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Résumeé

L’objectif de cette these est le développement et I’analyse de schémas volumes finis robustes et précis
afin d’approcher la solution de I’équation de diffusion sur maillages quelconques avec un coefficient
de diffusion qui peut étre anisotrope et/ou discontinu. Afin de satisfaire ces propriétés, nos schémas
devront préserver la positivité et étre d’ordre élevé.

Dans ce manuscrit, nous proposons le premier schéma d’ordre arbitraire préservant la positivité
pour la diffusion. Notre démarche est tout d’abord d’étudier le probleme en 1D. Dans ce cas le prob-
leme de positivité n’apparait qu’a partir de ’ordre 3. D’autre part, la dimension 1 nous permet de
faire I’analyse mathématique de ce probleme, notamment une preuve de convergence du schéma a un
ordre arbitraire sous une hypothese de stabilité. Ensuite, nous ’étendons en 2D a l'ordre 2, ce qui
permet de nous appuyer sur des schémas connus. Nous avons étudié deux possibilités : un schéma type
DDFV (Discrete Duality Finite Volume) que 'on compare & une méthode utilisant des reconstruc-
tions polynomiales. Enfin, cela nous permet de développer un schéma monotone d’ordre arbitraire
sur maillage quelconque avec un coefficient de diffusion x qui peut étre discontinu et/ou anisotrope.
La montée en ordre se fait grace a une reconstruction polynomiale et la monotonicité s’obtient en se
ramenant a une structure de M-matrice, ce qui nous donne des schémas non linéaires.

Chaque schéma est validé par des simulations numériques montrant ’ordre de convergence ainsi
que la positivité de la solution obtenue.

Summary

The objective of this thesis is the development and the analysis of robust and accurate finite volume
schemes for the approximation of the solution of the diffusion equation on deformed meshes with
diffusion coefficient which can be anisotropic and/or discontinuous. To satisfy these properties, our
schemes must preserve the positivity and achieve high-order accuracy.

In this manuscript, we propose the first positivity-preserving arbitrary-order scheme for diffusion.
Our approach is first to study the problem in 1D. In such a case, the positivity problem only appears
for order 3 and higher. The 1D setting allows us to perform the mathematical analysis of this problem,
including a proof of convergence of the scheme to an arbitrary order under a stability assumption.
We then extend it to 2D at order 2, relying on well-known schemes. We study two possibilities: a
DDFV-type scheme (Discrete Duality Finite Volume), which we compare with a method using poly-
nomial reconstruction. Finally, this allows us to develop a monotonic scheme of arbitrary order on
any mesh with a  diffusion coefficient that can be discontinuous and/or anisotropic. Improving the
order is achieved through polynomial reconstruction, and monotonicity is obtained by reducing to a
M-matrix structure, which gives nonlinear schemes.

Each scheme is validated by numerical simulations showing the order of convergence and the
positivity of the solution obtained.
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Résume detaille

Historiquement, calculer efficacement une approximation précise de la solution des équations de dif-
fusion est d’un intérét considérable dans divers domaines de la science et de l'ingénierie. L’opérateur
de diffusion est d’une importance fondamentale parmi les opérateurs différentiels. Il apparait dans de
nombreuses équations aux dérivées partielles modélisant des modeles physiques tels que, par exemple,
la conduction thermique, la diffusion radiative, ’élasticité, la diffusion dans les milieux poreux ou les
équations de Navier Stokes. Discrétiser un tel opérateur de maniere robuste et précise est un défi
majeur.

L’objectif de cette these est de proposer une telle discrétisation de I'opérateur de diffusion sur maillages
déformés. Des travaux récents ont montré qu’assurer la positivité de la solution numérique améliore
la robustesse. Pour de nombreux modeles physiques, cette positivité est d’'une grande importance.
Pour I’équation de diffusion, cette propriété est appelée monotonicité. En ce qui concerne la précision,
I'utilisation de méthodes d’ordre élevé semble appropriée.

Un schéma numérique est dit d’ordre k si 'erreur entre la solution numérique et la solution exacte
est proportionnelle au pas du maillage h a la puissance k. L’opérateur de diffusion est bien adapté
a la conception de méthodes d’ordre élevé, contrairement & ’opérateur hyperbolique pour lequel des
chocs (c’est-a-dire des discontinuités de la solution) peuvent apparaitre méme pour des données lisses,
alors que les solutions de I'opérateur de diffusion sont plus réguliéres. Cela permet une approximation
polynomiale efficace, contrairement aux solutions avec des chocs. Les méthodes d’ordre élevé peuvent
donner 'impression d’étre moins efficaces que les méthodes d’ordre faible parce qu’elles sont plus gour-
mandes en temps de calcul que ces derniéres pour un maillage donné. Cependant, les méthodes d’ordre
inférieur nécessitent beaucoup plus de degrés de liberté (raffinement du maillage) pour atteindre une
précision donnée que les méthodes d’ordre supérieur. Ainsi, efficacité d’une méthode ne se mesure
pas en coiit de calcul sur un maillage donné, mais en colt de calcul pour atteindre une erreur donnée,
ou en examinant I’erreur obtenue pour un temps de calcul donné.

La monotonicité est 'une des propriétés les plus importantes a respecter pour un schéma numérique.
L’absence de monotonicité peut entrainer de graves difficultés, car I'inconnue peut étre la tempéra-
ture, la densité des variables fluides ou la concentration des espéces chimiques, qui doivent rester
positives. La présence de valeurs négatives peut faire échouer les simulations ou conduire a des résul-
tats physiquement irréalistes, ce qui compromet la fiabilité et la précision de la simulation numérique.
En outre, dans les applications visées, 'opérateur de diffusion doit, en général, étre considéré comme
une partie d’un systeme plus complexe d’équations aux dérivées partielles comprenant éventuellement
des opérateurs hyperboliques et des termes sources. Un exemple simple est le systeme d’Euler avec
conduction thermique (voir (1)) pour lequel la positivité de la température est requise.

Toutes les difficultés liées a 'obtention de la positivité sont déja contenues dans le probleme de diffu-
sion que nous allons considérer dans la suite.

Nous nous intéressons aux maillages déformés car les applications que nous envisageons impliquent le
couplage du probleme de diffusion avec I’hydrodynamique lagrangienne (voir (1)). Dans ce cas, nous
devrons résoudre I’équation de diffusion dans un grand code ou le maillage est imposé. En outre, pour
certaines applications, le maillage est imposé par des contraintes provenant de la physique, comme
par exemple les couches sédimentaires en géologie.

De nombreuses études ont été consacrées a cet opérateur. Cependant, les méthodes numériques
conventionnelles pour les équations de diffusion se heurtent souvent a la difficulté de préserver des



propriétés physiques importantes, telles que la positivité, tout en conservant une précision d’ordre
élevé. Pour résoudre le probleme de la monotonicité, on pourrait envisager de tronquer la solution
discrete a zéro. Toutefois, cette solution ne serait pas satisfaisante, car la propriété de conservation,
tout aussi importante, serait perdue. De nombreux travaux permettent d’obtenir un ordre élevé mais
pas la monotonicité

> Les éléments finis (voir [27,90]) sont les méthodes les plus populaires pour discrétiser les opéra-
teurs elliptiques ou paraboliques, lorsque la conservation et la monotonicité ne sont pas essen-
tielles. Ces méthodes offrent une base théorique solide, ce qui facilite la conception d’extensions
d’ordre élevé. Malheureusement, ces méthodes ne sont généralement pas conservatives et ne
préservent pas la monotonicité, a moins que des restrictions séveres sur le maillage ne soient
supposées.

> Les méthodes hybrides d’ordre élevé (HHO, voir [33]) sont des approches numériques permettant
de résoudre des équations sur des maillages polytopiques avec une grande précision. Ces méth-
odes combinent les avantages des méthodes des éléments finis et des volumes finis, en utilisant
une formulation hybride. Les méthodes HHO visent & obtenir une convergence d’ordre élevé et
une meilleure préservation des propriétés de la solution. Ces approches sont conservatives mais
ne garantissent pas la positivité de la solution. L’ordre de convergence de ces méthodes dépend
de plusieurs facteurs, tels que le degré des polynomes utilisés pour approximer la solution et les
conditions de régularité de la solution.

> Les méthodes de Galerkin discontinues (voir [34]) utilisent des approximations continues par
morceaux et des polynémes de haut degré pour obtenir une bonne précision. Ces méthodes ne
préservent pas la monotonicité.

> Les méthodes des éléments virtuels (voir [(]) sont congues pour traiter les maillages irréguliers et
polygonaux a ’aide de fonctions virtuelles définies localement sur chaque élément. Elles peuvent
atteindre un ordre de convergence élevé, en particulier pour les approximations polynomiales de
degré élevé et les maillages réguliers. Ces méthodes ne préservent pas la positivité.

Les méthodes qui ne sont pas des méthodes de volumes finis peuvent poser des problemes lorsqu’elles
sont couplées a un code de volumes finis. En effet, il est difficile de coupler les méthodes de volumes finis
pour I'’hydrodynamique avec d’autres méthodes car, pour les premieres, les valeurs sont considérées
au centre des mailles alors que pour les autres, elles ne sont pas situées aux mémes endroits. Pour
améliorer 'ordre, les méthodes précédentes nécessitent plus de degrés de liberté par maille, ce qui les
rend difficiles a coupler avec d’autres méthodes numériques. Par exemple, pour un ordre supérieur a
2, les méthodes d’éléments finis nécessitent plusieurs degrés de liberté par maille.

> Les méthodes de volumes finis (voir [18]) sont trés populaires, notamment parce qu’elles sont con-
servatives et compatibles avec les méthodes classiques de discrétisation de la partie hyperbolique
des équations.

o L’article de Kershaw [(4] présentent I'un des premiers schémas de volumes finis consistant
pour les équations de diffusion sur des maillages déformés (voir également [36] pour un
schéma apparenté). L’idée est d’écrire un schéma de volumes finis standard sur un maillage
quadrilatéral de référence et de le transformer afin d’obtenir un schéma de volumes finis
sur un maillage déformé. La matrice obtenue est symétrique, mais on peut prouver qu’elle
n’est consistante que sur des maillages de parallélogrammes et qu’elle ne préserve pas la
monotonicité.

o Les schémas diamant (voir par exemple [30]) nous intéressent particulierement. L’idée de
ces schémas est d’utiliser des inconnues secondaires aux nceuds, qui sont calculées avec une
méthode d’interpolation utilisant les valeurs aux mailles. Pour une interpolation suffisam-
ment précise, le schéma est convergent d’ordre deux mais ne préserve pas la monotonicité.

o La famille des méthodes appelées Schémas de Gradient (voir [38,39]) comprend notamment
les trois méthodes suivantes (DDFV, SUSHI, Mimetic):
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o La méthode des volumes finis & dualité discrete (DDFV) a été proposée a 'origine
par F. Hermeline (voir [57-62]). Cette méthode utilise également des inconnues sec-
ondaires aux noeuds. Contrairement aux schémas diamant, qui utilisent une méth-
ode d’interpolation pour calculer ces inconnues secondaires a partir des inconnues aux
mailles, le schéma DDFV les calcule en résolvant un probleme de diffusion sur un mail-
lage dual. Ainsi, deux problémes de diffusion sont résolus, les inconnues secondaires
de I'un étant les inconnues principales de 'autre. Le schéma est convergent d’ordre
deux, méme si le maillage est trés déformé et/ou si le rapport d’anisotropie de x est
important. Cette approche donne une matrice symétrique, mais elle ne préserve pas la
monotonicité. Nous étudierons une extension de ce schéma dans ce manuscrit.

o Les schémas mimétiques (voir [16,17,66,73,75]) sont congus pour reproduire au niveau
discret certaines des propriétés du systéeme continu. Les flux étant considérés comme
des inconnues supplémentaires, le nombre de degrés de liberté est plus important que
pour les autres schémas. La matrice obtenue est symétrique. Ce schéma est convergent
d’ordre deux mais ne préserve pas la monotonicité (voir [74]). La méthode SUSHI
(Scheme Using Stabilization and Harmonic Interfaces) (voir [19]) et la méthode MFV
(Mixed Finite Volume) (voir [37]) sont similaires a la méthode mimétique et partagent
par conséquent les mémes propriétés (voir [30]).

o L’approximation du flux multipoint (MPFA) (voir [I, 12,42]) utilise des inconnues sec-
ondaires situées sur les faces du maillage. Ces inconnues secondaires sont utilisées pour
calculer une approximation consistante du flux et sont éliminées en imposant la continuité
du flux a travers chaque face. En fonction des variantes, le schéma peut ne pas converger
sur maillages aléatoires ou aboutir a une formulation non coercive. La matrice obtenue est
non symétrique. La méthode ne préserve pas la monotonicité (voir [13,44,50]).

La plupart des méthodes de volumes finis d’ordre 1 ou 2 vues ci-dessus ne sont consistantes et positives
que sur des maillages admissibles (au sens de [18]) et pour des coefficients de diffusion scalaires. Ceci
n’est pas suffisant dans notre contexte. De plus, si le coefficient de diffusion est tensoriel, cette propriété
est perdue méme sur les maillages admissibles. Dans le cas des maillages déformés, de nombreux
travaux ont été consacrés a la conception de méthodes monotones depuis les articles fondateurs de
[7,40,70,72]. Certains d’entre eux traitent de la discrétisation par éléments finis comme [1,5, 19, 102].
Elles ont au mieux une précision d’ordre deux. La plupart des méthodes monotones sont des méthodes
volumes finis. L’approximation du flux & deux points (TPFA) (voir [17]) est linéaire et préserve la
monotonicité, mais n’est pas consistante sur maillages déformés pour une dimension supérieure ou
égale a 2. Dans [18], Christophe Buet et Stéphane Cordier montrent qu'un schéma linéaire avec un
stencil fixé ne peut pas étre monotone. Christophe Le Potier a montré dans [71] que si le stencil peut
étre arbitrairement grand, alors le schéma peut étre linéaire et monotone (et I'ordre de convergence
est compris entre un et deux). L’idée de son schéma est de créer des chemins pour trouver des
combinaisons de mailles lui permettant d’étre positif. Cependant, avoir un stencil de taille arbitraire
est difficilement compatible avec le calcul paralléle. Le schéma étudié par Vincent Siess dans [97] est
basé sur le maillage de Voronoi, sur lequel le schéma TPFA est appliqué. Ce schéma est consistant,
linéaire et convergent d’ordre un (parce que la solution est projetée sur le maillage de Voronoi) et
satisfait le principe du maximum. Cependant, le stencil peut étre plus grand que pour une méthode
standard. Toutes les méthodes que nous décrivons ci-dessous ont un stencil fixe mais sont non linéaires.
Cette liste n’est pas exhaustive.

> Une extension monotone de la méthode DDFV a été proposée dans [21], mais elle n’est pas
compatible avec les conditions aux limites de Neumann et n’est convergente qu’a I’ordre un pour
les coefficients de diffusion tensoriels discontinus. Au chapitre 2, nous proposons une méthode
DDFYV monotone qui corrige ces inconvénients.

> Une nouvelle méthodologie d’adaptation, appelée M-Adaptation, qui renforce la monotonicité
pour les méthodes de différences finies mimétiques a été décrite dans [55]. Cet article montre
comment effectuer la M-adaptation pour la diffusion dans la forme primale et duale sur certaines
formes d’éléments afin de garantir le principe du maximum discret.
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> Une extension monotone de MPFA a été proposée dans [25]. Cette méthode utilise une ap-
proximation du flux multipoint avec un stencil en diamant et une stratégie de correction non
linéaire pour garantir le principe du maximum discret. La formulation est basée sur le fait
que le flux des méthodes MPFA peut étre divisé en deux parties différentes, une composante
d’approximation de flux & deux points (TPFA) et les termes de diffusion croisée. Le schéma est
localement conservatif et convergent d’ordre deux.

> Le schéma de Droniou et Le Potier étudié dans [10] est basé sur I'idée de Bertolazzi et Manzini
(voir [7]) qui est de construire un flux consistant a travers une face donnée pour chaque maille
contenant cette face. Le schéma utilise des inconnues auxiliaires, dont les positions ne sont
pas explicitement définies. Le flux est finalement obtenu par combinaison convexe, dont les
coefficients dépendent des inconnues. Le schéma est non linéaire, convergent d’ordre deux et
satisfait au principe du maximum. Un schéma similaire est proposé par Sheng et Yuan (voir [94])
ou les inconnues auxiliaires sont explicitement situées au milieu des faces.

> Des schémas non linéaires monotones basés sur une approximation consistante du flux a deux
points avec une combinaison convexe mais sans inconnues auxiliaires ont été décrits dans [31,
—79,85]. Ces schémas préservent la monotonicité et sont convergents d’ordre deux. Dans le

cas d’un maillage fortement déformé, le stencil doit étre étendu pour préserver la monotonicité.

> D’autres contributions proposent des schémas de volumes finis basés sur la méme idée, c’est-a-
dire définissant un schéma non linéaire pour préserver la monotonicité a I’aide d’une combinaison
convexe [96, 104, 110]. Dans l'esprit de [76,110], le schéma décrit dans [10] est plus simple car il
n’utilise que deux flux ponctuels, il préserve la monotonicité et est convergent d’ordre deux.

> Une autre méthode pour obtenir la monotonicité est décrite dans [51,52,105,106,111]. Ces arti-
cles présentent des schémas non linéaires basés sur une approximation de flux a deux points. La
monotonicité est obtenue en écrivant le flux comme un flux a deux points plus un reste et en dis-
tribuant la partie positive et négative de ce reste a chaque coefficient. Ces coefficients dépendent
donc de l’inconnue, de sorte que le schéma est non linéaire mais préserve la monotonicité.

Comme nous l'avons vu, de nombreuses méthodes ont été proposées pour concevoir des schémas de
volumes finis monotones. Cependant, deux d’entre elles, dont 1’idée principale est de construire une
M-matrice, semblent étre les plus utilisées. Dans la premiére méthode on calcule les flux de part et
d’autre de chaque élément. Ensuite, on fait une combinaison convexe de ces flux et on choisit astu-
cieusement les coefficients de la combinaison pour imposer la monotonicité (voir par exemple [10,96]).
La seconde consiste & écrire le flux comme un flux a deux points plus un reste. Puis on écrit ce reste
comme la différence entre ses parties positive et négative et on distribue ces deux parties aux coeffi-
cients devant chaque inconnue (voir par exemple [51,52,105,106,111]). Les deux méthodes conduisent
a une matrice dont les coefficients dépendent de I'inconnue, ce qui rend le schéma non linéaire.

A notre connaissance, malgré tout le travail déja effectué, il n’existe pas de méthode monotone d’ordre
arbitraire. Cette these vise a contribuer a 1’état de ’art des méthodes numériques pour les équations
de diffusion en se concentrant sur le développement et I’analyse de méthodes monotones d’ordre élevé.
L’objectif principal est de concevoir des schémas numériques qui peuvent capturer avec précision le
comportement complexe des processus diffusifs tout en assurant la positivité de la solution.

Dans le premier chapitre, on commence par une étude en dimension 1 d’espace. Dans ce cas 1D,
les problémes de monotonicité n’apparaissent qu’a partir de I'ordre 3. En effet, le schéma utilisant des
flux & deux points est positif et consistant d’ordre 2. Cependant, dés qu’on s’intéresse a un schéma
d’ordre plus élevé, on perd la positivité. On propose une méthode permettant de définir un schéma
monotone d’ordre quelconque. L’ordre est obtenu en utilisant une reconstruction polynomiale d’ordre
suffisamment élevé pour 'estimation des flux numériques. Puis, on applique une méthode connue pour
combiner les flux obtenus de part et d’autre d’'un sommet du maillage. Ceci nous permet d’obtenir
un flux consistant, qui s’écrit sous la forme d’une différence entre les valeurs aux mailles (flux & deux
points), mais dont les coefficients dépendent de I'inconnue. Le schéma est donc non linéaire, et une

viii



méthode de point fixe est nécessaire pour calculer sa solution. Une adaptation du schéma dans le cas
d’un coefficient de diffusion discontinu est effectuée, a condition que la discontinuité coincide avec un
sommet du maillage. Le cadre 1D nous permet d’effectuer certaines preuves que nous ne pouvons pas
étendre aux dimensions supérieures, en particulier, une preuve de convergence est proposée. Enfin,
des résultats numériques sont présentés pour valider cette méthode. Ce travail a été publié dans
Computational and Applied Mathematics (voir [8]).

Le deuxieme chapitre applique notre méthode de monotonicité a deux schémas convergents d’ordre
deux. Il donne une extension d’ordre deux de notre méthode 1D a la dimension 2. On détaille la con-
struction de deux schémas monotones 2D de volumes finis, dont la différence réside dans la fagon dont
le calcul des valeurs aux nceuds est abordé. Nous proposons tout d’abord une extension du schéma
DDFV qui respecte la positivité, en dimension 2. La méthode DDFYV consiste a utiliser des inconnues
intermédiaires aux sommets du maillage (en plus des inconnues aux centres des mailles), et de les
calculer en résolvant un probleme de diffusion sur un maillage dual. Ce schéma n’est pas positif. Pour
corriger ce défaut, on adapte la méthode utilisée en dimension 1. Le deuxiéme schéma étudié utilise
une méthode similaire (positive elle aussi) ou les inconnues auxiliaires aux sommets sont calculées
par interpolation. Ces schémas prennent en compte le cas d’un coefficient de diffusion tensoriel et/ou
discontinu. Pour les coefficients de diffusion discontinus, les faces du maillage doivent suivre la dis-
continuité. Le schéma est ensuite testé pour vérifier la convergence (& l'ordre 2) et la positivité. Les
résultats sont comparés, d’'une part, entre les deux schémas, et d’autre part & ceux obtenus avec la
méthode DDFV classique (qui, elle, n’est pas positive). Ce travail a été publié dans Communications
in Computational Physics (voir [9]).

Enfin, le dernier chapitre concerne le probleme central de la these : construire un schéma d’ordre
arbitraire et positif en dimension 2. Ici la méthode proposée en dimension 1 est généralisée : montée en
ordre en utilisant une interpolation polynomiale et positivité en combinant les flux consistants de fagon
a se réduire a des flux a deux points. Ceci permet d’avoir un schéma dont la matrice a une structure de
M-matrice, donc un schéma monotone, au prix de la linéarité, et comme précédemment, un point fixe
est nécessaire pour résoudre le systéme correspondant. Le cas d’un coeflicient de diffusion discontinu
et/ou tensoriel est également étudié, ainsi que le choix du stencil pour la reconstruction polynomiale
que nous avons fait pour atteindre une précision d’ordre élevé. Pour les coefficients de diffusion
discontinus, les faces du maillage doivent suivre la discontinuité. Nous utilisons des quadratures de
Gauss pour calculer les intégrales de surface (flux) ou de volume (second membre). Ces quadratures
sont congues pour étre exactes pour des polyndémes d’ordre suffisamment élevé. Nous étudions deux
schémas, dont la différence réside dans la maniere dont le calcul des valeurs des nceuds est abordé. Le
premier schéma est basé sur le schéma diamant qui interpole les valeurs des nceuds et le second est
basé sur le schéma DDFV et considere les valeurs aux nceuds comme des inconnues. Le schéma de
type diamant est le seul que nous ayons mis en ceuvre. Les résultats numériques présentés permettent
de valider la méthode du schéma diamant en proposant notamment une étude de convergence sur des
maillages successivement raffinés. Une propriété remarquable de ce travail est que ’ordre est préservé
méme si le coefficient de diffusion est anisotrope. Ce travail a été soumis a Journal of Computational
Physics (voir [11]).
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Introduction

Historically, computing efficiently an accurate approximation of the solution of diffusion equations is
of considerable interest in various fields of science and engineering. The diffusion operator is of funda-
mental importance among differential operators. It appears in many physical models that rely on the
solution of partial differential equations, such as, for example, thermal conduction, radiative diffusion
(see [81] p. 460), elasticity, diffusion in porous media or Navier Stokes equations. Discretizing the
diffusion operator in a robust and accurate way is a major challenge.

The objective of this thesis is to propose a robust and accurate discretization of the diffusion operator
on deformed meshes. Recent works have shown that ensuring the positivity of the numerical solution
improves robustness. For a lot of physical models, positivity of the solution is of great significance.
For the diffusion equation, this property is called monotonicity. Concerning accuracy, using high-order
methods seems appropriate.

A numerical scheme is said to be of order k if the error between the numerical solution and the exact
solution is proportional to the mesh size h to the power k. The diffusion operator is well suited for
the design of high-order methods, in comparison with the hyperbolic operator. Indeed, for the latter,
shocks (that is, discontinuities of the solution) may develop even for smooth data, while solutions
to the former are more regular. This allows for efficient polynomial approximation, in contrast with
shock solutions. High order methods may give the impression of being less efficient than low-order
methods because they are more CPU time consuming than the latter for a given mesh. However,
low-order methods require much more degrees of freedom (mesh refinement) to reach a given accuracy
than high-order ones. Thus, the efficiency of a method is not measured in computational cost on a
given mesh but in computational cost to achieve a given error, or by looking at the error obtained for
a given computation time.

Monotonicity is one of the most important properties to satisfy for a numerical scheme. The lack of
monotonicity can lead to serious difficulties since the unknown can be the temperature, the density of
fluid variables or the concentration of chemical species that must remain nonnegative. The presence
of negative values can make the simulations fail or lead to physically unrealistic results undermining
the reliability and accuracy of the numerical simulation. Besides, in general, the diffusion operator
has to be seen as a part of a more complex system of partial differential equations including possibly
hyperbolic operators and source terms. A simple example is the Euler system with heat conduction.

p+V - (pu) =0,
O(pu) + V- (pu®@u) + Vp =0, (1)
O(pE)+V - (pEu) + V- (pu) =V - kVT,

where the unknowns are

> F: the totaIQSpeciﬁc fluid energy,

>e=F— [l : the specific internal energy,

> p > 0 : the density of the fluid,

> p=p(p,e) : the fluid pressure,

> T =T(p,e) : the temperature,

> K > 0 : the fluid’s thermal conductivity coefficient,



> u : the fluid velocity.

We are going to check the compatibility of Euler’s equations with the second principle of thermody-
namics. For this system, the Clausius-Duhem inequality implies

% (VT - VT) > 0. 2)
Details of the computations are given in Appendix A.3.

Hence, since k is non-negative, (2) is satisfied if and only if 7' > 0. In system (1) the positivity of T
is also required in order to ensure the existence of p.

All the difficulties involved in achieving positivity are already contained in the following system,
that we are going to consider in the sequel

-V - (kVu)+Au=f in Q,
U= gp on FD, (3)
kVu-n=gy on Iy,

where € is a bounded open domain of R? with 0Q = I'p UTy TpNTxy =0), and n € R? is the
outgoing unit normal vector. The data are such that f € L*(Q), gp € H'/*(I'p), gv € L*(Ty),
A € RT\{0}, and x € L*>®(2). The tensor-valued diffusion coefficient x is bounded and satisfies the
uniform ellipticity condition

vx € QVE € R?, kin||€]® < ER(X)E,

where Ky is a positive coefficient. Under the above conditions, one can prove (using Lax-Milgram
Lemma in the spirit of [16], Chapter 6) that system (3) has a unique solution in H'({) that satisfies
a positiveness principle, i.e. if f > 0 and g > 0, then u > 0.

Let us state the maximum principle.

Theorem 1. Let Q be a bounded open domain of R?, f € L*(Q), g € H'/*(Q) and assume that
u € H?(Q) is the solution of the following problem

on  0f. )

N
Il

{—V-mvaﬂz f in  Q,
g

Then, we have

ess inf (ess inf(g), ess inf(f)> < u(x) < esssup (ess sup(g), ess sup(f)) , VxeQ.
oN Q 90 Q

The proof is postponed in Appendix A.1 (see [15]).

For linear cases considered in this thesis, the monotonicity is equivalent to the discrete maximum
principle at the continuous level. However, for nonlinear cases, the discrete maximum principle is
more restrictive than monotonicity.

We are interested in deformed meshes, as the applications we have in mind involve the coupling of
the diffusion problem with Lagrangian hydrodynamics (see (1)). In such a case, we will have to solve
the diffusion equation within a large code where the mesh is imposed. Besides, for some applications,
the mesh must follow the shape of fundamental features, as for instance the sedimentary layers in

geology.

Numerous studies have focused on this operator. However, conventional numerical methods for
diffusion equations often face challenges in preserving important physical properties, such as positivity,
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while maintaining high-order accuracy. In order to address the problem of monotonicity, one could
think of truncating the discrete solution to zero. However, this would not be satisfactory since the
equally important property of conservation would be lost. Many works achieve high order but not
monotonicity

> The Finite Elements (see [27,90]) are the most popular methods to discretize elliptic or parabolic
operators, when conservation and monotonicity are not essential. These methods offer a strong
mathematical background, making it easy to design high-order extensions. Unfortunatly, these
methods are in general not conservative and do not preserve monotonicity, unless severe restric-
tions on the mesh are assumed.

> The Hybrid High-Order Methods (see [33]) are numerical approaches for solving equations on
polytopal meshes with high accuracy. These methods combine the advantages of finite element
and finite volume methods, using a hybrid formulation. HHO methods aim to achieve high-order
convergence and better preservation of solution properties. Such approaches are conservative
but do not guarantee the positivity of the solution. The order of convergence of these methods
depends on several factors, such as the degree of the polynomials used to approximate the
solution and the regularity conditions of the solution.

> The Discontinuous Galerkin methods (see [31]) use piecewise continuous approximations and
high-degree polynomials to achieve good accuracy. These methods do not preserve monotonicity.

> The Virtual Elements methods (see [(]) are designed to deal with irregular and polygonal meshes
using virtual functions defined locally on each element. They can reach a high order of conver-
gence, especially for high-degree polynomial approximations and regular meshes. These methods
do not preserve positivity.

Methods that are not Finite Volume methods can pose problems when coupled with a finite volume
code. Indeed, it is difficult to couple finite volume methods for hydrodynamics with other methods
because, for the first one, the values are considered at the center of the cells while for the others, they
are not taken at the same points. To improve the order, more degrees of freedom per cell are required
for the previous methods which makes them difficult to couple with other numerical methods. For
example, for order larger than 2, finite element methods require several degrees of freedom per cell.

> The Finite Volume methods (see [18]) are very popular, especially because they are conservative
and compatible with the classical discretization methods of the hyperbolic part of the equations.

o The work of Kershaw [(] gives one of the first consistent finite volume scheme for diffusion
equations on deformed meshes (see also [30] for a related scheme). The idea of this scheme is
to write a standard finite volume scheme in a reference quadrilateral mesh and to transform
it in order to obtain a finite volume scheme on a deformed mesh. The matrix obtained is
symmetric but it can be proven to be consistent only on parallelogram meshes, and it does
not preserve monotonicity.

o Diamond schemes (see for example [30]) are of particular interest to us. The idea of such
schemes is to use secondary unknowns at nodes, which are computed with an interpolation
method involving cell values. For a sufficiently precise interpolation, the scheme is second-
order convergent but does not preserve monotonicity.

¢ The family of methods called Gradient Schemes (see [38,39]) includes the following three
methods (DDFV, SUSHI, Mimetic):

o The Discrete Duality Finite Volume method (DDFV) was originally proposed by F.
Hermeline (see [57-62]). This method also uses secondary unknowns at nodes. Un-
like diamond schemes, which use an interpolation method to calculate these secondary
unknowns from cells unknowns, the DDFV scheme computes them by solving a diffu-
sion problem on a dual mesh. Thus, two diffusion problems are solved, the secondary
unknowns of one being the main unknowns of the other. The scheme is second-order
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convergent, even if the mesh is very distorted and/or the ratio of anisotropy of & is
important. This approach gives a symmetric matrix, but it does not preserve mono-
tonicity. We will study an extension of this scheme in the present manuscript.

o The Mimetic schemes (see [16,17,66,73,75]) are designed to reproduce at the discete
level some of the properties of the continuous system. Because the fluxes are considered
as additional unknowns, the number of degrees of freedom is larger than for other
schemes. The matrix obtained is symmetric. This scheme is second-order convergent
but does not preserve monotonicity (see [71]). The Scheme Using Stabilization and
Harmonic Interfaces (SUSHI) (see [19]) and the Mixed Finite Volume (MFV) methods
(see [37]) are similar to the Mimetic method and consequently share the same properties

(see [36]).

¢ The Multi-Point Flux Approximation (MPFA) (see [1,12,42]) uses secondary unknowns lo-
cated on the faces of the mesh. These secondary unknowns are used to compute a consistent
approximation of the flux and are eliminated by imposing the continuity of the flux accross
each face. Depending on the variants, the scheme may not converge on random meshes
or may result in a non-coercive formulation. The matrix obtained is non-symmetric. The
method does not preserve monotonicity (see [13,14,50]).

Most of the previous finite volume methods of order 1 or 2 are consistent and positive only on admissible
meshes (in the sense of [18]) and for scalar diffusion coefficient. This is not enough in our context.
Besides, for tensor-valued coefficient k, this property is lost even on admissible meshes. In the case of
deformed meshes, a large amount of work has been devoted to design monotonic methods since the
seminal papers of [7,410,70,72]. Some of them deal with finite element discretization as [1,5, 19, 102].
They are at best second-order accurate. Most of the monotonic methods are Finite Volume ones. The
Two-Point Flux Approximation (TPFA) (see [17]) is linear and preserves the monotonicity but is not
consistent on deformed meshes in dimension larger than 2. In [18], Christophe Buet and Stéphane
Cordier show that a linear scheme with a fixed stencil can not be monotonic. Christophe Le Potier
showed in [71] that if the stencil can be arbitrary large, then the scheme can be linear and monotonic
(and the order of convergence is between one and two). The idea of his scheme is to make paths
to find combinations of cells allowing it to be positive. However, having a stencil of arbitrary size
is hardly compatible with parallel computing. The scheme studied by Siess in [97] is based on the
Voronoi mesh, on which the TPFA scheme is applied. The scheme is consistent, linear and first-
order convergent (because the solution is projected on the Voronoi mesh) and satisfies the maximum
principle. However, the stencil may be larger than for a standard method. All the methods we describe
below have a fixed stencil but are non-linear. This list is not meant to be exhaustive

> A monotonic extension of DDFV has been proposed in [21] but is not compatible with Neumann
boundary conditions, and is only first-order convergent for discontinuous tensor coefficients k.
In Chapter 2, we propose a monotonic DDFV method which corrects these drawbacks.

> A new adaptation methodology, called the M-Adaptation, that enforces the monotonicity for
the mimetic finite difference methods has been discribed in [55]. This article shows how to
perform the M-adaptation for the diffusion in the primal and the dual form on some shapes of
the elements to guarantee the discrete maximum principle.

> A monotonic extension of MPFA has been proposed in [25]. This method uses a Multipoint
Flux Approximation with a Diamond Stencil and a Non-Linear defect correction strategy to
guarantee the Discrete Maximum Principle. The formulation is based on the fact that the flux
of MPFA methods can be split into two different parts, a Two Point Flux Approximation (TPFA)
component and the Cross-Diffusion Terms. The scheme is locally conservative and second-order
convergent.

> The scheme of Droniou and Le Potier studied in [10] is based on the idea of Bertolazzi and
Manzini (see [7]) which is to construct a consistent flux through the face for each cell containing
this face. The scheme uses auxilliary unknowns, the positions of which are not explicitly defined.
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The flux is finally obtained by convex combination, the coefficients of which depend on the
unknowns. The scheme is nonlinear, is second-order convergent and satisfies the maximum
principle. A similar scheme is proposed by Sheng and Yuan (see [94]) where the auxiliary
unknowns are explicitly located at the middle of the faces.

> Monotone nonlinear schemes based on a consistent two-point flux approximation with convex
combination but without auxiliary unknowns were described in [31,77-79,85]. These schemes
preserve monotonicity and are second-order convergent. In the case of a highly deformed mesh,
the stencil must be extended to preserve monotonicity.

> Some others contributions propose finite volume schemes based on the same idea, that is, defining
a nonlinear scheme to preserve monotonicity using a convex combination [96, , 110]. In the
spirit of [76, 110], the scheme described in [10] is simpler because it uses only two point fluxes,
it preserves monotonicity and is second-order convergent.

> Another method to obtain monotonicity is described in [51,52, , , 111]. In these papers,
non-linear schemes based on a two point flux approximation are presented. The monotonicity is
obtained by writting the flux as a two points flux plus a remainder and distributing the positive
and negative part of this remainder to each coefficient. These coeflicients thus depend on the
unknown so that the scheme is non-linear but preserves the monotonicity.

As we have seen, many methods have been proposed to design monotonic finite volume schemes.
However, two of them seem to be most widely used and the main idea is to build a M-matrix. The
idea of the first one is to calculate the fluxes on either side of each element. Then, one makes a
convex combinaison of these fluxes and cleverly chooses the coefficients of the combination to impose
monotonicity (see for example [10,96]). The second one consists in writing the flux as a two-point
flux plus a remainder. Then one writes this remainder as the difference between its positive and
negative parts, distributes these two parts to the coefficients in front of each unknown (see for ex-
ample [51,52, 105,106, 111]). Both methods lead to a matrix the coefficients of which depend on the
unknown, making the scheme non-linear.

To our knowledge, despite all the work already done, there are no monotonic arbitrary order scheme.
This thesis aims to contribute to the state-of-the-art in numerical methods for diffusion equations by
focusing on the development and analysis of monotonic high order methods. The primary objective is
to design numerical schemes that can accurately capture the intricate behavior of diffusive processes
while ensuring nonnegativity of the solution.

This manuscript is organized as follows.

1. Chapter 1 deals with the 1D case. In 1D, monotonicity problems appear only at order 3 and
higher. The 1D setting enables us to perform some proofs that we are unable to extend in higher
dimensions. This chapter begins with an introduction giving a brief state of the art concerning
this subject. Then, it details the construction of our monotonic arbitrary order 1D scheme
using the finite-volume method. Next, a study of the properties of this scheme is proposed. An
adaptation of the scheme in the case of a discontinuous diffusion coefficient is done, with the
condition that mesh nodes follow the discontinuity. Finally, numerical results are presented to
validate this method. This work has been published in Computational and Applied Mathematics

(see [3]).

2. Chapter 2 applies our monotonicity method to two second-order convergent schemes. It gives a
second-order extension of our 1D method to 2D. After an introduction giving a brief state of the
art about 2D monotonic schemes, it details the construction of two monotonic 2D finite-volumes
schemes, the difference of which resides in the way the computation of node values is addressed.
These schemes take into account the case of a tensor-valued and/or discontinuous coefficient x.
For discontinuous diffusion coefficients, the faces of the mesh must follow the discontinuity. Then,
the properties of these schemes are studied. Finally, the numerical results presented validate



these methods by comparing them to an existing scheme that does not preserve monotonicity.
This work has been published in Communications in Computational Physics (see [9]).

. Chapter 3 generalizes our 2D schemes of Chapter 2 to arbitrary order. The case of a discontinu-
ous and/or tensor-valued coefficient « is also studied, together with the choice of the stencil for
the polynomial reconstruction that we made to achieve high order accuracy. For discontinuous
diffusion coefficients, the faces of the mesh must follow the discontinuity. We use Gauss quadra-
tures to calculate the surface (fluxes) or volume (right-hand side) integrals. These quadratures
are designed to be exact for polynomials of sufficiently high order. We study two schemes, the
difference of which resides in the way the computation of node values is addressed. The first
scheme is based on the diamond scheme which interpolate the node values and the second one
is based on the DDFV scheme and consider the node values as unknowns. The properties of
both methods are then studied. The diamond type scheme is the only one we implemented.
The numerical results presented allow to validate the diamond type method by proposing, in
particular, a convergence study on successively refined meshes. A remarkable property of this
work is that the order is preserved even if the diffusion coefficient is anisotropic. This work has
been submitted to Journal of Computational Physics (see [11]).



Chapter |

Arbitrary order monotonic finite-volume
schemes for 1D elliptic problems

1.1 Introduction . . . . . . . . . i i i i i i e e e e e 8
1.2 High-order finite volume scheme . .. .. ... ... ............. 10
1.2.1 Finite volume formulation . . . . . . . . ... ... .. ... ... 11
1.2.2 High-order reconstruction by interpolation . . . . . . ... ... ... ... ... 12
1.2.3 A method to obtain monotonicity . . . .. .. ... ... ... 13
1.2.4  Symmetric version . . . . . . .. ... 13
1.2.5 Boundary conditions . . . . . . .. ... L 14
1.2.6  Summary of the method and matrix form . . . . .. ... ... ... ... ... 15
1.2.7 A fixed point method for handling nonlinearity . . . . . . ... ... ... ... 17
1.2.8 Sketch of the method . . . . . . . .. ... 18
1.3 Properties . . . . . . o i i e e e e e e e e e e e e e e e e e e e e e e e 19
1.3.1 Conservation . . . . . . . . .. e 19
1.3.2  Monotonicity and Local Maximum Principle (LMP) structure . . . . . . . . .. 19
1.3.3 Consistency of the fluxes . . . . . . . . . . .. . .. 22
1.3.4  Convergence . . . . . . . . v i e e e e e 24
1.3.5 The case of discontinuous diffusion coefficient x . . . . . . . .. ... ... ... 30
1.4 Numerical experiments . . . . . . . . . i ittt 31
1.4.1 L? convergence for polynomial solutions . . . . . . . ... .. ... ....... 33
1.4.2 L2 convergence for a smooth diffusion coefficient . . . . ... ... ... .... 33
1.4.3 Comparison with a non-monotonic scheme . . . . . . . ... .. ... ... ... 36
1.4.4 Discontinuous diffusion coefficient « . . . . . . .. ..o 37
1.5 Concluding remarks . . . . . . . . . . e e e e e e e e e e e e e e 38




This chapter has been published by Springer as an article in Computational and Applied Mathe-
matics (see [3]). Note that the definition of a M-matrix given in this article (see Definition 2.2 of [3])
is not completely rigorous, it has been fixed in the following chapter.

When solving numerically an elliptic problem, it is important in most applications that the scheme
used preserves the positivity of the solution. When using finite volume schemes on deformed meshes,
the question has been solved rather recently. Such schemes are usually (at most) second order con-
vergent, and nonlinear. On the other hand, many high-order schemes have been proposed, that do
not ensure positivity of the solution. In this chapter we propose a very high-order monotonic (that
is, positivity preserving) numerical method for elliptic problems in 1D. We prove that this method
converges to an arbitrary order (under reasonable assumptions on the mesh) and is indeed monotonic.
We also show how to handle discontinuous sources or diffusion coefficients, while keeping the order of
convergence. We assess the new scheme, on several test problems, with arbitrary (regular, distorted,
random) meshes.

1.1 Introduction

In this chapter we consider the following elliptic problem with mixed boundary conditions

{_v-(mVu)Jrau:f in - Q, (1.1)

Bu+vkVu-n=g on 99,

where Q is a bounded open domain of R? and n € R? the external unit normal vector, with d the
dimension. The data are such that f € L3(Q), g € H/*(8Q), a € Rt (if a = 0, then 8 # 0), and
k € L*(Q). The diffusion coefficient  is bounded and satisfies the ellipticity condition

Ve e Q, k(z)> ko> 0. (1.2)

Besides, 8 and ~ are functions such that

Ve ed, px)=0, ~(x)=0

and they do not vanish at the same point. Under the above conditions, one can prove (see [10]) that
system (1.1) has a unique solution in H'(Q). This solution satisfies a positivity principle, i.e. if f > 0
and g > 0, then w > 0. For linear problems considered in this work, this property is equivalent to
a maximum principle on %, which can be stated as follows: if the data fi,fs and g1,92 are such that
f1 < f2 and g1 < g, then the associated solutions to (1.1), that we denote by u; and ug respectively,
satisfy uy < uo almost everywhere in 2.

Because system (1.1) is intended to model, for instance, concentration diffusion and thermal con-
duction, preservation of the positivity principle at the discrete level is highly desirable. An easy way
to fix negative values is to truncate the solution to zero. However, it is not appropriate, since it breaks
another very important property, which is the conservation. The standard finite volume two-point
flux approximation (TPFA, see for example [17]) is positivity preserving (one also says monotonic)
but is unfortunately inconsistent on deformed meshes, in dimension d > 2. For this reason, a great
deal of work has been devoted to the design of positivity preserving schemes on general (namely
non-k-orthogonal) meshes over the past two decades. While elliptic problems are often solved using
a finite element discretization, all the works we know of on monotonic methods on highly deformed
meshes deal with finite volume schemes. Monotonic methods can be designed in the finite-element
framework (see [20,28,63,05,99] among others), but rely on restrictive conditions on the mesh we
cannot afford. The finite volume framework is well suited to achieve montonicity because it allows for
an easy manipulation of the fluxes. The first works we know of are those of Le Potier [70] and Berto-
lazzi and Manzini [7]. In such methods, one uses a manipulation of the fluxes that leads to introduce
a dependence on the discrete solution in the coefficients of the fluxes, making the scheme non-linear,
although (1.1) is linear. Thus, mononicity is in general not equivalent to the maximum principle. In
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such methods, one usually introduces secondary unknowns (for instance vertex-located or edge-located
unknowns) in addition to the primal (cell-located) unknowns. Among others, important contributions
to this field are [10, 76, 110], which propose efficient numerical schemes preserving the positivity of
the primary unknowns. In [95], the requirement of positive secondary unknowns is relaxed. In [21], a
non-linear solver based on an iterative resolution of two problems is described, the primary unknowns
of one problem being the secondary unknowns of the other one. The works [77,112] explain how to
build monotonic schemes without relying on secondary unknowns. In [72,79,94], maximum principle
preserving schemes are proposed. Cances and Guichard obtained moreover an entropy diminishing
property in [22], introducing the non-linearity directly at the continuous level with a change of vari-
ables. Some concepts and proofs about the existence of solutions for these types of scheme can be
found in [32,10]. Recent advances in this field are [33,101,1058]. All the works mentioned above concern
2D or 3D low-order (that is at most of order 2) numerical methods. Latterly, a third-order accurate
monotonic method has been proposed in the Finite volume element (FVEM) context [106].

We are interested in designing a high-order positive scheme (that is at least of order 3). We start,
in the present chapter, with the 1D case. Thus, for now on, the system we study is the 1D version
of (1.1), that is,

—i (Edu> +au=f in €,
dr \ dz
di (1.3)
Bu + ’m—u =g on 09,
dn

and we will suppose that  =|0,1[ without loss of generality.

Although this setting is very specific, we believe it can be seen as a first step to tackle the question
in higher dimensions. Let us be more precise about the 1D setting: in such a case, the TPFA scheme
is actually consistent (and monotonic), contrary to dimensions d > 2. Thus, the relevant question here
is to design a high-order scheme that satisfies the positivity principle. Of course, as one may expect, a
naive extension to higher orders of the TPFA scheme gives non-positive schemes. In particular, none
of the existing [6,27,33, 34] arbitrary high order methods for the problem (1.1) is monotonic. In [32]
it is shown how to use Le Potier’s trick [72] to obtain monotonic 1D schemes of order greater than
2. But as this method uses a finite difference discretization on Cartesian meshes, it seems hard to
extend to general meshes even in 1D. In this chapter we propose a new numerical method that has
the following properties:

» it has a provable arbitrarily high order of accuracy, under reasonable stability assumptions;
» it is monotonic;

» it is conservative, and

» it operates on general 1D meshes.

The organization of the chapter is as follows. In Section 1.2 we design a high-order Finite-Volume
method by integrating the k-th order Taylor expansion of the unknown. The high-order derivatives
of this series are approximated using a polynomial reconstruction of the solution while the degrees
of freedom are the integral mean values of the solution on the cells. The monotonic behavior of the
scheme is enforced using the trick described in [51,52,105,111], which leads to a non-linear resolution.
A symmetric version of the scheme is also proposed, allowing to obtain a Local Maximum Preserving
(LMP) structure (see for instance [10] for a definition) for the fluxes. In Section 1.3, we prove the
properties of the method: conservation, consistency of the fluxes at order k, monotonicity (or the LMP
structure for the symmetric version) and convergence of the scheme. On this aspect, our analysis is
not completely satisfactory. A first approach consists in applying the fairly general analysis performed
in [92], using the assumption that the matrix of the scheme is coercive. This is what we do in
Proposition 1.3.21 of Subsection 1.3.4.3, proving convergence at order k in L?-norm. Unfortunately,
we do not know how to prove that the matrix is coercive. Therefore, we propose a different approach,
in which we replace such a coercivity assumption by a form of stability that is more general (see
Assumption 1.3.17 of Subsection 1.3.4.1, and Proposition 1.3.18). We still do not know how to prove
such an assumption, and Proposition 1.3.18 only gives convergence at order k — 1 in L'-norm. Finally
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in Section 1.4 we verify the properties previously stated on 1D test problems, showing that the method
is indeed monotonic and of order k in L?-norm for the solution and the fluxes.

In all the chapter, C' will denote an unspecified strictly positive constant independent of the mesh
size.

1.2 High-order finite volume scheme

Consider a mesh of €2 whose cells are numbered from 1 to n. The center of cell i is denoted by x; and
its two vertices are z,_1 and x, 41 The length of cell i is h; and the length between the centers x;
2 2

and wiy1 is h;, 1, see Figure 1.1. Without loss of generality, we will suppose that
2

i < Tijy1, Vi € [1,?1 — 1]], (1.4)
so that Q =]z1 = 0,7, 1 = 1[. We will also assume that the mesh is quasi-uniform that is there exists
2 2
C such that
12%%1@1-) <C 1I§nz‘1£n(hi)' (1.5)
h, h, h
2 B S D
1 i—% it N+
2 2 2 2
—C—40--06—C—0 @ - ®----—- o—c—e
1 i—1 1 1+1 n

1+ =
2
Fig. 1.1 — Definition of the mesh: ¢ denotes the cells and 7 + % the nodes.
We define h = max (h;) and u = (uj)1<i<n. The notation u > 0 (resp. u > 0) means that
<i<n
u; > 0, (resp. u; > 0) Vi € [1,n].

Let us introduce some notations for the norms we are going to use. We first define the L? norm,
pE(l,+oo]

I-le: R — R

n e (1.6)
u — (Z h1|uz|p>
i=1
and the L°° norm
|-l : R" — R
u > max |u;l. (1.7)
1<i<n
Finally the H' norm
I-llg: R — R
(1.8)

i=1 i+3

n—1 ) A2 n ‘
u J Z (UH_; ui) + Zhi|ui\2 .
i=1
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n

Remark 1.2.1. Note that (1.6) is an LP-norm for grid functions. Defining u(z) = Z Uz‘]l[l-,; i+
27

=1
e = /Q (o)) "

1.2.1 Finite volume formulation

(),

1
2

we have

In this section, k(z) is assumed to be a continuous function. The extension to discontinuous x is
explained in Section 1.3.5. From now on we note Ripl = /f(xH_;) and u € R” the vector defined by

/ ) (1.9)

Let 4 € C**1(Q). The first step to design a finite volume scheme consists in integrating (1.3) on cell i

du du
i3\ g H%_’%—é dr i1

fi = ;/:”% f(x)dz. (1.10)

to\

+ ahii; = hi f;,

with

Thus we need to define the fluxes

- dii — du
Ty = Firg <dl‘>z‘+§ Ty =y (dJC>i—§

First of all, the Taylor expansion at order k in the neighborhood of z; 1 gives
2

L C R ) dta

O i) — 5 p) k+1

Ve eQ, aw)=u(w,) +€§71j i (@) T O (@=a ). (1.11)

In order to have mean values as degrees of freedom we integrate (1.11) from z; 1 to x;, 3 and divide
2 2

by hit1

l
1 Tivd _ B i+3 (x — 2, )dzu i
dr = L 1) pEFl
+/ a)de = ey )+ 7Y 1/ O (eyd + 0 (1),

>

that is to say

1 & [ = )] TR ey ht 1
- _ 5 +3
Uit1 = u(%r%) + hit1 2 (f + 1)! W(x”%) +0 (h’“)
(=1 1
H‘Q
namely
k Z
Ujr1 = 1 O (RE1Y .
i+1 — + Z 'd g ) + 1+1
{= 1
In a similar way, by integrating (1.11) from z;_1 to x; 1 we obtain
2 2
1)t d'a
_ U k41
ui = (T +Z ﬁ—i— 17 +%)—|—(’)(hi )

Z:l

The difference between these last two equalities gives, using (1.5)
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dii FoRE, — (—1)'Rf dla

Ujt1 — U = hz’+%%($z’+%> + Z (f%.%) + 0 (th) ;

=+ dat
from which we obtain, using (1.5) again
du 1 &R+ ()R dla N
(1) = @wm — _ZZZQ i a4 O (7%). (1.12)

Let u = (ui)1<i<n be the numerical solution. By mimicking the expression of the exact flux (1.12) the
numerical flux is defined by

Uit1 — Uj
Fipr(a) =k 1 (hw + m;(u)) ) (1.13)
with
1 k hZ+1 + ( )€+1hf dZP
Ti—‘,—%(u) _hi+l = (g_'_ )| dwg (xz+%)? (114)
5 0=

where P is a polynomial interpolation of u as we will see in the next section.

Remark 1.2.2. For k =1 (linear approzimation of the fluzes), the remainder v, 1(u) vanishes, and
2
the classical second-order accurate TPFA scheme is recovered.

1.2.2 High-order reconstruction by interpolation

In the calculation of the fluxes, it is necessary to evaluate the derivatives of u in 2, 1. In this method,
2
the neighboring cells of z,, 1 are used in order to compute the polynomial reconstruction of the solu-

tion by considering that the average of the polynomial in a cell is equal to the average of the solution
in this cell.

For a polynomial of degree k, there are k 4 1 coefficients to calculate, so k + 1 neighboring cells of

1 will be necessary. When it is possible, the stencil will be centered in z, but the closer z,, 1 is

X, i+i

iti it+30
to the boundary, the more the stencil will be shifted in order to stay in the 1nterlor of Q.

The notation uq, ..., u; denotes the k + 1 values of u used for the calculation. With a small abuse
of notation, we denote by S, 41 = = {mo, ..., 71} the stencil of the node x, 1. The polynomial will be of
2

this form

k
P(x) = CLk(’LLO, auk) (:L‘ - QZ‘Z+%) + ...+ GO(UO, ,Uk)

The coefficients of the polynomial P(z) are approximated by

/ xz)dr =wuj, Vje[0,k].
_1
2
This leads to the following system
T, 1
To+3 1 0+3 k
1 —1 L r—x, e ——— 2 x—x,,1
To+d To-3 fxo 3 i+3 To+d To-3 fx‘)*% ( Z+5) ao ugQ
1 ! fzk% T— ! /. H%(a: x, 1)k ar Uk
- 1 - 201
Tl TRl Te-3 [ Tl T Te-} 2 —_——
=:a
=:Mj,
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The matrix M;, can be rewritten

RS e Vi TS VU 1% St VT S TS VU
2(mo+%—z07%) (k+1)(w0+%—w07%)
M =1 : : : . (1.15)
1 T T L el ($k+%_$i+%)k+1_(xk—%_ri+l)k+l
2(:ck+l—:r:k7%) (k+l)(a:k+%—xk7%)

Proposition 1.2.3. Let {x;}i1<i<n be a mesh satisfying (1.4). Let k € N*. The matriz My, defined by
(1.15) is invertible.

Proof. Mya = 0 means that the integral of the polynomial P(z) vanishes over k + 1 distinct intervals.
Therefore, this polynomial of degree k has at least k + 1 roots. It is therefore zero, and all the
coefficients a;, j € [0, k], vanish. Thus, this implies that a = 0, so M, is invertible. O

The exact derivatives can then be approximated by

d“u d‘p
Remark 1.2.4. A polynomial P is calculated for each node x; 1. So, the polynomial P = P, 1 can
2 2
be different for each node but in order to simplify the notation, we will denote it by P.

1.2.3 A method to obtain monotonicity

A method borrowed from [51,52,105,111] and developed in the framework of 2D diffusion on arbitrary
meshes can be used to make the scheme monotonic. This method has been successfully applied in a
recent work [106]. The flux (1.13) can be rewritten as follows

fi—i—

M=

Ui41 — Uy _
() = iy 2 (; Tt () - <u>) ,

i+t
with

+ () = |Ti+%(u)| +Ti+%(u)

Tl 5 >0 and T (u) =

Let us assume that u > 0, the flux then reads as

+ —
1 TH% (u) 1 TH% (u)
i-o—%(u) = KH—% |:(hi+1 + v Uit — hi+ + w ui |, (1.16)
2

and the coefficients of u;, u;4+1 are positive.

1.2.4 Symmetric version

Let us introduce a coefficient s, 1 depending on u so that F; 1 can be rewritten as
2 2

T (u)+ s, 1(u) rooi(a)+ s, (a)
i+%(u)=ni+%[(h1 P i )u,~+1—(h1 + i )u] (1.17)

i+d Wit1 i+d i

To make the scheme symmetric the coefficients of u; and u;+; must be equal

+ —
T u) +s; u T u) +s.; u
Ui41 hi-i-% U;

hi-i-%
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which leads to

+ —
wir’ (u) — uip1r, 4 (u)
z+2 z+2
81-‘1-1 (u) =
2 Uip1 — U
To preserve positivity, it is necessary to impose
+
L R L N ”%m)>0
+ = + >0,
hii Uit1 hivi w1 —

that is to say

Ui+1—Ujg +
— r.,o1ilua
hi+% l+§( )

> 0. (1.19)

Ui+1 — Uj

In other words, u;+1 —u; and F;__1(u), defined by (1.13), must have the same sign which seems natural
2

L du
because if %(:CH%

Uip1 > Uj (resp. Uir1 < Uj).

) > 0 (resp. < 0), then u is locally non-decreasing (resp. non-increasing) hence

In practice, if (u’ht;ul + TiJr%(u)) (ui+1 —u;) > 0 we use the numerical flux (1.16), otherwise we use
2
the first order approximation

~
+
(NI

(u):fﬁ+é<“ﬁ;j1”>. (1.20)

1.2.5 Boundary conditions
1.2.5.1 Dirichlet boundary condition

In this section we only give the expression of the boundary conditions. Details are given in Ap-
pendix B.1. We consider problem (1.3) with 8 = 1, v = 0. For the non-symmetric version of the
scheme, application of the Dirichlet boundary condition on z, 1 gives

2

+ —
2 Tuei(w) 2 T
(m oy ) oonep) = (h ¥ ) ] S

r1(u) ri(u)
]-"%(u):n% [(}Z—i— 2u1 )ul— (h21+9295 ))g(:c%)],

For the symmetric version, we obtain

3
+
ol

and for x1,
2

F

n+%(u) =R +

1
n+3

9 r:LrJrl(u) +5n+%(u) 9 r;rl(u) —|—sn+%(u)
il 2 g(anr%) . 3

and for the left boundary, similarly

(2 r?(u)%;(u)) (2 r:<u>+s;<u>> ]
Fi(u) ==k + 22— uy—- |+ g(asé) . (1.23)

1 =
2 2 hy Uy




1.2.5.2 Neumann boundary condition
Consider problem (1.3) with 8 =0, v = 1. For the left (i = 1) boundary cell, the flux is

du du

fé(u):f{%%lzfﬁé%lzfg(x%) (1.24)
2 2
while for the right (i = n) boundary cell, the flux is
du du
FopyW = sy o0 w1 S g 9(&nry)- (1.25)

1.2.5.3 Mixed boundary condition

Consider finally problem (1.3) with g(x) > 0,v(xz) > 0,Vx € 9. In this case we have for i = 0 or
t1=n

_ 1 du
u(ler%) = M <g(xl+§) - ’y(:BiJré)HHém(xH%)) . (1.26)

Consider first the right boundary of the domain. The adaptation for the left boundary is straight-
forward. We use the same method as for Dirichlet boundary condition in section 1.2.5.1. Replacing
u, 1 by its expression (1.26) in (1.18) (see also (B.1) in the Appendix) yields

2

(W)ts,,, (W)

N _
LAY (u)—l—sn+l (u) o1
/fn_,_% <h2n+ +3 T 2 >g(xn+é>_ﬂ(xn+%)’%n+% <h2n+ +3 ™ )Un
nTy
}—n-&-%(u) 2 (W (W) .
ﬁ(mn+1) +7(1‘n+1)“n+% hin + s U, 1
Ty
(1.27)
For the left boundary (i = 0) we obtain similarly
,  TiWEsp ry (s (u)
Blogny i+ — Jm sy  + = | a(ay)
Fi(u) = - (1.28)

2 Blz1) + (a1 )m Qi+ul)

Remark 1.2.5. In the expression of the flures (1.28) and (1.27), if we take f =0, v =1, we obtain
the same fluzes as (1.24) and (1.25). Likewise, if we take B =1,y = 0, we obtain the same fluxes as
(1.23) and (1.22).

1.2.6 Summary of the method and matrix form

The scheme reads as

(W -7,

71—

(w)) + ahju; = hi fi, (1.29)

1
2

that is, using (1.17),

1 TL%(H)—FSH%(u) 1 r;%(u)—i—siJr%(u)
BT Uikl + Ry | ‘ u;
7

i—l—% Ui+1 +% Uq
1 () + Si—1 (u) 1 roa(u)+s;_1(u)
+ K1 + 2 Ui — K;_1 + 2 Ui—1 + ahsu; = h; f;.
2 hz_% Uq 2 hz_% U;—1



With a more compact notation, we write this as Au = A(u)u

bi=hifi Vi#{ln},
+
gy [ O
“r2 hi+% Uiyl
1 T;r% (u) + S+l (u)
Ritl +
2 hi+§ Ui
Aij = 1 r:%(u) + Si_%(u)
+ﬁi_l +
2 hi—% U;
L) s W
_Hi_l +
2 hl_% Ui—1

b(u) = b, with

) if j=i+1,Vi#n,

) +ah; if j=1i,Vi#1n,

) ifj=i—1,Vi#1,

0 else.
(1.30)

The expression of the boundary terms depends on the type of boundary conditions. First, in the case

of a Dirichlet boundary condition, we have

y sy ()
b1 =nh — 1.31
1 1f1+/<&% I + g(a:%) g(x%)a ( )
1 ras(+ s%(u) 9 ri(u) + s%(u)
A1 =k | — + + K1 | — + -2 + ahq, (1.32)
’ 2 h% U 2 hl U1
and
b, = hnfn—l—linJr% hfn + g(anr%) g(wnJr%), (133)
2 Ty;%(u) +5,,1(u) 1 r %(u) +5, 1(u)
An,n = ﬂn—i—% <hn + w + lin_% hn,l + w + ahy, (1.34)
2
Next, in the case of a Neumann boundary condition, we have
b1 =hifi +g(33%), (1.35)
1 ra(u)+ss(u)
Al,l =K3 | — + 2 + ahy, (136)
2 hg Uul
and
by, = hnfnJFg(anrl), (1-37)
1 r:;% (u) + Sl (u)
Appn =K, 1 hy, 1.38
, Kn—; hn_% + w + ( )
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Finally, in the case of a mixed boundary condition, we have

r7(w)+s1 (u)
2, 3 P
K% (h + ” )

—

by = hify + e g(x1),
2 5 2
Blay) +(wy)ny (m " )
r}(u)+s1(u)
K1 2 + 2 2
4 1, W ss(w) A\m . h
S U " Yy [, T e
2
ey \m = —
5 2
and
2 r:+%(u)+s”+%(u)
K’n+§ h7n n+%
bn — hnfn + ) r++1 (u)+5 +l(u) g(anr%)v
n 2
5(%%) + ’Y(xn+l)"€n+% (hn T Uy L >
r~ o (u)+s 1(a)
9 +l n-+
L () +s, 1(u) Fnts (h’" T
A =K 1 + i L +
n,n n—sz hn_% Uy, ’Y(anr%)KnJr% 9 T:+%(u)+8n+%(u)

(1.39)

(1.41)

(1.42)

The matrix has been written for the symmetric version of the scheme. For the non-symmetric

version, the matrix is the same with s, 1(u) =s,_1(u) =0,Vi € [1,n].
2 2

Remark 1.2.6. Assuming that f > 0 and g > 0, and that u > 0, the right hand side b has all its

components nonnegative, for any type of boundary conditions.

Remark 1.2.7. In the case of mized boundary condition, the right hand side of the nonlinear system

depends on u.

1.2.7 A fixed point method for handling nonlinearity

The system obtained is of the form Au = b, A being a matrix dependent on the solution. So, we use a

fixed point algorithm (a Picard iteration method) to solve this system as, for instance, in |
We start with an initial guess u°

I I ]‘

, compute the matrix A(u") and solve A(u’)u! = b. Repeating this

process, we build a sequence u” that, if it converges, tends to the solution of the scheme. We perform
this algorithm until the difference between the solution obtained between two iterations is small

enough®. To summarize, the following loop is performed

v=20

A)u’ ! = b

While Ju’™ —u”||, > ¢
A u’*! = b
v=v+1.

(1.43)

Unfortunately, we have no proof of convergence of this algorithm. Nevertheless, the numerical tests we
have performed did not provide any situation in which the above fix-point algorithm does not converge.

2Tn the numerical tests, we choose € = 10712

17



Note that, in [10], the authors show that the nonlinear system has a solution. The proof is quite gen-
eral and can be adapted to our case, but there is no proof of convergence of the fixed point algorithm.
In some favorable cases, one can prove the convergence of the fixed point algorithm, e.g. if « is large
enough (see [10]).

Remark 1.2.8. We thus have two different schemes: the first one is linear and (expected to be) of
high order, as we will see below. It is defined by the fluzes (1.13). Its definition does not require
the unknown u to be positive, and its stencil is approximately of size k + 1. The second scheme is
nonlinear, and defined by the flurzes (1.16). We need u to be positive in order to define it, and its
stencil is equal to 2. If it has a (positive) solution, then it is a solution of the linear scheme. Thus,
two situations may occur:

1. the solution of the linear scheme is positive; then, it is also a solution to the nonlinear scheme;

2. the solution of the linear scheme has non-positive entries. Then, the nonlinear scheme cannot
have a solution. Indeed, such a solution would be positive, hence be solution to the linear scheme.
We nevertheless expect the above fiz-point algorithm to converge to some u that is non-negative,
but is not a solution to the nonlinear scheme (nor to the linear scheme).

However, the solution of the continuous problem (1.3) satisfies a local maximum principle. Hence,
assuming that the solution u is positive and that the linear scheme converges in the L norm, its
solution becomes a positive vector for small enough values of h. This situation corresponds to Item 1
above, and the solution of the nonlinear scheme coincides with the solution of the linear scheme. The
case of Item 2 happens only for larger values of h. In such a case, the monotonicity correction allows
to recover positive values of the solution, while giving up, to some extent, the equation defining the
linear scheme, at least for points at which the solution to the linear scheme is non-positive. What
we observe numerically (see Section 1.4 below) is that the fix-point algorithm always converges, to a
"solution” u > 0 that is an approximation of order k to the exact solution u.

1.2.8 Sketch of the method

We summarize the method as follows.
Initialization

» Initialize u® > 0.

» Evaluate x at the nodes: k;, 1,7 € [0,n]; and the mean value of f in each cell: f;,i € [1,n].

i1 Ll
z+2

Picard iterations (v):

Do

» Reconstruct polynomials P, 1 ,i € [0,n], of degree k, in each cells i using the method described
in Section 1.2.2.

» Compute the remainder ri+%(u),i € [0,n] using equation (1.14).

» Distribute the remainder r;, 1 (u) between cells i and i + 1 to enforce monotonicity (see Sec-
tion 1.2.3).

» Possibly, symmetrize the coefficients at each node, using the method of Section 1.2.4.

» Build the matrix A(u”) and the right-hand side b” (see Section 1.2.6).

» Solve A(u”)u’*! =b”.

While [[u’™! —u”||, > ¢.
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1.3 Properties

1.3.1 Conservation

Proposition 1.3.1. Assume that u > 0 and consider homogeneous Neumann boundary conditions,
then the scheme defined by (1.29) is conservative. Indeed it satisfies the equality

a hiui =Y hif;,
i=1 i=1

that is to say

S (=Fip1(w) + F i (w) =0.

i=1

Proof. The sum is telescopic so only the boundary terms remain. The homogeneous Neumann bound-
ary condition means that the boundary terms are zero, which leads to

n

Z(_‘Fi—&—%(u) + Fi

i=1

(u)) =0,

N =

that is to say

n n
« Z hiui = Z hlfZ
i=1 i=1
The scheme is conservative. O

1.3.2 Monotonicity and Local Maximum Principle (LMP) structure

Consider the definition of an M-matrix (see for instance [37])

Definition 1.3.2. An n x n matriz A that can be expressed in the forme A = sI — B, where B =
(bij)i<ij<n with bjj >0, 1 <14,j <n, and s > p(B), the mazimum of the moduli of the eigenvalues of
B, is called an M-matrix.

We use the following lemma

Lemma 1.3.3. A matriz A = (Aij)1<ij<n s an M-matriz if it satisfies the following inequalities
n
Vi#j, Ay <0, and Vi, Y Ay >0.
j=1
Moreover, if the last inequality is strict, we say that A is a strict M-matriz.

1.3.2.1 Non-symmetric version: property of the matrix

Proposition 1.3.4. Assume that u > 0, the matriz A(u) defined by (1.30) and (1.31) through (1.34),
or (1.35) through (1.38), or (1.39) through (1.42) depending on the boundary conditions, with Sipl = 0,

is such that AT (n) is a strict M-matriz.

Remark 1.3.5. In the following proof we have considered Dirichlet boundary conditions, but the result
also holds with other boundary conditions. For mixed boundary conditions, the sum of the first and
the last column have also two positive terms. For Neumann boundary conditions, the sum of the first
and the last column are also positive but the first term vanishes, that is to say Z Air = ahy >0 and

(2

> Ain = ahy > 0.
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Proof of Proposition 1.3.4. The matrix satisfies
Vi # j,Ajj(u) <0 and Vj,ZAi,j(u) > 0.

=1

Indeed, for the first column there are only two elements in the sum

ZAi’l(u) = A171(11) + A2,1(u)7

which leads to
1 Té(“) 2 rg(u) 1 r%(u)
A; =Kz | — — — K3 | — h1,
Ei: 1(w) = kg h%+ el R Ei K3 h%+ — | +am
that is to say
2 1 ()
ZAMZM — 4+ 2 + ah; > 0.
p 2 h1 Ul
And for the last column,
Z Ai,n = An—l,n + An,na
which leads to
1 7’:,; (u) Y (u) 1 7’:{,1 (u)
> Aip=—r, 1 + —2 + K, + —2 + K, 1 + —2 + ahy,
- ’ 2 hn_% Up, 2 n Unp, 2 hn_% Up,
that is to say
2 r;rl(u)
;Ai,n = Kn—&-% (}Ln + TQn + ah, > 0.
Besides, for other columns
Y Aij=Aja A+ Ay,
which leads to
Jr —_
1 o a(a) 1 r- 1 (a)
ZAw S i (G-1)+3 T~ n it+3 +ah,
i 2\ go1)+1 UE-1)+1 2\ i1 Uj
1 7’;1(“) 1 T(_jﬂ),;(u)
s L K1)~ + °
2\ hj1 uj 2\ hgay-1 UG-t
that is to say
ZAL]' = Oéhj > 0.
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1.3.2.2 Strict monotonicity of the method

Proposition 1.3.6. Assume that f > 0, g > 0, and either |f|r2() > 0, g(0) > 0 or g(1) > 0.
Assume moreover that u® > 0. Then Yv,u” > 0.

To prove this property, we need to introduce the concept of irreducible matrix. We quote here [958,
Definition 1.15].

Definition 1.3.7. An n xn matriz A is reducible if there exits an n X n permutation matriz P such
that
A A
papT — |41 A2 ,
0 Aoy
where Ay 1 is an r X r submatriz and Az o is an (n —r) x (n —r) submatriz, where 1 <r < n. If no
such permutation matriz exists, then A is irreducible.

The matrix of the scheme can be proven to be irreducible in view of the following Lemma (see [958,
Theorem 1.17]).

Lemma 1.3.8. To any n X n matriz A we associate the graph of nodes 1,2,...,n and of directed edges
connecting i to j if A;; #0. Then A is irreducible if and only if for any pair ¢ # j there exists a chain
of edges that allows to go from i to j,

A1 0= Apip2 #0— - = A j # 0.
With these definitions we can make use of the following theorem (see [9%], Corollary 3.20).
Theorem 1.3.9. If A is an irreducible strict M-matriz, then it is invertible and Vi,j : (A™1);; > 0.
We are now in position to prove Proposition 1.3.6.

Proof of Proposition 1.3.6. We argue by induction on the index v. We assume that u” > 0. Thus
AT (uY) is a strict M-matrix (see Proposition 1.3.4). Tt is easy to check that AT (u”) is also irreducible.
Thus all the entries of A=7(u) are positive, using Theorem 1.3.9, and consequently all the entries
of A=1(u") are positive. Using Remark 1.2.6, we know that all components of b are non-negative.
Moreover, because of the assumption that either || f|;2q) > 0, g(0) > 0 or g(1) > 0, at least one
component of b is non zero. We thus have

n
Vi€ [1,n]:u T = ZA;jlbj > 0,
j=1

since all terms of this sum are non-negative, with one at least that is positive. ]
Proposition 1.3.6 shows that the condition u” > 0 remains satisfied during the fixed point procedure,

which allows to always define A(u”). It shows moreover, than as long as hypothesis of the Proposi-
tion 1.3.6 are satisfied, all the properties requiring u > 0 are verified for every fix point iteration.

1.3.2.3 Symmetric version: LMP structure

Proposition 1.3.10. Assume that u > 0, the matriz A defined by (1.30) and (1.31) through (1.34), or
(1.35) through (1.38), or (1.39) through (1.42), depending on the boundary conditions, is symmetric.

Proof. Let x; 1, be an interior vertex of the mesh. If condition (1.19) is satisfied for this vertex, we
2

use the definition of the flux (1.17), then symmetrization condition leads to A; ;11 = A;+1,;. Otherwise
the flux is defined by (1.20), and once again A; ;11 = Ajy1,.
O

Proposition 1.3.11. Assume that u > 0, let A be defined by (1.30) and (1.31) through (1.34), or
(1.35) through (1.38), or (1.39) through (1.42), depending on the boundary conditions, then the matriz
A is a strict M-matriz.
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Proof. As for Proposition 1.3.4, it can be proved that the matrix A is the transpose of a strict M-
matrix. Besides, A is symmetric, so A is itself a strict M-matrix. O

Definition 1.3.12. This definition is taken from [/0]. We say that a scheme for (1.3) has the local
mazimum principle structure (LMP structure for short) if it can be written in the form

Vi € [[1,’&]] : ]z:l )\ijj(u)(ui - Uj) + )\Zyé(u)(ul - U%) + Ai7n+%(u)(ui - unJr%) = flh“ (144)
for some functions \; j : R™ — RT satisfying,
)\1’% > 0, )xner% >0, and Vie[ln—1]: X+ >0. (1.45)

Theorem 1.3.13. Assume that f >0, g > 0, and either || f||2(q) > 0, g(0) > 0 or g(1) > 0. Let A
and b be defined by (1.30) and (1.81) through (1.34), or (1.35) through (1.38), or (1.89) through (1.42),
depending on the boundary conditions. Assume that we have applied the symmetrization procedure
defined in Section 1.2.4. Then A™'b =u > 0. If moreover a = 0, the scheme has the LMP structure.

Proof. For interior vertices, we consider two cases:

o if condition (1.19) is satisfied, then the coefficients of the fluxes are defined by (1.18), and we

have
+ _
N 1 Ti—i—%(u) T 5i+%(u) B 1 TH%(u) + si+%(u)
CR T =it iy ,

i+l Wit1 i+3 i

which is positive because of (1.19).

o if condition (1.19) is not satisfied, then the coefficients of the fluxes are defined by (1.20), and

which is positive.

Substituting A, 1 in equation (1.17) and using the definition of the scheme (1.29) with o = 0 yields
2
Apr (i = wig1) + A1 (i — wic1) = hifi.

In other words, we have (1.44), with A\; ;41 = A, .1 > 0, and A;; = 0 if |i — j| > 1. The proof is similar
2
for boundary vertices, see equation (B.1). O

In addition to monotonicity, schemes with the LMP structure enjoy local stability properties as
the nonoscillating property (Proposition 1.5 of [10]). In the present case, this reads as follows. Let
f =0 and u be a solution to the symmetric scheme; we have Vi € [2,n — 1], min(u;—1, u1+1) < u; <
max(u;—1, Uj41), Min (U%,Ug) < u; < max (U/%,UQ)), and min(un,l,unJr%) < up < max (Up—1,U,, 1 ).
Another very interesting property, the preservation of initial bounds (Proposition 1.6 of [10]), holds
for the parabolic version of the scheme.

1.3.3 Consistency of the fluxes

In order to state the following result (Proposition 1.3.15), we need to assume that the interpolation
matrix M}, defined by (1.15) satisfies some regularity assumption in the limit A — 0. Loosely speaking,
we expect column j of M} to be of order h?. More precisely, we assume that

1 0 ... 0
0 h .

My, =Ny | , (1.46)
P |
0 0 Rk

22



where the matrix N converges as h — 0, the limit /V, ,8 being invertible:

lim Ny = NP, det(Ny) # 0. (1.47)
h—0
Remark 1.3.14. Assumption (1.46)-(1.47) may be seen as a regqularity assumption of the mesh. It
is clearly satisfied by a regular mesh, for which an explicit computation gives (1.46), where the matriz
Ny does not depend on h.

We have the following result:

Proposition 1.3.15. Let k € N* and {x;}1<i<n be a mesh satisfying (1.4), (1.5), (1.46) and (1.47)
Let u € C*1(Q). The fluzes defined by (1.13) are consistent of order k. More precisely, the vector @
being defined by (1.9), we have

_ du
‘7:@'-1-%(“) - Ri-l—%%(xi-i-%)

<G fa ] vt

where the constant Cy depends only on k, on the constant C' in (1.5) and on the norm of the matriz
(N,?)fl, where NP appears in (1.46)-(1.47). In particular it does not depend on i nor on i.

Proof. Since u € C**1(Q), a Taylor expansion gives

_ d‘a (x —apy1)’
i) =3 0 )T L ) = Q) + sl
=0 ’
where (@ is the k-th order polynomial
k- (r—x 1)4
d u 1+
such that
d‘Q d'a
The remainder p satisfies the estimate
k+1
(k+1) _
1)) < gy 7 o = iy (1.49)

Applying our expression of the flux to u gives

du
}—i+%(ﬁ) = ]:er%(Q) +}—i+%(p) = “i+%Q/($i+%) +‘7:i+%( ) K1 5 dr ( ) + ]: ( )

where Q (resp. p) is the vector defined as i with the function @ (resp. p) instead of u (see (1.9)).
Here, we have used first that the flux is linear, second that it is exact for polynomials of degree k (see
Appendix D.3), and finally (1.48) with ¢ = 1.

Proving the result thus amounts to show that ‘.E 1 (p)’ < Ch*. To this end, we write it as follows

Fialp)=(0 1 0 ... 0)Mp,
and use (1.46)-(1.47)
Fiuile)=(0 a1 0 ... 0)N;'p.

It is clear from estimate (1.49) that for each index ¢, we have
Ipe] < Ci Hﬁ(chrl)HLoo RE+L
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where C} depends only on &k and on the constant appearing in (1.5). Hence,

o] <[5

2

Finally, property (1.47) allows to prove that HN I ! H is bounded independently of h, at least for A small
enough. This concludes the proof. O

Remark 1.3.16. This proposition can be extended to the boundary fluzes. Indeed, for a Neumann
boundary condition, the consistency is obvious and for Dirichlet or mized boundary conditions, the
proof is similar.
1.3.4 Convergence
Consider again problem (1.3) with & >0, =0, v =1,
d du
e <I€dz> +au=f in Q,
du
Piad
dn

We will start by proving that the scheme is convergent at order k — 1 in L' norm. Next, this will
allow us to prove the convergence of the fluxes at order k — 1 in L? norm.

(1.50)
=0 on 0f).

1.3.4.1 Convergence at the order k£ — 1

The scheme reads as

—Fip1 (W) + F i (0) + ahjui = hifi, Vi€ [1n], (1.51)

[N

with Vi € [1,n — 1],

i+ 2
- B (1.52)
iy 1 +7}+%(“) N . i1 (W .
= H—% hH_1 Wit i+1 i+ i hl_;,_% u; 3
and
Fi(u) = F,p1(w) =0. (1.53)

In order to state our convergence result, we need the following stability property:

Assumption 1.3.17. Ifb > 0 and Au = b, with b; = h; f;, Vi, then Vi,u; < C(|[f||12(q)+9(0)+g(1)),
where u; is the negative part of u; and C > 0 a constant independent of h, b and u.

This assumption is a stability hypothesis similar to the one presented in Proposition 3.3 of [10].

Note that, if the scheme is convergent of order %, then Assumption 1.3.17 is satisfied. Let us be more
precise: we assume that, denoting by u the exact solution and u the numerical one, we have

la = allz2 < CVA(If] p2(e) + 9(0) + 9(1),

where the vector u is defined by (1.9), the vector f is defined by (1.10), and C' is a universal constant.
Assuming that f > 0, we have u > 0, and this estimate implies

7 ki (i — )+ > i (ui — w;)? < Ch(||f]| 120 + 9(0) + g(1))*.

u; <0 u; >0
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2
The second term in the right-hand side is non-negative, and, when u; < 0, (u; — m)Q = (—ui_ — HZ) >
2
(u:) . Hence,
- 2 2 2
hi (u7)” < C2R(|E] 2 + 9(0) + 9(1))%

(2

Using (1.5), we infer that u; < C([|f||z2(q) + 9(0) + g(1)), that is, Assumption 1.3.17.

—_

We now prove the following convergence result.

Proposition 1.3.18 (Convergence at order k — 1 in L! norm). Let k € N*, 4 € Ck*1(Q) be the exact
solution of (1.50) and assume that a > 0. Let e = (u; — uj)1<i<n, where u is the solution of the
scheme (1.51)-(1.52)-(1.53). Assume that Assumption 1.3.17 is satisfied. Then, we have

lellps < € @] pt,

with || - || 1 defined by (1.6), and C does not depend on h nor on u, u.

Proof. On the one hand the numerical flux defined by (1.52) satisfies (1.51) and on the other hand,
du

Ryl %(ZL‘H_%) satisfies

the exact flux JEZ 1

—]}iJr% —I—]'_—l;% + ahju; = hif;, Vi€ [1,n].

Subtracting (1.51) from this equation gives

—(Fipr = Fipr(w) + (Fy = Fi_a (W) + ahi(a; —ug) =0, Vi€ [1n].

Besides, the consistency of the fluxes gives that there exists a constant C' > 0 such as

(u) = ]:z+% + Ri+%’ Vi e [1,n,] with |Ri+%’ <C Hﬁ(kH)HLm h*, where k is the order.
(1.54)
These last two equations imply

+R,

_1,
T3

_]:z'+%(e) + F;

71—

hi
~Rj 1+ R_1+aliA>0, Yie[ln],

(e) + Oéhiei = —R.

H—% Vi € [[1,n]].

N|=

By choosing A = é max

: ) € RT, thatistosay 0 < A< C Ha(“l)H hk=1 such that
1<i<n L

and adding it to e; leads to

*}—H%(e) + Fi

)

(e) + ahi(e; + A) = —RH% +Ri7% +ah;A >0, Vielln].

1
2
The flux is not modified since the remainder only involves derivatives (A being a constant, it no longer
appears in the derivatives)

eir1+ A —e; — A
fz‘+%(e+A) = kit l ( h

~—

+7”i+§(e)) :.FH_%(e ,  Vie[ln].

1
1+3

The corresponding matrix system writes

A(e+ A) =R + ahA,
with

(e+ A)z =e; + A, (R—i-OéhA)i = —RH_% + Rz—% + ah; A > 0, WVie [[1,77,]].
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Using Assumption 1.3.17, we can deduce that

et &) < H; (“Ricy+ Riy) +ad| < ‘ p (CRag+Ry)| el ca ] pk
1.55

Summing these inequalities over 7, we obtain | )
zh (e +28)" <Ca®) _ (1.56)

Next, we sum the equalities —}"H%(e) + F,_1(e) +ahi(e; + A) = _Ri+§ + Ri_% + ah;A, finding

1
2

<C Ha(kﬂ)H W14 aA < C Ha(kH)HLoo Bt

LOO

o Z h; (ei + A)
=1

where we have used (1.54) and the above bound on A. Since e; + A = (e; + A)" — (e; + A)~, this
implies

o hi(ei+A)" < C[a® V| B} hile+A)
i=1 i=1
Using (1.56), we conclude that
Y Py ~(k+1) k—
izzlhz (ei +A)F < C Hu +1 HLOO hht, (1.57)

Collecting (1.56) and (1.57), we conclude the proof.

1.3.4.2 Convergence of the fluxes

Let us denote by Hpy = {(u;)1<i<n} the set of cell values, Hp = {(fi+%)1§i§n,1} the set of node
values and consider homogeneous Neumann boundary conditions, that is, for all f € Hg

fi=Ffo1 =0 (1.58)

Let us define the scalar products

(1.59)
(flg)n Zhl+l i+19i+1
and the operators
Ujp1 — Uj .
D : Hyy — Hpg defined by (Du)Z-Jr;:hi7 1<i<n-—1,
2 1
; ’+2f (1.60)
1 — f_1
Tr TE 1 <i<n

D* : Hp —» H)y defined by (D*f); = —

Proposition 1.3.19. If condition (1.58) is satisfied the operators D and D* are adjoints of each
other, that is to say that (Dul|f)g, = (u|D*f)n,,, Vua € Hy, Vf € Hg.

Proof. The definition of the scalar product gives
n—1
(Dulf)y th-i- Du)z—i-l it+1)
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which means

n—1
(Dulf)p, = Z(uerl - Uz)f+
i=1
The two sums can be separated
n—1
(Dulf) gy Z“%+1fz+ E:lquH%
i
We shift the index of the first sum, which gives
n—1
(Dulf) g Zulf_7 ;uifH%.
Then, the sums can be recombined as follows
n—1
(Dulf)py, = unf, 1 —wfs = ; wilfiyr = fic1)-

Condition (1.58) allows us to insert the boundary terms which are zero

f
L

(Dulf) ity = tn(Fyy = v )= (F3—f2) = 3 wilfiy zuz i fiy) = (WD),

7

Il
I\

Thus, the operators D* and D are adjoints of each other.
O

Proposition 1.3.20 (Convergence of the fluxes at order k — 1). Let k € N*, i € C*(Q) be the exact
solution of (1.50) and assume that u > 0. Let us denote r(e) € Hg the vector whose components are
TH%(e),W € [0,n] the remainders defined by (1.14) and the vector e € Hys defined by e; = u; —u;, Vi €
[1,n]. Assume that u; > 0,Yi € [1,n]. Then we have

1F(a) = Flla, < Ch*

where F(u) € Hg is defined by (F(u));, 1 = F; %( u),Vi € [0,n], with }"+1 given by (1.52) and
_ _ _ di
(1.53), and F is defined by (F),, 1 :,7-"+% with i+l :mi+%£(m‘i+

l\'}

%),VZE [0,n].

»

Proof. The scheme

_]:i+% (u) + F;

1—

(u) + ahju; = h;f;, Vi€ [1,n],

1
2

can be written as

D*k(Du+r(u)) + au="f.

. - du _ .
Besides, the exact flux 7, 41 = M%%(%%),w € [1,n] also satisfies

—f~+% —l—f~_% + ah;u; = hifi, Vi € [[l,n]].

7 (2

Since the fluxes are consistent there exists C such that

Fipr(@) = Fipy 4+ Ry, with [Ry ] < Ch*,  Vie[1n]. (1.61)

1

Thus, we have

—]-"H_%(e) + F,_1(e) + ahe; = —RH% +R,_1, Vie[ln],

2

[N
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that can be written

D*k(De +r(e)) + ae = D*R.

Given v € Hy;, we take the scalar product of this equation with v

(D*k(De +r(e)) V), + (ae|V)my, = (D"RI|V)m,,,
that is to say

(D*(k(De +r(e)) = R)|V)u,, + (ae[v)m,, =0.

Besides k(De + r(e)) — R can be rewritten as

"‘%'.;.%(De + r(e))H_% - Ri—l—% = _‘7:1'-‘,-%(11) + fi—i—%(ﬁ) - RH—% = _‘Fz’—i-%(u) + fi-{-%’ Vi € [1,n],
and F,; 1(u) and F,, 1 satisfy (1.58), so k(De +r(e)) — R satisfies (1.58) too.
2 2
Using Proposition 1.3.19 provides
(k(De + £(€))|DV) 1, + (aelv)i,, = (RIDV) .

We define v € H)s by induction as follow

U1 = 07

Vigr = h 1K1 M+Ti+; + v; Vi e [1n—1],

2 2 hi+% 2
whence Dv = k(De +r(e)). We thus have
I(De + r(e) |, + (ae[v)m,, = (RIk(De +r(e))) my.

The Cauchy-Schwarz inequality leads to

Is(De + ()7, + (aelv)m,, < R lls(De +r(e))] - (1.62)

Besides, we have

n

(ce|V)m,, =« Z hie;v;.
i=1

Replacing v; by its expression leads to

n 1—1
€it] — €
_ . G+l 7 ¢5
(ae]v)HMfag hzezg hj+%/<;j+% - +ry )
i=1 j=1 Jt3

The Cauchy-Schwarz inequality gives

2
n i—1
Cir1 — €
|(ae|v)m,,| SaZhi|ei| Zthr% <Kj+; (jh]—i_rﬁ%))

i=1 j=1 i+3

hence

(ae[v)my,| < a (Z hm‘\) [(De +r(e))|| -

=1
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Inserting this estimate into (1.62), we have

Is(De +r(e), <o (Z hi|€i|> |e(De +x(e))lmy + [Rug l[£(De +r(e))| 1y,

i=1
hence
n
[k(De +r(e)|lmy < IRy +ad hilei.
i=1
Equation (1.61) gives
n
IK(De + r(@)lliy < CH +a3 hilei.
i=1

Proposition 1.3.18 gives
|k(De 4 r(e))|| gy < Ch* + aChFL, (1.63)

Recalling that
(k(De +r(e))); 1 = Fii(e) = Fip1(a) = Fip1(u),

we infer

1F () = Flla, = 1F () - F (@) + R, < |F() - F@)|m, + [Rllm, < Ch*

So the fluxes are convergent at order k — 1. O

1.3.4.3 Convergence at order k

Proposition 1.3.21 (Convergence at order k). Let k € N*, @ € CKT1(Q) be the exact solution of (1.50)
and assume that u > 0. Let e = (u; — u;)1<i<n, where u is the solution of the scheme (1.52)-(1.53).
Assume that the matriz A defining this scheme is uniformly coercive, that is, there exists a constant
C. > 0 independent of h such that

vx € R" : xT Ax > C.|Dx|)2,
where the operator D is defined by (1.60). Then, we have
_(k+1) k
lellzz < [+ b*,

where the constant C' does not depend on u, u, h.

Proof. As in the proof of Proposition 1.3.18, we use the consistency of the flux to obtain that

—]:H_%(e) + ’Fi— (e) + ah;e; = _Ri—i—% + R,L» Vi € [[1,n]].

1,
2

M=

with [R, 1| < C Hﬂ(kH)HL h*. The corresponding matrix system writes
2 o0
Ae =R,

with
(e),; = e, (R)z = _Ri—i-% + Ri_%, Vi € [[1,71]].

Taking line i of the system Ae = R, we multiply it by e; and sum over i:
n
T A ,
e Ae = z; (—RH% + Ri_%) e;
1=
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Using a discrete integration by parts, then the Cauchy-Schwarz inequality, we have:

n—1 1/2 n—1 12
e Ae = Z:O Ry 1hip1 (De), 1 < (Z ho B2, ) (ZO hi+%(De)f+%> <C HanH)HLm h¥||Del| 2.

The coercivity condition then gives

C.|Del 2 < C Hﬂ(kH)HLw K

A discrete mean Poincaré inequality, proved in Lemma 10.2 of [18], writes
n n—1 2
h;e2 < C h, De) h; .

; i€ = ; ( e ,L+2 ‘Q’ (Z ez)

n
Owing to conservativity, we have Z hie; = 0, hence
i=1

. ]
lel32 = 3" hiei < C Y by, 1 (De)?, , = C|Del

Thus, we have
ot €[]

which concludes the proof. ]

1.3.4.4 Asymptotic behavior of the symmetry condition

Lemma 1.3.22. Let {x;}1<i<n be a mesh satisfying (1.4) and (1.5). Let k € N* k > 2, u € CF(Q2)
be the exact solution of (1.50) and assume that uw > 0. Let u € R™ be the solution of (1.51), (1.52)
and (1.583) and assume that u; > 0,¥i € [1,n]. Assume moreover that % % 0 on ), then the
condition (1.19) is asymptotically fulfilled as h — 0.

Proof. Proposition 1.3.20 shows that

Uj4+1 — Uj du k—1
W +rp1() = ——(2,.1) + O(RT),

and Proposition 1.3.18 that

Ujp1 — Ui = Ujg1 — U; + O(hk 2) = ]’L (23( ) + O(h)) .

Then since %(mi +1 ) # 0, for h small enough these two quantities have the same sign. O

1.3.5 The case of discontinuous diffusion coefficient ~

In the case where £ is discontinuous at the node z;, 1, we compute two fluxes F iljrl (u) and ]-'ﬁl (u).
2 2 2

The first one is computed using a Taylor expansion in [z;,z while the second one is computed via

H—%]

a Taylor expansion on [z, 41 ,Zi+1]. Thus, we use two polynomial reconstructions, one on the left and
2

the other on the right of z, 1. For each node, we shift the stencil so that it does not cross the node

where the discontinuity is located. Let us denote

Ui+l — Uiy 1 Uy 1 — Uy
R R ot R L L o+ L
Fipp(w) =rls ( e T (“)> and - Fiia(u) = ( ammins 7"z'+1(“)> )



with

o

i :lﬁ($i+%+€) and ni+%:/€(mi+%—e),

N

R L
where ’FH_%(H) (resp. Tl

of the solution using the cells located at the right (resp. left) of the node z;, 1

(u)) denotes the remainder associated with the polynomial reconstruction

Thus, the continuous problem imposing the equality of the fluxes (see also Figure 1.9 for an example),
we also impose it at the discrete level, that is to say F; .Ii 1(u) = .Flfr 1 (u) which leads to
2 2

Uip1 — Uy, 1 U1 — U
R ity R _ L +3 L
Rit ( Rit1 + Ti+§(u) = Rt T ri+%(u) ’
2 2

[N

which yields

R L
7. K Uil K 1 Uy
U, , 1 = hlh2+1 2 H_% v + H_% ' +I€R 1’I“R 1(11) _KL 1TL 1(11)
3 2(hi+mf+l +hz‘f€fi;) hit1 hi its i3 ity it3
2 2
Replacing u; 1 by its expression in F. L or FR | gives
2 3 3
2“iL+1'{z]'i
L R 3 3 L
Froy) = Py = FRy (0 = o =) g (et () 4 hirt ).
2 2 hivik? 1+ Dy i1 2
2
that is
]-"H_%(u) = dH%(qu —u;) + rH_%(u) (1.64)
with
o2kl K hiHn.L Lk hikl kR
G, 1 = Tz s Fooa(u) = 3 W R (g) 4+ TE E L ()
i+1 = 3L R i+l ~ 3 L R il L R\
hZeriJrl + hmH% h2+1/<ci+% + h,ni+% 2 h1+1/<;i+% + hmH% 2

The coefficient &, 1 being positive, we can achieve monotonicity as in Section 1.2.3 and the sym-
metrization can be done again for this scheme. Besides, the previous analysis applies to this case.
In the case where the condition of symmetrization is not satisfied, the flux (1.64) is replaced by the
first-order approximation

Fipr(w) = a1 (wipr — ).

1+%

Remark 1.3.23. For k = 1, the remainders riLJrl(u) and Tﬁ;(u) vanish, and we obtain the classical
2 2

harmonic mean for the equivalent diffusion coefficient.

Remark 1.3.24. In the case of a discontinuous right hand side f, we use the same type of strategy.
In such a case, the second derivative of the solution u is discontinuous. Thus, the reconstruction is
made on each side of the discontinuity.

1.4 Numerical experiments

Before giving numerical results, we explain how we deal with possibly vanishing Dirichlet boundary
conditions. The definition of the nonlinear scheme requires u > 0 (which is enforced by construction,
see Prop.1.3.6), and g(ac%) > 0 and g(x%) > 0 for Dirichlet boundary conditions (see Section 1.2.5.1).
However, we want to be able to deal with homogeneous Dirichlet boundary conditions. In order to
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circumvent this difficulty, it is possible to add a term proportional to h* to the denominator in the
flux. Let € > 0, the flux (1.21) is given by"

2 A RE 2 M@
hn g(‘rn+ )_|_€hk g xn+% hn Uy, Un | ,

1
2

Same modification is made if needed for F1. We use also a correction to prevent the denominator
2
of (1.19) to be zero. The condition (1.19) is replaced with

1
i+3

Uit — Ui
(lhl + Ti-i-é(u)) (Ui+1 — ul) > 0.
The L? norm of the error is computed as

n /2
€r2 = <Z h,\ul — 'L_LZ|2>
i=1
for the solution, and
n /2
Jre = (6%2 + g hi+%|ﬂ+%(u) - ]:(xi+;)|2> (1.65)
for the flux.

Given Q =]0,1],  a diffusion coefficient and g a function defined on 92, we consider problem (1.3)
witha=0,8=1,v=0

d ([ du ,
Cdx (”m) =/ mh, (1.66)

u=g¢g on Jf.

We will use three types of meshes:

1. Cartesian meshes,

2. deformed meshes, the deformation of which is given by: * — x + 0.65z(1 — x)(0.5 — x) sin(0.87),

3. random meshes, the deformation of which is given by: z — = + ﬁ, with n € [—0.45,0.45], and n
n

the number of cells. Thus, C' = 19 for inequality (1.5). An example of which with 8 cells being
given in Figure 1.2.

T1 xs3 Ts T7r X9 Ti11 T 13 X 15 X1t
2 2 2 2 2 2 2 2 2
- [ Y —— - - - - - o - -@-—————— - S — & - ———-- o ———————- )
0 1

Fig. 1.2 — An example of a random mesh with 8 cells.

Figure 1.3 gives an example of the repartition of the cell volumes for a random mesh with 64 cells.

For all the tests, the ¢ and u” of the fixed-point algorithm (1.43) are ¢ = 107'2 and u) = 1,Vi. We
use the linear solver GMRES with the preconditioner ILU (see [33], Chapter 7.4) and the convergence
criterion is 10714,

PIn the benchmarks we have chosen € = 107,
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Fig. 1.3 — Example of a repartition of the volume for a random mesh with 64 cells.

1.4.1 [L? convergence for polynomial solutions

Given k = 1, f(x) = —6x (resp. f(z) = —7227), g(0) = 1 and g(1) = 2, the function u(x) = 2® + 1
(resp. u(x) = 27 +1) is solution to (1.66). We perform a spectral convergence study for these problems
on a deformed mesh with 64 cells. The L?-error between the exact @ and approximated u solutions
are reported in the Table 1.1.

Order | a(z) =23 +1 | u(z) =2 + 1
1 1.64e-04 1.56e-03
2 3.46e-06 7.00e-04
3 4.53e-15 2.70e-04
4 3.79e-15 1.39e-06
) 8.15e-15 7.43e-07
6 2.57e-14 7.07e-09
7 4.21e-15 5.24e-10
8 5.02e-15 6.58e-13
9 7.86e-15 8.17e-15

Tab. 1.1 — The L?-error between the exact @ and approximated u solutions.

The proof of exactness for polynomial of degree k (see appendix D.3) shows that the numerical solution
must be exact for an order greater than 3 (resp. 9). The Table of convergence 1.1 agrees with the
theory since the error is zero, to machine precision, for the order greater than 3 (resp. 9).

1.4.2 L? convergence for a smooth diffusion coefficient

Given k = exp(z), f(x) = 4exp(x) + 4xexp(x) — mcos(nz) exp(x) + 72 exp(x) sin(rz) (note that f
is positive), g(0) = 4 and g(1) = 2, the function u(z) = sin(nz) — 222 + 4 is solution to (1.66). We
perform a convergence study for this problem with the non-symmetric and symmetric schemes on the
deformed mesh. The L2-error between the exact % and approximated u solutions and f2 (refer to
Equation (1.65)) are reported in Figures 1.4.

33



1072 ¢ E Results with k = 1
o Results with k = 2
1079 ¢ E + Results with k = 3
o Results with k = 4
1074 o 3 4 Results with k =5
s e Results with k =6
1077 E Results with k = 7
105 L B Results with k = 8
5 * Results with k =9
5 107} 1
h 1078 * ] —
1079 E
10-10 | E o .
Y
1071 ¢ ] y=a"8
-9
— y=u
10-12 1
I I . .
10! 10? 10! 10?
Number of cells Number of cells

Fig. 1.4 — L2-error, at the left, and fr» (refer to Equation (1.65)), at the right, with the non-
symmetric scheme for problem of Section 1.4.2.
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Fig. 1.5 — L?-error with non-symmetric scheme and random mesh for problem of Section 1.4.2.

The results show that the numerical convergence order is at worst equal to the theoretical order
k (for the theoretical order 4 one obtains convergence at order 4) or better (for the theoretical order
3 one obtains the order 4). Besides, the results are qualitatively the same for the symmetric case and
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for the non-symmetric case (the results are only given for the non symmetric case because the figures
are similar). We observe similar convergence orders for e;2 and fro.

T
| | E o E ; » ;
L 1073 B E E
S F 1 I o 1 F ]
g [ ] F 1
= i ] s o ] I . |
. Results with k = 1 ' [0 Results with k = 2 \° | | » Results with k =3 \‘ ]
10 F y=a1 B b — y=a2 i [ — y =23 1
—4[ B E El
10 o El N . i ]
107 1 10 ?
= 1070} E 1 11 ]
3 E k| I i E E
X [ ] E E E i
1077 E i 1 E E
i N N ]
1078 k| o0 Results with k = 4 E i 4 Results with k = 5 j ? Results with k = 6 7%
;— y:gf4 D; ?* y=w’5 A; i y:x’G ]
1072 E 3 E El L ]
1076 E E ; ; i ]
10T I 1 f ]
5] r B E E
5 i ] E E B 1
o 1070 3 r ] i 1
= E £ r i L 4
1070}
10—10 — Results with k = 7 é : Results with k = 8 ] [ % Results with k = 9 N* 1
i y=a"" 1 E y=a"" = y=a?
20 30 40 20 30 20 30 40
Number of cells Number of cells Number of cells

Fig. 1.6 — fr2-error with non-symmetric scheme and random mesh for problem of Section 1.4.2.

We also perform a convergence study for the same problem on the random mesh: see Figures 1.5 and
1.6. As for the deformed mesh, the results show that the numerical convergence order is at worst equal
to the theoretical order k (for the theoretical order 4 one obtains convergence at order 4) or better (for
the theoretical order 3 one obtains convergence at order 4). The results are similar for the symmetric
case and for the non-symmetric case (the results are only given for the non symmetric case). We
observe similar convergence orders for e;2 and fr2. However, the curves are slightly translated: for a
given mesh size, the error is larger when the mesh is deformed. This is illustrated on the Figure 1.7
for the fourth-order non-symmetric scheme.

Figure 1.8 show that the number of iterations of the fixed-point algorithm depends weakly on the
number of cells. This is especially visible in the case of a deformed mesh. Besides, for a random mesh,
the number of iterations (for the fixed-point algorithm to reach stagnation) is significantly larger than
for a deformed mesh.
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Fig. 1.7 — L%-error, at the top left, and fr2 (refer to Equation (1.65)), at the top right, and number
of iterations of the fixed point (bottom) with the non-symmetric scheme at order k = 4 for problem
of Section 1.4.2. It shows that the mesh deformation impacts only slightly the error, but strongly
the number of fixed point iterations to achieve convergence.
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Fig. 1.8 — Number of iterations of the fixed point algorithm with the non-symmetric scheme for
problem of Section 1.4.2 for a deformed mesh at the left and for a random mesh at the right. The
number of iteration of the fixed point algorithm increases with the order of convergence k, but is
weakly affected by the mesh refinement.

1.4.3 Comparison with a non-monotonic scheme

To show the effect of the monotonicity correction, we compare our scheme with a non-monotonicity
preserving scheme.

Given k = 1, f = n%sin(rz), g(0) = g(1) = 0, the function u(x) = sin(nz) is solution to (1.66).
We perform a monotonicity study for this problem on a Cartesian mesh with the third-order version
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for different grid sizes. Results are summarized in Table 1.2. Note that the non-monotonic scheme
does not exhibit negative entries for all the grid resolutions, but when it happens, it is corrected with
the monotonic version.

Number of cells | High order monotonic scheme | High order non-monotonic scheme
8 0 1
16 0 0
32 0 0
64 0 1
128 0 0

Tab. 1.2 — Negative entries for the non-monotonic and the monotonic schemes for problem of
Section 1.4.3.

1.4.4 Discontinuous diffusion coefficient

Given k such that

1 if < 1,
2
(x) = 2
2 if =
1 x > %
and f(z) = n?sin(rx), the function
1
() = (sin(r2) + 20) Ly (@) + (2 sin(rz) + 7 + 1) )

is solution to (1.66). The solution of this problem is displayed on Figure 1.9. We perform a conver-
gence study for this problem, using the method described in Section 1.3.5, on a Cartesian mesh for
order 1 to 9.

Fig. 1.9 — Ilustration of problem of Section 1.4.4. The diffusion being discontinuous, so is the
gradient, but the flux remains continuous.

An even number of cells is required to have a node coinciding with the discontinuity of xk (x = %)
Results are summarized in Figure 1.10. These graphs show that we achieve the expected convergence

rate, even with discontinuous k.
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Fig. 1.10 — L2-error with symmetric scheme and discontinuous « for problem of Section 1.4.4.

1.5 Concluding remarks

In this chapter we have proposed an arbitrary-order monotonic scheme for the elliptic problem (1.3),
on arbitrary 1D meshes. The properties of convergence at a given order, and the preservation of the
positivity of the discrete solution have been proven with reasonable assumptions on the mesh. We
also proposed a symmetric version of the method. We have shown how to extend these schemes to
the case of a discontinuous diffusion coefficient. These properties have been illustrated numerically up
to the order 9. In future works, we aim to extend these schemes to higher spatial dimensions and to
parabolic problems. We are quite confident in the fact that our scheme can be extended to 2D because
we used the same method to enforce monotonicity than in [51,52,105,111], who have applied it in the
context of 2D diffusion on arbitrary meshes. To extend this method in 2D, we will need secondary
unknowns. In order to compute them, several strategies are possible. Among others, one may use
interpolation (see [30]), or a dual partition, in the spirit of the DDFV method (see [55]).

In the following chapter, we study the 2D case. We apply the same method to enforce monotonicity
and compare the two possibilities to compute secondary unknowns.
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This chapter has been published as an article in Communications in Computational Physics
(see [9]). In this chapter, the notations have been modified to be consistent with the rest of the
manuscript. For all the tests, we use the linear solver GMRES with the preconditioner ILU (see [¢3],
Chapter 7.4) and the convergence criterion is 10714, We add a numerical test in Section 2.7.2.3.

The DDFV (Discrete Duality Finite Volume) method is a finite volume scheme mainly dedicated
to diffusion problems, with some outstanding properties. This scheme has been found to be one of
the most accurate finite volume methods for diffusion problems. In this chapter, we propose a new
monotonic extension of DDFV, which can handle discontinuous tensor-valued diffusion coefficient.
Moreover, we compare its performance to a diamond type method with an original interpolation
method relying on polynomial reconstructions. Monotonicity is achieved by adapting the method
of [51,52, , ]. Such a technique does not require the positiveness of the vertex unknowns.
We show that the two new methods are second-order accurate and are indeed monotonic on some
challenging benchmarks as, for instance, a Fokker-Planck problem.

2.1 Introduction

Consider the model stationary diffusion problem

p on [Ip, (2.1)

N on FN,

where Q is a bounded open domain of R? with 90Q =T'pUT'y (TpNTy =0)andn € R? the outgoing
unit normal vector. The data are such that f,A € L?(Q), with A > 0 (if A = 0, then |I'p| > 0), and
gp € H'*(Tp), gnv € L*(I'x). The tensor-valued diffusion coefficient & is supposed to be bounded
and to satisfy the uniform ellipticity condition

VxeQ, Vye R?, amin”yuz < yTﬁ(x)y < amaxHYH2a

where unin, Qumae are positive coefficients. Under the above conditions, and if either A > 0 or I'p is
of positive length, it is well known that system (2.1) has a unique solution in H!(Q). Such a solution
satisfies a positiveness principle, i.e. if f > 0 and g > 0, then u > 0 (using Lax-Milgram Lemma in
the spirit of [16], Chapter 6).

Standard methods may be applied to the discretization of such diffusion equations with possibly
discontinuous x on arbitrary meshes. This proves to be an efficient strategy, as far as accuracy (or
convergence) is concerned. However, it is well known that positiveness of the discrete solution does not
hold. This lack of positiveness (also called monotonicity) can lead to serious difficulties, since u can
account for a temperature or a concentration. A first attempt to solve the issue of monotonicity would
be to truncate the discrete solution to zero. This is not satisfactory because conservation is lost in such
a process, and conservation is an important property of the scheme. Some algorithms based on the

repair technique introduced in [31] are employed to fix the conservation issue [23,20,103,107]. However,
these algorithms are only globally (and not locally) conservative, and the consistency is unclear. Some
monotonic methods have been designed in the finite-element framework (see [26,28,63,65,99] among

others), but they rely on restrictive conditions on the mesh, that we cannot afford.

For fifteen years many original finite volume methods have been proposed to address the issue of
monotonicity, while preserving conservation. Most of these schemes are nonlinear or have a larger
stencil than standard methods. The finite volume framework is well suited to achieve monotonicity
because it allows for an easy manipulation of the fluxes. The first works we know of are those of
Le Potier [70] and Bertolazzi and Manzini [7]. In such methods, one uses a manipulation of the fluxes
that leads to introduce a dependence on the discrete solution in the coefficients of the fluxes, making the
scheme nonlinear, although (2.1) is linear. To this end, one usually introduces secondary unknowns (for
instance vertex-located or face-located unknowns) in addition to the primary (cell-located) unknowns.
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Among others, important contributions to this field are [10,51,76,96, 110], which propose efficient

numerical schemes preserving the positiveness of the primary unknowns. In [95] the requirement
of positive secondary unknowns is relaxed. The works [77, | explain how to build monotonic
schemes without relying on secondary unknowns. In [72,79,94], maximum principle preserving schemes

are proposed. Cances and Guichard obtained moreover an entropy diminishing property in [22],
introducing the nonlinearity directly at the continuous level via a change of variables. Some concepts

and proofs about the existence of solutions for these types of scheme can be found in [32,10,92]. See
also [101,108] for recent advances in this field.
The DDFV (Discrete Duality Finite Volume [58], [35]) scheme relies on secondary (nodal) unknowns.

However, in contrast with most above-mentioned methods, one considers an additional diffusion prob-
lem on a so-called dual mesh to calculate them. This scheme has been found to be one of the most
accurate finite volume methods for diffusion problems [50], at the price of doubling the number of
degrees of freedom compared for instance to the linear or bilinear finite element method or to cell
centered methods such as MPFA (Multi Point Flux Approximation [1]) or SUSHI (Scheme Using
Stabilization and Hybrid Interfaces [19]). However, none of latter methods are monotonic.

A monotonic extension of DDFV has been proposed in [21], but was not compatible with Neumann
boundary conditions, and only first-order convergent for discontinuous tensor coefficients k. In the
present chapter, we propose a new monotonic extension of DDFV that remedies these flaws. Moreover,
we compare its performance to a diamond type method with an original interpolation method relying
on polynomial reconstructions. Monotonicity is achieved by adapting the method of [51,52, ,111]
to our schemes. Such a technique does not require the positiveness of the secondary unknowns.

The main steps of the proposed methods may be briefly summarized as follows.

1. Integration of the equation over each cell of the user’s mesh that we will call primal.
2. Transformation of this surface integral into a sum of fluxes using the divergence theorem.
3. Approximation of the fluxes using the midpoint quadrature rule on each face of the cell.

4. Taylor expansion of the solution % in the neighborhood of the midpoint of each face along two
independent privileged directions in order to obtain an approximation of Vu involving the values
of u and its derivatives at certain suitably chosen points, in this case the center and vertices of
the cell.

5. Thanks to this Taylor expansion, estimation of (kV4)-n = (V) - (k7n).

6. Calculation of the values of u at vertices either by a polynomial interpolation formula in the
neighborhood of the midpoint of each primal cell face or by integration of the equation over each
cell of the dual mesh.

7. Calculation of the values of derivatives of @ at centers and vertices of the neighboring cells by
differentiating this polynomial interpolation.

8. Transformation of the scheme into a monotonic nonlinear two point flux approximation (or four
point flux approximation if a DDFV type method is used).

9. Resolution of the nonlinear system by the Picard iteration method.

The integration over the primal mesh is common to the two monotonic schemes proposed here and
is described in Section 2.3. The treatment of the vertex unknowns depends on the scheme and is
addressed in Section 2.4. Monotonicity of both schemes is based on the same strategy, which is de-
scribed in Section 2.5. It leads to a two point flux the coefficients of which depend on the unknown.
The Picard iteration method to handle the nonlinearity is also described. The properties of the new
DDFV schemes are listed in Section 2.6. Finally, both schemes are assessed in term of accuracy,
monotonicity and computational efficiency, and compared with the non monotonic DDFV scheme in
Section 2.7. It is shown that the interpolation-based scheme is more efficient for a given L? accuracy,
but that the DDFV-based scheme achieves second-order accuracy in H' norm for the tests we ran.
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This outstanding feature has been already observed in |

,61]. Our final test problem is a solution of
a simplified Fokker-Planck equation. We show that our monotonic DDFV scheme is able to compute

a correct monotonic solution while achieving the energy conservation.

In all that follows vectors and matrices will be denoted with bold letters. Moreover, x = (z,y) and I
will stand for the position and 2 x 2 identity matrix, respectively.

2.2 Definitions and notations

In this section we gather most of the notations that will be used later.

1
1

-r-
|
|
|
!
'

Fig. 2.1 — Primal mesh (at the left) and dual mesh (at the right)

Consider an arbitrary primal mesh made of (possibly distorted, non-conformal, non convex...)
polygonal cells that are numbered from 1 to n. The primal cells are denoted ¢ or j. The center of
a cell 7 is denoted by x; (in general x; is the mass center of ¢ but other interior points for which ¢
is star-shaped could be chosen), its faces are ¢ (which length is |¢|) and its vertices x, and xs. The
position of the center of the face ¢ is x; and the position of a vertex r is x,.. The volume of a cell
1 is V5. The normal vector n;, is the unit vector which is orthogonal to the edge ¢ and outgoing for
the cell ¢, and Ny = |¢|n;y. The diamond cell x;x,x;X, is denoted by I, and its volume is V;. The

diamond subcell x;x,x/x, (resp. X;XsX¢X, ) is denoted by I;; (vesp. Irj). Let 0; (resp. 6;5) be the
angle between xy — x; (resp. X; — x¢) and n.

In order to define DDFV type schemes we also need to define a dual mesh (often named barycentric
or Donald dual mesh). The dual mesh is obtained from the primal mesh by joining the primal cell
centers to the primal face centers. The dual cells are numbered from 1 to m. The cells of the dual
mesh are denoted by r or s, its faces are £ and its vertices are 4, j and £. The volume of a cell r is V.

The normal vector n ; is the unit vector which is orthogonal to the edge ¢ and outgoing for the cell r,
and N ; = |¢|n,;. These notations are summarized on Figure 3.1.

Remark 2.2.1. The dual mesh is useful for the DDFV scheme only (Section 2.4.2). When interpo-
lation is used to define vertex values (Section 2.4.1), the definition of the dual mesh is useless.

We consider conform meshes, which cover the whole domain and in which there is no overlap. We
define
h = max (||, ¢]) ,
e (16 17)
we will assume that the primal and dual meshes satisfy the following assumptions.
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» (H1) There exists a constant 6y independent of h such that, for all ¢,

60| < g, cos(fp) < cos(Bi), cos(fp) < cos(by;).
» (H2) Given N; (resp. N,) the number of faces of the primal (resp. dual) cell ¢ (resp. r), there

exists a constant N,y independent of A such that

max(max N;, max N;) < Nyax.
7 T

» (H3) There exists a constant £ independent of h such that, for all ¢,

Ve < Emin(V;, V5, Vi, V).

Given v = (v;) a vector in R™ we will denote respectively its Euclidian, L? and L> norms by
1/2

n /2 n
vl = (2; v?) vl = (2; 1/;@3) v vlleo = fg@%lvzla
1= 1=

and we use the following notations
v>0 if Vi, v; >0,

v>0 if Vi, v; >0.

Given xj any point and ¢ any function we will often note ¢ = p(xx).

2.3 Finite volume formulation on the primal mesh

2.3.1 Computation of the flux

We will assume that k is continuous inside each cell but can be discontinuous along some primal faces
£. To simplify the presentation it will be assumed for now on that k is scalar-valued, that is, Kk = xI
with apmin < K < Qumae. For a tensor-valued coefficient k € R*? it is enough to replace kn by «Tn in
the following calculations.

The first step to design a finite volume scheme consists in integrating (2.1) on cell i

—/iv-wm/imz/if.

We can make use of the divergence formula to obtain

—Z/gnVﬁ'n—i-/i)\ﬂ:/if (2.2)

lei

We need to approximate the flux

ng/fiVﬂ-n.
l

With a second-order approximation, we have

—ZW(ﬂVﬁ)g-anr[Aa:/ero(hi‘).

lei
Thus we need to approximate
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Suppose that @ € W1°°(Q2). A Taylor expansion in the neighborhood of x, gives
a(x) = a(xe) + (x = x0) - Va(x) + O ([x = x||?)

Replacing x respectively by x;, x;, x,, X5, we obtain

(x; = x¢) - V() = ti(x;) — a(xr) + O (h?)

)
(i — x¢) - Vii(x) = (x;) — (xe) + O (h?)

u(xs) = U(xy) + (xs — x¢) - Va(xg) + O (h?) .
Subtracting the last two equations we have

(x5 = %) - V() = (%) — () + O (h?) .
Thus, we have the system
a(xe) + 0 (h?),
a(xi) + 0 (h?), (2.3)
a(x) + 0 (h?).

Va(xe) - (x5 — x¢) = u(x;
Vu(xe) - (xe — x;) = u(xe

X;) —
) —
Viu(xe) - (xs — %) = U(Xs) —
(

We can decompose the normal vector n;, in the basis ((x; — x¢),(xs — %x;)) or ((x/ — x;),(xs — X))
X — Xy Xs — X Xy — X; Xs — X
ny = Oéw,]ji + Bitj i = i + Biti— -,
1% = %]l [[xs — x| [Ixe — x| [xs — %
with
1% — x| %5 — || mic - (x; —x0)*
Qg = 0. . 2.4
il,j (X] — XZ) 1y Bz&g (Xs _ Xr) ] (Xg — XZ)L ( )
and
lIxe — x| l[xs — Xr|Imip - (x¢ — Xl)L
R , L , 2.5
alf,l (){Z o Xl) nze /le,z (Xs o Xr) . (Xz o Xl)J‘ ( )
The details of these computations are given in Appendix C.1. That is, in view of Figure C.1
1 sin(6;p 1 sin(6.y
Biei = (b Biej = (05¢) (2.6)

ibi = cos(6;¢)’ cos(6;¢)’ ity = cos(Bje)’
According to assumption H1 these values are well defined. Note that a;y; > 0 as soon as the centers
x; and x; of the primal cells 7 and j are separated by the line corresponding to their face £ =i N j.
It may happen that x; and x; are not separated by the face ¢. This is the case for a non-convex
cell 7 if its mass center x; is not inside i (see the left-hand side of Figure 2.2). In such a case we
replace x; by the midpoint of an inner diagonal of ¢ or by any interior point for which i is star-shaped
(right-hand side of Figure 2.2). Doing so, the inequalities c;; > 0, which are mandatory to enforce
the positiveness of the scheme (see Section 2.5), are always satisfied.
Thus, the gradient in the direction ng, in the cell j, denoted by Vu(x); - nj the writes

Vau(xe) - (x5 — xe)

% = x|

cos(Bje)

Vau(xy) - (x5 — Xp)

[xs — x|

Vau(xg)j - nyg = g j + Bitj

9

and in the cell i, denoted by Vu(xy); - n; writes

Vﬁ(Xg) . (Xg — Xi)

1% = x|

Vu(xy) - (x5 — %)
[xs — %, ||

Vau(xe)i -0y = g + Bivyi

9
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Fig. 2.2 — A non convex cell 7 and a convex cell j such that x; and x; are not separated by the
line defined by face /.

that is to say, using (2.3)

u(x;) — t(xe) + O (h?)

1% = e

4 ﬁiz,ja(XS) —u(x,) + O (hQ)

Y

Vu(xg)j - nyg = g j T
S T

(2.7)
u(xg) — u(x;) + O (h?)
[[xe — x|

N Bié,ia(XS) —u(x,) + O (h?)

Vau(xe)i - ni = ey [xs — % ||
S T

Note that these approximations can also be obtained by using the Green-Gauss formula applied to
Vu in diamond sub-cells I;; and Iy;

Vi) = Itd /I () + O(h) = ;| ;‘ ((aCxe) — ) Nig + () — 3, ) )N, ) + O(h),
vita); = | vt + 00 = 577 ((F6) = 760 N () = 76N, ) + O

(2.8)
The fluxes can be indifferently estimated using one or the other of formulas (2.7), (2.8).

Let us now recall that the properties of (2.1) imply that the normal component of the flux is continuous
across the primal face Fy. We therefore impose

kiVu(xg); - Ny = k; Vu(xg)j - Dy, (2.9)
which leads to

(ocg) = e = Xillrjie s8085) + 1% = Xell s ()
Ixj — xellmicvie; + [|xe — Xi|| K juie 5

l[xe — xiHij — x@”(’{’jﬁie,j - ’Qiﬁié,i) (i(xs) — u(x,)) + O <h2) . (2.10)

llxs — x| (| — X¢l|micvies + (%0 — Xi||kj00,5)

Inserting (2.10) into one of the two equations of (2.7) results in

RiRj Qg QG 4

ki Vu(xg); -y = /; Vu(xg); - nyp = ( ) (u(x) — u(xs))

1% — xel|Ricvie; + [|xe — il 5 jcvie 5

N ( kikj (vieiBie 11X — Xel|| + cvie i Bic,illxe — xil]) > (i(xs) — (%)) + O (h) . (2.11)

lIxs — x|l (x5 — xellwicvie; + [[xe — xil[jvie ;)
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Let uP"™a! = (y;)1<;<, be the numerical solution on the primal mesh. By mimicking the expression
of the exact flux (2.11), the numerical flux through the primal face ¢ is defined by

KikjQip,j Qg i
fz(u):wIK S )(uj_ui)

% — xel|micvie; + [[x¢ — x| rjcvie, 5

rikij (aieiBiejl1Xj — Xell + cieiBicillxe — %il]) (g — 11y)
s — x| (1 — xellmicie; + [Ixe = xil|mjoie) ) "

In other words

Fe(u) = ve(uj — u;) + re(u), (2.12)
with

re(u) = J¢| | R (cvigiBiejl|%; — el + cvieBieillxe —xal) \ )
s — ol (Il — xellmicties + [lxe = xillmj0005) ) 7777

e = M RiRjQqp j0Gg 5 >0
1% — Xellwicvies + [|x¢ — Xillkjoue; ) —

This decomposition will be used hereafter to enforce the positiveness of the scheme (see Section 2.5).

2.3.2 Boundary conditions
2.3.2.1 Neumann boundary condition

In the case of a Neumann boundary condition on a primal boundary face ¢ C I'y, we have

/HVﬁ'ni[:/gN,
¢ ¢

Fo = |llgn(x¢) + O(h?),

that is to say

we thus impose this equation on the numerical flux
Fe(u) = [£lgn(x¢)-

2.3.2.2 Dirichlet boundary condition

In the case of Dirichlet boundary condition, we have u;, = gp(x¢) as soon as x; € I'p. From (2.7) we
then obtain

Qg g

Va(xp)i - mig = T = (9D (x¢) — u(xi)) + (a(xs) —a(x,)) + O (h),

so that the Dirichlet boundary flux is defined by

Qg Bie,i
Fufw) = 6l (T2 (ap(oe) =) + =L (=) )
In other words
Fe(u) = ve(gp(xe) — u;) + (), (2.13)

with

I‘QO&Z'Z'Z KpPip.i
o= (T8 20, ) = P~ )

[Ixe — x| [xs = %]

46



2.4 Dealing with vertex unknows

In order to evaluate the numerical fluxes Fy(u), Equations (2.12) and (2.13) require the knowledge of
the values of u at the vertices x,. of the primal mesh. To compute these values, we propose to use
two different methods. For the first one, described in Section 2.4.1, vertex values are calculated by
interpolation while for the second one, described in Section 2.4.2, they are calculated as the solution
to the same diffusion problem (2.1) discretized on the dual mesh.

2.4.1 Diamond type scheme

The first way to calculate the vertex values u, is to use a polynomial approximation calculated using
the cell-centered values u;.

For a polynomial of degree 1, we have 3 coefficients to calculate, so at least 6 (3xdimension) neighboring
cells of the considered cell are required for stability reason: see [11,67]. When it is possible, the stencil
will be centered on the cell, but the closer the cell is to the boundary of the domain or to the
discontinuity of %, the more the stencil will be shifted in order not to cross the discontinuity.

e e e |

Fig. 2.3 — Construction of the stencil for the cell ¢ with a discontinuity (in red).

To be more precise, the construction of the stencil of a cell ¢ is illustrated on Figure 3.2. We denote
this stencil by S; = {0,...,k}. For the sake of simplicity, we have assumed that the cells involved in
the stencil have been renumbered. First the cell 7 itself (in blue) is added to the stencil and then we
add the cells that share, at least, a vertex with the cell ¢ (in yellow). If the number of cells we have
already selected is not sufficient (in our case, 6 cells for a polynomial of order 1), we add the cells that
have, at least, a vertex linked to the cells that we have just been added to the stencil (in green) and
so on until we have enough cells. In all the above process, we impose that the stencil does not cross
any discontinuity of x (see Figure 3.2).

Let uyg, ..., ux, denote the k + 1 values used for the calculation (k > 5). The polynomial is of the form

Pi(x) = aoo(uo, ..., ur) + aio(to, ..., uk) (® — ;) + ao1 (o, .., uk) (Y — i),

and its coefficients agg, a1, agr are chosen such that

Pi(X()) = UO,...,PZ'(Xk) = UL.

This leads to the following system

1 mo—2i yo—ui ago ()
a10 =
1 op—m yp—vi o1 (3
—_— —
=M =a =:b
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Since matrix M has more rows than columns we have to use the least square method so that vector
a is computed as a solution to the linear system: M”Ma = M”b.

In this process note that we do not enforce the continuity of u at the vertices. Indeed, a priori,

Pi(xr) # Pj(x,) for i # j.
We thus obtain expressions of the gradients in the direction n;, in the cells ¢ and j similar to (2.7)

u(x;) — u(x¢) + O (h?)
1% — x|

u(Xs) — u(x 2
+ﬁw(s) (%) + O (h?)

Vu(xe)j - ny = ayg

l[xs — || ’

(2.14)
u(xe) — a(xi) + O (h?)

[Ixe — x|

N &MQZ(XS) —u(x,) + O (h?)

Viu(xp)i - nyg = Qg %5 — %
S T

Assuming the continuity of the flux F; through the primal face Fy

Vii(xg); - mye = Vu(xg); - nyy,

provides

Ixe — x| 5y ju(x;) + (1% — Xl Kicig,iu(x;)
Ixj — xellmicvie; + [|xe — il 5 jcvie 5
lIxe = xillllx; = x| (5iBie,i (P (x5) — Pj(xr)) = k£ Bie i (Pi(xs) — Pi(xr))) Lo (hQ)
x5 — %7 || (lIxj — xellRicvie + l1xe — X[ Kjcvie ;) '

u(xg) =

_l’_

Let u = uP"™al = (4;);<;<,, be the numerical solution for this method. Replacing i(x;) by u;, u(x;) by
u; in (2.14) and face and nodal values by interpolated approximations, the numerical flux Fy through
the primal face ¢ results in

Fo(a) = ve(uj — ug) + r(n), (2.15)
with

Kikj Qi Bie j]1%5 — X||

re(u) = |¢ P:(x.) — Pi(x

() =4 <Hxs ST — xellmicngs T e — llmgane) /0% ~ Fixr)
Kikjug jBiei||xe — X4|
Pi(xs) — F(x
\|xs—xr||(||xj—xmiawﬁer_xiuﬁjaw)( i (xs) — Pi(xr)) |
e = 0] Kikj Qg jQig i >0,

1xj — xellmicvie; + [|xe — xi|l K jcvie 5

where P; is a polynomial local to the cell j. The choice of cell-based polynomials is consistent with
the fact that the diffusion coefficient is continuous inside each cell.

So that the diamond scheme writes

= > (veluy = wi) + 8ie(Pi(xs) = Pilxr)) + 86 (Pj(xs) = Pj(%)))
0€i 42D

— > (relue — wi) + 00(Pixs) — Pi(x,))) + Vidius = Vifi,

L€, €00 (2.16)
ug = gp (%) x¢ € I'p,
Ye(ug — ui) + 6¢(Pi(xs) — Pi(xr)) = |€|gn (xe) x; €'y,
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with

U kiR o ;o . Keapg)l|
Ve = I — XzH/LJaM,:Jr Hié = S if £ ¢ 091, Ve = 7\\3% _7>|(i=‘ it ¢ € yp,
S = [ kik g i Bieillxe — x| ’ 5= |1 KeBivi ’
[xs — x| ([ — xe|lwicvie; + [|xe — xil|jcvie ;) [xs — x|
5y = L] rirjieiBies 1% — Xl

lxs = x| (x5 — xellmicies + [1xe — x| ;)

2.4.2 DDFV scheme

The second way to calculate the vertex values u, is to consider them as additional unknowns that are
solutions to problem (2.1) integrated on each cell of the dual mesh, thus following [55]. We have

—/TV-mVu—i—/r)\u:/rf.

that is, thanks to the divergence theorem

—%/gﬁVu-n—l—/r)\u:/rf,

that is to say, up to second-order terms,
*z |g|I{£7(Vﬂ)E- nig+ /)\u = /f + O <h2) .
ler " "
where k; is an evaluation of x at the center of the edge ?. Thus we need to define the fluxes
.7?@ = k;(Vu);-ng.

Let us consider a dual fa~ce ? located in a primal cell i. A Taylor second-order expansion in the
neighborhood of the face ¢ gives

a(x) = a(xp) + (x = x7) - Va(xg) + O ([x = x7]?) (2.17)

Replacing x respectively by x; and x, in the Taylor expansion (2.17) we have

a(xi) = a(xp) + (% = ) - Va(xg) + O (h?)

ii(xp) = (xp) + (x0 = ;) - Vaa(x;) + O (h?).
The difference of the two previous equations gives

(3¢ = x3) - V() = () — ax;) + O (h?) .
Then, using x = x, and x = X in (2.17) gives

a(x,) = a(xp) + (% = xp) - V() + O (h?)

(%) = () + (x5 = x;) - Vii(xp) + O (h?).
The difference of the two previous equations gives

(x5 = %) - Vii(x7) = i(xs) — () + O (h?) .
Thus, we have the system
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Vii(xe) - (x¢ = %i) = () — w(x;) + O (b)),
Vii(xg) - (x, = %) = i(x,) — i(x) + O (h?).

We can decompose the normal vector n ; in the basis ((x; — x;),(xs — %;))

..  Xs — Xy
SAA ] Py R e
with N
8= [xs — x|l __ [x¢ — xi[m,7 - (x5 — xr) (2.18)
ré (x5 — X;) - nrg’ 24 (x¢ —x5) * (x5 — XT)J- ’
the details of the computations are given in Appendix C.2.
Thus, we have
_ Vau(x;) - (x¢ — x;) Vau(x;) - (x5 — X)
Vu(x;) n;=a.; £ + 8,7 £ ,
e 7E 7 I
that is to say
_ i(xg) — u(x;) + O (h? i(xs) — a(x,) + O (h?

[Ixe = x| x5 — x|

uprimal ' ] ] ' )
Let u = ( be the numerical solution, where udve!l = (ur)i<r<m is the numerical solution on

udual

the dual mesh and uPrimal — (ui)1<i<n is the numerical solution on the primal mesh. By mimicking
the expression of the exact flux (2.19), the numerical flux is defined by

l Up — Uj Us — Uy
Fy(u) = [0|r; |a,; " ,
o) = Mg | P, —, ]
In other words
Fi(u) = yp(us — up) +rp(u), (2.20)
with )
ri(u) = M(u —w)
! e =i
N Y I
¢ [xs — x| — ’

where uy is obtained by mimicking the expression given by (2.10) if £ is not a boundary face. If £ is a
boundary face, there are two cases.

First, if ¢ is a Dirichlet boundary face, we have

u(x¢) = gp(xe), (2.21)

Second, if ¢ is a Neumann boundary face, belonging to a cell i. We have on the one hand

keVu(xg) - ny = gy (xe), (2.22)
and on the other hand

keVu(xg) -y = kg [ (Vu(xe) - (x¢ — %3)) + Bie(Vu(xe) - (xs — %)),
that is to say

HgiL(Xg) Ny = Ky [Olif (ﬂ(xZ) — ﬂ(XZ)) + ﬂig (ﬂ(Xs) — ﬂ(xr))] + O(hQ) (2.23)
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Equations (2.22) and (2.23) lead to

)= 20 ) B () - ax)) + 002, (224)

u(xg
So, if ¢ is a boundary face, u, is obtained by mimicking the expression given by (2.24) or (2.21).

Let us see now how to deal with the dual boundary conditions. Let £ C vy be a Neumann boundary
face of the dual mesh. Applying the same process as for the primal mesh, we have

Fo(w) = [llgn (x7).

On the dual mesh, we penalize the diagonal entries of the matrix and the right-hand side to impose
the Dirichlet boundary condition.

The DDFV scheme thus writes

= > ey —w) = Y velue —wi) = Y Se(us — up) + Vidiug = Vi f;
USINZ=20]9) Lei ledQ lei
- Z (5@(’&( - uz) + 'Yg(us - UT)) + ‘/;‘)\rur = ‘/rfr Xr ¢ FD>
ler
ue = gp(xy) x¢ € I'p,
Uy = gD(Xr) Xy € FD7
Ye(upg — ;) + dp(us — ur) = [€)gn(xe) x¢ € 'y,
Op(up — up) + vp(us — uy) = |Z’9N(X2) x; € I'n,
(2.25)
with
|| Kikjouie juip i . Keove |l
Yo = if £ ¢ 09, v = ———— if £ € vp,
lIxj — xel|micviei + (|0 — x| kjcvie, 5 l[xe — x|
5 = [C|kikj (cvieiBiejl1%5 — xe|| + e Bic,il|xe — %]]) 0g 00, 5 — [0|KeBiei 0 € p,
[xs — x|l ([ — xellwicvie; + [[xe — xil|jcvie ;) llxs — x|
oy = UrB
||Xs - Xr” ’
5. — rzg
lIxe — x|

2.5 Monotonicity

In this section we propose to find a method for the previous methods to be made monotonic. A

method borrowed from [51,52,105,111] and developed in the framework of 2D diffusion on arbitrary

meshes can be used. For any value r,(u) we will use the common notation 7,(u) = 7,(u)* — ry(u)~

with

+ _ lre(w)] +re(u)
B 2

The primal flux (2.12) can be rewritten as follows

—_ re)l = re(w)

>0 and 74(u) 5 >

re(uw)

Fo(u) = ye(uj — ug) + re(u)* —re(u)”,
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Let us assume that u > 0, the flux then reads as

re(u)™ re(u)”
Fi(u) = (w + Z(u,) ) uj = (W + Z(u,) ) .-
J 7
and the coefficients ('yg + SZ)JF) and ('yg + (q:)_) are positive.

The same method can be applied to the dual flux

R

l
As v; > 0 and 77 > 0 we end up with two points primal and dual flux approximations with positive
coefficients, which is very favorable for the resolution of the linear system.

* r7(u)

T

r(u)

s

Fi(u)

_l’_

The diamond scheme (2.16) then rewrites

rF N
- Z ((’Yz + L (ju)) Uuj — (w + Te;@) m)
ISNLLY) v
_ Z ((’YZ + T;u(;)> Up — (’Ve + T[@fu)) uz> + Vidiu; = Vi fi,
USHAIIY) v

we = gp(xr) x¢ € Lp,
r(u r, (u
<W IrAC Prge Yo+ W), [£lgn (x0) xe € Ly,
Uy Uj
while the DDFV scheme (2.25) rewrites
r(u r, (u

s () ().

0ci 0409 7 !

+ —

- Z ((W + W) ug — (W + (u)) uz> + Vidiui = Vi fi,

(€ 1eD0 e i

rj_(u) TS (11)

_Z<<VZ+ £ >us_ (’7[7‘1' L >ur>+w)\rur:v}fr7 XT¢FD’

ier Ug T

(2.26)
up = gp(%y) xe € I'p,
ur = gp(xr) x: &L,
rf(u r, (u
<W + ri () ug— | ve+ re (W) ui = [£|gn (%) x¢ely,
Uy Uj
T:i_ (u) T (LI) ~

(7{7—1' ¢ ) Us — <7g+ ‘ ) ur = |flgn (x7) Xg € L.

The matrices associated with these systems are not symmetric and depend respectively on w;, up
(¢ € 092) and u,. More details about this are given in the following section.
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2.5.1 Matrix form

The scheme reads as

= Fw)+ AViuy = Vifi and =) Fpu) + AV, = Viof,. (2.27)
lei ler

Consider a mesh the cells of which are numbered from 1 to n and the vertices of which are numbered
from 1 to m. Denoting

uprimal — (Ui)1§i§n7 udual — (ur)lgrgma u= (uprimal’udual)7 (2 28)
bprimal — (bi)lgigna bdual — (br)1§r§m7 b= (bprimal7bdua1)7 .
and
b = Vifi+ > [lgn(xe) + D (Te(udual)+ + WQD(XZ)) Vi € [1,n],
lei el N lei el p
dual 7 (229)
b;. =Vifrt Do Mgn(xp)+ D Cgn(xp),¥r € [Lm],
lerfely lertelp

where ( is a large value dedicated to taking into account of the Dirichlet boundary conditions by
penalization (for example ¢ = 10'?).

We can then write this as the matrix-vector product

Aprimal primal .. dual 0 primal bprimal
A(u)u = (w5 u ™) . " - —b, (2.30)
0 Adua (uprlmaljudual) udual bdual

dualy—
rim i 2 : u
Af@ al(uprlmal7udual) — >\zvz + (’Yé + T'E( 4 ) ) 7
t€i 0Ty Wi

dual\+
. . TelQa . .
A%‘rlmal(uprlmal’udual) — E (’YZ + ZU)> , Vi # 74,

Lging J
) 20

+ > ¢

r

Ag;}al(uprimal’udual) — )\rv;” + Z (VZWL

ler igonN lerjievyp
_(y,Primal\+
dual imal __dual r;(u )
AT (uPTRE gt = — Z (72 + E— Vr # s.
Zerns igon s

Thus the monotonicity enforcing procedure leads to two decoupled sparse matrices of size m x m and
n X n depending on u. This is a significant difference with the usual DDFV scheme for which all
degrees of freedom are coupled, leading to a single (m + n) x (m + n) matrix independent of u.

In the case of the monotonic diamond method, we obtain a system

Adiamond (uprimal)uprimal — bdiamondj (232)
with
iamon rim Te uprimal B
A%a o d(up al) _ Z <,7£ + ( ' ) + Viki,

Lei gl N ,I'LZ . (233)

Adiamond (uprimal) _ Z re(uprlma )+ Vi .

i = Ye + 411/ ? 7é Js

LEing J
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and

biamond =y g4 N (Te(uprimal)+ + ’YZQD(XZ)) + > lan(xo). (2.34)
lei el p leilel’' y

Remark 2.5.1. Assuming that f > 0 and g > 0, all the components of the right hand side b are
non-negative. Assuming moreover that f and g are not zero, then at least one component of b is
positive.

2.5.2 Picard iteration method

Both systems (2.30) and (2.32) are of the form A(u)u = b. In order to solve them, we use a Picard
iteration method. We start with an initial guess u® > 0, compute the matrix A(u®) and solve
A(u”)u! = b. Repeating this process, we build a sequence (u”) that, if it converges to a positive
vector, tends to a solution of the scheme. We stop the algorithm when the difference u’*! — u”
between two successive iterates is small enough. To summarize, the following algorithm is used

v=20
A(uu! =b
Huu—i-l

-7
white 27"~ Wl
[l

A(u’)u’™ =b
v=v+1.

For the monotonic DDFV scheme (2.26), for example, the linear system A (u”)u’*! = b writes

+ (v —(1qV
r, (u r, (u
- E ((WTLESLV )>u§+1_<%+giy )>UZV+1>
01,0209 J i

+ /v — (44V
- Y ((W + (:,1 )> uy ™t — (’Y@ + (,l,l )> u;’“) + Vil T = Vifs,
UZ Uu

(i DN i

ri(u” r; (u”
-2 ((w : )> ugt - (w 2 )> u;f“) + Vedu T =V, f, x & I'p,
ler

v v
us ur

uy ™ = gp(x¢) x¢ €I'p,
uZH = gp(x,) x, € I'p,
+ (v “(u¥
T, (Qa T, (u
(W + fi)> - (w + ffﬂ) W = [tlg(xo) x¢ € T,
¢ i
+(11V ~(u¥
r(uY) r> (u”) ~
(’Yz+ o ) - (’Yﬁ fu > uy " = lgn (x7) Xg € TN
uY uY,
(2.35)

Unfortunately, we are unable to prove that the above Picard algorithm converges. Nevertheless, we
prove in Section 2.6.3 below that the scheme is well defined at each iteration of the algorithm, as soon
as the initial guess u® is positive.



2.6 Properties

2.6.1 Conservation

Proposition 2.6.1. Assume that u > 0 and consider homogeneous Neumann boundary conditions,
then the scheme defined by (2.27) is conservative. Indeed it satisfies the equality

> Vidiui =Y Vifi,
=1 =1

that is to say

:1 (— Z]—}(u)) = 0.

1

The proof is given in Appendix C.4.

2.6.2 Monotonicity

Consider the definition of an M-matrix (see for instance [37])

Definition 2.6.2. An n x n matriz A that can be expressed in the forme A = sI — B, where B =
(bij)i<ij<n with bjj >0, 1 <4,j <n, and s > p(B), the mazimum of the moduli of the eigenvalues of
B, is called an M-matriz.

We use the following lemma

Lemma 2.6.3. A matriz A = (Aij)i1<ij<n s an M-matriz if it satisfies the following inequalities
n
Vi#j, Ay <0, and Vi, Y Ay >0.
=1

Moreover, if the last inequality is strict, we say that A is a strict M-matriz.

Proposition 2.6.4. Assume that u > 0. Then the matrices AP"™% and A% defined by (2.31) and
the matriz A4@mord defined by (2.33) are such that (APT™NT (AT gng (Adiamond\T" gre strict
M-matrices.

Proof. The matrix AP"™a! gatisfies

n
Vi g, AV <0 and vy, Y AP0,
=1

Indeed we have, for all j

zn:Ap;imal _zn:( Z <~y i re(udual)—> B Z ( T’g(udual)—i-)) T
ij (4 » ’7€+7U' + A V.

i=1 i=1 \l€i ¢l N v £cing J
Thanks to Proposition 2.6.1, only the boundary terms and the mass term remain, for all j

n dual) —

ZAE);imal _ Z Z | (W + Té(uu‘ > Jr)\]‘/] < 0.

i=1 i=1¢€(inl'p v

The above argument has been carried out on AP'™al byt the proof applies mutatis mutandis for AU
or Adiamond' 0

Remark 2.6.5. According to (2.30), it is sufficient to prove that APT™ gnd A% gre both strict
M-matrices to prove that A is a strict M-matriz.
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Theorem 2.6.6. Assume that f > 0 and g > 0. Let A and b be defined by (2.29)-(2.31) or (2.33)-
(2.34). Then A='b=u>0.

Proof. As AT is a strict M-matrix A is invertible and its inverse has only non-negative entries (see
for example [98], Corollary 3.20). In view of Remark 2.5.1, the right hand side is non-negative, hence
u=A"'b>0. O

2.6.3 Well-posedness of the Picard iteration method

Proposition 2.6.7. Assume that f >0, g > 0, and either || f|[12q) > 0 or ||gllr2(aq) > 0. Assume
moreover that u® > 0. Then for all v, u” > 0.

To prove this property, we need to introduce the concept of irreducible matrix. We quote here [958,
Definition 1.15].

Definition 2.6.8. An n x n matriz A is reducible if there exits an n x n permutation matriz P such
that
Ay A
pApT — |21 12 ’
0 Ay

where Aq1, A1a, Aga are respectively rxr, rx (n—r) and (n—r) x (n—r) sub-matrices with 1 < r < n.
If no such permutation matrix exists, then A is irreducible.

The matrices APTmal - Adual defined by (2.31) and the matrix A4@mond defined by (2.33) are irreducible
thanks to the following Lemma (see [98, Theorem 1.17]).

Lemma 2.6.9. To any n X n matrix A we associate the graph of nodes 1,2,....n and of directed edges
connecting x; to x; if Ajj # 0. Then A s irreducible if and only if for any pair i # j there exists a
chain of edges that allows to go from x; to x;,

A1 0= Apip2 #0 — -+ = Appj # 0.
With these definitions we can make use of the following theorem (see [9%], Corollary 3.20).

Theorem 2.6.10. If A is an irreducible strict M-matriz, then it is invertible and, for all i, j (1 <
ij <n), (A7) > 0.

We are now in position to prove Proposition 2.6.7.

Proof of Proposition 2.6.7. We argue by induction on the index v. We assume that u” > 0. Hence
(Aprimal(w )T is a strict M-matrix (see Proposition 2.6.4). It is easy to check that (APrmal(u”))”
is also irreducible. Thus, applying Theorem 2.6.10, all the entries of (AP'™al(u¥))~7 are positive.
Consequently, all the entries of (AP"™al(u”))~! are positive. Using Remark 2.5.1, we know that all
components of b are non-negative. Moreover, because of the assumption that either ||f||z2(q) > 0 or
9l 2oy > 0, at least one component of b is positive. We thus have, for all i (1 <i < n)

n

u’{-i—l — Z(Aprimal(uu))i—jlbj > 07

K]
=1

since all terms of this sum are non-negative, with one at least that does not vanish.

The above argument has been carried out on AP'™al byt the proof applies mutatis mutandis for A"
or Adiamond' 0

Proposition 2.6.7 shows that the condition u” > 0 remains satisfied during the Picard iteration method,
which allows to define AP"™al(u”) for all v > 0.
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2.6.4 About the convergence of the fixed-point for the monotonic DDFV scheme
Recall that

o u= ((4i)i<i<n,(Ur)1<r<m) is the ezact solution of (2.1),
o u= ((ui)i<i<n,(Ur)i<r<m) is the DDFV solution defined by (2.25),

o u’ = ((u))1<i<n,(U¥)1<r<m)) is the v-th iterate associated with the monotonic DDFV scheme,
that is, the solution to (2.35).

For simplicity we will restrict ourselves to the case I'y = () in (2.1), that is,

{—V k(Va)+Xi=f in Q, (2.36)

u=g on 0.
We will make use of the following theorem, the proof of which is postponed to Appendix C.5.

Theorem 2.6.11. Under assumptions H1, H2, H3 the DDFV scheme defined by (2.25) is first-order
accurate in the discrete L? norm, that is, there exists a constant Cy independent of h such that

1/
\u—u\h—(ZV u(x;) — u;) —i—ZV )—ur)2> < Chh.

We will need the following lemma to prove Theorem 2.6.13.

Lemma 2.6.12. Assume that there exists v > 0 and € > 0 such that

l/+1 —uY UV+1 o U;f

T

) S € (2.37)

max max P
U;

Then the monotonic DDFV scheme (2.35) writes

-y (’}’z ( vl _ ;{—l—l) + 6 (ugﬂ _ Ul;“)) VN = Vifs 1t

(i 0200
(2.38)
_ Z (5 ( Z-H 1/+1) +7€( v+l _ 71{+1)) + Vﬁ\rufrl =V, fr +pY,
ler inoN=>0
with
7| < Ce, [} < Ce, (2.39)
where C' is a constant independant of h and e.
Proof. Recall that, for all ¢, r, v, uf > 0 and u; > 0. Suppose, for example, that
ro(u?) = o — ) > 0, ry(u?) = Gy(u — ut) >0,
then r, (u”) =r; (u”) = 0 and the scheme (2.35) rewrites
1/+1
_ Z (W (uu+1 1/+1) + 80w’ — u ) ) T VN u”“ Vifi,
(€0 000 u
(2.40)

v+1

-3 <6g<uz )=

+ ( v+l u;:+1)) + VMM?“ —V,f,.
ler inoN=0

S

From assumption (2.37) we deduce that, for all ¢, r, there exists €; (|¢;| < €) and €, (|e;| < €) such that

v+l _ v 7 v+l _ v v
U, = U €U, Uy T = Uy F €U,
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Inserting these values into (2.40) gives (2.38) with

Y= Z 0¢ (eruy — €suy — €juy. + €5uy), py = Z 07 (equy — esuy + esuy) .
Lei 0gON ler inoN=0

As a consequence,

1p¥| < ANpmax (m?x |5g|> (Invax u?) €, 1p7] <3Nmag (mgx |5t7) (max (mlax ui”,m?x uZ)) €,
where we recall that N, is the maximum number of faces of primal and dual cells.

Considering Dirichlet boundary conditions, we have

uy = gp(x¢) = U?+1~

Thus, we have

_ Z (’Yé (u;.’"‘l _ uz’.’-i‘l) + 0y (ungl . ul;Jrl)) + %)\iul{/-&-l = Vifi + oV,
VIS N A=2019)

_ Z (52 (uz-&-l . uiu—&-l) + (UZJrl . ul;Jrl)) + V;)\rurd = Vifr + p,
ler inoN=>0
This concludes the proof. O

Theorem 2.6.13. Assume that H1, H2, H3 hold, and that the assumptions of Lemma 2.6.12 are
satisfied. Then, there exists a constant Cy, independent of h and €, such that

|G — w2 < Crh + Cue,
with Cp the constant defined by Theorem 2.6.11.
Proof. System (2.25) writes

with

f = ((Vifii<i<n:(Vefr)i<r<m)
while system (2.38) writes

Aut =+ f,
with

fe = (07 )1<i<ns(Py )1<r<m) -

By difference and thanks to the stability Lemma C.5.5, there exists a constant Cs such that

lu — w2 < Cafe]|2.

Thanks to Lemma 2.6.12 there exists a constant C'3 such that

[fell2 < Cse.
Then choosing Cy = C5C'5 and applying the triangle inequality and Theorem 2.6.11 we obtain

@ —u e < la —ulls + lu—u’*2 < C1h + Cue,

which concludes the proof. O

o8



Note that Theorem 2.6.13 is not a convergence theorem. Indeed if we make both h and € tend to zero,
the positive solution u”*! tends to the DDFV numerical solution u which is only possible if u itself
is non negative. Roughly speaking one can say that the (positive) numerical solution u”*! obtained
at the end of the iterative process is close to the (non necessarily positive) DDFV numerical solution
u that itself is close to the exact solution .

Note also that condition (2.37) is restrictive: in practice we rather use the condition ||u’*! —u”||o <
€lu”||oo or [[u”*t —u”||z < €||u”||2 as a stopping criterion.

2.7 Numerical experiments

Given Q =]0,1[, k a diffusion coefficient and g a function defined on 912, consider Problem (2.1) with
A=0and 'y =0

f in  Q,

. on o0 (2.41)

{—V - (kVa)

In addition to Cartesian meshes we will use the two following types of meshes (see Figure 2.4):

1. deformed meshes, the deformation of which from the Cartesian mesh is given by

(z,y) — (z + 0.1sin(27x) sin(27y),y + 0.1sin(27z) sin(27y)),

2. randomly deformed meshes, the deformation of which from the unit Cartesian mesh with cells
of size Az is given by

(z,y) = 0.1(z,y) + 0.9(z + 0.45aAz,y + 0.45bAzx),

where a, b are random numbers distributed according to the uniform law on [—1,1].

S S S SR
Ry sl tana Aran
: N
i a1 SRS a8 Sy AT,
I [T AN VATIAvAS N BRASZ i SNy
g, 0 R A/ r S AR B v atve
i D o S R e
N BN R AR AR AB R TSN A
1 W {2
U e A s T
T P ARRVRW i AV AN A BN n e g au !
EATE— A S A SR 7 A T T
= LN T R o
S g, S NS TR ey
e LT LAl rasvEviyE BT R U VAW
ESEzEEi it S it
e e F RO S
Eceen i A
] T VA=AV E N sew s S N =y
T s A R T
Swnsl N P RO ST
s ‘l‘“‘::&? TS T S Y

(a) A deformed mesh (b) A random mesh
Fig. 2.4 — Examples of deformed meshes.
The L? and H'-errors used in the following tests are respectively given by

[[u — ull [Vhu — Valls
= an T~
[l IVl

where
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1/2
IVallz = (ZVz \Vﬂ(Xe)H2> ;
L

11
2V

2) 12

For DDFV type schemes we plot on figures 2.7, 2.8, 2.10, 2.9, the primal numerical values while on
tables 2.2, 2.4, 2.3, the maxima and minima are computed over both primal and dual values.

((uj — i) XX + (ug — ur)xixj‘) — Vu(xy)

|Vhu — Vii||p = (Zw
0

V; being the surface of the diamond cell 4.

2.7.1 Accuracy

Three simple benchmarks are proposed to assess the accuracy of our monotonic schemes in comparison
with the usual (non monotonic) DDFV scheme. For these three tests, we choose ¢ = 10712 as the
stopping criterion of the fixed point algorithm.

2.7.1.1 Checking the preservation of linear solutions

Given k(x) =1 f(x) = 0 and g(x) = —x — y + 2, the positive linear function u(x) = —x —y + 2 is
solution to (2.41). We perform a study of this problem on the deformed mesh (see Figure 2.4a) with
32 x 32 cells for each of the three schemes. The L? and H' errors between the exact solution u and
the approximated one u are reported in Table 2.1. This agrees with the theory (see Appendix D.3)
since the error is zero, to machine precision, when « is a polynomial of degree 1.

Scheme L2-error H'-error
DDFV 2.58¢ — 15 | 4.46e — 14
Monotonic DDFV 9.42¢ — 15 | 6.30e — 13

Monotonic diamond (degree 1) | 1.05e — 14 | 1.02e — 13

Tab. 2.1 — Comparison between the different schemes for the positive linear solution to problem of
Section 2.7.1.1.

2.7.1.2 Anisotropic diffusion coefficient

Given

10 . . _
K(x) = < 0 9 ) . f(x) = 3n?sin(mz) sin(my), g(x) =0,

the function u(x) = sin(7x)sin(7wy) is solution to (2.41). We perform a convergence study for this
problem with a sequence of successively refined deformed meshes like the one of Figure 2.4a.

Results are summarized in Figure 2.5 which shows that all schemes are second-order accurate in the
L? norm. Of course, similar results may be obtained for a scalar-valued diffusion coefficient . We see
that the error in H'-norm is second-order convergent for DDFV methods while the diamond scheme
is only first-order accurate in the H' norm. However, if we perform a second-order reconstruction of
the gradient, we also obtain second-order accuracy of the diamond scheme for the H' norm.
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! 100 F ' : ]
DDFV DDFV
101« . Monotonic DDFV J o * Monotonic DDFV
o Monotonic Diamond (degree 1) o T~—__ o Monotonic Diamond (degree 1)
. ond order [ o Monotonic Diamond (degree 2)
. © ~—_ — 2nd order
107" o Ist order k!
®
1072 F E
= 2102k i
. ¢
R B
1073 F E
10-3 | 1
107 E
07 o
I I I . . I I I I I I
4 8 16 32 64 4 8 16 32 64 128
Number of cells per direction Number of cells per direction

Fig. 2.5 — L? (on the left) and H' (on the right) errors for problem of Section 2.7.1.2.

2.7.1.3 Discontinuous diffusion coefficient

Recall that we have assumed that possible discontinuities of the diffusion coefficient x occur only along
the primal cell faces. Given

1
1 if z < 3
K(x) = i f(x) = 272 cos(mz) cos(my) 4+ 20, g(x) =0,
2 it x>
2
the function
2 : 1
cos(mz) cos(my) — 10x* + 12 it < 2’
u(x) =
1 43 1
B cos(mx) cos(my) — 5z + T it x> 2

is solution to (2.41). We perform a convergence study for this problem with a sequence of successively
refined deformed meshes as shown in Figure 2.4a.

T T
DDFV * Monotonic DDFV

10°2F o * Monotonic DDFV il o Monotonic Diamond (degree 1)
o Monotonic Diamond (degree 1) — 1st order
— 2nd order
°
10°-1F 1
b3 0 AN
N

\;\

1073 | El .\\\ °

~ o 5 ~
2 z AN
. _F RN
D = N o
N
\
10-4 | 4 -2t N\ 4
~_ o
N\
N
* Nl
~
.o
1075 .
I I I
4 8 16 32 64 128 4 8 16 32 64 128
Number of cells per direction Number of cells per direction

Fig. 2.6 — L? (on the left) and H' (on the right) errors for problem of Section 2.7.1.3.

Figure 2.6 shows that, in the present case of a discontinuous k, the results are similar to those of the
continuous case, that is to say, the scheme is second-order accurate. However, both schemes are only
first-order accurate in H' norm in this case.

2.7.2 Monotonicity test problems

We propose two benchmarks to compare the usual DDFV scheme, which can give nonpositive solutions,
with our monotonic diamond and DDFV schemes which always give nonnegative solutions.
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2.7.2.1 Tensor-valued coefficient x and square domain with a square hole

2
Consider the square domain with a square hole Q =]0,1[2\ {%,8} , f(x) =0in Q and g(x) = 0 (resp.

g(x) = 2) on the external (resp. internal) boundary. We have chosen

cosf sinf 1
K =
—sinf cosé 0 10*

0.00e+00

-1.01e-01

-2.03e-01 |

-3.04e-01 |

i
-4.06e-01 I

cos@ —siné 9_7'(
sin@ cos@ ’ 6

G e N 20100
g a! i SEERE] M

) R
07 AR "
B " R, | 41c+00
BRI =
HEZIEED
RIS S 8.04e-01 |
BSSNISSINISN vy .
HEs
SINENEN S ANY

RIS I | 99c-01 §
BRNAN" SN

BEN S5 o R

BNRNN. ool INSRNNZ R RRRZ A ARY -+ VOC-01

2.01e+00

1.51e+00

1.00e+00

5.02¢-01 |

il
0.00e+00 I

Fig. 2.7 — Mesh (top, left), DDFV solution to problem of section 2.7.2.1 (top, right) and its negative
(bottom, left) and positive (bottom, right) parts.

2.0e+00 2.0e+00
1.8 1.8
1.6 1.6
14 — 14
_ 12 — 1.2
1 —1
_ 0.8 — 0.8
0.6 0.6
0.4 0.4
0.2 0.2
1.7e-17 2.5e-32

Fig. 2.8 — Monotonic DDFV (on the left) and diamond (degree 1, on the right) solutions to problem
of section 2.7.2.1.

We compare the results obtained with the monotonic diamond and DDFV schemes on a Cartesian
mesh with 36 cells per direction. The stopping criterion of the fixed point algorithm is e = 1072,
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Figure 2.7 shows the mesh, the DDFV solution and its negative and positive parts. Figure 2.8 displays
the monotonic DDFV and diamond solutions while Table 2.2 gives the minimum and the maximum

of each solution.

Scheme Minimum of the solution | Maximum of the solution
DDFV —4.59 x 1071 2.05
Monotonic DDFV 1.65 x 10717 2.01
Monotonic diamond (degree 1) 2.46 x 10732 1.95

Tab. 2.2 — Minimum and maximum of the numerical solution to the problem of section 2.7.2.1 for
the Cartesian mesh with 36 cells per direction.

While the solution obtained with the usual DDFV scheme has a negative minimum we can see that
the solutions obtained with the monotonic methods are always positive, as expected.

2.7.2.2 Fokker-Planck type diffusion equation

This benchmark is a simplified version of the one from [69]. Given Q =]—50,50[%, T' = 250, v = (vz,vy)
the velocity variable and V = (—20,20) the averaged velocity, we are looking for the distribution
function u = u(v,t), solution to the simplified Fokker-Planck equation

ou

5 Vi (kVyu) =0 in Q x (0,771,
kVyu-n=0 on 00 x[0,1], (2.42)
u(0) = a° in Q,

0

where the diffusion coefficient K = k(v) and the initial condition u” are given by

K(v) = vov, 1°v) = ep(-|v - V|?).

Ivi?

Note that the full Fokker-Planck equation would read as

ou
E‘Fvv

It is well known that the n-order moments of u (0 < n < 2) are preserved over the time

()0 $(fm) -0 (L) -0

The backward Euler scheme is used for time discretization.

(vi) — Vy (kVyu) = 0.

To limit the calculation time, the stopping criterion of the fixed point algorithm is e = 107°. Fig-
ure 2.10 (resp. 2.9) displays the DDFV (resp. monotonic DDFV and diamond) numerical solutions
obtained with the Cartesian, deformed and random meshes of 2002 cells. Table 2.4 gives the minima,
and maxima of the DDFYV solution for a sequence of refined Cartesian meshes and Table 2.3 gives
the minima and the maxima of the numerical solution obtained with the DDFV, monotonic DDFV
and diamond schemes. We observe that the minima of the DDFV solution are negative but converge
to zero as h tends to zero while the minima of the solutions to monotonic schemes always remain
non negative, as expected. Compared to both the non monotonic and monotonic DDFV schemes the
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monotonic diamond scheme is more diffusive (in the radial direction). This could be explained by the
use of a larger stencil required for polynomial reconstruction.
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Fig. 2.9 — Monotonic DDFV (on the left) and diamond (degree 1, on the right) solutions to (2.42)
at time T' = 250 on the Cartesian (top), deformed (middle) and random (bottom) mesh of 200 x 200

cells.
Scheme Cartesian mesh | Deformed mesh | Random mesh
DDFV —2.48 x 1074 —1.25 x 1073 | —2.41 x 1073
Minima | Monotonic DDFV 5.46 x 10730 2.53 x 10730 4.63 x 10740
Monotonic diamond (degree 1) | 1.86 x 10729 1.42 x 10722 1.58 x 10723
DDFV 1.04 x 1072 1.04 x 1072 1.14 x 1072
Maxima | Monotonic DDFV 1.04 x 1072 0.97 x 1072 1.02 x 1072
Monotonic diamond (degree 1) 0.29 x 1072 0.32 x 1072 0.31 x 1072

Tab. 2.3 — Minima and maxima of the numerical solutions to (2.42) at time T" = 250 on the three
types of 200 x 200 cells meshes.
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Fig. 2.10 — DDFV solution to (2.42) at time T' = 250 on the Cartesian (top left), deformed (top

1.04e-02
7.73e-03 ‘
5.07e-03 |
2.41e-03

-2.48e-04

right) and random (bottom) mesh of 200 x 200 cells.

4.50e-03 |

 .2.41e-03

1.14e-02

7.96e-03

1.05¢-03 | |

1.04e-02
7.47¢-03 |
4.56e-03 |
1.66e-03

-1.25e-03

Number of cells | Cartesian mesh | Deformed mesh | Random mesh
100 x 100 —1.89 x 1073 —2.38x107% | —3.15x 1073
200 x 200 —2.48 x 1074 —1.25x107% | —2.41x 1073
Minima 400 x 400 —6.32x 1078 | —214x107* | —9.92x 1074
800 x 800 —1.66x 107 | —7.95%x 1077 | —7.63 x 1074
1600 x 1600 —853x 107 | —1.97x 1077 | —4.58 x 1074
100 x 100 1.19 x 1072 1.16 x 1072 1.65 x 1072
200 x 200 1.04 x 1072 1.04 x 102 1.14 x 102
Maxima 400 x 400 1.01 x 1072 1.01 x 1072 1.09 x 102
800 x 800 1.01 x 1072 1.01 x 1072 1.09 x 1072
1600 x 1600 1.01 x 1072 1.01 x 1072 1.08 x 1072

Tab. 2.4 — Minima and maxima of the DDFV solution of (2.42) at time 7' = 250 on refined
Cartesian meshes.

The conservation of the zero-order moment of 4 at the discrete level is a property of our schemes. It

is more challenging to obtain a conservation of a discrete equivalent of the second-order moment.
Thanks to the identity

v =3 Vu(lvIP),
one can introduce an approximation v, of v in the diamond cell I; by using the Green-Gauss formula
ve= 37 (%1 = PN+ vl = PN, 26 00,
(2.43)
vi= 1 (vl = [vil2Nie + (vl = v PIN;)  £e on.
4V, r
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We then prove the following proposition.

Proposition 2.7.1. Consider the DDFV solution to (2.42), that is,

w1 1 1 1 1 1
Vit g 2 (T N N (- N, e N
L€i 000

1 1
—= Z ((u?ﬂ u?+1)NigK,gNig + (u?"H — u?+1)er7[<,gNig) = 0,

2 Lei,ed) w
ultt — 1 1

T L L (e NN N )

teregon 't

1 1

— > o (= Nk N+ (! = u N N ) = 0,

2 ter (o0 Vi
11 (™ = NN + (™ — N N ) = 0 x; € 09
2V, ¢ i ke N g T (U Uy rieN g | = ¢ )

(2.44)
with the following approximations of k in a diamond cell I; such that v, ¢ OS2
1
Ke=1—c—5vi® vy,

[vell®

with vy calculated by (2.43).

Let E™ be the following discrete equivalent of the second-order moment

1
=3 (Z Vilvil|2ul + Z%Herzuf) .
7 r
Then, for allm >0, E™ = EV.

Proof. We multiply the first (resp. second) equation of (2.44) by ||v;||? (resp. ||v,|?) and sum over
primal (resp. dual) cells i (resp. r). Adding these two sums we get

1
AL <Z VillvilPuf > Vallve Pt = Y VillvilPuf = Wllvr\lzlL?)
% T 7 r

( (IVill? = 15 1P)Nie + (V2 = [Vl PN, ) s (T = )Ny + (™ = w )N, ) = 0,

¢
Then, noting that kv, = 0, we obtain thanks to (2.43)

ZVIIWH2 "+1+ZVller2 p= ZVIIWHQU”+ZVIIVT\

l\DM—A
<\

that is, E"t1 = E™. O

The numerical results displayed in Figure 2.11 show that the second order moment is conserved over
time for the non-monotonic DDFV scheme, as it has been proved. However, it is not exactly conserved
with monotonic DDFV scheme because we do not exactly solve the DDFV system. Nevertheless, the
conservation error is far lower than for the positive diamond scheme.
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Fig. 2.11 — Variation of energy over time for the 3 schemes on cartesian mesh of 200 x 200 cells.

2.7.2.3 Convection-diffusion type diffusion equation

This test was added after the publication of the article [9].

Given Q =] — 1,1[?, T' = 1, consider the problem

ou

i V. (kVu)=0 in Q x (0,17,
kVi-n=0 on 09 x[0,T7,
u(0) = u° in  Q

where the diffusion coefficient k is given by

10-8 m(z? +y?)
K= ,
—7(z? + y?) 1078

and the initial condition 4 is given by

with R=10"1, 20 =0, yo = 5 x 1071,

(2.45)

(2.46)

The solution @ of (2.45) should remain positive, and the non-monotonic DDFV scheme produces
non-physical negative values. As we will see, our monotonic scheme gives a positive solution.

Proposition 2.7.2. Let Q be a bounded open connected domain of R? and let o € C1(€).

the equation

ou

— — V- (uv) =0,
ot (av)
da
with v. =V X «a, noting V x the rotational operator, with the convention V X a = ( gz
" Oz

any u € CY([0,T],H?(2)) solution to (2.47) is also solution to

ou _
E—V(mVU)—O,
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(2.47)
> . Then,
(2.48)



with

=

—a 0

0 «

)

Conversely, any u € C1([0,T],H%()) solution to (2.48) is solution to (2.47).

Proof. First, the diffusion equation

with

gives

Second, the convection equation

with v =V X «a, gives

that is to say

ou _
()
K= ,
—a 0
ou_padu  puoa
ot 0x0y 0Oxody
ou _
E—V-(uv)—(),
= da
o (1)
¢ ~ o
0u_0adn  duda
ot Oxdy Oxdy

Thus, the convection and the diffusion equations are equivalent.

Cartesian mesh refinement | Time t = 0.25 | Time ¢ = 0.50 | Time t = 0.75 Time t =1
60 x 60 —0.11 —0.19 —0.22 —0.23
120 x 120 —2.9x 1073 —3.8 x 1072 —85x1072 | —1.23x 107!
240 x 240 —6.4x10"1 | —58x 1076 —4.7%x107* | =3.18 x 1073
480 x 480 —1.87x10710 | —29x 10710 | —4.14 x 10710 | —4.2 x 10710

Tab. 2.5 — Minima of the numerical solutions to (2.45) with the DDFV scheme at different times

on cartesian meshes.

Figure 2.12 (resp. Figure 2.13 and Figure 2.14) shows the solution obtained with the monotonic
DDFV (resp. DDFV and Upwind) scheme on a Cartesian mesh with 60 cells per direction. We note
that the solution obtained with the monotonic DDFV scheme is positive unlike the one obtained with
the DDFV scheme. The monotonic DDFV solution is much more diffusive (in the radial direction) than
the DDFYV solution but the latter exhibits oscillations unlike the solution to the monotonic scheme.
The Upwind solution is highly inaccurate because it is too diffuse (much more than the monotonic
DDFV scheme). We notice that the more the mesh is refined, the less the DDFV scheme solution is

negative (see Table 2.5) and the less oscillations there are.
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Fig. 2.12 — Solutions at time ¢ = 0 (top), t = 0.25 (middle left), ¢ = 0.5 (middle right), ¢t = 0.75
(bottom left) and final time (bottom right) obtained with the monotonic DDFV scheme with a
cartesian mesh of 60 x 60 cells.
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Fig. 2.13 — Solutions at time ¢ = 0 (top), t = 0.25 (middle left), ¢ = 0.5 (middle right), ¢t = 0.75
(bottom left) and final time (bottom right) obtained with the DDFV scheme with a cartesian mesh
of 60 x 60 cells.
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Fig. 2.14 — Solutions at time ¢ = 0 (top), t = 0.25 (middle left), ¢t = 0.5 (middle right), t = 0.75
(bottom left) and final time (bottom right) obtained with the Upwind scheme with a cartesian
mesh of 60 x 60 cells.
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2.8 Concluding remarks

In this chapter, we propose two new monotonic schemes for the diffusion equation, which are based
on the same cell-centered discretization. This first step is called primal scheme, and the consistency
of the primal fluxes relies on a correct evaluation of dual (node-centered) unknowns. The difference
between the two schemes lies in the evaluation of these dual quantities. For the first one, which is
called diamond type, the dual unknowns are evaluated, using a polynomial reconstruction involving
values in neighbouring (primal) cells. For the second one, called DDFV type, the evaluation of the
dual unknown is obtained by solving a diffusion problem discretized on the dual mesh. This second
scheme is an improvement with respect to the nonlinear monotonic DDFV method of [21]. Indeed,
the new nonlinear method we have proposed here makes it possible to deal with all types of boundary
conditions (Dirichlet, Neumann) and is second-order convergent even for discontinuous diffusion coef-
ficients. For both methods, we adapt the same non-linear process borrowed from [51,52, , 111], we
assess their monotonicity and accuracy on several test cases and compare the results with the classical
(non-monotonic) DDFV scheme. Moreover, the DDFV type monotonic scheme takes advantage of
very nice features of the DDFV scheme, such as second-order accuracy in H' norm, while providing
non-negative solutions.

In the next chapter, we will extend theses schemes to arbitrary order, using the techniques developed
in the 1D setting in Chapter 1 (see also [3]).
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This chapter has been submitted as an article in Journal of Computational Physics (see [11]). We
add to the content of the article the formulation of a monotonic DDFV scheme of arbitrary order,
which has not been coded.

Monotonicity is very important in most applications solving elliptic problems. Many schemes
preserving positivity has been proposed but are at most second-order convergent. Besides, in general,
high-order schemes do not preserve positivity. In the present chapter, we propose an arbitrary-order
monotonic method for elliptic problems in 2D. We show how to adapt our method to the case of a
discontinuous and/or tensor-valued diffusion coefficient, while keeping the order of convergence. We
assess the new scheme on several test problems.

3.1 Introduction

This chapter describes a follow-up of two recently published works [3,9]. In the former work, we
designed a monotonic and arbitrary-order numerical method for an elliptic equation in 1D. In the
latter one, we showed that the approach used in 1D extends to second-order accurate methods in 2D.
Our goal in this paper is to propose the first arbitrary-order monotonic method for elliptic problems
in 2D.

The model we consider is

—div(skVu)+Au=f in Q,
u=gp on Ip, (3.1)

kVu-n=gy on Iy,

where € is a bounded open domain of R? with 9Q = 'p UTy (I'p NTx = (), and n € R? is the
outgoing unit normal vector. The data are such that f € L*(Q), gp € H'/*(I'p), gn € L*(Ty),
A € RY (if A =0, then [Ip| > 0), and k € L®(Q). The tensor-valued diffusion coefficient  satisfies
the uniform ellipticity condition:

Vx € QVE € R% ki [l€]|* < €'R(x)E. (3.2)

where ki is a strictly positive coefficient. Under the above conditions, one can prove (using Lax-
Milgram Lemma in the spirit of [16], Chapter 6) that system (3.1) has a unique solution in H?!(£2)
which satisfies a positiveness principle, i.e. if f > 0 and g > 0, then @ > 0. One often refers to
monotonicity in the literature for this principle.

For the applications we have in mind, such as inertial confinement fusion simulation, we need to
be able to slve problem (3.1) on (almost) arbitrary meshes. The reason for this is twofold. First, the
domain Q can be very distorted. Second, problem (3.1) is coupled to the incompressible Euler system,
which is descretized using a Lagrangian finite volume scheme (see [24,068,52]). We thus have no control
on the quality of the mesh. Further, a fundamental property of the hydrodynamics scheme is to be
conservative, in order to reproduce as precisely as possible singular solutions, such as shocks. Thus,
the diffusion scheme applied to (3.1) should be conservative too, in order to preserve this property.
As a consequence, monotonicity cannot be recovered by merely truncating negative values: such a
strategy is incompatible with conservativity.

This is why a large amount of work has been devoted to the design of monotone schemes since the
seminal works of [7,70]. Among other publications, let us cite recent works [21,22, 83,95, 101,105,100,

] and citations therein about this topic. However, none of these methods is arbitrarily high-order
accurate. The most advanced work in this direction is [106], which achieved third-order accuracy.

Some methods are particularly well-suited for achieving arbitrary high-order for elliptic prob-
lems. Let us cite for instance the finite-element method [27], the Virtual Element method [6], the
Discontinuous Galerkin method [29], and the Hybrid High-Order method [33]. However, very few
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(see [1,5,20,102] and references therein) can enforce the positiveness of the unknown without impos-
ing severe constraints on the mesh, and none of them achieve a convergence order higher than two.
Another reason for not using these methods in our context, is that their coupling with other models
can be problematic since the degrees of freedom of the different discrete operators approximations do
not match.

This work proposes the first arbitrary-order monotonic scheme for the elliptic equation (3.1). The
diffusion coefficient can be tensor-valued and/or discontinuous. We show that we preserve the arbitrary
high-order accuracy even with a discontinuous diffusion coefficient as long as discontinuities are known
and coincide edges of the mesh. We recall the main steps of the proposed method (see also [9]):

1. Integration of the equation over each cell of the initial mesh that we will call primal.
2. Transformation of this surface integral into a sum of fluxes using the divergence theorem.
3. Approximation of the fluxes using a Gauss quadrature rule on each face of the cell.

4. Taylor expansion of the solution « in the neighborhood of each Gauss quadrature point of each
face along two independent privileged directions in order to obtain an approximation of Vu
involving the values of u and its derivatives at certain suitably chosen points, in this case the
center and vertices of the cell.

5. Using this Taylor expansion, estimation of (kV4) -n = (Va) - (k'n).

6. Calculation of the values of @ at vertices by a polynomial interpolation formula in the neighbor-
hood of the Gauss quadrature points of each primal cell face.

7. Calculation of the values of derivatives of u at centers and vertices of the neighboring cells by
differentiating this polynomial interpolation.

8. Transformation of the scheme into a monotonic nonlinear two point flux approximation.

9. Resolution of the nonlinear system by the Picard iteration method.

The paper is structured as follows. Definitions and notations are given in Section 3.2. The proposed
arbitrarily high-order Finite-Volume method is described in Section 3.3. Then, we explain how the
scheme is modified to enforce the monotonicity in Section 3.4. In Section 3.5, we prove some nice
properties of the method. Finally the arbitrary high-order accuracy and the monotonicity of the
method are assessed in Section 3.6 on classical benchmarks including test cases with anisotropic and
discontinuous diffusion coefficients.

3.2 Definitions and notations

Given an arbitrary mesh the cells of which are numbered from 1 to n, consider a cell denoted ¢ and
its neighbor j (see Figure 3.1). The center of mass of i (resp. j) is denoted by x; (resp. x;), their
common face is £ and the vertices of £ are » and s. The position of the center of the face £ is xy, and
the positions of its vertices are x, and x;. We denote by x, a Gauss quadrature point located on the
face £. The length of ¢ is |¢| and the volume of a cell i is V;. The normal vector n;, is the unit vector
which is orthogonal to the edge ¢ and outgoing for the cell i. We define h = mzin 1€|.

Given v = (v;) a vector in R we will denote respectively its Euclidian, L? and L® norms by

1/2

n /2 n
Hvuz@vf) , rvnz:(;mz) Vo = o il

and we use the notation v > 0 (resp. v > 0) if, for all 4, v; > 0 (resp. v; > 0).
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Fig. 3.1 — Example of a mesh with our notations

3.3 Finite volume formulation

To simplify the presentation we suppose that k is isotropic : k = kI, with K > K. It is worth noting
that the full anisotropic case can be immediately dealt with by remarking that (kVu)-n = (Va)-(k'n)
and by replacing n by k‘n in what follows. Moreover we assume that the discontinuities of & coincide
with faces of the mesh and therefore that x is a continuous function inside each cell.

The first step to design a finite volume scheme consists in integrating (3.1) on cell

—/iv-ww/ixu:/if.

The properties of the continuous problem (3.1) impose that the normal component of the flux is
continuous across the faces. Then, we can make use of the divergence formula to obtain

//@Vu n—l—/)\u—/f (3.3)

Using a k-th order accurate Gauss’s quadrature formula for approximating the flux through the edge

14

lei

.ﬁ2== j/Ii‘7u ‘N
y4

=SS wyiy (V) - mue + / N = / f+ 0k,

lei g€l

we have

where w, and x4 are respectively the weights and the points of the quadrature. Thus we have to
approximate

kg (Vu),

3.3.1 Approximation of the interior fluxes with the diamond method

Consider the case where the diffusion coefficient x can be discontinuous on a face ¢ of the mesh and
suppose that u € WH*(Q). A Taylor expansion at order k in the neighborhood of X4 gives

oPu

u(x) = u(xg)+(x—x4)-Vi(x, +Z Z (p q) Wy(?’q)( o) (@—z4) (y—yg)(p_q)+(’) (HX _ Xng-H) '

(3.4)
Denote by u; the mean value of u in cell ¢
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1
u; = v /iu(x)dx

In order to have mean values as degrees of freedom, we integrate (3.4) on the cell j and divide by its
volume V;

V / Z_LXg)'i‘é/(X ) Vﬂ(xg)d:r
/ (p q) (ngz;q)( g) (@ —2g)(y — yg)(p_‘I)da: +0 (hk+1> ’

that is to say

k
o oPu
uj = u(xg)+(x;—x4)-Vu(x, —1—2 ]p' g (p q> Dziay - q) / r—24)(y—y,) )P=Ddz4+0 (hk+1)

J
(3.5)
In a similar way, by integrating on the cell ¢, we obtain

u; = u(x X;—Xg) - Vu(x Sy p ﬂx 1—2)(y—y, )P Ddz+0O (hFH1) .
i = k) (ximxg) V) + 3 ST (%) [ (@=29)U(y—ye) "V da+O (BFF)

= ViP5 010y (P—a
Equalities (3.5) and (3.6) give (3.6)
(xj=xg) Viu(xg) = uj—u(xg) — Xk: o zp: ( ! ) / - )(p_q)d:c +0 (hk+1>
Vit \p—a amqay dwaay D X . ’
(3.7)

and

(xg—xi)- Vu(xy) = u(xg) UH‘Z Z ( )av‘lg;;@( ) /(;E —xg)(y — yg)(p_Q)d:U +0 (hk“) )

— zp'
Fig

(3.8)
Using respectively x = x, and x = x; in the Taylor expansion (3.4), we obtain
- ~ B oPu _ k+1
u(x,) = u(xg)+(x,—%x4)-Vu(xy) erzz Z ( )xqay(p q)( )(l’r*xg)q(yr*yg)(p )40 (h + > )

(3.9)
and
U(xs) = U(xg)+(xs—%,)-Vii(x, +pz:2 Z ( )way(m) (%g)(x5—24)(ys—yy) P~ P+O (h + ) .

(3.10)

Subtracting the two last equalities gives
(xs — %) - Vu(xg) = u(xs) — u(xy)

koo op -
Z 1 Z (p p q) (%qu(pq)( Xg) ((xs — ) (Ys — yg) PV — (2, — 39) (g — yg)(p—q)) Lo (hk—i-l) '

Trs

(3.11)
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Thus, we have the system

Vi(xg) - (xj — Xxg) = U — U(Xg) + Tgj,
Vau(xg) - (xg — X;) = u(Xg) — Ui + Tig, (3.12)

Viu(xg) - (xs — %) =1

We can decompose the normal vector n;, in the basis ((x; — X4),(xs — X))

Xj — Xg Xs — Xr
n; = aiﬁ,jgm + ﬁiz,jgm’
with
%5 — 4]
o >0 3.13
Qig5g (Xj _ Xg) ‘ny ) ( )
and

HXS XanM ) (Xj Xg)
Bie.i . 3.14
529 (xs — xr) . (xj — xg)L ( )

The details of these computations are given in Appendix D.1.

Thus, we have the expression of the gradient in the direction of the normal vector seen by the cell j,
denoted by Vu(xy); - nj

Vii(x,) - (x) — %) Vii(x,) - (x: — %)

Vu L) = g s o ’
B T e s
that is to say, using (3.12)
_ U — U(X,) + Tgj s — Uy + 7
Vu(xg)j - nig = g jg J ™ _gxgH 99 4 Biz,jgﬁ, (3.15)
Then, we can decompose n;, in the basis ((x4 — x;),(xs — x;))
Xg — X; Xs — X
Ny = Qg1 + Bitigi >
1% — x| s = x|
with
g — xi
I >0 3.16
Qi ig (Xg — Xi) ny = ( )
and

1
Xs — Xp ||y - (Xg — X5
Bitig = | Inie - (xg ) : (3.17)

(xs — %) - (xg — x;)*

The details of these computations are given in Appendix D.1.

Thus, we have the expression of the gradient in the direction of the normal vector seen by the cell 7,
denoted by Vu(xy); - ng

Vﬂ(xg) ’ (Xg —X;)
|xg — x|

Vau(xg) - (x5 — %r)

llxs — x|

Viu(xg)i - Dig = Qigig + Bit,ig

)

that is to say, using (3.12)

’EL(XQ) — U; + Tig + By fL(XS) — fL(Xr) + Trs
il,ig

1% — x|

Vu(xg)i Ny = g g

[xs — x| ’

If k is continuous on a Gauss point x4 of a face £ we define
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while if it is not we define

Thanks to the continuity of the flux

Fgi VU(Xg)i - Mig = g jVU(Xg)j - Mi, (3.18)
we obtain
_ 1 Kg.jQitjg (| - Kg,iCitig
U(Xg) = 7y rams Fa i (Hx zxjg” (wj + 7gj) + e 2_z;§" (a; — Tig)
[xg =] lIx; —xgll J 9 9 ¢
Kg,jPitjg /- _ . Kg,iBitig - _ _ )
e T — - — . (3.19
+||Xs _XTH(U(XS) U(XT) +T7“S) HXS _XTH(U(XS) u(XT) +TTS) ( )
Inserting (3.19) into (3.15) results in
7 K 7Z/€gujaleajgalé7lg 7 = bo ol
K ‘VUX iy = g Ui — Wi + Toi + 75
93V UlXg)j - 1 (ij — Xgl|Kg,iieig + IIXg — Xi!ﬁg,jaw,j) (ty = 43 T+ Tig)

+ < Kg,ifig,jit,igBitjgllX; — Xgll
I1xs = x|l (x5 = Xgll5g.ictieig + Ixg — Xillg jtic,jg)

) (u(xs) — u(xy) + 7rs)

N Kg,ifig,jit,jgBit,igllXg — Xill
[xs — x| (1% — xg kg ivieig + Xg — XillKg,jtie jg

)> (u(xs) — u(xy) +77s). (3.20)

Let us assume that we have at our disposal an approximation u = (u;)1<i<n of U = (4;)1<i<n. From
u we can find a high-order polynomial approximation P;(x) of @ in each cell ¢ while respecting the
discontinuity lines of the diffusion coefficient x (see Section 3.3.6). So, the numerical flux Fy(u) is
defined by

Rg,ilg,j0 jgCil g
Fo(w) = 6] wg K B T ) (uj = ui + 795 (0) 4 7ig(n))

=y 1% = %l kg ictiig + lIxg — xil[t5g,jcvie,jg

+ ( Kg,itg,iQit,igBit,jgllXj — Xg]|
HXS - XTH (HXj - XgHﬁg,iaié,ig + ng — XiHHg,jaié,jg

)> (Pj(xs) — Pj(x;) + 1rs 5(u))

n ( Rg,itig,jQit.jgBit,ig||Xg — Xi
||X5 - XT” (”X] - Xg”'%g,iaié,ig + ng - Xi”/ﬁ}g’jaig,jg

)> (Pi(xs) — Pi(xr) +1rsi(u)) |

with
) =2 g (p Y q) S ko) [ = a,)1( = )7
o) == 3 le,z <p ! q) Sty (9) [ =) )0
Prai(w) = ‘g ;,ZO (p ’ q) S Oco) (22 = 2010 = 1) = (@7 = 2,)7(0 ~ )7 0).
Prasu) = —z ;.Z (p ’ q) S %) (0= 20)7 (0 = 570 = (o = 2,)7(0r = 3”0



where P; is a polynomial local to the cell j. The choice of cell-based polynomials is consistent with
the fact that the diffusion coefficient is continuous inside each cell.

Finally we obtain in a more compact form the following approximation of the flux through the face £

Fe(u) = ye(uj — ug) +re(u), (3.21)
with
,ye — |£’ Z wg K/gvil{/gvjaizngai&ig > O
— )
o \Ixj = xgllrgicieig + lxg = Xillkg jie jg

re(u) = €] Y wy [( Kg,ikg,jQtit,jgQit,ig ) (rgi(0) + 1ig(u))

1xj — Xgllkigicieig + [|xg — Xillkg,jctie g

g€l
Kg,ikgjQitigBitjgllXj — Xgl|
+ P:(x.) — P;(x,.) + 1., :(u
(Hxs TRy — Xgllmgituiti 1 g — xallrggoiegg) ) (0 0t) ~ Fi6e) H7raj(u))
Kg,ikg,jQit jgBit,igllXg — Xill
+ L Pi(xs) — Pi(x,) + 1rpsi(u
(uxs T T — XgllRaiut i 1 g — Xillrggougg) ) r0ee) ~ Filox) - rrsiw)

This decomposition will be used hereafter to enforce the positiveness of the scheme (see Section 3.4).

3.3.2 Approximation of the boundary fluxes with the diamond method

In this section, we use the boundary conditions to estimate the boundary fluxes.

3.3.2.1 Neumann boundary condition

Consider the problem (3.1) with I'p = ). Let ¢ be a boundary face of the mesh on I'y. Integrating
the Neumann boundary condition on the face ¢ C I'y, we have

/ﬂVqln:/gN,
¢ ¢

Fo = 1] nggN(Xg) + O(hk)7
g€l

that is to say

we thus impose this equation on the numerical flux

Fo(u) = |/ ZngN(XQ)'
gel
3.3.2.2 Dirichlet boundary condition

Consider the problem (3.1) with 'y = (. Let £ be a boundary face of the cell 4 on I'p. Taking into
account the Dirichlet boundary condition u(x4) = gp(x4) in (3.8) for g € ¢ C I'p, equalities (3.8)
and (3.11) give the system

{Vﬁ(xg) - (xg = Xi) = gp(Xg) — Ui + Tig, (3.22)

Vau(xg) - (x5 — %) = u(xs) — U(Xy) + Tps.
Then, we can decompose n;y in the basis ((x4 — X;),(xs — X))

. g T X Xs T Xr
Ny = Wy ig ”Xg — XzH + Bzé,zg Hxs
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with

and

Biﬁ,ig =

Thus, we have the expression of the gradient in the direction of the normal vector seen by the cell 7,
denoted by Vu(xy); - ny

Va(xy) - (x4 = %i)

g — i

Vi(xg) - (x5 — %r)

lxs — x|

Viu(xg) - nyg = g g + Bit,ig

)

that is to say, using (3.22)

u(xs) — u(xy) + s

llxs — x|

9p(Xg) — Ui + Tig
l[xg — x|

Vﬂ(xg) Ny = Wi ig

+ Bivsig

, (3.23)

Let u = (u;)1<i<n be the numerical solution on the mesh. By mimicking the expression of the exact
flux (3.23), the numerical flux is defined by

= 10> wars | e (90 (xg) — i +7ig(W) + B9 (Pi(x,) — P(x,) + rpu(w) )
gel - Xl” ||Xs - Xr”
with
k p
_ 1 p PP a(, _ 2 \(p—q)

In a more compact form, we have

Wok g 14
Fe(u) = —ypu; + Z ( !’1;9 M;gh |9D(xg)> + re(u),
gel 9 v
with
Ny = Z Wkg it ig|¢| >0
2\ g =l ) =
0 Bie,i
= [0 Y wytg ( B g (w) + T (P(xs) — Pilxe) + m(ﬂ))) :
gel Ixg — x| %5 — x|

3.3.3 Approximation of the interior fluxes with the DDFV method
3.3.3.1 Primal flux

Consider the case where the diffusion coefficient x can be discontinuous on a face ¢ of the mesh and
suppose that u € WH>°(Q). A Taylor expansion at order k in the neighborhood of x, gives (3.5) and
(3.6), that is to say

k D _
. = _ 1 p u (p—q) k+1
(xj—xg)-Vu(xg) = 1;— Z Wz (p— q>axqay(pq)(xg)/j(x — )y —yg) " dr + O (h )’

p=2

Tgj
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and

_ ou _
(xg—xi)-Vu(xg) = u(xg) “erz_: zp' Z <p q> m( 9) /i(w —29)(y — yg) P Vdz + O (h’““) :

Tig

Using respectively x = x, and x = x; in the Taylor expansion (3.4), we obtain (3.9) and (3.10) as
previously and the difference between these two equalities gives (3.11), that is

(X —%p) - Viu(xg) = t(xs) — u(x;)
o —q q p—q
Zzp' Z ( - q) Gaiayrn Xo) (s = 20) (s = 4e) ™ = (@r — 2) (y — ) "~0)+O (BF+1).

Noting s; as the intersection between the primal mesh ¢ and the dual mesh s, we have

1
us—vs/su(x)d SSES/SZ

A Taylor expansion with respect to x5 at a point x € s; gives us

oPu

k
u(x) = u(xs) + (x —x5) - Vu(xs;) Z ; Z (p g q> W(xs)(x—xs)q(y_ys)(p—q) +0 (hkﬂ) ,

then, by integrating it over s;, this gives

i Si @

Thus, we have

1 oPu
i — 1 il 2 ) (y—r) PO k+1
Us —u(xs)+v Zz:/&(x xs)-Vu(xs, +Z Z (p q) x40y = q)( )/Sl(x zs) 1 (y—ys) dz+O (h )
(3.24)
Using the same principle for the node r and replacing u(xs) and u(x,) by their expressions in (3.11),
we obtain

(x5 —xr) - Vu(xg) = Us — Uy ——Z (x — x5) - Vu(xs,)
Sses Si
k 1 P D oPu (p— qd v
22 oDy [ e g 52 [ o) Vi)

ko1 g q B
B2 Z( )xqay@—wﬁ/r(w—m (v~ y) "=

i

G p oPu (r—q) (r—q) k+1
Z Z p—gq W( )((fﬂs—xg)q(ys—yg)p I —($r—$g)q(yr—yg)p q)+0(h )
(3.25)
Thus, we have the system
Viu(xg) - (x5 — Xg) = U5 — u(Xq) + Tgj,
Vu(xg) - (xg — X;) = U(xq) — U; + Tig, (3.26)

[ ) = ate Vs [ o) +z z(p q)axf)yﬁ‘)< ) [ =) 000 (1457).



We can decompose the normal n;, in the basis ((x; — x4),(xs — X))

Xj — Xg4 Xs — X

H + Biv

s
x5 — Xr” ’

with Qg 5 > 0.

Thus, we have the expression of the gradient in the direction of the normal vector seen by the cell j,
denoted by Vu(xg); - nj

Va(xg) - (x5 — %g)

1 = g

Viu(xg); - nig = g5 + Biej |

that is to say, using (3.26)

Uj — U(Xg) + 7Tgj
l[x; — xg]|

ﬂs - ﬂr + 7:7"5
+ B

Vﬂ(xg)j ‘N = Qg j , (3.27)

x5 — x|
Then, we can decompose ny, in the basis ((x4 — x;),(xs — x;))

Xg — X Xs — X

ny = oy iv——7 + Biit———,
[xg — x| [xs — x|

with Qg i > 0.

Thus, we have the expression of the gradient in the direction of the normal vector seen by the cell 7,
denoted by Vi(xg); - ng

Vii(x,) - (%, - X

I%g — i

Va(xg) - (x5 — %r)

llxs — x|

Vu(xg)i - 0y = e + Biei

)

that is to say, using (3.26)

U(xg) — U + Tig
1xg — |

as - ar + 'Frs
+ Biﬁ,i—

Vau(xg)i - Ny = e

[[xs — x| ’

The continuity of the flux imposes
Fg.i VU(Xg)i - Mig = g ;VU(Xg)j - Mie,

which leads to

_ 1 KgjQitj . | _ KgiQiti Kg,jBitj — Kgilbiei
u(Xg) = wa Bd 20 (i1 + 7p5) + 20— (g — Tyg) + —2L " (Ug — Up + Tps) | -
M Rl (erxgll I T g =T e —x ] e

(3.28)
Inserting (3.28) into (3.27), results in
— Rgikg 0405 Cg i _ _ _ _
kg iVU(Xg);j - Nyg = g Uj — Ui + Tgj + T4
0 VUGE)i -0 <uxj—xgrng,iamwuxg—mnﬁg,jam,j)( § 7T oy + )

N ( Kgikgj (ieiBiejl|X; — Xg|l — vie i Bieillxg — %)
lIxs — x|l (Ix; — XgllKgiciei + || xg — XillKg,5cxie ;)

) (tis — Ty + ). (3.29)

uprimal ' ) ) ] )
Let u = ( dual be the numerical solution, where u" = (u,.);<,<,, is the numerical solution on
u <r<

the dual mesh and uPimal — (u;)1<i<n is the numerical solution on the primal mesh. We approximate
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the derivatives of v at the Gauss points with a derived polynomial at this Gauss point. By mimicking
the expression of the exact flux (3.29), the numerical flux is defined by

Kg,ikg,j i, j il i
Fo(w) = 1613w, K P )(uj—uﬁrgj(u)wig(u))

ey 1%j = Xgllkgiviei + [[xg = Xillrg jevic,

( Kg,ikg,j (QieiBiel|Xj — Xgll — viejBieillxg — i)
l[xs — %7 || (Ix5 — Xgllrgicies + ||xg — Xill g jcvie ;)

) (us — Uup + rrs(u)) )

with
riglw) = i o ZO (p ’ q) S (%o) (@ = 2,)1( = )
2Vl :
rasu) = —ivlp,go (p ’ q) o= 09) [ (=70~ 1) 7
o) == 3 [ =) TP+ X [ %) VPG
S si€s 7 si ToriErd T
- ﬁ;zo (p ’ q) s o) [ (=2 = 5) e
Zp 2 :
+ i;,z% (p ’ q) S ) [ (2= e — ) Vs
22 :
- i;zo (p ’ q) e (o) (2 = 2010 = 95) 07 = (o = 2,)7 (0 = )7 0).
S0

In other words
Fe(u) = ve(uj — u;) + re(u),
with

= 103wy < e e ) >0,

oo\ = xgllwgiaiei + lIxg — xill kg jcvie s

) = 013w, [( Kg,ilg,j Qi j it i > (rg;(0) + rig (W)

get x5 — Xgllkgiciei + lxg — xill g jcvie

o (Mt (ieiBiesl1 % = Xgll = cviejBieillXg — i) (g — 11y + (W)
S T rs
lIxs = x| (lIx; — Xgllfgicviei + lxg = Xillrg jcvic;)
3.3.3.2 Computation of u, on the primal mesh

Let us consider a face ¢ inside the domain, then u, is obtained by the same process as the one to
obtain u, in (3.28)

B 1 Ko Koo keBie — keibici
u(x) = Rei0it; | R0t ( — (uj + ;) + — Z (i — ) + —22 (U — T+ Trg) | -

=l ™ Tocj=c] s = |
(3.30)
Let us consider a face £ as a Dirichlet boundary face, then we have
u(xg) = g(xy).
Let us consider ¢ a Neumann boundary face, belonging to a cell .. We have
ling_L(X[) 1y = g(Xg), (331)
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and
ﬁgVﬂ(XZ) Ny = Ky [aig(VfL(Xg) . (Xg - Xz)) + ,Big(VI_L(Xg) . (XS — Xr))] s

that is to say
H@Vﬂ(X@) Ny = Ky [Ozlg ( (Xg) —Uu; + 7“14) + /Bzf ( — Uy + 777«3)] . (3.32)

Equations (3.31) and (3.32) give

u(X@) - T U — T — T (ﬂs — Uy + Frs) . (333)

3.3.3.3 Dual flux

The second way to calculate the vertex values u, is to consider them as additional unknowns that are
solutions to problem (3.1) integrated on each cell of the dual mesh, thus following [55]. We have

/TV-I-@Vu+/T>\u:/Tf.

that is, thanks to the divergence theorem

—Z/nVu n—i—/r)\fa:/rf,

ler

With a k-order approximation, we have
=10 wgrg (Vi) - ny; + /)\u = /f + O(hY),
ler  gel ! !
with w, the weight of the Gauss quadrature.

Thus we need to approximate
Hg (Vﬂ)g . nl-g.

Let us consider a Gauss point § on a dual face £ located in a primal cell 7. Using the Taylor expansion
(3.6), we have

k p _
_ _ _ 1 P 0Py _ k
=) Vbt 2 2 ( )aayw (3) (@ —p) a0 (1),

p—q
(3.34)
and the ponctual Taylor expansion (3.4) applied to the point x; gives

oPu

_ - - k+1
u(xy) = u(xg)+(xe—x3) - Vu(xz +p§:2 Z ( )W(xg)(:ce—xg)q(ye—yg)(p NNG) (h ) .
The difference between the two previous equations gives us

(x¢ —x;) - Vu(xg) = u(xe) — 4

p= i

k P Py
Z 1 Z <p f q> (%qu(p_@(xg) ((a:e — )" (ye — y5) "9 — %/(m —25)(y — vz )(pq)dl‘) Lo (hkﬂ) ‘

Tig

Then, we have (3.9)

D oPu -
<p q>axtzay(pq)( a) (@ —25)" (yr—ys) P~V 40 (h’“+1)7
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& 0P _
PP (7 ) oy )= )00 (14,

Using the relation (3.24) applied to the nodes r and s, we have

( ) - Vi(xg) = u(xg) — u +Zk: ! zp: p 0% (x5)( )4( )(=a)
Xg — %) VulXg) = u(xg) — ur — ——————(xg) (@ — 25)"(yr — Y5
! I 7 2 p! o \P—4 &any(p—q) 9 g)"\Y Yg
Z/ - Va( i : Z P o ( )/( )9( )(P=a)q (’)(hk“)
v X = xp) - Vulxn) + 2 o o (Xs) [ (@ s z+
r r,€r v i =2 p' 7=0 pP—q 8;1;qay(p q) si Y—Ys
and

(p g q> O () s — ) (ys — )P

¥ Lt 0x40yP—4)
1 1 p ou q (p—q) k+1
_SSZZG:S/SZ(X_XS) vu(x&)_pz:;p!qz:%(p_q) axqay(pq)(xs)/&(‘%_ws) (y_y) dm—l—(’)(h )

We can decompose the normal n,; in the basis ((x; — x;),(x5 — x;))

X — X4

Xg — Xr
n.;=a.,, E?

+ B,

—xill T kg — x|

with ﬁrér > 0.

Thus we have

_ Vﬁ(x~) . (Xg — X')
V'U:(Xg)?“ ‘= OCTZ,T Hiﬁ — Xz” - + /BTZ,T

Vu(xg) - (x5 — %)
Ixg — x|

I

that is to say
_ u(xg) — Ui + 7 UG — Uy + Trg
VU(X§)T ‘n; = av,z’r ( 4) . i + ﬁv,g’r—g . rg. (335)

[[xe = x| x5 — x|

Then, we can decompose the normal in the basis ((x; — x;),(xs — x3))

Xy — X5
i = O T e =gl

XS—XQ

with

Ms—

Thus we have
Va(xz) - (x¢ — xi) Vi(xg) - (x5 — Xg)

1% — x|

)

+ Bris



that is to say

that is to say

o 1 Qs = iy Bris . Brir
W= EL (nxe—xz-u (bxe) =t =Ti0) + e g T g = )
lIxg—xrll " [lxs—xgll

(3.36)
with @(xy) defined by (3.30) with @, us taken at the previous iteration of the fixed point algorithm.

Inserting (3.36) into (3.35), we obtain

BrirPris

HXS - XgH/BT[Zr + ng - XrHﬁrEs

Vﬂ(XQ)T ‘n ;= (ﬂs — Up + Trg + ’ng)

1xs =%l .48y, + [1%5 — xrll, 5,76 (a(xg) — U + 73¢).  (3.37)
Ixe — xill(1xs — %3118,z + 115 — Xr[1B,7.,) Y

We approximate the derivatives of u at the Gauss points with a derived polynomial at this Gauss
point. By mimicking the expression of the exact flux (3.37), the numerical flux is defined by

= |7] g%iwg“g [ s = ngif’ff’;g ~% 1Bz, (us = ur + 1rg(0) + rgs(u))
e ;Jx T ”a;iﬂgi%i) () =)
with

—‘2 /i(w —23)(y — yg)(”‘”dx> ,

rrg<u>=§;§<pfq)axq§£,_q)<xw<x ~ o =)0 4 3 [ ) PG
+p§2 ;,g <pfq Srrag 06 [ (@ =)V

ras(u) = - z;z 7 o) G o5 =) = 5 [ ) PG
—;j,go pfq) S 5>/Si<a:—xs> (v~ y) "

In other words



with

b1 Br~rﬁr~s
v =01 wgkg ( bty >0,

geg HXS - XEHBTZ,T + HXQ - XTHBTZ”S

l BrirBri s

x5 — %3l 8,7, + x5 — %[ 8,7

rp(u) = [0] > wykg (rrg(u) +7rgs(u))
gel
HXS - X!:]Harf,slgrg,r + HXQ B XT”arg,rBrZ,s

e = xill([[xs = %315, + lIxg = %+[158,7,)

(u(xg) — u; + w(u))] :

3.3.4 Approximation of the primal boundary fluxes with the DDFV method

3.3.4.1 Neumann boundary condition

Consider the problem (3.1) with I'p = ). Let ¢ be a boundary face of the mesh on I'y. Integrating
the boundary condition on the face ¢, we have

/ﬂVqln:/gN,
¢ ¢

Fo= ] ZWQQN(XQ) + O(hk)v
g€l

that is to say

we thus impose this equation on the numerical flux

Fo(u) = [€] ) wegn (xq)-
gel
3.3.4.2 Dirichlet boundary condition

Consider the problem (3.1) with 'y = (). Let £ be a boundary face of the cell ¢ on I'p. Using the
Dirichlet boundary condition on g in (3.8), equalities (3.8) and (3.25) give the system

{Vu(xg) (%xg — X)) = gp(%Xg) — Ui + Tig,

3.38
Vﬂ(xg) (Xs — Xp) = Us — Uy + Trs. ( )

Then, we can decompose n;y in the basis ((x4 — x;),(xs — x;))

Xg — Xj Xs — X
Ny = aiz,igm + Biz,igm7
with
g — x|
P e A1 | N
Qigig (xg — Xi) Ny ;
and

Bitig = l[xs — Xr[Inie - (xg — Xi)J_

7 (x5 — %) - (xg — %)+
Thus, we have the expression of the gradient in the direction of the normal vector seen by the cell 4,
denoted by Vu(x¢); - n

V(xy) - (xg — %i)

1% — x|

Vi(xg) - (x5 — Xr)

lIxs — ||

Viu(xg) -0y = g ig + Bit,ig ;

that is to say, using (3.38)

9p(Xg) — Ui + Tig
||Xg — x|

'as - 'ar + Frs
+ Bivig—————

Vﬂ(xg) ‘N = Qigg , (3.39)

l[xs — x|
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Let u = (ui)1<i<n be the numerical solution on the mesh. By mimicking the expression of the exact
flux (3.39), the numerical flux is defined by

= |/ ngﬂg (H gw ZZ(ZH (9p(xg) — u; + 1ig(n)) + ‘BM (us — up + T?"S(“))) )

gel |XS o Xr”
with
) Ak (r—a)
ot pzzvzp' qz% (P Q> iy * )/i(x_:’:g)q(y—yg) =9 dg,
rrs i _Xs . (Xsl)
S S»LGS S’L
ili : o) [ o=y =)D+ 52 3 [ (=) TPl
_ r — Tg - Ys Xz e X — X, ) - X
p_2 p‘ q_O p q 8xqayp Q) Sg y y ‘/T"T‘iET Ti (3
Ly ! q (p—Q)d
+p;2p'qzo P—q axqayp q)( r) n_(x_xT) (y —vr) x
ko P »
Z;Z (p Q> 31?‘18?/1’ dzidyr-a )<($8*x9)q(ys*yg)(”_q) — (zr — 7)) (yr — yg) P~ q))
p=21" ¢=0
In other words
WakgQiioll
Fe(u) Wuz+z< gt Qit,ig| IgD(Xg)> ).
g€l ’XQ - XlH

with

WokaQipioll
W:Z< 9hgQitiig| ‘)ZQ

Ixg — ]

= |/ ngng ( Qit.ig rig(u) + _Piig (us — up + rm(u))> .

lIxs — x|

3.3.5 Approximation of the dual boundary fluxes with the DDFV method
3.3.5.1 Neumann boundary condition

Consider the problem (3.1) with I'p = 0. Let £ be a boundary face of the mesh on I'y. Integrating
the boundary condition on the face ¢, we have

/F;Vu~n:/gN,
i 7

]:—g = |Z| nggN(Xg) =+ O(hk)>
gel

that is to say

we thus impose this equation on the numerical flux

‘7:2(11) = |[7| ZngN(Xg)-
gel

3.3.5.2 Dirichlet boundary condition

On the dual mesh, we penalize the diagonal entries of the matrix and the right-hand side to impose
the Dirichlet boundary condition.
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3.3.6 Reconstruction of high order by interpolation

. (k+1)(k+2)
For a polynomial of degree k, we have ~———5—=

( (k+1)(k+2)
2

coefficients to calculate, so at least (k + 1)(k + 2)
xdimension) neighboring cells of the cell are required for stability purpose [11,67]. When
it is possible, the stencil will be centered on the cell, but the closer the cell is to the boundary or the
discontinuity of k, the more the stencil will be shifted in order to not to cross the discontinuity.

e e e |

L A E e

Fig. 3.2 — Construction of the stencil for the cell ¢ with a discontinuity (in red)

To be more precise, the construction of the stencil of a cell ¢ is illustrated on Figure 3.2. We denote
this stencil by S; = {0,...,p}. For the sake of simplicity, we have assumed that the cells involved in the
stencil have been renumbered. First the cell i itself (in blue) is added to the stencil and then we add
the cells that share, at least, a face with the cell ¢ (in yellow). If the number of cells we have already
selected is not sufficient (in our case, (k+ 1)(k + 2) cells for a polynomial of order k), we add the cells
that have, at least, a face linked to the cells that we have just been added to the stencil (in green)
and so on until we have enough cells. In all the above process, we impose that the stencil does not
cross any discontinuity of k (see Figure 3.2).

Let ug, ..., up denote the p + 1 values of u used for the calculation, with p > 2. The polynomial is of

the form
k k—m

Z Z amn (W) (@ — i)™ (y — yi)".

m=0 n=0

The coefficients of the polynomial P(x) are assumed to satisfy

1
— [ P(x)dz =u;,Vj € S;.
ViJi
This leads to the following system
@0,0
V%fol Viofox—mi V%foy—yz‘ Viofo(y—yi)k a1,0 ug
: : : . : a1l | =|[ :
1 1 1 1 k :
vhl vwlhe—w v lyv-vi o v /[Wu—v) : Up
:;M a07k :Id
———
=:a

Since the matrix M has more rows than columns we have to use the least square method so that the
vector a is computed as a solution to the linear system: M!Ma = M'd. We use the Givens method
(see [53] p.206 and following) to solve the least-square problem.
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In this process, we do not enforce the continuity of u at the vertices. Indeed, a priori, Pj(xs) # Pj(xs)
for i # j.

3.4 Monotonicity

A method borrowed from [51,52,105,111] and developed in the framework of 2D diffusion on arbitrary
meshes can be used to make the scheme monotonic. The flux (3.21) can be rewritten as follows

Fo(u) = ve(uj — w;) + re(u)™ —rp(u)”,
. () -+ o)
re(u)| + re(u
re(u)’ = 5
Let us assume that u > 0, the flux then reads as

Fi(u) = (w + W(uu,)jL> uj — <W + W(;)_> U

'] K3

~_ lrw) = rw)

>0 and 74(u) 5 > 0.

and the coefficients <'yg + %) and (’y + ”’(u) ) are positive. We end up with a two point flux,
which is very favorable for the resolution of the system. However note that this system is non-
symmetric and non-linear since the coefficients depend on the unknown vector u.

3.4.1 Matrix form

The scheme reads as
=Y Fe(a) + AViug = Vi fi. (3.40)
lei

Consider a mesh the cells of which are numbered from 1 to n. Denoting

u = (u;)1<i<n,
= (bi)1<i<n, (3.41)
A = (Aij)i<ij<n,

we can write this as the matrix-vector product

A(u)u=b, (3.42)
with
A= % <w+re(u) >+Vi>\i,
(€i i@l y Wi
(3.43)
re(u)™ o,
Ajlw) == 3 (w e(u) ) Vi),
Leing Uj
and

b= Vifi+ Y (r( +Z(“’g”g“l“g‘€'>gfa<xg>)+ S0 wean (k). (3.44)

¢ei el p gel I%g — | teifely g€l

Remark 3.4.1. Assuming that f > 0 and g > 0, all the components of the right hand side b are non-
negative. Assuming moreover that f and g are not both identically zero, then at least one component
of b is positive.
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3.4.2 Picard iteration method

The system (3.43) is of the form A(u)u = b. In order to solve them, we use a Picard iteration method.
We start with an initial guess u® > 0, compute the matrix A (u”) and solve A(u’)u! = b. Repeating
this process, we build a sequence (u”) that, if it converges to a positive vector, tends to a solution of
the scheme. We stop the algorithm when the difference u”*! — u” between two successive iterates is
small enough. To summarize, the following algorithm is used

v+1 I/H2

u
e 349

A(uu)uu-‘rl —b
v=v-+1.

Unfortunately, we are unable to prove that the above algorithm converges. Nevertheless, we prove in
Section 3.5.3 below that the scheme is well defined at each iteration of the algorithm, as soon as the
initial guess u’ is positive.

3.5 Properties

3.5.1 Conservation

Proposition 3.5.1. Assume that u > 0 and consider homogeneous Neumann boundary conditions,
then the scheme defined by (3.40) is conservative, that is to say

> Vihiug =Y _Vifi,
i=1 i=1

Indeed it satisfies the equality

The proof is done in Appendix D.2.

3.5.2 Monotonicity

Consider the definition of an M-matrix (see for instance [37])

Definition 3.5.2. An n x n matriz A that can be expressed in the forme A = sI — B, where B =
(bij)1<ij<n with by >0, 1 <4,j <n, and s > p(B), the mazimum of the moduli of the eigenvalues of
B, is called an M-matriz.

We use the following lemma

Lemma 3.5.3. A matriz A = (Aij)1<ij<n s an M-matriz if it satisfies the following inequalities
n
Vi#j, Ay <0, and Vi, Y Ay >0.
j=1

Moreover, if the last inequality is strict, we say that A is a strict M-matrix.

Proposition 3.5.4. Assume that u > 0. Then the matrice A defined by (3.43) is such that Al is a
strict M-matrice.
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Proof. The matrix A satisfies
n
Vi#j, Ay <0 and Vj, > Aj;>0.
i=1
Indeed we have, for all j

S A=Y ( > <w+ W(;)_> - > <w+ ”(uu)+>> + AV
=1

i=1 \le€it¢Ty i tging '

J

Thanks to Proposition 3.5.1, only the boundary terms and the mass term remain, for all j

D Ay=2 > <w+ W(;)> +A;V; > 0.
i=1

i=1e(inlp) '

)

O

Theorem 3.5.5. Assume that f > 0 and g > 0. Let A and b be defined by (3.43)-(3.44). Then
A lb=u>o0.

Proof. As A! is a strict M-matrix A is invertible and its inverse has only non-negative entries (see
for example [98], Corollary 3.20). In view of Remark 2.5.1, the right hand side is non-negative, hence
u=A"1b>o0. O

Remark 3.5.6. The scheme preserves positivity if the inversion of the linear system is exact. The
above proof assumes that the matrizc M~" is calculated exactly. Obviously, in practice, this is not
the case. In the tests we have carried out, the error is small enough not to affect the calculations.
Howewver, in rare cases, the inversion of the matriz led to a solution with negative components, causing
the calculation to stop. This error can be reduced by working on the condition number of the matriz
or on methods for solving linear systems, which is a perspective.

3.5.3 Well-posedness of the Picard iteration method

Proposition 3.5.7. Assume that f > 0, g > 0, and either | f|[12q) > 0 or ||gllr2(a0) > 0. Assume
moreover that u’ > 0. Then, the algorithm (3.45) defines a sequence (0”),>¢ such, that for all v,
u” > 0.

To prove this property, we need to introduce the concept of irreducible matrix. We quote here |
Definition 1.15].

)

Definition 3.5.8. An n x n matriz A is reducible if there exits an n x n permutation matriz P such
that

PAP! — [Au A121

0 Ay

where A1, A1, Agy are respectively rxr, rx (n—r) and (n—r)x (n—r) sub-matrices with 1 < r < n.
If no such permutation matrix exists, then A is irreducible.

The matrice A defined by (3.43) is irreducible thanks to the following Lemma (see [98, Theorem 1.17]).

Lemma 3.5.9. To any n x n matriz A we associate the graph of nodes 1,2,....n and of directed edges
connecting x; to x; if Ajj # 0. Then A is irreducible if and only if for any pair i # j there exists a
chain of edges that allows to go from x; to x;,

Aip1 #0 = Ak #0 = -+ = Ay # 0.

With these definitions we can make use of the following theorem (see [9%], Corollary 3.20).
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Theorem 3.5.10. If A is an irreducible strict M-matriz, then it is invertible and, for all i, j (1 <
i,j <n), (A7) > 0.

We are now in position to prove Proposition 3.5.7.

Proof of Proposition 3.5.7. We argue by induction on the index v. We assume that u” > 0. Hence
(A(u”))! is a strict M-matrix (see Proposition 3.5.4). It is easy to check that (A(u”))! is also irre-
ducible. Thus, applying Theorem 3.5.10, (A(u”))! is invertible and all the entries of (A(u”))~t are
positive. Consequently, all the entries of (A(u”))~! are positive. Using Remark 2.5.1, we know that
all components of b are non-negative. Moreover, because of the assumption that either || f[[z2(q) >0
or ||gllz2(an) > 0, at least one component of b is positive. We thus have, for all i (1 <4 <n)

n

uf ™ =" (A(u”));'b; > 0,
j=1

since all terms of this sum are non-negative, with one at least that does not vanish. O

Proposition 3.5.7 shows that the condition u” > 0 remains satisfied during the Picard iteration method,
which allows to define A(u”) for all v > 0.

3.6 Numerical experiments

Given Q =]0,1[,  a diffusion coefficient and g a function defined on 912, consider Problem (3.1) with
A=0and 'y =0

3.46
on Of. ( )

In addition to Cartesian meshes we will use the two following types of meshes (see Figure 3.3):
1. deformed meshes, the deformation of which from the Cartesian mesh is given by
(z,y) = (z + 0.1sin(27x) sin(27y),y + 0.1sin(27z) sin(27y)),

2. randomly deformed meshes, the deformation of which from the unit Cartesian mesh with cells
of size Az is given by

(z,y) = 0.1(z,y) + 0.9(z + 0.45aAx,y + 0.45bAx),

where a, b are random numbers distributed according to the uniform law on [—1,1].
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(a) A deformed mesh (b) A random mesh

Fig. 3.3 — Examples of deformed meshes.
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The L?-error and L?-error on the fluxes used in the following tests are respectively given by

2\ /2
Z (-7:6(11) — [¢] ngﬁgv’ﬁ(xg) : nié)
[u—ulf ¢ get
a2 2\ 2
Z ] ng“gva(xg) i 117
Y4 g€l
We also use the H! semi-norm error defined by
IVru — Viu|a
[Vull2

where

1/2 1/2
IVaull2 = (Z Vi IIVU(Xz’)H2> and  [|[Vpu—Vally = (Z VillV Pi(xi) — VU(Xi)II2> ;
i i
P; being the polynomial obtained by reconstruction with the values of the solution u.

For all the tests, the stopping criterion y and the initial guess u® of the fixed-point algorithm (3.45)
are u = 1072 and u{ = 1,Vi. We use the linear solver GMRES with the preconditioner ILU (see [3],
Chapter 7.4) with the convergence criterion is 10714,

3.6.1 Numerical accuracy assessment

In this section we present numerical results for diffusion problems of type (3.46) with analytical
solutions. The first (resp. second) case involves a discontinuous (resp. anisotropic) diffusion coefficient.
Numerical convergence rates are evaluated using the L? norm of the solution as well the L? norm of the
fluxes and the H! semi-norm. We perform a convergence study for these problems with a sequence of
successively refined deformed meshes as that shown in Figure 3.3a. For the sake of brevity we present
only the results on this type of mesh. We obtain similar results on randomly deformed meshes as
that shown on Figure 3.3b. We will also skip the case of continuous scalar diffusion coefficient, as it
is simpler than the discontinuous and anisotropic cases.

3.6.1.1 Discontinuous diffusion coefficient

Recall that we have assumed the possible discontinuities of the diffusion coefficient x coincide with
edges of the mesh. Given

1
1 if z < 3
k(x) = L f(x) = 272 cos(mz) cos(my) 4+ 20, g(x) =0,
2 it x>-
2
the function
2 : 1
cos(mx) cos(my) — 10x= + 12 if x< 3
u(x) =
1 43 1
B cos(x) cos(my) — 5z + 7 it x> 2

is solution to (2.41). Results are summarized in Figure 3.4 which shows that all schemes are k-th-order
accurate in the L? norm, the L? norm of the fluxes and the H! seminorm. We can note that there is
a superconvergence for odd orders.
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Fig. 3.4 — L?-error (on the top left), L?-error on the fluxes (on the top right) and error in the H'
seminorm (on the bottom left) for problem of Section 3.6.1.1.

We see that, even if Vu is discontinuous in this problem, we are able to achieve an arbitrary order of
accuracy. The by point for this is to design a stencil that do not cross discontinuities of k, as explained
in Section 3.3.6.

3.6.1.2 Anisotropic diffusion coefficient

Given

10
K(x) = ,
(x) 0 9
and

f(x) = 3n?sin(mz) sin(my), g(x) =0,
the function
u(x) = sin(mz) sin(7y)

is solution to (2.41). Results are summarized in Figure 3.5 which shows that all schemes are k-th-order
accurate in the L? norm, the L? norm of the fluxes and the H! seminorm. We can note that there
is a superconvergence for odd orders. Of course, similar results may be obtained for a scalar-valued
diffusion coefficient k.
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Fig. 3.5 — L?-error (on the top left), L?-error on the fluxes (on the top right) and error in the H'
seminorm (on the bottom left) for problem of Section 3.6.1.2.

Scheme | Number of cells per direction | Number of iterations | Execution time (ratio)
Order 1 168 172 1

Order 2 212 180 2.33

Order 3 31 132 0.10

Order 4 31 120 0.20

Order 5 19 103 0.20

Order 6 14 124 0.26

Order 7 16 143 1.08

Order 8 10 154 0.78

Tab. 3.1 — Minimum number of cells to reach a precision on the L?-error of 10~° with the time of
execution and the number of iterations of the fixed point algorithm for order 1 to 8 for problem of
Section 3.6.1.2.
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Scheme | Number of cells per direction | Number of iterations | Execution time (ratio)
Order 3 323 135 1

Order 4 343 135 2.49

Order 5 93 122 0.56

Order 6 76 134 0.73

Order 7 46 90 0.52

Order 8 40 76 0.62

Order 9 30 75 0.75

Tab. 3.2 — Minimum number of cells to reach a precision on the L2-error of 102 with the time of
execution and the number of iterations of the fixed point algorithm for order 3 to 9 for problem of
Section 3.6.1.2.

Table 3.1 (resp. Table 3.2) gives the minimum number of cells per direction required to achieve
an accuracy of 107° (resp. 107Y) on the L?-error, with the number of iterations of the fixed point
algorithm and the time of execution. As expected, the number of cells needed to achieve the desired
precision (first column) is a decreasing function of the order. The second column gives the number of
fixed point iterations required to satisfy the stagnation criterion. This number is either constant or
decreasing with the order, which is not intuitive and is a good point. The more interesting column is
the last one giving the total computational cost of the method. This computational time is a trade-off
between the algorithmic complexity and the precision of the method, which both increase with the
order. We notice that, in general, execution time decreases as the order increases. For a large error
setpoint value (107°), the optimal choice of scheme is the third-order one. However, when decreasing
the error setpoint value (10~9) higher-order schemes perform better, and the optimal order becomes
seven. We anticipate that small values of the error setpoint will favor the highest orders. We obtain
speed-ups of factors up to ten in term of computational time to reach the desired precision. We
also observed that odd orders perform better than even orders. This confirms what we notice on
Figures 3.4 and 3.5: a super-convergence is achieved for odd orders. We also observe a somewhat
spectral convergence: for a fixed mesh size, the error decreases as k grows.

3.6.2 Monotonicity assessment

We propose a challenging benchmark borrowed from [110] to compare a non-monotonic scheme, which
can give nonpositive solutions (in this case the usual DDFV scheme), with our monotonic high-order
scheme which always gives nonnegative solutions. For this test we have used Cartesian meshes.

3.6.2.1 Tensor-valued coefficient « and square domain with a square hole

2
Consider the square domain with a square hole Q =]0,1[2\ {%,8} , f(x) =0in Q and g(x) = 0 (resp.
g(x) = 2) on the external (resp. internal) boundary. We choose

o cosf sinf 1 0 cosf —siné G—E
~\ —sinf cosh 0 10* sinf cosf ’ 6

We compare the results obtained with the monotonic high order schemes and DDFV schemes on a
Cartesian mesh with 2000 cells of size 1/45. The stopping criterion of the fixed point algorithm is
1 = 10712, except for order 6 for which x = 107!° and for order 7 and 8 for which p = 1075 to reduce
the computing time. Figure 2.7 shows the mesh, the DDFV solution and its negative and positive
parts. Figure 3.7 displays the monotonics high order solutions while Table 3.3 gives the minimum and
the maximum of each solution.
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Fig. 3.6 — Numerical solution obtained with the DDFV scheme on a highly refined mesh (1310720
cells of size Ax = 1/1152).

As explained in Remark 3.5.6, the precision of the inversion of the linear system sometimes leads to
negative entries in the solution vector u. In general, this can be fixed by using the result of a low-
order calculation as the initial guess of the high-order calculation. This procedure is also favorable
regarding the computation time. It significantly reduces the overall cost of the simulation. However,
we encountered one case for which this fix was not sufficient. For the test of order 5, for a Cartesian
mesh with 86 cells per direction, we did not manage to run the simulation. We think that this is a
severe issue for this kind of methods which is in general not addressed in the papers. In the near
future, we intend to work on the linear system inversion.

Scheme Minimum of the solution | Maximum of the solution
DDFV —4.59 x 1071 2.05
Monotonic scheme of order 1 1.3e — 28 1.96
Monotonic scheme of order 2 le — 21 1.96
Monotonic scheme of order 3 1.7e — 27 1.98
Monotonic scheme of order 4 3.9¢ — 30 1.97
Monotonic scheme of order 5 1.1e — 27 1.97
Monotonic scheme of order 6 4.3e — 27 1.98
Monotonic scheme of order 7 7.9e — 25 1.98
Monotonic scheme of order 8 5.4e — 21 1.98

Tab. 3.3 — Minimum and maximum of the numerical solution to the problem of section 3.6.2.1 for
the Cartesian mesh with 2000 cells of size 1/45.

Even for a highly refined mesh (1310720 squares of size Az = 1/1152) the solution obtained with the
usual (non-monotonic) DDFV scheme (see Figure 3.6) has negative values up to —2.11 x 1073, On
the other hand the high-order solutions obtained with the monotonic scheme remain always positive
whatever the order: see Figure 3.7 and Table 3.3 which gives the minimum and the maximum of each
solution calculated with a Cartesian mesh (2000 cells of size 1/45), up to order 6. We also observe on
Figure 3.7 that the solution for & = 3 is closer to the converged solution (see 3.6) than the solution
for k = 1. This is reminiscent of the spectral convergence we pointed out in Section 3.6.1.
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(a) Solution obtained with the (b) Solution obtained with the
monotonic scheme of order 1 monotonic scheme of order 2

(c) Solution obtained with the (d) Solution obtained with the
monotonic scheme of order 3 monotonic scheme of order 4

04

02

1le-27

(e) Solution obtained with the (f) Solution obtained with the
monotonic scheme of order 5 monotonic scheme of order 6

(g) Solution obtained with the (h) Solution obtained with the
monotonic scheme of order 7 monotonic scheme of order 8

Fig. 3.7 — Numerical solutions obtained with monotonic schemes of order 1 to 8 for a cartesian
mesh (2000 cells of size 1/45)
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(a) Solution obtained with the (b) Solution obtained with the
monotonic scheme of order 1 monotonic scheme of order 2

1.3e-30

(c) Solution obtained with the (d) Solution obtained with the
monotonic scheme of order 3 monotonic scheme of order 4

Fig. 3.8 — Numerical solutions obtained with monotonic schemes of order 1 to 4 for a cartesian
mesh with 90 cells per direction

3.6.2.2 Fokker-Planck type diffusion equation

This benchmark is a simplified version of the one from [69]. Given Q =]—50,50[%, T' = 250, v = (vz,vy)
the velocity variable and V = (—20,20) the averaged velocity, we are looking for the distribution
function u = u(v,t), solution to the simplified Fokker-Planck equation

g—? — Vi (kVyu) =0 in Q % [0,77],
kVyiu-n=0 on 09 x[0,T7], (3.47)
u(0) = a° in Q,
where the diffusion coefficient k = K(v) and the initial condition u° are given by
1 —0 1 2
k(v)=1-— WV@V, u(v) = %exp(—Hv—VH ) (3.48)
Note that the full Fokker-Planck equation would read as
ou _ _
N + V- (vu) — Vy (kVyu) =0.

The diffusion coefficient x defined by (3.48) is degenerated: it does not satisfy (3.2), hence the
theoritical results of the preceding Sections do not apply to the present case. It follows in particular
that the well-posedness of the fixed-point algorithm (see Section 3.5.3) is no longer ensured. However,
@ should remain positive, and the non-monotonic DDFV scheme produces non-physical negative val-
ues. We will see that our monotonic scheme fixes it. This diffusion tensor correspond to a degenerate

101



diffusion problem along the circle of radius ||v||.

The backward Euler scheme is used for time integration.
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(e) Solution obtained with the (f) Solution obtained with the
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Fig. 3.9 — Numerical solutions obtained with monotonic schemes of order 1 to 6 for a cartesian
mesh with 200 cells per direction for problem of Section 3.6.2.2

To limit the calculation time, the stopping criterion of the fixed point algorithm is 4 = 107°. Figure 3.9
displays the numerical solutions obtained with the Cartesian mesh of 200% cells. Table 2.4 gives the
minima and maxima of the DDFV solution for a sequence of refined Cartesian meshes and Table 3.4
gives the minima and the maxima of the numerical solution obtained with the monotonic schemes
up to order 6. We observe that the minima of the solutions to monotonic schemes always remain
non negative, as expected. Compared to the solutions obtained with the DDFV scheme, given by
Figure 2.10 and the solutions obtained by the monotonic DDFV schemes, given by Figure 2.9, the
monotonic arbitrary order schemes are more diffusive (in the radial direction). However, we can note
that the higher is the order, the less diffusive (in the radial direction) is the scheme.
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Scheme Minimum of the solution | Maximum of the solution
Monotonic scheme of order 1 1.5e — 23 2.8¢ — 3
Monotonic scheme of order 2 7.5e — 22 2.9e — 3
Monotonic scheme of order 3 1.1e — 18 5.0e — 3
Monotonic scheme of order 4 2.5e — 22 4.3e — 3
Monotonic scheme of order 5 7.8e — 23 5.7e — 3
Monotonic scheme of order 6 2.3e — 20 5.8 — 3

Tab. 3.4 — Minimum and maximum of the numerical solution to the problem of section 3.6.2.2 for
the Cartesian mesh with 200 cells per direction.

3.7 Concluding remarks

This chapter proposes an arbitrary-order monotonic Finite Volume scheme for the elliptic problem
(3.1) on general 2D meshes. The new non-linear method we have detailed here is arbitrary-order
convergent even for anisotropic and/or discontinuous diffusion coefficients on deformed meshes. Fur-
thermore it allows to deal with all boundary conditions (Dirichlet, Neumann). This scheme uses a
polynomial reconstruction involving values in neighboring cells to evaluate the secondary unknowns
at the Gauss quadrature points. We have adapted the non-linear process from [105] to enforce mono-
tonicity. We have assessed numerically both its accuracy and monotonicity.

Numerical performance could be improved. Indeed, the convergence of the fixed-point algorithm is
not guaranteed and may be very slow. This is observed in particular in test cases where the classical
DDFV scheme gives negative solutions. Techniques for accelerating this fixed point could be explored,
such as Anderson acceleration (see [2,91]) or the e-algorithm (see [13,14]).

The next step is to extend the method to non-linear diffusion (with a diffusion coefficient depending
on the unknown) and to arbitrary order unsteady diffusion, taking inspiration from [15] for example.
The extension of the scheme to the three-dimensional case, based on the same ideas, is the subject of
ongoing works.
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Conclusions and perspectives

In this thesis, we developed positive high-order finite volume schemes for diffusion on deformed meshes.
We started by proposing an arbitrary-order positivity-preserving scheme for diffusion on 1D deformed
meshes in Chapter 1. We dealt with any boundary conditions (Neumann, Dirichlet, mixed). We have
also proposed a symmetrical version of this scheme to guarantee the maximum principle. Studying the
1D case, we have shown that the proposed schemes are conservative, that the fluxes are consistent,
and prove the convergence of the scheme at expected order under a reasonable assumption on the
mesh. We have carried out numerical tests to illustrate these properties up to order 9. Then, we have
presented two positivity-preserving schemes for diffusion on 2D deformed meshes in Chapter 2. They
are based on the same principle, but differ in the way they handle secondary unknowns (node values).
The first scheme, called monotonic diamond scheme, uses polynomial reconstruction to evaluate node
values. The second scheme, called monotonic DDFV scheme, treats these node values as unknowns
and compute them as solution to a diffusion problem on a dual mesh. We consider both Dirichlet and
Neumann boundary conditions. We proposed numerical tests showing the second-order accuracy and
highlighted the monotonicity by comparing them with the classical DDFV scheme (see [5%]). Finally,
we presented in Chapter 3 an extension of the schemes proposed in Chapter 2 to arbitrary order, which
is a natural outcome of Chapter 1. We therefore have two positivity-preserving arbitrary-order schemes
on 2D deformed meshes, based on the same principle but differing in the way they handle node values.
For both methods, we have addressed the case of Dirichlet and Neumann boundary conditions. How-
ever, we have only implemented the positive diamond scheme of arbitrary order. Numerical tests have
been proposed to confirm the order of convergence and monotonicity. We observe a superconvergence
for odd order. For both methods, high order is obtained using Taylor expansion at the desired order.
For the methods that require a polynomial reconstruction to evaluate some quantites, the choice of
the stencil has been made with the aim of accurately reconstructing polynomials of sufficiently large
degrees. The higher the order, the larger the stencil needs to be. All these methods have been adapted
to the case of a discontinuous and/or tensor-valued diffusion coefficient. It is important to note that
high order is achieved even in the case of a discontinuous diffusion coefficient, provided that the faces
coincide with the discontinuities. In this case, a flux is considered on each side of the face, taking care
not to cross the discontinuity, especially when building the stencil. This result could be of particular
interest in the context of coupling with Lagrangian hydrodynamics.

We now list some natural perspectives to this work :
> First, concerning the theory

o It would be interesting to extend our 1D convergence proofs to Multi-D.
> Second, improving the effectiveness of the scheme could be considered

¢ It seems that the scheme performs better for odd orders. We should try to explain why.
o We could investigate the effect of a weighted reconstruction for polynomials (see [39]).

¢ We could work on the condition number of the matrix or on the solver in order to improve
the resolution of the linear system.

¢ Numerical performance could be improved. Indeed, the convergence of the fixed-point
algorithm is not guaranteed and may be very slow in 2D. This is exibited in particular
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in test cases where the classical DDFV scheme obtains negative solutions. Techniques for
accelerating this fixed point could be explored, such as Anderson acceleration (see [2,91])
or the e-algorithm (see [13,14]). This particular point has been studied by Clément Vincent
during his master’s intership (see [100]). He obtained an acceleration of the convergence
up to 46%.

> Last, some possible extensions of the schemes may be addressed

¢ It would be interesting to implement and test the monotonic DDFV scheme of arbitrary
order in order to compare it with the monotonic diamond scheme. As one has seen in
numerical tests in Chapter 2, the monotonic diamond scheme seems more diffusive (in
the radial direction) than the monotonic DDFV scheme. This could be explained by the
stencil used for the polynomial reconstruction required for the monotonic diamond scheme
in constrast with monotonic DDFV. It would be interesting to see whether this is also the
case for arbitrary order since, in such a case, polynomial reconstruction is required for both
schemes.

¢ Another natural follow-up to this work would be to consider the non-stationary case and
perform a high-order time discretization. In particular, we could consider some positivity-
preserving variant of Runge Kutta methods (see [15,51]).

& Moreover, some applications could involve a diffusion coefficient depending on the unknown.
It would therefore be appropriate to adapt these schemes and implement them in the non-
linear case.

¢ Besides, these methods could be coupled into a high-order hydrodynamics code.

¢ Finally, this work could be extended to 3D. Extension to 3D tetrahedral meshes does not
seem to rise any difficulties. However, extending this method to any mesh, for example
hexahedral meshes, which could have non-planar faces, is far more complicated, in partic-
ular for integration. Indeed, integrating a polynomial exactly on a non-planar face is not
straightforward.
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A.1 Proof of the Theorem 1

Proof. A variational formulation of (4) gives

/ kVuVu +/ uv = / fv,  Yve HH Q). (A.1)
Q Q Q
Let us pose G € C1(R) such that
G' >0 onRT,
o (A.2)
G=0 onR7,
and K = max (mgx(g),mgx(f)), we suppose K < oo.
We can choose v = G(u — K) € H}(Q) because
v(x) = Gu(x) — K) = G(g(x) — K),Vx € 09, (A.3)

and
g(x) — K <0,Vx € 09,

so v(x) =0, Vx € 9.

Then (A.1) gives
/Qwu (Glu— K)) —I—/QuG(u— K) = /ch(u_ K),

that is to say

/Q/i(Vu-Vu)G/(u—K)+/

(u— K)G(u~ K) = / (f - K)G(u— K),
Q

Q

Since G(u — K) < 0 and f — K < 0, the right hand side is non positive. The first term of the
left hand side is non negative, so (v — K)G(u — K) < 0. But we also have (v — K)G(u — K) <0
since if u — K € R™, then (u — K)G(u — K) = 0 and if u — K € R*, then G(u — K) < 0. Thus,
(u— K)G(u—K)=0.

So, we have u = K or G(u — K) = 0, that is to say u < K. O

A.2 Formulation with the particle derivative of the Euler equations
with thermal conduction

While the Eulerian description describes the velocity field at a given instant, the formulation with
the particle derivative describes the trajectories followed by the particles over time. This formulation
therefore allows the material to be tracked as it moves.

To do this, we will perform a few algebraic manipulations to obtain the formulation with the particle
derivative of Euler’s equations with heat conduction.

1
Let us introduce the specific volume 7 = = = p~*. Thus, we have 7p = 1.
p

> Let us start with the conservation of mass equation.
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We start with the following equation

dp B
E%—V-(pu)—o.

By multiplying equation (A.4) by 7, we obtain

dp B
T o +7V - (pu) =0.

We know that 7p = 1, which implies, in the case of p (and so 7) is regular (derivable), that Q(Tp) =0.

Besides, we have the following relation

9 dp  or
E(TP) _TE—H)E’

which gives

T@ + or _ 0 7'% _ T
ot Pt — ot~ ot
Thus, the equation becomes
—p% +7V - (pu) =0.

In the case of regular solutions, we have the following relation
V:(pu)=pV-u+u-Vp.
By applying this relation, we have

or

—pa+7pv-u+u-TVp:O.

ot

Using the fact that 7p = 1, this implies, in the regular case, that V(p7) = 0, that is to say

™Vp+pVT=0 <<= 71Vp=—pVrT

So, we have
or

—pE—FTpV-u—u-pVT:O.
After factorization

0
—p(azj—+u~V7')+TpV-u:0.

Using 7p = 1, this gives

or
p<8t+u-VT>—V-u—O.

Let us introduce the operator "particle derivative" or "total derivative" :

pDit —V -u=0.

> Let us now turn to the conservation equation for momentum.

We start with the following equation

0
ﬁ(pu)—kv-(pu@u)—kVp:O.

Using the formula for the derivative of a product in the regular case

0 _ Ou op
a(pu) - pa +uav
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gives
ou op
E—Fua—l—v (Pru®u) + Vp=0.

Then, using the formula for the divergence of a tensor product
V- -(pu®u) = (pu)Vu+ V- (pu) u,

we obtain
af—i-u@—k uVu+ V- (pu)u+Vp=0
ot at P P p=5

Rearranging terms to bring out known formules, we have

<gt+uVu> (u2t+v (pu) >+Vp=0-

The second term reveals the formula for conservation of mass, which is zero

ugt—i-v (pu)u:u(gt—i—v (p )>:0.

The first term allows us to display the D; operator

Ju
<8t + uVu> = pD;u.

The equation becomes
pDiu+ Vp =0.

> Let us finish with the conservation equation for total energy with heat conduction.

We start with the following equation

0
5 —(pE)+ V- (pEu)+ V- (pu) =V -kVT.

Using the formula for the derivative of a product, for regular solutions

B OE _0p
5t PE) = rgr T EGp

we have O 9y
E%—Eat +V - (pEu)+ V- (pu) =V - -rVT.

Then, using the formula for the divergence of a product
V- (pEu)=EV - (pu)+pu-VE,
we obtain

OF ap
Por +E8t+Ev (pu) +pu-VE+V - (pu) =V - kVT.

Rearranging the terms, we have

(aafﬂ VE)+E<gt+v (v >>+v-<pu>=v-WT.

The first term allows us to display the D; operator

oF
<(9t +u- VE> = pD:E.
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The second term reveals the formula for conservation of mass

E(gi’+v.(pu)):Exo=o.

The equation becomes
pDE +V - (pu) =V - kVT.

So, we obtain the formulation with the particle derivative for the Euler equations

pDit —V-u= 0,
pDwu+ Vp= 0, (A.5)
pDE+V - (pu) = V-kVT.

In the case of regular solutions, this formulation is equivalent to the system (1)

A.3 Details of computations for the Equation (2)
The entropy n can be defined by the Gibbs law

Tdn = pdr + de,
1, . .. .
where 7 = — is the specific volume. This implies
p

d d d

d
Introducing the notation D, = T Oy +u -V, we have
TDin = pDyt + Dqe,

that is to say, multiplying by p,
pT' Dy = ppDyT + pDye.

The Clausius Duhem inequality writes

T
pT Dy — TV - (“; ) > 0. (A7)

Equation (A.6) gives
pT'Dyn = ppDyt + pDee.

|

Replacing e by its expression F — , we obtain

ull?
pTDyn = ppDy7 + pDy (E) — pDy (HQH :

The first equation of (A.5) gives
pDiyT =V -u.

which implies
ppDiT = pV - u.

The third equation of (A.5) gives
pDE = —V - (pu) + V - kVT.
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For the last term, we use the following expression

2 2 2 1
D, <Hu” > _ at <Hu” ) +u-V (”u” ) — 7211315(11) + (;) 2uVu = uatu+ HuHQVH = th(u).

2 2 2 2

Thus, we have
_p, (ImIP) _ _ _
o0, (115 = —pupyw) = —u(pDi(w)).
Then, the second equation of (A.5) gives
—u(pDy(w) = uVp.

Finally, we obtain
pTDi(n) =pV-u—V-(pu) + V- -&VT +uVp.

Besides, in a regular case,
V- (pu) =pV - -u+uVp.

Then, we have
pT' D=V -kVT.

Inequality (A.7) thus becomes

T
V-kVT —TV - (W ) > 0,
T
Using the formula for the divergence of a product on both terms, we have
KV - (VT) + VIVk — kV - (VT) — TVTV <;) >0,
Reusing the same formula on the last term, we obtain
VTVk — TVT [1w + Y <1>] >0
T T)| ="

that is to say
1
VI'Vk - VIVk —-TrVTV <T) >0,

Using the formula of the derivative of an inverse, this gives

vT

that is to say
(VT -VT) > 0.

Nl =
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B.1 Dirichlet boundary conditions

In this appendix we give the details of the computations of the fluxes in the case of Dirichlet boundary
condition given in Section 1.2.5.1, that is to say considering problem (1.3) with g =1, v = 0.

Consider first the right boundary of the domain. The adaptation to the left boundary is straight-
forward. The k-th order Taylor expansion in the neighborhood of x, 1 gives
2

. (@ — 2,0 1)" g k1
Vo, u(x)= +Z 7 d‘f( )+(’)<(:L‘—xn+;) )
Here again, we integrate this expression in order to use mean values. This gives

L

1 xn+% _ = 1 xn+% (J? - xn—t—%) d'a k+1
] 1 u(m)dw—u(wnJr;)—i-%;/gc 1 dexg( nti )dw—i—(’)(h )
-3 =t Tn—gz

_ é+1 xn+l —
_ _ 1 (l‘ ‘rnJrl) 2 dgu k+1
=1 vy
from which we obtain
di 2 " (—1)fREt dla k
e Fne) = 5 (@ un)+22 T iz, )+ 0 (nh).

The numerical flux is obtained by approximating the derivatives of w at x, 1 using a polynomial
2
reconstruction of the solution

2
Frpr(w) = s, 1 (hn (u%% —up) + rn+é(u)> .

The trick of Section 1.2.3 can be applied to ensure monotonicity, that is, in the non-symmetric version

2 7"++1(11) 2 7“11(11)
SalE M (RSP - A 7
hn, Uy 1 nt3 hn Up,

9 T +%( )+ 8,41 (0) 2 7’;+%(u)+3n+1(u>
fn-ﬁ-%(u) - Hn—‘,—l (hn + un+l un—i—% - hin + U Un | , (B 1)
2
with
- unr;r%(u) un+%r;+%(u)
Sn-l—%(u) - un+l — Uy,
2

In order to preserve positivity, a condition similar to (1.19) must be satisfied for the symmetric version
of the scheme

e (v =) gy (0

Up il = Un

>0

)

that is to say that u, , 1 —u, and F, 1 (u) must have the same sign. As in Section 1.2.4, this condition
2 2

du
seems natural because if o (xn n ;) > 0 (resp. < 0), then w is locally increasing (resp. decreasing) so
T 2
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Applying the boundary condition, (B.1) becomes

ra(w) s, () e () +s, 1 (u)
(W) = hypps Kh2+ — o )g%;)— (,f+ = = )u] (B.2)

F
g(anr%)

n+

N

For the left boundary we obtain similarly

2 i) +sy(u) o i tsi(w)
Fi(u) =k E+2— Uy — E+2— g($%) . (B.3)

1 1
2 2 Uul

B.2 Exactness for polynomials of degree k

In this appendix, we give the proof that our flux is exact for polynomials of degree k.

1 as an exact

To simplify the calculation let us consider a polynomial of degree k centered on x;, 1
2

du
solution in order to demonstrate that the approximation of d—(acZ 41 ) is exact for polynomials of degree
€T 2
k. For

k
ZOEDY A1 p(T = Ty 1),
p=0

we obtain
d“a B p! p—t
el ey L P U
p={L
hence
d‘a
W(xzvr%) = a1,

Besides, mean values were used to estimate the values of u at the centers of the cells, so

k P
1 Tivrd ht
1 — E _ P __ § : 141
Uitl = h: ai+%#’(aj xl—i—%) - ai+%7pp +1’
T, —0

7«+% p:() p=
and
1 [T k k (—1)PR?
Uj = 53— ; —z., 1) = . RS 2
uz hi/a:. | pz;)a“ré’”(x Tirt) pz;)awrém p+1
T2
The flux is
~ Kiydl | - k pp 1+(_1)p+1hp dPP
F. l(u)zg Ujq1] — Ui — it i (2, 1),
i+3 hl—l—% 1 i 1;2 (p+ 1)| dypp Vit

where P is an interpolation polynomial of u. Besides, P = w in that case since u is a polynomial of
degree k and polynomials of degree k are invariant under the polynomial reconstruction. The flux
becomes

_ gyl i hig : (=1)"h7
Fipg(@) =5 ({Z Utbop g1 2 bithe T
Z

=0

k
AV
2T R M)
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that is to say

k P +13P k pp +1,P
_ hipy + (=17 h; hivi + (=1)P"hy
Fir g () = Fipy (“Hé:l +ng e o apt1) ; hpt(p+ 1) ree | T RS
— 5 = 2

The flux is exact for polynomials of degree k.
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C.1 Computation of the coefficients aj¢;, i j, Bic; and B ;

In this appendix, we give the details of the computations of the primal coefficents iy ;, e ;, Bir,; and
Bie; given by Equations (2.4) and (2.5).

First, we have

Xe— X

Xs — Xp
Ny = Qg <

+ Biei i

e — x| s =%

Since n;y is orthogonal to the edge ¢ the vertices of which are r and s, by taking the scalar product
with n;y, we obtain on the one hand

that is to say

that is to say

. ||Xs - Xr”nif : (XE - Xi)L

it = T x) - (e — )
Second, we have
X; — Xy Xs — Xp
it =t ol P =

Since n;y is orthogonal to the edge ¢ the vertices of which are r and s, by taking the scalar product
with n;p, we obtain on the one hand

L (X0 g
g = x|
that is to say

1% = x|

g = KT Xel
(x5 — xg) - myg

On the other hand, we also have

that is to say




C.2 Computation of the coefficients a,; and 3 ;

In this appendix, we give the details of the computations of the dual coefficents «,; and 3 ; given by
Equation (2.18).

We have

Xy — X
a s
MHXZ

Xs — Xp
n.;=

+ 8,

=xif T s = x|

Since n,; is orthogonal to the edge ? the two vertices of which are 7 and ¢, by taking the scalar product
with n,_7, we obtain on the one hand

(xs — %) -7

1=, ,
rt [[xs — x|l
that is to say
%5 — % |
Bri= o
T (% — Xp) - n _;
On the other hand, we also have
. 1 _ ~(X€ —Xi) (%X — XT)J_
nré (XS XT‘) - Oéqn@ ”XZ _ Xz” ’
that is to say
llxe = xillnyg - (ks —x0) "

ré = 1

(xe — xi) - (x5 — %Xp)

C.3 Exactness for polynomials of degree 1

In this appendix, we give the proof that our fluxes are exact for polynomials of degree 1. The proof
is first given for the primal flux and then for the dual flux.

C.3.1 Primal flux

We will show that our approximation of Vu(xy) is exact for polynomials of degree 1.

First, let us assume that

u(x) = ag,0 + a1,0r + ao,1y.

Then, we have

Bie

llxs — x|

077

Vau(xg) -ny = (a10(xj —x5) + ao,1(yj —yi)) + (a10(zs — 2r) + @01 (Ys — yr)) -

1% = il

For the primal mesh, the flux is defined by

Fo(a) = |1 [( ik Qg j Qg i ) (i(x;) — @(x3))

[x; — Xel|Ricie; + || xe — X[k jcvie

+ ( ritsy (QitiBiel|%5 = %ell + e Biealxe = i) ) (a(xs) — u(xr>>] :

lxs — x|l (x5 — xellmicvie; + [[xe — xil| 5 jvie ;)

Considering « continuous, the flux becomes
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.amwﬂwwK T )@@ﬂ—ﬂ&b

1% — Xellevie; + [0 — X3l cvie, 5

N (vieiBiejl1x5 — x|l + cvie jBieillxe — xil])
x5 — x| (1% — Xellaies + [|x¢ — X4 vie )

) (u(xs) = ﬂ(xr))] :

Besides, we have

X — X; Xs — X
ny = ayp———r + fi———,
1% — xill x5 — %]
X; — Xy Xs — X

Nig = ai g+ Biej— C.1

N ol T e (G

Xy — X; Xs — X
Ny = Qipi——— + Bigi——— .
3¢ — x| x5 — %]
By taking the scalar product with n;s,, we obtain
(077 . 1
% —xill (x5 —xi) - mye”
_ =i =%l
(xj —x¢) - ny = s (C.2)
Xy — X;
(x¢ — X;) - myp = u,
Qg
that is to say
Qg _ 1 _ Qip j Qg i
Ixj — x| o=l | lxe=allflxy — xgl|evie + [1xe — Xillevie;

Qig,j Qg

Then, by taking the scalar product with x5 — x, on (C.1), we have

(x5 —%;) - (x5 — %r)

Bie = —ovyp s
% — x|
ks — x
(x5 — X¢) - (X5 — Xp) = _M7
Qg j
s — x
(x0— %) - (X5 — %) = _M7
Qg
that is to say
Qe Bic.j @ie Bic.q
B TexillTxeall T To—xal el _ @ieibieg 1% — xel| + i Biellxe — i
l[xs — x| szilciH ||lef’,](e|| llxs = x| ([l — xellevies + [0 — x| vie, )

In the case of a contiuous «, the flux is

Fo(@) = [rg

Consider first the interpolation method. Since u is an affine function, the interpolation polynomial
P is exactly equal to u. Therefore, the node values P(x;) are equal to u(x,). Second, in the DDFV

method, the vertex values are degrees of freedom. In both cases, using the definition of w, the flux
becomes
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Fo(u) = |€]ry [ T (a0, + a1,0m5 + ao,1y;) — (a0 + a1,07; + ao,1%:))

i€
+572(a0,0 +a1,0zs + ao1ys — (@o,0 + a0, + aO,lyr)):| ;
lxs — x|

% —x;

that is to say

Fo(a) = |l]kg [ ” (aro0(zj — x5) +ao1(y; —vi)) + ’ Bt (a1,0(xs — ) + ao1(ys — yr))] ;

[xj — xi Ixs — %, ||

As a conclusion, the primal flux is exact for polynomials of degree 1.

C.3.2 Dual flux

We will show that our approximation of Vu(x;) is exact for polynomials of degree 1.

First, let us assume that
u(x) = ag,0 + a1,0r + ao,1y.

Then, we have

&, B.i

Viu(x;) -n, ;= m (a1,0(ze — 23) + ao,1(ye — yi)) + m (a1,0(zs — ) + a0 (ys — yr)) -

For the dual mesh, the flux is defined by

Fita) = 18wz (2 ) = ) + () — () )

[xs — x|

Using the definition of u, the flux becomes

B.i

T (ao,0 + a1,0Ts + a0,1ys — (a0, + a1,02r + ao,1yr)
S T

Fy(w) = \ZIW(
o
+7M(a0,0 +a1,0z¢ + ao,1ye) — (a0 + a1 oz; + aO,lyi))) .

[[xe — x|

that is to say

Fo() = |ilw; (m”ml,o(xs ~ )+ a0l — )+

[xs — %, Ixe — x|

(a1,0(ze — x;) + ao,1 (ye — yz‘))) :

As a conclusion, the flux is exact for polynomials of degree 1.

C.4 Proof of Proposition 2.6.1

Proof. The sum can be rewritten by interverting the sum over the cells and the sum over the faces.
Besides, the sum can be separated into boundary terms and non-boundary-terms

Zn: (‘ ZH(“)> == Fe(u) = > (Fri(u) + Fr(n)),

i=1 lei Ler e

where £ is the face shared by the cells ¢ and j, and with

{]:Z,i(u) = Ye(uj — us) +rei(u),
Fri(u) = ve(u; —uj) +1e,5(n),
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with r,;(u) = —rg;(u). Then,

Fri(a) + Fpj(u) = 0.
The homogeneous Neumann boundary condition means that the boundary terms are zero, which leads

to

=1 €1

n
Z - Z —Ff(u) = 07
that is to say
n n
> Vidiug =Y Vifi.
i=1 i=1
The scheme is conservative.

C.5 Proof of convergence for DDFV scheme

1

r
|
I
|
|
!

Fig. C.1 — Primal mesh (at the left) and dual mesh (at the right)

For simplicity we will restrict ourselves to the case k =1, A\ =0, g =0 and I'y = ) in (2.1), that
is,
-V . (Vau) = in €,
(V=7 (©3)
u=g¢g on Of.

Suppose further that the dual mesh is made of cells obtained by joining the center of each primal cell
with the center of each of its neightbors and with the middle of its boundary faces. In this case we
observe that the dual boundary ¢ = r N s coincides with the segment x;X;. Denote by n ; the unit
vector orthogonal to / directed from the dual cell 7 to s, N ; = ||x; — X;||n, and by 6 the angle
between vectors —nfg (that is to say x;x;) and n; (see Figure C.1).

We define
h = mgX(lfl,!gl)-
Applying the method used in Sections 2.3 and 2.4.2, we have

I a(xy) —u(x;)  sin(fy) u(xs) — u(x,)
COS(@Z) ||Xj - Xz” COS(Q@) HXS — XT‘H + O(h)a

Vau(xy) -ny =
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i) om s — A u%s) —u(xy) | sin(By) ulx;) — u(xi)
VU( @) rl COS(@[) HXS — er + COS(H@) HX] _ XZH + O(h)

This is equivalent to say that Vu is approximated in the diamond cell I; using the Green-Gauss
formula

11
Vi(x) = ~ | Va+om) =

Ve J1, T2V, (Nig(uj — ui) + Noj(us — ur)) + O(h).

The discretization of (C.3) with the DDFV scheme then writes

1 | )
3 > v <|f|2(ui — ;) + )|l - (u — us)) i
teiigon
1 1 _
—5 2 o (1R = ) + e gl — ) ) = Vi,
teircon 't o
1 1 ~ N .
PN (1e18mie - i = ) + 1P (ur = ws)) = Vidy X, & 09,
Ler
Uy = g(Xg) X c 897
ur = g(xr) x, € 0.

where Iy is the diamond cell x;x,x;x,, V, is the surfa~ce of the diamond cell associated with the face
¢. Recall that the dual edge x;x; will be denoted by £.

The following proofs are inspired from the arguments of [1%] for admissible meshes and from [3] for
general meshes (see also [35], [109]). In the sequel we will assume that the exact solution u satisfies
u € Whoo(Q).

C.5.1 Consistency of the fluxes

Let us denote by

1. Fy, ]?g the exact primal and dual fluxes

]'_-g:/Vu'nig, fg:/VU-nrtz,
l l

2. Fy(u), Fz(u) the approzimated primal and dual fluxes

11

Fi(u) = 27, ((uj — ui)Nyg + (us — ur)N, ) - Ny,
11

Fi(u) = ((uj —ui)Nig + (us — ur)N,7) - N7,

_5%

3. Fe(u), Fz(u) what we can call the semi-approzrimated primal and dual fluxes

Fi@) = 54 (@) — ) Ni + (ax.) — o, )IN,7) - No
Fi@) = 57 (o) = ax))Nis + () = 7, ))N,p) - Ny
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Proposition C.5.1 (Consistency of the fluxes for the DDFV scheme). Let u € W1°(2) be the exact
solution of (C.3) and 0y be the angle between x;x; and n; (see Figure C.1). Assume that H1 is
satisfied. Then we have

- _ CE . ~ 2C 2
- < (1 O]+ 1¢]) <
Fe =R = gl (L [sin@aDIe +17]) < Zosh”
C 90 (C.5)
= — 4 7 . 5 2
;— F; < ) ((1 O]+ 1¢|) <
Fi = Fim| = ol (1 [sin@aDIEl +16]) < 2o
where Cy < Co||D*u|| <, where Cy is a universal constant, and C = max Cy.
Proof. Using the midpoint integration formula we have
Fp = /VU(Xg) ‘ny+O(¢)?), and F;= [Vu(xtz) n;+O(|0]),
L L
hence
_ _ _ 11, _ _ _ _
Fo— Fu(u) = /KVU(Xe) i — 5 (A0¢) = 80 )Ni + (W(xs) = 1(x))N, 7) - Nig + o(e),

Fo= Fli) = [ Valxg) - n,g = 5 (0o5) = ax)Nug + (alxs) = x))N,7) - N+ O( 7).

We have

1 7 sin(fe) o1 L - 1|l g sin(0e) o1
_ - Ny, = N — MNL N = PN N
Ve 2 cos(Be)l£]1¢], 7 cos(0,) " cos(6y) Vi 6 cos(0) €)% cos(By) e

where 6, is the angle between x;x; and n;; (see Figure C.1)*. Using the relation a-b = ||a||||b]| cos(a,b),Va,b €
R?, we obtain

L

Fo Fl®) = S gy V) Nl = g Ve N
1 ﬂax'—ux _Sin(w)ux —a(x 2
B cos(fy) ](7~|( ) (x2)) COS(QE)( (xa) Gar)) + O,
sin(6y) 1|4

Using Taylor expansions in the neighborhood of x;

(x;) = u(x;) — Vi(xg) - N5+ O(|0]%),  a(xs) = u(x,) + Viu(xg) - Njg + O(|¢]).
we deduce (C.5). O

C.5.2 Discrete Poincaré inequality

Lemma C.5.2 (Discrete Poincaré inequality). Assume that H2 and H3 are satisfied. Consider
e = (eprimal gdual) c Rntm o epe gPrimal — (ei)lgign and etual — (er)lgrgm' Assume moreover that
we have homogeneous Dirichlet boundary condition, that is to say

Vr e 09, e, =0. (C.6)

#Note that cos(6,) is always positive.
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Then we have

/2 2 9 /2
2 e2 iam 7Nmax£ € — & €s — €
(ZV+ZV> Ty (ZW«JM )*( ] ))) ’

¢
with Nmax, &, 0o the constants definied by H2 and H3, and where we use the convention that, if £ C 01,

then e; — ej = e;.

Proof. Given a point x € 2, let n(x) be the (first) point of intersection between the horizontal half
line (for example) passing through x and the boundary 09 (see Figure (C.2)). For all primal face ¢,
let x¢: @ — {0,1} be defined by

X) =
e 0 otherwise.
We note that
[ 30 < diam@)1e ()
Q
where diam () = max [|x —y|| is the diameter of €.

X, y€Q
Fixing x € i, we write 7 as a telescopic sum along the segment [x,y (x)], that is,

2 2 2 2 2
e =¢e —ej+..+ep—ep,

where we assume that e,., with x, a node of the boundary of the domain, is zero thanks to the
homogeneous Dirichlet boundary condition. Using the triangle inequality, we deduce that

A e e o oI )
0

with the convention that, in the right hand side, if £ C 052, then e; = 0.

Fig. C.2 — An example of three adjacent primal cells and a horizontal half line (dashed lines) from
the point x € ¢ and intersecting the two interior sides ¢;, ¢; and the border side ¢} at point n(x).

The definition of x, allows to write this as follow

i <Y lef — eflxe(x),
¢
where the sum runs over all faces ¢ such that ¢ N [x,7n (x)]. Integrating this inequality over i with

respect to x, we have
2 2 2 2
/ei = Vie; SZ‘ej _€i|/Xf'
A ¢ A
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Using (C.7), we deduce that

SVt < X0 (018 1 ) = X1 - 1 [ o < @) i - 2,
i i \ ¢ L ¢ & ¢
that is to say
> Vie? < diam(Q) > ]BHe? —é2). (C.8)
i ¢

Noting that

%j [Cllef — el = > —

l
and using assumption H1, we obtain

d_oldlef —efl <>
l

7~ cos(bo)

2 le; — e ~\ /2
7 (costo0)le1) |w|| (cos(@0IEIN) " e + el

12 |ej — e 7\ /2
— 00)|0||¢ i| + leil)-
77 (cos@IINE) ™ (el + )

Hence, using the Cauchy-Schwarz inequality and the fact that V; = § cos (6,) |¢| 0], we infer

2\ /2 1/9
Zreue — e} < S92 S Valle| + lea)? )
cos( o) 1]
V4

14

(cos(80)1¢1121)

Since

(lejl + leil)* < 2(les* + leal®),

this gives

p— 2 kL /2
Yol —ef| < CZQ{Z)) (Zw(ejm ) ) (ZW(|ej‘2+|€i|2)> : (C.9)

¢ ¢ ¢
Taking into account assumptions H2 and H3 we have

> Vi(el +€3) <€) (Vie? + Vjed) < Numax Y Vie?,
l ¢ 7

Inserting this estimate into (C.9), we deduce that

2 12 1/2
ZW@ —ef[ <2v2 Tax (ZW( 7 )) (ZWef) .

Using Equation (C.8) gives

/5 1/2
Vie2 /<2ﬁd' o) Yimaxl 5y, (€ — e 2 C.10
Z iei | < iam(2) cos(6o) Zg: ‘77 : (C.10)

Applying the same argument to the dual mesh, we also have

COS

<ZV 2>1/2 < 2v2 diam(e) YmxE <ZV < >2>1/2 (C.11)
e < iam /) . .

Collecting (C.10) and (C.11), we obtain

1/2 ‘ Nmaxf ej — e 2 €s — € 2 1/2
<§i:‘/ie?+§r:we%> SQﬁdlam(Q)m ZVz ( 7 >+< ] ) ;

14

which concludes the proof. O

128



C.5.3 Convergence

Proposition C.5.3 (Convergence of the DDFV scheme). Let u € W5h*°(Q) be the exact solution
of (C.3). Let e; = u(x;) — u;, Vi € [1,n] and e, = u(x,) — uy, ¥r € [1,m], where u is the solution of
the scheme (C.4). Assume that H1, H2, H3 are satisfied. Then we have

1/2
(Z Viet +) Vw?) < Cih,

with Cy a constant independent of h.

Proof. The fluxes Fy, Fy(u), Fj, Fz(u) are such that

Y A=Y AW [ ad Y H=-Y w1

lei lei ler ler
Therefore
Z]:"g = Z}"g(u) and 2]3: Z]—};(u).
lei lei ler ler
Given ¢; = u(x;) — u; and e, = u(x,) — u, we deduce that

= 11

> Fo(u) = Folu) = > Fylu) — Fp = 5T ((ej — €i)Nig + (es — )N, ;) - Ny,
les lei
Z]:E(a) — Fy(u) = Z]:E(ﬂ) ~Fp= ;‘2 ((ej —€i)Ni + (es — er)N,7) - N, 7.
ler ler

Multiplying these relations respectively by e; and e, and summing over the primal cells ¢ and dual
cells r, we obtain

doeiy (Fe(@) = Fo) + Y ey (Fila) = Fp) =

) lei r ler
1 1 1 1
3 ZZ eng ((ej —ei)Nig + (es — ;)N ;) - Nyg +§ Z Z eTVg ((ej —ei))Ni+ (es —er)N ;) - N ;) .
i Led T fer

Exchanging the sums, and grouping the terms by diamond cells, this reads as

5 (0 ) - (540~ 7)o =
l

1
Z - ((6]‘ — ei)QNM . Nig + (65 — er)QNTZ . Nrg -+ 2(6]' — ei)(es — er)Nz‘K . Nrf) =
y4

2
1 e; —€; es — €5\ 2 € —€; 65 —¢€
2 - jN (A S T 2. 6 ]N (A S T ) ‘12
Zcoswmv‘(( 7 >+< ) sn@ a ) e

14

DN |
N

We next use the following inequality, which holds for all X,Y € R"

1+ ’Sin(eg)‘

1
X?+V?<
* cos(6y)?

2 2 : _

(X2 + Y2+ 2sin(0,)XY ) .

(C.13)
Estimate (C.13) and equality (C.12) imply

2.V (( i ) - [ W)Z)
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2
1+ |sin(6y)| ej — € (es — er> —e; €5 — €
< — 2
<2 sz P\ ) T sin(f) 7

2
1 e —e; es — € —e;es— €
< 2 ] _ 1 S ™ 2 0 (A S ™
- ;Cos(eg)zvg (( 14 ) - < 1| > - 2sin( é) 4| 4] )

Using the Cauchy-Schwarz inequality we obtain

S ((Felw) = 7o) (e = e0) + (Folw) = ) (es — 1))

0 1/2 1/2
_ %j (;ﬂ/ (Felw) - ) Vi (e e+ VH/ (Fitw) - 7) ‘?a(es - er)>

f g
L R I i e - e\ o))
_<XZ:W(J’() J'") +V<fg(u)—f£)> (%: £(<]|€| ) ( 7 ))) ,
hence
—e\ 2\ \ ?)? 0 2\
(;W((ejlg‘ez> +(€s|;’67’) )) < (Zg:'vlg(}}(ﬁ)—}}) +"/|;Z(.7:€(u)—}"g) > :

Applying the consistency of fluxes (C.5) we have

_ )
%: M‘J,e (.Fg(ﬂ) — fg)2 + |f/|ve (FZ(Z_L) . ﬁg)z
2 . ] ' ) o
< 4COS(§€)4 (((1+ [sin(@))]e] + 1)* + (1 + [ sin(@)])1] + |€)*) < S oo+ o)2h2, (C.15)
with

C= max Cy, o= max | sin(6y)].

Inserting (C.15) into (C.14), we deduce

2 /2
ej — € es —ep\ 2 C 1 -
(?W«ra>+(W'>» < VB A2t ot (C.16)

Applying Lemma C.5.2 to the left-hand side of Equation (C.16), we conclude that

1/2
(Z Viet +3 V}e?> < Cih,
with

C

= 8v/2  diam(Q)|Q]"/?
C1 = 82 diam(Q)|Q| oo

(2 + U) V Nmax§ )

hence the method is (at least) first-order convergent. O
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C.5.4 Coercivity

Lemma C.5.4 (Coercivity). Let A be the matriz associated with the DDFV discretization (C.4) of
equation (C.3). There exists a constant Cy independent of h such that

VueR”, |u3 < CoulAu

Proof. Owing to the identity

1 _
Vi = 5 cos(6)[€]]4],

2
we have
1 1
wTAu= 3 50 N~ )+ N — ) P+ 3 (Nt — )+ N, = )l

wgon L 2 /o

1 Ui — Uy 2 U U —Uu; U U
=2 —V 4 +(s_ T> + 2sin(6 (s

%Qcoswe)? f(( 7 ) 7 T

2 2
Up — Uy Us — Uy . U — U Usg — Uy
+2 ~ + ( ) + 2sin(0y) — .
éezaQ cos(# (( 4] > €] 1| 1|
As we have assumed that v = g = 0 on 9Q we can apply Lemma C.5.2 to u = ((u;)1<i<n,(Ur)i1<r<m)
instead of € = ((€;)1<i<n,(€r)1<r<m). Therefore there exists a constant Cy independent of h such that

<ZW +;W>% - (;w ((uj 7 Ui>2 i (u eur>2))%

Using inequality (C.13), we have

- (( i >2+(us|?|ur>2)

2 2
Uj — U; (us—ur> . Uj — Uj Ug — Uy
E - + + 2sin(6y ,
e =0 (( 7 ) g ST I )

which allows to conclude the proof. O

C.5.5 Stability
Lemma C.5.5 (Stability). Let u be the solution to (C.4). We have

[ull2 < Co[f]]2,

where Cy does not depend on u, f and h.

Proof. We have
u'Au = > Vifiui + > Vifru,

hence, owing to the Cauchy-Schwarz inequality

1/2

1/2
waus (Sup e vs) (Sviesv) il
Now, thanks to Lemma C.5.4, we obtain
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lulf < Cou'Au < Colff[|2 ] ull2,

which allows to conclude.
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D.1 Computation of the coefficients iy, @ir g, Bivig and B jg

In this appendix, we give the details of the computations of the coefficents iy ig, s jq, Bie,ig and Big jg
given by Equations (3.13), (3.14), (3.16) and (3.17).

First, we have

Xg — X; X5 — Xy
i = i, o T,

Since n;, is orthogonal to the edge £ the vertices of which are r and s, by taking the scalar product
with n;y, we obtain on the one hand

(xg — Xi) - nyy

1=quy;
G, —

that is to say

_ xg =il
Qg ig = (Xg — XZ') g .

On the other hand, we also have

that is to say

Secondly, we have

Xj — Xg
Bl P

Xs — X
+,8‘2 . i
’ JgHXs — x|

Since n;, is orthogonal to the edge £ the vertices of which are r and s, by taking the scalar product
with n;y, we obtain on the one hand

(XA - x ) 3 177)
1= Oéif,jg i]’X _gX H : ’
J g

that is to say

il
9 (o~ )

On the other hand, we also have

e - (x5 = Xg) " = Birjg

that is to say




D.2 Proof of Proposition 3.5.1

Proof. The sum can be rewritten by inverting the sum on the cells and on the faces. Besides, the sum
can be separated into boundary terms and non-boundary-terms

i (‘ ng(u)> == Fe(w) =) (Fea(uw) + Frj(u)),

i=1 14< el €9

where ¢ is the face shared by the cells ¢ and j, and with

{]:e,i(u) = Ye(u; — ui) + 70 (0),
Foj(u) = ye(u; — uj) + e 5(0),
with 7¢;(u) = —rgj(u). Then,

Fg}i(u) + .ng‘(u) = 0.

The homogeneous Neumann boundary condition means that the boundary terms are zero, which leads
to

7 €1

- Z ff(u) = 07
=1
that is to say

> Vidiui =Y Vifi.
i=1 i=1

The scheme is conservative. O

D.3 Exactness for polynomials of degree k&

In this appendix, we give the proof that our approximation of the flux is exact for polynomials of
degree k.

The flux is defined by

_ Kg,ikg,j 0t jgQlit i _ _ _
Fe(a) =€ w 9179,) )9 Mg Ui — U +rei(Q) + ri0(0
() =| |gz€% I [<||XJ — Xg||Kg,ittitig + IXg — Xil|Kg,jtie,jg (% 7o (W) F g ()
Kg,ikg,jit,igBit,jgllXj — Xgll Prlx) — P .
" (\xs e T — Xollg v + [y — Xallmggaaagg) ) 0 000) ~ Fi0e) 4 7re(R)

+ Kg,ikg,jit,jgBit.igl|Xg — Xil|
||Xs - XTH (HX] — Xg”“g,iai&ig + ng — Xi||’{’g,jai€7jg

)> (Pi(xs) — Pi(xr) + rrsi(0)) |

Considering « continuous, the flux becomes

Fe(m) = [/ ng“g [( e ) (@) = wi + 715 (0) 4 71ig(0))

get x5 = Xgllavieig + [xg — Xillcvie g

n QivigBiejgllX; — Xgll
x5 — %0 || ([[%) — Xglcivig + [|Ixg — il e jg)

ERTIN >(Pi(xs)_Pi(XT)+Trs7i(ﬁ)) )
XlHazZ,]g)

) (Pj(xs) = Pj(xs) + 17,5 (0))

N Qi jgBitigl|Xg — Xi|
l[xs — x| ([[x5 — %g|lcvig,ig + [I%g
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Besides, we have

X; — X; Xg — X
Ny = Qigr———— + P ———,
1 = x| [xs — x|
Xj — Xy Xs — Xy
N = g, + Bitjgr——— D.1
= o =l T e = (B0
Xy — X4 Xs — Xp
Ny = Qitigi——— 7 + PitigT———
T ke = xill T % — x|
By taking the scalar product with n;s, we obtain
Qjp - 1
1% = xill (% = %) - mae’
1% — x|l
X —Xg) Ny = D.2
(g =) m = P (D.2)
Xp — X;
(x¢ —%;) - myp = u,
Qg ig
that is to say
Qi 1 _ Qit,jgQit,ig
ey =l el el ik — gl eieg + [lxe = Xillvie, g

il,jg ilyig

Then, by taking the scalar product with x5 — x, on (D.1), we have

Bie = —au (x; —xi) - (x5 —%r)
w (2
1% = x| 7
(x; — %¢) - (%5 — %Xp) = _ﬁié,ngXj — x|
’ aieg
Bitigllxe — X
(x¢ — %) - (x5 — %) = —W7

that is to say

Qg ig il,59 Xl jg Bif,ig
Bie Tl Toxd T Tg-xel o QitigBiejgllXs — Xell + e jgBivigllxe — |

e — ] o T i e = el (g — xellvse g + e — xillovie )

Since u is a polynomial function of degree k, the interpolation polynomial P is exactly equal to u.
Therefore, the node values Pj(x,) are equal to u(x;). In the case of a contiuous x, the flux is

Fo(w) =[] wyrig l(CM) (@) — @i +rgj (@) + 7ig (W)

o I — il

+ (ﬁf) (i) — @) + rrs(@)| . (D.3)
[xs — /||

We will prove that our approximation of Vu(xy) is exact for polynomials of degree k, for each
Gauss point g. To show that we will consider that our exact solution u is a polynomial of de-
gree k centered in x4 in order to simplify the calculations. Moreover, to prove this exactness for
a polynomial of degree k, we will prove it for each monomial of the basis centered in x, in which
we decompose our polynomial, that is to say {1,x — x4,y — yg,(x — 24)",m € [1,k],(y — yg)",n €
[LE], (x — zg)(y — yg),(x — xg)™(y — yg)™,m € [L,k],n € [1,k] tels que 3 <m+n < k}.

First, let’s take

Sl

(x) =(x—2zy)"(y—yqg)", me[lk],ne[1k] tels que 3 <m+n <k.
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Then, we have

m(z —zg)™ ! (y — yg)" )
n( —zg)™(y —yg)" " )’
and so Vu(xy) - ny = 0.

Then,
oPi (x) = mn!
0z40y®P=2 " (m —q)!(n — (p — q))!

and so, in x,4, the only non-zero terms are those for m =g and n =p — ¢

(& — )"y — yy)" "9,

oPu

W(Xy) = m‘n'7

our sums therefore contain only one term for p=m+net g=m

Z Z oPu (x,) = p \m!n! _ p! q'(p—q)! 1
p—q) 0x109yP=9) p—q) ' dlp—q! p '

In addition, we used integral values to estimate the values of u at cell centers, so we have

/ dx_/ (g — yo)".

The approximation of Vi(xy) - n; used in the flux (D.3)

[<W> (4 — Ui + rgi(1) + rig(w)) + (m) (i(xs) — U(x,) + rrs(ﬁ)):| ’

1 — i %5 = %/

becomes

[ij x1||<1j/ =)= 5 [ = )= w)"

Z Z (p f q) c’mg?éq)(xg) (é /J(fﬂ —z9)(y — yg)(p‘Q)dx - ‘2 /Z(x —2,)(y — yg)(p_q)d:):>)
Bie

T ((Ts = 2g) " (Ys — Yg)" — (x5 — 2g)" (ys — yg)"
%5 — x| ( 2 0)" = ( g)"( 9)
Rel 3 p ﬂ(x ) ((gg — 20)Uys — yo) P Vda — (25 — 24)(ys — ¥ )(;n—q)dx>
p:2 p' q:() p - q axqay(p_q) 9 $ 9 S g S g s g s

that is to say

[“XJ - xi ( 1J/ )" _‘2 '(x—xg)m(y—yg)”

_<V] /](w—mg) (y — yg)"dw—/x—xg "y — yg)”dx>>

B (g — g (s — )" — (@5 — 3" (g — )"

[xs — %7 ||
- ((xs - l‘g)m(ys - yg)ndx - (xs - xg)m(ys - yg)ndx))] =0,

Therefore, the approximation of Vi(x,) - n; is exact for monomials of type (z —x4)" (y—yq)", m €
[1,k],n € [1,k] such that 3 <m +n < k.
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Next, let’s take
u(x) = (v — xg)(y — yg)-

vmw=(i:?>,

Then, the only terms of our double sums that are non-zero are those obtained by taking p = 2 and
qg=1

Then, we have

and so Vu(xg) - ny = 0.

dzay ) =

our sums therefore contain only one term for p =2 et ¢ =1
oPu 1(2
Z Z( )8‘18(? q)( 9)22,<1>1:1-
P p—q) 9z90y !

The approximation of Vu(x,) - nj; used in the flux (D.3) becomes

[ija_ii(in (é /j(m —wg)(y - yg) —é/i(ac —a:g)(y _yg)

-—Qgéw—wa@—yw—Qhﬁx—%xy—%ﬁ)

P (g = ) (s — ) — (@ — ) — )

[xs — x|l
— (s — 29)(Ys — Yg) — (xr — 2g)(yr — Yg)))] = 0.

Thereore, the approxiation of Vu(xg) - n; is exact for monomials of type (z — z4)(y — yq)-

Then

Thus, we have

and then Vu(xy) - ny = 1 (z; — x;) + ”xff“xrn(xs — ).

Il =il

The approximation of Vi (x,) - nj used in the flux (D.3) becomes

[HXj&ilH <‘2 /J(;U - xg) - ‘i/z(x - xg)) * HXf—MXTH (($S —LUg) o ($T B xg))] )

that is to say

Qg Bie
(T —T) + T/ (Ts — X)) | -
Um—xm(f ) o = Tﬂ

Therefore, the approximation of Vu(xg) - n is exact for monomials of type z — .

And
u(x) = (z —xy)™, m e [LE].

m(x — x,)™ !
VU(X):< ( Og) )7

Thus, we have
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and so Vu(xy) - n = 0.

p —
P
Then, since our function does not depend on y, the sum E P 7u(x) is zero for all
p—q a;[;qay(P )

p # q. We have
@( ) = m!
A (m —p)!

and thus, in x4, the only non-zero terms are those for m = p

(x —xg)"F,

oPu
@(Xg) =pl,

our sums therefore contain only one term for ¢ = p=m

oPu m)!

Z Z(ﬁ C_I)(?xqay(l’q)(x):mi:L

The approximation of Vu(x,) - nj used in the flux (D.3) becomes

el e Ctl (3 i T B

_,_% ((zs = xg)™ = (2r — 3g)™ — (w5 — 7g)"™ — (T2 — xg)m))} =0.

x5 — x|

Therefore, the approximation of Viu(xg) - nj is exact for monomials of type (z — x4)™, m € [1,k].

And

Then, we have

and so Vu(xy) -ny = fo‘fwxln(y] —yi) + ”xﬁi’exr”(ys - Yr).

The approximation of Vu(x,) - nj, used in the flux (D.3) becomes

Qit ! 1 Bit
[Hx]sz ( /](y Yg) — v /i(y—yg)> +m((ys—yg) - (yr—yg))] ,

that is to say
Bic

[xs — x|

= |{| ngﬁg l’XzH( —yi) + (ys — y?‘)] .

gel

Therefore, the approximation of Viu(xg) - n is exact for monomials of type y — y,.

And
u(x) = (y —yg)", m e [Lk].

o 0
V) = ( n(y —yg)" ! > 7

Then, we have

and so Vu(xg) - nyy = 0.
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P —
P
Then, since our function does not depend on x, the sum E b 7u(x) is zero for all
p—q axqay(p )

q # 0. We have

oPu n!
- - _ n—p
8yp (X) (n _p)‘(y yg) )

and so, in x4, the only non-zero terms are those for n = p

oPu

Typ(xg) =pl,

our sums therefore contain only one term for ¢ =0 and p=n

oPu n!
53,7 et ~ -

The approximation of Vi(x,) - nj; used in the flux (D.3) becomes

[m«fiu(l/ﬂ )" —;i/;y—yg)"—(é/j(z/—yg)"—é/i(y—yg)”))

e (=) = = 0" = (e = )" = e~ )] =0

l[xs — ||

Therefore, the approximation of Vu(xy) - n; is exact for monomials of type (y — yq)", n € [1,k].

Finally,
u(x) = 1.

Then, we have Vu(xy) - n; = 0, and the approximation of Vu(xg) - nj used in the flux (D.3) becomes

luxj—xzu< / /) xs—xru( f1- /)1

Therefore, the approximation of Vu(x,) - n;; are exact for constants.

The approximation of Viu(xy) - n; is therefore exact for each monomials of the basis centered on

Xg {1,$ —Zg,Y— ygv(x - xg)m, m & [[17 k]]) (y - yg)nv n e Hlvk]]v (.’L‘ - xg)(y - yg)7($ - :Eg)m(y - yg)na m €

[1,k],n € [1,k] tels que 3 < m+n < k}, hence they are exact for any poynomial of degree k centered
k k—m

in x4, Z Z amn(z—x4)"(y —yg)". Besides, the Gauss quadrature formula of order £ is also exact

m=0 n=0
for polynomials of degree k, thus the fluxes are exact for polynomials of degree k.
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Schémas volumes finis d’ordre arbitraire positifs pour la diffusion sur maillage quelconque
Résumé :

L’objectif de cette theése est le développement et 'analyse de schémas volumes finis robustes et précis afin d’approcher
la solution de I’équation de diffusion sur maillages quelconques avec un coefficient de diffusion qui peut étre anisotrope et/ou
discontinu. Afin de satisfaire ces propriétés, nos schémas devront préserver la positivité et étre d’ordre élevé.

Dans ce manuscrit, nous proposons le premier schéma d’ordre arbitraire préservant la positivité pour la diffusion. Notre
démarche est tout d’abord d’étudier le probléeme en 1D. Dans ce cas le probléme de positivité n’apparait qu’a partir de ’ordre
3. D’autre part, la dimension 1 nous permet de faire I'analyse mathématique de ce probléme, notamment une preuve de conver-
gence du schéma a un ordre arbitraire sous une hypothese de stabilité. Ensuite, nous ’étendons en 2D a ’ordre 2, ce qui permet
de nous appuyer sur des schémas connus. Nous avons étudié deux possibilités : un schéma type DDFV (Discrete Duality Finite
Volume) que l'on compare & une méthode utilisant des reconstructions polynomiales. Enfin, cela nous permet de développer un
schéma monotone d’ordre arbitraire sur maillage quelconque avec un coefficient de diffusion x qui peut étre discontinu et/ou
anisotrope. La montée en ordre se fait grace & une reconstruction polynomiale et la monotonicité s’obtient en se ramenant &
une structure de M-matrice, ce qui nous donne des schémas non linéaires.

Chaque schéma est validé par des simulations numériques montrant ’ordre de convergence ainsi que la positivité de la
solution obtenue.

Mots-clés : Méthode volumes-finis, ordre élevé, diffusion anisotrope, positivité, schéma DDFV.

Arbitrary-order finite volume schemes preserving positivity for diffusion problems on deformed meshes
Abstract:

The objective of this thesis is the development and the analysis of robust and accurate finite volume schemes for the ap-
proximation of the solution of the diffusion equation on deformed meshes with diffusion coefficient which can be anisotropic
and/or discontinuous. To satisfy these properties, our schemes must preserve the positivity and achieve high-order accuracy.

In this manuscript, we propose the first positivity-preserving arbitrary-order scheme for diffusion. Our approach is first to
study the problem in 1D. In such a case, the positivity problem only appears for order 3 and higher. The 1D setting allows
us to perform the mathematical analysis of this problem, including a proof of convergence of the scheme to an arbitrary order
under a stability assumption. We then extend it to 2D at order 2, relying on well-known schemes. We study two possibilities:
a DDFV-type scheme (Discrete Duality Finite Volume), which we compare with a method using polynomial reconstruction.
Finally, this allows us to develop a monotonic scheme of arbitrary order on any mesh with a x diffusion coefficient that can
be discontinuous and/or anisotropic. Improving the order is achieved through polynomial reconstruction, and monotonicity is
obtained by reducing to a M-matrix structure, which gives nonlinear schemes.

Each scheme is validated by numerical simulations showing the order of convergence and the positivity of the solution
obtained.

Keywords: Finite volume method, high-order, anisotropic diffusion, monotonic method, DDFV scheme.
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