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Résumé : L'interaction moléculaire entre les pro-
téines et 'ADN régit le comportement de la cellule
dans le contexte de son environnement. Le maintien
de l'intégrité du génome est donc vital pour le fonc-
tionnement normal et la survie des cellules. L'altéra-
tion de laréparation de 'ADN a été associée a des ma-
ladies graves. Malgré des études intensives, la facon
dont la réparation de I'ADN est orchestrée in vivo a
I'échelle du génome reste mal comprise. Nous avons
développé des outils informatiques pour une évalua-
tion compléte de la cinétique de réparation de 'ADN
locus-spécifique apres une irradiation UV en utilisant
les données de séquencage a haut débit (NGS). Nous
avons analysé les facteurs susceptibles d'influencer la
réparation, tels que la disposition des nucléosomes,
les niveaux de transcription et la taille des génes. En
tirant parti d'une interprétation différente des don-
nées, notre modéle minimal peut récupérer les in-
formations manquantes pour étudier la réparation
continue dans le temps a l'aide de points de don-
nées NGS peu nombreux. Contrairement a d'autres
études qui considerent les signaux de séquencage
comme un comportement moyen, nous les prenons
en compte comme la superposition d'interactions

stochastiques ADN-protéine dans des cellules indé-
pendantes. Cela a permis d’analyser la réparation de
I'ADN dans le contexte d'autres processus nucléaires,
tels que la transcription et le positionnement des nu-
cléosomes. Cependant, pour une véritable compré-
hension du processus, il est nécessaire de combiner
une analyse basée sur les données avec une modéli-
sation mathématique. Nous avons développé et com-
paré deux approches—notamment une approxima-
tion mean-field et une méthode stochastique spéci-
fique aux cellules—qui relient la dynamique de la cel-
lule a des données NGS a I'échelle d’'une population.
Nos méthodes indiquent la cinétique de réparation
spécifique aux genes et permettent de comprendre
le mécanisme de reconnaissance des dommages le
long des régions codantes. Les deux modeéles sont
basés sur des interactions générales entre 'ADN et
les protéines et peuvent étre facilement appliqués
a d'autres processus nucléaires. Ces travaux consti-
tuent un maillon manquant entre la dynamique tem-
porelle interne aux cellules vivantes et le comporte-
ment a I'échelle de la population qui peut étre me-
suré.

Title : Computational and Mathematical Modelling of DNA Repair in Budding Yeast
Keywords : DNA repair; NGS data; data-driven analysis; computational model

Abstract : The molecular interplay of proteins with
the DNA governs cell behaviour in the context of
its environment. Maintenance of genome integrity
is therefore vital for normal cell functionality and
survival. Impaired DNA repair has been associated
with severe diseases. This includes cancer as well as
neurological and premature-ageing disorders. Des-
pite intensive studies, it remains poorly understood
how DNA repair is orchestrated in vivo on a geno-
mic scale. We developed computational tools for a
comprehensive assessment of location-specific DNA
repair kinetics after UV irradiation using Next Gene-
ration Sequencing (NGS) signals. We analysed pos-
sible repair influencing factors, such as nucleosome
arrangement, transcription levels, and gene size. By
leveraging a different interpretation of the data, our
minimal model can recover missing information to
study time-continuous repair using sparse NGS data
points. In contrast to other studies that consider se-
quencing signals as an average behaviour, we un-

derstand them as the superposition of stochastic
DNA-protein interactions in independent cells. This
permitted the analysis of DNA repair in context of
other nuclear processes, such as transcription and
nucleosome positioning. However, for a true unders-
tanding of the process, it is necessary to combine a
top-down data-driven analysis with bottom-up ma-
thematical modelling. We developed and compared
two approaches—namely a mean-field approxima-
tion and a cell-specific stochastic sampling method—
that link single-cell dynamics with population-wide
NGS data. Amazingly, both models indicate gene-
specific repair kinetics, and they provide a mecha-
nistic perspective of the damage recognition along
coding regions. As they are based on general DNA-
protein interactions, they can be readily applied to
other nuclear processes. The work provides a missing
link between cell-internal temporal dynamics in living
cells and population-wide behaviour that can be mea-
sured.
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Caption: The molecular interplay of proteins with the DNA governs cell behaviour in the context
of its environment. Maintenance of genome integrity is therefore vital for normal cell functionality
and survival. Impaired DNA repair has been associated with severe diseases. This includes cancer
as well as neurological and premature-ageing disorders. Despite intensive studies, it remains poorly
understood how DNA repair is orchestrated in vivo on a genomic scale. We developed computational
tools for a comprehensive assessment of location-specific DNA repair kinetics after UV irradiation us-
ing Next Generation Sequencing (NGS) signals. In this PhD manuscript, we describe two top-down
data analyses and two bottom-up mathematical modelling approaches. By evaluating the functional
composition of data that explains the positioning of nucleosomes (1.) as well as analysing the repair
transition over time in context of other genomic properties (2.), we determined repair-influencing fac-
tors that are supposedly important for lesion removal along protein-coding genes. In order to evaluate
our hypotheses, we developed a mean-field approach (3.) and a cell-dependent stochastic sampling
algorithm (4.) to link single-cell DNA-protein interactions to population-based data. Amazingly, both
of our models predict gene-specific repair as well as an interaction between different damage recog-
nition pathways. In this work, we present a new perspective on DNA repair by interfacing biological

experiments with computational models.
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Chapter 1

Introduction

What is our identity? What links us to other human beings or living organisms? It has been a central
endeavour of western philosophy to address mankind’s place in nature. With the development of a
modern scientific methodology, research has found its own ways to contribute to the understanding
of our own kind.

Deoxyribonucleic acid (DNA) is the molecule that encodes the hereditary information of all living
organisms. Long before its discovery, Greek philosophers such as Aristotle and Pythagoras already
hypothesised that parental information is transferred to the offspring, despite being far off the truth
(Mukherjee (2016)). The methodological study of genes had its advent with the hereditary laws
formulated by Gregor Mendel in 1865 (Mendel (1865, 1996)). However, this alone could not provide
a mechanistic explanation. By purifying the DNA molecule itself, Oswald Avery showed that genes
were in fact carried on a chemical (Avery et al. (1944)). Shortly after, in 1953, Watson and Crick
discovered and characterised the actual molecular structure of the DNA (Watson and Crick (1953)).

Genetic and genomic research have shaped science and society alike, opening the doors to vast
opportunities in medicine but also revealing their perils. The treatment development is foremost de-
pendent on discoveries in fundamental research. For example, recombinant DNA technology (which
was largely pioneered by Paul Berg for the tumor virus SV40 (Jackson et al. (1972))) came as rem-
edy to produce clean concentrations of Factor VIII (FVIIl)—a blood clotting factor that is dysfunc-
tional in hemophilia patients—during the HIV crisis. In 1987, a hemophilia patient got successfully
treated for the first time with synthesised FVIII from plasmids introduced into hamster ovary cells—
without the risk of containing blood-borne pathogens (Mukherjee (2016)). A further development in
medicine is giving hope to many patients with inheritable and often incurable diseases: gene ther-
apy. A four-year-old girl with severe combined immunodeficiency (SCID) got treated with the first

approved gene therapy in 1990 (Anderson (1990); Scheller and Krebsbach (2009)). Whilst the pro-



cedure was successful, other examples of premature applications led to prominent and tragic deaths.
Jesse Gelsinger passed away in 1999 after the administration of an understudied gene therapy to
replace the mutated ornithine-transcarbamylase (OTC) gene sequence (Sibbald (2001)). Despite
many remaining unknowns, genetics bears undoubtedly a great potential to unlock so far unknown
key functionalities that can be harnessed to develop novel treatments against various diseases. This
trend has become increasingly clear over the last years. Eight gene therapies received approval by
the Food and Drug Administration (FDA) in 2021, and there were more than 1300 under development
in 2020 (Whittal et al. (2022)).

In order to harness biological mechanisms for the development of new treatments, it is indispens-
able to study the elemental molecular interactions that lead to their regulation in living cells. The
interplay of proteins and RNA with the DNA regulate and affect all fundamental processes in different
contexts (Cozzolino et al. (2021)). Due to the vast complexity, there remain uncountable questions
to be answered. A matter that has been under intense study in recent years is DNA repair. Itis a
known fact that the physical composition of DNA is constantly changed by a variety of external and
internal factors. Environmental agents like smoking (Swenberg et al. (2011); Yamaguchi (2019)),
drinking (Brooks (1997)), and UltraViolet (UV) light (Rastogi et al. (2010); Mao et al. (2016); Hu et al.
(2017)), but equally cell-internal metabolism can cause between 10,000 to 100,000 DNA distortions
per cell per day in the human body (Marteijn et al. (2014); Swenberg et al. (2011)). It is therefore
indispensable for cell survival to possess various mechanisms to repair molecular alterations and
to maintain DNA integrity. The large number of genotoxic factors caused the development of sev-
eral DNA repair pathways in nature, among others Nucleotide Excision Repair (NER). NER is an
evolutionarily conserved pathway that can be found in almost all eukaryotes, including human cells
(Reardon and Sancar (2005); Zhang et al. (2022)) and budding yeast (Saccharomyces cerevisiag).
It is characterised by its exceptional ability to remove numerous lesion types—inter alia UV-induced
damages such as Cyclobutane Pyrimidine Dimers (CPDs) and 6-4 Photoproducts (6-4PPs)—but
also bulky chemical adducts, and cyclopurines that were generated by Reactive Oxygen Species
(ROS) (Marteijn et al. (2014)). NER exhibits region-specific properties, which explains the conven-
tional differentiation between Global-Genome Repair (GGR), which can be observed along the entire
genome; and Transcription Coupled Repair (TCR), which is limited to genes that are actively tran-
scribed by the multiprotein complex RNA Polymerase Il (Pol Il). The stalling of Pol Il at Transcription
Blocking Lesions (TBLs) initiates the recruitment of other NER proteins (Deaconescu et al. (2006)).
The two different detection pathways converge subsequently to the same incision and replacement
mechanism.

Despite laying the fundamental groundwork, biological experiments quickly reach their limits to



study an intricate process such as DNA repair. In fact, the genome-wide organisation of NER in
vivo remains in the dark thus far, and it is unclear how repair dynamics are coordinated in context
of other nuclear processes, such as transcription and chromatin folding. It is therefore necessary to
combine location-specific DNA-protein interaction data—such as Next Generation Sequencing (NGS)
data—with computational models to understand the nuclear kinetics in a fully controlled environment.
Nevertheless, despite the clear need of interfacing computational and experimental methods, the
number of modelling approaches for repair kinetics remain low. In this thesis work, we present
top-down data analysis approaches and bottom-up mathematical models to explain DNA repair in
the yeast species Saccharomyces cerevisiae as a model organism for lesion removal in human cells.
The chapter starts with introducing some few conventions and abbreviations that are used throughout
the manuscript. This is followed by presenting the biological and computational theory on which the

thesis work is based. We close by motivating this work in a wider context of human diseases.

1.1 Conventions

We make use of the following conventions and notations. Standard laboratory strains or those whose
phenotype are indifferent in a given context are called wildtype (WT) strains. Gene names in WT
cells are written in ITALIC capitals. When referring to a mutated gene, we write the name in lower
case italic, e.g. rad7. Gene deletions are given in lower case italic followed by a Delta symbol A, e.g.
rad7A. Protein names are written in normal font, e.g. Rad?7.

We make use of many mathematical notations. Bold symbols (e.g. x or u) refer to vectors. Capital
bold letters are vector functions (such as matrices), e.g. W. If the same symbol appears not marked
in bold, we refer to scalar values within the vector function or vector (e.g. W;;). Throughout the
manuscript, we make use of column vectors. We write sometimes 0,z to represent %.

All abbreviations are introduced with its full explanation when used the first time. We provide a list

of all acronyms in Tables 6.1 and 6.2.

1.2 Biological Background

All living beings need to react to changing environmental conditions. A plethora of cellular and nuclear
mechanisms need to work in sync to allow an adequately adapted behaviour. It is therefore impossi-
ble to study NER dynamics isolated from its contextual setup. Various mechanisms—such as other
DNA repair pathways, transcription, and DNA packaging—influence availability of proteins as well as

accessibility to the lesion. To make matters more difficult: drastic changes in the environment—such



as an irradiation event that induces DNA damage—can evoke a stress response, during which many
processes are strongly regulated. It remains largely unknown how stress response and DNA repair
interact to ensure cell survival.

In the following, we will first present genome and gene organisation in Saccharomyces cerevisiae
(Subsection 1.2.1). This allows the introduction of the location-dependent NER subpathways (Sub-
section 1.2.2). To grasp the complexity of repair in context of other nuclear processes, we explain the
dynamics of other DNA repair mechanisms, transcription, and nucleosome positioning with respect
to NER (Subsection 1.2.3). The section is closed with a description of the acquisition and treatment

of NGS data (Subsection 1.2.4).

1.2.1 Genome and Gene Organisation

Budding yeast is a eukaryotic organism, which is characterised by the presence of membrane-bound
organelles. This includes the cell nucleus, in which the DNA is spatially confined together with various
proteins that orchestrate genomic integrity, maintenance, and usage. The limited space introduces
a packaging problem which requires the folding and twisting of the DNA molecule (see Subsection
1.2.3). The DNA itself is a polymer structured into two separate strands which are coiled to a double-
helix conformation. The opposing strands are connected by hydrogen bonds. Genetic information is
represented by a sequence of the four nucleotides (nt) Adenine (A), Cytosine (C), Guanine (G), and
Thymine (T). Cytosine and thymine are pyrimidine bases, whereas adenine and guanine are purines.
Pairing of the opposing strands through the hydrogen bonds follows the strict pattern A-T and C-G.
The conformational integrity is provided by a sugar-phosphate backbone (Watson and Crick (1953)).
The strand which has its 5’-end at the telomere of the shorter arm is called Watson (or plus) strand,
and the other is called Crick (or minus) strand. Commonly, the word genome describes the linear
information contained in the DNA.

In contrast to the genome, it is far more difficult to define a gene, especially in the context of
human cells. In this work, we denote by the word gene a transcribed DNA region together with its
regulatory sequences within the DNA. The information in the sequence itself determines the gene
function. Stretches between genes are called intergenic regions. We distinguish between non-coding
(which produce non-coding (nc)RNA when expressed); and coding genes (which result in messenger
(m)RNA). The latter is subsequently translated to a protein to provide a specified cell functionality.
The transcribed information is encoded on only one of the two strands in 5’ to 3’ direction (which is
also referred to as Open Reading Frame (ORF))(Shafee and Lowe (2017)). A schematic representa-

tion of a gene is given in Figure 1.1.
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Figure 1.1: Schematic representation of the gene organisation in a eukaryotic cell. Boxes
represented different sequences being part of gene expression, whereas black dotted lines indicate
arbitrary stretches in between. The figure was taken and modified from Shafee and Lowe (2017).

The expression of genes is commonly governed by regulatory sequences. There is the distinc-
tion between promoters, enhancers and silencers. Promoters are subdivided into core promoter and
proximal promoter sequences, which are located upstream of the transcribed region. The core pro-
moter marks the starting position of gene expression by an RNA polymerase, whereas the proximal
promoter region regulates transcription by binding Transcription Factors (TFs) that permit stable asso-
ciation of the RNA polymerase (Thomas and Chiang (2006)). Many core promoters contain a TATA-
box, which is a cis-regulatory element. It is characterised by its repeating T and A base pairs, and
it plays a fundamental role during transcription initiation (Watson (2014)). Enhancers and silencers
are (commonly short) stretches of DNA that can increase and decrease gene activity, respectively.
They can be positioned anywhere in the genome, independently of direction and location of the gene
they are regulating. However, they are commonly found upstream in the yeast genome. One single
enhancer or silencer can influence the expression of several genes. They can interact with promoters
through TF loading. A DNA bending protein permits transient contact, a process which is also called
DNA looping. Proteins that are responsible for regulation can compete in order to promote or inhibit
expression. Transcription itself is introduced in Subsection 1.2.3.

Within the gene sequence, there are UnTranslated Regions (UTRs) on either side of the tran-
script with distinct responsibilities. The 3" UTR contains a termination codon which marks the dis-
sociation of the polymerase. The 5 UTR, on the other hand, permits ribosome binding for com-
mencing protein translation (Shafee and Lowe (2017)). Eukaryotic gene sequences can be divided
into introns and exons, although intron sequences are rare in Saccharomyces cerevisiae. They are
post-transcriptionally removed from the produced RNA and allow an evolutionarily accelerated way
of recombining sequences to new genes (Gilbert (1978)).

Due to the rare occurrence of introns, we did not incorporate them specifically into our models.
Similarly, enhancers and silencers were not considered as influential—as they contact the promoter
region only transitively—and their effect on repair was not taken into account. Since UTRs are rather
involved in post-transcriptional processes, they were not considered in this work. More sequence-

dependent regions that are closely related to transcription are introduced in Subsection 1.2.3.
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1.2.2 Nucleotide Excision Repair

Every cell possesses a number of different repair dynamics to undo molecular disruptions of the
DNA. NER can remove various types of damages—such as UV-induced CPDs—and is evolutionarily
conserved in all eukaryotes. The dynamics are considerably well understood in vitro (Mu et al. (1995)
for human cells, Wang et al. (1995); Guzder et al. (1995) for yeast). However, the picture is less clear
for studies in vivo, in particular in context of other nuclear processes such as transcription and DNA
packaging. Whilst the in vitro assay indicates that CPDs can be repaired within 3 - 10 minutes after
lesion recognition (Erixon and Ahnstrdm (1979)), significantly elevated levels can be still observed
after two hours post-irradiation in vivo (Mao et al. (2016)). It is hence pivotal to develop additional
models that are adapted to the environment in a living cell.

NER kinetics are commonly divided into two recognition pathways—GGR and TCR—uwhich sub-
sequently converge to the same incision and replacement pathway. Involved protein components
belong to the RAD3 epistasis group, which were revealed by UV-sensitivity screenings (Boiteux and
Jinks-Robertson (2013)). Therefore, findings associated with NER functioning are chiefly related to
UV-induced damage, although studies for other types of molecular disruptions exist as well. In the
following, we present only the specifics and proteins concerning repair in budding yeast. Human ho-
mologues are separately introduced if necessary. An overview is given in Table 1.1 and Figure 1.2.

We explain the the structure of CPDs before explaining known NER properties in vivo and in vitro.

Yeast Gene Name | Property Mammalian Gene Name
RAD4 Forms a complex with Rad23 and Rad33 that binds damaged DNA. XPC
RAD23 Forms a complex with Rad4 that binds damaged DNA. HRAD23B
RAD33 Forms a complex with Rad4 that binds damaged DNA. CEN2
RAD7 Forms a complex with Rad16. DDB1
Forms a complex with Rad7 that has ATP-dependent binding of damaged DNA,
RAD16 ! . o ; - DDB2
chromatin remodeling activity, and E3 ligase activity.
Forms a complex with Rad10 that has structure-dependent endonuclease activity;
RAD1 e ) . XPF
incises DNA on the 5'-side of lesions.
RAD10 Forms a complex with Rad1. ERCCH1
RAD2 Structure-dependent endonuclease; incises DNA on the 3’-side of lesions. XPG
RAD14 Zinc-finger protein; binds damaged DNA. XPA
RAD25 TFIIH subunit; DNA-dependent ATPase and X’ to Y’ helicase. XPB
RAD3 TFIIH subunit; DNA dependent ATPase and helicase with Y’ to X’ polarity. XPD
CDC9 DNA ligase 1 LIG1
RAD26 DNA-dependent ATPase required for transcriptional bypass of lesions and for TC-NER. CSB
RAD28 WDA40 repeat protein of unknown function. CSA
RPB9 Nonessential RNA Pol Il subunit required for Rad26-independent TC-NER. POLE21

Table 1.1: NER genes and their mammalian homologues. The table gives the gene names of NER
proteins with a short description and the mammalian counterpart. Table was taken from Boiteux and
Jinks-Robertson (2013).
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Figure 1.2: Schematic overview of the NER pathway. Lesions are either detected by GGR (left)
or TCR (right). GGR lesion recognition is governed by the Rad4-Rad23-Rad33 complex. Protein
loading is facilitated by Rad7-Rad16. This promotes the recruitment of TFIIH. During TCR, Pol I
elongation is hindered by a TBL. The association of other NER proteins is predominantly triggered
by Rad26 and Rad28, but also involves Rad2. Additionally, NER can be evoked independently of
Rad26 by Pol Il subunit Rpb9. Both recognition pathways subsequently follow the same incision
and replacement mechanism. The helix is further opened by TFIIH and the presence of damage is
verified through Rad14, Rad25, and RPA. Rad1-Rad10 as well as Rad2 incise the DNA strand on
the 5" and 3’ end of the lesion, respectively. The excised fragment is replaced by Pol § or Pol € and
eventually sealed by DNA ligase 1. The figure was taken from André et al. (2021).

UV-Induced DNA Damage

The irradiation of cells with UV leads to the creation of different types of DNA disruptions. Most of
them are CPDs and 6-4PP (both variants of pyrimidine dimers), the former of which accounts for up
to 75-95% of all lesions (Bohm et al. (2023)). This motivates the focus of this work on CPDs.

The formation of CPDs are caused by a photochemical reaction during which UV is absorbed
through a double bond between pyrimidine bases (Fig 1.3). By opening the hydrogen bond, the free
nucleotide reacts with neighbouring molecules. If the adjacent nucleobase is another pyrimidine,
they form new direct bonds (Goodsell (2001)). CPDs are therefore categorised as transition-type
lesions—i.e. the succession of two bases—namely CT, TC, CC, or TT. They form so-called bulky
DNA damage and TBLs that can be repaired by NER.

The UV irradiation emitted by the sun is commonly divided into UVA, UVB, and UVC, depending
on their wavelength and consequently the transported energy. Nonetheless, all of them can induce
damage to the DNA—including CPDs—although to varying levels. UVC has the shortest wavelength

which corresponds to the highest amount of UV-transported energy. Whilst UVA and some UVB rays
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Figure 1.3: Formation of CPDs. The energy of an incoming photon is absorbed by the hydrogen
bonds, so that they can freely react with neighbouring molecules. If the adjacent nucleotide is a
pyrimidine, they create new bonds. The figure was taken from Herring (2010)

can penetrate the Earth’s ozone layer, UVC (and partly UVB) can be absorbed. Despite the fact
that most on earth-living organisms have never been in contact with UVC, it is commonly used in
experimental setups to study CPD formation and repair. Its use results in a high number of lesions,
and it therefore yields a more reliable data collection. All CPD measurements that were used in this

work were obtained using UVC.

Damage Recognition by Global-Genome Repair

GGR finds and recognises DNA lesions by direct protein associations of Rad4-Rad23-Rad33 (van
Eeuwen et al. (2021)) (Figure 1.2, left). The pathway can be observed along the entire genome.
Recognition and following repair is independent of lesion site and chromatin structure, although it
might be facilitated by interactions with chromatin remodelers such as SWI/SNF and Ino80 (Sarkar
et al. (2010)). Whilst Rad4 is required for GGR, Rad23 or Rad33 deletions seem to solely decrease
repair efficiency. However, double mutants result similarly in deficient lesion removal (den Dulk et al.
(2006); Boiteux and Jinks-Robertson (2013)). Repair in Pol I-transcribed ribosomal genes addition-
ally involves Rad34 (den Dulk et al. (2005)). Lesion recognition by Rad4 is driven by the detection of
thermodynamically unstable base pairs (Min and Pavletich (2007)), yet CPDs—as a particular form
of damage—do not support sufficiently stable binding. The Rad7-Rad16-Abf1 complex associates to
damage sites to facilitate loading of Rad4 (Jones et al. (2010)). Indeed, gene knockout experiments
proved Rad7-Rad16 to be essential for correct GGR (Verhage et al. (1994); Wang et al. (1997)). It
has also been suggested that the protein complex plays multiple roles during repair. There is evi-
dence that it is involved in post-incision steps (Reed et al. (1998)), and it fosters the UV-dependent

ubiquitination of Rad4 (Gillette et al. (2006)). Rad4-Rad23-Rad33 itself permits damage verification
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through recruiting the Transcription initiation Factor IIH (TFIIH). During this process, the distorted
strand is further opened by the ATPase and helicase activity of Rad3 and Rad25 (Boiteux and Jinks-
Robertson (2013)). The Rad4-Rad23-Rad33 recognition complex is subsequently released and the
DNA is scanned in a 5’-3’ direction for helicase-blocking lesions (Sugasawa et al. (2009)). If no DNA

damage is found, the open strand is closed and the process reverted.

Damage Recognition by Transcription-Coupled Repair

There is a scientific consensus that lesions in transcribed regions exhibit quicker repair than silent
downstream sequences. This promoted the idea that TCR is more efficient than GGR (Bohr et al.
(1985); Mao et al. (2016); Li et al. (2018); Mao et al. (2020)). It is commonly assumed that damage
removal from the Transcribed Strand (TS) is preferred over the Non-Transcribed Strand (NTS) (Mellon
et al. (1987)), which was demonstrated on the RPB2 gene (Sweder and Hanawalt (1992)). TBLs
cause Pol Il to be stalled at damage sites (Figure 1.2, right). The recruitment can be triggered either
by Rad26 or Rpb9 (Duan et al. (2020)), the latter of which is a subunit of Pol Il.

Rad26 is related to Pol Il elongation, and it is therefore present during lesion detection as well
(Malik et al. (2010)). Rad26-mediated NER is also associated to Rad28. In contrast to their ho-
mologues in human cells, Rad26 or Rad28 knockout mutants are not UV-sensitive (Boiteux and
Jinks-Robertson (2013)). Blocked Pol Il is assumed to stabilise protein interactions with Rad26,
which might lead to lesion bypassing (Yan et al. (2021)). In this case, a repair cascade is not evoked,
although the faulty site in the mRNA nucleotide sequence can produce erroneous proteins, which
is also called transcriptional mutagenesis (Brégeon and Doetsch (2011)). TBLs that cause contin-
ued stalling trigger the execution of consecutive NER steps, which is facilitated through chromatin
remodelling by Rad26 (Boiteux and Jinks-Robertson (2013)).

It has been reported that recruitment of other NER proteins can also be evoked independently
of Rad26 by the non-essential Pol Il subunit Rpb9 (Li and Smerdon (2002)), particularly at the Tran-
scription Starting Site (TSS)-proximal half of the +1 nucleosome (Duan et al. (2020)). Rpb9'’s exact
role during protein loading has not yet been characterised, although it is suggested that it promotes
the association of TFIIH. Deletion of both Rad26 and Rpb9 renders cells TCR-deficient.

The further assembly of the repair machinery is impaired by the stalled Pol Il complex, which
covers around 35 nt of the transcribed strand, including the lesion (Tornaletti et al. (1999)). There
have been various and non-excluding hypotheses about the fate of Pol Il, among others dissocia-
tion, backtracking, or degradation. It is commonly conjectured that the most common mechanism is
transcript cleavage followed by backtracking (Sigurdsson et al. (2010); Marteijn et al. (2014)), as it is

also involved in other nuclear processes such as transcription proofreading. Nevertheless, the pre-
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cise protein interactions remain still in the dark. It should be noted that deficient backtracking does
only lead to a negligible phenotype in yeast; yet it results in severe disorders in human cells such as
Cockayne Syndrome (CS). Thus, there might be different mechanisms in place in Saccharomyces

cerivisiae versus human cells (Boiteux and Jinks-Robertson (2013)).

Incision and Replacement

In vitro screenings of the incision after lesion recognition on naked DNA identified six fundamental
NER protein complexes: Rad4-Rad23, Rad14, TFIIH, Rad1-Rad10, Rad2, and replication protein A
(RPA) (Guzder et al. (1995)). It should be emphasised, however, that there might be various other
proteins involved in vivo. After damage detection through either GGR or TCR, the DNA is further
opened by the ATPase / helicase interplay of the multiprotein complex TFIIH, in particular by Rad3
and Rad25. TFIIH components are also interacting directly with other NER factors (Compe and
Egly (2012)). Although the TFIIH complex is primarily associated with transcription initiation, the
catalytic activity of its submodule Rad3 is only required during NER, highlighting its multifunctional
role (Feaver et al. (1993)). The pre-incision complex is stabilised through binding of Rad14 and RPA.
Lesion presence is verified by TFIIH, Rad14, and RPA. If damage is absent, the DNA cleavage is not
performed, and the proteins dissociate.

The lesion is removed by an incision on both sides of the distortion. This represents a point of
no return (Marteijn et al. (2014)). Rad1-Rad10 and Rad2 are positioned on the 5’ and 3’ side of the
lesion, respectively (Evans et al. (1997)). As they lack specificity to DNA damage, they are guided
by interactions with other proteins (Tomkinson et al. (1993); Habraken et al. (1993)). Rad1-Rad10
and Rad2 incise the helix distortion on either side. The excised fragment is subsequently released
together with the other NER components.

The dual incision is followed by DNA synthesis and ligation. Although this is poorly documented
in yeast, data suggest that Pol § or Pol ¢ (two DNA polymerases) perform the replacement of the
missing oligonucleotide. This leaves an open nick, which is sealed by DNA ligase 1 (Budd and

Campbell (1995)).

1.2.3 NER in Context of Other Nuclear Processes
DNA Repair

Virtually everything in the environment—and even cell-internal processes—can cause changes to the
molecular structure of the DNA. It is therefore not surprising that several repair pathways developed

over the course of evolution to remove the various types of damages. Particularly interesting for
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the repair of UV-induced lesions in Saccharomyces cerevisiae are—next to NER—Photoreactivation
(PR) and Base Excision Repair (BER).

PR is mediated by photolyase, a DNA repair enzyme that is activated by the energy of photons
coming from (near-)visible light. When bound to the damage, it reverts the lesion by inserting it
into the enzyme’s active site (Sancar (2003)). Photolyase repairs 0.3 CPDs/kilo base (kb) around
nucleosome positions in two hours, but it only needs 15 minutes in regions depleted of nucleosomes.
Repair speed is therefore largely location-dependent. However, considering in vitro data, it can be
up to six-fold faster than NER in NDRs and Autonomous Replication Sequences (ARS) (Suter et al.
(1997, 2000b,a)). Prevalence of one or the other repair pathway might be hence position-specific.
Interestingly, photolyase harnesses the energy carried by photons only during the enzymatic step,
and it can associate to pyrimidine dimers in the absence of light. This raises the question whether
NER components interact with photolyase during the repair process. Indeed, it was shown that cell
survival was improved in the presence of photolyase, even though PR could not be carried out in the
dark. This indicates that the enzyme promotes NER kinetics (Sancar and Smith (1989)). Due to its
high (although region-dependent) efficiency, it is of paramount importance to control light exposure
after UV irradiation during experiments to prevent a potential influence of PR on CPD repair. If
overexpressed under strong light exposure, it can remove over 80% of all CPD lesions within 90
seconds (Bucceri et al. (2006)). It should be mentioned that PR is absent in human cells. It has
been proposed that the loss of PR particularly in placental mammals can be explained by a lack
of selection pressure and an increased mutagenesis rate induced by photolyase (Lucas-Lled6 and
Lynch (2009)). PR is hence not of interest for this work.

BER is—similar to NER—a multistep process involving several proteins. It is particularly responsi-
ble for repairing lesions with endogeneous cause or induced by ROS. Whilst NER can repair adducts
with up to 30bp, damages removed by BER are typically smaller than 10bp, and they are commonly
different types of lesions (Casal-Mourifio et al. (2020)). It is assumed that they fulfill distinct roles
in maintaining the molecular integrity of the genome. However, it should be mentioned that a grow-
ing body of evidence suggests that they share common components and cooperate with each other
(Kumar et al. (2020)). This becomes an important consideration when dealing with several types of
lesions at the same time, such as ROS and CPDs. Nevertheless, the relatively strong DNA distortion
that is produced by CPDs can be presumed to be solely repaired by NER if not specifically deleted.

The influence of BER was not considered.
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Nucleosome Positioning

The Saccharomyces cerevisiae DNA is—when fully unfolded—around five millimetres long and needs
to be packaged into the spatially constraining nucleus with a two-micrometre diameter (Yanamoto
et al. (2011)). This is accomplished by wrapping the DNA tightly around histone complexes named
nucleosomes (Kornberg (1974); Luger et al. (1997)), which also neutralise the genome’s negative
charge (Jansen and Verstrepen (2011)). The condensed structure is commonly referred to as chro-
matin (Kornberg (1974)). Nucleosome positions are highly frequent and occur roughly every 200
base pairs (bp) in all eukaryotes. A nucleosome consists of ~146 bp of DNA that is coiled 1.65 times
around the histone octamer (Luger et al. (1997); Jansen and Verstrepen (2011)). Short stretches of
linker DNA connect the nucleosomes along the genome (Figure 1.4).

The nucleosome core is composed of several histone units, namely the two H2A-H2B dimer and
one H3-H4 tetramer (Figure 1.4(A, top)). H1 and H5 are linker histones that lock the nucleosome
position by binding starting and ending sites. The histones’ amino acids lysine and aginine estab-
lish salt and hydrogen bonds to the DNA, further stabilising its position. Histones also possess
a net positive charge which increases binding stability with the negatively-charged DNA phosphor
backbone (Figure 1.4(C)). All histones contain so-called tails, which are subject to chemical modi-
fications. These post-translational histone marks allow the regulation of various nuclear processes
(Allfrey et al. (1964)). As the histone N-terminal tail can make direct contact to adjacent nucleosomes,
there is a scientific consensus that chemical modification can regulate chromatin conformation (Luger
et al. (1997)). Moreover, they can evoke enzyme recruitment to remodel the nucleosomal position
by utilising ATP (Bannister and Kouzarides (2011)). This is changing sequence accessibility, and
they therefore influence other vital procedures, such as transcription and repair. The most influential
modifications include acetylation, phosphorylation, and methylation (Figure 1.4(B)).

Histone acetylation is performed by acetyltransferases, which can—by catalysing the transfer of
an acetyl group—neutralise the lysine’s positive charge of the N-terminal tail. This weakens binding
to the DNA molecule. The effect is reverted by histone deacetylase. Similarly, phosphorylation is
governed by kinases, which add a phosphate group from ATP to one of the amino-acid residues,
in particular serines, threonines and tyrosines. Phosphatases revert this process. This can occur
at histone tails as well as core histones. Phosphorylation increases the negative charge, and it
is therefore clearly changing DNA-protein interaction. It has known roles in DNA repair and reg-
ulation of transcriptional activity. Lastly, histone methylation is a chemical modification of the side
chains—particularly lysines and arginines—that does not influence the protein charge. All histone

modifications change directly the chromatin structure as well as regulating loading of other effector
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Figure 1.4: Chromatin organisation and packaging. Figure 1.4(A): DNA packaging occurs around
histone complexes called nucleosomes. A single nucleosome core is composed of two H2A-H2B
dimers and on one H3-H4 tetramer. Figure 1.4(B): Histones are subject to chemical modifications,
which affects particularly the N-terminal tails. 1.4(C): The N-terminal interacts with other nucleo-
somes, non-histone proteins, as well as with the DNA directly. Linker histones (red) lock the DNA at
a specific position around the nucleosome (figures were taken from Morgan (2007a,b)).

molecules (Bannister and Kouzarides (2011)).

It is intuitive that tightly wrapped DNA is less accessible than linker DNA. Hence, nucleosome
positioning and kinetics play an active regulatory role in various nuclear pathways, including tran-
scription, replication, and DNA repair. Despite the fact that positioning is partly sequence dependent

(Tillo and Hughes (2009)), recent studies showed strong interactions with proteins and trans factors,
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including nucleosome remodelers with an ATPase subunit such as RSC (André et al. (2023); Badis
et al. (2008)). There is also evidence of interaction with other DNA-bound proteins, among others
Pol Il (Jansen and Verstrepen (2011)). As a matter of fact, nucleosomes are not only influenced by
other proteins but also by the presence of their own kind. Their highly frequent positioning leads
to preferred lengths of linker DNA (= 18 bp) (Mavrich et al. (2008)). As neighbouring nucleosomes
cannot overlap, it has been proposed that an array can be modelled as beads on a string (Jansen
and Verstrepen (2011)) (Figure 1.4(A)).

Nucleosome organisation along the genes is highly structured and preserved along the entire
genome. About 95% contain a Nucleosome Depleted Region (NDR) upstream of the TSS, which
coincides with the gene promoter (Jiang and Pugh (2009); Jansen and Verstrepen (2011)). Nucleo-
somes are strongly positioned close to the TSS. Naming of the nucleosomes follows the positional
order with respect to the NDR, i.e. the first downstream nucleosome is +1, the second +2, etc. Po-
sitions before are called -1, -2, etc. The +1 and -1 are adjacent to the NDR. Further downstream
nucleosomes are phased with respect to the +1 position, which promoted the notion of the barrier
model (Mavrich et al. (2008)).

A correct three-dimensional chromatin organisation is pivotal for yeast survival. It has been re-
ported that the tight packaging in the nucleus prevents entanglement of the DNA molecules (Arsuaga
et al. (2002)). The topological entanglement can have dramatic effects on the regulation of various
processes, including gene expression (Portugal and Rodriguez-Campos (1996)). Therefore, it can-
not be excluded that the 3D organisation influences DNA repair. Indeed, it has been found that
chromatin mobility might play a crucial role to promote cell-cycle arrest and chromosome segrega-
tion during the removal of Double-Strand Breaks (DSB) (Strecker et al. (2016)). Saccharomyces
cerevisiae chromosomes follow a Rabl-like conformation, which describes the localisation of cen-
tromeres and telomeres close to the nucleus membrane. It has not been fully resolved how genomic
entanglement is minimised to permit correct functioning. However, it has been proposed that the
Rabl configuration might be necessary to reduce entanglement incidence (Pouokam et al. (2019)).
In this study, we do not consider the influence of the 3D chromatin folding. Incorporating it would
require extensive study of various other data types such as microscopy data. As this study focus on
the modelling of CPD repair using high-throughput sequencing data, any higher-order structure other
than nucleosome positioning was chiefly ignored.

The arrangement of nucleosomes plays an important role during damage formation itself. It has
been shown that outward-rotational DNA at strongly positioned nucleosomes is less protected against
UV irradiation, leading to a so-called photo-footprint which persists during ongoing repair. Moreover,

it could be demonstrated that there is a subtle but consistent effect of reduced repair speed close
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to the nucleosomal dyad. This trend vanished at highly dynamic nucleosome positions (Mao et al.
(2016)). Other studies also find that the presence of nucleosomes significantly inhibit CPD repair.
Linker DNA as well the 5’-end of positioned nucleosomes exhibited faster repair than centre and
core sites (Guintini et al. (2015)). Particularly repair at the NTS is seemingly influenced by the nu-
cleosome organisation (Mao et al. (2020)). Surprisingly, though, there is evidence that the human
Rad4-homologue XPC is more abundant at densely-packed heterochromatin. XPC mobility is signif-
icantly slowed down following UV treatment due to more stable binding at DNA lesions. This effect
was drastically reduced after 2h, and mobility dynamics returned to pre-irradiation levels after ~ 4h,
far before the completion of CPD repair in human cells (Hoogstraten et al. (2008)). This could pos-
sibly indicate that damage recognition at heterochromatin is highly efficient, whilst access for other
NER components is blocked by nucleosome packaging. Similar findings for Rad4 are lacking, al-
though it should be emphasised that heterochromatin in Saccharomyces cerevisiae is limited to only
some few regions (i.e. telomeres, the rDNA locus, and the silent mating-type cassettes) (Duina et al.

(2014)).

Transcription

The genome comprises various expressed sequences, which are grouped depending on the pro-
cess the transcript is involved in. Genes encoding ribosomal RNA (rRNA) and transfer (tRNA) are
expressed by RNA Polymerase | (Pol I) and RNA Polymerase Il (Pol Ill), respectively. Protein-coding
sequences are expressed through Pol Il, a process that produces mRNA. All RNA polymerases
are part of the multisubunit RNA polymerase family. The overall transcriptional process for a single
gene can be divided into three steps: initiation, elongation, and termination. Pol Il is a 12 subunit
multiprotein complex (which is the complete form) with a 10 subunit core. The ten subunits of the
core complex can be categorised into several mobile modules. Firstly, the frigger loop opens and
closes around newly added RNA bases, which support RNA sequence proofreading, a mechanism
that has been kinetically described by Hopfield (1974). Secondly, the cleft—through which the DNA
descends—synthesises RNA by passing the template between the clamp which consists of two mod-
ules named jaws. A wall with a magnesium ion separates the RNA-DNA hybrid, where the DNA is
pushed 90° downwards and re-hybridises with the opposite strand (Cramer et al. (2001); Schier and
Taatjes (2020)).

Although not all subunit-subunit interactions and functions are known, we want to highlight some
few that we deem to be particularly important. All Pol Il subunits are called Rpb followed by a number.
The numbering order indicates subunit size from largest to smallest. Rpb1 (together with other

subunits, in particular Rpb9) creates a groove where DNA is bound and transcribed to RNA. This
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contact is particularly maintained during transcription by Rpb2. Rpb6 stabilises Pol Il association
during transcription. Rpb4 and Rpb7, which are not part of the core enzyme, can reversibly associate
to the main complex. The core cannot initiate transcription without those subunits, although it is
independent during elongation (Bushnell and Kornberg (2003)).

Transcription of all protein-coding genes is regulated by the sequence-specific binding of TFs
either to Upstream Activating Sequences (UASs) or Upstream Repressing Sequences (URSs) in
yeast, i.e. enhancers and silencers in multicellular eukaryotes. There is support that nucleosome
presence prevents TF-independent transcription (Juan et al. (1993)). As suggested by the name,
almost all UASs or URSs are positioned at the 5’-side of the promoter in yeast. In multicellular
eukaryotes, however, they can be positioned at different distance and orientation with respect to the
promoter. Although they are commonly close to the NDR next to the gene’s TSS, they can be similarly
located more than 1kb away (Hahn and Young (2011)). Instead of changing the activity of TFs, some
pathways rather modulate the transcription levels themselves. The transcriptional program needs to
be dynamically coordinated with the chromatin structure and nucleosome positioning. Indeed, bound
activators recruit co-activators to modulate chromatin conformation to make it more accessible or to
stimulate the assembly of the transcription machinery. One of these co-activators is the Mediator
complex, which facilitates protein loading and stabilisation (Soutourina (2018)). Binding to UASs and
URS:s influences the behaviour of the transcription machinery assembly at the core promoter. This is
commonly related to the assembly of the Pre-Initiation Complex (PIC) which is composed of Pol Il and
the general TFs TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and the Mediator complex. PIC assembly
commonly occurs at core promoters containing a TATA-box or TATA-like elements, although it has
been reported that low levels of TATA-independent expression are possible at some genes (Pellman
et al. (1990)). TFs do not bind directly to Pol Il to regulate transcription, but instead rely on interaction
with Mediator (Soutourina (2018); Schier and Taatjes (2020)). The cooperation between PIC and
Pol Il—both downstream and upstream of the TSS—are necessary for initiating transcription and
stabilising the open complex. Transcription begins after scanning downstream for a suitable TSS
(Hahn and Young (2011)) (Figure 1.5). The TSS is a distinguishable sequence composition, and is
predominantly 40 to 120nt farther downstream of the TATA box (Struhl (1987)). Transcription itself is
mediated by elongation factors, which can bind Pol |l but do not necessarily constitute to the PIC.

It can take up to several minutes from transcription initiation to the translation and completion
of a functional protein. Hence, there is a delay before a cell can react to a changing environment,
and it might be important to take temporal aspects into account during modelling. Pol Il moves
at a limited and non-constant speed, stopping at several pausing sites along the transcript. There

are various chemical changes that are caused by Pol Il pausing and backtracking. For example,
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Figure 1.5: Schematic description of the transcription initiation process. Transient contact be-
tween transcription factors at enhancer and promoter regions—which is orchestrated by the Mediator
complex—regulates PIC assembly and mediates promoter escape of Pol Il. The figure was taken from
Soutourina (2018).

the newly synthesised RNA strand is pushed back into the Pol Il funnel (which is blocking further
elongation), and the unhybridised DNA template is removed from the active site. TFIIS can stimulate
the catalytic cleavage activity of stalled Pol Il, making further elongation possible, even though Pol II's
own enzymatic activity can largely remove the blocking RNA itself (Schier and Taatjes (2020)). On
average, elongation might occur at 18-24 nt per second, resulting in 25-50 seconds for 1kb (Pérez-
Ortin et al. (2007)).

It has long been assumed that transcription happens only at coding regions. However, an in-
creasing number of studies reveal the importance of antisense and non-coding transcription. Indeed,
antisense RNAs (asRNAs) can repress gene expression and therefore fulfill a pivotal regulatory role
(Nevers et al. (2018)).

As aforementioned, TCR is a repair pathway that is linked to the transcriptional activity of Pol II.
Therefore, gene expression itself naturally influences NER dynamics. Indeed, it can be shown that
genes which were highly active prior to UV treatment exhibit quicker CPD removal (Mao et al. (2016);
Li et al. (2018)). Nevertheless, the effect of TCR can be observed at all genes, independent of their
transcription levels (Mao et al. (2020)). It should be emphasised that the link between transcription
and repair is far from trivial, and there is no clear linear relationship (Li et al. (2018)).

A deep investigation is further complicated, as cells engage in a stress response upon UV-
irradiation, which is manifested in a global transcription shutdown (Gregersen and Svejstrup (2018);
Hauser et al. (2019)). Surprisingly, the few upregulated genes can be barely linked to processes
necessary for cell survival and DNA repair. This indicates that essential proteins must be sufficiently

present prior to stress exposure (Birrell et al. (2002)). Genes with high activity after UV treatment are
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involved in metabolic, catabolic, and proteasotic activity, as well as transporters and iron regulation
(Hauser et al. (2019)). Despite the identification of some few upregulated genes after irradiation, it

remains poorly understood how the transcriptional stress response really unfolds over time.

1.2.4 Next Generation Sequencing Data

The development of high-throughput NGS drastically decreased costs and allows fast probing of
genomic properties along the entire DNA molecule. Whilst the initial assembly of the human genome
costed approximately 3 Billion USD, it is now possible to sequence an entire sample with some
hundred dollars. It has been particularly used to study DNA-protein interaction, although it can be
similarly applied to measure other features, including DNA damage and nucleosome positioning. It
is based on the Sanger sequencing technique and largely replaced microarray methods, as it allows
the genome-wide sequencing instead of being limit to predefined regions. Therefore, there is no
prior knowledge of the probed process required. Furthermore, it is highly reproducible with a small
error rate whilst requiring only a small quantity of nucleic acid. Despite being based on the first-
generation Sanger sequencing, the chemical principle harnessed by NGS is fundamentally different.
In particular, it performs the sequencing of many small fragments in parallel rather than using slow
capillary electrophoresis (Behjati and Tarpey (2013)). In this section, we present the common steps
of the lllumina NGS workflow that were used for this thesis (taken largely from Hu et al. (2021)).
They can be divided into sample and library preparation, sequence determination, and data analysis.
Other techniqgues—such as single-cell sequencing—are not considered here, as we do not work with
tissues that analyse several cell types at the same time.

To describe the workflow in a few summarising words, cells are harvested, and the nucleic acid
of interest—i.e. DNA or RNA—is extracted. They are partitioned into smaller fragments, which are
ligated to platform-specific adaptor sequences. This permits binding to a hard surface in a device,
therefore spatially structuring the sample. Short-read sequencing (which has been exclusively used
in this work) is performed by Sequencing By Synthesis (SBS), a process during which sequence
composition can be measured. All acquired data are computationally filtered and rectified using
standard as well as customised processing pipelines. In the following, we will point out technical
details of each step that we deem to be important for this work.

The library preparation consists of the gathering of the nucleic acid molecules, i.e. the DNA or
RNA sample. Special caution should be spent to rRNAs, which make more than 90% of the total
RNA. If they are not of interest, they must be depleted. DNA or RNA is commonly extracted from

an entire cell culture at exponential growth. This corresponds to 8-12 million cells of Saccharomyces
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cerevisiae (Puay Yen Yap (2017)). Consequently, NGS data represent a snapshot over an entire
population.

Samples are usually amplified—for example using a Polymerase Chain Reaction (PCR)—and
partitioned into short sequences of 250 - 800bp, with most fragments =~ 300bp for lllumina sequenc-
ing. Fragmentation can be performed using different techniques, including sonication and enzymatic
digestion (Head et al. (2014)). Sonication is commonly used for DNA-sequencing (DNA-seq) as well
as Chromatin Immonuprecipitation sequencing (ChlP-seq). Fragmentation through digestion is pre-
ferred for MNase sequencing (MNase-seq), which probes the position of a nucleosomal dyad. In
this case, MNase removes free linker DNA, conserving only DNA that was coiled around histone
complexes. Fragmentation is followed by the ligation of a platform-specific adaptor to the sequences.
They are used for the fragment recognition by the sequencing device. RNAs require an additional
reverse-transcriptase step to produce complementary DNA (cDNA). To increase sequencing effi-
ciency, adaptor ligation is followed by a size selection during which fragments outside a pre-defined
range are removed.

Short-read sequencing, such as performed by lllumina, is based on the release of light through
SBS of fluorescent-labelled nucleotides that are bound to reversible terminators (Goodwin et al.
(2016)). At each cycle, the incorporated nucleotide emits a light signal that can be measured. The
terminator is subsequently removed, which permits the continuation of the polymerase step. SBS
is preceded by a cloning procedure during which samples are largely amplified using bridging PCR
on a solid-phase called a flow cell. This improves the signal detection during sequencing. lllumina
sequencing possess a relatively low error rate of 0.1% (Hu et al. (2021)).

An initial data analysis step is performed by the sequencing platform, which records and measures
the quality of the read. Adaptor sequences are removed (which is called trimming), and reads are
filtered based on their quality. This is followed by the read alignment to a reference genome. It
determines the position of the read along the entire DNA. Many alignment algorithms today are
based on a Burrows-Wheeler transform that can be compared to pre-computed values in a hash
table. An optional variant calling step on the aligned reads permits the detection of Single Nucleotide
Polymorphisms (SNPs) or larger structures that are different to the reference. The produced data
files are then subjected to further downstream analysis and modelling techniques.

Technically, NGS allows single-nucleotide resolution. In practice, however, this can be difficult to
achieve for the probed quantity. A CPD sequencing approach—which was adapted from a previous
method for the assessment of ribonucleotide lesions (Ding et al. (2015)) using an additional enzy-
matic step—has been proposed to study UV-induced damages at a genome-wide single-nucleotide

resolution (Fig 1.6) (Mao et al. (2016)). The free 3’ hydroxyls (3'OHs) of the damaged and sonicated
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DNA are ligated with an adapter sequence, which is followed by cleavage directly upstream of the
CPD using the repair enzyme T4 endonuclease V and an apurinic/apyrimidinic endonuclease. The
new free 3'OH end is subsequently ligated with another adapter sequence (adapter A), thus marking
the exact CPD position. Purified fragments are then amplified and sequenced. The applied data anal-
ysis pipeline adds the location right downstream of adapter A to the sequencing signal. The CPD-seq
data produced by Mao et al. (2016) were used extensively in this work to study and evaluate the DNA
repair process on a population scale.

UV damage
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T4 endoV-APE1V/
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Figure 1.6: Schematic explanation of the CPD-seq method. The trP1 adapter is colored green,
and the A adapter is given in purple. OH indicates a free 3'OH; dd indicates dideoxy (i.e., 3'H). The
figure and caption was taken from Mao et al. (2016).

1.3 Computational Methods

Due to the sheer complexity of possible interactions in living systems, more and more biological
projects include sophisticated computer models to understand and analyse their data. This led to the
development of separate scientific branches such as system biology or computational biology. As
introduced in Section 1.2, transcription, nucleosome phasing, and damage removal are deeply en-
tangled through various molecular interactions, which is why we consider it as necessary to include
computational approaches to study DNA repair. However, it is not straightforward to sensibly repre-
sent the plethora of entwined nuclear processes with mathematical formulas in a simplified model.
To complicate matters, many of the protein-protein or DNA-protein interactions remain unknown, as
explained above. It is therefore necessary to start with a very general description of molecular dy-
namics, which are then refined to the specifics of DNA lesion removal.

In this work, we presume that protein and DNA movements can be represented by stochastic
particle dynamics. Interactions can be observed when they co-localise. All applied modelling tech-

niques make use of processes that describe the motion of molecules. We utilised in particular the
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mathematical framework of Brownian motion, which describes the probabilistic movement of parti-
cles suspended in a medium—in our case, the nucleoplasm. Fluctuations in the molecule’s path
come from interactions with other particles. Although we assume that every single molecule follows
deterministic Newtonian dynamics, the formulation as a many-body problem makes it infeasible to
account for all possible collisions during simulations. Consequently, it requires a statistical treatment.
For many observations in nature, however, it is possible to find a phenomenological description of
the average behaviour that ignores random fluctuations (see for example the model by Kolmogorov
(1937), Johnson and Mehl (1939), and Avrami (1939, 1940, 1941) introduced below). It should be
emphasised that the underlying process is nevertheless stochastic. First described by the botanist
Robert Brown, the theory has been particularly developed by Bachelier (1900), Einstein (1905), and
von Smoluchowski (1906).

We used the probabilistic framework of Brownian motion to describe the random and location-
specific DNA-protein interactions along the genome. Indeed, it was already proposed by Schrédinger
(1943)—before the discovery of the actual molecular structure of the DNA—that stochastic effects
might be pivotal for genomic processes. It should be mentioned that we are oblivious of any three-
dimensional movement in space—despite the fact that we incorporate spatial and position-specific
NGS data. To model particle dynamics along the one-dimensional string, we presume that nearby
interactions are more likely to happen in an infinitesimal time step than interactions that are farther
away. We divide the one-dimensional sequence into segments where this holds reasonably true. This
means that within these partitions, we conjecture that the effect of particle movements in three dimen-
sions that appear as a jump in one dimension is negligible (Figure 1.7). We ignored the complicated
three-dimensional DNA conformation in space. A more detailed assessment is given in Appendix A.
Examples and consequences are stated and critically discussed further below.

Next to the formal mathematical description of the process, another major problem in computa-
tional biology is the incorporation of data into the model with the goal to find reasonable parameter
estimates. Fortunately, different machine learning approaches can be remedially applied. To avoid
any ambiguity, we distinguish between the mathematical description of the process; and the training
procedure that changes the model parameters to find the best explanation of the available data. The
actual choice of the learning method depends on the approach as well as the type of data available.

In this section, we introduce the fundamental modelling principles used in this work. We present
first a very general introduction into stochastic processes and give two examples how to analyse them
(Subsection 1.3.1). Thereafter, we introduce the formalism of Brownian motions and set our equa-
tions into context (Subsection 1.3.2). This is followed by a brief description of parameter estimation

approaches (Subsection 1.3.3). In this work, the training procedures themselves are used merely as
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Figure 1.7: Implications of a one-dimensional model. The three-dimensional folding of the DNA
polymer can place different positions next to each other that are far away in the one-dimensional
sequence. This could allow a quick succession (first green triangle, then red triangle) of DNA-protein
interactions that are not expected when considering only one-dimensional information, such as NGS
data. We partitioned the DNA (e.g. at the small black lines) such that distances can be assumed
to be sufficiently linear within that segment. Each partition is then analysed independently, therefore
considering independent proteins per each fragment. The proteins are given in blue, and the DNA is
displayed as a bold line.

a tool, and we surmise that they have little influence on the conclusions for NER. We refrain from a
detailed description and refer instead to Bishop and Nasrabadi (2006). Lastly, we compare our work

with existing computational DNA repair models (Subsection 1.3.4).

1.3.1 Stochastic Processes

A stochastic process is commonly defined as a collection of random variables X, which often vary
in time ¢ but can be equally dependent on other (multidimensional) properties such as space. If the
nature of the process is known, they can be analysed with a given mathematical framework such as
a Poisson point process.

A Poisson process is usually a counting process and is characterised by the Poisson distribution

P(X =k)= Ak;‘j?. The equation describes the probability of sampling an integer value k, e.g. the
number of times an event is observed. ) is a shape parameter, and e is Euler’s number. The temporal
process (as a counting process) represents the succession of discrete and independent events (i.e.
points), whose number follows the Poisson distribution. If the process is homogeneous in time, it is

given by

()\t)keft’\

P(X(t) = k) =

(1.1)

Note that the shape of the distribution is now dependent on ¢. A Poisson point process can be
equally applied in higher dimensions, where the intuitive representation over a one-dimensional time-

line does not hold. More generally, a Poisson process is a collection of points randomly distributed in
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a mathematical space.

If the underlying stochastic process is unknown, it is possible to determine the best functional
descriptors by applying a functional Principal Component Analysis (fPCA). Related to the common
PCA, it is a dimensionality reduction in Hilbert space which determines orthonormal eigenfunctions,
given a number of basis functions that describe the functional data (e.g. B-spline or Wavelet). FPCA
presumes a stochastic process X (t) with mean w(¢t) and noise X (t) — u(t) = n(t). The latter can be
represented by the sum over all orthonormal eigenfunctions ¢;(t), i = 1, 2..., which describe the max-
imal variance in X orthogonal to all ¢;(t), j < i. To be more precise, the Kosambi—Karhunen—Loéve
theorem states that every stochastic process can be represented as a linear combination of its eigen-

functions, i.e. Y. (;¢:(t). We can therefore describe the noise by

n(t) = X(t) — p(t) = Z Cii(t), (1.2)

where (; is the autocovariance operator

G= / (X(1) — (t)) (1)t (13)

By choosing only the first n eigenfunctions that explain most of the stochastic variance, we can

approximate the process through

X(t) = Xn(t) = p(t) + Z Gigi(t)- (1.4)
k
Eq 1.4 reduces the functional dimensionality by combining the basis functions to their n major
eigenfunctions.
1.3.2 Brownian Motion
Mathematical Description of Brownian Motion

Particle motion can be accurately described using Newtonian equations for every particle. However,
this becomes computationally strenuous for even a small number of molecules. The Langevin equa-
tion (Lemons et al. (1908)) combines deterministic forces with noise to implement the apparently
random particle collisions

m—— = —Adx + F(x) + n(t). (1.5)

m denotes the particle mass, d;x = v is the velocity for a number of observed particles, F(x)
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describes the force field in which the motion occurs, and 7n(t) is the noise term. The introduction of
n(t) reduces the number of molecules that need to be modelled for an accurate description. The
stochasticity is also referred to as Brownian motion.

Eq 1.5 is a Stochastic Differential Equation (SDE). By integrating both sides, we find a description

of the postional change over time

ox
5 = Al +B(x t)a(t), (1.6)

where x and ¢ denote position and time, respectively. The random variable o (t) is the noise,
incorporating uncertainty about the particle position and its interactions. A represents the determin-
istic component (called drift term), and B(x, t) is the noise term. The latter describes amplitude and
correlation of o. It is also called diffusion term, which we want to elaborate briefly.

In the following, we presume that there is no external force, i.e. F(x) = 0. The left-hand side of
Eq 1.5 represents the inertia, whereas Av gives the friction. In the limit of strong friction, we suppose

that [Av| > |m%¥|. We can simplify Eq 1.5 to

v = n(t). (1.7)

In other words, friction can be explained solely through random particle interactions. Similarly,
Eq 1.6 becomes 2 = B(x,t)o(t). For the sake of simplicity, we only consider the one-dimensional
case. Particles are distributed along the z-axis according to a distribution G, and they can move
either to the left or right. We introduce the function f(z, t)dz denoting the number of particles around
a position z at time ¢ wihtin the interval dz. In order to determine the temporal change of f(z,t), we
need to derive how many particles move into dz and how many move out. We define ¥(A,, 1) to
be the probability that a particle moves the distance A, within time 7 (Figure 1.8). The number of
particles at distance A, that will move to « within 7 are defined by f(z + A,,t)¥(A,, 7). To calculate

the total change of particles at x, we integrate over the entire spatial axis, i.e.

f(x,t+T):/f(:v+Ay,t)1/)(Ay,T)dAy. (1.8)

By applying the Taylor expansion for f to the first degree on the left-hand side and to the second

degree on the right-hand side, we obtain
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A J

Position x

Figure 1.8: Schematic description of diffusion with the motivation by Einstein. Particles (cir-
cles) are distributed along the z-axis. Taking a container dz (orange) as a reference, we want to
determine the change of the particle number f(z,t) in dz. Consider the probability ¥(A,,7) of a
particle displacing by A, (top arrow) within 7. By integrating over all possible distances A, we can
determine the expected change 0, f (z, t).

flz,t)+

/ ( e 822{; 3 )AQ) B(A,.T)A,

af (z,t
xt/w 5 T)AA, + féx )/Ay¢(Ay,r)dAy+ 282 /A2 -

(1.9)

Due to the fact that the probability of displacement is equally likely to the left and to the right (i.e.
F(x) = 0), the term [ A,y (A,,7)dA, = 0. Moreover, the integral over a probability distribution is

defined to be one. Therefore, we can simplify 1.9 to

1 0% f(x,t
Flz,t) + f(zt ), = Flz,t) + %/Agﬂ)my,f)my, (1.10)
which becomes
f(m t o 2
7 = 28:02 /A Ay, T (1.11)

By setting D = 5~ [ A2¢)(A,, 7)dA,, we can write

f(;;t) - Dfﬂgg‘;’ J (1.12)

The relationship in Eq 1.12 was revealed by Sutherland (1905), Einstein (1905), and von Smolu-
chowski (1906), and it is commonly known as Einstein diffusion equation. We want to provide some

additional intuition. If we replace the derivative by the finite difference approximation, we obtain

flz,t+7)— f(,t) flx+Agt) —2f(x,t) + flz — Ag,t)

=D

T Az
b (1.13)
B 2A_D (f(:r—kﬁmt) ;f@c— Ast) _ f(oat))
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The right-hand side indicates that if the average number of particles around =z is larger than at z,
f(x,t) increases, and vice versa. This refers to the observable diffusion phenomenon during which
unequal particle distributions uniformise over time.

A general case of the Einstein diffusion equation describing the temporal change of the probability
distribution over a particle position is given by the Fokker-Planck equation

,J

ap(X,t‘Xo,t()) ]. T
— a0 —zi:axiAi(X»t)‘F§Zazi3mj[BB Jij(x,1) | p(x,t[x0, to). (1.14)

Eq 1.14 can be derived similar to Eq 1.12. However, the Fokker-Planck equation allows
F(x) # 0. This introduces a bias according to which the movement occurs. Consequently, the
term [ Ay(A,,7)dA, in Eq 1.9 can be unequal zero. By using Ito’s calculus, Eq 1.9 can be trans-
formed to 1.14. We refrain from presenting the derivation and instead refer to Schulten and Kosztin
(2000). However, we want to emphasise some key assumptions. Most importantly, the noise o in
1.6 is uncorrelated with zero mean (i.e. white noise). Moreover, Eq 1.14 is completely determined
by the distribution p(x, t|xo, o) at . There is no temporal dependence on previous distributions. This
is called a Markov process. It is presumed that the process is non-anticipative. This means that a
random variable X can be adapted if and only if X; is known at time ¢, which is why it is also known
as adapted process. Intuitively, this means that there is no direct knowledge about X, if not observed
at t. Conveniently, there is no requirement that the system must be close to equilibrium. Eq 1.14 can

be extended to include memory effects by convoluting over time:

Op(x txo,to) _ /t (— O, Ai(x, 6 — 7) + E Z 0,00, [BBT]ij(x,t — 7')) p(x, 7|x0, to).dr.
ot —to - 2 — I
(1.15)
It should be emphasised that the impact of memory effects is often negligible, and we only con-
sider Markov processes in this work unless otherwise stated. A very general description of the
evolution of probability distributions is given by the master equation. It assumes that the temporal
change of the probabilistic combination of system states can be represented by a transition function

between these states. This can be expressed for the discrete case in the following form

Op(xy, t|xo, to)

5 = Z (W(Tm = Tn)P(Tm, t|X0,t0) — W(Tn = Tm)P(Tn, t|X0,%0)) , (1.16)

m
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where w(z; — x;) denotes the transition rate from z; to z; (x;,z; € x). This can be simplified to

3p(xn, t|X0a tO)

5 = Wp(x, t|xo, to)- (1.17)

The Gillespie Algorithm

A stochastic simulation approach for a chemically reacting system based on the master equation
was proposed by Gillespie (1977). Suppose a reactive system that is governed by M chemical
reactions and N molecules. In order to stochastically simulate the temporal evolution, we introduce
p(T, p|x,t)dr, i.e. the probability of observing the reaction n after time = given the system state x
at time t. The reaction probability of . in an infinitesimal time step dt is given by 6,,. By denoting
the number of molecular combinations for 1 with »,, we can define the sampling probability a,, =
h,.0,. Intuitively, if protein D) and D® participate in reaction y, then the larger the number of
D™ and D®), the more likely it is to observe p. h, can be calculated for a bimolecular reaction
by h, = [DW][D®@)], where the brackets denote the number of molecules. Gillespie (1977) defines
p(T, u|x,t)dr as the joint probability of observing (or rather sampling) no reaction within time r (i.e.
po(7|x,t)); and the probability that the subsequent reaction after  within dt is p (given by a,). By

assuming independence, this can be formulated as the product

p(T, p|x, t)dT = po(T|x, t)a,dr. (1.18)

It is clear that the probability of no reaction within dr is given through po(7|x,t)dr =
(1 — fof al,) dr. We define ay = Zf,” a,. By comparing py to a Poisson point process, we de-

rive

po(T|x,t) = exp (—apT) . (1.19)

When substituting Eq 1.19 in Eq 1.18, we obtain

ayexp(—aor) fO<7<ocoandpy={1,..,M}
p(7, pulx,t) = (1.20)
0 otherwise.
Eq 1.20 describes the update probability of the chemically reacting system. 7 and p can be
straightforwardly sampled, such that a computer simulation can be easily implemented. To be pre-

cise, given two random numbers r; and r, sampled over a unit-interval uniform distribution, we can
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calculate

Tlln(l); (1.21)
ag T
and y is the integer which fulfills
p—1 Iz
Za,, < reag < Zal,. (1.22)
v I3

The KJMA Model

In some cases, the impact of noise on a macroscopic scale can be largely ignored. It is then possible
to find a phenomenological description of the process that is solely governed by Ordinary Differential
Equations (ODEs). An example is the model for phase transitions in solids proposed by Kolmogorov
(1937), Johnson and Mehl (1939), and Avrami (1939, 1940, 1941) (KUMA model). It is particularly
interesting since the system has a solution for which the parameters can be conveniently estimated
using linear regression (Subsection 1.3.3). Although it is a physical model, it has also been applied
in biology to study DNA replication (Herrick et al. (2002)).

The KUMA model describes the phase transition from phase « to 8 by presuming random and
uniform nucleation in untransformed material which is followed by isomorphic growth. Nucleation
itself is a stochastic process by which material self-organises into structures (for example crystals).
We presume that nucleation of new particles happens at a rate »n, and growth occurs at speed G.
The volume of transformed particles within the total volume V—by assuming that the entire sample

is still untransformed (which is called extended volume)—is given by

dV§ = wG™nVdt. (1.23)

w describes the space in which the transformation occurs, and m is the dimension of the space.
For example, if growth can happen in all 3 dimensions, then w = 47/3 and m = 3. However, if the
processes has not just started (i.e. ¢ > 0), only a fraction of Eq 1.23 can really occur, as material
has already transformed to the new phase. The real transition can only happen within the volume
1 — Vs /V, consequently dVz = dV§ (1 — Vj3/V). With some straightforward algebra, we derive

F(t) = % —1—exp (—mm’) (1.24)
where k is the transformation rate, and m’ = m + 1 is the Avrami exponent. Conveniently, the
equation can be transformed to a linear regression problem to determine k and m/. By re-arranging

Eq 1.24 and taking the logarithm twice, we obtain
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=m'Int+Ink. (1.25)

Inln

1
1—f(2)

Admittedly, any relationship with a biological process might appear far-fetched. However, the func-
tion generally describes the state transition of a substrate, e.g. from damaged to repaired DNA. We
show below that by presuming particle movement in the nucleus, we can derive the same equation,

which permits an interesting alternative interpretation of the CPD sequencing data (Chapter 3).

1.3.3 Parameter Estimation
Linear Regression

Suppose a function whose observed output y can be represented as a linear transformation of its

input. i.e.

y(X)=wIX +bl+o. (1.26)

Here, X € R(™™ are m independent input variables of n measurements; w € R™ and b are
weights and intercept, respectively; 1 is a vector only containing ones, i.e. {1}"; and o represents
uncorrelated white noise in the data. We aim to find the parameter values for w and b that minimise
the error of the model prediction ¥ to the observation y. In particular, the parameters should minimise

the mean squared error (MSE)

. 1~
L(y.y) =~ > (i — i)
: (1.27)
=I5 (T b— )
n 1

By minimising the error (also called loss), we find a solution for which the negative parameter

derivative is 0, i.e 0 = -9y L and 0 = —9,L. In the following, we set w'T = (wo, w1, ..., wpm, b) and

X'iT = (zo, 21, ---, Tm, 1). We deduce for w’
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0=—0wL

es0=_2 <w’Tx’ - y) x'T
n (1.28)

W/TX/X/T _ yX/T

= wl—yxT (xxT) -

which gives a closed-form solution to determine w’.

Stochastic Gradient Descent, Backpropagation and Other Parameter Learning Methods

Linear regression offers a way to derive parameters for a simple (i.e. linear) model. Unfortunately,
most optimisation problems do not possess a closed-form solution, as variables of ODEs (i.e. 0w L)
are commonly not separable. Therefore, other estimation methods are necessary. In the following,
we introduce a class of learning algorithms that rely on iterative approaches, such as (stochastic)
gradient descent (SGD). SGD is a training procedure that can be used to fit parameter values of a
continuous function to a given set of data. The method presumes that: (a) data describing the func-
tion output are available; (b) the function itself is given and fixed (or a reasonable approximation);
and (c) the function is continuous. SGD learning can be understood as follows. Although an equation
does not have a closed-form solution, we know nevertheless that the negative loss derivative with
respect to the parameters points towards the direction with the steepest error decline. By updating
the parameters by a small increment towards the gradient (called learning rate, mostly denoted with
«), the error is minimised over several iterations. Since the model is optimised over all data points—
which contain noise—the gradient direction can change erratically. Statistically, however, the error is
minimised with respect to the loss function L and the data. This is why it is commonly referred to as
stochastic gradient descent. To reduce sensitivity of the parameter update to noise, it is possible to
apply a momentum. Similar to the momentum in mechanics, it describes the dependency of the cur-
rent update to previous updates, and it can be implemented as Aw(t;) = SAwW(t;—1) + (1 — B)adw L.
Here, 5 is aweight, 0 < 5 < 1, governing the impact of previous parameter updates, and Aw(¢;) is the
parameter update at iteration ¢,. It should be emphasised that the stochasticity comes from the data
and not from the method. However, a similar phenomenon (i.e. erratically updating model weights)
can be also observed when parameters of the algorithm itself (called hyperparameters)—rather than
parameters of the approximated function—are improperly set. For example, if the learning rate is set
too large, the optimum can be easily missed. The gradient seemingly jumps around, possibly not

converging at all (Figure 1.9(A)). Finding sensible choices is called hyperparameter optimisation.
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Forward pass

L(Y;D)

w.L L(Y; D)

(A) Backward pass (B)

Figure 1.9: Schematic explanation of concepts in machine learning. (A) The yellow ellipses rep-
resent the error landscape. The darker the shade of yellow, the lower the value of the loss function
L. Gradient descent iteratively minimises the error (red arrows). However, data contain commonly
noise, which is why the gradients contain fluctuations (black arrows). This is why it is commonly re-
ferred to as stochastic gradient descent. If the learning rate is improperly chosen, the algorithm might
not be able to converge (blue arrows). (B) Parameter update by backpropagation can be divided into
forward and backward pass. Circles represent computational units (such as nodes in a neural net-
work) including parameters that are not directly accessible by the input or output. Arrows represent
connectivity. Dashed lines indicate that there might be varying numbers of these computational units.
The forward pass calculates the current estimate based on an input and the learnt parameters. The
difference is expressed by a loss function L. The gradient of the loss function with respect to the
parameters W can then be passed back (propagated). This allows the update of parameters that are
not directly connected to the functional input.

Calculating 0 L analytically can be difficult for complicated functions with many parameters. For-
tunately, operations are often applied iteratively. This permits a straight forward implementation of
the chain rule, during which the derivative is determined for a set of weights; their contribution is
removed from the error; and subsequently, the updated error is passed backwards to the next set
of operations. This approach is called backpropagation, and it is widely used, particularly for finding
parameters in a neural network (Figure 1.9(B)). Adaptations include Backpropagation Through Time
(BPTT), during which the parameters of a repeatedly applied function over several consecutive steps
are determined. We refrain from showing a mathematical derivation and refer instead to common
text books like Bishop and Nasrabadi (2006).

A downside of SGD approaches is that they assume differentiable equations and functions. Con-
sequently, stochastic processes that rely on sampling cannot be estimated. Similarly, the algorithms
fail when being positioned at non-differentiable points of the loss function. Other optimisation ap-
proaches such as Bayesian inference can be remedially applied. They are commonly implemented
through parameter sampling. Well-known examples are Markov-Chain Monte-Carlo (MCMC) simu-
lations that use Metropolis—Hastings sampling algorithms. They are commonly structured as follows.
A large number of parameters are sampled based on an initial distribution which encodes our prior

knowledge. By evaluating the function using the sampled parameters, it is possible to determine their
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goodness with respect to an objective, e.g. minimising an error function. The parameter distribution
is subsequently refined and the process is repeated. We refer for a more detailed description to

Brooks et al. (2011).

1.3.4 DNA Repair Models of Other Studies

There have been several proposals to shine light onto DNA repair kinetics using a mathematical
description of the process. One of the first computational models for DNA repair was based on BER
dynamics in human cells (Sokhansanj et al. (2002)). By presuming stochastic effects to be negligible,
they formulate a set of ODEs based on the Michaelis-Menten kinetics (Michaelis et al. (1913)). When
comparing different hypotheses, their model predicted that cooperativity between repair complexes
is necessary to describe the in vivo observation. This notion has been initially proposed by Hill et al.
(2001), and it is today considered as an essential component of the BER pathway (Kladova et al.
(2018)).

Politi et al. (2005) developed one of the earliest mathematical models specific for NER. By using
imaging approaches with Green Fluorescence Protein (GFP) and gleaning data from the literature,
they could find parameters that describe repair dynamics over time using a set of ODEs. Their model
finds that a sequential protein assembly of the repair machinery is largely beneficial over a stochastic
assembly for DNA repair speed.

Surprisingly, the results of Luijsterburg et al. (2010) oppose that point of view. By combining bio-
logical experiments with an ODE description, they analyse the timing of the repair protein assembly
for the removal of 6-4PP in human cells. Through measuring the presence of fluorescence-tagged
proteins as well as fluorescence loss though photobleaching, they determine protein dwell times and
decline at damage sites. When combining them with CPD levels at various time points, they were
able to deduce interaction rates by using an MCMC method. Their model favours a stochastic and
reversible protein assembly that is guided through the repair program by irreversible enzymatic steps.

A comprehensive model that includes (possibly competing) NER and BER dynamics on a single-
cell scale was introduced by Semenenko and Stewart (2005). Instead of relying on deterministic
ODEs, they present a Monte Carlo model that reproduces the repair of ionising irradiation-induced
damages in hamster cells as well as Escherichia coli.

Nevertheless, none of the models above incorporate the notion of space. Therefore, location-
specific differences are chiefly ignored. Despite the progress, genome-wide computational descrip-
tions for DNA repair are largely lacking. Unfortunately, it is notoriously difficult to retrieve information

about dynamic interactions from static sequencing data. Microscopy images on a nucleotide resolu-

38



tion that would permit the measuring of ongoing location-specific dynamics are impossible to obtain
with the currently available methods. Dion et al. (2007) proposed a workaround through using two
different histone tags to measure competition for DNA association and nucleosome positioning. By
fitting the parameters to a Poisson process, they were able to deduce nucleosome turnover rates.
Similarly, Lickwar et al. (2013) applied competitive ChIP for determining binding dynamics for the TF
Rap1. However, models that are not reliant on specifically adapted sequencing protocols have not
been developed to our knowledge. It is therefore necessary to create new methods to establish the

missing link between location-specific repair dynamics and static NGS data of nuclear processes.

1.4 Motivation

The accumulation of damages can lead to cell malfunctioning and premature cell death. Thus, defi-
cient NER has been associated with several severe diseases, including a predisposition to cancer as
well as neurological and ageing disorders (Sharma et al. (2020)). Some defects can be linked to a
specific subpathway. For example, the GGR disorder Xeroderma Pigmentosum (XP) is characterised
by UV hypersensitivity and sun-induced hypopigmentation and hyperpigmentation. The susceptibil-
ity to skin cancer is increased by more than a thousand-fold, and the risk of other tumour types is
elevated as well (DiGiovanna and Kraemer (2012)). On the other hand, impaired TCR is associated
with a great range of different symptoms, and the actual effects of TCR-specific diseases depend on
various factors, such as accessibility to the lesion. In patients with the relatively mild UV-Sensitivity
Syndrome (UVSS), other pathways such as GGR or BER remedially repair the lesion, as Pol Il can
be still removed from the damage site (Marteijn et al. (2014)). Severe forms of TCR deficiency in-
clude Cerebro-Oculo-Facio-Skeletal Syndrome (COFS) and CS, both of which are associated with
premature aging, cession of growth, organ and neurodegeneration, as well as microcephaly and dys-
myelination. The life expectancy of patients drops to between 2 and 12 years (Marteijn et al. (2014)).
There is still an open debate whether the severe syndromes are a consequence of defective TCR
(Vermeulen and Fousteri (2013)), dysregulated gene expression (Wang et al. (2014)), or both.
Despite the acknowledged associated disorders, the exact NER kinetics in living cells on the entire
genome are not fully understood. This is especially pronounced with respect to other and possibly
interacting nuclear processes such as transcription and nucleosome positioning. The advent of large-
throughput NGS technology allowed the acquisition of many nuclear properties on a global scale, in
particular DNA-protein interactions and damage distribution at various time points (Eyboulet et al.
(2013); Mao et al. (2016); Li et al. (2018); Gopaul et al. (2022)). However, the actual analysis proves

to be difficult due to the cellular complexity. This is even further complicated, as many data sets
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contain only a few time points over several hours, making it strenuous to empirically derive NER
dynamics and location-specific functioning. It is often necessary to glean heterogeneous data from
different resources. Therefore, it is important to combine bottom-up mathematical modelling with
data analysis frameworks in order to verify hypotheses and to fill-in missing information. The main
objective of this PhD thesis is to develop different modelling techniques to assess holistically UV-

induced CPD removal by NER in Saccheromyces cerevisiae as a model organism using NGS data.
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Chapter 2

A Detailed Analysis of Nucleosome
Coordination Along the Gene to
Understand Implications for

Sequence Accessibility

2.1 Context and Summary

Every scientific model needs to make assumptions and simplifications in order to describe the ob-
served phenomena. A plethora of nuclear mechanisms interact with each other to permit cell survival
and functionality. This is true under normal conditions as well as under stress. The complex interplay
makes it difficult to identify factors that play key roles for lesion removal. The positioning of nucleo-
somes for example is pivotal to permit sequence accessibility. It is therefore conjectured to influence
and to be influenced by various other processes in the nucleus, including Pol Il presence and elonga-
tion (Koerber et al. (2009); Ocampo et al. (2016)) as well as DNA repair (Mao et al. (2016); van Eijk
et al. (2019)). A clear picture of the dynamics to coordinate nucleosome phasing and gene-related
processes is missing. There is a scientific consensus that arrangement largely relies on chromatin
remodeler complexes, which can add, slide, or evict nucleosomes by using energy from ATP hydroly-
sis (Clapier et al. (2017)). However, it is not fully resolved how these remodeler complexes influence
molecular processes along genes. This could have direct consequences for DNA repair. Indeed, as

NER is a multistep process requiring DNA interactions with various proteins, it could be surmised
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that coordinated nucleosome presence along a gene influences both TCR and GGR. By investigat-
ing positioning in non-irradiated cells, we can quantify a possible measurable effect of chromatin
conformation on nuclear processes within the gene body; and consequently, whether nucleosome
arrangement needs to be taken into account to explain lesion removal.

In this study, we combined classical Pearson correlation with position-specific fPCA to describe
nucleosome dynamics along coding regions. By comparing MNase-seq data from chromatin remodeler-
deficient strains (Ocampo et al. (2016, 2019)), we quantified their impact on phasing and spacing
of multiple nucleosomes with respect to each other. FPCA permitted the identification of RSC as
a key player to decouple arrangement between gene bodies, limiting the organisation strictly to
the transcribed region. Correlating the distribution with other influencing factors in WT conditions
suggested that chromatin remodelers render nucleosome positioning largely independent from se-
quence composition and presence of large protein complexes. However, interdependence with vari-
ous properties—in particular Pol Il occupancy—Ilargely increased in chd1A strains, emphasising the
important role of chromatin remodelers in WT cells. As our analysis indicates that remodeling com-
plexes decouple arrangement from other genomic factors, we conclude that nucleosome phasing
does not need to be taken specifically into account when investigating DNA repair in WT strains.

As lead author, | substantially contributed to the study conceptualisation and design. | imple-
mented the analysis pipeline to determine and evaluate the fPCA as well as to measure correlation
with other genomic factors. | guided paper writing and editing. | worked together with my colleagues

to contact publishers.
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Abstract

In eukaryotic cells, the one-dimensional DNA molecules need to be tightly packaged into the
spatially constraining nucleus. Folding is achieved on its lowest level by wrapping the DNA around
nucleosomes. Their arrangement regulates other nuclear processes, such as transcription and DNA
repair. Despite strong efforts to study nucleosome positioning using Next Generation Sequencing
(NGS) data, the mechanism of their collective arrangement along the gene body remains poorly
understood. Here, we classify nucleosome distributions of protein-coding genes in Saccharomyces
cerevisiae according to their profile similarity and analyse their differences using functional Principal
Component Analysis. By decomposing the NGS signals into their main descriptive functions, we
compared wild type and chromatin remodeler-deficient strains, keeping position-specific details
preserved whilst considering the nucleosome arrangement as a whole. A correlation analysis with
other genomic properties, such as gene size and length of the upstream Nucleosome Depleted Region
(NDR), identified key factors that influence the nucleosome distribution. We reveal that the RSC
chromatin remodeler—which is responsible for NDR maintenance—is indispensable for decoupling
nucleosome arrangement within the gene from positioning outside, which interfere in rsc8-depleted
conditions. Moreover, nucleosome profiles in chdI1A strains displayed a clear correlation with RNA
polymerase II presence, whereas wild type cells did not indicate a noticeable interdependence. We
propose that RSC is pivotal for global nucleosome organisation, whilst Chdl plays a key role for
maintaining local arrangement.

Introduction

The eukaryotic DNA must be tightly wrapped into the spatially constraining nucleus. This is
achieved in the form of chromatin, a DNA-protein complex within which the 1-dimensional DNA is
condensed around histone octamers and folded to a 3-dimensional structure. To be more precise,
these histone complexes are positively-charged multiprotein structures around which the DNA
molecule is locally coiled, forming a linear organisation resembling the stringing together of beads.
This is why the primary structure of chromatin is commonly represented by a so-called
beads-on-a-string model. In yeast, a nucleosome refers to ~147 base pairs (bp) of DNA that are
wrapped around four histone units. Nucleosomes are closely spaced, with an averaged
centre-to-centre distance of 165 bp, leaving roughly 15 bp of linker DNA between two adjacent
histone complexes. There is a consensus that phasing is highly regular within coding regions, which
is interrupted by Nucleosome Depleted Regions (NDRs) between two neighbouring genes. This

1/48

20

21

22

23

24

25

26

27

28

29

30



observation gave rise to the barrier model, which proposes that promoter-dependent properties (e.g.

bound proteins or sequence composition) pose a limit for nucleosome assembly, and arrangement
occurs with respect to this barrier [1,2]. However, it is widely accepted that various factors establish
and influence the genome-wide positional nucleosome landscape, including sequence composition,
transcription, and chromatin remodelers [3-6]. Since the DNA molecule must bend to wrap around
the histone octamer, the local nucleotide sequence naturally affects positioning. Generally speaking,
GC-rich sequences are more flexible than AT-rich ones, and they are favorable to support the
presence of a nucleosome [7,8]. However, sequence-related properties might be dependent on specific
motifs.

The condensed packaging also functions as regulator for various DNA-protein interactions. Most
of these processes rely on chromatin remodeler complexes, which can—by consuming energy
obtained from ATP hydrolysis—move, add, or evict the histone complexes to provide or inhibit
direct access to the DNA sequence [9]. In yeast, chromatin organisation is maintained by four
protein families, SWI/SNF, INO80, ISW, and CHD. The RSC remodeler complex of the SWI/SNF
family is the only essential chromatin remodeler in Saccharomyces cerevisiae, and it is recruited to
promoter regions where it is responsible for the maintenance of NDRs [10-12]. It has also been
reported that the complex has an influence on nucleosome organisation in coding regions as well as
supporting RNA Polymerase II (Pol II) elongation [13]. It is presumed to restore chromatin
organisation after transcription [14]. However, RSC does not exhibit an impact on regular
nucleosome spacing within the gene [14,15]. Chdl—the only member of the CHD remodeler family
in yeast—is associated with various transcription-regulating functions, including initiation,
elongation, and termination [16]. It has been suggested that Chdl stabilises perturbed nucleosomes
during gene expression [17]. Iswl and Chdl are supposed to antagonise for nucleosome spacing
within the gene, with Iswl dominating profiles along genes with larger spacing, whereas Chdl seems
to control shorter spacing [12,18]. It has been reported that deletion of Chdl and Iswl only disrupt
inter-nucleosome distances and leave the +1 position unaffected [19]. Isw2 is similarly associated
with regular spacing [20], and it is particularly affecting nucleosomes close to the NDR, which is
presumed to regulate transcription [21]. However, the underlying mechanism for chromatin
remodeling is still under debate, and a scientific consensus is missing [22-25].

Several studies showed an interdependence between nucleosome distribution and gene expression
by using MNase-seq data, a Next Generation Sequencing (NGS) technique that allows the
measurement of nucleosome profiles by using MNase digestion of purified chromatin [26,27]. It has
been suggested that high gene expression correlates with low nucleosome regularity [28] as well as
extreme spacing (both short and long) [18]. There are contradicting results about the correlation
between transcription and nucleosome phasing. Whilst [18], [29], and [30] report that transcription
increases random positioning and weakened phasing, [28] show that nucleosome phasing of highly
expressed genes is increased. The depletion of Pol II exhibited increased array regularity [31]. This
phenomenon seems to be conserved across species, as indicated by studies using Drosophila [28] and
mouse cell lines [32]. The outcomes indicate that gene expression can be partially explained by
nucleosome positioning over the gene body. Nonetheless, the autocorrelation of MNase-seq profiles
along genes revealed that nucleosomal organisation accounts for only ~25% of the observed
transcriptional variability, even though genes with similar regularity tend to have the same level of
gene expression [33]. Surprisingly, many strains deficient for chromatin remodelers seem to show
only a marginal effect on transcription [18,19]. The only exception is rsc8-depleted cells, which
exhibit a global decrease in gene expression [12]. A clear picture between nucleosome phasing and
Pol II presence is still lacking.

Different approaches have been used to categorise collective nucleosome arrangement within
transcribed regions using NGS data. However, many of them rely predominantly on measurements
that describe only an average over the entire profile, such as Pearson [34] or autocorrelation
measurements [33]. Another analysis that takes into account multiple nucleosomes upstream and
downstream of the NDR was presented by [14]. However, the study focused on changes with respect
to the NDR, and many phenomenological descriptions are based on the application of different
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analysis techniques. In order to provide comparability of nucleosome positioning changes between

various mutants, we aimed to use a single mathematical framework that can be applied to all strains.

To our knowledge, a unifying approach assessing location-specific phasing properties along the entire
nucleosome array over varying conditions has not been proposed, and a direct comparison of the
effects in different remodeler-deficient strains is difficult.

In this work, we present a genome-wide analysis of collective nucleosome positioning along the
gene. We define nucleosome positioning and phasing to be the positions of the MNase-seq signal
peaks over an entire single nucleosome array. By clustering the MNase-seq signals of coding regions
along 6-7 histone complexes into two groups using linear Pearson cross-correlation—which measures
similarity of the entire nucleosome arrangement between each gene pair—we can categorise coding
regions according to their likely phasing similarity imposed by chromatin remodelers. In order to
interpret how profiles are classified into the two groups, we combined the clustering with an
alternative data representation via functional Principal Component Analysis (fPCA). Whilst related
to the conventional Principal Component Analysis (PCA), it assumes a functional relationship
between positions along the profile, whereas PCA conjectures independence of every base pair along
the gene. Therefore, fPCA implicitly considers spatial dependency, which is a fundamental
assumption in common nucleosome phasing models like the barrier model, where nucleosomes
phasing is coordinated with respect to a barrier and each other. FPCA is commonly used in time
series and signal processing, and it has been used in biology for analysing crop yield [35], identifying
child growth patterns [36], as well as studying genetic variation and the allelic spectrum [37].
However, it has never been applied to the spatial interdependence of nucleosome phasing to our
knowledge.

The established Pearson clusters can be visually separated by considering only two fPCs, which
are therefore sufficient to interpret the gene groups. Using our analysis, we can repeatedly
investigate histone complex distributions of different chromatin remodeler-mutant strains using the
same framework and interpret major differences along the entire nucleosome arrangement. By
relating Pearson correlation with spatial properties along the profiles, our approach refines and
complements other studies that focused either on a few individual nucleosomes close to the NDR or
Transcription Starting Site (TSS); or which assessed only the average correlation of the entire array
(e.g. via autocorrelation). Using MNase-seq data from yeast strains deficient for different chromatin
remodelers [12, 18], we reveal that Rsc8 strongly limits coordinated nucleosome arrangement to the
transcribed region. It might be therefore responsible for gene-specific phasing. By measuring how
the Pearson cluster separation changes between mutants using a Support Vector Machine (SVM), we
identified 5 combinations of gene deletions or protein depletions which have a notable impact on
phasing properties compared to Wild Type (WT) conditions. Measuring correlation with other
nuclear processes disclosed that none of the commonly assumed factors can easily explain
long-reaching nucleosome arrangement in WT strains within the gene body. However, gene
deletions—in particularly mutants that contained chd1IA—caused a strong correlation with Pol II
presence. Our results indicate a new mechanistic understanding of chromatin remodelers, where
Rsc8 is responsible for long-range coordination and Chdl for local positioning of nucleosomes. All
customised source code was made available on GitHub
(https://github.com/leoTiez/nucleosome-fpca) [38].

Results

Nucleosome Profiles Can Be Well Distinguished Based On Their
Coordinated Positioning in WT

In order to compare nucleosome profiles over the gene body in WT conditions, we measured the
pairwise Pearson cross-correlation of the MNase-seq data produced by [12,18] for all protein-coding
regions [39] using Eq 1. The Pearson correlation index is positive when the sequencing signals of
both genes tend to change towards the same direction at the same position; and it is negative when
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one profile is likely to increase whereas the other one decreases. Therefore, it compares similarity of
the distributional shape—i.e. whether genes are apt to contain nucleosomes at similar
positions—and it does not take the scaling of the sequencing data into account. The entire
arrangement for each gene is treated as an entity. For both replicates, we considered 1000 bp after
and 200 bp before the +1 position (= 1200 bp, approximately the average size of a gene in
Saccharomyces cerevisiae), containing 6-7 nucleosome dyads.

Subsequently, Pearson coefficients were grouped into distinct partitions using k-mean clustering.

In a nutshell, the algorithm divides a data set of m observations (here, pairwise Pearson indices over
all genes) into k groups by minimising the variance within each cluster. Therefore, genes within a
group tend to have nucleosomes at comparable positions, whereas profiles of different groups are
likely to be less similar. Using a silhouette criterion measurement—which compares the similarity of
an object to its own cluster with the similarity to other clusters—we determined that the Pearson
coefficients are most distinctly divided when k = 2 (i.e. when having two groups, Fig 1(A)). By
comparing the Jensen-Shannon (JS) distance of the Pearson clusters with the JS distance between
500 random group pairs using Eq 2, we proved their significance (outside the 95% prediction interval
(PI) of a gamma distribution (Eq 3) estimated over the random partitions; SFig A.1). This shows
that nucleosomal arrays can be significantly separated into two groups using linear correlation of
MNase-seq data between genes (Figs 1(B, C)).

It is difficult to straightforwardly determine how the k-mean clustering algorithm distinguishes
between these two groups; yet the interpretation of the discriminating boundary could reveal
important insights about the nucleosome positioning that is presumably imposed by chromatin
remodelers. As the data by Ocampo et al. [12,18] contains several mutants, we want to identify this
discriminator repeatedly with the same mathematical framework to make the results comparable.
Due to the nature of the Pearson correlation index, we can make the following assumptions. As
nucleosomes are commonly well positioned in budding yeast, the MNase-seq data resembles a
wave-like function with one peak approximately every 200 bp. Moreover, single histone complexes
cannot overlap in a single cell. The Pearson correlation measures therefore the average phasing
similarity of the entire nucleosome array of two genes. Differences in similarity come either from
shifts in exact positioning (i.e. well-defined peaks, Figure 1(D, left)) or from a change in the signal
amplitude (i.e. increasing or decreasing MNase-seq magnitude over the profile or at particular
locations, Figure 1(D, right)). The clusters must be separated based on either of these two trends, or
possibly a combination of them.

In the following, we refer with coordinated positioning to the configuration of the entire
nucleosome array, and consequently, to their behaviour with respect to the two separating trends of
the k-mean clustering. Unfortunately, the Pearson coefficient measures only the average linear
pairwise correlation over the entire profile, rather than taking position-dependent particularities into
account. Therefore, simply extracting the boundary from the k-mean clusters does not explain
whether the groups were established with respect to a shift or a change in amplitude (i.e. the
previously determined discriminators). Instead, it is possible to investigate how the clusters
distribute with respect to the data itself or a different description of it. By evaluating the major
differences between the two groups of genes, we can interpret the separating clustering boundary and
link it to particular properties along the nucleosome profile.

Conventional approaches apply dimensionality reductions like PCA to visually analyse clustering
distributions. However, using PCA would implicitly mean that we assume independence between
every position along the gene. By using the Pearson correlation measurement, we treat every profile
as a single entity, which would be violated by the independence conjecture. This also contradicts the
fundamental assumption of the barrier model where the positioning of earlier nucleosomes affect
later phasing. Instead, we understand the arrangement as the result of a coordinated process. We
assume that the MNase-seq signal along each gene can be described as a single (unknown)
continuous function, which can be approximated by a mixture of a finite number of known simpler
functions (so-called basis functions). In this study, we used 20 B-Splines to represent the MNase-seq
data along each gene, which were subsequently averaged to a mean profile. This permitted the
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Figure 1: Pearson clusters and fPCA considering all protein-coding genes. (A) The silhouette
plot clearly indicates that the data can be best divided into two clusters, and creating more groups would
only decrease the difference between each cluster. (B) and (C) display the profiles for each cluster. However,
it is difficult to quantify visually why these clusters were established. This is particularly true because the
Pearson index measures only general trends in the profile, and it does not take the scaling into account. Each
row represents a gene, and the x-axis shows the position along the coding region, with the +1 nucleosome
defined to be at position 0 bp. The colour code represents MNase-seq amplitude, i.e. copper values show
large MNase-seq signal values, whereas dark areas indicate a low amplitude. (D) The cartoon presents
the hypothesised differences that could occur between the Pearson clusters. Due to the well-positioned
nucleosomes and the wave-like structure of MNase-seq data, we presume that the Pearson correlation measures
coordinated nucleosome positioning along the gene. If two profiles (orange and blue) are in two different
clusters, this could indicate either a shift in the exact nucleosome positions (left); or a general trend in the
MNase-seq signal amplitude, i.e. either increasing or decreasing (right). (E) Pearson clusters considering all
genes are linearly separable with respect to their fPC scores. This indicates that two fPCs are sufficient to
interpret the gene groups. The JS distance between the cluster distributions is much larger for fPC 2 than
for fPC 1. Orange and blue indicate each one group, the dashed line symbolises the best linear separation
using a SVM. The x-axis represents the score of the first fPC ¢!, the y-axis gives the score for the second
fPC ¢2. Both axes are scaled to the same range. (F) When analysing the effect of the major fPCs, they
describe predominantly position-dependent scaling (transparent black lines, fPC 1) and collective nucleosome
phasing (transparent black arrows, fPC 2). The second fPC in WT indicate an increasing or decreasing signal
magnitude as a function of distance from the TSS, suggesting stronger or weaker presence (corresponding to
Figure 1(D, right)). The mean is given as a dashed black line, a positive contribution—i.e. adding the fPC to
the mean—is displayed in magenta, and a negative contribution—i.e. subtracting from the mean—is shown
in green. Trends over the entire array are indicated by grey arrows. When exact positions were seemingly
not affected by the fPC, we marked the positions with a grey vertical bar. See Methods for more information
about how the plots were produced.

5/48



application of fPCA to determine the two best-characterising functional Principal Components
(fPCs) that describe each nucleosome arrangement. It incorporates specific assumptions about the
spatial relationship in the distribution through the basis functions, which is the crucial difference
between conventional PCA and fPCA. To be more precise, the establishment of the MNase-seq
distribution is understood as a stochastic process with a mean behaviour. Each considered
nucleosome array can be regarded as a realisation of this stochastic process with a deviance from the
expected average distribution. Instead of defining a data representation for every gene individually,
fPCA determines how the mean profile needs to be transformed to approximate a particular gene.
This transformation is found by combining the basis functions over all coding regions to more
complex functions that are orthonormal to each other and describe the most variance along the data
(i.e. the fPCs, Eq 6). These functions transform the mean by adding them to the average profile
with a gene-specific scaling factor (i.e. ¢ for the j-th fPC of the i-th gene). Consequently, every
nucleosome array can be also described exclusively by the factors C{ together with the respective
fPCs, and we can evaluate how the two Pearson clusters distribute with respect to these factors.

Interestingly, the two clusters—which were independently obtained by classical hierarchical
k-mean clustering of Pearson coefficients—are visually neatly separated by using only the first two
fPCs, indicating that they are sufficient to quantify the difference between the two sets of genes (Fig
1(E)). In fact, the separating boundary is almost exclusively dependent on the second fPC, whilst it
is seemingly independent of the first. This is slightly less clear for the B replicate, although still
distinct (SFig A.2(B)). Using our previous considerations about how the algorithm establishes the
two clusters, we intuited that the second fPC describes coordinated nucleosome phasing along the
gene body. By analysing the effect of the second fPC on the function shape, we conclude that the
clusters are determined based on the downstream presence of nucleosomes (corresponding to the
right cartoon in Fig 1(D)). We found that the first fPC largely represents amplitude scaling at a
given position, as it does not influence the location of the peak (Fig 1(F)). The analysis shows that
position-dependent amplitude scaling and coordinated arrangement are the best two independent
functional descriptors for the MNase-seq data. Despite the fact that the ratio of explained variance
is not high (21.4% and 11.5% for fPC1 and fPC2, respectively), they are completely sufficient to
distinguish between the Pearson correlation groups and permit an interpretation of the linear
separating boundary between the clusters.

FPCA Reveals Size-Dependent Rsc8-Mediated Phasing of Nucleosome
Positions

Since the smallest genes are ~300 bp long, the 1000 bp window after the +1 position can contain
much more than the actual length of the coding region. In order to analyse how nucleosome phasing
is affected by the gene size, we repeated the fPCA considering exclusively small (< 1000 bp, 226.7%)
or large genes (> 1000 bp, ~73.3%). Consequently, the mean as well as the two fPCs changed, whilst
we kept their allocation to the previously determined Pearson clusters the same (in the following also
referred to as all-gene clusters). If coordinated positioning is substantially affected by the length of
the transcribed region, we expected that the factors ¢ of the two major fPCs should exhibit a
changed behaviour with respect to the linear separability. We can confirm that the linear separation
is preserved for large genes, although the boundary becomes slightly sloped (SFig A.2(C, D)). The
fPCs for only large genes are almost identical to the all-gene fPCs (SFig A.4). We therefore presume
that the clusters can be still largely separated by the second fPC. We also considered a possible
impact of the downstream NDR by analysing exclusively very large genes (> 3000 bp, ~11.5%).
Once again, the boundary was clearly visible (SFigs A.2(G, H)). We concluded that the MNase-seq
distribution over the first 6-7 nucleosomes of all genes larger than 1000 bp can be best clustered by
the collective positioning, and it can be surmised that phasing within the gene body is only
negligibly affected by the downstream NDR or nucleosomes outside the 1000 bp window.

However, the neat separation between the two clusters fully vanished for small genes (Fig 2(A),
for replicate B SFig A.2 (E)). Almost all data points belong to the same group, although both are
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present. We want to remind that clusters were established using all coding regions, whereas the
functional representation depends now exclusively on genes smaller than 1000 bp. The newly
determined fPCs include overlapping positioning inside and outside the gene body due to their
varying size (SFig A.3). The fact that the clusters are not separable indicates that coordinated
nucleosome phasing disappears after the Transcription Termination Site (T'TS), and we hypothesised
that the arrangement is strictly limited to the gene body. Indeed, the second small-gene fPC
indicates well-defined positioning only for up to the +2 nucleosome (=300 bp), and the function
loses quickly its frequent wave-like shape thereafter (Fig 2(D)). The two major fPCs for small genes
are not sufficient anymore to separate the all-gene clusters, which are discriminated by the presence
of downstream nucleosomes. To verify our hypothesis of gene-size dependent phasing, we divided the
regions into small and large genes before performing the Pearson clustering. When considering
exclusively small genes, the two Pearson groups become linearly separable again, which is—in
accordance with our hypothesis—predominantly determined by the size (SFig A.5). This shows that
the nucleosome arrangement is strictly limited to the gene body.

The data produced by [12,18] contain two replicates for chdIA, iswiA, and isw2A cells as well as
rsc8-depleted strains, together with their combinations as double, triple, and quadruple mutants. In
order to analyse how gene-size dependent nucleosome phasing alters in varying contexts, we
compared the small-gene fPCs in mutant and WT conditions. Surprisingly, the separation of the
all-gene clusters was clearly visible for the fPCs of small coding regions in rsc8-depleted strains (Fig
2(B)). Indeed, the average MNase-seq profile exhibits phased peaks along the entire 1000 bp-window
(Fig 2(E)), and nucleosome positioning continued outside the gene boundaries (SFig A.3). The linear
separability of the all-gene clusters using small-gene fPCs can be found in almost all mutants which
are depleted of Rsc8 (SFig A.6), with the sole exception of Rsc8-depleted chdIA strains (2(C),
replicate B SFig A.7(B)). Here, the groups cannot be visually separated by ¢! and ¢2, and the
determined fPCs resemble small-gene fPCs in WT conditions (Fig 2(F), replicate B SFig A.7(D)).
This indicates that the gene-specific boundaries for nucleosome phasing can be re-established, and
the second fPC loses its wave-like shape again after the +2 position (SFig A.3). Consequently, we
hypothesise that Chdl and Rsc8 have partially antagonistic roles for maintaining chromatin
organisation that distinguishes transcribed from non-transcribed regions. Taken together, this
analysis exhibits strictly constrained and Rsc8-mediated nucleosome organisation within coding
regions.

Nucleosome Phasing Changes In Remodeler Mutants

We were particularly interested in how nucleosome remodeler complexes affect coordinated phasing.

To remove the gene size-dependent bias from the clustering and the established fPCs, we applied the
Pearson clustering to exclusively large genes (> 1000 bp) for all strains and determined their two
major fPCs (SFigs A.2(C, D); A.4). We can confirm that the created groups for all mutants were
again significant (outside the 95% PI of a gamma distribution for the JS distance over 500 random
group pairs), with the exception of iswlArsc8 replicate B (SFig A.8). We consequently removed this
value from the analysis. Interestingly, the Pearson clusters were always visually separated by using
solely the first two fPCs, although some strains exhibited a larger overlap between the groups than
others (SFigs A.9 and A.10 for replicate A and B, respectively). This suggests that coordinated
phasing in all mutants can be represented by considering only the two fPCs that describe the most

variance, and including more fPCs is not necessary in order to interpret the discriminating function.

The respective contribution of the two major fPCs to separate the clusters varied between the
cell strains, suggesting that fPCA is sufficiently sensitive to capture strain-dependent consequences
(SFigs A.9 and A.10 for replicate A and B, respectively). This caused the slope of the discriminating
boundary to tilt. Therefore, the transformations of the mean distribution (i.e. fPCs and their factors
¢) changed for these strains. This indicates that they had not only a global effect on the average
MNase-seq profile, but also caused a gene-specific disruption of the nucleosome positioning. We
deemed those strains particularly important that altered the gene-specific collective behaviour of the
nucleosome distribution with respect to the WT. We determined the slope for all strains using a
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Figure 2: Nucleosome phasing is strictly limited to the gene body, which is maintained by Rsc8
but antagonised by Chd1l. The cluster distribution plots in (A), (B), and (C) show the distribution of
both gene groups with respect to the small-gene fPCs of WT, rsc8-depleted cells, and chdIA strains. Orange
and blue indicate the two clusters, and the black dashed line shows the separating boundary determined by a
linear SVM. The histograms present the cluster distribution with respect to each axis. Figures (D), (E), and
(F) display the transformation of the average small-gene nucleosome profile by the two major fPCs for WT,
rsc8 depletion, and chd1A, respectively. The dashed black line as well as the solid lines in magenta and green
display the mean, a positive contribution of the fPC, and a negative contribution. Turquoise arrows indicate
the effect on the +1, dark blue arrows on the +4, and orange arrows on the +6 position. (A) When plotting
the cluster distribution with respect to small-gene fCPs in WT, the linear separability is lost. (B) The fPCs
of the rsc8-depleted strain maintain the linear separability, despite the fact that the groups were established
for all genes. As we interpret the Pearson clusters as similarity in positioning between genes of 1000 bp
mediated by chromatin remodelers, it possibly suggests that positioning outside coding regions influences
nucleosomes inside and vice versa. (C) Whilst most mutants that were rsc8 depleted could discriminate
between the all-gene clusters using small-gene fPCs, this separability is lost again in rsc8-depleted chdIA,
revealing partly antagonistic roles to maintain gene-specific phasing for Rsc8 and Chdl. (D) The effect of
two fPCs sheds light on why the Pearson groups are not linearly separable in WT using small-gene fPCs. The
the distribution of the second fPC loses its wave-like form after the +2 nucleosomes, which is approximately
the size of the smallest genes in budding yeast. (E) Nucleosome positioning in rsc8-depleted conditions is
clearly visible along the entire considered region, despite the included genes being smaller. This suggests
that gene-specific nucleosome arrangement cannot be maintained. It is of note that the phasing also changes
for the +1 nucleosome, and the NDR can be seemingly not conserved. (F) rsc8depleted chd1A on the
other hand loses the wave-like form of its second fPC after the +2 nucleosome, indicating the presence of
gene-specific nucleosome profiles as in WT conditions. All axes are scaled to the same size for each strain;
shapes and amplitudes are therefore comparable (see Methods for more details).

linear SVM. As aforementioned, the boundary is tilted when only considering large genes in WT
conditions (Fig 3(A)), and the two available replicates differ slightly. The observed deviation
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between replicates was used as a reference for the anticipated variability in the data. By using Eq 9,
we determined chromatin remodeler-deficient strains that had a sufficiently different linear boundary
with respect to the WT.

We provide three different perspectives on the data. Firstly, the cluster distribution with respect
to the factors ¢! together with the slope highlight mutants that particularly disrupt gene-specific
collective nucleosome phasing. In the following, clusters are always indicated using the colours
orange and blue. Secondly, analysing the transformation of the two major fPCs of the mean unlocks
an additional understanding of the variance present in the data and allow quantifying the general
impact of chromatin remodeler deficiency. Here, we plot a positive contribution to the mean in
magenta and a negative contribution in green. Lastly, the location-specific effect of the discriminator
links spatial properties to the Pearson gene clusters, which describe likely similarity of nucleosome
positioning mediated by chromatin remodelers. The impact of the discriminator is in the following
given as a grey area around the mean, indicating more important regions when the margin is larger.
The median profile of each cluster using the determined fCPs will be given again in orange and blue.
This allows a comprehensive analysis of the impact of gene deletions or rsc8 depletion with respect
to the WT.

We can determine the importance of particular positions to separate the clusters as follows. The
slope of the SVM indicates the contribution of each fPC to separate the clusters. For example, a 0°
angle shows that the descriminator can be solely described by the second fPC; 45° suggest an equal
contribution of both fPCs to separate the clusters; and 90° indicate that collective nucleosome
phasing is exclusively dependent on the first fPC. Consequently, by linearly combining both fPCs
together as implied by the slope (Eq 11), we can evaluate which positions along the profile are
particularly important for the classification. Indeed, understanding the separating boundary is not
straightforward. Although the median profiles for each profile can differ substantially at some
positions, this variance might be less important for separating and interpreting the clusters (e.g. the
+2 nucleosome in WT conditions, Fig 3(C)). Reciprocally, whilst the median profiles for both groups
can be very similar, the variance over all considered genes at this locus could be much larger and
therefore play an important role for the classification (e.g. the +3 position in WT strains Fig 3(C)).

We identified 5 mutants—namely chd1A, isw2Achd1A, rsc8-depleted chd1A, iswiAisw2A, and
rsc8-depleted isw2A chd1A—that evoked notable changes considering the experimental variability
between replicates (Fig 3-5). For a correct interpretation of the results, it is crucial to highlight that
this does not imply that other mutants had no effect on the profile. Rather, this suggests that the
considered mutation caused a gene-specific change of nucleosome phasing regulated by chromatin
remodelers, which we assume is represented by the deviance of the stochastic process (i.e. the
variance to describe the MNase-seq profiles). Other gene deletions can have other impacts that do
not disrupt the gene-specific collective positioning. All measurements are given in Table 1.

Most single mutants had only a small or negligible effect on the collective nucleosome phasing
along transcribed regions, with the exception of chdIA (Fig 3(D-F)). Indeed, the boundary was
notably tilted with respect to WT conditions (Fig 3(D)). This suggests that the functional
composition of the MNase-seq signal changed. In fact, the amplitude of the second fPC decreases
more quickly along the gene body in chdlA mutants, and the variance of the peak at the +2
position strongly diminished (Fig 3(E)). When interpreting the effect of the discriminating boundary,
we observe that the +1 and +2 nucleosomes only exhibit a small importance for establishing the
clusters, whereas the impact of the NDR and later nucleosomes increased (Fig 3(F)). Consequently,
the +1 position remains largely unaffected. As Chdl is responsible for nucleosome spacing along
genes and is particularly involved in maintaining chromatin integrity during Pol II elongation, it is
intuitive that the chdl-deletion influences phasing within the gene body. This outcome shows the
clear effect of chromatin maintenance by Chdl after the +2 nucleosome, whilst leaving the 41
position well preserved.

The double mutant isw2Achd1A exhibited also a noteworthy shift of the separating boundary
(Fig 4(A)), yet with different results to the chdIA single mutant. The second fPC seemingly
preserves its wave-like shape (Fig 4(B)). This indicates that nucleosome presence is less perturbed,
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Figure 3: The fPCs, their gene specific scores, and the discriminating boundary explain
collective phasing and how this changes in chd1A with respect to WT conditions. The figure
shows the cluster distribution with respect to Cij , the impact of the determined fPCs, and the location-specific
impact of the separating boundary for WT (i.e. (A), (B) and (C)) and chdIA conditions (i.e. (D), (E), (F)).
(A) and (D) show the fPC scores ¢/ of WT and chdIA strains, respectively. For the latter, the boundary slope
changed notably (black dashed line). As indicated by the fCPs in (B) and (E) for WT and chdIA, respectively,
the functional description of the data changes. Indeed, the second fPC of chd1A abates quickly after the +1,
with a strong effect on the effect of the +2 (grey arrows). The dashed black line as well as the solid lines
in magenta and green indicate the mean, a positive contribution of the fPC, and a negative contribution,
respectively. When exact positions were seemingly not affected by the fPC, we marked the positions with
a grey vertical bar. General trends are given in grey arrows along the gene. The location-specific impact
of the separating boundary is given in (C) for WT and (F) for chdIA strains. Interestingly, despite the
median distributions of the clusters (blue and orange) are clearly different with respect to the +1 and +2 in
WT conditions, later positions are much more important for allocating a profile to a particular group (grey
areas, mean in black). Whilst this is also true for chd1A, the importance of later nucleosomes is even more
accentuated, whereas the influence of the +1 and +2 positions are further decreased. All axes are scaled to
the same size for each strain; shapes and amplitudes are therefore comparable (see Methods for more details).

and peaks are comparatively well positioned. Similar to the chdlA single mutant, both of the fPCs
strongly contribute to distinguish between the Pearson clusters. The discriminating function exhibits
similar local effects as the chdIA strain, but the positions after the +2 nucleosome clearly indicate
an additional shift which contributes to the separation (Fig 4(C)). Interestingly, rsc8-depleted chd1A
significantly decreases the slope tilting (instead of accentuating it), therefore making coordinated
phasing almost exclusively dependent on the second fPC (Fig 4(D)). This can be better understood
when analysing their respective effects (Fig 4(E)). The first f{PC solely explains average signal
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WT chd1l iswl isw2 rsc8 iswl/chdl | isw2/chdl | chdl/rsc8
A 0.299 0.834 0.117 0.133 0.377 0.213 1.406 0.031
B 0.055 0.48 0.329 0.038 0.08 0.283 0.538 0.074
Mean p | 0.177 0.657 0.223 0.0855 0.2285 0.248 0.972 0.0525
] 0 2.6674 0.0409 0.3612 0.0366 0.2951 2.9842 1.4773
iswl/isw2 | iswl/chdl | isw2/chdl | iswl/isw2 | iswl/isw2
iswl/isw2 | iswl/rsc8 | isw2/rsc8 | chdl rsc8 rsc8 rsc8 chd1/rsc8
A 1.452 0.347 0.153 0.112 0.216 0.057 0.466 0.066
B 1.074 0-672 0.567 0.295 0.207 0.068 0.245 0.174
Mean p | 1.263 0.2095 0.36 0.2035 0.2115 0.0625 0.3555 0.12
S 12.7873 0.0157 0.3315 0.0157 0.5420 4.8846 0.5909 0.1233

Table 1: SVM boundary slopes for both replicates. The first two rows give the boundary slope for replicate A and B,
respectively. Mean p is the mean slope for both. The s value represents our significance measurement defined in Eq 9. Noteworthy
changes of the boundary slope are marked in green (bold), all others are red. The B replicate of iswIArsc8 was not significant, and
the value was removed from the analysis (crossed out). The s-value in WT is per definition equal 0.

amplitude (which is not measured by the Pearson correlation index) and hence contains almost no
information about coordinated positioning. As expected, the local effect of the discriminating
boundary follows the trend described by fPC2 (Fig 4(F)). The second fPC also indicates that the
NDR before the +1 cannot be maintained (see arrow in Fig 4(E) and the grey area in NDR and +1
position in Fig 4(F)), which is in line with other studies [12,40]. Remarkably, all nucleosome
positions along the entire array seem to be important for the classification—particularly the first
two—which is not the case for the other two double mutants. It should be noted that not all double
mutants that include chd!A show a similarly notable tilting of the slope as the single mutant. This
could possibly mean that these double mutants have opposing effects, although it is difficult to give
a clear indication with the variation between only two replicates. We found an interesting behaviour
for iswiAisw2A (Fig 4(G)). The effect of the second fPC hints that the positioning of the +2 is
strongly impacted, and following phasing becomes inharmonious (Fig 4(E)). The +1 is kept well
positioned. The first fPC, on the other hand, resembles the first fPC of the isw2Achdl1A mutant,
with a minor difference at the +3 nucleosome (compare Fig 4(E) with Fig 4(B)). Indeed, when
analysing the location-specific properties of the separating function (Fig 4(1)), nucleosome profiles in
the isw1Aisw2A strain seem to be clustered particularly with respect to a shift at the +3 and +4
position. This shift is apparently slightly corrected thereafter and becomes less important. Whilst
seemingly similar, a shift in the isw2Achd1A strain after the 42 position remains important for the
entire arrangement to determine the gene groups (compare Fig 4(I) with Fig 4(C)). This indicates
that Chdl and Isw1 contribute differently to nucleosome phasing in isw2A conditions, with the
effect of Iswl being possibly more confined. Taken together, these results show that double mutants
can have varying and non-linear effects.

Among the triple and quadruple mutants, the only one that changed notably the clustering
boundary is isw2Achd1Arsc8 (Fig 5(A)). Once again, tilting is decreased. The effect of the fPCs
and the separating boundary is almost identical to the chd1Arsc8 mutant, suggesting that isw2A
does not have a strong effect on the phenomenon (Figs 5(B, C)). However, it should be mentioned
that the variability between the two replicates is considerably large, as the two clusters can be only
neatly separated in replicate B, whereas replicate A exhibits a great overlap. Whilst the result in the
latter replicate could suggest that more fPCs are necessary to interpret the gene groups, the results
for replicate B indicate that sufficient information is preserved in the first two fPCs. More replicates
would be needed to provide an answer. We also want to highlight that mutants with more than two
gene deletions exhibited less clear nucleosome peaks, and a straightforward interpretation of the
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Figure 4: The fPCs, their gene specific scores, and the discriminating boundary explain
changing collective phasing in double mutants. The figure shows the cluster distribution with respect
to Cij , the impact of the determined fPCs, and the location-specific impact of the separating boundary for
all double mutants, in particular isw2AchdIA (i.e. (A), (B) and (C)), rsc8chdIA (i.e. (D), (E), (F)), and
iswlAisw2A (i.e. (G), (H), (I)). The linear separation of the cluster distribution with respect to factors ¢/
indicate a notable gene-specific change for the three mutants in (A), (D), and (G). The two clusters are given
in orange and blue, and the SVM boundary is depicted by the black dashed line. Whilst isw2Achd1A and
iswlAisw2A require both fPCs to linearly separate the Pearson clusters, rsc8chd1A is almost exclusively
dependent on the second fPC, which means this mutant decreased the slope tilt. —
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Figure 4: (continued)This can be better understood when analysing the two fPCs and their effect on the
mean ((B) for isw2Achd1A, (E) for rsc8chd1A, and (H) for iswiAiswiA). The solid lines in magenta and
green in these plots indicate a positive contribution of the fPC and a negative contribution, respectively,
whereas the black dashed line depicts the mean. Grey arrows along the gene suggest general trends. Grey
vertical bars suggest positions that remain largely unperturbed by the fPC. Grey arrows pointing to a single
peak suggest remarkable properties. Interestingly, whilst the first fPC of the isw2Achd1A and iswi1Aisw2A
strains shows a similar transformation of the mean, the second fPC indicates a different behaviour, particularly
with respect to the 42 nucleosome. As suggested by the fact that clusters in the rsc8chdIA mutant are
exclusively dependent on the second fPC, the first fPC explains only the average profile amplitude and does
not contain any information about collective phasing. The location-specific effect of the linear separator
for each mutant is given in (C), (F), and (I). The grey areas indicate the importance of each position to
determine the clusters, whose median profile is shown as a blue and orange dashed line. The mean is depicted
in black. Although the impact on the grouping of the +1 and +2 position in isw2Achd1A conditions is similar

to the iswlAisw2A strain, the latter is seemingly particularly dependent on the +3 and +4 nucleosome.
Positions thereafter become less important, which keep having a strong impact on clustering in isw2Achd1A.

As expected rsc8chd1A is exclusively dependent on the second fPC. Interestingly, the entire profile seems to
be influential for classifying genes, with the largest impact allocated to the first two nucleosomes. All axes
are scaled to the same size for each strain; shapes and amplitudes are therefore comparable (see Methods for
more details).

Pearson correlation with respect to the two discriminating trends (compare with cartoon 1(D)) could
be difficult. The results for these strains should be taken with a pinch of salt.

Taken together, these outcomes show that remodeler mutants have varying effects on nucleosome
positioning. Whilst most mutations do not notably alter the gene-specific nucleosome coordination
with respect to the WT, we identified 5 mutants that exhibited a strong effect on phasing.
Interestingly, most of them include chd1A, which indicates an important role of Chdl for local
arrangement within the gene body. Using fPCA to visualise the Pearson clusters permits the clear
and position-specific quantification of the induced impact among varying strains.

Pol II Presence Correlates With Nucleosome Organisation in chd1A
Mutants

In order to assess an interdependence of nucleosome organisation with other genomic properties, we
compared the two Pearson clusters to Pol II levels, Sth1l occupancy, AT ratio over the entire gene, as
well as upstream NDR length and orientation of the upstream NDR (i.e. tandem or divergent). We
also included Mediator presence as a large protein complex with transient interactions predominantly
at the NDR. All of these factors were clustered into two equally-sized groups where possible. For
example, Pol IT presence along the gene was evenly separated into transcribed regions with high and
low Pol II occupancy. Interdependence was measured by training a simple neural network with no
hidden neurons using Hebbian learning [41]. Consequently, we assessed which nuclear groups (e.g.
high or low Pol II presence) corresponded to which Pearson clusters. We want to stress that we did
not aim to find a predictive model. Rather, this approach allowed us to measure a direct correlation
between similarity of nucleosome phasing and other genomics properties. The initial k-mean
clustering did not impose a constraint on the group size, and they could therefore differ in the
number of genes they contained. To remove any prediction bias, we forced the clusters to be of the
same size. Genes in the larger group with closest Pearson coefficient to all distributions in the
smaller group changed the cluster. We found the analysis for WT conditions non-conclusive, and
correlations varied between A and B replicate (SFig A.11(top)). Whilst A was slightly correlated
with the AT sequence content (Figs 6(A) and (B)), this trend disappeared for B, and it might in
both replicates rather correspond to the fPC orthogonal to the cluster boundary (SFig A.13).
Overall, we were surprised that none of the investigated properties could indicate a clear
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Figure 5: The fPCs, their gene specific scores, and the discriminating boundary explain
changing collective phasing in isw2Arsc8chd1A. The two clusters are given in orange and blue. The
figure shows the fPC scores ¢ of the isw2Achd1Arsc8 mutant and their separating boundary (black dashed
line, A). The slope decreases with respect to the WT, making the gene groups almost solely dependent on
the second fPC. Both fPCs transform the mean in a similar way as the double mutant rsc8chd1A (compare
B with Fig 4(E)). The dashed black line as well as the solid lines in magenta and green indicate the mean,
a positive contribution of the fPC, and a negative contribution, respectively. As expected, the separating
boundary discriminate between the two clusters largely following the second fPC (C). The grey areas show
the importance of each position to determine the clusters, whose median profile is shown as a blue and orange
dashed line. The mean is depicted in black. All axes are scaled to the same size for each strain; shapes and
amplitudes are therefore comparable.

interdependence with nucleosome phasing in WT (Fig 6(A)).

The correlation between positioning and other nuclear properties changed among the mutants
(SFig A.11). The effect is particularly clear for chdIA (Fig 6(C)), as there is a strong
interdependence between phasing and Pol II (Fig 6(D)), Mediator presence, and NDR size (SFig
A.11). As aforementioned, Chd1l maintains, among others, chromatin integrity during Pol 1T
elongation. The correlation is therefore in line with our previous conclusions and the function of
Chdl. The established link between Pol II presence and nucleosome organisation remains conserved
in all strains with a Chdl gene deletion, except iswiAchd1Arsc8. This is similarly true for the
correlation with Mediator occupancy and NDR length. There was also a slight correlation to Sthl
and AT ratio in cells containing chd1A, which were, despite being weak, still notably stronger than
in WT. The results are in agreement with the effects of Chdl on chromatin maintenance during gene
expression.

Due to the Rsc8-mediated nucleosome organisation within transcribed regions, we were
wondering whether there is an increased interdependence to NDR length or gene size. We can report
that there is no correlation with NDR size in any rsc8-depleted strain (Fig 6(E)). This is in line with
our hypothesis that Rsc8 decouples processes at different genes. However, rsc8 mutant cells
exhibited a slightly increased correlation with Sthl. By looking at the separation with respect to the
Pearson cluster boundary, we find that there is no noticeable impact (Fig 6(F)). The results indicate
that any correlation with region-specific properties is lost, which is likely due to the interference of
nucleosome positioning of various regions.

iswlA single mutant did exhibit only a slightly increased correlation with Pol II, Sth1 and
Mediator presence as well as AT ratio. isw2A might as well show a weak correlation with Pol IT
occupation. Each of the replicates of their double mutant indicates different correlations, and it is
therefore difficult to tell whether transcription-related factors influence nucleosome phasing in the
iswlAisw2A strain. However, none of them indicate any strong interaction, suggesting that—on a
global scale—these effects might be negligible in comparison to the WT (SFig A.11).
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Figure 6: Remodeler deletions have varying effects on the interdependence with other genomic
properties. The orange bars in Figs (A), (C), and (E) show the ratio of correct predictions, and blue bars
are wrong guesses. As we distinguish between two clusters, the dashed black line at 0.5 indicates random
guessing. The dashed grey line with black edging in Figs (B), (D), and (F) display the linear boundary for

the Pearson clusters. (A) and (B): WT conditions are seemingly correlated with the sequence composition.

However, the results are different for the B replicate, and therefore non-conclusive. All possible correlations
are surprisingly low. (C) and (D): chdlA mutants increase particularly their dependence on Pol II and
other transcription-coupled properties, such as Mediator presence. Surprisingly, the mutant showed also
an increased interdependence on NDR length. (E) and (F): despite the Rsc8-mediated gene limits, there

is no correlation with coordinated nucleosome phasing and the size of transcribed regions or NDR length.

Although Sthl indicates a slightly increased interdependence, this cannot be confirmed when plotting the
groups with respect to the Pearson clusters. This is in line with our hypothesis that positioning in different
regions interfere, and therefore, nucleosome localisation become increasingly independent from region-specific
factors.

Interestingly, the rsc8-depleted isw2A indicated a strong correlation with Sthl and Mediator
presence as well as NDR length. The effect was observable in almost all strains that contained the
double mutation with the exception of the quadruple mutant (SFig A.11). Taken together, this could
indicate an impact along the gene body and the promoter region in strains that contain
rsc8-depleted isw2A.
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Surprisingly, combining two factors together (e.g. Pol II presence and AT ratio) to predict
Pearson clustering did not increase accuracy. Instead, one factor dominated the correlation
measurement, e.g. Pol II presence for chdlA strains. This could possibly suggest that—despite
several factors showing increased interdependence—they can be reduced to a main influencing factor
(which is not necessarily one of the tested properties).

Taken together, the results indicate a strong interdependence between local genomic
properties—such as presence of large protein complexes or NDR length—and cell strains containing
chd1A. This supports our hypothesis of Chdl being responsible for local nucleosome coordination.

Discussion

In this work, we analysed the collective positioning of nucleosome arrangement within the gene body
in WT and chromatin remodeler-deficient strains by combining clustering of Pearson coefficients with
fPCA, the latter being an analysis framework for functional data. Although fPCA is well established
in the assessment of time series, it has not been previously used to understand location-specific
nucleosome profiles on a global scale. As we argue that the Pearson index measures similarity of
nucleosome arrangement between genes, we interpreted the effect of chromatin remodelers on the

positioning by visualising the distribution of two established significant Pearson clusters using fPCA.

Indeed, we can show that the sets of genes for all mutants can be sensibly separated by the two fPCs
that explain most variance in the data, and more fPCs are not necessary to describe the clusters.
This allowed the quantification of the effect on coordinated phasing. The significant Pearson groups
were compared with other nuclear properties—such as Pol II presence and NDR maintenance—and
sequence-dependent characteristics. None of the commonly supposed influencing factors can easily
explain coordinated nucleosome positioning in WT conditions. However, correlation between tested
properties and phasing increases with some gene mutations. The analysis reveals the impact of
different gene deletions of chromatin remodelers on nucleosome arrangement within the gene body.
It shows Rsc8-defined boundaries for nucleosome positioning along the gene, suggesting a global
impact over the entire array for each gene. On the other hand, the results for most strains that
contained a Chdl deletion indicated gene-specific local effects, which correlate largely with Pol II
presence. In the following, we critically discuss the results and their significance.

We applied a pairwise Pearson cross-correlation index to measure profile similarity between genes.

The linear correlation measurements evaluate the overall trend of the signal (i.e. increasing or
decreasing distributions at similar positions), and it does not take signal scaling into account.
Therefore, it assesses whether genes are apt to contain nucleosomes at similar positions. Indeed,
similar nucleosome phasing could indicate similar but gene-specific chromatin remodeler dynamics,
which justifies the rationale for measuring classical linear correlation. It also follows previous
analyses using comparable measurements [33, 34].

We classified genes according to their Pearson coefficients by applying a k-mean clustering

approach. k-mean was repeated over several random initialisations, therefore removing any prior bias.

We used a silhouette criterion value to determine the best number of clusters, which was shown to be
2. It should be mentioned though that the cluster distribution according to the fPCA did not show a
clear separation of the data points themselves (i.e. there were no distinct data accumulations).
Therefore, this clustering is imposed by our assumptions using the Pearson index. Nonetheless, we
argue that they reveal important information about nucleosome phasing linked to chromatin
remodelers when compared with mutant strains. The validation using the silhouette criterion

together with the shape-independent JS distance over 500 random clusters proved their significance.

This shows that the data could not be better categorised using linear correlation. We acknowledge
the fact that 500 random partitions for over ~5000 transcribed regions is still comparatively low.
However, as we approximate the distribution of JS distances over random clustering with a gamma
distribution, we made our estimates independent of the actual number of samples. Gamma
distributions are commonly used to represent unimodal strictly positive random variables, and it is
therefore a sensible choice for JS distances over random partitions of the same data set.
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As the Pearson correlation index only indicates average similarity over the entire nucleosome
array, we aimed to compare the clusters to the data itself in order to interpret their differences.
Dimensionality reductions are often used to visualise clusters, such as for single-cell sequencing
analyses [42]. Common approaches include PCA, uniform manifold approximation and projection
(UMAP) [43], and t-distributed stochastic neighborhood embedding (t-SNE) [44]. Whilst the latter
two are non-linear dimensionality reductions, PCA and fPCA find a linear decomposition of the data
into the axes (or functions) that explain most variance. It is challenging to retrieve the exact
meaning of the discriminating boundary using non-linear approaches. Consequently, understanding
the location-dependent differences in the profile between two clusters and interpreting their
separating function is more straightforward for PCA or fPCA than for UMAP and t-SNE. Although
PCA and fPCA are very similar, PCA assumes that every position in the MNase-seq data is
independent, whereas fPCA conjectures that they were produced by a single stochastic process along
the spatial axis. Therefore, positions are dependent on each other. This is inline with the barrier
model for establishing nucleosome phasing, which makes fPCA preferrable over PCA. Moreover, as
we treat each nucleosome profile as one entity by using the Pearson correlation, the independence
assumption would violate the fundamental understanding in our analysis. Nonetheless, when
comparing PCA and fPCA, we showed that the two clusters can be similarly separated (SFig A.12),
although the two principal axes are slightly differently shaped due to the missing constraint of the
spatial dependence.

FPCA assumes a stochastic process with a mean behaviour over the entire data set, and it
characterises each data point with respect to their deviance from that mean (see Methods). The
results therefore depend on the entire considered data set. Indeed, we find different results when
including all genes or exclusively transcribed regions >1000 bp. However, these differences are not
strong. Moreover, any possible bias was excluded by removing genes smaller than 1000 bp from a
subsequent analysis. Due to the abundant and well-positioned nature of nucleosomes within the gene
body in Saccharomyces cerevisiae, we find it justified to presume an average nucleosome distribution
describing their wave-like profile. Nonetheless, we argue that the variance between genes contains
important information about nucleosome phasing imposed by chromatin remodelers, which we
roughly categorised into groups. We found that the two Pearson correlation clusters could be neatly
separated by the fPC scores ¢/, j € {1,2}. This indicates firstly that the Pearson index measures a
trend that is explained by the largest variance in the data; and secondly, the two fPCs that describe
most variance are sufficient to interpret the clusters.

Whilst linear-correlation measurements are limited to quantifying the average similarity, a
combination with fPCA allows characterising location-specific differences and in which way gene
deletions affect phasing from an average. Evaluating the effect of the linear boundary along positions
within the gene body revealed detailed differences in the nucleosome profile that are important for
establishing the groups. As our approach is largely dependent on general signal processing methods,
we can repeatedly apply the same framework for all mutants and compare there results. Therefore,
the combination of linear correlation with fPCA extends previous ways of analysing nucleosome
distributions using only Pearson [34] or autocorrelation [33] by allowing a position-specific
interpretation.

The analysis can clearly distinguish between mutant-specific effects on phasing. All mutants
preserved the information of coordinated nucleosome arrangement in their first two fPCs, and the
Pearson clusters could be separated by a neat line. Consequently, none of the chromatin remodeler
gene deletions caused random positioning. Some mutants, however, showed an increased overlap
between the two groups, which indicates increased independence between individual nucleosome
locations, and positioning might be more random. Including more fPCs could help further
separating the clusters. In all of those cases however, one of the two replicates always permitted a
clearer separation by using only the first two fPCs. Considering the experimental variability in the
data, it is not possible to draw direct conclusions without further replicates. In order to simplify the
comparison between mutants, we restrained from including more fPCs.

Most strains did not alter notably their gene-specific collective arrangement (i.e. the slope), and
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a linear separation of the Pearson clusters using the deviance from the mean did not change with
respect to WT strains. Although they can nevertheless have an impact on the mean itself,
coordination along the genes remains preserved in a similar way, at least as measured by the Pearson
correlation index. Due to the focus of the study on coordinated nucleosome positioning along

transcribed regions, we did not consider them as having notably changed their coordinated phasing.

Gene mutations of chromatin remodelers have been analysed previously in detail, including their
influence on phasing [12-14, 18], NDR maintenance [45], and gene transcription [13]. RSC is the only
essential chromatin remodeler complex in Saccharomyces cerevisiae [46], and it has been particularly
associated with positioning of the +1 and -1 nucleosomes [12,45,47]. This mechanism has been
proposed to be conserved among various yeast species [11]. It has also been reported that RSC
regulates expression of Pol II and Pol III-transcribed genes [13,48,49]. Moreover, it has been found
to impact Pol IT elongation and termination [12]. All of these results imply that RSC is to some
extent involved in limiting the transcribed region. However, this has been predominantly quantified
with respect to changes at the core promoter. To our knowledge, a potential role for Rsc8 to
decouple nucleosome phasing in independent genes has not been suggested. The presented functional
analysis of MNase-seq profiles in rsc8-depleted strains clearly indicates a coordinated nucleosome
arrangement that exceeds the limits of transcribed areas. This is further supported by our finding
that correlation with other nuclear and sequence-dependent factors decreases. Furthermore, mutants
that were rsc8 depleted decreased notably the boundary slope between the two clusters, indicating
that coordinated positioning becomes increasingly independent of other functional components. The
strictly limited and Rsc8-mediated phasing barrier could have further implications for other
processes—such as transcription—as nucleosome placing in one gene influences its neighbouring
regions. The notion of gene-interfering positioning has been also proposed by [14]. The study shows
that RSC could act as a bidirectional barrier, influencing upstream and downstream regions.
Interestingly, they found that interference also plays a crucial role in WT strains, and that the same
phenomenon remains preserved in rsc8-depleted cells. However, our fPCA reveals that the limiting
role of the RSC remodeler complex is crucial in WT conditions, and that this behaviour is
significantly altered when Rsc8 is depleted. Taking this into account, Rsc8 should fulfill the role of
disentangling gene-related processes in WT strains, and it therefore allows for a flexible and
uncorrelated transcriptional program. Indeed, rsc8-depleted cells exhibit significantly altered Pol 11
profiles [10,12], which is in accordance with our hypothesis. We propose that the RSC chromatin
remodeler globally disentangles nucleosome phasing, and it therefore plays a substantial role in
long-range positioning.

Interestingly, our results indicate that positioning limited to the gene body can be re-established
in rsc8-depleted chd1A mutants. We hypothesise that they have antagonistic effects in establishing
gene size-dependent barriers for nucleosome arrangement. Indeed, it was reported that Rsc8 and
Chd1 have opposing effects for Pol II termination. rsc8-depleted cells exhibit inhibition of Pol IT
dissociation at the TTS, whereas the double mutant iswiAchdlA increases release frequency, with
seemingly chdIA dominating this effect [12]. The authors propose that this is related to the close
packaging of nucleosomes at the TTS. Our outcomes suggest that they might have antagonistic
effects in chromatin organisation that differs between transcribed and non-transcribed regions.

We found that chdIA mutants had a strong impact on coordinated positioning within the gene
body. Indeed, Chdl has been, among others, characterised with respect to its role in maintaining
chromatin integrity during Pol II transcription [16,50,51], and it associates to both promoters and
transcribed regions [52]. This is in line with our finding that correlation with Pol II presence and
occupancy of Mediator increases in Chdl-deficient strains. With the exception of iswlAisw2A, all
other noteworthy changes included deletion of chd, further emphasising its role for chromatin
organisation within the gene. However, not all chd1A-containing mutants exhibit a notable effect.
This can have various reasons, including experimental variability. However, particularly the mutant
chd1Aiswi1Aisw2A could indicate an interacting behaviour of the remodelers. Indeed, Chdl has
been reported to cooperate [16] as well as antagonise Iswl [18], and therefore could have different
effects depending on the context. With this being said, the behaviour of the triple mutant
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iswlAisw2Achd1A is particularly interesting, as chd1A and iswlAisw2A each individually affect
coordinated phasing, but not their triple mutant. This could suggest an antagonistic behaviour on
nucleosome coordination. As Chdl is highly conserved in all eukaryotes [53], this result could have
consequences beyond Saccharomyces cerevisiae.

Analysing the MNase-seq data using {fPCA allowed us to obtain a different view on the
functionality of various remodelers to maintain chromatin organisation. We propose the following
mechanism (Fig 7). The RSC remodeler complex is essential for allowing independent phasing in
each single gene. It plays therefore a pivotal role in maintaining the barrier with respect to which
nucleosome positioning is coordinated. This permits the decoupling of gene-specific processes such as
transcription. Depletion of Rsc8 leads to the interference of different genomic regions, which
therefore alters sequence accessibility on a global scale. Indeed, it has been reported that gene
expression is dramatically changed in rsc8 mutants [10,49]. Chdl, on the other hand, maintains
chromatin integrity during transcription [16,50,51], and it influences nucleosome phasing locally to
permit Pol II-mediated expression. chd1A strains make positioning dependent on Pol II presence.
Consequently, whilst RSC plays a global role, Chdl is important for local nucleosome organisation.

Barrier

AN

rsc8-
depleted

Mutants

Figure 7: Chromatin remodelers maintain nucleosome organisation on a local and far-reaching
scale. Top: RSC (green ellipse) establishes independent nucleosome phasing on each gene (two vertical
dashed lines) by maintaining the NDR through positioning the +1 (cornered arrow) and -1 nucleosome. The
ATP-dependent positioning is symbolised by black arrows pointing away from RSC. The local remodeling

effect of Chdl (blue ellipse) allows chromatin arrangement independent of Pol II transcription (yellow ellipse).

Bottom: in rsc8 strains, the NDR cannot be maintained anymore, and phasing in and outside a gene interfere
with each other (single dashed line). We propose that this should equally lead to an increased interdependence
of other nuclear processes such as transcription. If chd1 is deleted, nucleosome arrangement is more sensitive
to the presence of other large complexes, such as Pol II. During transcription, Pol II is affecting the local
positioning (black arrows from Pol II).
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Methods

Data Treatment

MNase sequencing reads were taken from [18] and [12] (GEO accession numbers GSE69400 and
GSET73428, respectively) and treated as in our previous study [54]. To be precise, reads from Fastq
files were trimmed with trim galore (v0.6.5) [55] and cutadapt (v3.1) [56]. Subsequently, they
were mapped on the Saccharomyces cerevisiae genome (University of California at Santa Cruz
[UCSC] version sacCer3) using bowtie2 (v2.3.4.3) [57]. Files were converted with samtools

(v1.9) [58] and deeptools (v3.5.0) [59]. Read counts were normalised in Reads Per Million (RPM)
of mapped reads. We used the option --MNase of bamCoverage so that only the mononucleosome
fragments were kept. This means that fragments shorter than 130 bp and longer than 200 bp were
removed from analysis. Mediator and Sthl ChIP-seq were taken from [54] (ArrayExpress accession
number E-MTAB-12198). We used Pol 1T ChIP-seq from our previous study [60].

Following [12,18], we retrieved positioning profiles along the coding regions 200 bp before and
1000 bp after the +1 nucleosome. Genes on the Crick strand were inverted. Consequently, all data is
calibrated such that the 41 position is at 200 bp. The profile of genes for which the +1 position is
known were considered as in [18].

Measuring Profile Correlation and Clustering

The pairwise Pearson correlation of MNase-seq distributions for each gene was determined using
equation

i (i — @) (yi — )
Vi (@i =22/ (v — 9)?

Here, z and y denote two genes, & and 3 symbolise their respective average MNase-seq value
along the coding region, and n = 1200 is the length of the considered region. Eq 1 ranges between -1
and 1, and indicates whether the two gene profiles tend to change into the same (positive Pearson
correlation) or opposite directions (negative Pearson indices).

Genes were divided using the pairwise Pearson indices using the k-mean clustering
implementation in MATLAB. Every gene is represented by a vector containing the cross-correlation
values to all other profiles. To define the optimal number of k-mean clusters, we used the silhouette
criterion measurement [61,62]. For all analysed strains, the highest silhouette value occurs at 2
groups, suggesting that in order to divide the profiles into classes with respect to their Pearson
indices, the optimal number of clusters is 2 (Fig 1(A)). Therefore data were grouped in two clusters
(Figs 1(B, C)).

Cluster significance was validated by comparing the JS distance of the two determined groups
with 500 random group pairs to which all genes were randomly assigned. The JS distance is
bidirectional extension of the Kullback-Leibler (KL) divergence and can be calculated using

(1)

Toy =

JS(P| Q)= L D(P | M)+ 1 D(Q | M), 2)

where D and @ are two distributions (i.e. the MNase-seq profiles), and M = 1/2(P 4+ Q) is a
mixture distribution.

As we compared a single value (i.e. the JS distance of the Pearson clusters) to a distribution (i.e.

500 random JS distances), standard significance tests are not applicable since they compare two
distributions. We therefore approximated the distribution over all random JS distances with a
gamma distribution and determined its 95% PI. The gamma distribution is defined by

xa—leﬁxﬁa

f(z;a,B) = Ta) (3)
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Here, z denotes the value (i.e. JS distance), and « and f are parameters. I'(-) is the Gamma
function. If the value was outside the PI, we deemed it to be significant. Unfortunately, fits to the
gamma distribution were sensitive to outliers, such that a single value far from the mode had a
stronger weight in comparison to each value around it. We presumed that the distribution is best
represented with the values close to the mode and removed therefore the 99% percentile of the
random JS distances before fitting. All considered mutants were outside the 95% PI, with the
exception of the iswiArsc8, which was removed from the analysis.

Functional Principal Component Analysis

Functional clustering in a Hilbert space H can be achieved by fPCA. It applies—similar to PCA in
Euclidean space—a functional dimensionality reduction in H to investigate the dominant mode in
functional data. Instead of relying on values in discrete dimensions, fPCA uses a given number of
basis functions (e.g. B-splines or Wavelet) to create the eigenfunction basis that accounts for most
functional variation. Despite the fact that MNase-seq data is stored in a discrete array (i.e. one
value per bp), we can nevertheless find a functional approximation over a range using a given choice
of basis functions. It should be noted that this implicitly smooths out high frequencies in the signal.
We presume that nearby values in MNase-seq data possess a strong interdependence, therefore
justifying a smoothed and continuous functional representation of the high dimensional data. In this
study, we apply B-splines as a basis to represent the nucleosome array (Fig 8). We use the Python
library scikit-fda to determine the fPCs and the corresponding weights explaining the
distribution [63]. Here, we describe briefly the underlying principles of the method.

MNase profiles Ocampo WT A

Original B-spline Mean Bspline

» w
L L

Amplitude
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Amplitude
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Figure 8: Representing the MNase data array as a composition of B-spline base functions
in WT conditions. Left shows the raw data, each colour depicting one profile over a gene. Center gives
the smoothed profiles after representing the data as B-splines. Right displays the average profile using the

functional composition.

FPCA presumes that the functional data represents a stochastic process X (¢) with expected
value p(t) = E[X(¢)] and orthonormal eigenfunctions ¢'(t), i = 1,2.... Intuitively, ¢*(¢) describes the
most variation in X orthogonal to all ¢/, j < i. This allows the iterative determination of the
eigenfunctions in the functional data. It should be emphasised that in this study the process is
defined in space rather than describing temporal data. We follow nevertheless the convention by
denoting the independent variable as ¢t. By using the Kosambi-Karhunen—Loeve theorem, any
stochastic process can be represented as an infinite linear combination ¢?(¢). Consequently, we can

describe the stochasticity in X (t) via

X(t) = p(t) =Y cFek ). (4)
k
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¢* is the autocovariance operator

¢h = / (X () — u(t))¢* (1)t (5)

To provide some intuition, it is presumed that the entire data set can be explained via an average
behaviour p(t). Variability to u(t) for each gene is expressed by ¢*(t) together with a factor ¢*. ¢*
can be loosely compared to a normal correlation measurement, i.e. (¥ increases when ¢* (t) and
J(X(t) — u(t)) follow the same trend. If they describe opposing behaviours—for example ¢¥(t)
decreases when [ (X (t) — u(t)) increases—(C* becomes negative.

It is commonly justified to approximate Eq 4 as a finite sum

X(t) ~ Xo(t) = () + 3 ¢ (1), (6)

It should be noted that qﬁi(t), 1=1,2,... is a basis of the functional space in H.

This understanding of the underlying process permits the application of fPCA. A smoothed
representation with the basis functions (e.g. B-splines) fulfilling Eq 6 can be obtained using L?
regularisation. To reduce the dimensionality to K, we keep only the first K components (i.e.¢%(t))
that represent the dominant mode of variation in X by setting the first component to

o = angmax {Van( [ (X(0) = nto)otonan }. )

lloll=1
and the following K — 1 components to

o — mgmax {Var< /T (X (1) - u(t))¢(t)dt)}- (®)

ll¢ll=1,(¢,$7)=0 for j=1,...,

¢l is the square norm, i.e. ||¢]| = /([ #(t)?). It should be emphasised that ¢* can differ by a

factor of -1 due to the square norm, and consequently, the operator (¥ (Eq. 5) can be either positive
or negative depending on ¢*. This means that the slope of the cluster-dividing boundary can be
pointing upwards or downwards and still describe the same functional composition.

We exemplified the impact of the first two fPCs to analyse the consequences on nucleosome
phasing in chromatin remodeler-deficient cells (see for example Figs 1, 2, and 4). It should be noted
that the fPCs were amplified to highlight their functional contribution. We set the scaling factor to
¢t = (2 =20 in all figures that demonstrate their effects (i.e. magenta shows the effect of the fPC
multiplied by 20 and added to the mean, and green depicts the fPC multiplied by 20 and subtracted
from the mean). The determined factors were predominantly distributed in (2 € [—20, 20] for all
strains and replicates, and most of them were in fact much lower. Therefore, we limited the scaling
of the axes for ¢! and ¢? to [—20,20] for all plots that show the cluster distribution with respect to
the factors. Therefore, all figures and axes were directly comparable. The few outliers that were
outside this range were incorporated into the analysis despite of being not shown in those plots.

Quantifying the Cluster Boundary

Long genes were linearly separable with respect to the Pearson coefficient clusters in all WT and
mutant conditions. The boundary was determined using a linear SVM. We ignored the prediction
error and the intercept of the linear boundary, and instead considered only the slope differences
between the two replicates. As aforementioned, the sign of the slope m does not matter, and we
consider therefore only |m|. To quantify the variability in the two replicates, we introduce the
following measurement

s(i) = (1m; — mwr) 9)

(Imit| = ImP)(Imiyr| — [mir )
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m denotes the average over the absolute slopes of both replicates. We defined a change as notable
when s(¢) > 1, which implies that the mean variability between WT and mutant is larger than the
variability within the replicates, i.e.

(mi = mwr)” > (m| = [mP ) (Imiyr| — [mGr)). (10)

As we consider only two replicates, we restrain from using the word significant as much as
possible and use noteworthy or notable instead.

The slope of the boundary m indicates the contribution of each fPC to describe the discriminator
between the clusters. As m shows the change of ¢2 over one unit of ¢!, we can determine the
separating boundary by

mo! + ¢?

/:
¢ m—+ 1

(11)

The impact of ¢/ can be visualised by multiplying a scaling factor which is followed by addition
to and subtraction from the mean. In this study, we used a factor of ¢/ = 5 to create the grey bands
in the plots that show the effect of the separating function.

Measuring Interdependence Between Nucleosome Phasing and Other
Nuclear Properties

In order to analyse interdependence of nucleosome positioning with other nuclear properties, we
divided all factors into two equally sized cluster using the median wherever possible. For example,
the half with the smaller NDRs was assigned to group -1, whereas the larger half was group 1. This
split was performed after filtering for the size (i.e. large or small genes). The analysis aimed to find
a correlation between nuclear factor group and Pearson cluster. To remove any bias with respect to
the group size, we forced both Pearson clusters to contain the same number of genes.

We used a simple feedforward network with no hidden neurons and a single output neuron whose
activation indicated the predicted Pearson cluster. The number of input neurons varied between 1
and 2, depending on whether we considered a multivariate interdependence. The group of the
nuclear factor (i.e. -1 or 1) was set as input neuron activation. This was weighted and summed
together with all other input values. The activation function of the output was a modified sign
function, which returned 0 when negative and 1 when positive. Therefore, if the weighted sum over
the input was lower than or equal to 0, the output would be 0, and 1 otherwise.

Weights were trained using a Hebbian-like learning method [41]. In order to avoid any confusion,
we name Pearson cluster 0 and nuclear factor group -1 low cluster, whereas we define group 1 in
both cases to be the high cluster. The weight was defined to be the average number of genes where
the nuclear factor group and Pearson coefficient cluster where both low or both high; minus the
average number where one of them was low whilst the other high. The implementation as a neural
network allowed the straightforward extension to compare interdependence with several factors at
the same time using the same method.
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A Supplementary Figures
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Figure A.1: Cluster significance test for all genes. Left: The Pearson correlation coefficients for each
profile (blue and orange) in a cluster to all other distributions (independent of the cluster) is seemingly very
similar for both groups, as indicated by shape-independent the JS distance. Right: By measuring the JS for
500 random and mutually distinct clusters (blue bars), we can approximate the expected distance over two
random groupings of the Pearson coefficients using a gamma distribution (orange solid line). Indeed, the JS
between our initially determined clusters (dashed black line) is outside the 99%-PI (dashed orange lines),
proving that the separation is significant.
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Figure A.2: The WT fPC scores ( coloured with respect to the Pearson clustering using all
genes (part 1). Blue and orange indicate each one group, the dashed line symbolises the best linear
separation using a SVM. The x-axis represents the score of the first fPC (', the y-axis gives the score for the
second fPC ¢2. All axes are scaled to the same size; shapes are therefore comparable. (A) and (B) show all
genes for replicate A and B. (C) and (D) display the fPC scores after filtering for large genes (> 1000 bp) for
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Figure A.2: The WT fPC scores ¢ coloured with respect to the Pearson clustering using all
genes (part 2). Blue and orange indicate each one group, the dashed line symbolises the best linear
separation using a SVM. The x-axis represents the score of the first fPC ¢!, the y-axis gives the score for the
second fPC ¢*. All axes are scaled to the same size; shapes are therefore comparable. (A) and (B) show
small genes ((< 1000 bp) for replicate A and B. We removed the separating boundary because it did not
reasonably divide the clusters. Nevertheless, we kept the estimated linear function in the legend to allow a
comparison with other boundaries. Of particular note is the bias, which can be even order of magnitudes
different from large-gene clusters. (C) and (D) display the fPC scores after filtering for very large genes
(> 3000 bp) for replicates A and B.
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Figure A.3: Heatmaps for small-gene nucleosome profiles reveal antagonistic roles for Rsc8
and Chdl to establish phasing boundaries. Cluster 1 and 2 for all genes in WT conditions were
plotted only including small genes on the left. Indeed, correct positioning is either completely disrupted
(Cluster 1), or clear phasing is lost after +3 or 44 position and individual peaks do not stand out thereafter
(Cluster 2). However, both Pearson clusters for rsc8-depleted cells (centre) show clear phasing probabilities,
despite all genes being smaller than the considered 1000 bp after the +1. The double mutant chdlArsc8
seems to re-establish the gene boundaries for nucleosome phasing, as positioning is either disrupted (Cluster
2, compare with Cluster 1 in WT) or does not exhibit clearly distinguishable peaks after the +3 or +4
nucleosome (Cluster 1, compare with Cluster 2 in WT). Defining a group as being 1 or 2 was arbitrary and
has no significance. Copper values show large MNase-seq signal values, whereas dark segments indicate a low

amplitude.
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Figure A.4: The large-gene fPC effect in WT. Despite fact that the functions differ in the A and B
replicate ((A) and (B)), they both describe the same properties as when considering all genes (Fig 1(F)). To
be precise, the first fPC describes seemingly position-dependent scaling (grey vertical bars), and the second
explains coordinated phasing (grey arrows). The mean is displayed as a black dashed line, whereas a positive
and a negative functional contribution are given in magenta and green, respectively.
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Figure A.5: The Pearson coefficient clusters for exclusively small genes correspond to the gene
size. When we repeated the Pearson coefficient clustering considering exclusively small genes, we can linearly
separate again the two groups (orange and blue). However, this is predominantly explained by the size of the
gene (short pink, long green). This in line with the hypothesis that coordinated nucleosome phasing along
the transcribed region is strictly limited within the gene body. The phase separating line was determined
on the Pearson clusters (dashed black line) using an SVM. The same separating boundary was also plotted
in right plot showing grouping with respect to the size. We plotted the original SVM boundary from the
Pearson clusters with a dashed grey line to indicate that it was not determined using gene size. (A) and (B)
give the Pearson clusters for replicate A and B. (C) and (D) show the size dependence of replicate A and B.
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small gene all cluster

Figure A.6: Pearson clusters of small genes lose separability with respect to their fPC scores.
The figure shows the fPC scores ¢ of small genes (< 1000 bp) of all conditions coloured with respect to the
all-gene Pearson clustering. Blue and orange indicate each one group, the dashed line symbolises the best
linear separation using a SVM. We removed the linear boundary in plots where it went through the periphery
instead of dividing the data points. The x-axis represents the score of the first fPC ¢!, the y-axis gives the
score for the second fPC (2. All axes are scaled to the same size; shapes are therefore comparable.
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Figure A.7: The small-gene fPC effect in chd1Arsc8 strains. The double mutant seemingly re-
establishes gene boundaries, and coordinated phasing is at least weakened after the +2 nucleosome (+1 in
turquoise, +4 in blue, +6 in orange). This is true despite the fact that the A and B replicate differ. Figs (A)
and (B) show the clusters for replicate A and B, and Figs (C) and (D) display their fPCs. We removed the
separating boundaries in (A) and (B) because they did not reasonably divide the clusters. Nevertheless, we
kept the estimated linear function in the legend to allow a comparison with other boundaries. Of particular
note is the bias, which differs largely from large-gene clusters. The dashed black lines, the solid purple, and
the solid green lines indicate the mean, a positive contribution, and a negative contribution, respectively.
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Figure A.8: Cluster significance test for large genes (part 1). Left:
coefficients for each profile in a cluster to all other distributions (independent of the cluster) is seemingly
very similar for both groups, as indicated by the shape-independent the JS distance. Right: By measuring
the JS for 500 random and mutually distinct clusters, we can approximate the expected distance over two
random groupings of the Pearson coefficients using a gamma distribution. Orange dashed lines indicate the
95% PI, the dashed black line display the JS of the Pearson clusters.

The Pearson correlation
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Figure A.8: Cluster significance test for large genes (part 2). Left: The Pearson correlation
coefficients for each pr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>