
HAL Id: tel-04720001
https://theses.hal.science/tel-04720001v1

Submitted on 3 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Binary Translation speed and accuracy
trade-offs : investigating parallel scalability and cache

simulation
Marie Badaroux

To cite this version:
Marie Badaroux. Dynamic Binary Translation speed and accuracy trade-offs : investigating parallel
scalability and cache simulation. Modeling and Simulation. Université Grenoble Alpes [2020-..], 2024.
English. �NNT : 2024GRALM007�. �tel-04720001�

https://theses.hal.science/tel-04720001v1
https://hal.archives-ouvertes.fr


THÈSE 
Pour obtenir le grade de 

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES

École doctorale : MSTII - Mathématiques, Sciences et technologies de l'information, Informatique
Spécialité : Informatique
Unité de recherche : Techniques de l'Informatique et de la Microélectronique pour l'Architecture des
systèmes intégrés

Compromis en termes de vitesse et de précision de la Traduction 
Binaire Dynamique : étude du passage à l'échelle de la version 
parallèle et d'une simulation de cache

Dynamic Binary Translation speed and accuracy trade-offs: 
investigating parallel scalability and cache simulation

Présentée par :

Marie BADAROUX

Direction de thèse :
Frédéric PETROT
PROFESSEUR DES UNIVERSITES, GRENOBLE INP

Directeur de thèse

Julie DUMAS
MAITRE DE CONFERENCES, GRENOBLE INP

Co-encadrante de 
thèse

Rapporteurs :
ERVEN ROHOU
DIRECTEUR DE RECHERCHE, CENTRE INRIA DE L'UNIVERSITE DE RENNES
TANGUY RISSET
PROFESSEUR DES UNIVERSITES, INSA LYON

Thèse soutenue publiquement le 12 mars 2024, devant le jury composé de :
MARIE-LAURE POTET,
PROFESSEURE DES UNIVERSITES, GRENOBLE INP

Présidente

FREDERIC PETROT,
PROFESSEUR DES UNIVERSITES, GRENOBLE INP

Directeur de thèse

ERVEN ROHOU,
DIRECTEUR DE RECHERCHE, CENTRE INRIA DE L'UNIVERSITE 
DE RENNES

Rapporteur

TANGUY RISSET,
PROFESSEUR DES UNIVERSITES, INSA LYON

Rapporteur

HENRI-PIERRE CHARLES,
DIRECTEUR DE RECHERCHE, CEA CENTRE DE GRENOBLE

Examinateur

KEVIN MARTIN,
MAITRE DE CONFERENCES HDR, UNIVERSITE BRETAGNE SUD - 
LORIENT VANNES

Examinateur

Invités :
JULIE DUMAS
MAITRE DE CONFERENCES, GRENOBLE INP





Remerciements

Je souhaite tout d’abord remercier mes encadrants de thèse de m’avoir suivie pendant
ces trois années. En premier merci à Frédéric de m’avoir proposé ce sujet de thèse
dans la continuité de mon projet de master. Je ne le remercierai jamais assez pour sa
disponibilité et son implication tout au long de cette thèse malgré son emploi du temps
très chargé. Je remercie Julie qui s’est greffée à l’encadrement de thèse à la fin de ma
première année. Merci pour tout le temps passé à me remonter le moral et à m’écouter
me plaindre quand les choses n’avançaient pas. Un grand merci pour tout ce qu’elle a
fait pour moi que ce soit sur le plan professionnel ou personnel.

Je remercie ensuite les membres de mon jury. Merci à Marie-Laure Potet d’avoir
présidé ce jury. Merci à Erven Rohou et Tanguy Risset d’avoir rapporté sur ces travaux
de thèse. Merci à Henri-Pierre Charles pour son rôle d’examinateur et merci à Kévin
Martin pour son rôle d’examinateur mais également de m’avoir suivie pendant ces trois
ans en faisant parti de mon Comité de Suivi Individuel.

Je remercie toutes les personnes de l’équipe SLS. Merci à l’ensemble des perma-
nents, Arthur, Olivier, Liliana, Laurence, Frédéric R. qui individuellement m’ont con-
seillé et aidé à traverser cette aventure qu’est la thèse. Un grand merci aux doctorants
de l’équipe qui sont maintenant devenus des amis plus que de simples collègues. Merci
donc à Benjamin, Pierre, Ambre, Chandana et un merci particulier à Nathan pour ses
origamis.

Je tiens également à remercier les membres des équipes pédagogiques de l’Ensimag
avec qui j’ai pu travailler pendant ces années. Un merci particulier à François, Matthieu
et Olivier pour leurs conseils et à Julie d’avoir cru en moi depuis le début et qui m’a
permis de m’épanouir dans le métier d’enseignant.

Je remercie mes amis proches d’avoir été là dès le début et pour le soutien qu’ils
m’ont tous apporté pendant les périodes difficiles. Merci particulièrement à Aude, mon
amie d’enfance qui me suit depuis des dizaines d’années.

Je souhaite remercier toute ma famille, sans qui je n’en serais pas là aujourd’hui.
Merci Papa et Maman de m’avoir donné le goût de l’enseignement et des sciences. Merci
à ma petite sœur Lisa d’avoir quitté le Sud-Ouest pour vivre dans la même ville que sa
grande sœur.

Enfin, je remercie la personne qui partage ma vie. Merci Aurélie de m’encourager
au quotidien à être qui je suis et merci pour ton soutien sans faille.

iii



Abstract

THE semiconductor industry continues its trend towards the production of increas-
ingly efficient designs. Currently, it does so by making these devices more and

more complex through the integration of ”everything” on a chip. However, the time to
market and manufacturing costs are non-negligible constraints which make the test and
evaluation of such designs particularly challenging. Simulation technologies appear as
a solution to let the designers do the evaluation in an appropriate time and cost.

Given the performances it achieves and the high level of abstraction it provides, Dy-
namic Binary Translation (DBT) is the most compelling simulation approach for cross-
simulation of software centric systems. The resulting simulation is, however, purely
functional. The emerging trend around multi and many-core systems with up to hun-
dreds of cores impacts the simulation mechanisms to make them take advantages of
the host architecture and DBT is not an exception to the rule.

Improving the DBT mechanism raises the question of how to keep a good balance
between speed and accuracy. On the one hand, working on increasing the DBT speed
positively affects the balance. On the other hand, adding modeling for new archi-
tectural features in the simulation calls the balance into question, as it degrades the
performance. Thus, to stay in line with the principles at work when developing DBT, it
is preferable to do so by limiting the overhead induced by the new features.

The first contribution of this thesis aims at increasing the performance of the parallel
simulation by investigating thread affinity of the simulated cores on the physical host
cores. The second contribution focuses on a functional cache simulation model that
takes benefits of the DBT mechanism and more general solutions to reduce the impact
of adding a cache simulation in the simulation. We chose QEMU, the most stable and
widely used simulator of its kind, as the DBT engine to implement our contributions.

iv



Résumé

L’INDUSTRIE du semiconducteur continue de tendre vers une production de systèmes
de plus en plus efficaces. Ceci est rendu possible par la conception de systèmes de

plus en plus complexes qui vient à l’intégration de ”tout ce qui est possible” sur une unique
puce. Cependant, les délais de commercialisation et les coûts de fabrication de ces systèmes
sont des contraintes non négligeables qui rendent le test et l’évaluation particulièrement
difficiles. Les technologies de simulation apparaissent comme une solution pour permettre
aux concepteurs de réaliser l’évaluation dans des délais raisonnable avec un coût approprié.

Compte tenu des performances qu’elle atteint et du haut niveau d’abstraction qu’elle
offre, la Traduction Binaire Dynamique (TBD) est l’approche de simulation la plus convain-
cante pour la simulation croisée de systèmes centrés sur les logiciels. La simulation qui en
résulte est cependant purement fonctionnelle. La tendance émergente autour des systèmes
multicœurs qui possèdent jusqu’à des centaines de cœurs impacte les mécanismes de sim-
ulation et les pousse à tirer parti de l’architecture de la machine hôte et la TBD ne fait pas
exception à la règle.

Améliorer les mécanismes de la TBD soulève la question de comment maintenir un bon
équilibre entre vitesse et précision. D’une part, travailler sur l’accélération de la vitesse
de simulation affecte positivement cet équilibre. D’autre part, l’ajout de la modélisation de
nouvelles fonctionnalités architecturales dans la simulation remet en question cet équilibre,
car les performances seront dégradées. Ainsi, pour rester en cohérence avec les principes
à l’œuvre lors du développement de la TBD, il est nécessaire d’introduire ces modèles en
limitant leur surcoût.

La première contribution de cette thèse vise à augmenter les performances de la simula-
tion parallèle en étudiant l’affinité des processus des cœurs simulés sur les cœurs physiques
de la machine hôte. La deuxième contribution se concentre sur un modèle de simulation
de cache fonctionnel qui profite du mécanisme de la TBD et des solutions générales pour
réduire le surcoût d’ajouter une simulation de cache dans la simulation. Nous avons choisi
QEMU, le simulateur le plus stable et le plus utilisé de ce type, comme outil reposant sur la
TBD pour mettre en œuvre nos contributions.

v



Contents

1 Introduction 1

2 Problem Statement 5
2.1 Systems simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Dynamic Binary Translation . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 State of the Art 17
3.1 Dynamic Binary Translation (DBT) . . . . . . . . . . . . . . . . . . . . . 18
3.2 Dynamic Binary Instrumentation (DBI) . . . . . . . . . . . . . . . . . . . 22
3.3 Adding new models: overview of cache simulators . . . . . . . . . . . . 25
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 To Pin or Not to Pin: Asserting the Scalability of QEMU Parallel Implemen-
tation 29
4.1 QEMU Parallel Implementation . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Pinning virtual cores in QEMU . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Possible impacts on the scalability of QEMU Parallel Implementation . . 36
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Fast Cache Simulation For The Dynamic Binary Translation Mechanism 43
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Instruction cache modeling: L1i . . . . . . . . . . . . . . . . . . . . . . . 46
5.3 What about other cache levels: L1d and L2? . . . . . . . . . . . . . . . . 52
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Experiments 57
6.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Scalability of QEMU Parallel Implementation . . . . . . . . . . . . . . . . 60
6.3 Instruction cache (L1i) evaluation . . . . . . . . . . . . . . . . . . . . . . 73
6.4 Data cache (L1d) evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.5 Cache hierarchy per virtual CPU: L1i + L1d + L2 . . . . . . . . . . . . . 86
6.6 Cache simulation with pinning . . . . . . . . . . . . . . . . . . . . . . . 88
6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7 Conclusion and Prospects 91
7.1 Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Appendixes

vi



CONTENTS

A Scalability of QEMU Parallel Implementation 97

B Instruction cache (L1i) evaluation 108

C Data cache (L1d) evaluation 114

D Cache hierarchy per virtual CPU: L1i + L1d + L2 evaluation 117

Backmatter

Publications 123

Bibliography 125

vii





Chapter 1

Introduction

THERE are three ”high-level” laws governing computer engineering. The first one,
empirical and somehow economical, coined by Gordon Moore in 1965, observes

that the chip industry should follow a pace of integrating 2 times more transistors on
a chip every other year to optimize its fabrication costs. The original graph describing
the law from a few points is presented Figure 1.1. This law still holds, but probably not

Figure 1.1: Moore’s Law

for long given the physics of materials.
The second one, theoretical, is due to Gene Amdahl in 1967. It states that the

acceleration that one can expect from distributing its workload on processing elements
is limited by the sequential fraction of the workload. It is expressed as S = 1

1−f+ f
s

,

where S is the speedup that will be gained by parallelizing, f is the fraction of the
workload than can be accelerated (e.g., parallelized) by a factor s. Amdahl’s law implies
that the sequential fraction of the workload should be as small as possible, and that it
should be executed as quickly as possible. Multi and many-core systems, thanks to their
integration on a single die, help in minimizing overheads and thus mitigating Amdahl’s
law. It cannot be escaped, though.

The third law, also empirical, is Dennard’s law, presented in 1974. It says that
scaling down the transistors by half halves the propagation delays while keeping power

1



CHAPTER 1. INTRODUCTION

consumption identical although transistor density is doubled. This law broke around
2004, as can be seen on Figure 1.2. The frequency, power and number of core curves

Figure 1.2: Trends in microprocessor integration

have an inflexion point at that date, while the transistor curve (Moore’s law in effect)
continues to rise steadily. The ability to dissipate power hit a wall at that time, leading
to the end of the race for higher and higher frequencies, and to the advent of the
multi-core era.

Since then, building more energy efficient chips with more and more cores has been
a lively research topic. Designing such chips is however fairly challenging, as manu-
facturing costs and time to market are stringent constraints. As a tool for testing and
evaluating the new designs, simulation technology comes at just the right time for the
computer systems architects and designers. Provided these tools supply relevant infor-
mation, the system designers can do their evaluations in reasonable time at a reason-
able cost. Simulation technologies also offer the possibility to implement the software
that will run on a specific chip architecture prior to having the actual hardware, which
enlarges its usefulness. To follow the trend around multi-core systems over the years,
simulation technologies adapted their implementations to take advantage of the multi-
core architecture of the host machine and thus reflect more the current state of today
systems.

Simulators are divided into a multitude of categories from a very low to a very high
level of abstraction. Having a simulator that can simulate precisely all the hardware
components and their communication in a system is not often a need. Regarding the
simulation of software centric systems, topic to which this thesis belongs, a lot of archi-
tectural details can be ignored, and a time-accurate simulation is not necessary. Having
the instruction the smallest granularity in the simulation can be sufficient in the vast
majority of situations. The resulting simulation is thus purely functional. Historically,

2



simulators at this level of abstraction are called Instruction Set Simulators and are used
for the evaluation of Instruction Set Architecture (ISA) and software making use of it.
They provide a good trade-off between accuracy and speed of the simulated system.
Dynamic Binary Translation is the most advanced technology in terms of cross-ISA sim-
ulation performance, i.e., running guest binary code in a given ISA on a host with a
different ISA. One Dynamic Binary Translation engine currently stands out from the
crowd: QEMU, and we unsurprisingly worked on this simulator for the practical parts
of this thesis.

Improving the Dynamic Binary Translation mechanism, irrespective of in which di-
rection, is of great interest. Given the high level of abstraction it offers, the first direc-
tion that interests researchers is increasing its performance. On the other hand, gaining
insight on the potential gains in adding new architectural features in the simulation is
quite interesting for the system designer. Therefore, the question on how to fulfill a per-
formance/insight trade-off arises. In order to add new features, doing instrumentation
seems unavoidable, but it will definitely degrade the global performance.

In this thesis we present contributions that aim at giving accurate simulation results
for some architectural features while mitigating the decrease in performances. Two
areas of research are studied: the first one investigates thread affinity with the hope to
decrease execution time of multi and many-core systems, and the second one focuses on
taking advantages of the Dynamic Binary Translation mechanism and general solutions
to design a cache model to considerably limits the resulting overhead on execution
time.

This manuscript is organized as follows: Chapter 2 presents the motivations of this
thesis and what problems we deal with in our domain, Chapter 3 details the works
done over the years that bring solutions to these problems, Chapter 4 and Chapter 5
explain our contributions, Chapter 6 presents the experiments and the analysis of our
contributions and we conclude and expose the remaining work Chapter 7.

3



CHAPTER 1. INTRODUCTION

4



Chapter 2

Problem Statement

THIS chapter describes the problems that are addressed by this thesis. Simulation
technologies offer time and cost advantages that are attractive to developers. How-

ever, they bring issues on how to fix the limit between speed and accuracy.
First, we present the diverse levels of abstraction present in nowadays systems sim-

ulations and why Dynamic Binary Translation (DBT) is one of the best options to do
cross simulation when the accurate modeling of hardware details is not necessary. More
precisely, we focus on the DBT mechanism and on how it brings a trade-off of speed
and accuracy. We then detail the issues when adding new architectural features to the
simulation.

Table of contents
2.1 Systems simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Processor centric systems . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Different abstraction levels of simulation . . . . . . . . . . . . . 8

2.1.3 Cross-ISA simulation of software centric systems . . . . . . . . 9

2.1.4 Simulation trend: from mono to multi-core systems . . . . . . . 10

2.2 Dynamic Binary Translation . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Mechanism overview . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 New hardware structures and the accuracy vs speed trade-off . 14

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5



CHAPTER 2. PROBLEM STATEMENT

2.1 Systems simulation

2.1.1 Processor centric systems

Originally, processor-based systems were composed of a central processing unit that
interacts with a storage unit and peripheral units, and datas are exchanged between
the units. Nowadays, processors are composed of multiple processing units, named
cores, that allow instructions to be executed in parallel which results in an instruction
throughput higher than with only one processing unit, and hopefully also higher exe-
cution speed. Indeed, due to the frequency limit (i.e. end of Dennard’s scaling) and as
applications are growing in complexity, chip designers were coerced to create proces-
sors with multiple cores in them. The first multi-core chip was commercialized by IBM
in 2001 with the POWER4 microprocessor, it contained two cores. As a result, it is be-
coming less common to find mono-core processors and even personal laptops are now
equipped with in general 4/8 cores. These kinds of processors are called ”multi-core”
processors. However, a few cores might still not be enough for some high-performance
applications. When we deal with a dozen or more cores, possibly up to a hundred or
so, we talk about ”many-core” systems, which have a high degree of parallelism. These
systems are most of the time arranged in clusters. To illustrate this trend, Figure 2.1
shows the output of the lstopo Linux command on a recent server Dell PowerEdge
R6515 whose processor is an AMD EPYC 7F72 containing 24 physical cores. One can
find in the literature the word processor, core or CPU to refers to the computing unit.
There seems to be no universal definition. Therefore, in the context of this thesis, we
will use CPU to name the smallest unit in the machine and a core is the entity that can
run multiple hardware threads. Indeed, thanks to the Simultaneous MultiThreading
(SMT) technique, multiple threads can run on a mono-core on modern architecture,
which improves the parallelism. It gives the Operating System the illusion that there
are more computing units available. That is why on Figure 2.1 we say that we have
24 cores and since each core is composed of 2 hardware threads, we have a total of 48
CPUs.

With processor centric systems, the processor can be overwhelmed by the compu-
tations. The performances are known to be affected by the data movement across the
main memory and the central processing unit, which is also called the Von-Neumann
bottleneck. The invention and adoption of cache memories allowed to mitigate this bot-
tleneck. Figure 2.2 presents a simplified vision of the memory hierarchy and how the
different kinds of memory are classified. But to meet the needs of applications which
are increasingly memory-intensive, memory centric systems have emerged as the solu-
tion to replace processor centric systems. The idea is to limit the data movements and
with this kind of system, the memory is the center of everything. The memory hierar-
chy is completely different from the one of the conventional software intensive systems
and non-volatile memory seems to be adopted to replace the previous and traditional
storage [FKMM15]. In 2015, [FKMM15] announced that at the end of the decade of
that time, the computing designers will move towards memory centric architecture. We
are two years ahead of this deadline, and lots of work still needs to be done to move
to memory centric systems, as current Operating Systems are not built to support such
architectures, and the generalization of non-volatile memory is yet to come.

Even if memory centric systems have spread as a research topic, the processor cen-
tric systems approach remains attractive and stays the one adopted at scale by the in-

6



2.1. SYSTEMS SIMULATION

Machine (188GB total)

Package L#0

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#0

PU L#0
P#0

PU L#1
P#24

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#1

PU L#2
P#1

PU L#3
P#25

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#2

PU L#4
P#2

PU L#5
P#26

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#3

PU L#6
P#3

PU L#7
P#27

12x total
L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#22

PU L#44
P#22

PU L#45
P#46

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#23

PU L#46
P#23

PU L#47
P#47

NUMANode L#0 P#0 (188GB)

Host: styx
Date: jeu. 09 juin 2022 10:18:24

Figure 2.1: lstopo of a Dell PowerEdge R6515

Register

Cache
L1
L2
L3
...

Main memory (RAM)

Solid State Drive (SSD)

Hard Disk Drive (HDD)

Higher access
speed

Bigger
size

Figure 2.2: Outline of the memory hierarchy

7



CHAPTER 2. PROBLEM STATEMENT

dustry. The trend around multi/many-core processors still creates a variety of academ-
ical and industrial researches and many-core systems are currently a booming topic.
However, the manufacturing time and cost are such that they greatly restrict what can
be done in terms of actual hardware experimentations. As a result, simulators appear
to be the solution for testing new design choices when the hardware is not available
in a short-term time. In addition, thanks to simulators, developers can debug their
software and can test and evaluate, e.g., new Instruction Set Architecture (ISA) exten-
sions, ahead of time. Simulators can also bring new features that the hardware does
not provide, for instance the possibility to stop and debug the simulation at any mo-
ment, in a non-intrusive way. Finally, simulators can be used at scale, when there are
too many developers for the number of devices available, and they can also easily be
integrated in continuous integration environments. In summary, full-system simulation
is a technology that cannot be avoided.

2.1.2 Different abstraction levels of simulation

Depending on what developers need to test, various kinds of simulators are available.
They can be classified into several types with different levels of abstraction and are
employed regarding the accuracy/speed trade-off that they provide. Having detailed
architectural simulation is a requirement in some research fields. At a very low-level,
hardware description abstractions such as the ones provided by Register Transfer Level
(RTL) modeling, as implemented by VHDL or Verilog, describe the behavior at such a
precision that it can be unambiguously synthesized in hardware. At what can still be
called low-level, micro-architectural simulators represent microprocessors with their re-
lated components (caches, CPU, memory storage, Translation Lookaside Buffers (TLBs)
and so on). Caches are an important hardware component that helps to improve the
global execution time of software and cache simulation alone is in itself a major topic.
The TLB is a kind of cache memory [CP78], part of the Memory Management Unit
(MMU), that stores the recent correspondences, also called translations –hence the
name–, between virtual and physical addresses. This is mandatory in any system run-
ning user software to warranty process isolation. Being able to simulate the architec-
tural details of these components is important to correctly analyze and evaluate new
design choices. However, the emerging complexity of the hardware designs can make
the simulation very slow given the details required. Moreover, the pressure performed
by the computer and silicon industry to produce and sell quickly new chips forced the
developers to improve the performances of simulation techniques while still keeping
accurate details of the design.

Since the mid 80’s, the gap between the processor and memory performances in
processor centric systems has amplified and led to what is currently referenced as the
memory wall problem (aka Von-Neumann bottleneck). To reduce this gap, cache mem-
ories have a key role to play as they provide higher access speed than the main memory.
However, copies need to be managed, and performance of a cache depends on its ge-
ometry, size, replacement policy, write policy, and so on. To make the most optimal
use of the cache, applications must review their implementation and thus the need of
having simulators of only one component such as a cache did emerge. Dinero [EH98] is
the historical reference simulator. This tool provides a simulation based on mono-core
traces that produces simple statistics such as the number of hit/miss. But this simula-
tor was quickly overtaken by the emerging multi-core processors that included cache

8



2.1. SYSTEMS SIMULATION

memories per core. Since the last few decades, shared parallel caches were taken into
account in existing simulators, providing diverse types of simulation with timing and
latency models.

At another simulation level, cycle-accurate simulators represent the simulation of a
microarchitecture with the accuracy of a cycle execution and respect the execution time
of an instruction. Thanks to this kind of simulator, it is possible to correctly evaluate
the execution time of applications. They provide a timed simulation, making it an ideal
solution for also testing new architectural design choices in an accurate way [RCBJ11].
The drawback is that they can be very slow as the simulation is detailed [WM08]. The
event-driven simulator gem5 [BBB+11] proposes a timed cache model with a complete
memory hierarchy with coherence protocols. It supports multi-core cache models but
as the simulation of the virtual cores is single-threaded, the resulting global simulation
is extremely slow.

When it comes to software centric systems, the timing is not necessarily as important
as one believes. Instruction Set Simulators propose a simulation at a higher level of
abstraction, at the granularity of an instruction. It results in a less accurate but faster
simulation than with cycle-accurate simulators. Instruction Set Simulators are better
used for the validation of new design choices of Instruction Set Architecture due to
their speed performance. The produced simulation is, however, in essence functional.

2.1.3 Cross-ISA simulation of software centric systems

Instruction set simulation offers the possibility to do cross-ISA simulation and is the
primary tool for validating ISA choices, retargeted compilers, Operating System ports
and pre-silicon validation of hardware/software systems. With this kind of simulation,
the word target refers to the Instruction Set Architecture (ISA) of the simulated ar-
chitecture and the word host refers to the architecture of the machine on which the
simulator is run. Imposing the target and the host to have the same architecture is too
much of a constraint. In consequence, Instruction Set Simulators (ISS) are a satisfac-
tory solution to test and evaluate software centric systems of multiple architectures on
a single host. Instruction set simulation also had a significant role in guiding system-
level design space exploration. Indeed, booting an Operating System on a platform and
running significant applications requires a full-system simulator that is both fast and,
at least functionally, faithful. Usually a full-system simulator, meaning a simulator able
to simulate all the environment an Operating System needs, is built on an Instruction
Set Simulator to achieve good performance and also because all the implementation
details of the devices are not needed.

Instruction Interpretation is a well-known and simple technique but is used less
through the years because of the relatively low performance it reaches. It interprets
and executes one instruction at a time, which explains why the execution time can be
really slow. The mechanism that consists of transforming instructions from the ISA of
the target to instructions of the ISA of the host is referred to as Binary Translation.
About 30 years ago, Binary Translation was an emerging technology. It was helpful in
particular to run an old binary on a new architecture that was compiled on an ancient
one. If the source code was missing for whatever reason, it was a suitable alternative
to continue using the binary.

Binary Translation can be done statically. With this technique, all the instructions of
the target are translated into host instructions before execution. Figure 2.3 illustrates

9



CHAPTER 2. PROBLEM STATEMENT

... ...

Target
code

Host
code

Static
Binary

Translation

Execution

Figure 2.3: Simplified representation of the Static Binary Translation mechanism

the simple mechanism of Static Binary Translation. Even if it produces better perfor-
mances than interpretation, Static Binary Translation does not deal with self-modifying
code that happens for instance when loading dynamic libraries. Moreover, sometimes
the value of data in the code can only been determined during run-time, for exam-
ple because of indirect branches. The limits of Static Binary Translation were already
known 3 decades ago [CM96].

...

Target
code

Block of
host code

Dynamic
Binary

Translation

Execution

Block of
target code

Figure 2.4: Simplified representation of the Dynamic Binary Translation mechanism

Dynamic Binary Translation appears to be the solution to deal with these prob-
lems. The principle is presented in Figure 2.4. With this mechanism, the target code is
translated and executed by blocks of instructions. One of the major differences is that
translated blocks are stored to be reused if the same block of instructions appears again
and as a result it minimizes the overhead induced by the translation.

2.1.4 Simulation trend: from mono to multi-core systems

With the trend around multi and many-core systems, ISS research attempted to im-
prove simulation by proposing parallel simulation approaches. However, even if ISS
mono-core simulation was a mature technology already long ago, work needed to be
done to follow the research and production of many-core systems [ABvK+11]. The first
attempts at a multi-core simulation with ISS resulted with a sequential simulation of
the virtual cores. Each virtual core is a process and the simulator executes them one by
one following a given algorithm. Simulating a high number of cores in this configura-
tion creates a bottleneck that greatly affects the performance and is no longer a viable
solution given the emerging many-core architectures that need to be simulated. As

10



2.2. DYNAMIC BINARY TRANSLATION

seen on Figure 2.1 that outlines the structure of a recent server composed of 24 physi-
cal cores, nowadays systems such as the small embedded ones and personal laptops are
as well composed of multiple cores. Therefore, the best implementation one can think
of is to take advantage of the parallel architecture of the host machine. This results in
a more scalable simulation and less degradation of the simulation performance. Now
that servers are produced with many-core processors (up to 128 or 256 cores), hav-
ing this kind of parallel simulation is a requirement. A lot of DBT engines currently
provide support for parallel execution, using the physical cores of the host machine to
run simulation threads. The combination of the parallel execution and the sequential
speed it provides make the DBT the best solution among the ISS methods to do full-
system simulation. In the end, the DBT is the best solution for cross-ISA simulation of
software centric systems since it offers a speed/accuracy trade-off that developers find
particularly useful.

2.2 Dynamic Binary Translation

2.2.1 Mechanism overview

Frontend

Backend

Target
code

Known
pc?

Translation Decoding

Branch
instruction?

Execution

𝜇op Generation Transla-
tion
cache

No

No

Yes

Yes

Figure 2.5: Overview of the DBT mechanism inspired from Luc Michel’s thesis [Mic14]

Figure 2.5 illustrates the DBT mechanism. One by one, the target instructions are
fetched and translated into micro-operations which are an intermediate representation
that only the DBT understands and they are stored in a buffer (Frontend). We continue
this translation until we have an instruction that is a branch, meaning it jumps to

11



CHAPTER 2. PROBLEM STATEMENT

another address. Once we have a branch instruction, a block called Translation Block
(TB) is created. Then the TB is translated into host instructions and can be executed
on the host machine (Backend). The translated TBs are stored in a translation cache
so that it avoids doing all the translation steps again and it bypasses the overhead of
translating a block again. If the address of the program counter has already been seen,
the corresponding TB can be directly executed on the host. As the cache has a limited
size, selected blocks will be evicted when the cache is full.

instrX_target micro-op1_instrX

micro-op2_instrX

host_instr1_micro-op1_instrX
host_instr2_micro-op1_instrX
host_instr3_micro-op1_instrX

host_instr1_micro-op2_instrX
host_instr2_micro-op2_instrX

TARGET INTERMEDIATE
REPRESENTATION HOST

Figure 2.6: Target to Host code generation principle

1 IN: Target instructions

2 0x00000000000325d6: add a5,a5,a3

3 OP: Intermediate representation

4 ...

5 ---- 00000000000325d6

6 add_i64 x15/a5,x15/a5,x13/a3

7 ...

OUT: Host instructions

-- guest addr 0x00000000000325d6

0x7f5204000f93: movq 0x68(%rbp), %r12

0x7f5204000f97: addq %r12, %rbx

0x7f5204000f9a: movq %rbx, 0x78(%rbp)

...

...

Figure 2.7: Translation process of a single add instruction

Figure 2.6 presents the generation from the target to the host of a generic instruc-
tion. It always takes more host instructions to describe target instructions. Each target
instruction corresponds to multiple micro-operations and each micro-operation corre-
sponds to multiple host instructions. In this example, one target instruction generates
5 host instructions but it varies a lot depending on the target instruction. Figure 2.7
shows a concrete example of the DBT principle of the QEMU DBT engine on a single
add instruction for a RISC-V target and a x86 host. The add instruction in RISC-V is
first translated into the intermediate representation of the DBT and finally translated
into x86 instructions to be executed on the host. Even if we represent here only one
target instruction, in practice this add instruction is inside a TB and the corresponding
host instructions will effectively be executed when the entire TB executes. In this ex-
ample, we easily transform an add instruction in RISC-V into an add instruction in x86
but some instructions are more complex to translate. Sometimes it is not possible to
directly describe a target instruction with host instructions because they are too com-
plicated. This is the case for memory accesses. To bypass this problem, the behavior of
these instructions is described in C functions and these functions are called during the
intermediate representation. Figure 2.8 represent the DBT principle of the QEMU DBT
engine of a target load instruction in RISC-V for a x86 host. One can notice the call of
a function qemu ld i64 inside the intermediate representation.

12



2.2. DYNAMIC BINARY TRANSLATION

1 IN: Target instructions

2 0x0000000000032776: ld s9,8(a0)

3 OP: Intermediate representation

4 ...

5 ---- 0000000000032776

6 add_i64 tmp3,x10/a0,$0x8
7 qemu_ld_i64 x25/s9,tmp3,leq,0

8 ...

OUT: Host instructions

0x7f52040010db: leaq 8(%rbx), %r13

0x7f52040010df: movq (%r13), %r13

0x7f52040010e3: movq %r13, 0xc8(%rbp)

...

...

Figure 2.8: Translation process of a single load instruction

Regarding parallel execution, the main idea is to create a thread for each core sim-
ulated. QEMU [Bel05] proposes a stable parallel implementation since 2016. The idea
behind the implementation is to avoid doing a lot of locking so that the simulation time
degradation is kept under control. The translation of the TBs is done in each thread
that simulates a core and then the translated TBs are stored in a shared structure to
be reused by other threads if the translation is already done. When a thread wants to
retrieve a TB in the shared structure, atomic instructions are used. In addition, atomic
operations are simulated using the host instructions. This is quite tricky, as the mem-
ory consistency models of the target and host might have different constraints, but the
current implementation is stable. Moving from a mono-core to a multi-core simula-
tion thus eased the simulation of many-core systems and QEMU was not the only DBT
engine to propose a such execution.

2.2.2 Instrumentation

Instrumentation tools are useful tools to evaluate programs. They help to produce
traces that show details of what happens during execution. Doing instrumentation in
general can be tough, as it will induce a non-negligible overhead as pieces of code will
be added. Basic Dynamic Instrumentation helps at retrieving information related to the
instructions and memory accesses executed. Regarding full-system, it can be helpful to
have information on the number of interrupts, page faults, context switches, statis-
tics on the branch predictor and so on. As a result, instrumentation of full-system
is now quite common and used. The Dynamic Binary Instrumentation framework
Pin [LCM+05] provides an API to analyze dynamically programs during run-time and
does not degrade the performance a lot. Multiple tools are now based on Pin such as
VTune which helps examine the performances of software based on a Linux or Windows
Operating System. However, Pin shows some limits on the devices and architecture it
can instrument.

The integration of instrumentation inside simulators is an important asset to ana-
lyze and debug applications and new design choices. Functional simulation proposes
an attractive simulation time as it has a good accuracy vs speed trade-off but adding
instrumentation will induce an important overhead. That is why works try to do it in
the least impactful way.

The smallest execution unit in the DBT is the instruction. The most straightforward
approach to do instrumentation when using the DBT mechanism would be to insert a
call to a function each time a target instruction is executed. Figure 2.9 illustrates this
principle. This can be seen as identical to helper functions we presented just above.
Information on the type of instruction (memory access or not, read or write, number of

13



CHAPTER 2. PROBLEM STATEMENT

0x7f1ffbe5692c: auipc a5,237568

call_function()

0x7f1ffbe56930: ld a5,-612(a5)

call_function()

0x7f1ffbe56934: sb s0,0(a5)

call_function()

0x7f1ffbe56938: ld ra,8(sp)

call_function()

0x7f1ffbe5693a: auipc a5,270336

call_function()

0x7f1ffbe5693e: sb s0,1470(a5)

call_function()

0x7f1ffbe56942: ld s0,0(sp)

call_function()

0x7f1ffbe56944: addi sp,sp,16

call_function()

0x7f1ffbe56946: ret

call_function()

Figure 2.9: Instructions in a Translation Block of the DBT mechanism

bytes, addresses) can be passed through the function call. Nevertheless, calling a func-
tion each time a target instruction is executed will generate a non-negligible simulation
time overhead. Indeed, a function call is more expensive than usual as it is necessary to
save and restore certain registers that the DBT uses. Moreover, instrumenting the paral-
lel implementation of the DBT is even more challenging as TBs are shared between the
threads that represent the virtual cores. Therefore, instrumentation operations need
to be done carefully if it concerns shared values (for example when counting the total
number of executed instructions).

2.2.3 New hardware structures and the accuracy vs speed trade-off

By instrumenting Dynamic Binary Translation simulators, it becomes possible to add
new architectural structures inside the simulation. The classical DBT mechanism al-
lows one application compiled for a specific architecture to be executed on a host ma-
chine with a different architecture. The DBT simulator QEMU offers the possibility to
simulate in addition some hardware components such as USB controllers and network
devices that produce a full-system simulation. Adding new hardware structures inside
the simulation improves the accuracy in a sense where the simulated system is more
detailed and complete but on the other hand degrades the global performance.

Regarding the research on DBT instrumentation, a choice needs to be made on
where to fix the limit between increasing the accuracy of the simulation by adding
hardware components and keeping a fast simulation time. The idea is not to degrade
considerably the performance achieved by the DBT mechanism but to model the com-
ponent in a smart way to limit the loss of performance while having useful evaluations.

Let us take again the cache component as an example. This small amount of mem-
ory of a few kilobytes can be organized following three different strategies. The first
one is called Direct Mapped. It can be seen as a vector and each block of memory will
have a designated placement in it. The second one called Fully associative specifies
that each memory block can be placed in any line of the cache. The third and last
one is called Set associative which is a combination of the two strategies above. An

14



2.3. CONCLUSION

example is presented Figure 2.10. In this strategy, a memory block can be placed on a
subset of lines in the cache.

tag

tag 1

tag 2

...

tag n

data

data 1-1

data 1-2

...

data 1-n

bits

...

way-1 way-2

tag

tag 1

tag 2

...

tag n

data

data 2-1

data 2-2

...

data 2-n

bits

...

Figure 2.10: Simplified representation of a set associative cache with 2 ways

Figure 2.10 is a simplified representation of a 2-way set associative cache. The
colors represent the subset of lines in which a memory block can be put in. Implement-
ing a model for it in simulation can be done in many ways. To implement a detailed
simulation of the behavior of such a cache, the solution is to model everything that
is contained in the cache meaning the status bits, the tag and the raw data. This is
mandatory to simulate the correct behavior. The most detailed simulation would also
model the latency of the accesses done to the cache since finding the data that we are
looking for in the cache (cache hit) will not take the same amount of time as if the data
is not in the cache and needs to be stored in it (cache miss). However, to only produce
statistics such as the number of hit/miss, the number of accesses or even the number
of evictions in the cache, doing a fully detailed simulation is not mandatory.

2.3 Conclusion

We presented in this chapter why, in the scope of software centric systems, the DBT
approach is in our opinion the best option for cross ISA simulation. We saw that multi-
core systems are widespread in our daily life and are challenging to simulate at scale.
Improving the timing accuracy of the simulation performed using the DBT mechanism
by adding models of hardware structures is a tricky challenge, as these additions should
not slow down drastically the high simulation speed it provides. By considering these
factors, we can ask ourselves the following questions:

− How can we assert that DBT parallel implementation scales well on the
multi-core host machine?

− Can we rely on the host configuration to improve the DBT parallel simulation
speed?

− Can we benefit from the DBT approach to design in particular a cache model
that limits the impact on the global simulation time?

− How can we enhance the time accuracy of the DBT mechanism when adding
models of new architectural features in the simulation without overly de-
grading simulation speed?

15



CHAPTER 2. PROBLEM STATEMENT

16



Chapter 3

State of the Art

IN this chapter we present the state-of-the-art regarding how to extend and accelerate
simulation based on the Dynamic Binary Translation mechanism. As an introduc-

tion, we present some of the existing DBT engines. To be up to date with the emerging
multi-core processors, DBT engines had to support parallel simulation. That is why we
do an overview of the related work concerning parallel implementation of the DBT and
we also focus on works that tried to improve the DBT mechanism by making it faster
or more precise. Finally, as DBT-based simulators produce a functional simulation, we
focus on the related works that add models of new hardware structure in DBT-based
simulators to make them more accurate from a non-functional point of view, but with
the drawback of degrading the global performance.

Table of contents
3.1 Dynamic Binary Translation (DBT) . . . . . . . . . . . . . . . . . . 18

3.1.1 DBT engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.2 Parallel implementation . . . . . . . . . . . . . . . . . . . . . . 19

3.1.3 Improving DBT mechanism . . . . . . . . . . . . . . . . . . . . 21

3.2 Dynamic Binary Instrumentation (DBI) . . . . . . . . . . . . . . . . 22

3.3 Adding new models: overview of cache simulators . . . . . . . . . 25

3.3.1 Standalone cache simulators . . . . . . . . . . . . . . . . . . . 25

3.3.2 Cache simulation inside simulators . . . . . . . . . . . . . . . . 26

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

17



CHAPTER 3. STATE OF THE ART

3.1 Dynamic Binary Translation (DBT)

Due to the sustained interest in systems simulation and the growing interest in cross-
ISA simulation, DBT approaches continue to evolve. The fact that blocks of instructions
are translated and reused during run time makes the DBT a satisfactory solution to
simulate in a fast time a diversity of Instruction Set Architecture (ISA). This section
first provides an overview of some DBT engines, then presents work done to support
parallel execution of the DBT, and finally how the DBT mechanism has been extended
and improved over the last few years.

3.1.1 DBT engines

At its core, the DBT mechanism aims at generating instructions to be executed on a host
machine from instructions originating from a, generally different, target architecture.
However, more than 20 years ago, only a few target/host associations were possible
and there was a need to support other combinations. To circumvent this issue, [UC00]
implemented a DBT-based framework to deal with multiple target and host machines,
which translators of that time were not designed to do. This framework supports a
wide diversity of Complex Instruction Set Computer (CISC) and Reduced Instruction
Set Computer (RISC) architectures. It offers the possibility to give information on the
specifications of the host/target machines to run the simulation, and new machines
can be added easily (according to the authors) without many constraints. But in the
end, the performance of the results was limited and lots of work needed to be done to
support multiple target and host architectures in an efficient way. Currently, most of
the DBT engines support several different target/host combinations.

User-mode vs System-level simulation

The DBT engines can be separated into two categories: user-mode level simulation
and system-level simulation. The former one refers to simulators able to perform
the simulation of an application compiled for a target ISA onto another host ISA. In
this situation, the host Operating System takes care of the system calls using what
is now referred to as semi-hosting, i.e., by calling a wrapper in which marshalling
of the call target parameters into host ones is done prior to calling the host system
call. The latter one refers to the capacity of a simulator to run any software stack,
including Operating System. Contributions have been made in the two categories as
they are both useful depending on what needs to be checked or evaluated during sim-
ulation [WHK+07, OYTN17]. However, the contributions focus more on improving
the system-level simulation because of the possibilities it offers. Indeed, as presented
in [SWF20], system-level simulation, and more precisely the DBT one, is useful for the
development of mobile software, for simulating old games as the game consoles do not
always remain available, etc. Regarding system-level simulation, the machine simulator
Embra [WR96] proposed in 1996 a system-level simulation based on the DBT mecha-
nism able to model a MIPS processor so that an Operating System can run on top of it.
More than 20 years later, system-level simulation is still an ongoing research topic. In-
deed, in the current decade, the system-level DBT hypervisor named Captive [SWF20]
appeared as a solution to support easily new target ISAs with particularly good perfor-
mance. It is retargetable and shows better performance than QEMU by outperforming
it by a factor of 2.

18



3.1. DYNAMIC BINARY TRANSLATION (DBT)

On the other hand, QEMU might be the most known and used in research. It has
a large and continually active community and has been open-sourced from the start,
which makes it an attractive engine to work on for researchers. It supports a wide
diversity of target and host architectures, and is used in industry too, which is why it
has become the reference of DBT engines. Its system-level simulation supports mul-
tiple hypervisors such as KVM (that is also developed and maintained by the QEMU
community) and Xen or even the NetBSD Virtual Machine Monitor. QEMU is actively
maintained by the people from the largest software companies working at the hard-
ware/software interface, a guarantee of credibility and longevity.

3.1.2 Parallel implementation

The increasing number of cores integrated on System on Chips (SoCs) induced an im-
portant concern regarding simulation. To be in line with the improving multi-core
systems, simulators needed to change the way they are designed to be able to reach
good simulation speed to provide the required environment to do parallel applications
analysis. Simulators needed to take advantage of the parallel architecture of the host
if they wanted to achieve reasonable simulation performances. Determinism, and to a
lesser extent functionally correct interlacing of threads executions, is hard to produce
for multi-thread workloads. It is thus necessary for simulators to use synchronizations.
However, having a lot of synchronizations will force a limitation on the number of
cores simulated as it degrades the simulation performance. Native simulation was the
center of interest of some research to produce a simulation that relies on the parallel
architecture of the host [SHP12, DGVS14, NS15]. These works were driven by the fact
that native simulation allows a simulation performance really close from the native ex-
ecution performance. To reduce the impact of synchronization when multiple threads
are running in the simulation, [DGVS14] propose a native multi-core simulation with
asynchronous synchronizations. The synchronizations are done only when a shared
element needs to be read. As a result, the simulation time is less degraded than when
doing synchronization näıvely. [NS15] also uses the idea of asynchronous synchroniza-
tions to mitigate the overheads of parallel execution. But in the end native simulation
has many flaws: it is overly complex to solve the guest/host address translation issue,
it deals neither with guest assembly routines nor with self-modifying code that is fairly
present in today’s workloads. Overall, the DBT is a better option.

However, relying on the host for multi-core execution creates contemporary issues.
When it comes to memory, load and store instructions cannot be directly translated
from target to host instructions as they are too complex. Indeed, they must undergo
address translation, which might mean at some point performing a simulated guest
page walk. When the memory is shared, synchronization instructions are used and
guarantee that memory accesses are done atomically. Part of code will be generated
additionally in the simulation through functions that describe the behavior of these
instructions. [KSC+20] addresses this problem by proposing a way to deal with load-
link/store-conditional instruction simulation in the DBT process. Indeed, these instruc-
tions are used to perform synchronizations between multiple threads. Matching these
simulated instructions with ones of the host architecture is challenging and if not done
properly, will create execution errors according to the authors.

The scalability of such parallel implementations also needs to be considered when
targeting many-core systems. [ABvK+11] presents a parallel DBT implementation tar-

19



CHAPTER 3. STATE OF THE ART

geting the ARCompact ISA. They can run the simulation up to 2048 virtual cores and
their main idea is to create one thread per virtual core. A cache is also created to
share translation elements. By doing so, they result with a very time-attractive parallel
simulation, although very ad-hoc.

About ten years ago, [WLC+11] and [DCHC11] started working on the paralleliza-
tion of QEMU implementation. By simulating the atomic instructions of the target
by using wisely the host atomic instructions, they limited the overhead of doing syn-
chronization between the threads that simulate the target virtual cores. However, this
started raising novel issues. A slight difference of semantic within the atomic instruc-
tions between the target and the host will induce lots of code to be generated as the
translation of these instructions will need to pass through helper function to mimic the
target behavior as precisely as possible. Doing parallel execution with one thread per
virtual core also raises the question on how to schedule the threads execution. Since
QEMU has a very living community, the code source grows regularly. As a result, mod-
ifications and improvements of QEMU need to be done carefully to ensure the quality
and maintainability of the source code. Consequently and unfortunately, these works
were not upstreamed in QEMU. Few years later, [DBK+16, RSR16, CBBC17] reworked
on the idea of a parallel implementation of QEMU by proposing a more viable version
and finally a solution was accepted to be upstreamed in QEMU [Ben20] which was
named Multi-Thread Tiny Code Generator (MTTCG). The first target was originally the
ARM ISA and the host a x86-64 architecture. The principle of the MTTCG implemen-
tation illustrated Figure 3.1 (and inspired from [Ben15]) was pretty basic. Each thread
of the virtual CPU executes on a different host CPU. The main goal of this principle was
to minimize the locking. To do so, the translation of the blocks is done locally first and
then are put in a shared cache to be reused later by other virtual cores that need the
translation. When the cache is full, all the stored translation blocks are flushed and
translations need to be done again. Furthermore, most shared structures are updated
by using atomic instructions.

QEMU Threads Host CPUs

virtual CPU 0 CPU 0

virtual CPU 1 CPU 1

... ...

CPU nI/O and others

virtual CPU 2 CPU 2

Figure 3.1: Simplified representation of the Multi-Threaded Tiny Code Generator principle

20



3.1. DYNAMIC BINARY TRANSLATION (DBT)

3.1.3 Improving DBT mechanism

To follow the evolution of processor centric systems designs, improving the DBT mech-
anism continues to be an important concern. The goals when improving the simulation
are on one hand to make it even faster and on the other hand to add new non-functional
models to make the simulation more accurate when used for architecture evaluation.
In his thesis, Antoine Faravelon [Far18] outlined the techniques to accelerate the DBT
by presenting how people optimized the code generated, some multi-threaded imple-
mentations and memory access simulation accelerations. His thesis subject itself takes
part in the state-of-the-art on how to accelerate the DBT mechanism as he proposed
techniques to accelerate the memory accesses [FGP21]. We will give here an overview
of some DBT improvements, but without going into so much detail as in Faravelon’s
thesis.

Accelerating the DBT principle

One way to improve the DBT mechanism is to optimize the generated code. To do
so it first requires annotating the code. Then, thanks to that, modifications can be
made during the simulation runtime. By relying on the existing Dynamic Binary Instru-
mentation framework DynamoRIO [Gar14], [HDBZ15] implemented DBT optimization
techniques for dynamically generated code of target applications. They showed better
performance than the state-of-the-art of dynamic binary translators of that time for
just-in-time applications. But we will not describe this topic more as the next section
will give more details on the existing Dynamic Binary Instrumentation frameworks.

Another way of improvement is to rely on the host hardware to accelerate the trans-
lation mechanism. [RRD17] worked on this topic and presented a DBT approach in
which parts of the mechanism are accelerated thanks to hardware components. They
spotlight the fact that the scheduling is the part that will take the most time in the DBT
process. That is why they used a VLIW-based hardware accelerator to schedule the
instructions generated during the Intermediate Representation stage as their host is a
VLIW processor. In total they relied on three hardware accelerators to make the DBT
mechanism faster. Thanks to their idea, the results showed non-negligible speed-up
compared to the classical version and less energy consumption. However, designing
such a system can be very complex, the improvements benefit only a subset of the
possible ISAs, and important matters such as address translation, supervisor code sim-
ulation, and so on, still need to be dealt with.

Implementing a multi-threaded DBT engine can be seen as a way to accelerate the
process [HHY+12]. Dividing the TB execution into multiple threads will for sure boost
the execution time and will produce speed ups. However, we dedicated an entire Sec-
tion 3.1.2 on parallel implementation so we will not discuss this topic further here.

Last but not least, one of the main bottlenecks of the DBT process are the indirect
branches. For direct branches, the address to jump at is known during the translation
stage. But for indirect branches, the address is determined only at runtime. [dGGL16]
worked on MAMBO-X64, a DBT-based engine to optimize the translation of indirect
branches thanks to three efficient techniques. Each technique concerns an indirect
branch source, and the sources cited in the article are branch tables, function returns
and function pointers. Even if indirect branches do not represent a large part of the
execution, their techniques help at reducing the overhead of the translation by a non-
negligible percentage.

21



CHAPTER 3. STATE OF THE ART

Improving the accuracy of dynamic binary translators

Another path to improve the DBT mechanism is to increase the accuracy of the simula-
tion when it is used for the performance evaluation of the target system. This process
will for sure degrade the execution time but the simulation will be more precise so it
can be a good trade-off depending on the usage. Improving the accuracy of DBT en-
gines can be done in lots of diverse ways. Adding the simulation of new components
in DBT engines is a way of doing it. Classical DBT engines do not include the simula-
tion of all the microarchitectural details of a processor since the philosophy of the DBT
mechanism is to produce a purely functional simulation. However, it can be interesting
to do so to keep the fast execution time that the DBT provides and avoiding using other
simulators that can be terribly slow to execute. In this thesis, our interest is focused
on creating a cache simulator inside a DBT engine and we give Section 3.3 a detailed
presentation on the existing cache simulators and we focus on the ones related to DBT
engines.

Because DBT engines do not give microarchitectural details, [BFT10] proposed in
their work to associate a cycle accurate processor targeting a ARCompact ISA with a
DBT simulation. Thanks to that, they provide a complete microarchitectural environ-
ment. Their idea is to update the microarchitectural details of the processor each time
an instruction executes. The resulting model thus executes instruction by instruction
(philosophy of ISSs mechanism) while being accurate in term of microarchitectural de-
tails and shows better performances than simulation based on FPGA. However, their
work is limited to mono-core simulation.

In their work, [CNZ20] spotlight the issue on full-system simulators where some
applications need to be accurately timed. To keep a fast simulation time, they created
mcQEMU, a time-accurate simulator based on QEMU in which they added time models.
QEMU already has a partially timed simulation mode named ICount. As the name
implies, this feature counts the number of instructions executed. They used this feature
in QEMU to implement a more complete timed model. However, the ICount mode does
not deal with multi-threaded execution. To make all the threads consistent in time, each
thread has its own virtual time and an algorithm is applied on top of that to perform
synchronization at every ”event” (that follows the principles of Parallel Discrete Event
Simulator). To validate their work, they targeted an ARM processor and showed an
error of only 15% of time accuracy when comparing to the NXP i.MX6Quad processor
(ARM processor) with the TACLeBench benchmarks suite.

To conclude, improving the DBT mechanism is a very diversified topic. As it provides
a functional simulation, having a DBT translator which is extremely fast is attractive
for researchers and for the software industry. Adding models of hardware structures in
the process will definitely induce an overhead on the simulation time. But in the end,
we have a good trade-off as we can still take benefits of the execution speed that the
DBT provides and the simulation accuracy will be better.

3.2 Dynamic Binary Instrumentation (DBI)

Instrumentation is a crucial tool to analyze software to retrieve any kind of information
such as memory accesses and thus improving them regarding the topic of interest.
Instrumenting applications in general can be very particularly challenging to do as it
will for sure (a) degrade the performances of the targeted application and (b) disturb

22



3.2. DYNAMIC BINARY INSTRUMENTATION (DBI)

the code flow and change the state of the hardware structures, as pieces of code need
to be added. Reaching good performances is one of the main goals. Compared to Static
Binary Instrumentation, Dynamic Binary Instrumentation allows to do instrumentation
and execution of an application at the same time, which makes it the approach of choice
today.

About 30 years ago, the Instruction Set Simulator Shade [CK94] introduced a way
to do fast profiling. They highlighted the goals that good instrumentation tools must
achieve: ease of use, diversity of software it should instrument, fast execution time,
availability of lots of details and finally support to instrument architecture not yet cre-
ated. Shade can dynamically cross-compile and execute applications of a target ar-
chitecture directly on the host and also cache the translation code which recalls the
principles of Dynamic Binary Translation. A tracing tool is integrated with the Instruc-
tion Set Simulator and the user can specify what information he wants to retrieve.

In the scope of the Dynamic Binary Translation, doing instrumentation efficiently
is the concern of various works. To meet the demands on an efficient and portable
instrumentation tool, [LCM+05] proposed 20 years ago Pin, a convenient instrumen-
tation framework. Similar to ATOM [SE04], Pin has a diversified API and is also able
to support a large diversity of architectures. The user can easily decide where to add
call to instrumentation functions in the application. The results show that Pin can be
faster for some configurations than other well-known dynamic instrumentation tools of
that time: Valgrind and DynamoRIO. However, a few years later, Valgrind [NS07] an-
nounced to be a framework better than Pin and DynamoRIO for heavyweight Dynamic
Binary Instrumentation.

According to [LHW+14], most of the state-of-the-art Dynamic Binary Instrumenta-
tion tools only support the same ISA for the target and the host. Having the target
and the host machine with the same ISA can be too restrictive of a constraint. Be-
cause the vast majority of the existing computers are based on a x86 architecture, it
became interesting and useful to be able to instrument for example RISC-V or ARM
applications on a x86 machine without the obligation to have a RISC-V or ARM ma-
chine. Thus [LHW+14] presents DBILL, a cross-ISA Dynamic Binary Instrumentation
framework that uses LLVM as a backend. DBILL also relies on QEMU by leveraging on
HQEMU [HHY+12], a multi-threaded Dynamic Binary Translator implemented by the
same authors. Since DBILL is presented as a heavyweight DBI tool, they did experi-
ments to compare DBILL with Valgrind. The results show that DBILL is more than 8
times faster than Valgrind with ARM benchmarks. [CC19] also decided to focus on this
topic. In this paper, the authors present two techniques to improve the performance of
cross-ISA simulation and one technique to do instrumentation efficiently. They imple-
mented their techniques in Qelt, a DBT-based simulator based on QEMU. When doing
complex instrumentation, they showed that they can reach the performance of the DBI
tool Pin and they are faster than most of the state-of-the-art cross-ISA DBI tools when
doing full-system instrumentation. To finish on the cross-ISA DBI topic, QEMU also
proposed a framework to do instrumentation [Gui11]. It has now been given the name
of Tiny Code Generator (TCG) Plugins and was developed by the authors of [CC19].

As QEMU is without doubt the most used DBT-engine and thus is an interesting
choice for us, we will detail here the functional principles of the TCG Plugin, a QEMU
feature that helps to do instrumentation at various levels.

QEMU TCG Plugin

23



CHAPTER 3. STATE OF THE ART

The Plugins provide the user an API to do code instrumentation relatively easily and ef-
ficiently. Information can be retrieved at the different stages of the simulation process,
i.e., during translation or at execution time. Because QEMU is based on the Dynamic
Binary Translation principle, the smallest unit that it is possible to instrument during
simulation is the instruction. Through the API, the user can subscribe to various kinds
of events. The most classical events are: a Translation Block (TB) translation, a TB ex-
ecution, an instruction execution and the execution of a memory access. In addition, it
offers the possibility to subscribe to events such as a virtual core initialization, a virtual
core exit, when a virtual core goes idle or when a virtual core resumes. Regarding in-
struction execution, it is also possible to instrument only particular instructions. Calls
to plugin functions are inserted during translation for all possible events. Thanks to
that, it avoids doing the translation a second time to add the calls to the plugin func-
tions. The calls to events that are finally not used are removed eventually by a later
optimization pass.

QEMU main loop execution

Detect the events2/

TB translation?
TB execution?
instruction execution?
memory access execution?

Plugin x

4/ Retrieve information
and run code

Callbacks

Subscribe
to events1/

3/

Figure 3.2: Simplified representation of the QEMU TCG plugins mechanism

Figure 3.2 illustrates the TCG plugins mechanism simplified. The first step for the
user is to create a new C file. Then the user needs to choose to which events he
wants to subscribe to, using the functions of the plugin API. During the execution of
the main loop of QEMU, each time the event to which the user subscribed is detected,
information is sent back to the plugin through callback functions. We represent on
Figure 3.2 only the classical events. Finally, once the user has retrieved the information
corresponding to an event, it can add code in the plugin file to compute what he wants
to compute. Currently a dozen plugins are upstreamed in QEMU.

One of the main advantages of the TCG plugins is that they are architecture indepen-
dent, meaning they work with all the different targets supported by QEMU. Moreover,
the instrumentation works also with the MTTCG (Multi-Threaded TCG). When the plu-
gin code is called, it is done inside of a lock that protects QEMU’s internal structures
only. Therefore, if some data in the plugins is meant to be shared between the virtual
cores, for example a counter for the total number of instructions, the user needs to use
his own locking scheme.

To summarize, the QEMU TCG Plugin API offers a relatively simple and efficient
way to instrument any applications in the case of DBT-based simulation. The user can
create any kind of plugin he wants based on the available events. As an example, in
their paper [MCDK21] presents a methodology based on QEMU to explore In-Memory
Computing architectures at the ISA level. They used the QEMU TCG Plugins to model
some components thanks to the events proposed by the API. However, there is currently

24



3.3. ADDING NEW MODELS: OVERVIEW OF CACHE SIMULATORS

limited access to processor specific information, such as the registers values, but a
processor agnostic solution has been found to solve this issue [Oda23].

3.3 Adding new models: overview of cache simulators

Simulating models of new architectural features can be decoupled from the main sim-
ulator. As an example, in their work, [JMW+22] proposed to decouple the processor
simulation and the simulation of the memory. By doing so, they were able to keep
the accuracy of the simulation while providing a better simulation speed. Even if this
technique shows satisfactory results, it will not be discussed more in this thesis as our
focus is on adding architectural features directly in DBT-based simulation. But we will
make an exception for cache simulations as it is our main interest.

Instrumenting applications through DBT-based simulators helps with retrieving in-
formation that can be used to simulate the behavior of hardware structures. For exam-
ple, the QEMU TCG Plugins provide a plugin that simulates a cache model. By having
all the instructions executed by an application, it is then possible to simulate the be-
havior of a cache. A cache is now a piece of hardware that exists in all present-day
processors as it drastically improves the memory accesses speed. A survey on a quite
large list of cache simulators was made by [BKP20] in 2020. As explained in this survey,
about 30 years ago cache simulators were mainly used for research purposes and were
the alternative for when the corresponding hardware was not available. Now with the
increase of the use of simulation in industries since the hardware is not always easy
to have access to, cache simulation is very much in use. Our interest is thus focused
on improving the DBT by adding a cache model. That is why we do in this section
a non-exhaustive overview of existing and well-known cache simulators and what has
been done lately regarding DBT-based simulators. We divided the rest of this section
into two parts. We will first do a quick overview of classical standalone, trace based,
cache simulators and then we will see in more detail the existing cache models used
inside simulators and DBT-based simulators.

3.3.1 Standalone cache simulators

The most classical cache simulators only take as input the trace of the memory ac-
cesses of an application. It is the case of Dinero, which might be the oldest and most
known mono-core cache simulator that is still mainly used for educational purposes.
Dinero IV [EH98] is the latest known version. There are now a multitude of cache
simulators whose functionalities are similar to Dinero. We can for example cite Py-
cachesim [Ham15] which we also used to validate our results in mono-core. Last
year, a work was published [VMK22] that integrates Pycachesim with QEMU to sim-
ulate in mono-core the instruction cache and the authors are planning to extend their
implementation to a data cache simulation as well. Thanks to the module named
Cachegrind [Wei08], the DBI tool Valgrind can also simulate classical cache models.
These kinds of simulators are now useful for the research on enhancing the software
stacks. Even if these tools are easy-to-use and provide a straightforward way to analyze
the behavior of applications, they have their limits. Simulating a cache model inside
the simulation of a complete architecture can be more interesting to understand and
investigate how the cache interacts with the other components.

25



CHAPTER 3. STATE OF THE ART

3.3.2 Cache simulation inside simulators

Cache models can vary a lot depending on how they are designed and what details
they provide. [Mag97] proposed about 20 years ago a simulation of an instruction
cache by extending the Instruction Set Simulator SimICS. Predictably, adding the in-
struction cache simulation degraded the performance of SimICS but the authors claim
that the accuracy gained with the cache model justifies the overhead created in the
simulation. More recently, some full-system simulators also implemented their own
cache simulator, included with the simulation of other components. Some of them are
called timing simulators and can reproduce the latency of the movements of data in the
different cache levels. Gem5 [BBB+11] is one of the most popular microarchitecture
multi-core simulators and provides a timing cache simulator. However, these are the
ones that will induce a non-negligible overhead. By relying on an approximate timed
hardware/software co-simulation that produces a good balanced functional and timed
simulation, [CPVM10] implemented an instruction cache model that does not damage
the simulation speed. Indeed, in the case of native simulation (simulation used by the
authors), modeling a cache based on a tag search will damage the simulation speed
too much. To stay in the other of speed of native simulation, the authors combined a
technique to instrument the source code and a specific instruction cache model.

As the DBT mechanism supplies a functional but fast simulation time, it was inter-
esting for researchers to try to implement a cache model at a high level of abstraction
inside DBT-based simulators. [VDTT14] proposed a module inside QEMU to do a com-
plete cache simulation and claim to be faster than Valgrind. However, they were not the
first to work on how to include a cache simulation in QEMU [GFP09]. The drawback
is that these works were very intrusive in the QEMU code and architecture dependent.
Thanks to the non-intrusive implementation of the QEMU TCG Plugins and the easy-
to-use advantage, a cache plugin was upstreamed during summer 2021 [Man21] and
is currently able to simulate a simple cache model per virtual CPU. We now detail how
this cache plugin is implemented.

QEMU Cache Plugin

Figure 3.3 presents the simplified mechanism of the existing QEMU TCG plugin that
models the behavior of a cache. The plugin simulates for each virtual core a L1 instruc-
tion, a L1 data and a unified L2. The writing policy supported is Write Back Allocate
and three eviction policies are supported: FIFO (First In First Out), LRU (Least Recently
Used) and Random. The plugin subscribes to the events ”instruction execution” and
”memory access execution”. Each time an instruction or a memory access is executed,
the cache plugin code is run and checks if it is a miss or a hit. Statistics variables are
thus updated for each instruction execution and displayed at the end of the simulation.

The way the plugin is implemented is the naive way of doing it. Thanks to the
simple API provided by QEMU, it is easy to run the cache simulation each time an
instruction or a memory access executes. However, it also implies that a piece of code
will run additionally each time a target instruction is executed in the simulation and it
results in a non-negligible execution time overhead compared to the vanilla execution.

26



3.4. CONCLUSION

x ... CPU

Figure 3.3: Simplified representation of the QEMU cache TCG plugin mechanism

3.4 Conclusion

Improving the DBT mechanism can be done in lots of diverse ways. A subpart of this
field focuses on making DBT-based simulators even more faster. The parallel imple-
mentation in itself of these simulators is an improvement and makes the simulation
run faster when relying on the host parallel architecture. We focus in this thesis on
how to enhance the parallel simulation time. Chapter 4 presents our contribution for
the scalability of QEMU parallel implementation.

When it comes to improving the accuracy of the simulation when specific metrics
are to be evaluated on the target, many paths can be taken. Adding the simulation of
hardware structures in a functional simulation requires to first instrument the code ef-
ficiently to have the needed information to simulate the behavior of a new component,
which fortunately is possible in QEMU. In this thesis, our focus is on the simulation of
a cache at a high level of abstraction. Chapter 5 presents our contribution on a cache
simulation in QEMU with the TCG Plugins.

27



CHAPTER 3. STATE OF THE ART

28



Chapter 4

To Pin or Not to Pin: Asserting the
Scalability of QEMU Parallel
Implementation

THIS chapter gives an answer to the questions ”How can we assert that DBT parallel
implementation scales well on the multi-core host machine?” and ”Can we

rely on the host configuration to improve the DBT parallel simulation speed?”.
We unsurprisingly chose QEMU [Bel05] as the DBT-based engine. We discuss here the
scalability of the parallel implementation of QEMU which was never addressed to the
best of our knowledge. Our contribution is this chapter relies on the experimental study
of the scalability of the parallel implementation of QEMU with the possibility to pin a
virtual CPU of the target to a host CPU. The idea behind that is that it will reduce the
global simulation time. This work was done in collaboration with Saverio Miroddi who
at that time already had on github an implementation of the pinning [Mir21]. We thus
relied on his implementation to do the study.

In this chapter, before thinking on how to elaborate a thread affinity in QEMU, we
first look at how the parallelism is done in QEMU. Then we see how to implement the
pinning in QEMU and how to decide on which physical CPUs we do the pinning. Lastly,
we present the possible impacts on the scalability regarding the host machine and the
benchmarks and what simulation strategy we opt for.

29



CHAPTER 4. TO PIN OR NOT TO PIN: ASSERTING THE SCALABILITY OF QEMU
PARALLEL IMPLEMENTATION

Table of contents
4.1 QEMU Parallel Implementation . . . . . . . . . . . . . . . . . . . . 31

4.2 Pinning virtual cores in QEMU . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.2 Implementation in QEMU . . . . . . . . . . . . . . . . . . . . . 34

4.3 Possible impacts on the scalability of QEMU Parallel Implementation 36

4.3.1 Nature of the host machine . . . . . . . . . . . . . . . . . . . . 36

4.3.2 Nature of the benchmarks . . . . . . . . . . . . . . . . . . . . . 37

4.3.3 Simulation Methodology . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

30



4.1. QEMU PARALLEL IMPLEMENTATION

4.1 QEMU Parallel Implementation

The Tiny Code Generator (TCG) is the tool inside QEMU that does cross compilation
in order to run a target architecture that might be different from the host architecture.
The generator is separated into 2 parts: the first one will generate the Intermediate
Representation from the target code, which is a sort of assembly code that only QEMU
understands and the second one will generate the final host code from the Intermediate
Representation. Prior to 2015, the implementation did not take benefits from the par-
allel architecture of the host. When the simulation was run with multiple virtual CPUs,
the execution was done on only one thread with a round-robin scheduling. This led to
a clear scalability issue, given the large number of computing platforms that were em-
bedding several if not many processor cores already at that time. Furthermore, at that
time, I/Os peripherals and other tasks of the system apart from the CPUs were already
handled in a separate thread. Figure 4.1 inspired from [Ben15] shows a simplified ver-
sion of this mechanism where one can see that the virtual CPUs execute sequentially
on one thread and a second thread is dedicated to the other tasks of the system. Here
we arbitrary represent on the Figure the execution of the thread of the virtual CPUs
on the CPU 0 and the thread for the other tasks on the CPU n but in practice it can be
on the other host CPUs. The scheduling algorithm of the Operating System of the host
decides on which CPU the threads execute. The algorithm is also free to change of host
CPU multiple times during the execution of QEMU if it considers that it will improve
the performance.

QEMU Processes Host CPUs

virtual CPU 0 CPU 0virtual CPU 1

CPU 1

... ...

CPU nI/O and others

virtual CPU n

CPU 2

...

Figure 4.1: Simplified representation of the Tiny Code Generator principle (round-robin) with
the peripherals thread

After that, the Multi-Threaded TCG (MTTCG) was designed and implemented and
each virtual CPU now executes on a separate thread. Figure 4.2 presented in the pre-
vious chapter illustrates the process. As for the previous Figure 4.1, we arbitrary chose
the assignment of the virtual CPUs on the host CPUs. In practice, the scheduling algo-
rithm of the Operating System will do the assignment and it can also vary during the

31



CHAPTER 4. TO PIN OR NOT TO PIN: ASSERTING THE SCALABILITY OF QEMU
PARALLEL IMPLEMENTATION

execution of QEMU. However, the QEMU API allows the user to return to the previous
single-threaded model with some command line options.

QEMU Threads Host CPUs

virtual CPU 0 CPU 0

virtual CPU 1 CPU 1

... ...

CPU nI/O and others

virtual CPU 2 CPU 2

Figure 4.2: Simplified representation of the Multi-Threaded Tiny Code Generator principle

Migrating from the single-thread to the multi-thread solution in QEMU affected how
the Translation Blocks are managed. Now, with the MTTCG principle, the translation
of the blocks happens in each virtual CPUs. But in order to reuse information and
to not do useless work, the virtual CPUs need to gather in once the blocks that they
have already translated. Thanks to that, the other virtual CPUs can have access to
blocks already translated by other virtual CPUs and thus avoid losing time of doing the
translation. Compared to the single-thread TCG principle, the MTTCG principle added
shared data structures between the threads. In fact, a single code generation buffer
holds already translated blocks (TBs). When a virtual core executes, it will retrieve the
TB corresponding to the target code in the shared buffer if it exists. If it does not exist,
the translation is done locally in the thread to avoid using locks and the resulting TB
is put in the shared buffer. The shared buffer is entirely flushed if full and the virtual
CPUs need to start the translation again. Figure 4.3 illustrates the buffer that contains
already translated block shared between all the virtual CPUs. Atomic operations are
also used to reduce the impact of protecting the shared structures.

The transition to the multi-threaded solution however made the use of the instruc-
tion counting mechanism inconsistent and thus remains usable only with the single-
threaded TCG.

4.2 Pinning virtual cores in QEMU

As QEMU simulates a virtual core by creating a thread, we can also talk about thread
affinity to refers as pinning. Previous works show that thread affinity can have an
important impact on the reduction of the execution time of parallel workloads. The

32



4.2. PINNING VIRTUAL CORES IN QEMU

virtual CPU 0 virtual CPU 1 ... virtual CPU n

Shared Buffer

Local
translation

Local
translation

Local
translation

synchro synchro synchro

Figure 4.3: Simplified representation of the translated blocks buffer shared between the virtual
CPUs

work presented in [MTB11] shows that pinning threads on High Performance Com-
puting cache coherency NUMA machines has a real impact on the performance and
thus outperformed the Linux Operating System scheduler. They have tested multiple
pinning strategies using the SPEC OMP benchmark suite and all of them show improve-
ments with HPC machines but for machines with a smaller number of cores (8 cores),
improvements when pinning are marginal. Moreover, the impact of pinning is very
dependent (1) on the nature of the workload, and (2) on the quality of the implemen-
tation or the parallelization of the workload. For this thesis we do not have an HPC
machine but since thread affinity has been proven in past works to be beneficial and
since we have a multi-core machine with more than 8 cores, pinning the virtual CPUs
of QEMU is an interesting topic. As it has never been upstreamed, we decided to add in
QEMU the possibility to the user to set the affinity of the virtual CPUs with the thought
that it might improve the simulation time of QEMU.

4.2.1 Principle

Pinning or setting thread affinity is the process of forcing a thread to execute on a
chosen physical CPU and it only. As seen in Figure 2.1 in Chapter 2, a core designates
the entity that can be composed of one or two hardware threads (harts) depending on
if the host supports the Simultaneous MultiThreading (SMT) execution paradigm. We
refer to CPU as the smallest processing unit, meaning the hart. In Figure 2.1, the server
can run with either 24 or 48 CPUs respectively if SMT is disabled or enabled on the
machine. Thus, we use the term CPU when describing the pinning mechanism. We
remind that QEMU creates a thread for each virtual CPU that executes in the simulated
system.

Figure 4.4 represents a simplified example of the pinning principle when assigning
4 virtual CPUs to run on 4 physical CPUs. In this example, we arbitrary choose to run
the virtual CPU 0 on the physical CPU 0, the virtual CPU 1 on the physical CPU 1, the
virtual CPU 2 on the physical CPU 3 and the virtual CPU 3 on the physical CPU 2. We
focus on the processor simulation scalability and as we have only a few I/O devices in
the system, we will not assign a CPU for the thread that simulates these devices.

In practice, the distribution of the CPUs on the host machine is more complex. All

33



CHAPTER 4. TO PIN OR NOT TO PIN: ASSERTING THE SCALABILITY OF QEMU
PARALLEL IMPLEMENTATION

CPU 0

CPU 3

CPU 1

CPU 2

vCPU 0

vCPU 3

vCPU 2

vCPU 1

physical CPUs

virtual CPUs

Figure 4.4: Simplified representation of the pinning mechanism

servers are now multi-core, support SMT and also have Non-Uniform Memory Access
(NUMA) which means that multiple memory zones exist in the system and they are put
at different places. Because of that, the pinning strategy must take into account the
particularities of the host. That is what Section 4.3 is about.

4.2.2 Implementation in QEMU
Linux interfaces

The implementation in QEMU is done through the call of the Linux interfaces cpu set t

and pthread setaffinity np. When a virtual CPU is initialized in QEMU, a variable
of type cpu set t is used by setting a single bit in it to specify which CPU to do the
affinity on. This is done by using the macro CPU SET. It is thus possible to define a
set of CPUs with CPU SET and for this contribution the mapping was one to one. Then
this variable is passed to the call of the function pthread setaffinity np that stores
this information into the thread structure. Later, when the thread is scheduled, the
Operating System has no other choice than to put it onto the designated CPU.

Listing 4.1 shows the part of code that does the pinning in QEMU. The code is quite
small and not very intrusive in QEMU.

QEMU command line

To let the user decide on which physical CPUs he wants to do the pinning, new options
in the QEMU command line need to be added.

34



4.2. PINNING VIRTUAL CORES IN QEMU

Listing 4.1: Part of code in QEMU that implements the pinning mechanism

// QEMU function to initialize the virtual CPUs

void qemu_init_vcpu(CPUState *cpu)

{

// variable of type cpu_set_t

cpu_set_t cpuset;

// Retrieve the affinity given in the command line

MachineState *ms = MACHINE(qdev_get_machine ());

MachineClass *mc = MACHINE_GET_CLASS(ms);

unsigned affinity = mc->vcpu_affinity[cpu ->cpu_index ];

...

// If the affinity is specified in the command line

if (affinity != -1) {

// Put all the bit of the variable at 0

CPU_ZERO (& cpuset);

// Set the right bit of the variable

CPU_SET(affinity , &cpuset);

// Set the affinity of the thread representing the

virtual CPU

pthread_setaffinity_np(thread , sizeof(cpu_set_t), &cpuset

);

}

...

}

Listing 4.2: Pinning QEMU command line

qemu -system -riscv64 \

-smp ... \

-vcpu vcpunum=$vcpu_number ,affinity=$host_physical_cpu_number \

-vcpu vcpunum=$vcpu_number ,affinity=$host_physical_cpu_number \

-vcpu vcpunum=$vcpu_number ,affinity=$host_physical_cpu_number \

...

Listing 4.2 shows what have been added to the classical QEMU command line. The
-smp option already exists in QEMU. It is a processor related option to simulate a Sym-
metric MultiProcessing (SMP) system. The user can specify for the simulated target
the total number of virtual CPUs, the number of cores and the number of hardware
threads. Other sub options to specify the topology of the system are available but are
not interesting for us. What is new is the -vcpu option to assign the virtual CPUs with
the physical CPUs for the pinning. The user gives two numbers when using the option:
one for the virtual CPU number and the other for the physical CPU number.

Listing 4.3 is an arbitrary example to show how the command line can be used.
In this example we have a system with a total of 10 virtual CPUs distributed on 5
cores with 2 threads per core. If some sub options are not specified, their values are

35



CHAPTER 4. TO PIN OR NOT TO PIN: ASSERTING THE SCALABILITY OF QEMU
PARALLEL IMPLEMENTATION

Listing 4.3: Pinning QEMU command line arbitrary example

qemu -system -riscv64 -smp 10,cores=5,threads =2 \

-vcpu vcpunum=0,affinity =0 -vcpu vcpunum=1,affinity =8 \

-vcpu vcpunum=2,affinity =1 -vcpu vcpunum=3,affinity =9 \

-vcpu vcpunum=4,affinity =2 -vcpu vcpunum=5,affinity =10 \

-vcpu vcpunum=6,affinity =3 -vcpu vcpunum=7,affinity =11 \

-vcpu vcpunum=8,affinity =4 -vcpu vcpunum=9,affinity =12 ...

automatically computed. One can also take the liberty to not assign all the virtual CPUs
of the target system.

4.3 Possible impacts on the scalability of QEMU Parallel
Implementation

Using the pinning in QEMU might improve the simulation time as thread affinity was
proven to be efficient in some works. However, in order to optimize the possible gain,
the pinning must be done in a smart way. The idea is not to randomly decide the
physical CPUs on which the assignment will be done. The topology of the host machine
needs to be considered as well as the benchmarks used to do the experimental study.

4.3.1 Nature of the host machine

The Linux command lstopo shows the topology of the host machine’s hardware orga-
nization. For concreteness, we assume that we do the experimental study on QEMU
parallel implementation on a Dell PowerEdge R910. We give Figure 4.5 the topology
of this server.

We can see that our server is divided into 4 sockets with 1 NUMA node in each
socket. Then we have 4 cores per NUMA node and 2 harts per core. We have a total of
32 CPUs. Like almost all current servers, it supports the Simultaneous MultiThreading
meaning that two hardware threads can run inside a core. Modern Operating Systems
offer the possibility to enable and disable the SMT support during run time leaving
only one ”processing unit” per core. From a program point of view, it sees half or all
the CPUs and does not make a distinction with or without SMT.

How to do the pinning regarding the architecture of the host

The most rational approach is to assign the virtual CPUs in such a way that they first
fill up a core, then the cores of the NUMA node. We then move to the next NUMA
node in the next socket when the previous node is full. If all the NUMA nodes are
full but we still have virtual CPUs to assign, we start the strategy again by assigning
the virtual CPU at the first hart of the first core of the first socket of the first node. If
we look at Figure 4.5, it means that we will assign the first virtual CPU on Processing
Unit (PU) #0, the second one on PU#16, the third one on PU#4, the 9th on PU#1
and so on with the 33rd back to PU#0. The rationale behind this strategy is that the
closer the virtual CPUs on the host, the better the sharing of the resources. Indeed, the
current servers predominantly only share their last level cache in a socket, the other
levels being private to a core. Testing without the SMT on the host also needs to be

36



4.3. POSSIBLE IMPACTS ON THE SCALABILITY OF QEMU PARALLEL IMPLEMENTATION

Figure 4.5: Mid-end host server: Dell PowerEdge R910 (lstopo picture)

done. It could be beneficial for the processing units to not share a core to thus only one
will execute by core.

The Operating System that runs on the host machine creates kernel threads that
are constantly running. The Linux kernel option isolcpus can specify which physical
CPUs we want to exclude from scheduling. By using this option, we can make sure
that the kernel threads will never run on the physical CPUs that we want to dedicate
to QEMU with the pinning and thus avoid context switches that can have an impact on
the simulation speed. The natural choice is to let the kernel threads execute only on
Core 0, meaning that Core 1 to 15 are for QEMU.

4.3.2 Nature of the benchmarks

The choice of the benchmarks used to evaluate performances and study scalability is
of primary importance. We aim at measuring the scalability of QEMU with multi-core
execution and we want to do so with presumably scalable non-synthetic workloads.
The PARSEC suite [BKSL08], for Princeton Application Repository for Shared-Memory
Computers, is a benchmark suite of multi-threaded applications which make use of the

37



CHAPTER 4. TO PIN OR NOT TO PIN: ASSERTING THE SCALABILITY OF QEMU
PARALLEL IMPLEMENTATION

POSIX thread library for supporting parallelism. The programs in the suite are very
diversified and they deal with classical mathematical algorithms as well as financial
analytics applications and video encoding. Issues regarding the scalability of some
benchmarks have been highlighted by [SR15]. However, because of the lack of a better
suite and because the PARSEC suite is widely used in the field, we decided to use it
anyway. Note that the older SPLASH 2 benches, references of their times, are included
as is in the PARSEC suite.

As one of the goals of QEMU is to support cross-ISA simulation, we chose to cross-
compiled the benchmark in RISC-V using the RISC-V GNU Compiler Toolchain with the
flag -O3. The target is our Dell PowerEdge R910 server with an x86-64 architecture.
However, not all the benchmarks are meant to be cross-compiled. Some of them fail to
be cross-compiled and others that are cross-compiled successfully fail during run time
due to various problems such as initialization or memory allocation. This is well docu-
mented otherwise, so we simply ignore the few programs that fail. In the end we were
able to cross-compile and execute faithfully the following benchmarks: blackscholes,
bodytrack, cholesky, ferret, fft, fluidanimate, freqmine, lu cb, lu ncb, ocean cp,
radix, swaptions, water nsquared and water spatial. In this subset of all bench-
marks, some of them have additional constraints: fft, fluidanimate, ocean cp, radix
and swaptions must be executed with a number of threads that is a power of 2. Last
but not least, swaptions cannot be executed if the number of threads is higher than
internal variable swaptions which is 64.

All parallel programs have a sequential part during run time. Depending on how
the benchmark is written and what needs to be initialized, the sequential part can be
more or less important. The Amdahl’s law [Amd67] teaches us that the sequential part
of a program can have a non-negligible impact on the scalability. The law defines the

theoretical speedup with the following formula
1

(1−p)+p
s

where s is the speedup of

the parallel part and p is the proportion of parallel part in the entire program. The
theoretical maximum speedup is always bounded by the section of the program that
cannot be parallelized. That is why it is important to measure the wall clock time of
the full execution of the benchmark to do our study but also the Region-Of-Interest
(ROI) part which is the execution of only the parallel section. Thankfully, the API of
the PARSEC suite offers the possibility to retrieve the execution time of the ROI for each
benchmark.

Figure 4.6.(a) shows the classical structure of the PARSEC benchmarks at a high
level of abstraction. First, we have the sequential part that can be the initialization of
data structures, memory allocations, parsing of files and so on. Then the ROI timer
starts and the threads begin to execute. The threads are more or less independent, it
depends on the shared variables present in the benchmarks. They can induce waiting
time as they are protected by locks and thus also have different interleavings if run
several times. At the end of the parallel execution, the threads are synchronized at a
barrier and can start again to compute if necessary. The ROI timer is then deactivated
and the programs exist. Figure 4.6.(b) is for QEMU’s view of the target. Each virtual
CPU on which the PARSEC threads will execute can potentially access the whole mem-
ory and synchronization will happen when instructions perform atomic operations and
fences.

Another interesting feature of the PARSEC suite is its ability to set thread affinity
which is perfectly in line with our needs. Each program in the suite takes as argument

38



4.3. POSSIBLE IMPACTS ON THE SCALABILITY OF QEMU PARALLEL IMPLEMENTATION

Start of ROI

End of ROI

Barrier Executed by VCPUsWait for execution VCPU

Legend:

P
ar

al
le

l t
hr

ea
ds

TROI Tfull

Loop

(a) (b)

Memory

Figure 4.6: (a) Parallel programs structure and (b) Target architecture organization

the number of threads to execute the program on. By using environment variables,
it is possible to set the affinity of the threads. In our study, the idea is to use the
PARSEC thread affinity on top of QEMU. The threads will be assigned to the virtual
CPUs of QEMU. The API lets the user set two environment variables: PARSEC CPU NUM

and PARSEC CPU BASE. The first one is to specify the maximum number of physical CPUs
to use and the second one is to give the id of the base CPU to use meaning that the
CPUs below that id will not be used. As a result, these variables can define the range of
CPU ids in which the PARSEC threads will run. The naive way of setting these variables
is to do: PARSEC CPU BASE=0 and PARSEC CPU NUM=n the number of threads of the
benchmarks meaning that the benchmarks will run on the n first CPUs on the host.
This is the configuration we adopted for our study.

4.3.3 Simulation Methodology

Here is a summary of all the parameters in our experimental study:

� number of host hardware threads (harts) per core which can be 1 or 2 (Simulta-
neous MultiThreading enabled or not). It leads us to 16 or 32 CPUs on the host
machine,

� number of virtual CPUs that we will call nc. This number will take the following
values: {1, 2, 4, 8, 16, 24, 32, 48, 64, 96, 128},

� number of threads nt that the PARSEC benchmarks will generate during execu-
tion. This number will take the following values: {1, 2, 4, 8, 16, 24, 32, 48, 64,
96, 128},

� PARSEC threads affinity,

� pinning QEMU virtual CPUs to physical CPUs,

39



CHAPTER 4. TO PIN OR NOT TO PIN: ASSERTING THE SCALABILITY OF QEMU
PARALLEL IMPLEMENTATION

� isolcpus to strictly separate the physical CPUs allocation between QEMU virtual
CPU threads and the kernel threads.

To run the PARSEC benchmarks inside QEMU, we rely on busybear [JC17] which is
a tiny RISC-V Linux root filesystem image specific to run with QEMU. It is composed of
a Linux and OpenSBI, the official RISC-V ”bios”. We thus run QEMU with the busybear
image that contains the PARSEC binaries.

Figure 4.7: Screenshot of busybear shell run with QEMU

Figure 4.7 shows the shell of busybear once run with QEMU. One can run the PAR-
SEC programs that he wants (example of radix command line in the Figure). We
use the Unix time command inside busybear to measure the execution time of the
programs. Linux time accesses the host real-time clock under the hood (QEMU imple-
mentation of the RISC-V mtime register). We thus can be confident that we will retrieve
the right execution time. In addition, the Linux timer rate heavily impacts the boot
time of the virtual CPUs. As in QEMU the timer is synchronized with the host real-time
clock, the slower the boot the higher the number of timer interrupts. So, we opted for
a value of 100 Hz, classical for server workloads.

We made all the measures on the R910/0P658H Dell PowerEdge server presented
Figure 4.5 and detailed in [GFKW11]. It is composed of 4 Nehalem-EX 7520 Intel Xeon
Processors with 4 cores with 2 harts in each that results in a total of 16 cores/32 harts.
We ensure only the base Linux kernel, a ssh connection and QEMU are running on the
server while performing the experiments. To do an objective analysis, we also decided
to force the frequency to be and remain the same for all the physical cores on the server,
which is not the case by default. We force the frequency of the physical cores to be 1862
MHz through the appropriate BIOS configuration of the server.

With all the parameters that we consider in our study, multiple combinations can
be done. Regarding nc and nt, the classical idea would be to set nc = nt meaning we
increase at the same time the number of PARSEC threads with the number of virtual
CPUs. Algorithm 4.1 presents the simplified version of the basic algorithm to run the
experiments.

Algorithm 4.1 Basic measurement algorithm
Require: SMT enable (two harts per core)

1: for nc in {1, 2, 4, 8, 16, 24, 32, 48, 64, 96, 128} do
2: Set the pinning in the QEMU command line
3: Run QEMU with busybear with -smp nc

4: Run the PARSEC benchmarks in busybear in QEMU with nt = nc

5: Retrieve the execution time (full and ROI) of the benchmarks
6: Quit QEMU
7: end for

Multiple variations of the parameters are thus done from this algorithm: enable or
disable SMT, with or without QEMU pinning, set PARSEC threads affinity, set nc = 128

40



4.4. CONCLUSION

and increase nt, set isolcpus, etc. Section 6.2 will give more details on the multiple
combinations of the parameters.

4.4 Conclusion

Given the popularity of multi and many-core systems, simulation engines adapted their
strategy a few years ago to follow the trend and support parallel execution. Dynamic
Binary Translation might well be the unchallenged technology for full-system level sim-
ulation, and the translator QEMU has become extremely popular. To the best of our
knowledge, the scalability of the parallel implementation of QEMU was never studied
before. Thus, assessing the scalability of such a widely used simulator makes sense.
This chapter proposes a detailed and complete experimental study of QEMU parallel
implementation with in addition the possibility to pin the virtual CPUs of QEMU on the
host physical CPUs. The details of all the experiments done regarding the variation of
the parameters in our study are given in Section 6.2 and this leads us to conclude on
the usefulness of to pin or not to pin.

41



CHAPTER 4. TO PIN OR NOT TO PIN: ASSERTING THE SCALABILITY OF QEMU
PARALLEL IMPLEMENTATION

42



Chapter 5

Fast Cache Simulation For The
Dynamic Binary Translation
Mechanism

IN this chapter we answer the questions ”Can we benefit from the DBT approach
to design in particular a cache model that limits the impact on the global sim-

ulation time?” and ”How can we enhance the time accuracy of the DBT mecha-
nism when adding models of new architectural features in the simulation without
overly degrading simulation speed?”. Here again we chose QEMU as the DBT-based
engine and we rely on the QEMU TCG Plugins as the support to implement a cache
simulation. As the simulation with the DBT is purely functional, our goal for this con-
tribution is to produce a cache simulation in a smart way inside QEMU at a high level of
abstraction. Instrumenting each target instruction to simulate a cache is achievable but
it will degrade the performance a lot. By relying on the per instruction block execution
of the DBT principle, we propose an instruction cache model at that granularity that is
faster than a per instruction instrumentation.

This chapter presents the initial intuition behind our per block instruction cache
simulation that helps to reduce the overhead of adding a new simulation model. We
also explore other solutions to propose a fast cache simulation in addition to the im-
provement for the instruction cache. However, this raises a few issues that we detail
and mitigate.

43



CHAPTER 5. FAST CACHE SIMULATION FOR THE DYNAMIC BINARY TRANSLATION

MECHANISM

Table of contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Instruction cache modeling: L1i . . . . . . . . . . . . . . . . . . . . 46

5.2.1 Initial Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2.2 Proof of concept . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.4 Error in Counting Instructions and How to Mitigate it . . . . . . 50

5.2.5 Dependency on Simulator Runtime . . . . . . . . . . . . . . . . 51

5.3 What about other cache levels: L1d and L2? . . . . . . . . . . . . . 52

5.3.1 Threaded L1d simulation . . . . . . . . . . . . . . . . . . . . . 52

5.3.2 L2 simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

44



5.1. INTRODUCTION

5.1 Introduction

As introduced in Chapter 2, a cache is a small memory that holds copies of data that
otherwise reside in main memory and are now presents in each and every processor
one can think of. Usually, multiple levels of caches are present in a memory system.
This is called cache or memory hierarchy. First, we have the Level 1 (L1) cache that is
most of the time split into two independent parts: L1i to store the instructions and L1d
to store the data. This cache level provides the faster access time but is small (from a
few kilobytes to max 32kB even on high end processors). Then we have the L2 cache
which is bigger and slower and finally depending on the architecture we can have a
last level that is shared between multiple CPUs (called L3 or LLC for Last Level Cache).
Figure 5.1 illustrates an arbitrary cache hierarchy.

L2

L1i L1d

CPU

L2

L1i L1d

CPU

...

LLC

Figure 5.1: Arbitrary example of the cache hierarchy

Our contribution focuses on the model of a L1i + L1d + L2 per CPU. We will not
address the model of a LLC shared between multiple CPUs.

When doing a cache simulation at a high level, only the directory holding the tags
and a bit indicating if the tag at a given index is valid or not are necessary. This in-
formation is sufficient to produce statistics on the number of hit/miss and number of
evictions. The index of the line at which an address is stored in the directory, indistinc-
tive of the exact cache geometry, is computed as a combination of the upper address
bits (tag) and/or middle address bit (index). The lower bits of the address indicate
the exact instruction to fetch within the line, but they are not relevant since the line is
either valid as a whole, or invalid as a whole. Given the fact that translation of blocks
in QEMU occurs with a known virtual to physical address translation context, virtually
addressed, physically addressed or virtually indexed physically tagged caches can be
simulated.

45



CHAPTER 5. FAST CACHE SIMULATION FOR THE DYNAMIC BINARY TRANSLATION

MECHANISM

5.2 Instruction cache modeling: L1i

Said so, instruction cache simulation is straightforward. It is, however, slow because we
need to simulate each and every instruction address. We therefore propose a coarser
grain simulation to enhance execution speed.

5.2.1 Initial Intuition

Our initial intuition relies on the TB per TB execution principle of the DBT. As ex-
plained in Figure 2.5, blocks of instruction are translated instead of a translation per
instruction. The TBs are built in such a way that the last instruction in the block is
an instruction that will jump to another address. With this information, we have the
warranty that once we have entered a TB, all subsequent instructions within the TB
are at consecutive addresses. Thus, we can know for sure which instructions will hit
and which might miss. When entering the TB, we must verify if the first instruction
misses as we do not know in advance if it is a hit or a miss. However, from now on, the
following instructions that hold on the same cache line, i.e. that share the same index,
will hit for sure. When we arrive in the TB on an instruction that belongs to another
cache line, we must check if the instruction misses but here again we will have a hit for
the instructions that follow. As a result, the consecutive addresses concept inside a TB
helps us to have a prior knowledge of the instructions that will be a hit for sure and of
the instructions that might be a miss. In the end, the cache simulation is necessary on
only the unsure instructions and we can detect these instructions during the creation
of the TB. Figure 5.2 illustrates this principle as an example.

0x800fa7bc: 1141 addi sp,sp,-16 ← possible miss
0x800fa7be: e022 sd s0,0(sp) ← hit!
0x800fa7c0: e406 sd ra,8(sp) ← possible miss
0x800fa7c2: 0800 addi s0,sp,16 ← hit!
0x800fa7c4: 00dbc797 auipc a5,14401536 ← hit!
0x800fa7c8: 2347a783 lw a5,564(a5) ← hit!
0x800fa7cc: eb95 bnez a5,52 ← hit!

Figure 5.2: Example of static hit/miss decision within a TB

We represent here a 16-byte cache line, e.g. the line base addresses have their 4
least significant bits zeroed. The instructions are from the RISC-V ISA (they are a mix
of compressed, 16-bit, and normal, 32-bits instructions). When we enter the TB, we
have the address 0x800fa7bc that lays in the middle of a cache line. We have to check
if this address will induce a hit or a miss but as the next address 0x800fa7be is on
the same cache line (illustrated in blue on the Figure), we know that this next address
will be a hit. Then, the next instruction at the address 0x800fa7c0 is on another line
(illustrated in yellow on the Figure). Thus, we need to determine if this address will
cause a hit or a miss. However, the following 4 instructions will be for sure a hit since
they belong to the same line. Overall, we only need to run the cache simulation on 2
addresses in the TB compared to 7 instructions when doing a naive cache simulation.
Consequently, we can drastically reduce the overhead of doing cache simulation.

46



5.2. INSTRUCTION CACHE MODELING: L1I

5.2.2 Proof of concept

We have just seen the intuition on which we rely to create a smart L1i model. In order
for the model to work in any circumstances (in theory), some assumptions need to be
fulfilled. The TB is determined after the translation stage, so at this step in the DBT
mechanism, we need to know the following information:

− the number of instructions in the TB,

− the address of each instruction in the TB

Fortunately, QEMU gives us what we need to know so we are sure to be able to make
our model works.

tag index offset

Figure 5.3: Instruction address split

The last point to be clarified concerns how to know on which lines of the cache
the instructions will belong. Figure 5.3 shows that the instruction address is split into
three parts. The size of each part (number of bits in the address) depends on the cache
configuration. The offset is fixed by the number of bytes on each cache line and is
computed by doing log2(bytes per line). The index corresponds to the number of line
sets in the cache and its size is computed by doing log2(sets). In the simplified example
Figure 2.10 we had n sets and in each set we have 2 ways. We can deduce the tag

size thanks to the previous ones. Therefore, two addresses that hold on the same cache
line must have the same [tag + index] part. Retrieving this part of each address is
straightforward as it requires doing a simple mask.

5.2.3 Implementation

We did the implementation of our L1i model with the QEMU TCG Plugins. We showed
Figure 3.2 the mechanism of these plugins and we illustrated Figure 3.3 the existing
naive cache plugin that does the simulation of a L1i, L1d and L2 per virtual CPU. In
this section, we focus on the implementation of our L1i model and how it differs from
the L1i in the existing cache plugin.

Cache Simulation at TB Granularity

The API of the QEMU TCG Plugins is limited but it offers the possibility to retrieve the
target instructions inside a TB during the translation stage. All the existing plugins
have the same pattern. The entry point is the qemu plugin install function that each
plugin needs to write. In this function, the first step is to register to the TB translation
through the callback function qemu plugin register vcpu tb trans cb. Then at this
point we have two options:

− The first one implemented by the existing cache plugin is to register a callback
function for every instruction of the TB. The function will be called right before
instruction execution, once all its operand values are known.

47



CHAPTER 5. FAST CACHE SIMULATION FOR THE DYNAMIC BINARY TRANSLATION

MECHANISM

− The second one implemented by our plugin is to register a callback each time a
TB executes. During the TB translation stage, the API of the Plugins provides a
way to parse the TB and have access to the instructions it contains. We store in
an array the list of the instructions that might potentially be a miss and we give
this array as argument to the TB execution callback function. The L1i simulation
is run on the possible misses in the array at once at the beginning of the TB
execution.

Figure 5.4 sums up the mechanism of the L1i of the existing cache plugin. This
plugin subscribes to the events ”instruction execution” which means that each time a
target instruction executes, the L1i simulation is run. Doing the L1i simulation at the
instruction granularity thus induces a non-negligible overhead. Figure 5.5 shows how
we do our L1i differently than the existing one. Unlike the existing cache plugin, we
subscribe to the event ”TB execution”, which occurs much less often. The number of
instructions per TB is very dependent on the nature of the application. The commonly
stated average number of instructions per block is less than 10. However, for applica-
tions that contain algorithms with lots of loops (which is the case of the benchmark
suites that we used), this number can be higher. Moreover, with such benchmarks, the
percentage of TB reuse is really high, meaning that the overhead in our solution of
storing an array for the list of potential misses is amortized.

x ... CPU

Figure 5.4: Simplified representation of the L1i implementation in the existing naive cache
plugin

Figure 5.6 shows the differences of callbacks insertion in the TBs for the existing L1i
cache plugin and our L1i cache plugin. We can see that our version produces only one
call compared to the existing plugin that generates a call for each instruction. In our
version, this call is the one that performs the L1i simulation on the sequence of potential
instruction misses. When we record the potential misses in an array at the translation
stage, we use dynamic memory allocation and it can be a bottleneck. However, thanks
to the DBT mechanism, the TBs are put in a cache to be reused. The TBs are reused
at a high percentage (depending on the application but is true for a majority) so the
impact of using dynamic memory allocation for each TB is really negligible.

Cache characteristics

48



5.2. INSTRUCTION CACHE MODELING: L1I

x ... CPU

Figure 5.5: Simplified representation of the L1i implementation in our cache plugin

# NAIVE solution

CALL_PLUGIN_ins(...)

0x7f1ffbe5693e : sb s0,1470(a5)

CALL_PLUGIN_ins(...)

0x7f1ffbe56942 : ld s0,0(sp)

CALL_PLUGIN_ins(...)

0x7f1ffbe56944 : addi sp,sp,16

CALL_PLUGIN_ins(...)

0x7f1ffbe56946 : ret

# OUR solution

CALL_PLUGIN_tb(...)

0x7f1ffbe5693e : sb s0,1470(a5)

0x7f1ffbe56942 : ld s0,0(sp)

0x7f1ffbe56944 : addi sp,sp,16

0x7f1ffbe56946 : ret

Figure 5.6: QEMU TCG Plugins callbacks example on a TB

The characteristics of a cache are defined by its size (number of ways, sets and bytes
per line), the replacement policy and the writing policy if the cache holds data that can
be read or written. In the case of the L1i model, we do not need a writing policy as
the instruction cache only stores addresses of instructions to be read. Both the existing
cache plugin and our plugin offer the possibility to set a cache of any size. The following
Table 5.1 sums up what are supported for the replacement policy in the existing cache
plugin and in our plugin for the L1i model. We use cache to refer to the existing cache
plugin and cacheTB to refer to our plugin.

Random LRU (Least Recently Used) FIFO (First In First Out) 1-bit
cache yes yes yes no

cacheTB yes yes yes yes

Table 5.1: Sums up of the Replacement Policies supported by the existing cache plugin and our
plugin

We took the liberty to implement another replacement policy that is not present
in the existing cache plugin. We implemented the 1-bit policy which is a pseudo LRU
policy. A status bit is used for each set in the cache. These bits are named MRU for
Most Recently Used. When a place needs to be freed in a given set, multiple ways are
possible. With the 1-bit policy, if the bit in the set is 1, we evict randomly a way in the

49



CHAPTER 5. FAST CACHE SIMULATION FOR THE DYNAMIC BINARY TRANSLATION

MECHANISM

first half of the ways and in the second half if 0. When access to a given set and way
is done, the bit is updated to 0 if the way belongs to the first half of the ways and 1 if
in the second half. This policy is quite efficient for its cost and has been used in ARM
processors, as presented in Damien Gille’s Master Thesis [Gil07].

5.2.4 Error in Counting Instructions and How to Mitigate it

Our L1i model works well in theory but some errors in counting instructions do happen
in practice. With our model, we compute in advance, during the translation stage,
which instructions might miss. When doing so, we make the assumption that all the
instructions in the TB will be effectively executed. However, this is not what happens
in reality and thus we wrongly count the number of instructions. Alas, this problem
only happens with our L1i and does not affect the existing cache plugin as it relies on
the callback for the execution of each instruction.

The source of this counting error are the exceptions. When an exception occurs,
what is left of the TB beyond the faulty instruction is not executed, and control is
handed over to the simulation environment to fetch the instructions of the exception
handler. Then, on return from the handler, since the pc of the instruction that was
following the access was not known, what was left of the TB is retranslated into a new
smaller TB and accounted for by our model.

# Insns in translation block

CALL_PLUGIN_tb(...) # 9 insns counted

0x7f1ffbe5692c : auipc a5,237568

0x7f1ffbe56930 : ld a5,-612(a5)

0x7f1ffbe56934 : sb s0,0(a5)

0x7f1ffbe56938 : ld ra,8(sp)

0x7f1ffbe5693a : auipc a5,270336

0x7f1ffbe5693e : sb s0,1470(a5)

0x7f1ffbe56942 : ld s0,0(sp)

0x7f1ffbe56944 : addi sp,sp,16

0x7f1ffbe56946 : ret

# Executed insns until page fault

0x7f1ffbe5692c : auipc a5,237568

0x7f1ffbe56930 : ld a5,-612(a5)

0x7f1ffbe56934 : sb s0,0(a5)

# New translation block after return from handler

CALL_PLUGIN_tb(...) # 7 insns counted

0x7f1ffbe56934 : sb s0,0(a5)

0x7f1ffbe56938 : ld ra,8(sp)

0x7f1ffbe5693a : auipc a5,270336

0x7f1ffbe5693e : sb s0,1470(a5)

0x7f1ffbe56942 : ld s0,0(sp)

0x7f1ffbe56944 : addi sp,sp,16

0x7f1ffbe56946 : ret

# Executed insns until new page fault

0x7f1ffbe56934 : sb s0,0(a5)

0x7f1ffbe56938 : ld ra,8(sp)

0x7f1ffbe5693a : auipc a5,270336

0x7f1ffbe5693e : sb s0,1470(a5)

# New translation block after return from handler

CALL_PLUGIN_tb(...) # 4 insns counted

0x7f1ffbe5693e : sb s0,1470(a5)

0x7f1ffbe56942 : ld s0,0(sp)

0x7f1ffbe56944 : addi sp,sp,16

0x7f1ffbe56946 : ret

Figure 5.7: Stopped TB execution example due to a page-fault

Figure 5.7 illustrates this problem with page-faults that occurs once the kernel page
table has been set up during the Linux boot. On the left side of the Figure, we have

50



5.2. INSTRUCTION CACHE MODELING: L1I

a TB freshly translated. We counted 9 instructions. During the execution of this TB
(beginning of the right side of the Figure), the first store in purple provokes a page-
fault. Because of that, a new TB is created after return from handler on which we
count 7 instructions that were already counted in our model in the original TB. Then
the execution continues and we arrive at a second store in purple that also provokes a
page-fault and thus the creation of another TB with 4 instructions already counted in
the original TB.

Other instructions than the page-fault one produce this error such as wfi (that sleeps
waiting for an interrupt) or pause (that yields back the processor). But unlike the
page-fault they are easy to handle. They happen very rarely and when we force to
end the TB, the slowdown is insignificant. However, regarding the memory accesses,
they occur very more often. It depends on the workload but in general 30% to 50% of
the instructions are memory accesses. So, ending the TB on all loads and stores just
because that might raise a page-fault can induce significant slowdowns. Section 6.3
evaluates in detail the real impact of this problem on the cache statistics.

5.2.5 Dependency on Simulator Runtime

We also discovered another unexpected behavior for programs running on top of Linux,
and that does not show up for bare metal programs. We came across a time dependency
of the flow of executed target instructions. We brought out this odd phenomenon while
testing several cache implementations. Surprisingly, the faster the simulator, the lower
the number of executed instructions for a given program. As far as we are aware, this
phenomenon has not yet been reported in the literature. Doing the evaluation with such
an effect is not wrong in essence because the instructions executed induce a correct
behavior but can make previous works questionable regarding the cache statistics they
report. For example, a simple direct mapped cache would lead to a smaller number
of executed instructions and possibly better hit rate than a fully associate cache, just
because the latter is much slower to simulate than the former.

0 50 100 150 200

20,000

40,000

60,000

80,000

Δ𝑡 in arbitrary unit

N
um

be
ro

ft
im

er
in
te
rr
up

ts

Figure 5.8: Number of raised timer interrupts as a function of an arbitrary cache model simu-
lation delay

When investigating why the behavior happens, we discovered that it comes from
the repeated occurrences of timer interrupts. QEMU triggers alarms by relying on the
host real-time clock (using rdtsc on x86 hosts). At each ∆t time elapsed, the timer in-
terruption is raised and a call to the target Linux scheduling function update cfs group

is done. Calling this function generates instructions that will be taken into account by

51



CHAPTER 5. FAST CACHE SIMULATION FOR THE DYNAMIC BINARY TRANSLATION

MECHANISM

the TCG Plugins. So, if a plugin does a lot of computations, the timer interruption will
be raised a lot and thus a lot more instructions will be executed. We illustrate this in
Figure 5.8 by adding a for loop of n iterations in our cache model to induce a delay.
As a result, the more interrupts, the more instructions counted in the cache statistics.
Unlike the problem above, this dependency on the simulator runtime affects both our
plugin and the existing cache plugin.

This dependency effect can be reduced by using the -icount shift=2,sleep=on

option of QEMU. It forces QEMU to use an internal clock in which case only 1830 irqs
are raised, for any added delay. However, this option of QEMU does not support multi-
core execution of the virtual CPUs. As we want to make a fair comparison of speed with
the existing cache plugin and with vanilla QEMU, we use either bare metal software
that does not program alarms or QEMU user-mode to do the evaluation. They both
support parallel execution and are not affected by the time dependency effect. Another
solution could be to simulate the instruction cache in parallel of the execution of the
main loop of QEMU, in a separate thread by writing in a FIFO. But this solution needs to
be mitigated as even if it can solve the dependency on the simulator runtime, it induces
other issues that are addressed in the next section with the L1d model.

5.3 What about other cache levels: L1d and L2?

Thanks to the TB per TB execution of the DBT principle, we propose a L1i model which
allows to reduce the number of calls to the cache simulator by knowing at the transla-
tion stage which instructions will hit for sure and which will might miss. Thinking of a
similar model for the L1d is more complicated as the addresses of the memory accesses
are not necessarily consecutive. Thus, to improve the performance compared to a naive
L1d (which runs the cache simulation each time a memory access executes), we pro-
pose a threaded execution of the L1d model. Regarding the L2 model, the question is
raised on how we can link our two different models of the L1i and L1d to produce the
L2 simulation per virtual CPU.

5.3.1 Threaded L1d simulation

The principle of our L1d model is that the memory accesses are retrieved thanks to
the callback function in the TCG Plugins API and are put in buffers whose number and
size are adjustable. Once a buffer is full, it is sent to the thread that does the cache
simulation at once on all the memory accesses in the buffer. Figure 5.9 illustrates this
process. We have in gray what corresponds to the same thread, similar to the Figure 5.4
and Figure 5.5 and in red the thread that does the data cache simulation. However, in
the case of multi-core simulation, multiple ”gray” threads will be created and each will
correspond to a virtual CPU. Thus, multiple threads will communicate with the ”red”
thread thanks to synchronizations.

Figure 5.10 shows more in details how the buffers are fill up and how they are
sent to the cache thread. We allocate at the beginning a list of available buffers for
each virtual CPUs: free buffers. Each virtual CPU starts by taking a buffer in its list.
The buffer that is being filled is called the current buffer. Once a virtual CPU has
its current buffer full, the buffer is added to a global list common to all threads:
full buffers. The global list of full buffers is a lock-free structure. While the list of

52



5.3. WHAT ABOUT OTHER CACHE LEVELS: L1D AND L2?

x ... CPU

Figure 5.9: Simplified representation of the L1d implementation in our cache plugin

VCPU 0

free_buffers

current_buffer

...

VCPU n

free_buffers

current_buffer

...

L1d Thread

full_buffers
...

L1d_run

...

Figure 5.10: Simplified representation of the data thread interactions with the virtual CPUs

full buffers is not empty, the cache thread will run the L1d simulation on each mem-
ory access on the buffer that belongs to a virtual CPU. Once the buffer is completely
consumed, it is put back in the list of available buffers. The list of free buffers of each
virtual CPU is managed as a producer-consumer with semaphores. As the data cache
simulation for each virtual CPU is done on a separate thread, it is out-of-sync from
QEMU execution.

Remarks on the choice of the shared structure

We went through several types of structures before deciding to take the lock-free one
for the list of full buffers. Our very first solution was to use semaphores to deal with
this list. It was our reference implementation.

53



CHAPTER 5. FAST CACHE SIMULATION FOR THE DYNAMIC BINARY TRANSLATION

MECHANISM

At the start of our investigation, we tested the asynchronous queue structure
GAsyncQueue written in C and available within by the GLib library [AAG+16]. With
this solution, the list of full buffers is replaced by an asynchronous queue. Moreover,
the buffers in the queue can be ordered to simulate a FIFO policy. But compared to the
classical list of full buffers that is synchronized with semaphores, this solution did not
show better results, so we did not choose it.

After that, we were wondering if the use of semaphores can be beaten by condition
variables. Table 5.2 shows the range of time for a couple of executions of the PARSEC
benchmark lu cb for 4 vCPUs. We have tested arbitrary values for the combination
number of buffers × size each buffers.

Time in s 16x8 128x128 1024x1024 1024x4096
condition [17,7-17,9] [6,0-6,7] [5,2-5,5] [6,5-7,3]

semaphore [16,4-19] [4,8-5,4] [3,9-4,6] [6,9-7,3]

Table 5.2: Execution time in full system of the PARSEC benchmark lu cb for 4 vCPUs

We also observed the same behavior with other PARSEC benchmarks. As one can see
on the Table, using conditions instead of semaphores does not improve the simulation
time and as a result we did not choose it either.

Then, our final idea was to use a lock-free structure. Thirty years ago, Maurice
Herlihy presented the benefits of using lock-free structures [HM93, Her93]. Since then,
his implementation was criticized ([Bar93]) but the lock-free ideology remains used in
shared data structures research. For our investigation, we used a lock-free structure
proposed by the library liblfds. This library contains around ten structures and we
chose the ”bounded queue” one which supports many producers and many consumers.
As our previous experiments showed the best performance for 1024x1024, we focused
here on testing the behavior of the lock-free structure by varying the number of virtual
CPUs. Table 5.3 sums up the range of times of a few executions for 2,4,8,16,32 and
64 virtual CPUs. The execution times are different from the previous Table as it was
executed on a different machine.

Time in s 2 4 8 16 32 64
semaphore [8,9-10,2] [9,6-10,4] [7,5-8,2] [5,7-6,4] [5-5,5] [7,3-8,4]
lock-free [8,2-9,7] [9,1-9,4] [7,2-7,8] [5,5-5,8] [5-5,5] [6,8-7,7]

Table 5.3: Execution time in full system of the PARSEC benchmark lu cb with 1024 buffers
of a size 1024

The improvement when using a lock-free structure for the list of full buffers instead
of the classical list with semaphore is not very significant but visible enough to make
us choose this kind of structure for our implementation.

Cache characteristics

The following Table 5.4 and Table 5.5 sum up the replacement policies and the writing
policies available in our plugin and with the existing cache plugin for the L1d model.
cache refers to the existing cache plugin and cacheTB refers to our plugin. Compared

54



5.3. WHAT ABOUT OTHER CACHE LEVELS: L1D AND L2?

to the existing cache, we support for the L1d model an extra replacement policy which
is the 1-bit LRU and an extra writing policy which is the Write Through.

Random LRU (Least Recently Used) FIFO (First In First Out) 1-bit
cache yes yes yes no

cacheTB yes yes yes yes

Table 5.4: Sums up of the Replacement Policies supported by the existing cache plugin and our
plugin

WRITE THROUGH WRITE BACK ALLOCATE
cache no yes

cacheTB yes yes

Table 5.5: Sums up of the Writing Policies supported by the existing cache plugin and our
plugin

5.3.2 L2 simulation
Mitigations on the L1d threaded simulation

Doing the L1d simulation on a separate thread helps in relieving the plugin contention
for the simulation on each memory access. It results with a L1d simulation that is done
out-of-sync from QEMU main execution. This raises two issues that can have effects on
a L2 simulation:

− The first one concerns the scalability of our model. For a few numbers of virtual
CPUs, our threaded model might show better performance than the naive per
memory access simulation. However, when we execute a high number of virtual
CPUs, a bottleneck can happen since multiple virtual CPUs will want to access the
same and only cache thread. Thus, it can degrade the performance as the virtual
CPUs may be pending a lot. One can think of a solution to avoid this bottleneck:
having a data cache thread per virtual CPU. But this also leads to some issues.
If we create a thread per virtual CPU for the data cache simulation, we limit
the total number of virtual CPUs that can be simulated. Imagine having a host
machine composed of 128 CPUs and simulating 64 virtual CPUs with QEMU. We
will have 64 other threads for the data cache simulation and results with a total
of 128 threads. If we want to simulate a number of virtual CPUs higher than 64
in this example, we will have multiple threads executing on the same physical
CPUs and thus degrading the performance. With only one data cache thread for
all the virtual CPUs, we will have only a total of 65 threads. Moreover, if we
accept this virtual CPUs number limitation, the problem is just postponed to the
L2 implementation. Indeed, we will need to do synchronizations between all the
data cache threads to access the L2 and thus creating a bottleneck.

− The second one concerns the out-of-sync simulation. Implementing a L2 means
that we have a cache level to unify the L1i and L1d. To have a correct L2 simula-
tion, it needs to be done at a small granularity. But having the memory accesses

55



CHAPTER 5. FAST CACHE SIMULATION FOR THE DYNAMIC BINARY TRANSLATION

MECHANISM

simulated out-of-sync compared to QEMU main execution will have an impact
on the validity of the data contained in the L2. A solution could be to do the
L1d+L1i+L2 simulation on a separate thread but we come back to the first issue
regarding the scalability in multi-core.

Section 6.3 highlights these issues on the scalability and conclude that only a small
number of virtual CPUs show improvements.

L2 implementation

To have a correct simulation of the L2, we decided to keep our L1i that relies on the
TB per TB execution and we also keep the naive L1d simulation at each memory access
execution (with the callback of the TCG Plugins API for the memory access). Each
time a memory access executes, the L1d simulation is run as well as the L2 simulation.
Each time a TB executes, the L1i simulation is run on each possible miss of the list
retrieved during the translation stage as well as the L2 simulation. Table 5.6 sums up
the inclusion policies supported by our plugin and by the existing cache plugin.

INCLUSIVE NINE (NON INCLUSIVE NON EXCLUSIVE)
cache no yes

cacheTB yes yes

Table 5.6: Sums up of the Inclusion Policies supported by the existing cache plugin and our
plugin

5.4 Conclusion

Thanks to the DBT mechanism, DBT based engines such as QEMU propose a fast and
functional simulation. Adding instrumentation in functional simulators will for sure
degrade the performance. In this chapter, we proposed diverse ways to minimize the
performance overhead induced by adding a cache simulation inside QEMU. By relying
on the QEMU TCG Plugins to implement our cache hierarchy model per virtual CPUs,
we make sure to not be intrusive in the QEMU source code and thus this makes our
implementation sustainable over time as the source code evolves.

By taking benefit of the per TB nature of the translation in the DBT, we defined
a strategy to model the instructions caches that considerably reduces the overhead
caused by instrumentation. We however raised two issues, one due to the DBT mech-
anism and how we thought of our L1i model and the other independent of our model
related to the time dependency.

The same intuition was more complicated to adapt for the data cache. In order
to still reduce the overhead of instrumentation, we proposed a threaded data cache
simulation. This contribution however raises questions on the scalability when lots of
CPUs are simulated and how to assert the correctness of the L2 simulation since the
L1d simulation is out-of-sync from QEMU main execution.

Overall, fast cache simulation is not that easy and one of the main issue remains on
how to assert the validity of the produced metrics which will be addressed Chapter 6.

56



Chapter 6

Experiments

UP to now we have seen different ways to improve the DBT engines simulation time
and how to design smartly a cache model thanks to instrumentation that limits

the overhead on the global simulation time. Thanks to the development and the popu-
larity of multi-core systems, the DBT engines adapted their designs to propose a virtual
multi-core simulation that relies on the parallel architecture of the host. As multi-core
execution on the host is in itself an improvement to accelerate the execution time of
softwares, parallel DBT engines that use the parallel architecture of the host also pro-
vide good performance. As it has never been done to the best of our knowledge, we
proposed in Chapter 4 a methodology to study the scalability of the parallel implemen-
tation of the well-known DBT engine QEMU. We also presented a methodology to pin
the virtual CPUs of QEMU on the physical CPUs of the host machine with the idea that
it might improve the performance. In Chapter 5 we focused on how to add new archi-
tectural features in the simulation without degrading a lot the performance. Thus, we
contributed to efficiently model configurable caches in QEMU. We proposed an instruc-
tion cache simulation that takes benefit of the per TB execution of the DBT mechanism
and that considerably reduces the overhead of adding a cache simulator inside QEMU.
However, this model raised few issues that are studied in this current chapter. We also
proposed other simulation solutions for the data cache model.

In this chapter we firstly detail the experiments environment with all the bench-
marks that we used. Secondly, we present the results of our methodology on the scala-
bility of QEMU parallel implementation and we conclude on the impact of the pinning
on the simulation performance. Thirdly, we present the performance results of our
cache simulation in QEMU and we focus on how we validate those results by compar-
ing them to another cache simulator. Fourthly, we combine our two contributions.

57



CHAPTER 6. EXPERIMENTS

Table of contents
6.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2 Scalability of QEMU Parallel Implementation . . . . . . . . . . . . 60

6.2.1 Native execution . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2.2 With/without virtual CPUs pinning . . . . . . . . . . . . . . . . 62

6.2.3 Isolating physical CPUs for QEMU virtual CPUs threads . . . . . 65

6.2.4 Is pinning helpful? . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.3 Instruction cache (L1i) evaluation . . . . . . . . . . . . . . . . . . . 73

6.3.1 Issues mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3.2 Statistics validation . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.3.3 Simulation time . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3.4 gem5 comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.4 Data cache (L1d) evaluation . . . . . . . . . . . . . . . . . . . . . . 80

6.4.1 Optimal buffer size and buffer count . . . . . . . . . . . . . . . 80

6.4.2 Statistics validation . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.4.3 Simulation time . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.5 Cache hierarchy per virtual CPU: L1i + L1d + L2 . . . . . . . . . . 86

6.5.1 Statistics validation . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.5.2 Simulation time . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.6 Cache simulation with pinning . . . . . . . . . . . . . . . . . . . . . 88

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

58



6.1. ENVIRONMENT

6.1 Environment

This section describes the environment that we used to do the experiments. It is com-
posed of the host machines on which we run QEMU, which QEMU version we used,
which ISA we chose as the target in QEMU, which Operating System we cross-compiled
to be run in QEMU and finally with which benchmarks we do the evaluation.

Host machines

We relied on two servers to run our experiments. The first one was mentioned Fig-
ure 4.5. This is the server on which we did the analysis of QEMU parallel implemen-
tation scalability with and without the pinning. It is a Dell PowerEdge R910/0P658H.
It is composed of 4 Nehalem-EX 7520 Intel Xeon Processors with on each 4 cores (4x4
cores with 2 hardware threads per core that results with a total of 32 CPUs). During
the second year of this thesis, we acquired a new server with more cores than in the
previous one. It is on this new server that we run our experiments to evaluate our
second contribution Chapter 5 of our cache model. This new server is a 2 GHz 64-core
AMD EPYC 7702P PowerEdge R6515 server, with 128 CPUs in total. On both the two
machines, we were the only user connected through a ssh connection and the host
Operating System is Debian 11.

QEMU

As QEMU is open-source, we retrieved the source code on the public git and we com-
piled it. Regarding the first contribution, we did an analysis with the version of two
years ago. Since then, work has been done manually to make the pinning implementa-
tion up to date with the latest version of QEMU. Concerning the second contribution,
as we relied on the TCG Plugins, our cache implementation is viable with the latest ver-
sions of QEMU (plugins are available since QEMU V4.2, but their API is still evolving).

Target ISA

The boost around the RISC-V ISA in academic and industries made us choose this ISA
as the target in QEMU for our 2 contributions. To make a complete analysis of QEMU
scalability, we also did the scalability evaluation with ARM as the target ISA. Regarding
the second contribution, as our cache implementation is not ISA dependent thanks to
the TCG Plugins, we run only the experiments with a RISC-V target.

Busybear Linux

Busybear Linux is a RISC-V root filesystem image comprised of busybox and dropbear.
When we did the experiments for our first contribution, we used linux-5.9.6, dropbear-
2020.81 and busybox-1.32.0. As we also used the ARM ISA for the first contribution
on QEMU scalability, we manually cross-compiled busybear to run in ARM in addition
to RISC-V. For our second contribution we stayed only with busybear in RISC-V and we
used linux-5.15.32, dropbear-2020.81 and busybox-1.35.0.

Benchmarks

We used two different sets of benchmarks to do the evaluation of our two contributions.
The first one is the PolyBench/C [PY15] which is a collection of around thirty programs.

59



CHAPTER 6. EXPERIMENTS

All the programs are single-threaded and are written in C. They address multiple com-
puting domains such as linear algebra, image processing, physics simulation, statistics
and much more. The second one is the PARSEC suite for Princeton Application Repos-
itory for Shared Memory Computers. They are multi-threaded programs and we gave
more comprehensive information about them in Section 4.3.2 as they are an important
asset in the evaluation of QEMU scalability.

6.2 Scalability of QEMU Parallel Implementation

In this section we report the measured execution times of the PARSEC suite (natively
or simulated). We used it with the LARGE inputs. On each plot, the vertical black line
represents the number of host CPUs. The vertical red line is used to represent when the
SMT feature is not enabled, meaning only one hardware thread per core is activated.
On all the plots, we decided to show the wall-clock times. Another solution could have
been to display the speed up but as lots of programs have a similar scalability, it would
have been difficult to correctly read the Figures because of many overlaps. Another
reason to display the wall-clock time instead of the speed up is that with the wall-clock
time we can have information on the order of magnitude of the programs’ run-times on
QEMU.

Our QEMU scalability evaluation is divided into four sections. In the first section
we run natively on the host machine the PARSEC benchmarks. Secondly, we launched
QEMU with and without the pinning and we did variations of some configurations
that are detailed in the section. Thirdly we used the CPUs isolation and fourthly we
analyzed our results. To decide on the number of times to run each benchmark, we
manually evaluated the variations and we concluded that 10 is a correct number.

6.2.1 Native execution

Before testing the pinning in QEMU with busybear and with the PARSEC benchmarks,
we needed to test the thread affinity proposed by the PARSEC API to see if it has an
impact on the execution time of the benchmarks. As explained in Section 4.3.2, we only
have access to two environment variables to control the thread affinity. As a result, we
cannot decide one by one on each physical CPU each PARSEC thread will run. We can
only decide the range of physical CPUs id. All the following Figures in this section are
with a log scale on the y axis.

We report in Figure 6.1 and Figure 6.2 the full execution time of the PARSEC bench-
marks directly on the Dell PowerEdge host server respectively without thread affinity
and with thread affinity. One can see that on both Figures, the full execution time Tfull

decreases as the number of threads increases. Beyond 32 threads, it stays constant.
We compare in Figure 6.3 Tfull with and without the thread affinity of 4 benchmarks

(ferret, bodytrack, blackscholes and cholesky). We observe the same behavior
for all the benchmarks and Appendix A details the comparison Figures for all other
benchmarks. But for the sake of clarity, we decided here to represent only 4 of them.

Cholesky is the fastest benchmark and it executes in less than a second when the
number of threads is less than 64. That explains why its behavior is different from the
other.

As we can see from the last Figure 6.3, the PARSEC thread affinity does not have
an impact on the execution time. It stays the same for most of the programs and even

60



6.2. SCALABILITY OF QEMU PARALLEL IMPLEMENTATION

24 8 16 24 32 48 64 96 128
Number of threads nt

100

101

W
al

l-C
lo

ck
 T

im
e 

(s
)

water nsquared
barnes
radix
ocean cp
freqmine
water spatial
swaptions
fft
lu ncb
lu cb
ferret
fludanimate
bodytrack
blackscholes
cholesky

Figure 6.1: Full execution time in x86 without thread affinity

24 8 16 24 32 48 64 96 128
Number of threads nt

100

101

W
al

l-C
lo

ck
 T

im
e 

(s
)

water nsquared
barnes
radix
ocean cp
ferret
freqmine
water spatial
swaptions
fft
lu cb
lu ncb
fludanimate
bodytrack
blackscholes
cholesky

Figure 6.2: Full execution time in x86 with thread affinity

degrades the performance a little bit with a small number of threads for a subset of
them. Thus, we can conclude that the PARSEC thread affinity does not significantly
modify the execution time and that is why we decided to not consider this parameter
for the following experiments.

61



CHAPTER 6. EXPERIMENTS

24 8 16 24 32 48 64 96 128
Number of threads nt

100

101

W
al

l-C
lo

ck
 T

im
e 

(s
)

ferret PARSEC affinity
ferret
bodytrack PARSEC affinity
bodytrack
blackscholes
blackscholes PARSEC affinity
cholesky
cholesky PARSEC affinity

Figure 6.3: Comparison full execution time in x86

6.2.2 With/without virtual CPUs pinning
Without pinning

Firstly, we wanted to analyze the scalability of QEMU parallel implementation without
the pinning. To do so, we have used different parameters and we have experimented
with variations around them.

Figure 6.4 reports Tfull without the pinning with nc = nt, meaning that we run
QEMU and the PARSEC with the same number of virtual CPUs and threads. For
example, when we run QEMU with 4 virtual CPUs, we run all the benchmarks in
busybear with 4 threads and we quit QEMU at the end. We do that for nc ∈
{1, 2, 4, 8, 16, 24, 32, 48, 64, 96, 128}. One can see that all the programs take advantage of
the parallel execution of QEMU. Until 32 threads (which correspond to the number of
host physical CPUs), Tfull progressively decreases and starts to increase beyond 32. In
Figure 6.5, still with nc = nt, we compare Tfull with Troi with again only 4 benchmarks
for the sake of clarity. Appendix A gives in detail the comparison of Tfull with Troi for
all the programs. Troi corresponds to the execution time of the Region-Of-Interest, i.e.,
the execution time of only the parallel part of the benchmarks. According to [SR15],
the benchmark in the PARSEC that exhibits the better scalability regarding its parallel
execution is blackscholes as we can see Figure 6.5. For mostly all the programs, Tfull

and Troi are close which means that the parallel part of the programs is an important
part of the total execution time. Thus, we can analyze with confidence the scalability
of QEMU parallel implementation with Tfull .

Figure 6.6 compares Tfull with nc = nt and nc = 128. When nc = 128, we run
QEMU once with 128 virtual CPUs and we run incrementally the PARSEC benchmarks.
The goal of doing this investigation is to determine if inactive virtual CPUs of QEMU
can have an impact on the simulation time, i.e., if they induce some overhead. Some
benchmarks are clearly more stable than others. For less than 96 threads, Tfull for

62



6.2. SCALABILITY OF QEMU PARALLEL IMPLEMENTATION

24 8 16 24 32 48 64 96 128
Number of threads nt

100

101

102

103

W
al

l-C
lo

ck
 T

im
e 

(s
)

lu ncb
lu cb
radix
swaptions
ocean cp
fft
bodytrack
ferret
freqmine
fludanimate
blackscholes
water spatial
cholesky
water nsquared

Figure 6.4: Full execution time in QEMU RISC-V nc = nt without pinning

24 8 16 24 32 48 64 96 128
Number of threads nt

101

102

Ti
m

e 
(s

)

bodytrack FULL
bodytrack ROI
ferret FULL
ferret ROI
blackscholes FULL
blackscholes ROI
cholesky FULL
cholesky ROI

Figure 6.5: Comparison full and ROI execution time in QEMU RISC-V nc = nt without pin-
ning

63



CHAPTER 6. EXPERIMENTS

24 8 16 24 32 48 64 96 128
Number of threads nt

101

102

W
al

l-C
lo

ck
 T

im
e 

(s
)

bodytrack nc = 128
bodytrack nc = nt
ferret nc = nt
ferret nc = 128
blackscholes nc = 128
blackscholes nc = nt
cholesky nc = 128
cholesky nc = nt

Figure 6.6: Comparison full execution time in QEMU RISC-V without pinning with nc = nt

and nc = 128

24 8 16 24 32 48 64 96 128
Number of threads nt

101

102

W
al

l-C
lo

ck
 T

im
e 

(s
)

bodytrack with SMT
ferret with SMT
bodytrack no SMT
ferret no SMT
blackscholes with SMT
cholesky with SMT
blackscholes no SMT
cholesky no SMT

Figure 6.7: Comparison of full execution time in QEMU RISC-V without pinning with nc = nt

for the host machine with and without SMT

64



6.2. SCALABILITY OF QEMU PARALLEL IMPLEMENTATION

nc = nt and nc = 128 is really similar but for some programs, nc = 128 is a little bit
higher than nc = nt. But overall, there is not a significant difference of Tfull so we can
conclude that inactive virtual CPUs of QEMU do not degrade the performance of the
simulation.

In Figure 6.7, we compare Tfull with and without the SMT configuration. When
SMT is enabled, the host machine provides 32 hardware threads, meaning two harts
per core (black vertical line). When SMT is disabled, the host machine provides 16
cores with one hardware thread per core (red vertical line). One can see on the Figure
that between 1 and 16 threads, the programs are clearly faster when SMT is disabled.
The maximum gain in average is 28% at 16 threads. However, beyond 16 threads, the
two curves tend to get closer to each other.

With all these experiments and given the shape of all the curves, we can thus con-
clude that QEMU with the RISC-V target scales well.

With pinning

Now that we have evicted the PARSEC thread affinity and analyzed the scalability of
QEMU parallel implementation with the RISC-V target, we can analyze the scalability
with the pinning. As for the without pinning analysis, we have used the same pa-
rameters and we have experimented with variations around them. Similarly to above,
Figure 6.8 reports Tfull for nc = nt and Figure 6.9 compares Tfull and Troi. Here again,
we can see that all the programs take advantage of the parallel execution of QEMU.
Appendix A gives in detail the comparison of Tfull with Troi for all the programs with
the pinning.

Figure 6.10 compares Tfull for nc = nt and nc = 128. Here again there is no big
differences between nc = nt and nc = 128 so we can conclude that inactive virtual CPUs
of QEMU do not have an impact on the simulation. Regarding the SMT parameter,
Figure 6.11 compares Tfull with and without the SMT configuration. Like previously
without pinning, the curves without the SMT configuration show better performance
between 1 and 16 threads. After that, the curves tend to get closer.

We can draw the same conclusion than previously: the parallel implementation of
QEMU has a good scalability with the pinning.

Comparison

With all the previous experiments done, we can now compare Tfull with and without
pinning Figure 6.12. Appendix A gives in detail the comparison of Tfull with and without
pinning for all the benchmarks. Cholesky is the only one among the set of benchmarks
that is not stable when nt is high. For all the other benchmarks, the two curves without
and with pinning are really close. Surprisingly, the execution time remains the same
without and with pinning. Consequently, pinning virtual CPUs in QEMU does not seem
to have a positive impact on the simulation performance.

6.2.3 Isolating physical CPUs for QEMU virtual CPUs threads

We wanted to do a supplement analysis to investigate the possible impact of the threads
kernel on QEMU running on the host machine. To do so, we isolated physical CPUs for
QEMU virtual CPUs threads by using the isolcpus Linux kernel configuration. Regard-
ing Figure 4.5, we isolated the physical Cores 1-15 (PU 1-15 and 17-31). Thus, the
kernel threads are only able to run on Core 0 (PU 0 and 16). This configuration brings

65



CHAPTER 6. EXPERIMENTS

24 8 16 24 32 48 64 96 128
Number of threads nt

100

101

102

103

W
al

l-C
lo

ck
 T

im
e 

(s
)

lu ncb
lu cb
radix
swaptions
ocean cp
fft
bodytrack
ferret
freqmine
fludanimate
blackscholes
water spatial
cholesky
water nsquared

Figure 6.8: Full execution time in QEMU RISC-V nc = nt with pinning

24 8 16 24 32 48 64 96 128
Number of threads nt

101

102

Ti
m

e 
(s

)

bodytrack FULL
bodytrack ROI
ferret FULL
ferret ROI
blackscholes FULL
blackscholes ROI
cholesky FULL
cholesky ROI

Figure 6.9: Comparison of full and ROI execution time in QEMU RISC-V nc = nt with pinning

66



6.2. SCALABILITY OF QEMU PARALLEL IMPLEMENTATION

24 8 16 24 32 48 64 96 128
Number of threads nt

101

102

W
al

l-C
lo

ck
 T

im
e 

(s
)

bodytrack nc = 128
bodytrack nc = nt
ferret nc = nt
ferret nc = 128
blackscholes nc = nt
blackscholes nc = 128
cholesky nc = 128
cholesky nc = nt

Figure 6.10: Comparison of full execution time in QEMU RISC-V with pinning with nc = nt

and nc = 128

24 8 16 24 32 48 64 96 128
Number of threads nt

101

102

W
al

l-C
lo

ck
 T

im
e 

(s
)

bodytrack with SMT
ferret with SMT
bodytrack no SMT
ferret no SMT
blackscholes with SMT
cholesky with SMT
blackscholes no SMT
cholesky no SMT

Figure 6.11: Comparison of full execution time in QEMU RISC-V with pinning with nc = nt

for the host machine with and without SMT

67



CHAPTER 6. EXPERIMENTS

24 8 16 24 32 48 64 96 128
Number of threads nt

101

102

W
al

l-C
lo

ck
 T

im
e 

(s
)

bodytrack pinning
bodytrack no pinning
ferret pinning
ferret no pinning
blackscholes pinning
blackscholes no pinning
cholesky no pinning
cholesky pinning

Figure 6.12: Comparison of full execution time in QEMU RISC-V nc = nt without pinning and
with pinning

two advantages: the first one is that it will mitigate a lot the bottlenecks and the sec-
ond one is that it will prevent competing between the kernel and QEMU virtual CPUs
threads.

Having the isolation of the QEMU virtual CPUs on Cores 1-15 limits the number of
threads for the PARSEC and it complicates the ones that require a number of threads
equal to a power of 2 to run (which are fft, fluidanimate, ocean cp, radix and
swaptions).

The comparison with the not pinned configuration is divided into three parts:

− from 1 to 15 threads: no differences for all the benchmarks except one. We have
an improvement of 7% for lu cb with 15 threads compared to the not pinned
configuration.

− from 60 threads and more: some differences, improvements as degradations but
mostly degradations.

− for 30 threads: this is where we have the most improvements for 4 benchmarks.
We have a range of improvement between 4% and 16%. We have a degradation
for the other benchmarks.

The improvements of the last part for 30 threads are represented Figure 6.13. The
pinned and not pinned configurations were done with 32 threads. For the isolcpus
configuration, we were able to run the programs with 30 threads as Core 0 is for the
kernel threads.

One can see that we have some improvement of the execution time for cholesky,
freqmine, lu cb and lu ncb. For the other benchmarks, it either degrades or does not
impact the execution time. In conclusion, combining pinning and CPUs isolation can
significantly reduce the execution time in some cases but it is not generalizable for all

68



6.2. SCALABILITY OF QEMU PARALLEL IMPLEMENTATION

black body chol ferret freq lu cb lu ncb w nsq w spat
0

10

20

30

40

50

W
a
ll-

C
lo

ck
 T

im
e
 (

s)

no pinning

pinning

pinning with isolcpus

Figure 6.13: Comparison of the full execution times in QEMU RISC-V for 32 threads without
pinning, with pinning and with isolcpus pinning

the benchmarks and for all numbers of PARSEC threads.

6.2.4 Is pinning helpful?
Remark for a large number of QEMU virtual CPUs

When we compare the curves of the full execution time of the native execution in x86
and the simulated one in QEMU RISC-V, the main difference lies when the number of
PARSEC threads goes above 32 (which correspond to the number of physical CPUs on
the host machine). For the simulated one, the curves increase sharply. To explain this
behavior, we used the Linux perf tool [DM10, Gre13] to retrieve the number of CPU
cycles during the execution of one benchmark in busybear running in QEMU. We chose
lu cb as it exhibits the better properties that we want to analyze and we recompiled
QEMU to disable the optimizations. We focused on the ROI section of this benchmark.
The investigation showed us that approximately 70% of the time was spent in the Linux
futex syscall used by the global mutex of QEMU. When the simulation is done with a
lot of virtual CPUs, a bottleneck happens since the code generator’s interrupt handling
function requires a lock on this mutex.

Using ARM instead of RISC-V as the QEMU target

With all the experiments done with the RISC-V target in QEMU, we concluded previ-
ously that the pinning does not have a positive impact on the execution time. To make
sure that this behavior is not target dependent, we have done the same experiments
using ARM as the target. We focused on when nc = nt and without the PARSEC thread
affinity. Because the machine virt limits the number of cores with ARM in QEMU, it
was only possible to experiment until 96 virtual CPUs.

We report Figure 6.14 and Figure 6.15 Tfull for all the benchmarks with QEMU ARM
respectively without and with the pinning configuration. We have the same behavior

69



CHAPTER 6. EXPERIMENTS

CPU migrations L1-dcache-load-misses (106)
nt no pinning pinning no pinning pinning
1 1 014 1 155 79 469 81 340
2 884 799 82 478 97 332
4 2 706 705 86 350 102 624
8 7 930 84 687 95 995 114 283

16 23 692 91 564 114 800 135 526
24 29 404 96 639 60 700 64 071
32 1 965 662 1 345 667 168 547 164 196
48 8 411 897 260 084 96 999 91 701
64 17 141 497 722 055 258 957 254 168
96 62 427 446 689 736 500 362 465 388

128 324 423 980 2 958 824 2 089 470 2 347 334

Table 6.1: Perf for QEMU RISC-V without and with vCPUs pinning

as in QEMU RISC-V: between 1 and 32 threads, the curves decrease progressively and
after 32 threads it goes up. The QEMU scalability is still good with the ARM target.

Figure 6.16 reports the comparison of Tfull without and with pinning for 4 bench-
marks in QEMU ARM. We obtain the same observation for all the other benchmarks.
Appendix A gives in detail the comparison of Tfull with and without pinning for all the
benchmarks. Similarly than with RISC-V, the pinning does not improve the execution
time.

Pinning investigation with Perf

To understand why the pinning does not improve the performance, we have done a
complete investigation with Perf. Here again we focused on nc = nt. The following
tables show the result of the record of Perf on all the benchmarks run 10 times in
RISC-V and in ARM (respectively Table 6.1 and Table 6.2).

CPU migrations L1-dcache-load-misses (106)
nt no pinning pinning no pinning pinning
1 253 300 254 493 263 479
2 630 112 251 762 321 809
4 2 131 76 282 065 371 609
8 8 579 726 329 442 417 983

16 84 640 438 471 450 250 565 866
24 341 051 33 784 495 140 508 461
32 26 675 217 5 189 901 1 046 410 975 366
48 354 436 238 3 027 408 1 165 892 913 236
64 744 645 854 7 170 919 1 911 263 1 589 535
96 919 101 918 4 913 936 1 809 297 1 454 464

Table 6.2: Perf for QEMU ARM without and with vCPUs pinning

Both tables show the evolution of the number of thread migrations and L1 cache
misses in QEMU with and without virtual CPUs pinning. Migrations happen even with
the pinning because some tasks such as peripherals are threaded in QEMU. In RISC-V

70



6.2. SCALABILITY OF QEMU PARALLEL IMPLEMENTATION

24 8 16 24 32 48 64 96
Number of threads nt

101

102

103

W
al

l-C
lo

ck
 T

im
e 

(s
)

water nsquared
lu ncb
lu cb
barnes
swaptions
radix
water spatial
ocean cp
fft
bodytrack
freqmine
ferret
fludanimate
blackscholes
cholesky

Figure 6.14: Full execution time in QEMU ARM nc = nt without pinning

24 8 16 24 32 48 64 96
Number of threads nt

101

102

103

W
al

l-C
lo

ck
 T

im
e 

(s
)

water nsquared
lu ncb
lu cb
barnes
swaptions
radix
water spatial
ocean cp
fft
freqmine
bodytrack
ferret
fludanimate
blackscholes
cholesky

Figure 6.15: Full execution time in QEMU ARM nc = nt with pinning

71



CHAPTER 6. EXPERIMENTS

24 8 16 24 32 48 64 96
Number of threads nt

101

102

W
al

l-C
lo

ck
 T

im
e 

(s
)

bodytrack no pinning
bodytrack pinning
ferret no pinning
ferret pinning
blackscholes no pinning
blackscholes pinning
cholesky pinning
cholesky no pinning

Figure 6.16: Comparison of full execution time in QEMU ARM without pinning and with
pinning

and in ARM, one can see that the number of CPU migrations increases as the number of
threads nt increases. We remember that not all the benchmarks can be run with nt that
is a power of 2. When nt is not a power of 2, only 9 benchmarks can be run so that is
why on the tables the values of the metrics can be lower than others. Except for some
value of nt under 32, overall, there is less CPU migrations with pinning in both QEMU
RISC-V and ARM. We have a huge reduction of the migrations with nt = 128 (more
than 100 times). However, regarding the L1 cache misses, it stays constant without
and with pinning in RISC-V and ARM, which can explain why the execution time does
not vary without and with pinning.

Standard deviation

As the last investigation, we computed the standard deviation on all the execution
times with and without pinning for both the RISC-V and ARM targets. According to the
literature, the pinning seems to be related with the stability of the execution times. The
idea is that a lesser disparity in execution times would be an advantage and therefore
the measurement of standard deviations will quantify it. However, the execution times
are not more stable with pinning in general and depend on the benchmark. Thus, we
cannot conclude that the stability is better with the pinning.

Analysis conclusion

Even if the pinning decreases significantly the number of CPU migrations when nt is
high, it is not enough to have an impact on the execution time. The fact that the L1
cache misses are close without and with pinning explains why we have not seen any
improvements with pinning. In the end, we conclude that the pinning does not have
a positive impact on the execution time and even for some benchmarks, it degrades

72



6.3. INSTRUCTION CACHE (L1I) EVALUATION

the performance a little bit. As stated by [GDBAS20], pinning virtual machines does
not ameliorate the performance if using CPU-bound applications. Unfortunately, the
PARSEC applications are CPU-bound, as is QEMU, which explains why we do not see
any improvements. We cannot beat the current Linux scheduler as it attaches a thread
to a physical CPU as long as it does not degrade the performance. Recent works have
shown that pinning is only beneficial for a certain type of applications [PBC+15].

6.3 Instruction cache (L1i) evaluation

This section focuses on the evaluation of our solution on the L1i model that we im-
plemented thanks to the TCG Plugins. Here we used PolyBench/C and PARSEC as
sets of benchmarks (the first one is single-threaded and the other is multi-threaded).
The PolyBench/C set was run with the MEDIUM inputs and the PARSEC set with the
LARGE inputs. Our L1i model is not target dependent but as we needed to choose
one to run our experiments and because it is widely used in research, we worked with
the RISC-V target. Compared to the previous section of QEMU scalability where we
used QEMU only in full-system mode by running busybear Linux in it, here we also
used QEMU in user-mode. It is a mode where the host OS directly handles the system
calls and signals. As explained in Section 5.2.5, we need to make a fair comparison
of speed with the existing cache plugin and because of the dependency on the flow of
executed target instructions, we used the user-mode. Executing the PARSEC bench-
marks in full-system with busybear and in user-mode are two completely different
ways of doing it. Due to some argument constraints and other reasons which have not
yet been investigated, we were able to correctly run 10 benchmarks of the PARSEC in
user-mode, compared to 14 in full-system. However, the 10 benchmarks are differ-
ent enough to cover various properties and therefore be reliable for performing our
analysis.

Since we run QEMU in its multi-threaded version, the results are not deterministic.
That is why we run our experiments 20 times that, given the standard deviation we
computed, gives us confidence in the results obtained. For all the Figures in this section,
we use cache to refer to the cache plugin that is shipped with QEMU, cacheTB to refer
to the plugin implementing our solution and vanilla to refer to QEMU without any
plugin activated.

All the following experiments are done with this arbitrary instruction cache config-
uration: 8-way, 32-set, 64 bytes per line and LRU. Since we model only the L1i, the
notion of Write Through and Write Back Allocate does not matter. Moreover, there is
no prefetching of the cache lines.

6.3.1 Issues mitigation

Before doing the statistical validation of our L1i model and the comparison with the
existing cache plugin, we must come back first to the issues that we encountered and
see how we mitigate them.

Error due to exceptions in TBs

As seen in Section 5.2.4, early TBs exits can happen. Since it impacts the number of
instructions counted in each TB, we need to make sure that the consequence of this

73



CHAPTER 6. EXPERIMENTS

issue is negligible on our cache statistics. To do so, we decided to analyze two exper-
iments: the boot of busybear Linux and the execution of the LU decomposition of a
2048 × 2048 matrix. We run these experiments with a single virtual CPU. We recorded
4 statistics: the number of TBs executed, the number of early TBs exits, the number of
instructions executed and the number of instructions wrongly counted (meaning that
they are counted by our model while they should not). In average, the length of a TB is
5.51 target instructions for the boot of busybear Linux and 16.61 target instructions for
the LU decomposition program. Table 6.3 sums up the results for the two experiments.
We can clearly see that the number of wrongly counted instructions is very negligible
relatively to the total number of instructions counted. The effect on our cache statistics
is thus not visible.

Nb of TBs Nb of early Nb of executed Wrongly
executed TBs exits insns counted insns

Boot 35,704,017 254 196,831,388 669
LU 989,522,360 10,447 16,439,546,310 6098

Table 6.3: Measure of the error due to early TB exits.

We still decided to implement a small correction in QEMU by forcing a TB to end at
each memory access (thus avoiding the page-fault issue). But as a result, the number
of TBs executed for the boot of busybear was multiplied by 4 and the simulation time
increases by 50%. In the end, it is a predictable behavior as 44% of the instructions
are memory accesses in this case. Even if we can correct this issue, it is not useful to
mitigate it as it costs an important overhead while not having a visible impact on our
cache statistics.

Dependency on Simulator Runtime

When we record the execution time of only the boot of busybear even though there
is a dependency on the simulator runtime, we obtain the Figure 6.17. We varied the
number of virtual CPUs from 1 to 128 with values that are powers of 2. We have in
general a noticeable improvement with our plugin compared to the existing plugin and
it is even more noticeable with 64 and 128 virtual CPUs (factor of 3).

However, as the cache statistics are significantly affected by the timer interruption
that will generate instructions, we cannot conclude with the full-system mode on the
performance of our plugin.

We wanted to try to implement a solution to bypass the issue. The TCG Plugins
API does not allow us to retrieve a lot of information from QEMU execution. But
to do so, we did a trick in the QEMU source code to stop counting ticks during our
cache model simulation. By adding extra function pointers in the structure used to
share system information with the TCG Plugin, we were able to call inside our plugin
the two functions cpu enable ticks and cpu disable ticks which respectively enable
and disable the clock. Thanks to this tricky solution, we can disable the count of the
ticks during execution each time we do our cache simulation on the instructions in a
TB. This solution is also applicable for the existing cache plugin.

To see if our solution produces consistent statistics, we recorded the total instruc-
tions counted and the execution time of the boot of busybear Linux without and with
the enabling/disabling of the ticks’ solution on both our cacheTB plugin and the exist-
ing cache plugin. The issue on the simulator runtime dependency also affects the data

74



6.3. INSTRUCTION CACHE (L1I) EVALUATION

1 2 4 8 16 32 64 128
nb of vcpus

0

20

40

60

80

100

120

140
Si

m
ul

at
io

n 
Ti

m
e 

(s
)

cache
cacheTB
vanilla

Figure 6.17: Execution time of only the boot of busybear

cache simulation present in the existing cache plugin, so when we implemented the
solution, we disabled the count of the ticks not only for the instruction cache but also
for the data cache simulation. The following Table 6.4 and Table 6.5 sum up the total
of instructions counted and the execution time of only the boot of busybear Linux for 1,
2 and 4 virtual CPUs. Because of the huge impact on the execution time when disabling
and enabling the counting of the ticks for each TB, we were only able to execute up to
4 virtual CPUs. There are differences of several million instructions with and without
ticks counting which is definitely not negligible.

cache (with/without) cacheTB (with/without)
1 vCPU 372 674 140 / 384 397 519 361 544 214 / 363 966 530
2 vCPUs 496 654 744 / 536 769 811 495 187 065 / 519 242 982
4 vCPUs 799 097 859 / 3 420 291 895 740 926 188 / 3 053 453 598

Table 6.4: Mean number of instructions of only the boot of busybear with and without ticks
counting

cache (with/without) cacheTB (with/without)
1 vCPU 30.56s / 70.07s 20.72s / 38.08s
2 vCPUs 44.49s / 139.56s 27.98s / 64.94s
4 vCPUs 66.33s / 2 684.21s 33.60s / 430.64s

Table 6.5: Mean execution time of only the boot of busybear with and without ticks counting

A behavior not represented on the Tables that we observe is that for 1 virtual CPU,
when we disable/enable the ticks count, the total number of instructions counted seems
to vary less than the classical execution. However, this observation only happens for 1

75



CHAPTER 6. EXPERIMENTS

virtual CPU. For 2 and 4 virtual CPUs the total number of instructions counted varies a
lot from one execution to another. In addition to the variations, the execution time is
also considerably affected and is very unstable for 4 virtual CPUs as it goes from 370
to 6 527 seconds for the cache plugin and from 170 to 1091 seconds for our cacheTB
plugin on 20 executions.

Several things can be the cause of our not working solution. One main possibility is
that we did not take care of the impact this has neither on QEMU forward progress pos-
sibilities, nor on other clocks in QEMU. This issue in full-system is thus not resolved
yet at the time of this writing.

6.3.2 Statistics validation

To make a fair comparison of the performance of our plugin with the existing one, we
first need to validate our produced statistics. To do so, we compared the total number
of instructions and the number of misses. We used the PolyBench/C suite to do the
validation in mono-core and the PARSEC suite for the multi-core validation.

Mono-core: PolyBench/C suite

We run the entire suite of 28 programs (except the one that failed during execution
which is durbin) in QEMU on ”bare-metal”. As the behavior is deterministic, it was
simple to compare the statistics produced by our plugin cacheTB and the existing cache

plugin. We obtained exactly the same number of instructions and the number of misses
so we can validate the good behavior of our cache model in mono-core. To further
validate our cache model in the context of DBT simulation, one can compare it with
another simulator. Section 6.3.4 deals with this by using the gem5 simulator.

Multi-core: PARSEC suite

Regarding the multi-core validation, we run the 10 benchmarks of the PARSEC and we
computed the mean of the total number of instructions and the number of misses. We
varied the number of virtual CPUs with the following values: {1, 2, 4, 8, 16, 32, 64, 128}.
We increase at the same time the number of threads of the PARSEC benchmarks with
the number of virtual CPUs. Because of the dependency on the runtime when using
QEMU in full-system with busybear, we run the programs in user-mode which means
that they run directly in QEMU without the simulation of a Linux system.

1 2 4 8 16 32 64 128
nb of vcpus

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Nu
m

be
r o

f i
ns

tru
ct

io
ns

1e10

cache
cacheTB

Figure 6.18: Total number of instructions
for lu cb (log scale on x-axis)

1 2 4 8 16 32 64 128
nb of vcpus

0

5000

10000

15000

20000

25000

In
st

ru
ct

io
n 

m
iss

es

cache
cacheTB

Figure 6.19: Total of instruction misses for
lu cb (log scale on x-axis)

76



6.3. INSTRUCTION CACHE (L1I) EVALUATION

Figure 6.18 and Figure 6.19 show respectively the total of instructions executed and
the total of instruction misses for the benchmark lu cb. The value for each number of
virtual CPUs is the mean. One can also see on the Figures some vertical black lines.
As we have run our experiments 20 times, these lines correspond to the minimum
and maximum value obtained. It gives us an idea of the range of the values for the 20
executions. These lines are almost not visible on Figure 6.18 and the range is very small
on Figure 6.19. Appendix B contains the Figures for the other benchmarks. Except for
cholesky whose execution is not very stable (as seen in Section 6.2), we clearly see that
the total number of instructions and instruction misses are remarkably similar with
our cacheTB plugin and the cache plugin for all the other benchmarks. Thus, we can
conclude on the validity of our statistics in multi-core.

6.3.3 Simulation time

2mm3mm adi atax bicg
cholesky

correlation
covariance

deriche
doitgen

fdtd-2d
gemm

gemver
gesummv

gramschmidt
heat-3d

jacobi-1d
jacobi-2d lu

ludcmp
nussinov

seidel-2d
symmsyr2k syrk

triso
lvtrmm

10 1

100

101

102

Si
m

ul
at

io
n 

Ti
m

e 
(s

)

cache
cacheTB
vanilla

Figure 6.20: Simulation time of the PolyBench/C programs (log scale on y-axis)

1 2 4 8 16 32 64 128
nb of vcpus

101

102

Si
m

ul
at

io
n 

Ti
m

e 
(s

)

cache
cacheTB
vanilla

Figure 6.21: Simulation time of lu cb (log-log scale)

Now that we have validated the good behavior of our cache, we can compare the
simulation time of the QEMU cache plugin with our cacheTB plugin. Figure 6.20 shows

77



CHAPTER 6. EXPERIMENTS

cholesky fft lu_cb
lu_ncb

ocean_cp radix
freqmine

barnes

water_nsquared

water_spatial

100

101

102
Si

m
ul

at
io

n 
Ti

m
e 

(s
)

cache
cacheTB
vanilla

Figure 6.22: Simulation time of the PARSEC programs on 128 vCPUs (log scale on y-axis)

the mean of execution time for each program of the PolyBench/C suite in bare metal
in QEMU. The simulation times of the y axis are on a log scale. Our plugin is definitely
faster than the existing one for all the programs of the suite. For the multi-core analysis,
Figure 6.21 represents the comparison of the simulation time of the PARSEC program
lu cb which was run in user-mode in QEMU with 1 to 128 virtual CPUs and Figure 6.22
represents the simulation time with 128 virtual CPUs for all the PARSEC programs.
Appendix B gives in detail the histograms of the simulation time for all the PARSEC
programs as we have the same behavior. Here again in multi-core we clearly see that
our plugin is considerably faster than the existing plugin.

PolyBench/C PARSEC
Speedup of cacheTB over cache 10.87 7.18
Slowdown of cache over vanilla 23.67 59.85
Slowdown of cacheTB over vanilla 2.07 10.16

Table 6.6: Mean simulation time ratios.

We summarize Table 6.6 all the different mean speedup/slowdown ratios. With the
PolyBench/C and the PARSEC suites, our cacheTB plugin is 7 to 10 times faster than
the existing cache plugin. When comparing with QEMU vanilla, i.e., QEMU without
any plugin, our plugin degrades the performance less than the existing one (only a
maximum of 10 times slower, which is already quite a lot, compared to 60 times slower
with the cache plugin).

6.3.4 gem5 comparison

Doing the statistical validation of our L1i model against the existing cache plugin has
allowed us to conclude on the good behavior inside QEMU. However, extending the
statistics validation against a completely different cache simulator will bring more con-

78



6.3. INSTRUCTION CACHE (L1I) EVALUATION

tribution to our work. The cache simulator chosen to do the evaluation against is the
one available in the gem5 simulator [BBB+11]. It does a more detailed simulation
and can simulate in multi-core different cache coherency protocols. The drawback is
that the multi-core simulation is done sequentially on one thread and is terribly slow
compared to the functional simulation of QEMU. Since it is done on one thread, the
simulation is deterministic so only one execution is useful, there is no need to run the
simulation 20 times like we did with QEMU. Like QEMU, gem5 also has 2 execution
modes: user and full-system mode. To make objective comparisons, gem5 was ex-
ecuted in user-mode and the PARSEC benchmarks used were the same that we ran
within QEMU in RISC-V as well as for the cache configuration.

In a multi-core execution, we can force the CPU 0 to always be the one that will
launch the system and does all the necessary initializations. The other CPUs are gen-
erally blocked on a barrier, waiting for CPU 0 to release it. As a result, in the cache
statistics, the CPU 0 will always execute more instructions than the others. The more
a multi-threaded program has a sequential part, the more the CPU 0 alone executes
instructions. That is why we compared in gem5 and QEMU the number of instructions
counted by the CPU 0 and the mean of instructions counted by all the other CPUs.

10⁰

Number of instructions
10¹

10⁻¹

10⁻¹

10⁻²

10⁻²

10⁻³

10⁻⁴

10⁻⁵

10⁰

 (%
) -

 m
in

/m
ax

 (%
) -

 m
in

/m
ax

D
iff

D
iff

Number of cores

Number of cores

Number of misses

2 4 8 16 321

2 4 8 16 321

lu_cb

vpcu0
vpcui>0

radix


ocean_cp
cholesky

Figure 6.23: Percentage of difference gem5 vs our model in QEMU for the L1i simulation

Figure 6.23 represents the percentage of difference on the total number of instruc-
tions and instruction misses in gem5 and our model in QEMU for 5 PARSEC bench-
marks: lu cb, radix, fft, ocean cp and cholesky. Due to the slow execution time of
gem5 with a high number of virtual CPUs, we limited the simulation to 32 virtual CPUs.
For each benchmark in a distinct color, we distinguish the difference on the statistics
of only the CPU 0 and on all the other CPUs. Even if the difference seems acceptable
(around 0.1% with big variations for the total number of instructions and between 0.1%
and 1% for the number of misses), a non-negligible difference of statistics counted in
gem5 and QEMU is noticeable. Some reasons behind it were discovered. While inves-
tigating the execution trace, we have found that the differences are mainly explained

79



CHAPTER 6. EXPERIMENTS

by execution environment functions and synchronization instructions between the vir-
tual CPUs. In addition, we also discovered another problem: RISC-V instructions can
be misaligned, resulting in instructions that can sit on two cache lines and thus can
generate 2 cache misses. This behavior is not detected by QEMU. However, due to the
nature of the PARSEC which are algorithms with lots of loops, this behavior does not
have an impact on the percentage of difference and is not visible.

We carried out the analysis of the differences only on the instruction cache. Differ-
ences also happen with the L1d but we did not investigate further. Doing a complete
statistics validation against gem5 of an entire cache simulation in QEMU of a L1i, L1d
and L2 per core is still at the time of this thesis an ongoing work.

6.4 Data cache (L1d) evaluation

In this section we analyze our data cache L1d model that relies on a separate thread to
run the data cache simulation presented Section 5.3.1. To stay consistent with the issue
related to the timer in QEMU full-system, we have done the evaluation again using
the 10 PARSEC benchmarks in QEMU user-mode. To communicate with the thread
that executes the cache simulation, our L1d model uses a global list of buffers. As a
result, before doing the validation of the produced statistics and the comparison of the
simulation time, we need to find the optimal value for the size of the buffer and for
the number of buffers. Each experiment was done 20 times. In all the Figures in this
section, we use cache to refer to the existing cache plugin in QEMU, dcachethread to
refer to the plugin implementing our solution and vanilla to refer to QEMU without
any plugin activated.

All the following experiments are done with this arbitrary data cache configuration:
8-way, 32-set, 64 bytes per line, LRU and Write Back Allocate.

6.4.1 Optimal buffer size and buffer count

Before doing the statistical validation of our L1d model and the execution time compar-
ison with the existing cache plugin, we must decide on the optimal number of buffer
and the optimal size of each buffer. As the principle of our L1d model relies on a sep-
arate thread that communicates with our plugin through a list of buffers, a bottleneck
may happen. However, the bottleneck is not the same in mono-core and multi-core.
In mono-core, only one thread representing the only virtual CPU of QEMU will be in-
teracting with our data cache thread. A bottleneck will happen if there is not enough
buffer available and it can degrade the simulation time. Regarding the multi-core exe-
cution, we have multiple threads each corresponding to a virtual CPU that interact with
our data cache thread. If the number of virtual CPUs is high, here again a bottleneck
will happen. To analyze these possible behaviors, we first did an analysis in mono-core
with the PolyBench/C suite and then in multi-core with the PARSEC suite.

Mono-core: PolyBench/C suite

We did a complete analysis in mono-core by executing our plugin with the number of
buffers that varies in the following values {4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096}
and the size of each buffer that varies in the same values. We retrieve the execution for

80



6.4. DATA CACHE (L1D) EVALUATION

each combination of values. We focused first on 3 benchmarks: atax, doitgen and trmm

which have execution times that range from less than a second to less than a minute.

0 1000 2000 3000 4000
Buffers size

0.5

1.0

1.5

2.0

2.5

W
al

l-C
lo

ck
 T

im
e 

(s
)

4 buffers
8 buffers
16 buffers
32 buffers
64 buffers
128 buffers
256 buffers
512 buffers
1024 buffers
2048 buffers
4096 buffers

Figure 6.24: Simulation time of atax with variations of number of buffers and buffer size

0 1000 2000 3000 4000
Buffers size

10

20

30

40

50

W
al

l-C
lo

ck
 T

im
e 

(s
)

4 buffers
8 buffers
16 buffers
32 buffers
64 buffers
128 buffers
256 buffers
512 buffers
1024 buffers
2048 buffers
4096 buffers

Figure 6.25: Simulation time of doitgen with variations of number of buffers and buffer size

Figures 6.24, 6.25 and 6.26 respectively show the evolution of the execution time
of atax, doitgen and trmm with multiple variations of the number of buffers and the
size of each buffer. One can see that for each number of buffers, the execution time
no longer evolves from a certain buffer size. Moreover, with 4, 8 and 16 buffers the
execution time is considerably affected. More interestingly, for a number of buffers
higher than 256, each of the 3 benchmarks converge to a limit when increasing the size

81



CHAPTER 6. EXPERIMENTS

0 1000 2000 3000 4000
Buffers size

5

10

15

20

25

30

W
al

l-C
lo

ck
 T

im
e 

(s
)

4 buffers
8 buffers
16 buffers
32 buffers
64 buffers
128 buffers
256 buffers
512 buffers
1024 buffers
2048 buffers
4096 buffers

Figure 6.26: Simulation time of trmm with variations of number of buffers and buffer size

of the buffers. Thus, at this point, it is no longer interesting to increase the size and
the number of buffers. This behavior is not specific to only these 3 benchmarks, we
observed the same phenomenon for the other benchmark of the PolyBench/C suite.

To compare the execution time with the existing cache plugin, we must decide a set
of values for the size and number of buffers. According to what we can observe on the
Figures, we can conclude that 1024x1024 seems to be a viable choice.

Multi-core: PARSEC suite

For the analysis in multi-core, we stayed in user-mode with the PARSEC benchmarks.
We focused on one arbitrary benchmark of the PARSEC suite: water nsquared. In-
deed, testing all the benchmarks costs a huge amount of time (execution time x
number of benchmarks x number of buffer configurations x 20). That is why we
chose water nsquared as it executes in a correct amount of time and also to differ
from the classical lu cb benchmark that we tend to choose. We executed our L1d
model in multi-core with the number of buffers that varies in the following values
{256, 512, 1024, 2048, 4096} and the size of each buffer that varies in the same values.
Analysis with a small number of buffers and a small size of each buffer is useless as we
will have for sure bad performances. Regarding the number of virtual CPUs, we tested
the following values {1, 2, 4, 8, 16, 32, 64}.

Finding an optimal combination of number of buffers and buffer size in multi-core
is a more complex task. An optimal combination of values for a given number of virtual
CPUs might not be the same optimal for another number of virtual CPUs. Moreover, it
is likely to be benchmark dependent because of the scalability. That is why we focus
here on the analysis of one benchmark.

Figure 6.27, Figure 6.28 and Figure 6.29 respectively illustrate the evolution of the
simulation time with variations of the size and number of buffers for 4, 8 and 64 virtual
CPUs. One can notice that the optimal combination of values seems to be 4096 buffers
of a size 256 for 4, 8 and 64 virtual CPUs and even if it is not represented here, it is also

82



6.4. DATA CACHE (L1D) EVALUATION

500 1000 1500 2000 2500 3000 3500 4000
Buffers size

5

6

7

8

9

W
al

l-C
lo

ck
 T

im
e 

(s
)

256 buffers
512 buffers
1024 buffers
2048 buffers
4096 buffers

Figure 6.27: Simulation time of the PARSEC water nsquared with variations of number of
buffers and buffer size with 4 vCPUs

500 1000 1500 2000 2500 3000 3500 4000
Buffers size

5.0

5.5

6.0

6.5

7.0

7.5

8.0

W
al

l-C
lo

ck
 T

im
e 

(s
)

256 buffers
512 buffers
1024 buffers
2048 buffers
4096 buffers

Figure 6.28: Simulation time of the PARSEC water nsquared with variations of number of
buffers and buffer size with 8 vCPUs

the optimal values for 1, 2, 16 and 32 virtual CPUs. Appendix C presents the Figures
for 1, 2, 16 and 32 virtual CPUs. With this observation, a global remark can be made:
in order to achieve the best performance when increasing the number of virtual CPUs,
we need to decrease the size of each buffer and increase the number of buffers. When
the number of virtual CPUs is high (like with 64 on Figure 6.29), increasing the size of
the buffers has a negative impact on the performance.

Thus, the best configuration for our L1d model in multi-core seems to be a high

83



CHAPTER 6. EXPERIMENTS

500 1000 1500 2000 2500 3000 3500 4000
Buffers size

5.5

6.0

6.5

7.0

7.5

W
al

l-C
lo

ck
 T

im
e 

(s
)

256 buffers
512 buffers
1024 buffers
2048 buffers
4096 buffers

Figure 6.29: Simulation time of the PARSEC water nsquared with variations of number of
buffers and buffer size with 64 vCPUs

number of buffers and each buffer of a small size. The benchmark water nsquared

exhibits 4096x256 as the best configuration for all number of virtual CPUs.

6.4.2 Statistics validation
Mono-core: PolyBench/C suite

The statistics validation in mono-core was as simple to do as for our L1i model. Since
the execution is deterministic, we made sure that we have exactly the same number of
memory accesses and the same number of misses as the existing plugin.

Multi-core: PARSEC suite

Similarly, the statistics validation was simple to do in multi-core. In our L1d model,
the only difference with the existing cache plugin is that we delay the simulation of
the data cache in a separate thread. The cache plugin and our plugin retrieve all the
memory accesses thanks to the only existing callback function of the TCG plugin API.
So, when we ran all the 10 PARSEC benchmarks, we unsurprisingly found practically
(due to non-determinism of multi-core execution) the same statistics with our plugin
and the existing one.

6.4.3 Simulation time

Figure 6.30 shows the mean execution time for each program of the PolyBench/C suite
in bare metal executed in QEMU. Our L1d model is implemented in a plugin named
dcachethread with 1024 buffers of each a size of 1024. The simulation times of the
y axis are on a log scale. We can see with disappointment that our L1d model is
not faster than the existing cache plugin. Even if we notice a slight improvement for
some benchmarks with our plugin (like adi and correlation), globally our L1d model
executes with the same time as the existing plugin.

84



6.4. DATA CACHE (L1D) EVALUATION

2mm3mm adi atax bicg
cholesky

correlation
covariance

deriche
doitgen

fdtd-2d
gemm

gemver
gesummv

gramschmidt
heat-3d

jacobi-1d
jacobi-2d lu

ludcmp
nussinov

seidel-2d
symmsyr2k syrk

triso
lvtrmm

10 1

100

101

102
Si

m
ul

at
io

n 
Ti

m
e 

(s
)

cache
dcachethread
vanilla

Figure 6.30: Simulation time of the PolyBench/C programs (log scale on y-axis), dcachethread
with 1024x1024

Regarding the results in multi-core of our L1d model, we just saw with the bench-
mark water nsquared that the optimal combination of values of number and size
of buffer is the same when increasing the number of virtual CPUs. We executed
water nsquared with the data cache of the existing cache plugin and with our L1d
model with the optimal values number x size: 4096x256.

cache dcachethread 4096x256 dcachethread 8192x128
1 vCPUs 6.09 4.53 4.59
2 vCPUs 8.01 5.11 5.19
4 vCPUs 4.36 5.25 5.65
8 vCPUs 6.57 5.33 5.55
16 vCPUs 4.49 5.78 6.24
32 vCPUs 2.70 6.16 6.77
64 vCPUs 1.90 6.46 7.11

Table 6.7: Recap of water nsquared mean execution time in seconds with L1d simulation in
user-mode.

Table 6.7 summarize the mean of execution time on 20 executions of
water nsquared. We are faster than the existing cache plugin for 1, 2 and 8 virtual
CPUs but for the rest, our L1d model degrades the performance a lot. We also execute
our L1d model with the values 8192x128 and we can see that it does not help at im-
proving the performance even if like with 4096x256, we are faster for 1, 2 and 8 virtual
CPUs. As a result, 4096x256 seems to be the limit.

In conclusion, our L1d model can have a non-negligible improvement on the exe-
cution time for some benchmarks in multi-core. However not all the benchmarks in
mono-core present such improvement and the values (number x size) of buffer and the
number of virtual CPUs have an important impact on the simulation time. Regarding
the multi-core execution, finding the optimal combination of values needs to be done
by investigating each benchmark.

85



CHAPTER 6. EXPERIMENTS

6.5 Cache hierarchy per virtual CPU: L1i + L1d + L2

In this section we do the evaluation of a cache hierarchy per virtual CPU composed
of our L1i model with a simulation per TB, a naive L1d model (which is the same as
the one in the existing QEMU cache plugin) and a L2 model on top of it. The L2
implementation per virtual CPU is described Section 5.3.2. Because of the issue raised
by our L1i model, we used again the 10 benchmarks of the PARSEC suite with QEMU
in user-mode. Here again, each experiment was run 20 times. In all the Figures in this
section, we use cache to refer as the existing cache plugin in QEMU, cacheTB to refer
to the plugin implementing our solution of the cache hierarchy and vanilla to refer to
QEMU without any plugin activated. All the following experiments are done with these
arbitrary cache configurations:

− L1i: 8-way, 32-set, 64 bytes per line and LRU

− L1d: 8-way, 32-set, 64 bytes per line, LRU and Write Back Allocate

− L2: 16-way, 64-set, 64 bytes per line, LRU, Non Inclusive Non Exclusive

6.5.1 Statistics validation
Mono-core: PolyBench/C suite

Like for the L1i evaluation, we run the suite in bare-metal in QEMU and since the
behavior is deterministic, we make sure that the L2 statistics produced by our plugin
are the same as the ones produced by the existing plugin of QEMU.

Multi-core: PARSEC suite

For all the 10 benchmarks, we computed the mean on the 20 executions of the total
number of L2 accesses and the total of L2 misses. We varied the number of virtual CPUs
with the following values: {1, 2, 4, 8, 16, 32, 64, 128}. We also added on each Figures a
vertical black line for each value of virtual CPU that represents the range of 20 values.

1 2 4 8 16 32 64 128
nb of vcpus

0

1

2

3

4

5

Nu
m

be
r o

f i
ns

tru
ct

io
ns

1e7

cache
cacheTB

Figure 6.31: Total number of L2 accesses for
lu cb (log scale on x-axis)

1 2 4 8 16 32 64 128
nb of vcpus

0

1

2

3

4

5

In
st

ru
ct

io
n 

m
iss

es

1e7

cache
cacheTB

Figure 6.32: Total of L2 misses for lu cb (log
scale on x-axis)

Figure 6.31 and Figure 6.32 represent respectively the total number of L2 accesses
and the total of L2 misses for the benchmark lu cb. Appendix D contains the Figures of
the statistics for the other benchmarks. The two Figures look similar because with the
cache configurations that we chose and because of the characteristics of the benchmark,

86



6.5. CACHE HIERARCHY PER VIRTUAL CPU: L1I + L1D + L2

we have a lot of misses in the L2 (more than 90%). However, it is not the case for all
the other benchmarks as one can see in the Appendix. The vertical black lines are
almost not visible on both Figures which shows that we have a very small variation of
the values across the 20 executions. As the L2 statistics are mostly the same with our
cacheTB plugin and the cache plugin, we can conclude on the good behavior and the
validity of the produced statistics in multi-core.

6.5.2 Simulation time

2mm3mm adi atax bicg
cholesky

correlation
covariance

deriche
doitgen

fdtd-2d
gemm

gemver
gesummv

gramschmidt
heat-3d

jacobi-1d
jacobi-2d lu

ludcmp
nussinov

seidel-2d
symmsyr2k syrk

triso
lvtrmm

10 1

100

101

102

Si
m

ul
at

io
n 

Ti
m

e 
(s

)

cache
cacheTB
vanilla

Figure 6.33: Simulation time of the PolyBench/C programs (log scale on y-axis)

1 2 4 8 16 32 64 128
nb of vcpus

101

102

103

Si
m

ul
at

io
n 

Ti
m

e 
(s

)

cache
cacheTB
vanilla

Figure 6.34: Simulation time of lu cb (log-log scale)

We compare in this section the execution time of our cacheTB plugin composed of a
L1i + L1d + L2 with the existing cache plugin. The difference of implementation with
the existing plugin relies on the L1i model. The L1d and the L2 implementations are
the same as the ones in the existing plugin. The idea in this section is to have an idea
of the global improvement that we can have on the total cache hierarchy with only the
L1i model that differs.

87



CHAPTER 6. EXPERIMENTS

cholesky fft lu_cb
lu_ncb

ocean_cp radix
freqmine

barnes

water_nsquared

water_spatial

100

101

102

Si
m

ul
at

io
n 

Ti
m

e 
(s

)
cache
cacheTB
vanilla

Figure 6.35: Simulation time of the PARSEC programs on 128 vCPUs (log scale on y-axis)

Figure 6.33 shows the mean of execution time for each program of the PolyBench/C
suite in bare metal in QEMU with the y axis on a log scale. Figure 6.34 represents the
simulation time of only the benchmark lu cb and Figure 6.35 focuses on the simulation
time with 128 virtual CPUs for all the 10 PARSEC benchmarks. Appendix D gives in
detail the histograms of the simulation time for all the other PARSEC programs. One
can see that our cacheTB plugin still remains faster but not as much as in Section 6.3.3.

PolyBench/C PARSEC
Speedup cache to cacheTB 2.19 2.43
Slowdown cache to vanilla 38.20 99.79
Slowdown cacheTB to vanilla 17.03 43.14

Table 6.8: Mean simulation time ratios.

Table 6.8 sums up all the different mean speedup/slowdown ratios. Even if we
do not achieve here the same speedup as in Section 6.3.3, we are still faster than
the existing cache plugin of a factor of 2 for the PolyBench and the PARSEC benchmark
suites. To resume, with two levels of cache per virtual CPU, we have a reduction of 50%
on the execution speed on average for all the benchmarks. Moreover, the slowdown
ratios are higher than in Table 6.6 which is normal as we simulate a complete L2
hierarchy compared to only a L1i model.

6.6 Cache simulation with pinning

In this section, we wanted to see if using the pinning with our L1i model can change the
behavior. The pinning works only in full-system and since we have the dependency
on simulation runtime issue in full-system, using the pinning implementation might
affect the behavior. To do this experiment, we used QEMU with busybear linux and our

88



6.7. CONCLUSION

plugin cacheTB and we ran inside the PARSEC benchmark lu cb. We tested with the
following virtual CPUs values: {2, 4, 8, 16, 32, 64, 128}. We used the following L1i con-
figuration: 8-way, 32-set, 64 bytes per line and LRU. Table 6.9 sums up the execution
time mean on 20 executions.

cacheTB no pinning cacheTB pinning
2 vCPUs 126.52 79.74
4 vCPUs 64.17 47.34
8 vCPUs 83.14 27.15
16 vCPUs 79.69 24.75
32 vCPUs 45.48 17.60
64 vCPUs 29.92 18.12
128 vCPUs 182.80 178.10

Table 6.9: Mean execution time in seconds of lu cb in busybear without and with pinning and
our cacheTB plugin.

Interestingly, using the pinning mechanism on top of our L1i model improves the
performance. The execution time is considerably reduced. Regarding the cache statis-
tics, the number of instructions and misses without and with pinning are close but
not close enough to conclude on the correct behavior. There are still non-negligible
differences.

In the end, we cannot draw a general conclusion. We just give here an overview of
what happens when we combine our two contributions.

6.7 Conclusion

In this section, we studied and analyzed our contributions on how to improve the DBT
engines simulation time and how to design smartly a cache model and a cache hierarchy
per virtual CPU. All our contributions were done using the well-known DBT simulator
QEMU.

First, we analyzed the scalability of QEMU parallel implementation which the
methodology is described Chapter 4. In addition, we added to our methodology the
possibility to pin the threads representing the virtual CPUs of QEMU on the host ma-
chine. For this contribution we have simulated a RISC-V and ARM target system up
to 128 CPUs. Our host machine was composed of 32 physical CPUs and we relied on
busybear Linux and the PARSEC benchmark to run the experiments. In conclusion of
this study, QEMU parallel implementation provides a good scalability. However, much
to our disappointment, bypassing the host Linux scheduler and forcing the virtual CPUs
of QEMU to execute on a given set of physical CPUs does not have any effect.

Secondly, we studied the behavior and the performance of our L1i cache model
described Chapter 5. The performance of a functional simulator is in general degraded
by the addition of instrumentation. By taking advantage of the per TB execution of the
DBT mechanism, we thought of a L1i simulation strategy that minimizes the overhead
of using instrumentation. We raised two issues, one related to the DBT functioning that
we can solve easily and another that is still unsolved on the time dependency. However,
by only doing our analysis using QEMU in user-mode, we were able to conclude on the
good behavior of our L1i model by validating the statistics against the existing cache

89



CHAPTER 6. EXPERIMENTS

plugin. Our L1i model also shows considerably better performances (7 to 10 times
faster than the existing cache plugin).

Thirdly, we analyzed the performances of our threaded L1d simulation presented
Chapter 5 which are mitigated as it depends on the benchmark and the number of
virtual CPUs. However, we outlined significant improvement with our model on specific
number of virtual CPUs for the values 4096x256.

Fourthly, we studied a simple cache hierarchy per virtual CPU composed of a L1i,
L1d and L2 on top of it. Our contribution in the cache hierarchy relies only on the L1i
model. The L1d and L2 implementations are the same as the ones in the existing plugin.
We can achieve a factor 2 of improvement compared to the existing cache plugin.

As the last section of this chapter, we decided to combine two of our contributions.
We used the pinning mechanism on top of our L1i simulation and interestingly, the per-
formances are improved when using the pinning but the cache statistics are unstable.

90



Chapter 7

Conclusion and Prospects

THIS thesis deals with the topic of how to best exploit Dynamic Binary Translation for
the simulation of software centric systems. Although this simulation mechanism

is known for its good simulation speed, investigating on how to improve it even more
raises questions that were introduced in Chapter 2 and to which we come back to in
this conclusion.

How can we assert that DBT parallel implementation scales well on the multi-
core host machine?

We presented in Chapter 4 an experimental methodology to study the parallel im-
plementation of the well-known DBT-based simulator QEMU. Even though the support
for parallel execution has been around for some time, no comprehensive performance
study had been performed before to the best of our knowledge. The idea was to assert
its good scalability. To do so, we have tested a multitude of parameters to aim for the
most objective evaluation. Our host machine is composed of 32 physical CPUs and we
experimented with up to 128 virtual CPUs. Therefore, with all the results, we con-
cluded that QEMU parallel implementation as it is scales well. Moreover, there is one
case where we have a greater scalability: when disabling the SMT parameter meaning
only one CPU runs per core instead of two. But disabling the SMT parameter has a
drawback: it divides by 2 the total number of physical CPUs on the host and thus limits
parallelism.

Can we rely on the host configuration to improve the DBT parallel simulation
speed?

Still in Chapter 4, we investigated whether using thread affinity of QEMU’s virtual
CPUs on the host CPUs can reduce the global execution time when using a multi-core
host. Using this mechanism, named pinning, consists of forcing a virtual CPU of the
target to run exclusively on a given host CPU. By bypassing the Linux scheduler and
forcing each thread of the virtual CPUs of QEMU to run on chosen host CPUs, we
thought we could achieve positive results. Moreover, to achieve the best possible re-
sults, we did not decide the virtual CPUs thread assignation randomly. Choosing the
host CPU to force the execution of each thread was done in a smart way by following
the NUMA nodes distribution of the host. Incrementally, we filled the nodes one by
one. To be able to objectively conclude on the results, two target ISAs were used in
this study: RISC-V mainly motivated by the wide adoption of this ISA in research and
in industry and the ARM ISA. When performing all the experiments on both targets, to
our amazement, pinning the virtual CPUs of QEMU does not affect the simulation time.

91



CHAPTER 7. CONCLUSION AND PROSPECTS

In the end the Linux scheduler cannot be surpassed by replacing it with the pinning
mechanism.

The other two questions were more challenging to answer. They deal with the topic
of Dynamic Binary Instrumentation. Adding instrumentation in functional simulation,
such as in QEMU, will induce a non-negligible execution time overhead. Because we
did not want to modify intrusively QEMU ourselves and because a framework to do
instrumentation in QEMU is available since version 4.2, we decided to use this frame-
work to build our cache model contributions on. This framework is named Tiny Code
Generator (TCG) Plugins and provides a basic API to easily and efficiently instrument
QEMU.

Can we benefit from the DBT approach to design in particular a cache model
that limits the impact on the global simulation time?

We proposed in Chapter 5 an instruction cache model that relies on the per block
nature of the DBT. Our intuition was that thanks to this DBT principle, we can know
in advance, meaning at the translation stage of the blocks just before execution, which
instructions in a block will be a hit for sure and which might miss. With this informa-
tion, we only need to run the instruction cache simulation on those instructions that
might be a miss and thus drastically reduce the overhead compared to a naive cache
simulation that would run for each and every instruction. Our instruction cache model
works with a multi-core simulation as the blocks in the DBT are executed by the threads
representing the virtual CPUs. For all the experiments performed, we compared our re-
sults with the existing cache plugin that does a naive instruction per instruction cache
simulation. We obtained the same statistics but at far better performances.

How can we enhance the time accuracy of the DBT mechanism when adding
models of new architectural features in the simulation without overly degrading
simulation speed?

We investigated in Chapter 5 a threaded model of a data cache. The new archi-
tectural feature in this contribution is the addition to QEMU of a functional data cache
simulator. As adding new features in a simulator will for sure degrade the performance,
we fulfilled a reasonable accuracy/speed trade-off by simulating a data cache model of-
fline in a separate thread. The principle is to give each virtual CPU a list of buffers that
they filled up with their memory accesses and once a buffer is full, it is put in a global
list used by the separate thread to run the data cache simulation. Even if this data
cache model shows some improvements compared to the existing cache plugin, it is
application dependent and is only effective with a small number of virtual CPUs. When
the number of virtual CPUs is high, a bottleneck happens on the data cache thread as
all the virtual CPUs will want to access the global list of full buffers at the same time.

7.1 Prospects

Although the contributions of this thesis allow a better understanding of several DBT
related topics, some points remain to be considered. This section explains the ideas to
deal with those points.

Cache coherency

92



7.1. PROSPECTS

Our cache model presented Section 5.3.2 stops at a hierarchy per virtual CPU with
a L1 instruction, a L1 data and a L2 on top on both. However, this model is not
representative of what exists in modern computers. At least another level of cache is
usually present in nowadays multi-core architectures to help improve the performance
of the local L1 and L2 levels. Figure 2.1 is a good example were multiple CPUs share the
same level of cache (L3 level or also called LLC for Last Level Cache) which is typical of
multi-core architectures. Figure 7.1 is another arbitrary example where each two CPUs
share the same L3 cache level.

L2

L1i L1d

CPU 0

L2

L1i L1d

CPU 1

L3

...

L2

L1i L1d

CPU n-1

L2

L1i L1d

CPU n

L3

Figure 7.1: Arbitrary example of the cache hierarchy of n+ 1 CPUs

To implement such a hierarchy, our L1d threaded implementation is no longer vi-
able. Indeed, in the thread that does the data cache simulation, we parse buffer by
buffer and each buffer belongs to only a virtual CPU. We do not recover the exact order
of the memory accesses of all the virtual CPUs, we only have the chronological order
inside a virtual CPU. Thus, it becomes a problem when adding a shared level since
misses can happen if the accesses are reversed. To overcome this problem, one can
think of adding a timestamp of a global date in order to rebuild the exact order of all
the memory accesses.

Moreover, with systems like these, it might happen that many copies of a data exist
among the cache levels (for example one copy is in the shared level and other copies
are in the local level of the CPUs). If one of the copies of the data is changed locally,
all the other caches are then in an incoherent state. The modification of the data must
be passed on to the other caches that have a copy. To deal with this issue, different
cache coherency protocols exist (MSI, MESI, MOESI,...) to ensure the good behavior of
the global system. To propagate the change for all the copies, it can be useful to know
which cache has which data. The naive solution for a simulator would be to browse all
the caches. Another solution would be to have somewhere the information on which
cache has which data and for that multiple storage structures can be used. The naive
solution will definitely induce an important execution time overhead, that is why it
needs to be done in a smart way.

We saw in this thesis that instrumenting DBT based engines such as QEMU has
an important cost. Adding cache coherency in our cache model raises a performance
problem as it will produce a huge overhead. To limit the impact, we cannot browse the
entire local caches each time to check if they have the data. To remain at a functional
cache simulation, multiple points can be considered. The first immediate idea is to
store the pointer of the cache that has the looking data. Thus, we avoid checking all
the caches. The other idea is to look in detail at the existing memory hierarchies to see

93



CHAPTER 7. CONCLUSION AND PROSPECTS

how they deal with cache coherency and how we can adapt their hardware approaches
to our functional model. To this end, it is necessary to re-study the parallelization
strategies like we have done for the contribution on the threaded data cache.

Dependency on QEMU runtime

The main remaining problematic issue related to our cache model contribution in
QEMU is its dependency on runtime. Even if we managed to prove the correct be-
haviour of our cache model in QEMU user-mode, the full-system mode reflects more
closely the reality and thus evaluating our cache model in this mode makes more sense.
That is why succeeding in evaluating our cache model in full-system is a crucial point
that must be addressed. We tried a simple patch to stop counting ticks during cache
model execution with the hope to have much more stable statistics but sadly it was not
a real success. For this point, a more intrusive research and a deeper understanding of
QEMU time handling mechanisms is mandatory.

QEMU cache simulation and security

The last point left to be addressed is whether our cache model can be used for security
research. Lots of attacks are known to be related to caches. It is the case of the two
famous Spectre and Meltdown attacks. In the contributions of this thesis, we proposed
a fast and accurate simulation of a simple cache model. Some attacks can deduce by
the time spent in the cache if there is a miss or a hit (a miss takes more time) and
therefore retrieve information. By improving our cache model with a pseudo timed
cache simulation (adding some arbitrary time for each miss), we can propose a fast
and accurate functional cache simulation interesting for the analysis of attacks.

94



APPENDIXES





Appendix A

Scalability of QEMU Parallel
Implementation

This Appendix contains the detailed comparisons for all the benchmarks that are not
in Section 6.2 regarding the scalability of QEMU parallel implementation. The PARSEC
benchmark barnes was very instable in the RISC-V simulation, that is why it appears
on some Figures in x86 and ARM but is not present in the RISC-V Figures.

Figures
A.1 Comparison full execution time in x86 with/without PARSEC thread

affinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A.2 Comparison full and ROI execution time in QEMU RISC-V without pin-
ning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.3 Comparison full and ROI execution time in QEMU RISC-V with pinning 103

A.4 Comparison full execution time in QEMU RISC-V without/with pinning 105

A.5 Comparison full execution time in QEMU ARM without/with pinning . 107

97



APPENDIX A. SCALABILITY OF QEMU PARALLEL IMPLEMENTATION

24 8 16 24 32 48 64 96 128
Number of threads nt

100

101

W
al

l-C
lo

ck
 T

im
e 

(s
)

freqmine
freqmine PARSEC affinity
fft
fft PARSEC affinity
lu cb PARSEC affinity
lu cb
fludanimate
fludanimate PARSEC affinity

(a) Comparison full execution time in x86 part 2 of the benchmarks

24 8 16 24 32 48 64 96 128
Number of threads nt

100

101

W
al

l-C
lo

ck
 T

im
e 

(s
)

radix PARSEC affinity
radix
ocean cp PARSEC affinity
ocean cp
swaptions
swaptions PARSEC affinity
lu ncb
lu ncb PARSEC affinity

(b) Comparison full execution time in x86 part 3 of the benchmarks

98



APPENDIX A. SCALABILITY OF QEMU PARALLEL IMPLEMENTATION

24 8 16 24 32 48 64 96 128
Number of threads nt

100

101

W
al

l-C
lo

ck
 T

im
e 

(s
)

water nsquared
water nsquared PARSEC affinity
barnes
barnes PARSEC affinity
water spatial
water spatial PARSEC affinity

(c) Comparison full execution time in x86 part 4 of the benchmarks

Figure A.1: Comparison of the full execution time with and without the PARSEC thread affinity
in x86

99



APPENDIX A. SCALABILITY OF QEMU PARALLEL IMPLEMENTATION

24 8 16 24 32 48 64 96 128
Number of threads nt

101

102

103

Ti
m

e 
(s

)

lu cb FULL
lu cb ROI
fft FULL
fft ROI
freqmine FULL
freqmine ROI
fludanimate FULL
fludanimate ROI

(a) Comparison full and ROI execution time in QEMU RISC-V nc = nt without pinning part 2 of the
benchmarks

24 8 16 24 32 48 64 96 128
Number of threads nt

102

103

Ti
m

e 
(s

)

lu ncb FULL
lu ncb ROI
radix FULL
radix ROI
swaptions FULL
swaptions ROI
ocean cp FULL
ocean cp ROI

(b) Comparison full and ROI execution time in QEMU RISC-V nc = nt without pinning part 3 of the
benchmarks

100



APPENDIX A. SCALABILITY OF QEMU PARALLEL IMPLEMENTATION

24 8 16 24 32 48 64 96 128
Number of threads nt

100

101

Ti
m

e 
(s

)

water spatial FULL
water spatial ROI
water nsquared FULL
water nsquared ROI

(c) Comparison full and ROI execution time in QEMU RISC-V nc = nt without pinning part 4 of the
benchmarks

Figure A.2: Comparison of the full and ROI execution time in QEMU in RISC-V with nc = nt

without pinning

101



APPENDIX A. SCALABILITY OF QEMU PARALLEL IMPLEMENTATION

24 8 16 24 32 48 64 96 128
Number of threads nt

101

102

103

Ti
m

e 
(s

)

lu cb FULL
lu cb ROI
fft FULL
fft ROI
freqmine FULL
freqmine ROI
fludanimate FULL
fludanimate ROI

(a) Comparison full and ROI execution time in QEMU RISC-V nc = nt with pinning part 2 of the
benchmarks

24 8 16 24 32 48 64 96 128
Number of threads nt

102

103

Ti
m

e 
(s

)

lu ncb FULL
lu ncb ROI
radix FULL
radix ROI
swaptions FULL
swaptions ROI
ocean cp FULL
ocean cp ROI

(b) Comparison full and ROI execution time in QEMU RISC-V nc = nt with pinning part 3 of the
benchmarks

102



APPENDIX A. SCALABILITY OF QEMU PARALLEL IMPLEMENTATION

24 8 16 24 32 48 64 96 128
Number of threads nt

100

101

Ti
m

e 
(s

)

water spatial FULL
water spatial ROI
water nsquared FULL
water nsquared ROI

(c) Comparison full and ROI execution time in QEMU RISC-V nc = nt with pinning part 4 of the
benchmarks

Figure A.3: Comparison of the full and ROI execution time in QEMU in RISC-V with nc = nt

with pinning

103



APPENDIX A. SCALABILITY OF QEMU PARALLEL IMPLEMENTATION

24 8 16 24 32 48 64 96 128
Number of threads nt

102

103

W
al

l-C
lo

ck
 T

im
e 

(s
)

lu cb pinning
lu cb no pinning
fft pinning
fft no pinning
freqmine pinning
freqmine no pinning
fludanimate pinning
fludanimate no pinning

(a) Comparison full execution time in QEMU RISC-V nc = nt without pinning and with pinning part
2 of the benchmarks

24 8 16 24 32 48 64 96 128
Number of threads nt

102

103

W
al

l-C
lo

ck
 T

im
e 

(s
)

lu ncb no pinning
lu ncb pinning
radix no pinning
radix pinning
swaptions pinning
swaptions no pinning
ocean cp pinning
ocean cp no pinning

(b) Comparison full execution time in QEMU RISC-V nc = nt without pinning and with pinning part
3 of the benchmarks

104



APPENDIX A. SCALABILITY OF QEMU PARALLEL IMPLEMENTATION

24 8 16 24 32 48 64 96 128
Number of threads nt

100

101

W
al

l-C
lo

ck
 T

im
e 

(s
)

water spatial pinning
water spatial no pinning
water nsquared no pinning
water nsquared pinning

(c) Comparison full execution time in QEMU RISC-V nc = nt without pinning and with pinning part 4
of the benchmarks

Figure A.4: Comparison of the full execution time in QEMU in RISC-V with nc = nt without
pinning and with pinning

105



APPENDIX A. SCALABILITY OF QEMU PARALLEL IMPLEMENTATION

24 8 16 24 32 48 64 96
Number of threads nt

102

103

W
al

l-C
lo

ck
 T

im
e 

(s
)

lu cb pinning
lu cb no pinning
fft pinning
fft no pinning
freqmine pinning
freqmine no pinning
fludanimate pinning
fludanimate no pinning

(a) Comparison full execution time in QEMU ARM nc = nt without pinning and with pinning part 2
of the benchmarks

24 8 16 24 32 48 64 96
Number of threads nt

102

103

W
al

l-C
lo

ck
 T

im
e 

(s
)

lu ncb pinning
lu ncb no pinning
swaptions pinning
swaptions no pinning
radix pinning
radix no pinning
ocean cp pinning
ocean cp no pinning

(b) Comparison full execution time in QEMU ARM nc = nt without pinning and with pinning part 3
of the benchmarks

106



APPENDIX A. SCALABILITY OF QEMU PARALLEL IMPLEMENTATION

24 8 16 24 32 48 64 96
Number of threads nt

102

103

W
al

l-C
lo

ck
 T

im
e 

(s
)

water nsquared pinning
water nsquared no pinning
barnes pinning
barnes no pinning
water spatial pinning
water spatial no pinning

(c) Comparison full execution time in QEMU ARM nc = nt without pinning and with pinning part 4
of the benchmarks

Figure A.5: Comparison of the full execution time in QEMU in ARM with nc = nt without
pinning and with pinning

107



Appendix B

Instruction cache (L1i) evaluation

This Appendix contains the detailed results on the statistics and execution time for all
the benchmarks that are not in Section 6.3.

Figures
B.1 Instruction cache statistics in QEMU user-mode . . . . . . . . . . . . . 111

B.2 Simulation time with instruction cache in QEMU user-mode . . . . . . 113

108



APPENDIX B. INSTRUCTION CACHE (L1I) EVALUATION

1 2 4 8 16 32 64 128
nb of vcpus

0.0

0.5

1.0

1.5

2.0

2.5

In
st

ru
ct

io
ns

 a
cc

es
se

s

1e9
cache
cacheTB

1 2 4 8 16 32 64 128
nb of vcpus

0

5000

10000

15000

20000

25000

In
st

ru
ct

io
ns

 m
iss

es

cache
cacheTB

(a) Total number of instructions (left) and misses (right) for BARNES (log scale on x-axis)

1 2 4 8 16 32 64 128
nb of vcpus

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

In
st

ru
ct

io
ns

 a
cc

es
se

s

1e9
cache
cacheTB

1 2 4 8 16 32 64 128
nb of vcpus

0

10000

20000

30000

40000

50000

60000

70000

In
st

ru
ct

io
ns

 m
iss

es

cache
cacheTB

(b) Total number of instructions (left) and misses (right) for CHOLESKY (log scale on x-axis)

1 2 4 8 16 32 64 128
nb of vcpus

0.0

0.2

0.4

0.6

0.8

1.0

1.2

In
st

ru
ct

io
ns

 a
cc

es
se

s

1e10
cache
cacheTB

1 2 4 8 16 32 64 128
nb of vcpus

0

5000

10000

15000

20000

25000

30000

35000

40000

In
st

ru
ct

io
ns

 m
iss

es

cache
cacheTB

(c) Total number of instructions (left) and misses (right) for FFT (log scale on x-axis)

109



APPENDIX B. INSTRUCTION CACHE (L1I) EVALUATION

1 2 4 8 16 32 64 128
nb of vcpus

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

In
st

ru
ct

io
ns

 a
cc

es
se

s

1e10
cache
cacheTB

1 2 4 8 16 32 64 128
nb of vcpus

0

10000

20000

30000

40000

50000

In
st

ru
ct

io
ns

 m
iss

es

cache
cacheTB

(d) Total number of instructions (left) and misses (right) for FREQMINE (log scale on x-axis)

1 2 4 8 16 32 64 128
nb of vcpus

0.0

0.5

1.0

1.5

2.0

In
st

ru
ct

io
ns

 a
cc

es
se

s

1e10
cache
cacheTB

1 2 4 8 16 32 64 128
nb of vcpus

0

5000

10000

15000

20000

25000
In

st
ru

ct
io

ns
 m

iss
es

cache
cacheTB

(e) Total number of instructions (left) and misses (right) for LU NCB (log scale on x-axis)

1 2 4 8 16 32 64 128
nb of vcpus

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

In
st

ru
ct

io
ns

 a
cc

es
se

s

1e10
cache
cacheTB

1 2 4 8 16 32 64 128
nb of vcpus

0

100000

200000

300000

400000

500000

600000

In
st

ru
ct

io
ns

 m
iss

es

cache
cacheTB

(f) Total number of instructions (left) and misses (right) for OCEAN CP (log scale on x-axis)

110



APPENDIX B. INSTRUCTION CACHE (L1I) EVALUATION

1 2 4 8 16 32 64 128
nb of vcpus

0.0

0.2

0.4

0.6

0.8

1.0

In
st

ru
ct

io
ns

 a
cc

es
se

s

1e10
cache
cacheTB

1 2 4 8 16 32 64 128
nb of vcpus

0

5000

10000

15000

20000

25000

In
st

ru
ct

io
ns

 m
iss

es

cache
cacheTB

(g) Total number of instructions (left) and misses (right) for RADIX (log scale on x-axis)

1 2 4 8 16 32 64 128
nb of vcpus

0

1

2

3

4

In
st

ru
ct

io
ns

 a
cc

es
se

s

1e8
cache
cacheTB

1 2 4 8 16 32 64 128
nb of vcpus

0

10000

20000

30000

40000
In

st
ru

ct
io

ns
 m

iss
es

cache
cacheTB

(h) Total number of instructions (left) and misses (right) for WATER NSQUARED (log scale on x-axis)

1 2 4 8 16 32 64 128
nb of vcpus

0.0

0.5

1.0

1.5

2.0

2.5

In
st

ru
ct

io
ns

 a
cc

es
se

s

1e9
cache
cacheTB

1 2 4 8 16 32 64 128
nb of vcpus

0

10000

20000

30000

40000

50000

60000

In
st

ru
ct

io
ns

 m
iss

es

cache
cacheTB

(i) Total number of instructions (left) and misses (right) for WATER SPATIAL (log scale on x-axis)

Figure B.1: Instruction cache statistics in QEMU user-mode of all the other PARSEC

111



APPENDIX B. INSTRUCTION CACHE (L1I) EVALUATION

1 2 4 8 16 32 64 128
nb of vcpus

100

101

102

Si
m

ul
at

io
n 

Ti
m

e 
(s

)

cache
cacheTB
vanilla

1 2 4 8 16 32 64 128
nb of vcpus

100

101

Si
m

ul
at

io
n 

Ti
m

e 
(s

)

cache
cacheTB
vanilla

(a) Simulation time of BARNES (left) and CHOLESKY (right) (log-log scale)

1 2 4 8 16 32 64 128
nb of vcpus

101

102

Si
m

ul
at

io
n 

Ti
m

e 
(s

)

cache
cacheTB
vanilla

1 2 4 8 16 32 64 128
nb of vcpus

101

102

103

Si
m

ul
at

io
n 

Ti
m

e 
(s

)

cache
cacheTB
vanilla

(b) Simulation time of FFT (left) and FREQMINE (right) (log-log scale)

1 2 4 8 16 32 64 128
nb of vcpus

101

102

103

Si
m

ul
at

io
n 

Ti
m

e 
(s

)

cache
cacheTB
vanilla

1 2 4 8 16 32 64 128
nb of vcpus

101

102

103

Si
m

ul
at

io
n 

Ti
m

e 
(s

)

cache
cacheTB
vanilla

(c) Simulation time of LU NCB (left) and OCEAN CP (right) (log-log scale)

1 2 4 8 16 32 64 128
nb of vcpus

101

102

Si
m

ul
at

io
n 

Ti
m

e 
(s

)

cache
cacheTB
vanilla

1 2 4 8 16 32 64 128
nb of vcpus

100

101

Si
m

ul
at

io
n 

Ti
m

e 
(s

)

cache
cacheTB
vanilla

(d) Simulation time of RADIX (left) and WATER NSQUARED (right) (log-log scale)

112



APPENDIX B. INSTRUCTION CACHE (L1I) EVALUATION

1 2 4 8 16 32 64 128
nb of vcpus

100

101

102

Si
m

ul
at

io
n 

Ti
m

e 
(s

)
cache
cacheTB
vanilla

(e) Simulation time of WATER SPATIAL (log-log scale)

Figure B.2: Simulation time with instruction cache in QEMU user-mode of all the other PAR-
SEC

113



Appendix C

Data cache (L1d) evaluation

This Appendix contains the detailed results on the investigation of the optimal config-
uration of buffers for the water nsquared benchmark that are not in Section 6.4.

Figures
C.1 Simulation time water nsquared with variations of number of buffers

and buffer size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

114



APPENDIX C. DATA CACHE (L1D) EVALUATION

500 1000 1500 2000 2500 3000 3500 4000
Buffers size

4

6

8

10

12

14

W
al

l-C
lo

ck
 T

im
e 

(s
)

256 buffers
512 buffers
1024 buffers
2048 buffers
4096 buffers

(a) Simulation time of the PARSEC water nsquared with variations of number of buffers and buffer size
with 1 vCPUs

500 1000 1500 2000 2500 3000 3500 4000
Buffers size

5

6

7

8

9

10

11

W
al

l-C
lo

ck
 T

im
e 

(s
)

256 buffers
512 buffers
1024 buffers
2048 buffers
4096 buffers

(b) Simulation time of the PARSEC water nsquared with variations of number of buffers and buffer size
with 2 vCPUs

115



APPENDIX C. DATA CACHE (L1D) EVALUATION

500 1000 1500 2000 2500 3000 3500 4000
Buffers size

5.0

5.2

5.4

5.6

5.8

6.0

6.2

6.4

6.6

W
al

l-C
lo

ck
 T

im
e 

(s
)

256 buffers
512 buffers
1024 buffers
2048 buffers
4096 buffers

(c) Simulation time of the PARSEC water nsquared with variations of number of buffers and buffer size
with 16 vCPUs

500 1000 1500 2000 2500 3000 3500 4000
Buffers size

5.25

5.50

5.75

6.00

6.25

6.50

6.75

7.00

W
al

l-C
lo

ck
 T

im
e 

(s
)

256 buffers
512 buffers
1024 buffers
2048 buffers
4096 buffers

(d) Simulation time of the PARSEC water nsquared with variations of number of buffers and buffer size
with 32 vCPUs

Figure C.1: Simulation time of the PARSEC water nsquared with variations of number of
buffers and buffer size with 1,2,16 and 32 vCPUs

116



Appendix D

Cache hierarchy per virtual CPU: L1i +
L1d + L2 evaluation

This Appendix contains the detailed results on the statistics and execution time for all
the benchmarks that are not in Section 6.5.

Figures
D.1 L2 cache statistics in QEMU user-mode . . . . . . . . . . . . . . . . . . 120

D.2 Simulation time with L1i + L1d + L2 in QEMU user-mode . . . . . . . 122

117



APPENDIX D. CACHE HIERARCHY PER VIRTUAL CPU: L1I + L1D + L2 EVALUATION

1 2 4 8 16 32 64 128
nb of vcpus

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In
st

ru
ct

io
ns

 a
cc

es
se

s

1e7

cache
cacheTB

1 2 4 8 16 32 64 128
nb of vcpus

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

In
st

ru
ct

io
ns

 m
iss

es

1e7

cache
cacheTB

(a) Total number of instructions (left) and misses (right) for BARNES (log scale on x-axis)

1 2 4 8 16 32 64 128
nb of vcpus

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Nu
m

be
r o

f i
ns

tru
ct

io
ns

1e7

cache
cacheTB

1 2 4 8 16 32 64 128
nb of vcpus

0.0

0.2

0.4

0.6

0.8

1.0
In

st
ru

ct
io

n 
m

iss
es

1e7

cache
cacheTB

(b) Total number of instructions (left) and misses (right) for CHOLESKY (log scale on x-axis)

1 2 4 8 16 32 64 128
nb of vcpus

0.0

0.5

1.0

1.5

2.0

Nu
m

be
r o

f i
ns

tru
ct

io
ns

1e8

cache
cacheTB

1 2 4 8 16 32 64 128
nb of vcpus

0.0

0.2

0.4

0.6

0.8

1.0

1.2

In
st

ru
ct

io
n 

m
iss

es

1e8

cache
cacheTB

(c) Total number of instructions (left) and misses (right) for FFT (log scale on x-axis)

118



APPENDIX D. CACHE HIERARCHY PER VIRTUAL CPU: L1I + L1D + L2 EVALUATION

1 2 4 8 16 32 64 128
nb of vcpus

0.0

0.5

1.0

1.5

2.0

2.5

3.0
In

st
ru

ct
io

ns
 a

cc
es

se
s

1e8

cache
cacheTB

1 2 4 8 16 32 64 128
nb of vcpus

0

1

2

3

4

5

6

In
st

ru
ct

io
ns

 m
iss

es

1e7

cache
cacheTB

(d) Total number of instructions (left) and misses (right) for FREQMINE (log scale on x-axis)

1 2 4 8 16 32 64 128
nb of vcpus

0

1

2

3

4

5

6

7

Nu
m

be
r o

f i
ns

tru
ct

io
ns

1e8

cache
cacheTB

1 2 4 8 16 32 64 128
nb of vcpus

0

1

2

3

4

5

6

In
st

ru
ct

io
n 

m
iss

es

1e8

cache
cacheTB

(e) Total number of instructions (left) and misses (right) for LU NCB (log scale on x-axis)

1 2 4 8 16 32 64 128
nb of vcpus

0

1

2

3

4

5

6

7

Nu
m

be
r o

f i
ns

tru
ct

io
ns

1e8

cache
cacheTB

1 2 4 8 16 32 64 128
nb of vcpus

0

1

2

3

4

5

6

7

In
st

ru
ct

io
n 

m
iss

es

1e8

cache
cacheTB

(f) Total number of instructions (left) and misses (right) for OCEAN CP (log scale on x-axis)

119



APPENDIX D. CACHE HIERARCHY PER VIRTUAL CPU: L1I + L1D + L2 EVALUATION

1 2 4 8 16 32 64 128
nb of vcpus

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Nu
m

be
r o

f i
ns

tru
ct

io
ns

1e8

cache
cacheTB

1 2 4 8 16 32 64 128
nb of vcpus

0.0

0.5

1.0

1.5

2.0

In
st

ru
ct

io
n 

m
iss

es

1e8

cache
cacheTB

(g) Total number of instructions (left) and misses (right) for RADIX (log scale on x-axis)

1 2 4 8 16 32 64 128
nb of vcpus

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In
st

ru
ct

io
ns

 a
cc

es
se

s

1e6

cache
cacheTB

1 2 4 8 16 32 64 128
nb of vcpus

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

In
st

ru
ct

io
ns

 m
iss

es

1e6

cache
cacheTB

(h) Total number of instructions (left) and misses (right) for WATER NSQUARED (log scale on x-axis)

1 2 4 8 16 32 64 128
nb of vcpus

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

In
st

ru
ct

io
ns

 a
cc

es
se

s

1e6

cache
cacheTB

1 2 4 8 16 32 64 128
nb of vcpus

0.0

0.2

0.4

0.6

0.8

1.0

1.2

In
st

ru
ct

io
ns

 m
iss

es

1e6

cache
cacheTB

(i) Total number of instructions (left) and misses (right) for WATER SPATIAL (log scale on x-axis)

Figure D.1: L2 cache statistics in QEMU user-mode of all the other PARSEC

120



APPENDIX D. CACHE HIERARCHY PER VIRTUAL CPU: L1I + L1D + L2 EVALUATION

1 2 4 8 16 32 64 128
nb of vcpus

100

101

102

Si
m

ul
at

io
n 

Ti
m

e 
(s

)
cache
cacheTB
vanilla

1 2 4 8 16 32 64 128
nb of vcpus

100

101

Si
m

ul
at

io
n 

Ti
m

e 
(s

)

cache
cacheTB
vanilla

(a) Simulation time of BARNES (left) and CHOLESKY (right) (log-log scale)

1 2 4 8 16 32 64 128
nb of vcpus

101

102

Si
m

ul
at

io
n 

Ti
m

e 
(s

)

cache
cacheTB
vanilla

1 2 4 8 16 32 64 128
nb of vcpus

101

102

103

Si
m

ul
at

io
n 

Ti
m

e 
(s

)

cache
cacheTB
vanilla

(b) Simulation time of FFT (left) and FREQMINE (right) (log-log scale)

1 2 4 8 16 32 64 128
nb of vcpus

101

102

103

Si
m

ul
at

io
n 

Ti
m

e 
(s

)

cache
cacheTB
vanilla

1 2 4 8 16 32 64 128
nb of vcpus

101

102

103

Si
m

ul
at

io
n 

Ti
m

e 
(s

)

cache
cacheTB
vanilla

(c) Simulation time of LU NCB (left) and OCEAN CP (right) (log-log scale)

1 2 4 8 16 32 64 128
nb of vcpus

101

102

Si
m

ul
at

io
n 

Ti
m

e 
(s

)

cache
cacheTB
vanilla

1 2 4 8 16 32 64 128
nb of vcpus

100

101

Si
m

ul
at

io
n 

Ti
m

e 
(s

)

cache
cacheTB
vanilla

(d) Simulation time of RADIX (left) and WATER NSQUARED (right) (log-log scale)

121



APPENDIX D. CACHE HIERARCHY PER VIRTUAL CPU: L1I + L1D + L2 EVALUATION

1 2 4 8 16 32 64 128
nb of vcpus

100

101

102

Si
m

ul
at

io
n 

Ti
m

e 
(s

)

cache
cacheTB
vanilla

(e) Simulation time of WATER SPATIAL (log-log scale)

Figure D.2: Simulation time with L1i + L1d + L2 in QEMU user-mode of all the other PARSEC

122



Publications

International Conferences

− Marie Badaroux and Frédéric Pétrot. ”Arbitrary and Variable Precision Floating-
Point Arithmetic Support in Dynamic Binary Translation,” 26th Asia and South
Pacific Design Automation Conference (ASP-DAC), Tokyo, Japan, pp. 325-330.
https://doi.org/10.1145/3394885.3431416

− Marie Badaroux, Saverio Miroddi and Frédéric Pétrot. ”To Pin or Not to Pin:
Asserting the Scalability of QEMU Parallel Implementation”, 24th Euromicro
Symposium on Digital Systems Design (DSD), pp. 238-245. https://doi.org/
10.1109/DSD53832.2021.00045

Workshops

− Marie Badaroux, Julie Dumas, and Frédéric Pétrot. 2023. Fast Instruction
Cache Simulation is Trickier than You Think. In Proceedings of the DroneSE and
RAPIDO: System Engineering for constrained embedded systems (RAPIDO ’23).
Association for Computing Machinery, pp. 48–53. https://doi.org/10.1145/
3579170.3579261

Informal Communications

− Poster presentation of the paper ”Arbitrary and Variable Precision Floating-Point
Arithmetic Support in Dynamic Binary Translation”, RISC-V Spring Week, 2022,

− Poster presentation of my PhD contributions, ”Fast and accurate simulation of
multi/many-core SoCs”, FETCH Winter School, 2022.

123

https://doi.org/10.1145/3394885.3431416
https://doi.org/10.1109/DSD53832.2021.00045
https://doi.org/10.1109/DSD53832.2021.00045
https://doi.org/10.1145/3579170.3579261
https://doi.org/10.1145/3579170.3579261




Bibliography

[AAG+16] Vaggelis Atlidakis, Jeremy Andrus, Roxana Geambasu, Dimitris Mitropou-
los, and Jason Nieh. Posix abstractions in modern operating systems: The
old, the new, and the missing. In Proceedings of the Eleventh European
Conference on Computer Systems, pages 1–17, 2016. (Cited on page 54.)

[ABvK+11] Oscar Almer, Igor Böhm, Tobias Edler von Koch, Björn Franke, Stephen
Kyle, Volker Seeker, Christopher Thompson, and Nigel Topham. Scal-
able multi-core simulation using parallel dynamic binary translation. In
2011 International Conference on Embedded Computer Systems: Architec-
tures, Modeling and Simulation, pages 190–199, 2011. (Cited on pages
10 and 19.)

[Amd67] Gene Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. pages 483–485, April 1967. (Cited on page
38.)

[Bar93] Greg Barnes. A method for implementing lock-free shared-data structures.
In Proceedings of the fifth annual ACM symposium on Parallel algorithms
and architectures, pages 261–270, 1993. (Cited on page 54.)

[BBB+11] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt,
Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna,
Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay
Vaish, Mark D. Hill, and David A. Wood. The gem5 simulator. SIGARCH
Comput. Archit. News, 39(2):1–7, aug 2011. (Cited on pages 9, 26,
and 79.)

[Bel05] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In USENIX
Annual Technical Conference, FREENIX Track, pages 41–46. USENIX, 2005.
(Cited on pages 13 and 29.)

[Ben15] Alex Bennée. Towards multi-threaded tcg. In KVM forum, 2015. (Cited
on pages 20 and 31.)

[Ben20] Alex Bennée. Multi-thread tiny code generator, 2020. https:

//github.com/qemu/qemu/blob/master/docs/devel/multi-thread-
tcg.rst. (Cited on page 20.)

125

https://github.com/qemu/qemu/blob/master/docs/devel/multi-thread-tcg.rst
https://github.com/qemu/qemu/blob/master/docs/devel/multi-thread-tcg.rst
https://github.com/qemu/qemu/blob/master/docs/devel/multi-thread-tcg.rst


[BFT10] Igor Böhm, Björn Franke, and Nigel Topham. Cycle-accurate performance
modelling in an ultra-fast just-in-time dynamic binary translation instruc-
tion set simulator. In 2010 International Conference on Embedded Computer
Systems: Architectures, Modeling and Simulation, pages 1–10, 2010. (Cited
on page 22.)

[BKP20] Hadi Brais, Rajshekar Kalayappan, and Preeti Panda. A survey of cache
simulators. ACM Computing Surveys (CSUR), 53:1–32, 02 2020. (Cited
on page 25.)

[BKSL08] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The
parsec benchmark suite: Characterization and architectural implications.
In Proceedings of the 17th international conference on Parallel architectures
and compilation techniques, pages 72–81, 2008. (Cited on page 37.)

[CBBC17] Emilio G. Cota, Paolo Bonzini, Alex Bennée, and Luca P. Carloni. Cross-
isa machine emulation for multicores. In 2017 IEEE/ACM International
Symposium on Code Generation and Optimization, pages 210–220, 2017.
(Cited on page 20.)

[CC19] Emilio Cota and Luca Carloni. Cross-isa machine instrumentation using
fast and scalable dynamic binary translation. In Proceedings of the 15th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Envi-
ronments, pages 74–87. ACM, 2019. (Cited on page 23.)

[CK94] Bob Cmelik and David Keppel. Shade: A fast instruction-set simulator for
execution profiling. SIGMETRICS Perform. Eval. Rev., 22(1):128–137, may
1994. (Cited on page 23.)

[CM96] Cifuentes and Malhotra. Binary translation: static, dynamic, retargetable?
In 1996 Proceedings of International Conference on Software Maintenance,
pages 340–349, 1996. (Cited on page 10.)

[CNZ20] Humberto Carvalho, Geoffrey Nelissen, and Pavel Zaykov. mcqemu: Time-
accurate simulation of multi-core platforms using qemu. In 2020 23rd
Euromicro Conference on Digital System Design (DSD), pages 81–88, 2020.
(Cited on page 22.)

[CP78] Richard P. Case and Andris Padegs. Architecture of the ibm system/370.
Communications of the ACM, 21(1):73–96, 1978. (Cited on page 8.)

[CPVM10] Juan Castillo, Hector Posadas, Eugenio Villar, and Marcos Martinez. Fast
instruction cache modeling for approximate timed hw/sw co-simulation.
In Proceedings of the 20th Symposium on Great Lakes Symposium on VLSI,
page 191–196. IEEE, 2010. (Cited on page 26.)

[DBK+16] Guillaume Delbergue, Mark Burton, Frederic Konrad, Bertrand Le Gal,
and Christophe Jego. Qbox: an industrial solution for virtual platform
simulation using qemu and systemc tlm-2.0. In 8th European Congress on
Embedded Real Time Software and Systems, 2016. (Cited on page 20.)



[DCHC11] Jiun-Hung Ding, Po-Chun Chang, Wei-Chung Hsu, and Yeh-Ching Chung.
Pqemu: A parallel system emulator based on qemu. In 1st International
QEMU Users’ Forum, pages 35–38, 2011. (Cited on page 20.)

[dGGL16] Amanieu d’Antras, Cosmin Gorgovan, Jim Garside, and Mikel Luján. Opti-
mizing indirect branches in dynamic binary translators. ACM Trans. Archit.
Code Optim., 13(1), apr 2016. (Cited on page 21.)

[DGVS14] Luis D́ıaz, Eduardo González, Eugenio Villar, and Pablo Sánchez. Vippe,
parallel simulation and performance analysis of multi-core embedded sys-
tems on multi-core platforms. In Design of Circuits and Integrated Systems,
pages 1–7, 2014. (Cited on page 19.)

[DM10] Arnaldo Carvalho De Melo. The new linux “perf” tools. In Linux Kongress,
volume 18, 2010. http://vger.kernel.org/~acme/perf/lk2010-perf-
acme.pdf. (Cited on page 69.)

[EH98] Jan Edler and Mark D Hill. Dinero iv trace-driven uniprocessor cache sim-
ulator, 1998. https://pages.cs.wisc.edu/~markhill/DineroIV/. (Cited
on pages 8 and 25.)

[Far18] Antoine Faravelon. Acceleration of memory accesses in dynamic binary
translation. PhD thesis, 10 2018. (Cited on page 21.)

[FGP21] Antoine Faravelon, Olivier Gruber, and Frédéric Pétrot. Removing load/s-
tore helpers in dynamic binary translation. In Multi-Processor System-on-
Chip 1, chapter 7, pages 133–160. John Wiley & Sons, Ltd, 2021. (Cited
on page 21.)

[FKMM15] Paolo Faraboschi, Kimberly Keeton, Tim Marsland, and Dejan Milojicic.
Beyond processor-centric operating systems. In 15th Workshop on Hot
Topics in Operating Systems (HotOS XV), 2015. (Cited on page 6.)

[Gar14] Timothy Garnett. Dynamic optimization of ia32 applications under dy-
namorio. 05 2014. (Cited on page 21.)

[GDBAS20] Davood Ghatrehsamani, Chavit Denninnart, Josef Bacik, and Mohsen
Amini Salehi. The art of cpu-pinning: Evaluating and improving the per-
formance of virtualization and containerization platforms. In Proceedings
of the 49th International Conference on Parallel Processing, ICPP ’20, New
York, NY, USA, 2020. Association for Computing Machinery. (Cited on
page 73.)

[GFKW11] Pawel Gepner, David L. Fraser, Michal Filip Kowalik, and Kazimierz
Waćkowski. Evaluating new architectural features of the intel (r) xeon
(r) 7500 processor for hpc workloads. Computer Science, 12:5–17, 2011.
(Cited on page 40.)

[GFP09] Marius Gligor, Nicolas Fournel, and Frédéric Pétrot. Using binary transla-
tion in event driven simulation for fast and flexible mpsoc simulation. In
Proceedings of the 7th IEEE/ACM International Conference on Hardware/-
Software Codesign and System Synthesis, pages 71–80. ACM, 2009. (Cited
on page 26.)

http://vger.kernel.org/~acme/perf/lk2010-perf-acme.pdf
http://vger.kernel.org/~acme/perf/lk2010-perf-acme.pdf
https://pages.cs.wisc.edu/~markhill/DineroIV/


[Gil07] Damien Gille. Study of different cache line replacement algorithms in
embedded systems. Master’s thesis, KTH—Royal Institute of Technology,
Stockholm, 2007. (Cited on page 50.)

[Gre13] Brendan Gregg. Thinking methodically about performance. Communica-
tions of the ACM, 56(2):45–51, 2013. (Cited on page 69.)

[Gui11] Christophe Guillon. Program instrumentation with qemu. In W. Mueller
and F. Pétrot, editors, 1st International QEMU Users’ Forum, volume 1,
pages 15–18, 2011. (Cited on page 23.)

[Ham15] Julian Hammer. pycachesim, 2015. https://github.com/RRZE-HPC/
pycachesim. (Cited on page 25.)

[HDBZ15] Byron Hawkins, Brian Demsky, Derek Bruening, and Qin Zhao. Optimizing
binary translation of dynamically generated code. In Proceedings of the
13th Annual IEEE/ACM International Symposium on Code Generation and
Optimization, CGO ’15, page 68–78, USA, 2015. IEEE Computer Society.
(Cited on page 21.)

[Her93] Maurice Herlihy. A methodology for implementing highly concurrent
data objects. ACM Transactions on Programming Languages and Systems
(TOPLAS), 15(5):745–770, 1993. (Cited on page 54.)

[HHY+12] Ding-Yong Hong, Chun-Chen Hsu, Pen-Chung Yew, Jan-Jan Wu, Wei-
Chung Hsu, Pangfeng Liu, Chien-Min Wang, and Yeh-Ching Chung.
Hqemu: A multi-threaded and retargetable dynamic binary translator on
multicores. In Proceedings of the Tenth International Symposium on Code
Generation and Optimization, CGO ’12, page 104–113, New York, NY, USA,
2012. Association for Computing Machinery. (Cited on pages 21 and 23.)

[HM93] Maurice Herlihy and J Eliot B Moss. Transactional memory: Architectural
support for lock-free data structures. In Proceedings of the 20th annual
international symposium on Computer architecture, pages 289–300, 1993.
(Cited on page 54.)

[JC17] Michael J. Clark. busybear-linux, 2017. https://github.com/
michaeljclark/busybear-linux. (Cited on page 40.)

[JMW+22] Fatma Jebali, Oumaima Matoussi, Arief Wicaksana, Amir Charif, and Lilia
Zaourar. Decoupling processor and memory hierarchy simulators for effi-
cient design space exploration. In 15th Workshop on Rapid Simulation and
Performance Evaluation for Design Optimization: Methods and Tools, page
47–52. ACM, 2022. (Cited on page 25.)

[KSC+20] Martin Kristien, Tom Spink, Brian Campbell, Susmit Sarkar, Ian Stark,
Björn Franke, Igor Böhm, and Nigel Topham. Fast and correct load-
link/store-conditional instruction handling in dbt systems. In CASES’20:
Proceedings of the International Conference on Compilers, Architectures and
Synthesis for Embedded Systems, 2020. (Cited on page 19.)

https://github.com/RRZE-HPC/pycachesim
https://github.com/RRZE-HPC/pycachesim
https://github.com/michaeljclark/busybear-linux
https://github.com/michaeljclark/busybear-linux


[LCM+05] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood.
Pin: building customized program analysis tools with dynamic instrumen-
tation. Acm sigplan notices, 40(6):190–200, 2005. (Cited on pages 13
and 23.)

[LHW+14] Yi-Hong Lyu, Ding-Yong Hong, Tai-Yi Wu, Jan-Jan Wu, Wei-Chung Hsu,
Pangfeng Liu, and Pen-Chung Yew. Dbill: An efficient and retargetable
dynamic binary instrumentation framework using llvm backend. Acm Sig-
plan Notices, 49(7):141–152, 2014. (Cited on page 23.)

[Mag97] Peter S. Magnusson. Efficient instruction cache simulation and execution
profiling with a threaded-code interpreter. In Proceedings of the 29th con-
ference on Winter simulation, pages 1093–1100. IEEE, 1997. (Cited on
page 26.)

[Man21] Mahmoud Mandour. Cache modelling tcg plugin, 2021. https://

www.qemu.org/2021/08/19/tcg-cache-modelling-plugin/. (Cited on
page 26.)

[MCDK21] Kévin Mambu, Henri-Pierre Charles, Julie Dumas, and Maha Kooli. In-
struction set design methodology for in-memory computing through
qemu-based system emulator. In 2021 IEEE International Workshop on
Rapid System Prototyping (RSP), pages 43–49. IEEE, 2021. (Cited on
page 24.)

[Mic14] Luc Michel. Contributions to dynamic binary translation : instruction par-
allelism support and optimized translators generator. PhD thesis, 12 2014.
(Cited on page 11.)

[Mir21] Saverio Miroddi. Qemu-pinning, 2021. https : / / github.com /
64kramsystem/qemu-pinning. (Cited on page 29.)

[MTB11] Abdelhafid Mazouz, Sid-Ahmed-Ali Touati, and Denis Barthou. Perfor-
mance evaluation and analysis of thread pinning strategies on multi-core
platforms: Case study of spec omp applications on intel architectures. In
2011 International Conference on High Performance Computing & Simula-
tion, pages 273–279, 2011. (Cited on page 33.)

[NS07] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. ACM Sigplan notices, 42(6):89–
100, 2007. (Cited on page 23.)

[NS15] Alejandro Nicolas and Pablo Sanchez. Parallel native-simulation for multi-
processing embedded systems. In 2015 Euromicro Conference on Digital
System Design, pages 543–546, 2015. (Cited on page 19.)

[Oda23] Akihiko Odaki. [qemu] plugins: Allow to read registers,
2023. https : / / patchew.org / QEMU / 20231019102657.129512 - 1 -

akihiko.odaki@daynix.com. (Cited on page 25.)

https://www.qemu.org/2021/08/19/tcg-cache-modelling-plugin/
https://www.qemu.org/2021/08/19/tcg-cache-modelling-plugin/
https://github.com/64kramsystem/qemu-pinning
https://github.com/64kramsystem/qemu-pinning
https://patchew.org/QEMU/20231019102657.129512-1-akihiko.odaki@daynix.com
https://patchew.org/QEMU/20231019102657.129512-1-akihiko.odaki@daynix.com


[OYTN17] Katsumi Okuda, Minoru Yoshida, Haruhiko Takeyama, and Minoru Naka-
mura. Automated generation of dynamic binary translators for instruction
set simulation. In 2017 22nd Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 214–219, 2017. (Cited on page 18.)

[PBC+15] Andrej Podzimek, Lubomı́r Bulej, Lydia Y. Chen, Walter Binder, and Petr
Tuma. Analyzing the impact of cpu pinning and partial cpu loads on per-
formance and energy efficiency. In 2015 15th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, pages 1–10. IEEE, 2015.
(Cited on page 73.)

[PY15] Louis-Noël Pouchet and Tomofumi Yuki. Polybench/c 4.1, 2015. http:

//polybench.sourceforge.net. (Cited on page 59.)

[RCBJ11] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. Dramsim2: A cycle
accurate memory system simulator. IEEE Computer Architecture Letters,
10(1):16–19, 2011. (Cited on page 9.)

[RRD17] Simon Rokicki, Erven Rohou, and Steven Derrien. Hardware-accelerated
dynamic binary translation. In Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE), 2017, pages 1062–1067, 2017. (Cited on page
21.)

[RSR16] Alvise Rigo, Alexander Spyridakis, and Daniel Raho. Atomic instruction
translation towards a multi-threaded qemu. In 30th European Conference
on Modelling and Simulation, pages 1–9, 2016. (Cited on page 20.)

[SE04] Amitabh Srivastava and Alan Eustace. Atom: A system for building cus-
tomized program analysis tools. SIGPLAN Not., 39(4):528–539, apr 2004.
(Cited on page 23.)

[SHP12] Hao Shen, Mian-Muhammad Hamayun, and Frédéric Pétrot. Native simu-
lation of mpsoc using hardware-assisted virtualization. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 31(7):1074–
1087, 2012. (Cited on page 19.)

[SR15] Gabriel Southern and Jose Renau. Deconstructing parsec scalability. In
Proc. of the Annual Workshop on Duplicating, Deconstructing, and Debunk-
ing, 2015. (Cited on pages 38 and 62.)

[SWF20] Tom Spink, Harry Wagstaff, and Björn Franke. A retargetable system-level
dbt hypervisor. ACM Trans. Comput. Syst., 36(4), may 2020. (Cited on
page 18.)

[UC00] David Ung and Cristina Cifuentes. Machine-adaptable dynamic binary
translation. SIGPLAN Notices (ACM Special Interest Group on Programming
Languages), 35, 04 2000. (Cited on page 18.)

[VDTT14] Tran Van Dung, Ittetsu Taniguchi, and Hiroyuki Tomiyama. Cache simu-
lation for instruction set simulator qemu. In 2014 IEEE 12th International
Conference on Dependable, Autonomic and Secure Computing, pages 441–
446. IEEE, 2014. (Cited on page 26.)

http://polybench.sourceforge.net
http://polybench.sourceforge.net


[VMK22] Mihir Vora, Priyabarata Mishra, and Anirudha Shrikant Kurhade. Integra-
tion of pycachesim with qemu. In 2021 4th International Conference on
Recent Trends in Computer Science and Technology (ICRTCST), pages 27–
30, 2022. (Cited on page 25.)

[Wei08] Josef Weidendorfer. Sequential performance analysis with callgrind and
kcachegrind. In Tools for High Performance Computing, pages 93–113.
Springer, 2008. (Cited on page 25.)

[WHK+07] Cheng Wang, Shiliang Hu, Ho-seop Kim, Sreekumar R. Nair, Mauricio Bre-
ternitz, Zhiwei Ying, and Youfeng Wu. Stardbt: An efficient multi-platform
dynamic binary translation system. In Proceedings of the 12th Asia-Pacific
Conference on Advances in Computer Systems Architecture, ACSAC’07, page
4–15, Berlin, Heidelberg, 2007. Springer-Verlag. (Cited on page 18.)

[WLC+11] Zhaoguo Wang, Ran Liu, Yufei Chen, Xi Wu, Haibo Chen, Weihua Zhang,
and Binyu Zang. Coremu: a scalable and portable parallel full-system
emulator. In Proceedings of the 16th ACM symposium on Principles and
practice of parallel programming, pages 213–222, 2011. (Cited on page
20.)

[WM08] Vincent M. Weaver and Sally A. McKee. Are cycle accurate simulations a
waste of time. In Proc. 7th Workshop on Duplicating, Deconstructing, and
Debunking, pages 40–53. Citeseer, 2008. (Cited on page 9.)

[WR96] Emmett Witchel and Mendel Rosenblum. Embra: Fast and flexible ma-
chine simulation. In Proceedings of the 1996 ACM SIGMETRICS Inter-
national Conference on Measurement and Modeling of Computer Systems,
SIGMETRICS ’96, page 68–79, New York, NY, USA, 1996. Association for
Computing Machinery. (Cited on page 18.)


	Front page
	Acknowledgements
	Abstract
	Résumé (Français)
	Table of Contents
	1 Introduction
	2 Problem Statement
	2.1 Systems simulation
	2.2 Dynamic Binary Translation
	2.3 Conclusion

	3 State of the Art
	3.1 Dynamic Binary Translation (DBT)
	3.2 Dynamic Binary Instrumentation (DBI)
	3.3 Adding new models: overview of cache simulators
	3.4 Conclusion

	4 To Pin or Not to Pin: Asserting the Scalability of QEMU Parallel Implementation
	4.1 QEMU Parallel Implementation
	4.2 Pinning virtual cores in QEMU
	4.3 Possible impacts on the scalability of QEMU Parallel Implementation
	4.4 Conclusion

	5 Fast Cache Simulation For The Dynamic Binary Translation Mechanism
	5.1 Introduction
	5.2 Instruction cache modeling: L1i
	5.3 What about other cache levels: L1d and L2?
	5.4 Conclusion

	6 Experiments
	6.1 Environment
	6.2 Scalability of QEMU Parallel Implementation
	6.3 Instruction cache (L1i) evaluation
	6.4 Data cache (L1d) evaluation
	6.5 Cache hierarchy per virtual CPU: L1i + L1d + L2
	6.6 Cache simulation with pinning
	6.7 Conclusion

	7 Conclusion and Prospects
	7.1 Prospects

	Appendixes
	A Scalability of QEMU Parallel Implementation
	B Instruction cache (L1i) evaluation
	C Data cache (L1d) evaluation
	D Cache hierarchy per virtual CPU: L1i + L1d + L2 evaluation
	Publications
	Bibliography

