

appendix B, the explicit relation between equivalent dynamics is used to explain the
freedom on the specific form of the stochastic variable representing a physical current
when computing its cumulants [7].

2. Fluctuations of fundamental currents for systems in non-equilibrium stationary
state

We study a system with a finite number of states, modeled by a Markov jump process
in continuous time and put out of equilibrium by thermodynamic forces gathered into
vector b = (bI, bII, . . . , bX , . . .). These forces are generated by several reservoirs assumed
to be always in thermodynamic equilibrium (e.g. thermostat, chemostat) with different
intensive parameters. To shorten notations, we denote half of the thermodynamic forces
by f = b/2, and talk of f as a force by abuse of language.

Each reservoir exchanges physical quantities (e.g. energy, matter) with the system
enabling its change of state, denoted by x, y or z, via channels labeled by ν = 1, 2, 3, . . .
Hence, ν labels both a channel and the reservoir involved in the transition via this
channel. In the framework of graph theory, a change of system state via a channel
is represented by an edge. We label edges by e in general or by (xy, ν) for a specific
transition from state y to state x via channel ν. The transition rates ke = ke(f ) along
each edge e completely define the dynamics. Using the rates k(xy,ν), one can define: the
total transition rate from y to x denoted as kxy

.
=

∑
ν k(xy,ν), the escape rate from state

y via channel ν denoted as λ(y,ν)
.
=

∑
x �=y k(xy,ν), or the total escape rate from state y

denoted as λy
.
=

∑
ν,x �=y k(xy,ν). All of these rates are functions of the thermodynamic

forces, for instance λy = λy(f ), even though we may omit it in the notation. The rate
matrix k = k(f ) writes

k
.
=

∑

ν

(∑

x,y �=x

k(xy,ν)|x〉〈y| −
∑

x

λ(x,ν)|x〉〈x|
)

.
=

∑

ν

kν (1)

using bracket notation for the basis of the vector space of system states. We call k
the rate matrix of the reference dynamics and k ν the rate matrix for channel ν. The
state probability vector p =

∑
x px|x〉 evolves according to the Markov master equation

∂tp = k · p. If f �= 0 the system will eventually relax to a non-equilibrium stationary
state. The rate matrix k can be used to generate trajectories of a stochastic jump
process. A trajectory [z] of duration t gives the ordered list of visited states, the time
interval between jumps, and the channel of each jump (if the transition can be done
via different channels). From these trajectories, we define the time-averaged current
je[z] that counts the number of transitions along the edge e per unit time during the
trajectory [z]. Many [z] realizations of the stochastic process generate an ensemble of
trajectory {[z]}, from which an ensemble of random edge currents {je[z]} is produced.
With a slight abuse of notation, we denote by jX [z] the current of physical quantities X
exchanged with the environment during a trajectory [z]. If φX,(xy,ν) denotes the amount
of physical quantity X exchanged with reservoir ν during transition from y to x, then

https://doi.org/10.1088/1742-5468/ac4981 4
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the physical current along a trajectory is written as

jX [z] =
∑

e

je[z]φX,e. (2)

We remark that since je[z] = −j−e[z] and φX,e = −φX,−e, an arbitrary orientation of
edges used consistently leads to the same physical current.

We call fundamental currents those of the physical currents whose sole knowledge of
the average (together with their conjugated thermodynamic forces fX) is sufficient to
compute the total entropy production rate in the stationary state [3, 22]

〈σ[z]〉k =
∑

X

bX〈jX [z]〉k, (3)

where 〈. . .〉k denotes the mean value on {[z]} generated by k . Here, σ[z] is the logarithm
of the path probabilities of [z] divided by the path probabilities of the time reverse
trajectory, all divided by the trajectory duration. From now on, the subscript X labels
only fundamental currents and their conjugated thermodynamic forces.

The moment generating function for fundamental currents observed on a time t and
conditioned on the final state, namely the vector of component

gx(α, f, t)
.
=

〈
etα·j[z]δ(x − z(t))

〉
k(f)

, (4)

evolves according to [6]

∂tg = κg, (5)

where we have introduced the tilted generator

κ(α, f)
.
=

∑

ν,x,y �=x

k(xy,ν)(f)e

∑
X

αXφ̂X,(xy,ν) |x〉〈y| −
∑

x

λx(f)|x〉〈x|, (6)

where αX is the Laplace conjugated variable to physical current jX . Notice that we
have used a freedom for counting fundamental currents that is explained in [23, 24],
hence not straightforwardly applying Donsker–Varadhan techniques used to compute
large-deviation of currents. The cycle exchange matrix φ̂ gives the exchange of each
physical quantity with the environment, i.e. its component φ̂X,ci is equal to the amount
of physical quantity labeled by X that is exchanged during the fundamental cycle ci.
This matrix follows from the edge exchange matrix φ of components φX ,e appearing in
equation (2) and the matrix of fundamental cycles C as

∑

e

φX,eCe,ci = φ̂X,ci. (7)

The columns of C are the fundamental cycles of the system’s graph [2]. A cycle is a
vector in the space of (arbitrarily) oriented edges. Entries of a cycle vector are ±1 (or
0) if the edge belongs to the cycle (or not) with a sign chosen according to the edge
orientation; the list of edges of a cycle shall form a loop, i.e. without ending states.
Fundamental cycles represent a basis of the cycle vector space. In graph theory, one

https://doi.org/10.1088/1742-5468/ac4981 5
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can build this basis starting from a spanning tree on the graph, i.e. a list of edges that
connect all vertices of the graphs without creating a loop, and adding the remaining
edges (called chords) one at a time to create fundamental cycles. In doing so, each
chord is uniquely associated to a fundamental cycle [2].

The highest eigenvalue of the tilted matrix κ(α, f ) yields Γκ(α, f ) the scaled cumu-
lant generating function (SCGF) of fundamental currents. This SCGF is connected to
the moment generating functions conditioned on final state by

Γκ(α, f) =
t→∞

1

t
ln

∑

x

gx(α, f, t). (8)

In the next section, we define the so-called root dynamics whose tilted generator
R is related by a similarity transform and a translation on the Laplace variable to
κ. Hence the two tilted generators have identical spectrum. Equivalence classes for
non-equilibrium processes are defined next since many dynamics share the same root
dynamics.

3. Similarity of root and reference dynamics

We call root matrix r = r(f ) the generator of the root dynamics defined as the sum of
the geometric mean between the off-diagonal elements of k ν and kT

ν , i.e.

r(f)
.
=

∑

ν,x,y �=x

√
k(xy,ν)(f)k(yx,ν)(f)|x〉〈y| −

∑

x

λx(f)|x〉〈x|, (9)

while the diagonal elements are not modified. By definition, the root matrix is sym-
metric, but it is not a Markov matrix. Based on the normalized left eigenvector of r
associated to the highest eigenvalue, one can obtain a Markov matrix as the Doob trans-
form of r . Such a transformation is essentially a similarity transform of the rate matrix
combined with a constant translation on the diagonal [13, 25]. The Doob transform of
r will satisfy a detailed balance equation, and therefore has a stationary state that is
an equilibrium state.

The tilted root matrix is written as

R(a, f)
.
=

∑

ν,x,y �=x

√
k(xy,ν)(f)k(yx,ν)(f)e

∑
X

aXφ̂X,(xy,ν) |x〉〈y| −
∑

x

λx(f)|x〉〈x|, (10)

and we denote with ΓR(a, f) its highest eigenvalue. To relate κ and R by similarity
transform, we introduce the drift potential u = u(f ) as

exp [Δue(f)]
.
=

√
ke(f)

k−e(f)
for any edge e that is not a chord, (11)

https://doi.org/10.1088/1742-5468/ac4981 6



J.S
tat.

M
ech.

(2022)
023211

Dynamical equivalence classes for Markov jump processes

where Δu(xy,ν) = ux − uy. This defines u up to an additive constant that we set by
choosing a unit norm for eu . More generally, the drift potential satisfies

exp [Δue(f)] =

√
ke(f)

k−e(f)
exp

(
−
∑

X

fXφ̂X,e

)
for any edge e, (12)

with a slight abuse of notation to extend the exchange matrix for cycles φ̂ to the full
edge space as follows

φ̂X,e
.
=

{
φ̂X,ci if e is the chord of cycle ci,

0 otherwise.
(13)

Indeed, from the generalized detailed balance [2], half cycle affinities f̂ci are defined by

f̂ci
.
=

∑

X

fXφ̂X,ci = ln

(∏

e∈ci

√
ke

k−e

)
, (14)

where the product is on all edges belonging to the cycle ci. Using the definition of drift
potential in equation (11) and specifying out the chord e′ in the product on the edges
of cycle ci, we obtain

∑

X

fXφ̂X,e′ = ln

⎛
⎝
√

ke′

k−e′

∏

e∈ci\e′

√
ke

k−e

⎞
⎠ = ln

√
ke′

k−e′
− Δue′ , (15)

which yields equation (12). From this latter equation and the definition of the tilted
root matrix of equation (10), one finds

κ(α, f) = D
(
eu(f)

)
· R(f + α, f) · D

(
e−u(f)

)
, (16)

where D(v) transforms the vector v into a diagonal matrix. We notice that eu(f ) is the
left eigenvector of R(f, f) associated to the null eigenvalue, since the line vector with all
entries equal to one is by definition the left eigenvector of

k(f) = κ(0, f) = D
(
eu(f)

)
· R(f, f) · D

(
e−u(f)

)
, (17)

for the null eigenvalue. Therefore, k(f ) is the Doob transform of R(f, f) based on vector
eu(f ). From equation (16), we find that the spectra of the reference and root tilted
matrices satisfy

Γκ(α, f) = ΓR(f + α, f). (18)

With words, we interpret equations (16) and (18) as follows: the counting field a = f + α
appearing in equation (10) includes a tilting force f that transforms the equilibrium
dynamics based on r into the driven dynamics with generator R(f, f) (similar to k the
generator of the reference dynamics) and a counting field α that explores the current
fluctuation of the reference dynamics.

https://doi.org/10.1088/1742-5468/ac4981 7
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We remark that the exchange e → −e and a → −a is a symmetry of equation (10)
and hence R(a, f) = R(−a, f), which encodes the symmetry of current fluctuations at
equilibrium. Using a = f + α, this translates into R(f + α, f) = R(f − 2f − α, f) and
equation (16) produces for the tilted generator of the reference dynamics

κ(α, f) = κ(−2f − α, f) (19)

that would follow directly from equations (6) and (14) as well. Therefore, the spectrum of
these two matrices are identical and more specifically one gets the asymptotic fluctuation
relation for fundamental currents

Γκ(α, f) = Γκ(−2f − α, f). (20)

One concludes that the fluctuation relation brings to all elements of a dynamical equiv-
alence class the symmetry of current fluctuations of the equilibrium dynamics in the
same dynamical equivalence class, namely the root dynamics. Hence, an alternative and
less convenient way of defining the root dynamics is to constrain the reference dynamics
on having null entropy production.

4. Dynamical equivalence classes

Since the statistics of fundamental currents is fully determined by the spectrum of the
tilted root matrix, two jump processes with the same components of the root matrix
on all edges and on the diagonal share the same fluctuations of fundamental currents in
the stationary state. This implies that proportionality on each edge and on the diagonal
leads to proportional SCGF as well. Accordingly, the following equivalence relation

k ≡ k′ if ∀ e,
√

kek−e = γ
√

k′
ek

′
−e and if ∀ y,

∑

x �=y,ν

kxy,ν = γ
∑

x �=y,ν

k′
xy,ν , (21)

defines a dynamical equivalence class between two jump processes. We emphasize that
a couple of states may be connected by several channels and that the component of the
root matrices must be proportional for each channel separately. The above equivalence
class extends to jump processes on multigraphs and in continuous time the equivalence
class introduced by Andrieux in [19] for Markov chains (discrete time) on simple graphs.
As for Markov chains, the spectra of the tilted rate matrices associated to k and k ′ in the
same equivalence class are proportional. We remark that proportionality of the spectra
is stronger than that of the SCGF as it is associated to path ensemble equivalence
(at finite time) upon a suitable choice of boundary conditions.

The difference between two matrices k and k ′ in the same equivalence class can arise
from the different ways of breaking detailed balance. Generalized detailed balance does
so by defining differently the skew symmetric part of these matrices. For instance, forces
may appear on every edge

ke(f)

k−e(f)
∝ e

∑
X

fXφX,e

, (22)

https://doi.org/10.1088/1742-5468/ac4981 8
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or on chords only

k′
e(f)

k′
−e(f)

∝ e

∑
X

fXφ̂X,e

, (23)

which means that the forward and backward rates are the same for any other edge (up

to a potential contribution). Notices that the cycle forces f̂ defined in equation (14) are
the same defining them with k or with k ′. Since these two rate matrices are in the same
equivalence class, they are both related by similarity transform to R(f, f), but through
two different drift potentials, respectively, the one defined in equation (11) and the one
defined by the same equation with k and u replaced by k ′ and u ′.

Interestingly, for the equilibrium stationary state, the symmetric part of the rate
matrix has no influence on thermodynamic equilibrium and just the detailed balance
equation for the skew symmetric part matters. On the opposite, the nonequilibrium
stationary state when characterized by the fundamental currents fluctuations is only
determined by the symmetric part of the rate matrix (defining the equivalence class),
given that the skew symmetric part has the expected fundamental forces. In this sense,
when dealing with non-equilibrium stationary jump processes, there is a dynamical
freedom in the way of imposing the fundamental forces that has no consequences on the
fluctuations of fundamental currents. This dynamical freedom is in fact a gauge freedom
since in the framework of path probability the Doob transform relating two elements in
an equivalence class is in fact a gauge change [26].

Nonequilibrium systems change equivalence class when modifying the thermody-
namic forces since these forces modify at least the diagonal part of the root matrix that
is related to the system activity [27]. In most cases, forces also appear in the off-diagonal
part of the root matrix. For instance, in photoelectric or thermoelectric devices, transi-
tion rates often follow from quantum perturbation analysis producing rates that depend
on the Fermi (Bose) statistics of the electrons (bosons or phonons) reservoirs. In these
cases, the thermodynamics forces such as the temperature and electrochemical poten-
tial differences appear in the symmetric part of the rate matrix and hence in the root
matrix. It is a challenge to develop a nonequilibrium thermodynamics of such nontrivial
systems by including activity into a coherent thermodynamics structure.

5. Illustration on a discrete model of molecular motor

For clarity, we illustrate our main results on a discrete model of molecular motor
described in [28–30]. This isothermal molecular motor has two internal states a and
b of energy 0 and ε, respectively. The two internal states are connected by four different
microreversible transitions: the motor can move one step to the left or to the right with
or without consuming adenosine triphosphate (ATP) molecules. We associate as shown
in figure 1 a positive edge number e = 1, 2, 3 and 4 to each transition from a to b and
write ke the corresponding rate. Edge 1 (resp. 2) corresponds to the motor leaving state
a by moving to the left while consuming 1 (resp. 0) ATP molecule. Edge 3 (resp. 4)
corresponds to the motor leaving state a by moving to the right while consuming

https://doi.org/10.1088/1742-5468/ac4981 9
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Figure 1. (a) Sketch of the effective two-state system with four edges. Edge orien-
tation is head toward b. (b) Set of fundamental cycles with their orientations given
by the orientation of their corresponding chords. The ith column of matrix C in
equation (27) is for cycle ci.

0 (resp. 1) ATP molecule. The dimensionless fundamental forces fX in this model are
fI = Δμ/(2kBT ) that is half the chemical potential difference Δμ of the hydrolysis reac-
tion of ATP and fII = fd/(2kBT ) that is half the mechanical work fd that the motor
performs against force f to make a step of length d. The fundamental currents are the
ATP consumption rate jI and the number of step per unit time jII. Hence, the total
entropy production rate writes σ = 2jIfI + 2jIIfII. For simplicity, we write energies in
thermal units kBT = 1 where T is the temperature of the motor environment. We take
the Boltzmann constant kB = 1: the entropy production rates are homogeneous to an
inverse time like fundamental currents.

We completely specify the dynamics using the following transition rates

k−1 = α̃ e2θ+
b fII , k−2 = ω̃ e2θ+

b fII ,

k1 = α̃ e−ε+2fI−2θ−
a fII , k2 = ω̃ e−ε−2θ−

a fII ,

k−4 = α e−2θ−
b fII , k−3 = ω e−2θ−

b fII ,

k4 = α e−ε+2fI+2θ+
a fII , k3 = ω e−ε+2θ+

a fII ,

(24)

where α, α̃, ω and ω̃ are time scales for the various transitions, and θ±
x are the load

distribution factors that encode the left/right asymmetry of the motor (inherited from
the modeling in a continuous state space). These factors are arbitrary except for the
constraint θ+

a + θ−
b + θ−

a + θ+
b = 2. This constraint ensures the thermodynamic consis-

tency of the model: the entropy production computed using edge currents and forces is
equal to the entropy production computed using fundamental current and forces [3, 29].
The root matrix writes

r(f) =

(
4∑

e=1

re

)
|a〉〈b| +

(
4∑

e=1

re

)
|b〉〈a| −

(
4∑

e=1

ke

)
|a〉〈a| −

(
4∑

e=1

k−e

)
|b〉〈b|

(25)

https://doi.org/10.1088/1742-5468/ac4981 10
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in terms of the symmetrized rates re =
√

kek−e that are explicitly:

r1 = r−1 = α̃ e−ε/2+fI+(θ+
b −θ−

a )fII , r2 = r−2 = ω̃ e−ε/2+(θ+
b −θ−

a )fII ,

r4 = r−4 = α e−ε/2+fI+(θ+
a −θ−

b )fII , r3 = r−3 = ω e−ε/2+(θ+
a −θ−

b )fII.
(26)

We define now the cycle and exchange matrices in order to build the tilted root
matrix R(α, f). There are four different spanning trees for the graph of this model of
molecular motor since its spanning trees correspond here to just one edge. We chose as
the spanning tree edge 1. Adding an edge to this spanning tree creates one cycle. We
use the following cycle matrix

C =

⎛
⎜⎜⎝

−1 −1 −1
1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎠ , (27)

for cycles c1, c2 and c3 defined in figure 1 and corresponding to the first, second and third
column of C . Notice that chord orientation determines the orientation of its associated
fundamental cycle. Since we assume positive edge orientation for transitions from a to
b, chords are oriented in the same way from a to b and hence cycle c1 is made of edges
2 and −1, cycle c2 is made of edges 3 and −1, etc. To convert probability currents in
edge space to physical currents, we need to define the edge exchange matrix whose line i
(resp. ii) provides the number of consumed ATP molecule (resp. the number of steps to
the right done by the motor) when the eth transition occurs, with e being the column
index,

φ =

(
1 0 0 1

−1 −1 1 1

)
. (28)

Then, summing the exchanges along every edges of each fundamental cycle gives the
cycle exchange matrix

φ̂ = φ · C =

(
−1 −1 0
0 2 2

)
in cycle space. (29)

To define this matrix of components φ̂X,ci into the space of edges instead of fundamental
cycles as done in equation (13), we extend it on the left with one more column filled
with zeros since edge 1 is not a chord, while edges 2, 3 and 4 are respectively the chords
of cycles c1, c2 and c3:

φ̂ =

(
0 −1 −1 0
0 0 2 2

)
in edge space. (30)

https://doi.org/10.1088/1742-5468/ac4981 11
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The drift potential is defined thanks to edge 1 (the unique edge of our spanning tree)
and for all edges e = 1, 2, 3, 4 (hence going from a to b) we have

Δue = ub − ua = ln

√
k1

k−1

= −ε/2 + fI − (θ−
a + θ+

b )fII. (31)

We emphasize that the rates of equation (24) satisfy equation (12) since

ln

√
k2

k−2
= −ε/2 − (θ−

a + θ+
b )fII = ub − ua − fI, (32)

ln

√
k3

k−3
= −ε/2 + (2 − θ−

a − θ+
b )fII = ub − ua − fI + 2fII, (33)

ln

√
k4

k−4
= −ε/2 + fI + (2 − θ−

a − θ+
b )fII = ub − ua + 2fII, (34)

where we used θ+
a + θ−

b + θ−
a + θ+

b = 2 for the last two lines.
First, we illustrate equation (18) relating the spectrum of the tilted rate matrix to

the spectrum of the tilted root matrix. With the cycle exchange matrix written in the
edge space, the tilted root matrix reads

R(α, f) =

(
4∑

e=1

re e

∑
X

αXφ̂X,e

)
|b〉〈a| +

(
4∑

e=1

re e
−∑

X
αXφ̂X,e

)
|a〉〈b|

−
(

4∑

e=1

ke

)
|a〉〈a| −

(
4∑

e=1

k−e

)
|b〉〈b| (35)

whose highest eigenvalue ΓR = ΓR(α, f) writes in terms of its trace and determinant as

ΓR =
1

2

(
Tr R +

√
[Tr R]2 − 4 Det R

)
. (36)

Similarly, tilting the rate matrix k gives

κ(α, f) =

(
4∑

e=1

ke e

∑
X

αXφ̂X,e

)
|b〉〈a| +

(
4∑

e=1

k−e e
−∑

X
αXφ̂X,e

)
|a〉〈b|

−
(

4∑

e=1

ke

)
|a〉〈a| −

(
4∑

e=1

k−e

)
|b〉〈b| (37)

whose trace and determinant are by construction exactly the same as those of R(α +
f, f). This can be checked directly using equations (31)–(34) illustrating equation (18)
for the identity of the two spectra (when translating the counting field α with the force
f ). Alternatively, we illustrate this relation in figure 2.

Second, we illustrate the notion of dynamical equivalence class by finding two models
of molecular motor having the same SCGF for currents jI and jII, up to a multiplicative

https://doi.org/10.1088/1742-5468/ac4981 12
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Figure 2. Comparison of the spectra of the tilted root matrix R with the one
of the tilted rate matrix κ. (Left) Spectra Γκ(αi,αii = 0, fI, fII = 0) and ΓR(fI +
αi,αii = 0, fI, fII = 0) as a function of αi for fI = −0.5, 0.5 and 1.5. (Right) Spectra
Γκ(αi = 0,αii, fi = 0, fII) and ΓR(αi = 0, fII + αii, fI = 0, fII) as a function of αii for
fII = −0.5, 0.5 and 1.5. For both figures, we took α = 0.57, α̃ = 1.3 × 10−6, ω = 3.5,
ω̃ = 108.15, ε = 10.81, θ+

a = 0.25, θ−
a = 0.75, θ+

b = 0.75, θ−
b = 0.25.

constant γ relating the time scales of the two models. As we saw in section 4, this is
possible if each root rate and escape rate of the two models are proportional with the
same proportionality constant γ. For the molecular motor introduced above, a well-
chosen modification of the load factors (θ±

a , θ±
b ) and energy ε allows us to change of

dynamics, while remaining in the same dynamical equivalence class.
The modification of the load factors must be done in agreement with the thermo-

dynamic consistency θ+
a + θ−

b + θ−
a + θ+

b = 2 and we chose to keep θ+
b − θ−

a and θ+
a − θ−

b

constant. Introducing two parameters θa and θb used to move inside the dynamical
equivalence class, the load factors can be set by

θ±
a =

1 ± θa

2
, θ±

b =
1 ± θb

2
⇒ θ+

b − θ−
a = θ+

a − θ−
b =

θa + θb

2
. (38)

Then, the escape rates from state a and b read, respectively

4∑

e=1

ke = e−ε+(1+θa)fII
(
α̃ e2(fI−fII) + ω̃ e−2fII + α e2fI + ω

)
, (39)

4∑

e=1

k−e = e(1+θb)fII
(
α̃ + ω̃ + α e−2fII + ω e−2fII

)
, (40)

while any root rate behaves as

r±e ∝ e−ε/2+fII(θb+θa)/2, (41)

https://doi.org/10.1088/1742-5468/ac4981 13
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where the proportionality constant is independent of the load factors and of the energy.
From equations (39)–(41), we notice that the change

θa → θa + Δθa (42)

θb → θb + Δθb (43)

ε → ε + fII(Δθa − Δθb) (44)

produces an edgewise modification of the root dynamics by just a multiplicative factor
γ = eΔθbfII . Therefore, modifying the dynamics according to equations (42)–(44) is a
non-trivial displacement within a dynamical equivalence class. This modification is not
trivial in the sense that it does not just multiply the transition rates of equation (24)
by a constant factor.
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Appendix A. Dynamics with same mean currents

Symmetric freedom—for the sake of completeness, we review in this appendix former
works on non-equilibrium equivalence class at the level of mean currents. As mentioned
in the introduction, Zia and Schmittmann have shown that an additive and symmetric
modification of the jump probabilities does not modify the stationary state probability
and the probability current [17]. To see it, let us define pst

y the stationary probability of
state y such that

∑
y kxyp

st
y = 0. Let us define the symmetric matrix h with off-diagonal

elements hxy (and diagonal elements hyy = −∑
x �=y hxy), chosen such that the new rate

matrix k′
xy = kxy + hxy/pst

y has positive off-diagonal elements. Then, the stationary state

probability for matrices k and k ′ are the same since

∑

y

k′
xyp

st
y =

∑

y

(
kxy + hxy/pst

y

)
pst

y , (A.1)

=
∑

y

kxyp
st
y +

∑

y

hxy, (A.2)

=
∑

y

hxy =
∑

x

hxy = 0, (A.3)

where we used the symmetry of h and the fact that the sums of its column elements
are zero. Similarly, the probability currents associated to rate matrices k and k ′ are the
same

jst′
xy

.
= k′

xyp
st
y − k′

yxp
st
x , (A.4)
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= kxyp
st
y + hxy − kyxp

st
x − hyx, (A.5)

= kxyp
st
y − kyxp

st
x = jst

xy, (A.6)

again by the symmetry of matrix h . Therefore, if a nonequilibrium stationary state is
characterized by the state probability pst

x and all probability currents jst
xy, then the sym-

metric part of the rate matrix (without the diagonal) remains free (given that it is still
a well-defined rate matrix). Hence, there is just as much freedom in choosing rates to
reach a given nonequilibrium stationary state as for systems to reach a thermal equi-
librium state (since detailed balance condition associated to equilibrium state imposes
no constraint either on the symmetric part of the rate matrix). Notice that the state
probability and the probability currents enable us to compute mean physical currents
but no higher moments.

Waiting-times freedom—when characterizing a non-equilibrium stationary state by
the probability currents only, we find one additional dynamical degree of freedom for
each state in comparison with the situation above. By construction, this freedom in the
rate matrix corresponds to the arbitrariness of the stationary probability p st. Indeed,
introducing new transition rates k′

xy = kxy eϕy , with ϕ an arbitrary state vector, leads to

the new stationary probability with components pst′
x = pst

x e−ϕx since
∑

y

k′
xyp

st′
y =

∑

y

(kxy eϕy)
(
e−ϕypst′

y

)
= 0. (A.7)

As required, all probability currents are preserved k′
xyp

st′
y − k′

yxp
st′
x = kxyp

st
y − kyxp

st
x . How-

ever, the escape rates become λ′
y = λy eϕy and we may interpret the freedom on the

stationary probability as a waiting-time freedom. This interpretation is confirmed by
the fact that ∀ x, pst

x ∝ nx/λx, where nx is the stationary probability of the embedded
Markov chain (for very long trajectories, it is also the number of visit of state x divided
by the total number of jumps). From this proportionality relation, we find that the
stationary probability of the embedded chain is also preserved when switching from k
to k ′

nx =
pst

x λx∑
y pst

y λy

=
pst′

x λ′
x∑

y pst′
y λ′

y

. (A.8)

Hence, the modification of the stationary probability of the continuous time Markov
jump process only comes from the freedom on the escape rates. Interestingly, Polettini
has shown that more general transformations such as k′

xy = kxyvxy eϕy will not lead to

pst′
x = pst

x e−ϕx excepted if vxy is independent of x and y [18]. In this work, the modification
of the stationary probability is referred to as a gauge freedom. However, the terminology
‘gauge freedom’ should be used for the dynamical changes inside the equivalence classes
introduced in the main text.

Appendix B. Equivalence of edge-wise or cycle-wise tilting

In this appendix, we provide another point of view on the edge and cycle freedom in
the counting statistics of physical currents developed in [7]. In the stationary state, the
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statistics of fundamental currents is the same whether the physical quantity is counted
for every transition or for transitions associated with chords only, but with weights
determined by the exchanged quantity during the corresponding fundamental cycle. In
our framework, this freedom comes from the possibility of relating one tilting procedure
to the other one by moving inside the equivalence class.

To show this, we introduce many drift potentials uβ defined thanks to the many
possibilities for choosing a spanning tree T β labeled by β:

eΔuβ
e (α) .

=

√
ke(α)

k−e(α)
exp

(
−
∑

X

αXφ̂β
X,e

)
(B.1)

with φ̂β
X,e =

∑
e′ φX,e′Cβ

e′,ci if e = ci and 0 otherwise, and where C β is the matrix of

fundamental cycles associated to the spanning tree T β. Then, assuming mβ are for now
arbitrary real numbers, the off-diagonal components of the tilted matrix when counting
on edges can be written

ke(f)e

∑
X

αXφX,e

= ke(f)e

∑
X

αXφX,e
∏

β

[√
ke(α)

k−e(α)
e
−Δuβ

e (α)−∑
X

αXφ̂β
X,e

]mβ

, (B.2)

= ke(f)

[
ke(α)

k−e(α)

]mβ/2

e
−∑

β
mβΔuβ

e (α)

︸ ︷︷ ︸
inside equivalence class of k(f)

e

∑
X

αX

[
φX,e−

∑
β

mβφ̂β
X,e

]

. (B.3)

Hence, finding mβ such that
∑

X αX

[
φX,e − ∑

β mβφ̂β
X,e

]
=

∑
X αXφ̂X,e would map the

edge tilting into a chord tilting of another matrix that belongs to the equivalence class
of k(f ). The problem of finding mβ writes as a linear algebra problem

∑

X

αX

[
φX,e − φ̂X,e

]
=

∑

β

mβ

(∑

X

αXφ̂β
X,e

)
(B.4)

where one needs to find the inverse of matrix Φ̂ with (β, e) components equal to∑
X αXφ̂β

X,e. The index β runs on the number of spanning trees. This number is 1 for
a tree graph (but switching from edge to cycle counting is meaningless in this case). It
is equal to the number of edges on a cycle graph. It will be higher than the number of
edges involved in all the cycles for an arbitrary connected graph. Then, there is enough
free parameters mβ to find an inverse for all edges that belongs to cycles of the graph.
If matrix Φ̂ is singular, then one can reduce the number of free parameter mβ to find
its inverse. In the end, using the freedom on the basis of fundamental cycles, on may
bias dynamics using the chords in many different ways that, together, can produce the
desired bias on each edge.

Let us notice that edges belonging to tree parts of a graph do not contribute to
current statistics at all: any physical quantity exchanged while entering into such a tree
part will be exchanged back when leaving this tree part. Algebraically, the exponential
tilting on edges that are on the tree part of the graph disappears upon symmetrization
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of the tilted rate matrix. They just contribute to the skew symmetric part of the rate
matrix and just change the particular representative in the class that is being tilted.
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92 Chapter C. Large deviations theory for non-equilibrium processes

C.2 Mapping equilibrium and non-equilibrium processes

C.2.1 Folding large deviations: Equilibrium case

Below, we illustrate a fundamental difference between equilibrium statistical physics
and large deviation theory when applied to far-from-equilibrium systems. We use the
LDT for equilibrium systems in a noneducated way to emphasize what happens for
nonequilibrium dynamics. The educated way introduces the equilibrium canonical
ensemble with its equilibrium free energy F defined by

βF (β) = − ln
∑

x

e−βεx (C30)

where β = 1/(kBT ) is the inverse temperature of the environment, kB the Boltz-
mann constant and εx the energy of the system in state x. The equilibrium free
energy can be exactly computed or approximated, and its derivative provides the
energy cumulants of the system in any chosen equilibrium state. The free energy is
a function of one variable only, we omit the volume, the number of particles, etc.
One uses the same variable β to count the energy fluctuations and to determine
the studied equilibrium states: there is no need for an extra counting field. Energy
and (inverse) temperature are conjugated variables. The thermodynamic potential
includes all the statistical information on the system in any of its equilibrium states
with a given inverse temperature.

For a physicist with no statistical physics background, although aware of large
deviation theory, it is natural to introduce the CGF of energy

F(α, β) = − ln
〈
e−αε

〉
β

(C31)

where ⟨. . . ⟩β is the mean value in the equilibrium state with inverse temperature
β. The counting field α is conjugated to energy ε and is used to study energy
fluctuations. Then, partial derivatives with respect to α of the CGF at α = 0 provide
the cumulants of energy in the canonical equilibrium state with inverse temperature
β. For the multivariate CGF, the line of constant β stores the statistics of energy
for the equilibrium state with this β only. The parameter α is used to explore the
CGF’s curvature along this line. The parameters α and β have different roles for
exploring the level of fluctuations or investigating different equilibrium states.

This is exactly what happens for nonequilibrium steady states. A physical cur-
rent has two conjugated variables: a counting field generating the cumulants of
physical currents and a thermodynamic force defined from a difference of intensive
parameters of two reservoirs. For technical reasons, merging thermodynamic forces
and counting fields is impossible when studying nonequilibrium systems. Doing so
leads to null CGF, which may be related to getting null functions when computing
too many Legendre transforms of a thermodynamic potential (they must remain ex-
tensive). This is a strong limitation that prevents the definition of non-equilibrium
thermodynamic potential (in the equilibrium sense). The LDF or the Legendre con-
jugated CGF include information on a system’s fluctuations, but for a given set of
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Figure C.1: (Left) CGF F(α, β) whose derivative at α = 0 provides the mean energy
⟨ε⟩β . (Right) Concave free energy βF (β) whose derivative at β provides the mean
energy ⟨ε⟩β in canonical equilibrium.

thermodynamic forces only. In other words, in the far-from-equilibrium case, the
effects of a fluctuation are not entirely equivalent to a forcing of the system, as is
the case in the close-to-equilibrium regime (regression hypothesis). To obtain the
complete information on the statistic of χ currents, the CGF must be a function of
2χ parameters: the thermodynamics forces and the counting fields. Fig. C.1 illus-
trates for equilibrium states the “folding” of the two-parameter space for the energy
CGF to the one dimension space for the free energy.

In the next section, we further explore the “regression hypothesis”. We determine
a relation between the fluctuations of an equilibrium system and those of the same
system put out of equilibrium by competing reservoirs. In addition to restricting the
dynamics, the price to pay to allow a mapping is the multiplication of the number
of conjugated variables (among which some are non-extensive, such as occupancies).

C.2.2 Folding nonequilibrium fluctuations as in Ref. [5]

In Ref. [5] reproduced in Section C.2.3, the equilibrium fluctuations of a Markov
jump process (with Arrhenius rates) are mapped onto those of the same process
under nonequilibrium conditions (local detailed balance for competing heat reser-
voirs). In this section, we summarize the main result of this reference by providing
an alternative viewpoint on this equilibrium and nonequilibrium mapping. This
illustrates the discussion of the previous section on nonequilibrium systems.

Figure C.2: Multigraphs of a system with six vertices that is in an equilibrium
stationary state (Left), or in a nonequilibrium stationary state (Right). In the left
equilibrium case, blue dashed and solid lines connecting the same pair of vertices are
associated with transition channels for reservoirs all at the same inverse temperature
β1 = 1/(kBT1). In the right out of equilibrium cases, blue dashed lines represent
the channel for reservoirs at β1, while orange solid lines those at β2 = 1/(kBT2).
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Figure C.3: (Left) Arrhenius rates for the equilibrium dynamics decomposed into a
antisymmetric (εx − εy)/2 and symmetric parts dxy of the energy barrier. (Right)
Arrhenius rates for the non-equilibrium dynamics: one energy barrier per reservoir,
with the same antisymmetric part, but different symmetric parts due to different
dilatation factors lν for ν = 1, 2.

Fig. C.2 shows on the left side an example of an equilibrium system, with a rate
Matrix k verifying a detailed balance equation with a heat reservoir at inverse tem-
perature β1. On the right, the same system is put out-of-equilibrium and described
with the rate Matrix k̄ =

∑
ν k̄ν . Each k̄ν verifies a local detailed balance equation

with one of the two heat reservoirs at inverse temperature βν for ν = 1, 2. Fig. C.3
shows the energy landscape from which are obtained the Arrhenius rates. It shows
the half difference (εx−εy)/2 between the local minima of energy and the symmetric
height of the energy barrier lνdxy = lνdyx, with lν a dimensionless dilatation factor
used to compensate the effect of temperature. The transition rates are exactly

kxy,ν
.
= γxy,νe

−β1(εx−εy)/2−β1l1dxy (Equilibrium), (C32)

k̄xy,ν
.
= γxy,νe

−(β1/2−aν)(εx−εy)−(β1l1−bν)dxy (Nonequilibrium), (C33)

with γxy = γxy a symmetric constant matrix (with the physical dimension of inverse
time) and where a and b are variables defined in Eqs. (C37–C38) below. The vari-
ables of particular interest are (j,f ,p). The two first have ν = 2, . . . , χ components,
and the occupancy is a vector in state space:

jν [z] =
1

t

∑

τ∈[0,t]

(
εz(τ+dτ) − εz(τ)

)
δνν(τ) (energy currents), (C34)

fν [z] =
1

t

∑

τ∈[0,t]
dz(τ+dτ),z(τ)δνν(τ) (reservoir activities), (C35)

px[z] =
1

t

∫ t

0
dτδx,z(τ) (state occupancy) (C36)
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Their conjugated variables (a, b, c) are the vectors of components

aν =
1

2
(β1 − βν) (half fundamental force), (C37)

bν = β1l1 − βν lν (dynamical bias), (C38)

cx = λx − λ̄x (escape rate change). (C39)

The escape rates are denoted λy
.
=
∑

x ̸=y,ν k(xy,ν) and λ̄y
.
=
∑

x ̸=y,ν k̄(xy,ν). We
emphasize that the escape rate change is a function of the half fundamental forces
and the dynamical bias, c .

= c(a, b). The above variables are conjugated because
their pairwise products appear in the following action

ln
Pk̄[z]

Pk[z]
= t

∑

ν

(aνjν [z] + bνfν [z]) + t
∑

x

cxpx[z], (C40)

defined as the logarithm of the ratio of the path probabilities of the same trajectory
[z] for the non-equilibrium and equilibrium dynamics. Then, the CGF of variables
in Eqs. (C34–C36) defined by

Γ(a, b,m) =
t→∞

1

t
ln
〈
et(a·j[z]+b·f [z]+m·p[z])

〉
k

(C41)

vanishes when the counting field for occupancy is equal to the escape rate change
m = c,

Γ(a, b, c) =
t→∞

1

t
ln

〈
e
ln

P̄[z]
P[z]

〉

k

=
1

t
ln
∑

[z]

Pk[z]
Pk̄[z]

Pk[z]
= 0. (C42)

A difficulty comes from the fact that the escape rate change is a function of a and
b, which are themselves related in the NESS since then b = 2a. This last equation
ensures no difference of dilation factor in the NESS with respect to equilibrium
value, i.e., l1 = lν . We see that the thermodynamic forces appear in several places
in the definition of the CGF and not only in the product with the energy currents
with its associated reservoir. In any case, the partial derivatives of the CGF with
respect to any variable and taken at a, b = 2a and m = c(a, b) generates the
cumulants of the conjugated variable. This is exactly the structure of equilibrium
statistical physics, although many new variables had to be introduced.

In conclusion, we have decomposed the action into several variables, allowing us
to consider a non-equilibrium fluctuation as particular cases of an equilibrium fluc-
tuation. However, the relations between the considered variables make the nonequi-
librium fluctuations relatively well interlaced. This obliges to study several types
of variables in addition to currents so as to separate their contributions in the par-
tial derivatives with respect to aν generating the current cumulants. Although the
obtained structure is closer to the one of equilibrium statistical physics, the large
number of variables and the specific frame of application narrows the interest of the
above approach with respect to a LDT focusing on currents and counting fields only
(at some value of conjugated thermodynamic forces). The latter case corresponds
to choosing m = c(b/2, b) in Γ(a, b,m) where b would be the thermodynamic force
vector and a the vector of counting fields conjugated to currents.
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I. INTRODUCTION

Potentials define a specific concept in physics. They
predict the evolution of a system from a variational principle.
Such principles span many scientific fields from mechanics,
electromagnetism, and optics to control theory, thermodynam-
ics, and statistical physics. A variational principle elegantly
summarizes the method used to solve a problem into the
extremization of the appropriated cost function, for instance,
the action in mechanics [1], the optical path length in optics
[2], or the thermodynamic potential in statistical physics [3].
The underlying idea is to explore all possibilities, including
nonphysical ones, to find the physical solution from the
extremum of the cost function.

In statistical physics, a thermodynamic potential is a state
function of the thermodynamic variables. The latter specify a
coarse-grained representation of the state of a system including
a large number of degrees of freedom. Thermodynamic
variables come in conjugated pairs: in each pair, one variable
is free and one is constrained according to the environmental
conditions. The equilibrium (EQ) thermodynamic potentials
proceed from the Legendre transformation of either energy
or entropy. This transformation, at the core of the theory’s
dual structure, allows us to interchange the free and con-
strained variables. The thermodynamic state is reached at the
extremum of the thermodynamic potential. There, the mean
free variables are functions of the constrained ones. Beyond
the mean description, the potential also predicts the statistics
of the free thermodynamic variables, either by generating
their cumulants, or from its connection with the asymptotic
probability of the free variables.

Statistical physics provides a microscopic foundation to
thermodynamics and a method to describe equilibrium sys-
tems. In the last decades, the large deviation theory [4,5]
has modernized our understanding of statistical physics and
accounted for its successes. More recently, it has received a
growing interest thanks to its applications to nonequilibrium
(NE) systems, for instance, in glasses [6–9], biological systems
[10–12], or rare events sampling [13].

Clearly, one step toward understanding NE phenomena
starts with the derivation of a NE thermodynamic potential
verifying most of the aforementioned properties. With this

in mind, many authors have shed light on the structure
of statistical physics for NE Markov processes. Oono and
Eyink considered that large deviation functions (LDF) could
represent NE potentials [4,14,15]. On this basis, Oono and
Paniconi proposed a phenomenological framework to study
NE steady states [16]. For NE continuous processes, Bertini
et al. developed the macroscopic fluctuation theory describing
the statistics of density and current fluctuations in nonequilib-
rium stationary states (NESS) [17,18]. Bodineau and Derrida
used an additivity principle to predict those fluctuations in
diffusive systems [19,20].

For discrete processes, Lecomte, Appert-Rolland, and van
Wijland introduced a dynamical partition function and the cor-
responding topological pressure identified as a LDF [21,22].
Baule and Evans explored these ideas using a path entropy with
the aim of finding rules constraining the dynamics of fluids
under continuous shear [23–25]. Monthus proposed a similar
approach, but involving the maximization of a trajectory-based
relative entropy in the presence of constraints [26]. Using large
deviation theory, Maes and Netočný [27] found a canonical
structure and obtained the LDF of occupation and current
probabilities from a variational approach based on the LDF
of occupation and transition probabilities. A key step was the
introduction of an EQ reference process to highlight that EQ
fluctuations naturally appear when studying NE fluctuations.
From another perspective, Nemoto and Sasa have shown that
a cumulant generating function (CGF) also proceeds from a
variational principle, strengthening the dual structure of the
theory [28].

More recently, Chetrite and Touchette proposed a gen-
eral framework for both continuous and discrete processes:
they found that a conditioned Markov process is ensemble
equivalent to a condition-free process called the driven (or
auxiliary) process, but also to an exponentially tilted process
called the canonical process [29,30]. This latter process is
defined by exponentially weighting the probability of each
trajectory with a weight depending on a functional v of the
stochastic process. This weighting procedure is analogous to
the definition of the canonical ensemble from the superposition
of microcanonical ensembles using a Boltzmann weight. On
the other hand, the conditioned Markov process assumes that
the variable v is constrained to a given value. Finally, the driven

2470-0045/2016/93(1)/012111(16) 012111-1 ©2016 American Physical Society
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TABLE I. Relationship between the various stochastic processes and NE ensembles. The EQ reference process conditioned on the energy
currents j , activities f , and occupations p generates the trajectories of the systems in the NE microcanonical ensemble. The process with
mean energy currents, activities, and occupations equal to the constrained values of the conditioned process is the driven process. The path
probabilities of the driven process are asymptotically equivalent to the path probability of the NE process and of the canonical reference process.
The CGF of j, f , and p for the NE process is exactly the same as the CGF of the EQ reference process (up to a translation), i.e., spontaneous
rare fluctuations of the EQ process are associated to typical realizations of the NE process. The NE process generates the trajectories of the
systems in the metacanonical ensemble. This ensemble includes the systems that are put out of equilibrium by gradients of temperatures
imposed by heat reservoirs. From the equivalence between the conditioned reference process with the driven reference process and the NE
process, we conclude that the NE microcanonical and metacanonical ensembles are equivalent.

NE metacanonical
ensemble Γ(a, b,m)

EQ reference process
z with generator k

NE process z̄
with generator k̄

Conditioned NE
process z̄|j, f, p

Driven NE process
with generator K̄

Conditioned reference
process z|j, f, p

Driven reference
process with
generator K

NE micro-
canonical ensemble

L(j, f, p)

Canonical reference
process with
generator K

Ensembles of NE systems

Generators mapping

Ensemble

equivalence

CGF built from the EQ process

microcanonical

conditioning

microcanonical

conditioning

Optimization

problem

Optimization

problem

Tilted-operators mapping (κ ←→ κ̄)

Similarity transformation K = |π| · k̄ · |π|−1 ⇒ Asymptotic path equivalence

Generates the path ensemble

G
en

er
a
te
s
th
e
p
a
th

en
se
m
b
le

Asymptotic
path equivalence

process has a dynamics defined such that the mean value of
v is equal to the imposed value in the conditioned process. A
systematic method of constructing this driven process from a
variational approach was provided in Ref. [31]. A construction
of the canonical process was also proposed by Giardiná,
Kurchan, and Peliti in Ref. [32] for classical systems and by
Garrahan and Lesanovsky in Ref. [33] for dissipative quantum
systems. Jack and Sollich constructed a driven process for
classical systems in Ref. [34]. The questions of the validity
of the path ensemble equivalence has recently been studied in
Ref. [35].

Despite all these results, the structure of NE statistical
physics is incomplete as regards to EQ statistical physics.
For instance, the identification of the relevant coarse-grained
degrees of freedom, i.e., the NE thermodynamic variables,
is still missing. Accordingly, no general definition exists for
stationary NE thermodynamic potentials. To progress in this
direction, focusing on continuous-time Markov chains and sta-
tionary processes, we consider the following questions: Can we
describe the NE fluctuations of a system from the fluctuations
of the same system at EQ? If yes, can we define meaningful NE
thermodynamic potentials using the variables involved in this
correspondence? We positively answer these two questions
by finding an exact mapping between the statistics of EQ
and NE processes. This mapping involves, among others, the
affinities of the NE process and some dynamical biases. The
latter parameter enables to dilate the energy barriers separating
the various states of the system. The variables conjugated
to the affinities and the dynamical biases are, respectively,
the energy currents and the activities of the exchanges with

the environment. The existence of a simple mapping when
considering the appropriated couples of conjugated variables
suggests that a complete canonical structure for NE statistical
physics exists. With respect to previous works on conditioned
Markov processes, our main contribution is to identify the
constraints that do not modify the system dynamics, apart from
changing the temperatures of the heat reservoirs. Accordingly,
we define two ensembles of NE systems: the metacanonical
ensemble where the constrained variables are the affinities,
and the NE microcanonical ensemble where the constrained
variables are the energy currents. We prove the equivalence
of these ensembles and derive the NE thermodynamic po-
tentials conjugated by Legendre transformation. We also
obtain the NE equations of state connecting the conjugated
variables.

Our results and the structure of the theory are summarized in
Table I. Accordingly, the outline of the paper is as follows. We
start by studying the fluctuations of an EQ reference process
in Sec. II whose material corresponds to the middle row of
Table I. The definition of the EQ reference process and an
introduction to large deviation theory are provided in Secs. II A
and II B. After these introductory sections, we look for an
asymptotic approximation of the probability of the energy
currents, activities, and occupations of the systems states.
Since we are dealing with an EQ system, no mean energy
current exists. However, rare spontaneous fluctuations may
produce nonzero energy currents and some arbitrary activities
and occupations. We seek the probability of these events from
an optimization problem: given that some energy currents
j , activities f , and occupations p are observed, defining

012111-2
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the conditioned reference process, which process (called the
driven reference process) reproduces these conditioned values
j , f , and p as typical values? We construct this driven process
in Sec. II C and obtain the LDF of j , f , and p. We use this result
to derive the corresponding scaled CGF from a variational
approach in Sec. II D.

We switch to the study of the fluctuations of a NE process
in Sec. III. This section corresponds to the third row of
Table I, which is obtained following exactly the same path
as for the EQ reference process, except that we start with a NE
process as defined in Sec. III A: we look for the NE driven
process that will typically reproduce the arbitrary energy
currents j and activities f imposed in the NE conditioned
process. Our first main result is to connect, in Sec. III B,
the EQ reference process and the NE process and, as a
consequence, also to connect their associated driven processes
(see the vertical arrows in Table I). Our second main result
is to prove, in Sec. III C, the asymptotic equivalence between
the path probabilities of the driven reference process with
the NE process. This equivalence is at the core of the
aforementioned equivalence between the NE microcanonical
ensemble and the metacanonical ensemble. In Sec. IV, we
comment the structure of the theory starting with a short
summary in Sec. IV A. We discuss the symmetries of the
NE potentials and the connection with close-to-equilibrium
and far-from-equilibrium perturbation theory in Secs. IV B
and IV C, respectively. We end by illustrating our work on a
two-level model in Sec. V.

For the sake of simplicity, we focus on systems exchanging
only energy with heat reservoirs. The generalization of our
results to include matter, volume, or other extensive variable
exchanges with reservoirs is straightforward [36].

II. EQUILIBRIUM FLUCTUATIONS

A. Definition of the EQ reference process

We consider an EQ reference process corresponding to
a physical system modeled by a continuous-time Markov
chain with a finite number M of discrete states. This system
exchanges energy with χ heat reservoirs labeled by ν = 1 . . . χ

at inverse temperatures β1 = 1/(kBT1), with kB = 1 the Boltz-
mann constant (see Fig. 1). The reference process is at EQ, i.e.,
all the heat reservoirs share the same inverse temperature β1.
We use several heat reservoirs to allow different mechanisms
of energy exchange. As a result, some rare events with net

EQ system
NE system

FIG. 1. System with M = 6 states connected to χ = 2 heat
reservoirs at the same temperature T1 = T2 for the EQ reference
process, or at different temperature T1 �= T2 for the NE process.

Energy

FIG. 2. Energy lanscape for the x ↔ y transition. The discrete
states x and y represent the locations of the minima in the energy
landscape. Changing the dilatation factor l1 modifies the height of all
energy barriers for the EQ reference process.

energy flow from one heat reservoir to another may occur. The
system states are generically denoted x, y, and z. The state at
time τ is z(τ ). A system state trajectory during time interval
[0,t] is denoted [z]. This trajectory includes the state z(τ ) at
all time τ ∈ [0,t] and the label ν(τ ) of the reservoir providing
the energy at each change of state in the trajectory.

The energy of state x is εx . The probability per unit time
of switching from state y to state x exchanging the energy
εx − εy with reservoir ν is given by the Arrhenius transition
rates

kν
xy ≡ γ ν

xye
−β1(εx−εy )/2−β1l1dxy . (1)

We have introduced the symmetric matrices γ ν , whose (x,y)
element yields the coupling with reservoir ν for a transition
from y to x. The (x,y) element of the symmetric matrix d
represents the height of the energy barrier that must be crossed
when the system switches between states y and x (see Fig. 2).
The dimensionless parameter l1 is a dilatation factor that
enables to modify the height of the energy barriers (l1 = 1
implies no dilatation). The transition rates defined in Eq. (1)
verify for all ν the local detailed balance relation

ln
kν
xy

kν
yx

= −β1(εx − εy), (2)

which ensures that the system will reach EQ [37]. The
reference probability per unit time of escaping from state
y, given that energy is exchanged with reservoir ν, is
denoted

λν
y ≡

∑
x �=y

kν
xy = −kν

yy, (3)

such that each column of the matrix k(ν) sums to zero
as required for continuous-time Markov chains. The refer-
ence transition rate matrix k ≡ ∑

ν k(ν) returns the transi-
tion probabilities per unit time disregarding the reservoir
involved in the energy exchanges. Similarly, λ ≡ ∑

ν λ(ν)

is the total escape-rate vector. As a convention, we drop
the subscripts of vector or matrix elements to refer to the
whole vector or matrix and use boldface letters for matrices.
We denote the ensemble average over all trajectories [z]
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generated with dynamics corresponding to k with the brackets
〈. . . 〉k.

B. Large deviations of empirical time-averaged variables

Throughout the paper, we assume that the long-time
statistics of time-extensive variables obey a large deviation
principle. For instance, let z(t) be the position at time t of a
random walker on a one-dimensional circular lattice and X[z]
the number of steps the walker takes during the trajectory
[z]. We remark that the variable X is a functional of the
trajectory [z] that is a realization of a stochastic process. X

is not a random variable in itself. When X is not evaluated on
a trajectory, it refers either to the physical variable “number
of step” or to a numerical value of this variable. The variable
X[z] is time extensive since X[z] + X[z′] = X[z,z′], where
[z,z′] denote the trajectory made with [z] followed by [z′].
Then, the number of transitions typically increases with time.
Accordingly, v[z] = X[z]/t is the number of steps per unit
time and is regarded as a time-averaged variable. At long
time, it converges to the step frequency of the walker. The
probability of v[z] = v, i.e., that the time-averaged number of
steps v[z] takes the value v at long time t , is Pt (v) 	 e−tI (v).
The function I is called a large deviation function (LDF).
It is non-negative and vanishes at v = 〈v[z]〉k, denoting that
the ensemble-average value is the most likely time averaged
v. Small (respectively large) deviations correspond to the
time-averaged number of steps that are close to (respectively
far from) the ensemble-average value. These events become
exponentially unlikely with increasing time for ergodic sys-
tems. The convexity of the LDF ensures that a large deviation
is less likely than a small fluctuation.

Following, we introduce the empirical time-averaged vari-
ables used to derive our central results. We name empirical
variables those that are defined from experimental observa-
tions of the system and that usually depend on the observed
trajectory [z]. First, we define the empirical occupation in x

by

px[z] ≡ 1

t

∫ t

0
dτ δx,z(τ ), (4)

where δ is the Kronecker symbol. Given the probability of each
state being gathered into the column vector p = (p1, . . . ,pM )†,
the Shannon entropy s = s(p) is

s(p) ≡ −
∑

x

px ln px = −(p† · ln p), (5)

and the energy e = e(p) is

e(p) ≡
∑

x

εxpx = ε† · p, (6)

with the central dot denoting the matrix product and † the
transposition. The time-averaged energy along trajectory [z]
can be written e[z] = e(p[z]), and similarly for the entropy.
Second, we define the empirical transition probability from y

to x induced by reservoir ν:

ων
xy[z] ≡ 1

t

∑
τ∈[0,t]

δx,z(τ+dτ )δy,z(τ )δν,ν(τ ), (7)

where the sum is over all time τ at which the system changes
from state z(τ ) to state z(τ + dτ ), exchanging energy with
reservoir ν(τ ). Given a transition probability ων

xy for each
possible transitions, the current of energy received from
reservoir ν by the system is

jν(ω) ≡ 1

2

∑
x,y

(
ων

xy − ων
yx

)
(εx − εy). (8)

Its empirical value during trajectory [z] is written jν[z] =
jν(ω[z]). These time-averaged currents describe the antisym-
metric part of fluctuations since they change sign upon time
reversal of the trajectories. On the contrary, the weighted
frequency of interaction with reservoir ν, named activity for
short and written

fν(ω) ≡ 1

2

∑
x,y �=x

(
ων

xy + ων
yx

)
dxy, (9)

describes the symmetric part of fluctuations. Indeed, fν[z] =
fν(ω[z]) does not change sign upon time reversal of the
trajectory [z]. When the activity is low (high), the system either
changes of state less (more) frequently or mostly switches
between states with low (high) dxy . The term “activity” was
proposed to qualify the symmetric part of the fluctuations in
[22,38–41] (see also references therein). Let us finally remark
that, in the definitions of the energy currents and activities, the
one-half factor is just a symmetry factor since we can sum over
transitions disregarding their directions (

∑
x,y) or for only one

direction (
∑

x>y). Half of the first sum is equivalent to the
second sum.

C. LDF of energy currents, activities, and occupation
from a variational approach

At long time t , the probability of observing an empirical
transition probability ω[z] = ω and an empirical occupation
p[z] = p is

Pt (ω,p) 	
t→∞ e−tI (ω,p). (10)

From the work of Maes and Netočný [27], Wynants [42], or
Bertini et al. [43], the LDF I (ω,p) of the empirical transition
probabilities and occupations for the continuous-time Markov
chain with generator k is

I (ω,p) =
∑

x,y �=x,ν

[
kν
xypy − ων

xy + ων
xy ln

ων
xy

kν
xypy

]
, (11)

where the sum is over ν from 1 to χ and all couples (x,y) such
that x �= y. The derivation of Eqs. (10) and (11) is reproduced
in Appendix A.

In Ref. [27], the LDF of the occupation and probability
current was obtained from a constrained optimization problem
constructed with I (ω,p). This procedure, called “contraction”
[4], is equivalent at the level of probabilities to marginalize
Pt (ω,p) to obtain the probability of currents and occupations.
We now proceed to the contraction of I (ω,p) to obtain the
LDF of energy currents, activities, and occupations denoted
L(j,f,p). The long-time asymptotic approximation of the
probability Pt (j,f,p) that j [z] = j , f [z] = f , and p[z] = p
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at time t will then read as

Pt (j,f,p) 	
t→∞ e−tL(j,f,p). (12)

We prove in Appendix B a sharper approximation of this
probability that involves a preexponential factor dictating the
thermodynamic behavior: it leads to the statistics of the usual
EQ thermodynamic variables that only depend on the system
state, such as energy for instance. It is the first correction to the
exponential decay of nontypical time-extensive variables after
a long time. This prefactor was first obtained in Ref. [41], but
we provide in Appendix B a logically independent derivation
(though restricted to the large time limit) that involves some
results of Sec. III.

At long time, the energy current j , activity f , and
occupation p mainly appear thanks to the most likely event
producing them. The probability of this event is associated
with smaller values of I (ω,p) with ω constrained by the value
of the energy currents and activity. For this reason, and in
virtue of the contraction principle, we minimize I (ω,p) under
the energy currents constraint

jν = jν(ω), (13)

for ν > 1, because current conservation imposes j1 =
−∑

ν �=1 jν . We also impose the activity constraint

fν = fν(ω). (14)

In addition, the probability currents should be compatible with
the conservation of the norm of the occupation vector, i.e., for
all y, ∑

x,ν

(
ων

xy − ων
yx

) = 0. (15)

To perform our optimization problem, we use the following
cost function:

F(ω,p)= I (ω,p) +
∑

ν

aν[jν − jν(ω)] +
∑

ν

bν[fν − fν(ω)]

+
∑
x,y,ν

uy

(
ων

xy − ων
yx

)
, (16)

where aν , bν , and uy are Lagrange multipliers that will be
chosen to satisfy the constraints of Eqs. (13)–(15). We choose
a1 = 0 so as not to constrain the current j1 that is already set by
the current conservation law. We now minimize the function
F with respect to ω, calculating ∂F/∂ων

xy = 0 to get

0 = ln
ων

xy

kν
xypy

− aν(εx − εy) − bνdxy + (uy − ux), (17)

where we have used Eqs. (11) and (13) and (14). Therefore,
the optimal transition probability in terms of the Lagrange
multipliers satisfies

ων
xy = Kν

xypy, (18)

where we have introduced K ν = K ν(a,b,u), the transition
probability for mechanism ν divided by the empirical occu-
pation of the state before transition. Its off-diagonal elements

are

Kν
xy ≡ kν

xye
aν (εx−εy )+bνdxy+ux−uy , (19)

or, more explicitly, using Eq. (1),

Kν
xy = γ ν

xye
−(β1/2−aν )(εx−εy )−(β1l1−bν )dxy+ux−uy , (20)

and the diagonal elements are

Kν
yy = −

∑
x �=y

Kν
xy ≡ −�ν

y, (21)

such that any column of any matrix K ν sums to zero.
We remark that the matrices K ν satisfy a modified
detailed-balance relation

ln
Kν

xy

Kν
yx

= (2aν − β1)(εx − εy) + 2(ux − uy). (22)

In this local detailed balance, the Lagrange multiplier aν

biases the inverse temperatures β1 to make typical the energy
exchanges corresponding to the energy currents constraint. The
reservoir ν behaves as if it had the temperature βν ≡ β1 − 2aν

in order to satisfy the current constraint. Thus, the variable

2aν = β1 − βν (23)

is an affinity [44–46], also called thermodynamic force
[47,48]. Notice that a1 = 0 as required. The similarity
between Eqs. (1) and (20) indicates that we can also introduce
new dilatation factors lν such that the dynamical bias

bν ≡ β1l1 − βνlν (24)

gives the modification of the dynamics in order to satisfy the
activity constraint. Finally, we call the variable u the drift
because it acts like a force biasing each transition.

The explicit solution ω of our variational problem dF = 0
is now almost reached. The next step is to use the constraints
of Eqs. (13)–(15) to obtain the Lagrange multipliers. More
explicitly, the constraint equations are

jν = 1

2

∑
x,y

(
Kν

xypy − Kν
yxpx

)
(εx − εy), (25)

fν = 1

2

∑
x,y

(
Kν

xypy + Kν
yxpx

)
dxy, (26)

0 = K · p, (27)

where K = ∑
ν K ν is the generator of the driven reference

process [29,31]. For the third equation, the conservation law
of the probability current of Eq. (15) is reformulated as a
requirement that the empirical occupation p is the stationary
probability of the continuous-time Markov chain with rate
matrix K = K (a,b,u). Inverting these three equations gives
the vectors a, b, and u as a function of (j,f,p).

The final step to obtain the asymptotic probability of energy
currents, activities, and occupations is to write the LDF of
Eq. (11) at the optimal transition probability of Eq. (18). This
leads to

L(j,f,p) = a† · j + b† · f + (λ − �)† · p, (28)

where we have used the antisymmetry of εx − εy or symmetry
of dxy in the exchange of x and y to make explicit the
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dependence in j and f . We also used Eq. (15) to get rid
of the term involving ux − uy .

D. Scaled CGF of energy currents, activities, and occupations
from a variational approach

In the previous section, we have obtained the LDF L from
the solution of an optimization problem. From now on, and
for the remainder of the paper, we assume the convexity of the
LDF. Our aim here is to derive the scaled CGF conjugated to L

from a variational approach, using the fact that LDF and scaled
CGF are conjugated by Legendre transformation [4,5,31]. On
the way, we obtain useful properties associated to the canonical
structure.

The scaled CGF of the energy current, activity, and
occupation is defined by

(a′,b′,m′) ≡ lim
t→∞

1

t
ln
〈
et(a′†·j [z]+b′†·f [z]+m′†·p[z])

〉
k, (29)

and is the Legendre transformation of L

(a′,b′,m′) = max
p,j,f

[a′† · j + b′† · f + m′† · p − L(p,j,f )].

(30)

The maximum on j and f is reached for a′ = a and b′ = b,
and the scaled CGF becomes

(a,b,m′) = max
p|K ·p=0

[(m′ + � − λ)† · p], (31)

where the maximum is taken over all occupations with the
Lagrange multiplier u in the generators of the driven process
K tuned such that K · p = 0. An alternative expression of the
scaled CGF of energy current, activity, and occupation is

(a,b,m′) = max
u

[(m′ + � − λ)† · p] (32)

with p the stationary probability associated to K . From
the optimal drift u = u(a,b,m′) realizing the maximum in
Eq. (32), we introduce the escape weight m ≡ m(a,b,u) giving
the value of m′ for given (a,b,u). In Eq. (G14) of the appendix
of Ref. [28], Nemoto and Sasa gave the scaled CGF of energy
current from a variational expression analogous to our Eq. (32).
We recover their result taking b = 0 and m′ = 0. We further
comment Eq. (32) noticing that the maximum is reached for u

satisfying

(a,b,m) = my + �y − λy, (33)

for all y. This equation allows us to derive the following
escape-rate rule

my + �y − λy = mx + �x − λx, (34)

that can be related to the exit rate constraint of Refs. [24,25,29]
taking m = 0. To prove Eq. (33), we introduce the tilted
operator κ = κ(a,b,m) for the EQ reference process

κyy ≡ −
∑

x �=y,ν

kν
xy + my, (35)

κxy ≡
∑

ν

kν
xye

aν (εx−εy )+bνdxy . (36)

The generator of the driven reference process K is connected
to this tilted operator by

Kxy = eux κxye
−uy − (my + �y − λy)δxy. (37)

Using this equation and K · p = 0, we find∑
y

eux κxye
−uy py = (mx + �x − λx)px, (38)

after summing over x and maximizing over u, it follows from
Eq. (32) that the drift giving the maximum satisfies∑

x,y

eux κxye
−uy py = . (39)

By definition [49], the scaled CGF (a,b,m) is the highest
eigenvalue of κ . Then, πx ≡ ±eux /Z(u) is the normalized
left eigenvector of κ with Z(u) a normalization constant such
that

∑
x πx = 1. The vector r ≡ π−1 · p is a right eigenvector

with πxy ≡ πxδxy . Its norm is set by
∑

x πxrx = ∑
x px = 1.

Notice that we cannot determine from the values of u the
sign of each component of the vectors π and r , but their x

components share the same sign. Now, summing Eq. (37) over
x leads to Eq. (33) since

∑
x Kxy = 0 and

∑
x eux κxye

−uy = .
Then, the optimal drift u = u(a,b,m), leading to the

maximum in Eq. (32), is simply obtained from the left
eigenvector of the tilted operator by ln |πx | = ux − ln |Z(u)|
up to a constant that plays no role since only differences of
drifts matter. The drift makes the escape-rate rule holds true
and, using Eqs. (28) and (33), leads to the Legendre structure
that one expects for LDFs and scaled CGFs. Finally, from
Eqs. (33) and (37), we recover the results of Refs. [29–31,34]
in which the generator K of the driven process corresponds to
the Doob’s transformation of the tilted operator κ :

Kxy = |πx |κxy |πy |−1 − δxy. (40)

Notice that in Refs. [29–31], the right eigenvector of the tilted
operator is used in the Doob’s transformation instead of the left
one since the tilted operator in these references is the adjoint
of κ .

III. NONEQUILIBRIUM FLUCTUATIONS

A. Definition of the NE process

The NE process is defined by the rate matrices k̄ν =
k̄ν

(aν,bν) associated to energy exchanges with each reservoir
ν at different temperatures βν = β1 − 2aν and with different
dilatation factors lν related to dynamical bias by bν = β1l1 −
βνlν . The elements of the rate matrices are

k̄ν
xy ≡ γ ν

xye
−(β1/2−aν )(εx−εy )−(β1l1−bν )dxy . (41)

Accordingly, the escape rate λ̄ν
y = λ̄ν

y(aν,bν) from state y is

λ̄ν
y ≡

∑
x �=y

k̄ν
xy = −k̄ν

yy . (42)

We define a total rate matrix by k̄ ≡ ∑
ν k̄ν

and a total escape-
rate vector by λ̄ ≡ ∑

ν λ̄ν . These rates are functions of the
affinities and dynamical bias; their analogs for the reference
process are recovered at the point of vanishing of a and b,
namely, k = k̄(0,0) and λ = λ̄(0,0). For the NE process, the
state at time τ is z̄(τ ). A system state trajectory during time
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interval [0,t] is denoted [z̄]. The ensemble average over all
trajectories [z̄] generated with dynamics corresponding to k̄ is
〈. . . 〉k̄.

B. Mapping typical NE fluctuations on rare EQ fluctuations

We now connect the statistics of the energy currents,
activities, and occupations for the EQ process with the statistics
of the same variables for the stationary NE process. This
mapping involves the escape-rate change c = c(a,b) defined
by

c ≡ λ − λ̄, (43)

that is zero at vanishing affinities and dynamical biases. We
emphasize that c cannot be adjusted independently of a and
b. This means that the affinity and the dynamical bias are
the central variables in determining the NESS reached by the
system.

To connect EQ and NE fluctuations, one needs to redo all
the calculations of Secs. II C and II D, but for the NE process,
introducing the NE scaled CGF ̄ = ̄(ā,b̄,m̄) and LDF L̄ =
L̄(j,f,p), the NE tilted operator κ̄ = κ̄(ā,b̄,m̄), the generator
of the NE driven process K̄ = K̄ (ā,b̄,ū), and associated escape
rate �̄ = �̄(ā,b̄,ū), the affinity increment 2ā, the dynamical
bias increment b̄, the NE drift ū, and the NE escape weight
m̄ = m̄(ā,b̄,ū), all denoted with a bar to distinguish them from
their equivalent for the EQ reference process. One obtains all
these objects replacing k by k̄ and the Lagrange multipliers
(a,b,u) by (ā,b̄,ū) in all the definitions. For instance, for the
NE tilted operator, we have

κ̄yy ≡ −
∑

x �=y,ν

k̄ν
xy + m̄y, (44)

κ̄xy ≡
∑

ν

k̄ν
xye

āν (εx−εy )+b̄νdxy . (45)

Notice that we call 2ā an affinity “increment” since we already
deal with a NE process: a deviation from the typical current
is associated with an “increase” of affinity that will make this
fluctuation typical. For the same reason, the dynamical bias b̄

is also qualified as an increment.
The mapping between EQ and NE fluctuations now comes

from the connection between the EQ and NE tilted operators

κ̄(ā,b̄,m̄) = κ(ā + a,b̄ + b,m̄ + c), (46)

that we obtain by comparing Eqs. (35) and (36) with Eqs. (44)
and (45). Hence, the same symmetry exists between the
eigenvalues and between the eigenvectors: the full spectrum of
the two operators is connected. In particular, the scaled CGFs
are connected by

̄(ā,b̄,m̄) = (ā + a,b̄ + b,m̄ + c), (47)

and, from the Legendre transformation, the LDFs verify

L̄(j,f,p) = L(j,f,p) − a† · j − b† · f − c† · p. (48)

The left eigenvectors of the tilted operators satisfy

π̄ (ā,b̄,m̄) = π (ā + a,b̄ + b,m̄ + c) (49)

or, equivalently,

ū(ā,b̄,m̄) = u(ā + a,b̄ + b,m̄ + c). (50)

The mapping also holds for the right eigenvectors and this
leads to

p̄(ā,b̄,m̄) = p(ā + a,b̄ + b,m̄ + c). (51)

Finally, the generators of the driven processes also verify

K̄ (ā,b̄,ū) = K (ā + a,b̄ + b,u), (52)

where ū and u are, respectively, the left- and right-hand sides
of Eq. (50).

Thus, the EQ and NE processes are tightly connected
and one can focus on the EQ process’ fluctuations only:
Eq. (47) shows that the statistics of energy currents, activities,
and occupations for any NE process with affinity 2a and
dynamical bias b is known from the statistics of the same
variables computed for the EQ process. Indeed, the derivatives
of Eq. (47) with respect to ā, b̄, or m̄ evaluated in (ā,b̄,m̄) =
(0,0,0) yields the NE cumulants of the energy currents,
activities, and occupations from the scaled CGF for the EQ
reference process, e.g., for jν we have

〈jν[z̄]〉k̄ = ∂̄

∂āν

(0,0,0) = ∂

∂aν

(a,b,c). (53)

Notice that evaluating Eq. (47) at the point of vanishing of
(ā,b̄,m̄) returns by definition of a scaled CGF

0 = ̄(0,0,0) = (a,b,c), (54)

for all a and b, with c = (λ − λ̄). Accordingly, the total
derivatives of (a,b,c) with respect to a or b also vanish
exactly such that  remains constant and equal to zero in
the direction (a,b,c). We call the subspace where  vanishes
the physical system subspace: each point (a,b,c) in this
subspace defines a precise physical process with affinity
2a and dynamical bias b. The function  includes the full
thermodynamic information on any system defined with the
same energy levels ε, coupling matrices γ ν , and energy barriers
d (up to a reservoir specific dilatation), and so does the LDF L.
One simply changes the degree of NE or the type of dynamics,
encoded into the dilatation factors, by moving into the physical
system subspace.

We end by remarking that the idea of mapping EQ and
NE fluctuations was first proposed by Andrieux in Ref. [50],
but for the statistics of energy currents only. However, this
mapping had no concrete application since the NE statistics of
the currents were needed to define the EQ dynamics involved
in the mapping. On the contrary, the mapping of Eqs. (47)
and (48) is explicit, with the price that, when comparing with
Ref. [50], the EQ statistics of activities and occupations must
be known in addition to the energy currents statistics.

C. Asymptotic equivalence of the driven reference
process and the NE process

We now discuss the asymptotic equivalence of the driven
reference process and the NE process. We first prove the
equality of their escape rates and on the way give a slightly
simplified expression of L. Using this result, we demonstrate
the equivalence of the path probabilities of the driven reference
process and the NE process.

From Eqs. (33) and (54), we find c + � − λ = 0. This leads
with Eq. (43) to the equality of the escape rates of the driven
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reference process and the NE process

� = λ̄, (55)

even though these two processes are different in general due
to the drift u, i.e., Kxy �= k̄xy if x �= y. As a consequence, the
LDF is written as

L(j,f,p) = a† · j + b† · f + c† · p. (56)

The equality of the escape rates indicates that the driven
reference process and NE process look alike. Their generators
are connected by the similarity transformation

K = |π | · k̄ · |π |−1, (57)

that follows from the comparison of Eqs. (20) and (41). We
denote |π | the positive and diagonal matrix obtained by taking
the absolute value of the elements of π . The equality of the
diagonal part of the Markov matrices of the two processes
is granted by Eq. (55). From this similarity transformation,
one can show the asymptotic equality of the path probabilities
associated to each process

PK [y] 	
t→∞ Pk̄[y] (58)

for any trajectory [y]. We have defined the path probabilities
knowing the initial state y(0)

Pk̄[y] ≡ exp

(
−
∫ t

0
dτ λ̄y(τ )

) ∏
τ∈[0,t]

k̄
ν(τ )
y(τ+dτ )y(τ ) (59)

for the NE process, and

PK [y] ≡ exp

(
−
∫ t

0
dτ�y(τ )

) ∏
τ∈[0,t]

K
ν(τ )
y(τ+dτ )y(τ ) (60)

for the driven reference process. In these equations, the product
applies for all times τ at which the system changes of state
during the trajectory [y], with y(τ ) [respectively y(τ + dτ )]
the system state before (respectively after) the transition at
time τ . The exponential terms appearing in these two path
probabilities are equal. Concerning the product terms, they
differ from boundary terms only:∏

τ

K
ν(τ )
y(τ+dτ )y(τ ) =

∏
τ

|πy(τ+dτ )|k̄ν(τ )
y(τ+dτ )y(τ )|πy(τ )|−1,

= |πy(t)|
(∏

τ

k̄
ν(τ )
y(τ+dτ )y(τ )

)
|πy(0)|−1. (61)

Then, the path probabilities of the driven reference process
and NE process verify

lim
t→∞

1

t
ln

Pk̄[y]

PK [y]
= 0, (62)

and are asymptotically equivalent [29]. Since the driven
reference process is the dynamics that typically reproduces
the conditioned reference process, we conclude that there is
an ensemble equivalence between the NE process and the
conditioned reference process. This central result is similar
to the path-ensemble equivalence derived in Refs. [29,30]. In
Appendix C, we show that the NE process is asymptotically
equivalent to the canonical process that is defined by expo-
nentially weighting each trajectory, even though these two
processes are not exactly identical.

IV. DISCUSSION AND GENERAL SUMMARY

In Sec. II, we have studied the fluctuations of an EQ system
exchanging energy with several heat reservoirs at the same
temperature. We have seen that energy may spontaneously
flow from one reservoir to another, even if it does not on
average. Each of these current fluctuations has been associated
to a temperature difference that would typically reproduce it.
Similarly, we have shown that a fluctuation of the activity of the
exchanges with each reservoir would be typically reproduced
by dilating the appropriated energy barriers. From these
observations, we have identified two couples of conjugated
variables and provided the corresponding LDF and CGF from
a variational approach.

In Sec. III, we have considered the fluctuations of the
system defined in Sec. II, but driven out of equilibrium
by temperature differences between the heat reservoirs. We
have found an exact mapping between the statistics of the
energy currents, activities, and occupations for the EQ and NE
systems. We have also discussed the asymptotic equivalence
of the trajectory ensembles generated by the conditioned EQ
process and the NE process. From the existence of the mapping
between EQ and NE systems, we have concluded that the study
of a NE system amounts to the calculation of the probability
of rare fluctuations of the same system at EQ. Now that the
distinction between the dynamical fluctuations of EQ and NE
systems has been dispelled, we come back to the results of
Sec. II and summarize the canonical structure satisfied by the
two ensembles of NE systems.

A. Summary of the NE canonical structure

The ensemble of systems in contact with several heat
reservoirs at different temperatures is called the metacanonical
ensemble. The trajectories of the systems in the metacanonical
ensemble are generated by the NE process with generator k̄.
All the systems in this ensemble have the same energy levels
εx , and the same dynamical parameters, i.e., energy barriers
dxy and couplings with the heat reservoirs γ ν

xy . By convention,
the heat reservoir of smallest temperature is the reference
reservoir (ν = 1) such that all the affinities 2aν = β1 − βν are
positive. Notice that the temperature of the reference reservoir
sets the energy scale and has no physical relevance. On the
opposite, the affinities aν are the central variables of the
metacanonical ensemble that are set by the environmental
constraints. The affinities are naturally conjugated to the
energy currents. However, we know from the previous sections
that considering (a,j ) as the unique couple of conjugated
variables does not afford to study all NE systems from the same
NE potential. Intuitively, a change of an affinity also impacts
the system activity and the occupation of the various states.
Hence, we have introduced additional intensive variables to
take into account these effects separately: the dynamical biases
connected to the dilatation factors of the energy barriers
and the escape weights modifying the escape probability of
each state. These two intensive variables cannot be adjusted
independently of the affinities if we want to avoid a change
of the system dynamics: no dilatation should be applied to the
energy barriers (lν = 1 for all ν) yielding to dynamical biases
that are equal to the affinities (b = 2a); the dynamics should
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TABLE II. EQ and NE thermodynamic potentials.

Ensemble Microcanonical Canonical NE microcanonical Metacanonical

Potential s = −∑
x px ln px ϕ = − ln 〈exp (−β1e[z])〉k L(j,f,p) (a,b,m)

Variational principle max min max max
Free variables β1 e a, b, m j , f , p

Constrained variables e β1 j , f , p a, b, m

Physical system subspace m(j,f,p) = c(a(j,f,p),b(j,f,p)) m = c(a,b)
No dilatation space b(j,f,p) = 2a(j,f,p) b = 2a

Legendre structure s + ϕ = β1e L +  = a† · j + b† · f + m† · p

conserve the norm of the occupation vector imposing that an
affinity must be associated with an escape weight equal to
the escape-rate change m = c(a,2a). Therefore, in the meta-
canonical ensemble, the environment sets the affinity vector
a which in turn constrains the dynamical intensive variables,
namely, the dynamical biases and the escape weights. The NE
potential of the metacanonical ensemble is the CGF of energy
currents, activities, and occupations (a,b,m). It vanishes for
all a when b = 2a and m = c(a,2a), but its partial derivatives
with respect to a, b, and m produce all the NESS cumulants
of energy currents, activities, and occupations for any affinity.
For instance, the thermodynamic behavior follows from the
NE equations of state

∂

∂aν

∣∣∣∣
a\ν ,b,m

= jν, (63)

∂

∂bν

∣∣∣∣
a,b\ν ,m

= fν, (64)

∂

∂mx

∣∣∣∣
a,b,m\x

= px, (65)

where the subscripts on the vertical bars indicate variables that
remain constant when taking the partial derivative. We denote
a\ν the vector a without the νth component. The cumulants
of EQ thermodynamic variables are obtained with the NESS
occupations defined by p∗ = p(a,2a,c) that only depend on
χ − 1 affinities. The mean energy in the NESS is 〈e[z̄]〉k̄ =
e(p∗), and the mean entropy is 〈s[z̄]〉k̄ = s(p∗).

The ensemble of systems conditioned on the energy
currents they received from their environment is called the
NE microcanonical ensemble. The trajectories of the systems
in this ensemble are generated by the EQ reference process
with generator k filtrated to achieve the condition on the
energy currents. The physical implementation of systems in
the NE microcanonical ensemble would require the existence
of energy sources with no fluctuations. These sources will very
likely not exist in practice [51], even though this problem is
not specific to NE ensembles (see for instance p. 83 of Ref. [3]
for an example in EQ thermodynamic theory). If we assume
that an energy current can be imposed from the outside, the
activities and the occupations must take precise values so that
the system can sustain the energy current. On the opposite,
the conjugated intensive variables become free to fluctuate.
The relationship between currents, activities, and occupations
is obtained from the correspondence between the conjugated
variables (j,f,p) and (a,b,m), as summarized in Table II. The

NE microcanonical potential is the LDF L(j,f,p) and the
statistics of the intensive variables (a,b,m) follows from its
partial derivative

∂L

∂jν

∣∣∣∣
j\ν ,f,p

= aν, (66)

∂L

∂fν

∣∣∣∣
j,f\ν ,p

= bν, (67)

∂L

∂px

∣∣∣∣
j,f,p\x

= mx. (68)

We proved in Secs. II and III C the equivalence of the
ensembles of trajectories generated by the NE process and the
conditioned EQ reference process assuming that the NE po-
tentials are convex. Accordingly, the metacanonical ensemble
and NE microcanonical ensembles are ensemble equivalent. In
other words, systems submitted to temperature gradients are
equivalent, at the thermodynamic level, to systems subjected to
stationary energy injection (and extraction). By construction,
the NE potentials are conjugated by Legendre transformation

L(j,f,p) + (a,b,m) = a† · j + b† · f + m† · p, (69)

and the NE stationary state can be obtained from a variational
approach. If we consider a† · j + b† · f + m† · p − (a,b,m)
as the potential L that would be obtained from Eq. (69) by
assuming the independence of the conjugated variables, then
the NESS affinity, dynamical bias, and escape weight reached
by the system at constant imposed energy current j , activity
f , and occupation p maximize this potential in the subspace
of constant (j,f,p):

(a,b,m) = argmax
a,b,m|j,f,p

[
a† · j + b† · f + m† · p − (a,b,m)

]
,

(70)
which are exactly Eqs. (63)–(65). The same argument holds
the other way around. If we consider a† · j + b† · f + m† ·
p − L(j,f,p) as the potential  that would be obtained
from Eq. (69) assuming the independence of the conjugated
variables, then the NESS energy currents, activities, and
occupations reached by the system at constant imposed affinity
a, dynamical bias b, and escape weight m maximize this
potential in the subspace of constant (a,b,m):

(j,f,p) = argmax
j,f,p|a,b,m

[a† · j + b† · f + m† · p − L(j,f,p)],

(71)
which are exactly Eqs. (66)–(68).
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B. Symmetries of the NE potentials

The metacanonical potential is even under the sign change
of all affinities. We prove in Appendix D that this symmetry
leads to the fluctuation theorem (FT), a fundamental result
regarding the asymptotic statistics of entropy production first
studied in Refs. [52–54]. Another fundamental symmetry is
obtained from the equality of second derivatives of the NE
potentials. This symmetry is the NE equivalent of the Maxwell
relations and reads as

∂2

∂hα∂h′
α′

= ∂2

∂h′
α′∂hα

and
∂2L

∂vα∂v′
α′

= ∂2L

∂v′
α′∂vα

, (72)

where h and h′ are two vectors in (a,b,m) and similarly v and
v′ in (j,f,p). The subscripts α and α′ indicate two arbitrary
components of these vectors. At EQ, Maxwell’s relations
deeply constrain the number of EQ response coefficients that
should be introduced to completely describe a system. Here,
they constrain the derivatives of the nonlinear functions giving,
for instance, the currents in terms of the affinities. In the
close-to-EQ limit, Eq. (72) implies that the linear response
matrix is symmetric or, in other words, it implies the Onsager
reciprocity relations [55,56], as we will see in the next section.

C. NE linear response theory

We study the linear response of a system in an arbitrary
NESS and further perturbed by a change of temperature
βν → β ′

ν = βν + �βν or of dilatation factor lν → l′ν = lν +
�lν . More precisely, we want to determine the change of
the energy currents and activities when the half affinities
aν = (β1 − βν)/2 and dynamical biases bν = (β1l1 − βνlν) are
slightly changed to the new values aν + �aν and bν + �bν .
We assume that l1 and β1 do not change during the perturbation.
Then, the perturbations are written as

�aν = −�βν/2, (73)

�bν = (−βν + 2�aν)�lν + 2lν�aν

	 −βν�lν + 2lν�aν (74)

at linear order. We remark that the dynamical biases change
when perturbing the affinities, but the converse is not true.

A Taylor expansion of the metacanonical potential  gives
the following quadratic function:

(a + �a,b + �b,m + �m)

= (a,b,m) +
∑

h=a,b,m

�h† · ∇h

+ 1

2

∑
h =a,b,m

h′=a,b,m

�h† · ∇hh′ · �h′, (75)

where �m is not yet specified. We have used the short notations
for the derivatives of the metacanonical potential

(∇h)α ≡ ∂

∂hα

(a,b,m), (76)

(∇hh′)αα′ ≡ ∂2

∂hα∂h′
α′

(a,b,m). (77)

The perturbation induces a variation �j of the energy currents,
�f of the activities or �p of the occupation. Taking the partial
derivative of Eq. (75) with respect to �a, �b, or �m and
evaluated in �m = �c, with �c the variation of the escape-
rate change due to the perturbation, leads to the linear response
equation⎛

⎝�j

�f

�p

⎞
⎠ 	

⎡
⎣∇aa ∇ab ∇am

∇ba ∇bb ∇bm

∇ma ∇mb ∇mm

⎤
⎦ ·

⎛
⎝�a

�b

�c

⎞
⎠. (78)

From Eq. (72), the response matrix above is symmetric even
close to an arbitrary NESS. However, the chain rule yields

�c = ∇ac · �a + ∇bc · �b, (79)

and the variation of the currents and activities becomes

�j = (∇aa + ∇am · ∇ac) · �a

+ (∇ab + ∇am · ∇bc) · �b, (80)

�f = (∇ab + ∇bm · ∇ac) · �a

+ (∇bb + ∇bm · ∇bc) · �b. (81)

The response matrix defined from Eqs. (80) and (81) is no
longer symmetric in general as already emphasized in former
works on NE linear response theory [38,39,57–62]. The second
derivatives of the metacanonical potential appearing in Eq. (80)
are

(∇aa)νν ′ = lim
t→∞ t

{〈jν[z̄]jν ′[z̄]〉k̄ − 〈jν[z̄]〉k̄〈jν ′ [z̄]〉k̄

}
,

(∇ab)νν ′ = lim
t→∞ t

{〈jν[z̄]fν ′ [z̄]〉k̄ − 〈jν[z̄]〉k̄〈fν ′[z̄]〉k̄

}
,

(∇am)νx = lim
t→∞ t

{〈jν[z̄]px[z̄]〉k̄ − 〈jν[z̄]〉k̄〈px[z̄]〉k̄

}
, (82)

and correspond, respectively, to the current-current, the
current-activity, and the current-occupation covariances in the
unperturbed NESS [63]. In addition to the above covariances,
the response functions include another contribution involving
the derivatives of the escape-rate change c. Since the escape-
rate change satisfies

− ∂cx

∂aν

=
∑

y

k̄ν
yx(εy − εx), (83)

the unperturbed mean occupation multiplied by this derivative
returns the unperturbed mean energy current

−
∑

x

∂cx

∂aν

〈px[z̄]〉k̄ =
∑
x,y

k̄ν
yx〈px[z̄]〉k̄(εy − εx) = 〈jν[z̄]〉k̄.

(84)
Therefore, the response to the affinity perturbation is

(∇aa + ∇am · ∇ac)νν ′

= lim
t→∞ t

{
〈jν[z̄]jν ′[z̄]〉k̄ −

〈
jν[z̄]

∂

∂aν ′
(p†[z̄] · λ̄)

〉
k̄

}
. (85)

As expected, the response has an additive structure with an
equilibriumlike part given by a currents correlation function,
and a NE part corresponding to a current and traffic-excess
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correlation function. We call traffic excess the derivative of
the empirical escape rate p†[z̄] · λ̄ with respect to the perturbed
variable [38,39]. Similarly, the response of the energy current
to a perturbation of the dynamical bias in the second line
of Eq. (80) has two parts with an activity-current correlation
function and a current-traffic excess correlation function.

As regards the perturbation of an EQ system, i.e., all β ′
ν are

close to the reference inverse temperature β1, one recovers
the Yamamoto-Zwanzig formula expressing the response
coefficients to a temperature perturbation from the covariances
of energy currents [64,65]. In order to see this, let us first
consider a reference system at EQ only perturbed by a change
of the dilatation factors, i.e., �a = 0 and �b = −β1�l.
Thanks to Eq. (80), the variation of the energy currents is
written as

�j = (∇ab + ∇am · ∇bc) · �b = 0. (86)

It vanishes for any perturbations �b since no mean energy
current exists at EQ. Thus, we find

∇ab + ∇am · ∇bc = 0, (87)

if the derivatives are taken in a = 0. This removes the contribu-
tion due to the dynamical bias from the EQ response. Another
contribution disappears in the close-to-equilibrium limit due to
the decoupling between occupations and energy currents [42].
Indeed, from the symmetry of the metacanonical potential with
sign change of the affinities, namely (a,b,m) = (−a,b,m),
we have

∂2

∂aν∂mx

(a,b,m) = − ∂2

∂aν∂mx

(−a,b,m). (88)

Accordingly, ∇am = 0 if the derivatives are taken in a = 0.
From the third line of Eq. (82), we can conclude that the energy
currents and occupations are decoupled. The Yamamoto-
Zwanzig formula follows from Eq. (80):

�j = ∇aa

2
· (β1 − β ′), (89)

where ∇aa is given in the first line of Eq. (82) with EQ
averages 〈. . . 〉k instead of the NE averages 〈. . . 〉k̄. Therefore,
we recover the Onsager reciprocity relations from the NE
Maxwell relations.

V. ILLUSTRATIVE EXAMPLE: A TWO-LEVEL SYSTEM

We now illustrate our results on a two-level system with
states z = 1,2 and mechanisms ν = 1,2, . . . ,χ enabling en-
ergy exchanges with χ different heat reservoirs. The coupling
strength with reservoir ν is denoted γν in this section since it
is not a matrix but a vector when there are only two states.
The energy states are ε1 and ε2. Let ε± = ε1 ± ε2 to shorten
notations. The transition rate matrix of the EQ reference
process for each mechanism ν is

kν =
[
−γνe

β1ε−
2 γνe

− β1ε−
2

γνe
β1ε−

2 −γνe
− β1ε−

2

]
, (90)

where we assume vanishing dilatation factors l1 [see Eq. (1)].
The rate matrices for the NE system are

k̄ν =
[−γνe

(β1/2−aν )ε−+bνε+ γνe
−(β1/2−aν )ε−+bνε+

γνe
(β1/2−aν )ε−+bνε+ −γνe

−(β1/2−aν )ε−+bνε+

]
, (91)

if we choose d12 = ε+. The escape-rate changes for this model
are

c1 =
∑

ν

γνe
β1ε−/2(1 − e−aνε−+bνε+), (92)

c2 =
∑

ν

γνe
−β1ε−/2(1 − eaνε−+bνε+). (93)

The tilted operator κ = κ(a,b,m) for the EQ reference system
is

κ =
[

−∑
ν γνe

β1ε−
2 + m1

∑
ν γνε

−(β1/2−aν )ε−+bνε+∑
ν γνe

(β1/2−aν )ε−+bνε+ −∑
ν γνε

− β1ε−
2 + m2

]
.

(94)

The highest eigenvalue of this matrix is the metacanonical
potential

 = −
∑

ν

γν cosh (β1ε−/2) + m1 + m2

2

+
√

γ̂ 2 +
∑
ν,ν ′

γνγν ′e(aν−aν′ )ε−+(bν+bν′ )ε+ , (95)

where we have introduced

γ̂ ≡ −
∑

ν

γν sinh

(
β1ε−

2

)
+ m1 − m2

2
. (96)

The metacanonical potential  provides the statistics of jα

the energy current flowing from the αth reservoir toward the
system and of fα the activity induced by the αth mechanism.
From direct derivation of  with respect to aα , bα , or mz, the
energy current coming from reservoir α > 1 is

jα =
∑

ν ε−γαγνe
(bν+bα )ε+ sinh [(aα − aν)ε−]√

γ̂ 2 +∑
ν,ν ′ γνγν ′e(aν−aν′ )ε−+(bν+bν′ )ε+

, (97)

the activity for the transitions induced by mechanism α is

fα =
∑

ν ε+γαγνe
(bν+bα )ε+ cosh [(aα − aν)ε−]√

γ̂ 2 +∑
ν,ν ′ γνγν ′e(aν−aν′ )ε−+(bν+bν′ )ε+

, (98)

and the occupation of state z is

pz = 1

2
+ (δz,1 − δz,2)γ̂ /2√

γ̂ 2 +∑
ν,ν ′ γνγν ′e(aν−aν′ )ε−+(bν+bν′ )ε+

, (99)

where γ̂ of Eq. (96) is evaluated in m = c(a,2a), and taking
b = 2a to obtain the mean values of j , f , and p in the NESS
with affinity 2a. Deriving once more with respect to aα′ , bα′ , or
mz′ leads to the symmetric response matrix [see Eq. (78)]. The
left and right eigenvectors of κ associated to the eigenvalue 

are, respectively, π and r = π−1 · p. We find for the two-level
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FIG. 3. (a) Metacanonical potential for various (a2,m2) with b = 0, (b) energy current, (c) energy, (e) activity, and (f) entropy as a function
of the affinity a2 and the dynamical bias b2. (d) NE microcanonical potential for the energy current j2 and the activity f2 after a contraction on
f1, p1, and p2. Other parameters are b1 = 0, β2 = β1 − 2a2, γ2 = 0.5, ε1 = 1, and ε2 = 0.5. For all figures, β1 = 1 set the energy scale and
γ1 = 1 the time scale. The variables a and b are in unit of 1/β1, the variables j and f are in unit of γ1/β1, and L, , and m are in unit of γ1.

model

π1 =
∑

ν γνe
(β1/2−aν )ε−+bνε+∑

ν γνe(β1/2−aν )ε−+bνε+ +∑
ν γνeβ1ε−/2 − m1 + 

, (100)

π2 =
∑

ν γνe
β1ε−/2 − m1 + ∑

ν γνe(β1/2−aν )ε−+bνε+ +∑
ν γνeβ1ε−/2 − m1 + 

, (101)

r1 =
(∑

ν γνe
−(β1/2−aν )ε−+bνε+

)(∑
ν γνe

(β1/2−aν )ε−+bνε+ +∑
ν γνe

β1ε−/2 − m1 + 
)

∑
ν,ν ′ γνγν ′e(aν−aν′ )ε−+(bν+bν′ )ε+ + (∑

ν γνeβ1ε−/2 − m1 + 
)2 , (102)

r2 =
(∑

ν γνe
β1ε−/2 − m1 + 

)(∑
ν γνe

(β1/2−aν )ε−+bνε+ +∑
ν γνe

β1ε−/2 − m1 + 
)

∑
ν,ν ′ γνγν ′e(aν−aν′ )ε−+(bν+bν′ )ε+ + (∑

ν γνeβ1ε−/2 − m1 + 
)2 . (103)

We can now illustrate the consistency of the theory: from
Eqs. (100)–(103) and the product π · r , we recover the
NESS probability of Eq. (99) obtained from derivation of
the metacanonical potential; Eqs. (100) and (101) allow us
to compute the drift u to get the current and activity of
Eqs. (97) and (98) from Eqs. (25) and (26) knowing the NESS
probability.

We turn to the discussion of the properties of the two-level
system with χ = 2 heat reservoirs in light of Fig. 3 obtained
from our analytic results. For simplicity, we choose b1 = 0.
We set the energy scale and the time scale taking, respectively,
β1 = 1 and γ1 = 1. Figure 3(a) shows that the metacanonical
potential is a symmetric function of the affinity a2 and is
strictly convex. From this symmetry, one should not conclude
that the energy current j2 is an antisymmetric function of a2.
Indeed, the energy current comes from the derivative of the

metacanonical potential with respect to a2 evaluated in m = c

that has no particular symmetry when changing the sign of a2.
The absolute value of the energy current |j2| and the activity

f2 always increases with the absolute value of the affinity |a2| at
given dynamical bias b2 [see Figs. 3(b) and 3(e)]. A decrease
of |j2| with increasing |a2| would mean that the system has
negative response for some affinities. Such a behavior is not
expected for a simple two-level model. Another general trend
is that |j2| and f2 increase with b2. Indeed, a higher dynamical
bias increases the value of the transition rates corresponding to
ν = 2, if one has ε+ > 0 [see Eq. (91)]. Then, a high dynamical
bias accelerates the dynamics associated to reservoir ν = 2,
whereas a small one slows it down, letting the reference
dynamics associated to reservoir ν = 1 dominates in the
transition rate matrix. Therefore, in the limit of low dynamical
bias with respect to the affinity, the system approaches the
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EQ state at temperature β1, with current j2 and activity f2

decreasing to zero.
To represent the NE microcanonical potential L, one has to

focus on the statistics of some specific variables by contraction:
this step consists in evaluating the NE microcanonical potential
at the mean value of the disregarded variables, for instance,
f1, p1, and p2 in the case of Fig. 3(d). However, it is much
more convenient to obtain L(j2,f2) directly from a parametric
plot of (j2,f2,L) with (a2,b2) being the parameters and taking
b1 = 0. In this way, we have obtained Fig. 3(d) showing the
NE microcanonical potential as a convex function of (j2,f2).
This function is undefined in the regions corresponding to low
activities in comparison to the energy current. The explanation
is that a current can only flow if some minimal activity holds,
i.e., if the system changes state regularly enough.

Finally, the system energy e and Shannon entropy s are,
in our framework, functions of the affinity and dynamical
bias. We see in Figs. 3(c) and 3(f) that these functions have
a very similar shape in a large area corresponding to the EQ
limit. The dimensionless free energy of the reference system at
temperature β1 is ϕ = β1e − s and should reach its minimum
value for low affinity |a2| or low dynamical bias b2. There,
since β1 = 1, the system energy and entropy differ only in the
value of the dimensionless free energy of the EQ reference
system. On the contrary, at high affinity |a2|, most of the time
the system is either in energy state ε1 = 1 for positive a2 or
ε2 = 0.5 for negative a2. The system is driven to a state where
the entropy is lower than at EQ and the NE mean energy is
moved away from the EQ mean value for the reference process.

VI. CONCLUSION

In this paper, we have established that the asymptotic
probability of the energy currents, the activities, and the
occupations in a NE process proceeds from the long-time
statistics of the same variables at EQ. We have connected
the affinities of the NE process, the dynamical biases, and
the escape-rate changes to constraints imposed on the EQ
reference process, respectively, on the energy currents, on
the activities, and on the occupations of each state. This
connection is the analog of the ensemble equivalence between
the canonical and microcanonical ensembles of EQ statistical
physics for which the temperature of the heat reservoir is
associated to an energy constraint. We have argued that
the mapping between EQ and NE fluctuations allows us to
distinguish the reduced set of variables which play a key role
in the description of NESSs.

Beyond the understanding of the structure of NE statistical
physics, phenomenological and/or operational methods must
be developed to compute the NE potentials of real complex
systems. In this regard, it was shown that efficient algorithms
exist to compute the scaled cumulants of currents [66] or
to simulate samples of rare trajectories [13]. A promising
technique for macroscopic systems relies on the saddle point
approximation of a path integral producing the cumulant
generating function [67]. This calculation leads to a dynamical
problem with a small number of degrees of freedom compared
to the original problem. Solving this dynamical problem seems
easier than finding the highest eigenvalue of a large tilted
operator.
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APPENDIX A: LDF OF EMPIRICAL OCCUPATION
AND TRANSITION PROBABILITY

We derive in this appendix the LDF of transition probability
and occupation I (ω,p) for the EQ process. By definition,
the probability that ω[z] = ω and p[z] = p when the system
trajectories are generated by the EQ reference process is

Pt (ω,p) =
∑
[z]

Pk[z]δp,p[z]δω,ω[z] (A1)

=
∑
[z]

Pω/p[z]e−A[z]δp,p[z]δω,ω[z], (A2)

where
∑

[z] is the sum over all path [z]. We have introduced
the action

A[z] = ln
Pω/p[z]

Pk[z]
, (A3)

and the path probabilities with given initial state z(0):

Pk[z] = exp

⎛
⎝−

∫ t

0
dτ

∑
x �=z(τ ),ν

kν
xz(τ )

⎞
⎠∏
τ∈[0,t]

k
ν(τ )
z(τ+dτ )z(τ ),

Pω/p[z] = exp

⎛
⎝−

∫ t

0
dτ

∑
x �=z(τ ),ν

ων
xz(τ )

pz(τ )

⎞
⎠∏
τ∈[0,t]

ω
ν(τ )
z(τ+dτ )z(τ )

pz(τ )
.

Notice that the second line is identical to the first line where
the empirical transition rate matrices ων[z]/p[z] replace the
real EQ rate matrices kν . From these path probabilities, the
action becomes

A[z] =
∫ t

0
dτ

∑
x �=z(τ ),ν

(
kν
xz(τ ) − ων

xz(τ )

pz(τ )

)

+
∑

τ∈[0,t]

ln
ω

ν(τ )
z(τ+dτ )z(τ )

k
ν(τ )
z(τ+dτ )z(τ )pz(τ )

(A4)

or, equivalently, when introducing the empirical transition
probabilities and occupations

A[z] =
∫ t

0
dτ

∑
y,x �=y,ν

δy,z(τ )

(
kν
xy − ων

xy

py

)

+
∑

τ∈[0,t]

∑
y,x �=y,ν

δx,z(τ+dτ )δy,z(τ )δν,ν(τ ) ln
ων

xy

kν
xypy

= t
∑

x,y �=x,ν

[
py[z]

(
kν
xy − ων

xy

py

)
+ ωxy[z] ln

ων
xy

kν
xypy

]
.

(A5)
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Then, using the Kronecker symbols in Eq. (A2) one can take
p[z] = p and ω[z] = ω to move the action out of the sum and
write

Pt (ω,p) = e−tI (ω,p)
∑
[z]

Pω/p[z]δp,p[z]δω,ω[z]. (A6)

The remaining sum over all paths [z] is the probability that p[z]
and ω[z] take their typical value since the path probability is
generated by ω/p. We expect this probability to converge to 1
in the long-time limit. Then, we get the asymptotic probability
of transitions and occupations of Eqs. (10) and (11) in the main
text.

APPENDIX B: PREEXPONENTIAL FACTOR FOR THE
ASYMPTOTIC PROBABILITY OF ENERGY CURRENTS,

ACTIVITIES, AND OCCUPATIONS

Following, we provide an asymptotic approximation of the
long-time probability of the energy currents, activities, and
occupations when the final state is known. The variables are
defined by

jν[z] = 1

t

∑
τ∈[0,t]

[εz(τ+dτ ) − εz(τ )]δν,ν(τ ), (B1)

fν[z] = 1

t

∑
τ∈[0,t]

dz(τ+dτ )z(τ )δν,ν(τ ), (B2)

px[z] = 1

t

∫ t

0
dτ δx,z(τ ). (B3)

The corresponding generating function with given final state
x is by definition

gx(a,b,m) ≡ 〈
δxz(t)e

t(a†·j [z]+b†·f [z]+m†·p[z])
〉
k. (B4)

It satisfies the linear equation ∂g/∂t = κ · g with κ the tilted
operator defined in the main text in Eqs. (35) and (36). We
now look for a long-time asymptotic approximation of g:

gx(a,b,m) = (
eκ(a,b,m)t · p0

)
x

(B5)

	
t→∞

∑
y

e(a,b,m)t (r · π †)xyp
0
y (B6)

	
t→∞ e(a,b,m)t rx(a,b,m)(π † · p0), (B7)

where p0 is the initial state probability. We remind that π and
r are, respectively, the left and right eigenvectors of κ for the
highest eigenvalue . Using an asymptotic approximation to
compute the inverse Laplace transformation of gx(a,b,m), one
recovers the exponent appearing in Eq. (12).

Then, the preexponential factor in Eq. (B7) must be
evaluated in a = a(j,f,p), b = b(j,f,p), and m = m(j,f,p).
We now assume that j, f , and p are related to each other via
the physical system subspace constraint (see Table II). From
Eq. (49), we find πx(a,b,c) = π̄x(0,0,0) = 1 for all x, where
the second equality stands from the fact that the left eigenvector
of a Markov matrix has all its components equal to one. Then,
π † · p0 = 1 by normalization of p0 and the right eigenvector
of κ in the physical system subspace is the NESS probability
r(a,b,c) = p∗ for the dynamics with energy current j and
activity f . This leads to the asymptotic probability of energy

currents, activities, and occupations when the final state at time
t is x:

Pt (j,f,p∗,x) 	
t→∞ e−tL(j,f,p∗)p∗

x . (B8)

APPENDIX C: ASYMPTOTIC EQUIVALENCE OF THE NE
PROCESS AND THE CANONICAL PROCESS

The path probability of the canonical process, with gen-
erator K, is defined by exponentially weighting the path
probability of the EQ reference process:

PK[y] ≡ Pk[y]et(a†·j [y]+b†·f [y]+m†·p[y])

〈et(a†·j [z]+b†·f [z]+m†·p[z])〉k
. (C1)

This tilting procedure is sometimes referred to as canonical
conditioning. We show in this appendix that the above
canonical process is asymptotically equivalent to the NE
process defined in Sec. III A. From Sec. III C, it is also
equivalent to the driven process. The connection between the
driven process and the canonical process was first obtained in
Refs. [33,34] and studied in depth in Refs. [29,31].

From the definition of the CGF in Eq. (29), we have

PK[y] 	
t→∞ Pk[y]et(a†·j [y]+b†·f [y]+m†·p[y])−t. (C2)

Since Eq. (33) is satisfied for all y, we can write it for any state
y(τ ) along the trajectory [y]:

 = my(τ ) + �y(τ ) − λy(τ ), (C3)

and upon integration over the time τ , one finds

t = tm† · p[y] +
∫ t

0
dτ (λ̄y(τ ) − λy(τ )) (C4)

since � = λ̄ from Eq. (55). Finally, Eqs. (C2)–(C4) lead to the
asymptotic equivalence of the path probabilities

PK[y] 	
t→∞ e− ∫ t

0 dτ λ̄y(τ )+t(a†·j [y]+b†·f [y])
∏

τ∈[0,t]

k
ν(τ )
y(τ+dτ )y(τ )

	
t→∞ e− ∫ t

0 dτ λ̄y(τ )
∏

τ∈[0,t]

k̄
ν(τ )
y(τ+dτ )y(τ ) (C5)

	
t→∞ Pk̄[y]. (C6)

Hence, we have proved that the canonical process corresponds
at long time to a NE process that can be realized experimentally
changing the temperatures of the heat reservoirs and the
dynamical biases.

APPENDIX D: FLUCTUATION THEOREM

The fluctuation theorem (FT) is an essential property of
the stochastic entropy production [36,68]. According to this
theorem, a stochastic positive entropy production is exponen-
tially more likely than the opposite entropy production, i.e., an
entropy destruction. On average, this implies a positive entropy
production in agreement with the second law. Therefore, the
FT is a probabilistic statement of the second law, and as such
it is a very fundamental property of NE phenomena. It was
first derived with a long-time approximation, but since the
mean entropy production always increases, a FT should hold
at all time [69,70]. Because the entropy production may be
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appropriately defined using different NE variables such as
work, heat, or particle currents, depending on the experimental
setup, the FT has many faces [56,71–78]. Generally, the joint
probability distribution of a set of time antisymmetric variables
summing to entropy production will satisfy a FT [79]. In our
case, a linear combination of the currents gives the entropy
production rate

σ = 2a† · j. (D1)

Accordingly, the LDF and scaled CGF for the NE process
have a FT symmetry. This symmetry strongly relies on local
detailed balance, in other words, on the symmetry of transition
rates. We already used the local detailed balance to show
the equivalence of EQ and NE fluctuations. We show in this
appendix that the fluctuation theorem is a consequence of the

mapping between EQ and NE fluctuations associated to the
symmetric nature of energy-currents fluctuations at EQ. Using
Eq. (47), we find

̄(−2a − ā,b̄,m̄) = (−2a − ā + a,b̄ + b,m̄ + c)

= (ā + a,b̄ + b,m̄ + cb̄ + b,m̄ + c)

= ̄(ā,b̄,m̄), (D2)

where we have used the fact that EQ fluctuations are symmetric
in the reversal of affinities (a,b,m) = (−a,b,m). Similarly,
from Eq. (48), it is straightforward to see that

L̄(j,f,p) − L̄(−j,f,p) = −2a† · j = −σ (D3)

since we have L(j,f,p) = L(−j,f,p).
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C.2.4 Erratum for section III.C of Ref. [5] in C.2.3

In section III.C of Ref. [5], I discuss the equivalence of two processes introduced in
the article: The nonequilibrium process and the driven process. The latter is built
from the Doob transform of the equilibrium process biased on occupancy, energy
currents, and the activity of the exchanges with the heat reservoirs. Actually, the
two processes are only equivalent when they are identical. Therefore, the section
should not discuss the equivalence of these processes, but their identity. We explain
this in the following, using equation numbers of Ref. [5].

The drift potential u(a, b,m) is used in a Doob transform of the transition rates
to transform the tilted operator of Eqs. (35–36) into the driven generator of Eqs. (19–
21). This potential guaranties that my +Λx − λx = Γ is constant for all x as shown
in Eq. (33). If the escape weight is mx = cx = λx − λ̄x, then the drift potential
is chosen such that Λx − λ̄x = 0 is a null constant when using Eq. (54). But the
only difference between the escape rate Λ and λ̄ is just due to the drift potential ux,
when comparing Eqs. (19–21) and Eqs. (41–42). Therefore, ux = 0 is the solution
to Λx − λ̄x = 0: the NE and driven processes are identical. Now, the drift potential
is non-zero for an escape weight that is not the escape rate change, i.e., when
m ̸= c. For time asymptotic equivalence of processes, the similarity transformation
on the transition rates is unimportant: it leads to boundary terms. However, it is
important for the exponential part of the path probabilities of Eqs. (59–60) that
are not asymptotically equivalent in this case. To conclude and contrarily to what I
thought at the time of publishing Ref. [5], there is no driven process that is different,
but equivalent, at the path level with respect to the nonequilibrium process.

C.3 Conductance matrix for TiPS

Bertini et al derived the LDF of state occupancy and empirical transition probability
for Markov jump processes in TiPS [97]. Building on their results with Lydia Cha-
bane and Raphaël Chétrite, we studied the Doob transformation of biased Markov
generators for systems under time-periodic drivings [19]. We obtained the generator
of the driven process whose typical trajectories produce rare events of the unbiased
original process. As already argued in Chapter A, and also extensively done in my
Ph.D. thesis, we can extend to TiPS many results obtained for systems in stationary
states, for instance quadratic bounds of LDF [116]. The tightest quadratic bound
for the LDF of physical currents has not been reported for TiPS yet. Based on joint
work with Hadrien Vroylandt and Lydia Chabane, I quickly derive this bound be-
low. In this section, I follow the steps of the stationary case; see Ref. [9] reproduced
in section B.3.4 and Ref. [10]. The main idea is to use an occupancy and empirical
probability current ansatz based on the mean probability and current in the TiPS.
The probability current ansatz includes a phase-dependent term that satisfies cur-
rent conservation at each graph vertex and for any phase. This term allows us to
describe rather accurately the fluctuations of physical currents in the neighborhood
of their mean values.
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We start by reviewing the works on the LDF of occupancy and empirical proba-
bility current at phase φ of the periods for a Markov jump process. We also review
the derivation of a quadratic bound of this LDF. In the last section, I provide a
surprisingly simple and quadratic bound for the LDF of physical currents related to
our result in the stationary state.

C.3.1 LDF of currents and occupancy for TiPS

Let us consider that the transition rate matrix kφ is time-periodic with period T .
The corresponding TiPS probability, denoted πφ, satisfies

∂φπ
φ = kφπφ, (C43)

where φ ∈ [0,T ] is the phase. The state occupancy vector at phase φ is denoted
pφ. The empirical transition probability at phase φ is denoted ωφ. After n periods,
they are defined by

pφx [z]
.
=

1

n

n−1∑

m=0

δx,z(φ+mT ) (C44)

ωφ
xy[z]

.
=

1

n

n−1∑

m=0

δx,z(φ++mT )δy,z(φ−+mT ) (C45)

where [z] is as before a trajectory in state space and φ± denotes a phase infinites-
imally close to φ (higher or lower). Then, the LDF of occupancy and empirical
transition probability writes

I (ω,p) =
1

T

∫ T

0
dφ

∑

x,y ̸=x,ν

[
kφxy,νp

φ
y − ωφ

xy,ν + ωφ
xy,ν ln

ωφ
xy,ν

kφxy,νp
φ
y

]
, (C46)

=
1

T

∫ T

0
dφ Iφ(ωφ,pφ), (C47)

where Iφ(ωφ,pφ) is identical to I(ω,p) of Eq. (C3) if we omit all the phase depen-
dencies (we may do so by abuse of notation, on boldface letters mainly). The above
LDF is finite when

∂φp
φ
x =

∑

y,ν

(ωφ
xy,ν − ωφ

yx,ν), (current conservation) (C48)

∑

x

pφx = 1, (normalization) (C49)

p0 = pT and ω0 = ωT . (periodicity) (C50)

The (xy, ν) edge component of the empirical current jφ at phase φ and its
(conditioned) mean value write:

jφxy,ν = ωφ
xy,ν − ωφ

yx,ν , (C51)

⟨jφxy,ν⟩π
.
= ⟨ωφ

xy,ν⟩π − ⟨ωφ
yx,ν⟩π = kφxy,νπ

φ
y − kφyx,νπ

φ
x , (C52)

⟨jφxy,ν⟩p
.
= ⟨ωφ

xy,ν⟩p − ⟨ωφ
yx,ν⟩p = kφxy,νp

φ
y − kφyx,νp

φ
x , (C53)
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where ⟨. . . ⟩π is mean value in TiPS and ⟨. . . ⟩p is mean value in TiPS conditioned on
observing an occupancy pφ at any phase φ ∈ [0,T ]. With those notations, we write
the LDF of occupancy and empirical transition probability, ignoring half (reverse)
transition as

Iφ⟨ω⟩p(ω,p)
.
=

∑

x,y>x,ν

[
⟨ωφ

xy,ν⟩p − ωφ
(xy,ν) + ωφ

(xy,ν) ln
ωφ
(xy,ν)

⟨ωφ
xy,ν⟩p

]
. (C54)

where the sum runs over unidirectional transitions [i.e., on all oriented edges e =

(xy, ν) without the opposite edge −e = (yx, ν)]. Then, Iφ(ω,p) is such that

Iφ(ω,p) = Iφ⟨ω⟩p(ω,p) + Iφ⟨ω−j⟩p(ω − j,p) (C55)

because ω−e = ωe − je. We look for the optimum ω that minimizes Iφ(ω,p) and
is compatible with a given empirical transition current jφ as defined in Eq. (C51).
The optimization with respect to ω of Eq. (C55) leads to

ln
ωe(ωe − je)

⟨ωe⟩p⟨ωe − je⟩p
= 0 ⇔ ln

ωeω−e

⟨ωe⟩p⟨ω−e⟩p
= 0. (C56)

If we introduce (aφ,pe )2
.
= 4⟨ωe⟩p⟨ω−e⟩p that will be useful later, the optimization

leading to Eq. (C56) writes explicitly as

ω2
e − ωeje − (aφ,pe )2/4 = 0 ⇔ 4ωeω−e = (aφ,pe )2. (C57)

We remark that by definition (aφ,pe )2 = 4⟨ωe⟩p⟨ωe − je⟩p which leads to almost the
same equation

⟨ωe⟩2p − ⟨ωe⟩p⟨je⟩p − (aφ,pe )2/4 = 0 ⇔ 4⟨ωe⟩p⟨ω−e⟩p = (aφ,pe )2. (C58)

The solutions of Eqs. (C56–C58) read

ωφ
±e =

1

2

[
±jφe +

√
(jφe )2 + (aφ,pe )2

]
(at the optimum), (C59)

⟨ωφ
±e⟩p =

1

2

[
±⟨jφe ⟩p +

√
⟨jφe ⟩2p + (aφ,pe )2

]
, (C60)

since the empirical transition probabilities are nonnegative. The phase-dependent
LDF of Eq. (C55)

Iφ(ω,p) =
∑

e>0

(
⟨ωφ

e ⟩p − ωφ
e + ⟨ωφ

−e⟩p − ωφ
−e + ωφ

e ln
ωφ
e

⟨ωφ
e ⟩p

+ ωφ
−e ln

ωφ
−e

⟨ωφ
−e⟩p

)

(C61)
becomes when using ωφ obtained at the optimum [117]

Iφ(j,p) =
∑

e>0

[√
⟨jφe ⟩2p + (aφ,pe )2 −

√
(jφe )2 + (aφ,pe )2

+ jφe

(
asinh

jφe
aφ,pe

− asinh
⟨jφe ⟩p
aφ,pe

)]
. (C62)
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The sum on e > 0 is over unidirectional transitions again. To reach this form, we
have used

ωφ
±e = ±j

φ
e

2
+
ωφ
e + ωφ

−e

2
(C63)

to evaluate

ωφ
e ln

ωφ
e

⟨ωφ
e ⟩p

+ ωφ
−e ln

ωφ
−e

⟨ωφ
−e⟩p

=
jφe
2

ln
ωφ
e

ωφ
−e

+
jφe
2

ln
⟨ωφ

−e⟩p
⟨ωφ

e ⟩p
. (C64)

We remark that the additional term that should appear in the above equation

ωφ
e + ωφ

−e

2
ln

ωφ
e ω

φ
−e

⟨ωφ
e ⟩p⟨ωφ

−e⟩p
= 0 (C65)

has been removed at the optimum due to Eq. (C56). Finally, using asinhX =

ln(X +
√
1 +X2) = −asinh (−X), we finds

±j
φ
e

2
lnωφ

±e = ±j
φ
e

2
ln
aφ,pe

2


±j

φ
e

aφ,pe
+

√
1 + (

jφe
aφ,pe

)2


 , (C66)

= ±j
φ
e

2
ln
aφ,pe

2
+
jφe
2
asinh

jφe
aφ,pe

, (C67)

and then
jφe
2

ln
ωφ
e

ωφ
−e

= jφe asinh
jφe
aφ,pe

, (C68)

jφe
2

ln
⟨ωφ

−e⟩p
⟨ωφ

e ⟩p
= jφe asinh

⟨jφe ⟩p
aφ,pe

, (C69)

allowing to conclude on the contracted LDF of Eq. (C62). We remark that we use
an abuse of notation when taking the same letter for the contracted LDF and the
original one, the variables indicating which function to use.

C.3.2 Quadratic upper bound for current and occupancy LDF in
TiPS

The phase-dependent LDF of Eq. (C62) has a quadratic upper bound [116, 118].
This can be seen directly by introducing the two functions

ψ(X)
.
=

√
1 +X2 −

√
1 + ⟨X⟩p +X(asinhX − asinh ⟨X⟩p), (C70)

ψquad(X)
.
=

asinh(⟨X⟩p)
2⟨X⟩p

(X − ⟨X⟩p)2 ≥ ψ(X), (C71)

where the last inequality holds for all ⟨X⟩p as illustrated on Fig. C.4. The above
functions are used to write the LDF and define its quadratic upper bound as

Iφ(j,p) =
∑

e>0

aφ,pe ψ

(
jφe
aφ,pe

)
, (C72)

Iφquad(j,p)
.
=

∑

e>0

aφ,pe ψquad

(
jφe
aφ,pe

)
. (C73)
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Figure C.4: (Left) Quadratic upper bound for the edge contribution into the LDF
of current and occupancy minus the exact edge contribution. (Right) The function
ψ(X) is the black dashed line, and its quadratic upper bound ψquad(X) is the orange
solid line. The bound is rather tight on a large interval.

Then, since the inequality of Eq. (C71) holds for any edge, it holds for the LDF:

Iφ(j,p) ≤ Iφquad(j,p). (C74)

Explicitly, the quadratic bound of the LDF writes

Iφquad(j,p) =
∑

e>0

asinh(⟨jφe ⟩p/aφ,pe )

2⟨jφe ⟩p
(jφe − ⟨jφe ⟩p)2

.
=
∑

e>0

1

4
rφ,pe (jφe − ⟨jφe ⟩p)2, (C75)

where we have introduce the phase-dependent quantities rφ,pe
.
= fφ,pe /⟨jφe ⟩p as the

edge resistance, and

fφ,pe
.
= ln

⟨ωφ
e ⟩p

⟨ωφ
−e⟩p

= 2asinh

(⟨jφe ⟩p
aφ,pe

)
, (C76)

as the thermodynamic force conjugated to probability current jφe . In the end, the
occupancy and current LDF for TiPS has an upper bound that is very similar to
the one of nonequilibrium stationary states:

I (j,p) ≤ Iquad(j,p)
.
=

1

T

∫ T

0
dφ

1

4
(jφ − ⟨jφ⟩p)T rφ,p(jφ − ⟨jφ⟩p) (C77)

with rφ,p the diagonal resistance matrix in edge space whose eth component is rφ,pe .

C.3.3 Conductance matrix for TiPS from optimizing the quadratic
LDF bound

Using the quadratic upper bound of a LDF greatly simplifies the constraint opti-
mization problem arising from the contraction principle. Using this principle on
both sides of the inequality of Eq. (C77) automatically leads to an upper bound
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for the contracted LDF. Hence, our goal in the following is to derive the quadratic
bound for the (time-averaged) physical current vector i of X component iX

i
.
=

1

T

∫ T

0
dφϕφjφ ⇔ iX

.
=

1

T

∫ T

0
dφϕφX,ej

φ
e (C78)

where the matrix ϕφ of components ϕφX,e is the amount of physical quantity labeled
by X received by the system when transition e occurs at phase φ. For later use, we
can also introduce Φφ of components Φφ

X,c
.
=
∑

e ϕ
φ
X,eCe,c = (ϕφC)X,c that corre-

sponds to the amount of physical quantity labeled by X received by the system when
all the transitions in cycle c have been achieved, although in successive periods such
that each transition only occurs at phase φ. We recall that C is the cycle matrix
defined in section B.3.2. In the TiPS, the physical current time averages to

⟨i⟩π .
=

1

T

∫ T

0
dφϕφ⟨jφ⟩π. (C79)

We report below the result of the above constraint optimization problem fixing
a physical current vector i, and when p = π. To deal with the choice of occupancy,
we use that infp I (j,p) ≤ I (j,π). The optimal edge probability current reads

jφ = ⟨jφ⟩π + C(Rφ)−1(Φφ)Tg−1(i− ⟨i⟩π) (C80)

g
.
=

1

T

∫ T

0
dφΦφ(Rφ)−1(Φφ)T (C81)

where Rφ .
= CTrφC is a phase dependent resistance matrix in cycle space. We

defined the matrix g, which is the time average of the nonlinear conductance matrix
of the stationary case, see section B.3.3. We take the same notation in the TiPS
and stationary case because we recover the latter for the time-independent case.
The above probability current satisfies the probability conservation for our choice
of occupancy since

∂φp
φ = ∂φπ

φ = D⟨jφ⟩π = Djφ (C82)

given that DC = 0, i.e., the cycle matrix C is in the kernel of the incidence matrix
of the graph D, defined in section B.1.2, and playing the role of divergence in graph
theory. The probability current of Eq. (C80) is also compatible with our choice i

of the physical current vector. To see this, we use Eq. (C78) with the current of
Eq. (C80)

i = ⟨i⟩π +

[
1

T

∫ T

0
dφϕφC(Rφ)−1(Φφ)T

]
g−1(i− ⟨i⟩π), (C83)

that is a trivial identity when using Φφ = ϕφC and the definition of g. Finally,
using p = π and the current of Eq. (C80) in the quadratic upper bound yields our
final result

Iquad(i,π) =
1

4
(i− ⟨i⟩π)T g−1 (i− ⟨i⟩π) (C84)
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that bounds from above the LDF of time-averaged physical currents that would
be obtained from the exact contraction of the LDF for occupancy and empirical
probability current. Studying this bound on a specific model could be the topic of
a M1 internship.

We conclude this section by remarking on the striking parallel between the the-
ory of nonlinear conductance in the stationary state and TiPS after time averaging.
Compared to Ref. [118], we have used the cycle decomposition of currents to intro-
duce an increment of current, with respect to the mean periodic one, that satisfies
probability conservation. This removes the difficulty of finding a time-dependent oc-
cupancy Ansatz compatible with the empirical probability current, a problem that
is almost as complex as the exact contraction [19]. Since our final result is identical
to the stationary case, we refer to section B.3.3 to switch to a fundamental set of
physical currents. However, if some reservoirs are periodically connected and dis-
connected, the conservation laws and the selection matrix evolve in time, and the
situation must be studied in more detail. We also point out that some connections
could exist between our framework and Onsager’s response theory, as revisited in
the last decade by Karel Proesmans and Christian Van den Broeck [119].
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D.1 Introduction to selected articles

Converters start to be influenced by fluctuations when the machine’s size goes below
the micron scale ( 10−6 m). For instance, the pollen grain in the experiments of
biologist Robert Brown, who gave his name to the “Brownian motion”, undergoes
an equilibrium of dynamical nature: This equilibrium is very different from a me-
chanical equilibrium (characterized by absolutely no motion) in the sense that there
is no net motion on average, with many back and forth fluctuations [67]. Indeed,
in his experiment, Brown showed that collisions of a grain (organic or not) with
the molecules of a fluid generate an erratic motion of the grain moving across the
surface of the fluid observed under the microscope. This erratic motion is linked to
diffusion, although it is more the probability density function of the grain’s location
that diffuses in this precise case. Diffusion tends to make uniform the distribution of
matter, e.g., to reduce chemical potential differences, but diffusion is also influenced
by temperature that enhances the molecular agitation [120]. Indeed, temperature
can be defined using the equipartition theorem and velocity variance. In general, any
coupling with an environment (heat reservoir in the case of the grain, volume reser-
voir, particle reservoir, etc.) introduces fluctuations (of energy, volume, or particle
number) if the considered system is sufficiently small. Converters are intrinsically
operating by exchanging with different environments and are hence influenced by
them when operating at the micro-scale. Cellular machinery typically operates far
from equilibrium and under high fluctuations. Many works in stochastic thermo-
dynamics are devoted to the understanding of biological converters [121, 103, 122],
such as kinesin on microtubules, myosin on actin filaments, RNA polymerase, or
F0/F1 rotating motor, etc. Those converters generate mechanical work [123, 124],
maintain gradients accross membranes [125, 126, 127, 128], or collect information for
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sensing [129]. The modeling of all these processes is still an active field of research
nowadays. Experimental data fit is often challenging due to the many parameters
in the most elementary models. A better understanding of the structure of nonequi-
librium fluctuations can help in this view. For instance, we realized in Ref. [18]
that only a subset of the load factors (that encodes the asymmetry of the poten-
tial energy landscape generated by the microtubule) was pertinent [103]. In other
words, changing them in some way was not modifying the current fluctuations since
this produces a change within a dynamical equivalence class. Characterizing energy
converters at the fluctuating scale can help with modeling and parameter inference.
The work presented in this chapter contributes to this line of research, although
many more works are needed to make a connection with experiments on biological
systems, beyond the excellent works on artificial devices [130, 131].

In chapter B, we considered the physics of conversion processes at the mean
level, with linear or non-linear characteristics. Many developments are possible
while remaining at the macroscopic or mean level, among which the theory of ther-
modynamic circuits is promising. In chapter C, we studied systems with the per-
spective of large deviation theory, with the (not necessarily valid) idea of connecting
rare events and typical events of far-from-equilibrium and non-linear systems. In
the present (and relatively small) chapter, we return to the physics of conversion
processes from the large deviation theory perspective to characterize fluctuations’
effects on engines’ performances.

Our first work on the topic [13] presents the calculation of a large deviation func-
tion for a rational observable using the contraction principle. The (type I) stochastic
efficiency η of a stationary converter is defined as the ratio of the stochastic (rate of)
work delivered by the small converter with the stochastic (rate of) heat it receives
from a heat reservoir. This is the first time such a rational observable is considered
within LDT. Consequently, the shape of the obtained LDF is unconventional: it
converges to a constant value for η → ±∞ because the probability of small incoming
heat solely determines large values of efficiencies. In between this plateau for large
(absolute values of the) efficiency, the efficiency LDF decreases to a minimum and
then increases to reach a maximum and goes back to the plateau. As expected, the
minimum is associated with the most likely efficiency equal to the thermodynamic
efficiency, which is defined as the ratio of the mean delivered work with the mean
incoming heat. We remark that stochastic efficiency has no finite moment. The
maximum is characterized by a more striking property: the reversible efficiency of
the device lies at the maximum value of the efficiency LDF, meaning that the re-
versible efficiency is the least likely to be observed after a long time of operation
of the converter. This property, observed for stationary converters, is due to the
fluctuations relations satisfied by the LDF of work and heat rates. Indeed, the latter
are sufficient to determine the total entropy production rate of the converter and
therefore satisfy a joint FR. This maximum value of the LDF for the reversible
efficiency explains the title “The unlikely Carnot efficiency” chosen for this letter.
The fact that the fluctuations allow higher efficiencies than the reversible efficiency
does not contradict the second law of thermodynamics. These fluctuations are not
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transient violations either. They correspond to a reverse operating mode for which
signs of the numerator and the denominator (in the definition of efficiency) have
changed. In this reverse mode (e.g., heat pump mode), the second law provides an
upper bound for 1/η, which is the correct efficiency definition in this reverse mode.
Finally, we have shown in this work that the shape of efficiency fluctuations observed
far from equilibrium is similar to the exact shape obtained close to equilibrium and
based on Onsager’s response matrix only.

In the following works on efficiency fluctuations, we considered several general-
izations. Our first extension concerns converters in TiPS [14]. For time-dependent
driving forces enabling the exchange of work (i.e., with no symmetry under time re-
versal as noticed in [67]), the reversible efficiency is not the most likely in the limit
of long conversion time. However, when driving the converter forward and backward
in time (time reversed TiPSs), one finds that the LDF of efficiency achieves the same
value precisely at the reversible efficiency. This comes again from the FR. Interest-
ingly, this work shows that close-to-equilibrium heat and work fluctuations in the
forward and backward cases are identical. Previously introduced models [21, 22],
with exact heat and work statistics in TiPS, were here very useful to illustrate the
properties of efficiency fluctuations of converters driven by time-dependent forces.

A second extension concerns converters operating in finite time [15]. In the case
of Gaussian fluctuations of two coupled currents involved in a time-independent
conversion process, it is possible to marginalize exactly the efficiency statistics at
a finite time. Instead of plateaus in the large deviation function of efficiency, the
Probability Density Function (PDF) displays power law tails. This agrees with the
absence of first moments predicted by large deviation theory (no Legendre transform
of the efficiency LDF). The PDF of efficiency is bimodal in connection with the
existence of two opposite operating modes. A minimum of the PDF develops at
the reversible efficiency with the time evolution of the converter. Interestingly, the
study of efficiency fluctuations has drawn our attention to two complementary and
opposite situations, namely the strong and singular couplings. The strong coupling
is associated with a null determinant of the Onsager response matrix (conductance
matrix). In contrast, singular coupling is associated with a divergent determinant
(or null determinant of the resistance matrix, giving thermodynamics forces as a
function of currents). Strong or singular couplings are needed in principle to reach
the reversible efficiency for a stationary converter. We observed in this work that the
evolution with time of the PDF was as expected from our LDT approach. However,
singular coupling leads to qualitatively different distribution (PDF is insensitive to
the value of typical efficiency at finite time and accumulates close to the reversible
value).

Our third extension on the theory of efficiency fluctuations investigated the case
of n > 2 independent currents [16]. In this case, we introduced a vector of n − 1

efficiencies, and all our conclusions can be extended without surprises. For instance,
when n = 3, the reversible efficiency is replaced by a line in the efficiency plane (cor-
responding to null entropy production). When considering the fluctuations of the
efficiency vector, this line is asymptotically least likely. Still, in the efficiency plane,



122 Chapter D. Efficiency fluctuations

a minimum point of the LDF exists for the most likely efficiency vector. Plateaus
also exist with asymptotic values depending on the direction in the efficiency plane,
etc.

In our initial work, the convexity of the currents’ LDF is needed to determine
the least likely nature of the reversible efficiency of the stationary converter. There-
fore, we ended this series on efficiency fluctuations by considering non-convex cur-
rent fluctuations. This required several preliminary works. First, we considered
the “Brownian donkey model” [73] that is an infinite range Ising model of energy
conversion for which the mean-field treatment is exact [8]. We noticed that the
mean-field total EPR (that can be calculated using the magnetization only) coin-
cides with the exact EPR. In other words, the EPR can be coarse-grained exactly,
and similarly for the partial EPRs associated with heat and work exchanges. Sec-
ond, we extended to dynamical ensembles the framework of Ref. [72] for calculating
non-concave entropies in equilibrium statistical mechanics using LDT. This gave
us the possibility to determine currents LDF for models with ergodicity breaking,
i.e., for models with LDF defined through different branches according to the initial
condition [12]. In a sense, the long time statistics are influenced by the random
initial condition determining the branch in which the system will fluctuate after
a long time. Third, we calculated efficiency fluctuations in the “Brownian donkey
model” of many interacting two-state converters [17]. In this model, the interaction
is attractive (ferromagnetic interaction between spins): two individual converters
in the same state contribute lower to total energy than in different states. This
model undergoes a pitchfork bifurcation when the interaction energy increases. For
this model, we obtained the LDF of efficiency in the ergodic (time greater than the
typical time-scale allowing transition between the metastable mean-field states) and
in the non-ergodic cases (number of converters too high to observe any transition
between metastable states in a physically reasonable amount of time). The ergodic
case corresponds to typical LDF of currents and hence of efficiency, but the emer-
gence of strong coupling was an interesting new feature of the model. Indeed, each
converter was operating with strongly coupled currents. The interaction between
the converters destroyed this strong coupling, which reappeared in the macroscopic
limit because the collective converter was effectively unicyclic (the macroscopic limit
allows the exploration of cycles with the mean-field state only). Due to this emer-
gent strong coupling, the efficiency LDF converges to a constant function except
at the typical efficiency, where it vanishes. In the non-ergodic case and after the
bifurcation, the efficiency fluctuations were more complex, with a plateau for large
|η| and several minima corresponding to the output and input currents ratio in the
mean-field states. We could extend our conclusion on the least likely nature of the
reversible efficiency for stationary converters undergoing a spontaneous phase tran-
sition. However, the degeneracy of the CGF for currents due to emergent strong
coupling (an indirect consequence of the phase transition) led to a degenerate max-
imum of the efficiency LDF. This work on current fluctuations at large volume was
the precursor of other works focused on the large deviation techniques applied in
the macroscopic limit [20].
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The efficiency of an heat engine operating between a hot and
cold reservoir is defined by Z¼ "W/Qh, where Qh is the
heat extracted from the hot reservoir, "W is the work

produced by the engine and "Qc is the remaining heat dumped
into the cold reservoir. Throughout the study, energy fluxes such
as work or heat are positive when flowing into the engine. The
Carnot efficiency ZC¼ 1"Tc/Th is easily found to be the upper
bound of the engine efficiency, ZrZC, by combining the first and
second law of thermodynamics:

DE ¼WþQhþQc; ð1Þ

DStot ¼ DS"Qh=Th"Qc=Tc & 0; ð2Þ
in which the engine energy change DE and entropy change DS
have to be set equal to zero, as the engine returns to its original
state after each cycle.

Early on, Maxwell raised questions concerning the validity of
the second law at small scales1. Szilard discussed similar issues in
the context of information processing2. The theoretical break-
throughs in fluctuation theorems and stochastic thermodynamics
have fully clarified these points and enable a consistent
thermodynamic description of small-scale systems operating
arbitrarily far-from-equilibrium3–11. These developments are of
crucial practical relevance nowadays, as we are able to design
machines operating at the nanoscale as well as to study in great
detail biological machines transducing energy and processing
information at the sub-micron scale12–24. For such engines,
fluctuations are ubiquitous and quantities such as work w, heat q,
energy change De, entropy change Ds and entropy production
Dstot are stochastic and contain a much richer information than
their ensemble average values work W¼/wS, heat Q¼/qS,
energy change DE¼/DeS, and so on. At the stochastic level, the
first law is essentially the same as at the average level, while the
second law of thermodynamics is replaced by a universal
symmetry in the probability distribution for the total entropy
called fluctuation theorem3–8:

De ¼ wþ qhþ qc; Dstot ¼ Ds" qh=Th" qc=Tc; ð3Þ

PðDstotÞ
Pð"DstotÞ

¼ expðDstotÞ; ð4Þ

where the Boltzmann constant is set to unity (kB¼ 1). In words,
the probability for observing a trajectory with entropy increase
Dstot is exponentially more likely than the probability to observe
the corresponding entropy decrease. The second law follows by
Jensen’s inequality, more precisely by taking the logarithm of the
following inequality 1 ¼ e"Dstot

! "
& e" Dstoth i. The fluctuation

theorem equation (4) is a probabilistic statement connecting the
energy fluxes in the engine, since the entropy production can be
expressed with them. It is surprising that, in view of this dramatic
reformulation of the second law, and despite its founding role in
thermodynamics, the properties of the resulting stochastic
efficiency Z'"w/qh have not yet been explored. We will do so
in this study and identify universal features of the corresponding
probability distribution Pt(Z). Note that at equilibrium, all
realizations are reversible, that is, Dstot¼ 0, leading to a
stochastic efficiency equal to the Carnot efficiency Z¼ ZC.
When operating irreversibly, it follows from the fluctuation
theorem equation (4) that realizations with both Dstot40 and
Dstoto0 appear, the latter albeit with a probability which is
exponentially smaller. Hence efficiencies lower but also higher
than Carnot will be observed.

Results
Properties of efficiency fluctuations. Our most striking result is
the following: the Carnot efficiency ZC becomes the least likely

efficiency for long times as a direct consequence of the fluctuation
theorem equation (4). This result holds for engines with finite
state space and therefore with bounded energy so that the energy
and entropy contributions De and Ds can be neglected in the first
and second law in the long time limit as compared with the work
and heat. Hence, the heat dumped in the cold reservoir is just
" qc¼wþ qh and we can focus on the work and heat variables,
w and q¼ qh, and their corresponding output and input powers,
" _w ' "w=t and _q ' q=t. For systems that harbour no long-
time correlations, work _w, heat _q and their ratio Z ¼ "w=q ¼
" _w= _q are expected to converge in the infinite time limit to their
most probable values /wS/t, /qS/t and !Z ' " wh i= qh i. The
latter efficiency is the one predicted by standard thermodynamics,
with the Carnot efficiency as upper bound: !Z ( ZC. When con-
sidering long trajectories, the probability distribution at time t for
w and q as well as for Z are described by the theory of large
deviations25 and assume the following asymptotic form:

Ptð _w; _qÞ ) e" tIð _w; _qÞ; PtðZÞ ) e" tJðZÞ: ð5Þ
The so-called large deviation functions Ið _w; _qÞ and J(Z) describe
the exponentially unlikely deviations of _w, _q and Z from their
most probable values. These functions vanish at the most likely
value of the probability distribution. They are otherwise strictly
positive. In particular, we have J !Zð Þ ¼ 0.

The large deviation function J(Z), being the ratio of " _w over _q,
is obtained from I by the following so-called contraction:

JðZÞ ¼ min
_q

Ið" Z _q; _qÞ: ð6Þ

Intuitively, the decay rate J for a given efficiency is the smallest
among all the decays rates I for the input and output powers
which reproduce this efficiency. Note that since the minimization
over _q in equation (6) includes _q ¼ 0, we find that J(Z)rI(0, 0).

Expressing the entropy production as Dstot¼ q(1/Tc" 1/Th)þ
w/Tc, the fluctuation theorem equation (4) can be shown to
assume the more detailed form26,27:

Pðw; qÞ
Pð"w; " qÞ

¼ expðDstotÞ: ð7Þ

Reversible realizations are characterized by Dstot¼ 0 and thus by
an efficiency equal to Carnot efficiency Z ¼ " _w= _q ¼ ZC. In this
case, P(w, q)¼P("w, " q) implying Ið _w; _qÞ ¼ Ið" _w; " _qÞ.
Hence Ið" ZC _q; _qÞ is a symmetric function of the input power _q.
Since I is generically a convex function (assuming no phase
transitions), the minimum in equation (6) is, for Z¼ ZC, reached
in _q ¼ 0 and thus J(Zc)¼ I(0, 0). Since J(Z)rI(0, 0), this proves
our main result, namely that the Carnot efficiency becomes the
least likely when t-N: J(Z)rJ(ZC) or Pt(Z)ZPt(ZC).

Summarizing so far, all values of the efficiency are possible in a
small-scale engine running for a large but finite time, including
those forbidden by the second law at the average level. The
probability for an efficiency different from the standard
thermodynamic value !Z decreases exponentially with time with
the strongest decrease observed for the Carnot efficiency.
Therefore, the probability distribution for the efficiency will
develop an exponentially pronounced minimum at the Carnot
efficiency as one monitors longer operation times. This observa-
tion provides a novel way to define the temperature scale. In
standard thermodynamics, the Kelvin temperature scale is
introduced by the measurement of the Carnot efficiency of a
reversible engine, measurement which is in principle unattainable
in a finite time. The identification of the least likely efficiency in a
system operating away from reversibility provides an alternative
measurement of the Kelvin temperature, which does not suffer
from this predicament. For a machine designed to operate like an
heat engine (‘on average’), the rare events leading to stochastic

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5721

2 NATURE COMMUNICATIONS | 5:4721 | DOI: 10.1038/ncomms5721 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.



efficiencies larger than the Carnot efficiency correspond to
realizations along which the machine functions as a heat pump,
while those with efficiency lower than zero correspond to a dud
engine dissipating heat while absorbing work. The above
derivation has been illustrated on an heat engine operating in
continuous time, but the results remain valid for all other types of
machines, such as isothermal energy transducers, heat engines,
refrigerators or heat pumps, operating in non-equilibrium steady
states or cyclically as long as the driving cycle is invariant under
time reversal. The only difference is that the Carnot efficiency has
to be replaced by the reversible efficiency. Below, we give an
example of an isothermal work-to-work conversion where the
reversible efficiency is equal to 1 and thus corresponds to the least
likely efficiency.

Beyond these striking general conclusions about the least and
most likely efficiency, we proceed to show that the efficiency
fluctuations in the close-to-equilibrium regime have a universal
scaling form. Our starting point is that close-to-equilibrium, the
relevant work w and heat q fluctuations are generically Gaussian.
The resulting large deviation function for the efficiency, being the
ratio of two correlated Gaussian variables, is found to be:

JðZÞ ¼ 1
2

Z _qh iþ _wh ið Þ2

Z2Cqqþ 2ZCwqþCww
; ð8Þ

where Cwq'(/wqS"/wS/qS)/t, Cww and Cqq are the
elements of the symmetric covariance matrix. The crucial
thermodynamic ingredient is obtained by combining the
Gaussian statistics for _w and _q with the fluctuation theorem.
More precisely, noting that equation (7) has to be valid for all
values of w ¼ t _w and q ¼ t _q, one finds (cf. methods section):

_qh i ¼ ZCCqqþCwq

2Tc
; _wh i ¼ ZCCwqþCww

2Tc
: ð9Þ

The large deviation function J can therefore be solely expressed in
terms of the covariance matrix:

JðZÞ ¼ 1
8T2

c

½ZZCCqqþðZþ ZCÞCwqþCww+2

Z2Cqqþ 2ZCwqþCww
: ð10Þ

The above explicit expression for J(Z) is in agreement with the
general properties pointed out above, namely its minimum and
maximum are reached for Z ¼ !Z and Z¼ ZC, respectively. These
are also the two only extrema of the function. Remarkably, the
least likely decay rate, that is, the rate at Carnot efficiency, can be
rewritten from equations (9,10) solely in terms of the average heat
and work: JðZCÞ ¼ ðZC _qh iþ _wh iÞ=ð4TcÞ. This relation, which
ultimately derives from the fluctuation theorem, should be easy to
test experimentally. We also note that the two asymptotic values
of J(Z) at Z-±N coincide, namely Jð1Þ ¼ ðZCCqqþCwqÞ2=
ð8T2

c CqqÞ ¼ _qh i2=ð2CqqÞ. We used equation (9) for the second
equality. Since the covariance matrix is directly related to the
Onsager matrix (cf. methods section), this latter can be obtained
from measurements of efficiency fluctuations close to equili-
brium. In fact, the covariance matrix Cww, Cwq and Cqq is uniquely
specified by the most probable efficiency !Z, the value of large
deviation function at the Carnot efficiency J(ZC), and the
asymptotic value of the large deviation function J(N)
(cf. methods section), so that equation (10) can be rewritten as:

JðZÞ
JðZCÞ

¼ ðZ" ZÞ2

ðZ" 2Zþ ZCÞðZ" ZCÞþ
JðZCÞ
Jð1Þ ðZ" ZCÞ

2 : ð11Þ

Brownian work-to-work converter. As a first illustration of
our main results, we consider the simplest possible model for
work-to-work conversion28. An overdamped Brownian particle

subjected to two constant forces F1 and F2 diffuses on a plane, as
illustrated in Fig. 1. F2 is the driving force, allowing the particle to
move against an opposing force F1. For a given displacement
x¼ x(t) of the particle (assuming x(0)¼ 0), the work performed
by each force is given by w1¼F1?x and w2¼ F2?x. The
corresponding stochastic efficiency is Z¼ "w1/w2. The
displacement x(t) is a Gaussian random variable with average
/x(t)S¼mFt, where F¼F1þF2, m is the mobility and 2Dt is the
dispersion in any direction of motion: /xi(t)xi(t)S¼ 2Dt with
D the diffusion coefficient. The aforementioned Gaussian
scenario is thus exact in this model with the role of _w and _q
played by _w1 ¼ F1 , x=t and _w2 ¼ F2 , x=t. One obviously
has h _w1i ¼ mF1 , F, and h _w2i ¼ mF2 , F. The corresponding
correlation functions read C11¼ 2D ||F1||2, C22¼ 2D||F2||2 and
C12¼ 2DF1 , F2. The large deviation of efficiency is given by

JðZÞ ¼ 1
2
ðZ _w2h iþ _w1h iÞ2

Z2C22þ 2ZC12þC11
¼ m2½ðZF2þF1Þ , F+2

4DðZF2þ F1Þ2
: ð12Þ

One immediately verifies that J(Z) takes its maximum value
J(1)¼m2||F2||2/4D in Z¼ 1 which is the predicted reversible
efficiency for work-to-work conversion. Furthermore, the above
mentioned averages and correlations functions obey the relations
equation (9) on setting ZC¼ 1 and D¼mT from the Einstein
relation. One can thus also rewrite the J(Z) as in equation (10) or
equation (11) (with ZC¼ 1).

Photoelectric device. Our second model is a nano-sized photo-
electric device powered by black-body radiation at temperature
Th (ref. 29). The device is composed of two quantum dots,
each with a single-energy level El and Er (Er4El), respectively, cf.
Fig. 2. Coulomb repulsion prevents simultaneous occupation by
electrons of both quantum dots. Each dot can exchange electrons
with its neighbouring electronic lead. Both leads are at the same
temperature Tc, but at different voltages and therefore at different
chemical potentials mr4ml. Electron transfers between the two
quantum dots are induced either by hot black-body radiation at
Th or by cold thermal phonons at Tc. This device operates as an
heat engine fuelled by the heat q¼ np(Er"El), where np is the
number of photons absorbed from the hot black body, and
producing a positive work output "w¼ neDm, where ne is
the number of electrons transferred from left to right lead
against the chemical potential gradient Dm¼mr"ml40. The
stochastic efficiency is thus Z¼ "w/q. The rates describing the
Markovian dynamics of the device as well as the large deviation
function for the work and heat statistics are discussed in the
methods section. The resulting large deviation function for effi-
ciency is plotted in Fig. 3. All the predicted features—the least

F2

X

F=F1+F2

F1
0

w2

w1

Figure 1 | Work-to-work converter for an overdamped Brownian particle
diffusing in a plane. The particle is driven by the two forces F1 and F2. The
orange line is a specific trajectory ending at position x. The stochastic work
w1 and w2 are obtained from the scalar products (dashed lines) projecting x
on F1 and F2, respectively. The ratio of the lengths obtained from these
projections gives the stochastic efficiency for this specific trajectory.
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likely value at Carnot efficiency and the universal shape of
the large deviation function close-to-equilibrium—are perfectly
reproduced.

Discussion
The efficiency of macroscopic thermal machines is the ratio
between two averaged quantities, the extracted work and the heat
coming from the hot source. One of the momentous discoveries
in science, which lead to the formulation of the second law of
thermodynamics, is the observation by Carnot that this efficiency
has a maximum called Carnot efficiency. Contrary to macro-
scopic machines, the behaviour of small machines is subjected to
strong fluctuations. Their average behaviour thus provides an
incomplete description except in the macroscopic limit where
fluctuations are typically strongly peaked around the average. In
the present study, we introduce the concept of fluctuating
efficiency to accurately characterize the performance of small
machines and find universal features in its fluctuations. Using the
fluctuation theorem, which generalizes the second law at the
fluctuating level, we provide an analogue of the Carnot analysis
by proving that the Carnot efficiency becomes the least likely
efficiency when long measurement times are considered,
independently of any details of the machine or of its mode of
operation. Furthermore, we show that close-to-equilibrium, the
large deviation function of the efficiency fluctuations obeys a
universal form parametrized by the Onsager matrix of the engine.
Our study suggests a new direct application of the fluctuation
theorem, which was previously mostly invoked to measure free
energy differences18,30,31. Since heat and work fluctuations are
nowadays measured in a wide variety of systems12–18,20,24,
we expect that experimental measurements of the fluctuating
efficiency will become a valuable tool to characterize the
performance of small engines.

Methods
Linear response and fluctuation theorem. For the photoelectric device, the
average photon and electron currents, _Np ' hnpi=t and _Ne ' hnei=t, read in the
linear regime

_Ne ¼ LeeDm=Tc þ LepDEDb; ð13Þ

_Np ¼ LepDm=Tc þ LppDEDb; ð14Þ

where Db¼ 1/Tc" 1/Th40, DE¼Er" El40 and L is the symmetric Onsager

matrix with LppZ0, LeeZ0 and det LZ0. The average work and heat per unit time
can thus be written as

_W ¼ Dm _Ne ¼
1

Tc
LeeDm2 þ ZCLepDmDE
# $

; ð15Þ

_Q ¼ DE _Np ¼
1

Tc
LepDmDEþ ZCLppDE2# $

: ð16Þ

From Green–Kubo relation, the linear response coefficients are related to
equilibrium fluctuations by

Lep ¼ lim
t!1

1
2t
h½ne tð Þ" hneieq+½np 0ð Þ" hnpieq+ieq: ð17Þ

This implies that in the long time limit, Cwq/2-DmDELep. Proceeding similarly
for the other response coefficients, we find Cww/2-Dm2Lee and Cqq/2-DE2Lpp.
Equations (15–16) thus lead to equation (9) of the results section. These equalities
may also be derived using the fluctuation theorem for work and heat in the
Gaussian limit. Indeed, using

Ið _w; _qÞ" Ið" _w; " _qÞ ¼ " ðZC _qþ _wÞ 1
Tc
; ð18Þ

and the quadratic large deviation function

Ið _w; _qÞ ¼

_w" _W
_q" _Q

% &T Cqq "Cwq

"Cwq Cww

' (
_w" _W
_q" _Q

% &

2 det C
; ð19Þ

we get

det C
2Tc
ðZC _qþ _wÞ ¼ _w _WCqq þ _q _QCww "Cwqð _w _Qþ _q _WÞ: ð20Þ

Since this relation must hold true for any values of _w and _q, we obtain

1
det C

Cqq "Cwq

"Cwq Cww

' (
_W
_Q

% &
¼ 1=2Tc

ZC=ð2TcÞ

% &
ð21Þ

which reproduces the expected result when solved for _W and _Q.

Photoelectric device: heat and work statistics. The work w and heat q statistics
in the photoelectric device is obtained by considering the generating function
gt(j, g, l)¼/egwþ lqSj where the subscript j denotes that the trajectory average is
conditioned on the final state j of the device at time t. The three different states of
the device are denoted j¼ 0, l, r for respectively no electrons in the device, one
electron in the energy level El connected to the left lead or one electron in the
energy level Er connected to the right lead. The generating function evolves

Tc

Tc

Tc

Th

El

Er

!l

Γh

Γr

!r

Γc

Black-body radiation

Left
lead

Right
lead

Engine

Phonon bath

Γl

Figure 2 | Sketch of a photoelectric device. The device consists of two
single-level quantum dots (in white) connected to two leads (in blue) at
temperature Tc and at different chemical potentials ml and mr. The electron
transitions between left and right quantum dots are induced either by
photons from the black-body radiation at temperature Th (in red) or by
phonons at temperature Tc (in blue). The arrows indicate possible electronic
transitions between different energy levels and the G’s represent the
coupling strengths with the reservoirs.
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Figure 3 | Large deviation functions of efficiency J(g). The curves are
obtained from equation (6) for the photoelectric device of Fig. 2 operating
on average as an heat engine. Each curve corresponds to a given
temperature and chemical potential differences, black circles denote heat
engine realizations, red triangles (resp. gold squares) denote heat pump
(resp. a dud engine) realizations. The blue-filled squares denote the least
likely Carnot efficiency, while the zeros correspond to the most likely one.
The left and right horizontal asymptotes coincide and correspond to
realizations with low-heat exchange. Inset: the close-to-equilibrium
approximation (symbols) fits very well with the exact result equation (10)
(black solid line). Parameters for the curves are El¼0.5, Er¼ 2.5, ml¼ 1,
Tc¼ 1, DT¼ Th" Tc, Gh¼Gl¼Gr¼ 10 and Gc¼ 1.
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according to

_gtð0; g; lÞ
_gtðl; g; lÞ
_gtðr; g; lÞ

0

@

1

A ¼
" kl0 " kr0 k0l k0re" gDm

kl0 " k0l " krl kc
lr þ kh

lre"lðEr " ElÞ

kr0egDm kc
rl þ kh

rle
lðEr " ElÞ " k0r " klr

2

4

3

5
gtð0; g; lÞ
gtðl; g; lÞ
gtðr; g; lÞ

0

@

1

A:

ð22Þ
When l¼ g¼ 0, equation (22) becomes a Markovian master equation for the
probability Pj¼ gt(j, 0, 0) to find the device in state j at time t. The rates kij denote
the probability per unit time to jump from state j to i. Introducing the Fermi–Dirac
distribution f(x)'1/(exþ 1) and the Bose–Einstein distribution b(x)'1/(ex" 1),
they are defined by

kl0 ' Gl f
El " ml

Tc

% &
; k0l ' Gl 1" f

El "ml

Tc

% &' (
;

kr0 ' Gr f
Er "mr

Tc

% &
; k0r ' Gr 1" f

Er " mr

Tc

% &' (
;

knrl ' Gnb
Er " El

Tn

% &
; knlr ' Gn 1þ b

Er "El

Tn

% &' (
;

ð23Þ

and kij ' kc
ij þ kh

ij , where n¼ c, h denotes the cold and hot reservoir and the G’s
the coupling strength with the various reservoirs29 as illustrated in Fig. 2 of the
result section. For long times t, the work and heat-generating function is
dominated by the highest eigenvalue f(g, l) of the rate matrix in equation (22)

egwþ lq! "
¼
X

j¼0;l;r

gtðj; g; lÞ )
t!1

etfðg;lÞ: ð24Þ

The latter can be calculated analytically. The corresponding large deviation
function is obtained by the Legendre transform Ið _w; _qÞ ¼ maxg;lfg _wþ l _q
"fðg; lÞg. The large deviation function for efficiency fluctuations is
obtained from it using equation (6). Alternatively, it can be obtained using
J(Z)¼ "ming f(g, Zg). The proof will be provided in a forthcoming publication.
This latter minimization has been performed numerically to produce Fig. 3 in
the study.

Alternative expression of J(g). The three equations in the study for J(N), J(ZC)
and !Z expressed in term of the covariance matrix close-to-equilibrium can be
inverted to obtain

Cqq ¼
8JðZCÞ

2T2
c

ð!Z" ZCÞ
2Jð1Þ

; ð25Þ

Cwq ¼ " 8JðZCÞT2
c

Jð1Þ!Z" Jð1ÞZC þ ZCJðZCÞ
Jð1Þð!Z2 " 2!ZZC þ Z2

CÞ
; ð26Þ

Cww ¼ 8JðZCÞT2
c

Jð1Þ!Z2 þ Z2
CJðZCÞ" Jð1ÞZ2

C

Jð1Þð!Z2 " 2!ZZC þ Z2
CÞ

: ð27Þ

Using these coefficients, we recover equation (11) of the study.
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Efficiency Statistics at All Times: Carnot Limit at Finite Power
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We derive the statistics of the efficiency under the assumption that thermodynamic fluxes fluctuate with
normal law, parametrizing it in terms of time, macroscopic efficiency, and a coupling parameter ζ. It has a
peculiar behavior: no moments, one sub-, and one super-Carnot maxima corresponding to reverse operating
regimes (engine or pump), the most probable efficiency decreasing in time. The limit ζ → 0 where the
Carnot bound can be saturated gives rise to two extreme situations, one where the machine works at its
macroscopic efficiency, with Carnot limit corresponding to no entropy production, and one where for a
transient time scaling like 1=ζ microscopic fluctuations are enhanced in such a way that the most probable
efficiency approaches the Carnot limit at finite entropy production.

DOI: 10.1103/PhysRevLett.114.050601 PACS numbers: 05.70.Ln, 05.70.Fh, 88.05.Bc

Efficiency quantifies how worth a local gain at the
expense of a global loss is. In thermodynamics, “losses”
are measured by the rate σ̄2 > 0 at which entropy is
externalized to the environment in the form of a degraded
form of energy, while “gain” is the rate −σ̄1 at which
entropy is expelled from a system to upgrade its own state.
Globally, entropy is produced at rate σ̄ ¼ σ̄2 þ σ̄1, and the
second law of thermodynamics σ̄ ≥ 0 conveys that locally
one cannot earn more of what is globally lost. Then, the
efficiency η̄ ¼ −σ̄1=σ̄2 is bounded by the (scaled) Carnot
efficiency ηc ¼ 1. Alas, in craving this limit one is deluded
by the fact that it occurs at zero power, which is useless for
any activity to be accomplished in a reasonable time.
This picture is only tenable for macroscopic systems. For

microscopic systems subject to random fluctuations, the
concept of a stochastic efficiency has been recently
introduced by Verley et al. [1,2]. The first notion one
has to revise is that a fluctuating efficiency can indeed
exceed the Carnot limit, when in a machine designed to
convert in average a form of input power into a form of
output power (e.g., an engine producing work at the
expense of a heat flow), for a rare event the input and
output are reversed (e.g., a pump that employs mechanical
work to absorb heat). Moreover, it has been observed that
for time-symmetric protocols in the long time limit the
Carnot efficiency becomes the least probable in a “large
deviation” sense [3]—a very counterintuitive and fascinat-
ing result that, in its time-asymmetric variant [2,4], is
already subject to experimental inquiry [5]. Corrections at
long finite times have been estimated in Ref. [4].
In this Letter, we derive the full probability density

function (PDF) of the efficiency, under the assumption that
thermodynamic fluxes are distributed with a multivariate
Gaussian with cumulants growing linearly in time. The
efficiency PDF displays quite peculiar features. In particu-
lar, it does not afford moments of any order so that

there is no average efficiency and mean-square error.
Experimentally, this implies that any data analysis should
focus on most probable values. About the latter, after an
initial transient the distribution becomes bimodal, as
observed numerically in Ref. [6]. As time elapses, the
more pronounced maximum drifts towards the always
smaller macroscopic value of the efficiency, while a less
pronounced maximum at higher efficiency moves in the
super-Carnot region towards infinity. We provide a clear
physical interpretation of these two peaks. Finally, we
argue that the macroscopic framework fails to capture
another way of approaching Carnot efficiency at finite
entropy production, at finite time, when microscopic
fluctuations are enhanced so as to affect the macroscopic
behavior.
Macroscopic nonequilibrium thermodynamics [7] is

rooted on two assumptions, both of which are today being
challenged in the framework of the stochastic theory of
nonequilibrium thermodynamics [8,9]: Certain fluxes
x ¼ ðx1; x2Þ, with units of an extensive physical quantity
per time, take definite values x̄. Fluxes are linearly related
to their conjugate thermodynamic forces f via x̄ ¼ Lf ,
where the linear response matrix L is assumed to be
positive semidefinite and symmetric by virtue of the
Onsager reciprocity relations, yielding a non-negative
macroscopic entropy production rate σ̄ ¼ f · Lf .
We relax the first assumption, by supposing that at a

given time t fluxes x are distributed with law PtðxÞ. Each
current produces entropy at rate σi ¼ fixi, for a total
entropy production rate σ ¼ σ1 þ σ2, with units of kB
per time. Then, the adimensional efficiency

η ¼ −
f1x1
f2x2

¼ −
σ1
σ2

ð1Þ

is a stochastic variable distributed with PDF
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PtðηÞ ¼
Z

dx1dx2δ

�
ηþ x1f1

x2f2

�
Ptðx1; x2Þ

¼ φ

Z
dxjxjPtð−φηx; xÞ; ð2Þ

where φ ¼ f2=f1 can be assumed to be positive. A
remarkable fact one immediately encounters is that the
efficiency can fluctuate beyond the Carnot limit. The
probability of an efficiency higher than that of Carnot
coincides with the probability of negative entropy produc-
tion rate,

Ptðη < 1Þ ¼ Ptðσ > 0Þ ¼ hθðσÞit; ð3aÞ

Ptðη > 1Þ ¼ Ptðσ < 0Þ ¼ hθðσÞe−tσit; ð3bÞ

where θ is Heaviside’s step function. The rightmost
equations follow from the fluctuation theorem [10,11]

PtðσÞ
Ptð−σÞ

¼ etσ; ð4Þ

which states that processes producing negative entropy are
exponentially disfavored with respect to those producing
positive entropy. Therefore, that super-Carnot efficiencies
are unlikely compared to sub-Carnot efficiencies is an
incarnation of the fluctuation theorem.
Exact results can be obtained by assuming that fluxes are

distributed with normal multivariate density function

PtðxÞ ¼
t

4π
ffiffiffiffiffiffijLjp exp

�
−
t
4
ðx − x̄Þ · L−1ðx − x̄Þ

�
; ð5Þ

where j · j is the determinant. That (one-half) the correlation
matrix should be identified with the linear response matrix
is corroborated by the Green-Kubo relations

Lij ¼
t
2
hðxi − x̄iÞðxj − x̄jÞi; ð6Þ

another well-known consequence of the fluctuation theo-
rem [12]. The time dependence in Eq. (5) is due to the fact
that the time-integrated fluxes tx̄ increase linearly in time,
and correspondingly so do their cumulants. Under these
assumptions, the efficiency PDF Eq. (2) can be exactly
calculated (see the Supplemental Material [13]). It
only depends on four adimensional parameters: The
macroscopic efficiency η̄, the coupling parameter ζ ¼
jLj=ðL11L22Þ ∈ ½0; 1� that for thermoelectric devices [14]
is related to the so-called figure of merit zT ¼ 1=ζ − 1, the
average entropy production rate σ̄, which sets the time scale
and can be reabsorbed by a time reparametrization τ ¼ tσ̄,
and ϵ ¼ �1. With σ̄ being the only extensive parameter,
large τ stands both for large times and the macroscopic
limit. We obtain (Supplemental Material [13])

PτðηÞ ¼
e−τ=4

πaðηÞ ffiffiffiffiffiffijCjp f1þ ffiffiffiffiffi
πτ

p
hðηÞeτhðηÞ2erf½ ffiffiffi

τ
p

hðηÞ�g

ð7Þ

where erf is the error function and

aðηÞ ¼ ð1 − ηÞ2 þ 1

jCj
�
η − η̄

1 − η̄

�
2

; ð8aÞ

hðηÞ ¼ 1 − η

2
ffiffiffiffiffiffiffiffiffi
aðηÞp : ð8bÞ

Here, jCj ¼ jLjf21f22=σ̄2 is the determinant of the matrix
with dimensionless entries Cij ¼ Lijfifj=σ̄. It can be
expressed in terms of our parameters as

jCj ¼ zT
2

�
1þ ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4

zT
η̄

ð1 − η̄Þ2
s �

−
η̄

ð1 − η̄Þ2 ; ð9Þ

where ϵ ¼ � accounts for the existence of two probability
distributions corresponding to given parameters. For jLj to
be real, the known bound

η̄ ≤
1 −

ffiffiffi
ζ

p
1þ ffiffiffi

ζ
p ð10Þ

must hold [14]. Importantly, aðηÞ is positive semidefinite.
Let us study the efficiency PDF in detail. First, it is a

power-law distribution with tails

Pτðη → �∞Þ ∝ η−2; ð11Þ

which, after submission of this Letter, has been proven to
be a universal property of efficiency distributions [15]. As a
consequence, it does not afford finite moments of any order.
Hence, the macroscopic efficiency η̄ is not the average
efficiency hηit, which is not finite.
In Fig. 1, the efficiency distribution is plotted as the bold

curve. Remarkably, for a large class of parameters it
displays two maxima at ηm; η�m and a minimum, the latter
slightly off the Carnot efficiency. Hence, not only super-
Carnot efficiencies are possible, but indeed, there appears a
local maximum with an efficiency higher than that of
Carnot. To understand its physical origin, we distinguish
four operational regimes of the machine, according to the
signs of the two contributions σ1 and σ2 to the entropy
production rate. The two regimes contributing to positive
efficiencies are the machine −þ that employs process 2
flowing along its spontaneous tendency, to drive process 1
against its spontaneous tendency (e.g., heat engine) and the
dual machine þ− where the system’s spontaneous ten-
dency is used to drive the environment against its tendency
(e.g., the heat pump). Correspondingly, we have
θðηÞPτðηÞ ¼ Pþ−

τ ðηÞ þ P−þ
τ ðηÞ where
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Pþ−
τ ðηÞ ¼

Z
þσ1>0
−σ2>0

dx1dx2Ptðx1; x2Þδ
�
ηþ f1x1

f2x2

�
ð12Þ

and similarly for P−þ
τ . Shaded plots are provided in Fig. 1,

showing that each of the two maxima is almost exclusively
determined by one of the two modes of the machine, the
second of which by inversion of input and output has
typical efficiency 1=η�m < 1. Regimes þþ and −− con-
tribute to the tail of the distribution at η < 0.
Let us now study the behavior of PτðηÞ in scaled

time, depicted in Fig. 2. At τ ¼ 0 we obtain a Cauchy
distribution P0ðηÞ ¼ 1=½πaðηÞ ffiffiffiffiffiffijCjp �, with maximum at
η0 ¼ −L12f1=ðL22f2Þ. We have η0 ≥ η̄, and equality can
only occur for jCj ¼ 0. This implies that the most probable
efficiency decreases in time towards η̄. Furthermore, at
thermodynamic equilibrium where all the forces vanish,

f → 0 at finite φ, it can be shown that Peq
τ ðηÞ ¼ P0ðηÞ,

which means that systems at equilibrium do not evolve. As
time elapses a transition to a bimodal distribution occurs,
with the super-Carnot maximum drifting to infinity. We can
define a critical time τc at which there appears an inflection
point in PτðηÞ. Numerical plots of τc in terms of η̄ and c
show that the critical time is higher the closer to the
maximal efficiency and to the “loose coupling” condition
ζ → 1 (Supplemental Material [13]). Finally, in the long
time limit one has erfð ffiffiffi

τ
p

hÞ ∼ 1 − e−τh
2

=ð ffiffiffiffiffi
πτ

p jhjÞ [16] and

Pτ→∞ðηÞ ∼
e−τ=4

πaðηÞjCj
�
1 −

h
jhj þ

ffiffiffiffiffi
πτ

p
eτhðηÞ2

�
: ð13Þ

The large-time behavior is captured by the large
deviation rate function IðηÞ ¼ −limτ→∞τ

−1 lnPτðηÞ ¼
1=4 − hðηÞ2 ≥ 0, which was first calculated and thoroughly
analyzed by Verley et al. [1,2]. The rate function has only
two extrema, a minimum Iðη̄Þ ¼ 0 and a maximum
Ið1Þ ¼ 1=4, and asymptotically Ið�∞Þ ¼ ½4jCjð1− η̄Þ2þ
4�−1 ≤ Ið1Þ. Then, the more pronounced maximum tends to
the macroscopic efficiency η̄, while the minimum tends to
the Carnot efficiency. The second maximum does not
appear in the large deviation rate function because at
infinite time it moves to infinity, since it belongs to a
subdominant decay mode. This proves the existence of a
critical time τc, as there must exist another maximum for
the distribution to converge.
The quest for the Carnot limit is very subtle. By Eq. (10),

the Carnot bound can be saturated in the limit ζ → 0, giving
rise to two extreme situations related to the spectrum and
eigenvectors of the response matrix L → Lϵ. For ϵ ¼ −
(“tight coupling”), by Eq. (9) the correlation matrix
becomes degenerate,

L− ¼
�

L11 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L11L22

p þOðζÞ
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L11L22

p þOðζÞ L22

�
; ð14Þ

where OðζÞ are terms of order ζ. For ϵ ¼ þ (“singular
coupling”), L tends to the inverse of a degenerate matrix,
i.e., Lþ ¼ L−=OðζÞ, with jLþj → ∞.
To reach Carnot efficiency, a second independent

condition (“self-duality”) must hold: φ attains value
φ� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L11=L22

p
, which affords an interesting interpreta-

tion in terms of the probability of the inverse efficiency
(Supplemental Material [13]). When ζ → 0, this condition
makes f either the null eigenvector of L− relative to its null
eigenvalue or of Lþ relative to its finite eigenvalue. In the
tight-coupling regime, this condition is known as the “stall
force” [17].
Expressing the efficiency in terms of the adimensional

parameters ζ and ϕ ¼ φ=φ� (for L12 < 0) as [18]

η̄ðζ;ϕÞ ¼ −
1 − ϕ

ffiffiffiffiffiffiffiffiffiffiffi
1 − ζ

p
ϕ2 − ϕ

ffiffiffiffiffiffiffiffiffiffiffi
1 − ζ

p ; ð15Þ

FIG. 1 (color online). Bold curve: efficiency distribution PτðηÞ
for parameter values ζ ¼ 0.01, η̄ ¼ 0.6, τ ¼ 10, ϵ ¼ þ1. Filled
curves beneath: P−þ

τ ðηÞ and Pþ−
τ ðηÞ, showing that each maxi-

mum is mostly due to one working mode of the engine.

FIG. 2 (color online). Main frame: Efficiency distribution at
various scaled times, for ζ ¼ 0.05, η̄ ¼ 0.3, ϵ ¼ þ. The vertical
dotted lines correspond to η̄ and ηc. Inset: Contour plot of the
efficiency PDF as a function of η and τ (in log scale). Maxima are
points where the level lines have horizontal tangents. After a
critical time, a second maximum drifting to infinity appears.
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one finds that the two limits towards self-duality and
towards tight or singular coupling do not commute,

1 ¼ −lim
ζ→0

lim
ϕ→1

η̄ ¼ þlim
ϕ→1

lim
ζ→0

η̄ : ð16Þ

Then, a macroscopic Carnot efficiency is “fragile,” as the
self-dual forces needed to attain it are those that slightly out
of ζ ¼ 0 give a “dud” machine that dissipates to obtain
nothing, with macroscopic efficiency η̄ ¼ −1.
Nevertheless, the probabilistic level is richer. At tight

coupling the bivariate Gaussian Eq. (5) becomes univariate
with support along x1=x2 ¼ −φ�, and the efficiency PDF a
Dirac delta centered at the macroscopic efficiency. Then
tightly coupled machines work macroscopically at all
scaled times.
More interesting is the singular coupling. Figure 3 shows

that in this limit all extrema tend to accumulate towards the
Carnot efficiency, where the density concentrates. Despite
the fact that the two peaks survive, convergence to a Dirac
delta can be proven by the following argument [19]: From
Eqs. (7) and (8), h → 1=2, a → ð1 − ηÞ2, and the efficiency
PDF converges to a distribution with support in η ¼ 1,
which is then necessarily a finite combination of derivatives
of the Dirac delta PτðηÞ ¼

P
N
n¼0 pnδ

ðnÞð1 − ηÞ [20]. Since
hgi > 0 for all positive test functions gðηÞ > 0, then
necessarily pn ¼ 0 but for p0 ¼ 1 □. Then, singular
coupling pushes the most probable efficiency towards
the Carnot limit at fixed τ; the shadings in Fig. 3 suggest
that in this limit the distribution is fairly insensitive to η̄.
Moreover, the contour plot in Fig. 3 supports that the most
probable efficiency stays at the same value for probability
densities evaluated at a fixed time τ ∝ 1=ζ, showing that

convergence to η̄ is more and more delayed. However, it
must be remembered that the physical time scale is set by
the entropy production rate. Necessarily, the matrix entries
of Lþ diverge; then in general σ̄ also diverges. Still, Lþ
admits a finite eigenvalue. Picking the forces along the
relative eigenvector, ϕ ¼ 1þOðζÞ, one obtains a finite
entropy production rate. Oddly, as discussed above, these
conditions are met when the macroscopic machine is dud.
To resume: At singular coupling, the effect of fluctua-

tions is macroscopically visible and permits us to work
close to Carnot efficiency at finite entropy production rate
for sufficiently long physical times. The conditions for
which the entropy production rate can be held finite are
those under which the machine eventually evolves towards
a dud fate. Notice that in this regime the system might flip
randomly across the close sharp peaks of the PDF.
However, the inset in Fig. 3 suggests that at intermediate
times reasonably high typical efficiencies will be favored
and that a large separation between such peaks (the dark
region of zero probability) occurs. Hence, to put it with a
motto, a singular machine doomed to be useless might be
efficiently useful for some time due to fluctuations; the
better in the short run, the worse in the long. By the Green-
Kubo relation of Eq. (6) the singular coupling limit is
approached when correlations between the currents diverge
and the inverse correlation matrix becomes degenerate. It is
tempting to parallel this behavior to the paradigm of
criticality at phase transitions, where fluctuations become
macroscopic, correlations diverge, and the covariance
matrix degenerates [21,22].
An important observation to be made here is that singular

coupling pushes the system far from equilibrium. The
framework of stochastic thermodynamics encompasses
such systems by assuming that they are subtended by an
underlying Markovian dynamics, giving rise to non-
Gaussian current statistics. Gaussianity is only recovered
in the linear regime at large times by the central limit
theorem [23,24]. While the model of a Brownian particle in
a tilted plane studied in Ref. [1] has the exact Gaussian
propagators studied in this Letter, in general Markov
processes have a more complex behavior in time; in
particular, the average flux varies as the system evolves,
depending on the initial ensemble. Then, the exact short-
and large-time behavior of the efficiency distribution might
become model dependent. For asymmetric protocols, a
signature of non-Gaussian behavior is the off-Carnot least-
probable efficiency [2,4,5].
Nevertheless, our study points out that in the simplest

Gaussian scenario the efficiency PDF manifests peculiar
features that might possibly be universal: power-law tails,
no finite moments, a naturally occurring transition to a
bimodal distribution due to reverse working regimes, etc.
Particularly intriguing is the limit of a degenerate or
singular covariance matrix. While the former case is
intrinsically macroscopic and broadly studied [14,18],

FIG. 3 (color online). Graphs of ðη; PτðηÞÞ for τ ¼ 10, η̄ ¼ 0.3,
ϵ ¼ þ and for various coupling parameters (from bolder to
thinner) ζ ¼ 0.1; 0.01; 0.001; 0.0001. The shading represents the
distance to the corresponding curves for η̄ ¼ −1. Inset: Contour
plot of the efficiency PDFs corresponding to parameter ζ ¼ 0.1=τ
as a function of the efficiency η and the scaled time τ (in log
scale), showing that the PDF is invariant at all times, hence, that
singular coupling stretches the relaxation times. Lighter tones for
higher probabilities, darker for lower.

PRL 114, 050601 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

6 FEBRUARY 2015

050601-4



we obtain a clear indication that the singular coupling
regime displays an interesting behavior that could lead to
the enhancement of the efficiency above its macroscopic
value. More light is to be shed on these issues by future
inquiry on the finite-time statistics of the efficiency in
stochastic models [15,17] in their rich phenomenology,
including maximum power generation [25,26], multitermi-
nal machines [27], broken time-reversal symmetry [28], the
insurgence of phase transitions, and in relation to the issue
of efficiency enhancement by noise [29] or by decoherence
[30]. Experimental setups that could test these predictions
are already available [31–35]. The full statistics of the
efficiency close to equilibrium has recently been sampled
for a Carnot engine realized with a Brownian particle, in the
quasistatic limit where the currents’ statistics is Gaussian
[5], and data analysis farther away from equilibrium might
soon be available.
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We study the efficiency fluctuations of a stochastic heat engine made ofN interacting unicyclic machines
and undergoing a phase transition in the macroscopic limit. Depending on N and on the observation time,
the machine can explore its whole phase space or not. This affects the engine efficiency that either strongly
fluctuates on a large interval of equiprobable efficiencies (ergodic case) or fluctuates close to several most
likely values (nonergodic case). We also provide a proof that despite the phase transition, the decay rate of
the efficiency distribution at the reversible efficiency remains largest one although other efficiencies can
now decay equally fast.

DOI: 10.1103/PhysRevLett.124.250603

Introduction.—Small machines behave on average like
macroscopic ones: a mean input flux is converted into a
mean output flux with an efficiency bounded by the
reversible efficiency due to the second law of thermody-
namics [1]. However, their input and output fluxes fluctuate
with root mean squares which can be larger than their
averages. These fluctuations are constrained by the uni-
versal fluctuation relations that lead to the second law at the
ensemble averaged level [2–4]. This implies that the
efficiency η of the machine along a single realization of
duration t is also a stochastic quantity characterized by a
probability distribution PðηÞ. As recently discovered, its
fluctuations also display universal statistical features in
both classical [5–12] and quantum systems [13–16]. More
specifically, for long trajectories of autonomous machines,
the distribution PðηÞ concentrates at the macroscopic
efficiency η̄ while the reversible efficiency ηrev becomes
asymptotically the less likely. Also, the efficiency large
deviation function (LDF), defined as the long time limit of
t−1 lnPðηÞ, has a characteristic smooth form with two
extrema only and a well-defined limit for large efficiency
fluctuations. These predictions were experimentally veri-
fied in Refs. [17,18]. However, these results focus on the
efficiency statistics at long times and rely on the assump-
tions that the machine has a finite state space and thus
cannot undergo a phase transition.
The performance of machines undergoing a nonequili-

brium phase transition has attracted increasing attention
[19–25]. In this Letter, we consider a model ofN interacting
machines first proposed in Ref. [26]. At themean-field (MF)
level, i.e., when N → ∞, they may undergo a nonequili-
brium phase transition caused by an asymmetric pitchfork
bifurcation. Past the bifurcation point, ergodicity is broken
and these machines exhibit multiple macroscopic efficien-
cies [27]. In practice this means that their initial condition

will determine which stable steady state is eventually
reached and its corresponding macroscopic efficiency. As
a result fluctuations in performance only come from
uncertainties in the initial state. Our main goal here is to
characterize how efficiency fluctuations scale in size N and
in time t in such critical machines using LDFs. We do so by
developing a path integral method (in the spirit of [28–34]).
Crucially two regimes must be distinguished depending on
the order in which these scalings are taken, each yielding
to a different LDF. The first, JðηÞ, characterizes the non-
ergodic regime and corresponds to taking first N → ∞ and
then t → ∞ on ðNtÞ−1 lnPðηÞ. The second, J��ðηÞ, charac-
terizes the ergodic regime and corresponds to the opposite
order of limits. While this latter remains smooth, its two
extrema become degenerate, giving rise to strong efficiency
fluctuations spanning over different operating modes. The
former instead is not continuously differentiable anymore
and displays steep minima located around the mean field
efficiencies and multiple plateaux. Remarkably, despite
significant qualitative changes in both types of LDF, the
reversible efficiency, while not uniquely anymore, has the
fastest decaying efficiency probability. While our method is
presented for a specific model, it seems particularly well
suited to study collections of interacting machines and
characterizes critical nonequilibrium fluctuations.
Model.—We consider a machine made of a collection of

N interacting unicyclic machines. Each of these is autono-
mous and converts heat into mechanical work by hopping
between two discrete states of energy 0 or E ≥ 0 via two
different transition channels labeled by ν, where ν ¼ 1 is
caused by a cold reservoir at temperature Tð1Þ ¼ 1=βð1Þ and
ν ¼ 2 by a hot one at Tð2Þ ¼ 1=βð2Þ (we set kB ¼ 1). A
nonconservative force promotes (represses) the transition
from the lower to the higher energy state via channel ν ¼ 1
(ν ¼ 2), while the opposite is true for the transition from the
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higher to the lower state. These unicyclic machines interacts
via a pair interaction energy V=N only when they are not in
the same states. The energy of the collective machine thus
reads Un ¼ nEþ nðN − nÞV=N, where n is the number
of machines in the high energy state. The probability to
find the collective machine in state n at time t follows a

Markov master equation _pn ¼
P

ε¼�1;0

P
ν k

ðνÞ
n;nþεpnþε,

where kðνÞnþϵ;n is the Poisson rate with which a unicyclic
machine hops to a high (low) energy state for ϵ ¼ 1 (ϵ ¼ −1)
via channel ν and kðνÞn;n ¼ −kðνÞnþ1;n − kðνÞn−1;n, see Fig. 1. To
specify further the dynamics, we choose (for ϵ ¼ �1)

kðνÞnþϵ;n ¼ N

�
1þ ϵ

2
− ϵ

n
N

�
e−

βðνÞ
2
ðEaþUnþϵ−Un−W

ðνÞ
nþϵ;nÞ; ð1Þ

whereEa is an activation energy andW
ðνÞ
nþϵ;n ≡ −ϵð−1ÞνF is

the work done by the nonconservative force and received by
the machine during the transition n → nþ ϵ via ν. Defining
intensive quantities as being per unicyclic machine and per
unit time, the intensive stochastic heat from the hot reservoir
and the intensive work from the nonconservative force are,
respectively,

q ¼
XN−1

n¼0

ϕq;nj
ð2Þ
n and w ¼

XN−1

n¼0

ϕw;nj
ð2Þ
n ; ð2Þ

where jð2Þn counts the intensive net number of jumps from n
to nþ 1 via channel 2 in a stochastic trajectory. Indeed,
whenX ¼ q (respectively,X ¼ w),ϕX;n gives the amount of
energy received from the hot reservoir (respectively, from
the nonconservative force) when the system undergoes a
cycle cn ≡ ðn!

ν¼2
nþ 1!

ν¼1
nÞ:

ϕq;n ≡Unþ1 −Un −Wð2Þ
nþ1;n ≃ Vð1 − 2n=NÞ þ F; ð3Þ

ϕw;n ≡Wð1Þ
n;nþ1 þWð2Þ

nþ1;n ¼ −2F: ð4Þ

The intensive stochastic entropy production σ ≡ σw þ σq

is the sum of the two partial entropy production σq ≡
½βð1Þ − βð2Þ�q and σw ≡ βð1Þw. The stochastic efficiency is
thus defined as η≡ −σw=σq. Their local (i.e., along each
cycle cn) analogs read σ

q
n ≡ ½βð1Þ − βð2Þ�ϕq;n, σwn ≡ βð1Þϕw;n,

ηln ≡ −
βð1Þϕw;n

ðβð1Þ − βð2ÞÞϕq;n
¼ −

σwn
σqn

: ð5Þ

In the macroscopic limit where N is very large and the
density of units in the high energy state x ¼ n=N can be
treated as a continuous variable, we denote them, respec-
tively, by σqx, σwx and ηlx.
Mean field dynamics.—When N → ∞ but t remains

finite, the master equation becomes a nonlinear MF master
equation for x [26]. Ergodicity breaking is evidenced by the
fact that its stationary solutions may take one, three (or even
five) values xMF depending on V and F, as shown on the
branching diagrams of Fig. 2. Each of these solutions will
give rise to a corresponding MF efficiency trough Eq. (5).
The MF master equation is exact for this model, i.e., the
extrema of the density LDF LðxÞ [27,35] (shown in the
insets) coincide with the MF densities. In panel (a) for
F ¼ 0.5, the abrupt change in the position of theminimumof
the density LDFs around V1

cr reveals a first order phase
transitionwhile in panel (b) forF ¼ 0 the smooth appearance
of two minima atV2

cr reveals a second order phase transition.
Currents and efficiency fluctuations.—The quantity of

interest is the cumulant generating function (CGF) for σq

and σw expressed in terms of their conjugated Laplace
parameter γ ¼ ðγq; γwÞ which reads

ΦðγÞ≡ lim
Nt→∞

1

Nt
ln heNtðγqσqþγwσwÞip0

; ð6Þ

FIG. 1. Graph of the discrete state space of the collective
machine. Blue edges are for channel 1 and red edges for
channel 2.

(a)

(b)

MF

FIG. 2. Stable (black) and unstable (light blue) mean field
steady state densities xMF versus interaction energy V. Insets:
density LDFs versus x for four values of V indicated by vertical
dashed lines. The parameters are Ea ¼ 2, E ¼ 0, βð1Þ ¼ 10, F ¼
0.5 for panel (a) and F ¼ 0 for panel (b). In all the Letter we take
βð2Þ ¼ 1 to set the energy scales, while the timescale is set by
Eq. (1).
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where h…ip0
is the mean on paths with initial condition

drawn from probability density p0. Using path integral
technique [34,36,37], this CGF can be written as the
maximum value taken by an action over trajectories ½x�∞0
of infinite duration

ΦðγÞ ¼ max
½x�∞

0

Sð½x�∞0 ; γÞ: ð7Þ

The action Sð½x�t0; γÞ ¼ ð1=tÞ R t0 dτL(xðτÞ; _xðτÞ; γ) is asso-
ciated to the Lagrangian given by

Lðx; _x;γÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2þφðx;γÞ

q
−

X
ϵ¼�1;ν¼1;2

Jϵ;νðxÞ

þ _x ln

 
−_xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2þφðx;γÞ

p
2
P

ν¼1;2J−1;νðxÞe−ðγqσ
q
xþγwσwx Þδν;2

!
; ð8Þ

where we introduced the transition rates in the continuous

limit Jϵ;ν ≡ limN→∞k
ðνÞ
xNþϵ;xN=N and the function

φðx;γÞ≡4
Y
ϵ¼�1

X
ν¼1;2

Jϵ;νðxÞexp ½ϵðγqσqx þ γwσwx Þδν;2�: ð9Þ

From extremum action principle, ΦðγÞ is the action evalu-
ated for the optimal trajectories satisfying the Euler-
Lagrange equation based on Lagrangian (8) for given initial
conditions xð0Þ and _xð0Þ. The remaining optimization on
initial conditions amounts to select stationary trajectories
only since the CGF is bounded by

max
stat.½x�

S½x� ≤ ΦðγÞ ≤ max
x;_x

Lðx; _x; γÞ: ð10Þ

The lower bound arises from restricting the maximization to
the subset of stationary trajectories (i.e., trajectories with
constant density), while the upper bound follows from
exchanging the maximization and the time integration in
the action. For Lagrangian (8), the maxima in the upper
bound can be shown to coincidewith the stationary solutions
x� of Euler-Lagrange equation. Hence, the upper and lower
bounds match yielding the CGF

ΦðγÞ ¼ max
x�

Lðx�; 0; γÞ: ð11Þ

The LDF for stochastic efficiency can be computed from the
CGFof the partial entropy productions directly [5].When x�
is not unique, the order of the limits t → ∞ and N → ∞ in
(6) is of importance [38]. In the ergodic case, the initial
probability density p0 plays no role and the x� maximizing
the value of the Lagrangian is chosen in Eq. (11). The
efficiency LDF then reads

J��ðηÞ≡ −min
γw

max
x�

Lðx�; 0; γwη; γwÞ; ð12Þ

¼ −min
γw

Φðγwη; γwÞ ≥ 0; ð13Þ

where we used Φð0; 0Þ ¼ 0. In the nonergodic case, the
system can be separated into ergodic regions and the number
of regions accessible with the chosen initial condition p0

will matter [38]. The x� which belongs to those accessible
regions and which maximizes the value of the Lagrangian
must be picked. The efficiency LDF reads

JðηÞ≡ −max
x�

min
γw

Lðx�; 0; γwη; γwÞ; ð14Þ

where the maximum holds on all x� when choosing a
uniform initial condition that makes all ergodic regions
accessible.
Results.—The signature of a phase transition and/or

ergodicity breaking is when x� stops being unique. While
the CGF is always continuous and convex, its derivatives
may become singular [39]. A kink in the CGF signals a
nonconvexity or a linear part in the currents LDF. We now
proceed to prove that the reversible efficiency still corre-
sponds to the faster decay rate of the efficiency probability
without using the convexity of the LDF. The fluctuation
relation ΦðγÞ ¼ Φð−γ − 1Þ imposes that Φ is symmetric
with respect to the point γ ¼ ð−1=2;−1=2Þwhichwedenote
byC. Then, sinceΦ is convex, it has a minimum atC and the
minima of L in Eqs. (12) or (14) are reached at this point
when the efficiency is the reversible one (η ¼ 1) leading to
JðηÞ ≤ Jð1Þ. However, since Φ is not necessarily strictly
convex, the minima may be degenerate and other efficien-
cies can give rise to equally large LDF.
We now turn to our numerical results. In Figs. 3(d)–(f),

we show the efficiency LDFs obtained from Eqs. (12)–(14)
(for N → ∞) or from numerical evaluation of the CGF for
σq and σw (for finite N) using standard spectral techniques
[40,41]. We clearly see that both JðηÞ and J��ðηÞ are
substantially different than the efficiency LDF of finite
machines discussed in Ref. [5]. In both cases their
maximum is degenerate and comprises the reversible
efficiency as we will explain below. We remark that JðηÞ >
J��ðηÞ for all η, as expected since J��ðηÞ can be derived
from the convex hull of the nonconvex LDF for partial
entropy productions from which JðηÞ is derived [38]. The
minimum of both LDF that correspond to the MF efficiency
is unique for V < VMF

cr , while for higher V, a plateau
connects the different MF efficiencies ηlxMF in the ergodic
case or several minima appear in JðηÞ in the nonergodic
case. The plateaux signify that ergodicity enables large
fluctuations between MF efficiencies while nonergodicity
prevents them. Interestingly, our numerical computations
for increasingN show a faster convergence of J��ðηÞ toward
the plateau lying between two stable MF efficiencies.
Efficiency LDFs with multiple minima (or even a plateau)
had not been reported before. Finding these plateaux and
relating them to the existence of a phase transition in the
machine constitutes a key finding of this Letter.
We now discuss the physical origin of the degenerate

maximum of efficiency LDF. In tightly coupled finite
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machines [42,43], the input and output fluxes are propor-
tional at the stochastic trajectory level (−σqα ¼ σw) and
η̄ ¼ α. As a result, the CGF ΦðγÞ displays a translation
invariance: it is zero on the line γq − αγw ¼ 0 and constant
on any other parallel line. Using (13), the efficiency LDF
has a singular minimum zero at efficiency α and a
degenerate maximum everywhere else [9]. This results
from the fact that the stochastic efficiency is either a
constant number α or undefined when both σq and σw

are zero (or more precisely subextensive in Nt). The
degenerate LDF value thus corresponds to the LDF of
the probability of having no extensive hot heat input and
work output. However, when such machines have infinite
state spaces, the notion of tight coupling softens as
extensive entropy fluctuations can arise and compromises
the translation invariance of the CGF (in fact it remains
valid in a bounded region and the CGF diverges elsewhere).
As a result the efficiency LDF still displays a degenerate
maximum but that does not cover anymore all the effi-
ciencies since the minimum is not singular anymore
and is reached continuously [44,45]. In our model, similar

plateaux are observed in Figs. 3(d)–3(f). However the
mechanism responsible for softening the tight coupling
is different and is the phase transition. The CGF has no
global translation invariance anymore, but the Lagrangian
keeps some invariance upon change of γ as one can check
directly

L
�
x;0;−

1

2
þ
�
γwþ1

2

�
ηlx;γw

�
¼L

�
x;0;−

1

2
;−

1

2

�
: ð15Þ

For each density x� over which the maximization is taken
in (12) and (14) and for given η ≠ ηlx� , the Lagrangian
minimizer γw ¼ ðηlx� − 1Þ=ð2η − 2ηlx�Þ is yielding the same
minimum Lðx�; 0;−1=2;−1=2Þ as long as the phase
transition induces no change of maximizer x� (this happens
at efficiency ηA and ηB). This degeneracy is illustrated for
the absolute minimum Φð− 1

2
;− 1

2
Þ on Figs. 3(a)–3(c). In

the end, several ηs share the same Lagrangian’s minimum
associated to the same maximum Jð1Þ of the efficiency
LDF in both the ergodic and nonergodic cases. As in tightly

(a) (d)

(b)

(c)

(e)

(f)

FIG. 3. Left column, CGFs Φ defined in (11) as a function of γq and γw for three different V (a)–(c). Right column, the corresponding
efficiency LDF (d)–(f). On the left, the diagonal black dotted line of slope one is there to guide the eye and the blue dashed line is the
contour line Φ ¼ 0 enclosing the Φ < 0 region that is relevant to calculate (13). The green solid line between A and B defines the
degenerate minimum of the CGF. Its boundaries belong to the dashed gray critical lines separating regions with different dominant
stationary solutions x�. The slopes ηA and ηB, of the lines (OA) and (OB), respectively, give the efficiencies delimiting the higher
plateaux of the efficiency LDFs on the right. When V > VMF

cr ¼ 1.92, one critical line touches the origin indicating bistability in the MF
dynamics. On the right, J��ðηÞ, JðηÞ, and the finite N efficiency LDFs are given, respectively, by the light blue thick solid line, the thin
green solid line and the different dashed lines. The solid black (empty blue) squares show the location of the stable (unstable) MF
efficiencies. The parameters are those of Fig. 2(a).
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coupled finite machines, these degenerate LDF maxima
correspond to the LDF of the probability for no extensive
work and hot heat to arise.
In summary, using a simple model, we found that

efficiency fluctuations are strongly affected by the exist-
ence of a phase transition and depend on the order in which
the long time and large size limit are taken. Nonetheless,
the efficiency probability still decay the faster at the
reversible efficiency, but maybe decay equally fast at other
efficiencies. Our large deviation theory techniques are
general and opens the way to a more systematic study
of efficiency fluctuations in energy converters undergoing a
phase transition.
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[40] R. Chétrite and H. Touchette, Nonequilibrium markov
processes conditioned on large deviations, Ann. Henri
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Résumé: Cette thèse d’habilitation présente une
étude approfondie des processus de conversion aux
niveaux moyen et fluctuant. Elle s’appuie sur la
thermodynamique stochastique pour modéliser de
petits convertisseurs couplant différents courants.
La théorie des grandes déviations fournit des out-
ils méthodologiques pour les travaux présentés,
mais est également considérée pour ses interac-
tions profondes avec la physique statistique. Le
chapitre d’introduction approfondit une descrip-
tion globale de mes recherches, en zoomant sur
divers sous-domaines tels que : la théorie des
réponses hors d’équilibre, les relations de fluctua-
tion, les transitions de phase dynamiques, la trans-
formation et la rectification de Doob, ou le calcul
exact de fonctions génératrices des cumulants. Le
deuxième chapitre introduit la thermodynamique
stochastique et la physique des courants couplés
en régime linéaire et non linéaire au niveau moyen.
Nous décrivons le concept de conductance non
linéaire et appliquons ce concept pour dévelop-

per une théorie des circuits de dispositifs hors
d’équilibre. Le troisième chapitre se concentre
sur des résultats de la théorie des grandes dévia-
tions appliquée aux processus de saut markovien.
Nous étendons au niveau 2.5 le lien existant en-
tre les grandes déviations à asymptotiquement
grand temps d’observation ou à asymptotique-
ment grande activité. Dans ce contexte, nous re-
lions les processus transformés de Doob obtenus
à temps continu et discret. Par la suite, nous
décrivons la difficulté qui se pose lorsqu’on tente
de relier, par transformations de Doob, des dy-
namiques d’équilibre et hors d’équilibre de type
Arrhenius. Nous terminons ce chapitre en général-
isant pour les états périodiques dans le temps
nos travaux sur les matrices de conductance non
linéaires. Le dernier chapitre met l’accent sur la
cohérence de nos travaux qui visent à caractériser
le rendement stochastique de convertisseurs très
fluctuants.

Title: Nonequilibrium fluctuations and conversion processes
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Abstract: This professorial thesis presents a com-
prehensive study of conversion processes at the
mean and fluctuating levels. It relies on stochastic
thermodynamics to model small converters cou-
pling different currents. Large deviation theory
provides methodological tools for the presented
works, but it is also considered for its profound in-
terplay with statistical physics. The introductory
chapter delves into an overall description of my
research, zooming into various subfields such as
nonequilibrium response theory, fluctuation rela-
tions, dynamical phase transitions, Doob transfor-
mation, and rectification, or exact computation of
cumulant generating function. The second chap-
ter introduces stochastic thermodynamics and the
physics of coupled currents in the linear and non-
linear regime at the mean level. We describe the

concept of nonlinear conductance and apply this
concept to develop a circuit theory of nonequi-
librium devices. The third chapter focuses on
results in large deviation theory. We extend to
level 2.5 the existing relation between large devi-
ations with asymptotically long observation times
or asymptotically large activity. In this context,
we relate the Doob-transformed processes in con-
tinuous and discrete time. Next, we describe the
difficulty arising when trying to relate, by Doob
transforms, the arrhénius dynamics of in- and out-
of-equilibrium systems. We end this chapter by
generalizing our work on nonlinear conductance
matrices for time-periodic states. The last chap-
ter emphasizes the coherence of our works that
aim to characterize the stochastic efficiency of
highly fluctuating converters.
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