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Abstract

This thesis aims to study the Earth’s magnetopause, defined as the boundary between the
Earth’s magnetosphere and the solar wind. Although considered in first approximation as a
clear barrier between the two plasmas, the reality is more complex, as the solar wind plasma
and the magnetosphere plasma mix with each other in the magnetopause in ways not yet fully
understood. One example of this interaction is magnetic reconnection, which creates a flow of
mass and magnetic field between the two media.
In this thesis, we focus on regions of the magnetopause away from areas of magnetic reconnec-
tion. In these regions, which make up most of the structure, the magnetopause often takes on
a one-dimensional, stationary structure and is generally modeled as a discontinuity through the
Classic Theory of Discontinuities (CTD). However, in situ data from recent space missions show
how this theory does not adequately describe the magnetopause. In fact, at the magnetopause,
both a rotation of the magnetic field in the plane tangent to the structure and compressive char-
acteristics are observed. In order to describe these properties simultaneously, the magnetopause
is described in CTD as a tangential discontinuity. However, this classification is a singularity in
the theory that requires the normal component of the magnetic field to the structure to be zero.
Instead, we observe from the data that this component is small but not zero, emphasizing the
need to introduce a “quasi-tangential” description in order to describe the magnetopause.
In this thesis, therefore, the CTD is used as a starting point, exploiting its limitations in de-
scribing the magnetopause, in order to determine which terms are relevant in its equilibrium.
To this end, we use in situ measurements from the Magnetospheric Multiscale Mission (MMS,
NASA). The first part of the work aimed to develop an instrument, called GF2, that estimates
the direction of the normal to the magnetopause more accurately than current instruments.
Indeed, accurate estimation of the normal is of fundamental importance in order to determine
which experimentally relevant terms are not included in the classical theory. This instrument
was tested both on the MMS mission data, analyzing in detail a December 28, 2015 magne-
topause crossing, and through a numerical simulation obtained through the hybrid-PIC code
Menura, demonstrating good skill in determining the normal.
The same magnetopause crossing of MMS was also used to study the magnetopause equilibrium
in detail. In particular, taking advantage of the normal obtained through the previously devel-
oped instrument, we show that the divergence of the pressure tensor plays a key role in this
equilibrium, unlike the assumption in CTD. Specifically, we show that the effects of finite Lar-
mor radius (FLR) play an important role in the quasi-tangential discontinuity when the Larmor
radius of the ions is not completely negligible with respect to the thickness of the magnetopause.
To generalize the result, a similar statistical study was also conducted on a database of MMS
magnetopause crossings, which confirmed that these results are common in the magnetopause.
Finally, one part of the project focused on Mercury’s magnetosphere, deviating slightly from
the main objective of this thesis. In this analysis, full-kinetic simulations were used in order to
analyze the generation of whistler waves in the reconnection region in the magnetotail. In this
study, the small size of Mercury’s magnetosphere compared with that of Earth is exploited in
order to learn new insights about Earth’s magnetosphere.
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Résumé

Cette thèse vise à étudier la magnétopause terrestre, définie comme la limite entre la magnétosphère
terrestre et le vent solaire. Bien que considérée en première approximation comme une barrière
nette entre les deux plasmas, la réalité est plus complexe, car le plasma du vent solaire et celui
de la magnétosphère se mélangent dans la magnétopause d’une manière qui n’est pas encore
totalement comprise. Un exemple de cette interaction est la reconnexion magnétique, qui crée
un flux de masse et un champ magnétique entre les deux milieux.
Dans cette thèse, nous nous concentrons sur les régions de la magnétopause éloignées des zones
de reconnexion magnétique. Dans ces régions, qui constituent la majorité de la structure, la
magnétopause prend souvent une structure unidimensionnelle et stationnaire et est généralement
modélisée comme une discontinuité par la Théorie Classique des discontinuités (CTD). Cepen-
dant, des données in situ provenant de missions spatiales récentes montrent que cette théorie
ne décrit pas correctement la magnétopause. En effet, à la magnétopause, on observe à la fois
une rotation du champ magnétique dans le plan tangent à la structure et des caractéristiques de
compression. Afin de décrire ces propriétés simultanément, la magnétopause est décrite dans le
CTD comme une discontinuité tangentielle. Cependant, cette classification est une singularité
dans la théorie qui exige que la composante normale du champ magnétique à la structure soit
nulle. Au lieu de cela, nous observons à partir des données que cette composante est faible mais
non nulle, ce qui souligne la nécessité d’introduire une description “ quasi-tangentielle ” pour
décrire la magnétopause.
Dans cette thèse, le CTD est donc utilisé comme point de départ, en exploitant ses limites
dans la description de la magnétopause, afin de déterminer quels termes sont pertinents dans
son équilibre. À cette fin, nous utilisons des mesures in situ de la Magnetospheric Multiscale
Mission (MMS, NASA). La première partie du travail visait à développer un instrument, appelé
GF2, qui estime la direction de la normale à la magnétopause avec plus de précision que les
instruments actuels. Une estimation précise de la normale est en effet d’une importance fon-
damentale pour déterminer quels termes expérimentalement pertinents ne sont pas inclus dans
la théorie classique. Cet instrument a été testé à la fois sur les données de la mission MMS,
analysant en détail une traversée de la magnétopause le 28 décembre 2015, et à travers une
simulation numérique obtenue au moyen du code hybride-PIC Menura, démontrant une bonne
compétence dans la détermination de la normale.
La même traversée de la magnétopause de MMS a également été utilisée pour étudier en
détail l’équilibre de la magnétopause. En particulier, en exploitant la normale obtenue grce à
l’instrument précédemment développé, nous avons montré que la divergence du tenseur de pres-
sion joue un rle clé dans cet équilibre, contrairement à l’hypothèse du CTD. Plus précisément,
nous montrons que les effets du rayon de Larmor fini (FLR) jouent un rle important dans la
discontinuité quasi-tangentielle, lorsque le rayon de Larmor des ions n’est pas complètement
négligeable par rapport à l’épaisseur de la magnétopause. Pour généraliser ce résultat, une
étude statistique similaire a également été menée sur une base de données de traversées de
magnétopause MMS, qui a confirmé que ces résultats sont communs dans la magnétopause.
Enfin, une partie du projet s’est concentrée sur la magnétosphère de Mercure, s’écartant légèrement
de l’objectif principal de cette thèse. Dans cette analyse, des simulations cinétiques complètes ont
été utilisées afin d’analyser la génération d’ondes de sifflement dans la région de reconnexion de la
queue magnétique. Dans cette étude, la petite taille de la magnétosphère de Mercure comparée
à celle de la Terre est exploitée afin d’obtenir de nouvelles informations sur la magnétosphère
de la Terre.
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Riassunto

Questa tesi ha come obiettivo lo studio della magnetopausa terrestre, definita come il confine
tra la magnetosfera terrestre e il vento solare. Sebbene considerata in prima approssimazione
come una barriera netta tra i due plasmi, la realtà è più complessa, in quanto il plasma del vento
solare e quello della magnetosfera si mescolano tra di loro nella magnetopausa in modi non an-
cora completamente compresi. Un esempio di questa interazione è la riconnessione magnetica,
che crea un flusso di massa e campo magnetico tra i due mezzi.
In questa tesi, ci concentriamo sulle regioni della magnetopausa lontane dalle aree di ricon-
nessione magnetica. In queste regioni, che costituiscono la maggior parte della struttura, la
magnetopausa assume spesso una struttura unidimensionale e stazionaria e viene generalmente
modellizzata come una discontinuità attraverso la Teoria Classica delle Discontinuità (CTD).
Tuttavia, i dati in situ delle recenti missioni spaziali mostrano come questa teoria non descriva
adeguatamente la magnetopausa. Infatti, nella magnetopausa si osservano sia una rotazione
del campo magnetico nel piano tangente alla struttura che caratteristiche compressive. Al fine
di descrivere queste proprietà contemporaneamente, la magnetopausa è descritta in CTD come
una discontinuità tangenziale. Tuttavia, questa classificazione è una singolarità nella teoria che
richiede che la componente normale del campo magnetico alla struttura sia nulla. Dai dati
osserviamo invece che questa componente è piccola ma non nulla, sottolineando la necessità di
introdurre una descrizione “quasi-tangenziale” al fine di descrivere la magnetopausa.
In questa tesi, dunque, la CTD è utilizzata come punto di partenza, sfruttando i suoi limiti nel
descrivere la magnetopausa, al fine di determinare quali termini siano rilevanti nel suo equilibrio.
A tale fine utilizziamo le misure in situ della missione Magnetospheric Multiscale (MMS, NASA).
La prima parte del lavoro ha avuto lo scopo di sviluppare uno strumento, chiamato GF2, che
stima con maggiore accuratezza rispetto agli strumenti attuali la direzione della normale della
magnetopausa. Una stima accurata della normale risulta infatti di fondamentale importanza al
fine di determinare quali termini rilevanti sperimentalmente non sono inclusi nella teoria clas-
sica. Questo strumento è stato testato sia sui dati della missione MMS, analizzando nel dettaglio
un attraversamento della magnetopausa del 28 dicembre 2015, sia attraverso una simulazione
numerica ottenuta attraverso il codice ibrido-PIC Menura, dimostrando una buona abilità nella
determinazione della normale.
Lo stesso attraversamento della magnetopausa di MMS è stato inoltre utilizzato per studiare
nel dettaglio l’equilibrio della magnetopausa. In particolare, sfruttando la normale ottenuta
attraverso lo strumento sviluppato in precedenza, abbiamo dimostrato che la divergenza del
tensore di pressione gioca un ruolo fondamentale in tale equilibrio, differentemente da quanto
assunto in CTD. Nello specifico, dimostriamo che gli effetti del raggio di Larmor finito (FLR)
giocano un ruolo importante nella discontinuità quasi-tangenziale, quando il raggio di Larmor
degli ioni non è completamente trascurabile rispetto allo spessore della magnetopausa. Per gen-
eralizzare il risultato è stato inoltre condotto uno studio statistico analogo su un database di
attraversamenti della magnetopausa di MMS, che ha confermato che questi risultati sono comuni
nella magnetopausa.
Infine, una parte del progetto si è focalizzata sulla magnetosfera di Mercurio, discostandosi
leggermente dall’obiettivo principale di questa tesi. In questa analisi, sono state utilizzate simu-
lazioni full-kinetic al fine di analizzare la generazione di onde whistler nella regione di riconnes-
sione nella magnetocoda. In questo studio, le dimensioni ridotte della magnetosfera di Mercurio
rispetto a quella della Terra vengono sfruttate al fine di ottenere nuove informazioni sulla mag-
netosfera terrestre.
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Résumé long en français

En physique de l’espace, le milieu a une tendance naturelle à s’auto-organiser en cellules dis-
tinctes, séparées par de fines couches. Ce comportement peut être observé à des échelles très
différentes. Les magnétosphères planétaires, qui sont des bulles dans le flux du vent solaire et
qui en sont séparées par des chocs d’étrave et des magnétopauses, et les interface entre le vent
solaire et les corps non magnétisés en sont des exemples notables. Parmi toutes ces couches
minces, la magnétopause terrestre joue un rôle particulier et constitue l’objet principal de cette
étude. Cette structure est définie comme la frontière entre le plasma du vent solaire et le plasma
planétaire, dominé par le champ magnétique.
L’importance de cette région vient du fait qu’elle a été explorée par un grand nombre de sondes
spatiales depuis le début de l’ère spatiale, jusqu’aux missions multi-spatiales les plus récentes
comme Cluster (ESA, Escoubet et al. (2001)) et Magnetospheric Multiscale (MMS, NASA, Burch
and Phan (2016a)), ce qui a permis une description détaillée de ses propriétés. En outre, en rai-
son d’une très faible composante normale du champ magnétique par rapport à la magnétopause,
elle peut être identifiée comme une couche “quasi-tangentielle”. Cette caractéristique est une
conséquence directe de la propriété de gel qui prévaut aux grandes échelles, des deux côtés de
la frontière, empêchant presque toute pénétration de flux magnétique et de matière entre le
vent solaire et les milieux magnétosphériques (tous deux étant des plasmas magnétisés). Par
grandes échelles, nous entendons ici les échelles de fluide où une loi d’Ohm idéale s’applique,
comme dans le régime magnétohydrodynamique (MHD) idéal. Cependant, de petits écarts par
rapport à une séparation stricte entre les deux plasmas existent, au moins localement et pour
un intervalle de temps donné, et on sait qu’ils ont des conséquences importantes pour toute la
dynamique de la magnétosphère : sous-orages, aurores, etc. Le consensus le plus large considère
actuellement l’état d’équilibre de la frontière, valable sur la majeure partie de sa surface, comme
une discontinuité tangentielle, avec une valeur strictement nulle, tandis que l’injection de plasma
n’est autorisée qu’autour de quelques régions de reconnexion, où les gradients caractérisant la
couche présentent des caractéristiques bidimensionnelles. Dans cette étude, nous remettons en
question la nécessité d’utiliser une description de la magnétopause par une discontinuité stricte-
ment tangentielle en utilisant les données de la mission MMS.

Afin d’analyser correctement l’équilibre à la magnétopause, nous nous sommes concentrés sur
les régions où la magnétopause présente des caractéristiques unidimensionnelles et stationnaires
(représentant la majorité de la structure). Ces régions sont en effet celles où la magnétopause
peut être modélisée comme une discontinuité. Ces régions sont généralement modélisées à l’aide
de la théorie classique des discontinuités (CTD, Belmont et al. (2019)). Dans cette théorie, qui
est utilisée à la fois pour les milieux neutres et les plasmas (magnétisés), les quantités physiques
en aval et en amont sont liées par les lois fondamentales de conservation : masse, quantité de
mouvement, énergie et flux magnétique, et elle est caractérisée par les hypothèses simplificatri-
ces suivantes : une couche stationnaire, des variations 1D et une pression isotrope de part et
d’autre. Pour les plasmas, l’hypothèse supplémentaire d’une loi d’Ohm idéale des deux côtés est
prise en compte.
Dans la CTD, les lois de conservation fournissent un système d’équations de saut entre les quan-
tités physiques en amont et en aval, à savoir les conditions de Rankine-Hugoniot dans les milieux
neutres et les conditions de Rankine-Hugoniot généralisées dans les plasmas. La CTD amène à
distinguer les discontinuités de compression et de rotation. Une caractéristique importante de
ces solutions est que les solutions compressives et rotationnelles sont mutuellement exclusives:
les solutions de choc sont purement compressives, sans aucune rotation du champ magnétique
tangentiel (c’est ce qu’on appelle la “propriété de coplanarité”), tandis que la discontinuité ro-
tationnelle implique une telle rotation, mais sans aucune variation de l’amplitude du champ
magnétique et sans aucune compression de la densité des particules. Cette distinction persiste
quels que soient les flux le long de la normale de la discontinuité, même lorsque les composantes
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normales de la vitesse et du champ magnétique par rapport à la structure sont arbitrairement
petites. La seule exception est la “discontinuité tangentielle”, celle utilisée en général pour
décrire la magnétopause, lorsque les deux flux normaux sont strictement nuls. Cette solution
correspondrait, pour la magnétopause, au cas où il n’y a pas de connexion entre le vent solaire
et la magnétosphère. Elle apparâıt comme un cas singulier puisque la discontinuité tangentielle,
avec une composante normale du champ magnétique strictement égale à zéro, n’est la limite
d’aucune des solutions générales avec une petite valeur de cette composante normale.

Comme prévu, grâce aux observations in situ, la magnétopause de la Terre joue un rôle cen-
tral dans la vérification des théories de discontinuité. En effet, la magnétopause terrestre
présente, sur toute sa surface, à la fois une rotation du champ magnétique et une variation
de densité puisqu’elle est la jonction de deux milieux, le vent solaire et la magnétosphère, où le
champ magnétique et la densité sont différents. Cependant, d’un point de vue expérimental, les
observations peuvent difficilement distinguer les petites composantes des composantes stricte-
ment égales à zéro en raison des incertitudes dues aux fluctuations et de la précision limitée
de la détermination de la direction normale. Cela souligne donc la nécessité de résoudre la
limite singulière pour les petites composantes normales du champ magnétique. Dans cette
thèse, la CTD est utilisée comme point de départ pour améliorer notre compréhension de la
magnétopause. La principale question abordée est la suivante : pourquoi la CTD ne parvient-
elle pas à décrire les observations in situ ? Pour répondre à cette question, nous avons analysé
des données complémentaires provenant de la mission MMS et de simulations numériques. Pour
cette étude, l’utilisation d’une mesure multi-satellites est d’une valeur fondamentale. En ef-
fet, lorsqu’on utilise les mesures d’un seul engin spatial, il est impossible de distinguer si les
quantités mesurées ont des dépendances temporelles ou spatiales (ou les deux). En mesurant
un changement d’orientation du champ magnétique, par exemple, nous ne disposons d’aucune
autre information pour déterminer s’il s’agit d’un changement d’état du plasma ou si le vaisseau
spatial pénètre dans un plasma différent. En outre, la possibilité que plusieurs engins spatiaux
sondent simultanément la magnétopause est d’une importance fondamentale pour le calcul des
gradients sans dépendre d’hypothèses fortes sur les propriétés de la magnétopause.

La première partie de cette thèse se concentre sur le développement d’un nouvel outil nous per-
mettant d’obtenir une détermination précise de la direction normale de la magnétopause à partir
de mesures in situ. Une estimation précise du vecteur normal est en effet cruciale pour cette
étude puisqu’elle nous permet de séparer les composantes normales et tangentielles de toute
quantité physique à la frontière. Théoriquement, nous avons montré que le transport normal
à travers la magnétopause est d’une importance fondamentale pour comprendre les propriétés
de la frontière, en particulier les variations magnétiques dans le plan tangentiel. Comme ce
transport normal est beaucoup plus petit que les valeurs tangentielles correspondantes, une trop
grande incertitude sur la direction normale fausserait leur estimation. Au contraire, une bonne
estimation de cette quantité permettra d’établir quels termes, dans l’expression générale des flux
transportés, sont pertinents et non inclus dans les modèles classiques.
Au fil des ans, plusieurs méthodes ont été développées dans le but de déterminer avec précision la
direction normale. La plus courante est la méthode de la variance minimale (“Minimum Variance
Analysis”, MVA, Sonnerup and Cahill (1967); Sonnerup and Scheible (1998)) introduite avec les
premières mesures du champ magnétique dans l’espace. Cette méthode, qui nécessite des mesures
effectuées par un seul engin spatial, fournit une normale globale, c’est-à-dire un vecteur normal
unique pour chaque série temporelle entière à travers la frontière. L’outil repose sur l’hypothèse
que la frontière est une couche parfaitement unidimensionnelle et stationnaire traversant l’engin
spatial. La méthode “Minimum Directional Derivative” (MDD, Shi et al. (2005)) est un exemple
notable d’outil multi-spatial. Cet outil utilise généralement les données du champ magnétique,
mais il faut garder à l’esprit qu’il n’est pas basé sur les propriétés spécifiques de ce champ. La
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technique MDD est une méthode dite “basée sur le gradient” puisque le calcul de la normale
est basé sur l’estimation expérimentale de la matrice du gradient du champ magnétique, qui
peut être obtenue à partir de mesures effectuées par plusieurs engins spatiaux à l’aide de la
méthode des vecteurs réciproques. En outre, la matrice de gradient peut également être utilisée
pour estimer la dimensionnalité de la frontière à partir du rapport entre les valeurs propres
(Rezeau et al., 2018). L’outil développé dans le cadre de cette thèse, appelé “Gradient matrix
Fitting” (GF2), est dérivé de la MDD. Ces deux outils fournissent une estimation de la direction
normale locale, permettant d’étudier la variation de ce vecteur à chaque pas de temps. L’outil
GF2 incorpore une procédure d’ajustement, en utilisant un modèle 2D, permettant d’imposer
des contraintes physiques directement dans l’algorithme, comme la loi de Gauss dans le cas des
mesures de champ magnétique. Cette fonctionnalité est différente de ce qui est fait dans le
MDD, où les contraintes physiques sont vérifiées a posteriori. L’outil GF2 a été testé sur une
traversée de magnétopause MMS le 28 décembre 2015, montrant des résultats comparables la
méthode MDD standard. Cependant, un test plus précis de cet outil ne peut être réalisé qu’avec
des données de simulation numérique.

À cette fin, en complément de l’analyse des données in situ, nous avons réalisé une étude
numérique de la magnétopause. Il existe deux approches principales pour simuler la magnétopause :
les simulations locales et les simulations globales. Les modèles globaux incluent l’ensemble de la
magnétosphère 2D ou 3D dans le domaine de calcul, tandis que les modèles locaux se concentrent
sur des sous-régions spécifiques plus petites (1D, 2D ou 3D en fonction du degré de réalisme
attendu), telles que des parties de la queue d’une comète ou de la magnétopause. Bien que les
simulations globales offrent une résolution plus faible de la magnétopause que les simulations
locales, elles offrent un degré de réalisme plus élevé, nécessaire à notre étude. Pour cette raison,
nous avons effectué une simulation globale en utilisant le solveur Menura (Behar et al., 2022), un
code hybride-PIC, simulant une magnétosphère semblable à celle de la Terre. Cette simulation a
été exploitée pour tester l’outil GF2 en le comparant au MDD, comme pour les données in situ.
Alors qu’une étude quantitative nécessiterait une comparaison avec un calcul exact du vecteur
normal pour déterminer la précision, plusieurs facteurs empêchent le calcul d’une direction nor-
male “réelle”. Les principales sont la nature bidimensionnelle inévitable à petite échelle et les
incertitudes dans le calcul du gradient de la matrice à partir des différences finies qui affectent la
fiabilité du calcul de la direction normale. Ce test montre que, si les deux méthodes donnent le
même résultat dans les régions où la magnétopause est unidimensionnelle, l’outil GF2, contraire-
ment à MDD, permet effectivement de séparer les directions majeure et mineure des gradients
dans les régions où la magnétopause présente des caractéristiques bidimensionnelles, les trop
petites échelles étant filtrées dans les deux directions. Cependant, des simulations à plus haute
résolution sont nécessaires pour une quantification exacte des performances de l’outil GF2. Cela
nécessite des ressources informatiques considérables, ce qui rend une telle étude actuellement
irréalisable avec une approche de simulation globale. Une analyse possible pourrait être effectuée
avec des simulations locales (moins réalistes). Une telle étude est laissée en suspens pour l’avenir.

L’outil GF2 a ensuite été appliqué à l’étude de la structure de la magnétopause en utilisant la
traversée MMS du 28 décembre 2015, utilisée précédemment pour tester l’outil GF2. Plus
précisément, cette traversée a révélé des propriétés non décrites par le CTD, telles que la
compression et la rotation simultanées. Pour étudier cette traversée, nous pouvons exploiter
l’hodogramme du champ magnétique dans le plan tangentiel à la discontinuité, qui peut être
facilement obtenu à partir des données in situ. Cette analyse nous permet de déterminer si la
magnétopause présente des caractéristiques de rotation, de compression ou les deux. Si l’on
considère une magnétopause traversée à partir des données in situ, et si le CTD était valide
pour toutes les traversées, la forme de l’hodogramme dépendrait de la classe de discontinuité.
Pour une discontinuité rotationnelle, l’hodogramme correspondrait à un arc de cercle de rayon
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constant, tandis que pour un choc, l’hodogramme correspondrait à une ligne radiale. Pour la
traversée du MMS analysée ici, l’hodogramme présente des caractéristiques linéaires (et non
radiales). Pour étudier cette caractéristique, nous avons analysé les deux équations responsables
de la séparation des discontinuités rotationnelles et compressives dans la CTD : la loi d’Ohm et
l’équation d’impulsion (leurs projections dans le plan tangentiel de la magnétopause). L’analyse
a montré que la divergence du tenseur de pression ionique joue un rôle clé dans l’équilibre de
la magnétopause, violant l’hypothèse d’isotropie de la CTD. Nous montrons que cela est dû à
des Effets de Rayon de Larmor fini (FLR) qui rendent le tenseur de pression non-gyrotrope.
Pour tester cette caractéristique, deux indices de non-gyrotropie ont été exploités, l’une in-
troduite dans cette étude et l’autre définie dans Aunai et al. (2013a). Cette étude confirme
une non-gyrotropie significative, bien que faible, dans le tenseur de pression ionique. Nous
avons également étudié la direction de la non-gyrotropie, montrant qu’elle diffère de celle du
champ magnétique pour cette traversée, contrairement à ce que l’on suppose généralement.
Plus précisément, pour cette traversée, cette direction est quasi-orthogonale à la fois au champ
magnétique et à la direction normale de la magnétopause.

Bien que ces résultats soient très intéressants, il était donc nécessaire de déterminer s’il s’agissait
d’une particularité de la traversée analysée ou d’une condition générale à la magnétopause. A
cette fin, une étude statistique a été menée parallèlement à l’étude de cas. Nous avons sélectionné
un ensemble de données de 146 traversées de la magnétopause présentant des caractéristiques
unidimensionnelles et stationnaires afin d’établir une base statistique solide. Pour chacune de
ces traversées, nous avons étudié l’hodogramme du champ magnétique dans le plan tangentiel
en classant sa forme. Cette analyse a révélé que plus d’un tiers des traversées sélectionnés
sont en désaccord avec la CTD, montrant une forme linéaire, ce qui indique que les FLR à la
magnétopause sont significatifs, même s’ils ne sont pas prédominants. Il est bien connu que
la version linéaire de la discontinuité rotationnelle est l’onde de cisaillement MHD d’Alfvén. Il
semble ici que les discontinuités “quasi-tangentielles” de la magnétopause correspondent de la
même manière aux “ondes cinétiques d’Alfvén” quasi-perpendiculaires. Plusieurs articles ont
étudié les changements dans les discontinuités rotationnelles lorsque divers effets non idéaux
sont introduits en utilisant différentes hypothèses. Cependant, ces différents articles aboutissent
à des conclusions différentes, notamment en ce qui concerne le rôle de l’inertie des électrons dans
l’équilibre de la couche. Même si l’étude statistique confirme le résultat obtenu par l’étude de
cas, une analyse plus complète bénéficierait de l’étude du tenseur de pression calculé dans les
simulations numériques. En particulier, nous pourrions exploiter la même simulation que celle
utilisée pour tester l’outil GF2. Cependant, par manque de temps, nous n’avons pas pu réaliser
cette analyse dans le cadre de cette thèse. Cette étude est laissée pour de futures recherches.
Dans l’ensemble, cette étude souligne la pertinence des effets FLR à la magnétopause, en four-
nissant un cadre pour les recherches futures. Ces efforts amélioreront notre compréhension de
la dynamique complexe à la magnétopause, contribuant au domaine plus large de la physique
des plasmas spatiaux.

En outre, GF2 a été utilisé pour comparer les propriétés géométriques des structures magnétiques
et ioniques à la magnétopause. Plus précisément, nous avons exploité le jeu de données des
traversées sélectionnées pour l’analyse statistique et comparé les normales obtenues à partir
des mesures du champ magnétique et du flux d’ions. Cette analyse a montré que la plupart
des traversées présentent des structures similaires, avec 56,2 % des traversées dont les normales
diffèrent de moins de 20 degrés, tandis qu’une partie de l’ensemble de données présente des
différences significatives. À cette fin, nous avons également analysé les propriétés des mesures
de flux d’ions. Plus précisément, nous nous sommes concentrés sur la dimensionnalité et la
stationnarité de ces mesures. En outre, pour certaines traversées, la normale obtenue à partir
du flux d’ions présente de fortes variations locales par rapport à la valeur moyenne. En ex-
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cluant toutes les traversées ne respectant pas les bonnes propriétés, nous observons que seuls
quelques traversées sont en dehors de la diagonale, avec seulement deux de ces traversées (sur 77,
équivalent à 2.6%) ayant des angles supérieurs à 40o. Une fois de plus, les simulations numériques
sont cruciales pour contextualiser ces résultats. À cette fin, la simulation numérique Menura a
été exploitée et a donné des résultats comparables : dans les régions présentant des structures de
flux d’ions unidimensionnelles, les normales obtenues à partir du champ magnétique et du flux
d’ions sont proches (avec des différences de l’ordre de 10 degrés). La partie prédominante de la
structure présente des caractéristiques bidimensionnelles pour le flux de masse d’ions, montrant
des normales de flux d’ions jusqu’à 90 degrés par rapport aux normales magnétiques. Une étude
plus précise, s’étendant à un plus grand nombre de régions de magnétopause, devrait perme-
ttre de quantifier ce résultat et de mieux comprendre les résultats obtenus par l’étude statistique.

Outre l’étude de la magnétopause terrestre, une étude numérique de la magnétosphère de Mer-
cure a été menée à l’aide du solveur iPIC3D (Markidis et al., 2010), un code PIC cinétique
complet. L’étude s’est concentrée sur la magnétosphère de Mercure pour deux raisons princi-
pales : i) préparer l’arrivée de la mission JAXA/ESA BepiColombo sur Mercure (Benkhoff et al.,
2021) et ii) exploiter la description cinétique complète de la mini-magnétosphère de Mercure
pour mieux comprendre les caractéristiques globales de la magnétosphère terrestre. En effet, en
raison des contraintes de calcul actuelles, la simulation de la magnétosphère de la Terre tout
en capturant les échelles cinétiques n’est pas réalisable sur le plan du calcul sans changement
d’échelle.
La simulation iPIC3D a été exploitée pour étudier la région de reconnexion dans la queue
magnétique, en se concentrant sur l’influence de la topologie du champ magnétique sur la distri-
bution des particules énergétiques. Cette analyse s’est principalement concentrée sur les ondes
whistler à bande étroite qui ont été observées autour de la région de reconnexion du côté nuit.
Ce résultat est remarquable puisque des ondes chorus en mode whistler ont été détectées lors des
deux survols de Mercure effectués par BepiColombo (Ozaki et al., 2023). Néanmoins, les obser-
vations n’ont pas encore permis de connâıtre la distribution de ces ondes dans la magnétosphère
de Mercure. Alors que ces ondes sont observées dans le secteur localisé de l’aube, les mesures
dans la queue magnétique manquent encore. Notre analyse apporte une réponse à cette question.
Cependant, un champ magnétique du vent solaire complètement orienté vers le sud a été utilisé
dans la simulation effectuée. Pour comprendre comment cette hypothèse affecte la distribution
des ondes, d’autres simulations numériques avec des orientations variables du champ magnétique
du vent solaire sont nécessaires et prévues pour les travaux futurs. En outre, d’autres simulations
numériques sont nécessaires pour tester l’influence du changement d’échelle du rayon appliqué
dans cette simulation sur les caractéristiques de l’onde et la relation de dispersion. En résumé,
cette recherche a permis une première analyse des ondes en mode whistler dans le cadre d’une
simulation globale, préparant le terrain pour les études futures et les observations à venir de
la mission BepiColombo. Une étude plus approfondie avec différents paramètres de simulation
sera cruciale pour faire progresser notre connaissance de la magnétosphère de Mercure.

Les résultats discutés dans cette thèse sont présentés dans deux articles : “Role of FLR effects
in magnetopause equilibrium”, accepté par Journal of Plasma Physics, et “Whistler-mode waves
in the tail of Mercury’s magnetosphere : a numerical study”, accepté par Astronomy & Astro-
physics. En outre, j’ai participé activement avec l’équipe Menura à l’exécution et à l’analyse de
la toute première simulation visant à étudier les conséquences de la turbulence du vent solaire
sur une planète semblable à la Terre. Ceci est possible grâce à la particularité du code Menura
qui résout les équations dans le repère du vent solaire, ce qui nous permet d’éliminer les con-
traintes sur les variations du champ magnétique alignées sur le flux et nous permet d’effectuer
des simulations numériques incluant une plus large gamme d’événements du vent solaire (Behar,
E. and Henri, P., 2023). Bien que plusieurs simulations numériques globales aient été réalisées
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de nos jours pour étudier l’environnement de Mercure, en utilisant des modèles allant de la
magnétohydrodynamique, multifluide, hybride à cinétique, aucun d’entre eux ne tient compte
de la dynamique du vent solaire turbulent. Cette analyse est résumée dans un article intitulé
“Impact of solar wind turbulence on the Earth’s bow shock” que j’ai co-écrit et qui devrait être
soumis dans les prochains mois à Astronomy & Astrophysics.
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Introduction

This thesis investigates the Earth’s magnetopause, the structure defined as the boundary sep-
arating the interplanetary plasma, dominated by the solar wind, and the planetary plasma,
dominated by the planetary magnetic field. A central question in magnetospheric physics is to
understand how mass, momentum, and energy can penetrate from one medium to the other
through this thin (with respect to the magnetosphere size) current layer. Within the scientific
community, this structure is considered to be an impenetrable structure, not allowing for any flux
of mass or magnetic field, except for some regions, where the layer is not planar, involving gen-
erally magnetic X lines, and where magnetic reconnection takes place thanks to non-ideal effects.

In this study, we focus on the regions of the magnetopause far from magnetic reconnection sites,
representing the majority of the structure. Within these regions, the magnetopause exhibits a
one-dimensional structure and can generally be considered stationary. It therefore meets the two
main hypotheses defining a physical “discontinuity”. However, as observed by in situ data from
space missions such as Cluster (ESA) and Magnetospheric Multiscale Mission (MMS, NASA),
the terrestrial magnetopause seems to escape the conventional discontinuity classification, which
relies on several simplifying assumptions such as one-dimensionality, stationarity and isotropic
conditions and ideal Ohm’s law on both sides of the discontinuity. In situ data exhibit proper-
ties that mix features of shocks and rotational discontinuities. In the Classic Theory framework,
such mixing is precluded except if the magnetopause is described as a tangential discontinuity,
requiring the structure to be completely impermeable to mass flow and magnetic field.

In this thesis, we challenge this paradigm by questioning the description of the magnetopause as
a tangential discontinuity and studying the limitations of the hypothesis of the state-of-the-art
theory. Here we summarize the eight chapters composing this manuscript.

Thesis Overview

In Chapter 1, we provide a brief introduction to plasma physics, focusing on the definition of
plasmas, their characteristic (temporal and spatial) scales, and the most important models used
to describe plasma dynamics.

Chapter 2 delves into the interaction between the solar wind and the Earth’s magnetosphere,
introducing the notions required to understand the thesis work. Here, we discuss the similarities
and differences between the different planetary magnetospheres. Chapter 2 also gives a detailed
description of the structure of the Earth’s magnetopause and a brief introduction to magnetic
reconnection.

Chapter 3 focuses on the study of the Earth’s magnetopause through in situ measurements,
introducing the main space missions that have sampled the structure, with a particular focus
on MMS, whose data are exploited in this study. In this Chapter, we highlight the importance
of an accurate determination of the magnetopause’s normal vector and discuss the most rele-
vant state-of-the-art tools employed in contemporary research to estimate this vector. Finally,
a new tool developed during this thesis, the Gradient matrix Fitting (GF2) tool, is presented
and tested using a magnetopause crossing from MMS.

In Chapter 4, we analyze the magnetopause from a discontinuity perspective, presenting what
we call the “Classic Theory of Discontinuities” and analyzing its limitations in modeling the
magnetopause. Specifically, here we use the MMS crossing analyzed previously to illustrate the
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theory’s constraints and demonstrate how the full pressure tensor, and in particular its non-
gyrotropy, has a fundamental role at the magnetopause equilibrium.

Chapter 5 generalizes the results discussed in Chapter 4 through a statistical study. In par-
ticular, we describe the characteristics of magnetopause crossings observed by MMS in order
to explain the selection process exploited to select the database used to perform the statistical
study. Finally, the results of this study are discussed, showing that what was observed in the
previous chapter is rather typical at the magnetopause.

Beginning in Chapter 6, the manuscript shifts the focus to numerical simulations, complement-
ing the study of the magnetopause from the in situ data analysis. In this Chapter, we introduce
the most common numerical models used to simulate plasma dynamics, focusing in particular
on the Menura and iPIC3D solvers employed during this work. Finally, this chapter introduces
both global and local simulation approaches for simulating the magnetopause.

In Chapter 7, we present a global simulation of the interaction between the solar wind and the
magnetosphere of an Earth-like planet, performed using the Menura solver. This simulation is
then used to validate the GF2 tool, presented in Chapter 3, by comparing its results with a
state-of-the-art tool.

Finally, in Chapter 8 we study Mercury’s magnetosphere through a numerical simulation using
the iPIC3D solver. The study discussed here slightly deviates from this thesis’s main focus,
exploiting Mercury’s magnetosphere’s smaller size (with respect to the Earth) allowing for the
use of fully kinetic codes to simulate its dynamics. This “mini-magnetosphere” is therefore
used to provide insights into Earth’s magnetosphere. Here, we first highlight the relevance
of the study of Mercury’s magnetosphere and the major missions that have investigated it in
situ. Additionally, we focus on the study of the generation of whistler-mode waves near the
reconnection region observed in the simulation.
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1 Fundamental concepts of plasma physics

Contents

1.1 Characteristic time and length scales in plasma . . . . . . . . . . . . 6

1.2 Different descriptions of plasmas . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 The Vlasov-Maxwell equations . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 The Fluid description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.3 The ideal Magneto-Hydrodynamics (MHD) equations . . . . . . . . . . 10

A plasma is defined as an ensemble of a huge number of charged particles, globally neutral and
dominated by electromagnetic forces. Plasmas are characterized by unique properties that dis-
tinguish them from other states of matter. A key feature of plasmas is the presence of charged
particles that can respond collectively to electromagnetic fields, leading to phenomena such as
plasma oscillations and various instabilities. Due to the differences with solids, liquids, and
gases, plasma is also known as the “4th state of matter”.
Plasma dynamics is driven by the long-range coupling between the external and self-consistently
generated electromagnetic fields (EMFs) and the global response of charged particles. Indeed,
on one side, the local values of the electric and magnetic fields drive the dynamics of the particles
via the Lorentz force. On the other, the position and velocity of the charged particles give the
local values of charge density ρ and the current density J (after averaging in a small volume),
which are the source terms in the Maxwell equations. In this context, the E and B fields must
be considered as averaged fields within the framework of a statistical approach, known as mean-
field theory (for a more detailed description see for instance plasma physics monographs such
as Krall et al. (1973) or Belmont et al. (2014)). A sketch simplifying the loop of plasma physics
is shown in Figure 1.1. Here it is easy to distinguish the plasma and gas dynamics. Indeed,
for gases with no ionization, the red lines connecting the particles and electromagnetic sides
disappear, decoupling the two.

Figure 1.1: Schematic representation of The plasma loop. Credits: adapted from Belmont et al.
(2019).
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FUNDAMENTAL CONCEPTS OF PLASMA PHYSICS

A further distinction between plasmas and non-ionized gases comes from collisions. Indeed, the
notion of collisions is qualitatively and quantitatively different in these two media. In both
cases, the mean free path due to collisions is defined as the characteristic scale length required
for a particle to change its velocity significantly due to the other particles. In a neutral gas, this
change only involves the close (“binary”) interactions between two particles, so justifying the
use of the word “collisions” in its usual sense. In contrast, in plasma, the deviation of a particles
path involves interactions with numerous other particles, most of them being distant from it.
The difference between the mean free path in plasmas and neutral gas and their collision regimes
is sketched in Figure 1.2. In a neutral gas, the collision frequency is often much higher than any
dynamical frequency. The so-called “perfect gas limit” refers to the cases where the collisions
are perfectly elastic, neglecting any other interaction between the particles. Plasmas exhibit
different collision regimes depending on their density and temperature. In all regimes, collective
effects and electromagnetic interactions are far more significant than individual collisions. The
weakly-coupled regime, which prevails in all space plasmas, is the equivalent for plasmas of gas
for neutrals: the mean free path is much larger than the inter-particle distance. In this case,
the kinetic energy of a single particle is also much greater than the potential interaction energy
at the mean interparticle distance.

Figure 1.2: Sketch describing the reciprocal influence of charged matter and electromagnetic
field in plasmas. Credits: adapted from Belmont et al. (2019).

Despite their rarity on Earth, it is estimated that more than 99% of all known matter in the
Universe is in a plasma state (Baumjohann and Treumann, 1996). In general, the plasma state
groups very different media, spanning several orders of magnitude in both temperature and
density. Figure 1.3 shows the order of magnitude of some plasmas in the n − T plane to fix
ideas of how variable the nature of plasmas can be. Moreover, plasmas can also be distinguished
between magnetized and non-magnetized ones. Due to this vast complexity and differences,
there is no universal method (either analytical or numerical) that can be generally and easily
used for describing the vast array of phenomena that occur in plasma. Plasma must therefore be
studied within limited regimes that allow simplification of the equations involved. From Figure
1.3 we observe that the solar wind and magnetospheric plasmas are very tenuous plasmas, almost
collisionless, and dominated by collective effects.
In this Chapter, we introduce the theoretical description of plasmas to include this work in a
broader plasma physics context. In particular, in Section 1.1 we present the typical temporal
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FUNDAMENTAL CONCEPTS OF PLASMA PHYSICS

Figure 1.3: Several examples of plasmas as a function of their densities and temperatures.
Credits: Fédération de recherche PLAS@PAR

and length scales in plasma physics. Then, in Section 1.2, a brief introduction to plasma models
(kinetic, two-fluid, and single-fluid MHD) is discussed.

1.1 Characteristic time and length scales in plasma

In vacuum, the electrostatic potential of an isolated macroscopic charge q, supposed spherical
is Φ(r) = q

4πϵ0r
. In a plasma, electrons are drawn toward it or away from it, depending on the

sign of q, effectively shielding the electrostatic field for the rest of the plasma. This shielding
effect modifies the effective potential in the proximity of the charge q, which is expressed as:

Φ(r) =
q

4πϵ0r
e−r/λDe (1.1)

where we defined the Debye length as follows

λDe ≃
√
ϵ0kBTe
nee2

(1.2)

Here, ϵ0 is the electric permittivity of the free space, −e is the electron charge, ne the electron
number density, Te the electron temperature, and kB the Boltzmann constant. The Debye length
can be interpreted as the scale over which charged particles screen out the electrostatic field of
an external “test” charge and so as the characteristic length beyond which the system behaves
as a plasma, i.e. collectively. This parameter, of fundamental importance in plasmas, can be
determined by balancing the electrostatic energy of the test charge with the thermal energy
of the plasma particles. From this scale, we define the Debye Sphere as the spherical region
surrounding a test charge within a plasma where the electric field is influenced by it.
The collective behavior of a plasma is featured by the plasma frequency, a frequency at which
the plasma oscillates at all wavelengths in the presence of a charge unbalance:

ωpe =

√
nee2

meϵ0
(1.3)
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Here, me is the electron mass. In the electromagnetic regime, the characteristic scale length of
the dynamics is called the skin depth de:

de =
c

ωpe
(1.4)

In the magnetized case, i.e. a plasma embedded in an external magnetic field B, the electron
characteristic scales are the gyroradius rLe (or the Larmor radius) and the gyrofrequency ωce:

ωce =
eB

me
, rLe =

vthe
ωce

(1.5)

Here, B is the magnetic field and vthe the electron thermal velocity, defined as follows:

vthe =

√
3kBTe
me

(1.6)

The characteristic scales associated with the ion dynamics derive from similar definitions where
the indices e are replaced by indices i.

1.2 Different descriptions of plasmas

As previously discussed, there is no computationally manageable (and general) method to model
a plasma as an N-body system of charged particles out of equilibrium. Indeed, this description
would correspond to solving huge numbers (equal to N) of 3-dimensional vectorial equations
of motion, with all particles being coupled one each other via the long-range electromagnetic
interactions. Such a calculation is not achievable even on the more powerful supercomputers of
the last generation. Thus, it is necessary to reduce the dimensionality of the problem. By taking
several assumptions starting from the N-body system, one obtains different plasma models,
whose spatial and temporal validity limits depend on the assumption. First of all, we find the
collisionless Vlasov model valid at all scales, which can be further simplified to get reduced
model equations aiming at studying plasma dynamics. In this section, we present the main
plasma models and discuss their validity regimes.

1.2.1 The Vlasov-Maxwell equations

To rule out the deterministic N-body description of a plasma, a statistical description is needed
(see Klimontovich (1982) for instance). For that purpose, we can start by using a distribution
function F for the ensemble of N particles in a 6N-dimensional configuration space (plus time):

F = F (t,x1,x2, ...,xN ,v1,v2, ...,vN ) (1.7)

To describe the evolution of the system, a conservation law can be used (the distribution function
is conserved as known from Liouville’s theorem). We have dtF = 0, where dt = d/dt is the total
derivative along the system trajectory {xi(t),vi(t)}i=1,...,N and involving the electromagnetic
terms in the acceleration terms. However, we still need to reduce the dimensionality. To have a
statistical description in lower dimensions, we must reduce the number of dynamical variables
in phase space. From F , we can define the s-particles distribution function, F (s), as follows:

F (s)(t,x1,x2, ...,xs,v1,v2, ...,vs) =

∫ (N−s)×6 ∫
F

N∏
i=s+1

d3xid
3vi (1.8)

where 1 ≤ s < N . This function indicates the probability of finding each of the s particles in the
(xs,vs) position in the phase space and has a reduced dimensionality, equal to 6s dimensions.
Specifically, our goal here is to obtain a mathematical description of plasma dynamics in terms
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of the single-particle distribution function (s = 1) F (1)(t,x1,v1), evolving in a six-dimensional
phase-space. Nevertheless, by integrating Liouville’s equation, the resulting equation for F (s)

still contains terms that depend upon the higher-order distribution function F (s+1) and so on,
because of correlations between particles. This means that the equation for one particle F (1)

will also contain the two particles F (2) (and so on). This infinite set of coupled equations is
known as the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy. To reduce the di-
mensionality, one has to truncate the chain by performing a so-called closure problem.

In Vlasov theory, we assume that the potential interaction energy is so low with respect to the
particle kinetic energy that “collisions” can be neglected. As a result, the particle dynamics
is dominated by the average field collectively generated by all particles, rather than by binary
particle interactions. In summary, particle correlation can be totally neglected, breaking the
hierarchy chain starting from the equation for the F (1) where we put F (2) = 0.
Hereafter, we will omit the single-particle index and identify F (1)(t,x1,v1) with fα(t,x,v). In
particular, the plasma species α is described by the following distribution function:

fα(t,x,v) =
∑
i

δ(x− xα,i(t))δ(v − vα,i(t)) (1.9)

The resulting equation for a given plasma species α (either ions or electrons) is the Vlasov
equation (Vlasov, 1968):

∂fα
∂t

(x,v, t) + v · ∇fα(x,v, t) +
qα
mα

(
E(x, t) + v B

)
·∇vfα(x,v, t) = 0 (1.10)

where qα is the charge, mα is the mass of the particle species and c is the speed of light.
The complete plasma dynamics description is then obtained by the non-linear coupling of the
Vlasov equation with the Maxwell equations to self-consistently calculate the electromagnetic
fields:

∇ ·E =
ρc
ϵ0

(1.11)

∇ ·B = 0 (1.12)

∇×E = −∂B
∂t

(1.13)

∇×B =
1

c2
∂E

∂t
+ µ0J (1.14)

where the electric charge density ρc and the current density J are obtained from the particle’s
distribution function. Here µ0 is the vacuum magnetic permeability.

Collision operators: closures on the plasma description

In the case when collisions cannot be completely ignored, Equation 1.10 can be generalized by
modeling the (previously neglected) integral term involving the F (2) on the right-hand side with
a collision operator for population α, Sα. Depending on the closure of collisions, this equation
is known by different names such as Boltzmann or Fokker-Planck, depending on whether the
collisions are modeled as hard-sphere binary interactions or if the source term has the form of a
diffusion operator.
For instance, in the case of the Boltzmann equation, it assumes that the interactions between
particles are all binary and elastic (particles see a field which is either zero or due to a single
other particle) and molecular chaos (collisions are considered as random and independent events).
With these assumptions:

Sα = (∂tfα)c =

∫ ∫
d3v2d

Ωσ|v2 − v|[f(v′)f(v′
2)− f(v)f(v2)] (1.15)

where σ is the differential collisions cross-section.
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1.2.2 The Fluid description

The kinetic approach is often too complicated and the plasma dynamics must be described by
a fluid approach, still taking into account the role of the electromagnetic fields. These equations
are obtained by integrating the Vlasov equation moments over the velocity coordinates for each
species in the plasma. To do so, we define the lowest-rank fluid moments as follows:

- Density:

nα =

∫
fα d

3v (1.16)

- Fluid Velocity:

uα =
1

nα

∫
vfα d

3v (1.17)

- Pressure Tensor (second rank tensor):

pα = mα

∫
(v − uα)(v − uα)fα d

3v (1.18)

- Heat flux (third rank tensor):

Qα = mα

∫
(v − uα)(v − uα)(v − uα)fα, d

3v (1.19)

where we have omitted the tensor product notation (u⊗ u ≡ uu, (uu)ij ≡ uiuj). By increasing
the fluid moment order, its rank increases. Higher-order fluid moments are defined correspond-
ingly. Directly from these definitions, it is obvious that all fluid tensors must be symmetric in
all of their indices.

Skipping the algebra (see for instance Krall et al. (1973) or Goldston and Rutherford (2003))
the first three moments of the fluid equations are given by:

∂tnα +∇·(nαuα) = 0 (1.20)

∂t(nαmαuα) +∇ · (nαmαuαuα + pα)−mαqαE+ uα×B = 0 (1.21)

∂tpα +∇ · (uαpα + qα) + pα · ∇uα + (pα · ∇uα)
T +

qα
mαc

[
B× pα + (B× pα)

T
]
= 0 (1.22)

The fluid description of plasma is formally composed of an infinite chain of differential
equations, one for each fluid moment, such as the ones defined in Equations 1.16 to 1.19 (and
subsequent equations higher-order descriptions). Each fluid moment (i) equation, Eq. 1.20 to
1.22, implies the higher (i+1) fluid moment. This infinite chain of fluid equations self-consistently
coupled with Maxwell’s equations, represents the equivalent of the Vlasov-Maxwell system of
equations. To be able to describe the plasma with a finite set of equations one must imperatively
make a hypothesis (defined as a closure) about a moment that allows one to describe the (i)th
moment using only lower order moments. Closures are chosen depending on the dynamics of
interest of the system at study and are justified only for a range of parameters and for a chosen
regime of the dynamics. The easiest example of closure is the polytropic closure. In this closure,
the pressure is linked to the density through the relation pn−γ = const 1. Several examples of
the most common closures used for the study of collisionless plasma are presented in Chust and
Belmont (2006).

1Here γ is the polytropic index. This closure includes the adiabatic and the isothermal (when γ = 1) limits.
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1.2.3 The ideal Magneto-Hydrodynamics (MHD) equations

Starting from the multi-fluid description above (i.e. fluid equations for each species) we can
derive a single fluid description, valid at characteristic scale L and velocity U . It is known as
the ideal-MHD theory and it is adopted to describe the low-frequency and large-scale dynamics
of a quasi-neutral plasma composed of ions and massless electrons. This theory is based on the
following assumptions:

- The dynamics is limited to large scales, L≫ ρi, di and low frequencies, ω ≪ Ωci
2;

- The pressure is supposed isotropic (diagonal tensor);

- The characteristic velocity is much lower than the light speed, U ≡ L/τ ≪ c (where l
and τ are the characteristic length and time scales of the dynamics, respectively). Fast
variations and sharp boundaries can therefore not be described by the model;

- Furthermore, one typically also assumes zero electron mass ratio limit, me/mi → 0.

In MHD, the fluid density and velocity are defined as follows:

ρ =
∑
α

nαmα

u =

∑
α nαmαuα∑
α nαmα

p+ ρu2/2 =
∑
α

pα + ραu
2
α/2

(1.23)

(1.24)

(1.25)

Here, the sum over the different populations is limited to the ion populations (in case different
ion populations are found in the plasma) since the electron mass is neglected. Under these
conditions, we can sum Equations 1.20-1.22 for the different species and after some algebraic
ordering and simplification we get the following system:

∂tn+ (u · ∇)n = −n(∇ · u)

∂tu = −(u · ∇)u−∇p+ (∇×B)×B

µ0

(1.26)

(1.27)

As for the fluid theory, a closure, typically the polytropic relation discussed above, is needed.
For a more generic closure, the tensorial description of the pressure tensor may be included in
this model. However, this case corresponds to a generalization of MHD rather than the standard
description. The system is completed with the Faraday equation (Equation 1.13) and Ohm’s
law (see e.g. Krall et al. (1973) or Belmont et al. (2014)), which for an ideal plasma (i.e. no
collisions) is as follows:

E+mathbfu×B = 0 (1.28)

The generalized Ohm’s law

For a non-ideal plasma, however, the generalized Ohm’s law is used to obtain the electric field.
In a collisionless plasma, this equation reads:

E+ u×B =
1

ne
J×B− 1

ne
∇ ·Pe +

me

ne2

[
∂J

∂t
+∇·

(
uJ+ Ju− JJ

ne

)]
(1.29)

2A consequence of this slow variation hypothesis is the so-called quasi-neutrality approximation. In in this
limit the space charge is much lower than the charge densities of each species. Therefore, in MHD the plasma is
assumed locally neutral, n ≃ ni ≃ ne.
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The right-side terms are the so-called (in order) “Hall”, “electron pressure”, “electron inertia”
and “resistive” terms. These terms come into play as soon as the dynamics approach the
characteristic ion scale and have an important role in the description of plasma instabilities such
as magnetic reconnection. In particular for the first two, while the Hall term is responsible
for ion demagnetization, the electron pressure term is responsible for breaking the magnetic
topology.
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While on Earth plasmas are rare, they are found ubiquitously in the universe, e.g. in interstellar
and intergalactic space, stars, accretion disks, astrophysical jets, and around black holes. Plas-
mas are also common in the entire Solar System, from the solar atmosphere to the near-Earth
environment and other planetary magnetospheres.
In this chapter, we present the solar system plasmas. In particular, we introduce the Sun-Earth’s
magnetosphere interaction (and, generalizing, the interaction of the solar wind with other plane-
tary environments in the Solar system). Later, we focus on the so-called Earth’s magnetopause,
the boundary that separates the solar wind and the planetary magnetosphere.

2.1 The Sun-Earth interaction

The interaction between the Sun and the Earth’s magnetosphere gives rise to a very complex
time-evolving structure, which is the primary focus of the study in this manuscript. This chapter
aims to familiarize the readers with this structure and outline the main themes explored in the
manuscript. For a more comprehensive description, the main reviews used as a basis of the
following discussion will be included for each topic.

2.1.1 The solar wind

The solar wind consists of a flow of charged particles, globally neutral, that escapes from the
Solar corona outwardly and is embedded in the solar magnetic field. Its existence was first
hypothesized based on its interaction with planetary bodies in the solar system. Ever since the
nineteenth century it has been established that there is a connection between solar activity and
disturbances in the Earth’s magnetic field (Sabine, 1851, 1852; Hodgson, 1859; Stewart, 1861).
However, the association of these phenomena with a flow of particles escaping the Sun began at
the beginning of the 20th century (Birkeland, 1901; Chapman, 1917; Stormer, 1918). Later on,
the momentum transfer from the solar wind to cometary ions, and the estimation of solar wind
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Figure 2.1: Left: Northward view of the Sun and the solar wind. The solar wind bending
trajectories are underlined by the curves departing outwardly from the Sun. During its travel,
the solar wind can impact magnetized objects (bottom left corner), forming a cavity(the mag-
netospheres). Credits: Modified from https://www-istp.gsfc.nasa.gov/istp/outreach/

windandweather.html. Right: 3D visualization of the magnetic field lines in the solar wind
(in yellow the Parker spiral). Credits: J. Jokipii, U Arizona.

velocity ranging between 500 and 1500 km s−1, were quantified for the first time by Biermann
and Schluter (1951) based on observations of comets’ second tails systematically pointing away
from the Sun. Since then, the solar wind has been a central topic in the community.

The origin of this flow of particles remained unclear until the first theoretical model of the
solar wind, which was presented in Parker (1958). In this paper, E. Parker showed that the
plasma in the Solar Corona, with a temperature of the order of millions of degrees Kelvin,
has enough energy to overcome the gravitational potential energy of the Sun and to escape.
According to Parker’s model, the solar wind has a subsonic flow velocity at the base of the
corona that increases monotonically as the logarithm of the distance. In this model, the solar
wind becomes supersonic at about 5 solar radii from the Sun. Parker therefore found a solution
with a radial flow with a velocity of the order of 500 km s−1 at the Earths orbit point is found,
which is consistent with the observations.

A year after Parker’s article, the Soviet spacecraft Luna 1 detected solar wind particles in
space, and three years after, the observations were confirmed by NASA’s Mariner 2 spacecraft1.
Ever since rapid progress in solar wind physics has been made both in modeling and instrumen-
tation (see the reviews for Viall and Borovsky (2020); Verscharen et al. (2019); Cranmer et al.
(2017); Schrijver and Siscoe (2009); Schwenn and Marsch (1990, 1991), for instance)
The solar wind consists mainly of electrons, protons, and alpha particles. However, trace
amounts of heavier ions such as oxygen, and iron are found. In situ measurements across
the years also showed that the raw probability distribution of its speed in the ecliptic is usually
single-peaked around 400 km s−1, with a sharp cutoff below 250 km s−1. Moreover, a negative
correlation between the densities and the speed is observed for both protons and electrons. Fur-
thermore, the solar wind plasma is almost collisionless, the mean free path being almost as large
as the sun-earth distance. Therefore the magnetic field is “frozen-in” the plasma flow (non-ideal

1It is notable to mention that solar wind measurements were conducted by Explorer 10 (Bridge et al., 1962)
However, it is currently understood that the spacecraft never reached the undisturbed interplanetary medium.
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effects such as resistivity can be neglected, see Section 2.3.1.) Thus, to have a more realistic
description of the solar wind we have to take into account the rotation of the Sun. As the solar
wind magnetic field lines are anchored in the rotating Sun, their shape is an Archimedes’spiral,
known as Parkers spiral, first proposed in Parker (1958), as sketched in Figure 2.1.

The Heliosphere

The region where the solar wind flows and where the Sun’s magnetic field plays a very important
and active role, is called the Heliosphere. It can be seen as a bubble in the flow of the local
interstellar medium containing the entire Solar System (R ∼ 120 a.u.) sustained by the pressure
of the supersonic solar wind. At the edge of the Heliosphere, several discontinuities occur.

Firstly, the solar wind undergoes a sharp transition to subsonic flow in the so-called termi-
nation shock. Then, we found a region called Heliosheath where the plasma is slower, denser,
hotter, and also the Suns magnetic field is compressed where the flow becomes even more turbu-
lent. In this region, magnetic bubbles with sizes comparable to the Earth’s orbit were observed
by the Voyager mission (Opher et al., 2011). Finally, the last boundary called Heliopause is
found, where the solar wind and the interstellar medium pressures eventually reach balance.
The observed structure is similar to the structure formed from the interaction between the solar
wind and planetary magnetosphere, which is analyzed in the following Section.

2.1.2 The Earth’s magnetosphere and its interaction with the solar wind

The first to use the word magnetosphere was T. Gold in 1949 to describe the region above the
ionosphere in which the magnetic field of the [Earth] has a dominant control over the motions of
gas and fast charged particles. Quickly the word acquired the connotation it has today: the region
of space dominated by a specific celestial body’s magnetic field. The Earth’s magnetosphere
is continuously impacted by the solar wind dragging and shaping the magnetosphere plasma
(including the frozen-in magnetic field) in the form of an elongated bubble around the planet.
As a result, the magnetic field differs greatly from how it would have been if the planet was in
a void environment. At the Earth, the dynamo sustains a quasi dipolar magnetic field with a
magnetic moment M = 8.1 ·1015Tm−3, corresponding to a magnetic field at ground level at the
magnetic equator Beq = 0.31 · 10−4T 2.
The structure that develops from this interaction supports a very complex dynamics, present-
ing phenomena with a wide range of timescales and spatial lengths. We observe phenomena
with timescales of a few seconds, as for the auroral pulsations (Yamamoto, 1988), together with
phenomena lasting several days, such as the intensification of the electron radiation belt (Ba-
likhin et al., 2011). Concerning spatial scales, we find phenomena with characteristic lengths
between 0.4 cm (Debye length in the ionosphere) to =106 km for those concerning the whole
magnetosphere, with thin layers of the order of the ion Larmor radius (typically about 1000
km).
As the solar wind reaches the terrestrial magnetic environment, it compresses the dayside and
draws the nightside out into a magnetotail. The structure created with the interaction is divided
into several sub-regions, as shown in Figure 2.2. Here we show a duskward view of the XZ plane
in the GSE3 frame with the solar wind flowing from the left.

2Similar magnetospheres are also found in other planetary objects within the Solar system, as discussed in
Section 2.2

3The Geocentric Solar Ecliptic (GSE) coordinate system is an orthogonal system defined as follows:

- The x axis lies in the Earth-Sun direction and points toward the Sun;

- The z axis is perpendicular (pointing northward) to the ecliptic plane, defined as the plane of Earth’s orbit
around the Sun.;

- The y is defined subsequently.
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Figure 2.2: Dusk-ward view of the Earths magnetosphere. The main sub-regions are shown. The
magnetospheric magnetic field is computed with the Tsyganenko statistical model (Tsyganenko,
1989). The units of the axes are in Earths Radii and the frame used is the Geocentric Solar
Ecliptic (GSE) frame. Credits: P. Robert (CETP/CNRS)

At the Earth, the solar wind flows faster than both the magnetosonic and the Alfvén speeds4.
As a result, a collisionless shock, the so-called bow shock, is formed. At the bow shock, the
supersonic flow jumps down into a subsonic flow with a strong increase in plasma density,
temperature, and magnetic field strength. The characteristic width of the bow shock is usually
comparable to the local ion Larmor radius while it is located between 13 and 15 Earth’s radii
from the planet. Moreover, the bow shock can be classified either as quasi-parallel or quasi-
perpendicular depending on the value of the angle between the shock normal and the upstream
magnetic field’s direction (with 45◦ being the threshold between the two). The existence of these
two shock geometries leads to different, intrinsically kinetic, dynamics both along and across the
bow shock (Burgess and Scholer, 2015).

Downstream of the bow shock, the magnetosheath is found first. The magnetosheath is a
turbulent region where the shocked solar wind plasma is wrapped around the magnetosphere.
Its shape and size vary depending on the strength of the solar wind and the orientation of the
interplanetary magnetic field. Then, we find the magnetopause. It can be defined as the proper
boundary between the Solar wind and magnetospheric magnetic fields. The magnetopause is
characterized by a current sheet due to the difference between the (variable) solar wind magnetic
field and the magnetospheric one, directed northward. The boundary is also characterized by a
transition in plasma density. The magnetopause is the structure over which this work is focused
and is described further in Section 2.3.

On the nightside of the Earth planet, the magnetotail is found. The magnetotail is a long,
up to ∼ 200RE , cylindrical-like structure where magnetic-field lines are connected to the Earth.
However, the tail is not limited by boundaries as clear as its sunward side. The magnetotail is a

4Here the Alfvén velocity is defined vA =
√

B2/(2µ0ρ), where B is the modulus of the magnetic field, µ0 is
the magnetic permeability of void and ρ is the plasma density.
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reservoir of magnetic energy that powers several magnetospheric processes. The magnetotail is
subject to global instabilities, in particular, those that produce substorms. Other geographical
regions localized in the magnetosphere are:

- The polar cusps, defined as the regions where Earth’s dipolar magnetic field diverges from
the magnetic poles of the Earth.

- The lobes, characterized by open magnetic field lines that emerge from the Earths surface
at one end while extending into interplanetary space at the other. They are characterized
by low plasma density and magnetic field magnitude.

- The plasma sheet, a current sheet composed of highly energized plasma within Earth’s
magnetotail.

- The plasmasphere, a region composed of dense and cold plasma located just outside the
ionosphere.

- The Van Allen radiation belts are concentric zones where energetic particles are trapped by
the planetary closed magnetic field lines. The inner belt, closer to Earth, consists mostly
of energetic protons, while the outer, extending further out, presents both protons and
electrons.

A more detailed discussion of these regions, not treated in this manuscript, can be found for
instance in Borovsky and Valdivia (2018)).

Figure 2.3: Plasma populations that populate the magnetosphere as a function of their temper-
ature and density. Credits (Borovsky and Valdivia, 2018).

Furthermore, at the magnetosphere the different sub-regions present multiple plasma popula-
tions. Typical orders of magnitude of the density and temperature of these populations are
shown in Figure 2.3. These plasmas are connected with each other via different types of elec-
tromagnetic plasma waves and instabilities that characterize the magnetosphere dynamics.
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2.2 Planetary magnetospheres in the Solar System

In the previous section, we described the Earth’s magnetosphere which was the first to be dis-
covered. However, a similar structure surrounding other planetary objects interacting with a
plasma flow has been discovered. The first in situ observations of planetary magnetospheres
and their distinction from Earth’s one date back to 1974 when the Jovian and the Hermean
magnetospheres were observed through Pioneer 10 (Wolfe et al., 1974) and Mariner 10 missions
(Ness et al., 1974), respectively. It is therefore worthwhile to compare these planetary magne-
tospheres with the Earth. Although they have not been investigated to the same extent due to
their distances, past missions (such as Galileo, Cassini, or MESSENGER) as well as in progress
or future missions (BepiColombo5 and JUICE) have been undertaken or planned. The struc-
ture, dimension and typical dynamics of a planetary magnetosphere differ greatly depending
on both the planetary body and the local solar wind properties. The size of a magnetosphere
depends on the planet’s magnetic field, radius, and the ambient solar wind density. Therefore,
large magnetospheres are observed in planets with strong magnetic fields and those with weak
magnetic fields surrounded by a more tenuous solar wind (farther from the Sun). Consequently,
each magnetosphere exhibits unique and intriguing features that warrant thorough investigation.
In the following, we discuss the main differences between these magnetospheres while a more
complete discussion can be found in Bagenal (2013).

2.2.1 Solar wind parameters at different planets

As the distances between the planets in the Solar System and the Sun span over two orders of
magnitude, the solar wind properties observed at these planets are widely different. The density
of particles (mainly electrons and protons) decreases as the inverse square of the distance from
the Sun. Moreover, the IMF varies with the distance, with its magnitude decreasing roughly as
r3/2. An overview of the solar wind parameters at the Solar System planets is shown in Table
2.1.

ap[au] SW density IMF strength IMF
[cm−3] [nT ] azimuth angle

Mercury 0.39 53 41 23o

Venus 0.72 14 14 38o

Earth 1. 7 8 45o

Mars 1.52 3 5 57o

Jupiter 5.2 0.2 1 80o

Saturn 9.5 0.07 0.6 84o

Uranus 19 0.02 0.3 87o

Neptune 30 0.006 0.2 88o

Pluto 40 0.003 0.1 88o

Table 2.1: Properties of the solar wind at different planet locations. ap is the distance between
the planet and the Sun and it is computed at the semimajor axis of the orbit (1 au =1.5 ·108km).
The density indicated is the mean value (it fluctuates a factor of 5 about typical values, i.e.
nsw ∼ 7/a2p with ap the distance of the planet in A.U.). IMF azimuth angle is tan−1(Bϕ/Br).
Credit: Bagenal (2013)
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Rp [km] Surface magnetic Rmp [Rp] Magnetosphere
field [nT] size [Rp]

Mercury 2 439 195 1.4-1.6 1.5
Venus 6 051 - - -
Earth 6 373 30 600 10 8-12
Mars 3 390 - - -
Jupiter 71 398 430 000 46 63-93
Saturn 60 330 21 400 20 22-27
Uranus 25 559 22 800 25 18
Neptune 24 764 13 200 24 23-26
Pluto 1 153 Not known Not known Not known

Table 2.2: Scales of Planetary magnetospheres. Rp is the planetary radius while Rmp is the
magnetopause nose distance, estimated from a theoretical formula (see Eq. 2.4) for typical solar
wind conditions of the solar wind density (given in Table 2.1) and a velocity of 400 km s−1.
For outer planet magnetospheres, this underestimates the actual distance Kivelson and Russell
(1995). Rmp and the magnetospheric sizes are expressed in the unit of planetary radius. Credit:
Kivelson and Bagenal (2014).

2.2.2 Planetary differences

Other than the solar wind parameters, the intrinsic characteristics of individual planets strongly
influence the structure and characteristic scales of their magnetospheres. On one hand, not all
planets are magnetized: Venus and Mars have null or very small (remnant) magnetic fields. On
the other hand, the magnetic fields of the magnetized planets vary by several orders of magnitude.
Since the distance of the magnetopause from a planet can be estimated from a balance between
the dynamic pressure of the solar wind and the planetary magnetic field pressure (as discussed
in Section 2.3), the dimension of the magnetosphere can vary a lot depending on the internal
magnetic field strength. Table 2.2 lists key parameters for the different planets, including the
magnetic field at the surface and the characteristic scale of these magnetospheres. Moreover, also
planetary satellites can present magnetospheres. As for planets, some of them have an intrinsic
magnetic field (such as Ganymede) while some others (such as Titan, Io, Enceladus, Europa,
and the Earth’s Moon) do not. The peculiarity of these magnetospheres is that they can be
completely contained within the planet’s magnetosphere, not interacting with the pristine solar
wind and enhancing the differentiation of magnetospheres in planetary objects. Furthermore,
asteroids (small bodies with a radius below 1000 km) and comets may be characterized by a
region surrounding them resembling the planetary ones. However, these magnetospheres are not
analyzed here. A more detailed description can be found in Bagenal (2013) and Kivelson and
Bagenal (2014).

Non-magnetized planets

The two non-magnetised planets are Mars and Venus. The former presents an extremely small
planetary magnetic field while the latter is nonexistent. The electrical conductivity of the body
determines the interaction between these unmagnetized planets and the supersonic solar wind.
In general, the interaction with the plasma flow occurs via the remnant magnetization of the
crust and/or currents associated with local ionization or induced in an electrically conductive
ionosphere. This interaction forms a region similar to a planetary magnetosphere, causing the
magnetic field of the solar wind to drape around the planets. For Mars and Venus (and also
for Titan, Io, Enceladus, and Europa) this process is driven by their ionospheres. A schematic

5Described in detail in Section 8.2
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illustration of this interaction is shown in Fig. 2.4.

Figure 2.4: Schematic illustration of the interaction between the solar wind and an unmagnetized
planet like Mars or Venus. Credit Kivelson and Bagenal (2014).

A different condition is found at the Earth’s Moon, due to a very low surface conductivity
and the absence of an ionosphere. In this case, there is no deflection of the solar wind which runs
directly on the surface, where it is absorbed. As a result, the region immediately downstream
of the Moon is left partially devoid of plasma.

Magnetized planets

As shown in Table 2.2, six planets in the solar system present an internally generated magnetic
field: Mercury, Earth, Jupiter, Saturn, Uranus and Neptune. To possess a magnetic dynamo,
a planet must have a large fluid, electrically conductive region undergoing convective motion.
While the terrestrial planets have differentiated cores consisting of liquid iron alloys, in the
high-pressure environments within the gas giants like Jupiter and Saturn, hydrogen exhibits
metallic (liquid metal-like) properties. Uranus and Neptune, instead, have a mixture of water,
ammonia, and methane forming a deep conducting “ocean”. Even if planetary magnetic fields
are usually simplified as dipoles, it is worth noticing that almost all planets exhibit non-dipolar
contributions. In this sense, an excellent indicator is the ratio of the minimum to the maximum
magnetic field at the planetary surface (equal to 2 for a dipole). This value is 2.8 at Earth,
4.5 at Jupiter, 12 at Uranus, and 9 at Neptune, demonstrating strong non-dipolar components,
especially in the two latter.

While the size of a planet’s magnetosphere depends on the strength of its magnetic field, the
internal dynamic is determined by the offset of the dipole from the planet’s center and by two
angles, the one between the dipolar moment and the planet’s spin axis (tilt angle), and the one
between the planet spin axis and the solar wind direction. Both angles can be considered as
constant to describe the magnetospheric configuration during a most of the plasma phenomena
under study. This is because the angle between the spin axis and the solar wind direction varies
significantly only over a planetary year and the planets magnetic field is assumed to vary only on
geological timescales. Therefore, those magnetospheres of planets with dipole tilts below ∼ 10◦

(i.e. Mercury, Earth, Jupiter, and Saturn) are reasonably symmetric and quasi-stationary. In
the case of large dipole tilt angles, instead, a great variation of the relative direction between
the orientation of the magnetic fields and the interplanetary flow direction is observed over a
planetary rotation period. Therefore, highly asymmetric magnetospheres varying at the period
of planetary rotation are observed. This is the case of Uranus and Neptune (having a tilt angle
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of 59 and 47◦ respectively). A more accurate description of the differences between planetary
magnetospheres can be found in Bagenal (2013).

Since the four terrestrial planets have far weaker magnetic fields generated in their interiors
than the giant planets, as shown in Table 2.2, the difference in scale of the magnetospheres
is huge. This difference in scales is schematized in Figure 2.5, comparing the magnetosphere
structures of Mercury, the Earth, Jupiter and Saturn.

Figure 2.5: Scaling of the magnetospheres from Mercury, Earth, Saturn, to Jupiter. Credit
Bagenal (2013).

2.3 The Earth’s magnetopause

As discussed above, the magnetopause can be defined as the proper boundary between the solar
wind and the magnetospheric plasma. In particular, the magnetopause separates the solar wind
plasma, slowed down by the bow shock, and the magnetospheric one. The magnetopause is char-
acterized by a transition in both the magnetic field direction and its magnitude. It is therefore
a current sheet, which is usually referred to as the Chapman-Ferraro current.This boundary is
also characterized by a transition in plasma parameters: density and temperature, and more
generally distribution functions. This section aims at introducing the Earth’s magnetopause,
the main focus of this manuscript, in detail.

2.3.1 A large scale explication of the existence of the magnetopause

The existence of the magnetopause boundary can be explained as a consequence of the frozen-
in property, which prevails at large scales. Let us first briefly recall this property and its
demonstration.
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The frozen-in flux theorem

The frozen-in-flux theorem, also known as the Alfvén theorem, describes the behavior of the
magnetic field in a plasma. This theorem states that in an ideal plasma, as long as the ideal
Ohm’s law

E+ u×B = 0 (2.1)

is valid, the magnetic field lines are “frozen” into the fluid motion of the plasma. In other
words, as the plasma moves and evolves, the magnetic field lines move with it, maintaining their
topology. From this theorem it follows that the plasma and the magnetic field move anchored
to each other at the so-called frozen-in velocity, given by vm = E×B/B2.
This theorem can be demonstrated by considering the temporal variation of magnetic flux ψ
through a loop C, moving with the plasma and spanning a surface called S. We have:

dψ

dt
=

∫
C

∂

∂t
(B · dS) (2.2)

In this equation, both the magnetic field and the surface are varying. Concerning the magnetic
field variation, we can use the ∂B∂t = −∇×E equation. The variation of the surface S, instead,
causes a change of magnetic flux per unit equal to B · u× dr. By using the cross theorem on
this term, we can rewrite Equation 2.2 as follows:

dψ

dt
=

∫
C
∇× (E+ u×B) · dS (2.3)

which is equal to zero as long as the ideal Ohm’s equation is valid.
The broader condition for the frozen-in property extends beyond the ideal Ohm’s law, as it
holds true wherever there is an absence of parallel electric fields, or even more broadly when the
curl of the parallel electric field is zero (Belmont et al., 2012). This constraint arises directly
from the electromagnetic properties described by Maxwell’s equations and is solely contingent
on plasma characteristics through the existence -or not- of the ideal Ohms law, which has the
capability to nullify the parallel electric field.

Boundary between two colliding magnetized plasmas

In first approximation, we can consider the solar wind and the magnetospheric plasma as two
plasmas pushed against each other. Due to the frozen-in flux condition, a thin discontinuity
(i.e. the magnetopause) separating the two mediums is created. Therefore the magnetospheric
and solar wind plasmas have to remain separated wherever the frozen-in condition is respected.
Nevertheless, this simple view of the behavior of the two plasmas is in reality more complex
since the frozen-in condition is valid only on ideal-MHD scale lengths. The two plasmas can
indeed reconnect (occurring at the so-called “reconnection layer”) around some regions where
the condition is broken, as detailed in Section 2.3.4. In the following chapters, however, we will
demonstrate how other kinetic effects may be taking place within the magnetopause allowing
for the two media to interact. Consequently, this idea of the magnetopause as a discontinuity
strictly separating two independent media except in some places may be inaccurate.

2.3.2 Magnetopause global features

The structure of the magnetopause has long been studied thanks to many space missions that
have made enormous progress in understanding this barrier over the past seventy years6. In
particular, measurements made by the Cluster (Escoubet et al., 1997) and the Magnetospheric
Multiscale (MMS) Mission (Burch et al., 2016) allowed to characterize the boundary global

6An introduction of the timeline of the magnetopause in-situ exploration is discussed in Section 3.1
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features in detail. They have shown that the magnetopause’s position and shape vary dynami-
cally in response to changes in solar wind conditions, such as fluctuations in solar wind velocity,
density, and magnetic field orientation. Figure 2.6 illustrates an example of a magnetopause
crossing, as observed by one of the Magnetospheric Multiscale (MMS) mission satellites. The
mission is introduced in Chapter 3. Significant changes are evident in all visible parameters: the
magnetic field reverses, plasma density increases sharply, and ion temperature decreases.

Figure 2.6: Crossing of the magnetopause as observed from MMS1. Here the ion and electron
densities (left), the ion parallel and perpendicular temperature (centre) and magnetic field (right)
are shown. The spacecraft is going from the magnetosphere to the magnetosheath.

By performing a statistical study on almost 3000 MMS magnetopause crossings, Haaland et al.
(2020) estimated the mean value of the magnetopause thickness to be 734 km on the dayside
(corresponding to around 12.5 di). This result is in line with earlier results, estimating the thick-
ness to be in the (700 ± 300) km interval (Berchem and Russell, 1982a; Phan and Paschmann,
1996; Paschmann et al., 2005a). Moreover, the magnetopause is observed to be thicker at the
flanks (approximately 15 − 20%) than at the dayside, either if the thickness is estimated in
kilometers or reduced units of the upstream ion gyroradius or upstream ion inertial length. The
boundary displacement velocities vary from a few tens of km.s−1 to extreme values of several
hundred km.s−1. Finally, the acceleration of the boundary is far from negligible, reaching values
on the order of 10 km.s−2. Other mean values of the main physical parameter at the Earth’s
magnetopause can be found in (Haaland et al., 2020).

An interesting feature of the magnetopause is that the width of this structure is much smaller
than the scale of the whole magnetosphere (of about ∼ 10RE , where RE = 6371 km is the Earth’s
radius). For this reason, the magnetopause is usually viewed as a nearly two-dimensional thin
boundary. Despite representing only a fraction of the overall structure, the internal structure of
the magnetopause plays a pivotal role in regulating the exchange of plasmas between the solar
wind and the magnetosphere.
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2.3.3 How to model the magnetopause global structure

Although never mentioning the word “magnetopause”, one of the first descriptions of this bound-
ary was suggested by Chapman and Ferraro (1930). Theoretical calculations of the location of
the magnetopause were obtained by using a hydrodynamic description (including the magnetic
field) of the medium (as, for instance, in Spreiter et al. (1966a)). In this approximation, the shape
of the structure can determined by the balance between the three pressures that exist in the
plasma state: the dynamic (mnV 2 ), the thermal (nKBT ) and the magnetic ones (B2/(2µ0)).
Here we definedB as the magnetic field andm, n, T , V as the ion mass, density, temperature and
velocity. In the solar wind, the main pressure is the dynamic one. In the magnetospheric plasma
instead, the magnetic pressure is the dominant one. Therefore, the balance between these two
defines the location of the magnetopause (Tsyganenko, 1989; Baumjohann and Treumann, 1996).

By assuming for simplicity a dipolar magnetic field, from the force balance we can estimate the
distance rmp of the nose of the magnetopause (namely the subsolar point) with respect to the
center of the planet:

rmp

RE
= 21/3

(
B2

eq

2µ0ρswu2sw

)1/6

(2.4)

Here we defined ρsw the solar wind mass density and usw the solar wind flow speed, both up-
stream the bow shock and assumed that the strength of the magnetic field is B(r) = Beq(RE/r)

3,
where Beq is the magnetic field at the equator at the Earth’s surface. The factor 21/3 comes
from the fact that, in reality, the magnetopause current produces a distortion on the dipole
magnetic field due to the compression on the day-side. Therefore, the magnetic field within the
magnetopause is approximately twice as large as that of a dipole. This approximation offers a
valuable estimate of the magnetopause position, however, with limited precision. This limitation
arises since the plasma beta (β) on both media typically approaches unity, and also because it
overestimate the effects of the bow shock and the magnetosheath in altering solar wind proper-
ties. Furthermore, due to the deflection of the flow, the ram pressure at the magnetopause is
reduced from the one far from the magnetopause by a factor k ∼ 0.88 (Spreiter, 1976).

A theoretical model linking properly the position of the magnetopause and the solar wind
parameters (as a function of the relative angle to the Sun-Earth axis) has been of strong in-
terest inside the community over the years. Due to the complex interaction between the solar
wind and the planetary magnetic field (over which the dynamics of the turbulent solar wind
must be considered), many empirical models have been developed based on in situ observations.
Understanding the influence of the solar wind and the interplanetary magnetic field (IMF) on
the magnetopause requires the identification of the location of the magnetopause under a large
variety of conditions. For this reason, many authors have developed statistical models to link
the location of the magnetopause to the solar wind characteristics, employing different func-
tional forms. It is worth noticing that one notable difficulty in this approach lies in the fact
that the thickness of the magnetopause can vary, depending both on the location and solar
wind conditions. In addition, depending on the satellite’s trajectory relative to the magne-
topause, numerous crossings can be observed in succession over long periods. Notable examples
of these statistical models include Sibeck et al. (1991); Shue et al. (1997); Case and Wild (2013);
Hasegawa (2012); Nmeek et al. (2020) and Nguyen et al. (2022b).

The Shue et al. (1997) model, along with its improved version presented in (Shue et al.,
1998) following the validation with a magnetic cloud event in 1997, stands out as one of the
most widely used analytical models. This model was derived as an empirical best fit to data
from several magnetospheric satellites, including ISEE 1 and 2 and IMP 8, and will be used in
this study to provide the relationship between the magnetopause radial distance r as a function
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of the IMF z component, and the solar wind dynamic pressure. The distance turns out to be:

r = r0

(
2

1 + cos θ

)α

(2.5)

where θ is the zenith angle and r0 and α are parameters depending on the solar wind parameters.
This model assumes axisymmetry around the Sun-Earth axis (an hypothesis questioned by the
observations of Boardsen et al. (2000) and Safrankova et al. (2002)) and does not account for
magnetospheric cusp regions. However, despite its limitations, it remains a valuable tool for our
study. Its combination of accuracy and simplicity makes it well-suited for our purposes.

2.3.4 The magnetopause: a far-from-ideal boundary

The simplified concept of the magnetopause as a stationary discontinuity with one-dimensional
gradients, everywhere and at all times, does not capture the complexity of its structure. In
reality, the magnetopause exhibits a dynamic and multidimensional structure where plasma
instabilities do play a key role.

Figure 2.7: Left: the magnetic field component with the largest variation across the magne-
topause (Bz), for two of the four MMS satellites. Right: Time delays occurring between mea-
surements of the same magnetic field component for the same two satellites. (Credit: (Rezeau
et al., 2018))

Regarding the routinely adopted assumption of a stationary magnetopause, recent missions such
as Cluster and MMS (presented in detail in Chapter 3) have demonstrated that this assumption
is not always valid (Paschmann et al., 2005b). The fact that the motion of the magnetopause
can be different from being constant is evident from Figure 2.7showing a result from Rezeau
et al. (2018). On the left panel, the most variable component of the magnetic field recorded by
two of the four MMS satellites is shown. On the right, the time delay between measurements of
the same Bz value is depicted. For a one-dimensional structure (such as the one here analyzed)
moving at a constant normal velocity, such time delay should remain constant, even for spacecraft
with different tangential positions. However, the delay between records of the same magnetic
component value varies with time, exhibiting secular variation superimposed on large fluctuating
components. The secular variation suggests that the magnetopause is not moving at a constant
velocity but is instead decelerating in the considered crossing.

Furthermore, the magnetopause is characterized by a variety of transfer processes, each
playing a distinct role in plasma dynamics, which can cause mass and magnetic flux trans-
fer between the magnetospheric and magnetosheath plasmas. A compelling piece of evidence
indicating plasma transfer at the magnetopause is the presence of boundary layers of magne-
tosheath plasma located earthward of the magnetopause, as noted by Eastman et al. (1976).
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This boundary layer is referred to as low-latitude boundary layer or high-latitude boundary
layer, depending on the location where it is observed. Processes allowing for mass and magnetic
flux transfer include finite gyroradius scattering, diffusion, wave-induced diffusion, impulsive
penetration, Kelvin-Helmholtz instability (KHI), and magnetic reconnection7 (Fuselier, 2021).
Notably, magnetic reconnection can be instigated by primary MHD instabilities, leading to it
acting as a secondary instability. A meaningful phenomenon in this context is “Doubled mid-
latitude Reconnection,” as described by Faganello et al. (2014). This phenomenon serves as a
clear example of the intricate interplay between the KHI and magnetic reconnection, where the
latter is induced by the former.

2.3.5 The magnetopause as a space laboratory

As delineated in this chapter, the magnetopause turns out to be a very complex structure in
which the flow of mass and magnetic field between the solar wind and magnetosphere is reg-
ulated. The magnetopause plays so a role of fundamental interest in so-called Space Weather,
which encompasses the study of variations in conditions within the Solar System and heliosphere
and their implications for human activities and life. Occurring almost periodically, on an 11-year
cycle, the frequency and magnitude of phenomena on the surface of the Sun, such as Coronal
Mass Ejections (CMEs) and solar flares, peak, releasing substantial quantities of energetic par-
ticles. These particles can be dangerous to life on Earth, altering to the magnetosphere and
exposing the planet’s surface to high-energy particles. Therefore, it is essential to comprehend
the behavior of the magnetopause and its response to those events in order to predict and mit-
igate their possible effects on Earth.

The interest in the magnetopause extends beyond merely its relevance to space weather. Among
the features that make the magnetopause of interest to the scientific community, we note the
two following:

- Earth’s magnetopause is the closest boundary between two astrophysical plasmas, allowing
us to have precise in situ measurements. While data for other planets have been acquired
during the years of space exploration, none match the resolution available at Earth and
the amount of such measurements is by far lower than what we have of the Earth’s.
Furthermore, all these measurements come from single-satellite missions. At Earth, as
discussed in Chapter 3, we have a large number of crossings available through multi-
satellite missions, allowing to calculate gradients of the measured quantities.

- At the magnetopause, characteristic length scales are significantly larger than the dimen-
sions of the probes. Indeed, spacecraft typically have dimensions in the order of a few
meters. Contrary, the finest phenomena, such as magnetic reconnection, have a typical
scale of around 10 km. Hence, within the magnetopause, it is possible to probe the plasma
at length scales that cannot be achieved, even after re-scaling, using laboratory setups.

For these reasons, the Earth’s magnetopause serves as a natural laboratory. Firstly, the study
of this complex structure can help us improve our understanding of plasma physics and of all
the physical processes outlined in the previous section, with a particular emphasis on magnetic
reconnection. Secondly, studying the terrestrial magnetopause is valuable for comprehending
planetary magnetopauses throughout the Solar System. This can also be helpful in designing
and planning future space missions aimed at investigating these environments. Finally, as for the
study reported in this manuscript, magnetopause can be used to study discontinuities between
plasmas of different origins. Indeed, in space physics, the medium naturally self-organizes into
distinct cells separated by thin layers, modeled as discontinuities. Notable examples of these

7A brief introduction of magnetic reconnection and its consequences at the magnetopause can be found in
Section 2.4
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layers, other than the Earth’s magnetopause, are the heliopause and the region of interaction of
the solar wind with non-magnetized bodies, such as comets. Thin layers can also form sponta-
neously, far from any boundary conditions, in the context of a turbulent medium.
In particular, by focusing on those purely one-dimensional regions of the magnetopause away
from X-points and X-lines, the boundary can be studied as a discontinuity between the mag-
netospheric and the magnetosheath media. In this regard, we will show in Chapter 4 that the
Classic theory of Discontinuities (CTD) is insufficient for describing it properly and investigate
how it has to be completed.

2.3.6 How to study the magnetopause

As discussed above, the magnetopause serves as a valuable natural laboratory. To explore this
frontier, comprehensively understanding its features and the limitations of existing models, the
following two distinct approaches can be exploited:

- Analysis of space mission data: in situ data play a pivotal role in exploiting the mag-
netopause to investigate the boundary from a discontinuity perspective. In this regard,
the vast amount of data accumulated over the years, coupled with the high precision and
resolution of recent measurements, enables us to conduct studies of the local features of
the magnetopause with great precision while also examining magnetopause characteristics
statistically. A focal point of our manuscript (and in the study of the magnetopause from
in situ measurements) is the investigation of the structure’s normal component. The ac-
curate determination of a normal direction is of fundamental importance, allowing us to
determine which terms are experimentally relevant but not included or wrongly assumed
in current theories. Moreover, having a good knowledge of the normal direction is also
necessary to determine the speed of the structure and its thickness.

- Modeling the structure through numerical simulations: Despite the significant role of
spacecraft observations in probing magnetospheric dynamics, their inherent limitation lies
in their difficulty at capturing phenomena that are spatially and temporally confined.
Consequently, relying solely on in situ spacecraft data poses a significant challenge in
achieving a complete temporal sequence and global perspective of magnetospheric dynam-
ics. Numerical simulations offer another avenue for this investigation, allowing for a global
perspective and the study of temporally localized phenomena. A wide range of models and
initialization techniques, tailored to the specific requirements and physical scales targeted
by the study, can be used for this purpose. Simulations enable the interpretation of in-
situ measurements within a three-dimensional framework, allowing differentiation between
temporal and spatial fluctuations and thereby enhancing the understanding of magneto-
spheric dynamics. In this particular investigation, global simulations are employed to
reconstruct the magnetosphere (and, therefore, the magnetopause)’s overall perspective,
possibly using kinetic models.

Both of these methodologies will be extensively detailed in the following chapters. These sections
will delve into the current State-of-the-art approaches from the standpoint of the thesis study,
followed by a comparison with the results of the research related to this thesis project.

2.4 Magnetic reconnection in planetary magnetospheres

Magnetic reconnection is a fundamental plasma process in which magnetic field energy is released
through the reconfiguration of the field topology8. A schematization of the change in magnetic

8The role of the magnetic reconnection in the magnetopause dynamics is not the primary focus of the study
detailed in the following chapters. Indeed, the study discussed in this manuscript focuses on the magnetopause
regions showing stationary and one-dimensional features, which are situated at a considerable distance from re-
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Figure 2.8: Change of topology of magnetic field lines during a magnetic reconnection event.(a):
two magnetic field lines, belonging to two different plasma domains, approach each other trans-
ported by the flow. (b): the ideal Ohms Law (Equation 2.1) becomes invalid close to an “X
point”, inside the shadowed region (corresponding to the diffusion region). (c): the different
plasmas are linked by the re-connected field lines while the energy magnetic energy is released
as kinetic energy and heat.

topology resulting from reconnection is shown in Fig. 2.8. Magnetic reconnection is observed in
a wide variety of magnetic environments such as the solar corona, planetary magnetospheres, and
the heliopause. Its fundamental importance lies in its ability to transfer matter, momentum, and
energy between different plasma environments while converting magnetic energy into thermal
and bulk kinetic energy.
Magnetic reconnection is based on the formation of a two-layered diffusion region in which the
magnetic field lines seem to break down and reconnect: the electron diffusion region (hereafter
EDR), in which the frozen-in condition is broken for electrons that are demagnetized, and a
broader ion diffusion region (IDR), which includes the EDR, in which ions are demagnetized.
Here, demagnetized refers to the breakdown of the ideal Ohm’s law (Eq. 2.1), due to the
inclusion of nonideal processes not accounted for in MHD. Theory and modeling have shown that
the thickness of the scattering region is approximately the inertial length of the corresponding
particle (Drake and Kleva, 1991; Mandt et al., 1994; Biskamp et al., 1997; Fujimoto et al., 2011;
Khotyaintsev et al., 2019), while its width is of the order of ten inertial lengths (Fuselier et al.,
2017). A schematization of the standard two-dimensional magnetic reconnection figure is shown
in Fig. 2.9. Three-dimensional effects of magnetic reconnection are not included in this section.
For more information see (Yamada et al., 2010; Hesse and Cassak, 2020).

2.4.1 Location of magnetic reconnection in planetary magnetospheres

The significant importance of magnetic reconnection in planetary magnetospheres lies in its
ability to allow solar wind particles to penetrate the magnetosphere. Furthermore, magnetic re-
connection drives particle acceleration and their trajectories. In general, the location of magnetic
reconnection depends on the solar wind orientation. For a southward IMF, magnetic reconnec-
tion occurs at the dayside magnetopause, specifically at the subsolar point in front of the planet.
In these conditions, the solar wind stretches the magnetosphere toward the night side, result-
ing in the formation of a current sheet. Subsequently, magnetotail reconnection occurs, closing
terrestrial field lines. This cyclic process, which couples the solar wind and the magnetosphere,

connection sites. The brief overview of this phenomenon provided in this section aims to establish a foundational
context for the study outlined in Chapter 8. In Chapter 8, we use numerical simulations to investigate mag-
netic reconnection within Mercury’s magnetotail, thereby extending beyond the scope of the main focus of this
manuscript. For a more comprehensive treatment of magnetic reconnection, the reader is referred to the relevant
literature.
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Figure 2.9: Sketch of magnetic reconnection in the 2D limit. The blue and green magnetic field
lines are inflowing from the sides while the reconnected field lines, shown in double colors, are
outflowing. The dotted red lines are called separatrices and divide the magnetic topology into
four regions.

is known as the Dungey cycle (Dungey, 1961). Furthermore, magnetic reconnection plays a
significant role in the magnetotail by causing the transfer of energy and momentum into the
planet’s inner tail region. This transfer allows for converting magnetic energy stored in the lobes
into kinetic energy within the plasma sheet. Conversely, for a northward IMF, magnetic field
inversion is usually observed at the cusps, which are regions near the poles of the Earth’s dipole
where solar wind plasma penetrates deep into the magnetosphere along magnetic field lines (and
can be observed in Figure 2.10. For this configuration, magnetotail reconnection is significantly
inhibited due to the absence of a current sheet in the magnetotail.
An example of how the impact of a solar wind magnetic field line can result in a modification of
the magnetosphere topology is sketched in Figure 2.10. In this Figure, corresponding to the case
of almost southward IMF conditions, it is evident that a localized magnetic reconnection event
occurs within the green box in panel (c) in the dayside magnetopause, resulting in a significant
modification of the topology of the magnetic field lines (d).
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Figure 2.10: Schematization of the impact of a solar wind magnetic field line (pink) on the
magnetosphere, resulting in a reconnection event at the sub-solar magnetospheric point. (a) :
A solar wind magnetic field line originates from the left and is dragged by the solar wind; (b) :
as it passes the bow shock, the magnetic field maintains its direction and starts to bend (as
shown by the pink arrows) due to accumulation at the forefront of the magnetopause; (c) : at
the magnetopause, reconnection takes place in the EDR, (d) : The magnetic field topology of
both solar wind and magnetosphere magnetic fields up to global scales undergoes modifications
on a global scale.
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In the previous chapter, we have discussed the main features of Earth’s magnetopause. As
discussed, the study of the magnetopause (and magnetospheres in general) is complementarily
carried out through the analysis of in situ data and the exploitation of numerical models. We
start focusing on the analysis of satellite data. Specifically, we concentrate on how to determine
the normal direction of the magnetopause, emphasizing the importance of an accurate determi-
nation. We will present a new method developed during this PhD thesis and we will compare it
to the main existing methods used to estimate the magnetopause normal direction.

3.1 From Pioneer 1 to the Magnetospheric Multiscale mission: probing the
Earth’s magnetopause

The concept of a sharp current sheet separating the solar wind and the magnetospheric plasma
was first proposed by Chapman and Ferraro (1930), although never using the word magne-
topause. This study was then followed by other theoretical studies (Chapman and Ferraro,
1933, 1940; Ferraro, 1952; Dungey, 1955; Parker, 1956) and indirect observations (Biermann,
1957) for the following twenty years. However, it was not until the late ’50s and early ’60s, with
the advent of the space age, that in situ observations became possible allowing a new era of
space research to begin. In situ investigations concerning the solar wind-magnetosphere inter-
action can be traced back to the launch of the Pioneer 1 spacecraft, launched in 1958. Analysis
of data collected by the onboard magnetometer (Sonett et al., 1959, 1960) yielded indications of
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“anomalous” behavior in the magnetic field approximately 13 RE (with RE the Earth radius)
sun-ward from Earth. In particular, the decrease in magnetic field magnitude was explained
in Sonett et al. (1960) as a consequence of the spacecraft penetrating the magnetopause in the
direction of the sun. Subsequent evidence of a complex current structure, even on the night-ward
side of Earth, emerged with NASA’s Explorer missions 6 (Smith et al., 1960) and 10 (Smith,
1962; Heppner et al., 1963). Finally, the first unambiguous in situ observations were reported
in Cahill and Amazeen (1963), through observations from the Explorer 12 spacecraft. As shown
in Figure 3.1, the magnetopause crossing was observed to be characterized by both a rotation
and a variation of the magnitude of the magnetic field. The crossing was also confirmed by
the rapid changes observed in the energetic particle flux (Davis and Williamson, 1962; Freeman
et al., 1963)

Figure 3.1: Magnetopause crossing observed by the Explorer 12 spacecraft providing the first
unambiguous evidence of this boundary. Credit: Cahill and Amazeen (1963).

Another step forward in the comprehension of the Earth’s magnetopause was achieved at
the beginning of the multi-spacecraft space missions era. Using single spacecraft measurements
it is impossible to distinguish whether measured quantities have either temporal or spatial (or
both) dependencies. By measuring a change in orientation of the magnetic field, for instance,
we have no further information to state whether it is a change of the plasma state or if it is the
spacecraft penetrating a different plasma. The first estimation of the thickness and kinematic of
the magnetopause was obtained by using the data from the two spacecraft ISEE-1 and 2 (Russell
and Elphic, 1978), even though making strong assumptions about the magnetopause structure
(planar and with stationary current sheets crossed at constant velocity). By performing a sta-
tistical study, Berchem and Russell (1982a,b) have estimated a magnetopause thickness between
200 and 1800 km, corresponding to about 10 ion gyro radii. The research also unveiled a highly
dynamic magnetopause, characterized by fluctuating velocities spanning from a few kilometers
per second to several hundred kilometers per second. The back-and-forth motion is presumably
due to the response to changes in the solar wind pressure. Having an inter-spacecraft distance
of less than 1000 km, the ISEE-1 and ISEE-2 spacecraft reduced enough the spatiotemporal
ambiguity and allowed for the first time to compute, even though under some assumptions, one-
dimensional spatial gradients. These two spacecraft had also a fundamental role in detecting
the occurrence of magnetic reconnection at the magnetopause. The first unambiguous in situ
observations were reported by Paschmann et al. (1979). Here, by analyzing the ion and electron
distributions, they found higher flow speed in the magnetopause layer than in the adjacent re-
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gions, correlated with the Alfvén velocity. The fast Alfvénic flows, nowadays often referred to
as jets, are now the most frequently used signature to identify reconnection events.

3.1.1 The Cluster mission

After the ISEE-1 and 2 spacecraft, multi-point missions became the prevailing approach in
designing space missions aimed at studying the Earth’s magnetosphere. Another step forward
a more accurate calculation of the magnetopause normal was achieved by the ESA Cluster
mission Escoubet et al. (1997). This mission is composed of four spacecraft orbiting around the
Earth assuming most of the time when crossing the magnetopause, a tetrahedron configuration
(with an averaged inter-spacecraft distance spanning from 10 to 10,000 km, and allowing for
the first time to compute three-dimensional gradients. Moreover, thanks to a new data analysis
technique designed to exploit Cluster measurements, the mission made it possible to determine
gradients under less strong hypotheses than that assumed for previous studies and to use 3D
triangulation for the determination of both the orientation and motion of the magnetopause.
Cluster was launched in 2000 1 and started science operations in early 2001 and it is still
operating at the time this manuscript is being written2. Thanks to an orbital period of about
57 hours, each Cluster spacecraft has flown through the region of the magnetopause more than
2.500 times. However, since the magnetopause motion is oscillatory, the real number of crossings
is far higher. A comprehensive review of all the main results obtained thanks to the Cluster
mission can be found in Haaland et al. (2021).

3.1.2 The Magnetospheric Multiscale mission

Cluster inter-spacecraft distance of the order of the ion’s scale allowed researchers to investigate
in detail the properties of the magnetopause from large scales down to the ion gyro-radius.
However, to investigate the dynamics of the magnetopause sub-structures at the electron scale
(i.e. around 10 km), a smaller inter-spacecraft distance was required. Also for this reason,
the Magnetospheric Multiscale mission (MMS) (see Burch and Phan (2016a)) was launched in
2015, building on the success of the Cluster mission3. MMS primary objective was the study of
magnetic reconnection, focusing in particular on the kinetic processes and the electron diffusion
region (Phan et al., 2016; Torbert et al., 2018; Webster et al., 2018). MMS consists of four
satellites, namely MMS1 to MMS4, have flown in different formations throughout their lifespan
and maintained inter-spacecraft distances ranging from 7-10 km (the order of few electron inertial
length at the magnetopause) to 100 km (few electron inertial lengths at the magnetotail around
apogee).

Instrumentation onboard

To properly study the electron diffusion region, the MMS on-board instruments have unprece-
dentedly seen probing rates, allowing to resolve both spatially and temporally the magnetopause
structures. Each MMS satellite is identical and equipped with the same instruments. Here we
report the main characteristics of the instruments that were used for this study.

- Fluxgate Magnetometer (FGM), used for magnetic field measurements. It consists of
the Digital Fluxgate (DFG) and Analog Fluxgate (AFG), both mounted at the end of a

1The initial Cluster I mission was initially launched in 1996. However, due to the explosion of the Ariane 5
rocket, it never became operative. Therefore, Cluster II (nowadays called Cluster) took its place in 2000.

2The mission was originally planned for a 27 months-period. However, its exploitation phase has been extended
for over two decades and is now expected to conclude in September 2024.

3Between Cluster and MMS, the THEMIS (NASA) mission was launched in 2007. This mission, consisting of
five identical, aimed to investigate magnetic reconnection and the dynamics of mass and energy transfer in the
near-Earth space environment.
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five meters boom. The sampling frequency is 128 Hz in burst mode and 8 Hz in survey
mode and its accuracy is about 0.1 nT for DC fields (Russell et al., 2016). Later in this
section, the measurement modes concerning the FGM will be discussed further.

- Electric field Double Probe (EDP), the instrument measuring the 3D electric field
in the DC-100 kHz range. It is formed by the Axial Double Probes (ADP, Ergun et al.
(2016)) and the Spin-plane Double Probes (SDP, Lindqvist et al. (2016)), which measure
the electric field parallel and perpendicular to the spin axis, respectively. It is worth
pointing out that one distinguishing feature of MMS with respect to previous missions is
its 20-second spin period, which allowed for the implementation of long antennas along
the spin axis allowing to measure the 3D electric field.

- Fast Plasma Investigation (FPI), measuring the 3D velocity distribution functions
(VDFs) of ions and electrons in the energy range of 10 to 30 keV. Each FPI consists of
four Dual Ion Spectrometers (DIS) and four Dual Electron Spectrometers (DES). The time
resolution is 150 ms and 30 ms for ions and electrons, respectively (Pollock et al., 2016).
Compared to previous missions such as Cluster and THEMIS, a notable advancement of
this instrument is that it allows for full azimuthal sampling of the VDFs without relying
on spacecraft spin. This is achieved by using eight top-hat spectrometers (or equivalently
4 dual heads) positioned at 90o angles onboard the spacecraft.

Figure 3.2: Schematic view of the sampling rates used by MMS as a function on the location
of the spacecraft along its orbit. The blue circle on the right is the Earth. The four black
crossed points superposed twice to the orbit are the four MMS spacecraft. Orbit intervals of
high, medium and low interest are drawn respectively in red, blue and brown. Credits: Burch
and Phan (2016b)

The instrumentation onboard primarily operates with three data acquisition rates, known as
fast, slow, and burst survey. Within the regions of interest (corresponding to the orbital part
located around the apogee, with the highest probability of observing the magnetic reconnection
process at the magnetopause or in the magnetotail), all instruments gather burst data. However,
owing to constraints on the daily data transmission capacity for each spacecraft, a significant
portion of burst-mode data needs to be averaged down to a fast-survey rate before transmission.
While all slow and fast rate data are transferred to the ground, only a small percentage of burst
data is selected for transmission to the ground (Baker et al., 2016). A schematic view of the
sampling rates as a function of the location is shown in Figure 3.2. The selection of the burst
data intervals is performed by using a semi-automated data selection process complemented by
ground-based scientists. The measurements are daily ranked based on a Figure of Merit (FOM).
The Scientist-in-the-Loop (SITL) adjusts the FOM, prioritizing data for downlink, investigation,
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or deletion, and provides detailed reports on selected data and observed phenomena 4. A more
detailed discussion of the SITL and data selection can be found in Baker et al. (2016). The
role of SITL rotates among the teams involved in the mission. As Olivier Le Contel in LPP is
responsible for the SCM instrument of the FIELDS consortium experiment I had the opportunity
to be SITL for one week.

MMS Scientific Phases

To thoroughly investigate the localized EDR, MMS was designed to traverse the most possible
reconnection sites in the Earth’s magnetotail and dayside magnetopause. To accomplish this, two
phases were programmed before the mission launch in 2015, each focusing on different regions.
Phase 1 targeted the low-latitude dayside magnetopause, while Phase 2 aimed at looking at
reconnection within the nightside magnetotail. These phases had an equatorial elliptical orbit
with a perigee of 1.2 Earth radii (RE) and a varying apogee from 12 RE (Phase 1) to 25 RE

(Phase 2). The orbits of MMS during these two phases are shown in Fig 3.3, alongside those
of Phase 3. Since plasma density and the magnetic field strength are larger at the dayside
magnetopause than in the mid-magnetotail, corresponding to lower ion and electron inertial
length and Larmor radius, the spacecraft distance for the tetrahedron varied between 10 and
400 km (estimated between 10 and 160km on the dayside and between 30 and 400 km on the
nightside of the magnetosphere) to better sample the spatial structures.

Figure 3.3: Simplified sketch of the MMS orbits in the ecliptic plane for Phases 1 to 3. The Sun
is on the left and the red line is the magnetopause.

After completing the nominal mission, MMS was extended and at the time this manuscript is
written, MMS is in its scientific Phase 9. For the study presented in this manuscript, data
concerning Phases 1-3 are used. In Phase 3, from Sep. 2017 to Sep. 2018, MMS preserved
the same apogee and perigee. Therefore during Phase 3, MMS spent more time in the dayside
solar wind. Data from Phase 4 onwards are not included in this study because, since July 2018,
four of the eighth FPI electron spectrometers of MMS4 have ceased operations. This prevents
obtaining electron Velocity Distribution Functions (VDFs) measurements at high sampling times
simultaneously on four satellites, thereby making it impossible to compute spatial gradients for
particles. A more detailed description of the mission’s objectives can be found in Burch and Phan

4Data with a higher FOM and is prioritized for downlinking. The SITL categorizes time intervals into four
groups: Category 1 (FOM 150-199) for significant magnetic reconnection events, with MMS close or whithin
the electron diffusion region, or active dipolarisation fronts in the magnetotail, Category 2 (FOM 100-149) for
events such as exhaust region magnetic reconnection or shocks/foreshock, Category 3 (FOM 60-90) for secondary
objectives like high-speed jets in the magnetospheath or solar wind turbulence, and Category 4 for less critical
events, which may be overwritten and not downlinked.
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(2016b) and Fuselier et al. (2014), while comprehensive descriptions of orbits for each scientific
Phases can be found on the LASP site: https://lasp.colorado.edu/galaxy/display/mms.

3.2 Magnetopause crossings from in situ data

The primary aim of this study is to investigate the internal structure and equilibrium of the
Earth’s magnetopause. Therefore, it is pertinent to provide a concise overview of the fundamen-
tal characteristics associated with the magnetopause crossings as seen from spacecraft data. We
begin with the very definition of this boundary, which delineates the interface between two dif-
ferent magnetized plasmas. For this reason, a magnetopause crossing is expected to present: 1)
a transition in the magnetic field from that of the magnetosphere to that of the magnetosheath,
leading to an observed current within the magnetopause; and 2) different plasma populations
on both sides, with different energies, densities and, possibly, composition.
This section presents the key features of these crossings. We initiate with a comparison between
Cluster and MMS measurements to underline the relevance of MMS data to this study. Addition-
ally, typical values at both ends of the magnetopause will be discussed to present the complexity
of the magnetopause itself. Finally, a brief overview of how the magnetopause dynamics are
observed from the perspective of satellites will be provided.

3.2.1 Evolution of the magnetopause measurements: typical magnetopause cross-
ings in the multi-spacecraft era

The step forward from Cluster to MMS is crucial for understanding the magnetopause. As
already mentioned, while Cluster primarily focuses on ion scales, MMS targets electron scales.
This difference and its impact on studying the internal magnetopause structure is evident in Fig.
3.4, comparing a Cluster crossing from July 5, 2002, to an MMS crossing from December 28, 2015.
Here we show the measurements of ion and electron density, ion velocity, and magnetic field. We
first observe the typical features of a magnetopause crossing: density variation, magnetic field
rotation and compression, and bulk velocity alterations. However, we note that the values of
these quantities both at the magnetosphere (left, beginning of the crossings) and magnetosheath
(right) vary for each crossing. Specific values for main physical quantities are discussed in the
following subsection.
Two noteworthy differences between the measurements of the two missions that can be extrap-
olated from this figure are:

- Inter-spacecraft distances: Because of the different distances, a major difference be-
tween the two missions in the time delay between the magnetopause crossing from one
satellite to the other is observed. For Cluster, the distance between satellites for the
crossing shown is on the order of 2000km, while for MMS it is about 50km. For MMS,
Figure 3.4 shows a substantial portion of the magnetopause with four satellites simulta-
neously inside. With Cluster on the contrary, two spacecraft (Cluster 1 and 4) cross the
magnetopause about 30 seconds before the two others (Cluster 2 and 3). This is a typical
configuration, even if it is worth pointing out that there are orbits during which the Cluster
inter-spacecraft distance has been as low as 10 km.

- Sampling frequency: There’s a remarkable difference in sampling frequencies. Cluster
measures the magnetic field at 22.4 Hz in normal mode, while MMS measures at 128 Hz in
burst mode (the two modes shown in Figure 3.4, allowing five more times measurements
within the same structure. The most significant difference is, however, in particle mea-
surements (and in the electric field, as mentioned in the previous section but not shown
here), where Cluster takes measurements every 4 and 2 seconds for ions and electrons,
respectively. MMS measures ions every 0.15 seconds and electrons every 0.03 seconds.
This frequency difference allows MMS to provide more measurements of particle distribu-
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Figure 3.4: Typical crossing using the Cluster (left) and MMS (right) data. From top to bottom:
ion density, electron density, ion velocity and magnetic field.
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tion functions within the magnetopause, as the typical time length of a wave-unperturbed
magnetopause crossing is of the order of ten seconds.

Additionally, it is important to note that ion velocity distribution measurements, and conse-
quently their fluid properties, have been non-functional on Cluster 2 and 4 since the beginning
of operations. For Cluster 3, they stopped working in 2009. Thus, Cluster didn’t allow a
multi-point measurement of these values.

Although Cluster was a fundamental mission for understanding the Earth’s magnetosphere,
MMS high resolution, highly accurate data with four-point measurements enabled the kind of
study reported in this manuscript.

3.2.2 Magnetopause crossings: typical values of the magnetospheric and magne-
tosheath plasmas

To examine the internal properties of the magnetopause, it is pertinent to define the typical
physical quantities of the two distinct regions it separates: the magnetosphere and the magne-
tosheath. Values discussed here are those relative to the dayside magnetosphere. On one side,
the magnetopause exhibits a strong magnetic field, relatively close to the dipolar one, and very
low densities. Moreover, the plasma within this region tends to be approximately stagnant.
Typical values of magnetospheric plasma are provided in Table 3.1, as reported by Cassak and
Fuselier (2016). In general, these values stay constant between different measurements, although
there are instances where colder material from the plasmasphere infiltrates this region, thereby
altering its density.

Parameter Typical value

nmsph [cm−3] 0.1
Bmsph [nT] 56

Ti,msph [×105 K] 2.4×103

vA,msph [km s−1] 3.9×103

βmsph 0.27

Table 3.1: Typical values of magnetospheric parameters at Earth’s magnetopause, on the day-
side. The parameters are: n the density, B the magnetic field, Ti the ion temperature, vA the
Alfvn velocity and β the plasma beta parameter. Electron temperature is usually around five
times smaller than ion temperature, therefore not included.

On the other side, magnetosheath plasma originates from the solar wind. This plasma undergoes
compression and heating at the bow shock. Due to the variability of solar wind quantities and
the turbulent nature of the magnetosheath, the values in this region are much more variable
compared to those in the magnetosphere. Table 3.2 presents typical values as reported by
Cassak and Fuselier (2016). The algorithm used to estimate these values from average solar
wind parameters is found in the cited book. In the solar wind, density and magnetic field are
out of phase, meaning low densities correspond to high magnetic fields and vice versa. Finally, it’s
important to highlight how the typical plasma energies vary between the two plasma populations
due to their differences. On the magnetosphere side, ionic energies are typically on the order of
10 keV, whereas on the magnetosheath side, they are one order of magnitude lower.

3.3 Investigating the magnetopause: The normal vector

When studying the magnetopause using in situ data, one of the most fundamental geometric
characteristics to determine is the normal to its surface. Accurately determining the magne-
topause normal is crucial for two main reasons: i) it allows tracking fundamental parameters at
the magnetopause, such as its normal velocity with respect to the spacecraft and its dimension-
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Parameter Mean Most Median Start of End of
(derived) probable 5-95% range 5-95% range

nmsh [cm−3] 34.8 20 27.6 12 80
Bmsh [nT] 24.8 20.4 22.4 8.8 39.6

Ti,msh [×105 K] 12 5 9.5 1 30
vA,msh [km s−1] 92 99 93 55 97

βmsh 2.4 0.8 1.8 0.5 5.3

Table 3.2: Typical values of magnetosheath parameters at Earth’s subsolar magnetopause (same
as in Table 3.1).

ality, and ii) it enables to determine reliable estimates of the normal and tangential fluxes, the
normal ones, which cross the magnetopause boundary, being much smaller than the tangential
ones (so that their estimation is very sensitive to the normal accuracy). This becomes partic-
ularly important for understanding the equilibrium of the magnetopause and the limitations of
the current theoretical description of the boundary, a topic examined in Chapter 4.5

In this context, determining the value of the magnetic field component normal to the struc-
ture is also of fundamental importance. Current models, as we will describe more precisely in
the following chapter, distinguish between cases where Bn = 0 and Bn different from zero, even
if very small. Hence, even a slight variation in this value corresponds to a significant variation
in theoretical framework, which warrants investigation. At the magnetopause, this value is typi-
cally small, but due to experimental uncertainty, it is impossible to determine precisely whether
it is exactly zero or not. Therefore, increasing the accuracy of the normal determination is very
important. Quantitatively speaking, to determine the normal component of the magnetic field
sufficiently well (assuming that Bn/|B| ∼ 2%), a good enough accuracy of the normal should be
of the order of δθ < 1◦. However, achieving such accuracy from in situ data is nearly impossible.
Indeed, small-scale waves and turbulence are always superimposed on the laminar magnetopause
profiles, bringing strong limitations in the normal direction accuracy for all methods due to the
difficulty of filtering them out from the crossing itself. In recent literature, good accuracy in
determining the normal direction is estimated to be around 5% (Denton et al., 2018). The first
goal of this work is to develop a new tool to obtain a good enough accurate estimate of the
normal. Specifically, in this section, we present some of the important state-of-the-art tools for
obtaining normals and the evolution that led to our latest tool described here.

An important distinction that will be used in the following manuscript is between global and
local normals, a distinction related to the extension of the time interval exploited to estimate
the normal (with respect to the full magnetopause crossing time). With global normal we refer
to a single normal vector for the full crossing of the structure, whereas local normal refers to
the value per single measurement (or, to decrease the error due to the superimposed turbulence,
averaged over a small time window). The difference between these two types of normals has
particular relevance in the analysis of the internal structure of the magnetopause. A local normal
determination allows, indeed, for the observation of local variations of the vector that are entirely
lost with a global determination. A striking example is the case of a magnetopause crossing close
to a reconnection event. In this scenario, a local normal allows us to observe a reversal of the
vector within the magnetopause, which would be missed with a global normal.

Since the beginning of space exploration, several methods have been developed to determine

5Beyond the determination of the normal direction, the so-called “reconstruction methods” have also been
introduced to analyze data at the magnetopause. These models are used to provide a more comprehensive view
of the large-scale structure around the spacecraft. Although they have shown remarkable results (De Keyser,
2008; Hasegawa et al., 2005), they will not be used and further discussed in this manuscript since they assume
the Grad-Shafranov equations to be valid (stationary MHD), and are therefore not suitable for investigating
non-MHD effects such as the FLR effects.
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the normal direction (see e.g., (Haaland et al., 2004; Shi et al., 2019)). The most common one is
the Minimum Variance Analysis (MVA) method, introduced with the first measurements of the
magnetic field in space (Sonnerup and Cahill, 1967; Sonnerup and Scheible, 1998). This method,
which only requires single spacecraft measurements, provides a global normal and is based on
the assumption that the boundary is a perfectly one-dimensional and stationary layer crossing
the spacecraft. Other notable single-spacecraft methods include the Generic Residue Analysis
(GRA) technique (Sonnerup et al., 2006), a generalization of MVA to other parameters than B,
and the BV method (Dorville et al., 2014), which combines magnetic field and velocity data.
Although these methods can provide an accurate determination of the normal (Dorville et al.,
2015b), like MVA, they provide a global normal and thus cannot provide the necessary basis for
investigating variations of the magnetopause normal within the structure and testing possible
departures from mono-dimensionality. It is important to note that waves and turbulence limit
the accuracy of the normal direction in particular for global ones. The main state-of-the-art
tools developed to estimate the magnetopause normal will be presented in the following.

3.3.1 Multi-spacecraft tools for analyzing the magnetopause

The possibility of having more than one spacecraft simultaneously probing the magnetopause
or, concerning Cluster, in close vicinity of it, is of fundamental importance for calculating
gradients without relying on strong assumptions about the magnetopause properties. This
progress is clearly reflected in the development of tools designed to study the magnetopause
normal. Depending on the underlying principles used for determining the normal, these tools
can be separated into two big groups.

- Timing methods: These tools focus on the temporal delay between the four satellites in
crossing the magnetopause. As observed in Fig. 3.4, data profiles of the magnetopause are
fairly identical but delayed at the magnetopause. Assuming a purely 1D boundary, these
delays depend upon the positions of the four spacecraft along the normal direction and the
velocity along this direction. They can therefore be exploited to estimate the direction of
the magnetopause motion with respect to the spacecraft, which is a proxy for the normal.
The displacement of the magnetopause in each spacecraft frame i can be written as:

Ri · n =

∫ ti

t0i

Vn(t)dt (3.1)

Here, the integration limits refer to the magnetopause crossing interval while Vn(t) is the
magnetopause normal velocity and n is the magnetopause normal direction. To estimate
the normal, it is necessary to make assumptions on the magnetopause properties to solve
the system in Eq. 3.1. Depending on the assumption, several tools have been defined over
the years. Among these, the two most popular approaches are the Constant Velocity
Approach (CVA, (Russell et al., 1983)), which assumes that the magnetopause crossing
velocity is constant, and the Constant Thickness Approach (CTA, (Haaland et al.,
2004)), assuming that the magnetopause thickness is the same for the four satellites.
In both cases, the assumptions are hard to verify for each crossing and therefore the
main limitation lies in making a rather strong assumption whose validity must be checked
afterward.

- Gradient-based methods: These methods rely on the possibility of computing spatial
gradients at each time without assuming too strong hypotheses. Consequently, spatial gra-
dients can be determined even on scales smaller than the thickness of the magnetopause
itself, offering much broader possibilities not allowed by single-satellite measurements.
However, computing gradients through multipoint measurements requires assumptions,
which should be kept in mind as the analyses in this study heavily rely on gradient com-
putations. The most common technique used to compute gradients is the reciprocal vector
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method. This tool relies on the use of the reciprocal vectors, a well-established concept
in various scientific fields such as solid state physics, that have been introduced in space
plasma physics by Chanteur (1998). In the context of a tetrahedron configuration, the
reciprocal vector with respect to a spacecraft is defined as a vector perpendicular to the
face of the tetrahedron opposing the spacecraft, with a magnitude equal to the inverse of
the distance from the spacecraft to the opposing face. Mathematically, this reads (using
MMS1 as an example):

k1 =
(r2 − r3)× (r2 − r4)

|(r2 − r1)× ((r2 − r3)× (r2 − r4))|
(3.2)

Here, ri is defined as the position of the i-th spacecraft. A schematic representation of
the tetrahedron having at its vertex the four MMS spacecraft and the reciprocal vector
corresponding to MMS1 is shown in Fig. 3.5.

Figure 3.5: Schematic representation of the tetrahedron geometry for MMS. The reciprocal
vector k1 (Eq. 3.2) points toward MMS1 and corresponds to the gradient of the barycentric
coordinate µ1 which remains constant on any plane parallel to the surface that includes the
other MMS spacecraft. Credits: adapted from Chanteur and Mottez (1993).

Gradients are calculated by a linear estimator which is the gradient of the barycentric
coordinates of the multi-spacecraft cluster. Therefore, the accuracy of the results improves
when the spacecraft configuration is reasonably regular and when there are no significant
gradients at scales smaller than the inter-spacecraft distance. The situation is similar to
the limited expansion of a function which is valid at order 1 if the order 2 term is negligible.
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According to this tool, the gradient of a generic vector quantity Q is expressed as 6:

∇Q =
∂Qj

∂xi
=

4∑
α=1

(kαQα)ij =

4∑
α=1

kαiQαj (3.6)

The estimation of gradients from multi-point measurements lies at the core of recent
techniques capable of locally computing a local normal to the magnetopause structure.
Observing the spatial variation of the normal direction within the magnetopause enables
us to examine the sub-structural details of the layer and check the 1D hypothesis at the
crossing scale. Other notable tools used to obtain the gradient matrix include the least
squares methods (Harvey, 1998) and the Taylor expansion method (Pu and Kivelson,
1983). The most common gradient-based tool, the Minimum Directional Derivative
(MDD, Shi et al. (2005)), is presented below (along with the most common recent tool to
obtain the magnetopause normal).

3.3.2 State-of-the-art: the Minimum Directional Derivative (MDD) method

The Minimum Directional Derivative, hereafter referred to as MDD, is the multipoint tool
the most widely used in the scientific community for studying the normal of magnetopause, as
MVA was for single spacecraft analyses. The tool was first introduced by Shi et al. (2005). For
the vector B, the MDD method makes use only of the spatial derivatives ∂iB (i.e. ∂B/∂xi, with
i referring to the three spatial directions), which are accessible at each time step thanks to the
4-point measurements. In this sense, it is the opposite of the MVA method, only relying on
the temporal variances of the B components. Therefore, the MDD allows for an instantaneous
determination of a local normal at any point inside the layer. In addition, contrary to MVA
where the ∇ · B = 0 condition is exploited, MDD does not make any assumption about the
geometry of the layer and the physical properties of the vector used. Therefore, while this tool
is generally used on magnetic field measurements, it is important to remember that this tool is
not based on specific properties of the magnetic field and can be used with any data set (such
as ion and electron mass fluxes, the electric field, etc). This aspect is really important since it
allows one to compare the magnetic structure with the geometry of any other set of data (in
particular, the ion flux).
By exploiting the experimental estimation of the dyadic tensor G = ∇B, the MDD method
consists in diagonalizing the matrix L defined as follows (here T denotes the transposed):

L = G ·GT (3.7)

This matrix is symmetrical; hence, the eigenvalues are real and the corresponding eigenvectors
are orthogonal. In particular, it can be shown that the three eigenvalues λi (i = 1, 2, 3) represent
the maximum, intermediate and minimum values of (ni · ∇B)2, with ni being their respective
eigenvector (Shi et al., 2019). The normal direction is determined from the L matrix as the
eigenvector corresponding to the maximum eigenvalue.

6The same tool can be used also to compute other space derivatives, such as (where g is a scalar quantity):

∇g =

4∑
α=1

kαgα (3.3)

∇ ·Q =

4∑
α=1

kα ·Qα (3.4)

∇×Q =

4∑
α=1

kα ×Qα (3.5)
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For purely 1D variations, it is clear that two eigenvalues are zero and that the third eigenvector
does indicate the normal direction. When 2D and 3D variations are present, the eigenvector
corresponding to the maximum eigenvalue can still be defined as a “normal” direction, but this
definition is then more arbitrary. Nevertheless, the values of the two smaller eigenvalues still
give a precious indication for the dimensionality of the variations. If only one eigenvalue is
small, the result indicates the plane where the 2D variations occur. By defining λn, λm, λl the
maximum, intermediate and minimum eigenvalues of L, the following conditions can be found
at the magnetopause (by defining n, m and l as the respective eigenvectors):

- λn ≫ λm ∼ λl; Mathematically, it follows that |∂B/∂n| ≫ |∂B/∂m| ∼ |∂B/∂l|. There-
fore, in this case, the plasma structure can be considered as “quasi-1D” since the magnetic
field varies along (almost-)only the normal direction;

- λn ∼ λm ≫ λl, corresponding to a “quasi-2D” structure;

- λn ∼ λm ∼ λl, corresponding to a three-dimensional structure since variations of magnetic
field are comparable in all three directions.

Based on this classification, the most common way of finding a quantitative determination of
the dimensionality was proposed in Rezeau et al. (2018). This method relies on the definition
of three parameters as a ratio of the eigenvalues, defined as:

D1 =
λn − λm
λn

D2 =
λm − λl
λn

D3 =
λl
λn

(3.8)

By definition, these parameters have values between 0 and 1 and have a total sum equal to
1. By observing their values we can therefore distinguish whether the the local variations are
one-dimensional (D1 = 1), two-dimensional (D2 = 1), or three-dimensional (D3 = 1).

Advantages and limitations

The main advantage of using MDD, compared to single-spacecraft tools, is its capability to
determine an instantaneous normal at any point within the layer, enabling a local study of
the magnetopause rather than a global one. However, the accuracy of MDD is limited by the
uncertainty of the spatial gradients it employs. Specifically, the assumption of linear variations
used to compute the local gradient matrix through the reciprocal vector method cannot be fully
satisfied due to the presence of small-scale waves and turbulence that are always superimposed
on the magnetopause profiles. To address this issue, a filtering of the data is necessary. This
procedure, however, leads to a loss of part of the temporal information on the variation but it still
allows to keep local information whenever the filtered scales are sufficiently smaller than those
associated with the full crossing. The quality of the filtering is therefore the biggest challenge
in achieving accurate results. For instance, simple Gaussian filters done independently on the
four spacecraft would provide insufficient accuracy since the relation ∇ ·B = 0 is then violated
in the result.

The attempt to answer these limitations to achieve an accurate determination of the mag-
netopause normal, despite the presence of local two-dimensional features, has been one of the
primary objectives of this project. The focus has been on the development of a tool, derived
from MDD but based on a fitting procedure, that guarantees that the condition ∇ · B = 0 is
not violated. Imposing ∇ ·B = 0 as a constraint in the model (or another condition when other
vectors are used) allows improving the four spacecraft data filtering and therefore the result
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accuracy. It is worth mentioning however that this relation is not the basis on the normal de-
termination as it was in MVA. The development of this tool is discussed in the following section
where the Gradient matrix Fitting (GF2) tool, representing the final developed version, is
introduced and tested on a case crossing.

3.3.3 The Denton et al (2016) tool

Before delving into the presentation of GF2, it’s worth briefly introducing the hybrid model
developed by Denton et al. (2016, 2018). This model serves as an example of the ongoing
pursuit of a more precise estimation of the magnetopause normal. It is obtained through a
combination of MDD and MVA. The underlying idea is to achieve an accurate determination of
the LMN system7. The hybrid tool relies on two observations (both validated from data over
the years):

i) MDD generally provides a good determination of the normal direction, while it often fails at
well characterizing the tangential plane, due to a possible degeneracy of its L-M eigenvalues.

ii) MVA generally provides a good determination of L while it often fails to give acceptable
results of the M-N plane, due to a possible degeneracy of the corresponding eigenvalues.

By rotating these two reference systems by an angle proportional to that between the MDD and
MVA normal vectors, the hybrid model gives a new normal. The estimated statistical uncertainty
error for this tool is around 5 degrees. The accuracy of this determination is supported by the
close proximity of the normals obtained through other state-of-the-art tools. However, while
allowing for a good determination of the normal, this tool gives a global normal averaged on
the whole crossing, and not a local one. Using the same algorithm on a shorter interval would
provide a doubtful result since the variance calculated in MVA would not then be statistically
significant.

3.4 A new tool: Gradient matrix Fitting

In this section, we introduce the Gradient matrix Fitting (hereafter GF28) tool. It aims at
achieving a more accurate determination of the magnetopause normal. The goal is to retain
the advantages of state-of-the-art techniques, particularly MDD, which allows for the obser-
vation of local variations in the normal direction within the magnetopause, while overcoming
its limitations, specifically the assumption of linear variations at inter-spacecraft scales. These
approximations lead to neglect the effects of waves and turbulence at small scales and therefore
do not allow one to make a complete study of the average magnetopause boundary. Ultimately,
the aim is also to develop a tool capable of determining the normal from most of physical quan-
tities, not limited to magnetic field measurements (such as with MVA, for example) to be able
to make comparisons. Additionally, it was essential for the tool to be neither overly complex nor
computationally too slow to ensure accessibility and, most importantly, to allow for statistical
analysis.

This new tool was derived from MDD and can be classified as a gradient-based tool. Specif-
ically, the tool involves developing a parametric model of the gradient matrix, valid for each
time step inside the magnetopause. By fitting the gradient matrix estimated from data with
this model, it is possible to obtain the best-fit parameters. The fitted matrix can be consid-
ered as the averaged gradient matrix, i.e. the matrix when the major contributions of waves
and turbulence are filtered out, providing the laminar profile of the magnetopause. By using

7The LMN coordinates system is used to describe the orientation of the magnetopause boundary relative to
the local magnetic field and it is widely used when studying magnetic reconnection. By definition, L represents the
direction of maximum variance for the magnetic field, N is the normal vector perpendicular to the magnetopause,
while pointing away from the Earth, and M completes the coordinate system, perpendicular to both L and N.

8The digit 2 indicates that in the version of the tool that we use here, the data are fitted with a 2D model.
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this matrix, errors in determining the normal vector can be reduced and the departures from
mono-dimensionality reliably estimated.

Throughout the project, various attempts were made to develop a reliable algorithm. In
particular, the development focused on two main aspects: i) the parameterization of the gradi-
ent matrix and ii) the minimization process between the model and data to obtain the best-fit
gradient matrix. Concerning the model, early versions assumed it was purely one-dimensional,
presenting gradients only along the normal direction. However, it was observed that the presence
of gradients, albeit minor, parallel to the magnetopause plane made two-dimensional modeling
more effective, leading to its implementation. Furthermore, it can be shown that fitting with
a 1D model is mathematically equivalent to the standard MDD technique used with smoothed
data. As for the minimization process, early versions employed algorithms that computed each
best-fit parameter through numerical minimization. However, this approach presented two main
limitations: bigger computational time and a higher probability of converging to incorrect local
minima, making it less suitable for statistical analysis. Therefore, analytical minimization was
adopted, allowing for faster and more accurate determination of the modeled gradient matrix. In
this section, only the final version is reported. This tool is also presented and discussed further
in detail in Ballerini et al. (2024b), accepted in the Journal o Plasma Physics at the time of
manuscript writing and included in Chapter 9.

3.4.1 The Gradient matrix Fitting (GF2) tool

The primary assumption of this method is that the structure under consideration can be locally
fitted by a two-dimensional model. This does not imply that the magnetopause is assumed to
be globally two-dimensional, but rather that local gradients are so, with the fit being carried
out in short sliding windows within the global crossing. Based on this assumption, the para-
metric model of the gradient matrix Gfit reads as follows (for magnetic field measurements;
generalizations are provided later):

Gfit = e0 B
′
e0 + e1 B

′
e1 (3.9)

where we define e0 and e1 as two unit vectors in the plane perpendicular to the direction of
invariance and B′

e0 and B′
e1 as the variation of the magnetic field along these two directions,

respectively. For simplicity, e0 and e1 are chosen as an arbitrary orthonormal basis for the plane
of variance. Before minimizing the difference between this parametric matrix and the gradient
matrix from data, one has first to choose the invariance direction9 in order to determine the
(e0, e1) plane. We have observed that the choice of the direction of invariance has no major
influence on determining the normal direction, nor the estimation of the 2D effects. Several
options can be chosen to estimate this direction. Whenever the boundary is strongly two-
dimensional, the direction can be estimated as the minimum variance one obtained by directly
applying the standard MDD method to the data. However, for the nearly 1D cases analyzed
in this manuscript, the spatial derivatives in the tangential directions are dominated by noise,
which makes the estimation not reliable. Therefore, for these cases, we choose to use the constant
direction M given by MVA, generally interpreted as the X-line direction in the context of 2D
magnetic reconnection models (cf. for instance Phan et al. (2013) for typical use of this choice
and Aunai et al. (2016); Liu et al. (2018); Denton et al. (2018) for discussions).

The best-fit parameters are then chosen by minimizing the difference between G and the
model Gfit. To do that, we choose to minimize the following quantity:

DGF2 = Tr
[
(Gfit −G).(Gfit −G)T

]
= B′2

e0 − 2e0.G.B
′
e0 +B′2

e1 − 2e1.G.B
′
e1 +Tr

(
GGT

) (3.10)

9The invariance direction here discussed is referred to the magnetic field measurements. Analogously, in Section
3.4.2, the invariance direction is referred to the Γ measurements.
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Here Tr[] indicates the trace of the tensor. Here the last term can be disregarded as being
independent of the fit parameters. To better exploit the magnetic field properties we impose
∇ ·B = 0, as used in MVA but ignored in standard MDD. In the model, this condition can be
written as:

e0 ·B′
e0 + e1 ·B′

e1 = 0 (3.11)

This constraint is imposed on Eq. 3.10 by using Lagrange multipliers10, leading to:

DGF2 =B′2
e0 − 2e0.G.B

′
e0 +B′2

e1 − 2e1.G.B
′
e1 + 2λ(e0 ·B′

e0 + e1 ·B′
e1)

=B′2
e0 − 2e0.(G− λI).B′

e0 +B′2
e1 − 2e1.(G− λI).B′

e1

(3.12)

To conclude the minimization, the derivatives with respect to B′
e0, B

′
e1 and λ must be imposed

equal to zero, obtaining: 
B′

e0 = e0.(G− λI)

B′
e1 = e1.(G− λI)

e0 ·B′
e0 + e1 ·B′

e1 = 0

(3.13)

This system is easily solved, obtaining:

λ =
G00 +G11

2
, (3.14)

From λ we obtain B′
e0 and B′

e1 and, therefore, finally determine the fitted gradient matrix Gfit.
From this matrix, the normal n and the tangential direction t1 (i.e. the one orthogonal to the
direction of invariance) are easily obtained performing the nominal MDD technique. A simplified
diagram outlining the procedure for estimating the normal is presented in Fig. 3.6.

Figure 3.6: Scheme of the GF2 algorithm.

10The Lagrange multiplier method is used to find the stationary points (local minimums or maximums, including
extrema) of a real function f(x, y, . . .) subject to one or more constraints g(x, y, . . .) = 0. In this method,
further discussed in Goldstein (1950), the minima are found from the so-called Lagrange function, defined as
L(x, y, . . . , λ) = f(x, y, . . .) + λ · g(x, y, . . .), where λ is a new variable defined as the Lagrange multiplier. In
order to find the minima, this method consists in solving the system of equations formed by setting the partial
derivatives of L with respect to all variables (including λ) equal to zero.
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3.4.2 The magnetopause normal using other sets of data

This tool can be easily adapted to any other vector measurement by just changing the physical
constraint. In particular, considering a generic vector Γ respecting a generic physical constraint
∇ · Γ = η11. In this case, the same algorithm as above can be used since no conditions on the
structure were assumed. Therefore, the minimization leads to:

Γ′
e0 = e0.(G− λI)

Γ′
e1 = e1.(G− λI)

e0 · Γ′
e0 + e1 · Γ′

e1 = η

(3.15)

Again the last equation corresponds to the physical constraint. This system is again easily
solved, leading to:

λ =
G00 +G11 − η

2
(3.16)

In conclusion, the GF2 can be easily adapted to any set of data by changing the value of λ to the
corresponding physical constraint. However, while theoretically any data can be used, the tool’s
effectiveness can be limited and possibly lead to less realistic results when large uncertainties
exist, in the vector data set or in the scalar constraint.

3.4.3 Dimensionality index

From the filtered gradient matrix, we can also derive an indicator of the local dimensionality of
the structure profiles, after filtering out any parasitic noise effects. Specifically, we can estimate
the importance of two-dimensional effects in the structure profile. We achieve this by estimating
the variation of the magnetic field (or any physical quantity of interest) along the normal and
tangential directions obtained through the GF2 tool by projecting the Gfit matrix along them.
By defining varn = |∂nB| = |Gfit.n| (and equivalently vart along t1, i.e. the tangential direction
obtained using GF2 and defined in Section 3.4.1), we can introduce a new dimensionality index:

DGF2 =
varn − vart

varn
(3.17)

This parameter indicates the relative importance of the gradients along the tangential direction
compared to those along the normal. Its values range between zero and one. In particular, one
corresponds to the strict one-dimensional limit, and zero corresponds to the two-dimensional
scenario where gradients are equivalent in module along both directions. This index is used
together with the instantaneous index D1, presented in Eq. 3.8, as a complementary measure
of the dimensionality of the magnetopause.

3.4.4 The normal velocity

Finally, another useful by-product of the GF2 method is the ability to have a determination
of the components of the velocity of the structure Vn and Vt1 with respect to the spacecraft.
However, the motion along the invariant direction remains unknown. Again, we write here the
algorithm for magnetic field measurements while it is general for any set of data.
These components can be obtained by comparing the spatial derivatives and the temporal ones.
Specifically, in the two-dimensional local limit there are no variations along the invariant direc-
tion. Therefore, we can write:

∂tB = Vn∂nB+ Vt1∂t1B (3.18)

11In the case of the ions mass flux, Γ = niui, the corresponding physical constraint is the mass conservation
∇ · (niui) = −∂tni. Therefore, in this case, η = −∂tni.
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(Warning: the term ∂t1B, which is a spatial derivative along t1, obtained from Gfit, must not be
confused with the temporal derivative ∂tB). By doing the scalar product between this equation
and both ∂nB and ∂t1B, we find a system of two equations from which we find both velocities
as follows: [

Vn
Vt1

]
= M−1

[
∂tB.∂nB
∂tB.∂t1B

]
(3.19)

Here, Specifically, M is the spatial variation matrix in the n − t1 plane, defined by using the
quantities varn and vart defined above and varn,t = ∂nB.∂t1B, as follows:

M =

[
var2n varn,t
varn,t var2t

]
(3.20)

3.5 Testing GF2 on in-situ data

A preliminary analysis to validate this tool was obtained by comparing the results with those
obtained from other State-of-the-Art methods (specifically, MDD and, for the magnetic field,
MVA). This analysis is carried out using data from a MMS crossing that occurred on December
28, 2015, at approximately 22:12 (the crossing shown in the panel on the right in Fig. 3.4).
For this event, the spacecraft are located at [7.6, -6.7, -0.8] RE in GSE coordinates (where RE

is the Earth’s radius). The crossing shows one-dimensional features. The values of the two
dimensional indices discussed above (Eq. 3.8 and 3.10), computed from the magnetic field and
averaged on the crossing interval between 22:12:02 and 22:12:10, are D1,mean = 0.97± 0.03 and
DGF2,mean = 0.89±0.06. The two values close to 1 highlight that the crossing can be considered
as one-dimensional throughout the time interval. Finally, we remind here that the sampling
frequencies of the magnetic field, and ion and electron measurements differ. Throughout this
manuscript, these quantities are compared and/or used at the same instant of time. Therefore,
to conduct this study it is necessary to interpolate all measurements at the same sampling times.
To do that, we tested the two sampling frequencies: of the magnetic field, the highest, and of the
ions, the lowest. The results obtained are consistent with the two methods. All figures shown
in this manuscript use the sampling times of the MMS1 magnetic field.

3.5.1 Comparison with MDD

As a first test, GF2 was evaluated by comparing the magnetopause normals obtained using GF2
with those from MDD (and MVA for the magnetic field). The test discussed below is part of
the study also presented in Ballerini et al. (2024b) and discussed in Chapter 9. The normals,
along with the measurements, are shown in Fig. 3.7, for the magnetic field and ion and electron
mass fluxes. Vertical lines delimit the time interval during which all the satellites are inside
the magnetopause structure, showing that the crossing lasts about 5 seconds for particles and 8
seconds for the magnetic field. This crossing is chosen as a case study since the duration is long
enough to allow for high resolution for all data. In this figure, we observe that, while the ion
and magnetic field measurements show crossing which is dominated by the mean magnetopause
profile, the electron mass flux is more characterized by fluctuations, with larger differences
between the four spacecraft measurements. All normals shown here are obtained using sliding
time windows of 0.31 seconds to filter out waves and turbulence at small scales. The role of this
smoothing is further discussed in the following section.

The first striking result from Fig. 3.7 is the consistency of all these normals. For the
magnetic field and ions, almost all the directions are less than ten degrees apart from each
other, with an average difference of about five degrees. The major exception concerns the
comparison between MVA and the two local normals during the last second of the interval for
the magnetic field measurements. This discrepancy can be explained by the fact that the local

47



THE STUDY OF THE MAGNETOPAUSE FROM IN SITU DATA

Figure 3.7: Comparison for the normals obtained with GF2 and MDD. From top to bottom the
magnetic field, ion and electron mass flux (left), and their respective normals (right). The con-
tinuous (resp. dashed) line indicates the components of GF2 (resp. MDD) normal. Horizontal
dotted lines in top panel indicate the MVA normal obtained over the whole interval, averaging
the magnetic field measurements on the four spacecraft. Vertical dashed lines delimit the time
interval of the crossing, different for the magnetic field and the particle mass flux.

normals differ noticeably in this part from their value averaged within the crossing, while MVA
only returns a global normal, not allowing to detect such a change. The normals derived from
ion measurements and magnetic field do not differ much within the common temporal interval,
showing that the particle and magnetic structures are approximately identical. A different and
interesting result is obtained however when observing the normal obtained using the electron
flux data. While its average value is compatible with the normals obtained with the ion and
magnetic field measurement (differentiating with the latter by about 15 degrees on average), we
observe that this normal fluctuates a lot within the magnetopause, especially in the z direction.
This feature is observed both in MDD and GF2. Furthermore, while these two approaches give
compatible normals, the differences between these two are bigger than the ones observed for
the magnetic field and ion mass flux, showing local differences of up to 40 degrees. While the
normal obtained using GF2 seems to oscillate less than the MDD one, probably due to the fitting
procedure, the significant fluctuations around the average cause the electron normal to be much
more influenced by the smoothing procedure and therefore not reliable enough to be used in the
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rest of the work.
To further interpret these results, the dimensionality of the magnetopause structure is ana-

lyzed using the DGF2 and D1 parameters defined in Eq. 3.8 and 3.10. Both indices are shown
in Fig. 3.8 for the three sets of measurements analyzed above. We observe that the values of
DGF2 and D1 are slightly different from each other in all three cases, especially for the elec-
trons. Despite these differences, both indices indicate that the magnetopause is close to 1D
both for magnetic field and ions: both have values always larger than 0.8 (and D1 larger than
0.9), indicating bigger gradients along the normal direction with respect to the tangential ones.
Specifically regarding the magnetic field, there is a slight decrease of DGF2 and D1 observed in
the last second of the crossing, which may account for the slight difference between the normal
with respect to the average within the last part of the crossing. Additionally, both indices con-
firm that the electron structure is more complex with respect to the magnetic field and ions,
showing characteristics significantly diverging from one-dimensionality for most of the interval,
with values dropping below 0.7 for the entire last second of the crossing. This analysis thereby
validates the earlier conclusions drawn solely from normal vector analysis.

Figure 3.8: Dimensionality indices from the magnetic field (left) and particles (right, in red for
ion and green for electron mass fluxes). Continuous line is the DGF2, dashed line the D1.

In conclusion, this initial test demonstrates a satisfactory agreement between the GF2 estimation
of the normal and other state-of-the-art tools, validating its capability to reliably determine the
normal vector using at least the three sets of data used above. However, it’s important to note
that this study does not enable us to assert that GF2 is more accurate than MDD. Such a
determination requires a comparison of results within a global simulation incorporating realistic
turbulence. A similar analysis has been conducted in the past in Rezeau et al. (2018) on a two-
dimensional numerical simulation performed by Dargent et al. (2017) using a particle-in-cell
model12. In this study, they pointed out however how a 3D simulation is required to properly
address this study. This kind of analysis has been performed also in this work on numerical
simulation data, comparing the results of the MDD and GF2. The results of this study are
discussed in Chapter 7.

12Numerical models for describing the plasma are discussed in Chapter 6.
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3.5.2 The importance of smoothing

As mentioned above, a 0.31-second sliding window average was used to compute the normal
at each time. The length of the window was selected to ensure that at least three data mea-
surements, before interpolation, are included within the smoothing (the ion measurements are
every 0.150 s). This averaging is designed to filter out waves and turbulence at small scales
while retaining relevant information related to the magnetopause laminar profile and, therefore,
to observe the local variations in the magnetopause normal. The influence of this filtering on
the normal is shown in Fig. 3.9, where the normals are computed using different windows. We
observe that increasing the length of the averaging interval results in the loss of fluctuations
in the normal directions. Such short fluctuations are typically wave-dependent and subject to
experimental uncertainty, thus not significant in the study of the magnetopause. Nonetheless,
these fluctuations are up to around 8 degrees from the normal average on the 0.31-second win-
dow, underlining how the averages are fundamental in reducing the uncertainty of the error on
the estimation of the normal. It’s worth noting that using larger averaging intervals, on the op-
posite, can lead to a loss of information, especially when the ratio of the length of such intervals
to the total length of the magnetopause crossing becomes large.

Figure 3.9: Top: variations of the normal components depending on the window temporal length.
Bottom: Angles between the normal obtained using 0.31 seconds interval sliding window with
normals averaged on different time intervals, as indicated in legend.
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In this chapter we delve into the study of the magnetopause’s structure, modeling it as a one-
dimensional discontinuity. We aim to provide a deeper understanding of the magnetopause’s
complex properties by bridging theory and in situ observations. This approach proves to be a
powerful one for investigating the regions that are far from reconnection sites or surface instabil-
ities, which may render the magnetopause locally two-dimensional. These one-dimensional-like
regions represent the vast majority of the magnetopause itself.

4.1 Theory of Discontinuities

Plasmas show a natural tendency to spontaneously self-organize into structured configurations,
separated by thin layers. This is found both in space, in astrophysical environments, and in
laboratory plasmas. Across such boundary layers, the downstream and upstream physical quan-
tities are linked by the fundamental conservation laws: mass, momentum, energy and magnetic
flux (Landau and Lifshitz, 1987). Whenever the number of conservation laws and the number of
fields characterizing the plasma state are equal, the simplest scenario occurs. A typical example
is the sonic shock wave in neutral gas, where the collisions guarantee an isotropic medium on
both sides and the absence of heat flux (Belmont et al., 2012). In this simple scenario, the
downstream state is uniquely determined as a function of the upstream state, independent of
any non-ideal phenomena that may occur within the layer. Specifically, it becomes feasible to
describe pressure variations without the need for any closure equation. In this case, the jumps
of all quantities are determined by a single scalar parameter (namely the “shock parameter” in
neutral gas).

We will refer hereafter in this manuscript to “Classic Theory of Discontinuities” (CTD) as
the theory corresponding to this scenario, even if it has rarely been formalized as such in the
literature. The main basis can be found in old textbooks, see e.g. Landau and Lifshitz (1975)
and Landau and Lifshitz (1976), and it corresponds to the framework within which most of
our intuition about discontinuities has been forged. This theory is applicable to both neutral
media and magnetized plasmas. Here only the plasma case is analyzed1. To model the layer,

1This manuscript aims to provide an overview of the model. A more exhaustive analysis, which includes the
algebraic derivations, can be found in Belmont et al. (2019).
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the following simplifying assumptions are considered: a stationary layer, 1D variations, isotropic
pressure, and the absence of heat flux on both sides. For plasmas, the assumption of an ideal
Ohm’s law on both sides is added (Belmont et al., 2019).

Figure 4.1: Schematic of the boundary in CTD and definition of normal and tangential directions.

Based on these assumptions, the integration of the magneto-fluid equations across the layer
provides a set of conservation equations between the upstream and downstream physical quan-
tities, the bulk velocity u, the magnetic field B, the density ρ, and the isotropic pressure p. The
electric field E is given by the ideal Ohm’s law on each side. This set of equations, namely the
generalized Rankine-Hugoniot equations, is the equivalent of the Rankine-Hugoniot equations
in neutral gases. The conserved quantities are the number density of particles, the momentum,
the energy, and the normal and tangential magnetic flux. They will be denoted as ϕn, ΦΦΦm, ϕe,
ϕB, ΦΦΦE and are defined as follows:

ϕn = ρun

ΦΦΦm = ρunu+

(
p+

B2

2µ0

)
n− BnB

µ0

ϕe =
1

2
ρu2un +

5

2
pun − 1

µ0
Bt · (Bnut − unBt)

ϕB = Bn

ΦΦΦE = Et with E = −u×B

(4.1)

Here we define the indices n and t to indicate the normal and tangential directions with respect
to the layer, as shown in Figure 4.1 (we reserve the notation ’parallel’ and ’perpendicular’ for
references with respect to the magnetic field, as usual in plasma physics). Hereafter, we will
name the upstream and downstream regions with the indices “1” and “2” respectively.

N.b. The electric field can be chosen to be zero by choosing the tangential frame known as the
de Hoffmann-Teller frame (De Hoffmann and Teller, 1950; Paschmann and Daly, 1998). Taking
into account the ideal Ohm’s law, this condition E = 0 cancels the last term of the energy
equation.

4.1.1 Discontinuities with Bn ̸= 0

Let us first analyze the discontinuities in the general case Bn ̸= 0. In this case, a special solution
occurs when un = unA, with unA = B2

n/(µ0ρun). Specifically:

- for un = unA we find the so-called “rotational discontinuity”. This solution corresponds to
an Alfvén wave in which p, B2, and ρ are conserved separately. This discontinuity, which is
schematized in Figure 4.3, is characterized by a rotation of the tangential component of the
magnetic field without a variation of its module. Thus, examining the conservation of the
momentum in the normal direction, we find that p+B2

t /2µ0 is conserved. Additionally, the
conservation of energy implies the preservation of B2

t , leading to the separate conservation
of p.
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- for un ̸= unA, i.e. for all other values of the incident normal velocity, we find the so-called
“compressional discontinuity” (also known as shock). This solution is characterized by
a variation of the magnetic field module (as well as the velocity and density) with no
rotation of the magnetic field in the tangential plane. Figure 4.2 shows a schematization
of the magnetic field variation. Three types of shock solutions exist, listed with increasing

Figure 4.2: Evolution of the magnetic field across a shock: on the left, the projection in the
plane perpendicular to the discontinuity, on the right, in the plane of the discontinuity. The
upstream field is in red, downstream field is in green. Credit: (Belmont et al., 2019)

incident normal velocity:

1. Slow shock: Occurring for incident normal velocities between the slow mode velocity
and the Alfvén speed. In this case, a decrease in normal velocity and tangential
magnetic field is observed, while pressure and density increase;

2. Intermediate shock: Similar to slow shock, with a reversal of the magnetic field (and
of the tangential velocity in the de-Hoffman Teller frame);

3. Fast shock: Occurring when the incident normal velocity is above the fast mode
velocity. A decrease of the normal velocity, typical of all shocks, is observed while
the tangential magnetic field, pressure and density increase.

- for un,2 = un,1 = 0 we find the so-called “contact discontinuity”. This solution only
presents a jump in density and temperature, while keeping the pressure value constant
(equal to the product p = nT ). This solution, however, is not expected to be observed in
plasmas since diffusion-like mechanisms would quickly erode it.

4.1.2 Discontinuities with Bn = 0

Let us now focus the particular case Bn = 0.

- for un ̸= 0 we find a fast shock with perpendicular propagation (a more detailed description
can be found in Belmont et al. (2019)). This solution is regular since it is just the limit of
the fast general solution when Bn tends to zero.

- for un = 0 we find the so-called “tangential discontinuity”, corresponding to a degen-
erate solution of the system. In this condition, any relationship between the upstream
and downstream values of both magnetic field and tangential velocity is lost, both being
therefore decoupled. Only the conservation of the normal component of the momentum
still provides a relationship between upstream and downstream states, corresponding to
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Figure 4.3: Evolution of the magnetic field across a rotational discontinuity: on the left, the
projection in the plane perpendicular to the discontinuity, on the right, in the plane of the
discontinuity. Upstream field in red, downstream field in green. Credit: (Belmont et al., 2019)

the conservation of the total pressure p+ B2/2µ0. This solution presents no plasma flow
across the boundary and allows both rotation and compression. It is worth noticing that
the tangential discontinuity is the only class in CTD to present both features. This solu-
tion is singular in the sense that it not the limit of one of the general solutions when Bn

tends to zero. It is rather an arbitrary combination of the slow and rotational solutions.

4.1.3 Beyond CTD

The jump conditions in Eq. 4.1 can consistently be demonstrated by integrating the complete
medium equations across the layer. In this sense, these equations can never be said to be “ideal
MHD equations”, as they are sometimes referred to, since ideal MHD is never valid inside the
layer. As conservation equations, they are a priori much more general. It is important however
to understand how all effects present inside the layer, fluid or kinetic, intervene in the integration
and what is the role of the hypotheses done on the outside media (especially the isotropy of the
pressure tensor).
At the MHD equations level, it is important to note that ideal terms always lead to the non-
linear steepening of any gradient, thereby contributing to the formation of thin boundaries, being
therefore responsible for the existence of thin boundaries and that non-ideal terms must neces-
sarily be present inside the boundaries for explaining their stationary structure. The pertinent
form of the jump equations therefore depends in general on the integration of these non-ideal
terms, being null only in some particular cases. Here are some examples:

1. In Ohm’s law, assuming the presence of non-ideal terms defined as Enid = E + u × B,
the corresponding non-ideal term in Faraday’s equation would be equal to n×E′

nid (with
the ′ symbol indicating the spatial variation), leading to a term n × ∆Enid in the jump
equation for ΦE in the set of Equations 4.1. Here ∆Enid represents the variation of Enid

between the two sides of the discontinuity. This term is independent of the values of Enid

inside the layer and it is zero whenever Enid = 0 on both sides. This is valid in particular
when the two asymptotic media are homogeneous, which is the most common hypothesis.

2. In the momentum equation, when we consider the presence of non-isotropic contribution
one can write p = piso + pns (with pns the non-isotropic contribution), which leads to that
addition of a non-ideal term n.∆pns in the equation for Φm. As above, ∆pns defines the
variation between the two sides of the discontinuity of pns. This term is independent of
the values of pns within the layer and can be zero at the condition that the non-isotropic
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part of the pressure has the same value on each side of the layer, as discussed in detail
in Section 4.4. For homogeneous asymptotic media, this term can be zero also in the
case in which pns contains spatial derivatives, as the viscosity term in collisional plasmas.
Otherwise, the validity of such a strong hypothesis is far from universal and has always to
be checked, with the possibility of bringing noticeable change in the jump equation.

3. In the energy equation, one non-ideal term comes from the heat flux term, whose inte-
gration is n.∆Q. Again, this term is independent of the heat flux profile inside the layer,
and it can be zero if the heat flux has the same value on both sides (such as the rather
common hypothesis where it is assumed to be equal to zero).

4.2 Limitations of CTD at the magnetopause

CTD can be employed to investigate the magnetopause under several conditions, the first one
being to consider the boundary as a “thin” layer separating two quasi-homogeneous media.
Here, “thin” emphasizes that at the magnetopause variations in plasma quantities occur over a
very small spatial interval relative to the dimensions of the magnetosphere. Thanks to in situ
observations, we have gained a comprehensive -yet not complete- understanding of the main
features of the magnetopause structure, now enabling us to check the validity of the whole set of
conditions assumed in CTD. Over the entire surface of the Earth’s magnetopause, both “rota-
tional” variations (i.e. the variations associated with the rotation of the magnetic field and the
tangential velocity, Sonnerup and Ledley (1974)) and “compressive” variations (those associated
with the plasma quantities with plasma parameters such as density, temperature, pressure, and
the magnitude of the magnetic field, Otto (2005)) are observed (Dorville et al., 2014). This
occurs since the magnetosheath and the magnetosphere have distinct magnetic field directions
and modules.

Since both kinds of variations occur within the same discontinuity, then the magnetopause is
generally interpreted as a tangential discontinuity, implying the absence of particle flow across
the boundary. Therefore, the prevailing paradigm suggests that the magnetopause is mainly a
tangential discontinuity and only becomes “open” exceptionally at a few points where recon-
nection occurs (Paschmann et al., 2005b; Cowley, 1995) and where the 1D hypothesis therefore
becomes invalid. Close to reconnection sites, observations have shown evidence of “rotational”
layers, but the situation is then more intricate and generally implies several close discontinuities.

Do the experimental data support the tangential paradigm deriving from CTD? On the one
hand, it’s established that compressional and rotational variations are not always combined, as
demonstrated by numerous observations of rotational discontinuities (Chou and Hau, 2 08). An-
other illustrative example is provided by Dorville et al. (2015b), where two distinct substructures
(moving with respect to each other) have been found within the magnetopause: a rotational dis-
continuity and a slow shock. On the other hand, the tangential paradigm relies on the very
radical hypothesis of a magnetopause completely impermeable to mass and magnetic flux, with
Bn and un strictly null. However, experimental observations cannot distinguish between Bn = 0
and Bn ≃ 0, primarily due to uncertainties in determining the normal direction (Rezeau et al.,
2018; Haaland et al., 2004; Dorville et al., 2015b). Hence, it becomes challenging to definitively
identify a tangential discontinuity. What is known is that, at the magnetopause boundary, the
components Bn and un are generally found to be non-null but very small. The limit of small
values Bn and un is poorly described by CTD, as even infinitesimal values of these quantities
would not permit the mixing of rotational and compressive features. Consequently, even slight
variations in these quantities can significantly alter the corresponding topology of the struc-
ture, making singular the character of the tangential solution, as already mentioned. . This
work will show that the main limitation of CTD in describing the magnetopause arises from the
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Figure 4.4: Cartoon showing the different variations of B between a rotational discontinuity
(left) and a compressive one (right). The top panel shows in 3D the variation of B inside the
magnetopause plane; the bottom panel shows the hodogram in this tangential plane: a circular
arc for the rotational discontinuity and a radial line for shocks.

isotropy assumption. Indeed, as soon as this hypothesis is relaxed (Hudson, 1971), the number
of conservation equations becomes insufficient to determine a unique downstream state for a
given upstream state. As a consequence, the global result depends on the non-ideal processes
occurring within the layer. This would provide the non-ideal effects that account for the jumps
across the 1D stationary layer, opening the possibility to new types of discontinuities.
The paradigm of the magnetopause (outside of reconnection regions) as an impermeable tan-
gential boundary is based on CTD. However, in this chapter, we aim at demonstrating, both
theoretically and experimentally, why this theory fails at describing the magnetopause, leading
to question this paradigm. We will illustrate that rotation and compression can coexist even in
the 1D case, with finite Bn and un.

4.3 The magnetopause as a discontinuity: how to study in situ data

As discussed before, there is a clear difference between the rotational discontinuities and com-
pressional ones. To investigate these differences, we can exploit the hodogram of the magnetic
field in the plane tangential to the discontinuity (see Fig. 4.4), which can be easily obtained
from in situ data. This analysis allows us to determine whether the magnetopause exhibits
rotational, compressional, or both characteristics. Considering a magnetopause crossing from
spacecraft data, if CTD was valid through all the crossings, the shape of the hodogram would de-
pend on the discontinuity class. For a rotational discontinuity, the hodogram would correspond
to a circular arc with constant radius, since the tangential component of the magnetic field is
conserved. For a shock, the hodogram would correspond to a radial line because of the absence
of rotation of the tangential component of the magnetic field. Such a distinction of hodograms
is shown in the sketch in Fig. 4.4. Different attempts to classify magnetopause hodograms also
exist in the literature, as seen in studies such as Sonnerup and Ledley (1974); Berchem and Rus-
sell (1982a). In these studies, hodograms were classified as C-shaped or S-shaped according to
their shape, with some evidence suggesting that S-shaped hodograms could represent rotational
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Figure 4.5: Hodograms of the magnetic field for magnetopause crossings showing typical features
of a rotational (left) and compressive (right) discontinuities. BT1 and BT2 are the projections
of B along the tangential directions computed as described in the text.

discontinuities formed during reconnection. However, this type of classification is not based
on CTD but originates from the observations themselves. A more recent and comprehensive
study on this can be found in (Panov et al., 2011), where a reconstruction of the magnetopause
structure in the two different cases is reported. This previous classification however does not
interpret hodograms in the context of CTD and therefore will not be used in this manuscript.

The first step to obtaining the hodogram from the data is to define a reference system in
the tangent plane. However, such a frame of reference is a mere convention, as changing the
reference system corresponds to a rotation in the plane of the hodogram that does not alter its
shape and, therefore, the results. Here we choose the following directions in the tangent plane:

T1 = nmean × b̂ (4.2)

T2 = nmean ×T1 (4.3)

Here, the two tangential directions are defined as functions of the normal, obtained with the
GF2 tool, and the direction of the magnetic field b̂ = B/|B|, both averaged in the crossing
interval and normalized to have unitary vectors. An example of two MMS crossing showing
typical CTD features, for a rotational (left) and compressive (right) discontinuity is shown in
Fig. 4.5.

The hodogram is, therefore, an effective instrument for the recognition of the cases where the
CTD succeeds or fails in describing the magnetopause, especially when the observed hodogram
corresponds or not to an arc of circumference or a radial line. Particularly interesting is the
hodogram for the magnetopause crossing of MMS on 28.12.2015 discussed before in Chapter
3. This crossing presents one-dimensional and stationary characteristics required by the CTD
model. To mitigate the possible impact of small non-monodimensional features observed in the
last second of the crossing, we will not include this part of the interval in this study.

The hodogram for this crossing is presented in Fig. 4.6, showing that the result does not
depend on the choice of averaging the normal over the interval. Indeed, by exploiting the local
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Figure 4.6: Hodogram in the tangential plane of the magnetic field for a magnetopause crossing
by MMS in 28.12.2015 from 22:12:02 to 22:12:09. The black line (resp. violet) is the hodogram
when the nmean (resp. n) value is used to define the reference frame.

(not averaged) normal (purple line), we see that the result is almost unchanged. This crossing
is an example that exhibits a clear linear (though not radial) trend in the hodogram. This
non-radial variation of the magnetic field, not predicted by the CTD, is a striking feature of the
hodogram and rather common at the magnetopause2. It cannot be explained by a departure
from the one-dimensional hypothesis, as we have determined that the crossing can be considered
as one-dimensional with a good degree of accuracy. Therefore, it must be due to an intrinsic
property of the layer itself.

4.4 A possible explanation: the role of the pressure tensor

To understand why the CTD fails to predict the linear hodogram of the magnetic field observed
from the magnetopause data, we can initially trace back to the equation used to distinguish
rotational and compressive structures in order to identify which assumption in CTD restricts
the description of the magnetopause.
This equation is derived from the moment equation (Eq. 1.27) and the Faraday-Ohm law (Eq.
1.13-1.29) by assuming, as in CTD, the one-dimensionality of the structure, therefore presenting
gradients only along the normal direction n, and the exclusion of non-ideal terms in Ohm’s law.
Then, by integrating the two tangential equations across the layer and projecting them onto the
tangential plane, we get:

ρunut2 −BnBt2/µ0 = ρunut1 −BnBt1/µ0 (4.4)

Bnut2 − un2Bt2 = Bnut1 − un1Bt1 (4.5)

Again, the indices n and t represent the projection along the normal and in the tangential
plane, respectively, while indices 1 and 2 indicate the two sides of the discontinuity. Concerning

2A quantification of what we mean by common is made in Chapter 5
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the second equation, it is notable that both sides could be set to zero if we adopt the “De
Hoffmann-Teller” reference frame (defined as the reference frame where the electric field is zero,
Belmont et al. (2019)). However, while this choice simplifies some calculations, it is not necessary
here. Furthermore, Bn and ρun have no indices since they are identical on both sides (because
of the divergence-free and continuity equations, respectively). We observe that all terms in
these equations are proportional to Bn or un, implying that any non-ideal term, even if small,
can become dominant where these two parameters tend to zero (unless they share the same
behavior). From these two equations, we can now eliminate the variable ut by performing a
linear combination. We get:

(un2 − unA)Bt2 = (un1 − unA)Bt1 (4.6)

where

unA =
B2

n

µ0ρun
= cst (4.7)

From this equation we obtain the shock solution when the tangential magnetic field direction
remains unchanged between the two media, while a rotational discontinuity occurs when the
terms inside the brackets are equal to zero. In the latter scenario, we find a discontinuity char-
acterized by a propagation velocity equal to the normal Alfvén velocity, un1 = un2 = unA, and
a lack of plasma compression, typical of the rotational cases.

However, we can easily observe that the pressure divergence terms are absent in Eq.4.4, and
therefore in Eq.4.6, due to the assumption made in CTD that the pressure is isotropic on both
sides of the layer. Indeed, due to this assumption, the integration of the pressure term in the
momentum equation yields expressions of the form (p2 − p1)n, devoid of any component in
the tangential plane and, therefore, from Eq.4.4 and 4.6. This assumption can therefore be
interpreted as the one limiting CTD from adequately describing the magnetopause conditions.
For this reason, we can study how relaxing this assumption would alter the results from CTD.
However, the inclusion of a full non-gyrotropy would require a full kinetic description or, at
least, some expansions assuming that these effects are sufficiently small. Previous literature
attempted to study this limit, such as in the case of the pioneering work of Braginskii (1965) or
the work in Passot and Sulem (2006) and references therein.

To gain insight into these limitations, we can begin by studying a first limit that allows
us to continue using fluid equations without adding further assumptions on the magnetopause
structure. Let us study how a simple anisotropy preserving gyrotropy around B affects the
results from CTD. This assumption can be straightfully taken into account for modeling the
pressure tensor and using it in fluid equations.

4.4.1 CTD with anisotropic/gyrotropic conditions

We can now examine how changing the assumption on the pressure tensor, transitioning from
the isotropic case to the “simple” anisotropic case, i.e. keeping the gyrotropy around B, affects
the separation between the rotational and compressive solution in CTD. In this scenario, the
pressure tensor can be modeled as follows:

P = p∥b̂b̂+ p⊥(Î− b̂b̂) (4.8)

Here, b̂ is the versor indicating the direction of the magnetic field while p∥ and p⊥ are the
thermal pressure parallel and perpendicular with respect to the magnetic field. In this limit, it
has been shown by Hudson (1971) that the ∇ ·P term comes into play by linking upstream and
downstream quantities. Specifically, this term introduces a new coefficient α in Eq.4.6, defined
as follows:

α = 1−
p∥ − p⊥

B2/µ0
(4.9)
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Therefore, in the anisotropic case, the equation separating rotational and compressive solutions
reads:

(un2 − α2unA)Bt2 = (un1 − α1unA)Bt1 (4.10)

This coefficient can be interpreted as a change in the Alfvén velocity V ′2
An = αV 2

An. From Eq.
4.10, we note that due to the relaxation of the isotropic hypothesis, the number of conservation
equations is no longer enough to determine uniquely the downstream state as a function of
the upstream conditions. Consequently, the global result depends on the non-ideal processes
occurring within the layer. Notably, we observe that the values of α on both sides of the layer
influence the properties of discontinuities. On one hand, coplanar solutions, which are the
generalization of shocks in the isotropic limit, exists also in this limit (whenever Bt2 and Bt1

are collinear). The persistence of collinear solutions comes from the gyrotropic assumption: in
the non-gyrotropic case, the magnetic field direction is no more the unique direction that breaks
the isotropy and this property disappears. However, whenever the value of α is not equal on the
two sides, the equivalent of the rotational discontinuity now implies compression:

un2 ̸= un1 if α2 ̸= α1 (4.11)

Since un2 = α2un0 and un1 = α1un0. Therefore, in this limit, we observe a variation of the normal
velocity with respect to the structure. This explains why the modified rotational discontinuity
can be “evolutionary” (Jeffrey and Taniuti, 1964), where the non-linear steepening is counter-
balanced at equilibrium by non-ideal effects for a thickness comparable with the characteristic
scale of these effects.

Equation 4.11 demonstrates how the presence of a simple anisotropy can allow to describe
the coexistence of compression and rotation without the condition Bn = 0 to be fulfilled. Specif-
ically, this finding highlights the importance of considering the non-ideal effects within the mag-
netopause, which characterize its pressure tensor and determine the variation of α. Given that
the ion Larmor radius ρi and the ion inertial length di are typically non-negligible with respect
to the characteristic scale L of the magnetopause, Finite Larmor radius (FLR) effects have to be
taken into account when describing the magnetopause. In other words, whenever the gyroradius
of the particles cannot be neglected, the pressure tensor can become non-gyrotropic. Therefore,
the divergence of the pressure tensor is no longer reduced to simply adding a coefficient α as
in the anisotropic case since its tangential component is no longer collinear with Bt. In the
literature, the influence of these effects has already been reported and analyzed in the context of
magnetic reconnection (Aunai et al., 2013b, 2011) and in kinetic modeling of purely tangential
layers (Belmont et al., 2012; Dorville et al., 2015a). Further investigation has been done also in
the case of linear modes where FLR effects are responsible for the transition from shear Alfvén
into Kinetic Alfvén Wave (Hasegawa and Uberoi, 1982; Belmont and Rezeau, 1987; Cramer,
2001). However, it has never been introduced in the context of quasi-tangential discontinuities.
To study the influence of FLR effects at the magnetopause, we will examine in detail the crossing
of 28.12.2015, already discussed before. This crossing, showing features not included in CTD,
will be used as a test case for FLR effects within the magnetopause.

4.4.2 Estimation of non-gyrotropy from data

Before delving into the detailed study of the MMS crossing with the linear-shaped magnetic
hodogram, we start focusing on how we can quantitatively study non-gyrotropy (around B).
Although the definition of non-gyrotropy is clear, a single metric is difficult to define and there-
fore a quantification can vary depending on the application. We now briefly introduce the most
common scalar indicators used to quantify the local non-gyrotropy of the pressure tensor. We
then develop a new non-gyrotropy index.

The first indicator is the so-called agyrotropy, used, for instance, in Karimabadi et al. (2007);
Scudder and Daughton (2008a); Pritchett and Mozer (2009) and Scudder et al. (2012). It uses
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the eccentricity of the ellipse corresponding to the covariance matrix of the velocity distribu-
tion projected onto a plane perpendicular to the magnetic field. Consequently, its magnitude
indicates the asymmetry of the distribution relative to the magnetic field. Finally, agyrotropy
is defined as the difference between the two pressure eigenvalues associated with eigenvectors
perpendicular (namely p⊥,1 and p⊥,2) to the mean magnetic field direction, normalized by the
average of the two:

AG = 2
|p⊥,1 − p⊥,2|
p⊥,1 + p⊥,2

(4.12)

Another indicator of a scalar metric was presented in Aunai et al. (2013a). In this study, they
defined a measure of nongyrotropy by estimating the gyrotropic and non-gyrotropic contributions
to the pressure tensor. Specifically, to obtain this metric, the pressure tensor is split into two
contributions as follows:

P = G+N (4.13)

Here G is defined as the gyrotropic part and N as the non-gyrotropic part of the full pressure
tensor P. Regarding the gyrotropic part G, it can be expressed as the pressure tensor modeled
in the anisotropic case (Eq. 4.8), where p∥ and p⊥ are derived from P as follows:{

p∥ = b̂ ·P · b̂
p⊥ = (Tr(P)− p∥)/2

(4.14)

From this decomposition, Aunai et al. (2013a) the non-gyrotropic index has been defined as
follows:

Dng,A =

2

√∑
i,j N

2
i,j

Tr(P)
(4.15)

The strong point of this index lies in its ability to quantify the nongyrotropy of a velocity dis-
tribution by measuring the deviation of the pressure tensor from the strictly gyrotropic one,
independently of the basis in which the tensors are represented, thus representing the energeti-
cally equivalent gyrotropic distribution.

In our study we define a new indicator similar to agyrotropy, focusing on the eccentricity of
the pressure tensor in the perpendicular plane. However, it can be generalized to cases where
none of the eigenvectors of the pressure tensor are parallel to the mean magnetic field.

To define this index, we introduce the matrix P⊥ as the projection of the pressure tensor
in the perpendicular plane with respect to the magnetic field (therefore, P⊥ = Pi − P∥ with

P∥ = p∥b̂b̂ and p∥ = b̂ ·Pi · b̂). From this matrix, we can now define p1 and p2 the maximum
and intermediate eigenvalues from which we estimate the non-gyrotropy as follows:

Dng,⊥ =
p1 − p2
p1 + p2

(4.16)

This index has been utilized in Ballerini et al. (2024b) using the sliding window technique as in
GF2.

4.5 Testing CTD from in situ data

In this section, we will analyze the crossing of December 28, 2015, and focus on the linear shape
of its hodogram. The study consists of three consecutive steps: i) analysis the observed magnetic
hodograms, focusing on which of the physically relevant directions in the problem influences the
hodogram the most; ii) study of the relevant terms in Ohm’s law and the momentum equation,
aiming at testing which of the assumptions made in the CTD fails for this particular crossing;
iii) quantification the non-gyrotropy using the non-gyrotropy indices as defined in the previous
Section.
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4.5.1 Hodogram principal directions

Figure 4.7: Hodogram in the tangential plane of the magnetic field for a magnetopause crossing
by MMS on 28.12.2015 from 22:12:02 to 22:12:09. The bold regions indicate the two sub-intervals
chosen for the analysis. See text for the significance of the arrows.

As a preliminary step, we revisit the analysis of the hodogram in the tangent plane. Specifically,
we examine three physically significant directions within the tangent plane: i) The direction of
the variation of the magnetic field in this plane, aligned with the hodogram, ii) the direction of
plasma compression, which is radial, and iii) the direction of the divergence of the ion pressure
tensor (∇ ·Pit).

For this analysis, we have selected two sub-intervals of the crossing3 and computed the
average magnitude of these three quantities. These intervals are highlighted in Fig. 4.7 as
the bolded regions. We superimpose the three directions discussed above. The relative lengths
of the arrows are chosen proportionally to the magnitudes of the corresponding terms. The
hodogram direction is represented in green, the radial direction in red, and the divergence of
the pressure in blue. The important result is that the total variation of the hodogram is mainly
determined by the non-classic term of the divergence of the ion pressure and not by the radial
classic one. This result provides initial evidence of the significant role played by the pressure
tensor in this equilibrium, validating our previous assumptions that the non-gyrotropy may play
a fundamental role at the magnetopause.

4.5.2 The Ohm’s law and the momentum equation

A second confirmation of the role of the pressure in magnetopause equilibrium can be derived
from the study of Ohm’s law and the momentum equation. As we discussed earlier, starting
from the integration of the tangential components of these two equations we obtain Eq. 4.6,
distinguishing between rotational and compressive discontinuities. The comparison of the data
with the model will indicate which terms are not included in CTD.

3Namely the intervals are 1 second long and start from 22:12:05 and 22:12:07.
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To achieve this it is necessary to obtain an accurate determination of the normal direction
to reduce experimental uncertainty in the measurements of the normal fluxes. Typically, the
projections of all fluxes along the normal direction, which appear in the conservation equations,
are significantly smaller than the tangential ones. This is why reducing the uncertainty on the
normal direction is absolutely necessary to get a reliable estimation of these needed normal
fluxes.

In this study, we consider the mean normal direction nmean and the mean tangent direction
t1,mean, obtained using the GF2 method (described in Section 3.4.1), averaged over the crossing
time interval. The invariant direction defined in GF2, which completes the basis of the reference
system, is not analyzed due to dominance by noise in the measurements. By using the mean
values, we reduce statistical errors and minimize fluctuations in the two directions, enhancing
interpretability. However, as discussed in Ballerini et al. (2024b), similar results in the analysis of
the tangential components can also be obtained by exploiting local values of these two directions.
The projections of the two equations along these directions are shown in Fig. 4.8. Specifically, the
current is estimated from the gradient matrix of the magnetic field neglecting the displacement
current in Faraday’s law, while the divergence of the particle pressure, for both ions and electrons,
is obtained from the gradient matrix of the pressure tensor. Both the magnetic field and pressure
gradient matrix are obtained using the reciprocal vector method described in section 3.3.1.

Figure 4.8: Terms of the Ohm’s law (panel 1, units of mV/m) and the momentum equation
(panel 2, units of 10−15kgm/s2), projected in the normal direction n (a) and in the tangential
direction (t1 (b). To reduce the noise, a running average with a time window of 0.35s is applied to
the electric field measurements. Shaded regions in panel 2.b represent the estimated uncertainties
of the divergence of the pressure (red), the J × B (blue) and the classic inertial term (green).
N.b. The terms of the tangential Faraday/ Ohm’s law used in the text are just the derivatives
of the ones in (a) (apart from a π/2 rotation).
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The Ohm’s law

We can now begin with the generalized Ohm’s law terms, shown in the left panel of Fig. 4.8. It is
observed that along the normal and tangential directions, the electric field is effectively counter-
balanced by the u × B and J × B/nq terms (ideal and Hall terms). Additionally, at both
extremities of the crossing, the ideal Ohm’s law is satisfied. This demonstrates the consistency
between the conditions for the Ohm’s law, assumed ideal on both sides of the layer, in CTD
and data. However, the ∇·Pe/nq is not always entirely negligible along the tangential direction
(specifically at approximately 3.5 seconds). From the literature, it is known that the relevance of
the electron pressure contribution can serve as a signature of magnetic reconnection, as it can be
dominant close to and within an Electron Diffusion Region (EDR). This feature has been both
predicted theoretically (Hesse et al., 2011, 2014) and observed experimentally (Torbert et al.,
2016; Genestreti et al., 2018). However, in this crossing, this value is not dominant, this term
is smaller than both the electric field and the J ×B/nq components. Furthermore, ∇ · Pe/nq
is only non-negligible within a small sub-interval (with respect to the magnetopause temporal
width). It is therefore not likely to be indicative of proximity to a reconnection point, but rather
a small spatially localized phenomena at electron scales.

The momentum equation

Evidence of the importance of the divergence of the ion pressure in magnetopause equilibrium
can be obtained through examination of the momentum equation, whose components are illus-
trated in the right panel of Figure 4.8 projected along the normal (top) and tangential (bottom)
directions. An estimation of uncertainties is also provided for the terms in the tangential direc-
tion. The method used to calculate these uncertainties is elaborated below.

From this figure, it can be observed that the normal projection of this equation agrees with
CTD, with the J×B term being counterbalanced by the divergence of the ion pressure tensor.
Meanwhile, the tangential projection of this equation supports our hypothesis regarding the
role of the divergence of the ion pressure in the equilibrium. Along this direction, indeed, it is
observed that the J×B term is comparable in magnitude to the divergence of the ion pressure
tensor, both being an order of magnitude larger than the other terms. Additionally, the J×B
and ∇ · Pi terms are opposite and balance each other. While in the initial three seconds of
the interval, this conclusion is uncertain due to measurement uncertainty, in the time interval
between 3.5 seconds and 6 seconds, it becomes evident that these two quantities counterbalance
each other, while the classical inertia term ρdu/dt is much smaller. However, as pointed out in
Section 4.4, under isotropic conditions, we would expect the divergence of the ion pressure tensor
to be zero in the tangential direction, or at least negligible compared to the classical inertial term
ρdu/dt, while the latter term should be the one counterbalancing J×B. Thus, these results serve
as evidence that the tangential ∇ · Pi term plays a crucial role in magnetopause equilibrium,
further validating the significance of non-gyrotropy and FLRs within the magnetopause. Lastly,
it is noteworthy that the ∇ · Pe term is not entirely negligible in the tangential direction at
approximately 3.5 seconds, as observed in Ohm’s law. Nevertheless, the interpretation given
above remains valid also in this case.

Error estimation for the momentum equation terms

The uncertainties depicted in Figure 4.8 represent an upper bound estimation of the errors as-
sociated with the quantities of interest. We opted for presenting the upper bound to enhance
the validation of the results. This approach ensures that all sources of errors, even those not
accurately modeled, are adequately included within the errorbars, leading to more robust con-
clusions. Therefore, to estimate the error related to the J×B term, we used an overestimation
of the nominal error of the Fluxgate Magnetometer for magnetic field measurements. For the
divergence of the ion pressure and the classical inertial terms, we relied on the estimation of
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uncertainties from the Fast Plasma Instrument dataset. Specifically, the maximum error value
in the entire crossing was taken for each measurement and spacecraft. From these uncertainties,
the final estimation of errors on the terms of the momentum equation is derived by propagating
the errors statistically (i.e., quadratically), assuming that the errors on the reciprocal vectors
can be neglected compared to those of other physical quantities (due to the large precision on
the spacecraft positions).

4.5.3 Evidence of non-gyrotropy at the Earth’s magnetopause

Figure 4.9: (a) Evolution of the non-gyrotropy indices, Dng,⊥ in violet and Dng,A (Aunai et al.,
2013b) in orange. Thin lines correspond to the real-time values while thick lines to an averaged
window of 1 s; Panels b and c show the magnetic field and ion velocity for MMS1; analogous
structures are observed for all four spacecraft. Dashed vertical lines indicate the crossing intervals
studied in the previous sections.

We now want to quantify the non-gyrotropy by exploiting the indicators discussed in Section
4.4.2. Both the indices defined in Eq. 4.15 and 4.16 are shown in Fig. 4.9 for the case crossing of
the 28.12.2015. We note here that both indices significantly deviate from zero, approximately of
the order of 0.1 within the boundary. This suggests the presence of non-gyrotropic effects within
the magnetopause, albeit not being predominant. However, despite a continuous decrease, these
indices remain relatively high in the time interval just before the crossing, in a region where
the magnetic field, density, and pressure tensor are nearly constant, as depicted in Figure 4.9
in panel b for the magnetic field. This observation can be attributed to the presence of an ion
velocity gradient in this interval, implying that the non-diagonal terms of the pressure tensor
may be influenced by a gyroviscous effect due to FLRs (Braginskii, 1965). However, in this
interval, the ion pressure tensor exhibits low values. Therefore, relative errors are larger, which
could partially influence this result.
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Figure 4.10: (a): Evolution of parameters P1 and P2. (b) and (c): projections of the gyrotropy
direction in two planes. The ordinate is the direction of B, the abscissa is the direction of
nmean ×B for panel (b) and nmean for panel (c).

While these results demonstrate the presence of non-gyrotropy, both indicators take into
account a notion of non-gytropy defined around the magnetic field. However, for a more general
conclusion, we may want to drop the hypothesis that the direction of the non-gyrotropy is
around the magnetic field by analyzing the non-gyrotropy with respect to a generic direction,
i.e., without imposing what this direction is. Specifically, we can now examine a direction
denoted as g (corresponding to the gyrotropy direction), around which the rotated matrix could
be reformulated as follows: P2

P1

P1

 (4.17)

To achieve this, we use a minimization algorithm to derive the rotation matrix M, allowing us
to transform the pressure tensor data into a form as close as possible to the desired one. Figure
4.10 (shown here for MMS2) illustrates the direction of the non-gyrotropy obtained through this
analysis. On the top panels, we observe the evolution of the two diagonal values of the rotated
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matrix, P1, and P2, showing that the value parallel to the non-gyrotropy direction consistently
exceeds the one in the gyrotropic plane. Additionally, we have imposed here an upper limit on
the temporal variation of the gyrotropic direction g, excluding points with significant temporal
variations (indicated by the thin line). Consequently, the remaining points reflect instances
where the direction of g can be considered as stable and reliable. The evolution of the non-
gyrotropy direction is therefore compared to the main physical directions: the magnetic field and
the magnetopause normal directions. For this purpose, this vector g is shown in panels b and
c. Here it is evident that the direction of gyrotropy is not purely parallel to the magnetic field
direction, as assumed in the definition of both the non-gyrotropy indices. Indeed, g is closer
to nmean × B, while the component along the magnetic field is smaller and varies across the
crossing. This result reminds us that at boundaries such as the magnetopause, strong gradients
can break the isotropy as much, or even more, than the magnetic field so that that gyrotropy
can occur around a vector other than the magnetic field. A similar observation had already been
made in Belmont et al. (2012) concerning the modeling of a tangential discontinuity.
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In the previous chapters, the internal structure of the magnetopause has been studied using
a case study of a crossing observed by MMS. This case was analyzed thanks to GF2, a novel
tool for determining the normal direction of the magnetopause. The findings demonstrated the
shortcomings of the Classical Theory of Discontinuities, in particular by demonstrating the role
of Finite Larmor Radius effects in the magnetopause equilibrium.
To generalize these results and quantify the relevance of these effects at the magnetopause, we
have extended the analysis to a database of magnetopause crossings performed by the MMS
mission. For consistency, the selected magnetopause crossings must comply with the main
features of the case crossing analyzed previously, specifically the one-dimensional geometry,
burst measurements mode, and a crossing temporal interval long enough to have enough particle
measurements within the magnetopause interval. In this chapter, we introduce the process of
selecting this database, outlining the difficulties encountered, the selection criteria, and the
objectives. Additionally, we discuss the results derived from this statistical study which can be
found in detail in Ballerini et al. (2024b).

5.1 Magnetopause crossings: a global view

Selecting the magnetopause crossing database is very challenging because of the presence of
strong fluctuations crossing the magnetopause structure and of the impact of the dynamical pres-
sure driven by magnetosheath turbulence both contributing to the flapping of the magnetopause
boundary. Consequently, when a spacecraft approaches the magnetopause, the measurements
typically show a sequence of crossings, with the satellite passing through the magnetopause from
the magnetosphere to the magnetosheath and vice-versa, due to the magnetopause’s movement
relative to the satellite. Typically, the spacecraft velocity is one order of magnitude lower than
the magnetopause one. Figure 5.1 illustrates this phenomenon using data from the MMS1 space-
craft. Here we show the measurements of the magnetic field (top panel), density (center), and
perpendicular and parallel ion temperature over one hour and ten minutes when the spacecraft
approaches the magnetopause. At the beginning of this interval, the satellite is in the magne-
tosphere, showing a positive z component of the magnetic field and low densities. Throughout
this interval, the satellite undergoes several magnetopause crossings, characterized by magnetic
field reversals and changes in density and temperature values, finally entering stably into the
magnetosheath near the end of the interval. We again underline that relatively large-amplitude
magnetopause fluctuations complicate strongly the crossings selection procedure. Many of these
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Figure 5.1: Measurements of the MMS1 spacecraft over a one-hour and ten-minute interval
on the 6th November 2016. The panels display the magnetic field components (top), the ion
density (center), and parallel, in red, and perpendicular, black, ion temperatures (bottom). All
measurements here are in survey mode.

crossings are either partial or dominated by a two-dimensional-like geometry. Therefore only a
fraction of the total magnetopause crossings can be used in our study.

In Figure 5.2, two examples of crossings that must be excluded from the database are shown.
The left panel shows an incomplete crossing where the satellite briefly enters the magnetopause
from the magnetosphere and comes out without completing the crossing. The right panel shows
a complete crossing where the fluctuations of the measurements, superimposed on the magne-
topause profile, are of the same order of magnitude as the magnetopause variation itself. Indeed,
the typical magnetopause profile should exhibit a smooth, monotonic transition of parameters
from the magnetosphere to the magnetosheath. In contrast, here we observe the density exhibit-
ing multiple increases and decreases of its value before entering definitely in the magnetosheath.
Similarly, all three components of the magnetic field display oscillatory behavior instead of a
straightforward transition. These oscillations may result from strong waves propagating locally
or from the relative motion between the spacecraft and the magnetopause, causing the back-and-
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forth motion of the spacecraft within the magnetopause. Anyway, such crossings are excluded
from our database because such fluctuations would significantly bias the study.

Figure 5.2: Example of magnetopause crossings showing incomplete (left) features or strong
fluctuations superimposed over the magnetopause profile (right). Measurements from the MMS1
spacecraft on the 6th November 2016, here in burst mode. The panels display the magnetic field
components (top), the ion density (center), and parallel, in red, and perpendicular, black, ion
temperatures (bottom).

5.2 Dataset selection

We have created our database starting from the work that had already been done by previous
researchers. Indeed, since the beginning of near-Earth exploration, databases of magnetopause
crossings have been created to perform statistical analyses on this boundary (see for instance
Berchem and Russell (1982b); Phan and Paschmann (1996); Panov et al. (2008); Hasegawa
(2012); Haaland et al. (2014); Lukin et al. (2019); Nmeek et al. (2020)). Focusing on MMS
data, two noteworthy examples are Paschmann et al. (2018) and Nguyen et al. (2022a). The
latter was developed within the Laboratoire de Physique des Plasmas. An updated version of
this database, described in Michotte de Welle (2024), was used as a starting point to select the
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crossing of interest for the database of this study.

5.2.1 The Nguyen et al. (2022a) database

The Nguyen et al. (2022a) database is obtained by employing a gradient boosting classifier
(GBC) algorithm, a machine learning technique based on boosting in a functional space (Fried-
man, 0 01), to classify data from several space missions (Double Star, MMS, Cluster, THEMIS,
and ARTEMIS). Concerning MMS data, of interest for this study, data are resampled to a one-
minute resolution. Subsequently, each measurement is associated with a corresponding class
indicating the region where the measure was taken (i.e. magnetosphere, magnetosheath, or so-
lar wind). This algorithm identifies magnetopause crossings using a 10-minute rolling window of
data. Specifically, a magnetopause crossing is defined as the center point of a window containing
five minutes of magnetosphere data and five minutes of magnetosheath data. Further details
can be found in Michotte de Welle (2024).

5.2.2 The dataset of magnetopause crossings from Ballerini et al. (2024b)

By associating a 10-minute moving window to a magnetopause crossing, each event in Nguyen
et al. (2022a) corresponds in practice to several, either partial or complete, magnetopause cross-
ings, as discussed in Section 5.1 and shown in Figure 5.1. Nonetheless, such a database can be
used as a starting point for the selection of a new dataset by rearranging the event list as a list
of time intervals for a magnetopause crossings.

To set up the new dataset, each window identified by Nguyen et al. (2022a) was examined
individually1. To match the time resolution exploited in the study in Chapters 3 and 4, only
crossings with bursts data available for the four spacecraft are used. Furthermore, crossings lack-
ing ion or electron measurements are excluded. Then, for each time window, the measurements
are divided into individual magnetopause crossings, either complete or partial. Starting from
this list of burst-data single-crossing measurements, the dataset is then selected by imposing the
following conditions:

- The temporal length is between 3 and 15 seconds. Crossings shorter than 3 seconds
lack sufficient data resolution (ion measurements are every 0.15 seconds) to analyze the
structure properly. Those longer than 15 seconds, instead, may indicate non-stationary
structures and generally present complex structures due to the relative velocity of the
magnetopause and the spacecraft (see for example the right panel of Figure 5.2).

- Partial crossings were excluded using a threshold range on the ion density. Crossing in our
dataset must have a density lower than 4 cm−3 in the magnetosphere and greater than
15 cm−3 in the magnetosheath. These threshold values are not strict when considering
the average values of the magnetosphere and magnetosheath densities (see Section 3.2.2).
However, they were allowed to properly select complete crossings.

- Finally, only crossings exhibiting simultaneous features in particle and magnetic field mea-
surements were considered to ensure a consistent comparison of computed normals.

Additionally, we have excluded crossings showing two-dimensional like geometry. The dimen-
sionality was quantitatively determined by using the dimensionality parameters presented in
Chapter 3: the one introduced in Rezeau et al. (2018) (Eq. 3.8) and the one in Ballerini et al.
(2024b) (Eq. 3.17). Specifically, we considered only crossings with an averaged value larger
than 0.9 for D1 and 0.8 for DGF2. While both these parameters are calculated at each time step

1The original windows have actually been reduced from ten to six minutes, so excluding the outer portions of
the intervals. It does not result in a significant loss of information since the selected crossings are always in the
central part of the intervals
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within the magnetopause, we chose to use the averaged value (instead of a minimum, for in-
stance) to include in the dataset the crossings in which two-dimensional structures are only local
and, if present, are located within a small subpart of the magnetopause crossing. In conclusion,
the crossings that respected the previous conditions were checked visually to ensure that none
of the crossings presented peculiar features (such as, again, the right panel of Fig. 5.2).

The algorithm allowed us to select 146 crossings from September 2015 to December 2017.
The following period was excluded since, starting from June 2018, a technical failure of four of
the eight FPI electron spectrometers on MMS4 stopped the possibility of having a same-time
electron measurement on four spacecraft. The detailed list of selected crossings and their key
features are provided in Appendix A. The spatial distribution of these crossings is illustrated in
Figure 5.3, showing an even distribution in the x, y plane, with a predominance of cases in the
negative z direction.

Figure 5.3: Spatial distribution of the selected database of crossings on the x, y (top) and x, z
planes (bottom). The dashed grey lines represent the magnetopause location obtained using the
Shue et al. (1997) model.

5.3 A statistical study on the magnetic field hodograms

From a statistical study perspective, the direct examination of the momentum equation terms
(and specifically the tangential component of the gradient of the ion pressure tensor), as con-
ducted in Section 4 for the case crossing of 28 Dec. 2015, is constrained by uncertainties in
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pressure measurements. Due to this uncertainty, the ability to derive a clear statistical result
necessitates an alternative approach. To evaluate the influence of Finite Larmor Radius effects
(FLRs) at the Earth’s magnetopause, we study the shape of the hodogram of the magnetic field
in the tangential plane for the crossings. Specifically, we aim to estimate the number of crossings
that deviate from the Classic Theory of Discontinuities (CTD) to quantify whether the results
obtained in the previous chapters are unique to the case crossing or representative of typical
magnetopause behavior. To this end, the hodogram of the magnetic field in the tangential plane
is obtained for each of the crossings in the dataset by using the same procedure explained in
Section 3. Then, each hodogram is classified depending on its shape into one of the following
four categories:

- Linear hodograms: This category includes the hodograms that appear as lines not passing
through the origin, similar to the 28/12/2015 case study (Fig. 4.6);

- Radial hodograms: These hodograms are linearly shaped and their best-fit lines pass
through the origin (considering uncertainty). These crossings are indicative of CTD com-
pressional discontinuities (Fig. 4.5, right panel).

- Circular hodograms: These hodograms have a constant distance from the origin and
correspond to CTD rotational discontinuities (Fig. 4.5, left panel).

- Other hodograms: This class includes all the rest of the crossings, whose features are
not included in the previous classes. Examples of features of hodograms in this class are
circular hodograms not centered at the origin, crossings characterized by two different
hodograms in two sub-intervals, and crossings that do not have an obvious distinction
between the previous classes, due to noise.

5.3.1 Methodology used to classify hodogram shapes

To accurately classify each hodogram, we choose to study only the central time interval of each
crossing, corresponding to the interval where the gradients are maximum. By extending this
analysis to larger intervals we would include variations that are generally unrelated to the main
boundary transitions, introducing complexity to the analysis. The temporal interval used for
each crossing is obtained by using the algorithm used in Paschmann et al. (2018) and Haaland
et al. (2004, 2014) to estimate the spatial scale of the magnetopause. Specifically, we define the
magnetopause crossing-time interval ∆T as the part of the crossing in which we observe 75%
of the variation of the BL

2 component. This procedure is sketched in Figure 5.4, where the red
part of the curve corresponds to the chosen interval. After selecting the time interval for the
crossing, the classification of hodograms involves a two-step process:

1. Visual Inspection: The first step consists of examining visually each hodogram to ex-
clude those that are clearly neither linear nor circular, which are then categorized as
’Others.’ For the remaining crossings, this step also involves a preliminary differentiation
between those exhibiting circular and linear characteristics.

2. Detailed Analysis:

(a) Hodograms with Potential Circular Features: To identify whether these cross-
ings show circular features, we analyze the variation in the modulus of the magnetic
field in the tangential plane. Specifically, to classify a hodogram as circular we im-
pose a maximum variation of 20%, by taking into account the potential influence of
turbulence and wave propagation along the magnetopause. Crossings that exceed
this 20% variation are classified as ’Other’.

2Here BL is the component of the magnetic field along the L direction in the LMN coordinate system, defined
in Section 3.3.3, corresponding to the direction of maximum variance.
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Figure 5.4: Sketch of the method used for selecting the magnetopause time interval ∆T , by
exploiting the variation of the BL component. The central time interval of the crossing (red
part) is here chosen as the interval corresponding to 75% of the total variation of the value of
BL (∆BL=BL,max-BL,min).

(b) Hodograms with Potential Linear or Radial Features: For these crossings,
firstly we evaluate their linearity by examining the width-to-length ratio. Any crossing
with a ratio exceeding 20% is classified as ’Other’. Then, the hodograms showing
linear features are classified as either radial or linear depending on whether their
projection passes through the origin or not.

5.3.2 Results of the analysis

The results of this study are shown in Table 5.1. We observe that more than a third of the
crossings in this database show linear features, while only less than 20 % of the crossings can be
classified as expected in CTD (either circular or radial). This result emphasizes that FLR effects
have a rather significant role in the magnetopause structure. It is noteworthy to underline that
even if we only consider the central time interval for each boundary, this does not invalidate the
result. Indeed, in gyrotropic conditions, rotational and compressional variations should remain
mutually exclusive whatever the interval, as discussed in Section 4.4. Since we observe that this
is not the case in 30% of the cases in this database, we can interpret these features as due to
non-gyrotropy coming from kinetic effects. This confirms the limitation of CTD to describe the
magnetopause. These effects can change the relations between upstream and downstream states
since, as shown in Section 4.4.1, these jump relations do depend on the physical processes within
the structure as soon as the medium is not assumed isotropic.

Class Number of crossings Percentage

Linear 53 36.3%
Circular 4 2.7%
Radial 23 15.8%
Other 66 45.2%

Table 5.1: Number of crossings and their corresponding percentages of incidence in the database
for each class.
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To conclude this analysis, the dataset can be used to examine the variations in non-gyrotropy
among the four distinct classes exploiting the non-gyrotropy indices defined in Equations 4.16
and 4.15. The average value of the non-gyrotropy index Dng,⊥ for the whole dataset is computed
to be 0.07. This value is however only slightly higher (0.08) for linear hodograms. Similarly, the
Dng,A index shows comparable averages for the four classes. Therefore, although non-gyrotropy
has been demonstrated to play an important role in the previous analysis, the non-gyrotropy
index alone is not enough to predict the shape of the hodograms unequivocally. The same
result is found when studying the ratio between the width of the magnetopause and the ion
Larmor radius, which is on average approximately 6.5 and only slightly smaller (6.1) for linear
hodograms.

5.4 A comparison between the magnetic and the particles normals

We can also exploit this database to compare the magnetic field and ion flux structures at
the magnetopause. For this purpose, we can look at the normals derived using the GF2 tool
from both quantities and analyze their differences. A single average normal was used for each
crossing, using the data from only the central part of the crossing found as described in the
previous section. The same analysis has also been done with the original MDD method.

5.4.1 Determining the Shue et al. (1997) normal

To examine the differences between the two sets of normals, we analyze their deviations from
the normal obtained via the Shue et al. (1997) model described in Section 3, indicating a mag-
netopause at equilibrium. This model estimates the position (and therefore the normal) of
the magnetopause as a function of the IMF-z component and solar wind dynamic pressure.
Therefore, to determine this normal it necessitates precise parameter measurements that can be
estimated by using the OMNI database3 (King and Papitashvili, 2005).
Over time, various algorithms have been developed to accurately pair OMNI measurements of
solar wind parameters with a magnetopause crossing. The simplest method consists of using
OMNI data at the same time as the magnetopause crossing, neglecting the propagation time
from the bow shock nose to the measurement location. For this study, we employed the algo-
rithm from Michotte De Welle et al. (2022), adapted from Safrankova et al. (2002), to estimate
the time delay between the crossing and measurement times of solar wind parameters, involving
the following steps:

1. Estimate the projection along the Earth-Sun axis distance from the bow shock nose, where
OMNI data are defined, to the crossing location.

2. Estimate the solar wind’s propagation time (test) between these points, assuming an av-
erage solar wind velocity of 400 km/s.

3. Determine the solar wind velocity (Vsw), averaging over a 2-minute OMNI-data interval
centered on the crossing time adjusted by the time delay (test).

4. Calculate the final time delay based on Vsw.

This time delay is then used to obtain final values for the solar wind and IMF parameters.
Crossings without OMNI data (10 out of 146) were excluded from the analysis.

3The OMNI database consists of multi-spacecraft measurements of plasma and IMF properties in the solar
wind. These measurements, available at resolutions from one hour to one minute, include key parameters such as
IMF components, dynamic pressure, and energetic proton fluxes. Data collection is carried out by a coordinated
network of spacecraft including the Wind, the Advanced Composition Explorer (ACE), and the Deep Space
Climate Observatory (DSCOVR) spacecraft, positioned near the L1 Lagrange point (approximately 230 Earth
radii upstream from Earth along the Earth-Sun axis). The collected data are then propagated to the bow shock
nose position using the analytical model by Farris and Russell (1994), ensuring an accurate representation of the
solar wind conditions at the magnetosphere’s boundary
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5.4.2 Results

The angle between the Shue model normal and the magnetic and particle normals, respectively,
are shown in Figure 5.5. We observe that most crossings align approximately along the diagonal,
the two oblique lines indicating a maximum difference of 20 degrees between the two angles.
These results underline how, for the majority of crossings (here 56.2 % of the crossings between
the two lines, similar normals are found on average for ions and magnetic fields. A cluster of
events is observed at low angles (less than 30 degrees), corresponding to magnetopause crossings
close to the nominal Shue et al. (1997) model. However, a non-negligible part of the database
exhibits angles above 40 degrees, even if close to one another. The latter cases can be inter-
preted as magnetopause crossings significantly deviating from the paraboloid shape assumed by
the model. These deviations are likely to be related to surface waves on the boundary. From
Figure 5.5 we also observe that deviations for the ion flux normal are on average higher than
the ones from the magnetic normal, with more cases observed in the top left quadrant than
in the bottom right. Nevertheless, crossings that do not align along the diagonal indicate in-
stances where the ion flux normal and the magnetic normal differ significantly, with observed
discrepancies reaching up to 90 degrees. This discrepancy is likely to be due to non-stationarity
and two-dimensionality in the ion flux measurements. Indeed the criteria used for the dataset
selection (except for the threshold imposed on the density values) were built from magnetic data,
they are not as relevant when considering ion normals. A more detailed study can be found in
Ballerini et al. (2024b) (see Chapter 9).

Figure 5.5b shows the distribution (histogram) of angles between the two magnetic field and
ion flux normals. Most cases (82 out of 146) exhibit angles below 20 degrees, with the peak of
the distribution at 10 degrees. This reinforces the previous result where the two normals were
compared to the reference Shue model.
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Figure 5.5: (a) Comparison between the angle between the Shue et al. (1997) normal and the
magnetic and ion ones, (b) Histogram of the distribution of the angle between the magnetic and
ion normals.
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In the previous chapters, we outlined the tools utilized in the examination of Earth’s mag-
netopause from an in situ data perspective, discussing what we learned from applying these
methods. However, in situ data suffer from the inherent limitation of only capturing spatially
and temporally localized phenomena. Even with the deployment of multi-spacecraft missions
like the MMS mission, spacecraft data solely offer measurements of the plasma in their prox-
imity, hiding the influence of the global magnetospheric dynamics. A statistical analysis has
been conducted to exploit data for a more comprehensive reconstruction of the magnetospheric
structure under varying solar wind conditions. However, this approach does not permit us to
get a global understanding of the interaction between the solar wind and the magnetosphere and
to properly establish the relationships between the local characteristics and the complex global
dynamics. To get a complete picture from in-situ data, a huge number of satellites, tracking
physical quantities across all scales and locations, would be necessary. Obviously, this is an
unfeasible task. Hence, in addition to data analysis, numerical plasma models are employed
to overcome these limitations. On one hand, simulations can be used to interpret and predict
data observations; conversely, data can be used to validate and indicate the limitations of the
adopted numerical model. Numerical simulations also enable the analysis of how each single
parameter influences the structure and isolate elementary phenomena that are always mixed in
spacecraft data. Therefore, coupling numerical models with in situ observations allows us to
have a powerful tool for comprehending the intricate dynamics of space plasma environments.
In this chapter, we introduce this approach, with a particular focus on presenting the most
common numerical models studying a planetary magnetosphere, with a focus on the complexity
of simulating the magnetopause. Alongside the numerical models, the selection of both the
simulation parameters and the boundary conditions is crucial to achieve an accurate simulation
that allows to realistically reproduce the physics of interest. Therefore, we also provide a brief
overview of the typical setups used to simulate the magnetopause.

6.1 Numerical models for simulating a plasma

Due to the wide variety of plasma types, simulating their dynamics heavily depends on their
specific characteristics. In this section, we will discuss the numerical models most suited for
the study of the interaction between the solar wind and planetary magnetospheres. As outlined
in Chapter 1, these plasmas are typically collisionless and magnetized. Furthermore, they are
non-relativistic, with negligible gravitational effects. Selecting an appropriate model for simulat-
ing these plasmas is crucial for accurately understanding their dynamics and requires balancing
computational resources with the specific objectives of the research. A trade-off between accu-
racy and complexity guides the choice of model.
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For large-scale systems and global structures, the Magneto-Hydrodynamics (MHD) model, dis-
cussed in Chapter 1 is particularly suitable. This model is computationally not very demanding
since it excludes a priori the ion and electron kinetic dynamics. This makes the MHD generally
well-suited for analyzing scenarios where the primary interest lies in macroscopic, large-scale
phenomena. However, the limitations of MHD become apparent when the dynamics at play
reach, first, the ion kinetic scales and frequencies and when the dynamics of the velocity space
are important, due for instance to resonant particles. Discontinuities as the magnetopause are
therefore out of the scope of MHD because of their short spatial scale, and because a basic
assumption of this model, the isotropy, is not fulfilled. In these cases, more detailed models,
beyond the MHD framework, i.e. including ’non-ideal’ effects, are necessary.
A balanced approach between the computational complexity and the phenomena here of interest
can be obtained from those models positioned between the simplicity of MHD and the detailed
nature of full-Vlasov descriptions. The most utilized models of this group are the so-called hybrid
models. They include ion kinetic effects and keep the computational effort reasonable by mod-
eling electrons as a fluid to eliminate their fast and small-scale dynamics. Typically, electrons
are modeled as an isotropic fluid and are often treated as massless. While the hybrid scheme in-
cludes the full ion pressure tensor, it necessitates a fluid closure for electron pressure, commonly
using isothermal or adiabatic closures. Models such as the Chew-Goldberger-Low (CGL, Chew
et al. (1956)) allow one to incorporate an electron pressure anisotropy, via a double adiabatic
closure, possibly enhancing the model’s accuracy. In summary, the simplest massless isothermal
electron closure, due to its computational simplicity, is likely to be the best choice for studying
the Earth’s magnetopause: as seen in the previous chapters, mainly the ion kinetic effects seem
to have a relevant role in the boundary equilibrium. It must be kept in mind, however, that
in some circumstances (such as the magnetic reconnection), a more accurate electron response
model is needed as it influences the modeling of the full process.
To study electron dynamics and to properly describe phenomena where electron behavior plays
a crucial role, full-kinetic models are mandatory. These models resolve electron kinetic scales,
which are significantly smaller than the global system scales, thus requiring substantially higher
computational resources. The complexity of the integrated equations in these models further
contributes to the computational demand.

At present, two primary approaches fulfill the need for a comprehensive kinetic description of
plasma: the semi-Lagrangian Particle-In-Cell (PIC) method and the Eulerian Vlasov approach.
The PIC method, detailed further in the subsequent section, is widely used due to its balance
between a kinetic representation and computational feasibility and cost. On the other hand,
the Vlasov approach, despite offering an exhaustive kinetic description because of the almost
zero noise even at the smallest scales (Valentini et al., 2007), is much less employed for mag-
netosphere simulations due to its high computational demands. PIC and Vlasov codes solve
the multi-advection-partial differential Vlasov equation for one or all species, handling a six-
dimensional distribution function that depends on both real and velocity spaces. The Vlasov
equation(s) is(are) self-consistently coupled to the Maxwell equations.

Here we limit our discussion to (static-grid) PIC codes, most suited for global modeling of the
interaction between the solar wind and the magnetosphere because of computational cost.

Codes including the adaptive mesh refinement (AMR)

A further distinction to be taken into account when selecting a numerical solver is in the numer-
ical grids employed in their algorithm. While most of the existent numerical solvers exploit a
fixed static grid, we would like to point out the existence of solvers incorporating adaptive mesh
refinement (AMR). AMR allows the dynamic adjustment of the mesh resolution by increasing
the grid cells in regions with complex features requiring higher accuracy. This capability is
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particularly crucial when investigating the magnetopause, given its relatively small dimensions
compared to the magnetosphere, allowing it to increase the resolution of the structure while
keeping the computational time reasonable.
While AMR is commonly adopted in numerous fluid codes (Fryxell et al., 2000; Mignone et al.,
2012), its implementation within the hybrid PIC framework can only be found in a few exam-
ples (Van Der Holst and Keppens, 2007; Mller et al., 2011). A notable example is the PHARE
code Aunai et al. (2024), which is currently being developed at the Laboratoire de Physique
des Plasmas. However, the three-dimensional version of PHARE is still under development
and, therefore, it was not possible to exploit this solver during this thesis. Nonetheless, future
application of such solvers promises new insights and advances in the study of the magnetopause.

6.1.1 The Particle-In-Cell (PIC) algorithm

When performing numerical simulations of plasma describing kinetic scales, the most commonly
adopted approach is the Particle-In-Cell (PIC) algorithm (Hockney and Eastwood, 2021; Birdsall
and Langdon, 1991). In the PIC scheme, the distribution function fα(r,v) of the species α,
evolving following the Vlasov equation (Eq. 1.10), is split into a number N of distribution
function slides called “macro-particles”. These macro-particles serve as a way to sample the
distribution function and are characterized by a statistical weight w and a shape in the phase
space Sph

p (r,v), so that the distribution function can be written as:

fα(r,v) =

N∑
p=1

wpS
ph
p (r,v) (6.1)

Typically, a Dirac delta is chosen as the shape in velocity space, while the choice for real
space distribution depends on the specific application. We will assume here that Sph

p (r,v) =
S(r− rp)δ(v−vp), where rp and vp are the corresponding position and velocity for each macro-
particle and are functions of time. This choice is specific to this work.
Furthermore, magnetic and electric fields are discretized on a spatial grid (typically a three-
dimensional Cartesian grid) and are governed by the Faraday and Ampere equations. There-
fore, the PIC method combines both the Lagrangian and Eulerian approaches, namely a semi-
Lagrangian approach1. To merge these two approaches, interpolation is necessary. This is
performed both for the electromagnetic fields, from the grid space to the macro-particle posi-
tions, and to compute the charge and current densities from the macro-particle positions to the
grid. The iterative scheme of the PIC method is shown in Figure 6.1. After the initialization of
the particles and fields, a four-step process is performed at each time step:

• Field interpolation: The values of the electric and magnetic fields are interpolated onto
the position of the macro-particles as follows:

Ep =

∫
E(r)S(r− rp) dr (6.2)

Bp =

∫
B(r)S(r− rp) dr (6.3)

• Particle push: The interpolated electromagnetic fields are used to advance the macro-
particle positions and velocities, allowing the distribution function to evolve in the phase

1The Lagrangian approach is defined as the description of tracking individual particles, following their tra-
jectories and dynamics. In contrast, the Eulerian approach consists in focusing on specific spatial grid points,
examining the changes of the plasma properties, such as density and velocity, at these fixed locations as the
particles pass through, offering a field-based perspective of the plasma.
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Figure 6.1: The PIC loop scheme.

space. Integrating the Vlasov equation (Eq. 1.10) and Eq. 6.1, one can demonstrate that
the macro-particles follow Newton law:

dxp

dt
= vp

dvp

dt
=

q

m
(Ep + vp ×Bp)

(6.4)

(6.5)

• Charge and Current computation: Macro-particles’s velocities and positions, interpo-
lated on the electro-magnetic fields grid points are used to compute the charge and current
densities:

ρ(x) =
∑
α

ρα =
∑
α

qα

∫
fαdv =

∑
α

qα

N∑
p=1

wpS (x− xp)

J(x) =
∑
α

Jα =
∑
α

qα

∫
fαvdv =

∑
α

qα

N∑
p=1

wpS (x− xp)vp

(6.6)

(6.7)

• Fields advancement: The charge and current densities are then used to solve Faraday
(Eq. 1.13) and Ampère (Eq. 1.14) laws on the grid, updating the electromagnetic fields.

These steps are iteratively repeated to simulate the plasma dynamics over time. Concerning
time advancement, in general (i.e. not only PIC codes) the algorithms can be divided into
two main categories: explicit or implicit. This distinction refers to how the solution at a new
time step t + ∆t is computed. In explicit algorithms, the solution at time t + ∆t is obtained
using only the fields at the time t. Implicit algorithms instead, calculate the new solution
using the fields both at time t and t+∆t (the new time). Each approach has its advantages and
disadvantages, making the two approaches suitable for different applications. Explicit algorithms
are relatively straightforward to implement, but they present more stringent computational
constraints, requiring solving the fastest time scale of the system. Specifically, these algorithms
must handle the electron plasma time (i.e. the inverse of the electron plasma frequency) and
the Debye length. Implicit algorithms, while more complex to implement, offer more relaxed
numerical constraints. This allows one to use larger time steps and spatial grid resolution,
reducing the computational cost, but cutting out, and so loosing, the fast dynamics.
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6.1.2 Limitations and Advantages of PIC models

PIC algorithms are a fundamental instrument for investigating plasma kinetic dynamics with
better computational efficiency with respect to the Eulerian Vlasov approach. Nevertheless,
despite the impressive progress of supercomputers using high-performance computing (HPC)
architectures, even the PIC approach remains computationally very huge when modeling a
realistic plasma system as the solar wind-magnetosphere environment where the dynamics is
characterized by a very large separation between the largest and smallest involved spatial scale
and frequency. For instance, in simulations of the Earth’s magnetosphere, the ion inertial length
di is approximately 40 times the electron inertial length de, and ion cyclotron frequency ωci

is 1836 times the electron cyclotron frequency ωce while the magnetospheric length scale L is
approximately 640 di. Therefore, the multi-scale characteristic of this system requires high
computational costs even for PIC simulations.
To reasonably reduce the computational cost the hybrid approach using fluid electrons is very
often adopted as well as parameter re-scaling. In particular, one can assume a reduced ion-
to-electron mass ratio (mi/me) and a reduced cyclotron frequency ratio with respect to the
fastest dynamics at play (ωci/ω). In simulations of space plasmas, the mass ratio is typically
reduced to the range 25-400 while the frequency ratio is reduced to 10-500 (Deca et al., 2017;
Pucci et al., 2018; Groelj et al., 2018; Lapenta et al., 2020; Arró et al., 2022; Lavorenti et al.,
2022; Sun et al., 2023). Complementary, also the size of the system can be rescaled. This
feature will be further analyzed in the next sections. The impact of such rescaled parameters
has been widely investigated to understand the effects on plasma dynamics, demonstrating that
rescaled parameters primarily influence the microphysics of the system while leaving large-scale
quantities sufficiently unaffected (Shay and Drake, 1998; Bret and Dieckmann, 2010; Le et al.,
2013; Verscharen et al., 2020; Lavorenti et al., 2022).

Another important limitation of PIC algorithms arises from the finite sampling of the distri-
bution function, due to the limited number of macro-particles per cell. This feature introduces
statistical noise into the computed fluid moments, which are obtained as per-cell averages.
Therefore, this noise propagates to the electromagnetic fields (and consequently the Lorentz
force). It can be demonstrated that this noise scales as 1/

√
Nα (Birdsall and Langdon, 1991),

where Nα denotes the number of macro-particles per cell. Therefore, this effect can be relatively
mitigated by employing a sufficiently large Nα, where the appropriate number depends on both
the specific code and application. However, this random noise can never be eliminated.

6.2 Simulating the magnetopause: global and local simulations

We focus now on the different approaches used to numerically model the magnetopause. There
are two main categories: local and global simulations. Global models include the entire 3D
magnetosphere in the computational domain, whereas local models focus on smaller specific
subregions (1D, 2D, or 3D depending on the expected degree of realism), such as parts of the
comet tail or the magnetopause. A detailed description of these models and their application in
the magnetopause study follows.
We would like to point out here that, for the purpose of the analysis conducted in this thesis, we
need to employ a three-dimensional simulation of the magnetopause. As anticipated in Rezeau
et al. (2018), indeed, a two-dimensional model is not sufficient for obtaining enough information
about the structure.

6.2.1 Local simulations of the magnetopause

Local magnetopause simulations consist of modeling a current sheet. These simulations are used
in general to investigate the kinetic features of reconnection or plasma instabilities occurring at
the magnetopause (such as Kelvin-Helmholtz). In particular, the magnetopause current sheet is
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often modeled as a tangential sheet in these simulations, which can allow starting with approxi-
mate steady-state kinetic equilibria. These initial states are then generally perturbed to initiate
instabilities (such as magnetic reconnection). However, these simulations require that the ki-
netic initialization is a steady-state equilibrium (or close to it, Belmont et al. (2012); Dorville
et al. (2015a)). Indeed, for an initialization far from kinetic equilibrium, we don’t know if the
simulation relaxes to an equilibrium configuration before developing the instability of interest.

Over the years, numerous local models have been employed to study magnetopause, the Harris
sheet (Harris, 1962) being one of the simplest. In this model, the solution is an analytical
equilibrium of the Vlasov equation describing a plasma layer confined between two regions of
oppositely directed magnetic field magnetic field. Specifically, the magnetic field is assumed to
be coplanar:

B(x) = B0 tanh
(x
L

)
ẑ (6.8)

where we have assumed the normal direction along x and we defined L as the characteristic
scale of the sheet. This analytical equilibrium is built by expressing the distribution function as
a function of the invariant of motion. Both ions and electrons are described by Maxwellian dis-
tributions with constant drift velocities, with a plasma density transitioning along the magnetic
field across the discontinuity. The plasma density is analytically:

n(x) =
n0

cosh2
(
x
L

) (6.9)

Therefore, in this model, the magnetic field reverses without rotation and the density tends to-
ward zero on both sides. To achieve more realistic simulations, this equilibrium is often modified
to simulate the magnetopause, for instance by including a perpendicular magnetic field compo-
nent or by adapting it to the double-Harris configuration. However, none of these configurations
are at kinetic equilibrium.
However, all these simple traditional models assume symmetries between upstream and down-
stream media and are limited in their ability to capture the significant differences in densities
and temperatures between the magnetosphere and the magnetosheath and therefore to well
represent the magnetopause realistically. To address this, several (more complex) models have
been developed. Notably, the BAS model (Belmont et al., 2012) assumes a coplanar asymmetric
magnetic field and Maxwellian distributions with varying densities and temperatures. In partic-
ular, the distribution function is filled in phase space at each grid point in the direction of the
discontinuity. This semi-analytical initialization is detailed in (Belmont et al., 2012) and can
be also extended to non-coplanar conditions as demonstrated in (Dorville et al., 2015a). This
extension also allows one for the inclusion of an electric field.
The advantage of a local approach in simulating the magnetopause comes from its ability to
simulate the magnetopause while allowing a finely resolved spatial domain. However, local sim-
ulations fail to capture the inherent complexity of the magnetopause, not allowing one to consider
the non-stationary nature of the magnetosheath plasma, which continuously influences the mag-
netopause. Therefore, to study the magnetopause structure without relying on semi-analytical
assumptions, this project focuses on global simulations presented in the following.

6.2.2 Global simulations for studying the magnetopasue

Global simulations include the entire planetary magnetosphere within the computational do-
main, simulating the planet as a sphere embedded in a magnetic dipole. These simulations
can also be generalized to celestial objects such as comets interacting with the solar wind. As
discussed further later in 6.3.2, two approaches can be used to integrate the equations in global
simulations: simulating the magnetosphere in the planetary reference frame or in the solar wind
reference frame. Both methods with their respective advantages and drawbacks are analyzed in
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detail in subsequent chapters.
The main limit of global simulations, especially for Earth’s magnetosphere, lies in their high
computational cost. This is particularly true for simulations when exploiting fully-kinetic mod-
els. Present computational resources are inadequate to resolve the detailed internal structure
of the magnetopause while simultaneously modeling the entire Earth’s magnetosphere. In this
context, simulating magnetospheres of Earth-like planets using rescaled parameters or mini-
magnetospheres such as Mercury, becomes more and more of crucial importance. As demon-
strated by (Omidi et al., 2004; Karimabadi et al., 2014), a reliable metric for characterizing a
magnetosphere is the ratio Dp between the magnetopause nose distance from the center of the
planet and the ion inertial length in the solar wind. As pointed out in (Omidi et al., 2004),
simulations with this ratio Dp greater than ∼ 20 exhibit Earth-like characteristics in both the
dayside and nightside magnetosphere. However, the smaller size of these magnetospheres reduces
the transit time of the plasma when compared with Earth. This may affect the development of
low growth rate wave modes before reaching the magnetopause, as they may not have time to
develop. Nonetheless, this scaling allows us to resolve the kinetic scales and therefore the study
of these mini-magnetospheres will also permit to gain insights into that of the Earth. This is in
particular the case of the following study.

6.3 Numerical algorithms used in this work

During this thesis, two distinct PIC models were used to investigate planetary magnetospheres:
the iPIC3D, a semi-implicit full-PIC model, and Menura, a hybrid PIC solver 2. My work with
both these solvers primarily involved the selection of parameters and the boundary conditions
to be used to properly simulate the Earth’s magnetopause and Mercury magnetosphere (see
Chapter for further information). However, I also actively worked on code implementation,
attending with the Menura team during a Hackathon organized by Cineca to increase the code
performances. However, this particular work is still ongoing and escapes the scope of this thesis,
and thus will not be discussed here. In this section, we provide a detailed discussion of both these
models. These solvers’ applications to the planetary magnetosphere study performed during this
thesis are discussed in the following chapters.

6.3.1 The iPIC3D solver

The iPIC3D solver is a fully explicit Particle-in-Cell (PIC) solver, introduced by Markidis et al.
(2010). This solver is optimized for execution on multiple Central Processing Units (CPUs) and
is developed in C++ using the Message Passing Interface (MPI) standard.
Specifically, iPIC3D employs the traditional PIC loop, described in Section 6.1.1. Specifically,
in iPIC3D, a zero-order B-spline function is used as the real-phase part of the shape function,
S(r − rp), describing each macroparticle. Identical weights are assigned to all macroparticles.
Furthermore, the particle pushing and field advancement algorithms are implemented using
implicit schemes. While computationally more intensive than explicit methods, these schemes
provide greater stability and allow for larger time steps, reducing the total number of iterations
required for each simulation. The numerical implementation is further described in Markidis
et al. (2010).

2All simulations discussed in this work were conducted by the author, except where explicitly stated otherwise.
The study performed with both these solvers was performed on large HPC machines (as the machine TGCC-
Irene for iPIC3D and IDRIS-Jean Zay, CINECA-Leonardo and CINECA-M100 for Menura). Concerning the
Menura simulations, access to these machines was obtained by national grants. I am formally P.I. of two small
computational allocations (ISCRA-C at Cineca, of 8k and 10k GPUh respectively) and a big one (ISCRA-B at
Cineca, of 250k GPUh). I am also formally identified as “responsable technique” for a project at IDRIS (P.I.
Pierre Henri).
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6.3.2 The Menura solver

The Menura solver is a hybrid PIC solver first introduced by Behar et al. (2022). This solver
is designed for execution on multiple Graphics Processing Units (GPUs) and is implemented in
C++ with the CUDA programming model and the Message Passing Interface (MPI) standard.
The Menura solution therefore corresponds to an improvement with respect to the first imple-
mentation of a hybrid-PIC model on GPUs, done by Fatemi et al. (2017), which was limited
in memory and therefore presented a clear constraint for large-scale problems, such as those
addressed in this thesis.
The Menura solver uses a Charge Assignment Method (CAM) algorithm, as described by
Matthews (1994), allowing for a reduction of the computational steps required for particle
treatment and thus minimizing computational cost. This algorithm has been used in Franci
et al. (2015). The real-phase part of the shape function S(r − rp) is triangular-shaped, with
each macroparticle contributing to the 9 adjacent grid nodes in 2D (and respectively 27 in 3D),
using 9 different weights depending on the distance. As in iPIC3D, identical weights are used
for each macroparticle. In Menura, the kinetic description of ions is coupled with a fluid de-
scription of electrons with a polytropic closure for the pressure pen

−γ
e = const, with the γ index

left arbitrary. Furthermore, the Menura solver adopts a generalized Ohm’s law assuming the
quasi-neutral limit, neglecting electron inertia and displacement current as typical in relatively
low frequency models. The latter hypothesis consists of ignoring the time derivative of the elec-
tric field in the Ampere equation so that the total current can be calculated via the curl of the
magnetic field. In these conditions, the Ohm’s law reads:

E = −ui ×B+
1

en
J×B− 1

en
∇ · pe − ηh∇2J (6.10)

Here, a hyper-resistivity term (ηh∇2J) is included to filter out other-frequency oscillations,
as described in Maron et al. (2008), in order to ensure numerical stability. A more accurate
description can be found in Behar, E. and Henri, P. (2023).
Consequently, only three variables (the magnetic field and particle positions and velocities) need
to be advanced in time, with other variables obtained from these. A comprehensive explanation
of the solver is given in Behar et al. (2022).

Simulating in the solar wind reference frame

A distinctive feature of the Menura algorithm is the fact that it performs the simulation within
the solar wind reference frame, different to the traditional approach of planetary plasma simula-
tions which use the planet’s reference frame, with the obstacle being static and the wind flowing
through the simulation domain. This choice is implemented for three main reasons.

- The reduction of small-scale artifacts propagating upstream. Such artifacts are indeed
common in hybrid PIC simulations in the planetary reference frame and typically require
filtering through resistivity or hyper-resistivity. In the solar wind reference frame, instead,
such artifacts are inherently reduced without implementing hyper-resistivity, as demon-
strated by comparative simulations in Behar et al. (2022).

- Simulating in the solar wind reference frame allows for magnetic field variations in all
directions, including those relative to the plasma-object direction. Indeed, as discussed in
Behar, E. and Henri, P. (2023), within the planetary frame of reference, a forced temporal
variation of the component of the magnetic field along the solar wind flow cannot self-
consistently influence the time evolution of the magnetic field, due to the ideal frozen-in
condition,. Therefore, only variations of the magnetic field components perpendicular to
the solar wind flow direction can be advected downstream. Working in the solar wind
reference frame removes constraints on flow-aligned magnetic field variations and enables
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us to perform numerical simulations including a wider range of solar wind events, such as
coronal mass ejections, CMEs, or co-rotational interaction regions, CIRs.

- Studying the impact of turbulent solar winds on planetary magnetospheres, a peculiarity of
Menura. By integrating the equations within this reference frame, it is possible to simulate
the interaction between a pristine turbulent solar wind and a planetary magnetosphere,
modeling it within the reference frame in which the turbulent dynamics are created.

In summary, in Menura, the obstacle moves within the simulation domain. To maintain the
obstacle close to the center of the simulation domain, an algorithm is implemented that peri-
odically shifts all particles and fields. Specifically, a shift of n∆x along the planet’s movement
(the x direction) is performed every m iteration, with both n and m integers. This approach
imposes a constraint on the value of the relative speed between the solar wind and the obstacle,
being:

v0 =
n

m

∆x

∆t
(6.11)
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In previous chapters, by examining in situ magnetopause data, we have demonstrated that ion
kinetic effects, in particular the finite Larmor radius (FLR) effects, can be essential to properly
describe the magnetopause equilibrium. In contrast, spacecraft data have shown that the role
of electrons can be less significant for the equilibrium.
A complementary study of this problem has been carried out numerically to have a more com-
plete understanding of the magnetopause. In particular, for a more realistic representation, we
have studied the magnetopause by exploiting three-dimensional global simulations of the mag-
netosphere of Earth-like planets. While local simulations could offer higher spatial resolution,
allowing for a more accurate description of the plasma dynamics at different scales, they may
not accurately replicate overall magnetopause conditions, making the results heavily dependent
on the imposed boundary conditions. Global simulations provide a more comprehensive view
by capturing the large-scale dynamics necessary for the understanding of the magnetopause.
To balance the computational efficiency and he vastness of the phenomena observed in data,
we have employed the Menura solver, a hybrid particle-in-cell (PIC) solver introduced in Sec-
tion 6.3.2. This approach allows us to realistically model the magnetopause and the relevant
phenomena observed from in situ data at a reasonably computational cost but still enabling a
sufficiently high resolution.
In this Chapter, we present two simulations of Earth-like planets conducted with this code. The
first one, conducted in collaboration with the Menura team, represents the first simulation of a
planetary magnetosphere interacting with the turbulent solar wind and was used by the Menura
team to analyze the effects of solar wind turbulence on the bow shock and ion’s foreshock. How-
ever, this simulation has no sufficient spatial resolution to serve as an accurate model for the
magnetopause. Therefore, a second high-resolution simulation but exploiting a laminar solar
wind has been performed.

7.1 Simulating a planetary magnetosphere interaction with a turbulent solar
wind

The Menura team has performed the first-ever numerical simulation of an Earth-like planet’s
interaction with a turbulent solar wind. This simulation employs a dipole magnetic field rescaled
with respect to the realistic conditions, covering a magnetopause nose distance from the planet’s
center of Dmp = 200di, instead of the actual 640 di

1. This adjustment ensures a feasible com-
putational load while maintaining the essential structural characteristics of the magnetosphere.

1In Menura, the Dipole strength is defined through the Dmp parameter.
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In this section, we will provide an overview of the simulation setup and highlight the main results
concerning the influence of turbulence on the bowshock and ion’s foreshock.

7.1.1 Simulation setup

To accurately model the turbulence in the solar wind, Menura’s simulations are executed through
a two-step process. The first step consists of a three-dimensional simulation of solar wind decay-
ing turbulence. In this step, periodic boundary conditions are used. The simulation runs until
the solar wind reaches a quasi-stationary state, corresponding to a fully developed turbulence.
The second step consists of using the final iteration from this turbulence simulation as the initial
condition for a simulation of the interaction between the turbulent solar wind and the Earth-like
planet. The magnetized planet is modeled, for the sake of simplicity, as a perfectly absorbing
body, where incoming ions are removed from the simulation upon contact. Additionally, the
planet is represented by a permanent magnetic dipole, described as an external magnetic field.

In this second phase, the boundary conditions are modified. The upstream boundary plays
the role of an injection boundary, introducing a slice of turbulent fields and particles taken from
the first simulation discussed before. At the other end, the downstream boundary is treated
as an open boundary. The domain boundaries parallel to the flow are managed by imposing a
zero spatial derivative perpendicular to these boundaries, achieved through ghost nodes at the
simulation domain edges. Detailed boundary condition treatment for this phase is described
in Behar et al. (2022) and Behar, E. and Henri, P. (2023). In both simulations, the equations
are solved within the solar wind reference frame. Table 7.1 provides a summary of the main
grid parameters employed in these simulations. This approach is essential for understanding
the influence of solar wind turbulence on planetary magnetospheres, with implications for space
weather forecasting and planetary environment studies.

Variable Value

∆X = ∆Y = ∆Z 5 di
∆t 0.5 Ω−1

ci

Box sizea Lbox 2000 di
Particles per cell Nppc 600

Table 7.1: Grid parameters the simulations. a The box size is the same in all spatial directions
.

The results obtained from the analysis of these simulations are not discussed here but can be
found in Behar et al. (2024), currently under review at Astronomy and Astrophysics (the latest
version of the draft of the article can be found in Chapter 9). These results are not discussed in
this manuscript for two primary reasons. Firstly, they were obtained in collaboration with the
Menura team, and my role was that of a collaborator. Secondly, these findings lie outside the
primary scope of this thesis.

7.2 The magnetopause using Menura

The study of the magnetopause structure within a global numerical simulation presents sig-
nificant computational challenges, primarily due to the need of accurately resolve its internal
structure. This necessitates small-scale resolution within a simulation box that encompasses the
entire magnetosphere, spanning several orders of magnitudes. For instance, while the previously
discussed simulation is adequate for analyzing both the ion’s foreshock and the bow shock and
their response to solar wind turbulence, it falls short of resolving the small structures’ internal
equilibrium, including the bowshock. Consequently, this simulation is inadequate for a detailed
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analysis of the magnetopause.
Specifically, the spatial grid resolution used in the simulations discussed in the previous

section is 5 di while the magnetopause’s width is of the order of a few ion inertial lengths,
comparable to the simulation’s grid. However, ion kinetic effects, crucial for understanding
the magnetopause equilibrium, require a spatial resolution that can accurately resolve the ion
inertial length. Achieving such high resolution within a large simulation box is impossible due
to numerical constraints and therefore we are forced to make some assumptions to limit this
numerical heaviness. These assumptions aim at reducing the simulation box size thus allowing
one for the necessary grid resolution. In this context, we must always ensure that the simulation
box remains sufficiently large to avoid the magnetosphere structure exiting the domain, which
would destabilize the simulation. In other words, the regions of plasma close to the external box
boundaries should always represent the solar wind. To address these challenges, the following
assumptions were made:

1. Scale the Planet’s Dipole: The planetary dipole was scaled to have a magnetopause
stand-off distance of 90 di, closer to the conditions observed at Mercury2. The implications
of this rescaling have been discussed in Chapter 6.

2. Focus on the Dayside Magnetosphere: The simulation concentrated on the dayside
region, excluding most of the magnetotail region. This focus aligns with the data analysis
presented in Chapter 5, where MMS crossings are primarily on the dayside magnetopause.
By omitting the nightside region, we neglect potential backward-propagating waves or
instabilities, which are assumed to have minimal impact on the magnetopause equilibrium
being studied.

3. Reduce the number of macroparticles per cell : Although a higher number of
macroparticles per cell improves the particle distribution function’s sampling and reduces
simulation noise, it also increases memory and computational demands. Particle treatment
is indeed the bottleneck in PIC simulations, both in computational time and memory. This
statistical noise is particularly problematic in low-density regions (the magnetosphere in
this study). To mitigate this, we implemented a smoothing algorithm on the electric field,
for each iteration, after calculating it from the generalized Ohm’s law3. This allows us to
reduce the influence of this noise. However, since we aim at studying the magnetopause,
we had to take care that this change does not influence the equilibrium of this region and,
therefore, invalidate the results.

Additionally, solar wind turbulence is excluded from this simulation to simplify the numerical
setup and reduce computational stress. The influence of the turbulence on this region is left
to a future study. It is worth noticing however that, even with a laminar solar wind, the
magnetopause vicinity is not at all laminar, due to the development of local instabilities such as
tearing or Kelvin-Helmholtz.

7.2.1 Simulation parameters and overview

This section introduces this simulation, to which we will refer to as the high-resolution simu-
lation hereafter. This simulation employs a grid with a ∆x = 0.25di and 64 particles per cell.
Simulation physical parameters are normalized to solar wind values and are listed in Table 7.2.
The solar wind parameters are compatible with the solar wind values at Earth. The solar wind
is modeled with a southward orientation, optimizing the interaction between the magnetosphere
and the solar wind, and allowing for magnetic reconnection at the magnetopause’s nose to occur.

2The magnetosphere of Mercury will be discussed in detail in Chapter 8.
3Specifically, a Gaussian Filter is applied in cells with a density lower than 80% of the solar wind density,

corresponding to equal or less than 50 macroparticles within the cell.
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Solar wind parameters Planet parameters Grid parameters

nsw 3 cm−3 Rplanet 50 di ∆x 0.25 di
Bsw [0,0, -3] nT Dmp 90 di ∆t 0.01 ω−1

c,i

vsw 472.1 kms−1 τdip [0,0,1] Lx 285 di
Ti/Te 1. Ly = Lz 600 di

βsw = βi + βe 1. Nppc 64
γe 1. ηhyp 0.01

Nx 1140
Ny = Nz 2400

Table 7.2: Solar wind, planetary, and grid parameters for the high-resolution run. The latter two
are here normalized on the solar wind ion inertial length (di = 131.5 km) and ion cyclotron time
(ω−1

c,i = 0.03s). Here τdip is the versor indicating the planetary dipole orientation and γe is the
polytropic index for electrons (isotropic closure). Here ηhyp is the hyper-resistivity coefficient
(Menura includes a term of hyper-resistivity in Ohms law equal to ηhyp∇2J, as discussed in
Behar et al. (2022).

Concerning the planetary body, its center is positioned at [71.25, 300, 300] di in a box-size
simulation of [285, 600, 600] di. The planet’s radius is set to 50 di, compatible with that of the
Earth, while the planetary dipole is oriented toward the positive ẑ. As mentioned above, the
magnetopause distance to the nose is rescaled to 90 di. The simulation parameters are detailed
in Table 7.2, and Figure 7.1 depicts the overall magnetosphere structure, showing the ion density
in both equatorial (xGSE − yGSE) and meridian (xGSE − zGSE) planes. The figure also shows
the topology of the magnetic field lines in the meridian plane. From this figure, we can easily
distinguish the main regions of the magnetosphere depending on the density value. Starting from
the right (Sun-ward), the light region corresponds to the solar wind, the red region, denser, is
the magnetosheath while the dark blue region, with low-density plasma, corresponds to the
magnetosphere. The bow shock and magnetopause are the corresponding separating regions.
For this study, we focus in particular on the magnetopause.

7.3 Testing the GF2 tool on the numeric simulation

The high-resolution simulation introduced above can be used to test the GF2 tool, introduced
in Chapter 3, and compare it with the state-of-the-art MDD tool. To perform this comparison
we need to focus on the region within the magnetopause, specifically including areas exhibiting
one-dimensional conditions and, therefore, far from reconnection regions. To this purpose, we
chose to focus on the magnetopause segments far from the nose, where magnetic reconnection is
observed due to the southward solar wind conditions. Specifically, we examine here the analysis
of the magnetopause structure in the xGSE − yGSE plane, at ẑGSE = −20 di. Analogous results
are observed for different cuts.

Figure 7.2 illustrates the analyzed cut of the magnetopause, depicting the structure of the
current modulus, magnetic field, and plasma density. Here we observe the key features of the
magnetopause, including (i) a pronounced current density compared to adjacent areas (the
magnetosphere on the left and the magnetosheath on the right), (ii) a significant magnetic
field variation, with a bigger magnitude in the magnetosphere, a low one in the magnetopause
and finally increasing again in the magnetosheath, and (iii) plasma density variation from
magnetosphere low values (blue) to magnetosheath higher values (red). From this figure we
observe an irregular structure of the magnetopause, with a thickness of approximately 5 di,
which aligns with in situ observations. Furthermore, the spatial resolution of the simulation grid
is sufficient to well resolve the structure (having around 20 points along its width) and calculate
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Figure 7.1: Overview of the structure of the ion density at the magnetosphere in the high-
resolution simulation, on the meridian plane (top) and equatorial plane (bottom). This structure
corresponds to the last time of the simulation.

gradients with adequate accuracy within the structure, enabling a comparison between GF2
and MDD results. Unfortunately, while the simulation enables us to interpret the differences
between the two techniques, several reasons prevent us from usefully comparing the two results
with a “real” normal direction. First, the 2D character is always present at short scales, making
sometimes hardly relevant the notion of a local “normal”. Then, calculating the matrix gradient
G from finite differences between the grid points of a numerical simulation is a work quite
comparable to getting it in in-situ data from four-point measurements: it brings uncertainties
and leads to the use of techniques close to the MDD or GF2 to derive reliable normal directions
from G.

Before delving into the comparison, a consideration of the different conceptual approaches in
the study of the magnetopause in this numerical simulation with respect to data analysis must
be discussed. On one hand, satellite data typically observes the magnetopause moving with a
much bigger velocity with respect to the spacecraft, which can therefore be approximated as
stationary. In data, therefore, is the magnetopause to cross the satellite. On the other, when
we study the magnetopause using a global simulation, the magnetopause position is generally
relatively stable with the exception of the surface waves that can be observed to propagate on
top of the boundary. Therefore, simulating the complete movement of the magnetopause with
respect to a fixed grid point (corresponding in this case to a virtual spacecraft) is computationally
intensive and requires a lot of data to be stored. One solution would be to save field values at
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Figure 7.2: Cut of the plane analyzed to test the GF2 tool. From left to right, we show the
module of the current density (in nA m−2), the magnetic field (in nT), and the ion density (in
cm−3) in the xGSE − yGSE plane at ẑGSE = −20 di.

all time steps in the cell considered as the virtual spacecraft, allowing for a sequence of data
analogous to in situ measurements. However, with this approach, we sacrifice the knowledge
of the global feature of the structure since we lose all the information around to the virtual
probe. Indeed, storing this information at each time step would be impractical due to the
significant data storage requirements. On the contrary, for this study we chose to adopt a fixed-
time stationary structure analysis, calculating temporal derivatives directly from the simulation.
This method allows for a comprehensive study of the normal vectors across the magnetopause,
allowing us to observe the variation of the normal all along the magnetopause.

7.3.1 Comparison of the GF2 and MDD magnetic field normals

To estimate the magnetopause normal with the two methods, it is necessary to obtain the
magnetic field gradient matrix. In this section, we use the real value of that matrix, called G,
obtained through the finite differences method from the magnetic field at every point in the sim-
ulation box. In the next section we will compute the normals using the “experimental” method
to obtain the gradient matrix (Gexp), computed along the trajectory of virtual spacecraft, using
the reciprocal vectors algorithm.

The GF2 and MMD normals’ components, obtained from G, are shown in Figure 7.3. Here
we only show the values within the magnetopause. The magnetopause regions were identified
by filtering the cells where the ion density varies in the range of 0.8 to 8 cm−3. From in situ
observations, we observe that this range of values always corresponds to the magnetopause. This
rather stringent condition allows us to avoid taking into consideration the regions of low-density
magnetosheath and those of high-density magnetosphere, both of them being out of the interface
layer under study. The angle between the normals obtained by using these two techniques is
shown in Figure 7.4, together with the dimensionality indices D1 and D1,GF2 (both defined
in Chapter 3). From this Figure, we observe that the two methods provide the same normal
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Figure 7.3: Left) Current density within the magnetopause. We overplot the projections of the
three main directions: nMDD (green), nGF2 (red), and t1 (yellow). Right) Components of the
normal vectors (x, y, and z components from left to right) of the normals obtained using the
two techniques, above for MDD and below from GF2.

(i.e. normals with less than 10 degrees differences compatible with the grid uncertainty) almost
everywhere. Regions with larger discrepancies correspond to areas where the structure exhibits
local two-dimensional characteristics, as indicated by the two dimensionality indices (the D1,GF2

index generally exhibits lower values than D1, as already mentioned from in-situ data, but both
vary in the same way).

To further elucidate these differences, we can examine the projections of the two normals (nMDD

and nGF2) and the tangent direction t1 obtained with GF2, corresponding to the direction
tangent to the discontinuity and orthogonal to the invariance direction. These projections are
shown in Figure 7.3 for a set of random points within the structure. The lengths of the arrows
representing nGF2 and t1 are proportional to the magnetic field variations in these directions. In
one-dimensional regions, where the tangent direction arrow is shorter, GF2 and MDD normals
closely match or are equivalent. On the contrary, in regions with two-dimensional features,
the MDD normal lies between the two GF2-derived directions, indicating the MDD sensitivity
to non-uni-dimensionality and gradient directionality. These results show how GF2 effectively
filters tangential and minor gradient components, providing normals compatible with state-of-
the-art methods in purely one-dimensional structures while distinguishing gradient components
from the normal direction in two-dimensional cases.

7.3.2 Calculation of gradient matrix using the reciprocal vectors method

In the previous section we demonstrated that by exploiting the gradient matrix G derived from
the simulation data, the GF2 method can accurately determine the normal direction, even in
two-dimensional regions where the MDD is limited due to small gradients in tangential direc-
tions. However, to perform a more complete study, we can test in the numerical simulation the
method that we applied to the experimental data. Therefore we replicate the previous analysis
(made on in situ data) by estimating the gradient matrix using the reciprocal vectors method
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Figure 7.4: Left) Angle between the MDD and GF2 normal; Center) the D1 and Right) the
D1,GF2 dimensionality parameters.

Figure 7.5: Scheme of the tetrahedron configuration of the virtual satellites in the simulation
grid, from above (left) and on the side (right). The blue cells correspond to the values exploited
to compute the gradient on the red cell.

along virtual spacecraft trajectories.

To estimate the gradient matrix in a cell within the examined plane, we used the field values on
four adjacent cells, chosen to replicate the spacecraft conditions (and MMS particularly). These
cells are selected to form a regular tetrahedron as depicted in Figure 7.5. Here we show in blue
the cells simulating the virtual satellite measurements used to compute the gradient for the cell
in red. Indeed, the reciprocal vector method gives an estimation of the gradient matrix at the
center of the tetrahedron. It is important to note that we avoided any interpolation by utilizing
the exact cells from the simulation data.
For each cell, spatial distances between the “virtual spacecraft” cells are used to obtain the
reciprocal vectors via Equation 1, from which the gradient matrix Gexp is derived from Equation
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Figure 7.6: Angles between the magnetic normal obtained exploiting Gexp and G, using the
MDD (left) and GF2 (right) tools.

2. Subsequently, we analyze the normal vectors obtained using both the MDD and GF2 methods
on this matrix. Figure 7.6 shows the angles between the normal vectors derived from Gexp

and those previously obtained from G, for both tools. The results indicate that the normal
vectors derived from the two gradient matrices are consistent, except for a few cells where
the normals differ more than 10 degrees. This could be due to local gradients smaller than
the tetrahedron dimensions that cannot be obtained using the tetrahedron shape. The results
shown here are therefore in agreement with what was discussed previously and validate the
results also when using the estimation of the gradient matrix. Furthermore, we can also study
the structure dimensionality derived from Gexp to verify its compatibility with earlier results.
The dimensionalities obtained are presented in Figure 7.7 (top panel). Compared with Figure
7.4, it is evident that the dimensionality estimates from Gexp are consistent with those obtained
from G.

7.3.3 Ion mas flux magnetopause normal

A final step to evaluate GF2 involves examining the normal vectors derived from ion mass flux
structure of the magnetopause. Here we show the normal vectors estimated from the gradient
matrix derived from the simulation. Exploiting the reciprocal vector method shows consistency
with these findings. Figure 7.8 illustrates the angles between the normal vectors of ions and
the magnetic field, as determined by both the MDD and GF2 methods. Notably, the structure
exhibits two distinct regions. On the left side, adjacent to the magnetosphere, the angles between
the magnetic field normal and the ion normal are relatively small, approximately 10 degrees for
both tools. In this part, most of the cells indicate compatibility between the GF2 and MDD
normals. In contrast, on the right side, adjacent to the magnetosheath, the normal vectors
show a significant departure from the magnetic field normals. This discrepancy is understood
by examining the dimensionality of the ion structure, as shown in Figure 7.7 (bottom panel).
Here, the region on the right appears two-dimensional according to both dimensionality indices.
This result highlights that the ion structure can exhibit two-dimensional features even where
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Figure 7.7: The D1 (left) and D1,GF2 (right) dimensionality parameters. The top panels show
the results for the magnetic field from Gexp, and the bottom panel for the ions mass flux using
G.

the magnetic field is one-dimensional. However, as shown in Figure 7.4, also the magnetic
field structure appears fragmented, with a predominance of one-dimensional regions on the
magnetospheric side and two-dimensional regions on the magnetosheath side. This observation
can be interpreted by considering that the magnetosheath region is more susceptible to local
instabilities compared to the magnetosphere. Additionally, this finding is consistent with the
data, where ion crossing structures can be narrower than those of the magnetic field, as observed
in the MMS crossing on 12/28/2015 analyzed in Chapters 3 and 4. Furthermore, the results
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obtained show that also in one-dimensional regions for both ion mass flux and magnetic field,
different normal vectors can be found, in agreement with what was observed in the statistical
study discussed in Chapter 5 and in Ballerini et al. (2024b). The understanding of this feature
is left as future work, as discussed below.

Figure 7.8: Angles between the normal obtained from the ion mass flux and the magnetic field,
using the MDD (left) and GF2 (right) tools.
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As introduced in Chapter 6, a fully kinetic description is required to have a complete model
of the plasma dynamics, including electrons. In this chapter, we present new results obtained
with the full-kinetic Particle-in-Cell (PIC) iPIC3D solver to simulate Mercury’s magnetosphere1.
This specific magnetosphere was analyzed for two main reasons. The first is to gain knowledge
of the Hermean magnetospheric environment before the arrival of the JAXA/ESA BepiColombo
mission, introduced in Section 8.2, in December 2025. The second is to exploit the full-kinetic
description of mini-magnetospheres, such as the Hermean, to provide insights into the Earth
one, which is computationally challenging to simulate with a full-kinetic model due to current
computational constraints. This study dedicated to magnetospheric waves must be considered
complementary to the main focus of this thesis. We remember that a fully-kinetic description is
computationally very demanding and necessitates approximations and re-scaling of some plasma
parameters, see Section 6.1.2. More specifically, this simulation will allow us to give a first
overview of the dynamics at Mercury, in particular, to study magnetic reconnection in the
magnetotail, with a specific emphasis on the generation of whistler waves near the reconnection
region.

8.1 The magnetosphere of Mercury

Mercury is the innermost planet in the Solar System exhibiting a perihelion of approximately
0.307 AU and an aphelion of about 0.467 AU 2. Therefore Mercury presents the most eccentric
orbit among the planets in the Solar System. For comparison, the perihelion distance at the
Earth is about 3.5 % less than its aphelion’s distance. Mercury’s diameter is about 38% of
Earth’s diameter, significantly smaller. A more detailed discussion on Mercury can be found in
Sun et al. (2022).
As discussed in Section 2.2, Mercury is the only telluric planet, in addition to the Earth, to
possess an intrinsic dipolar magnetic field (Ness et al., 1974, 1976). Mercury’s surface magnetic
field is of approximately 195 nT, with a dipole center offset of about 479 km northward from
the planet’s center, about 10% of the planet radius, and a tilt of less than 0.8o relative to its
spin axis (Anderson et al., 2012). Despite its weak magnetic field, Mercury has a magnetosphere
separating the shocked solar wind from the planet’s surface. Mercury’s dayside magnetopause

1This research started from a collaboration with Federico Lavorenti, then a PhD student under the supervision
of Francesco Califano that I met during my master’s internship at the Observatoire de la Cte d’Azur, to acquire
expertise in analyzing numerical simulations in preparation for subsequent work with Menura. The findings from
this analysis are documented in Ballerini et al. (2024a).

2AU denotes the astronomical unit (∼ 1.4961011 m), defined as the mean distance from Earth to the Sun.
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is much closer to the planet, with a magnetopause sub-solar standoff distance typically between
1.35 and 1.55 times the planetary radius from the planet’s center (Winslow et al., 2013), while
the Earth presents a nominal distance of 10 - 14 Earth’s radii (Spreiter et al., 1966b). The
thickness of Mercury’s magnetopause is estimated to be approximately 100 km, significantly
thinner than Earth’s, around 500 km (Dibraccio et al., 2013).
Due to the relatively weak intrinsic magnetic field and the strongly variable solar wind because
of its proximity to the Sun (Raines et al., 2015), Mercury’s magnetosphere is highly dynamic.
In situ measurements have confirmed that magnetic reconnection occurs both at the dayside
magnetopause and the nightside magnetotail (Slavin et al., 2009; Slavin et al., 2012; Dibraccio
et al., 2013; Slavin et al., 2014; DiBraccio et al., 2015; Slavin et al., 2019). Magnetic recon-
nection on Mercury, like on Earth, leads to flux transfer events, plasmoids (Slavin et al., 2009;
Slavin et al., 2012; Dibraccio et al., 2013), and dipolarization fronts (Sundberg et al., 2012;
Imber et al., 2014; Sun et al., 2016). Furthermore, Mercury’s magnetosphere directly interfaces
with the planet’s surface, unlike Earth where the inner magnetosphere is dominated by the
co-rotating plasmasphere. Therefore, magnetic reconnection at Mercury influences the mag-
netosphere and interconnects various subsystems, including the exosphere and the planetary
surface. In situ measurements have demonstrated the presence of the Dungey cycle in Mer-
cury’s magnetosphere (Slavin et al., 2009; Siscoe et al., 1975), already discussed for the Earth
in Section 2.4.1. However, the Dungey cycle at Mercury has a short period, approximately
1-2 minutes, compared to Earth’s, of about 1-hour (Baumjohann et al., 2006). Consequently,
Mercury’s magnetosphere can respond rapidly to variations in upstream plasma parameters.
Since the IMF magnitude and direction are typically observed to change over periods of tens of
minutes, the magnetosphere undergoes a series of quasi-steady-state configurations with steady
IMF, separated by transient reconfiguration periods. Here we focus on the quasi-steady-state
global modeling of the magnetosphere, neglecting the transient reconfiguration periods.

8.1.1 Solar wind conditions at Mercury

Due to its proximity to the Sun, Mercury experiences the most intense solar wind driving of any
planet in the Solar System (Slavin and Holzer, 1981). However, the absence of upstream solar
wind spacecraft at Mercury prevents a direct correlation between magnetosphere measurements
and solar wind conditions. Therefore, estimating average solar wind conditions is essential for
studying Mercury’s magnetosphere. At Mercury’s orbit, the average solar wind speed is slightly
lower than at the Earth’s. Nevertheless, the solar wind’s density and magnetic field strength are
greater at Mercury, as indicated in Table 2.1. Consequently, Mercury’s magnetosphere exhibits
higher Alfvén speed and increased solar wind ram pressure Pram = nswv

2
sw compared to Earth.

Due to the eccentricity of Mercury’s orbit, solar wind conditions differ significantly between
perihelion and aphelion; for instance, the solar wind density at the aphelion is approximately
half of the one at the perihelion. These variations induce seasonal changes in the magnetosphere’s
size and shape (Zhong et al., 2015, 2020), a peculiarity of Mercury among the planets in the
Solar System, and affect the induced component of Mercury’s dipolar magnetic field (Johnson
et al., 2016). Detailed information on the solar wind conditions at Mercury can be found in
Sarantos et al. (2007), James et al. (2017), Sun et al. (2022), and Dakeyo et al. (2022).
In situ measurements have also revealed that the IMF at Mercury exhibits a bimodal clock
angle distribution centered around the dawnward and duskward directions (James et al., 2017).
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The clock angle is defined as θ = arctan(−By/Bz), with magnetic field components in MSO3

coordinates. A bimodal distribution is also observed for the cone angle distribution ϕ =
arccos(−Bx/|B|), which is centered around 35◦ and 150◦ (James et al., 2017). These distribu-
tions indicate a typical Parker spiral angle of approximately ±35◦ at Mercury, which is smaller
than the ∼ 45◦ angle observed at Earth (Milillo et al., 2020).

8.1.2 Chorus-mode Whistler Waves in the Magnetosphere of Mercury

To present the results of this study, it is useful to provide first an introduction to chorus-mode
whistler waves and their role in planetary magnetospheres.
Whistler-mode chorus are electromagnetic waves characterized by a right-handed polarization,
a quasi-parallel propagation, and frequencies typically below the electron gyrofrequency. The
dispersion relation governing these waves is the same as the one for whistler waves, and in the
cold plasma limit it reads (Stix, 1992; Omura et al., 2008):

c2k2 = ω2 +
ωω2

pe

ωce − ω
(8.1)

From observations, we know that whistler-chorus waves generally exhibit narrowband and quasi-
coherent characteristics. These waves are characterized by discrete chirping elements packets
with rapidly varying central frequencies over time, resembling the chirping of birds at dawn
(Burtis and Helliwell, 1976; Tsurutani and Smith, 1974). This feature is responsible for their
name. Typically, these waves are observed in two frequency bands: a lower band (below 0.5ωce,
with ωce the equatorial electron gyro-frequency) and an upper band (in the range between 0.5
and 0.8 ωce).

Electron temperature anisotropy from thermal electrons is considered to be the source of
whistler waves, requiring the electron perpendicular temperature T⊥,e to be higher than the
parallel one, T∥,e (Kennel and Petschek, 1966; Le Contel et al., 2009; Liu et al., 2011; Yu et al.,
2018). The condition for the onset of whistler anisotropy instability, is given by (Kennel and
Petschek, 1966):

Te,⊥
Te,∥

− 1 >

(
|ωce|
ω

− 1

)−1

(8.2)

Whistler waves have a fundamental role both in the solar wind (Vocks and Mann, 2003; Pagel
et al., 2007; Kajdi et al., 2016; Tang et al., 2020) and in planetary magnetospheric dynamics
(Summers et al., 1998; Thorne et al., 2013; Horne et al., 2008; Woodfield et al., 2019). They
are responsible for accelerating high-energy electrons to relativistic energies via cyclotron reso-
nance, thereby enhancing the population of radiation belt electrons (Omura et al., 2015; Allison
et al., 2021; Glauert and Horne, 2005; Hua et al., 2022, 2023; Summers et al., 2007; Xiao et al.,
2014). Chorus emissions have been widely observed at Earth since early in situ measurements
(Oliven and Gurnett, 1968; Burtis and Helliwell, 1969; Lauben et al., 1998; Horne et al., 2005).
Observations of whistler-chorus waves have been also obtained at Jupiter (Kurth and Gurnett,
1991; Gurnett et al., 1979; Scarf et al., 1979), Saturn (Kurth and Gurnett, 1991), Uranus (Gur-
nett et al., 1986), and Mars (Teng et al., 2023). Recently, chorus waves have been detected at
Mercury by the BepiColombo mission, introduced in the following section. BepiColombo/Mio
have observed evidence of chorus waves during the first two Mercury flybys (Ozaki et al., 2023),

3The Mercury Solar Orbital (MSO) coordinate system is an orthogonal system used for the study of
Mercury’s magnetosphere and it is defined as follows:

- The x axis lies in the Mercury-Sun direction and points toward the Sun;

- The z axis is anti-parallel to Mercury’s magnetic dipole;

- The y is defined subsequently, pointing from dawn to dusk.
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highlighting the ubiquity of chorus emission waves in the magnetospheres of all magnetized plan-
ets within our Solar System. However, our knowledge of the interaction of chorus waves and
electrons at Mercury still requires a better understanding. In particular, we still lack an in situ
data geographical distribution of these waves at Mercury.

8.2 In situ measurements at Mercury: The BepiColombo mission

The first mission to sample Mercury’s environment in situ was NASA’s Mariner 10 mission,
performing three flybys at the planet between 1974 and 1975 (Russell et al., 1988). This mission
provided the first observations of Mercury’s planetary magnetic field (Ness et al., 1974) and
the plasma environment (Ogilvie et al., 1977). Mariner 10 measured the core of the electron
distribution function within the energy range from 13.4 to 687 eV throughout most of its orbit
inside Mercury’s magnetosphere (Christon, 1987). Due to a technical failure, Mariner 10 could
not observe the ions (Ogilvie et al., 1974).

The next and only other spacecraft to visit Mercury was the MErcury Surface, Space ENviron-
ment, GEochemistry, and Ranging (MESSENGER) mission. Launched in 2004 and arrived at
Mercury in 2011, MESSENGER conducted four years of orbital observations (Solomon et al.,
2018). Unlike Mariner 10, MESSENGER was equipped to observe ions while being limited to
detect high-energy electrons (above 10 keV), thereby excluding the bulk of the electron dis-
tribution function (Andrews et al., 2007). More details on the MESSENGER mission and its
scientific achievements can be found in MESSENGER book (Solomon et al., 2018).

Due to the instrumental constraints of both missions, the data at our disposal provide an in-
complete picture of the Hermean magnetosphere. Therefore, to enhance our understanding,
the BepiColombo mission has been launched (Benkhoff et al., 2021). Jointly developed by the
European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA), Bepi-
Colombo was launched in October 2018. The mission trajectory includes nine planetary gravity
assists: one at Earth (April 10, 2020), two at Venus (October 2020 and August 2021), and six at
Mercury, culminating to the orbit insertion expected in December 2025. At the time of writing
of this manuscript, three flybys of Mercury have been performed by BepiColombo. Detailed
information on the payload can be found in (Benkhoff et al., 2021; Lavorenti et al., 2023).
BepiColombo is composed of two spacecraft: the Mercury Planetary Orbiter (MPO) supported
by ESA, and the Mercury Magnetospheric Orbiter (Mio) supported by JAXA. BepiColombo is
the first mission to provide simultaneous multi-point measurements of Mercury’s environment.
The MPO spacecraft aims to characterize Mercury globally, examining its interior, surface,
exosphere, and magnetosphere. Furthermore, MPO is also expected to test Einstein’s theory of
general relativity. The Mio spacecraft will instead focus on Mercury’s surrounding environment,
including its exosphere and magnetosphere, and their interactions with the solar wind. Mio
will explore previously unexplored regions of Mercury’s magnetosphere using a set of plasma
instruments capable of performing more accurate measurements including ions, electrons and
neutrals across various energy ranges, and plasma waves in different frequency bands. LPP,
where this thesis was done, contributed to two experiments among the six that fly on the Mio
spacecraft: the Plasma Wave Instrument (PWI), providing the broadband fluxmeter DBSC
(Dual Band Search Coil) as a part of the Search Coil Magnetometer, and the Mercury Plasma
Particle Experiment (MPPE), providing the ion spectrometer MSA (Mass Spectrum Analyzer)4.
The search coil magnetometers of PWI, detailed in Kasaba et al. (2020), are the ones that allowed
to measure for the first time whistler waves at the Mercury magnetosphere.
During the cruise phase, both spacecraft are mounted together on the Mercury Transfer Module
(MTM), primarily propelled by Solar Electric Propulsion (SEP). Additionally, the Mio spacecraft

4LPP has also built the PICAM analyzer, flying on MPO under the responsibility of LATMOS
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is shielded by a Sunshield (MOSIF) during this phase. Upon arrival, the MTM will be discarded,
and chemical propulsion will be used to place both spacecraft into their designated polar orbits.

8.3 Simulation set-up

Solar wind parameters Planet parameters Grid parameters

nsw 30 cm−3 Rplanet 5.5 di ∆x 0.08 di
Bsw [0,0, -20] nT —τdip— 200 nT/R3

M di ∆t 2.8 ·10−3 ω−1
c,i

vsw 400. kms−1 τdip versor [0,0,1] Lx 82.5 di
Ti = Te 21.5 eV doff 0 Ly = Lz 66 di

βsw = βi + βe 1.3 Nppc 64
Nx 960

Ny = Nz 768

Table 8.1: Solar wind, planetary, and grid parameters used in the simulation. Here di = 42.5
km is the solar wind ion inertial length and ω−1

c,i = 0.54s is the ion cyclotron time. Here τdip is
the planetary dipole orientation, chosen in agreenment with observations Anderson et al. (2012),
and doff the dipole offset from the center of the planet.

To investigate the magnetopause of Mercury, we employ a three-dimensional simulation using
the iPIC3D solver. Unlike the Menura simulation presented in Chapter 7, this simulation is per-
formed within the planetary reference frame. In this simulation, a uniform solar wind plasma,
with a southward-directed magnetic field, is injected from the sunward direction5. Table 8.1
details the parameters used in our simulation, which are consistent with those previously used
in Lavorenti et al. (2022). We choose different boundary conditions at the planet: all macropar-
ticles entering are removed from the simulation domain. Furthermore, we increased the output
frequency to achieve a higher resolution to study the dynamics around the nightside reconnec-
tion site. In Table 8.1 we include the value of the magnetic field on the planetary surface, used
to compute the dipole in iPIC3D.
To ensure computational feasibility, several assumptions were made (that were already done in
previous works such as Lavorenti et al. (2022)):

1. Mercury’s size is scaled down by a factor of 10, setting the radius of RM = 5.5di, with
di the ion inertial length in the solar wind. Consequently, the dipole strength is scaled
so that we maintain the surface magnetic field as in real measurements, allowing us to
preserve the relative shape of the magnetosphere with respect to the planet. This reduces
the computational domain size by a factor of 10 in each direction, decreasing the com-
putational time by a factor of 1000. This approach has been widely adopted in previous
studies (Lapenta et al., 2022; Trávńıček et al., 2007, 2009, 2010) to facilitate multi-scale
numerical simulations. The implications of this scaling on the results are discussed below.

2. The ion-to-electron mass ratio and the electron plasma-to-cyclotron frequency ratio are
reduced to mi/me = 100 and ωpe/ωce = 17.8), respectively. This reduces the separation be-
tween ion and electron scales while preserving large-scale properties, as discussed in Section
6.1.2. As demonstrated below, a rescaling maintaining mi/me ≥ 100 and ωp,i/ωc,i ≥ 10
weakly impacts the simulation results while significantly reducing computational time, thus

5Assuming a purely southward IMF is not entirely representative of Mercury’s average IMF conditions, as
discussed in Section 8.1.1. Since the IMF direction plays a critical role in determining the magnetosphere’s
topology (Ip and Kopp, 2002; Kallio and Janhunen, 2003, 2004; Slavin, 2004; Slavin et al., 2012; Exner, 2021),
this configuration is selected to maximize magnetic coupling between the solar wind and Mercury, enhancing
energy transfer from the solar wind to the magnetosphere through magnetic reconnection at the magnetopause
nose Lavorenti et al. (2022).
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enabling feasible simulations. As demonstrated in Lavorenti (2023), this scaling preserves
the correct global structure and dynamics of the magnetosphere.

3. We use 64 macroparticles per cell, a number sufficient to capture the key physical processes.
However, the numerical noise associated with the low number of macroparticles does not
adequately model the non-diagonal terms of the pressure tensor (Scudder and Daughton,
2008b). Consequently, we will not analyze the role of off-diagonal pressure tensor terms
in magnetic reconnection.

In this simulation, the dipole is centered on the planet, differing from MESSENGER observations
where an offset is observed (see Section 8.1.1) Complementary numerical simulations including
the dipole shift have yielded compatible results with those presented in the subsequent section.
Here, and in the Ballerini et al. (2024a) paper, we discuss the simulation not including the dipole
offset to emphasize how the existence of these waves near the reconnection point is found to be
a universal characteristic of mini-magnetospheres, rather than being a peculiarity of Mercury.

An overview of the magnetosphere structure in the last screenshot of the simulation is shown
in Figure 8.1.

8.4 Analysis of the simulation results

This simulation is used to investigate the reconnection region in the magnetotail, focusing on the
influence of the magnetic field topology on the distribution of energetic particles. In addition,
we observe the generation of waves close to the reconnection region, propagating parallel to the
magnetic field, that have been identified as whistler waves. In this section, a summary of the
results of this study is discussed. A more in-depth study can be found in Ballerini et al. (2024a),
where these results are published, included in Chapter 9. Hereafter, we use the Mercury-centered
Solar Orbital (MSO) reference frame.

8.4.1 Magnetic reconnection in Mercury magnetotail

The signatures of magnetic reconnection are observed at the magnetotail starting approximately
from the time t ∼ 2.5RM/vsw,x. The location of the reconnection region, highlighted by the
gray box in Figure 8.1, is compatible with the typical position observed via MESSENGER
observations (Poh et al., 2017) (xMSM ranging between -1.4 to -2.6 RM ). Here we analyze the
region surrounding the magnetotail reconnection site before the initiation of the whistler wave
to avoid the interference of wave signatures on the reconnection features. With that purpose,
Fig. 8.2 shows the typical magnetic reconnection features observed in the simulation just after
the onset of the reconnection (i.e. at t = 3RM/vsw,x). We observe here the characteristic
quadrupolar out-of-plane magnetic field (panel (e)), outward escaping ion and electron jets
(both in the reconnection plane, panels f and g, and the equatorial one, panels b and c), and
an enhancement of the E · J quantity within the reconnection region (panels d and h).

The presence of magnetic reconnection within the simulation domain was exploited to inves-
tigate how electron spatial distribution is affected by magnetic reconnection and field topology.
In particular, we observed that low-energy electrons (energies lower than 1 KeV) exhibit a
nearly uniform distribution in the spatial domain, whereas energetic electrons (energies above 1
KeV) are predominantly confined within regions characterized by closed magnetic field lines on
the planet. Therefore, a clear association between the magnetic topology and electron energy
distribution is found in the simulation domain, explained by the fact that energetic particles
remain trapped within magnetic field lines-closed regions. Instead, energetic particles in open
field regions escape the simulation domain and consequently the planetary environment
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Figure 8.1: Overview of the structure of Mercury magnetosphere in the simulation. Here we
show the the module of the magnetic field (left) and the ion density (right), both on the meridian
plane (top, where the magnetic field lines are shown) and the equatorial plane (bottom). Both
quantities are computed at time t = 11RM/vsw,x, the final step of the simulation.

8.5 Whistler-mode waves in Mercury’s magnetotail

The most interesting result obtained from the analysis of this simulation is the development
of narrow-band whistler waves in the vicinity of the magnetotail X-point region. These waves
begin to develop after t ∼ 4RM/vsw,x and are characterized by a relatively large amplitude, a
clear right-hand polarisation, and a propagation nearly parallel to the magnetic field, primarily
along the separatrices. Both the magnetic and electric fields, as well as the electron current,
exhibit the narrow-band nature of these waves, as shown in Figure 8.3. Nonetheless, these waves
are also characterized by a strong electrostatic component E∥ and a parallel electron current,
as illustrated in the same figure. The waves also show a minor component in the ions current,
though it is considerably smaller in magnitude. These features are shown in Figure 8.3 which
zooms in on the diffusion region in the x, z plane where the waves are most intense. Magnetic
field lines are overplot to highlight the parallel propagation of the waves.

This wave was identified as a whistler mode through a study of the dispersion relation. To
this purpose, outputs were collected with a time step of 0.5ω−1

pi,sw ∼ 0.1ω−1
pi,loc to resolve the

104



SIMULATING MERCURY MAGNETOSPHERE USING THE IPIC3D MODEL

Figure 8.2: Focus on the reconnection region in the magnetotail. From left to right, the out-of-
plane magnetic field component, the ion velocity, electron velocity, and J ·E, on the equatorial
plane (top) and meridian (bottom). Data is shown at t = 3RM/vsw,x.

Figure 8.3: Waves components, obtained by subtracting the mean field, in the magnetic field (a),
perpendicular (with respect to the magnetic field) electric field (b), parallel electron current (c)
and parallel electric field (b) at t ∼ 11RM/vsw,x. Data are shown in the plane at y = −0.5RM ,
where the wave features are more clear.

wave oscillations adequately. Here, the indices sw and loc denote whether the frequencies are
computed in the solar wind or local frame, respectively, differing due to variations in density.
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The observed wave has a wave-vector kdi,loc ∼ 14 and an angular velocity ω ∼ 0.5ωce,loc, where
di is the ion inertial length and ωce is the electron cyclotron frequency. Since density and mag-
netic field are not constant within the region where the waves are observed, local averaging
was required to compute the ratio between these quantities locally and in the solar wind. The
mode’s frequency range aligns with whistler waves, as shown in Figure 8.4. Here we compare
the computed dispersion relation, obtained via Fourier transform in space and time, to that of
whistler waves in the cold plasma limit (Equation 8.1). In this case, the “cold” hypothesis can
be consider valid since the ion thermal velocity is two orders of magnitude lower than the phase
velocity.

5

0.5

[ Vωce/ mdi ]

Figure 8.4: Amplitude of the Fourier transform in both space and time of the observed waves
compared with the theoretical dispersion relation for whistler waves (Eq. 8.1). Quantities
computed at t ∼ 11RM/vsw,x.

Nonetheless, these waves lack the typical “chirping” feature of whistler-chorus waves (see Sec-
tion 8.1.2). This could be due either to the phenomenon itself being absent or to a limit of the
simulation, whose simulated temporal interval (limited by the numerical constraints) is not long
enough to allow for the chirping effect to develop. Consequently, we here refer to these waves
as narrow-band whistler waves.

These waves are likely to be generated by the electron temperature anisotropy. Figure 8.5 illus-
trates the electron anisotropy Te,∥/Te,⊥ (to which the wave contour is superimposed), showing
that the perpendicular electron temperature exceeds the parallel temperature around the recon-
nection region and closer to the planet. Specifically, the red regions in the figure indicate the
regions where the condition in Eq. 8.2 is met, rendering the whistler mode unstable. On the
contrary, Te,∥ > Te,⊥ is observed along the separatrices and farther from the reconnection plane.
A comparison of the electron parallel thermal velocity and the whistler wave phase velocity indi-
cates a difference of approximately two orders of magnitude, excluding the role of wave-particle
interactions with the observed whistler waves in the increase of the parallel temperature. There-
fore, this increase is likely due to other processes within the diffusion region, such as electron
parallel acceleration.
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Figure 8.5: Ratio of electron perpendicular to parallel temperature in the meridian plane, for t ∼
11RM/vsw,x. Black lines are the contour plots of the waves, shown to facilitate the comparison
with the waves’ location.

A noteworthy result of this study comes from the possibility of providing an early study of
the distribution of chorus waves in the Hermean magnetosphere. Developing a comprehen-
sive distribution map holds significant importance for understanding the energetic electron loss
mechanism, as discussed by Ozaki et al. (2023). Figure 8.6 shows the location of these waves in
our simulation, showing a low latitude propagation with respect to the equatorial plane, with
altitudes ranging from -1 to 1 RM. These waves are distributed almost symmetrically with re-
spect to the equatorial plane, with a slight bias toward the dawnside 6. However, this map is
likely influenced by the purely southward IMF configuration that is used in the simulation. A
more comprehensive map would require investigation of the influence of upstream solar wind
properties, and specifically the IMF direction, on the location and amplitude of these waves.
This analysis is left as future work.

Consequences of Radius Rescaling

In this section, we discuss the implications of rescaling the planet radius, as introduced in Section
1, on the results discussed above.
Concerning the magnetic reconnection, the impact of this rescaling has been previously addressed
in Lavorenti et al. (2022) and Lavorenti et al. (2023). By decreasing the planet’s radius, the
ion and electron diffusion region in the tail moves closer to the planetary surface. Therefore,
we find that in this simulation the ion diffusion region is marginally displaced from the planet,
while the electron diffusion region is more largely separated. Therefore, we expect that, while

6Current observations (Ozaki et al., 2023) have detected whistler waves on Mercury’s dawn side, while ob-
servations in the magnetotail region are still pending. These observations were possible thanks to the PWI
measurements, enabling for the first time to observe the electric fields, plasma waves, and radio waves in the
Hermean magnetosphere.
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Figure 8.6: Locations of whistler waves, in green, within the simulation domain at t ∼
11RM/vsw,x. The location is obtained by showing the cells for which the parallel component of
the electric field is above a threshold of 26 mV/m. (a), (b) and (c) shows the distribution from
different perspectives.

electron dynamics remain unaffected by the rescaling, the ion should be, at least partly, affected.
Notably, the high-energy electron signatures, discussed above, remain valid.

The influence of planet scaling on the whistler-waves features was analysed by conducting
an additional simulation (referred hereafter to as Run2 ) using the iPIC3D solver. In Run2, the
planet radius was furtherly reduced to RM,2 = 2.75di, half of the radius used in the simulation
discussed before. The magnetic dipole field of Run2 is scaled to maintain the same surface
magnetic field strength, thereby ensuring the relative magnetosphere shape, with respect to
the planetary radius, to remain equal with the initial simulation. This analysis was crucial
for distinguishing which properties are not affected by this scaling. Specifically, in Run2 we
observe the same waves to develop as in the initial simulation. By comparing the wave modes
between the two simulations, we found that both the dispersion relation and the wave features
do not differ, allowing us to conclude that the rescaling does not influence the wave properties.
However, the scaled distance between the reconnection region, where the waves originates, and
the planet could affect the spatial distribution of these waves. This phenomenon is not observed
in Run2 and it is left for future work since it requires big computational effort to increase the
planetary radius, even of a factor 2.
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Conclusions and Future Works

The primary objective of this thesis is the study of the Earth’s magnetopause. Specifically, we
focused on those regions where the magnetopause presents one-dimensional and stationary fea-
tures (representing the majority of the structure), where the magnetopause can be modeled as a
discontinuity. These regions are generally modeled by using the State-of-the-Art Classic Theory
of Discontinuities (CTD). However, in situ data show a disagreement with this theory, whose
physical assumption should therefore be questioned when describing the magnetopause. This
theory was used as a starting point to enhance our understanding of the magnetopause, allow-
ing us to study the role of the pressure tensor on the magnetopause equilibrium. The primary
question that was addressed is: why CTD fails in describing in situ observations? To investigate
this, we have analyzed complementary data from the Magnetospheric Multiscale (MMS) mission
and numerical simulations. In particular, we have exploited the high-resolution data from four
satellites, allowing us to calculate separately the spatial and temporal gradients.

The first part of this thesis is focused on the development of a new tool allowing us to obtain an
accurate determination of the normal direction of the magnetopause from in situ measurements.
A precise estimation of the normal vector is crucial for this study since it allows us to separate
normal and tangential components of any physical quantities at the boundary. Theoretically, we
have shown that the the normal transport across the magnetopause is of fundamental importance
for understanding the boundary properties, particularly the magnetic variations in the tangential
plane (hodograms). As these normal transport, carried by Bn and un, is much smaller than the
corresponding tangential values, a too large uncertainty on the normal direction would distort
their estimation. On the contrary, a good estimation of this quantity will enable one to establish
which terms, in the general expression of the transported fluxes, are relevant and not included in
the state-of-the-art models. The tool presented here, namely the Gradient matrix Fitting (GF2)
tool, is derived from the Minimum Directional Derivative (MDD) tool, one of the most common
and accurate techniques hitherto. Both tools are gradient-based since they estimate the normal
vector from the gradient matrix of a given vector (typically the magnetic field). They provide
an estimation of the normal direction at each time step, requiring multi-satellite measurements
while allowing for the study of local variations of the normal of the magnetopause. The GF2
tool incorporates a fitting procedure allowing to impose physical constraints directly within the
algorithm, such as ∇·B = 0 in the case of magnetic field measurements. This feature is different
with respect to what done in MDD, where physical constraints are checked at posteriori. The
GF2 tool was tested on an MMS magnetopause crossing on the 28th of December 2015, showing
comparable results with other state-of-the-art methods. However, a more accurate test of this
tool can be only done with numerical simulation data.

To this end, complementary to in situ data analysis, we have carried out a numerical study of
the magnetopause using global simulations (i.e. simulations that included the entire structure
of the magnetosphere). Although these simulations offer a lower resolution of the magnetopause
compared to local simulations (i.e. in simulations where the magnetopause is treated as a cur-
rent sheet), they provide a higher degree of realism necessary for our study. Specifically, we
have used the Menura solver, a hybrid-PIC code, to simulate an Earth-like magnetosphere and
to test the GF2 tool by comparing it with MDD, as for in situ data. While a quantitative
study would require a comparison to an exact calculation of the normal vector to determine the
accuracy, several factors prevent the calculation of a “real” normal direction. The main ones
are the unavoidable two-dimensional nature at short scales and the uncertainties in calculating
the matrix gradient from finite differences that affect the reliability in calculating the normal
direction.
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This test shows that, while the two methods provide the same result in regions with a one-
dimensional magnetopause, the GF2 tool, unlike MDD, effectively enables to separate the major
and minor directions of gradients, the too-small scales being filtered out in both directions, in
regions where the magnetopause exhibits two-dimensional features. However, higher-resolution
simulations are needed for an exact quantification of the performance of the GF2 tool. This re-
quires substantial computational resources, making such study currently infeasible with a global
simulation approach. A possible analysis could be done with (less realistic) local simulations.
Such a study is left as a future work.

GF2 was then applied to study the magnetopause structure by using the MMS crossing of the
28th of December 2015, used previously to test the GF2 tool. Specifically, this crossing revealed
properties not described by CTD, such as simultaneous compression and rotation, and a linear
magnetic field hodogram in the tangential plane of the discontinuity. The analysis have shown
that the divergence of the ion pressure tensor plays a key role in magnetopause equilibrium,
violating the isotropy hypothesis of CTD. We show that this is due to finite Larmor radius
(FLR) effects responsible for making the pressure tensor non-gyrotropic. To test this feature,
two non-gyrotropy indices were exploited confirming a significant, albeit small, non-gyrotropy
in the ion pressure tensor. In addition, we have shown that the direction of non-gyrotropy dif-
fers from that of the magnetic field for this crossing, aligning approximately with the direction
nmean ×B.
To generalize these results, a statistical study was conducted alongside the case-crossing analysis.
We selected a dataset of 146 magnetopause crossings showing one-dimensional characteristics to
establish a robust statistical foundation. For each of these crossings, we studied the hodogram
of the magnetic field in the tangential plane by classifying its shape. This analysis revealed that
over one-third of the selected crossings are in disagreement with CTD, indicating that FLRs at
the magnetopause are significant, even if not predominant. Even though the statistical study
confirms the result obtained from the case crossing analysis, a more complete analysis would
benefit from the study of the pressure tensor calculated in numerical simulations. In partic-
ular, we could exploit the same simulation used to test the GF2 tool. However, due to time
constraints, we were unable to conduct this analysis within this thesis. This study is left for
future research. Moreover, an increase in the number of particles per cell should be required
to enhance the accuracy of pressure tensor determination. This increase necessitates additional
computational resources, potentially requiring a trade-off with spatial resolution to obtain com-
putational feasibility. A detailed study will be conducted in the future to identify the optimal
balance between computational cost and resolution accuracy. Overall, this study underscores the
relevance of FLR effects at the magnetopause, providing a framework for future investigations.
These efforts will enhance our understanding of the complex dynamics at the magnetopause,
contributing to the broader field of space plasma physics.

In addition, GF2 was used to compare the geometrical properties of magnetic and ion structures
at the magnetopause. Specifically, we exploited the dataset of crossing used for the statistical
analysis and compared the normals obtained from magnetic field and ion flux measurements.
This analysis showed that most of the crossings present similar structures, with 56.2 % of the
crossings having normals differing less than 20 degrees, while a part of the dataset exhibited
significant differences, likely due to strong non-stationarities. The role of the non-stationarities
in the ion flux is not discussed within this manuscript, but it is further discussed in the pa-
per. Again, numerical simulations are crucial for contextualizing these results. To this end, the
Menura numerical simulation was exploited showing comparable results: in regions showing one-
dimensional ion flux structures, the normals obtained from the magnetic field and ion flux are
close (with differences of the order of 10 degrees). The predominant part of the structure shows
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two-dimensional features for the ion mass flux, showing ion flux normals up to ninety degrees
from the magnetic ones. A more accurate study, extending to a larger amount of magnetopause
regions should allow to quantify this result and further understand the results obtained from
the statistical study.

In addition to the Earth’s magnetopause study, a numerical investigation of Mercury’s magneto-
sphere using the iPIC3D solver was conducted. The study focused on Mercury’s magnetosphere
for two primary reasons: i) to prepare for the arrival of the JAXA/ESA BepiColombo mission
to Mercury and ii) to exploit the full-kinetic description of the mini-magnetosphere of Mercury
to gain insights of the global characteristics of the Earth’s one. Due to current computational
constraints, simulating the Earth’s magnetosphere while capturing kinetic scales remains not
feasible computationally without rescaling.
The iPIc3D simulation was exploited to analyze the development of magnetic reconnection in the
magnetotail and related dynamics in the magnetotail, with a particular focus on narrow-band
whistler waves that are observed to originate around the nightside reconnection region. This
result is noteworthy since whistler-mode chorus waves have been detected during the two flybys
of Mercury performed by BepiColombo. While these waves are observed in the localized dawn
sector, measurements in the magnetotail are still lacking. These observations did not indeed
provide the distribution of these waves at Mercury’s magnetosphere. Our analysis brings an
answer to this question. However, a completely southward solar wind magnetic field was used
in the simulation performed. To understand how this assumption affects the wave distribution,
further numerical simulations with varying solar wind magnetic field orientations are necessary
and planned for future work. Additionally, further numerical simulations are required to test the
influence of the radius rescaling applied in this simulation on the wave features and dispersion
relation.

In summary, this research allowed for a first analysis of whistler-mode waves within a global
simulation, setting the stage for future studies and the upcoming observations from the Bepi-
Colombo mission. A further investigation with different simulation parameters will be crucial
for advancing our knowledge of the Mercury magnetosphere.
The results discussed in this thesis are presented in two papers: “Role of FLR effects in mag-
netopause equilibrium,” accepted by the Journal of Plasma Physics, and “Whistler-mode waves
in the tail of Mercury’s magnetosphere: a numerical study,” accepted by Astronomy & As-
trophysics. Additionally, I actively participated with the Menura team in the execution and
analysis of the first simulation to study the consequences of solar wind turbulence on an Earth-
like planet. This analysis is summarized in a paper “Impact of solar wind turbulence on the
Earth’s bow shock” which I co-authored and that should be submitted in the coming months to
Astronomy & Astrophysics.
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The Earth magnetopause, when sufficiently plane and stationary at a local scale, can be7

considered as a "quasi-tangential" discontinuity, since the normal component of the magnetic8

field Bn is typically very small but not zero. Contrary to observations, the "Classic Theory of9

Discontinuities" (CTD) predicts that rotational and compressional jumps should be mutually10

exclusive in the general case Bn , 0, but allows only one exception: the tangential discontinuity11

provided that Bn is strictly zero. Here we show that Finite Larmor Radius (FLR) effects play an12

important role in the quasi-tangential case, whenever the ion Larmor radius is not fully negligible13

with respect to the magnetopause thickness. By including FLR effects, the results suggest that14

a rotational discontinuity undergoes a change comparable to the change of a Shear Alfvén into15

a Kinetic Alfvén wave when considering linear modes. For this new kind of discontinuity, the16

co-existence of rotational and compressional variations at the magnetopause does no more imply17

that this boundary is a strict tangential discontinuity, even in 1D-like regions far from X-lines18

if any. This result may lead to important consequences concerning the oldest and most basic19

questions of magnetospheric physics: how can the magnetopause be open, where and when?20

The role of FLR being established theoretically, the paper then shows that it can be proved21

experimentally. For that, we make use of MMS data and process them with the most recent22

available 4 spacecraft tools. First, we present the different processing techniques that we use to23

estimate spatial derivatives, such as grad(B) and div(P), and the magnetopause normal direction.24

We point out why this normal direction must be determined with extremely high accuracy to25

make the conclusions unambiguous. Then, the results obtained by these techniques are presented26

in a detailed case study and on a statistical basis.27

Introduction28

In space physics, there is a natural tendency of the medium to self-organize into distinct29

cells, separated by thin layers. This behavior can be observed at very different scales. Notable30

examples are planetary magnetospheres, which are bubbles in the solar wind stream and which31

are separated from it by bow shocks and magnetopauses (Parks 2019; Kivelson & Russell 1995;32

Belmont et al. 2014). The interaction of the solar wind with unmagnetized bodies such as comets33

also produces similar bubbles (Coates 1997; Bertucci 2005). The Solar System itself is a bubble34

in the flow of the local interstellar cloud, and it is separated from it by the heliopause and at least35

one shock ("termination shock") (Lallement 2001; Richardson et al. 2022). Similar cells and36

thin layers can also form spontaneously, far from any boundary condition as in the context of a37

turbulent medium (Frisch 1995; Chasapis et al. 2015).38

Among all these thin layers, the terrestrial magnetopause plays a particular role. This region39

has been explored by a large number of spacecraft since the beginning of the space era, up to the40

most recent multi-spacecraft missions as Cluster (Escoubet et al. 1997, 2001) and MMS (Burch41

& Phan 2016), allowing for a detailed description of its properties. In addition, due to a very small42

† Email address for correspondence: giulio.ballerini@lpp.polytechnique.fr
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normal component of the magnetic field with respect to the magnetopause (defined Bn = B · n43

where B is the magnetic field and n the magnetopause’s normal) it can be identified as a "quasi-44

tangential" layer. This feature is a direct consequence of the frozen-in property that prevails at45

large scales, on both sides of the boundary, almost preventing any penetration of magnetic flux46

and matter between the solar wind and the magnetospheric media (both of them being magnetised47

plasmas). By large scales here we refer to the fluid scales where an ideal Ohm’s law holds,48

as in the ideal magnetohydrodynamic (MHD) regime. However, small departures from a strict49

separation between the two plasmas do exist, at least locally and for a given time interval, and50

they are known to have important consequences for all the magnetospheric dynamics: substorms,51

auroras, etc (McPherron 1979; Tsurutani et al. 2001).52

Knowing when and where plasma injection occurs through the magnetopause has been53

one of the hottest subjects of research since decades (Haaland et al. (2021) and references54

therein, Lundin & Dubinin (1984); Gunell et al. (2012); Paschmann et al. (2018a)). The largest55

consensus presently considers the equilibrium state of the boundary, valid on the major part56

of its surface, as a tangential discontinuity, with a strictly null Bn, while plasma injection is57

allowed only around a few reconnection regions, where the gradients characterizing the layer58

present 2D features. For that purpose, many studies have been carried out to understand where59

magnetic reconnection occurs the most (Fuselier et al. 2011; Trattner et al. 2021). Moreover,60

the conditions under which the magnetopause opens due to magnetic reconnection has been61

studied theoretically (Swisdak et al. 2003) and experimentally (Gosling et al. 1982; Paschmann62

1984; Phan et al. 2000; Fuselier et al. 2011; Vines et al. 2015). The results of the present study63

may allow reconsidering this paradigm by questioning the necessity of a strictly tangential64

discontinuity for the basic equilibrium state.65

66

In the whole paper hereafter, we will call one-dimensional all geometries in which the gradients67

of all parameters are in the same direction N. In this sense, a plane magnetopause with not68

tangential gradient is said here to be 1D, while it would be considered 2D if considering real69

space instead of k space.70

1. Classic Theory of Discontinuities71

At every layer, the downstream and upstream physical quantities are linked by the fundamental72

conservation laws: mass, momentum, energy and magnetic flux (Landau & Lifshitz 1987). The73

simplest case occurs whenever the number of conservation laws is equal to the number of74

parameters characterizing the plasma state. When this condition is met, the possible downstream75

states are uniquely determined as a function of the upstream state, regardless of the (non-ideal)76

physics at play within the layer. In particular, it is possible to describe pressure variations without77

any closure equation. In this case, the jumps of all quantities are determined by a single scalar78

parameter (namely the "shock parameter" in neutral gas).79

We refer hereafter to the "Classic Theory of Discontinuities" (CTD) as for the theory80

corresponding to this condition, which is used both for neutral media and (magnetized) plasmas.81

CTD is characterized by the following simplifying assumptions: a stationary layer, 1D variations,82

and isotropic pressure on both sides. For plasmas, the additional assumption of an ideal Ohm’s83

law on both sides is considered (Belmont et al. 2019).84

In CTD the conservation laws provide a system of jump equations between the upstream and85

downstream physical quantities, namely the Rankine-Hugoniot conditions in neutral media and86

generalized Rankine-Hugoniot conditions in plasmas.87

The sets of equations used to compute the linear modes in hydrodynamics (HD) and MHD are88

similar to these jump equations system. simply because the HD and MHD models rely on the89

same conservation laws as Rankine-Hugoniot and generalized Rankine-Hugoniot respectively90
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A direct consequence is that many properties are shared by the solutions of the two types of91

systems: linear modes and discontinuities. For a neutral medium, the linear sound wave solution92

corresponds to the well-known sonic shock solution, while for a magnetized plasma, the two93

magnetosonic waves correspond to the two main types of MHD shocks: fast and slow. However,94

an additional discontinuity solution, the intermediate shock, has no linear counterpart. The95

intermediate shock presents a reversal of the tangential magnetic field through the discontinuity,96

which is not observed neither in the fast nor in the slow mode. Furthermore, a non-compressional97

solution exists in both types of systems, represented by the shear Alfvén mode for linear MHD,98

and by the "rotational discontinuity" solution for the generalized Rankine-Hugoniot system.99

Focusing on magnetized plasma physics, CTD leads to distinguish compressive and rotational100

discontinuities. An important feature of these solutions is that the compressional and rotational101

solutions are mutually exclusive: the shock solutions are purely compressional, without any102

rotation of the tangential magnetic field (this is called the "coplanarity property"), while the103

rotational discontinuity does imply such a rotation but without any variation of the magnetic field104

amplitude and without any compression of the particle density (Fig.1). This distinction persists105

whatever the fluxes along the discontinuity normal, even when the normal components un and Bn106

of the velocity and the magnetic field are arbitrarily small. The only exception is the "tangential107

discontinuity" when both normal fluxes are strictly zero. This solution would correspond, for the108

magnetopause, to the case without any connection between solar wind and magnetosphere. It109

appears as a singular case since the tangential discontinuity, with Bn = 0, is not the limit of any110

of the general solutions with Bn , 0. While the limit always implies two solutions, one purely111

rotational and the other purely compressional, the singular solution Bn = 0 only provides one112

solution where the two characters can coexist.113

In the solar wind, discontinuities are routinely observed and several authors have performed114

statistics for a long time to determine the proportion of the different kinds of discontinuities,115

mainly focusing on the tangential and rotational ones. They conclude that in most cases116

tangential discontinuities (i.e. with Bn small enough to be barely measurable) are the most117

ubiquitous (see Colburn & Sonett (1966), for a pioneering work in this domain and Neugebauer118

(2006); Paschmann et al. (2013); Liu et al. (2022), and references therein, for more recent119

contributions). In these studies, rotational discontinuities are identified only when Bn is large120

enough. However, many discontinuities present features that are typical of both rotational and121

tangential discontinuities and are classified as "either" of the two. Extending these studies in the122

range of small Bn, where all discontinuities are not necessarily "tangential discontinuities" in the123

CTD sense, requires the study of the quasi-tangential case.124

2. The Earth’s magnetopause125

Thanks to in-situ observations, the Earth’s magnetopause has a pivotal role in testing the126

discontinuity theories. Indeed, the Earth’s magnetopause boundary exhibits, over its entire127

surface, both a rotation of the magnetic field (Sonnerup & Ledley 1974) and a density128

variation (Otto 2005) since it is the junction of two media, the magnetosheath and the129

magnetosphere where the magnetic field and the density are different (Dorville et al. 2014).130

As stated above, the usual paradigm is that the magnetopause is always a tangential131

discontinuity and that it becomes "opens" only exceptionally at a few points where the132

boundary departs from one-dimensionality due to magnetic reconnection. Does it mean that it133

justifies the very radical hypothesis of a magnetopause nearly completely impermeable to mass134

and magnetic flux, with strictly null Bn and un and quasi-independent plasmas on both sides135

(apart from the normal pressure equilibrium)? From a theoretical point of view, it is clear that the136

singular limit from Bn ≃ 0 to Bn = 0 remains to be solved. From an experimental point of view,137

if the components Bn and un are known to be always very small, the observations can hardly138
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Figure 1. Cartoon showing the different variations of B between a rotational discontinuity (left) and a
compressive one (right). The top panel shows in 3D the variation of B inside the magnetopause plane; the
bottom panel shows the hodogram in this tangential plane: a circular arc for the rotational discontinuity and
a radial line for shocks.

distinguish between Bn ≃ 0 and Bn = 0 because of the uncertainties, due to the fluctuations and139

the limited accuracy in determining the normal direction (Rezeau et al. 2018; Haaland et al.140

2004; Dorville et al. 2015b).141

The results of the present paper will question the above paradigm. We will show theoretically142

and experimentally that CTD fails at the magnetopause and that rotation and compression can143

actually coexist with finite Bn and un, even in the 1D case. Such a paradigm change may be144

reminiscent of a similar improvement in the theoretical modeling of the magnetotail in the 70’s145

studies (Coppi et al. (1966); Galeev (1979); Coroniti (1980) and references therein). In that case146

the authors demonstrated that even a very weak component of the magnetic field across the147

current layer was sufficient to completely modify the stability properties of the plasmasheet, so148

that the finite value of Bn had to be taken into account, contrary to the pioneer versions of the149

tearing instability theories.150

3. The role of pressure151

In CTD the separation between the compressional and rotational properties of the152

discontinuities comes from only two equations projected on the tangential plane. These153

equations are the momentum equation and the Faraday - Ohm’s law, that read:154

ρ
du
dt
+ ∇ · Pi + ∇ · Pe = J × B (3.1)

155

∇ × E = −∂B
∂t

156

where E = −u × B +
1
ne

J × B − 1
ne
∇ · Pe (3.2)

where B is the magnetic field and u is the flow velocity in a reference frame where the layer is157

steady.158
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Considering one-dimensional gradients along the normal direction n, neglecting the non-ideal159

terms in Ohm’s law and integrating across the layer, these two equations, projected on the160

tangential plane, give:161

ρ2un2 ut2 − Bn2 Bt2/µ0 = ρ1un1 ut1 − Bn1 Bt1/µ0 (3.3)
162

Bn2 ut2 − un2 Bt2 = Bn1 ut1 − un1 Bt1 (3.4)

Due to the divergence free equation, the values Bn1 and Bn2 are equal and will be written as163

Bn without index in the following. Similarly, ρ1un1 and ρ2un2 are equal because of the continuity164

equation and will be simply noted ρun in the following. Here, the indices n and t indicate the165

projection along the normal and in the tangential plane, respectively, while indices 1 and 2166

indicate the two sides of the discontinuity. It is important to note that, in CTD, the pressure167

divergence terms do not appear in Eq.(3.3) because of the assumption done in this theory that the168

pressure is isotropic on both sides so that their integration gives terms of the form (p2 − p1)n,169

with no component in the tangential plane.170

We see that all terms in these two equations are proportional to Bn or un, so that any non-171

ideal term, even small, can become dominant when these two quantities tend to zero (if these172

non-ideal terms do not tend to zero at the same time). As the distinction between compressional173

and rotational character fully relies on this system of equations, this evidences the necessity174

of investigating the quasi-tangential case for resolving the usual singularity of the tangential175

discontinuity. We note that the LHS and RHS of equation 3.4 can be put equal to zero by choosing176

the "De Hoffmann-Teller" tangential reference frame where the electric field is zero (Belmont177

et al. 2019). However, this choice, even if it can simplify some calculations, is not necessary178

here. Finally, the variables ut can be eliminated from the system by a simple linear combination179

of the two equations, leading to:180

(un2 − un0)Bt2 = (un1 − un0)Bt1 (3.5)

where181

un0 =
B2

n

µ0ρun
= cst (3.6)

Equation (3.5) leads to the distinction between shocks, where the tangential magnetic fields182

on both sides are collinear (but with different modules), and rotational discontinuities, where183

the terms inside the brackets must be equal to zero. Rotational discontinuities correspond to184

a propagation velocity equal to the normal Alfvén velocity, and imply un1 = un2 = un0, and185

therefore an absence of compression of the plasma.186

As previously stated, the separation between the compressional and rotational characters187

mainly derives, in CTD, from the assumption of isotropic pressures on both sides, which prevents188

the pressure divergences to have tangential components. When the isotropic hypothesis is relaxed189

(Hudson 1971), the set of conservation equations is no longer sufficient to determine a unique190

downstream state for a given upstream one. As a consequence, the global result depends on the191

non-ideal processes occurring within the layer. In addition to anisotropy effects, Finite Larmor192

Radius (FLR) effects can be expected to break the gyrotropy of the pressure tensor around B193

in the case of thin boundaries between different plasmas. This means that the main effect that194

explains departures from CTD comes from the tangential component of the divergence of the195

pressure tensor, which must be taken into account in the momentum equation. On the other hand,196

the non-ideal effects related to the generalized Ohm’s law are negligible, at least in the examples197

shown in this paper. The possible types of discontinuities in an anisotropic plasma have been198

discussed in several papers long time ago (Lynn 1967; Abraham-Shrauner 1967; Chao 1970;199

Neubauer 1970), and the present paper improves the analysis in the light of the new experimental200

possibilities given by the MMS measurements.201
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When the dynamics drives the conditions for the pressure tensor to become anisotropic (and202

a fortiori in the non-gyrotropic case) the ∇ · P term comes into play linking upstream and203

downstream quantities. Considering the "simple" anisotropic case, i.e. keeping the gyrotropy204

around B, it has been shown (Hudson 1971) that the ∇ · P term then just introduces a new205

coefficient:206

α = 1 − p∥ − p⊥
B2/µ0

(3.7)

This coefficient has been interpreted as a change in the Alfvén velocity V ′2An = αV2
An, but it207

appears more basically as a change in Eq.(3.5):208

(un2 − α2un0)Bt2 = (un1 − α1un0)Bt1 (3.8)

This equation shows that, in this simple anisotropic case, coplanar solutions still exist (Bt2209

and Bt1 are collinear), but that whenever α2 is not equal to α1, the equivalent of the rotational210

discontinuity now implies compression:211

un2 , un1 if α2 , α1 (3.9)

Since un2 = α2un0 and un1 = α1un0. The variation of un explains why the modified rotational212

discontinuity can be "evolutionary" (Jeffrey & Taniuti 1964), the non linear steepening being213

counter-balanced at equilibrium by non-ideal effects for a thickness comparable with the214

characteristic scale of these effects.215

There is actually no additional conservation equation available that would allow the jump of216

the anisotropy coefficient α to be determined. Consequently, there is no universal result that gives217

the downstream state as a function of the upstream one, regardless of the microscopic processes218

going on within the layer. This remains valid for the full anisotropic case, with non-gyrotropy. As219

soon as the ion Larmor radius ρi and the ion inertial length di are not fully negligible with respect220

to the characteristic scale L of the layer, kinetic effects, and in particular FLR effects, which make221

the pressure tensor non-gyrotropic, must be taken into account to describe self-consistently the222

internal processes. Then, the effect of the divergence of the pressure tensor is no longer reduced223

to adding a coefficient α since its tangential component is no longer collinear with Bt. Such224

effect has been already reported and analyzed in the context of magnetic reconnection (Aunai225

et al. 2013, 2011) and in kinetic modeling of purely tangential layers (Belmont et al. 2012;226

Dorville et al. 2015a). It has been also investigated in the case of linear modes where they are227

responsible for the transition from shear Alfvén into Kinetic Alfvén Wave (Hasegawa & Uberoi228

1982; Belmont & Rezeau 1987; Cramer 2001). On the other hand, it has never been introduced229

in the context of quasi-tangential discontinuities.230

If a simple anisotropy preserving gyrotropy around B can be straight fully taken into account231

for modeling the pressure tensor and using it in fluid equations, introducing non-gyrotropy does232

not lead to a general and simple modeling for the pressure tensor. It would demand a priori233

a full kinetic description or, at least, some expansions assuming that these effects are small234

enough (see Braginskii (1965) for the pioneer work in this field and Passot & Sulem (2006) and235

references therein). Several papers have investigated the changes in rotational discontinuities236

when such non-ideal effects are introduced (Lyu & Kan 1989; Hau & Sonnerup 1991; Hau237

& Wang 2016). These theoretical papers used different analytical models based on different238

simplifying assumptions. Contrary to these papers, we will not use such kind of assumptions.239

Instead, we will just analyze the observed magnetic hodograms, and show that their shape is240

incompatible with a gyrotropic pressure.241
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4. The magnetopause normal242

When studying the magnetopause with in situ measurements, the most basic geometric243

characteristic to be determined is the normal to its surface (which may vary during the crossing).244

An accurate determination of the magnetopause normal is actually a fundamental condition for245

determining reliable estimates of the normal components of both the magnetic and the mass246

fluxes. Moreover, having a good estimation of the normal direction is also necessary to determine247

the speed of the structure and its thickness. Quantitatively speaking, to determine the normal248

component of the magnetic field sufficiently well (assuming that Bn/|B| ∼ 2%), an accuracy of249

the normal should be of the order of δθ < 1o. In the literature, a good accuracy of determination250

of the normal is considered to be of the order of 5% (Denton et al. 2018).251

Beyond determining the normal direction, some "reconstruction methods" can be used to252

provide a more global view of the large scale structure around the spacecraft. Although these253

methods have proven to provide remarkable results (De Keyser 2008; Hasegawa et al. 2005;254

Denton et al. 2020) they will not be used here (the first two studies assume the Grad-Shafranov255

equations to be valid, implying stationary MHD, and are therefore not appropriate to investigate256

the non-MHD effects such as the FLR effects).257

Over the years, several methods have been developed with the purpose to precisely determine258

the normal direction (see e.g. (Haaland et al. 2004; Shi et al. 2019)). The most common is259

the minimum variance (MVA) introduced with the first measurements of the magnetic field in260

space (Sonnerup & Cahill 1967; Sonnerup & Scheible 1998). This method, which requires single261

spacecraft measurements, provides a global normal, i.e. a single normal vector for each entire262

time series across the boundary. The tool is based on the assumption that the boundary is a263

perfectly one-dimensional and stationary layer crossing the spacecraft. Other notable examples264

are the Generic Residue Analysis (GRA) technique (Sonnerup et al. 2006), which consist in265

a generalisation of the MVA to other parameters than B, and the BV method (Dorville et al.266

2014), which combines magnetic field and velocity data. Even though these methods can give267

an accurate normal determination (Dorville et al. 2015b), they provide, like MVA, a global268

normal and thus they cannot provide the necessary basis for investigating the variations of269

the magnetopause normal within the structure and test the possible departures from mono-270

dimensionality. Let us finally recall that waves and turbulence, which are always superimposed271

to the laminar magnetopause profiles, bring strong limitations in the normal direction accuracy272

for all methods, in particular these global ones.273

In this context, multi-spacecraft missions have represented a fundamental step in increasing274

the accuracy of the normal determination, allowing to determinate the gradients of the measured275

fields. A notable example is the Minimum Directional Derivative (MDD, Shi et al. (2005))276

method. This tool generally uses the magnetic field data, but it must be kept in mind that it277

is not based on specific properties of this field. The MDD technique is a so-called "gradient278

based method" since the calculation of the normal is based on the experimental estimation of the279

dyadic tensor G = ∇B. This tensor gradient can be obtained from multispacecraft measurements280

using the reciprocal vector method (Chanteur 1998). The MDD method consists in diagonalizing281

the matrix L = G · GT , finding the normal direction as the eigenvector corresponding to282

the maximum eigenvalue. Moreover, the gradient matrix can also be used for estimating the283

dimensionality of the boundary from the ratio between the eigenvalues. A way of finding a284

quantitative determination of this dimensionality was proposed in Rezeau et al. (2018).285

For the vector B, the MDD method makes use only of the spatial derivatives ∂iB, which are286

accessible at each time step thanks to the 4-point measurements today available with multi-287

spacecraft space missions. In this sense, it is the opposite of the MVA method, which makes288

use only of the temporal variances of the B components. It therefore allows for an instantaneous289

determination of the normal at any point inside the layer, while MVA can only provide a single290
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normal for a full crossing. In addition, contrary to MVA, MDD does not make any assumption291

about the geometry of the layer (1D variations or not), and about the physical properties of the292

vector used. Indeed, it can be applied to the magnetic field data but also to any other vector since293

the property ∇ · B = 0 is not used.294

However, due to waves and turbulence, the magnetopause can present locally two-dimensional295

properties that are insignificant for the profiles we are looking for. For this reason, we will focus296

here on intervals where the magnetopause is mainly one-dimensional, discarding the crossings in297

which local 2D features are observed. The intervals considered as one-dimensional are those for298

which λmax ≫ λint. Here λmax and λint are defined as the highest and the intermediate eigenvalues299

of the matrix G. In this limit, the ordering between λint and λmin (i.e. the smaller eigenvalue) is300

not relevant in defining the intervals. Specifically, we use the parameter, D1 = (λmax − λint)/λmax,301

which enables us to quantify this mono-dimensionality of the magnetopause as a function of302

time.303

A more recent tool proposed to study the magnetopause is the hybrid method presented in304

Denton et al. (2016, 2018), in which the orientation of the magnetopause is obtained through a305

combination of the MDD and MVA methods, resulting in an improved accuracy of the normal306

direction.307

The only limitation to the MDD accuracy comes from the uncertainty of the spatial derivatives308

that it uses. In particular, the local gradient matrix is calculated through the reciprocal vector309

technique (Chanteur 1998), which assumes linear variations between the spacecraft. Because310

small-scale waves and turbulence are always superimposed on the magnetopause profiles being311

searched for, this assumption cannot be well respected without some filtering. This filtering312

actually leads to introduce part of the temporal information on the variations, but it still allows313

keeping local information inside the layer whenever one filters only the scales sufficiently smaller314

than those associated to the full crossing duration. The quality of the filtering is therefore the315

biggest challenge to complete for getting accurate results. For instance, simple gaussian filters316

done independently on the four spacecraft would provide insufficient accuracy: this can be317

observed by the fact that, when doing it, the relation ∇ · B = 0 is violated in the result. In318

the following section, it is shown how the MDD method can be included in a fitting procedure319

of the four spacecraft simultaneously and where this relation can be imposed as a constraint. We320

also show that, when no constraint is added, this procedure justifies the use of MDD with data321

that are filtered independently.322

5. A new tool323

The tool we present here, namely GF2 (Gradient matrix Fitting), has been derived from the324

MDD method. The digit 2 indicates that in the version of the tool that we use here the data325

are fitted with a 2D model (it can be shown that fitting with a 1D model is mathematically326

equivalent to the standard MDD technique used with smoothed data). Differently from the327

original method, we assume that the structure under investigation can be fitted locally (i.e. in each328

of the small sliding window used along the global crossing), by a two-dimensional model. This329

does not imply that the magnetopause is assumed globally two-dimensional. As for MDD, the330

instantaneous gradient matrix G is obtained from the data using the reciprocal vector’s technique331

(Chanteur 1998). When performing the 2D fit in each sliding window, we then impose some332

physical constraints, which could be checked only a posteriori with the classic MDD method.333

The model G f it is obtained as follows:334

G f it = e0 B′e0 + e1 B′e1 (5.1)

where we define e0 and e1 as two unit vectors in the plane perpendicular to the direction of335

invariance and B′e0 and B′e1 as the variation of the magnetic field along these two directions.336
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By performing the fit, we impose ∇ · B = 0 (as used in MVA but ignored in standard MDD). In337

the model, this can be written as:338

e0 · B′e0 + e1 · B′e1 = 0 (5.2)

In order to fit the experimental G by the model G f it, the following quantity has to be minimised339

D2 = Tr[(G f it −G).(G f it −G)T ]

= B′2e0 − 2e0.G.B′e0 + B′2e1 − 2e1.G.B′e1 + Tr(GGT )
(5.3)

We can disregard the last term, since it is independent of the fit parameters. To impose the340

physical constraints, we use Lagrange multipliers, minimizing:341

D2 =B′2e0 − 2e0.G.B′e0 + B′2e1 − 2e1.G.B′e1 + 2λ(e0 · B′e0 + e1 · B′e1)

=B′2e0 − 2e0.(G − λI).B′e0 + B′2e1 − 2e1.(G − λI).B′e1

(5.4)

By assuming in the first approximation that the direction of invariance e2 is known, we can342

choose the two vectors e0 and e1 as an arbitrary orthonormal basis for the plane of variance. For343

performing the minimisation, we have just to impose equal to zero the derivatives with respect to344

B′e0, B′e1 and λ, obtaining Equation 5.2 and:345

B′e0 = e0.(G − λI) (5.5)
346

B′e1 = e1.(G − λI) (5.6)

By introducing these two equations in Equation 5.2 we obtain:347

λ =
G00 +G11

2
, (5.7)

from which we get the values of B′e0 and B′e1. At this point, the matrix G f it is fully determined. We348

can then look for its eigenvalues and eigenvectors, as in the standard MDD method, and get the349

normal n and the tangential directions t1 (i.e. the one orthogonal to the direction of invariance)350

from this smooth fit.351

The choice of the direction of invariance has actually no major influence on the determination352

of the normal direction, neither on the estimation of the 2D effects. For large 2D effects, one353

could choose the direction of minimum variance obtained by applying directly the standard MDD354

method to the data. Nevertheless, for almost 1D cases (the most common situation), the spatial355

derivatives in the tangential directions are generally much smaller than the noise, so this result356

is not reliable. We simply choose here the constant M direction given by MVA, which is often357

considered as the direction of the X line if interpreted in the context of 2D models of magnetic358

reconnection (cf. for instance Phan et al. (2013) for a typical use of this choice and Aunai et al.359

(2016); Liu et al. (2018); Denton et al. (2018) for discussions about it).360

Finally, another useful by-product of the method can be obtained: comparing the spatial361

derivatives and the temporal ones and using a new fitting procedure, we can compute the two362

components of the velocity of the structure Vn0 and Vt1 with respect to the spacecraft. Only the363

motion along the invariant direction then remains unknown.364

5.1. Normal from ions mass flux365

This tool can be easily adapted to any other vector dataset by just changing the physical366

constraint. In particular, we chose to study the structure using the ion mass flux data. In this367

case we impose mass conservation ∇ · Γi = −∂tni (with Γi = niui). Eq.5.2 now writes368

e0 · Γ′e0 + e1 · Γ′e1 + ∂tni = 0 (5.8)
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Therefore, when using the Lagrange multipliers, Eq.5.4 changes to:369

D2 =Γ
′2
e0 − 2e0.G.Γ′e0 + Γ

′2
e1 − 2e1.G.Γ′e1 + 2λ(e0 · Γ′e0 + e1 · Γ′e1 + ∂tni)

=Γ′2e0 − 2e0.(G − λI).Γ′e0 + Γ
′2
e1 − 2e1.(G − λI).Γ′e1 + 2λ∂tni

(5.9)

By using the same algorithm as above, the constraint can now be written as:370

λ =
G00 +G11 + ∂tni

2
(5.10)

5.2. Dimensionality index371

From this procedure, we can also derive another significant result: we can obtain an indicator372

of the importance of the 2D effects in the profiles, free of the parasitic noise effects. Specifically,373

we can estimate the variation of the magnetic field along the normal by projecting the G f it matrix374

along it varn = |G f it.n|. Consequently, if we designate the variation along t1 as vart, we can375

introduce a new dimensionality index:376

DGF2 =
varn − vart

varn
(5.11)

This index can usefully be compared with the instantaneous index D1 = (λmax − λint)/λmax of377

Rezeau et al. (2018).378

6. Expected accuracy and tests of the tool379

In this section we test the accuracy of the GF2 tool. To accomplish this, we exploit a case380

crossing, which will be investigated in detail in the following section. The crossing considered381

comes from MMS data (Burch & Phan 2016), taking place at around 22:11 on 28th December382

2015. For this study we use data from the FluxGate Magnetometers (FGM, Russell et al. (2016)),383

providing the magnetic field data, the Electric Double Probe (EDP, Lindqvist et al. (2016); Ergun384

et al. (2016)), for the electric field, and Dual Ions and Electrons Spectrometer instrument (DIS,385

DES, Pollock et al. (2016)), for plasma measurements. An overview of the event is shown in Fig.386

2, where both the magnetic field and ion bulk velocity are given in Geocentric Solar Ecliptic387

(GSE) coordinates. For this event, the spacecraft are located in [7.6, -6.7, -0.8] RE in GSE388

coordinates (where RE is the Earth’s radius).389

The temporal interval in which we observe the shear in the magnetic field and the crossing390

in the particle structure is about 8 seconds, enough to allow for high resolution for both sets of391

measurements. The crossing is chosen by also analyzing the dimensionality of the magnetic field392

measurements averaged along the crossing. In particular, the dimensionality parameter defined in393

Eq. 5.11, denoted as DGF2, and the one introduced in Rezeau et al. (2018), denoted as D1, were394

considered. In this interval, indeed, we have D1,mean = 0.97±0.03 while DGF2 = 0.89±0.06, both395

highlighting that the crossing exhibits one-dimensional features throughout the time interval. We396

remind here that in burst mode, the frequency of magnetic field measurements is 132Hz while it397

is 6,67 Hz for ions. To conduct the following study, it is necessary to interpolate all measurements398

at the same times. We did it by testing two sampling frequencies: the magnetic field and the ion399

ones. The results obtained are consistent with the two methods. All figures shown in the paper400

are obtained with the sampling times of the MMS1 magnetic field. Furthermore, the crossing is401

observed quasi-simultaneously for the two quantities, with a large interval where the two kinds402

of results can be compared.403

As a first test, we compare in Fig.3 the normals obtained by GF2 and those by the standard404

MDD technique (using data smoothed in a 0.31s time-window), for both the magnetic field and405

the ion data. For reference, we also compare the result of GF2B with the MVA one.406
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Figure 2. Main features of the crossing of the 28th December 2015. From top to bottom: (a) the magnetic
field (in nT ), (b) the ion particle density (in m−3), (c) ion velocity (in km/s), (d) total current (computed
from the curlometer (Dunlop et al. 1988), in nA/m2), (e) the ion and ( f ) electron spectrograms (energies
are shown in eV). Vertical lines indicate the time interval chosen for the case study.

Vertical dashed lines indicate the time interval during which all the satellites are inside the407

boundary. We observe that the time required for the ions flux to complete the crossing (of about408

5s) is shorter than for the magnetic field (about 8s). To perform a quantitative analysis of the409

differences, we studied the angles between the different normals obtained through GF2, MDD410

and MVA, as shown in Fig. 4.a.411

The first striking result is that all these results are quite consistent. Almost all the directions are412

less than ten degrees apart from each other, with an average difference of about five degrees. The413

major exception concerns the comparison between MVA and GF2B during the last second of the414

interval where the two directions appear to be up to 35 degrees apart. This can be explained by415

the fact that the local normals are observed (by GF2B as well as by MDDB) to differ noticeably416

in this part from their averaged value and that MVA is not able to detect such a change. Looking417

in more detail, we can see a slight difference between the first part of the crossing (between418

2s and ∼6.5s), where the two normals GF2B and MDDB differ by less than 5 degrees, and the419

second part, where the angle between the normals can be up to ten degrees (probably due to a420
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Figure 3. Comparison for the normals obtained with GF2 with respect to the MDD tools. (a) shows the
magnetic field and (b) the ion mass flux, measured by the four MMS spacecraft. (c) and (d) shows the
magnetic and the ion normal, respectively. The continuous (resp. dashed) line correspond to the components
of GF2 (resp. MDD) normal. Horizontal dotted lines indicate the MVA normal obtained along the whole
interval. Vertical dashed lines correspond to the time interval boundaries for the crossing, which are different
for the magnetic field and the ion mass flux.

Figure 4. (a) Angle between the normals obtained using the state-of-the-art tools (MDD, MVA) and GF2.
The subscript B and ions indicates whenever the magnetic field or the ion flux measurements are used.
(b) Dimensionality of the structure as a function of time; here both the DGF2 (continuous line) and the D1
(dashed line) indices are shown, for both the magnetic field (blue) and ions (red) data.

smaller ratio signal/noise for the gradient matrix G). The normals derived from ion measurements421

are not much different from those derived from the magnetic field, showing that the particle and422

magnetic structures are approximately identical. In Fig. (4.b), the dimensionality of the structures423

is analyzed as a function of time, by using both the DGF2 and the D1 (Rezeau et al. (2018))424

parameters, as explained above. Even if the numerical values of the two indices are slightly425

different, they both indicate structures close to one-dimensionality in the first part, with a -small426
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Model Normal [GSE] angle with
nGF2,B [deg]

nGF2,B [0.82, -0.49, -0.29] x
nGF2,ions [0.76, -0.59, -0.26] 7.2

MVA [0.76, -0.57, -0.30] 6.1
MDD [0.83, -0.49, -0.28] 0.7

Denton [0.82, -0.49,-0.29] 0.4

Table 1. Magnetopause normal vectors obtained with the main tools presented above averaged in the time
interval and their angle with respect to the normal obtained with GF2 using the magnetic field data (in
degrees).

but significant- decrease in the second part. This increased departure from mono-dimensionality427

can explain the slight difference between the two parts when comparing the normals from428

standard MDD and GF2 techniques.429

The present test does not allow us to state that GF2 is more accurate than standard MDD430

(this will be checked in future work by comparing the two tools in a global simulation involving431

realistic turbulence) but it shows at least a good agreement between the two approaches. We will432

see in the following that this accuracy is anyway sufficient to prove the role of FLRs.433

In order to smooth the small fluctuations over the time interval and to reduce the statistical434

error associated with the determination of the normal, we can compare the directions averaged435

along the crossing time. Mean values obtained through the tools presented above are shown in436

Table 1. Here we observe that all the averaged normals differ by less than 10 degrees. Specifically,437

we observe that the normals obtained with GF2, MDD and (Denton et al. 2018) are similar, with438

a difference of less than one degree (with ours being closer to the one from Denton et al. (2018)).439

MVA normal, instead, differs around 6 degrees from all these other normals. Finally, we also440

observe that the one computed with ions flux data is the most distant. This is interpreted to be441

due to the higher uncertainty of particles measurements.442

7. Case study443

In this section, we undertake a detailed analysis of the previously mentioned crossing case by444

employing the normal obtained using the GF2 tool. Here, we focus on the time interval between445

2 s and 9 s in Fig 2. To mitigate the potential influence of non-unidimensionality effects, we chose446

to exclude the last second of the time interval studied in the preceding section for the magnetic447

field (where both DGF2 and D1 show that the structure is less one-dimensional and where we448

observe that the normal is more different from the averaged one). To carry out this analysis, we449

study the hodogram of the magnetic field in the tangential plane. Here the tangential results are450

presented in a basis (T1,T2) chosen as:451

T1 = nmean × b̂ (7.1)
452

T2 = nmean × T1 (7.2)

where b̂ = B/|B| and nmean is the directions of the averaged normal in the chosen time interval.453

Note that the choice of the reference frame (T1,T2) is just a convention. The shape of the454

hodogram remains unaffected by this choice except for the corresponding rotation in this455

tangential plane. The direction t1, which characterizes the direction of the second dimension of456

the model in GF2 and which is also in the tangential plane is generally different from T1.457
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Figure 5. Hodogram in the tangential plane of the magnetic field for a magnetopause crossing by MMS
in 28.12.2015 from 22:12:02 to 22:12:09. See text for the significance of the arrows. BT1 and BT2 are the
projections of B along the tangential directions computed as described in the text. The black line (resp.
violet) is the hodogram when the nmean (resp. n) value is used to define the reference frame.

If CTD was valid everywhere, the hodogram of the magnetic field in the tangential plane for458

a rotational discontinuity would correspond to a circular arc with constant radius while a shock459

would correspond to a radial line (as shown in Fig. 1). For this reason, the hodogram is a good tool460

to recognize the cases for which the CTD fails at describing the magnetopause. The hodogram461

for this case is shown in Fig. 5. We observe a clear "linear" (although not radial) hodogram. This462

non-radial variation of the magnetic field although not predicted by CTD, is a striking feature463

of the hodogram. It cannot be explained by a departure from the 1D assumption since we have464

measured that the crossing can be considered as one-dimensional to a good degree of accuracy.465

It is therefore due to an intrinsic property of the layer itself. Also, in Fig. 5, we present the466

hodogram derived from the local normal (un-averaged, violet line). It is clear that averaging does467

not affect the shape of the hodogram.468

To further analyze the causes of the disagreement between the hodogram of this case469

crossing and what is expected from CTD, we compare the different terms of the tangential470

momentum equation and Faraday/Ohm’s law. As discussed above, indeed, these two equations471

are responsible for the distinction between the rotational and tangential discontinuities in CTD.472

This is the object of Figure 6, where we plot the different terms of the two equations projected473
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Figure 6. Terms of the Ohm’s law (panel 1, units of mV/m) and the momentum equation (panel 2, units of
10−15kg m/s2), projected in the normal direction n (a) and in the tangential direction t1 (b). To reduce the
noise, a running average with a time window of 0.35s is applied to the electric field measurements. Shaded
regions in panel 2.b represent the estimated uncertainties of the divergence of the pressure (red), the J × B
(blue) and the classic inertial term (green). Concerning the Ohm’s law, we included the sum U×B−J×B/nq
to facilitate the readability (blue dashed line).
N.b. The terms of the tangential Faraday/ Ohm’s law used in the text are just the derivatives of the ones in

(a) (apart from a π/2 rotation).

along the nmean and t1,mean directions obtained using the GF2 tool (averaged over the whole474

time interval). The influence of the averaging of the t1,mean direction on the results is discussed475

in Appendix A. We do not show the quantities along the direction of invariance, which are476

dominated by noise. The current and the gradient matrix for the pressure term are obtained via477

the reciprocal vector method described in Chanteur (1998).478

Concerning the Ohm’s law (Figure 6, panel 1), we see that the electric field is well counter-479

balanced by the u×B and J×B/nq terms (ideal and Hall terms). Outside the layer, on both sides,480

the ideal Ohm’s law is satisfied, as assumed in CTD (this is not visible on the figure, which is a481

zoom on the inner part of the layer, and where the Hall term is important). It has been shown in482

the literature that ∇·Pe is not always negligible in the Ohm’s law and that it can even be dominant483

close to an Electron Diffusion Regions (EDR). This has been predicted theoretically (Hesse et al.484

2011, 2014) and observed experimentally (Torbert et al. 2016; Genestreti et al. 2018), but it is not485

the case for events like this one. We observe that at approximately 3.5 seconds, the ∇ · Pe is not486

entirely negligible along the tangential direction (a similar peak can also be observed in panel 2.b487

for the term associated with the electron pressure in the momentum equation). However, during488

this time interval, this value is not dominant, this term being smaller than both the electric field489

and the J × B/nq components. Furthermore, this effect exhibits a local characteristic, as ∇ · Pe490

is only non-negligible within a small sub-interval (with respect to the magnetopause temporal491

width). It is therefore not likely to be indicative of proximity to a reconnection point.492

Concerning the momentum equation, shown in panel 2 of Figure 6, we observe that, in the493

normal direction, the J×B term is counter-balanced by the divergence of the ion pressure tensor,494
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Figure 7. Comparison of the magnetopause width (L) with the ion inertial length (di) and the ions Larmor
radius (ρL). Vertical lines highlight the considered temporal interval.

as expected. But, if the isotropic condition assumed in CTD was valid, we would expect the495

divergence of the ion pressure tensor to be zero in the tangential direction, or at least negligible496

with respect to the inertial term ρdu/dt. On the contrary, we observe that the J×B term along t1497

is of the same order of magnitude as the divergence of the ion pressure tensor, and one order of498

magnitude larger than all the other terms. Panel 2.b also shows an estimation of the error on the499

relevant terms: J × B, ∇ · Pi and the classical inertial term. It is known that measurements errors500

are difficult to estimate, especially at small scales. In order to validate our results, however, we501

sought to obtain an upper bound of the error associated with the quantities of interest. For that502

purpose, an overestimation of the uncertainty of the measurements (acquired as the maximum503

during the crossing of the errors available in FPI datasets for the pressure tensor and from the504

FGM nominal error for the magnetic field) was exploited. These values are propagated as a505

statistical (i.e. quadratic) error (by assuming that the errors on the reciprocal vectors can be506

neglected with respect to that of other physical quantities).507

From panel 2.b of Fig. 6, we see that the J × B and the ∇ · Pi terms are pointing in opposite508

directions and balancing each other. If valid in the first part of the interval, this conclusion509

cannot be safely trusted due to measurement uncertainty, but we observe that in the middle part510

(particularly between 3.5s and 6s) it is evident that the two quantities counterbalance each other511

while the classical inertia term ρdu/dt is much lower with respect to the others. This proves that512

the tangent ∇ · Pi term plays a fundamental role in the magnetopause equilibrium.513

This point can be emphasized also by analyzing the hodogram. In Fig. 5, the arrows are514

directed along the directions of the tangential plane that are physically relevant for the problem:515

i) the tangent to the hodogram (green), which indicates the total variation of Bt; ii) the radial516

direction (red), which corresponds to the plasma compression; iii) the ∇ · Pit direction (blue),517

which is the direction of the divergence of the ion pressure tensor in the tangential plane, and518

therefore corresponds to a term which is absent in CTD. The relative lengths of the arrows are519

chosen proportional to the corresponding term magnitudes. These directions are averaged in two520

sub-intervals (bold hodogram). The striking result is that the total variation is mainly determined521

by the non-classic term ∇ · Pit and not by the radial classic one. This explains the very recurrent522

(even if not reported in the literature hitherto) feature that the hodograms are almost linear but523

not radial.524
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Figure 8. Panels a and b show the evolution of the Dng,⊥ and Dng,Aunai (Aunai et al. 2013) indices,
respectively, along with their estimated uncertainties. Thin lines correspond to the real-time values while
thick lines to an averaged window of 1 s; (c) Evolution of the eigenvalues of the Pi matrix (averaged on
the four spacecraft). The dotted line indicates the magnetopause crossing. The red dotted lines in panel c
highlight the time interval studied in Fig. 9

7.1. Comparison of the width of the magnetopause to relevant physical lengths525

Finally, we compare the width of the magnetopause (L) to the two main ion-related lengths: the526

ion Larmor radius (ρL) and the ion inertial length (di). The magnetopause width is estimated using527

the normal velocity obtained from the GF2 tool. By averaging the velocity of the magnetopause528

in the normal direction, we can estimate L = Vn,mean∆t (where ∆t is the time length of the full529

crossing). These three scales are shown in Fig.7. We observe that this width is larger than the ion530

Larmor radius and the ion inertial length all across the crossing, but only two to five times larger,531

which appears sufficient to drive the observed kinetic effects.532

8. Ion pressure tensor analysis533

To further investigate the question of the ion non-gyrotropy with respect to the magnetic field534

and quantify this effect, let us now examine the properties of the ion pressure tensor and introduce535
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a new non-gyrotropy index. For that purpose, we define the matrices P∥ = p∥bb, where b = B/|B|536

and p∥ = b · Pi · b, and P⊥ = Pi − P∥. By defining p1 and p2 the maximum and intermediate537

eigenvalues of the P⊥ matrix, we define:538

Dng,⊥ =
p1 − p2

p1 + p2
(8.1)

In Fig. 8.a, this parameter is compared to the non-gyrotropy index presented in Aunai et al.539

(2013). The two indices define nongyrotropy differently, (Aunai et al. 2013)’s index defining540

nongyrotropy as the ratio of the nongyrotropic to the gyrotropic part of the tensor (instantaneous),541

while ours makes use of the 2D modeling of the data used in GF2 (averages on sliding windows).542

We note how both indices are significantly different from zero, approximately of the order of 0.1543

within the boundary, corresponding to clearly present, although not predominant, non-gyrotropic544

effects. We note a decrease in both indices outside the magnetopause, as expected, but it is worth545

noting also that, despite a continuous decrease, these indices remain relatively high in the time546

interval just preceding the crossing, in a region where magnetic field, density and pressure tensor547

are almost constant. This can be understood by noting that an ion velocity gradient is observed in548

this interval, suggesting that the non-diagonal terms of the pressure tensor could be due there to a549

kind of gyroviscous effect, the non-diagonal terms of the pressure tensor (Braginskii 1965) being550

due to FLRs (Stasiewicz 1993). One must take care that, in this interval, the pressure tensor has551

low values characterized by larger relative errors, which could partially influence this result. To552

further analyze this question, we have estimated the uncertainties on both non-gyrotropy indices.553

This estimation is derived from the nominal uncertainties of the FPI dataset. The diagonal terms554

have higher values and lower relative errors. Concerning the time interval before the crossing555

that we discuss here, the diagonal terms have errors of approximately 5%, whereas off-diagonal556

terms have an average relative error about 50% . We observe on Fig. 6 that this way of estimating557

the uncertainty well encompasses the variance of the results. It confirms that, within the crossing558

interval, all relative errors are smaller than 10 %, as considered in the Ohm’s law study (Fig. 6).559

In addition, a preliminary study appears to confirm the validity of the gyroviscous interpretation.560

Using the theoretical expressions given in Stasiewicz (1989), we can compare the variations of561

the non-diagonal terms of the pressure tensor with the spatial derivatives of the flow velocity, and562

evidence a fairly good correlation (see Appendix B).563

Fig. 8 (panel c) also shows the evolution of the eigenvalues of the Pi tensor, averaged on the564

four spacecraft. This figure shows how outside of the magnetopause the three eigenvalues tend to565

converge towards each other meaning that these media are close to isotropy. However, inside the566

magnetopause, we note a transition in the behavior of the intermediate eigenvalue, shifting from567

a value close to the minor one to being closer to the major eigenvalue. The minor eigenvalue568

exhibits a significant deviation from the other two towards the last part of the crossing.569

Focusing on the temporal interval marked by the red square in Fig. 8, this transition is further570

investigated in Fig. 9 where we show the ions’ distribution functions in the tangential plane571

(with respect to the magnetopause) for four different intervals during the crossing, highlighting572

the non-gyrotropy of the ions’ distribution function over time. VDFs (printed using a linear 2D573

interpolation on a cartesian grid in the chosen plane using the Pyspedas library) are here averaged574

in the corresponding time intervals framed with the same color as in the bottom plot where the575

eigenvalues of the ion pressure tensor are plotted again (the time length decreases as the density576

increases).577

Finally, we analyzed the non-gyrotropy with respect to a generic direction, i.e. without578

imposing that this direction is the magnetic field direction. Specifically, we have looked at a579
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Figure 9. Top: Ions’ velocity distribution functions in the tangential plane (the T1- T2 plane) averaged in
four different time periods. Velocities axes are between -220 km/s and 220 km/s. Bottom: Eigenvalues of
the pressure tensor (same interval as in the red dashed square of Fig. 8.c). The four colored boxes are used
to distinguish the four time intervals.

direction, denoted as g, around which the rotated matrix could be rewritten as follows:580


P2 0 0
0 P1 0
0 0 P1

 (8.2)

To achieve this, we employ a minimization algorithm to derive the rotation matrix M that allows581

us to put the pressure tensor data under a form as close as possible to this one. Results from this582

study are shown in Fig. 10 (here shown for MMS2). Panel a displays the variation of P1 and P2583

along the crossing, where P2 consistently exceeds P1. In addition, we imposed an upper limit on584

the temporal variation of the gyrotropic direction g, excluding points with significant temporal585

variations (indicated by the thin line). Consequently, the remaining points reflect instances where586

the direction of g can be considered as stable and reliable. The vector g itself is represented in587

panels b and c, where it is clear that the direction of gyrotropy is not close to the magnetic588

field direction: it is close to nmean × B, the component along B being smaller and varying. This589

result reminds us that at boundaries such as the magnetopause, the strong gradients can break590

the isotropy as much, and even more here, than the magnetic field, so that gyrotropy can be591

around another vector than B. A similar remark had already been made in Belmont et al. (2012)592

concerning the modeling of a tangential discontinuity.593

9. Dataset selection594

In order to expand the results on a statistical basis, we selected a dataset of 146 crossings,595

chosen from the largest one reported in Nguyen et al. (2022) and Michotte De Welle et al. (2022).596

From this database, the following conditions were required in order to carry out an accurate597

study:598

(i) MMS data are in burst mode.599
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Figure 10. (a): Evolution of parameters P1 and P2. (b) and (c): projections of the gyrotropy direction in two
planes. The ordinate is the direction of B, the abscissa is the direction of nmean × B for panel (b) and nmean
for panel (c).

(ii) The crossing duration is between 3 and 15 seconds. Too short crossings do not have a sufficient600

number of points within the structure (ion measurements are every 0.15 s). Too long crossings601

may imply non-stationary structures.602

(iii) Partial crossings are discarded. For that, we impose a density threshold less than 4 cm−3 in603

the magnetosphere and larger than 15 cm−3 in the magnetosheath.604

(iv) Only cases presenting simultaneous crossing features in particles and magnetic field are605

considered, in order to compare normals computed at the same time.606

In addition to these basic requirements, we also excluded some of the selected crossings for607

criteria that demand a more detailed analysis of the internal structure of the boundary. First,608

we excluded two-dimensional features. The quantitative determination of the dimensionality609

was done with the parameters presented in Rezeau et al. (2018) and the dimensionality index610

presented in Section 5.2, which are functions of the ratio between the eigenvalues of the gradient611

matrix. Namely, we considered only crossings with D1 > 0.9 and DGF2 > 0.8 , these two612

parameters being averaged on the crossing interval. These parameters are calculated at each time613
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Figure 11. Spatial distribution of the selected database of crossings on the x, y (top) and x, z planes
(bottom). The dashed grey lines represent the magnetopause location (Shue et al. 1997).

step but, due to waves and turbulence, attention must be paid that some of these two-dimensional614

features can be only local and insignificant for the profiles we are looking for. It is the reason615

why we use only the averaged values. The 146 selected crossings span from September 2015 to616

December 2017 (included). We can observe in Figure 11 that the crossings are evenly distributed617

in the x, y plane. Regarding the z component, there is a prevalence of cases at negative z.618

The list of crossings can be found in Supplementary Materials. For each crossing, the619

classification and the physical quantities relevant for the study (normals, dimensionality index,620

non-gyrotropy index, and the main characteristic lengths discussed above for the case crossing)621

are included.622

10. Statistical study of the magnetic hodograms623

The previous results about the role of the FLR effects at the magnetopause are now carried out624

statistically. This study aims to generalize the results obtained from the case crossing studied in625

the previous section and to estimate the role played by FLRs at the magnetopause.626

The database described above has first been used to perform a statistical study on the hodogram627

shapes, to determine how often linear hodograms are observed in magnetopause crossing. Having628

an estimation of the percentage of crossings that do not conform to CTD allows us to gauge how629

frequently the assumptions made by this theory do not accurately represent the magnetopause.630
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For this purpose, we separate the crossings in different classes, this classification being based on631

CTD distinctions and on the preceding findings:632

(i) Linear crossings, i.e. straight lines not passing through the origin as in the above case study.633

(ii) Radial crossings, including all linear crossings whose best fit line passes through the origin634

(considering uncertainty). These crossings correspond to CTD compressional discontinuities.635

(iii) Circular crossings, when the distance from the origin is constant. These cases correspond to636

CTD rotational discontinuities.637

(iv) Other crossings, whose features are not included in the previous classes. This class includes638

crossings with various features, e.g. circular hodograms not centered on the origin, crossing639

characterised by two different hodograms in two sub-intervals, etc., and crossings that do not640

have an obvious distinction between the previous classes, due to noise.641

To classify each crossing, we only focus on its central time interval, where the gradients642

are maximum. By considering larger time intervals, the hodograms’ shape becomes more643

complex because the variations out of this interval are generally unrelated to the main boundary644

jumps. Selecting only the middle part of the crossing provides simpler and more conformal645

hodograms. Even if the boundary jumps are not fully completed in this part, this will not prevent646

comparing the experimental results with CTD predictions since this theory, when valid, is647

based on conservation laws for any sub-interval of the discontinuity. When this theory fails to648

reproduce the observed properties, we can interpret those new features as coming from kinetic649

effects, therefore confirming the limitation of CTD to describe the magnetopause boundary. To650

that purpose, for each dataset we selected the crossing temporal interval following the algorithm651

used in Haaland et al. (2004, 2014) and Paschmann et al. (2018b) to estimate the spatial scale of652

the magnetopause (intervals are identified as 75% of the magnetic field BL component variation).653

The classification performed here differs from previous attempts to classify magnetopause654

hodograms, as seen in studies such as Sonnerup & Ledley (1974); Berchem & Russell (1982)655

and Panov et al. (2011). In these previous works, hodograms were categorized as C-shaped656

or S-shaped based on their form in the tangential plane. However, unlike those studies, we657

considered the central part of the crossing, rather than considering the entire temporal interval.658

Our classification of hodograms involves a two-step process:659

(1) Visual Inspection: Initially, all hodograms are visually inspected to identify the cases that660

are clearly not linear or circular, which are classified separately as ’Others’. Additionally, a661

preliminary distinction is made between crossings with circular and linear features.662

(2.a) Analysis of hodograms with possible circular features: For these crossings, we analyze663

the variation of the modulus of the magnetic field in the plane, allowing for a maximum664

possible variation of 20%. This accounts for factors such as turbulence and waves propagating665

alongside the magnetopause. Any crossings exceeding this 20% threshold are categorized as666

’Others.’667

(2.b) Analysis of hodograms with possible linear or radial features: These crossings undergo an668

initial assessment to confirm their linearity. This involves examining the width-to-length ratio669

of the crossing, with any ratio exceeding 20% classified as ’Other.’ Finally, the remaining670

crossings are classified as either radial or linear based on whether their projection passes671

through the origin.672

From this database, we found the following distribution:673

- 36.3% (53/146) of the crossings present linear features.674

- 2.7% (4/146) of the crossings present circular features (rotational discontinuity).675

- 15.8% (23/146) of the crossings present radial features (compressional discontinuity).676
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- 45.2% (66/146) of the crossings could not be interpreted definitely as either of the three before677

(presenting more than one feature at the same time).678

It follows that more than a third of the selected crossings show linear features, emphasizing679

that the fundamental role FLR effects have on magnetopause structure is found in a significant680

number of crossings.681

It could be interesting to compare the above results with the several classifications that were682

previously published (see Liu et al. (2022) and references therein). These previous classifications683

were not based on the analysis of the rotational and compressional properties as done here, but684

on the normal component of the magnetic field and its magnitude (background and variation)685

(Smith 1973; Burlaga et al. 1977; Tsurutani & Smith 1979; Neugebauer et al. 2010). For such a686

comparison, however, one should take care that there are important differences in the definitions:687

in these previous classifications in particular, any discontinuity is named "tangential", whatever688

its other properties, as soon as the measured Bn is sufficiently smaller than B, the threshold for689

this ratio being for instance of the order of 0.3 (Liu et al. 2022; Smith 1973; Burlaga et al. 1977;690

Tsurutani & Smith 1979; Neugebauer et al. 2010). This is of course a very different approach691

from the one we use here since, even when Bn is small (and even if barely measurable), we692

consider that different kinds of discontinuities exist, with different properties.693

As done for the case study above, it was possible to study on a statistical basis i) the ratio694

between the width of the magnetopause and the ion Larmor radius and ii) the non-gyrotropy695

index. For both parameters, the case study appears rather typical. On average, the magnetopause696

was found to be approximately 6.5 times the ion Larmor radius, only slightly smaller (6.1) for697

linear hodograms. Similarly, the non-gyrotropy index Dng,⊥, has an average value of 0.07, only698

slightly higher (0.08) for linear hodograms. The Dng,Aunai index has even comparable averages for699

the four different classes. It therefore seems that, although non gyrotropy has been demonstrated700

above to play an important role, the non-gyrotropy index alone is not decisive for predicting701

unequivocally the shape of the hodograms. This question should be the subject of future works.702

11. A comparison between the magnetic and the particles normals703

For each crossing, both the magnetic and the particles normals were computed with the704

GF2 tool. Thanks to the high resolution of the MMS measurements, we can measure the local705

fluctuations of the normals inside the magnetopause around their mean values. However, in order706

to compare the magnetic and ion geometries, a single average normal was used for each case.707

The mean normal is obtained inside the same time interval as in the previous study.708

To study the differences between the two normals, we compared them via their departure from709

the Shue model’s normal (where the magnetopause is assumed to be a paraboloid, (Shue et al.710

1997)). This normal was obtained using the solar wind and IMF properties from the OMNI data711

set (King & Papitashvili 2005). The time delay between the crossing time and the measurement712

time of the solar wind relevant parameters is estimated by using the propagation method used713

in Michotte De Welle et al. (2022) (which was adapted from Šafránková et al. (2002)). The714

procedure for acquiring these parameters is as follows: i) the distance from the bow shock’s nose715

(where OMNI data are defined) to the crossing location, projected along the Earth-Sun axis,716

is estimated; ii) we estimate the solar wind’s propagation time (test) between these two points,717

assuming an average solar wind velocity of 400 km/s; iii) the solar wind velocity Vsw is then718

determined from the OMNI dataset, averaging over a 2-minute interval centered on the crossing719

time adjusted by the time delay test; and (IV) ultimately, a final time delay is computed based on720

Vsw, which is subsequently utilized to obtain final values of solar wind and IMF parameters. The721

crossings for which OMNI data computed with this procedure are missing (10 out of 146) were722

left out of this analysis.723
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Figure 12. (a) Comparison between the angle between the theoretical normal (Shue et al. 1997) and the
magnetic and ion normals, (b) Distribution of the angle between the magnetic and ion normals. Here the the
markers for each point is chosen depending on whether each crossing respects the criteria on dimensionality,
stationarity, and normal variance on the ions flux measurements (see Appendix C for further details). Colors
in the histograms are used accordingly. Blue, green and yellow points indicate the crossing with small
variance on the ions normal direction within the crossing, good one-dimensionality and good stationarity.
Black points indicate the crossings respecting all criteria, red points not any criteria.

In Figure 12.a, we plot the angle between the nominal normal and the magnetic and particles724

normals respectively. In this figure we observe that most of the crossings are along the diagonal,725

corresponding to cases where the two normals, ionic and magnetic, are similar (82 points out of726

146 are between the two thin lines, which indicate differences of ±10o).727

The cases are distributed throughout the plane, with many cases above 40o, although we728

observe a cluster at lower angles, between zero and 30o. The largest angles correspond to a729

magnetopause very far from the paraboloid shape assumed in Shue’s model, which relies on the730
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assumption of a magnetopause at (or near) equilibrium. The departures are likely to be related to731

surface waves on the boundary itself.732

Finally, the distribution of the angles between the two normals is shown in Fig. 12.b. Here we733

evidence again that most of the cases studied (82 out of 146) are below 20o, with the maximum734

of the distribution at 10o. However, we also observe again that several cases have much larger735

angles, up to 90o. The strongest departures are problematic and deserve further investigation.736

This appears to be due to the more complex ion structure with respect to the magnetic one. As the737

criteria used for the dataset selection were built from magnetic data, they are not as relevant when738

considering ion normals. This is evidenced in Figure 12, where the colors indicate how several739

ion criteria are satisfied. These criteria concern respectively the dimensionality, the stationarity,740

and the variance of the normal direction. All details are given in Appendix C. Focusing on points741

respecting all the criteria for the ions flux (black markers and hodogram), we observe that only a742

few crossings are outside the diagonal. Only two of these crossings have angles above 40o.743

12. Conclusions744

The study of the properties of the magnetopause is a very important issue for understanding745

the penetration of the solar wind plasma into the magnetosphere. In the theoretical part, we746

show that the notion of "quasi-tangential" discontinuity has to be introduced to complete the747

theory of discontinuities and understand the limit when the crossing fluxes tend to zero as in748

the magnetopause case. We emphasize that, in presence of anisotropy, the physical processes749

occurring inside the layer play a fundamental role because they are responsible for the conditions750

linking the downstream and upstream quantities. In particular, for thin current layers, the FLR751

corrections corresponding to the non-gyrotropic pressure tensor components must be taken into752

account.753

The tool GF2 presented in the paper and used for determining the normal direction to the754

boundary derives from the MDD method. It includes in addition a fitting procedure, which allows755

introducing a part of the temporal information via a 4-point filtering of the data and adding756

constraints such as ∇ · B = 0. It is shown here to provide results quite compatible with the757

original method (when used with smoothed data), which is enough for drawing reliable physical758

conclusions on the magnetopause equilibrium. We expect that this approach could bring more759

precise information concerning the magnetopause gradients. Unfortunately, investigating this760

point in more detail cannot be done using MMS data but requires testing the tool in fully 3D761

kinetic simulations with realistic turbulence. This point is the subject of future work. Here, we762

have applied this tool on a particular crossing case and compared with other state-of-the-art763

normals. We have shown that the local normal (at each time step during the crossing) differs by764

less than ten degrees from the one calculated by all the other models. When averaging over the765

whole crossing, the normal obtained with the GF2 is even less than one degree apart from the766

normals from Shi et al. (2005); Denton et al. (2018).767

Although we cannot claim to have achieved the ideal accuracy of about one degree, the reached768

accuracy is sufficient to evidence the correct physics at play, resumed as FLR effects. We have769

presented the results for a crossing observed by the four MMS spacecraft. For this crossing,770

the "linear" hodogram in the tangential plane shows that the boundary properties differ from771

those predicted by CTD. This discrepancy is explained by looking at the tangential components772

of the momentum equation, which highlights the role of the pressure tensor symmetries in the773

magnetopause equilibrium. This result agrees with the theoretical results of the first part and it is774

likely to hold more generally for all quasi-tangential discontinuities. The ion pressure tensor has775

been analyzed for this purpose. We have used two indices of non-gyrotropy, which both confirm776

the presence of a significant, even if small, non-gyrotropic part in this tensor. Furthermore,777

we have shown that the non-gyrotropy direction differs from the magnetic field one, aligning778
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approximately with the nmean × B direction. Finally, the analysis of the VDFs directly confirms779

the presence of non-gyrotropic distributions.780

To show that our methodology applies to cases that CTD cannot handle, we have selected a781

substantial number of magnetopause crossings with one-dimensional characteristics to have a782

proper statistical basis for our findings. For all these crossings, we have plotted the hodogram783

of the magnetic field in the tangential plane and classified them depending on their geometry.784

Our results show that 36.3% of the crossings evidence clear linear features, incompatible with785

the CTD description, while only 18.5% of the crossings show either circular or radial hodograms786

as predicted by CTD. In other words, a significant number of cases escapes the classic theory,787

proving that the relevance, even if not a predominance, of FLR effects at the magnetopause can788

be generalized and that the case crossing presented in the first section is rather typical. It is well-789

known that the linear version of the rotational discontinuity is the MHD shear Alfvén wave. Here790

it appears that the magnetopause-like "quasi-tangential" discontinuities correspond in the same791

way to the quasi-perpendicular "Kinetic Alfvén Waves" (Hasegawa & Uberoi 1982; Belmont &792

Rezeau 1987; Cramer 2001).793

Several papers have investigated the changes in rotational discontinuities when various non-794

ideal effects are introduced. These theoretical papers have addressed the problem as a Riemann795

problem using the methodology of a "piston" to study the formation of different discontinuities.796

Some introduced FLRs and gyroviscosity in the layer while assuming isotropy on both sides797

(Lyu & Kan 1989; Hau & Sonnerup 1991), and others introduced anisotropy everywhere while798

assuming gyrotropy in the layer (Hau & Wang 2016). These different papers lead to different799

conclusions; in particular concerning the role of electron inertia in the layer equilibrium.800

It is worth noticing that the hodograms of B obtained with these theoretical studies were never801

far from circular ones, contrary to the almost linear shapes shown in the present paper. Our802

methodology has been different here: without assuming pre-defined forms for the non-ideal803

terms, we look experimentally to the hodograms and the form of the P tensor and explain804

theoretically how the second can explain the first ones.805

Finally, we have used the same database of crossings to compare the geometric properties806

of the magnetic and ion structures. We have compared the normal obtained from the magnetic807

field and the ion flux measurements to the one expected from Shue et al. (1997) model. Many808

crossings differ by more than 40 degrees from the nominal equilibrium condition, underlining a809

very dynamical environment, but it is worth noticing that the two kinds of determination are most810

often in agreement with each other, and therefore confirm the result. Furthermore, an accurate811

study of the ion flux measurements have shown that crossings showing bigger discrepancies812

between the magnetic field and ion flux normals are generally due to non-stationarities, non-one-813

dimensionality, or variations in the ion flux normals. When excluding these cases from the study,814

the ion and magnetic flux normals are compatible with only two crossings (over 77) showing815

angles larger than forty degrees.816
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Figure 13. Terms of the momentum equation (units of 10−15kg m/s2), projected on the local tangential
direction (t1). Shaded regions are estimated uncertainties of the divergence of the pressure (red), the J × B
(blue) and the classic inertial term (green).

Appendix A. Influence of averaging the t1 direction in the momentum equation824

balance825

In this section, we investigate the impact of using an averaged tangential direction along the826

crossing on the outcomes concerning the role of the pressure tensor in the momentum equation.827

In Fig. 13 we show the projection of the terms of the momentum equation along the local t1828

direction (i.e. without averaging). We observe here some reversals of the sign of the dominant829

terms, that were not observed in the averaged case. Nonetheless, it is still evident that the pressure830

tensor counterbalances the J × B term, hereby confirming our earlier findings.831

Appendix B. Analysis of the gyroviscous effects832

In this section, we use the magnetopause crossing analysed in detail above to study the validity833

of the gyroviscous interpretation. In particular, we employ the Braginskii gyroviscosity term834

(Braginskii 1965) as applied by Stasiewicz (1989) to the magnetopause, to analyze the pressure835

tensor. In this case, the pressure tensor is considered as the sum of an isotropic component, Piso836

and a viscosity term, σ:837

Pi = Piso − σ (B 1)

To investigate the viscosity term, we use the reference system where the normal direction is838

aligned with the z-axis (the x and y directions are chosen accordingly to form an orthogonal839

triad). By exploiting the definition of σ, we focus here on its projection along the normal yielding840

the following relation:841

−σ.n =

Pnx

Pny

Pnn

 = ρν


0 bn by

−bn 0 −bx

by −bx 0

 .


u′x
u′y
u′n

 (B 2)

Here ν is the gyroviscosity coefficient, b̂ = (bx, by, bz) the normalized magnetic field, and u′ =842

(u′x, u
′
y, u
′
z) is the vector of the spatial derivatives of the velocity components along the normal.843

We now consider the first two components of this equation, yielding the following expressions844

that allow us to compare the non-diagonal terms with the velocity changes:845

Pnx

ρ
= ν(bnu′y + byu′n) (B 3)
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Figure 14. Left (blue) and right (red) hand sides for Equations B 3 (top) and B 4 (bottom). Thin-dotted lines
correspond to the real-time values while thick lines to an averaged window of 1 s. All terms are normalized.

846

Pny

ρ
= −ν(bnu′x + bxu′n) (B 4)

The terms of these equations are shown (normalized) in Figure 14. Here we observe a fairly good847

correlation between the non-diagonal terms of the pressure tensor and the spatial derivatives of848

the flow velocity.849

Appendix C. Quality indices for the ion normals850

In the absence of additional caution, Figure 12 shows that the angle between the normal851

obtained with the magnetic field and the one with the ion flux reaches very high values, up to 90852

degrees. This result requires a more accurate study, as the criteria used for the dataset selection853

are based on the magnetic field (except for the threshold imposed on the density values).854

To interpret the results accurately, the following parameters were considered:855

(i) Dimensionality of ion flux. For this purpose, we exploit the dimensionality index defined in856

Equation 5.11, computed from the ion flux measurements.857

(ii) Stationarity of the ion flux measurements. To evaluate stationarity, we exploit the GF2 tool.858

Specifically, we consider the quality of the fit of the gradient matrix as an index of stationarity.859

By defining D = Gfit −G we can introduce the stationarity index:860

S =
Tr(D.DT )
Tr(G.GT )

(C 1)

Since for a truly stationary magnetopause, S should be equal to zero, deviations from zero861

suggest potential non-stationarity.862
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Figure 15. Dimensionality (left), stationarity (center), and normal variance (right) averaged for each
crossing as a function of the angle between the magnetic field normal and the ion flux one. Green, blue, and
yellow indicate crossings respecting the DGF2,ions > 0.6, δnorm > 0.07, S > 0.22 criteria individually. Black
dots indicate the crossings for which all the criteria are met, and red dots (two cases) when no condition is
met.

(iii) Variance of the normal. In some crossings of the database, the normal associated with ion863

flux exhibits local differences with respect to the mean value, such as fluctuations or rotations864

within a plane, with one component varying within the crossing. In these cases, the ion flux is865

therefore characterized by more complex structures and the mean normal is not meaningful.866

To exclude such cases, we examined the variation of the normal around the mean value,867

defined as follows:868

δnorm =< |ni − nmean,i|2 > (C 2)

Small values of δnorm indicate almost constant normals.869

The average values of these three parameters for each crossing are shown in Figure 15 as a870

function of the angles between the normal of the magnetic field and the ion flux. We observe871

here that crossings showing the largest angles occur when at least one of these conditions fails.872

To select the cases for which the ions are characterized by a stationary and one-dimensional873

structure, for which the normal has no variations around the mean value, we applied the following874

thresholds: DGF2,ions > 0.6, δnorm > 0.07, S > 0.22. Specifically, crossings individually meeting875

one of these criteria are shown in green, blue, and yellow, respectively. When all criteria are met,876

crossings are indicated by black dots. This Figure underlines a correlation between the difference877

between the two normals and the values of these three parameters, showing how cases with higher878

DGF2,ions and smaller δnorm and S are the ones with smaller differences between the two normals.879

REFERENCES

Abraham-Shrauner, Barbara 1967 Propagation of hydromagnetic waves through an anisotropic plasma.880

Journal of Plasma Physics 1 (3), 361–378.881

Aunai, Nicolas, Hesse, Michael & Kuznetsova, Maria 2013 Electron nongyrotropy in the882

context of collisionless magnetic reconnection. Physics of Plasmas 20 (9), 092903, arXiv:883

https://doi.org/10.1063/1.4820953.884

Aunai, N., Hesse, M., Lavraud, B., Dargent, J. & Smets, R. 2016 Orientation of the X-line in asymmetric885

magnetic reconnection. Journal of Plasma Physics 82 (4), 535820401.886
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ABSTRACT

Context: Mercury presents a highly dynamic, small magnetosphere where magnetic reconnection plays a fundamental role.
Aim: We aim to model the global characteristics of magnetic reconnection in the Hermean environment. In particular, we focus on
waves that have been observed during the third BepiColombo flyby.
Method: In this work, we use two fully kinetic three-dimensional simulations done with the iPIC3D code that models the interaction
of the solar wind with the Hermean magnetosphere. For the simulations, we use southward solar wind conditions that allow maximum
magnetic coupling between the solar wind and the planet.
Results: Our simulations show that a significant wave activity, triggered by magnetic reconnection, develops near the diffusion region
in the magnetotail and propagating at large scale in the night-side magnetosphere. We observe an increase in electron temperature close
to the diffusion region. Specifically, narrowband whistler waves developing near the reconnection region are observed. These waves
propagate nearly parallel to the magnetic field at frequency f ∼ 0.5 fce. The waves, in addition to the electromagnetic component, also
exhibit an electrostatic one. Furthermore, we observe a strong electron temperature anisotropy, suggesting its role as the source of
these waves.

Key words. Mercury, whistler waves, kinetic, magnetosphere, magnetotail, magnetic reconnection, BepiColombo

Introduction

Mercury is the closest planet to the Sun. For this reason, Mer-
cury is one of the least explored planets in the Solar System. The
first in situ measurements of the Mercury environment were per-
formed by the NASA Mariner10 mission in the 1970s, with its
three flybys (Russell et al. 1988). Mariner10 showed that Mer-
cury is - with the Earth - the only telluric planet exhibiting a
significant intrinsic dipolar magnetic field and, consequently, a
magnetosphere (Ness et al. 1974, 1976). Differently from the
Earth, Mercury’s dayside magnetopause is much closer to the
planet, so that its magnetosphere is much smaller. The Hermean
sub-solar standoff distance, also known as the Chapman-Ferraro
distance, is typically located around 1.35−1.55RM from the cen-
ter of the planet (Winslow et al. 2013), while the Earth’s one is
nominally at 10−14RE (Spreiter et al. 1966). The primary knowl-
edge on the Hermean environment acquired by Mariner10 was
then significantly further deepened by the NASA MESSENGER
mission (Solomon & Anderson 2018). During the four years
of orbital observations, the MESSENGER mission evidenced a
highly dynamical plasma environment, caused by the relatively
weak intrinsic magnetic field of Mercury and by the near-Sun,
highly variable solar wind (Raines et al. 2015). The mission ad-
dressed various plasma processes occurring at the global plan-

etary scale (of the order of 2400 km) and down to the kinetic
scales of ions (of the order of 100 km).

Due to the mission’s instrumental constraints, MESSEN-
GER did not investigate the plasma processes occurring at the
electron scale (of the order of 2 km). Moreover, MESSENGER
only observed electrons with energies above ∼ 10 keV, thus ex-
cluding the bulk of the distribution function. The ESA/JAXA
BepiColombo (Benkhoff et al. 2021) mission has been designed
to shed light on the Mercury environment. BepiColombo is com-
posed by two spacecraft (Mercury Planetary Orbiter, named
MPO, and Magnetospheric Orbiter, Mio) equipped with ad-
vanced instruments enabling to measure down to the electron
scale (Milillo et al. 2020). BepiColombo is the first mission able
to provide a simultaneous multi-point measurement of the Mer-
cury environment.

MESSENGER measurements have shown that magnetic re-
connection takes place on both the dayside magnetopause and
nightside magnetotail of Mercury (Slavin et al. 2009; Slavin
et al. 2012; Dibraccio et al. 2013; Slavin et al. 2014; DiBrac-
cio et al. 2015; Slavin et al. 2019). Magnetic reconnection is a
fundamental plasma process over which magnetic field energy
is released via reconfiguration of the field topology. Magnetic
reconnection relies on the formation of a two-layered diffusion
region where the magnetic field breaks and reconnects: the elec-
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tron diffusion region (hereafter EDR) where the frozen-in con-
dition is broken for electrons being there demagnetized, and a
larger ion diffusion region (IDR), encompassing the EDR, where
ions become demagnetized. Theory and modeling have shown
that the thickness of the diffusion region is approximately the in-
ertial length of the corresponding particle (Drake & Kleva 1991;
Mandt et al. 1994; Biskamp et al. 1997; Fujimoto et al. 2011;
Khotyaintsev et al. 2019), while its width being of the order of
ten inertial lengths (Fuselier et al. 2017). MESSENGER mea-
surements have also shown that the Dungey cycle (Dungey 1961)
is at play at the Hermean magnetosphere, as for the Earth (Slavin
et al. 2009; Siscoe et al. 1975). The Dungey cycle consists of a
circulation of plasma, magnetic flux, and energy, starting at the
dayside magnetopause X-line, extending through the cross-tail
current layer to the nightside X-line, and eventually returning to
the dayside magnetosphere.

Magnetic reconnection at Mercury leads to flux transfer
events, plasmoids (Slavin et al. 2009; Slavin et al. 2012; Di-
Braccio et al. 2013) and dipolarization fronts (Sundberg et al.
2012; Imber et al. 2014; Sun et al. 2016). Furthermore, magnetic
reconnection plays a significant role in the magnetotail by caus-
ing the transfer of energy and momentum into the planet’s inner
tail region. This transfer allows for the conversion of magnetic
energy stored in the lobes into kinetic energy within the plasma
sheet. While on the Earth the inner regions of the magnetosphere
are dominated by the rotation of the planet, forming the plasma-
sphere, at Mercury one observes a direct boundary between the
planet surface and the magnetosphere. This implies that at Mer-
cury, magnetic reconnection plays a crucial role not only for the
magnetosphere but also in connecting of all the different subparts
of the system (e.g. exosphere and surface).

An important role in the dynamics of magnetospheric elec-
trons is played by whistler-mode chorus waves (Summers et al.
1998; Thorne et al. 2013; Horne et al. 2008; Woodfield et al.
2019) around magnetized planets. Indeed, via cyclotron reso-
nance, whistler chorus modes are responsible of the accelera-
tion of high energy electrons to relativistic electrons enhancing
the radiation belt electrons (Omura et al. 2015; Allison et al.
2021; Glauert & Horne 2005; Hua et al. 2022, 2023; Summers
et al. 2007; Xiao et al. 2014). Whistler mode waves are elec-
tromagnetic wave emissions that have right-handed polarization
and typical frequencies below the electron gyro frequency. Ob-
servations at the Earth show that chorus waves typically occur
in two distinct frequency bands, a lower-band (0.1–0.5 ωce) and
an upper-band (0.5–0.8 ωce), where ωce represents the equatorial
electron gyro-frequency. Chorus waves propagate quasi-parallel
along the background magnetic field. Whistler waves are thought
to be generated by thermal electrons with temperature anisotropy
(requiring T⊥,e > T∥,e) (Kennel & Petschek 1966; Le Contel et al.
2009; Liu et al. 2011; Yu et al. 2018). Chorus emission have been
observed at the Earth since early in situ observations (Oliven
& Gurnett 1968; Burtis & Helliwell 1969; Lauben et al. 1998;
Horne et al. 2005), but also at Jupiter (Kurth & Gurnett 1991;
Gurnett et al. 1979; Scarf et al. 1979), Saturn (Kurth & Gurnett
1991) and Uranus (Gurnett et al. 1986).

Before the BepiColombo mission, neither the Mariner 10 nor
the MESSENGER spacecraft were equipped with wave instru-
ments able to observe the range of frequencies of chorus waves.
The Mio spacecraft of the BepiColombo mission, instead, car-
ries a suite of experiments dedicated to waves measurements
at Mercury, gathered within the PWI consortium (Kasaba et al.
2020). The electric (resp. magnetic) field measurement capabil-
ities ranges from DC (resp. 0.3 Hz) to 10 MHz (resp. 640 kHz),
therefore including all characteristic plasma frequencies in the

near-Mercury solar wind and in the Hermean magnetosphere. In-
deed, BepiColombo/Mio has already observed evidence of cho-
rus waves during the first two Mercury flybys (Ozaki et al. 2023)
on the 1st October 2021 and the 23rd June 2022, respectively.
This result emphasized that chorus emission waves are ubiqui-
tous in all magnetized planets in our Solar System.

Despite the great importance of spacecraft observations in
the study of magnetospheric dynamics, their inherent limitation
is to show spatially and temporally localized phenomena. Con-
sequently, the comprehensive reconstruction of the temporal se-
quence and global perspective of magnetospheric dynamics ex-
clusively through in situ spacecraft data presents a significant
challenge. Therefore, to study temporally localized phenomena,
numerical simulations are used. In particular, global simulations
can be used to reconstruct the global perspective of the magne-
tosphere. Such simulations enable the interpretation of in situ
measurements within a three-dimensional framework, facilitat-
ing the differentiation between temporal and spatial fluctuations
and thereby enhancing the understanding of magnetospheric dy-
namics. Concerning the study of the whistler-mode chorus waves
in numerical simulations, this has been achieved by local hy-
brid and full kinetic one-dimensional simulations based on ac-
tual magnetospheric conditions in the equatorial plane (Omura
et al. 2008; Hikishima et al. 2009; Nogi et al. 2020; Ozaki et al.
2023). In this study, we perform fully kinetic 3D (also refereed
to as 3D-3V) global numerical simulations of the Hermean envi-
ronment. In other words, the ion and electron distribution func-
tion evolve in the phase space characterized by 3 dimensions in
physical space and velocity space. In particular, we do not im-
pose any ad-hoc hypothesis on the velocity distribution functions
in this model.

To date, most of the global numerical simulations studying
the Hermean environment have been limited to magnetohydro-
dynamic (MHD, Kabin (2000); Ip & Kopp (2002); Yagi et al.
(2010); Pantellini et al. (2015); Jia et al. (2015, 2019)), multi-
fluid and hybrid (i.e. kinetic ions and fluid massless electrons)
models (Benna et al. 2010; Müller et al. 2012; Exner et al. 2018;
Fatemi et al. 2018; Exner et al. 2020). However, such models do
not allow a self-consistent evolution of the electrons but instead
prescribe a given closure that can strongly depart from the ac-
tual electron dynamics in the magnetosphere, in general, and the
magnetotail, in particular. For instance, hybrid models used to
simulate the Mercury magnetosphere use a polytropic closure,
not allowing any electron temperature anisotropy, although it is
known from observation to be a strong source of free energy in
the magnetospheric global system.

Two notables examples of numerical simulations studying
the Mercury environment are Dong et al. (2019) and Chen et al.
(2019). In the former, a ten-moment multifluid model was used
to investigate the physics of magnetotail reconnection. In par-
ticular, they highlighted the asymmetry in hot electrons distri-
butions and the role of the off-diagonal elements of the elec-
tron pressure tensor in the reconnection. The latter consists of
a first attempt to include locally electron kinetic physics in a
global MHD simulation. This model has been used to study the
role of electrons in the magnetotail reconnection region. How-
ever, this model cannot reproduce dynamical processes such as,
for example, the global electron circulation around the planet.
More recently, global full-kinetic numerical simulations of the
Mercury environment have been presented in Lavorenti et al.
(2022) and further analyzed in Lavorenti et al. (2023); Lavorenti
(2023). These simulations focused on the electron dynamics in
Mercury’s magnetosphere.
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In this study, we perform two three-dimensional global
simulations of the Mercury magnetosphere using the iPIC3D
solver (Markidis et al. 2010; Lavorenti et al. 2022). Firstly, we
study the magnetic reconnection happening at the magnetotail.
In particular, we focus on the influence of the magnetic topology
on the spatial distribution of energetic particles. Furthermore, we
observe the creation of narrow-band whistler-mode waves in the
magnetotail, propagating parallel to the magnetic field.

The paper is organized as follows. In Section 1, we present
the simulations set-up and model. In Section 2, we study the
main features of magnetic reconnection as observed in the mag-
netotail, focusing on the influence of the magnetic topology on
the plasma features. In Section 3, finally, the observed whistler
waves are studied, focusing on the dispersion relation and the
electron anisotropy around the reconnection region.

1. Methods

The numerical simulations used in this work to address the dy-
namics of the magnetosphere of Mercury are performed by us-
ing the semi-implicit, fully kinetic particle-in-cell (PIC) code
iPIC3D (Markidis et al. 2010). The code solves the Vlasov-
Maxwell system of equations for both ions and electrons by dis-
cretizing the distribution functions using macro-particles. Here-
after, we use the Mercury-centered Solar Orbital (MSO) refer-
ence frame, defined as follows: the x-axis points from the planet
center to the Sun, the z-axis is anti-parallel to Mercury’s mag-
netic dipole, and the y-axis points from dawn to dusk. In the
simulation, the density and the magnetic field are normalized to
a reference value (here the solar wind) and velocities are normal-
ized to the speed of light. Lengths and times are normalized to
the solar wind ion inertial length (di = c/ωpi = c

√
mi/4πnie2)

and ions plasma frequency (ωpi = c
√

mi/4πnie2), respectively.
The solar wind parameters considered in the simulations are
given in Table 1.

Quantity Value
B0,z 20 nT
ni (= ne) 30 cm−3

Ti (= Te) 21.5 eV
βi 1.3
vsw,x 400 km/s

Table 1. Solar wind parameters for Run1 and Run2. These values are
similar to those used in previous simulations (Lavorenti et al. 2021;
Aizawa et al. 2021), which are considered as representative of solar
wind conditions in the proximity of Mercury at aphelion (James et al.
2017; Sarantos et al. 2007).

The simulations setup includes a uniform, solar-wind
plasma, with a southward magnetic field injected from the sun-
ward direction. Mercury is modeled as a magnetized planet.
MESSENGER observations have revealed a Parker spiral angle
at Mercury of approximately ±35o (James et al. 2017). However,
in our model, we choose to consider a purely southward Inter-
planetary Magnetic Field (IMF). Although we acknowledge that
this is not entirely representative of the average IMF conditions
at Mercury, our choice comes from the fact that such configura-
tion enables the maximum magnetic coupling between the solar
wind and the planet and has been shown to be particularly fa-
vorable to enhance the energy injection from the solar wind to
the magnetosphere through dayside magnetic reconnection at the
nose of the magnetopause Lavorenti et al. (2022). Since strong
variations in magnitude and direction of the IMF are observed

in the inner solar wind, it is likely that IMF configurations that
are southward-like would occur at Mercury. Such IMF variations
are typically observed at Mercury on timescales of tens of min-
utes Cuesta et al. (2022), i.e. on timescales larger than that of
the fast global reconfiguration of the Hermean magnetosphere,
one would therefore expect a quasi-steady-state response of the
magnetosphere. As demonstrated by observations (Slavin 2004;
Slavin et al. 2012) and numerical simulations (Ip & Kopp 2002;
Kallio & Janhunen 2003, 2004; Exner 2021), the direction of the
IMF is one of the main parameters in determining the topology
of the magnetosphere.

For practical numerical reasons, Mercury’s size is scaled-
down by a factor 10. The planet rescaling approach has been in-
tensively adopted in past works (Lapenta et al. 2022; Trávníček
et al. 2007, 2009, 2010) to enable multi-scale numerical compu-
tations. Consequently, in the reported simulations, the radius of
Mercury is rescaled to RM = 5.5di. We have reduced the ion-
to-electron mass ratio mi /me = 100 and the electron plasma-
to-cyclotron frequency ratio ωpe /ωce = 17.8. These rescalings
are the same as those chosen and discussed in (Lavorenti et al.
2022). As demonstrated in Lavorenti (2023), this scaling-down
of the planet preserves the correct global magnetosphere struc-
ture and dynamics.

We use a spatial grid spacing dx = dy = dz = 0.015RM = 1.5
ρe (RM = 100ρe), where ρe = cTeme/eB0 is the electron gyro-
radius in the solar wind. We use a time step dt = 1.4 ms, much
smaller than the electron gyro-period in the solar wind (τce =
2π/ωce= 31.5 ms). We initialize 64 macroparticles per cell (ppc)
for both (electron and ion) species. We want to stress here that,
while this number of ppc allows to well reproduce the physics at
play, the associated numerical noise fails to satisfactorily model
the non-diagonal terms of pressure tensor, i.e. agyrotropy (Scud-
der & Daughton 2008). For this reason, we will not analyze
the role of the off-diagonal terms in the pressure tensor in mag-
netic reconnection. The total time length of the simulation is 11
RM/vsw,x. In order to avoid any transients due to the initialization
of the simulation, we wait until a dynamic equilibrium is reached
to study the reconnection, typically after ∼ 2RM/vsw,x.

The first and main simulation, hereafter referred to as Run1,
exploits the same plasma parameters as in Lavorenti et al.
(2022). Differently from the original, we increased the output
frequency in order to have a higher resolution to study the evolu-
tion of both the magnetic reconnection and the waves. Concern-
ing the boundary conditions, we remove all the macro-particles
falling into the planet.

The second simulation, hereafter referred to as Run2, was
run to study how the observed wave features are influenced by
the planet radius scaling adopted in Run1. In particular, a smaller
planet with a radius of RM,2 = 2.75di is used (while RM = 5.5di
for Run1). For this simulation, the magnetic field dipole is there-
fore also rescaled according to the smaller planet radius so that
the magnetic field at the planet’s surface is kept equal to that of
Run1. This choice ensures that the pressure balance between the
magnetic pressure - associated with the planet’s magnetic field -
and the solar wind dynamical pressure leads to the same magne-
topause distance (in terms of planet radius) in both simulations
Run1 and Run2. Note that the magnetopause distance is chosen
to be about 1.5 planet radius, in accordance with MESSENGER
observations at Mercury. In this paper, all figures show results
from Run1. The analysis of Run2 is nevertheless necessary to
properly identify which properties remain unaffected by the scal-
ing of the planet size, and therefore assess the influence of such
a (numerical) rescaling on the (physical) results we report in this
paper.

Article number, page 3 of 10



A&A proofs: manuscript no. output

Fig. 1. Overview of the structure of the magnetosphere in Run1, on the meridian plane (top) and equatorial plane (bottom). On the left, the module
of the magnetic field and, on the right, the ion density. Both quantities are computed at time t = 11RM/vsw,x.

2. Magnetic reconnection in the magnetotail

In Run1 and Run2 magnetic reconnection occurs at the magne-
totail and at the nose of the magnetopause. Here we focus on
magnetotail reconnection.

Fig. 1 shows at the end of the simulation, t = 11RM/vsw,x,
an overview of the structure of the resulting magnetosphere for
Run1. The figure shows the topology of the magnetic field lines
in the equatorial plane. The location of the reconnection region
is in agreement with the one from past observations (Poh et al.
2017). From MESSENGER observations, indeed, the typical po-
sition xMS M of the reconnection point was found between -1.4 to
-2.6 RM . The first signatures of magnetic reconnection are ob-
served after a time t ∼ 2.5RM/vsw,x mainly in the grey rectangu-
lar box in Fig. 1 and displayed in Fig. 2. We observe the typi-
cal quadrupolar out of plane magnetic field, frame (e). We also
observe ions and electrons outward escaping jets, both in the re-

connection plane, frame ( f and g), and in the equatorial plane,
frame (b and c). These quantities are shown at t = 3RM/vsw,x,
before the onset of whistler wave generation (discussed in Sec-
tion 3) in order to better highlight the main features of magnetic
reconnection, without overlapping with the wave signatures. Fo-
cusing on the equatorial plane, we see that these jets, particularly
for ions, are spread all along the reversal line (observed in frame
(a)), emphasizing the presence of an X-line in the magnetotail.
We observe, as expected, an enhancement of the E ·J quantity in
the region where magnetic reconnection occurs (frame d and h).

As a first step, we study how the topology of the magnetic
field lines affects the spatial distribution of the electrons. We
split the domain according to the magnetic topology: those cor-
responding to magnetic field lines closed at both ends on the
planet; those closed at one end; and finally the magnetically open
ones. For each of these regions, we look at the distribution of
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Fig. 2. Overview of the diffusion regions in Run1. From left to right, the out of plane magnetic field component, the ion velocity, electron velocity
and J · E, on the equatorial plane (top) and meridian (bottom). All quantities are computed at t = 3RM/vsw,x.

electrons as a function of temperature. After the onset of mag-
netic reconnection at t ∼ 2RM/vsw,x, an increase of electron en-
ergy is observed. High energy electrons, initially equally spread
in the three topological regions are eventually only visible, be-
cause trapped, in magnetic closed regions. In Fig. 3 we show the
distribution of electrons for temperatures greater than 100 eV
(top) and 1 keV (bottom), in the reconnection meridian plane,
averaging along the out-of-plane direction, at t = 11RM/vsw,x.
The figure has been realized by plotting the number of cells with
electron temperature over the considered threshold.

We observe that, for energies below 1 KeV, electrons are
almost equally distributed in the three different regions (sub-
plots a, b and c). Considering energetic electrons (with temper-
atures over the Kev) they are only found in regions with mag-
netic field lines closed on the planet (d), while no energetic elec-
trons are observed in regions with one-side (e) or completely
open ( f ) magnetic field. These results indicate a clear link be-
tween magnetic topology and electron energy distribution. This
can be explained by the fact that energetic particles stay trapped
in the closed regions, while those in open field regions (also on
just one side) escape the simulation domain, and therefore the
planetary environment. Moreover, in Fig. 4 we show the dis-
tribution of electrons trapped in the closed magnetic field re-
gions, for energies above 100 eV (a) and 1 KeV (b). In Fig.4,
we observe an asymmetry between positive and negative y, in
both energy ranges. Concerning the region behind the planet for
−2 < x < −4, we observe that this asymmetry aligns with the
density asymmetry that is also observed in Fig.1. Specifically,

lower particle densities are observed for negative y (see the dawn
side of the magnetosphere, local time around 6h). This results
is consistent with what was previously observed and discussed
in Lavorenti et al. (2022) on the role of the loss-cone mecha-
nism creating inhomogeneous distribution of high energy elec-
trons inside the magnetosphere of Mercury. The evolution of the
distribution in this plane can be observed in Video 1 (attached in
Supplementary material).

3. Whistler-mode waves in the magnetotail

On top of the magnetic reconnection dynamics, after t ∼
4RM/vsw,x we observe waves developing nearby the X-point re-
gion in the magnetotail. These waves, observed until the end of
the simulation, exhibit a narrow-band shape in the magnetic and
electric fields, as well as in the electron current. In Fig. 5 we
show in the x, z plane the magnetic field and perpendicular elec-
tric field (with respect to the magnetic field) fluctuations. The
figure zooms at around the diffusion region where the waves are
more intense and we over-plot the magnetic field lines to high-
light the parallel propagation of the waves. These waves of rel-
atively large amplitude originate from the diffusion region and
propagate nearly parallel to the magnetic field, mainly along the
separatrices, as shown in Fig. 5. The formation region and prop-
agation direction of the waves can be even better observed in
Video 2 (see Supplementary material). These waves, in addi-
tion to the electromagnetic component, are also characterised by
the presence of a strong electrostatic component E∥ and paral-
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Fig. 3. Histograms of the number of cells in Run1 for which the electron temperature is above 100 eV (top) and 1 KeV (bottom), in the meridian
plane, averaging along the out-of-plane direction, in the magnetic field region closed with the planet (left), open with respect to the planet (right)
and with one open and one closed extremity (center), in the meridian plane, averaging along the out-of-plane direction. Quantities computed at at
t = 11RM/vsw,x.

Fig. 4. Histograms of the number of cells in Run1 for which the elec-
tron temperature is above 100 eV (top) and 1 KeV (bottom), in the
reconnection equatorial plane, averaging along the z direction, in the
magnetic field region closed with the planet. Quantities computed at at
t = 11RM/vsw,x.

Fig. 5. Magnetic field (a) and electric field (b, perpendicular to the mag-
netic field) wave components, for t ∼ 11RM/vsw,x. Waves are in the
plane at y = −0.5RM , where the waves features are more clear. Wave
components are obtained by subtracting the mean field for both. Black
lines are the magnetic field lines.

lel electron current, as shown in Fig. 6. We also observe a small
wave component in the ions current, albeit significantly smaller
in magnitude.

In order to identify the mode, we have studied its polariza-
tion and dispersion relation. Concerning the polarization, these
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Fig. 6. Parallel electron current (a) and electric field (b) wave compo-
nents, for t ∼ 11RM/vsw,x. Waves are in the plane at y = −0.5RM , where
the waves features are clearer. Black lines are the magnetic field lines.

waves present a clear right-hand polarization. This is shown in
Fig. 7, where we draw the hodogram in the perpendicular plane
assuming the wave-vector as exactly parallel to the mean mag-
netic field. Concerning the dispersion relation, we collected the

Fig. 7. Hodogram of the magnetic field components orthogonal to the
wave vector B (assumed completely parallel to the magnetic field), at
x = −2RM and z = −0.4RM . Each point correspond to a different time-
step, with a cadence of 0.5ω−1

pi,sw ∼ 0.1ω−1
pi,loc. Quantities are computed

at at t ∼ 11RM/vsw,x.

outputs with a time step of 0.5ω−1
pi,sw ∼ 0.1ω−1

pi,loc in order to well
resolve the wave oscillation. Here, the sw and loc indices mean
that the frequencies are computed in solar wind and locally av-

eraged units, respectively. We observe narrow-band mode has a
wave-vector kdi,loc ∼ 14 and an angular velocity ω ∼ 0.5ωce,loc,
where di is the ion inertial length and ωce is the electron cy-
clotron frequency. Quantities in local unities are obtained by
averaging the density and the magnetic field in the region over
which the dispersion relation is computed. The range of frequen-
cies and features proper of the mode correspond well to whistler
waves.

Fig. 8. Amplitude of the Fourier transform in both space and time of
the observed waves compared with the theoretical dispersion relation
for whistler waves (Eq. 1). Quantities computed at t ∼ 11RM/vsw,x.

In Fig. 8 where we draw the dispersion relation of the mode
obtained by a Fourier transform in space and time. In this figure,
we over-plot the dispersion relation for a whistler-mode wave
propagating along the magnetic field in a cold plasma (Stix 1992;
Omura et al. 2008):

c2k2 = ω2 +
ωω2

pe

ωce − ω (1)

We conclude that the observed mode is compatible with the
whistler waves’ dispersion relation.

In order to better understand the nature of these waves, we
have investigated the electron anisotropy being electron temper-
ature anisotropy a possible driver of whistler instability. In par-
ticular, the following condition is required (Kennel & Petschek
1966):

Te,⊥
Te,∥
− 1 >

( |ωce|
ω
− 1
)−1

(2)

Fig. 9 shows the electron anisotropy (to which the wave con-
tour is superimposed). In the figure the red regions correspond
to those where the condition in Eq. 2 is met. We observe that the
threshold in Eq. 2 is reached locally around the reconnection re-
gion and closer to the planet. From Fig. 9, it is also seen that far
from the reconnection region and along the separatrices, where
the waves propagate, the parallel electron temperature is higher
than the perpendicular one. As a result the waves are likely to
be generated by the electron temperature anisotropy in the re-
connection region. Interestingly, we observe that Te,∥ > Te,⊥
along the separatrices and further from the reconnection plane.
Wondering about a possible nonlinear feedback of the gener-
ated whistler waves on a reduction of the electron temperature
anisotropy, we compare the electron parallel thermal velocity
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Fig. 9. Electron temperature anisotropy in the meridian plane, for t ∼
11RM/vsw,x. Black lines are the contour plot of the waves, to indicate
waves’ location. Red regions indicate where the condition in Eq. 2 is
met.

with the whistler wave phase velocity. We observe that they dif-
fer by about two orders of magnitude. For this reason, we ex-
clude the possibility that the parallel temperature increase along
the separatrices is due to wave-particle interactions with the ob-
served whistler waves. Instead, it is rather likely due to other
processes within the diffusion region, such as, e.g. electron par-
allel acceleration known to generate electron beams along the
separatrices.

4. Discussion

In this study, we have presented two global numerical simula-
tions of the Hermean magnetospheric environment. In particu-
lar, we have focused on magnetic reconnection at the magneto-
tail and its consequences on the energetic electron distribution.
Moreover, around the diffusion region, waves at electron scales
develop and propagate nearly parallel to the magnetic field.

First, we observe that magnetic reconnection in the magne-
totail increases the electron temperature around the diffusion re-
gion. After reconnection onset, electrons below 1 keV are ob-
served both in regions with open and closed magnetic field lines.
Energetic electrons with energy above 1 KeV are instead only
observed in regions with closed magnetic field lines since non
trapped electrons exit the simulation domain.

Second, the simulation reveals the presence of narrow-band
whistler-mode waves in the magnetotail. These waves originate
at the nightside reconnection site and propagate parallel to the
magnetic field. Electron anisotropy has been identified to be the
source of these waves. Furthermore, the region where the waves
develop and propagate is characterized by an inhomogeneous
plasma, with density and magnetic field magnitude varying by
almost an order of magnitude. This strongly supports the no-
tion that the background magnetic inhomogeneity plays a piv-
otal role in the generation process of planetary whistler waves,
in agreement with the simulations modeling Mercury’s environ-
ment (Omura et al. 2008; Hikishima et al. 2009; Omura et al.
2015; Ozaki et al. 2023). The results shown in this work will be
of crucial importance to interpret plasma waves observations by
BepiColombo PWI instrument during the science phase.

It is worth discussing the possible role of the northward-
shifted magnetic dipole of Mercury, observed from MESSEN-
GER (Anderson et al. 2012), in the generation of the whistler
waves we observe in the tail. In the specific numerical simulation

reported in this paper, we do not use any shifted magnetic dipole
moment. We have also run complementary numerical simula-
tions that include the shift in Mercury’s magnetic dipole mo-
ment. The same waves as those reported here are observed in
those simulations that include a dipole offset. Therefore, the ex-
istence of these waves near the reconnection point is found to
be a general feature common to all mini-magnetospheres, rather
than being specific to Mercury. Therefore, the results reported in
this work extend beyond the study of planet Mercury.

Whistler-mode chorus waves have been observed during the
two flybys at Mercury by BepiColombo (Ozaki et al. 2023). As
discussed in this paper, obtaining a comprehensive global map of
chorus waves on Mercury holds significant importance in com-
prehending the energetic electron loss mechanisms. In particu-
lar, our results may provide an early example of the distribution
of such waves in the magnetotail. The location of the waves is
shown in Fig.10. Our results indicate that the waves propagate
within low altitudes from the equatorial plane, at altitudes rang-
ing from -1 to 1 RM , and that they are spread almost symmet-
rically with respect to the magnetic equatorial plane even if a
bit more distributed dawnside. Nonetheless, BepiColombo mea-
surements show the presence of whistler waves on the dawn side
of Mercury, while they still have to be observed in the magne-
totail region. In this study, we have considered only a purely
southward IMF. To achieve a more comprehensive distribution
map of such waves, it might be beneficial to investigate in the
future how the location and the amplitude of these waves could
be influenced by the upstream solar wind properties, especially
the IMF direction.

One of the characteristics of narrow-band whistler waves
(i.e. chorus) from observations and theory is "chirping", consist-
ing in the variation of the center frequency of the narrow-band
wave as a function of time (Burtis & Helliwell 1969; Tsurutani
& Smith 1974). In our simulations, however, this phenomenon
is not observed. We do not know whether this is due to an ab-
sence of the phenomenon itself or to the total integration time
of the simulation (because of computational reasons) not suffi-
cient to let the chirping mechanism develop. Therefore we refer
to the observed waves as narrow-band whistler waves. Nonethe-
less, also the BepiColombo observations did not show the finer
structures of typical rising-tone elements in the time domain due
to telemetry limitations (Ozaki et al. 2023).

It is crucial to emphasize that in this scenario, the scaling
of the planet could impact the waves’ location. This is primarily
due to the proximity of the diffusion region to the planet, with the
wavelength being comparable with the planet’s radius size. In-
deed, due to computational constraints it still remains necessary
to reduce the scale separation between planet, ion, and electron
scales. Reducing the ion-to-electron mass ratio and the plasma-
to-cyclotron frequency ratio is a well-established technique in
fully kinetic simulations. Previous studies (Bret & Dieckmann
2010; Le et al. 2013; Lavorenti et al. 2021, 2022, 2023) exten-
sively discuss the effects of this approach.

Concerning the planet scaling, its influence on magnetic re-
connection has already been discussed in Lavorenti et al. (2022,
2023). When the planet’s radius is scaled down (here RM=230
km and RM,2=115 km, as opposed to the realistic radius of Mer-
cury at about 2400 km), the diffusion regions in the tail, both
for electrons and ions, moves closer to the planet’s surface. As
shown in Fig. 1, there is a moderate separation of the ion and
electron diffusion regions from the planet. Consequently, the ion
dynamics within the outflow will be influenced by this reduc-
tion in size, but such an effect should not be observed for elec-
trons. In particular, the characteristics of high-energy electrons
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Fig. 10. Locations where the waves are observed at t ∼ 11RM/vsw,x. We show here the cells in Run1 for which the parallel component of the electric
field is above a threshold of 26 mV/m, from three different perspectives.

observed in our simulations as a result of magnetic reconnec-
tion will remain consistent when dealing with a planet of actual
size. Finally, comparing the modes that are generated in Run1
and Run2, we observe that the dispersion relation is not altered
by scaling the planet.

5. Conclusions

We have presented the results of two global full-PIC numeri-
cal simulations of the Hermean magnetosphere addressing the
development of magnetic reconnection and related dynamics at
the magnetotail, in particular focusing on the study of narrow
band whistler waves originating around the reconnection region.
These waves, driven by electron temperature anisotropy, prop-
agate parallel to the magnetic field with frequency f ∼ 0.5 fce
and present both electromagnetic and electrostatic components.
The possibility of studying these waves and their spatial dis-
tribution in the tail is of great importance for a better under-
standing of the electron dynamics in Mercury. Presently, the

distinction in the spatio-temporal distribution of electron-driven
chorus and whistler waves between Earth and Mercury remains
unknown through observational means. Unraveling the distinc-
tions between these two environments constitutes a forthcoming
challenge, essential for stepping forward our comprehension of
how solar wind shapes diverse planetary environments. To ad-
dress this, the outcomes of the current study play a crucial role
in designing and planning the forthcoming observations for the
science phase subsequent to the final orbit insertion of Bepi-
Colombo in 2025.
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ABSTRACT

Context. The interaction of the solar wind plasma with a magnetized planet generates a bow-shaped supercritical shock ahead of
it. Over the past decades, near-Earth spacecraft observations have provided insights into the physics of the bow shock, suggesting
that solar wind intrinsic turbulence influences the bow shock dynamics. On the other hand, theoretical studies, primarily based on
global numerical simulations, have not yet investigated the global 3D interaction between a turbulent solar wind and a planetary
magnetosphere. This paper addresses this gap for the first time by investigating the global dynamics of this interaction, providing new
perspectives on the underlying physical processes.
Aims. We examine how the turbulent nature of the solar wind influences the 3D structure and dynamics of magnetized planetary
environments like those of Mercury, Earth, or magnetized Earth-like exoplanets, using the newly developed numerical model Menura.
Methods. We use the hybrid Particle-In-Cell model Menura to conduct 3D simulations of the turbulent solar wind and its interaction
with an Earth-like magnetized planet through global numerical simulations of the magnetosphere and its surroundings. Menura runs
in parallel on GPUs, enabling efficient and self-consistent modelling of turbulence.
Results. By comparison with a case in which the solar wind is laminar, we show that solar wind turbulence globally influences the
shape and dynamics of the bow shock, the magnetosheath structures, and the ion foreshock dynamics.
We show that a turbulent solar wind disrupts the coherence of foreshock fluctuations, induces large fluctuations on the quasi-
perpendicular surface of the bow shock, facilitates the formation of bubble-like structures near the bow shock’s nose, and modifies
the properties of the magnetosheath region. None of these phenomena occur when comparing with the case in which the solar wind is
laminar.
Conclusions. The turbulent nature of the solar wind impacts the 3D shape and dynamics of the bow shock, magnetosheath, and ion
foreshock region. This influence should be taken into account when studying solar wind–planet interactions in both observations and
simulations. We discuss the relevance of our findings for current and future missions launched into the heliosphere.

Key words. solar wind – turbulence – magnetosphere – Earth – plasmas

1. Introduction1

The solar wind is a supersonic and super-Alfvénic plasma flow,2
mainly composed of energetic protons embedded in a large-scale3
magnetic field. It fills the interplanetary medium and directly4
interacts with planets, forming a magneto-environment around5
them. The main features of this environment are a supercriti-6
cal collisionless bowshock, a turbulent magnetosheath and an7
induced elongated magnetosphere downstream of it (Parks et al.8
2021; Sibeck & Murphy 2021; Southwood 2021). Depending on9

the value of θBn, defined as the angle between the local shock 10
normal and the upstream magnetic field’s direction, the bow 11
shock can be locally classified as quasi-parallel (θBn < 45◦) or 12
quasi-perpendicular (θBn > 45◦), with θBn values around 45◦ 13
defining a so-called oblique geometry (Jones & Ellison 1991; 14
Schwartz 1998). The existence of these two main shock geome- 15
tries leads to different plasma kinetic dynamics around the bow- 16
shock region (Burgess & Scholer 2015). 17

Solar wind-planet interaction has been extensively studied 18
over the last decades using numerical simulations. The global 19
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interaction of the solar wind and Earth-like magnetospheres has20
been investigated in the past by means of two-dimensional (2D)21
kinetic hybrid models, where ions are treated as individual ki-22
netic macroparticles and electrons as a charge-neutralizing mag-23
netohydrodynamic fluid. Pioneering hybrid modelling studies in-24
clude those for curved collisionless shocks (Thomas & Winske25
1990) and for Earth’s magnetosphere models (Swift 1995), and26
have, for example, focused on the interaction of an interplanetary27
rotational discontinuity with Earth’s magnetosphere (Lin et al.28
1996). Later on, wave behaviour (Lin et al. 2001) and veloc-29
ity distribution functions (Lin & Wang 2002) have been studied30
extensively in the magnetosheath region. A three-dimensional31
(3D) geometry has been used to reproduce the basic dynamics32
of the magnetosphere with the existence of a turbulent mag-33
netosheath medium, ion foreshock and waves associated with34
different regions upstream of the magnetopause (Kallio & Jan-35
hunen 2003; Kallio & Janhunen 2004; Trávníček et al. 2007;36
Müller et al. 2011, 2012; von Alfthan et al. 2014; Modolo et al.37
2016; Jarvinen et al. 2020; Aizawa et al. 2021; Aizawa et al.38
2022; Kallio et al. 2022; Teubenbacher et al. 2024). Recently,39
global full kinetic Particle-In-Cell (PIC) simulations of the in-40
teraction between the solar wind and a magnetized planet have41
been performed in 2D (Peng et al. 2015) and 3D (Lavorenti et al.42
2022; Lapenta et al. 2022; Lavorenti et al. 2023) to investigate43
the role of electron kinetics in the global interaction of the solar44
wind with a magnetized planet.45

All such global models always take, for the sake of sim-46
plicity, the standpoint that the solar wind plasma dynamics is47
laminar. Nevertheless, the solar wind is turbulent, with relatively48
large amplitude, large-scale magnetic and density fluctuations49
driven by continuous large-scales energy injection from the Sun.50
Solar wind fluctuations span a large range of spatial and tem-51
poral scales (Bruno & Carbone 2013; Kiyani et al. 2015; Ver-52
scharen et al. 2019). It is expected that the turbulent solar wind53
may influence the shock dynamics, as predicted by basic theo-54
retical models (Zank et al. 2002).55

Observational studies have focused on the dynamics and tur-56
bulent nature of the solar wind and its connection to the bow57
shock, magnetosheath and magnetosphere dynamics (see, e.g.,58
Rakhmanova et al. 2023, and references therein). In particu-59
lar, observations have shown that geomagnetic activity depends60
on internal magnetospheric processes and solar wind conditions61
(D’Amicis et al. 2020; Guio & Pécseli 2021a,b). Complemen-62
tary to observations, numerical studies of the interaction of solar63
wind turbulence with an interplanetary shock are very recent.64
Different with respect to global simulations, they have been per-65
formed in a ‘local’ sense, that is, looking at a relatively small66
portion of the shock interaction region, not taking into account67
the global curved nature of a planetary shock and using one wall68
of the simulation as a fully reflective boundary. These local hy-69
brid PIC simulations have shown that turbulent fluctuations in70
the upstream region enhance particle acceleration at the shock71
front, leading to a diffusive spread of the particles in velocity72
space (Trotta et al. 2021). This result has been supported by ob-73
servations of an increase in the magnetic helicity downstream of74
the shock as turbulent structures are compressed while transmit-75
ted across the quasi-perpendicular shock (Guo et al. 2021; Trotta76
et al. 2022). Local hybrid PIC simulations have also been used77
to study the interaction of multiple current sheets with a shock78
wave, discussing the implication of such interaction on particle79
acceleration in the downstream shock region (Nakanotani et al.80
2021). Further hybrid PIC simulations have confirmed the role81
of upstream turbulence as a scattering agent to promote diffu-82
sive shock acceleration (Nakanotani et al. 2022). More recently,83

by coupling turbulent MHD fields and local quasi-perpendicular 84
hybrid kinetic 3D simulations, Trotta et al. (2023) showed that 85
turbulence increases fluctuations at the shock interface and the 86
isotropization of the magnetic field spectra in the downstream 87
region close to the bow shock. 88

However, none of the above studies have investigated the 89
global response of a magnetised planet’s magnetosphere to so- 90
lar wind turbulence. The numerical model that we use in this 91
study, namely Menura, has been specifically designed for this 92
purpose. Menura can self-consistently model a fully-developed 93
turbulent solar wind interacting with a planet (Behar et al. 2022) 94
and was recently used by Behar, E. & Henri, P. (2023) to show 95
in 2D that the turbulence of the solar wind significantly modifies 96
the dynamics of the induced magnetosphere of comets. 97

Here, we present the results of the first 3D hybrid simulation 98
of the interaction between a turbulent solar wind and the magne- 99
tosphere of a magnetised planet with a size approaching that of 100
the Earth. For the first time, we show how the turbulent nature 101
of the solar wind affects the global shape and dynamic of the 102
bow shock, the fluctuations in the magnetosheath, and the ion 103
foreshock region. 104

The paper is organized as follows. In Section 2, we describe 105
the model and the parameters of the simulations conducted with 106
Menura. Section 3 discusses the shape of the bow shock and its 107
dynamics. We focused specifically on the ion foreshock and the 108
structures locally created by the upstream turbulence as exam- 109
ples of kinetic effects captured by Menura on both quasi-parallel 110
and quasi-perpendicular sides of the bow shock. We conclude 111
and discuss the future perspectives that open up with this study 112
in Sect. 4. 113

2. The model 114

We use the 3D hybrid kinetic particle-in-cell (PIC) model 115
Menura to simulate the interaction of a turbulent solar wind with 116
a planetary magnetosphere. A detailed code description is avail- 117
able in Behar et al. (2022), and an example of application in a 118
reduced, so-called 2.5D geometry is described in Behar, E. & 119
Henri, P. (2023). In this work, we use the 3D version of the 120
code. Menura is a hybrid PIC model that provides a kinetic 121
description of ion dynamics and employs a generalized Ohm’s 122
law coupled to a polytropic closure for the massless electrons. 123
Menura uses the CAM scheme (or Current Advanced Method) 124
(Matthews 1994), used routinely in PIC hybrid codes as well 125
more recently in hybrid Eulerian Vlasov codes (Valentini et al. 126
2007). 127

Our study here is conducted in two successive steps. First, 128
we perform a 3D simulation of solar wind decaying turbulence 129
using periodic boundary conditions. This simulation follows the 130
solar wind evolution until a quasi-stationary state is achieved and 131
the turbulence is fully developed. Second, we use the last itera- 132
tion step of the turbulent decay simulation as the initial condition 133
of a new run in which we simulate the interaction of this turbu- 134
lent solar wind with a compact magnetized planet (such as the 135
Earth or Mercury). More details on treating boundary conditions 136
for this second step are described in Behar et al. (2022) and Be- 137
har, E. & Henri, P. (2023). Additionally, a reference simulation 138
is performed using laminar solar wind conditions to properly as- 139
sess the effects of solar wind turbulence on the interaction with 140
the planetary obstacle. 141

In both steps, the solar wind and planetary plasma dynamics 142
equations are solved in the solar wind reference frame. Unlike 143
the object-centred reference frame used in other models with 144
similar scientific purposes (von Alfthan et al. 2014; Grandin 145
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et al. 2023; Karimabadi et al. 2006), solving equations in the146
solar wind reference frame enables the introduction of a solar147
wind flow-aligned magnetic field that varies in time. This condi-148
tion is necessary to inject a well-defined, fully developed, self-149
consistently generated turbulent flow that includes, for example,150
magnetic vortices.151

In the following, we describe the initial conditions and pa-152
rameters of these two successive simulations, which we named153
Sim 1 and Sim 2.1, and the reference laminar run, which we154
named Sim 2.2. Table 1 summarises the simulations’ input pa-155
rameters.156

2.1. Decaying simulation of solar wind turbulence (Sim 1)157

In this kinetic hybrid simulation, the solar wind consists of158
one ion species, i.e. protons, and massless neutralizing elec-159
trons. The simulation domain is a Cartesian box of equal size160
Lbox = LX = LY = LZ = 2000 di in the three spatial directions,161
discretized in 400 cells in each direction with a spatial resolution162
of ∆x = 5di, with di the solar wind proton inertial length. We163
populate each cell with 600 macroparticles to ensure a statisti-164
cally satisfactory representation of the ion distribution function.165
The simulation’s time step is ∆t = 0.5 Ω−1

ci , with Ωci the solar166
wind proton gyrofrequency. Consequently, these simulation pa-167
rameters are such that ion scales are poorly resolved spatially168
and temporally. Such a resolution is imposed by computational169
constraints; however, in this study, we do not specifically focus170
on the dynamics at the ion and sub-ion scale but rather on phe-171
nomena just below the smallest MHD scales, approaching the172
ion kinetic scales, while enabling us to describe some kinetic173
features such as a supercritical bow shock and the associated re-174
flected ions in the foreshock. The initial equilibrium condition175
is made of a solar wind plasma with homogeneous density and176
temperature, permeated by a homogeneous, oblique (to the solar177
wind flow) mean magnetic field B0 (see Table 1). At equilib-178
rium, the ratio of ion kinetic and magnetic pressures is βi = 0.5179
and the ion-to-electron temperature ratio is Ti/Te = 1, resulting180
in β = βi + βe = 1. We impose an isothermal closure on elec-181
trons, corresponding to an adiabatic index γe = 1. We perturb182
this equilibrium with magnetic and velocity fluctuations at large183
scales. The initial velocity fluctuations are incompressible fol-184
lowing ∇ · v = 0. The initial perturbation is made of sinusoidal185
fluctuations with a polarization orthogonal to both the mean field186
and the wavevector k. The wavevectors are directed along the187
three Cartesian directions and all wavevectors within the range188
[kmin, kmax] = [2π/Lbox, 5·2π/Lbox] are populated. The phases are189
random and different for the velocity and magnetic fluctuations.190

The magnetic field lines and the total charge current |J| in191
the simulation box at the end of the decaying turbulence simu-192
lation are shown in Fig. 1a. The anisotropy in the magnetic field193
fluctuations is evident from the elongated shape of the current194
structures aligned parallel to the mean solar wind magnetic field.195

The time evolution of the charge current fluctuations Jrms,196
defined as its root mean square (RMS), is shown in Fig. 1b. The197
vertical dashed line indicates the time the decaying turbulence198
simulation is fully developed so that it can be injected later in the199
magnetised planet simulation. We identify it with the time when200
the RMS current saturates. At the end of this first simulation,201
the RMS value of the final perturbation is δB/B0 = 0.45 and202
δ3/CA = 0.33, where δB and δ3 are the magnetic and velocity203
RMS values, B0 is the background magnetic field and CA is the204
background Alfvén speed in normalised units.205

We have computed the parallel and perpendicular (to the206
mean solar wind magnetic field direction) spectra of magnetic207

and velocity fluctuations, shown in Fig. 1c. The magnetic field 208
follows a power-law trend with a spectral slope consistent with 209
the expected Kolmogorov decay of −5/3. At smaller scales, 210
closer to one di, the spectral trend changes under the effect of 211
both the numerical dissipation (hyper-resistivity) and dispersive 212
and kinetic ion physics (Matteini et al. 2016). 213

The electric field and magnetic field as well as the plasma 214
distribution function from the decaying turbulence simulation at 215
time t ≃ 650Ω−1

ci are used to initialize the second simulation of 216
our model (Sim 2.1). 217

2.2. Interaction between a magnetized planet and a solar 218
wind turbulent dynamics (Sim 2.1) 219

In this second simulation, we model the interaction between a so- 220
lar wind with fully developed turbulent dynamics, resulting from 221
Sim 1, and a magnetized planet. The magnetised planet is mod- 222
elled as a perfectly absorbing body on which entering ions are 223
removed from the simulation, together with a permanent mag- 224
netic dipole, taken as an external magnetic field. 225

Since the computation is performed in the solar wind frame, 226
the planet is moving in the simulation domain at the opposite 227
of the solar wind speed. To maintain the planet at a fixed po- 228
sition in the simulation domain, we continuously shift the do- 229
main sideways (in the +X direction). Consistently, the dipole 230
field is recalculated each time the simulation box moves. In 231
fact, our choice of reference frame requires adding an addi- 232
tional term in Faraday’s law corresponding to a Lorentz trans- 233
formation. To our knowledge, this is the first time a non-fixed 234
reference frame has been used for this type of application. In 235
the simulation box, the planet’s centre is kept at coordinates 236
(XP,YP,ZP) = (3Lbox/8, Lbox/2, Lbox/2) = (750, 1000, 1000) di, 237
with Lbox the size of the box in any direction in units of di. 238

The dipole value is chosen by defining the value Dp as the 239
position of the nose of the magnetopause normalized to the 240
ion’s inertial length. This parameter has proven to be an effec- 241
tive method for characterizing the magnetospheric structure as a 242
function of dipole strength (Omidi et al. 2004; Karimabadi et al. 243
2014). In this work, to reduce the computational effort, we use 244
Dp = 200 di, a smaller value with respect to the real value at 245
Earth (Dp,Earth ∼ 640 di). As pointed out in Omidi et al. (2004), 246
simulations with Dp greater than ∼ 20, one order of magnitude 247
smaller than the one we used, have Earth-like characteristics 248
both on the dayside and in the magnetotail. The smaller size of 249
the magnetosphere and magnetosheath reduces the transit time 250
of the plasma inside the magnetosheath by a factor ∼ 3 with re- 251
spect to the Earth. This may affect the development of waves 252
in the region, such as wave modes with a relatively low growth 253
rate, as they may not have time to develop before reaching the 254
magnetopause. However, this work is the first step in studying 255
how turbulent solar wind globally affects the different large-scale 256
frontiers in a planetary magneto-environment. 257

2.3. Interaction between a magnetized planet and a solar 258
wind laminar dynamics (Sim 2.2) 259

To properly assess the impact of the turbulent nature of the solar 260
wind on a magnetosphere, it is necessary to compare its effect 261
to that of an upstream solar wind that would be laminar. For this 262
purpose, we run a third reference simulation in which the planet 263
interacts with a laminar solar wind. In this case, the planet moves 264
into a homogeneous solar wind with plasma density and temper- 265
ature equal to those chosen as the initial condition of Sim 1. The 266
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Variable Unit Value Description
Normalisation
Density n0 Initial solar wind density
Magnetic field B0 Module of initial solar wind magnetic field
Time Ω−1

ci mpc/eB0 Inverse of proton gyrofrequency
Speed CA B0/

√
4πn0mp Alfvén speed

Length di CA/Ωci Proton inertial length
Pressure P0 n0mpC2

A Normalizing pressure
Solar wind parameters
nsw n0 1.0 Solar wind proton density

Bsw B0

(
1√
2
, 1√

2
, 0
)

Solar wind magnetic field vector
Usw CA (−10, 0, 0) Solar wind velocity vector, planet’s reference frame
Ti/Te - 1.0 Ratio of proton temperature to electron temperature
βsw = βi + βe - 1.0 Solar wind plasma beta
γe - 1.0 Electron adiabatic index
Cs CA 1.4 Solar wind sound speed
Cms CA 1.7 Solar wind magnetosonic speed
MA - 10 Bow shock Mach number
Turbulence
δB0/B0 - 0.54 Initial magnetic field fluctuations
δ30/CA - 0.54 Initial velocity fluctuations
Magnetized planet
(XP,YP,ZP) di

(
3Lbox

8 ,
Lbox

2 ,
Lbox

2

)
Position of the planet’s centre in simulation box

τdip - (0,−1, 0) Dipole moment direction
Dmp di 200 Distance to the magnetopause from the planet’s centre
Grid and numerics
∆X = ∆Y = ∆Z di 5.0 Grid resolution
∆t Ω−1

ci 0.5 Time resolution
Lbox = LX = LY = LZ di 2000 Box size in each spatial direction
Npcc - 600 Number of particles per cell
ηhyp - 0.01 Numerical hyper-resistivity
Simulation names
Sim 1 Decaying solar wind turbulence
Sim 2.1 Turbulent solar wind vs. planet
Sim 2.2 Laminar solar wind vs. planet

Table 1. Input parameters of the simulations performed: code normalizations, solar wind parameters for all runs, initial amplitude of turbulence
in the decaying run, characteristics of the magnetized planet, grid and time resolution for all runs. mp is the proton mass, c the speed of light in
vacuum and e the elementary charge. Simulation parameters are typical of the solar wind (Owens et al. 2023), with n0 and B0 the initial solar wind
density and magnetic field magnitude.

solar wind magnetic field is also homogeneous and equal to Bsw.267
All other simulation parameters, including planet parameters and268
spatial and temporal resolution, are identical to those of Sim 2.1.269

3. Impact of a turbulent solar wind on a planetary270

bow shock271

In the following, we compare the turbulent (Sim 2.1) and lam-272
inar (Sim 2.2) simulations to highlight the effects that the tur-273
bulent nature of the solar wind has on the magneto-environment274
of a planet. To compare the structure and dynamics of the so-275
lar wind, shock, and magnetosheath in the two simulations,276
we present maps of relevant quantities in three perpendicular277
planes intersecting the centre of the planet, located at coordi-278
nates (XP,YP,ZP).279

Figures 2, 3 and 4 present global maps of the plasma den-280
sity, magnetic field magnitude and proton bulk speed, respec-281
tively: the left column (panels a, b, c) shows the laminar so-282
lar wind case results, whereas the right column (panels d, e,283
f) shows the turbulent solar wind case at the same simulation284
time t = 250Ω−1

ci . Density is normalised to the solar wind pro-285

ton density, the magnetic field to the solar wind magnetic field, 286
and proton bulk speeds to the Alfvén speed (see Table 1). For 287
both turbulent and laminar simulations, the bow shock, magne- 288
tosheath, and magnetopause regions can be clearly identified, 289
with the quasi-parallel (Y > 1400 di) and quasi-perpendicular 290
(Y < 800 di) sides of the shock having shapes and extents in 291
good qualitative agreement with other global simulations (Turc 292
et al. 2023). Closer to the planet, regions where ions are seen 293
flowing within the magnetosphere of the planet take the shape 294
of highly structured cones in 3D (see Fig. 2a in the X–Y plane at 295
Z = ZP, with ZP the position of the planet’s centre), closely mim- 296
icking the Earth’s plasma cusps. These “cusps” appear relatively 297
less defined in the turbulent solar wind case, owing to the less 298
homogeneous magnetosheath (Fig. 2b). The following sections 299
provide a detailed description of how the turbulent nature of the 300
solar wind shapes these boundaries and regions. 301

3.1. Shape of the bow shock 302

To facilitate comparisons of the shape of the bow shock in the 303
absence or presence of turbulence in the solar wind, we built 304
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a) b)

c)

Fig. 1. Characteristics of the decaying simulation of solar wind turbulence (Sim 1). a) Current density normalized to its root mean square Jrms
(colour map) and magnetic field lines (orange) in the full 3D plasma box. b) Box-averaged square current density J2 as a function of time. The
vertical dashed line marks the time of the snapshot (t ≃ 650Ω−1

ci ) used to initialize the solar wind turbulence in Sim 2.1. c) Power spectrum of
magnetic and velocity field for parallel and perpendicular wavevectors.

a simple proxy of the 3D position of the shock surface saved305
at high temporal cadence during a numerical run. This proxy is306
defined using the plasma density: for each (Y,Z) coordinate, the307
position of the bow shock is estimated to be the first position308
along the X direction at which the density jumps above a value309
of 101/4, i.e. about 1.8 times the solar wind background value,310
which is chosen as an intermediate value between the upstream311
solar wind and the downstream magnetosheath plasma.312

The position of the shock in the laminar solar wind case313
(Sim 2.2) is shown in Fig. 2 by the thin solid black line within314
each plane. The same line is superimposed onto the results of315
the turbulent case (Sim 2.1) as a baseline for comparison be-316
tween the laminar and turbulent solar wind-planet simulations.317
Moreover, the same bow shock position in the laminar case is su-318
perimposed onto the magnetic field maps (Fig. 3), showing how319
well it captures the sharp transition between the upstream solar320
wind magnetic field (in white) and the compressed downstream321
magnetic field and denser magnetosheath (in red). Similarly, this322
sharp transition is seen on the proton bulk speed maps (Fig. 4)323
where the solar wind (in white) is abruptly slowed down to sub-324
sonic speeds at and downstream of the shock (blue hues).325

When observing the quasi-perpendicular region of the bow326
shock, the density maps in (Fig. 2a-f) show that the shock surface327
is inflated or deflated with respect to the laminar case when the328
impinging initial solar wind is turbulent. This feature is also con-329
firmed by the magnetic field (Fig. 3) and the proton bulk speed330
maps (Fig. 4). These fluctuations of the quasi-perpendicular bow331
shock surface result from local inhomogeneities in the solar wind332
bulk dynamic pressure, which stem from the turbulent nature of333
the initial solar wind condition in Sim 2.1: turbulence causes cer-334

tain regions to experience higher or lower values of solar wind 335
dynamic pressure compared to the laminar case (Sim 2.2). 336

The difference between the bow shock’s location in the two 337
runs is most pronounced for the quasi-parallel shock. In the 338
quasi-parallel shock region, the shock surface proxy does vary 339
widely, as seen for Y ≳ 1300 di in Fig. 2a and at Y ∼ 1500 di in 340
the corresponding perpendicular plane in Fig. 2c, laminar case, 341
but can capture the overall shape of the shock in this highly vari- 342
able region. That said, the sharp and well-defined transition be- 343
tween the upstream and quasi-parallel downstream domains in 344
the laminar case is mostly lost in the turbulent case due to fluc- 345
tuations in the solar wind that locally change the magnetic field 346
orientation with respect to the shock normal. In this way, the 347
density variation proxy used for the laminar case cannot capture 348
the highly variable quasi-parallel shock interface in the turbulent 349
case. However, such a proxy remains useful to highlight how far 350
turbulence changes the quasi-parallel shock location and shape. 351

In the density maps in Fig. 2, we observe that the compres- 352
sion downstream of the quasi-parallel shock is less pronounced 353
in the turbulent case (Fig. 2d) and the structure of the bow 354
shock is significantly more perturbed than in the laminar case 355
(Fig. 2c,f). For Y > 1600 di, it becomes difficult to identify the 356
exact location of the quasi-parallel shock boundary (Fig. 2d). 357

These differences are clearly shown in Fig. 5 where the bow 358
shock is visualized in 3D, setting a transparency threshold of 359
nth = 101/4n0 on the plasma density. While in the laminar case 360
(Fig. 5a), the shock boundary is mainly smooth over all the cor- 361
responding quasi-perpendicular surface, for the turbulent simu- 362
lation (Fig. 5b) large fluctuations are presented over all the bow 363
shock. The quasi-parallel region is more easily identified in the 364
laminar case, where the fluctuations delimit a clear area around 365
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Fig. 2. Comparison of ion density in logarithmic scale between laminar (a-c) and turbulent (d-f) simulations at t = 250Ω−1
ci for the same 2D planes

intersecting the planet’s centre. The initial solar wind magnetic field Bsw is contained in the X–Y plane (in a 45◦ angle). In the planet’s reference
frame, the +Z direction contains the solar wind convection electric field Esw, whereas the solar wind bulk velocity Usw is along −X, and given as
indicators. The position of the bow shock based on a density threshold for the laminar simulation (left column) is shown for comparison as a black
contour line for both simulations.

the north pole region that corresponds to the foot points from366
where magnetic field lines (in red) parallel to the local shock nor-367
mal are emerging. In contrast, the corresponding quasi-parallel368
region is not well delimited for the turbulent case, and the mag-369
netic field lines do not appear aligned as they are in the laminar370
case. This feature affects the dynamics of the ion foreshock, as371
discussed in more detail in Sect. 3.4.372

3.2. Dynamics of the bow shock 373

As already described, the proxy of the bow shock position intro- 374
duced in the previous section is computed during runtime and 375
at high cadence. This enables high-resolution analysis of the 376
bow shock shape and evolution forced by the solar wind dynam- 377
ics. This analysis is shown in Fig. 6. To reduce the dimension 378
of the problem, we first consider in Fig. 6a, b the cut Y = YP 379
of the bow shock surface. The time evolution of this 1D cut 380
along z of the bow shock position is shown for both the laminar 381
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Fig. 3. Comparison of the magnetic field amplitude in logarithm scale between laminar and turbulent simulations at t = 250Ω−1
ci . Same format as

in Fig. 2.

(Fig. 6a) and turbulent (Fig. 6b) solar wind dynamics. The bow382
shock position along the Sun-planet direction X with respect to383
its mean value over time, i.e., with respect to its time-averaged384
position, is shown in colour, with red (resp. blue) tones high-385
lighting the times and positions at which the shock position is386
upstream (resp. downstream) of its average position. Using the387
same range of colours for the turbulent and laminar cases (the de-388
viations from the average position are displayed between −10 di389
and +10 di), we appreciate how the turbulence of the imping-390
ing solar wind induces much larger amplitude oscillations of the391
shock’s surface. The variance of the values shown in Fig. 6a is392

0.8 di, while a greater variance of 2.0 di is found in the turbulent 393
case. 394

Second, we illustrate the deformation of the bow shock in 395
Fig. 6c, d by showing the planar projections of the full 3D shock 396
surface position with respect to its time-averaged position at a 397
given time t = 250Ω−1

ci , for both laminar (Fig. 6c) and turbulent 398
(Fig. 6d) solar wind dynamics. This representation of the bow 399
shock deformation is similar to that of the position of a vibrating 400
tambourine skin under the drumming action of the impinging so- 401
lar wind. We observe local and global oscillations of the shock 402
position. In the laminar solar wind dynamics case, the bow shock 403
deformation is first observed at the bow shock nose and subse- 404
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Fig. 4. Comparison of the proton bulk speed Up between laminar (left column) and turbulent solar wind simulations (right column) at t = 250Ω−1
ci .

Note that the colour scale is linear for clarity, unlike in Figs. 2 and 3. Same format as in Fig. 2, with colour bar in units of Alfvén speed CA and
white the input solar wind speed (Usw = 10 CA). Note that the bulk speeds are expressed in the planet’s reference frame here. Grey regions are
those where the plasma density is smaller than 0.1n0.

quently propagates from the nose towards the flanks, along the405
surface of the shock, creating the “butterfly-shaped” propagating406
structures in the Z–t space observed in the top panels. In contrast,407
for the turbulent solar wind dynamics case, the bow shock defor-408
mation originates from multiple regions (not only the nose) de-409
pending on the solar wind dynamics and the local conditions at410
the shock. These deformations later propagate towards the flanks411
along the surface of the shock, generating an even more complex412
deformation pattern. This dynamics is reminiscent of the ubiq-413
uitous rippling observations at the Earth’s quasi-parallel (Pol-414

lock et al. 2022), quasi-perpendicular (Moullard et al. 2006) and 415
oblique (Gingell et al. 2017) bow shock. 416

The quasi-parallel shock region exhibits significant variabil- 417
ity, regardless of the initial solar wind conditions imposed in 418
the simulations; the oblique and quasi-perpendicular shock sur- 419
face variations are strongly enhanced in the turbulent solar wind 420
case, with amplitudes reaching ±10di, whereas in the laminar 421
case, maximum amplitudes are much weaker (±2di). Beyond 422
this much greater motion of the shock surface, turbulence is also 423
responsible for the peculiar dynamics observed in confined re- 424
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Laminar Turbulenta b

Fig. 5. 3D rendering of the bow shock for the a) laminar and b) turbulent solar wind cases. Ion density is represented in blue hues. A threshold
density nth = 101/4n0 is applied, such that all regions in which ni < nth are made transparent. A linear transparency profile is applied from ni = nth
to ni = 6n0, so low-density regions are more transparent than high-density ones. Upstream magnetic field lines crossing the ion foreshock regions
are drawn in red.

gions of the shock front. At t ∼ 250Ω−1
ci , close to the nose of425

the shock around Z ∼ 800 di, a small “spot” (circled in black426
in Fig. 6b) departing from the average shock position is seen427
on the time series for the turbulent simulation. This transient428
structure is located at the bow shock interface around coordi-429
nates (1000, 800) di in panel e, corresponding to the X–Z plane430
in Figs. 2, 3 and 4 and propagates along the shock’s surface and431
inside the magnetosheath (Fig. 6b). We show a zoom-in plot of432
this highly dynamic structure in Fig. 7, with density, magnetic433
field and bulk speeds, corresponding to a snapshot of the simula-434
tion when the structure has fully formed. It appears as a localised435
“bubble” of high-magnetic field, high-density plasma enclosing436
a much lower magnetic field and lower-density plasma. This sug-437
gests that, locally, a bubble of shocked solar wind plasma can438
impulsively penetrate inside the magnetosheath and start inter-439
acting with the local plasma there. Complexifying this picture,440
Fig. 7c also shows that the bulk speed inside this bubble is as441
low as its immediate surroundings with plasma already deceler-442
ated to magnetosheath-like speeds, whereas its density and mag-443
netic field amplitude are closer to solar wind values. Although444
the analysis of this precise structure and others found in the445
quasi-perpendicular shock of the turbulent simulation is out of446
the scope of this study, it is interesting to notice that such signa-447
tures, characteristic of rippling and reformation processes which448
are usually found in quasi-parallel shocks, have also been seen449
in local hybrid simulations of plasma turbulence interacting with450
quasi-perpendicular shocks (Trotta et al. 2022).451

3.3. Magnetosheath structure 452

As can be seen in Fig. 2 (plasma density), the thickness of 453
the magnetosheath downstream of the quasi-parallel shock is 454
smaller than downstream of the quasi-perpendicular shock for 455
both laminar and turbulent solar wind conditions. This is consis- 456
tent with THEMIS observations over a 5-year period (Dimmock 457
& Nykyri 2013), which uncovered an asymmetry in the Earth’s 458
magnetosheath between the dawn and dusk regions due to the 459
nominal Parker spiral geometry. When comparing the laminar 460
and turbulent runs, this asymmetry persists. 461

In Figs. 2a,c and 3a,c for the laminar run (left column), the 462
magnetosheath region also exhibits large fluctuations in den- 463
sity and magnetic field magnitude, which fill all of the mag- 464
netosheaths, as expected from observations (Narita et al. 2021). 465
Fluctuations are more coherent in the quasi-perpendicular region 466
compared with the quasi-parallel region, where this coherence is 467
mostly lost, and fluctuations become larger in size and ampli- 468
tude. In the turbulent case, some of that coherence is further lost, 469
as can be observed when comparing both columns in Figs. 2 and 470
3. This is very similar to what has been seen in numerical sim- 471
ulations of solar wind-comet interactions when considering the 472
turbulent nature of the solar wind (Behar, E. & Henri, P. 2023). 473

The additional loss of coherence in fluctuations in the quasi- 474
perpendicular magnetosheath due to solar wind turbulence may 475
be explained by the transmission of large-scale solar wind tur- 476
bulence structures across the shock. These structures are ob- 477
served clearly in some regions immediately downstream of 478
the bow shock, e.g., around coordinates (400, 1100) di and 479
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(1000, 400) di in the Y–Z plane in Figs. 2f, 3f and 4f. However,480
another possible explanation for the observed structures down-481
stream of the quasi-perpendicular shock is the interaction of self-482
generated transients at the quasi-perpendicular shock, such as483
the high-density high-B-field “bubble” previously mentioned in484
Sect. 3.2 around (X,Z) ≈ (1000, 800) di in Figs. 2e, 3e and 4e.485

For the quasi-parallel region, the presence of upstream solar486
wind turbulence increases the size and magnitude of the fluctu-487
ations in the magnetosheath, as can be seen for Y ≳ 1300 di in488
panel d, and for Y ∼ 1400 di and 700 ≲ Z ≲ 1300 di in panel f489
of Figs. 2 and 3. In this geometry, the fluctuations occurring on490
the downstream and upstream sides of the shock were already491
present in the laminar case, albeit in a less developed and intense492
manner (Figs. 2c and 3c). Disentangling the effects due solely to493
solar wind dynamics turbulence from those inherited from the494
basic laminar conditions will require a dedicated analysis, which495
is outside the scope of the present study. These aspects will be496
explored in future research.497

Figure 4 shows how the plasma in the wake of the bow shock498
is slowed down to speeds significantly below the upstream so-499
lar wind bulk speed of Usw = 10 CA, with white marking the500
reference solar wind speed. In the quasi-perpendicular side of501
the magnetosheath in the laminar case (Fig. 4a), fluctuations in502
plasma speed provide a “baseline” level of the magnetosheath503
natural turbulence, with striations appearing perpendicular to504
the shock surface in the immediate wake of the shock front (as505
clearly seen in Fig 4c). In contrast, bulk plasma speed fluctua-506
tions are much increased for the turbulent case as compared to507
the laminar case, with large wavy structures developing almost508
parallel to the shock surface behind the terminator line (Fig. 4d)509
and superimposed to the natural turbulence of the magnetosheath510
(Fig. 4f). Deeper in the quasi-perpendicular magnetosheath, the511
plasma is further compressed and witnesses increased speed512
near the modelled magnetopause. In general, downstream of the513
quasi-perpendicular shock, the plasma velocity fluctuates much514
more in the turbulent case than in the laminar case, as especially515
seen in the flanks (Fig. 4f), with large defined structures possibly516
modulated by the global scale turbulence upstream of the shock.517

In the quasi-parallel side of the magnetosheath, the conclu-518
sions already drawn for Figs. 2 and 3 hold: fluctuations in the519
ion foreshock region increase substantially, with a loss of coher-520
ence of the backstreaming ions that create the characteristic Ultra521
Low Frequency (ULF) waves populating the foreshock. Streams522
of low bulk speeds (in dark blue, Fig. 4d) appear upstream of the523
shock, corresponding to relatively low magnetic field intensities-524
low plasma densities.525

While the solar wind mainly crosses the quasi-perpendicular526
part of the bow shock, some of it is actually reflected in the527
quasi-parallel part, forming the so-called ion foreshock region528
upstream of the quasi-parallel shock region. We now focus on529
this region.530

3.4. Dynamics within the ion foreshock531

In this section, we discuss the influence of the turbulent nature532
of the solar wind on ion foreshock. Because the bow shock is su-533
percritical and collisionless, solar wind ions are expected to be534
reflected in the bow shock region quasi-parallel to the solar-wind535
magnetic field. This is well modelled in our kinetic hybrid simu-536
lations, and the resulting ion foreshock is observed upstream of537
the shock, for Y > 1400 di in panels a,d in Figs. 2, 3 and 4, as538
expected.539

The solar wind ions reflected by the bow shock are seen540
in the ion velocity distribution functions (VDFs) shown in541

Fig. 8, both for the laminar and turbulent solar wind. The 542
VDF is computed in a cubic box centred in r0,vd f (x, y, z) = 543
(860, 1620, 1020)di and having size 40di × 40di × 40di. The box 544
size is chosen to ensure enough statistics on the particle beam. 545
Figure 8 displays the VDFs in a reference frame oriented as 546
ê∥ = B/|B|, ê⊥,1 = −V × B/(|V × B|), and ê⊥,2 = ê∥ × ê⊥1 , where 547
B and V are the local magnetic and ion velocity fields, i.e. their 548
box-averaged value in the box where the VDF is computed. In 549
both laminar and turbulent solar wind conditions, we observe the 550
characteristic solar wind core population centred at the origin of 551
the coordinates and a less populated beam moving on average in 552
the +ê∥ direction, as indicated by the dashed blue line. The beam 553
velocity is 3beam = −Usw = 10 in Alfvén speed (code) units. 554
The beam width is comparable in the two perpendicular direc- 555
tions and the VDF is thus close to gyrotropic (Fig. 8c,f). The two 556
VDFs (in laminar and turbulent solar wind conditions) look quite 557
similar in the selected location. However, the particle density in 558
the beam corresponding to reflected particles is reduced in the 559
turbulent case compared to the laminar one. We observed such a 560
feature everywhere in the ion foreshock. 561

The presence of solar wind turbulence influences the spatial 562
distribution of the reflected beam itself. Figure 9 shows its den- 563
sity Nb in the foreshock region for the two simulations. The plot 564
is obtained using the following procedure. The VDF is computed 565
in boxes of 40di × 40di × 40di, forming a grid in the physical 566
space. For each set of particles located inside one box, particles 567
having a speed 3 > 5CA, where CA is the Alfvén speed in the pris- 568
tine solar wind in our simulation, are used to compute the beam 569
density. We observe that the fluctuations in the reflected beam 570
density are much more pronounced in the turbulent (Fig. 9b) than 571
in the laminar (Fig. 9a) case. We argue that this behaviour is due 572
to two factors: in the turbulent case as compared with the lam- 573
inar, i) the foreshock base region is more inhomogeneous (as 574
shown in Fig. 5), and ii) the magnetic field line diffusion in the 575
direction perpendicular to the mean magnetic field is enhanced. 576
The combination of these two processes influences the transport 577
of particle beams, resulting in a loss of coherence of the beam 578
itself when moving away from the bow shock and a more patchy 579
density distribution in the turbulent case. 580

To elucidate the global picture of this process, Fig. 5 shows 581
a 3D rendering of magnetic field lines in the foreshock region. 582
We observe that the laminar case’s magnetic field lines appear 583
to align with the direction of the solar-wind magnetic field. The 584
field lines oscillate due to beam-induced waves in the foreshock, 585
typical of the right-hand polarized ULF waves seen at Earth and 586
arising from wave-particle interactions (Narita et al. 2004). In 587
contrast, the field line topology appears much more complex in 588
the turbulent case. The oscillations in the laminar case are ob- 589
served only close to the shock base and disappear while moving 590
away from it towards the solar wind. Moreover, in the turbulent 591
case, some magnetic field lines crossing the foreshock region 592
have footprints outside the quasi-parallel shock base. This im- 593
plies that part of the plasma in the foreshock region comes from 594
outside the foreshock where particle reflection has been less ef- 595
ficient. This complex magnetic topology results in the patchy 596
distribution of the ion beam density in the foreshock region, as 597
reported in Fig. 9b. 598

4. Conclusion 599

What is the impact of the turbulent nature of the solar wind on 600
its interaction with a magnetized planet like the Earth or Mer- 601
cury? How do the dynamics of solar wind turbulence affect the 602
bow shock location and shape? How is the solar wind turbulence 603
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itself modified by the bow shock crossing? What is the influence604
of the solar wind turbulence on the ion foreshock? To address605
these questions, we performed the first 3D global simulation of606
the interaction between a turbulent solar wind and a magnetized607
planet. We investigated the influence of turbulence on the bow608
shock shape and dynamics, the structure of the magnetosheath,609
and the ion foreshock.610

Regarding the bow-shock dynamics, larger fluctuations in611
the shock’s position are observed as compared to the laminar612
case. Additionally, we have shown that while in the laminar case613
the deformation of the bow shock outside of the quasi-parallel614
region originates solely at the nose of the shock, in the turbulent615
case deformations are triggered in multiple regions depending on616
solar wind dynamics and local conditions. These deformations617
propagate along the shock’s surface towards the flanks, resulting618
in a more complex pattern. Consequently, the oscillations in the619
surfaces of oblique and quasi-perpendicular shocks are signifi-620
cantly amplified in turbulent solar wind conditions. Our study621
also shows that bubble-like plasma structures can form in the622
quasi-perpendicular shock area, where they start interacting with623
the local plasma in the magnetosheath. Further investigation into624
this phenomenon is deferred to future research.625

The magnetosheath structure under laminar and turbulent626
solar wind conditions exhibits similar behaviour with a spatial627
asymmetry between the quasi-parallel and quasi-perpendicular628
sides of the shock in agreement with observational statistical629
studies (Dimmock & Nykyri 2013). The main effect of the tur-630
bulent solar wind dynamics on the magnetosheath is, on average,631
to diminish the coherence of the B-field and density fluctuations632
and enhance their amplitude, which is qualitatively consistent633
with the observed transmission through the bow shock of the tur-634
bulence inherited from the solar wind. In the ion bulk speeds, we635
also observed the appearance of structures almost parallel to the636
shock surface and superimposed to the perpendicular structures637
containing relatively larger ion speeds that populate the laminar638
case simulation. In the future, we aim at exploring in more de-639
tail how 3D solar wind structures are processed by the shock640
(following, e.g., Trotta et al. 2022) and investigate whether the641
relaxed equilibrium states, typical of the turbulent phenomenol-642
ogy, that are observed in the magnetosheath are locally generated643
or may originate from the solar wind (Pecora et al. 2023).644

In the ion foreshock region, the presence of upstream turbu-645
lence influences the spatial properties of the reflected ion beam.646
Specifically, this ion beam in the turbulent case is more inhomo-647
geneously distributed in space and extends less further upstream648
from the shock than in the laminar one due to the enhanced com-649
plexity of the magnetic field lines. Furthermore, we have shown650
that turbulence and beam-induced fluctuations in the foreshock651
region may exist for the solar wind turbulence level considered652
in our simulation. We may expect their presence and importance653
in the foreshock region to vary with the amplitude of the tur-654
bulence advected by the solar wind. A systematic study of the655
interplay between the two will require more simulations where656
the amplitude of the upstream solar wind turbulence is varied;657
this is also left for future work.658

Menura’s distinctive approach, reproducing the global in-659
teraction of a turbulent solar wind with compact objects,660
including planetary magnetospheres, induced or not, marks661
a significant advancement in our theoretical description of662
the near-Earth environment. Multi-satellite missions such as663
ESA/Cluster, NASA/Time History of Events and Macroscale In-664
teractions during Substorms (THEMIS) or, more recently, the665
NASA/Magnetospheric Multiscale Mission (MMS), all continue666
to investigate with increasing temporal and spatial resolution667

the Earth’s magnetosphere, magnetosheath and near-Earth so- 668
lar wind and may benefit from numerical work such as that we 669
presented here. 670

Further, Menura is a parallel code based on and running 671
on GPUs. We expect that, in the future, due to increased com- 672
putational power, simulation at the full Earth scale may be- 673
come feasible. Meanwhile, planetary magnetospheres of smaller 674
sizes may be studied with full-scale simulations. These up- 675
coming simulations are timely, considering that the ESA- 676
JAXA/BepiColombo mission will reach Mercury in December 677
2025. Additionally, due to the ease with which different tempo- 678
rally variable initial conditions can be imposed in Menura, future 679
studies could also include modelling magnetic clouds (coming 680
from Coronal Mass Ejections) and stream interaction regions. 681

Finally, numerical studies of global dynamics that consider 682
kinetic effects, such as presented in this work, may also be rele- 683
vant to many other astrophysical systems constituted by a com- 684
pact object, with or without an intrinsic magnetic field, interact- 685
ing with a non-laminar flow. 686
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A Table of database crossings

Here we include the list of crossings of the database discussed in Chapter 5. For each crossing,
the following data are added (in order here for each column):

- The date;

- The beginning time of the crossing;

- The end time of the crossing;

- The type of hodogram of the magnetic field in the tangential plane, selected as explained
in Section 5.3;

- The normal obtained using the GF2 (introduced in Section 3.4.1) tool using the magnetic
field data, averaged in the time interval;

- The normal obtained using the GF2 tool using the ion mass flux data, averaged in the
time interval;

- The dimensionality index defined in Eq. 3.8 (Rezeau et al., 2018);

- The dimensionality index defined in Eq. 3.17 (Ballerini et al., 2024b);

- The non-gyrotropy index defined in Eq. 4.15 (Aunai et al., 2013a);

- The non-gyrotropy index defined in Eq. 4.16 (Ballerini et al., 2024b);

- The estimated length of the magnetopause;

- The estimated averaged ion Larmor radius (rho) of the magnetopause;

- The estimated averaged ion inertial length of the magnetopause;
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