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Abstract
In high-speed flows, elevated viscous drag and thermal loads are inherent outcomes

over aerodynamic bodies. These effects escalate substantially during the transition phase
when the boundary layer becomes turbulent. To mitigate potential mechanical dam-
age and fatigue-related failures, thermal protection systems are integrated into vehicles,
adding complexity to the technical and economic aspects of design. The solution lies in
gaining a comprehensive understanding of transition mechanisms and developing control
systems to prolong laminar boundary layer along the vehicle’s surface. Numerous active
and passive control techniques can be employed for transition control, with the streak
employment method emerging as a particularly promising approach. This method in-
volves generating narrowly spaced streaks in the spanwise direction, creating alternating
high and low-speed regions in the flow field. Although the method has only recently been
tested in supersonic flows, demonstrating its effectiveness in delaying transition, its suit-
ability needs to be assessed further. In this research work, direct numerical simulations
are performed in supersonic and near-hypersonic regimes. Streaks are introduced through
a blowing/suction strip placed at the wall prior to that of the perturbation which is used
to trigger transition in a “controlled” fashion, forced by a single frequency and wavenum-
ber disturbance. The investigation at Mach 2.0 confirms that streaks with five times the
fundamental wavenumber are most beneficial for transition control. Additionally, cooling
enhances the method’s effectiveness, while heating severely deteriorates the capability of
control streaks. The isothermal wall condition does not alter the comparable stabilizing
impact of the mean flow deformation (MFD) and the 3-D part of the control at Mach 2.0.
However, at Mach 4.5, both the type of instability and the characteristics of the streaks
change significantly. The stabilizing impact of the MFD becomes nearly absent, and the
3-D part of the control predominates, with the characteristics of the streaks no longer
considered independent of their initial disturbance amplitude.

Keywords:
Boundary layer instabilities, Direct numerical simulation, Laminar breakdown,

Linear stability analysis, Stanton number, Supersonic boundary layer, Reynolds analogy,
Transition, Transition control, Streak employment.
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Résumé
Dans les écoulements à haute vitesse, une trâınée visqueuse élevée et des charges

thermiques importantes sont des conséquences inhérentes sur les corps aérodynamiques.
Ces effets augmentent de manière significative pendant la phase de transition lorsque la
couche limite devient turbulente. Afin de réduire les risques de dommages mécaniques
et de défaillances liées à la fatigue, des systèmes de protection thermique sont intégrés
aux véhicules, ajoutant de la complexité aux aspects techniques et économiques de la
conception. La solution réside dans l’acquisition d’une compréhension approfondie des
mécanismes de transition et le développement de systèmes de contrôle pour prolonger la
couche limite laminaire le long de la surface du véhicule. De nombreuses techniques de
contrôle actives et passives peuvent être utilisées pour le contrôle de la transition, parmi
lesquelles la méthode de l’emploi de stries émerge comme une approche particulièrement
prometteuse. Cette méthode consiste à générer des stries étroitement espacées dans
la direction de l’envergure, créant des zones alternées de haute et basse vitesse dans le
champ d’écoulement. Bien que la méthode ait été testée récemment dans des écoulements
supersoniques, démontrant son efficacité pour retarder la transition, sa pertinence doit
être évaluée plus avant. Dans ce travail de recherche, des cas de DNS sont réalisés dans
des régimes supersoniques et près-hypersoniques. Les stries sont introduites à l’aide d’une
bande de soufflage/aspiration placée sur la paroi avant celle de la perturbation qui est
utilisée pour déclencher la transition de manière “contrôlée”, forcée par une perturbation
à une seule fréquence et longueur d’onde. L’enquête à Mach 2.0 confirme que les stries
avec cinq fois la longueur d’onde fondamentale sont les plus bénéfiques pour le contrôle
de la transition. De plus, le refroidissement améliore l’efficacité de la méthode, tandis que
le chauffage détériore considérablement la capacité de contrôle des stries. La condition
murale isotherme n’altère pas l’impact stabilisateur comparable de la déformation du flux
moyen (DFM) et de la partie 3D du contrôle à Mach 2.0. Cependant, à Mach 4.5, tant
le type d’instabilité que les caractéristiques des stries changent de manière significative.
L’impact stabilisateur de la DFM devient presque absent, et la partie 3D du contrôle
prédomine, les caractéristiques des stries n’étant plus considérées comme indépendantes
de leur amplitude de perturbation initiale.

Mots clés:
Analogie de Reynolds, Analyse de stabilité linéaire, Couche limite supersonique,

Contrôle de transition, Dégradation laminaire, Emploi de stries, Nombre de Stanton,
Instabilités de couche limite, Simulation numérique directe, Transition.
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A.10 Flight data (Schneider, 1999; González, 2014; Paredes et al., 2019). . . . 116
A.11 The evolution of (0,4) and (0,8) with wc = 12 mm (black) and wc = 8

mm (red) for (a) Ac = 4.95 % and (b) Ac = 19.8 %. Vertical dashed line:
perturbation strip end (Rex ≈ 3.16×106). . . . . . . . . . . . . . . . . . 117

A.12 Streamwise evolution of skin-friction coefficient. . . . . . . . . . . . . . . 117
A.13 Contours of U∗ = (u−umin)/(umax −umin) at y/δin = 0.75 in an instanta-

neous flow-field for (a) AT, (b) A1C3, (c) A2C3, and (d) A3C3. . . . . . 117
A.14 Streamwise evolution of maximum modal disturbance amplitudes for A2C3

(black), A2C6 (red), and AT (blue). . . . . . . . . . . . . . . . . . . . . . 118
A.15 Streamwise evolution of streak amplitude for C5C ( ), A5C ( ), and H5C

( ) with Ac/Ac,ref = 1.7 in Chapter 4. . . . . . . . . . . . . . . . . . . . 118
A.16 Streamwise evolution of maximum modal disturbance amplitudes for the

role of the MFD at M∞ = 2.0 for case A5C in Chapter 4. DNS implemen-
tation (red) and (Kneer et al., 2022) (black). Vertical dashed lines: control
strip beginning (Rex ≈ 1.48×105) and end (Rex ≈ 1.96×105). . . . . . . 118

A.17 Streamwise evolution of maximum modal disturbance amplitudes for
A2C3D (blue), A2C3 (black), and AT (red). Vertical dashed line: per-
turbation strip center (Rex ≈ 3.13×106). . . . . . . . . . . . . . . . . . . 119

A.18 Streamwise evolution of maximum modal disturbance amplitudes for
A2C3D (blue), A2C3 (black), and AT (red). Vertical dashed line: per-
turbation strip center (Rex ≈ 3.13×106). . . . . . . . . . . . . . . . . . . 119



xx List of Figures

B.1 Comparison of the normalized (a) velocity and (b) temperature distri-
butions across the laminar boundary layer. Self-similar solutions (solid
lines), references (symbols): M∞ = 5.35, Pr = 0.71, Tw/T∞ ≈ 4.66 where
T∞ = 64.31 K (□□□) (Sivasubramanian et al., 2016), M∞ = 4.5, Pr = 0.72,
Tw/T∞ = 4.0 where T∞ = 65.15 K (□□□) (Zhou et al., 2022), M∞ = 2.8,
Pr = 0.72, Tw/T∞ = 4.0 where T∞ = 121.11 K (□□□) (Iyer, 1995), and
M∞ = 2.0, Pr = Pr(T ), (∂T/∂y)w = 0 where T∞ = 288 K (□□□) (Özgen
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A supersonic transport (SST) or a supersonic airliner is a civilian supersonic aircraft
designed to transport passengers at speeds greater than the speed of sound. To date,
the only SSTs to see regular service have been Concorde and the Tupolev Tu-144. The
last passenger flight of the Tu-144 and Concorde was in June 1978 and Octover 2003,
respectively. Following the permanent cessation of flying by Concorde, there are no
remaining SSTs in commercial service.

However, the desire for a second-generation supersonic aircraft has remained within
the aviation industry, following nearly 60 years of advancement in aerodynamics, mate-
rial science and propulsion systems. Eventually, a half a dozen ongoing concepts have
emerged since the retirement of Concorde. In March 2016, Boom Technology revealed a
40-passenger supersonic jet flying at Mach 1.7, claiming to be flying quiter than Concorde
(Vance, 2016). It is planned to go into service in 2029 with 130 pre-orders (Scanlan, 2024).
Spike Aeropsace presented an SST design of 18 passengers named Spike S-512 aiming to
cruise at Mach 1.6 (Supersonic transport, 2024). In June 2019, Lockheed Martin unveiled
the Quiet Supersonic Technology Airliner, a Mach 1.8, transpacific airliner concept for
40 passenger (Risen, 2019). In 2019, Exosonic was created with the goal of developing
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a 70-passenger supersonic jet capable of flying Mach 1.8 and with a range of 9,300 km.
The company aims to introduce the jet commercially in the 2030s (Exosonic, 2024). Also,
in August 2020, a twinjet delta wing aircraft that can accommodate 19 passengers and
fly at Mach 3.0 has been unveiled by Virgin Galactic and Rolls-Royce (Gohd, 2020).
Moreover, the partnership between Boeing, Northrop Grumman and National Aeronau-
tics and Space Administration (NASA) works on concepts capable of flying at Mach 4
(Newbacher, 2023).

Figure 1.1: Well-to-wake global aviation CO2 emissions by scenario and traffic forecast,
2020-2050 (Graver et al., 2022).

Noise generated by the sonic boom is considered to be the major problem, currently
prohibiting commercial airplanes from flying at supersonic speeds above the lands gov-
erned by the United States due to negative impacts on the humans and animal popula-
tions (Aeronautics and Administration, 2018). However, another challenge for the SST
comes due to environmental concerns, leading delegates from 196 countries to gather in
Paris to sign an agreement with the objective of limiting anthropogenic global warming
to below 2◦C, with a preferred target of 1.5◦C, compared to pre-industrial levels in 2015
(United Nations Climate Change, 2024). Various industry associations and governments
have come up with technology roadmaps to assess the feasibility of achieving carbon
neutrality in different industrial sectors by the middle of this century. Transportation,
which accounts for one-quarter of the global carbon dioxide (CO2) worldwide emissions,
had also its share from the agreement (Scanlan, 2023). Commercial aviation was found
to be the second major contributor to the transportation-related emission with around
12% after road travel constituting of three-quarter (Ritchie, 2020). According to (Graver
et al., 2020), commercial airlines released approximately 920 million tonnes of carbon
dioxide into the atmosphere in 2019, equivalent to the combined emissions of the German
and Dutch economies (Crippa et al., 2019). Meanwhile, International Civil Aviation Or-
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ganization (ICAO) (Graver et al., 2022) analyzed three decarbonization scenarios for the
commercial aviation, involving six primary parameters: traffic, aircraft technology, oper-
ations, zero-emission planes, sustainable aviation fuels (SAF), and economic incentives.
Figure 1.1 represents the carbon emission of the aviation sector for different scenarios
in terms of the level of intervention to curb the emissions where the baseline stands for
the continuation of the status quo, whereas the breakthrough adopts the most aggres-
sive approach for achieving complete zero-carbon sector by 2050. The analysis further
indicated that the relative share by the previously stated six parameters remain simi-
lar regardless of the investigated scenario. In all three scenarios, SAF accounts for the
largest share of CO2 reduction potential, varying between 59% and 64%. On the other
hand, improvements in aircraft technical and operational efficiency contribute an addi-
tional one-third of CO2 mitigation, or approximately 16% each. While SAF targets the
chemical composition of the fuel, the technical and operational efficiency aim at reducing
the fuel consumption.

Figure 1.2: One-way mission fuel consumption per passenger by route and class (Kharina
et al., 2018).

Regarding the feasibility of SSTs in the market, an analysis by the International
Council on Clean Transportation (ICCT) estimates that a SST would burn 5 to 7 times
as much fuel per passenger (Kharina et al., 2018). As depicted in figure 1.2, a supersonic
flight from New York to London would require over double the fuel consumption per
passenger compared to subsonic business-class, six times more than economy class, and
three times more than subsonic business for a flight from Los Angeles to Sydney. Given
these findings and the stringent regulations imposed by aviation authorities, the prospects
for SSTs to achieve operational viability appear challenging.

In high-speed flows, aerodynamic bodies are naturally subjected to high viscous drag,
which become more severe when the flow transits from laminar to turbulent regime (An-
derson, 2000). The transition gives rise to the skin-friction coefficient i.e. up to one order
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Figure 1.3: Theoretical (a) skin-friction coefficient and (b) Stanton number for adiabatic
flow (White and Corfield, 2006).

higher depending on the transition onset location as indicated in fig. 1.3. This increased
skin-friction coefficient causes high viscous drag and leads to higher fuel consumption.
Additionally, as the Mach number increases, aerodynamic heating, arising from the ki-
netic energy dissipating and transforming into internal energy near the surface of the
vehicle becomes significant. The resulting thermal load may cause significant mechanical
damage and possible fatigue-related failures. To prevent such impacts, thermal protec-
tion systems must be integrated into the vehicle’s design, which can pose technical and
economic complications (Malik, 2003). To mitigate all these potential risks as well as to
lower the fuel consumption, increase the payload, and the flight range, maintaining the
laminar flow around the vehicle is crucial. Transition control, which involves managing
the transition of the boundary layer from laminar to turbulent flow along the vehicle’s
surface, emerges as a promising approach targeting the aforementioned technical improve-
ment for reducing the emissions. For a conceptual hypersonic vehicle, the contribution
of the viscous boundary layer to the total drag accounts for 30% in fully turbulent flow,
while it is only around 10% in fully laminar flow (Reed et al., 1997). It is also stated that
retaining a fully laminar boundary layer on an aircraft, designed for a single-stage-to-
orbit mission, would allow carrying double the payload-to-gross-weight compared to the
fully turbulent scenario (Whitehead, 1989). The present discussion has evolved around
supersonic/near-hypersonic applications. However, it should also be reminded that any
improvement in flow control systems might also be integrated to other applications such
as fighter jets, missiles, and re-entry vehicles.
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1.1 Transition

Transition is a process of a laminar, including regular and traceable structures, flow
becoming turbulent, statistically coherent, and chaotic structures. The phenomenon
that carries a vital importance has been investigated by researchers and engineers for
over a century as it poses fundamental challenges in engineering applications i.e. flow
separation in nozzles, long-distance fuel transportation, lift/drag optimization of airfoil,
modeling blood flow in veins for medical practices.

Figure 1.4: Boundary layer transition over a flat plate (White and Corfield, 2006).

Figure 1.4 illustrates the successive stages of flow transition over a smooth surface
with relatively low initial perturbations. Low-amplitude sinusoidal waves form in the
wake of the stable laminar flow once a threshold Reynolds number is achieved. Then,
the amplification of two-dimensional (2-D) waves results in generating three-dimensional
(3-D) unstable waves and hairpin eddies which break down in the vicinity of the shear
layer. The interaction of the shear layer and the mean flow results in three-dimensional
random fluctuations that are followed by turbulent spots. The coalescence of these spots
ends up generating a fully-turbulent flow.

In nature, one often encounters transition scenarios that involve the simultaneous ap-
pearance of various types of instabilities. There exist numerous parameters influencing
their occurrence and evolution such as sweep angle, wall curvature, roughness, and ini-
tial conditions (Saric et al., 2002). The geometries are usually not as simple as in the
fundamental studies and free-stream conditions differ drastically from the on-ground ex-
perimental facilities. Despite all these complications, years of research have revealed the
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underlying physics of several instabilities and identified certain paths to transition. Some
of the reviews, presenting the historical evolution of the research in this field, have been
given by Reshotko (1976); Reed and Saric (1989); Kachanov (1994); Saric et al. (2002,
2003); Fedorov (2011); Lee and Jiang (2019).

1.1.1 Paths to transition

Prior to analyzing the possible paths to turbulence, instabilities that are categorized,
based on the local stability problem, in two classes should be distinguished, see Huerre
and Monkewitz (1985). Absolute instability is defined as a disturbance that grows in
amplitude in time, spreading to the entire domain both in x → ∞ and x → −∞. The
instability does not leave the domain as the group velocity of the disturbances, cg ≤ 0.
Convective instabilities, where cg > 0, on the other hand, leave the domain for t → ∞
following the initial disturbance, the level of which leads to various transition paths. The
current study deals only with the convective instabilities in 2-D boundary layers over flat
plates.

Figure 1.5: A road map of boundary layer transition (Morkovin, 1994; Fedorov, 2011).

A schematic showing the potential roads to transition induced by convective insta-
bilities is given by Morkovin (1994) and Fedorov (2011) in fig. 1.5. The first step which
takes place close to the leading edge is called receptivity by Morkovin (1969). It is a step
in which internal/external disturbances enter the laminar flow and excite its eigenmodes
which grow exponentially due to linear processes for small disturbances. Primary insta-
bility is the most unstable of these modes (disturbances) leading to secondary instabilities
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which are followed by laminar breakdown as represented in paths (a) and (b). Depending
on the amplitude of the disturbances transient growth may either contribute to the tran-
sition process, path (b), or lead directly to secondary instabilities as in path (c), or result
in by-pass transition by surpassing the linear and weakly non-linear stages as in path (d).
Transient growth is an algebraic disturbance growth followed by an exponential decay,
in other words where the dampening of small disturbances is estimated based on linear
stability theory (LST), arising due to the non-normality of the linearized Navier-Stokes
(NS) operator (Schmid and Henningson, 2001). In the presence of large disturbances, the
flow instantly breaks down by bypassing the linear stages and forms localized turbulent
spots as in path (e).

1.1.2 Instabilities

Rayleigh (1880) was the first one emphasizing the evolution of small but regular oscilla-
tions that are formed and travel in laminar boundary layers. Orr (1907) and Sommerfield
(1908) independently derived an equation governing the amplitude growth of a pertur-
bation mode by introducing a two-dimensional sinusoidal-shaped perturbation to incom-
pressible NS equations. Later on, Tollmien solved this equation, which is later referred to
as the Orr-Sommerfeld equation, whereas Schlichting calculated the amplification of the
most unstable frequencies. However, the theory was discredited until the experimental
findings of Schubauer and Skramstad (1947) where they demonstrated sinusoidal waves,
later called Tollmien-Schlichting (TS) waves, constitute the first stage of the transition
process. These successive accomplishments have proven the use of linear stability the-
ory in which small sinusoidal disturbances are imposed to a given steady laminar flow
to obtain the range of unstable frequencies. Lees and Lin (1946) extended the theory
to compressible flows where the amplified disturbance is an equivalent of TS waves in
incompressible flows. According to Mack (1969)’s terminology, these waves belong to the
first-mode instabilities in compressible flows.

In compressible flows for about M∞ > 0.7, the most-amplified waves become three-
dimensional running obliquely (Ψ ̸= 0) with respect to free-stream while they are two-
dimensional in incompressible flows. Figure 1.6 illustrates the viscous and inviscid nature
of boundary layer instability in compressible flows. (Lees and Lin, 1946) demonstrated
that a necessary condition for the presence of an amplified inviscid disturbance is the
presence of the generalized inflection point (GIP), which is

∂

∂y

(
ρ
∂u

∂y

)
= 0, for y > ycrit (1.1)

ycrit is the point where the non-dimensional velocity is equal to the slow acoustic wave,
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i.e. U∗ = 1−1/M∞
1. A compressible boundary layer is naturally susceptible to inviscid

disturbances because the inflection point is always present in case of an insulated wall for
M∞ ⪆ 1.6 (Malik, 1989). When boundary layer is cooled sufficiently, which stabilizes the
first mode (Lees, 1947), a second generalized inflection point for U∗ < 1−1/M∞ appears.
As cooling increases, these two existing inflectional points become closer, end up on top
of each other, and then disappear by indicating a complete stabilization (Unnikrishnan
and Gaitonde, 2019).

Figure 1.6: Dependence of maximum disturbance growth rate on Mach number for flat-
plate flow. Influence of viscosity on the growth rate (Kloker, 2018).

Using the LST, Mack (1969) discovered the existence of higher modes appearing in
supersonic boundary layers. His results showed that there is an infinite number of unstable
inviscid modes (wavenumbers) so long as there is a region of supersonic mean flow relative
to the phase speed, i.e. M = (u(y) − cr)/a > 1 where u(y) is the mean-flow profile, cr is
the disturbance phase speed, and a is the local speed of sound. These instabilities, also
known as the Mack modes, are of acoustic nature 2 3, are trapped between the wall and
the sonic line where the relative Mach number is supersonic, see fig. 1.7. The first of
these modes is the second mode, which is the most amplified of the higher modes with
Ψ = 0, see fig. 1.8b. One of the physical implications of the second mode is the scaling of
the most amplified frequency with the local-boundary-layer thickness as f ≈ u∞/2δ, i.e.
λ≈ 2δ (Stetson et al., 1989). Besides, contrary to the first-mode instabilities, the second
mode is strongly destabilized with complete wall cooling, see fig. 1.8a. The reader is
referred to Mack (1984) for an extensive analysis of linear stability theory for flat-plate
boundary layers.

1U = u∞ −a∞
2cr < u−a : sound waves propagation to free-stream
3cr > u+a : sound waves propagation to wall
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Figure 1.7: Acoustic mode in a high-speed boundary layer, where u(y) is the mean-flow
profile, and p(y) is the pressure disturbance profile (Fedorov, 2011).

(a) Effect of wall cooling. (b) Effect of wave angle (Ψ).

Figure 1.8: Evolution of the first- and second-mode instabilities (Mack, 1984).

1.1.3 Flat-plate laminar breakdown

For transition in an environment with a disturbance level low enough to exclude paths
(c), (d), and (e), primary-instability modes are superseded by secondary instabilities,
corresponding to the weakly non-linear stage in the road map. This stage of the transition
process is characterized by the appearance of Λ-shaped vortices located near the boundary
layer edge. In the fundamental breakdown, the secondary instability waves having the
identical streamwise wavenumber as the primary waves form Λ-shaped vortices aligned
in the spanwise direction, see fig. 1.9a. This scenario is called as K-type transition
attributed to the findings of Klebanoff et al. (1962). If the secondary instability wave
carries two times the streamwise wavelength of the primary waves, exhibiting staggered
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patterns as shown in fig. 1.9b, the mechanism is referred to as H- Herbert (1988) or
N-type (Novosibirsk) breakdown (Kachanov and Levchenko, 1984). In a special case of
subharmonic resonance, the resonance wave interaction can still exist for a disturbance
amplitude, A → 0, if the wave speeds of the 2-D and 3-D disturbances perfectly match,
leading to an optimal energy exchange i.e C-type breakdown after Craik (1971).

(a) K-type, Rex = 2.5−3.2×105 (b) H-type, Rex = 4.9−5.5×105

Figure 1.9: Isosurfaces of Q invariant in an instantaneous flow field, showing Λ vortices
and formation of hairpin, Ω and ring-like vortices towards laminar breakdown (Sayadi
et al., 2013).

For a supersonic boundary layer at Mach number 1.6, Direct Numerical Simulations
(DNS) studies by Thumm (1991) and Fasel et al. (1993) were the first illustrating that
the transition is controlled by oblique breakdown (OB) which is initiated by a pair of
most-amplified waves traveling at identical but opposite wave angles with respect to the
free-stream. Upon their amplification, their self-nonlinear interaction generates a steady
vortex mode that has a double spanwise wavenumber of the oblique disturbance pair,
which closes the wave-vortex triad in the spectral space (Craik, 1971). Further down-
stream, higher harmonic modes are generated by the non-linear interaction of the already
existing modes, extending the energy exchange mechanism to a more complex stage
(Bestek et al., 1994). Rather than Λ shape vortices with fundamental and subharmonic
frequencies, the formation of a typical honeycomb-like structure has been demonstrated
as illustrated in fig. 1.10, see (Bestek et al., 1994). A following study by Fezer and Kloker
(2000) elaborated on the breakdown mechanism in the presence of the three-dimensional
subharmonic modes. They found that the transition process is accelerated by the pres-
ence of subharmonic modes. However, the oblique wave pair is more likely to lead the
flow to breakdown considering its larger growth rate and required lower initial amplitude.
These findings were further supported by the DNS study by Husmeier et al. (2005), where
the oblique breakdown was reported to be the most viable path to transition at Mach
3.0. It was indicated that the two-dimensional disturbance requires an amplitude of
about 10% of the free-stream velocity to lead a classical K-type (Klebanoff et al., 1962)
fundamental resonance whilst no trace of subharmonic resonance (Herbert, 1988) was
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observed. The experimental proof of the oblique breakdown mechanism was revealed
so far as Mayer, Wernz and Fasel (2011) performed DNS calculations by replicating the
experimental setup of Kosinov et al. (1994) and Ermolaev et al. (1996). The signature of
the oblique breakdown was clearly demonstrated which was not reported in the 90s when
the experiments were conducted. Instead, researchers concentrated mainly on a break-
down mechanism that they referred to as asymmetric subharmonic resonance which is
formed by the interaction of a oblique instability wave pair and two oblique asymmetric
waves, i.e. carrying different wave angles, with half a frequency of the former. However,
Mayer, Wernz and Fasel (2011) also conjectured that a certain phase relation between
input disturbances may also hinder the oblique breakdown and bring out the resonance
triads. In a following study which includes the late non-linear regime of a flow field prior
to the breakdown, Mayer, Von Terzi and Fasel (2011) also demonstrated that oblique
breakdown can lead to a fully turbulent flow.

Figure 1.10: (a) O-type transition in an experimental study (Wiegel, 1997) and (b) a
DNS analysis (Sharma, 2019).

In most of the aforementioned studies, numerical investigations dealt with a forced
transition scenario at a single frequency and wavenumber while transition in a natural
environment would be affected strongly by broadband internal/external disturbances.
Taking this into consideration, Laible and Fasel (2016) and Chang and Malik (1994)
have shown that a wider spectrum of disturbances results in an earlier breakdown in
a laminar supersonic flow. The former also investigated the feeding mechanism of the
disturbances by means of temporal DNS. They identified a continuous transient growth
mechanism (non-modal) in the amplification of the vortex mode, in addition to the feeding
mechanism by the fundamental oblique disturbances.

Instabilities in high-supersonic and hypersonic regimes have been investigated for vari-
ous geometries, with the present discussion confined to flat plates (Fezer and Kloker, 2002;
Unnikrishnan and Gaitonde, 2019; Zhou et al., 2022; Franko and Lele, 2013; Egorov and
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Novikov, 2016). Fezer and Kloker (2002) indicated that first-mode oblique breakdown
would be the most viable path to transition over a flat plate whereas the second-mode
fundamental resonance mechanism is favored on a straight cone at Mach 6.8. Leine-
mann et al. (2020) could not differentiate the dominant breakdown mechanism between
second-mode-induced fundamental resonance and first-mode-induced oblique breakdown,
contrary to the straight-(Sivasubramanian and Fasel, 2015) and flare cones (Hader and
Fasel, 2019; Sivasubramanian and Fasel, 2014) where the former was found predominant.
At Mach 6.0, the first-mode oblique breakdown was shown to be the most likely scenario
over an adiabatic flat plate (Unnikrishnan and Gaitonde, 2019). A comparison of funda-
mental/subharmonic and oblique-breakdown mechanisms at the same Mach number has
identified the latter as the most viable path to transition (Franko and Lele, 2013). An
overshoot in skin friction and heat transfer coefficients, compared to the theoretical tur-
bulent estimations, was observed in the oblique breakdown. The reason was attributed
to the rapid amplification of the steady vortex mode that plays a significant role in mo-
mentum and thermal energy transfer in the vicinity of the breakdown region. Even in
the hypersonic regime, despite the LST results in fig. 1.8b, indicating a higher growth
rate for the second mode than the first mode, first-mode oblique breakdown may still
not be superseded by the second-mode-induced transition. This is due to the amplifica-
tion of the first mode in a wider streamwise extent than the second mode instabilities
(Malik, 1989). The predominant mechanism alters significantly depending on the wall
cooling rate, Mach number, geometry, and the interested range of Reynolds number.
Thus, a rigorous analysis of numerical and experimental results is a must when studying
boundary-layer instabilities.

1.2 Transition control using streaks

From a physics perspective, wind tunnel transition experiments using moderately high
levels of disturbances have highlighted the emergence of streamwisely elongated struc-
tures, taking the form of alternating streaks of high and low-velocity regions in the
spanwise direction (Alfredsson and Matsubara, 2000). From a theoretical perspective,
(Ellingsen and Palm, 1975) introduced a growth mechanism by considering the inviscid
evolution of an initial disturbance independent of the streamwise coordinate in a shear
layer. They demonstrated that the streamwise velocity component could grow linearly
over time, resulting in the formation of alternating low- and high-velocity streaks. Build-
ing upon this, (Landahl, 1975, 1980) extended their findings to the linear evolution of
localized disturbances and offered a physical explanation for this growth, known as the
lift-up effect. He explained that in a shear layer, a wall-normal displacement of a fluid
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element would cause a perturbation in the streamwise velocity because the fluid par-
ticle initially retains its horizontal momentum. This mechanism is especially effective
when weak pairs of quasi-streamwise counter-rotating vortices lift low-velocity fluid away
from the wall while bringing high-velocity fluid toward it. As a result, spanwise inho-
mogeneities are generated, leading to the formation of streaks. This three-dimensional
phenomenon play a critical role in driving the flow to transition. Their persisting exis-
tence in flow fields, especially in regions where vortical modes, such as Görtler (Görtler,
1940; Schrader et al., 2011; Ducoin et al., 2017) and cross-flow (Saric et al., 1998; Bippes,
1999) vortices, dominate the transitional region, led to the consideration of these vor-
tices as a potential alternative for delaying and possibly even controlling the transition.
The method was initially applied to incompressible flows. Closely spaced streak vor-
tices, i.e., those carrying higher wavenumber than the most-amplified mode are found
effective in postponing the transition onset by dampening the most-amplified cross-flow
vortices over an infinite swept wing (Wassermann and Kloker, 2002). These structures
regulate the flow field by carrying the high-momentum fluid to the wall and the low-
momentum away from the wall, which in turn attenuates the growing disturbances inside
the boundary layer to have a longer laminar flow regime. Then, the use of these vor-
tical structures was extended to a flat-plate configuration where TS waves dominate
the transition mechanism in a low-disturbance environment. Cossu and Brandt (2002a)
used optimal perturbations (Schmid and Henningson, 2001) which experience the high-
est transient growth and generate streamwisely elongated high and low-speed velocity
regions (Andersson et al., 2001), also known as velocity streaks. Consequently, the mean
velocity profile becomes fuller which is in favor of stabilizing the flow in a typical laminar
boundary layer (Cousteix, 2005). The streaks were found capable of delaying transition
by dampening the two-dimensional TS waves while early transition might be triggered
above some critical streak amplitude (Cossu and Brandt, 2002a). The stabilizing effect
on the TS waves in a low speed-boundary layer was further verified by experiments where
a series of spanwise distributed roughness elements are used to generate the streaks of
moderate amplitudes (Fransson et al., 2005, 2006). Furthermore, non-linear parabolized-
stability-equations (PSE) were used to study the interaction of the optimally growing
streaks with TS and oblique waves. For the selected initial streak amplitudes, both types
of instabilities were somewhat reduced. The streak that most effectively dampens the TS
wave was identified with a higher wavenumber than the optimal streaks, and it necessi-
tates a lower amplitude (Bagheri and Hanifi, 2007). Additionally, alternative methods
such as miniature vortex generators (Shahinfar et al., 2012) or plasma actuators (Dörr
and Kloker, 2018) were also used to generate streamwise elongated streaks and highlight
their stabilizing influence in low-speed boundary layers.
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After having studied bypass transition induced by optimal streaks (Paredes et al.,
2016b), it was observed that the streaks that experience weakly-nonlinear transient growth
might also be beneficial in dampening three-dimensional first-mode instabilities. The nec-
essary condition for a successful transition control is that the streaks should carry at least
two times the wavenumber of the concerning first-mode oblique instability wave (Paredes
et al., 2017). These “control” streaks were investigated in a non-linear oblique breakdown
regime in a comprehensive DNS study at Mach 2.0 by Sharma, Shadloo, Hadjadj and
Kloker (2019). A blowing/suction strip, placed at the wall, was used to generate the
streaks which decay rapidly in the streamwise direction upon their generation. This is
contrary to the streaks generated with optimal disturbances which grow in a large stream-
wise distance (Paredes et al., 2017). Streaks having four to five times the wavenumber of
the most amplified first mode were found to be the most effective in controlling the transi-
tion while highlighting the importance of the maximum streak amplitude above which an
earlier transition was induced. The hampering role of the mean-flow-deformation (MFD)
has been pointed out, while the three-dimensional part of the control was also found to
be stabilizing the oblique waves with high wavenumbers whose effect is seen when the
MFD is weakened significantly. The latter finding contradicts Paredes et al. (2017) where
the three-dimensional part of the control was found to be marginally destabilizing the
flow field and leading to higher integrated growth rates. From the physical point of view,
the MFD can be defined as the mean deformation of the flow field from its baseflow. The
streak employment method was also found to be stabilizing the flow in the presence of
a multi-frequency point source, generating broadband disturbances (Kneer et al., 2022).
As an alternative approach to generating the control streaks, roughness elements were
tested and found to have more enhanced control performance by causing the MFD to per-
sist for a longer streamwise distance. In a preceding study, the effect of the moderately
cooled wall, i.e. 10% with respect to the adiabatic wall temperature for laminar flows,
control streaks were investigated at Mach 2.0, see Kneer (2020). The accumulation of the
stabilizing effects of both of these methods led to a further transition delay by reducing
the growth of the fundamental disturbance mode.

Transition control using streaks was also extended to high-supersonic and hypersonic
regimes by Ren et al. (2016) where the non-linear PSE were used to simulate the flow
field. It was shown that transiently growing sub-optimal streaks can indeed stabilize the
two-dimensional first- and the second-mode instabilities, separately in supersonic bound-
ary layers, and simultaneously in hypersonic boundary layers. Paredes et al. (2016a) used
non-linear plane-marching PSE to study a hypersonic flow over a circular cone with zero
angle of attack. The findings indicated that weakly non-linear optimally growing streaks
stabilize the planar Mack mode while the stability of the three-dimensional second mode,
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which has an azimuthal wavelength equal to streak spacing, highly depends on the streak
amplitude. The MFD was found to be strongly stabilizing, conforming with the findings
of Ren et al. (2016), whereas the 3-D part of the control results in a longer amplification
regime with an intermediate damped zone. Furthermore, a similar numerical investiga-
tion was conducted for a flow/geometry configuration matching the ascent phase of a
hypersonic flight experiment (HIFiRE-1) by Paredes et al. (2019). Although the planar
second mode was stabilized regardless of the disturbance frequency, the stabilizing effect
of the MFD was inferior to that of the 3-D part of the control. Besides, in the presence
of the streaks, the critical N-factor (Ncrit, streamwisely integrated growth rate) based
on experimental findings was reached both by planar and oblique second modes further
downstream, indicating a transition delay. However, oblique as well as planar waves at-
tain Ncrit at approximately the same streamwise position in case of a lower frequency.
That is to say, the transition mechanism was strongly altered by the control streaks pro-
vided that the planar Mach-mode was reported to be the most viable path to transition
in this flow/geometry configuration which for the Ncrit holds no longer reliable. In a
recent study, streaky flow generated through the optimal growth approach was investi-
gated in the presence of white-noise forcing (Caillaud, 2022). A similar mechanism, as
described in Paredes et al. (2019), reveals the appearance of an additional high-frequency
corresponding to the second-mode frequency region. This pertains to the subharmonic
second-mode instability, characterized by half a wavenumber of the tested streaks. Be-
sides, stabilization of the Mack mode below a certain streak amplitude was indicated
whereas a strong amplification of the subharmonic first-mode instability was highlighted
for any streak amplitude. The most recent study of transition control using the streak
employment method was conducted by Zhou et al. (2023). Streaks that have two-to-six
times the wavenumber of the oblique second-mode disturbance were found to be stabi-
lizing the concerning instability. The primary stabilizing effect of the control stems from
the spanwise component of the streaks whereas the MFD was reported to be destabilizing
the disturbance for low-initial-streak amplitude. However, certain ambiguities in this in-
vestigation regarding the low-resolution simulations as well as the contradictory results,
which are elaborated in Chapter 6, require a confirmation of the findings.

The recent investigations present valuable knowledge regarding transition control us-
ing the streak employment method. However, there still remain various questions to be
answered. Those that are to be addressed within the scope of this thesis are given as
follows:

• How effective is the streak employment method in suppressing the first-mode-
induced oblique breakdown under a weakly cooled/heated wall?
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• In what range of streak amplitude, under the effect of different thermal boundary
conditions, first mode instabilities can be delayed?

• Can we apply these control streaks to dampen second-mode instabilities? What are
the roles of the MFD and the 3-D part of the control in a possible stabilization?

To shed light upon these queries, supersonic boundary layers are simulated in a direct
numerical simulation environment. Transition is triggered in a controlled fashion by a
perturbation source mounted at the wall to inject selected pair(s) of disturbances.

1.3 Scope of the present work

A thorough examination of the historical progression of boundary-layer transition re-
search, addressing both the theoretical aspects of breakdown mechanisms and transition
control methods is presented. While investigating the streak employment method,
certain unanswered questions have been identified, prompting the current research work
to address these gaps. The overview of this thesis is given as follows:

Chapter 2: This chapter outlines the Navier-Stokes equations used in our analysis
and provides insights into the numerical schemes employed by the direct numerical
simulation solver. The concept of linear stability theory and underlying assumptions are
introduced.

Chapter 3: Here, the validation of the DNS code and the LST solver are performed,
delving into the scientific terminology of instabilities and eigenvalue spectra. DNS cases
are examined to explore various aspects of perturbed flow fields, and the turbulent flow
field is evaluated using first-order statistics.

Chapter 4: In an attempt to address the previously mentioned two main questions,
the effect of weak wall heating/cooling on the streak employment method with the
optimal wavenumber i.e., five times the fundamental disturbance, has been investigated.
The effective transition delay has been achieved by utilizing streaks within a specific am-
plitude range. The results emphasize the cumulative stabilizing impact of wall cooling on
the streaks, along with the detrimental influence of wall heating on their initial amplitude.

Chapter 5: The Stanton number behavior in laminar flat plate boundary layers
has been investigated using the self-similar solutions of the compressible boundary-layer
equations as well as direct numerical simulations. A comprehensive analysis is conducted
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to understand its contradictory trends from the previous chapter with existing literature.

Chapter 6: Transition control using the streak employment method is applied to
a controlled transitional boundary layer to suppress the three-dimensional (oblique)
second mode instability in order to explore the remaining question. A short parametric
study of the wavenumber identifies the control streaks successfully delaying transition.
In contrast to the first-mode instability control analysis, streamwisely elongated streaks
are observed to grow transiently rather than decaying following their generation.

Chapter 7: The summary of the presented research work together with the conclud-
ing remarks are given. A discussion concerning the possible future routes for a further
understanding of the streak employment method is provided.
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Chapter 2

Governing equations and numerical
methods
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In this chapter, the governing equations used to describe the fluid motion along with
the underlying assumptions are presented. Numerical schemes adopted in the solver for
the viscous and inviscid fluxes as well as time integration strategy are detailed. Finally,
a brief description of the liner stability theory and the method of solving the resulting
eigenvalue problem are provided.

2.1 Governing equations

The motion of any continuous medium is governed by the fundamental principles of
mechanics and thermodynamics. These principles form a set of equations, called Navier-
Stokes Equations (NSE) which comprise the conservation of mass, momentum, and en-
ergy. These equations can be solved by using different approaches which are generally
regarded as; Reynolds-Averaged Navier-Stokes (RANS), Large-Eddy Simulation (LES),
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and Direct Numerical Simulation (DNS) in the fluid dynamics community. These meth-
ods are identified by their capability of resolving spatio-temporal scales in turbulent flow
fields. The present fundamental study adopts the DNS approach where neither model-
ing, as in RANS, nor filtering, as in LES, are applied, but all the scales are resolved.
The choice is deemed compulsory for a comprehensive understanding of the interactions
between different instabilities inside the boundary layer and the eventual breakdown to
turbulence.

Now, three-dimensional, compressible and unsteady Navier-Stokes equations in Carte-
sian coordinates xi = (x,y,z) are expressed as:

∂ρ

∂t
+ ∂ρuj

∂xj
= 0, (2.1)

∂ρui

∂t
+ ∂ρuiuj

∂xj
= − ∂p

∂xi
+ ∂τij

∂xj
, (2.2)

∂ρE

∂t
+ ∂(ρE+p)uj

∂xj
= − ∂q̇j

∂xj
+ ∂uiτij

∂xj
, (2.3)

Here, ui is the velocity vector, ρ, and p represent density, and pressure, respectively.
Meanwhile, the heat diffusion flux is:

qj = −λ ∂T
∂xj

(2.4)

thermal conductivity is designated by λ and the pressure is estimated through the total
energy E as:

p= (γ−1)
(
ρE− 1

2ρuiui

)
, (2.5)

where γ is the heat capacity ratio and τ is the viscous stress tensor, given by:

τij = µ
(
∂uj

∂xi
+ ∂ui

∂xj
− 2

3
∂uk

∂xk
δij

)
, (2.6)

δij is the Kronecker delta. The fluid of interest is air with the linear dependency of
the shear stress to the velocity gradient (Newtonian law). The heat capacities are
considered constant with the heat capacity ratio, γ = 1.4 and the dynamic viscosity
is assumed to be only temperature dependent, and calculated by the Sutherland’s law
µ(T ) = (C1T 3/2)/(T +S) (Sutherland, 1893). Here, Sutherland’s temperature for air is
S = 110.4 K and the constant C1 = 1.458 × 10−6 kg/ms

√
K which is calculated through

C1 = µr(Tr +S)/T 3/2
r . Reference dynamic viscosity of air µr = 1.716 × 10−5 kg/ms at

the reference temperature, Tr of 273.15 K, where the subscript r refers to the reference
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values.

2.2 Numerical schemes

The study utilizes an in-house developed Direct Numerical Simulation code known as
Compressible High-Order Code using Weno Adaptive Stencils (CHOC-WAVES), which
solves compressible, unsteady, three-dimensional Navier-Stokes equations in an explicit
manner on a Cartesian mesh for perfect gases. The code, fully parallelized with the
MPI/OMP library and exploits HDF5 library for Input/Output (IO). It has been tested
in various applications with detailed descriptions of validation cases in Hadjadj et al.
(2015); Shadloo et al. (2014); Sharma, Shadloo, Hadjadj and Kloker (2019). Convec-
tive fluxes are discretized by a hybrid locally-conservative sixth-order skew-symmetric
split-centered finite-difference scheme as proposed in Pirozzoli (2010) with a fifth-order
Weighted Essential Non-Oscillatory (WENO) scheme. A fourth-order central scheme is
used to approximate the diffusive terms which are expressed in compact form (Laplace
formulation is employed). Time integration is carried out by using a classical explicit
third-order Total-Variation-Diminishing (TVD) Runge-Kutta scheme (Shu and Osher,
1988). For details concerning the scalability of the code, interested readers are referred
to Piquet (2017).

2.2.1 Treatment of convective fluxes

Accuracy and robustness are essential features of numerical schemes in order to properly
resolve the flow field in detail. In supersonic flows, there might exist regions with strong
gradients such as shock waves and slip lines known as contact discontinuities in inviscid
gas dynamics which require special attention in adjusting the optimal characteristics.

2.2.1.1 WENO scheme

Essentially Non-Oscillatory (ENO) schemes are based on the idea of determining the
numerical flux from a high-order reconstruction on a single adaptive stencil that is se-
lected to avoid interpolation through discontinuities as much as possible. However, these
schemes suffer from convergence problems towards a stationary solution, as well as from
a loss of accuracy (Pirozzoli, 2010). To circumvent the limitations of the ENO, the
WENO schemes are devised which construct a high-order numerical flux from a convex
linear combination of a weighted reconstruction of lower-order polynomials (stencils). The
weighting of the stencils aims at maximizing the accuracy of the scheme in the so-called
smooth regions while canceling the effect of the adaptive stencil near the discontinuity.
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In the CHOC-WAVES code, several variants of the WENO scheme are available, such
as the classical WENO scheme of Jiang and Shu (1996), the broadband WENO scheme
of Mart́ın et al. (2006) or the Mapped-WENO scheme of Henrick et al. (2005). These
schemes can be used either at order 3 (r = 2) or at order 5 (r = 3), the accuracy of the
scheme being 2r - 1.

For the description of the calculation method of the WENO scheme, a one-dimensional
scalar conservation equation is used (Nasr, 2012):

∂u

∂t
+ ∂f(u)

∂x
= 0 (2.7)

f(u) being the characteristic flux is decomposed into a positive and negative parts

f(u) = f+(u)+f−(u) (2.8)

These two fluxes represent the non-negative and non-positive propagation speeds, respec-
tively:

df+(u)
du

≥ 0, df−(u)
du

≤ 0 (2.9)

whose decomposition is performed based on Lax-Friedrichs (LF) scheme which is given
as:

f±(u) = 1
2(f(u)±αu) (2.10)

where α = maxu|f ′(u)| is the greatest value on the concerned mesh on which the flux at
the interface is decomposed as:

fi+1/2 = f+
i+1/2 +f−

i+1/2 (2.11)

The flux f+
i+1/2 (similarly f−

i+1/2) is reconstructed through interpolating the f+
i+1/2 (simi-

larly f−
i+1/2) fluxes from three stencils S = {S1, ...,S3}. The WENO scheme uses a convex

combination of three consecutive fluxes to obtain maximum precision in the region of weak
and negligible gradients:


f+(1)

i+1/2 = 2
6f

+
i−2 − 7

6f
+
i−1 + 11

6 f
+
i

f+(2)

i+1/2 = −1
6f

+
i−1 + 5

6f
+
i + 2

6f
+
i+1

f+(3)

i+1/2 = 2
6f

+
i + 5

6f
+
i+1 − 1

6f
+
i+2

(2.12)
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Thus, the numerical flux at the interface for the 5th order is estimated as follows:

fi+1/2 =
r∑

l=1
ω+

l f
+(l)

i+1/2 (2.13)

where the nonlinear weighting coefficients are given as:

ω+
l = α+

l∑r
l=1α

+
l

, α+
l = d+

l

(ϵ+β+
l )2 (2.14)

the weights d+
l = d−

l = dl allow to obtain an optimum precision with the present 5th order
WENO scheme. The weights in this work are d1 = 1/10, d2 = 6/10, d3 = 3/10, where ϵ is
a small number (ϵ= 10−6) to avoid division by zero (Jiang and Shu, 1996). To decrease
the weight of the stencils containing the discontinuity, a β+

l parameter is used as an
indicator. It is defined as the sum of the norms of all the derivatives of the polynomials
used for interpolation and can be written as:


β+

1 = 13
12(f+

i−2 − 2f+
i−1 + f+

i )2 + 1
4(f+

i−2 − 4f+
i−1 + f+

i )2

β+
2 = 13

12(f+
i−1 − 2f+

i + f+
i+1)2 + 1

4(f+
i−1 − 4f+

i + f+
i+1)2

β+
3 = 13

12(f+
i − 2f+

i+1 + f+
i+2)2 + 1

4(f+
i − 4f+

i+1 + f+
i+2)2

(2.15)

In the same manner, the negative part of the numerical flux (f−
i+1/2) is calculated by

replacing f+ with f−.

2.2.1.2 Conservative split-centered scheme (skew-symmetric)

It is acknowledged that the use of centered finite difference approximations leads to
instabilities, even in the absence of shock waves, when they are used at very low viscosities,
or even zero, which is the case for hyperbolic equations. There exist various methods to
ensure numerical stability for flows without discontinuity. For a detailed review of these
methods, the reader is referred to Pirozzoli (2010).

One of the known methods is the use of the split form of the derivatives of the
convective terms in the Navier-Stokes equations. This method is based on the idea of
writing the convective terms in a skew-symmetric form. However, the approximations
obtained cannot be written in a locally conservative form, i.e. in the form of a divergence
as they are presented in eq. 2.17. Based on these findings, Pirozzoli (2010) proposes a
locally conservative approximation of the convective terms of the compressible Navier-
Stokes equations, written as:

∂ρukφ

∂xk
(2.16)
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where φ is a generic scalar proper, reduced to unity for the continuity equation, to the
velocity vector ui(i = 1,2,3) for the momentum, and to the enthalpy H = γ

γ−1
p
ρ + u2

2 for
the energy equation.

Basic principle of formulation
In case of one-dimensional, equidistantly distributed grid points i.e. xj = j.h, the conser-
vative finite difference approximation of the convective terms can be written as4:

∂ρuφ

∂x

∣∣∣∣
x=xj

≈ 1
h

(f̂j+1/2 − f̂j−1/2), (2.17)

where f̂j+1/2 is the numerical flux. Equation 2.17 is expanded to dictate the split form
of the convective derivatives either as:

∂ρuφ

∂x
= 1

2
∂ρuφ

∂x
+ 1

2φ
∂ρu

∂x
+ 1

2ρu
∂φ

∂x
, (2.18)

or
∂ρuφ

∂x
= 1

2
∂ρuφ

∂x
+ 1

2u
∂ρφ

∂x
+ 1

2ρφ
∂u

∂x
. (2.19)

Replacing the continuous derivative operators in eqs. 2.18 and 2.19 by their finite differ-
ence formulations gives

∂fg

∂x

∣∣∣∣
x=xj

≈Ds(fg)j ≡ 1
2D(fg)j + 1

2fjDgj + 1
2gjDfj , (2.20)

where the discrete approximation of the split convective derivative term is represented
by Ds, while Dfj stands for the discrete approximation of the first derivative of f at the
node xj . In the split forms, (f = ρu, g = φ) or (f = ρφ, g = u) in eqs. 2.18 and 2.19,
respectively. Here, a standard central approximation of the first derivative is written as

Dfj =
L∑

l=1
alD

lfj , (2.21)

where the coefficients al can be obtained by either acquiring the exact order of accuracy
of the approximation or from the approximation of the discrete phase velocity closest to
the exact one for a wide range of wavenumbers, providing the class of the dispersion-
relation-preserving (DRP) schemes (Pirozzoli, 2010). Also,

Dlfj = 1
h

(fj+l −fj−l), (2.22)

4The following numerical development is taken from the article by Pirozzoli (2010).
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Inserting eqs. 2.21 and 2.22 into eq. 2.20 allows us to obtain the conservation form of
the convective derivative approximation. When L = 1, the following is obtained for the
second-order approximation:

f̂i+1/2 = 1
4(fj +fj+1)(gj +gj+1), (2.23)

while a conservative approximation of 2.17 is written as:

f̂i+1/2 = 1
2(fjgj +fj+1gj+1). (2.24)

Considering one single term (Dl) in eq. 2.22, inserting into eq. 2.21, would give:

Dl
s(fg)j = 1

2D
l(fg)j + 1

2fjD
lgj + 1

2gjD
lfj = 2

h

(
(f̃, g)j,l − (f̃, g)j−l,l)

)
, (2.25)

such that
(f̃, g)j,l = 1

4(fj +fj+l)(gj +gj+l), (2.26)

is a two-point, two-variable discrete mean operator. It is to be noted that eq. 2.25 is
not written in the conservative form as in eq. 2.17. Through manipulation, it can be
re-casted as:

Dl
s(fg)j = 1

h
(f̂ l

j+1/2 − f̂ l
j−1/2), (2.27)

with

f̂ l
j+1/2 = 2

l−1∑
m=0

(f̃, g)j−m,l, (2.28)

By summing up all the partial fluxes, the total flux is then written as:

f̂j+1/2 =
L∑

l=1
alf̂

l
j+1/2, (2.29)

this results in

f̂j+1/2 = 2
L∑

l=1
al

l−1∑
m=0

(ρ̃u,φ)j−m,l, (2.30)

and

f̂j+1/2 = 2
L∑

l=1
al

l−1∑
m=0

(ρ̃φ,u)j−m,l. (2.31)

It is seen that eqs. 2.30 and 2.31 correspond to the form of eqs. 2.18 and 2.19,
respectively in case of al = a1 = 1/2.

Generalized form
Full expansion of the triple products in eq. 2.16 yields additional robustness for flows
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with strong density variations (Pirozzoli, 2010). The obtained generalized split form is
written as follows

∂ρuφ

∂x
= α

∂ρuφ

∂x
+β

(
u
∂ρφ

∂x
+ρ

∂uφ

∂x
+φ

∂ρu

∂x

)
+(1−α−2β)

(
ρu
∂φ

∂x
+ρφ

∂u

∂x
+uφ

∂φ

∂x

)
,

(2.32)

Conservative approximations of the split form 2.32 can be recovered only under partic-
ular circumstances. In case of α = β = 1/4, following the identical approach as for the
“standard” split formulations, one obtains:

f̂j+1/2 = 2
L∑

l=1
al

l−1∑
m=0

(ρ̃,u,φ)j−m,l, (2.33)

where the two-point, three-variable discrete averaging operator is defined as

(f̃, g,h)j,l = 1
8(fj +fj+l)(gj +gj+l)(hj +hj+l). (2.34)

with the constants al, obtained through Taylor’s expansion, are presented in table 2.1.
It is highlighted that the effect of density variation is considered in eq. 2.34, which is
independent of the other variables, u and φ. In this study, 6th order central scheme is
used.

Table 2.1: Central scheme coefficients of second to eight order.

Order (2L) i= 1 i= 2 i= 3 i= 4
2 a1 = 1/2 - - -
4 a1 = 8/12 a2 = −1/12 - -
6 a1 = 45/60 a2 = −9/60 a3 = 1/60 -
8 a1 = 672/840 a2 = −168/840 a3 = −1/840 a4 = 3/840

2.2.1.3 Hybrid scheme

It is acknowledged that WENO schemes are somewhat dissipative in the regions of strong
gradients. Meanwhile, central difference schemes might lead to some stability issues in
the vicinity of weak shocks or shocklets, like those generated in turbulent flow fields.
Thus, a hybrid scheme that acts as a switch between the WENO scheme and the skew-
symmetric centered scheme has been utilized. The procedure allows the WENO scheme
to be activated in the strong gradient regions, preventing any spurious oscillations with
its dissipative nature whereas the skew-symmetric scheme is used in the rest of the region
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to ensure accuracy and the stability of the solver. The hybrid scheme is defined as:

∂φ

∂x

Hybrid

= (1−Θ)∂φ
∂x

Skew−symmetric

+Θ∂φ
∂x

W ENO

, (2.35)

To sustain the stability of the skew-symmetric scheme, regions of strong gradients
should be located accurately in the computational domain. Thereafter, the shock sensor
proposed by Ducros et al. (1999) based on the sensor presented by Jameson et al. (1981)
is used:

θ = (∇.uuu)2

(∇.uuu)2 +(∇×uuu)2 + ϵ
, (2.36)

where numerical divergence is prevented using a small number i.e. ϵ = 10−5. A new
value of ϵ is devised by Pirozzoli (2011) to overcome the inadequacy of the Ducros sensor
outside of the boundary layer (where ∇ ×uuu ≈ 0) where the sensor becomes excessively
sensitive to the dilatational fluctuation:

ϵ=
(
u∞
δ0

)2
, (2.37)

The relation between the shock sensor and the hybrid scheme is put forward such that Θ
is set as a switch equal to 0 or 1 with the limiter value, θ0 = 0.02


Θ = 1, if θ > θ0

0, otherwise.
(2.38)

The sensor has been tested for different ϵ values in eq. 2.36. The analysis is performed
using the adiabatic as well as isothermal cases in chapter 4. Figure A.1 illustrates the
regions in the flow field where the shock sensor becomes activated for the perturbed
flow. ϵ plays a crucial role, particularly in the free-stream and turbulent flow fields.
When the parameter is set according to eq. 2.37, the sensor activates solely at one
location within the provided X−Y plane. This observation highlights the significance of
appropriately selecting the ϵ value to ensure accurate shock detection and characterization
in the numerical simulations. Following this analysis, eq. 2.37 is retained for estimating
the ϵ in this work.

2.2.2 Treatment of viscous terms

In the CHOC-WAVES code, viscous fluxes are approximated using a fourth-order compact
central difference discretization, in which the derivative in the longitudinal direction
(in the wall-normal and spanwise directions, the computations are approximated by a
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standard central formulation) is written as5

(DxFvFvFv)i =
FFFvvvi−2 −8FFFvvvi−1 +8FFFvvvi+1 −FFFvvvi+2

12∆x +O(∆x4), (2.39)

where DxFvFvFv = ∆x∂xFvFvFv. The derivative of the primitive variables ∂xψ are stored in FvFvFv. In
the longitudinal direction, the derivatives in FvFvFv are approximated using differently biased
5-point formulas of 4th order on stencils lying in S = {i−2, i−1, i, i+1, i+2}


(Dxψ)i−2 = 1
12∆x [ −25ψi−2 +48ψi−1 −36ψi +16ψi+1 −3ψi+2] + O(∆x4),

(Dxψ)i−1 = 1
12∆x [ −3ψi−2 −10ψi−1 +18ψi −6ψi+1 +ψi+2] + O(∆x4),

(Dxψ)i+1 = 1
12∆x [ −ψi−2 +6ψi−1 −18ψi +10ψi+1 +3ψi+2] + O(∆x4),

(Dxψ)i+2 = 1
12∆x [3ψi−2 −16ψi−1 +36ψi −48ψi+1 +25ψi+2] + O(∆x4).

(2.40)

Using these formulas results in a compact 5-point approximation that aligns with the
standard 4th-order expression for the second derivative.

2.2.3 Time integration

Time-integration schemes implemented in the code are mainly explicit TVD Runge-Kutta
algorithms (Shu and Osher, 1988), i.e. classical 1st-to-3rd orders as well as 4th order
RK-Gill (Gill, 1951) and 2nd order RK-Jameson. These schemes obey a restriction on
the temporal increment which must be sufficiently small to properly take the unsteady
character of the studied flows into consideration. In this study, 3rd order TVD Runge-
Kutta is chosen and the integration procedure is performed in three steps as follows:

∂QQQ(t,xxx)
∂t

= L(t,xxx), (2.41)

where L is the discretization of the spatial operator


QQQ1 = QQQn + ∆tL(QQQn),

QQQ2 = 1
4

[
3QQQn + QQQ1 + ∆tL(QQQ1)

]
,

QQQn+1 = 1
3

[
QQQn + 2QQQ2 + 2∆tL(QQQ2)

]
,

(2.42)

where ∆t is the time step, QQQn is the value of the QQQ variable at an instant n, and QQQ(k)

are the intermediate values of QQQ(k=1,2). The stability criterion used for the time-stepping
5The following numerical development is taken from the article by Chaudhuri et al. (2011).
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is given as:

[C∆t]i,j,k =
[ 3∑

l=1

|ul + c|
∆xl

+ 2γµ
Pr

3∑
l=1

∆x2
l

ρ

]
i,j,k

, (2.43)

where
∆t= min

[
CFL

(C∆t)i,j,k

]
. (2.44)

the convective time is the first term on the right-hand side of the equation whereas
the second term represents the diffusion time. Trials have shown that ensuring global
numerical stability requires the Courant-Friedrichs-Lewy (CFL) number to be less than
one, which is set as 0.9 in this study. For an insightful comprehension of the weighting
of the terms on the time-stepping, base flow DNS data computed in Chapter 4 has
been analyzed for the adiabatic as well as the isothermal cases. Once the statistical
convergence of the parameters is satisfied, the analysis is performed. Figure A.2 displays
the interplay between the limiting role of the viscous and inviscid parts of eq. 2.43. The
impact of viscosity increases near the wall and with increasing wall temperature, whereas
the inviscid part plays the dominant role in restricting the global time-stepping. Deeper
analysis of the cooled wall highlights the predominant effect of the v-component of the
velocity vector near the wall which is due to abrupt mesh stretching in the wall-normal
direction. Indeed, the term remains the most influential factor up to near 2δ. A similar
trend is observed also in the second viscous term which scales up with the mesh size in
y-direction. The overall influence of the thermal boundary condition indicates a higher
time-stepping for the cooled wall, thus resulting in a lower number of iterations to reach
the identical physical time compared to the adiabatic and heated cases.

2.3 Linear stability analysis

The linear stability theory analyzes the stability of a steady base flow with respect to
infinitesimally small sinusoidal disturbances. The flow field can be split into its steady
base flow Φ1 and unsteady perturbation as

Φ(x,y,z, t) = Φ1(x,y,z)+Φ′(x,y,z, t) (2.45)

The principal assumptions behind the theory are (Groskopf et al., 2008; Groskopf and
Kloker, 2016):

• Φ1 is the steady solution to the Navier-Stokes equations

• The steady primary state is assumed to be parallel
(

∂
∂x ≡ 0

)
, leading to a local

theory indicating that the change of flow properties per wavelength is negligible,
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i.e. boundary layer does not grow

• the y-component of the velocity is set to zero, i.e. v1 ≡ 0

• Initial perturbation is considered to be small which allows for a linearization by
neglecting the quadratic terms of the disturbances

Following the concerning assumptions, it is assumed that any disturbance Φ′ can be
expressed by a wave-like ansatz:

Φ′ =



ρ′(x,y,z, t)
u′(x,y,z, t)
v′(x,y,z, t)
w′(x,y,z, t)
T ′(x,y,z, t)


=



ρ̂(y)
û(y)
v̂(y)
ŵ(y)
T̂ (y)


.ei(αx+βz−ωt) + c.c (2.46)

where Φ̂(y) is the corresponding complex amplitude distribution of the perturbation in
a plane perpendicular to the x- and z-axes. Also, α, β, and ω refer to the spatial
wavenumbers in x- and z-directions and the frequency, respectively. Once the disturbance
ansatz is applied, the stability equations are obtained from the Navier-Stokes equations
simply by subtracting the governing equations of the unperturbed base flow from the flow
field. We aim to find the solution within the spatial mode, with the given real input values
for β and ω, where α represents the complex eigenvalue, with spatial amplification for
growth rate αi < 0, that needs to be determined through the ensuing nonlinear eigenvalue
problem (EVP) (Schmidt and Rist, 2014)

(L̃LL+M̃MMα)q̃qq = 0, (2.47)

where q̃qq = (ρ̂, û, v̂, ŵ, T̂ , αû, αv̂, αŵ, αT̂ ) with the coefficient matrices, L̃LL and M̃MM ,
of the discretized problems. The EVP is solved using the Chebyshev spectral method
with Dirichlet boundary conditions applied at the wall and in the free stream, i.e. (u′ =
v′ =w′ = T ′ = 0). Construction of the whole matrix allows to solve the complete range of
eigenvalues i.e. employing the global method (Malik, 1990). Then, for a given streamwise
location, an eigenvalue is selected to visualize the associated eigenvectors. The chosen
eigenvalue is tracked by the algorithm that identifies eigenvectors at different streamwise
locations and selects the ones with the highest correlation.

Using Chebyshev polynomials requires mapping the infinite and semi-infinite domains
onto a finite domain. Thus, an algebraic stretching which transforms the physical domain
0 ≤ y ≤ ymax to the computational domain −1 ≤ ŷ ≤ 1 is employed as follows (Schmid
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and Henningson, 2001)
y = a

1+ ŷ

b− ŷ
, (2.48)

with
a= yiymax

ymax −2yi
, b= 1+ 2a

ymax
. (2.49)

The variable yi defines near the boundary layer height, up to which half of the points lie.
Despite the advantage of clustering the grid near the wall, yi should be carefully chosen
in high-speed flows as the critical layer moves towards the boundary layer edge as the
Mach number increases (Malik, 1990).

2.4 Conclusion

The governing equations of fluid motion, the numerical strategy and the CFD solver have
been presented. The linear stability theory, inherent assumptions, and the LST code for
solving the spatial nonlinear eigenvalue-problem have been introduced.
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This chapter focuses on evaluating the accuracy and efficiency of the direct numer-
ical simulation (DNS) code and the linear stability solver in the context of supersonic
boundary layer flows. Linear stability results for different modes of disturbances as well
as intrinsic limitations are discussed. Furthermore, DNS results for a supersonic/near-
hypersonic transitional boundary layer are compared with reference data from Zhou et al.
(2022). Laminar breakdown scenarios, triggered by first- and second-mode instabilities
are elaborated, and different perturbation methods are presented. Eventually, the pri-
mary assessment of DNS results is conducted by tracking the evolution of disturbances
within the boundary layer until reaching a fully-developed turbulent flow.
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3.1 Linear stability analysis

In our linear-stability analysis solver, self-similar compressible boundary-layer profiles
are applied to solve the entire spectrum for a single disturbance frequency at a given
streamwise position in the flow and for a prescribed spanwise wavenumber (Schmidt and
Rist, 2014). The initial analysis is performed for a designated pair of frequency and
spanwise wavenumber associated with the first-mode instability. Figure 3.1 compares the
complex wavenumber evolution along the streamwise direction and the two-dimensional
eigenvalue spectra at a particular streamwise position. The wavenumber results are found
to match almost perfectly, with a minor deviation observed in the real-valued streamwise
component. The associated eigenvalue to the relevant first-mode instability wave is ac-
curately captured at x = 0.5 m, streamwise direction, in the spectra which reveal three
main branches. According to Tumin et al. (2007)’s classification, the left branch corre-
sponds to the fast acoustic wave spectrum, while the right branch pertains to the slow
acoustic wave spectrum. These designations are based on the phase speed of their origin,
characterized by cr = 1±1/M∞. Additionally, the vertical line of squares represents the
continuous entropy and vorticity spectra with cr = 1.

Figure 3.1: (a) 2-D eigenvalue spectra at x = 0.5 m and (b) streamwise evolution of
the complex wavenumber α for the three-dimensional first mode with f = 6.36 kHz and
β = 196.2 m−1 at M∞ = 3.0,T∞ = 103.6 K, and Reu = 2.181×106 m−1. LST (×××, +++, □□□)
by Mayer, Von Terzi and Fasel (2011).

A similar analysis is performed with a 2-D second-mode instability, the most amplified
mode of the Mack mode family. The linear stability theory (LST) results are compared
with those obtained through the parabolic stability equations (PSE) in fig. 3.2. The
LST results are depicted by a single N-factor curve, whilst the PSE predicts individual
amplifications for different disturbance parameters. This discrepancy arises from PSE’s
departure from the parallel flow assumption inherent in LST. For comparison, the best
agreement between the results is observed for v′, indicating that it is the least affected dis-
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Figure 3.2: Integrated growth rates (N-factors) of a second-mode instability at M∞ = 4.5,
T∞ = 61.11 K, and Reu = 3.306×106 m−1. PSE results (symbols) by Jiang et al. (2004).

turbance component from the parallel-flow assumption. (Malik, 2003) has shown that the
assumptions of LST may result in predicting the wavenumber and growth rate with signif-
icant errors when compared with the PSE and full Navier-Stokes (NS) results. However,
despite the its limitations, LST remains as a valuable tool for accurately representing a
significant portion of the transitional regime under low-disturbance flight-like conditions.

Figure 3.3: Eigenfunctions of the disturbance parameters for (a-b) the first mode (f = 21
kHz, β = 392.70 m−1) and (c-d) second mode (f = 91 kHz, β = 167.55 m−1) instabilities
at Rex = 3.8×106, respectively.

In fig. 3.3, the eigenfunctions of disturbances corresponding to the previously ex-
amined first-mode and second-mode instability waves are depicted. In both cases, the
maximum disturbance amplitude is obtained in T ′ where the eigenfunction exhibits a
secondary peak near the wall with a comparable amplitude as the first peak in second-
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mode. Also, u′,v′ have their maxima near the wall, while for the first mode, they tend
to be closer to the boundary-layer edge. The influence of the Dirichlet wall boundary
condition, detailed in section 2.3, is also evident for u′, v′, and T ′.

3.2 Direct numerical simulation

After validating the LST solver, the DNS code is used to simulate supersonic flat-plate
boundary layers to demonstrate its capabilities. Transition is triggered by using first- and
second-mode oblique disturbances separately. Second-mode induced transition case serves
for validation while both breakdown scenarios are compared to discern the evolution of
disturbances and alteration of the mean-flow field.

free-stream flow

perturbed laminar flow

transitional flow

turbulent flow

perturbationx"#

u(y)

Lx + x"#

M+,T+

y
x

Figure 3.4: Schematic of the computational domain and boundary conditions.

3.2.1 Problem setup

The set-up is designed to keep the flow conditions of Zhou et al. (2022) at M∞ = 4.5,
T∞ = 65.15 K, Reu = 7.2 × 106 as well as the wall temperature, fixed at Tw = 4.0 ×T∞.
This corresponds approximately to 10% of wall cooling with respect to the adiabatic
wall temperature for laminar flows where Pr = 0.72. Following the schematic of the
computational domain depicted in fig. 3.4, the streamwise length and the height of
the domain in the wall-normal direction are defined as Lx = 0.8 m and Ly = 0.1 m,
respectively. The domain width, Lz, corresponds to the spanwise wavelength of the
injected disturbance, as indicated in table 3.1. The mesh is designed to have a comparable
resolution with the reference case in all directions. Grid is distributed equidistantly in
streamwise and spanwise directions with Nx = 3500 and Nz = 200 number of points while
a grid stretching function is used with Ny = 200 in the wall-normal direction for accurately
capturing the inner boundary layer next to the wall which is given as
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yj,str = Ly

(
1+ tanh(κ× (yj,eq −1))

tanh(κ)

)
,

yj,eq = j/Ny, ∀j ∈ {1, · · · ,Ny}.
(3.1)

where κ= 2.6.

3.2.2 Method of perturbation

Transition can be triggered in numerous ways such as heat transfer, a blowing and suc-
tion strip at the wall, pressure gradient, surface roughness, curvature noise, free-stream
turbulence intensity, etc. Here, the laminar boundary layer is excited via blowing and
suction strip placed at the wall whose formulations are identical as Sharma, Shadloo,
Hadjadj and Kloker (2019) and are expressed as

ṁ(x,y = 0, z, t) = ρυ = Aρ∞u∞f(x)g(z)h1(t), (3.2)

f(x) = 4sinθ(x)(1− cosθ(x))/
√

27, (3.3)

θ(x) = 2π(x− (x1 −xin))/(x2 −x1), (3.4)

g(z) = (−1)kcos(2πkz/Lz), (3.5)

h1(t) = sin(hωt), (3.6)

where A is the maximum disturbance amplitude given as (ρυ)w/(ρ∞u∞), ṁ is the trans-
verse mass flux, ω is the angular frequency of the excitation mode, h being the multiple of
the fundamental frequency, and k the multiple of the fundamental spanwise wavenumber.
The dimensional frequency and the spanwise wavenumber of the introduced perturbation
are denoted by f0 and β0, respectively. For the sake of simplicity, the modes are labeled
based on their contents i.e. the (h,k) standing for the frequency/spanwise wavenumber
tuple. Here, (h,k) indicates the disturbance mode with frequency h× f0 and spanwise
wavenumber k×β0. The tuples (h = 0,k) are the steady modes (waves), (h > 0,k) are
known as the unsteady or the traveling modes whereas 2-D modes are designated by
(h ̸= 0,0). For three-dimensional disturbances, the tuple stands for the sum of (h,+k)
and (h,−k) for three-dimensional disturbances. Also, the mean-flow-deformation (MFD)
is indicated by (0,0) tuple.

3.2.3 Boundary conditions

Self-similar boundary layer (BL) profiles that are obtained by solving the compressible
boundary layer equations are prescribed at the inlet. Appendix B provides detailed
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information regarding the BL solver. Supersonic inflow and outflow conditions are applied
at the inlet (x = xin) and at the outlet (x = xin +Lx) of the computational domain,
respectively. As for the rest of the boundaries, periodicity is imposed at the side walls
as well as a slip condition with zero boundary-normal gradients imposed at the upper
boundary. No-slip condition is applied at the wall with the permeable region occupied
by the blowing/suction strip. To satisfy the boundary conditions, finite values on the
ghost cells outside the computational domain are imposed. Depending on the physical
condition to be satisfied, the conservative variables of the system of equations governing
the flow are defined in these meshes.

Three DNS cases, which are enlisted in table 3.1, are investigated. Here, x1 and x2

indicate the start and ending locations of the perturbation strip, respectively. It is seen
that the width of the strip is adjusted in accordance with the streamwise wavelength of
the associated disturbance while maintaining the same ending location. By definition,
having a sufficient resolution is the critical parameter for a proper DNS. Therefore, the
computational grid is designed to have comparable resolution with respect to spatial
(Pirozzoli et al., 2004; Franko and Lele, 2013) and temporal (Duan and Martin, 2011)
DNS studies. The resolution is calculated in wall units with the viscous length scale at
the streamwise position corresponding to the peak value of the skin-friction coefficient
(Passiatore, 2021), see fig. 3.7.

Table 3.1: Parameters for the simulations. The case names are composed of the first
character (“F” and “S”), which represents the first- and second-mode oblique breakdowns,
respectively. The ensued letters (“m” and “v”) denote the mass-flux and velocity type of
perturbations through the strip, respectively.

Cases A (% of ρ∞u∞,u∞) β0 (m−1) f0 (kHz) x1-x2 (m) ∆x+
w × ∆y+

w × ∆z+
w

Fmob 0.495 392.70 21 0.412-0.44 7.21 × 0.91 × 2.52
Smob 0.495 167.55 91 0.43-0.44 6.35 × 0.81 × 5.21
Svob 2 167.55 91 0.43-0.44 6.39 × 0.81 × 5.24

3.2.4 Data sampling

Time sampling of the variables,QQQ= {ρu, ρv, ρw, ρE, ρ} as represented in CHOC-WAVES,
is performed after six flow through time corresponding to a solution that ensures atten-
uated initial transient. The primitive variables, {u, v, w, p, T} can then be calculated
by the density vector in matrix QQQ together with eq. 2.5. In order to optimize the post-
processing cost and the accurate representation of the disturbances inside the boundary
layer, slices of QQQ are acquired at certain streamwise positions and in time. The stream-
wise wavelength of the fundamental disturbance is the criterion to define the locations in
space whereas the lowest frequency of interest sets the sampling frequency, fs based on
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the Nyquist theorem (Shannon, 1949). That said, information of the desired signal can
be perfectly constructed only if the sampling frequency is two times higher fs ≥ 2 × f .
It should also be noted that the present study does not concern sampling a continuous
frequency spectrum but rather the discrete sub/super- harmonics of the fundamental fre-
quency, therefore, sampling does not necessarily generate a massive database as in the
case of Caillaud (2022). Once the sampling is completed, the eigenvectors (disturbance
modes) are obtained via Fourier transformation that is performed in time and in the
spanwise direction as Kloker (1993):

f ′(x,y,z, t) =
H∑

h=−H

K∑
k=−K

F̂h,k(x,y)ei(hf0t+kβ0z), (3.7)

Here f0 is the lowest frequency that can be displayed in the interference spectrum and
β0 is the fundamental transverse wavenumber. In the presentation of the results, the real
amplitudes Fh,k and phases Θh,k of the individual Fourier components are used, which
are related to the complex amplitude functions F̂h,k as follows:

F0,0 = |F̂0,0| = Re(F̂0,0), (3.8)

Fh,k = 2|F̂h,k| for h= 0 or k = 0, (3.9)

Fh,k = 4|F̂h,k| for h,k ̸= 0, (3.10)

Θh,k = arctan−Im(F̂h,k)
Re(F̂h,k)

. (3.11)

3.2.5 Validation

The validation has been performed for Smob and Svob due to lower streamwise resolution
per disturbance wavelength compared to Fmob. The designated second-mode wave is
resolved with ≈ 37 points in the streamwise direction. Additionally, resolution per wave-
length gradually decreases downstream of the perturbation strip since the wavelength
of the second-mode instability wave increases along the streamwise direction. However,
the effect is negligible since the concerning increase is only by 3% all along its amplified
streamwise region based on the linear stability analysis (LSA), see fig. A.3.

The authors utilized transverse velocity disturbance with an amplitude of 2% of u∞

contrary to the transverse mass-flux perturbation presented in section 3.2.2. In a nu-
merical environment, it is commonplace to use various perturbation methods to trigger
transition such as free-stream disturbance, roughness elements, blowing/suction strips,
point source, and so on. Nevertheless, when considering injection scenarios, the method
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of perturbation should be carefully chosen if a realistic approach is sought. The trans-
verse velocity disturbance does not take the non-constant density into account, violating
the mass conservation. Although it successfully triggers the transition, Sharma, Shadloo
and Hadjadj (2019) highlighted that comparing cases with different thermal boundary
conditions might be misleading if the density is not considered. Contradicting the well-
known stabilizing effect of the wall cooling on the first-mode, their findings showed a
destabilized disturbance when cooling was applied, leading to an earlier transition com-
pared to a heated wall. Nonetheless, for validation, we have initially retained the formula
employing the transverse velocity perturbation in Svob.

Figure 3.5: Streamwise evolution of maximum modal disturbance amplitudes for Svob
(red) and Zhou et al. (2022) (black). Vertical dashed line: perturbation strip center
(Rex ≈ 3.13×106).

Figure 3.5 presents a comparison between the evolution of disturbances obtained from
our DNS results and those reported by Zhou et al. (2022). For a better visualization,
the results are presented up to Rex = 6 × 106, corresponding to the position beyond the
onset of transition based on the minimum Cf value, see fig. A.4. Here, each mode
is computed by a time sampling over two fundamental periods, i.e. 2 × f0. Following a
Fourier analysis in time and the spanwise direction, the maximum amplitude of a selected
mode in the wall-normal direction is plotted. The generation of disturbances is similar to
the laminar breakdown induced by a first-mode oblique wave instability (Thumm, 1991).
The self-nonlinear interaction of the fundamental disturbance leads to the generation of
the steady mode (0,2). Furthermore, the non-linear interaction of this steady mode with
the fundamental disturbance (1,±1) leads to higher harmonics in the spanwise direction
while the self-nonlinear interaction of the fundamental disturbance gives rise to higher
harmonics in time, i.e. (2,0), (4,0), and so on. The discrepancies in the proximity of the
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perturbation strip are mainly attributed to the near-field effect, as well as the method
employed to search for the maximum amplitude of modes in the wall-normal direction.
Additionally, the oscillations in the low-amplitude region are due to the background noise
of our solver, influenced by machine precision, numerical schemes, and the parameters
selected to initiate the simulation. A higher resolution in the streamwise direction has
been shown to decrease this noise-related earlier amplification of the 3-D modes in fig.
A.5.

Figure 3.6: Streamwise evolution of maximum modal disturbance amplitudes for Smob
(red) and Zhou et al. (2022) (black). Vertical dashed line: perturbation strip center
(Rex ≈ 3.13×106).

From this point on, the transverse mass-flux type of perturbation is retained. Ac-
cordingly, the perturbation amplitude is adjusted to account for density variations and
ensure zero net-mass injection at the wall. The impact of this modification is observed
on the MFD in fig. 3.6. The results closely align with the reference values at approxi-
mately Rex = 4×106, only after the perturbation amplitude reaches 1% of the maximum
amplitude. Despite the alterations in the perturbation method, the influence on the Cf

and Ch is found to be insignificant as depicted in fig. A.4.

3.2.6 Oblique breakdown scenarios

Zhou et al. (2022) has provided a thorough analysis of the oblique breakdown scenarios
that are induced by oblique wave pairs of the 1st and 2nd-mode instabilities. Hence, to
avoid repetition, we will only address the amplification of different perturbation parame-
ters as well as the evolution of non-linearly generated disturbances within the boundary
layer along the streamwise direction in the laminar transitional regime. Therefore, an
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additional DNS case, Fmob, where the transition is triggered by the 1st-mode instability,
as designated by Zhou et al. (2022), is performed.

Figure 3.7: Streamwise evolution of skin-friction coefficient and Stanton number for Fmob
( ) and Smob ( ). Laminar base flow values ( ) and turbulent values ( ). Vertical
dashed lines: perturbation strip centers for Fmob (Rex ≈ 3.06 × 106) and Smob (Rex ≈
3.13×106).

Before investigating the disturbances, we first examine the evolution of the time-
and spanwise-averaged skin-friction coefficient and the Stanton number, denoted as Cf

and Ch, respectively. The Stanton number is a dimensionless parameter that quantifies
the wall heat-transfer rate and is defined as Ch = q̇w/[ρ∞u∞Cp(Trec − Tw)], where q̇w

represents the heat transfer rate from the wall, calculated as q̇w = −λw(∂T/∂y)|w and Cp

is the specific heat capacity at constant pressure. Here, the ¯(•) denotes time- and space-
averaged quantities. Being the recovery temperature at wall for a turbulent boundary
layer, Trec is estimated by Trec = T∞[1+r(γ−1)/2×M2

∞] where r=Pr1/3 is the recovery
factor for turbulent flows (White and Corfield, 2006). As the definition of the Stanton
number is based on the adiabatic wall temperature for turbulent flows, its values, depicted
in fig. 3.7, in the laminar and transitional regimes should be interpreted only qualitatively.
Additionally, turbulent values of Cf are also included in the figure following (White and
Corfield, 2006)’s relation given by:

Cf = 0.455
S2

[
ln
(0.06
S

Rex
µ∞
µw

√
T∞
Tw

)]−2
, (3.12)

where

S =

√
Trec/T∞ −1

arcsin(A)+arcsin(B) , (3.13)
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and

A= 2a2 − b√
b2 +4a2 , B = b√

b2 +4a2 , a=
√
r
γ−1

2 M2
∞
T∞
Tw

, b=
(
Trec

Tw
−1

)
. (3.14)

Eventually, Ch for turbulent flow is calculated using the Reynolds analogy, expressed
as Ch = Cf/(2Pr2/3)(Reynolds, 1901). While examining fig. 3.7, the onset of transition
location is defined as the point corresponding to the minimum value of Cf , which is at
Rex = 4.46×106 and Rex = 5.34×106 for Fmob and Smob, respectively. The figure reveals
that Cf closely follows the laminar base-flow values with a slight hump before reaching
the transition onset location in Smob. Similarly, a somewhat stronger trend is observed
in Ch. Zhou et al. (2022) analyzed the wall heating rate by the viscous dissipation as the
sum of the dilatation dissipation, where both pressure and viscous terms play a role, and
the work done by shear stress. The peak in Ch in the laminar regime was found to be
associated with the dilatation dissipation by the pressure work whereas the shear stress
was responsible for the second peak e.g mechanism revealed by Zhu et al. (2018). For
Fmob, both Cf and Ch follow the base-flow trends, except near the perturbation strip,
until the transition onset location. Further, into the fully-developed turbulent regime,
the overshooting of Cf and Ch is observed only for the first-mode oblique breakdown,
consistent with the findings of Franko and Lele (2013). The rapid amplification of the
steady vortex mode with an initial amplitude higher compared with that of the second-
mode induced transition, as illustrated in fig. 3.9, was considered as the primary reason
of the observed phenomenon.

Figure 3.8: (a) Evolution of the skin-friction coefficient in Smob with Renard-Deck de-
composition (red) and (b) contribution of the terms in equation 3.15.

A deeper understanding of the Cf evolution requires examining the contribution of
different physical mechanisms as in Ch. Thus, Renard and Deck (2016) (RD) identity is
used to decompose the skin-friction coefficient in Smob. The approach was generalized for
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compressible channel flows by Li et al. (2019) and further extended to compressible bound-
ary layers by Fan et al. (2019). The RD identity was derived from the mean streamwise
kinetic energy budget in an absolute reference frame under the following assumptions:
no-slip condition at the wall, statistical stationary in time, statistical homogeneity in the
spanwise direction, and no additional body force and is formulated as:

Cf =

Cf,1︷ ︸︸ ︷
2

ρ∞u3
∞

∫ ∞

0
τyx

∂ũ

∂y
dy+

Cf,2︷ ︸︸ ︷
2

ρ∞u3
∞

∫ ∞

0
−ρu′′v′′∂ũ

∂y
dy

+ 2
ρ∞u3

∞

∫ ∞

0
(ũ−u∞)

[
ρ
(
ũ
∂ũ

∂x
+ ṽ

∂ũ

∂y

)
− ∂

∂x

(
τxx −ρũ′′u′′ −p

)]
dy︸ ︷︷ ︸

Cf,3

(3.15)

where Cf,1 accounts for the direct effect of viscous dissipation, transforming mechanical
power into heat; Cf,2 is the power converted into turbulent kinetic energy production;
and Cf,3 stands for the spatial growth of the flow which incorporates into streamwise
heterogeneity effects. Here, (•)′′ is the Favre fluctuation while (̃•) represents the Favre
averaging. For a given variable f , these two operators are linked via f̃ = f −f ′′ = ρf/ρ.
It is seen in fig. 3.8a that the RD identity perfectly captures the Cf evolution. The
maximum deviation is 2% at Rex ≈ 5.75×106, corresponding to the streamwise location
that precedes the jump in Cf . Viscous dissipation dominates over the other terms up to
Rex = 5.3 × 106. Meanwhile, Cf,2 exhibits a gradual increase as the fluctuating kinetic
energy rises, resulting in the observed hump in Cf during the laminar regime before
surpassing Cf,1. Concurrently, Cf,3 opposes the Cf,2 as it increases/decreases while the
latter decreases/increases, respectively, expanding the breakdown region until the point
indicated by the arrow in fig. 3.8b. Eventually, dissipation-related contributions decrease
asymptotically while Cf,3 experiences a slow, positive increase, contributing to the overall
Cf in the turbulent regime.

Figure 3.9 compares the evolution of disturbances in both of the breakdown scenarios.
It is observed that the growth rates in Smob are higher than Fmob which are in accor-
dance with the LST estimations. Topological investigation of Franko and Lele (2013)
revealed that the streaks persist longer in the case of the second-mode-induced transition
scenarios, which was attributed to the initially weaker amplitude of the streaks. A similar
trend is observed in fig. 3.9, where the steady mode (0,2) in Smob has a two/one order
of magnitude lower initial amplitudes in u′/(ρu)′. Furthermore, transition is strongly
associated with the breakdown of the vortical structures generated by the steady modes.
In case Fmob, the location corresponding to the maximum amplitude of (0,2) following
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Figure 3.9: Streamwise evolution of maximum modal disturbance amplitudes for Fmob
(black) and Smob (red) cases. Vertical dashed lines: perturbation strip centers in Fmob
(Rex ≈ 3.06×106) and Smob (Rex ≈ 3.13×106).

its amplification is approximately in the range of Reynolds numbers where Cf already
starts to shoot up. However, the same analogy does not hold in case Smob since the sat-
uration of (0,2) encompasses a large streamwise distance before reaching the transition
onset location. Conversely, the earlier transition in case Fmob compared to case Smob can
be inferred from the evolution of MFD, which reaches its maximum value shortly before
Rex = 6×106, while the maximum amplitude of the mode keeps increasing in case Smob

in both disturbance profiles.
The streamwise evolution of the disturbances within the boundary layer is presented

in figs. 3.10 and 3.11 for both breakdown scenarios. In case Fmob, the steady modes
(0,2) and (0,4) have their maximum amplitudes almost around the same normalized dis-
tance from the wall at the initial three locations for both of the perturbation parameters.
Further downstream, the modes experience irregularities due to the strong non-linear
transitional regime. However, the steady modes exhibit different wall-normal distribu-
tions in case Smob, as depicted in fig. 3.3. For u′, (0,2) goes gradually away from the wall
which is followed by (0,4) until around Rex = 5×106. Subsequently, (0,4) approaches the
wall by increasing its maximum disturbance amplitude. A similar up-and-down move-
ment of the vortical structures was observed in the case of transition induced by the
fundamental resonance mechanism over straight (Sivasubramanian and Fasel, 2015) and
flared cones (Hader and Fasel, 2017, 2019; Meersman et al., 2018; Chynoweth, 2018).
The motion of these vortical structures inside the boundary layer was associated with
the generation of the well-known streamwise streak pattern i.e. appearing-disappearing-
reappearing. Despite the differences between the currently examined oblique breakdown
and fundamental resonance scenarios, the up and down movement of the steady modes
(0,2) and (0,4) in the u′ wall-normal disturbance bears resemblances.

Additionally, a significant difference is observed in the evolution of the MFDs. In case
Fmob, the MFD shows modulation starting from the third streamwise location that cor-
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Figure 3.10: Wall-normal distribution of (ρu)′ (top) and u′ (bottom) disturbances for
case Fmob: (a-e) MFD, (b-f) (1,1), (c-g) (0,2), and (d-h) (0,4) inside the boundary layer
at Rex = 3.98 × 106 ( ), Rex = 4.51 × 106 ( ), Rex = 4.97 × 106 ( ), Rex = 5.5 × 106

( ), and Rex = 5.76×106 ( ).

responds to approximately around where the rampant increase in Cf and Ch is observed
in fig. 3.7. On the other hand, strong modulation of the MFD is observed in u′ and (ρu)′

much earlier than the transition location in case of the second-mode disturbance due to
its nature as depicted in fig. 3.3.

3.2.7 Turbulence

Accurate resolution of the turbulent flow field with all the small scales requires an ade-
quate grid resolution and computational domain size. According to Poggie et al. (2015),
the spanwise length of the domain should be two times greater than the local boundary
layer thickness to ensure proper decorrelation in the spanwise direction. Considering the
outlet boundary layer thickness in case Smob, (Lx ×Ly ×Lz)/δout ≈ 72.9×9.1×3.4 satis-
fies the asserted requirement. In this section, the attention is given to case Smob since this
case will be used as a subject of investigation for transition control in Chapter 6. However,
the lower spanwise extent in case Fmob as well as the observed earlier breakdown to tur-
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Figure 3.11: Wall-normal distribution of (ρu)′ (top) and u′ (bottom) disturbances for
case Smob: (a-e) MFD, (b-f) (1,1), (c-g) (0,2), and (d-h) (0,4) inside the boundary layer
at Rex = 3.98 × 106 ( ), Rex = 4.51 × 106 ( ), Rex = 4.97 × 106 ( ), Rex = 5.5 × 106

( ), and Rex = 5.76×106 ( ).

bulence, resulting in a thicker boundary-layer, makes this case questionable for the matter
of decorrelation in the spanwise direction i.e. (Lx ×Ly ×Lz)/δout ≈ 63.7×7.8×1.3. Re-
turning to case Smob for the moment, the adequacy of the spanwise extent of the domain
can be evaluated using the two-point correlation which is defined as Pirozzoli et al. (2004)

Rαα(rz) =
Nz−1∑
k=1

αkαk+kr , kr = 0,1, ...,k−1, (3.16)

where rz = kr∆z, ∆z is the cell-thickness in the z−direction, and α stands for the fluc-
tuations of any one of the variables ρ,u,v,w or p. Ensemble averages, indicated by
(.), are obtained by collecting 562 samples over the time period of T0 ≈ 340 × δ∗/u∞,
where δ∗ is the local displacement thickness. The sample time falls between 200 and
1200 corresponding to the investigations of Spalart (1988) and Pirozzoli et al. (2004), re-
spectively. Figure 3.12 displays two-point correlations at different wall-normal positions
corresponding to the viscous sub-layer, buffer zone, and the logarithmic layer from the
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wall, respectively. All the variables exhibit a very weak correlation, oscillating around
zero at the half spanwise extent, ensuring that the domain is wide enough not to in-
hibit the turbulence mechanism (Shadloo et al., 2015). A similar investigation has been
performed for case Fmob and plotted in fig. A.6. Confirming the previously mentioned
suspense, the two-point correlation analysis emphasizes the insufficient spanwise length
of the domain, where u in the logarithmic zone, w and ρ in the viscous sub-layer and ρ

in the buffer zone are not decorrelated entirely at the half-spanwise direction.

Figure 3.12: Distribution of the two-point correlations in the spanwise direction for case
Smob at Rex = 8 × 106 with (a) α = u (blue) and α = ρ (green) and (b) α = v (blue)
and α = w (green) at y+ = 2.9 (solid lines), y+ = 25.5 (dashed lines), and y+ = 133.3
(dash-dotted lines).

In order to assess the formation of a fully-developed turbulent boundary layer, the
mean flow characteristics averaged both in time and spanwise direction for 3 flow through,
are examined. Thus, the streamwise velocity and the wall-normal coordinate are scaled
by the friction viscosity and viscous length scale, respectively, as

y+ = ρwuτy

µw
, uτ =

√
τ̄w

ρw
, (3.17)

log-law for incompressible flows are transformed by the Van Driest transform as

U+
V D = 1

uτ

∫ ũ

0

√
ρ̃

ρw
dũ+, (3.18)

with ũ+ = ũ/uτ and superscript (•)+ denotes the scaled variables. Figure 3.13a shows
that the transformed mean velocity profile matches the viscous sub-layer i.e. y+ ≤ 5 and
the logarithmic layer, i.e. 30 ⪅ y+ ⪅ 100. While the slope of the logarithmic wall varies
only negligibly, the second constant alters significantly with the thermal wall boundary
condition (Maeder, 2000; Shahab et al., 2011; Poggie et al., 2015; Hadjadj et al., 2015).

The mean temperature profile can be related to the mean velocity profile through the
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Figure 3.13: Distribution of the Favre-averaged mean quantities in the wall-normal direc-
tion atRex = 8×106. (a) van-Driest transformed streamwise velocity and (b) temperature
as a function of velocity.

modified Crocco-Busemann of Walz (1969) in zero-pressure gradient (ZPG), flat-plate
compressible turbulent boundary layers. In this modified relation, the recovery factor
appears in the quadratic velocity term to increase the accuracy

T̃

T̃e

= Tw

T̃e

+ T̃rec −Tw

T̃e

(
ũ

ũe

)
− T̃e − T̃rec

T̃e

(
ũ

ũe

)2
, (3.19)

where T̃rec is estimated with the boundary-layer edge Mach number, Me. It was reported
that while accurately estimating the adiabatic profiles, Walz’s equation deviates signifi-
cantly for cooled walls Duan et al. (2010). To account for the wall heat transfer, Zhang
et al. (2014) introduced a generalized Reynolds analogy (GRA), where T̃rec in eq. 3.19 is
replaced with T̃rg = T̃e + rgũ

2
e/(2Cp) and rg is given as

rg = T̃w − T̃e

ũ2
e/(2Cp) + 2Cp

ũe

∂T̃

∂ũ

∣∣∣∣∣
w

. (3.20)

It is seen that the GRA relation reduces to Walz’s equation for adiabatic walls. Figure
3.13b plots these two relations for the DNS case. It is seen that Walz’s equation slightly
overestimates the profiles in the lower half of the boundary layer where GRA accurately
captures the DNS data with a maximum deviation < 1%.

3.3 Conclusion

In this chapter, the linear stability solver is tested and proven to accurately estimate
the instabilities for the provided base flows. Subsequently, DNS cases are conceived to
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validate the exploited numerical solver, elaborate different methods of perturbations, and
compare oblique breakdown scenarios that are initiated by different types of instabilities.
The steady disturbances in transition that is induced by unsteady second-mode distur-
bance showed resemblances to the topological features of the vortical structures in the
fundamental breakdown observed over slender, straight, and flared cones. Ultimately, the
turbulent flow field is shown to be reached before the end of the computational domain
where the spanwise extent of the domain for the second-mode induced transition is found
sufficient to sustain the turbulence mechanism.
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In this chapter, we investigate the application of the streak employment method as
a mean to delay laminar breakdown in a supersonic boundary layer. Our study can be
regarded as an extension of the research conducted by Sharma, Shadloo, Hadjadj and
Kloker (2019), where the range of streak amplitude was roughly studied and only for
adiabatic walls. Thus, we conduct a parametric analysis to determine the range of streak
amplitudes that effectively suppress flow transition in both adiabatic and isothermal wall
conditions. Furthermore, of particular interest is the downstream development of the
disturbances in the absence/presence of the streaks within the boundary layer. Most
of the results presented in this chapter have been published in Physical Review Fluids
(Celep et al., 2022)6 and were presented at the 8th European Congress on Computational
Methods in Applied Sciences and Engineering 7.

6https://doi.org/10.1103/PhysRevFluids.7.053904
7http://www.eccomas2022.org
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4.1 Problem setup

4.1.1 Simulation parameters

Simulations are performed for supersonic flows at Mach number M∞ = 2.0, with tem-
perature T∞ = 160 K, velocity u∞ = 507.1 m/s, kinematic viscosity ν∞ = 2.1067 × 10−5

m2/s, pressure p∞ = 23.786 kPa and Prandtl number Pr = 0.72. The inlet location,
xin = 4.154 mm corresponding to the inlet Reynolds number Rexin = 105, is designated
far enough from the leading edge to preclude possible interactions between weakly gen-
erated shocks at the leading edge and the disturbance modes of the boundary layer. The
length and the height of the domain are Lx = 55 mm and Ly = 10.2 mm, respectively,
while the width of the domain corresponds to the wavelength of the fundamental dis-
turbance, Lz = 2.153 mm. Grid is distributed equidistantly in streamwise and spanwise
directions with Nx = 800 and Nz = 140 number of points, whilst grid stretching eq. 3.1
with κ= 3.075 is used with Ny = 180 in the wall-normal direction for accurately capturing
the inner boundary layer next to the wall.

4.1.2 Boundary conditions

Supersonic inflow and outflow conditions are applied at the inlet and the outlet. Figure
A.7 presents nondimensional velocity and temperature self-similar boundary layer profiles
prescribed at the inlet, Rex,in = 105. As for the rest of the boundaries, periodicity
is imposed on the side walls. A slip condition with zero boundary-normal gradient is
imposed at the upper boundary. The wall is assumed to be either adiabatic or fixed
temperature is imposed i.e. Tw = 0.95 × Trec for cooled wall and Tw = 1.05 × Trec for
heated wall, where Trec = T∞ × [1 + 0.5

√
Pr(γ− 1)M2

∞]. The boundary layer is excited
using a blowing/suction strip positioned at the wall, extending from Rex1 = 2 × 105 to
Rex2 = 3.32 × 105. The method of excitation is the transverse mass flux, as introduced
in chapter 3 using identical driving formulations. We introduce the same disturbance as
in Sharma, Shadloo, Hadjadj and Kloker (2019) with an amplitude of A = 3.27 × 10−4,
fundamental frequency f0 = 73.87 kHz, and wavenumber β0 = 2π/λz = 2.9176×103 m−1,
corresponding to the disturbance marked as (1,±1). This modal disturbance is kept the
same for all the investigated cases here. Moreover, an additional strip is placed in between
Rexc,1 = 1.48×105 to Rexc,2 = 1.96×105, is used to introduce the streamwisely elongated
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control streaks, such that

ṁ(x,y = 0, z) = ρv = Acρ∞u∞f(x)g(z), (4.1)

f(x) = 2.5983[1− cosθ(x)]/
√

27. (4.2)

With a control amplitude Ac = 1.22 × 10−2, while θ(x) and g(z) formulations of the
perturbation strip are retained. It is noted that the mean net flux injected to the domain
in both of the strips is zero. Besides, the absence of the time-dependent function highlights
the steady nature of the control strip. No-slip condition is applied at the rest of the wall,
excluding the permeable regions occupied by the strips. For the cases with isothermal
wall condition a minimal amount of heating/cooling, ±5% of Trec, is applied to limit the
influence of thermal boundary conditions on the linear stability behavior of the base flow.

Figure 4.1 displays the regarding base flow linear stability diagrams for which the
results align well with previous studies, indicating that cooling the entire surface stabilizes
the flow resulting in lower N-factors whereas heating destabilizes it strongly. Thus, in
the absence of any control mechanism, an identical initial perturbation amplitude would
result in an earlier transition for the heated wall scenario compared to the cooled and
adiabatic cases. Kneer (2020) pointed out that a 10% cooling rate significantly stabilizes
the perturbation, nearly eliminating the concerning disturbance within the domain, thus
making the investigation of an additional control mechanism redundant. For simplicity,
the details about the performed cases are enlisted in table 4.1.

Table 4.1: Parameters for simulations.

Cases Tw/Trec Control Mode Ac

A5C 1 (0,5) 1.22 ×10−2

C5C 0.95 (0,5) 1.22 ×10−2

H5C 1.05 (0,5) 1.22 ×10−2

AT 1 — 0
CT 0.95 — 0
HT 1.05 — 0

4.2 Results

4.2.1 Evolution of disturbances

Before embarking on the influence of the isothermal boundary conditions on the control
streaks, simulations are performed for adiabatic wall condition. The control mode (0,5)
is used in A5C, whereas no control is activated in AT. Figure 4.2 presents a comparison
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Figure 4.1: Linear stability diagrams for base flows of (a) cooled (Tw = 0.95 ×Trec), (b)
adiabatic, and (c) heated (Tw = 1.05 ×Trec) cases. Integrated growth rates are marked
by isocontours.

between these cases for their respective streamwise evolution of the disturbance modes.
Hereby, each mode is computed by a time sampling over two fundamental periods. Fourier
transform is performed in time and in the spanwise direction, whose maximum value in
the wall-normal direction is plotted. It is inferred from fig. 4.2 that the growth rate
reduction in the fundamental (1,±1) and the nonlinearly generated steady (0,2) modes
illustrates the transition delaying effect of the control streaks. Besides, introducing the
control streaks resulted in an earlier generation of MFD (0,0), which plays a vital role
in delaying the flow transition (Paredes et al., 2017). In the absence of the control
mode (0,5), the chaotic nature of turbulence demonstrates itself in the amplitudes of the
fundamental disturbance mode (1,1) and nonlinearly generated (1,3), (1,5) 3-D unsteady
modes at around Rex = 9×105. Eventually, a saturation sets in for the MFD after having
reached an amplitude of ≈35% of ρ∞u∞, whereas an exponential drop is observed in (0,2).

Proceeding to the isothermal conditions, fig. 4.3 illustrates the nondimensional
streamwise velocity contour taken inside the boundary layer, at y/δin = 0.517 in the
x− z plane for cases with and without control streaks. Note that the transition to tur-
bulence takes place in all the uncontrolled scenarios. Therefore, a comparison between
these cases shows, although not explicitly in fig. 4.3, the stabilizing/destabilizing effect
of cooling/heating, as predicted by LST in fig. 4.1. In the presence of the streaks, the
formation of streamwisely elongated steady vortices is represented by the superposition of
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Figure 4.2: Streamwise evolution of the maximum disturbance amplitudes for AT (red)
and A5C (black). Vertical dashed lines: control (Rex ≈ 1.72 × 105) and perturbation
(Rex ≈ 2.66×105) strip centers.

streaky modes (0,2), (0,4), (0,6), and so on, observed in A5C and C5C in the downstream
direction. They regulate the flow field by transporting high-momentum fluid from the
external boundary layer to the near-wall regime. Thereafter, the flow stays laminar in
A5C and C5C cases, whereas the streaks break down to turbulence as they are strongly
amplified in H5C.

For a better understanding of the propagation of disturbances and their possible break-
down mechanisms, the streamwise evolution of various disturbance modes is plotted in
fig. 4.4. For uncontrolled scenarios, exponential growth of the fundamental disturbance
(1,1) is followed by fully-nonlinear behavior indicating a flow transition farther down-
stream in all the cases. The earliest in the heated (HT) and the latest in the cooled (CT)
are marked, as shown in fig. 4.4a. For a given streamwise location, it is seen that both
the maximum disturbance amplitude and the growth rate of any mode are the highest
for HT and the lowest for CT once the modes reach significant amplitudes. After having
generated, the steady mode (0,2) drives the flow to transition with the contribution of
(1,1) and nonlinearly generated modes, i.e. (1,3), (1,5), and so on. Towards the outlet,
the MFD attains the highest amplitude, indicating a strong mean flow deformation due
to transition to turbulence. When the control strip is activated, see fig. 4.4b, the presence
of the control mode (0,5) leads to an earlier generation of the MFD in all cases, as afore-
mentioned. It is seen that the MFD carries approximately the same value until around
a point where (0,2) gains significant amplitude. Then, H5C deviates from the cases at
around Rex = 9×105. Here, the steady mode (0,2) will be used for marking the presence
of transition in the domain since sudden changes in MFD could also be an indication of



4.2. Results 55

Figure 4.3: Contours of U∗ = (u−umin)/(umax −umin) at y/δin = 0.517 in an instanta-
neous flow-field for (a) CT, (b) C5C, (c) AT, (d) A5C, (e) HT, and (f) H5C scenarios.
The spanwise is nondimensionalized by the δin for the adiabatic flow.

sharp but regular deformation of the flow field. In doing so, it could be deduced that the
laminar flow regime is preserved until the end of the computational domain in A5C and
C5C, whereas the transition in H5C is postponed to downstream without being able to
completely avoid it. Moreover, the fundamental mode (1,1) for the cooled scenario (C5C)
is fully attenuated after having reached its maximum value at around Rex = 8×105. This
is a definite sign of flow staying laminar.

In addition to the maximum amplitude of various disturbances, the shape of a distur-
bance with respect to the wall-normal direction should also be looked at to understand
its evolution inside the boundary layer. Prior to the isothermal boundary condition, the
nonlinear transitional regime is elaborated for the adiabatic wall condition. The most
significant modes in the oblique breakdown are plotted and a comparison between AT

and A5C scenarios is provided in fig. 4.5. The evolution of the MFD in the absence
and the presence of the control mode, the latter leading to an earlier generation of the
MFD compared to the former, is depicted in fig. 4.5a. Although the maximum amplitude
of the MFD rapidly decreases from 12% to 3% of ρ∞u∞ shortly after its generation to
the first streamwise location, the maximum amplitude of the mode remains substantially
higher than that of AT until Rex = 8 × 105. In case AT, the MFD attains a positive
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Figure 4.4: Streamwise evolution of the maximum disturbance amplitudes for (a) uncon-
trolled cases: CT, AT, and HT and (b) controlled cases: C5C, A5C, and H5C. Cooled
(blue), adiabatic (black), and heated (red) scenarios. Vertical dashed lines: control
(Rex ≈ 1.72×105) and perturbation (Rex ≈ 2.66×105) strip centers.

amplitude near the wall making the mean flow profile fuller as the onset of transition
is reached at Rex = 8 × 105. Conversely, the MFD in A5C stabilizes the flow from its
generation, creating a fuller velocity profile in the boundary layer with positive values
in the inner boundary layer and negative values in the outer two-thirds of the boundary
layer. Notably, the distortion of the control streaks (0,5) is more prominent in the up-
per half of the boundary layer. As we move downstream, the MFD is overtaken by the
steady mode (0,2) at around Rex = 8 × 105 in A5C. Subsequently, as the steady modes
(0,2), (0,4), (0,6), etc., transform into streamwise elongated vortices, the positive shape
of the profile expands within the boundary layer, generating an anti-symmetric profile
centered at about half of the boundary layer thickness. The fundamental mode (1,1) in
AT consistently grows following an exponential modulation, carrying its maximum am-
plitude at around y/δ = 0.5 until Rex = 8 × 105, as shown in fig. 4.5b. At this point,
the flow undergoes transition, significantly modifying the shape of the disturbance profile
and generating a second hump in the inner half of the boundary layer. In the presence
of the control streaks (0,5) in A5C, the growth of the fundamental mode in each fluid
layer is attenuated. However, this regression is compensated once the fundamental mode
starts growing again after Rex = 1.1 × 106, although its maximum amplitude does not
exceed 2.3% of ρ∞u∞ in A5C. The strong damping of the fundamental mode is evident
in both the growth rate and the amplitude profile of the steady mode (0,2), as shown in
fig. 4.5c. Although its growth rate is reduced with the presence of the control streaks,
it still persistently increases in amplitude until the end of the computational domain
in A5C. Contrary to the shift of the profile closer to the boundary layer edge in AT,
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the profile approaches the wall with an increased maximum disturbance amplitude in
AC5. Having obtained significant amplitudes at Rex = 106, it leads to the generation of
two high-velocity streaks with the contribution of its integer multiples i.e. (0,4), (0,6)
and so on, see fig. 4.3b. On the other hand, the profile of AT is distinctly distorted
at Rex = 106, exhibiting fully-nonlinear effects followed by flow transition further down-
stream. Additionally, fig. 4.5d represents the control mode (0,5) with two additional
streamwise positions. As the evolution progresses, the amplitude of the control mode in
each fluid layer decreases until Rex = 6 × 105. Moving downstream, the control mode
starts to grow, and its profile becomes distorted in the inner half of the boundary layer
after Rex = 8×105 due to the presence of high-amplitude steady modes.

Figure 4.5: Disturbance amplitude of (a) MFD, (b) (1,1), (c) (0,2), and (d) (0,5) for AT
(black) and A5C (red) obtained at Rex = 4×105 ( ), Rex = 6×105 ( ), Rex = 8×105,
( ) and Rex = ×106 ( ) along the wall-normal direction. Two additional locations are
given (d) at Rex = 12 × 105 ( ) and Rex = 14 × 105 ( ). δ denotes the local boundary-
layer thickness.

Regarding the influence of the isothermal wall condition on the disturbances, fig. 4.6
depicts the shape evolution of various modes within the boundary layer obtained at three
different streamwise locations for cooled, adiabatic, and heated boundary conditions. The
extraction is done at points where the deviations between the cases become significant.
Utilizing non-linear parabolic-stability-equations (PSE), Chang and Malik (1994) asserted
that negative values of the MFD indicate an energy transfer extracted from the mean
flow and transferred to the unsteady disturbances. It is seen that the MFD retains only
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positive values near the wall in all cases, yielding a fuller velocity profile as the flow goes
towards the transition to turbulence, denoting the energy transfer from the disturbances
to mean flow, see fig. 4.6a. Also, it is observed that HT is the first scenario bearing
relatively high negative values at Rex = 9×105 in the upper boundary layer compared to
the cooled and adiabatic cases. This corresponds to the position at which the MFD starts
to dominate the fundamental disturbance (1,1), where the flow enters the late non-linear
regime (Mayer, Von Terzi and Fasel (2011)), as seen in fig. 4.4a. The MFD maximum gets
closer to the wall with the positive region shrinking and approaching the wall. Meanwhile,
the region of negative values occupies two-thirds of the boundary layer corresponding to
its outer part. This trend is observed consistently in each scenario. With transition to
turbulence, the MFD attains its maximum disturbance amplitude, representing the shape
change of the mean-velocity profile from laminar to turbulent, induced by the action of
the Reynolds stresses. The evolution of the fundamental mode (1,1) shows that its peak
amplitude appears closer to the boundary-layer edge as the wall is heated, whereas it
gets closer to the wall if it is cooled down, as shown in fig. 4.6c. As soon as the onset
of transition is reached, the profiles are distorted due to strong non-linear effects. As for
the steady mode (0,2), based on the terminology of Mayer, Von Terzi and Fasel (2011);
Tumin et al. (2007), the point corresponding roughly to a position where (0,2) and (1,3)
reach the same order of amplitude indicates the end of the early transition regime. The
distortion in its wall-normal profile can be interpreted as the inception of strong non-
linear interactions in the flow domain. Besides, cooling diminishes the growth of the
mode, causing it to have a lower maximum amplitude, whereas its influence is reversed
in the inner boundary layer at Rex = 7×105, as shown in fig. 4.6e. Further downstream,
the shape of the profiles gets bumpier in the lower half of the boundary layer, earliest in
the heated case, and latest in the cooled scenario, indicating strong non-linearities.

When the control streaks are employed, the MFD exhibits a similar trend, as depicted
in fig. 4.6b, to what was observed in fig. 4.6a for AC5. The significant difference is
observed in H5C where the MFD reaches almost 15% of amplitude at Rex = 11 × 105,
undergoing transition. The combined stabilizing effect of cooling and the induced control
mode is evident in the damping of (1,1) mode as the flow proceeds downstream, as shown
in fig. 4.6d. Not only the maximum value of the disturbance amplitude but also the entire
profile experience regression. However, in H5C, flow transition occurs with a maximum
amplitude that grows in the streamwise direction. On the other hand, in A5C, there
is an exponential amplification in the fundamental mode until it saturates at around
Rex = 7 × 105. Having reached saturation with around 2% of ρ∞u∞, the maximum
amplitude remains constant until Rex = 106, after which it experiences an exponential
increase until the end of the domain. As long as the flow remains laminar, the maximum
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Figure 4.6: Disturbance amplitude of (a,b) MFD, (c,d) (1,1), and (e,f) (0,2) along the
wall-normal direction at Rex = 7×105 ( ), Rex = 9×105 ( ), and Rex = 11×105 ( ).
Cooled (blue), adiabatic (black), and heated (red) scenarios. CT, AT, and HT (left
column) and C5C, A5C, and H5C (right column).

disturbance amplitude of the steady vortex mode (0,2) gets closer to the wall as the
flow develops, regardless of the wall boundary condition, see fig. 4.6f. Its active role
in regulating the flow field gets stronger as it gets closer to the wall, with a maximum
disturbance amplitude reaching up to 14% and 8% for AC5 and C5C, respectively. Further
downstream, a hump starts to form in the outer half of the boundary layer in all scenarios.
The disturbance profile of H5C becomes significantly distorted once the flow becomes
turbulent. Experiencing a saturation, A5C preserves its maximum amplitude for a longer
streamwise distance in (0,2), as shown in fig. 4.4b, while its profile attains the highest
amplitude in the entire boundary layer compared with C5C and H5C. Besides, the wall
cooling reduces the amplitude growth of the steady mode and keeps its maximum always
at a higher location in the wall-normal direction compared to A5C and H5C before the
transition occurs in the heating scenario.
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4.2.2 Mean-flow field

The skin-friction coefficient along the streamwise direction is illustrated in fig. 4.7. Sta-
bilizing effect of wall cooling, is more explicitly marked for control-free scenarios in fig.
4.7a. Having traced the laminar Cf trend, transition onset is observed the earliest in
HT, and the latest in CT. When the flow breaks down to turbulence, the order is in-
versed in terms of the magnitude of the turbulent Cf . The reason is attributed to the
higher velocity gradient of the cooled scenarios in the wall-normal direction. Since the
dynamic viscosity scales up with temperature which is inversely proportional to the den-
sity, wall cooling results in a lower air kinematic viscosity, so does a thinner boundary
layer compared to the heated cases. Although the dynamic viscosity is lowered with the
temperature decrease, a higher velocity gradient due to lower boundary layer thickness
is dominant and causes a higher Cf . In the presence of the control streaks, the kinks
corresponding to the location of the control strip, are generated due to control streaks,
see 4.7b. All the profiles follow the laminar Cf , to a streamwise location corresponding
to about Rex = 8×105 from which a prominent deviation can be observed in H5C. This
deviation corresponds to a region between Rex = 8.5 × 105 and Rex = 106 in fig. 4.3f,
where a formation of two high-velocity streaks becomes visible in addition to the control
streaks. Since they rapidly break down to turbulence further downstream, their forma-
tion in H5C is relatively discrete compared to the adiabatic counterpart (A5C), see fig.
4.3d. The concerning breakdown mechanism exhibits its impact on the Cf with a dras-
tic augmentation at around Rex = 106 for H5C. Contrarily, these non-linearly generated
streamwise vortices last longer in the streamwise direction and reach the end of the com-
putation domain for C5C and A5C. The boundary layer gets thinner in the proximity of
these streaks which results in a steeper velocity gradient at the wall in the case of A5C.
Consequently, the Cf undergoes a slight augmentation around Rex = 106, followed by a
decrease with a slope similar to that in the laminar regime while the flow remains laminar
until the end.

Figure 4.8a shows the streamwise evolution of the Stanton number for isothermal
scenarios. Heat transfer is found to be strongly influenced by the control streaks which
alter the Ch in favor of the C5C as opposed to uncontrolled cases. However, they all
converge until the earliest transition onset which is observed in HT. From this point forth,
a significant variation between the scenarios reveals itself. It is observed that the rate of
heat transfer becomes five to six times higher for CT than C5C as a result of a marginally
steeper temperature gradient near the wall in the absence of the control mechanism as
shown in fig. 4.9. As for H5C, following a delayed transition in the presence of the
control streaks, an initial reduction ensued by an increase towards downstream where St
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Figure 4.7: Streamwise evolution of skin-friction coefficient for (a) uncontrolled (CT, AT,
and HT) and (b) controlled cases (C5C, A5C, and H5C) where cooled (blue), adiabatic
(black), and heated (red). Skin-friction coefficient for laminar flow ( ) estimated by
White and Corfield (2006) Cf = 0.664/

√
Rex.

2 4 6 8 10 12 14

10
5

0

0.5

1

1.5

2

2.5

3

3.5
10

-3

2 4 6 8 10 12 14

10
5

0

0.5

1

1.5

2

2.5

Figure 4.8: Streamwise evolution of (a) Stanton number and (b) Reynolds analogy factor
(2Ch/Cf ). CT ( ), C5C ( ), HT ( ), H5C ( ), and Pr−2/3 ( ) .

meets its uncontrolled counterpart of HT towards the end of the domain. Furthermore, a
direct relation between the shear stress and the heat transfer is provided by the Reynolds
analogy factor 2Ch/Cf = Pr−2/3, which serves as a useful tool in practical applications to
estimate the heat transfer rate through the skin-friction coefficient. All curves converge,
rather slower in the uncontrolled cases, to the Pr−2/3, see fig. 4.8b. In the sequel of the
transition onset, the cases drift apart with a decrease in the heated scenarios and a rise
in CT. Further downstream, the increase both in Ch and Cf to the formation of two-high
velocity streaks increases the Reynolds analogy factor in C5C.

In an attempt to consider the influence of the boundary-layer growth in the streamwise
direction, knowing that the boundary layer thickness is proportional (Schlichting and
Gersten, 2016) to

√
x, fig. 4.9 is plotted with respect to y/

√
x. It is seen that employing
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Figure 4.9: Temperature profiles at Rex = 4.3 × 105 (solid lines) and Rex = 12.57 × 105

(dashed lines). CT (△△△), C5C (▽▽▽), AT (×××), A5C (•••), HT (◦◦◦), and H5C (⋄⋄⋄).

the velocity streaks decreases the temperature gradient at the wall and retains the laminar
temperature profile for C5C at Rex = 12.57×105. When no control is applied, CT attains
a turbulent profile with identical wall temperature as the rest of the cooled scenarios, but
with a steeper temperature gradient. This gradient as well as the definition of Trec =
f(

√
Pr) are the reasons for observing a tremendous increase in the Ch in fig. 4.8a. As

for the heated cases (H5C, HT), it is seen that the presence of the control streaks does
not carry any significance at the wall, but they modify the temperature profile at the
first streamwise location. Given that Rex = 12.57 × 105 corresponds to the turbulent
regime in both HT and H5C, they present steeper temperature profiles. Adiabatic cases
on the other hand show different trends compared to the isothermal scenarios. The
presence of velocity streaks generates a marginally higher wall temperature at the wall
at Rex = 4.3 × 105, which increases downstream following the formation of high-velocity
streaks with a modified temperature profile. Once the control mechanism is discarded, the
flow becomes turbulent with a wall temperature equal to the adiabatic wall temperature
of turbulent flow at the second streamwise location, Rex = 12.57 × 105. Kneer (2020)
reported similar behaviors for adiabatic and cooled wall scenarios.

Figure 4.10 represents the mean flow temperature and velocity profiles in order to
scrutinize the stabilizing influence of the MFD (0,0) stated by Paredes et al. (2017). It is
seen that the flow is accelerated near the wall with the induction of the streaks, whereas
it decelerates in the outer region of the boundary layer. Thus, a fuller velocity profile
is provided indicating a more stable flow (Cousteix, 2005). Contrarily, the temperature
field exhibits an opposite behavior such that the flow is slightly cooled down in the inner
boundary layer, whereas it is heated in the outer part. However, there exists a region
where the fluid is heated in the adiabatic scenario close to the wall as illustrated in fig.
4.9 with respect to AT. While the role of heating/cooling continuously changes in the
wall-normal direction in terms of the velocity profile, it is decidedly seen that H5C has
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Figure 4.10: Mean temperature ∆T = T −Tb (dash-dotted lines) and mean streamwise
velocity profiles (solid lines) ∆u = u−ub at Rex = 3 × 105 for C5C (blue), A5C (black),
and H5C.

the highest heating and the lowest decelerating impact on the fluid in the outer boundary
layer.
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Figure 4.11: Streamwise evolution of (a) momentum thickness, (b) shape factor, and (c)
boundary-layer thickness. Uncontrolled (dash-dotted lines) and controlled cases (solid
lines) wherein cooled (blue), adiabatic (black), and heated (red).

The streamwise evolution of the momentum thickness is presented in fig. 4.11a. All
the profiles follow a smooth trend in the laminar region except for the location where the
earlier appearance of the MFD becomes evident due to the control streaks. It is seen that
the growth rate increases drastically once the flow becomes turbulent in uncontrolled and
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H5C cases. Besides, the highest value is obtained always for the case experiencing the
earliest transition. Cooling has been one of the common techniques to achieve a fuller
velocity profile for air-flow stabilization (Crouch, 1999) which consequently decreases the
shape factor. The presence of the control mode (0,5) results in an instantaneous decrease
in the shape factor at the beginning of the domain as shown in fig. 4.11b. In that way,
the transition is avoided in A5C and C5C, whereas the shape factor of H5C decreases
further downstream with regard to HT that indicates a delay in the heated scenarios.
Despite having a fuller velocity profile in the boundary layer, the presence of the streaks
resulted in thickening the boundary layer, see fig. 4.11c.

Figure 4.12: Streamwise vorticity (ωx) contours of an instantaneous flow-field at various
streamwise positions for AT (left row) and A5C (right row). The black solid lines are
isolines of the streamwise velocity component with 0.1, 0.3, 0.5, 0.7, and 0.9 ×u∞.

Figure 4.12 shows the streamwise vorticity contours obtained at various downstream
positions for AT and A5C. Structural flow development is analyzed only for the adiabatic
scenario after having concluded that weak heating/cooling does not exhibit a significant
impact on the general flow structures. Concerning the uncontrolled case, the evolution
of the disturbances is accompanied by the opposite signs of vorticity values due to their
obliquely-running nature, are depicted in fig. 4.12a at Rex = 5 × 105. Further down-
stream, the steady mode (0,2) having maximum disturbance amplitude of 6% of ρ∞u∞,
see fig. 4.4a, shows its impact on the flow by prominently distorting the streamwise vor-
ticity field in fig. 4.12c. At around Rex = 9 × 105, the onset of the transition appears in



4.2. Results 65

the domain, leading the flow to transition where a fully-nonlinear regime prevails in the
field resulting in the formation of small near-wall structures as illustrated in fig. 4.12e.
Once the control streaks are applied, the strong flow field regulation, visualized in the
x− z plane in fig. 4.3d, can also be seen for the vorticity field in fig. 4.12b with some
deformation in the inner boundary. Following the growth of the disturbance modes, de-
formation is reflected in the vorticity field at Rex = 8×105 as seen in fig. 4.12d. Further
downstream, high deformation due to strengthened steady modes is observed with its
clear physical domination of the flow field in fig. 4.12f. The fluid retains its regular struc-
ture with the formation of two high-velocity streaks, whilst the boundary layer properties
remain akin to those of the laminar flow until the end of the computational domain.
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(a) Q = 0.01%×Qmax at Rex = 5−9×105.

x

z

(b) Q = 0.05%×Qmax at Rex = 5−9×105.

U∗

(c) Q = 0.5%×Qmax at Rex = 8−12×105.

Figure 4.13: Isosurfaces of Q−criterion for AT with U∗ = (u−umin)/(umax −umin). (a)
and (b) Top view. (c) 3-D view.

The vortical structures developed in AT are identified by the Q−criterion (Hunt et al.,
1988) in fig. 4.13a (Q is the second invariant of the velocity gradient, which defines the
vortical regions where the vorticity magnitude is larger than that of the strain rate).
Figure 4.13a illustrates the superposition of the fundamental oblique wave traveling in
the opposite spanwise directions. The formation of a honeycomb-like structure is seen as
reported by Bestek et al. (1994). Moving downstream, its shape is distorted due to the
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steady modes that are rapidly growing. When the Q criterion is increased, the vortical
structures generated due to steady modes become visible, see fig. 4.13b. To accurately
display the transitional and turbulent regimes, a 3-D flow-field visualization is used in
fig. 4.13c. Proceeding to the onset of transition at around Rex = 8 × 105, the formation
of ring-shaped vortices is marked in the figure. Further downstream, the identification of
hairpin vortices is a clear evidence of a fully-turbulent boundary layer in the domain. A
similar study is carried out for A5C to reveal the influence of the control streaks in the
flow development. The presence of the control streaks regulates the flow field by damping
the disturbances in figs. 4.14a and 4.14b. Besides, an increase in Q−criterion highlights
the formation of the steady modes in the domain. With the 3-D view of the flow field,
it is observed that no transitional regime is reached by the end of the domain, see fig.
4.14c. Therefore, a successful transition delay is proven to be sustained once again in the
presence of the control mode (0,5).
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(a) Q = 0.5%×Qmax at Rex = 5−9×105.
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(b) Q = 5%×Qmax at Rex = 5−9×105.

U∗

(c) Q = 0.1%×Qmax at Rex = 1−1.42×106.

Figure 4.14: Isosurfaces of Q−criterion for A5C with U∗ = (u−umin)/(umax −umin). (a)
and (b) Top view. (c) 3-D view.
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4.2.3 Parametric study

Preceding the effective transition delay of the current strategy, the question as to what
extent this method could be applied should be answered. In that way, an extensive
parametric study is carried out for adiabatic and weakly cooled/heated walls for a wide
range of the control strip amplitudes.

Figure 4.15: Contours of U∗ = (u−umin)/(umax −umin) at y/δin = 0.517 in an instan-
taneous flow-field for various control amplitudes in the cooled scenarios. From top-to-
bottom, the first one designates CT whereas the trailing two are the controlled cases
with Ac = 0.25×Ac,ref and Ac = 0.5×Ac,ref , respectively. Then, the increase of control
amplitude is by 0.1 in the direction of the arrow.

Velocity contours obtained at y/δin = 0.517 are illustrated in figs. 4.15 and 4.17
representing cooled, adiabatic and heated scenarios, respectively. The applied control
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Figure 4.16: Contours of U∗ = (u−umin)/(umax −umin) at y/δin = 0.517 in an instan-
taneous flow-field for various control amplitudes in the adiabatic scenarios. From top-
to-bottom, the first one designates AT whereas the trailing two are the controlled cases
with Ac = 0.25×Ac,ref and Ac = 0.5×Ac,ref , respectively. Then, the increase of control
amplitude is by 0.1 in the direction of the arrow.

amplitude ranges from Ac,ref ×0.25 ≤Ac ≤Ac,ref ×2.0 where Ac,ref = 1.22×10−2, iden-
tical to the control amplitude in table 4.1. We define an effective/successful transition
control for cases where the transition is delayed until the end of the computational do-
main. Our observations reveal that below a certain threshold of the control amplitude,
the transition scenario resembles the uncontrolled cases. Similar behavior was observed
by Sharma, Shadloo, Hadjadj and Kloker (2019) and Kneer et al. (2022) when their con-
trol amplitude was halved although their control amplitudes were reported to be differing
by a factor of 2 among each other. Furthermore, drastic changes in the flow are observed
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with an effective transition delay when the amplitude is increased above certain values,
i.e. Ac ≥ 0.7 ×Ac,ref for cooled, Ac ≥ 0.9 ×Ac,ref for adiabatic, and Ac ≥ 1.2 ×Ac,ref

for the heated cases. However, contrary behavior in the flow field is seen for the upper
threshold amplitude. When the amplitude is increased from 1.7 to 1.8×Ac,ref , an earlier
transition onset compared to the uncontrolled scenarios is observed, regardless of the
thermal boundary condition. The study of streamwise evolution of various disturbance
modes revealed that the MFD (0,0), the control mode (0,5), and the integer multiples
of the control mode are the only increasing modes among all. Therefore, the immediate
shift in transition onset is attributed to streak instabilities that induce bypass transition
according to Paredes et al. (2016b,a) when the initial streak amplitude exceeds a certain
threshold. They also reported an approximate saturation of the transition onset location
following a sufficiently high amplitude reached by the streaks. This phenomenon is also
seen in our study once the initial streak amplitude goes 1.7 times higher than Ac,ref .
However, additional simulations indicate that transition might occur immediately after
the control strip in case of higher control amplitudes than those used in this study. In
conclusion, cooling the boundary layer increases the range of amplitude for successful
transition control, while heating has the opposite effect and reduces the range of appli-
cation. Furthermore, heating has a more significant impact on modifying the control
amplitude range compared to cooling. Additionally, the effectiveness of the control mode
(0,4) is investigated as Sharma, Shadloo, Hadjadj and Kloker (2019) found this mode
beneficial in delaying transition for an identical flow/geometry configuration with an adi-
abatic wall. Therefore, although the results are not presented here, a parametric study
with (0,4) is carried out for the same range of control amplitudes. The results indicate
that the effective range for (0,4) lies within Ac,ref × 0.7 ≤ Ac ≤ Ac,ref × 1.2 for the adi-
abatic wall condition. It is observed that the low-level threshold of (0,4) is lower than
that of (0,5), and there is a significant difference in their applicable range for successful
transition control. A comparison in terms of (ρu)′

max/(ρ∞u∞) shows 16.8-24.1% for (0,4)
and 18-25.8% for (0,5), estimated at the control strip. The summary of the effective range
of control amplitudes for the studied scenarios is presented in table 4.2.

Table 4.2: The range of the control streaks amplitude for effective transition control.

Cases Tw/Trec Control Mode Ac/Acref
(%) (ρu)′

max/(ρ∞u∞) (%)
A5C 1 (0,5) 90-170 18-25.8
A4C 1 (0,4) 70-120 16.8-24.1
C5C 0.95 (0,5) 70-170 15.8-26.5
H5C 1.05 (0,5) 120-170 20.8-25.2
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Figure 4.17: Contours of U∗ = (u−umin)/(umax −umin) at y/δin = 0.517 in an instan-
taneous flow-field for various control amplitudes in the heated scenarios. From top-to-
bottom, the first one designates HT whereas the trailing two are the controlled cases
with Ac = 0.25×Ac,ref and Ac = 0.5×Ac,ref , respectively. Then, the increase of control
amplitude is by 0.1 in the direction of the arrow.

4.3 Conclusion

In an attempt to investigate the effectiveness of the velocity streaks in delaying boundary-
layer transition under the influence of wall heat transfer, perturbed supersonic flows at
M∞ = 2 are investigated by means of DNS. The most amplified disturbance, determined
for the adiabatic wall condition, is also considered for isothermal walls with weak heat-
ing/cooling effects to assess their isolated impact. Streaks with five times the wavenum-
ber as that of the first-mode instability are introduced through a blowing/suction strip
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placed ahead of the perturbation strip. Initially, a stabilizing/destabilizing influence of
cooling/heating is demonstrated in the absence of the control streaks, conforming with
the linear stability theory for the still dominantly viscous instability. The parametric
study revealed that to achieve successful transition delay, control amplitudes of 15.8-
26.5%, 18-25.8%, and 20.8-25.2% are required for cooled, adiabatic, and heated walls,
respectively. The combined effect of control mode and cooling expands the successful
application range of control amplitude, while heating narrows it down.

Heating has no significant impact on the development of the control streaks, and
the evolution of the disturbances in terms of their profile shape in the boundary layer.
However, it strongly influences the growth rate of the disturbances, whilst dramatically
reducing the application range of the once-excited control streaks, i.e. low control am-
plitudes are not as effective as for the adiabatic or cooled cases. Testing an alternative
steady control mode (0,4) revealed that (ρu)′

max/(ρ∞u∞) of 16.8-24.1% is required for
successful transition delay, indicating the higher effectiveness of (0,5) that conforms with
the assertion of Sharma, Shadloo, Hadjadj and Kloker (2019).
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Stanton number in laminar compress-
ible boundary layers
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In this chapter, we investigate the Stanton number behavior in super-/hypersonic
laminar boundary-layer flows under different wall heating/cooling rates using self-similar
solutions of the compressible boundary layer (BL) equations and direct numerical simula-
tions (DNS). The objective is to provide a detailed analysis of the observation in chapter
4, particularly in fig. 4.8, suggesting that cooled walls show a lower Stanton number
than heated walls. This finding contradicts the widely accepted presentation in related
textbooks, e.g. Viscous fluid flow by White and Corfield (2006) and Hypersonic and high
temperature gas dynamics by Anderson (2000), thus necessitates an explanation.

5.1 The state of the art

Common knowledge is that the Stanton number is always higher for a cooled wall than a
heated one as demonstrated in fig. 5.1 by Van Driest (1952). However, previous results
of flat-plate boundary layer subjected to a low rate of heating/cooling, i.e. ±5% of the
recovery temperature Trec at M∞ = 2.0 contradicted this behavior, see fig. 4.8. Here, Taw

72
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stands for the estimated wall temperature by the solution of the boundary-layer equations
at adiabatic wall condition.
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Figure 5.1: Local Stanton number for a laminar boundary layer for different wall-to-free-
stream temperature ratios. The figure is regenerated from Van Driest (1952).

5.2 Results

5.2.1 Self-similar solution

In this study, the same parameters as in Van Driest (1952) are used, i.e. T∞ = 217.82
K and Pr = 0.75. To analyze a broad range of isothermal wall boundary conditions and
Mach numbers, self-similar solutions that are derived from the compressible boundary-
layer equations and direct numerical simulations are used. BL solutions have been
obtained, extending from the wall to the free stream, with ηmax = 10 and Nη = 104

equidistant points in the wall-normal direction yielding converged results, e.g. ηδe < 5
for 2.9 < Tw/T∞ < 11.6 at M∞ = 6. The Stanton number in the self-similar coordinate
is calculated using the heat transfer rate from the wall as

Ch = 1√
2ρ∞u∞µ∞x

λw

Cpw

ρw

ρ∞

T∞
(Trec −Tw)g′(0), (5.1)

Cf = 2µwρw

ρ∞
√

2ρ∞u∞µ∞x
f ′′(0). (5.2)

Figure 5.2 shows the local Stanton number at different Mach numbers under isother-
mal wall conditions, i.e. wall heating/cooling rates, Rq = Tw/Trec − 1 (%). As Rq ap-
proaches zero, the Stanton number becomes asymptotic, indicating an adiabatic wall
condition where Ch becomes indefinite. As in Chapter 4, Trec is estimated for laminar
flow where r =

√
Pr. Notably, fig. 5.2 displays a Rq threshold for each Mach number,

above which the local Stanton number for the cooled wall surpasses that for the heated
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wall. The higher the Mach number the more important the behavior becomes because
the threshold level increases with increasing Mach number. Considering that the asso-
ciated threshold value at Mach 2.0 is |Rq| = 13.15%, our earlier DNS results might be
justified with the trend attributed to the interplay between thermal conductivity and the
temperature gradient at the wall as: in addition to the higher thermal conductivity of
the heated wall, the temperature gradient at the wall is only relatively lower than that of
the cooled wall, before the Rq threshold is reached. As a result, the heated wall exhibits
a larger Stanton number until the threshold is exceeded.
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Figure 5.2: Stanton number as a function of heating/cooling rates with respect to Trec.
Heated (red) and cooled (blue).

While the numerical results seemingly offer an appealing physical interpretation, the
crucial aspect lies in defining the adiabatic wall temperature using an approximated
equation based on the recovery factor. Specifically, for the tested Pr, Taw and Trec

exhibit accurate collapse as depicted in fig. A.8 with a discrepancy remaining below 2%
up to M∞ = 8.0 in case of Pr = 0.75. This difference increases with Mach number as
follows: when Pr < 1 the recovery factor goes down with Mach number meaning that
the recovery loss gets larger, leading to Taw < Trec. For Pr > 1, this effect is inversed
(Lushchik and Makarova, 2016). Figure 5.2 is regenerated using Taw for the definition
of Ch in eq. 5.1 and results are plotted in fig. 5.3 in combination with some of those
obtained with Trec. For Taw, it is observed that cooling consistently results in a larger
Ch than heating in laminar ZPG flows. This outcome is in line with the findings of
Van Driest (1952), who however used the Reynolds analogy to get the Stanton number
without explicitly pointing this out, underscoring the substantial influence of the slight
deviation between Taw and Trec on our analysis. It is also observed that the discrepancy
between Ch(Taw) and Ch(Trec) diminishes with increasing heating/cooling.

It is of general practice to use Trec, especially in engineering applications, as Taw is
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Figure 5.3: Stanton number as a function of heating/cooling rates with respect to Taw

(solid lines) and Trec (dashed lines). Heated (red) and cooled (blue).

not always or readily available. Thus, to provide some guidance, table 5.1 presents the
relative error resulting from using Trec and the associated Rq values at two Pr num-
bers, standing for the relevant interval in compressible flows, excluding the hypersonic
regime with high-temperature effects (Anderson, 2000). Due to the approximated Trec,
the associated Rq for the same confidence level is higher for a lower Pr, reflecting the
growing discrepancy between Taw and Trec as Pr deviates from unity. A more accurate
approximation compared to the classical r =

√
Pr would decrease the required Rq level

to attain desired confidence level for the evaluation of Ch using Trec. The reference tem-
perature concept where fluid properties such as ρ,µ,Cp, and λ are evaluated at some
average boundary-layer temperature might be an alternative way of estimating the adia-
batic wall temperature (White and Corfield, 2006). However, Pr varies with the reference
temperature which itself depends on Me, Te, and Tw. This inter-dependency of multiple
parameters would require a complex parametric analysis, diverting attention from the
main discussion. Therefore, we retain the classical estimation using a constant Pr value.
It is also reminded that the recovery factor is highly dependent on the pressure gradient in
non-ZPG flows. It was found to be decreasing as a function of favorable-pressure-gradient
(FPG) when Pr < 1 and increasing when Pr > 1 for C = 1 (Hokenson, 1972).

Although Sutherland’s formula accurately provides the dynamic viscosity for a wide
range of thermal conditions, it fails when the temperature drops below 110 K, where the
dynamic viscosity becomes linearly dependent on temperature Schlichting and Gersten
(2016). These low-temperature values are not observed even in the upper layers of the
atmosphere, but they are common in hypersonic wind tunnels where “cold flow” experi-
ments are conducted Lee and Chen (2019). Therefore, we repeated the same analysis as
in figure 5.2, but assuming a linear dependence of the dynamic viscosity on temperature,
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Table 5.1: Confidence level in employing the approximated formula for the adiabatic
wall temperature with ϵ= (Ch(Trec)−Ch(Taw))/Ch(Taw) (%).

M∞ ϵ= ϵ(Pr = 0.75) (%) ±Rq(%) ϵ= ϵ(Pr = 0.70) (%) ±Rq(%)
10 0.3 10 0.3

1 5 0.5 5 0.6
2 1.0 2 1.3
10 1.2 10 1.5

2 5 2.5 5 3.0
2 5.9 2 7.4
10 3.2 10 3.9

3 5 6.3 5 7.7
2 15.5 2 18.9
10 5.6 10 6.8

4 5 11.1 5 13.4
2 27.1 2 32.7
10 8.0 10 9.7

5 5 15.8 5 19.1
2 38.2 2 45.9
10 10.2 10 12.3

6 5 20.0 5 24.2
2 47.9 2 57.1

i.e. C = 1 in eqs. B.1-B.2, while keeping all other parameters the same. The results,
presented in figure 5.4, show that the Ch values converge to around 0.4 for non-small
values of Rq when Trec is used. The heated wall always has a higher Ch than the cooled
wall regardless of the Mach number. Additionally, an increase in Mach number causes the
local Stanton number to decrease for the cooled wall, while the opposite trend is observed
for the heated wall. Meanwhile, although not illustrated here, the same analysis by using
Taw leads to a single constant which bears resemblance to the pioneering study by Cohen
& Reshotko Cohen and Reshotko (1955) where Pr = 1 as well as C = 1 were assumed.
They showed that, for ZPG flow, the local skin-friction coefficient and Stanton number
depend neither on Mach number nor on the thermal boundary condition at the wall.

To provide a different perspective on fig. 5.1, local Cf and Ch values are evaluated
using self-similar solutions and presented in a similar manner. For Cf , the trend in fig.
5.5a shows that cooling the wall decreases the boundary-layer thickness, which in turn
increases the velocity gradient and the skin friction at the wall. In contrast, a more
detailed explanation is required for Ch, as shown in fig. 5.5b. Employing Trec, the results
demonstrate a discontinuity at the respective Mach number when wall heating gets to
cooling for Tw/T∞ > 1. This discontinuity in a selected line of the self-similar solution
corresponds to the adiabatic wall condition for the associated Mach number. For a given
isothermal condition, the left side of this discontinuity represents the heated wall, while
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Figure 5.4: Same as figure 5.2 but for linearly dependent dynamic viscosity on tempera-
ture, C = 1, using Trec. Heated (red) and cooled (blue).

the right side is referred to as the cooled wall. The results obtained using Taw exhibits
a smooth monotonous trend in Ch as in Cf , with distinct deviations from the results for
Trec. The discrepancy between both cases exists at all Mach numbers when Tw/T∞ ≤ 1,
while it virtually appears only on the cooled wall, i.e. right side of the discontinuity
for Tw/T∞ > 1. Near the adiabatic case the error with the approximation formula gets
tremendous, causing the exhibited spurious pole.
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Figure 5.5: (a) Skin-friction coefficient and (b) Stanton number as a function of Mach
number for different wall-to-free-stream temperature ratios. Insulated wall by the
Reynolds analogy (dashed-dotted line), BL solution with Trec (solid lines), and Taw

(dashed lines).

A similar analysis for Ch is performed using various Prandtl numbers presented in
fig. 5.6. Comparing it with fig. 5.6b, we observe that as the Prandtl number approaches
unity, the flattened trend of the Stanton number near the discontinuity shrinks. When
Pr = 1, indicating about equal velocity and temperature boundary-layer thicknesses and
a recovery factor of 1, the results obtained using Taw and Trec perfectly align. At this con-
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dition, the discontinuity for Tw/T∞ > 1 becomes a singular point on the lines. However,
for Pr > 1, the solution approaches the discontinuity with an opposite slope compared
to Pr < 1 in case of Trec.
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Figure 5.6: The effect of Prandtl number; (a) Pr = 0.9, (b) Pr = 1.0 with singular points
(symbols), and (c) Pr = 1.2 on the local Stanton number as a function of Mach number
for different wall-to-free-stream temperature ratios. BL solution with Trec (solid lines),
and Taw (dashed lines).

5.2.2 Direct numerical simulation

In addition, two-dimensional DNS for Mach numbers ranging from 2.2 to 2.8 at Tw/T∞ =
2.0 with the same thermodynamic parameters as with the boundary-layer solver has been
conducted. A mesh convergence study is performed by examining the local values due to
their high sensitivity to changes in flow parameters, as depicted in fig. 5.7a. The mesh is
refined in both streamwise and wall-normal directions until reaching a deviation certainly
lower than 0.5% in both the Stanton number and the skin-friction coefficient downstream
of Rex = 105, indicating a sufficient streamwise position away from the leading edge. To
circumvent any numerical problem due to the singularity at the leading edge as a result of
the viscous-nonviscous interaction, the equidistantly distributed mesh in the streamwise
direction is refined drastically as indicated in table C.1. Here, the non-dimensional param-
eters are calculated in the dimensional coordinate such that Ch = q̇w/[ρ∞u∞cp(Taw −Tw)]
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where q̇w = −λw(∂T/∂y)|w with Taw obtained from adiabatic DNS cases. Following the
mesh convergence, a comparison is made between the self-similar solution and the results
of DNS in fig. 5.7b. It is seen that despite using the Taw in estimating the Ch, DNS re-
sults initiated from the leading edge incidentally exhibit a similar trend to the BL solution
with Trec. A gradual downstream decrease of Taw, as seen in fig. A.9a, results in slightly
higher values on the left-side of the discontinuity, while lower values are obtained on
the right-side at earlier streamwise locations. However, simulations starting at Rex = 105

leads to Ch values between the BL solutions with Trec and Taw since the wall temperature
in these DNS cases are closer to Taw of the BL solution, see fig. A.9a. At Rex = 4×105,
the maximum difference between the DNS results is observed at M∞ = 2.45 and remains
below 5% with a higher sensitivity around the discontinuity. Moreover, the discrepancy,
which constantly reduces downstream, at any streamwise position is not higher than 10%.
There are multiple factors playing a part in the observed discrepancies between the DNS
results and the BL solutions: non-zero pressure gradient both in x and y- directions, see
fig. A.9b, along with the alteration of the BL edge conditions in the DNS in contrast to
the BL solution, slight streamwise variation of Taw and its deviation from the BL value
as seen in figure A.9a, adopted numerical schemes, and the finite-difference method along
with the number of points used to estimate the wall temperature gradient.
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Figure 5.7: (a) Mesh resolution analysis at M∞ = 2.5 through DNS with a fine (dashed
line) and a coarse (solid line) mesh. (b) Streamwise evolution of Ch for Tw/T∞ = 2.0,
corresponding to Rq(%) = (Tw/Taw,BL − 1) = +8.8, +4.38, +2.22, +0.12, -1.94, -3.96,
-7.87, -11.61, and -15.18 from Mach 2.2 to 2.8 at Rex = 2×105 (cross) and Rex = 4×105

(diamond). BL solution with Taw ( ) and Trec ( ). DNS results initiated from Rex = 105

(blue) and from the leading-edge (red). Adiabatic condition is marked with the vertical
dashed line.

Returning to fig. 4.8, non-adiabatic simulations with 5% heating/cooling rates, based
on Taw, as well as an adiabatic case which is used to extract the wall temperature for
evaluating Ch are performed. Due to slight difference between Trec and Taw at M∞ = 2.0
and Pr = 0.72, using Trec results in ≈ 5.1% of heating and ≈ 4.9% cooling with respect
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to Taw. Figure 5.8 presents the results using two different mesh resolutions and the BL
solution. The coarse mesh resolution, standing for the mesh used in Chapter 4, accurately
captures the Cf trend and the values estimated by the BL solution, as shown in fig. 5.8b,
whereas differences arise from the boundary layer in Ch, as seen in fig. 5.8a. Moreover,
the boundary layer trend suggesting higher Stanton number for the cooled wall could not
be captured. Further mesh refinement, beyond which the results alter only negligibly,
brings the DNS results closer to the BL solution, and the concerning trend becomes
evident only after around Rex = 106, as the evolution of the heated wall slightly depends
on Rex. This contrasting trend observed in DNS before Rex = 106 is attributed to the
factors explained for fig. 5.7. It is also noted that DNS trend becomes more akin to
the BL solutions for higher heating/cooling rates, indicating the high sensitivity of the
Stanton number near the adiabatic condition, as illustrated in fig. 5.7.
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Figure 5.8: (a) Evolution of the Stanton number and (b) skin-friction coefficient in DNS
environment. Coarse mesh (solid lines), refined mesh (dashed lines), and BL solutions
with Taw (dashed-dotted lines). Heated (red) and cooled (blue).

5.3 Conclusion

It is illustrated that there is a minor deviation between the commonly used approximative
formula for the recovery temperature and the true adiabatic wall temperature obtained by
the boundary-layer solution. Although this insignificant difference is usually neglected,
employing both definitions results in considerably different Stanton number values for
weak to mild wall cooling or heating. With the true adiabatic value, Ch for heating is
always lower than for cooling, whereas the approximative Trec introduces a threshold
wall heating/cooling rate at a specified Mach number, below which Ch is larger for the
heated wall than for the cooled wall. For practical purposes, the required heating/cooling
rates for the use of Trec are quantified at different confidence levels. Moreover, DNS
results initiated from the leading edge present unexpected coherence with the BL solution
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obtained using Trec, which is attributed to the streamwise alteration of the adiabatic wall
temperature in the DNS environment that are inherently contradictory to the hypotheses
behind BL theory. Meanwhile, the outcome for DNS initiated by excluding the leading
edge at a constant Tw becomes sensitive around the adiabatic condition, with a reducing
discrepancy downstream.
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Having successfully postponed first-mode induced transition in Chapter 4, the cur-
rent chapter employs control streaks to suppress second-mode instabilities in the high-
supersonic/near-hypersonic regime. A parametric study explores control modes with
varying wavenumbers and amplitudes. Additionally, the characteristics of the streaks are
scrutinized in comparison with the previous analysis. Ultimately, the source of stabiliza-
tion is investigated through the implementation of a non-linear disturbance formulation.
Some results from this chapter were presented at the 2nd European Symposium on Lam-
inar/Turbulent Transition in the Hypersonic Regime8.

6.1 Problem setup

Due to their higher growth rates compared to the first modes at M∞ > 4.0 at adiabatic
wall, second-mode instabilities are naturally expected to drive the flow towards transi-

8https://www.hyfar-ara.org/en/11-control-of-second-mode/
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tion. However, these disturbances amplify within a relatively limited streamwise extent
when compared to low-frequency first-mode disturbances. Earlier studies have shown that
the primary instability leading to transition significantly depends on the flow/geometry
configuration and boundary conditions in hypersonic flows. On a flat plate at Mach
6.0, first-mode-induced oblique breakdown was identified as the most viable transition
path (Franko and Lele, 2013; Unnikrishnan and Gaitonde, 2019; Caillaud, 2022), while
second-mode-induced fundamental resonance was found to be responsible over various
cone-shaped geometries (Sivasubramanian and Fasel, 2015). Meanwhile, linear stability
analysis on an adiabatic flat plate boundary layer revealed that the critical N-factor of 10
was reached by first-mode disturbances up to Mach 7.0 before second-mode instabilities.
However, in a flight condition, reality deviates, and flight data, as depicted in fig. A.10,
indicates significant wall cooling even before the terminologically accepted hypersonic
regime of Mach 5.0 (Anderson, 2000). Considering the destabilizing impact of cooling
on second-mode disturbances (Mack, 1969, 1984), a more substantial role is anticipated
from these instabilities even before reaching the hypersonic limit (Malik, 1989). Indeed,
Lysenko and Maslov (1984) emphasizes nearly complete stabilization of first-mode dis-
turbances over a flat plate at Mach 4.0 with 54% wall cooling compared to adiabatic
condition.

Figure 6.1: Growth rate of instabilities: (a) second-mode at f = 91 kHz and (b) first-
mode at f = 21 kHz at M∞ = 4.5, T∞ = 65.15 K, and Tw = 4.0×T∞ ≈ 0.9×Trec.

Recent studies on second-mode-induced transition have predominantly concentrated
on the fundamental (K-type) and subharmonic (H-type) resonance mechanisms, given
that the 2-D second mode amplifies more than 3-D disturbances (Chynoweth, 2018;
Meersman et al., 2018; Sivasubramanian and Fasel, 2014, 2015; Hader and Fasel, 2017,
2019). However, linear stability analysis in fig. 6.1, exhibits that 3-D second-mode dis-
turbances with low obliqueness amplify nearly as strongly as their planar counterparts.
A recent direct numerical simulation (DNS) study indeed demonstrated that the 3-D
second-mode instability wave can lead to oblique breakdown at Mach 4.5 (Zhou et al.,
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2022).

6.1.1 Simulation parameters and boundary conditions

The flow/geometry configuration and the 3-D second-mode disturbance are identical as
Smob in Chapter 3 and named as AT in the present chapter. As indicated in fig. 6.1, the
wall is cooled only slightly despite the high cooling rates indicated by the flight data in
A.10. This aims to retain first-mode instabilities within the domain for later incorporation
with broadband disturbances. For transition delay, inspired by the streak employment
method in Chapter 4, the initial investigation employs control mode (0,5) with three
streak amplitudes. Table C.2 lists the performed DNS cases. For controlled scenarios,
the first letter and the digit designate the amplitude level relative to (0,5). Other control
modes’ streak amplitudes are adjusted to match these three reference amplitudes at the
end of the perturbation strip. Before delving into the results, the evolution of the streaks
upon their generation requires careful examination.

6.1.2 Generation of the streaks

Control streaks are introduced through the same blowing/suction strip as employed in
Chapter 4 and is positioned between xc,1 = 0.418 m and xc,2 = 0.426 m, corresponding to
Rexc,1 ≈ 3.0×106 and Rexc,2 ≈ 3.06×106, respectively. In this analysis, only the control
strip is activated. Figure 6.2 provides a closer look at the control strip vicinity, exhibiting
streaks with varying spanwise wavenumbers and amplitudes. Notably, a more prominent
hump is observed in the streak evolution for lower wavenumbers. To elaborate further on
this phenomenon, simulations were conducted with a shorter streamwise width (wc) of
the control strip, while maintaining the end position unchanged, as depicted in fig. 6.3.
The streaks are observed to reach higher amplitudes with increasing (wc), irrespective of
the initial streak amplitudes, while the hump decreases significantly. These observations
bring about two main queries.

• Q1: A broader width of the control strip enables a higher resolution of the wave
function in the streamwise direction. Thus, is the observed hump linked to the
lower resolution of the control strip in the case of the shortest strip width? R1: Our
analysis employing a higher streamwise resolution along the control strip resulted
in an identical evolution of the control modes.

• Q2: Is the observed “correction” of the hump in the case of a wider strip solely
a consequence of the increase in streak amplitude? R2: This cannot be true as
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Figure 6.2: Streamwise evolution of maximum modal disturbance amplitudes for the
control modes (0,3), (0,4), and (0,5) near strips. Vertical dashed lines: control strip
beginning (Rex ≈ 3 × 106) and end (Rex ≈ 3.06 × 106) as well as the perturbation strip
end (Rex ≈ 3.16×106).

a comparison between figs. 6.3a and 6.3b reveals a higher hump generation with
larger streak amplitudes for identical control strip widths.

What follows is the examination of two configurations where the width of the control
strips are 8 mm and 12 mm while maintaining identical streamwise end positions. Upon
observing that increasing wc enhances the maximum amplitude of the streaks, the initial
streak amplitude of the case with a larger strip is adjusted to match the case with the
original width at the end of the perturbation strip. The analysis has been performed for
two different initial streak amplitudes, as presented in fig. A.11. It is seen that when the
streak amplitude is kept the same at the end of the perturbation strip (the deactivated
one), near identical trends in the control mode and its first harmonic are seen.

Figure 6.3: Streamwise evolution of maximum modal disturbance amplitudes for the
streak amplitude of (a) Ac ≈ 1.21 % and (b) Ac ≈ 2.42 %. wc = 8 mm (blue), wc = 10 mm
(black), and wc = 12 mm (red). Vertical dashed line: control strip end (Rex ≈ 3.06×106).
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6.2 Results

The most recent study, to the best knowledge of the author, regarding 3-D 2nd-mode
control using streaks were conducted by Zhou et al. (2023). The researchers used iden-
tical formulations as ours to generate the control streaks9. Despite their encouraging
outcomes, discrepancies indicated computations of under-resolved DNS which can sig-
nificantly influence the results due to inaccurate resolving of the convective instabilities
inside the boundary layer, particularly in the late non-linear regime and the breakdown.
The boundary-layer thickness was reported to be decreasing after a certain streamwise
location while delaying transition using control streaks with different spanwise wavenum-
bers. However, it has been shown that introducing streaks increases the momentum
transfer from the wall to the boundary-layer edge and vice-versa, for which the boundary
layer thickness grows, see fig. 4.11. Moreover, even if streaks decay downstream, the
boundary layer should consistently grow due to momentum diffusion by the kinematic
viscosity.

Figure 6.4: Contours of U∗ = (u−umin)/(umax −umin) at y/δin = 0.75 in an instantaneous
flow-field for (a) AT, (b) A1C5, (c) A2C5, and (d) A3C5.

Figure 6.4 illustrates the velocity contours taken inside the boundary layer proceeding
the first initiatives with the control mode (0,5). The presence of the streaks with the
lowest amplitude turned out to be insufficient in delaying the transition onset, exhibiting a
similar breakdown scenario as in AT. Moderate streak amplitude postpones the transition
onset location somewhat downstream, without suppressing the fundamental disturbance
entirely. In this case, breakdown occurs at the spanwise borders and the mid-spanwise

9The work presented in this chapter and the referenced study were conducted in parallel without the
knowledge of each party.
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direction contrary to z/λz = 0.25 and z/λz = 0.75 in A1C5 and AT. Increasing the streak
amplitude further worsen the control mechanism by inducing the streak instabilities,
similar to what has been observed in Chapter 4 for high-amplitude streaks.

A different series of tests is conducted using the control mode (0,4). The transition
was effectively controlled with low and moderate streak amplitudes, while the application
of the highest streak amplitude resulted in an earlier transition. Similar findings are
obtained using the control mode (0,3), as detailed in fig. A.13. Regarding the streaks
with highest amplitude, the evolution of Cf in fig. A.12 indicates that a control mode
with a larger wavelength leads to an earlier transition than control modes with higher
wavelengths. Besides, contrasting with our previous observation in Chapter 4, A3C5 does
not induce an earlier breakdown compared to AT. For further insights into the stability
of streaks with different wavenumbers, a 2-D linear stability analysis would be beneficial.

Figure 6.5: Contours of U∗ = (u−umin)/(umax −umin) at y/δin = 0.75 in an instantaneous
flow-field for (a) AT, (b) A1C4, (c) A2C4, and (d) A3C4.

To enhance the depth of our analysis, streamwise evolution of disturbances has been
traced in the presence and absence of the streaks. Figure 6.6 compares the controlled
case with the moderate streak amplitude (A2C4) and AT. At first glance, it is seen that
the presence of the streaks strongly attenuate the fundamental disturbance as well as
the non-linear generated modes. Similar to the findings in the case of 1st-mode induced
oblique breakdown in Chapter 4, the streaks alter the receptivity of the disturbance,
leading to a sudden reduction in the maximum disturbance amplitude near the injection
location. Examining the control mode and the mean-flow-deformation (MFD) reveals
the earlier generation of the MFD in the presence of streaks, as expected. Notably, both
the control mode and the MFD reach saturation before reaching the mid-streamwise
direction. The latter saturates with the steady disturbances, contrasting the findings of
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Zhou et al. (2023), where the MFD was shown to reach 50% of the maximum amplitude
by the end of the domain in case of complete transition control. However, unless the flow
becomes turbulent, there is no reason for observing such drastic increase in the MFD
(Sharma, Shadloo, Hadjadj and Kloker, 2019; Kneer et al., 2022).

Figure 6.6: Streamwise evolution of maximum modal disturbance amplitudes for A2C4
(black) and AT (red). Vertical dashed lines: control (Rex ≈ 3.03 × 106) and the pertur-
bation (Rex ≈ 3.13×106) strip centers.

A comparison is provided for the evolution of the control streaks at two different Mach
numbers for transition induced by two distinct oblique instabilities. At M∞ = 2.0, the
streaks exhibit immediate decay after their generation. In contrast, at M∞ = 4.5, the am-
plification of streaks is highly contingent on the designated streak amplitude. Following
their formation, they amplify transiently before reaching a plateau, until transition onset
in A3C4. Furthermore, it is noted that, at M∞ = 4.5, the first harmonic of the control
mode may attain higher amplitudes than the control mode itself. This observation leads
to questioning of the source of transition control, whether it is the designated streaks or
their first harmonic. To explore this further, a comparison is made between the cases
where (0,8) is chosen as the control mode, denoted as A2C8 and A2C4. Figure 6.8a
depicts that the sole employment of (0,8) as control streaks has a detrimental impact
on the flow field, leading to an earlier transition. A similar conclusion is drawn from
the comparison of A2C6 and A2C3, as shown in fig. A.14. Thus, it is concluded that
streaks should carry wavenumber four times less-and-equal to that of the fundamental
disturbance, i.e. βz ≤ 4×β0.

The selected amplitude range for the streaks are visualized in fig. 6.9 using the
conventional definition of Andersson et al. (2001):
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Figure 6.7: Streamwise evolution of maximum modal disturbance amplitudes for control
streaks and their first harmonics. (a) 2nd-mode induced OB at M∞ = 4.5 and (b) 1st-
mode induced OB at M∞ = 2.0. Vertical dashed lines: control strip centers (a) at Rex ≈
3.03×106 and (b) at Rex ≈ 1.72×105.

Ast = 1
2u∞

[
max(u−ub)y,z −min(u−ub)y,z

]
. (6.1)

In incompressible flows, the estimated threshold value was found to be ≈ 26% of
u∞. Beyond this threshold, transiently growing streaks induce secondary inflectional
instabilities, leading to turbulence breakdown (Andersson et al., 2001; Cossu and Brandt,
2002b; Bagheri et al., 2007; Shahinfar et al., 2012). When streaks were generated using
spanwise distributed miniature vortex generators, the threshold increased to ≈ 32% of
u∞ (Fransson and Talamelli, 2012). In compressible flows, weakly nonlinear transiently
growing streaks up to ≈ 20% were found to stabilize the first-mode instabilities through
the nonlinear, plane-marching PSE analysis (Paredes et al., 2017). The parametric study
for the control modes conducted in Chapter 4, as also illustrated in fig. A.15, shows
that the threshold amplitude for the streaks lies around 42% both for the adiabatic
and isothermal cases. For second-mode instabilities, successful transition delay occurs
when the amplitude of transiently growing streaks remains below 35% (Paredes et al.,
2019), contrasting with a limit of ≈ 21% in a recent DNS analysis using white noise
disturbances (Caillaud, 2022). The present study exhibits ≈ 30% for the control mode
(0,4), and extends the threshold amplitude up to ≈ 38% for (0,3) for the 3-D second-
mode instability, as depicted in fig. 6.9. However, a more application-oriented conclusion
requires a DNS analysis, incorporating a broad disturbance spectrum as in (Caillaud,
2022), rather than a forced transition at a single frequency/wavenumber.

In supersonic flows, an insulated flat-plate boundary layer always exhibits a general-
ized inflection point (GIP), meaning that the flow is subjected to inviscid disturbances
(Malik, 1990). However, a sufficient amount of cooling has been shown to eliminate the
GIP by stabilizing the flow against inviscid disturbances (Unnikrishnan and Gaitonde,
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Figure 6.8: Streamwise evolution of maximum modal disturbance amplitudes for A2C4
(black), A2C8 (red), and AT (blue).

2019). Figure 6.10a illustrates the presence of the GIP near the local boundary-layer
edge in the base flow due to a relatively low wall cooling, i.e., Tw = 0.9 ×Trec. With-
out control, the additional two GIPs emerge at Rex = 4.5 × 106 in AT, as presented in
fig. 6.10b, coinciding with the point where the steady mode (0,2) reaches approximately
10% of ρ∞u∞. Subsequently, the profile undergoes significant distortion, with additional
GIPs appearing at Rex = 5.5×106, marking the onset of the strong non-linear breakdown
regime. Introducing streaks with the lowest amplitude at Rex = 4×106 has minimal im-
pact on the GIP profile compared to AT at Rex = 4×106, see fig. 6.10c. However, A2C4
generates two additional GIPs in the first half of the boundary layer near the wall at
Rex = 4 × 106, despite completely suppressing the fundamental disturbance. These two
points disappear further downstream but have higher values in A3C4, at Rex = 4×106 in
fig. 6.10e, where transition is induced due to the breakdown of the streaks. This suggests
that the moderate streak amplitude might have been chosen close to the threshold value
of unsuccessful delay. Additionally, streaks do not seem to affect the pre-existing GIP
in the base flow near the boundary layer edge unless their amplitude surpasses a certain
threshold, causing their instabilities.

6.2.1 Non-linear disturbance formulation

In order to investigate the role of the MFD and the 3-D part of the control streaks
separately, a pseudo-disturbance-formulation simulation is employed (Kurz and Kloker,
2016). As illustrated in fig. 6.11, baseflow cases only by activating the control strip are
performed. Upon convergence of the flow field at t1, the conservative variables, stored in
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Figure 6.9: Streamwise evolution of the streak amplitude.

Figure 6.10: GIP distribution for (a) baseflow, (b) AT, (c) A1C4, (d) A2C4, and (e) A3C4
at Rex = 4.0 × 106 ( ), Rex = 4.5 × 106 ( ), Rex = 5.0 × 106 ( ), and Rex = 5.5 × 106

( ).

QQQ are averaged in the spanwise direction leaving only the baseflow and the MFD (0,0),
referred to as modified-base-flow (MBF). Then, the control strip is deactivated and the
flow field is restarted only for one time stepping. The temporal derivative of the conser-
vative variables is calculated at every grid point and subtracted at each time step to keep
the modified base flow steady. Subsequently, the perturbation strip is activated and the
simulation is run for three flow through. Eventually, Fast Fourier Transformation (FFT)
in time and space is performed on the flow field sampled over two fundamental period.
The cases employing this pseudo-disturbance formulation is designated by subscript D as
shown in table C.2. It is worth noting that the MBF may not fulfill the steady Navier-
Stokes equations (Kurz and Kloker, 2016). The adopted procedure is contrary to the
method used by Sharma, Shadloo, Hadjadj and Kloker (2019) where the 2-D part of the
flow is purged from the flow field leaving only the three-dimensional. The inconvenience
of the latter approach is that the turbulence would start to appear and the code may blow
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up after running for a few fundamental time periods due to the absence of the stabilizing
effect provided by (0,0).

Figure 6.11: Application of nonlinear disturbance formulation.

The implementation of the aforementioned procedure to the adiabatic case (A5C)
presents remarkable agreement with the reference, see fig. A.16. The mismatch in the
low disturbance amplitude in (1,3) is attributed to the higher background noise of our
code as aforementioned in Chapter 3. Following the successful implementation of the
pseudo-disturbance formulation, the procedure is applied to our current investigation
with control streaks having different spanwise wavenumbers and initial streak amplitudes.
A comparison for the full-control (A2C4) is presented in fig. 6.12. Stabilizing effect of
the 2-D part of the streaks (MFD) in A2C4D decreases the growth rate of (1,1) while
yielding a longer amplification distance in the streamwise direction, resulting a higher
maximum amplitudes compared to AT in the transitional flow regime. Nonetheless,
breakdown to turbulence still happens at a comparable streamwise position as in AT,
highlighting the relatively weak stabilizing contribution of the MFD in comparison with
the 3-D part of the control streaks. The latter observation can be inferred from comparing
the A2C4 and A2C4D, which conforms with the findings of Paredes et al. (2019) for 2-
D Mack mode alongside with Zhou et al. (2023) regarding 3-D Mack mode. It is also
seen that purging the 3-D component of the streaks causes a sudden increase in the
amplitude of the fundamental mode (1,1) near the perturbation strip. This effect was
attributed to localized secondary amplification mechanism induced by the streaks (Kneer,
2020). In addition to the differences in the control streaks nature, findings concerning
the contribution of the MFD and 3-D part also differs from the observation at M∞ = 2.0
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where stabilizing contribution of the both components was comparable (Sharma, Shadloo,
Hadjadj and Kloker, 2019).

Figure 6.12: Streamwise evolution of maximum modal disturbance amplitudes for A2C4D
(blue), A2C4 (black), and AT (red). Vertical dashed line: perturbation strip center
(Rex ≈ 3.13×106).

A similar analysis is also performed involving the lowest streak amplitude in fig.
6.13. The examination of A1C4D indicates somewhat a destabilization of unsteady modes
providing the nearly marginal amplified region of the disturbance in A1C4D compared to
AT. A similar observation was also made by Zhou et al. (2023) with the identical oblique
Mack mode disturbance. The results obtained using the control mode (0,3) are provided
in A.17 and A.18, lead to identical outcome regarding the stabilizing role of the MFD
and the 3-D part of the control.

Figure 6.13: Streamwise evolution of maximum modal disturbance amplitudes for A1C4D
(blue), A1C4 (black), and AT (red). Vertical dashed line: perturbation strip center
(Rex ≈ 3.13×106).
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6.3 Conclusion

Streaks are employed to control the second-mode disturbance at a low oblique angle,
achieving effective suppression of the fundamental disturbance for (0,3) and (0,4) modes
with their lowest and moderate initial amplitudes. In contrast to the investigation at
Mach 2.0, the initial amplitude is found to be the primary parameter, altering the stream-
wise evolution of the streaks, in addition to their stability. Notably, the maximum streak
amplitude using (0,3) surpasses values reported in existing literature. Subsequently, a
non-linear disturbance formulation unveils the near-sole stabilizing effect of the spanwise
component of the control modes, with an almost negligible impact of the mean-flow-
deformation.



Chapter 7

Conclusions and perspectives

7.1 Conclusions

The objective of this thesis was to advance our comprehension of transitional wall-
bounded supersonic and near-hypersonic flows, followed by the implementation of the
streak employment method to delay the transition. Initial studies on transition within
our research group at CORIA have been ongoing since 2015, focusing initially on by-
pass transition over flat plates subjected to high wall heating/cooling in supersonic flows.
Subsequently, the streak employment method, serving as a passive control technique,
was explored, thereby establishing a more specialized branch in the field. The present
research was conceived to deepen our understanding of control streaks, encompassing
various types of instabilities under different conditions.

In the context of this work, an already existing in-house developed DNS solver has
been used to perform simulations. The code uses a hybrid scheme, combining the classi-
cal WENO scheme with a locally-conservative sixth-order skew-symmetric split-centered
finite-difference scheme for discretizing the convective fluxes. A fourth-order central
scheme is utilized for the viscous flux while third-order TVD Runge-Kutta is applied
for time integration. The solver remained largely untouched, with only short implemen-
tations made for specific purposes. The primary focus has been on the development and
improvement of post-processing tools, as well as the conceptualization of the investiga-
tion.

Upon successfully validating the LST solver and the DNS code, the efficacy of tran-
sition control using narrow-spaced streamwise streaks was examined over flat plates sub-
jected to a low rate of wall heating/cooling at Mach 2.0. This investigation represents a
perspective of the preceding doctoral studies and may be regarded as a logical continua-
tion. The parametric study revealed that streaks with a spanwise wavenumber five times

95
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that of the fundamental disturbance proved most effective in delaying transition. Cooling
the wall enhanced the control method’s effectiveness by expanding the range of control
amplitude, whereas heating was found to be strongly detrimental i.e. 15.8 to 26.5%, 18
to 25.8%, and 20.8 to 25.2% for cooled, adiabatic, and heated flows, respectively. Mean-
while, isothermal wall conditions did not alter the development of the control streaks,
indicating no observable changes in the hampering role of the MFD and 3-D part of the
control. It is worth mentioning that performed simulations dealt with a forced transition
scenario at a single frequency and wavenumber, while transition control in a realistic
scenario would be affected by the broadband freestream disturbances (Chang and Malik,
1994; Laible and Fasel, 2016) and modified receptivity due to the introduction of the
control devices (Kneer, 2020; Kneer et al., 2022).

DNS in Chapter 4 revealed questionable trends for the Stanton number, nonconform-
ing with the well-established representation in related textbooks, which proposes that
cooling walls always produce higher Stanton number values than heating. To address
this discrepancy, a comprehensive analysis of high-speed boundary layers subjected to
different wall heating/cooling conditions was conducted by employing self-similar solu-
tions to the compressible boundary-layer equations. It is illustrated that the results
obtained employing the widely used and accepted but approximative formula for the
recovery temperature differ from those obtained by the true adiabatic temperature as
obtained by enforcing a zero wall-normal temperature gradient in the solution, may it be
a BL or DNS computation. The values of Trec and Taw themselves differ insignificantly,
but their difference is largely magnified by calculating the Stanton number for weak to
mild wall cooling or heating; the effect gets larger with a higher Mach number. With the
true adiabatic value, Ch for cooling should always be larger than for heating, irrespec-
tive of the Pr number, no matter whether the wall is heated/cooled at a constant Mach
number, or constant Tw/T∞ is applied at the wall by varying the Mach number. On
the other hand, using the approximative Trec brings about a threshold value for the wall
heating/cooling rate at a given Mach number, below which the Stanton number for the
cooled wall remains lower than that for the heated wall. Additionally, it was shown that
Trec alters the Stanton number evolution as a function of Mach number, differing from
the typical decaying trend observed in case of Taw. Instead, in case of the first, Stanton
number exhibits discontinuities around a Mach number corresponding to the adiabatic
condition for any considered curve of Tw/T∞ ≥ 1. The Stanton number approaches the
discontinuity at the adiabatic condition asymptotically, with the characteristic of this
asymptotic behavior strongly dependent on the Prandtl and Mach numbers. Our DNS
results for a constant Tw also indicate that Ch becomes highly sensitive around the adi-
abatic condition. Contrary to the BL solution with Taw, Ch is smaller at lower Mach
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numbers for cooling, while higher values are obtained at higher Mach numbers for heat-
ing. This discrepancy diminishes with increasing boundary-layer thickness downstream.
To minimize the possible errors due to the streamwise dependency of Ch, it is suggested
to provide the wall heat flux directly for low values of wall heating or cooling, without
making it non-dimensional by calculating the sensitive Stanton number.

Control streaks have also been tested at Mach 4.5, near the hypersonic limit, where
second mode instability predominates. The designated 3-D disturbance, characterized
by low obliqueness, strongly amplifies comparable to its 2-D counterpart. In the ab-
sence of transition control, non-linearly generated steady disturbances bear resemblance
to the vortical structures observed in the fundamental resonance over differently shaped
cones at Mach 6.0 in existing literature. Subsequently, control streaks that have three
to five times the wavenumber of the selected 3-D disturbance are employed. Effective
suppression of the fundamental disturbance is achieved for (0,3) and (0,4) with their low-
est and moderate initial amplitudes, while a further increase in amplitude leads to an
earlier transition. It was shown that streaks should have no more than four times the
wavenumber of the fundamental disturbance for successful transition delay. Compared
to the investigation at Mach 2.0, notable differences are observed in the characteristics
of the control streaks. At the lower Mach number, the streaks decay after their gener-
ation, regardless of initial amplitude, whereas at Mach 4.5, their amplification depends
considerably on the initial amplitude defined at the blowing/suction strip. Ultimately, a
non-linear disturbance formulation, excluding the 3-D part of the control and retaining
only the baseflow and the MFD, is employed to investigate the mechanism behind effec-
tive transition delay. In contrast to the Mach 2.0 findings, where the stabilizing effect
of the MFD and the 3-D part of the control were comparable, at Mach 4.5, the stabi-
lizing impact of the MFD on suppressing the 3-D second-mode instability is negligible.
The modification in streak characteristics as well as the stabilizing/destabilizing roles of
their spatial components requires a thorough analysis involving both types of instabilities
simultaneously, as encountered in actual flight scenarios. It should also be emphasized
that the performed simulations in the entire research work dealt with a forced transition
scenario at a single frequency and wavenumber, while transition control in a realistic
scenario would be affected by the broadband freestream disturbances (Chang and Malik,
1994; Laible and Fasel, 2016) and modified receptivity due to the introduction of the
control devices (Kneer, 2020; Kneer et al., 2022).
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7.2 Perspectives

In the pursuit of contributing to the understanding of transition control, a further venture
may be taken up to focus on the following points:

• Streak employment method would be elaborated in the presence of broadband dis-
turbances to more accurately approximate a “natural” transition scenario. As an
initial step, a harmonic point source can be utilized to introduce second-mode
disturbances with different oblique angles. If successful in delaying transition,
first-mode instabilities with a selected frequency might be incorporated using a bi-
harmonic point source at a chosen frequency. Ultimately, a multi-frequency mode
should be activated to encompass a diverse range of disturbance spectra, that en-
ables to assessment of the effectiveness of the control streaks. This progression can
be regarded as a direct continuation of this thesis for which the road has already
been paved in Chapter 6.

• The presence of roughness elements in manufacturing is an avoidable factor only
to a certain extent, limited by the available technology. Previous control studies
have predominantly focused on boundary-layer transition induced by relatively large
roughness elements, compared to the local boundary-layer thickness, individual or
equidistantly distributed in a certain direction with particular shapes. However,
manufacturing processes often result in considerably varied protuberances in terms
of shape and spatial distributions. The impact of “randomly” distributed roughness
elements, with randomness bounded by specific statistical parameters, could be
explored.

• Building upon (Wassermann and Kloker, 2002; Dörr and Kloker, 2018), control
streaks might be tested on cross-flow instabilities in supersonic flows. A preliminary
analysis conducted using a swept plate, progressing towards more complicated,
application-oriented geometries, such as swept wings.

• Practical applications such as an aircraft at high speed mostly require the adaption
of a control system to the variations, slight or abrupt, in the environment. For that
aim, a dynamic system might be implemented in the solver which serves as a bridge
between the control strip and the downstream flow development.
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down of Görtler flow’, Journal of Fluid Mechanics 682, 362–396. (Cited on page 13).

Schubauer, G. B. and Skramstad, H. K. (1947), ‘Laminar boundary-layer oscillations and
stability of laminar flow’, Journal of the Aeronautical Sciences 14(2), 69–78. (Cited on
page 7).

Shadloo, M., Hadjadj, A. and Chaudhuri, A. (2014), ‘On the onset of postshock flow
instabilities over concave surfaces’, Physics of Fluids 26(7), 076101. (Cited on page
21).

Shadloo, M., Hadjadj, A. and Hussain, F. (2015), ‘Statistical behavior of supersonic
turbulent boundary layers with heat transfer at M∞ = 2’, International Journal of
Heat and Fluid Flow 53, 113–134. (Cited on page 47).

Shahab, M., Lehnasch, G., Gatski, T. and Comte, P. (2011), ‘Statistical characteristics
of an isothermal, supersonic developing boundary layer flow from DNS data’, Flow,
turbulence and combustion 86, 369–397. (Cited on page 47).

Shahinfar, S., Sattarzadeh, S. S., Fransson, J. H. and Talamelli, A. (2012), ‘Revival of clas-
sical vortex generators now for transition delay’, Physical review letters 109(7), 074501.
(Cited on pages 13 & 89).

Shannon, C. E. (1949), ‘Communication in the presence of noise’, Proceedings of the IRE
37(1), 10–21. (Cited on page 38).

Sharma, S. (2019), Laminar-to-turbulent transition in supersonic boundary layer: differ-
ent scenarios and possible control, PhD thesis, Normandie Université. (Cited on pages
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Chapter A

Figures

Figure A.1: Impact of the parameter ϵ in equation 2.36 on the Ducros shock sensor for
AT at z =Lz/2 in Chapter 4. (a) ϵ= 10−5 and (b) ϵ= (u∞/δin)2 as proposed in Pirozzoli
(2011). Activated shock sensor locations (symbols) are indicated (a) everywhere and (b)
every 4 points in the streamwise and 2 points in the wall-normal directions, respectively.
Colorbar is the nonlinearly scaled numerical schileren (Hadjadj and Kudryavtsev, 2005)
with the boundary-layer edge marked by the red line.
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Figure A.2: Impact of the terms in equation 2.43 estimated at Rex = 7.1 × 105. (a) A
comparison between the sum of the convective and diffusion times for the cooled wall
(blue), adiabatic (black), and heated wall (red) cases with the contribution of the viscous
terms (dash-dotted lines). (b) The effect of each term for the cooled wall scenario: C∆t,c1
( ), C∆t,c2 ( ), C∆t,c3 ( ), C∆t,v1 ( ), C∆t,v2 ( ), and C∆t,v3 ( ).

Figure A.3: Evolution of second-mode wavelengths at f = 91 kHz, M∞ = 4.5, T∞ = 65.15
K, and Tw/Taw = 0.9.

Figure A.4: Streamwise evolution of Cf and Ch in Svob ( ) and Smob ( ) with laminar
boundary-layer solutions (dashed lines). Vertical dashed line: perturbation strip center
(Rex ≈ 3.13×106).
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Figure A.5: Streamwise evolution of maximum modal disturbance amplitudes for AT in
Chapter 4. Doubled-streamwise resolution (black). Vertical dashed line: perturbation
strip center (Rex ≈ 2.66×105).

Figure A.6: Distribution of the two-point correlations in the spanwise direction for Fmob
at Rex = 8 × 106 with (a) α = u (blue) and α = ρ (green) (b) α = v (blue) and α = w
(green) at y+ = 2.9 (solid lines), y+ = 25.5 (dashed lines), and y+ = 133.3 (dash-dotted
lines).
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Figure A.7: (a) Velocity and (b) temperature profiles at Rex = 105. Cooled (blue),
adiabatic (black), and heated (red) cases with η = y
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Figure A.8: The effect of Pr number on adiabatic wall temperature.
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Figure A.9: Streamwise evolution of (a) adiabatic wall temperature and (b) pressure
gradient at y/δRex=105 ≈ 0.12 at Mach 2.5. DNS initiated from the leading edge ( ) and
at Rex = 105 ( ). BL solution with Taw ( ) and Trec ( ).

Figure A.10: Flight data (Schneider, 1999; González, 2014; Paredes et al., 2019).
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Figure A.11: The evolution of (0,4) and (0,8) with wc = 12 mm (black) and wc = 8 mm
(red) for (a) Ac = 4.95 % and (b) Ac = 19.8 %. Vertical dashed line: perturbation strip
end (Rex ≈ 3.16×106).

Figure A.12: Streamwise evolution of skin-friction coefficient.

Figure A.13: Contours of U∗ = (u−umin)/(umax −umin) at y/δin = 0.75 in an instanta-
neous flow-field for (a) AT, (b) A1C3, (c) A2C3, and (d) A3C3.
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Figure A.14: Streamwise evolution of maximum modal disturbance amplitudes for A2C3
(black), A2C6 (red), and AT (blue).

Figure A.15: Streamwise evolution of streak amplitude for C5C ( ), A5C ( ), and H5C
( ) with Ac/Ac,ref = 1.7 in Chapter 4.

Figure A.16: Streamwise evolution of maximum modal disturbance amplitudes for the
role of the MFD at M∞ = 2.0 for case A5C in Chapter 4. DNS implementation (red)
and (Kneer et al., 2022) (black). Vertical dashed lines: control strip beginning (Rex ≈
1.48×105) and end (Rex ≈ 1.96×105).
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Figure A.17: Streamwise evolution of maximum modal disturbance amplitudes for A2C3D
(blue), A2C3 (black), and AT (red). Vertical dashed line: perturbation strip center
(Rex ≈ 3.13×106).

Figure A.18: Streamwise evolution of maximum modal disturbance amplitudes for A2C3D
(blue), A2C3 (black), and AT (red). Vertical dashed line: perturbation strip center
(Rex ≈ 3.13×106).



Chapter B

Self-similar solutions for compressible
boundary layers

Self-similar solutions for laminar flows are obtained by utilizing the steady, two-
dimensional compressible boundary-layer equations derived from the compressible Navier-
Stokes system. This is done under the assumption of a thin boundary layer and zero-
pressure gradient, specifically in the non-low Reynolds-number regime. The complete
derivation procedure can be found e.g. in Schlichting and Gersten (2016). The variables
in the boundary-layer equations can be processed using proper non-dimensional variables,
and the resulting system of equations can be written as:

(Cf ′′)′ +ff ′′ = 0, (B.1)

(Cg′)′ +Prfg′ +CPrM2
∞(γ−1)f ′′2 = 0, (B.2)

where
g(η) = T/T∞, f ′(η) = u/u∞, η =

√
u∞

2µ∞ρ∞x

∫ y

0
ρdy. (B.3)

Here, Chapman-Rubesin parameter (Chapman and Rubesin, 1949) is designated by
C = (ρµ)/(ρ∞µ∞). Then, the boundary conditions for an adiabatic system are given as
follows:

lim
η→+∞

f ′(η) = lim
η→+∞

g(η) = 1, f(0) = f ′(0) = g′(0) = 0. (B.4)

To ensure an isothermal condition with a fixed wall temperature, indicated by Tw,
the boundary conditions can be set as:

lim
η→+∞

f ′(η) = lim
η→+∞

g(η) = 1, f(0) = f ′(0) = 0, g(0) = Tw

T∞
. (B.5)
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After the transformation and applying boundary conditions, the final system of eqs.
B.1 and B.2 is reduced to a first-order ODE system. This is then solved using the fourth-
order Runge-Kutta method in conjunction with Newton’s iteration method. For further
information regarding the solver, the reader can refer to Oz and Kara (2021).

0 5 10 15

0

0.25

0.5

0.75

1

1.25

0 5 10 15

1

2

3

4

5

Figure B.1: Comparison of the normalized (a) velocity and (b) temperature distributions
across the laminar boundary layer. Self-similar solutions (solid lines), references (sym-
bols): M∞ = 5.35, Pr = 0.71, Tw/T∞ ≈ 4.66 where T∞ = 64.31 K (□□□) (Sivasubramanian
et al., 2016), M∞ = 4.5, Pr = 0.72, Tw/T∞ = 4.0 where T∞ = 65.15 K (□□□) (Zhou et al.,
2022), M∞ = 2.8, Pr = 0.72, Tw/T∞ = 4.0 where T∞ = 121.11 K (□□□) (Iyer, 1995), and
M∞ = 2.0, Pr= Pr(T ), (∂T/∂y)w = 0 where T∞ = 288 K (□□□) (Özgen and Kırcalı, 2008).

The solver uses identical constant parameters as the DNS code: Pr, Cp = γR/(γ−1),
γ = 1.4, and R = 286.7 J/(kg.K) where R is the gas constant for air. For the dynamic
viscosity, which varies with temperature, the Sutherland (1893) formula is utilized. The
thermal conductivity, λ, is obtained from the viscosity employing the constant Prandtl
number. For validating the solver, a wide range of free-stream and boundary conditions
has been tested (Sivasubramanian et al., 2016; Zhou et al., 2022; Iyer, 1995; Özgen and
Kırcalı, 2008). Figure B.1 presents a comparison of velocity and temperature distributions
within the boundary layer at four distinct free-stream Mach numbers. The self-similar
solutions are compared to the reference results, revealing a significant level of agreement.



Chapter C

Tables

Table C.1: 2-D DNS cases with the mesh stretching factor κ in eq. 3.1 and Ly = 1 (mm).

M∞ Rex Nx Ny κ

2.5 0−105 800 180 2.0
2.5 0−105 1600 180 2.0
2.5 0−105 3200 180 2.0
2.5 0−5×105 1600 180 2.0
2.5 0−105 1600 180 2.2
2.5 0−5×105 8000 180 2.2
2.2 0−5×105 8000 180 2.0
2.3 0−5×105 8000 180 2.0
2.35 0−5×105 8000 180 2.0
2.4 0−5×105 8000 180 2.0
2.45 0−5×105 8000 180 2.0
2.5 0−5×105 8000 180 2.0
2.6 0−5×105 8000 180 2.0
2.7 0−5×105 8000 180 2.0
2.8 0−5×105 8000 180 2.0
2.2 1−5×105 6400 180 2.0
2.3 1−5×105 6400 180 2.0
2.35 1−5×105 6400 180 2.0
2.4 1−5×105 6400 180 2.0
2.45 1−5×105 6400 180 2.0
2.5 1−5×105 6400 180 2.0
2.6 1−5×105 6400 180 2.0
2.7 1−5×105 6400 180 2.0
2.8 1−5×105 6400 180 2.0
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Table C.2: Parameters for the simulations.

Cases Ac (% of ρ∞u∞) Control mode
AT − −

A1C3 1.08 (0,3)
A2C3 2.37 (0,3)
A3C3 4.62 (0,3)
A1C4 1.16 (0,4)
A2C4 2.42 (0,4)
A3C4 4.85 (0,4)
A1C5 1.23 (0,5)
A2C5 2.47 (0,5)
A3C5 4.95 (0,5)
A2C6 2.6 (0,6)
A2C8 2.92 (0,8)

A1C4D 1.21 (0,4)
A2C4D 2.42 (0,4)
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