
HAL Id: tel-04723474
https://theses.hal.science/tel-04723474v1

Submitted on 7 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distance properties of polar codes : theory and
applications
Malek Ellouze

To cite this version:
Malek Ellouze. Distance properties of polar codes : theory and applications. Electronics. Université
de Bordeaux, 2024. English. �NNT : 2024BORD0132�. �tel-04723474�

https://theses.hal.science/tel-04723474v1
https://hal.archives-ouvertes.fr

THÈSE PRÉSENTÉE
POUR OBTENIR LE GRADE DE

DOCTEUR DE
L’UNIVERSITÉ DE BORDEAUX

École Doctorale no 209 : Sciences physiques et de l’Ingénieur
Spécialité : Électronique

par Malek Ellouze

Propriétés de distance des codes polaires : théorie
et applications

Co-directeurs de thèse : Christophe Jégo
Charly Poulliat

préparée au Laboratoire de l'Intégration du Matériau au Système (IMS)

soutenue le 5 juillet 2024

Membres du jury :
Charbel Abdel Nour - Professeur - IMT Atlantique Rapporteur
Philippe Mary - Professeur des universités - INSA Rennes Rapporteur
Iryna Andriyanova - Professeur des universités - Université Cergy Paris Présidente
Stephan ten Brink - Full professor - Université de Stuttgart Examinateur
Christophe Jégo - Professeur des universités - Bordeaux INP Co-directeur
Charly Poulliat - Professeur des universités aa - Toulouse INP Co-directeur

Membres invités :
Romain Tajan aaaaaaa - Maître de conférences - Bordeaux INP aaaaaaaaaa Co-encadrant
Camille Leroux - Maître de conférences, HDR - Bordeaux INP Co-encadrant

Thèse réalisée au

Laboratoire de l’Intégration du Matériau au Système (IMS)
de Bordeaux, au sein de l’équipe CSN du groupe Conception.

Université de Bordeaux, Laboratoire IMS
UMR 5218 CNRS - Bordeaux INP

351 Cours de la Libération
Bâtiment A31

33405 Talence Cedex
FRANCE

Acknowledgments
Before exploring the various scientific aspects detailed in this manuscript, I wish to
express my profound gratitude to the individuals whose support and guidance have been
instrumental in the completion of this work. None of this would have been possible
without their encouragement, insightful advice, and constant belief in me.

This work is primarily a result of the exceptional supervision I received. My deepest
gratitude goes to Romain, whose dedication and countless hours of discussion were
invaluable. His human qualities and belief in me, even when I struggled to believe in
myself, have been a cornerstone of this journey. Camille, I am immensely grateful for the
fruitful exchanges we had. Your meticulous explanations and invaluable feedback have
been crucial in shaping this work. Christophe, thank you for your leadership throughout
this PhD. Your rigor, unfailing support, and patience have been indispensable. Charly,
your valuable advice and support have been much appreciated. All of you introduced
me to the world of coding theory at this early stage of my career and fostered a deep
passion for this field.

I also extend my heartfelt thanks to the members of the jury. I want to thank Prof. Iryna
Andriyanova, full professor at Cergy Paris university for the honor of presiding over the
jury. I am also grateful for Prof. Charbel Abdel Nour, professor at IMT atlantique and
for and Prof. Philippe Mary, full professor at INSA Rennes, for their thorough review
of my manuscript. I am also deeply thankful for Prof. Dr.-Ing Stephan ten Brink, full
professor at the university of Stuttgart, for his examination of this work.

Furthermore, I wish to express my profound appreciation to all my colleagues from the
CSN group at the IMS laboratory. The positive atmosphere within the team made
working in such an environment a true pleasure. The academic discussions or simply the
laughs shared have been invaluable.

During my years as a PhD student, I had the opportunity to teach for the first three

i

years as a part-time lecturer and in the fourth year as a Temporary Teaching and Re-
search Assistant (ATER). I want to express my gratitude to everyone who made this
experience highly enjoyable and ensured it was conducted under the best possible condi-
tions. This teaching experience made me discover a new world, and I learned a lot from it.

Since my educational journey began long before my PhD, I would like to extend my
gratitude to the teachers who crossed my path from primary school through to middle
school, high school, preparatory classes, and engineering school. They instilled in me
values and knowledge that have guided my present choices.

I want to express my profound appreciation to my family: my parents Hela and Hassib
and my sister Farah, who have played an indispensable role in shaping the person I am to-
day. Words cannot adequately convey how lucky and grateful I feel to have their love and
unconditional support. They have been my pillars of strength during the most challenging
times, always believing in me when I struggled to believe in myself. This work is not solely
mine; it is also a reflection of their encouragement and guidance. I sincerely hope that
they take pride in my accomplishments, as they have contributed immensely to this jour-
ney. Mom, dad, sister, this is also your achievement. I am also deeply thankful to all my
family members for constantly checking on me and encouraging me in every possible ways.

In the words of William Shakespeare, "I am wealthy in my friends," and indeed, their
presence has enriched this experience beyond measure. Their unwavering support over
the past few years has been a treasure beyond price. While I refrain from mentioning
names, as they undoubtedly know who they are, I extend my heartfelt gratitude to each
of them. To my dear friends, your impact during this experience has been profound.
From lifting my spirits with laughter during moments of darkness to offering company
during times of need, from engaging in stimulating conversations to providing invaluable
guidance, from encouraging me to reach for the stars to simply being there to share in
life’s joys and sorrows, your friendship has been a source of strength and joy.

Acknowledging that a PhD journey encompasses not only scientific challenges but also
personal growth, I extend my heartfelt gratitude to Mrs. Meunier, my therapist. In
her supportive environment, she provided me with the space and guidance needed to
navigate the challenges of this journey while also facilitating my personal development.

Lastly, I wish to convey my gratitude to all those whose small gestures have positively
influenced this journey. Your presence and support made a profound impact, and I am
genuinely thankful for each and every one of you.

ii

Résumé

Les codes correcteurs d’erreurs sont essentiels pour garantir des transmissions de données
fiables, surtout dans des contextes où diverses interférences peuvent compromettre
l’intégrité des informations. Les codes polaires sont l’une des familles de codes correcteurs
d’erreurs les plus compétitives. Ils peuvent atteindre la capacité du canal de Shannon
grâce à un encodage et un décodage efficaces pour de très grandes tailles de codes. Pour
ces raisons, les codes polaires ont été inclus dans le standard 5G. De plus, ils sont l’objet
de plusieurs recherches pour le futur standard 6G. Cependant, les codes polaires tels
que initialement construits pour un décodage à annulations successives (SC) atteignent
des performances limitées pour une taille modérée de codes. Cela est lié d’une part à
leurs faibles propriétés de distance et d’autre part à la nature du décodage à décision
dure. Cependant grâce à l’utilisation d’un décodage par listes principalement ainsi que
plusieurs autres améliorations, notamment la pré-transformation, les codes polaires sont
désormais compétitifs par rapport aux codes LDPC et aux turbo-codes. Dans ce contexte,
cette thèse a pour objet l’étude et l’analyse des codes polaires en se concentrant sur deux
aspects fondamentaux qui influencent ces performances : leurs propriétés de distance et
leurs performances pour un décodage par listes.

Après une revue approfondie de la définition des codes polaires, des différentes variantes,
des algorithmes de décodage et des concepts liés à leur spectre de distances, une première
contribution permet de caractériser une partie des propriétés de distance des codes polaires
classiques et pré-transformés. Cette méthode présente l’avantage d’être totalement
indépendante de la construction code. C’est pourquoi, elle peut être appliquée à différentes
configurations. De plus, l’approche proposée se distingue par une complexité de calcul
moins élevée que les méthodes présentes dans la littérature. Les techniques de poinçonnage
et de raccourcissement des codes polaires sont introduites comme des variantes permettant
d’obtenir des codes polaires dont les tailles ne sont pas nécessairement des puissance
de deux. Une deuxième contribution consiste à généraliser l’approche développée dans
le cadre de la thèse aux codes polaires poinçonnés et raccourcis. Il est à souligner que

v

cette dernière peut être appliquée quelque soit la technique de poinçonnage et/ou de
raccourcissement. Finalement, la question de la taille de liste nécessaire pour un décodage
liste (SCL) afin d’atteindre les performances de maximum de vraisemblance est traitée.
Celle-ci étant dépendante de la construction du code, un algorithme est proposé afin
d’estimer la taille moyenne de liste nécessaire pour atteindre les meilleurs performances
de décodage. Cela constitue une contribution très utile pour la construction de codes qui
offrent un compromis entre les propriétés de distance et un décodage par liste ayant une
complexité calculatoire maîtrisée.

Mots clefs : codes polaires, pré-transformation, spectre de distance, décodage basé sur
l’annulation successive à liste, maximum de vraisemblance

vi

Abstract

Error-correcting codes are essential for ensuring reliable data transmission, especially in
contexts where various interferences may compromise data integrity. Polar codes are one
of the most competitive families of error-correcting codes. They can achieve Shannon
channel capacity through efficient encoding and decoding for very large code lengths.
For these reasons, polar codes have been included in the 5G standard. Additionally,
they are the subject of several research efforts for the future 6G standard. However,
polar codes, as originally designed for successive cancellation (SC) decoding, exhibit
limited performance for moderate code lengths. This is in part due to their weak distance
properties and partly to the nature of hard decision decoding. However, with the use of
mainly list decoding and several other enhancements, including pre-transformation, polar
codes are now competitive with LDPC and turbo codes. In this context, this thesis aims
to study and analyze polar codes focusing on two fundamental aspects that influence
their performance: their distance properties and their performance for list decoding.

After a comprehensive review of polar code definition, various variants, decoding algo-
rithms, and concepts related to their distance spectrum, a first contribution characterizes
some distance properties of classical and pre-transformed polar codes. This method has
the advantage of being entirely independent of code construction, making it applicable to
different configurations. Moreover, the proposed approach distinguishes itself by having
lower computational complexity than methods in the existing literature.

Polar code puncturing and shortening techniques are introduced as variants to obtain
polar codes whose sizes are not necessarily powers of two. A second contribution involves
generalizing the developed approach within the thesis to punctured and shortened polar
codes. It is noteworthy that this approach can be applied regardless of the puncturing
and/or shortening technique used.

Finally, the question of the list size necessary for list decoding (SCL) to achieve maximum
likelihood performance is addressed. Since this depends on code construction, an algorithm

vii

is proposed to estimate the average list size required to achieve the best decoding
performance. This constitutes a very useful contribution for constructing codes that offer
a compromise between distance properties and list decoding with controlled computational
complexity.

Key words: polar codes, pre-transformation, distance spectra, successive cancellation list
decoding, maximum likelihood

viii

Résumé étendu

Chapitre 1 - Contexte et objectifs

Organisation

Ce chapitre pose le cadre général des communications numériques et introduit les concepts
clés qui seront utilisés tout au long de ce manuscrit. Il vise à définir la problématique de la
thèse et à exposer ses principaux objectifs. Le chapitre commence par la présentation d’une
chaîne de communication numérique classique, décrivant ses éléments fondamentaux
: l’émetteur, le canal de transmission, et le récepteur. Le rôle de l’émetteur est de
transformer les données en un signal adapté au canal, qui, lui, est souvent affecté par des
perturbations telles que le bruit ou les interférences. Le récepteur, quant à lui, est chargé
de récupérer les données en corrigeant, si possible, les erreurs introduites par le canal.

Ensuite, la notion de codage de canal est abordée. Cette technique permet d’ajouter de
la redondance aux données pour améliorer la fiabilité de la transmission. Le chapitre
introduit ensuite les codes polaires [1], qui sont au centre de cette thèse. Ces codes,
introduits en 2008 par Erdal Arikan, sont remarquables car ils peuvent, en théorie,
atteindre la capacité du canal avec une faible complexité de décodage. Le principe de
polarisation, à la base des codes polaires, transforme progressivement un canal en une
série de sous-canaux plus ou moins fiables. Ce mécanisme permet aux codes polaires de
s’approcher de la limite de capacité en augmentant la taille des blocs de code.

Le décodage par annulation successive (Successive Cancellation, SC), utilisé pour les
codes polaires, est ensuite présenté. Cet algorithme décode les bits un à un en utilisant
les informations précédemment décodées pour améliorer la précision. Cependant, ses
performances sont limitées pour des blocs de petite taille, ce qui est un inconvénient par
rapport à d’autres codes correcteurs d’erreurs.

Une section est consacrée aux stratégies de construction des codes polaires, qui reposent
sur le choix des bits gelés, ces derniers déterminant la performance du code en fonction de

ix

la fiabilité des sous-canaux. La notion de distance entre les mots de code, qui détermine
la capacité à corriger les erreurs, est également abordée. Ce critère est essentiel pour
évaluer l’efficacité des codes polaires sous décodage de maximum de vraisemblance. Enfin,
le chapitre explore l’impact de la pré-transformation des codes polaires, une technique
qui a permis d’améliorer encore davantage leurs performances. Différentes méthodes de
pré-transformation sont présentées, ainsi que leurs effets sur les propriétés des codes. Le
chapitre se termine par une comparaison des performances des codes polaires selon divers
paramètres.

Objectifs de la thèse

Dans le cadre des communications URLLC (Ultra-Reliable Low Latency Communications),
le défi majeur consiste à concevoir des systèmes capables de transmettre une grande
quantité de données en un temps réduit tout en maintenant une complexité calculatoire
faible et une fiabilité élevée. Cela implique d’être en mesure de construire des codes
correcteurs d’erreurs, et dans notre cas, des codes polaires, qui offrent un compromis
optimal entre performances et complexité. Les performances des codes polaires sont
principalement gouvernées par leurs propriétés de distance. Par conséquent, il est essentiel
de pouvoir évaluer ces propriétés de distance de manière efficace pour sélectionner les
codes polaires les mieux adaptés à des scénarios où des communications ultra-fiables et à
faible latence sont requises. Ainsi, il est crucial de trouver des méthodes peu coûteuses
en termes de complexité pour déterminer les propriétés de distance des codes polaires.
Une telle approche permet non seulement d’améliorer la qualité de la transmission des
données, mais aussi d’optimiser les algorithmes de décodage tout en conservant une
charge calculatoire raisonnable. La complexité de décodage des codes polaires permettant
d’atteindre des performances optimales sont également régies par un certain nombre de
paramètres qui seront mis en avant dans ce manuscrit.

Chapitre 2 - Détermination des propriétés de distance des
codes polaires

Objectifs

Ce chapitre se concentre sur la proposition d’un algorithme permettant de déterminer la
distance minimale ainsi que le nombre d’occurrences associées pour un code polaire, ou
plus généralement pour obtenir le spectre réduit d’un code polaire jusqu’à une valeur
prédéfinie. Cette approche présente plusieurs avantages notables.

x

En premier lieu, cet algorithme est déterministe, contrairement à des méthodes proba-
bilistes ou heuristiques. De plus, cet algorithme s’adapte facilement aux codes polaires
pré-transformés.

Un autre atout majeur de la méthode proposée est qu’elle ne repose sur aucune hypothèse
stricte concernant la construction du code. Cela la rend particulièrement flexible et
applicable à toute configuration de bits gelés.

Enfin, l’avantage principal de cet algorithme réside dans sa complexité calculatoire,
nettement inférieure à celle des méthodes classiques issues de la littérature. Cet allégement
de la complexité calculatoire est essentiel pour des applications nécessitant une analyse
rapide et efficace des propriétés de distance.

Principaux résultats

La détermination des propriétés de distance des codes polaires repose principalement sur
l’analyse des cosets polaires, qui sont des sous-ensembles spécifiques des codes polaires.
Il a été démontré que ces propriétés de distance peuvent être calculées à l’aide d’un
algorithme de message-passing sur les graphes de factorisation associés aux codes polaires.

Ce calcul est particulièrement important car il est prouvé que les codes polaires peuvent
être décrits comme une union disjointe de cosets polaires spécifiques. Sur cette base,
un algorithme est introduit, visant à n’explorer que les cosets qui interviennent dans le
calcul des propriétés de distance souhaitées. Cette approche optimise considérablement
l’exploration en ne conservant que les éléments significatifs, ce qui réduit la complexité
calculatoire globale de manière significative.

En outre, il a été démontré que, de la même manière que pour les codes polaires classiques,
les codes polaires pré-transformés peuvent également être exprimés comme une union
disjointe de cosets polaires. Cela signifie que l’algorithme proposé est adaptable à ces
codes, avec seulement quelques modifications mineures.

De plus, cette méthode a été étendue aux codes polaires concaténés avec un CRC (Cyclic
Redundancy Check), ce qui élargit encore son domaine d’application. Le CRC est souvent
utilisé pour améliorer la détection et la correction d’erreurs, et l’algorithme est capable
de gérer cette concaténation tout en maintenant une faible complexité.

Les résultats expérimentaux obtenus pour la détermination des spectres de distance sont
conformes aux résultats déjà présents dans la littérature, ce qui confirme la validité et la
précision de la méthode proposée. En outre, une comparaison de la complexité calculatoire

xi

de cette approche par rapport aux méthodes existantes montre que l’algorithme proposé
permet de réduire cette complexité de plusieurs ordres de grandeur, rendant la méthode
plus efficace.

Chapitre 3 - Détermination des propriétés de distance des
codes polaires poinçonnés et raccourcis

Objectifs

Ce chapitre s’intéresse à la généralisation des principes abordés dans le chapitre afin de
calculer les propriétés de distance des codes polaires poinçonnés et raccourics.

Habituellement, les codes polaires sont construits avec des tailles qui sont des puissances
de 2. Cela limite leur applicabilité dans les scénarios nécessitant des longueurs de bloc
courtes. Pour surmonter cette limitation, des techniques telles que le poiçonnage et le
raccourcissement ont été introduites. Ces méthodes permettent de construire des codes
polaires avec des longueurs de code plus flexibles.

La détermination des propriétés de distance des codes polaires poinçonnés et raccourcis est
cruciale pour optimiser leurs performances sous un décodage à maximum de vraisemblance.
Cette connaissance permet d’optimiser les schémas de poiçonnage et de raccourcissement,
ainsi que la construction de ces codes, afin d’atteindre les objectifs de performance
souhaités. De plus, il est essentiel de prendre en compte l’impact de la pré-transformation
sur les codes polaires poinçonnés et raccourcis pour améliorer leurs propriétés de distance.

Pricipaux résultats

La détermination des propriétés de distance pour les codes polaires poinçonnés et
raccourcis repose essentiellement sur l’introduction de cosets polaires également soumis
aux opérations de poinçonnage et de raccourcissement. L’avantage de cette approche
réside dans la prise en compte directe de l’impact de ces opérations au sein même des
cosets polaires. Des adaptations spécifiques sont ensuite mises en place en fonction des
motifs de poinçonnage et de raccourcissement appliqués.

Il est par la suite démontré que, tout comme les codes polaires classiques, les codes
polaires poinçonnés ou raccourcis peuvent également être exprimés comme une union
disjointe de cosets polaires poinçonnés ou raccourcis spécifiques. Ce résultat permet
d’appliquer une stratégie similaire à celle utilisée pour les codes polaires classiques, en

xii

effectuant un élagage des cosets afin de ne conserver que ceux qui interviennent dans le
calcul des propriétés de distance recherchées. Cette étape permet de réduire la complexité
des calculs tout en maintenant l’aspect déterministe de la méthode.

Cette méthode est ensuite adaptée aux codes polaires poinçonnés et raccourcis avec pré-
transformation, en imposant une contrainte spécifique sur le motif de raccourcissement
dans le cas des codes polaires raccourcis.

Les résultats expérimentaux obtenus confirment la validité de cette approche. En effet,
les résultats sont alignés avec ceux présents dans la littérature, tout en offrant une
réduction significative de la complexité calculatoire par rapport aux méthodes existantes.
Cette réduction de la complexité rend la méthode proposée plus adaptée aux applications
pratiques.

Chapitre 4 - Estimation de la taille de liste moyenne perme-
ttant d’atteindre les performances de maximum de vraisem-
blance

Objectifs

Ce chapitre introduit une méthode pour optimiser la construction de codes polaires, en
se concentrant sur leurs propriétés de distance. Les codes polaires conçus uniquement en
fonction de ces contraintes montrent des performances moindres lors du décodage par
liste avec annulation successive (SCL), surtout avec une taille de liste modérée. Nous
explorons ici les paramètres influençant la taille moyenne de la liste nécessaire pour
obtenir des performances proches de celles du maximum de vraisemblancce, tout en
limitant la complexité calculatoire.

De plus, il est expliqué comment certains chemins de décodage peuvent être éliminés lors
du décodage par liste sans affecter les performances globales, ce qui permet de réduire la
complexité tout en maintenant un haut niveau de fiabilité.

Principaux résultats

Dans ce chapitre, une méthode de construction de codes polaires basée uniquement
sur leurs propriétés de distance est présentée. Il est démontré que, pour des codes de
taille modérée, cette méthode permet d’atteindre des performances proches de celles du
Maximum de Vraisemblance (ML), lorsqu’un décodage par liste avec une taille de liste

xiii

modérée est utilisé. Cependant, pour des codes de plus grande taille, les performances
sous un décodeur par liste à taille modérée se dégradent significativement, rendant cette
approche moins efficace.

La deuxième partie du chapitre se concentre donc sur l’analyse de l’impact de la con-
struction du code sur la taille de la liste nécessaire pour s’approcher des performances du
décodage ML. Il est d’abord démontré que le décodage par liste des codes polaires peut
être simplifié à partir d’une certaine étape sans compromettre les performances. Ensuite,
il est prouvé que la taille moyenne de la liste permettant d’atteindre les performances de
ML est étroitement liée aux propriétés de distance de certains cosets polaires spécifiques
tout au long du processus de décodage.

L’exploitation des outils développés dans le chapitre 2 ainsi que la définition précise des
facteurs générant le besoin en taille de liste pour les codes polaires permettent d’estimer
l’évolution de ce besoin en taille de liste tout au long du décodage.

Les résultats expérimentaux confirment que la méthode proposée offre une estimation
précise du besoin en taille de liste pour atteindre les performances de décodage ML.
De plus, il est montré comment cette méthode, combinée avec celles développées dans
les chapitres 2 et 3, permet de construire des codes optimisant le compromis entre
performances et complexité calculatoire lors du décodage.

xiv

Table of contents
Résumé . v
Abstract . vii
Résumé étendu . ix
Table of contents . xvii
List of figures . xxi
List of tables . xxiii
List of acronyms . xxv

Introduction 1

1 Generalities on Polar codes 7
1.1 Principle of polar codes . 8

1.1.1 Channel coding . 8
1.1.2 Binary-Discrete Memoryless Channels (B-DMC) 9
1.1.3 Polar codes . 10
1.1.4 Successive Cancellation decoding of polar codes 12

1.2 Construction and properties of polar codes 13
1.2.1 Partial order of synthetic channels 15
1.2.2 Rate-profiling construction . 16
1.2.3 Distance properties of polar codes 18

1.3 On the pre-transformation of polar codes 19
1.3.1 Polarization-Adjusted Convolutional (PAC) codes 20
1.3.2 Polar codes with Dynamic Frozen Bits 22
1.3.3 Impact of precoding on the distance properties of polar codes . . 22

1.4 Decoding of pure and pre-transformed polar codes 23
1.4.1 Successive Cancellation List decoding 23
1.4.2 Concatenation with a Cyclic Redundancy Check 25
1.4.3 Sequential decoding of polar codes 25

1.5 Performance of pure and pre-transformed polar codes under different
decoding schemes and constructions . 27

xv

Table of contents

1.5.1 Short-length codes . 28
1.5.2 PAC codes . 30
1.5.3 Larger length codes . 32

1.6 Problematics and conclusions . 34

2 On the distance properties of pure and pre-transformed polar codes 37
2.1 Context . 38
2.2 Graph computation of the minimum distance and associated number of

occurrences of polar cosets . 40
2.2.1 Polar cosets . 40
2.2.2 Computation of the minimum distance properties of a polar coset . 41
2.2.3 Computational complexity analysis 50

2.3 Low complexity algorithm for the computation of minimum distance
properties for pure and pre-transformed polar codes 51
2.3.1 Pure polar code case . 51
2.3.2 Results . 55
2.3.3 Extension to pre-transformed polar codes 57
2.3.4 Extension for polar codes with CRC 64

2.4 Computation of the partial weight spectrum of pure and pre-transformed
polar codes . 68
2.4.1 Partial distance spectrum results 70

2.5 Conclusion . 73

3 About the distance properties of Punctured and Shortened pure and
pre-transformed polar codes 75
3.1 Context . 76
3.2 Rate-compatible pure and pre-transformed polar codes 76

3.2.1 Punctured polar codes . 76
3.2.2 Shortened polar codes . 78
3.2.3 Rate-Compatible Pre-Transformed polar codes 79

3.3 Computing the minimum weight of rate-compatible polar cosets 80
3.4 Weight enumeration function of rate-compatible polar cosets 82

3.4.1 Case of punctured polar codes . 82
3.4.2 Case of shortened polar codes . 84

3.5 Extension to the Reduced Weight Enumeration Spectrum of punctured
and shortened polar cosets . 85

3.6 Computing the distance properties of Rate-Compatible pure and pre-
transformed polar codes . 87

xvi

Table of contents

3.7 Distance properties results for punctured and shortened polar and PAC
codes . 91
3.7.1 Minimum distance Properties . 91
3.7.2 Reduced weight spectrum . 93

3.8 Conclusion . 98

4 Towards a trade-off between distance properties and SCL decoding
complexity of polar codes 99
4.1 Introduction . 99
4.2 Distance properties based rate-profile for PAC codes 102

4.2.1 Overall algorithm . 104
4.2.2 Rate-profile construction results 108

4.3 Tailored list decoding of polar codes . 110
4.3.1 Decoding tail in SC-based algorithms 110
4.3.2 Tailoring in the case of SCL decoding 110

4.4 About the average list size that reaches ML performance 119
4.4.1 Difference to True Path Metric (DTPM) 120
4.4.2 Correlation of codewords with minimum weight of a coset 123
4.4.3 Determination of αi . 125
4.4.4 DTPM estimation results . 126
4.4.5 Average List size for ML decoding 128
4.4.6 Average list size estimation results 129

4.5 Conclusion . 135

Conclusions and perspectives 137

Appendices 141
A Demonstration of equations 2.24 and 2.26 141
B Proof for equation (2.31) and (2.33) . 142
C Demonstration of equation 4.2 . 143

xvii

List of figures
1.1 Digital communication chain . 8
1.2 Different polar codes and the corresponding encoding schemes 11
1.3 Polar encoding . 12
1.4 Graph factor configurations for LLR computation 13
1.5 Successive Cancellation decoding of a N = 8 polar code 14
1.6 Monomials for a polar code with N = 8 16
1.7 Minimum distance and associated number of occurrences for a (128, 64)

polar code under polar and RM-polar constructions 20
1.8 PAC code encoding scheme . 20
1.9 Successive Cancellation List decoding with L = 4 24
1.10 Encoding scheme for polar codes with CRC 25
1.11 Polar codes performance under SC and SCL decoding 28
1.12 Polar codes performance under SCL and CA-SCL decoding and GA

construction . 30
1.13 PAC codes performance under SC and SCL decoding 31
1.14 (256, 128) PAC codes performance . 32
1.15 (256, 128) pre-transformed polar codes performance 33

2.1 Polar coset code C(3)N (0, 0, 0, 1) with N = 8 and I = {3, 5, 6, 7} 40
2.2 Parity node case . 44
2.3 Variable node case . 45
2.4 Tanner Graph of u2 decoding for a polar code with N = 8 45
2.5 Tanner Graph of u2 decoding for a polar code with N = 8 48
2.6 Factor graph of u2 for the computation ofA3

8(C8([1, 0], 0)) andA3
8(C8([1, 0], 1)) 50

2.7 Example of Algorithm 1 for a (32, 10) polar code 54
2.8 Number of evaluated cosets at each enumeration step 57
2.9 PAC transformation with N = 16 and K = 8 58
2.10 Number of evaluated cosets at each enumeration step for a (128, 64) PAC

code . 62

xix

List of figures

2.11 Representation of d∗ et A∗ for N = 512 and g = [1, 0, 1, 1, 0, 1, 1] depending
on K . 63

2.12 Weight distribution of the polar cosets of a (128, 64) polar code with
CRC11 during the last 11 enumeration steps 67

2.13 Evolution of d∗, A∗ and Cmax for a polar code with N = 128 and CRC11
depending on the code rate . 68

2.14 Relaxed spectrum enumeration for a (32, 9) pure polar code 70

3.1 Tanner Graph of u4 decoding for a punctured polar code with N = 8 and
P = 2 . 81

3.2 Tanner Graph of u3 decoding for a shortened polar code with N = 8 and
S = 2 . 82

3.3 Tanner Graph of u3 decoding for a punctured polar code with N = 8 and
P = 2 . 83

3.4 Transformation matrix for N = 8 and P = 4 84
3.5 Vectors of CP8([0, 0, 0], 1) with minimum weight 84
3.6 Tanner Graph of u3 decoding for a shortened polar code with N = 8 and

S = 2 . 85
3.7 Factor graph of u3 for the computation ofA3

8(CP8([1, 0, 0], 0)) andA3
8(CP8([1, 0, 0], 1)) 86

3.8 Transformation matrix G16. 87
3.9 Relaxed reduced spectrum enumeration for a (20, 7) punctured polar code 90
3.10 Relaxed reduced spectrum enumeration for for a (20, 7) punctured PAC code 90

4.1 (16, 7) proposed rate-profiling for a PAC code 103
4.2 Determination of d∗ and A∗ for a (16, 6) and (16, 7) PAC code 104
4.3 Determination of d∗ and A∗ for a (16, 5) and (16, 6) PAC codes 106
4.4 Construction of PAC* rate-profile and performance evaluation for N = 64 108
4.5 Construction of PAC* rate-profile and performance evaluation for N = 256 109
4.6 First error position histogram for a (256,128) polar code decoded with an

SC decoding algorithm at Eb
N0

= 3 dB . 111
4.7 Performance of (128,64) Polar code under T-SCL decoding 115
4.8 T-CA-SCL decoding process illustration. 116
4.9 Polar codes decoding: CA-SCL versus T-CA-SCL for L = 8 119
4.10 Tanner Graph of u4 decoding for a polar code with N = 8 125
4.11 Histograms and PDFs of ψ72(u

72
0 [l1]) and ψ72(u

72
0 [l2]) 127

4.12 PDFs of both DTPMs . 127
4.13 log2(L̄i): Estimation VS simulation for (128, 64) a PAC code under RM

construction . 130
4.14 Representation of fψ([014

0 1])(v) . 131

xx

List of figures

4.15 log2(L̄i): Estimation for (128, 64) pure polar and PAC codes under RM
construction . 132

4.16 PDFs of ψ(u84
0 [l1]) and ψ(u84

0 [l2]) . 132
4.17 List size evolution and performance of (256, 128) PAC codes under SCL

decoding with L = 16 . 134

xxi

List of tables
1.1 Polar codes distance properties under 5G and RM construction 29
1.2 Polar codes distance properties under for pure and CRC polar codes . . . 29
1.3 Pure polar and PAC codes distance properties 31

2.1 Distance properties determination methods: advantages and limitations . 39
2.3 Minimum distance and number of occurrences values for different polar

codes . 56
2.4 Minimum distance and number of occurrences 61
2.5 Minimum distance and number of occurrences parameters for PAC codes 62
2.6 Last enumeration step for pure and polar codes with CRC 64
2.7 Minimum distance and number of occurrences parameters for polar codes

with CRC . 66
2.8 Minimum distance properties and AVN of N = 128 polar code with PW

frozen set construction . 68
2.9 Partial weight distribution of randomly pre-transformed polar codes . . . 71
2.10 Partial weight distribution of pure and pre-transformed polar codes 72

3.1 Minimum distance properties of pure, PAC and DFB shortened polar codes 93
3.2 Minimum distance properties of pure, PAC and DFB punctured polar codes 94
3.3 Partial weight distribution of punctured and shortened polar and PAC codes 96
3.4 Partial weight distribution of (200, 100) randomly punctured / shortened

polar codes . 97

4.1 Values of s for 5G rate-profiling . 114
4.2 Values of s for RM rate-profiling . 114
4.3 Polar code and T-CA-SCL decoding parameters 118
4.4 Distance properties of C128(u72

0 [l1]) and C128(u72
0 [l2]) 126

4.5 Number of low weight codewords in the (128, 64) pure polar and PAC codes131
4.6 Distance properties of C128(u84

0 [l1]) and C128(u84
0 [l2]) 131

4.7 Number of low-weight codewords . 133

xxiii

List of acronyms
5G Fifth generation of cellular mobile communications
AWGN Additive White Gaussian Noise
BER Bit Error Rate
B-DMC Binary Discrete Memoryless Channel
BPSK Binary Phase Shift Keying
CA-SCL CRC Aided Successive Cancellation List
CDF Cumulative Distribution Function
CRC Cyclic Redundacy Check
DE Density Evolution
DE-GA Density Evolution by Gaussian Approximation
DFB Dynamic Frozen Bits
DMC Decreasing Monomial Code
DTPM Difference to True Path Metric
FER Frame Error Rate
LLR Log Likelihood Ratio
MC Meta Converse
ML Maximum Likelihood
MWEF Minimum Weight Enumeration Function
PAC Polarization-adjusted convolutional
PDF Probability Distribution Function
RCU Random Coding Union
RM Reed-Muller
RWEF Reduced Weight Enumeration Function
SC Successive Cancellation
SCL Successive Cancellation List
SNR Signal-to-noise Ratio
TUB Truncated Union Bound
UB Union Bound
URLLC Ultra-Reliable Low Latency Communications

xxv

List of acronyms

WEF Weight Enumeration Function

xxvi

Introduction

In a typical digital communication setup, a source generates information, a channel serves
as the medium for transmitting data, and a receiver at the receiving end. In order to
ensure reliable transmission of information from the source to the receiver, it is crucial
to address the various distortions introduced by the channel due to multiple factors.

To address this challenge, channel coding is integrated into digital communication chains.
This technique is employed in communication systems to enhance the reliability of data
transmission. By adding redundancy to the transmitted data, error control coding
enables the detection and, in some cases, the correction of errors that may arise during
transmission. This approach plays a major role in mitigating the effects of channel
impairments and ensuring the fidelity of transmitted data in digital communication
systems.

In his seminal work "The Mathematical Theory of Communication" [2], Claude Shannon
revolutionized the understanding of information transmission. Among his groundbreaking
contributions was the formulation of the channel capacity, a fundamental concept in
information theory. Shannon also demonstrated the significance of encoding in his
second theorem, illustrating how channel coding can introduce redundancy to the original
transmission. It enables to facilitate dependable information transfer at rates below
the channel’s capacity. Despite Shannon’s groundbreaking theoretical insights, explicit
codes capable of achieving his theoretical limit have yet to be determined. Since the
demonstration of his mathematical framework, extensive research has been devoted to
developing codes that can approach this limit. Beginning with simple repetition codes,
which involve transmitting information multiple times to infer the received message,
researchers have progressed to more sophisticated error-correcting codes such as BCH [3],
Reed-Solomon [4], convolutional codes [5], turbo codes [6] and LDPC codes [7]. The
main objective is to get closer to the theoretical limits while maintaining reasonable
computational complexity adapted to specific use cases. Despite these advancements,
reaching Shannon limit remains a significant challenge.

1

Introduction

Arikan’s introduction of polar codes in 2008 [1] is considered as a new step by offering
a method capable of asymptotically achieving channel capacity with a low-complexity
decoder, based on the Successive Cancellation algorithm. Besides, they accommodate
variable code rates and lengths, with straightforward mechanisms in place for puncturing
and shortening. However, these advantages come with a trade-off: to fully harness
their potential, polar codes require transmission of very large messages. For shorter to
moderate block lengths, polar codes have demonstrated mediocre performance. This
makes them less appealing compared to established error-correcting codes such as turbo
codes and LDPC codes.

Over the past decade, significant efforts have been directed towards enhancing the error
correction capabilities of polar codes. These efforts have primarily focused on two aspects:
refining practical decoding algorithms and enhancing the code construction process.
Various proposed decoding algorithms, among them the Successive Cancellation List
decoder [8], have proven to be instrumental in achieving competitive error correction
performance, particularly for short block-lengths. Thanks to these improvements, polar
codes have emerged in the field of error correction codes, underscored by their inclusion
in the fifth generation of mobile telephony standards 5G [9]. They also are subject of
extensive research for the future 6G standard.

Interest in the construction of polar codes adapted to decoding strategies has only
recently gained momentum, particularly with the emergence of several pre-transformation
techniques [10–12]. These techniques have demonstrated superior distance properties
compared to traditional polar codes, sparking renewed attention in optimizing code
construction for enhanced performance.

This thesis focuses on two critical parameters that dictate the performance of polar codes:
their distance properties and their ability to achieve Maximum Likelihood performance
when decoded with successive list algorithm. These aspects serve as essential factors
in the design of codes and a lower decoding complexity. The investigation extends to
pre-transformed polar codes and variants that have undergone shortening and puncturing.
These techniques are particularly significant as they allow for the definition of codes
with block lengths that may not necessarily conform to powers of 2, thereby broadening
the scope of achievable code lengths. The dissertation is organized into four chapters,
each focusing on a different aspect of the research studies. In the first chapter, the
focus is on understanding polar codes and the fundamental polarization phenomenon
that defines the way they operate, allowing them to approach the channel’s capacity
under successive cancellation (SC) decoding. The chapter also delves into conventional
code construction methods tailored for SC decoding. A brief overview of the distance

2

Introduction

properties exhibited by polar codes is provided. Various pre-transformation techniques
for polar codes are introduced, expanding the available techniques for code enhancement.
Additionally, alternative decoding methods beyond the successive cancellation decoder
are discussed. They offer insights into the trade-off between decoding performance and
computational complexity.

In the second chapter, a first contribution of this manuscript is introduced: the
computation of the distance properties of pure and pre-transformed polar codes. The
weight distribution of error-correcting codes provides insights into their performance under
Maximum Likelihood decoding. Therefore, identifying the most significant elements of
the weight spectrum is crucial for characterizing their performance. The method proposed
relies on computing the distance properties of polar cosets and subsequently pruning
the irrelevant ones. Notably, one of its primary advantages is its independence from
constraints imposed on code construction or the pre-transformation techniques applied.
This approach offers a low-complexity computation, compared to existing methods of
assessing the distance properties of polar codes, thereby facilitating design decisions.

In the third chapter, the insights gained from the second chapter are extended to
generalize the proposed method to punctured and shortened pure and pre-transformed
polar codes. This method also benefits from the fact of being totally independent of the
chosen puncturing or shortening scheme. Traditionally, polar codes are constrained to
block lengths expressed as powers of 2. However, puncturing and shortening techniques
offer a departure from this rule, providing increased flexibility to polar codes. Recent
studies, such as [13], have demonstrated that, similarly to classic polar codes, punctured
and shortened polar codes under specific schemes can achieve channel capacity. Given the
growing interest in ultra-reliable low latency communications (URLLC), where moderate
block lengths are prevalent, the exploration of punctured and shortened polar codes
becomes increasingly relevant. Understanding the distance properties of such codes is
essential to design code tailored to these specific scenarios.

The fourth chapter focuses on investigating the list size requirements when employing
a Successive Cancellation List decoder to achieve performances comparable to Maximum
Likelihood decoding. While the distance properties of polar codes define these perfor-
mances, the computational complexity associated with decoding can be prohibitively
high, especially for moderate to large block lengths. This chapter delves into various
parameters influencing the evolution of the list size necessary to achieve best code per-
formance. Specifically, it is demonstrated that, similarly to distance properties, the list
size required to achieve Maximum Likelihood performance is heavily influenced by the
characteristics of pertinent polar cosets. This approach offers a significant advantage of

3

Introduction

adaptability to pre-transformation, shortening, and puncturing techniques, making it
highly attractive for code construction purposes.

Finally, this thesis concludes with a recapitulation of the various contributions put forth
throughout the manuscript. Additionally, the thesis outlines several perspectives for
future exploration and development based on the insights gained from the conducted
research. These perspectives shed light on potential areas for further investigation and
innovation in the short, medium and long terms.

List of contributions

The main contributions of this thesis can be summarized as follows:

1. A low-complexity algorithm for determining the distance properties of polar and pre-
coded polar codes. This algorithm is "universal" in the sense that it is independent
of the code construction and precoding, allowing it to adapt to any scenario.

2. An extension of the initial algorithm to compute the distance properties of punctured
and shortened precoded polar codes. Experimental results demonstrate that the
proposed computation significantly reduces computational complexity by several
orders of magnitude compared to existing methods.

3. An algorithm for constructing precoded polar codes based on their distance proper-
ties.

4. An upper bound on the maximum list size necessary to achieve maximum likelihood
decoding performance. This bound can also be applied to punctured and shortened
polar codes.

These various contributions have been highlighted through scientific publications:

• National conferences :

• M. Ellouze, C. Leroux, R. Tajan, C. Poulliat et C. Jégo, Décodage SC par
listes optimisées de codes polaires. in GRETSI, 2022.
• M. Ellouze, R. Tajan, C. Leroux, C. Jégo et C. Poulliat, Algorithme faible

complexité pour le calcul de la distribution de la distance minimale de codes
polaires. in GRETSI, 2023.

4

Introduction

• International conferences :

• M. Ellouze, C. Leroux, R. Tajan, C. Poulliat et C. Jégo, Tailored List Decoding
of Polar Codes. in 11th International Symposium on Topics in Coding (ISTC),
2021.

• M. Ellouze, R. Tajan, C. Leroux, C. Jégo et C. Poulliat, Low-complexity algo-
rithm for the minimum distance properties of PAC codes. in 12th International
Symposium on Topics in Coding (ISTC), 2023.

• International journals :

• M. Ellouze, R. Tajan, C. Leroux, C. Jégo et C. Poulliat, Enumeration of
Low-Weight codewords of Punctured and Shortened Pre-Transformed Polar
Codes. to be submitted in IEEE Transactions on Communications.

5

1 Generalities on Polar codes

This chapter provides an overview of key concepts in channel coding, focusing on polar
coding, to lay the groundwork for subsequent chapters. Specifically, it covers topics such
as channel polarization, techniques for constructing polar and pre-transformed polar
codes, properties of these codes, and associated decoding strategies.

1.1 Principle of polar codes . 8
1.1.1 Channel coding . 8
1.1.2 Binary-Discrete Memoryless Channels (B-DMC) 9
1.1.3 Polar codes . 10
1.1.4 Successive Cancellation decoding of polar codes 12

1.2 Construction and properties of polar codes 13
1.2.1 Partial order of synthetic channels 15
1.2.2 Rate-profiling construction . 16
1.2.3 Distance properties of polar codes 18

1.3 On the pre-transformation of polar codes 19
1.3.1 Polarization-Adjusted Convolutional (PAC) codes 20
1.3.2 Polar codes with Dynamic Frozen Bits 22
1.3.3 Impact of precoding on the distance properties of polar codes 22

1.4 Decoding of pure and pre-transformed polar codes 23
1.4.1 Successive Cancellation List decoding 23
1.4.2 Concatenation with a Cyclic Redundancy Check 25
1.4.3 Sequential decoding of polar codes 25

1.5 Performance of pure and pre-transformed polar codes under different
decoding schemes and constructions 27
1.5.1 Short-length codes . 28
1.5.2 PAC codes . 30
1.5.3 Larger length codes . 32

1.6 Problematics and conclusions . 34

7

Chapter 1. Generalities on Polar codes

1.1 Principle of polar codes

1.1.1 Channel coding

While digital communication chains can present some differences, they share a founda-
tional model established by Claude Shannon in [2]. This model describes the key steps in
transmitting an initial message u from a source point to a receiver through a transmission
channel, which serves as the transmission medium for the information. The objective is
thus to achieve flawless recovery of the transmitted signal upon reception. When a signal
is transmitted through a communication channel, it undergoes numerous perturbations
primarily stemming from thermal noise generated by electronic components within the
transmission chain. In the case where the aforementioned perturbations are of high
significance, they have the potential to distort the originally transmitted message, thereby
introducing errors into the received message. To tackle this issue, the communication
chain model underwent refinement by incorporating a channel encoder and decoder,
a process known as channel coding. The primary objective of channel coding is to
enable data transmission that is both more reliable and efficient. The encoding consists
in transforming an information sequence of K bits into a codewords of N bits where
N > K. This means that redundancy is added to the initially transmitted message,
i.e., the code rate R = K

N < 1. The model of a coded communication chain is given in
Figure 1.1. In this model, the source generates a message u, which is then encoded into

Source
encoder

Information
source

Channel
encoder

u

Modulator

c

Channel

x

Demodulator
y

Channel
Decoder

L

Source
Decoder

ûDestination

Transmitter

Receiver

Figure 1.1: Digital communication chain

8

1.1 Principle of polar codes

a codeword c and modulated into a vector of symbols x for transmission through the
channel. The altered message y upon passage through the channel undergoes the reverse
operations of the transmitter side to obtain an estimated version of the transmitted
message û. The aim is therefore to correctly recover the transmitted message, i.e., u = û.
Among Shannon’s results [2], it is asserted that if the code rate is below a threshold
determined by the channel capacity defined as the maximal amount of information that a
channel can transport, there exist encoding and decoding schemes such that the originally
transmitted message can be reliably recovered asymptotically. The main open question
revolves around discovering encoding and decoding techniques that offer reliability while
maintaining low complexity. Polar codes [1] are the first deterministic family of error
correcting codes to achieve the channel capacity asymptotically for a certain class of
channels under a low complexity decoding algorithm called Successive Cancellation (SC)
decoder that will be detailed in the next sections.

1.1.2 Binary-Discrete Memoryless Channels (B-DMC)

Let us consider W , a channel. W is considered as a Binary-Discrete Memoryless Channel
(B-DMC) if it obeys to the following properties:

• The input alphabet X is discrete.

• The output alphabet Y is discrete.

• For x ∈ X and y ∈ Y, the conditional probability is denoted by W (y|x). Due
to the memoryless property of the channel, and given x = (x0, x1, ..., xN−1) and
y = (y0, y1, ..., yN−1), the following property is verified:

WN (y|x) =
N−1∏
i=0

W (yi|xi) (1.1)

The symmetric capacity I(W) of a B-DMC channel is given by [1]:

I(W) =
∑
x ∈ X
y ∈ Y

1

2
W (y|x)log 2W (y|x)

W (y|0) +W (y|1)
(1.2)

This symmetric capacity represents a rate measure that is helpful to determine the
maximum rate at which a reliable communication can be achieved across the channel W
while using uniform inputs.

9

Chapter 1. Generalities on Polar codes

1.1.3 Polar codes

Let G2 =

[
1 0

1 1

]
denote the kernel matrix and u = [u0, u1] an input sequence. The

encoded sequence is x = [x0, x1] = [u0 ⊕ u1, u1]. Let us define the B-DMC channel W2

where:

• The input vector is [u0, u1] ∈ X 2.

• The output vector is [y0, y1] ∈ Y2

• The transition probability

W2(y|u) ,W2(y|uG2) =W (y0|u0 + u1)W (y1|u1) (1.3)

This channel can be split into two artificial channels as presented in [1]:

• A first channel W (−)
2 : X → Y2 for which the input is u0 and the output is [y0, y1].

• A channel W (+)
2 : X → Y2×X for which the input is u1 and the output is [y0, y1, u0].

Using probability rules, W (−)
2 and W

(+)
2 can be computed as:

W
(−)
2 (y0, y1|u0) =

1

2

∑
u1∈X

W2(y0, y1|u0, u1) =
1

2

∑
u1∈X

W (y0|u0 ⊕ u1)W (y1|u1) (1.4)

W
(+)
2 (y0, y1|u0) =

1

2
W2(y0, y1|u0, u1) =

1

2
W (y0|u0 ⊕ u1)W (y1|u1) (1.5)

Channels W (−)
2 and W

(+)
2 can be interpreted as follows. As u0 has an influence on the

values of both y0 and y1, this offers comparatively more information about u1 than about
u0. Moreover, because of the transmission of u0 ⊕ u1, information of u0 and u1 are
combined, leading to less information about u0. It has been shown in [1] that:

I(W
(−)
2) ≤ I(W) ≤ I(W (+)

2) (1.6)

This means that starting from a B-DMC channel W , one synthetic more reliable channel
W

(+)
2 and another less reliable synthetic channel W (−)

2 can be obtained.
The construction of polar codes deeply relies on the extension of the transformation of a
set of channels (W,W) to a synthetic set of channels (W

(−)
2 ,W

(+)
2) of lower and higher

10

1.1 Principle of polar codes

reliability. The construction of polar codes highly relies on this channel transformation
or polarization that can be extended to a high number of channels.
A polar code C(N,K) is a linear code block with a size N = 2n. The transformation
matrix of a polar code is given by the n-fold polar Kronecker matrix GN = G

⊗
n

2 where

G2 =

(
1 0

1 1

)
and (·)

⊗
n denotes the nth Kronecker product power. Figure 1.2 illustrates

different generator matrices GN as well as their associated encoding schemes.

+

=
G2 =

(
1 0
1 1

)
u0

u1

c0 = u0 ⊕ u1

c1 = u1

+

+

=

=

+

=

+

=

G4 =


1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1


u0

u1

u2

u3

c0 = u0 ⊕ u1 ⊕ u2 ⊕ u3

c1 = u1 ⊕ u3

c2 = u2 ⊕ u3

c3 = u3

GN
2

GN
2

GN =

(
GN

2
0

GN
2

GN
2

)

+
+

+
+

=
=

=
=

u0

u1

uN
2 −2

uN
2 −1

uN
2

uN
2 +1

uN−2

uN−1

c0

c1

cN
2 −2

cN
2 −1

cN
2

cN
2 +1

cN−2

cN−1

.

.

.

.

.

.

.
.

.

.
.

.

Figure 1.2: Different polar codes and the corresponding encoding schemes

The recursive construction can be observed in Figure 1.2. It stems from the fact that
GN

2

⊗
G2 = GN . Therefore, starting from N independent channels W , it is possible to

build N synthetic channels W (i)
N : X → YN ×X i−1 where:

W
(i)
N (y, ui−1

0 |ui) =
∑

uNi+1∈{0,1}i−1

1

2N−iWN (y|uGN). (1.7)

Arikan proved in [1] that asymptotically in N , the capacities I(W (i)
N (y, ui−1

1 |ui)) either
tend to 0 or to 1. This means that the synthetic channels are divided into two groups. A

11

Chapter 1. Generalities on Polar codes

group of very reliable channels whose symmetric capacity tends to 1 where the information
if perfectly transmitted and a group of very unreliable channels with a channel capacity
of 0.
Defining a polar code C(N,K) therefore boils down to pinpointing the K positions where
the information bits are transmitted, whereas the remaining ones are frozen (i.e. they
are set to a known value). In all the following, we denote by pure polar codes [14] polar
codes with all the frozen bits equal to 0. The set of frozen bits is denoted by F and
the information bit set by I. We will discuss in further sections the different ways to
define the information and frozen sets. Figure 1.3 represents the encoding process for
polar codes. Starting from a bit vector b of length K, the vector u is obtained from b by
inserting the information bits of b in u. The remaining positions of u are frozen. This
operation is called rate-profiling.

Rate
profiler

b Polar
encoder

u x

Figure 1.3: Polar encoding

1.1.4 Successive Cancellation decoding of polar codes

The decoding of polar codes using the Successive Cancellation (SC) highly relies on the
encoding construction. In fact, as polar codes construction can be illustrated by factor
graphs, the encoding consists in the propagation of the information from the left side
of the graph towards the right side of the graph. By contrast, the decoding consists in
the propagation of the channel observation on the right of the graph representing the
different bit estimations. Those estimations are expressed as Log Likelihood Ratio (LLR)
Li as:

Li = log
(
P (ui = 0|yi)
P (ui = 1|yi)

)
(1.8)

The SC decoding process estimates each ui from the received word yN1 and the past
decisions ûi−1

1 as:

ûi =

0 if Li ≥ 0 or if i ∈ F

1 otherwise
(1.9)

12

1.2 Construction and properties of polar codes

where Li is also defined as:

Li = log

(
W

(i)
N (yN1 , û

i−1
1 |ui = 0)

W
(i)
N (yN1 , û

i−1
1 |ui = 1)

)
(1.10)

The computation of Li is done using the different propagation rules in equations (22)
and (23) of [1]. During decoding, two distinct configurations may arise based on the
encountered node. The first configuration represented in Figure 1.4 refers to the f

function case whereas the second configuration refers to the g function case.

+

=

f(La, Lb) La

Lb

Lb

(a) f function case

+

=g(La, Lb, û)

û La

Lb

(−1)ûLa

(b) g function case

Figure 1.4: Graph factor configurations for LLR computation

The different configurations correspond to the following functions [15]:
f(La, Lb) = atanh(tanh(La

2)tanh(Lb
2))

g(La, Lb, û0) = (−1)û0La + Lb

h(û0, û1) = (û0 ⊕ û1, û1)
(1.11)

Note that f(La, Lb) can also be approximated by:

f(La, Lb) ≈ sign(LaLb)min(La, Lb) (1.12)

The overall computations of an SC decoder are summarized in Figure 1.5. In this figure,
we denote by L(i) = [L

(i)
0 , L

(i)
1 , · · · , L(i)

N−1] the LLR values at the depth i of the decoding
tree. Algorithms 1 and 2 describe the overall operations for computing the LLR associated
to the ith synthetic channel and the overall SC decoding process respectively.

1.2 Construction and properties of polar codes

The initial stage in defining a polar code, known as code construction or rate-profiling,
involves identifying the most reliable virtual channels for transmitting information. The
primary methods employed for this purpose will be discussed in the next sections. It is
essential to note beforehand that the reliability of virtual channels primarily hinges on
channel characteristics.

13

Chapter 1. Generalities on Polar codes

L
(0)
0 L

(0)
1 L

(0)
2 L

(0)
3 L

(0)
4 L

(0)
5 L

(0)
6 L

(0)
7

L
(1)
0 L

(1)
1 L

(1)
2 L

(1)
3 L

(1)
4 L

(1)
5 L

(1)
6 L

(1)
7

L
(2)
0 L

(2)
1 L

(2)
2 L

(2)
3 L

(2)
4 L

(2)
5 L

(2)
6 L

(2)
7

L
(3)
0 L

(3)
1 L

(3)
2 L

(3)
3 L

(3)
4 L

(3)
5 L

(3)
6 L

(3)
7

f g

f g f g

f g f g f g f gh h h h h h h h

h h h h

h h

Figure 1.5: Successive Cancellation decoding of a N = 8 polar code

Algorithm 1: ComputeLLR(N , λ, ûi−1
0)

Input: Code length N , channel LLRs λ and previously estimated ûi−1
0

Output: LLR associated to the ith synthetic channel Li
1 if N = 1 then
2 return λ0
3 end
4 else
5 if i mod 2 = 0 then
6 l1 ← ComputeLLR(N2 ,λ

N
2
−1

0),ui−1
0,even ⊕ ui−1

0,odd)

7 l2 ← ComputeLLR(N2 ,λ
N−1
N
2

,ui−1
0,odd)

8 return f(l1, l2) /* f function */
9

10 end
11 else
12 l1 ← ComputeLLR(N2 ,λ

N
2
−1

0),ui−2
0,even ⊕ ui−2

0,odd)

13 l2 ← ComputeLLR(N2 ,λ
N−1
N
2

,ui−2
0,odd)

14 return g(l1, l2, ûi−1) /* g function */
15 end
16 end

14

1.2 Construction and properties of polar codes

Algorithm 2: SCDecode(N,λ,F)
Input: Code length N , Channel LLRs λ, frozen set F
Output: Bit vector estimation û

1 for i← 0 to N − 1 do
2 if i ∈ F then
3 Li ← ComputeLLR(N,λ, ûi−1

0)
4 ûi ← 0

5 end
6 else
7 Li ← ComputeLLR(N,λ, ûi−1

0)
8 ûi ← 1

2(1− sign(Li))
9 end

10 return ûN−1
0

11 end

1.2.1 Partial order of synthetic channels

In this section, we introduce the partial order of synthetic channels, which asserts that
certain channels offer superior reliability under SC decoding compared to others. This
partial order constraint is used to construct rate-profiling strategies for polar codes under
SC decoding. It is a topic we discuss in Section 1.2.2.
In Section 1.2.3, we explore how the partial order facilitates straightforward methods for
determining certain distance properties of polar codes.

It has been shown in [16] that polar codes can be interpreted as monomial codes.
Under this assumption, every synthetic channel W (i)

N (y,ui−1
0 |ui) can be formulated as

a monomial. For all j ∈ [0, N − 1], we denote with b(j) = (bj0, b
j
1, · · · , b

j
n−1) the binary

representation of j associated to the jth row of the matrix GN with bj0 being the most
significant bit. For each row G

(j)
N we associate a monomial fj(m0, · · · ,mn−1) that is

expressed as:

fj(m0, · · · ,mn−1) =
∏

i∈[0,n−1]

m
1−bji
i (1.13)

Example 1.2.1. Let us consider the polar code with N = 8. Figure 1.6 describes
the monomials associated to the rows of the matrix G8. As an example, the binary
representation of the fourth row is (0, 1, 1), the associated monomial is therefore f3 = m0

It has been demonstrated in [16] and [17] that synthetic channels obey to a partial order

15

Chapter 1. Generalities on Polar codes

u0
u1
u2
u3
u4
u5
u6
u7

m0m1m2

m0m1

m0m2

m0

m2m2

m1

m2

1



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1


Figure 1.6: Monomials for a polar code with N = 8

denoted by the operator � based on their reliabilities. The relation fj � fk is verified
if the synthetic channel W (j)

N (y, uj−1
0 |uj) is more reliable than the synthetic channel

W
(k)
N (y, uk−1

0 |uk). For every monomial f =
∏d−1
j=0 mij , we assume that i0 < i1 < · · · <

id−1 and we denote by deg(f) = d and deg(g) = l. For two monomials f =
∏d−1
j=0 mij

and g =
∏l−1
k=0mik , the condition f � g is satisfied under the following conditions [16]:

• if deg(f) = deg(g), i.e., d = l, then:

f � g ⇔ ik ≤ jk∀ k ∈ [0, d− 1]

• if deg(f) < deg(g) , the following rule is applied:

f � g if there exists g∗ a divisor of g such that deg(g∗) = deg(f) and f � g∗

For polar codes under SC decoding that reaches Shannon’s capacity, the partial order has
to be taken into account during the construction of the rate-profiling. The rate-profiling
methods presented in Section 1.2.2 is consistent with the partial order criterion. Note
that those rate-profile constructions are only optimal under SC decoding. We will discuss
in further sections the efficiency of those constructions under different decoding processes
and for pre-transformed polar codes.

1.2.2 Rate-profiling construction

In this section, we present the existing mostly used rate-profiling for polar codes. The
first rate-profiling construction was introduced by Arikan in [1] and relies on a heuristic
determination. This method relies on Monte Carlo simulation. Therefore it depends on the
channel realisation. Other approaches [18,19] use a Density Evolution (DE) computation
based on message propagation similar to the structure of successive cancellation decoding.

16

1.2 Construction and properties of polar codes

Other construction methods such as Reed-Muller (RM) [20] rate profiling rely on the
line weight properties of the generator matrix. Further rate profiling construction will be
discussed in Chapter 4. It is important to highlight that the rate-profiling highly impact
the distance properties of polar codes. This will be further discussed in Section 1.2.3.

1.2.2.1 Density Evolution rate-profiling

The Density Evolution method essentially relies on using the same SC decoding factor
graphs to propagate the Probability Density Function (PDF) of the LLRs. For an
Additive White Gaussian Noise (AWGN) channel, this construction is streamlined and
referred to as DE-GA (Density Evolution using Gaussian Approximation). As the channel
LLRs can be expressed as Li = 2yi

σ2 and under the Gaussian assumption, and admitting
that the all- zero codeword is transmitted, Li ∼ N (2

σ2 ,
4
σ2). It is supposed at every

decoding stage that Li is Gaussian and that its mean and variance obey to V(Li = 2E(Li).
Hence, typically, only the mean value is computed. Indeed, there exists a straightforward
method to infer the variance. Similarly to the SC decoding process, the mean values of
L
(d)
i are propagated through factor graphs using the rules described in Equations (5) and

(6) of [19]. The DE-GA method is widely utilized in practice because it deviates from
the classic DE method only for codes with very large sizes (around N = 218) [21].

1.2.2.2 Reed-Muller construction

The Reed-Muller (RM) code [20] denoted by RM(r,m) where 0 ≤ r ≤ m is obtained
by selecting the indexes associated to the rows of the matrix G2m having a Hamming
weight greater or equal to 2m−r.

Example 1.2.2. Let us consider the RM code RM(1, 3). In this case:

G8 =



1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1


(1.14)

The generator matrix of RM(1, 3) is obtained by selecting the rows of G8 having a weight
greater or equal to 4 (rows highlighted in blue). Therefore, it comes down to freeze the

17

Chapter 1. Generalities on Polar codes

first, second, third and fifth line, i.e. F = {0, 1, 2, 4}.

1.2.2.3 RM-polar constructions

The RM-polar [22] rate-profiling constructions rely on combining both RM and polar
code constructions. We can see from Section 1.2.2.2 that the RM construction cannot be
applied to any desired rate. Let RM(r,m) represent an RM code, and let k denote the
number of rows with a weight less than or equal to 2m−r. The RM-polar construction
operates as follows in order to build a C(N,K) polar code:

• Select r such that k ≤ K

• Initialise the information set I as I =
{
i ∈ [[0;N − 1]]|w(G(i)

N) ≥ 2m−r),
}

, where

G
(i)
N denotes the ith line of GN and w(c) defines the Hamming weight of a codeword

c ∈ FN2 .

• Choose the remaining K − k information bits with the highest reliability using one
of the previous methods (e.g; density evolution)

We will show in Section 1.2.3 that the RM-polar constructions yields better distance
properties for polar codes.

1.2.3 Distance properties of polar codes

We discuss in this section the impact of the rate-profiling on the distance properties
of polar codes, i.e. the hamming weights of the generated codewords. The Hamming
distance d(c, č) = w(c⊕ č) between two codewords c and č is defined as the number of
components for which they differ. The minimum distance of the linear code C is given by

d∗(C) = min
c∈C,c 6=0

w(c) (1.15)

Understanding the distance spectrum of polar codes, which indicates the distribution of
codewords with various weights, is crucial as it provides insight into the performance of
codes under Maximum Likelihood (ML) decoding. If the channel is AWGN, then the
probability of error can be formulated as:

Pe =
N∑

w=d∗(C)

AwQ

(√
2wR

Eb
N0

)
(1.16)

18

1.3 On the pre-transformation of polar codes

where Aw denotes the number of codewords with weight w, Eb
N0

denote the Signal to Noise

Ratio (SNR) andQ(u) is the function defined byQ(u) = 1√
2π

∫∞
x e−

u2

2 du. This expression
is usually approximated by only keeping the term corresponding to the minimum distance
as it is the dominant one as:

Pe ≈ A∗(C)Q

(√
2d∗(C)REb

N0

)
(1.17)

where A∗(C) denotes the number of codewords with minimum distance. Many studies
were therefore dedicated to the computation of the first element(s) of the distance
spectrum of polar codes.
The minimum distance of polar codes is defined in [23] as:

d∗(C) = min
i ∈ I

2wt(i) (1.18)

where wt(i) denotes the number of ones in the binary expansion of i. This computation
is valid for any chosen information set I.
The computation of the number of codewords with minimum weight was introduced
in [16] and is only valid for polar codes that are considered to be Decreasing Monomial
Codes (DMC). In the particular case of a polar code being a DMC, the number of
codewords with minimum weight A∗(C) can be determined as explained in [16]. A novel
efficient enumeration of codewords with minimum weight for polar codes with any frozen
set is discussed in the next chapters. Figure 1.7 shows the evolution of the minimum
distance as well as the number of codewords with minimum weight for a GA and a
RM-GA rate-profiling strategies. One can observe that RM-GA rate-profiling strategy
exhibit better distance properties than GA strategies. This means that the polar codes
under ML decoding with RM-GA rate profiling outperform the polar codes under GA
construction.

1.3 On the pre-transformation of polar codes

One limitation of polar codes arises from the fact that, for short and moderate code
lengths, polar codes have poor distance properties. The enhancement of the distance
properties of polar codes saw a notable stride with the introduction of pre-transformation.
Among the pre-transformation techniques, the concatenation of cyclic redundancy check
(CRC) with polar codes [24] enables to improve the distance properties and the decoding
performance of polar codes. A more recent alternative is to apply precoding before the
polar transformation. Thus, Dynamic Frozen Bits (DFB) polar codes utilize an upper

19

Chapter 1. Generalities on Polar codes

0 20 40 60 80 100 120 140
100

101

102

103

104

105

106

K

A* polar
A* RM-polar

d∗polar = 8
d∗RM-polar = 16

d∗polar = 4
d∗RM-polar = 8 d∗polar = 2

d∗RM-polar = 4

Figure 1.7: Minimum distance and associated number of occurrences for a (128, 64) polar
code under polar and RM-polar constructions

triangular transformation on frozen bits [11]. Polarization-Adjusted Convolutional (PAC)
codes combine a Polar code and a rate-1 convolutional encoder [10]. In this section,
the different types of precoding are introduced. Moreover, their impact on the distance
properties of precoded polar codes is discussed.

1.3.1 Polarization-Adjusted Convolutional (PAC) codes

PAC codes [10] denoted by PAC(N,K,g) consist in polar codes where the input vector
uN−1
0 is obtained by a convolutional transformation using the generator polynomial g of

degree m− 1 with coefficients [g0, g1, ..., gm−1]. The encoding scheme for PAC codes is
represented in Figure 1.8. It operates as follows:

Rate
profiler

b Convolutional
encoder

v Polar
transformation

u x

Figure 1.8: PAC code encoding scheme

20

1.3 On the pre-transformation of polar codes

• The information bit vector b is first mapped to the vector v using the chosen
rate-profiling

• The vector v is then transformed thanks to the rate-1 convolutional encoder with
coefficients g in order to obtain u. For i ∈ [[0;N − 1]], i.e. given a vector vi0, the
associated ui is obtained as follows:

ui = g(vi0) =
m−1∑
j=0

gjvi−j (1.19)

In other terms, the input element ui of the polar encoder depend on the i − 1

previous elements as well as the current element vi. Conventionally, we consider
g0 = gm−1 = 1.

• the vector u is then multiplied by the matrix GN in order to obtain the codeword
x

The impact of the pre-transformation of PAC codes resides in the fact that the frozen
bits are not necessarily equal to 0 anymore, i.e., there can exist i ∈ F such that ui 6= 0.
From a matrix point of view, the convolution can be seen as a multiplication with an
upper-triangular Toeplitz matrix T given as:

T =



g0 g1 g2 · · · gm−1 0 · · · 0

0 g0 g1 · · · · · · gm−1
.

0 0 g0 · · · · · · · · · gm−1 0
...
... 0

...
... . . . 0 g0 g1 g2
... . . . 0 g0 g1

0 · · · · · · · · · · · · 0 0 g0



(1.20)

The overall encoding process can be described as:

x = vT︸︷︷︸
u

G (1.21)

21

Chapter 1. Generalities on Polar codes

1.3.2 Polar codes with Dynamic Frozen Bits

The main idea behind polar codes with Dynamic Frozen Bits (DFB) [11] is to set the
value of frozen bit, initially treated as 0 to an value that depend on the previously
determined bits. In other terms, given i ∈ F , ui is expressed as:

ui = fi(u0, u1, · · · , ui−1) (1.22)

It means that every frozen bit is expressed as a linear combination of the previously
decoded bits.

There are many similarities between PAC codes and polar codes with DFB. Note that
while a pre-transformation is applied for every ui, in the case of polar codes with DFB,
only frozen bits are affected with the pre-transformation. Therefore, polar codes with
DFB can be seen as PAC codes with a variable generator polynomial for every ui as
follows:

g =

{
[1],∀i /∈ F

[g0, ..., gi−1],∀i ∈ F
(1.23)

1.3.3 Impact of precoding on the distance properties of polar codes

In this section, we give a brief explanation of the impact of pre-transformation on polar
codes distance properties to justify the growing interest regarding those techniques. It
will be further explored in Chapters 2 and 3. Authors of [25] proved that any pre-
transformation that is applied on polar codes using an upper triangular matrix does not
lower the code’s overall minimum distance. In other words, given a polar code C(N,K,F)
and its pre-transformed version CPT (N,K,F ,T) then the following equation is verified:

d∗(C) ≤ d∗(CPT) (1.24)

In other words, a pre-transformation cannot lower the minimum distance of a polar code,
yet, it can increase it.
It is also noted in [25] that for a polar code and a pre-transformed polar code with identical
minimum distances, the number of codewords with minimum weight of a pre-transformed
polar code is lower compared to the polar code.

22

1.4 Decoding of pure and pre-transformed polar codes

1.4 Decoding of pure and pre-transformed polar codes

1.4.1 Successive Cancellation List decoding

1.4.1.1 Case of pure polar codes

When reviewing the SC decoding outlined in Section 1.1.4, it appears that its primary
drawback lies in the hard decisions made during the decoding of each ûi. This signifies
that in the event of an error occurring during the decoding process of a bit, no error
recovery can be undertaken. The Successive Cancellation List (SCL) decoder introduced
in [8] has of main objective to delay the hard decision taken for each ûi. Instead of solely
making the decision based on the LLR value as explained in equation (1.9), the two
decoding possibilities are considered and kept in a list of size L. Hence each path kept
by the SCL algorithm is updated according to the SC decoding process. This can be
explained by the fact that at each decoding stage i, and for l ∈ [1, L], the probability
P (ûi0[l]|y) is evaluated such as:

P (ûi0[l]|y) =
i∏

j=0

P (ûj [l]|ûj−1
0 [l],y) (1.25)

Note that in the case of ML decoding, the probability described in Equation (1.25) is
maximised for each ûi0. This means that the ML decoder can be viewed as an SCL
decoder with L being large enough to enable the exploration of all the 2K paths at each
decoding stage. Actually, the SCL decoder only explores a reduced number L of paths
instead of exploring all the paths to mitigate impractical computational complexity.

Therefore, each decoding path splits into two children paths (in the case where the
considered bit is an information bit). A metric is introduced to penalize one decoding
path at the expense of the other one. The algorithm then selects the best L candidates
having the lowest path metrics. The metric expression is updated at each decoding
stage and is based on the logarithm of Equation (1.25) to enable a recursive update. In
particular, the metric of the lth path at the decoding stage i mi(û

i
0[l]) is defined as:

mi(û
i
0[l]) = −log(P (ûi0[l]|y)) (1.26)

By using Equation (1.25), mi(û
i
0[l]) can also be expressed as:

mi(û
i
0[l]) = −

i∑
j=0

P (ûj [l]|ûj−1
0 [l],y)

= mi−1(û
i−1
0 [l]) + µi(l)

(1.27)

23

Chapter 1. Generalities on Polar codes

where µi[l] = −P (ûi[l]|ûi−1
0 [l]) denotes the branch metric. It has been proven in [26] that

µi[l] can also be expressed as:

µi[l] = log(1 + e−(1−2ûi[l])Li) (1.28)

In the case where sign((1− 2ûi[l])) = sign(Li), µi(l) = log(1 + e−|Li|) ≈ 0. Similarly, in
the other case, µi(l) ≈ e|Li|. This leads to a simplification in the metrics update process
that can be formulated as follows:

mi(û
i
0[l]) =

{
mi−1(û

i−1
0 [l]) if sign((1− 2ûi(l))) = sign(Li)

mi(û
i
0[l]) + |Li| otherwise

(1.29)

In other words, the paths where the decision on ûi is different from the LLR decision are
penalized with |Li|. As |Li| is an indication on the bit’s reliability, paths that are not
compliant to the LLR decision are heavily penalized when the bit is highly reliable and
vice versa. When all the bits are processed, the SCL algorithm selects the path with the
smallest metric. Figure 1.9 represents the SCL decoding process for a polar code with a
list size L = 4 (Note that only the information bits are displayed). We can see that, at
each decoding stage, only the 4 candidates with the least metric are kept in the list and
that at the end of decoding, the path with the least metric is chosen.

0

1

0

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

0

0

1

0

1

0

1

0

1

0

1

12

2

5

20

û0 û1 û2 û3 û4

· · ·

ˆuN−1

Figure 1.9: Successive Cancellation List decoding with L = 4

1.4.1.2 SCL decoding to pre-transformed polar codes

In this section, we introduce the mechanism of SCL decoding for pre-transformed polar
codes. The results are presented for PAC codes, but can also be generalised to polar codes

24

1.4 Decoding of pure and pre-transformed polar codes

with DFB following the previously mentioned relation between PAC codes and polar
codes with DFB in Equation (1.23). Algorithm 3 describes the overall SCL decoding
process for PAC codes that was introduced in [27]. One can note that this algorithm is
also valid for polar codes. In fact, polar codes are PAC codes with g = [1]. It operates
identically as the SCL decoding for pure polar codes. The only difference is that instead
of only storing the different vectors û, the paths v̂ has also to be stored in memory.

1.4.2 Concatenation with a Cyclic Redundancy Check

It has been observed in [8] that in most of the cases when the SCL decoder fails
into recovering the initially transmitted message, the transmitted path is within the
final list with very high probability. This led [8] and [24] to propose to concatenate
a Cyclic Redundancy Check (CRC) with a polar code. In addition to increasing the
minimum distance of the code, the CRC helps the SCL decoder to find the transmitted
message. Cyclic Redundancy Code (CRC) Aided SCL decoder, denoted by CA-SCL,
comes therefore as an improvement of SCL that consists of introducing a CRC within
the information vector u in order to check if a path is "valid" or not. CA-SCL algorithm
chooses the candidate with a valid CRC first and if no or several candidates have a valid
CRC, the one with the lowest SCL metric is chosen. The encoding process for CA-SCL
decoding is represented in Figure 1.10

CRCb Rate
profiler

b′ Polar
transformation

u x

Figure 1.10: Encoding scheme for polar codes with CRC

1.4.3 Sequential decoding of polar codes

Sequential decoding, initially proposed in [28], is a depth-first search heuristic specifically
designed for decoding arbitrary tree codes. It differs from the list decoder with its ability
to go backward during the path search process. In fact, in the case of an SCL decoder, if
a path ui0 ∈ Fi+1

2 is discarded at a decoding stage i, it cannot be in the list again unlike
for the sequential decoding. This further suggests that, unlike the SCL decoder, the
computational complexity of a sequential decoder is variable and contingent upon both
the properties of the code and the parameters of the channel. The Stack algorithm [29]
and the Fano algorithm [30] stand out as two of the most renowned sequential decoder
algorithms. Sequential decoding was initially introduced for polar codes under the name
Successive Cancellation Stack (SCS) in [31,32]. Another variant, which varies in metric

25

Chapter 1. Generalities on Polar codes

Algorithm 3: SCLDecode(N,λ,F , L,g)
Input: Code length N , Channel LLRs λ, frozen set F , list size L, generator

polynomial g
Output: Bit vector estimation û

1 L ← {0} /* List to store the different paths */
2 for i← 0 to N − 1 do
3 if i ∈ F then
4 for l← 1 to |L| do
5 Li[l]← ComputeLLR(N,λ, ûi−1

0)
6 v̂i[l]← 0
7 ûi[l] = g(v̂i0[l])

8 mi(û
i
0[l])← ComputeMetric(mi−1(û

i−1
0 [l]), Li[l], ûi[l])

9 end
10 end
11 else
12 L ← L

⋃
L′

/* L′ is a copy of L */
13 for l← 1 to |L| do
14 Li[l]← ComputeLLR(N,LN−1

0 , ûi−1
0)

15 [vi[l], vi[l
′]]← [0, 1]

16 ûi[l] = g(v̂i0[l])
17 ûi[l

′] = g(v̂i0[l
′])

18 mi(û
i
0[l])← ComputeMetric(mi−1(û

i−1
0 [l]), Li[l], ûi[l])

19 mi(û
i−1
0 [l′])← ComputeMetric(mi−1(û

i−1
0 [l′]), Li[l

′], ûi[l
′])

20 if |L| > L then
21 L← Discard L paths with the highest path metrics
22 end
23 end
24 end
25 ûN−1

0 ← Remaining path with the lowest metric
26 return ûN−1

0

27 end
28 subroutine ComputeMetric(m, L, û)
29 if û = 1

2(1− sign(L)) then
30 return m
31 end
32 else
33 return m+ |L|
34 end

26

1.5 Performance of pure and pre-transformed polar codes under different
decoding schemes and constructions

definition, was subsequently explored in [33, 34]. It’s worth noting that [33] and [34] also
investigated the implications of sequential decoding for polar codes with DFB.
When introducing PAC codes in [10], Arikan showed that using a Fano decoder for
PAC codes, the FER can reach the finite-length capacity bound [35]. Several studies,
including [36] and [37], have delved deeper into the properties of Fano decoding for PAC
codes. This algorithm can however have a very high computational complexity in the
worst case.

The Fano algorithm stands out as one of the most practical sequential decoding algorithms
as it is able to analyze only a single path at a time. It eliminates the need to store more
than one path and its associated metric. One fundamental parameter is its threshold
defined as that can only take discrete values spaced apart by increments of ∆, i.e.
0,±∆,±2∆.... The explored path metric is denoted by Γ.

Essentially, the Fano algorithm continues to explore further along (Forward search) a
specific path as long as the metric value of the path continues to increase. In other
words, in order to continue a forward search, at each decoding stage, and in the case of
an information bit, the path with the higher metric Γ is kept. The chosen path not only
needs to have the highest metric but also its metric must surpass the fixed threshold.
During forward searching, when the path metric is increasing, the threshold is tightened
(increased by ∆) and the condition Γ > T has to be satisfied.

If the condition Γ > T is no longer satisfied, then the algorithm revisits earlier nodes
along previously traversed paths and explores alternative pathways originating from them
in order to potentially find another path with a better metric. This is called Backward
search. In contrast to forward searching, during backward searching, the threshold is
decreased by ∆. This process is conceived in a way that no node is searched forward
more than once with the same threshold, as it must always be smaller than the previously
used value.

1.5 Performance of pure and pre-transformed polar codes
under different decoding schemes and constructions

In this section, the performance outcomes of polar codes across various parameters such
as block length, construction method, pre-transformation, decoding algorithm, list size,
etc., are presented. The aim here is to conduct a comparative analysis of polar code
performances under different rate-profiling schemes, assess the list size required for each
configuration to approach the ML bound, illustrate the influence of precoding on polar

27

Chapter 1. Generalities on Polar codes

code performances, and examine the proximity of actual configurations documented in
the literature to the theoretical bounds across different codelengths.

1.5.1 Short-length codes

1.5.1.1 Pure polar codes

In this section, we will focus on the (128, 64) code as an example for short codes. Figures
1.11b and 1.11a show the evolution of the Frame Error Rate (FER) for a (128, 64) polar
codes under RM and 5G [9] constructions respectively and under SC decoding and SCL
decoding with different list sizes. We also represent the Truncation Union Bound (TUB)
detailed in Equation (1.17) as an approximation to the performance of ML decoding. We
also represent the Polyanskyi Poor-Verdu (PPV) [35] Meta Converse (MC) bound and the
Random Coding Union (RCU) bound. The RCU and MC bounds define respectively an
upper and a lower bound on the optimal achievable performance for a finite block-length
code. The presented RCU and MC bounds are based on the saddle points approximation
detailed in [38] and [39]. The implementation provided in [40] was used.

1 2 3
10−5

10−4

10−3

10−2

10−1

100

Eb/N0 in dB

FE
R

SC

SCL, L = 4

SCL, L = 8

SCL, L = 16

ML bound

RCU

MC

(a) 5G construction

1 2 3
10−5

10−4

10−3

10−2

10−1

100

Eb/N0 in dB

FE
R

SC

SCL, L = 2

SCL, L = 4

SCL, L = 8

SCL, L = 16

SCL, L = 32

SCL, L = 64

ML bound

RCU

MC

(b) RM construction

Figure 1.11: Polar codes performance under SC and SCL decoding

We can see from Figures 1.11b and 1.11a that under ML decoding, polar codes under RM
construction widely outperform polar codes under 5G construction. Table 1.1 displays

28

1.5 Performance of pure and pre-transformed polar codes under different
decoding schemes and constructions

Construction A8 A12 A16

5G 304 768 161528

RM 0 0 94488

Table 1.1: Polar codes distance properties under 5G and RM construction

Type A8 A12

Pure polar 176 0

CRC polar 0 133

Table 1.2: Polar codes distance properties under for pure and CRC polar codes

the first elements of the distance spectrum of polar codes under 5G and RM constructions.
Those elements can be obtained using [24] or methods we will introduce in Chapter 2. It
can be observed that RM polar codes have a minimum distance that is twice larger than
the one for 5G polar codes. This explains the gap between the performance of both codes
under ML decoding (denoted by TUB in both figures). On the other hand, it is observed
that while polar codes under RM constructions need a larger list size to achieve the ML
performance (approximately for L = 64), polar codes under 5G construction achieve the
ML performance even for L = 4 since the decoding performances for L = 4 and larger list
size superimpose with the ML performances. Under SC decoding and SCL decoding for L
up to 2, it is however observed that polar codes under 5G construction outperform polar
codes under RM construction.This illustrates a trade-off between a code’s performance
under ML decoding and the required list size to attain such performance levels. In other
words, a code construction solely based on the code’s distance properties yields ML
decoding performances close to the RCU bound. However, it might necessitate larger list
sizes to achieve ML performance using a list decoder.
Figure 1.12 presents the performance of a (128, 64) polar code under DE-GA construction
with Eb

N0
= 4.5dB. The performances are shown under SCL decoding for a list size

L = {8, 16, 32} (Similarly to polar codes under 5G construction, the ML bound is rapidly
reached when increasing L) and for a (128, 64) polar code concatenated with a CRC of
length 7 (the code presented in [41]) for different list sizes.

As illustrated in Figure 1.12, concatenating a CRC with a polar code enhances the
code’s performance under similar list decoding parameters. This improvement primarily
stems from the enhanced distance properties achieved by the polar code with CRC
concatenation. Table 1.2 displays the minimum distance for both a pure polar code
and a polar code concatenated with a CRC. This table shows that a polar code with
CRC exhibits a higher minimum distance compared to a pure polar code. It is also
observed that the performance of polar codes with CRC is improved for larger list size.
A (128, 64) polar code exhibits better performance under CA-SCL decoding with a list

29

Chapter 1. Generalities on Polar codes

0.5 1 1.5 2 2.5 3 3.5
10−5

10−4

10−3

10−2

10−1

100

Eb/N0 in dB

FE
R

SCL, L = 8
CASCL, L = 8
CASCL, L = 16
CASCL, L =32
RCU
MC

Figure 1.12: Polar codes performance under SCL and CA-SCL decoding and GA con-
struction

L = 32 than a polar code under RM construction and ML decoding. The performance
improvement achieved by concatenating a CRC to the polar code primarily stems from
the enhancement of its distance properties. However, a larger list size is required in order
to achieve the ML performances.

1.5.2 PAC codes

In this section, we elaborate on the performance of PAC codes to evaluate the influence of
precoding on the performance of polar codes. Figures 1.13a and 1.13b show the evolution
of the FER for a (128, 64) PAC code using the polynomial g = [1, 0, 1, 1, 0, 1, 1] under
RM and 5G constructions respectively.

The decoding methods employed include SC decoding, SCL decoding with different list
sizes and Fano decoding. Similarly to pure polar codes, the TUB for PAC codes under 5G
construction is lower by several orders of magnitude compared to PAC codes under RM
construction. Additionally, it’s noteworthy that like polar codes under RM construction,
PAC codes under RM construction require a larger list size (approximately L = 256) to
attain the same performance as Maximum Likelihood (ML) decoding in high Signal-to-
Noise Ratio (SNR) regimes. In contrast, for polar codes under 5G construction, a list size

30

1.5 Performance of pure and pre-transformed polar codes under different
decoding schemes and constructions

1 2 3
10−5

10−4

10−3

10−2

10−1

100

Eb/N0 in dB

FE
R

SC

SCL, L = 2

SCL, L = 4

SCL, L = 8

SCL L = 16

ML bound

RCU

MC

(a) 5G construction

1 2 3
10−5

10−4

10−3

10−2

10−1

100

Eb/N0 in dB
FE

R

SC

SCL, L = 2

SCL, L = 4

SCL, L = 8

SCL, L = 16

SCL, L = 32

SCL, L = 64

SCL, L = 128

SCL, L = 256

ML bound

RCU

MC

(b) RM construction

Figure 1.13: PAC codes performance under SC and SCL decoding

Construction Type A8 A16

5G Pure 304 161528
PAC 256 76056

RM Pure 0 94488
PAC 0 3120

Table 1.3: Pure polar and PAC codes distance properties

of L = 4 is sufficient to achieve ML performance. It is important to highlight that the
(128, 64) PAC code, when decoded using Fano decoding or list decoding with L = 256,
achieves performance that closely approaches the RCU bound. Regarding the difference
in decoding performance between polar codes and PAC codes, PAC codes exhibit superior
performance. This superiority can be explained by the pre-transformation of polar codes,
as discussed in section 1.3.3, which reduces the number of codewords with minimum
weight. Table 1.3 provides insight into the number of codewords with minimum weight
for both polar codes and PAC codes under 5G and RM constructions. From Table 1.3, it
can be observed that the reduction in the number of low-weight codewords is significantly
higher in the case of RM construction compared to 5G construction. This explains
the larger performance gap observed between polar codes and PAC codes under RM
construction.

31

Chapter 1. Generalities on Polar codes

1.5.3 Larger length codes

In the preceding section, we observed that PAC codes under RM construction exhibit
performances that approach the RCU bound for a moderate to large list size (L = 128). In
this section, our attention shifts to the latest advancements in polar codes and PAC codes
for longer codes to verify if the previous results hold true as well. Figure 1.14a illustrates
the performance of a (256, 128) PAC code using the constructions outlined in [42] that
used a genetic algorithm to enhance the distance properties of PAC codes, employing
Fano decoding and SCL decoding. The figure indicates that under Fano decoding, the

1 2 3
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 in dB

FE
R

[42] L = 64
[42] Fano

RCU

(a) [42] under SCL and Fano decoding

1 1.5 2 2.5 3
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 in dB

FE
R

[43] L = 64

[44] L = 64
RCU

(b) [43] and [44] under SCL decoding

Figure 1.14: (256, 128) PAC codes performance

performance of the PAC code closely matches the RCU bound. However, when applying
a SCL decoding with a moderate list size of L = 64, the performance notably degrades.
The authors of [43] introduced PAC codes that exhibit superior performance compared to
those in [42] when decoded using SCL decoding with a moderate list size. However, there
remains a discernible gap to the RCU bound in terms of performance. The performance
of those codes under SCL decoding with L = 64 are represented in Figure 1.14b.

The same issue persists with codes of higher code block lengths. Figure 1.15 illustrates
some of the most performant pre-transformed polar codes under SCL decoding with
various list sizes.

32

1.5 Performance of pure and pre-transformed polar codes under different
decoding schemes and constructions

1 1.2 1.4 1.6 1.8 2 2.2 2.4
10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 in dB

FE
R

PAC (512, 256) L = 64 [43]
Code-1 L = 1024 [45]
Code-1 ML decoding [45]
F2 L = 1024 [46]
RCU

Figure 1.15: (256, 128) pre-transformed polar codes performance

One can see that, even with large list sizes, there remains a discernible gap to the RCU
bound. This phenomenon applies to longer codes as well. We will delve into this issue in
greater detail in Chapter 4.

33

Chapter 1. Generalities on Polar codes

1.6 Problematics and conclusions

In this section, we review the various elements that were introduced in this chapter and
delve into the issues that have been addressed in the upcoming chapters.

In this chapter, we delved into the fundamental principles of polar codes, which stand
out as the first class of deterministic error-correcting codes proven to achieve channel
capacity for a B-DMC under SC decoding. Furthermore, we provided insights into the
diverse decoding algorithms available for polar codes, offering a balance between decoding
performance and computational complexity. The diverse decoding techniques enhanced
the performance of polar codes for moderate codelengths, rendering them competitive
with LDPC codes and turbo-codes. This positions polar codes as a compelling area
for exploration. Additionally, we examined how polar codes can be further optimized
through various pre-transformation techniques and alternative construction methods,
thereby influencing their performance, particularly in terms of their distance properties.

As of the present moment, the literature covers short length precoded polar codes with
specific code rates, which approach the RCU bound under SCL decoding with moderate
list sizes. The first limitation is that the code construction is only optimal for certain
code rates. Moreover, the gap to the RCU bound for polar codes with higher codelengths
remains non-negligible under SCL decoding with moderate list sizes, prompting further
research efforts in this direction. The aim is to develop code constructions with ML
performances that closely approach the RCU bound, while simultaneously avoiding the
need for excessively large list sizes to achieve such performances, as this would entail
significant computational complexity.

Since the distance properties of polar codes are what drive the performances of polar codes
under ML decoding, the aim is to understand the interaction between the list decoder
and the distance properties of the code. This is because the polar constructions based on
the channels reliability are optimal under SC decoding. However, it’s not guaranteed
that they represent the optimal choice under decoding algorithms that explore more than
one path such as the list decoder. This explains why under such constructions, the ML
bound is reached even with low list sizes, but the gap between their ML bound and the
RCU bound is large. On the other hand, polar codes with optimal distance properties
perform well under decoding algorithms that approximate ML decoding but have very
high computational complexity. However, under SCL decoding with moderate list sizes,
they may exhibit poor performances.

In the next chapter, we introduce a novel low-complexity method for computing the
minimum distance properties of both pure and precoded polar codes. This method is

34

1.6 Problematics and conclusions

then extended to punctured and shortened pure and precoded polar codes in Chapter 3.
The final chapter is dedicated to presenting a method for efficiently constructing rate
profiles for short length codes, encompassing all possible code rates. Additionally, it
addresses the challenge of determining the required list size to achieve ML decoding
under a specific code construction.

35

2 On the distance properties of pure
and pre-transformed polar codes

This chapter focuses on the determination of the minimum distance properties of pure,
pre-transformed and shortened polar codes. Our contributions consist in two parts: 1)
Computation of the distance properties of polar cosets, 2) Generalisation to the minimum
distance properties or the partial weight spectrum of pure and pre-transformed polar
codes.

2.1 Context . 38
2.2 Graph computation of the minimum distance and associated number of

occurrences of polar cosets . 40
2.2.1 Polar cosets . 40
2.2.2 Computation of the minimum distance properties of a polar coset 41
2.2.3 Computational complexity analysis 50

2.3 Low complexity algorithm for the computation of minimum distance
properties for pure and pre-transformed polar codes 51
2.3.1 Pure polar code case . 51
2.3.2 Results . 55
2.3.3 Extension to pre-transformed polar codes 57
2.3.4 Extension for polar codes with CRC 64

2.4 Computation of the partial weight spectrum of pure and pre-transformed
polar codes . 68
2.4.1 Partial distance spectrum results 70

2.5 Conclusion . 73

37

Chapter 2. On the distance properties of pure and pre-transformed polar
codes

2.1 Context

Polar codes as designed by Arikan [1] have poor performance at finite length under SC
decoding. As an approximation of ML decoding, the SCL decoder enables to partially
close this gap if the list size is large enough. However, the mediocre distance properties
of polar codes prevent them from better performance for medium / low lengths. In order
to improve the distance properties, the coding structure has to be modified.

A first option, used in the 5G standard, is to add a CRC as an outer code [9]. This
increases the distance of the code and allows the SCL decoder to discard candidate
codewords at the end of the decoding process. A more recent alternative is to apply a
rate-1 precoding before the polar transformation. As such, the polar codes with dynamic
frozen bits is based on an upper triangular transformation on the frozen bits [11]. In
the case of Polarization-Adjusted Convolutional (PAC) codes, a rate-1 convolutional
encoder [47] is considered.
Considering all these types of polar codes, one challenge is to be able to calculate their
distance properties regardless of the code length and the structure of the frozen bits.
The knowledge of the distance properties of polar codes can either help building new
rate-profiling strategies for polar codes and or rapidly estimate the decoding performance
of the ML decoder at high SNR.
The computation of the minimum distance of polar codes was first proposed in [23]. An
explicit formula for the minimum distance is presented and can be used for pure polar
codes regardless of the frozen bit set strategy. In [16], the number of minimum weight
codewords is computed under the assumption that the polar code is a decreasing mono-
mial code. A more general approach is described in [24] where Monte Carlo simulation
of an SCL decoder with very large list size allows to estimate the partial distance of
polar codes. However, this approach is very computational complex as the code length
grows. Besides, this method being not deterministic, there is no guarantee to find all
the searched codewords. In the case of PAC codes, it is also possible to use the complex
Monte Carlo approach [48].
A method to compute the polar spectrum of polar codes was introduced in [49]. Then,
in [50], a deterministic algorithm to compute the weight distribution for polar codes
has been introduced. However, its high computational complexity made it impractical
even for moderate code lengths. Some computational complexity reduction can only be
achieved for specific frozen bit sets. It however cannot be considered for codes with a
length greater than 128.
[51] provided a complexity-reduced algorithm to enumerate the codewords with minimum
weights for polar codes and a method to compute the codewords with minimum weights
for polar codes with CRC. The complexity reduced algorithm is however only restricted

38

2.1 Context

to specific constructions of frozen bit sets and can only be applied to polar codes, making
the computational complexity of the minimum distance of polar codes with CRC very
high.
In [14], the low-weight codewords of polar and pre-transformed polar codes are enu-
merated based on a recursive decomposition. Although very general, this approach
becomes complex for pre-transformed polar. Indeed, for pre-transformed polar codes,
the decomposition is less favorable than for regular polar codes.
Other probabilistic techniques, such as those outlined in [52] and [53], aid in accurately
estimating the complete weight distribution of polar codes. However, these approaches
do not apply to pre-transformed polar codes. Reference [54] introduced a method to
compute the average partial weight spectrum of pre-transformed polar codes and is
therefore not deterministic. Additionally, works by [55] and [56] focused on calculating
the partial weight spectrum of polar codes. Reference [57] proposed a method to compute
the entire spectrum for polar codes with low or high rates. These methodologies are
specific to polar constructions that are decreasing monomial and cannot be extended to
pre-transformed polar codes. [58] followed by [59] presented a low-complexity technique
for computing the minimum distance properties of pre-transformed polar codes, but
limited to scenarios where the pre-transformed polar codes conserve the same minimum
distance as pure polar codes. Table 2.1 sums up the different advantages and limitations
of the previously discussed references. In this chapter, a low-complexity algorithm in

Pre-transformation Partial or whole
weight spectrum Deterministic Complexity Rate-profiling

[50] Very high All
[58] Moderate to low Only DMC

[54]
Only averaged on
all possible
pre-transformations

Moderate to low All

[53], [52] Moderate to low All
[55], [56], [57] Moderate to low Only DMC

[51] High All
[24], [48] Very high All

[14] High All

[59] Moderate to low
Only for
PT that keep
the same d∗

Table 2.1: Distance properties determination methods: advantages and limitations

terms of the number of calculations capable of computing the minimum distance and its
associated number of occurrences for pure and pre-transformed polar codes is proposed.

39

Chapter 2. On the distance properties of pure and pre-transformed polar
codes

[0, 0, 0, 1]

0 1

10 0 1

0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 01 1 1 1 1 1 1 1

C(4)8 ([0, 0, 0, 1], u4 = 0)

u4

u5

u6

u7

Figure 2.1: Polar coset code C(3)N (0, 0, 0, 1) with N = 8 and I = {3, 5, 6, 7}

2.2 Graph computation of the minimum distance and asso-
ciated number of occurrences of polar cosets

2.2.1 Polar cosets

As in [50], given ui−1
0 ∈ Fi−1

2 and ui ∈ F2, a polar coset CN can be defined as:

CN (ui0) = {[ui0,uN−1
i+1]G|uN−1

i+1 ∈ FN−i−1
2 } (2.1)

A polar coset CN (ui0) thus describes the codewords’ space generated by the prefix ui0
without taking into consideration the frozen bits contained in uN−1

i+1 .

Example 2.2.1. Figure 2.1 represents the different u7
0 with u3

0 = [0, 0, 0, 1] and u7
4 ∈ F4

2

used to generate the polar coset CN ([0, 0, 0, 1]) for a (8, 4) polar code. It can be seen
from this figure that we consider both cases where u4 = 0 and u4 = 1 even though u4 is
considered to be frozen.
We can also see from the figure that the coset C8([0, 0, 0, 1, 0]) is included in the coset
CN ([0, 0, 0, 1]) or more generally given [u0, ..., ui−1], ui and ui+1, CN (ui+1

0) ⊂ CN (ui0).

This can be generalised to:

CN (uN−1
0) ⊂ CN (uN−2

0) ⊂ CN (u1
0) ⊂ ... ⊂ CN (u0) (2.2)

40

2.2 Graph computation of the minimum distance and associated number of
occurrences of polar cosets

We will demonstrate in the next section that for any polar coset CN (ui0), we are able to
compute its minimum weight and related number of occurrences.

2.2.2 Computation of the minimum distance properties of a polar coset

In the following, we will denote by w∗(CN (ui0)) the minimum weight of a polar coset
CN (ui0) and by A∗(CN (ui0)) its associated number of occurrences, i.e. the number of
codewords of a coset having a weight w∗(CN (ui0)).
Let CN (ui0) define a polar coset. The objective is to calculate, with linear complexity,
both the weight w∗(CN (ui0)) and its associated number of occurrences A∗(CN (ui0)).
We will focus in a first time on the computation of the minimum weight of polar cosets.
In a second time, we show that it is possible to compute the minimum weight and its
associated number of cosets simultaneously.

2.2.2.1 Computation of the minimum weight of polar cosets

The aim of this section is to compute the minimum weight of polar cosets thanks to the
structure of the polar factor graphs. This will lead to an efficient computation with the
rules introduced in [60].

The first step consists into expressing the minimum weight of a coset in a way that
enables its factorization as described in [60].

By definition, we have:

w∗(CN (ui−1
0 , ui)) , min

uN−1
i+1 ∈FN−i−1

2

w([ui−1
0 , ui,u

N−1
i+1]G)

= min
uN−1
i+1 ∈FN−i−1

2

w(ui−1
0 Gi−1

0 ⊕ uiGi ⊕ uN−1
i+1 G

N−1
i+1)

(2.3)

where Gi−1
0 , Gi and GN−1

i+1 respectively denote the upper i first rows, the ith row and the
(N − i) last rows of G, respectively.

Given p = ui−1
0 Gi−1

0 , m = uiGi and s = uN−1
i+1 G

N−1
i+1 , (2.3) can be reformulated as:

w∗(CN (ui−1
0 , ui)) = min

s = uN−1
i+1 G

N−1
i+1

uN−1
i+1 ∈ FN−i−1

2

w(p⊕m⊕ s) (2.4)

41

Chapter 2. On the distance properties of pure and pre-transformed polar
codes

Let x = p ⊕m ⊕ s. In this section and the following, we will assume the following
hypothesis:

Hypothesis 2.2.2. In the case of polar codes, there exists an extented parity check
matrix H(i)T associated to GN−1

i+1 and v ∈ Fd2 that verifies

[x,v, ui]H
(i)T = 0 if ∃ uN−1

i+1 ∈ Fn−i−1
2 |s = uN−1

i+1 G
N−1
i+1 (2.5)

and such that the decoding graph of ui is tree like. v denote the hidden variable nodes
that result from the extension of the parity matrix.

This hypothesis is verified in the case of pure polar codes as it was showed in [61] but
can also be generalised to different kernels as long as their associated decoding factor
kernels are tree-like.
Equation 2.4 can therefore be expressed as:

w∗(p, ui) = min
s ∈ FN2
v ∈ Fd2

N−1∑
j=0

w(pj ⊕mj ⊕ sj)− log(1([x,v, ui]H(i)T = 0)) (2.6)

The term −log(1([x,v, ui]H(i)T = 0)) ensures that we only consider codewords that
belong to the code. Specifically, −log(1([x,v, ui]H(i)T = 0)) = +∞ if x is not a codeword
of the code.

Since 1([x,v, ui]H(i)T = 0) admits a factorized form, computing w∗(p, ui) simplifies to
computing the marginal of a factorized function and finding its minimum value [60].
This allows for the construction of a graphical representation of the factorization. In
particular, our aim is to compute w∗(p, ui = 0) and w∗(p, ui = 1).

Example 2.2.3. Let us consider the case of u2.

In this particular case, H(2) is expressed as:

. x0 x1 x2 x3 x4 x5 x6 x7 v0 v1 u2

H(2) =


00 00 00 10 00 00 00 10 10 00 00

00 10 00 00 00 10 00 00 10 00 00

10 00 00 00 10 00 00 00 00 10 00

00 00 10 00 00 00 10 00 00 10 00

00 00 00 00 00 00 00 00 10 10 10


(2.7)

42

2.2 Graph computation of the minimum distance and associated number of
occurrences of polar cosets

we will denote by xi = pi ⊕ si. Equation 2.5 implies:

[x,v, u2]H
(2)T = 0⇔



x3 + x7 + v0 = 0

x1 + x5 + v0 = 0

x0 + x4 + v1 = 0

x2 + x6 + v1 = 0

v0 + v1 + u2 = 0

(2.8)

Therefore:

1([x,v, u2]H
(2)T = 0) = 1(x3 + x7 + v0 = 0)1(x1 + x5 + v0 = 0)

1(x0 + x4 + v1 = 0)1(x2 + x6 + v1 = 0)

1(v0 + v1 + u2 = 0)

(2.9)

The factorised form of 1([x,v, u2]H(2)T = 0) ensures an efficient computation using
factor graphs.

The computation of w∗(p, 0) and w∗(p, 1) can be efficiently done using the message
passing rules on factor graphs.

Two message passing configurations can be encountered. The first configuration is referred
to as the parity node case (see Figure 2.2), where two variable nodes x0 and x1 are
connected to a parity node x2 through a parity function f .
The corresponding parity matrix H for the factor graph is also illustrated in the same

figure. To each message coming from variable node to a parity node, we associate a
vector µxi→f defined as:

µxi→f =

(
µ
(0)
xi→f

µ
(1)
xi→f

)
=

(
w∗(Txi |xi = 0)(X)

w∗(Txi |xi = 1)(X)

)
(2.10)

where Txi is defined as Txi =
{
x| xHT

Txi
= 0
}

and HT
Txi

represents the parity matrix of
each sub-graph associated to a variable node xi.

As depicted in Figure 2.2, µf→x2 can be computed from µx0→f and µx1→f for {x0, x1, x2} ∈
{0, 1}3 using the message passing rules described in [60] for min-sum algorithm as follows:

µ
(x2)
f→x2

= min
{x0,x1}∈{0,1}2

(−log(1x0⊕x1⊕x2=0) + µ
(x0)
x0→f + µ

(x1)
x1→f) (2.11)

43

Chapter 2. On the distance properties of pure and pre-transformed polar
codes

f

x0 x1

x2

µx0→f µx1→f

µf→x2µx2→f

Tx0 Tx1

Tx2

· · · · · ·

· · ·

H =

vTx0
vTx1

vTx2
x0 x1 x2

0

0 0

0
1 1 10 0 0

HTx0

HTx1

HTx2

· · · · · ·

· · ·

Figure 2.2: Parity node case

µ
(0)
f→x2

and µ
(1)
f→x2

can therefore be expressed as:{
µ
(0)
f→x2

= min(µ
(0)
x0→f + µ

(0)
x1→f , µ

(1)
x0→f + µ

(1)
x1→f)

µ
(1)
f→x2

= min(µ
(0)
x0→f + µ

(1)
x1→f , µ

(1)
x0→f + µ

(0)
x1→f)

(2.12)

The second configuration is referred to as the variable node case (see Figure 2.3). In this
case, two parity nodes with parity function f0 and f1 are connected to a variable node
x. The parity matrix associated to the graph is also given in the same figure. To each
message coming from a parity node fi, we associate:

µfi→x =

(
µ
(0)
fi→x

µ
(1)
fi→x

)
=

(
w∗(Tfi |x = 0)(X)

w∗(Tfi |x = 1)(X)

)
(2.13)

Given the two incoming messages from the parity nodes to the variable node x, the
messages µ(b)x→f2

, b = {0, 1}, can be expressed as follows using the message passing rule:

µ
(b)
x→f2

= µ
(b)
f0→x + µ

(b)
f1→x (2.14)

44

2.2 Graph computation of the minimum distance and associated number of
occurrences of polar cosets

x

f0 f1

f2

µf0→x µf1→x

µf2→x µx→f2

Tf0 Tf1

Tf2

· · · · · ·

· · ·

H =

0

0 0

0

HTf0

HTf1

HTf2

· · · · · ·

· · ·

x

0
1

0
1

0
1

vTf0
vTf1

vTf2

Figure 2.3: Variable node case

Example 2.2.4. The Tanner Graph for decoding u2 is given in Figure 2.4. It is an
illustration of a decoding factor graph of bit u2 for a polar code of length N = 8 with
p = [1, 0, 0, 0, 0, 0, 0, 0].

Using Equation (2.6) and reference [60], the initial message that are sent from the leaf
node that represents the minimum weight of each xi can be expressed as:

µxi =

(
pi ⊕ 0

pi ⊕ 1

)
(2.15)

(
0
1

) (
0
1

) (
0
1

) (
0
1

) (
1
0

) (
0
1

) (
0
1

) (
0
1

)

(
0
1

) (
0
1

) (
1
0

) (
0
1

)
(
0
2

) (
1
1

)

(
1
1

)

f

v0 v1

u2

x1 x5x3 x7 x0 x4 x2 x6

(a)

(b)

Parity node
Variable node
Hidden variable node

Figure 2.4: Tanner Graph of u2 decoding for a polar code with N = 8

45

Chapter 2. On the distance properties of pure and pre-transformed polar
codes

In this example, considering the dashed sub-graph (a) and using Equation (2.12), we
obtain:

µf→v0 =

(
0

1

)
(2.16)

2.2.2.2 Weight Enumeration Functions of polar cosets

In this section, we take advantage of the results introduced in [50] in order to simultane-
ously compute the minimum weight and its associated number of occurrences.
In [50], the Weight Enumeration Function (WEF) of a polar coset CN (ui0) is defined as:

AN (CN (ui0))(X) ,
N∑
w=0

AwX
w (2.17)

where Aw denotes the number of vectors in CN (ui0) having a weight equal to w. It has
been proven in [50] that as for the relations for bit channels for the LLR computation
(Equations (23) and (24) of [1]), the weight enumeration function of polar cosets can
be computed efficiently using different propagation rules in the case of parity nodes
and check nodes. Again, during message passing formalism, two configurations can be
encountered. The same configurations in Figures 2.2 and 2.3 are explored but this time
with messages concerning the WEF.
The first configuration depicted in Figure 2.2 shows two variable nodes, x0 and x1,
connected to a parity node x2 via a parity function f .

To each message coming from a variable node, we associate:

θxi→f =

(
θ
(0)
xi→f

θ
(1)
xi→f

)
=

(
AN (Txi |xi = 0)(X)

AN (Txi |xi = 1)(X)

)
(2.18)

In this case, following Equation (1) in [50], θf→x2 can be computed from θx0→f and
θx1→f as:

θf→x2 =

(
θ
(0)
x0→fθ

(0)
x1→f + θ

(1)
x0→fθ

(1)
x1→f

(θ
(0)
x0→fθ

(1)
x1→f + θ

(1)
x0→fθ

(0)
x1→f

)
(2.19)

Silimarly, the second configuration depicted in Figure 2.3 is where two parity nodes with
parity functions f0 and f1 are connected to a variable node x. To each message coming

46

2.2 Graph computation of the minimum distance and associated number of
occurrences of polar cosets

from a parity node fi to a variable node x, we associate:

θfi→x =

(
θ
(0)
fi→x

θ
(1)
fi→x

)
=

(
AN (Tfi |x = 0)(X)

AN (Tfi |x = 1)(X)

)
(2.20)

Given the two incoming messages θf0→x and θf1→x from the parity nodes to the variable
node x, θx→f2 can be expressed using Equation (2) of [50] as:

θx→f2 =

(
θ
(0)
f0→xθ

(0)
f1→x

θ
(1)
f0→xθ

(1)
f1→x

)
(2.21)

We introduce a Minimum Weight Enumeration Function (MWEF) of a polar coset CN (ui0)
defined as:

A∗
N (CN (ui0))(X) = Aw∗Xw∗ (2.22)

Where w∗ denotes the minimum weight of the coset and Aw∗ the number of vectors with
minimum weight.
It is also possible to compute the MWEF of a polar coset while adapting the message
passing equations for the WEF computation. In the first configuration, to each message
coming from a variable node, we associate:

θ∗
xi→f =

(
θ
∗(0)
xi→f

θ
∗(1)
xi→f

)
=

(
A∗
N (Txi |xi = 0)(X)

A∗
N (Txi |xi = 1)(X)

)
(2.23)

In that case, given the same configuration as in Figure 2.2, θ∗
f→x2

can be computed from
θ∗
x0→f and θ∗

x1→f as:

θ∗
f→x2 =

LP (θ∗(0)x0→fθ
∗(0)
x1→f + θ

∗(1)
x0→fθ

∗(1)
x1→f

)
LP

(
θ
∗(0)
x0→fθ

∗(1)
x1→f + θ

∗(1)
x0→fθ

∗(0)
x1→f

) (2.24)

where LP (.) denotes the operator that only selects the monomial of lower degree.
In the configuration described in Figure 2.3, to each message coming from a parity node
fi, we associate:

θ∗
fi→x =

(
θ
∗(0)
fi→x

θ
∗(1)
fi→x

)
=

(
A∗
N (Tfi |x = 0)(X)

A∗
N (Tfi |x = 1)(X)

)
(2.25)

47

Chapter 2. On the distance properties of pure and pre-transformed polar
codes

(
1
X

) (
1
X

) (
1
X

) (
1
X

) (
X
1

) (
1
X

) (
1
X

) (
1
X

)

(
1
2X

) (
1
2X

)
f

(
2X
1

) (
1
2X

)
(

1
4X2

) (
2X
2X

)

(
2X
2X

)

v0 v1

u2

x1 x5x3 x7 x0 x4 x2 x6

(a)

(b)

Parity node
Variable node
Hidden variable node

Figure 2.5: Tanner Graph of u2 decoding for a polar code with N = 8

In that case,

θ∗
x→f2 =

(
θ
∗(0)
f0→xθ

∗(0)
f1→x

θ
∗(1)
f0→xθ

∗(1)
f1→x

)
(2.26)

The proof of Equations (2.24) and 2.26 is given in Appendix A.

The initial message that are sent from the leaf node representing the MWEF of each xi

is:

θxi =

(
X(pi⊕0)

X(pi⊕1)

)
(2.27)

Example 2.2.5. Figure 2.5 gives an illustration of a decoding factor graph of bit u2 for
a polar code of length N = 8 with p = [1, 0, 0, 0, 0, 0, 0, 0].

In this example, considering the dashed sub-graph (a), we have:

θf→v0 =

(
LP (1 +X2)

LP (2X)

)
=

(
1

2X

)
(2.28)

2.2.2.3 Extension to the reduced spectrum of polar cosets

In the previous section, we discussed the modification of the WEF computation to
consider solely the minimum weight of polar cosets. Extending this computation, we can
evaluate the reduced spectrum of polar cosets. This is obtained by introducing a Relaxed

48

2.2 Graph computation of the minimum distance and associated number of
occurrences of polar cosets

Minimum Weight Enumeration Function (RWEF) for a polar coset, which characterizes
the weight distribution of the polar coset for weights less than or equal to wend. This
RWEF Awend

N (CN (ui0))(X) of a polar coset CN (ui0) is defined as:

Awend
N (CN (ui0))(X) =

wend∑
w=0

AwX
w (2.29)

As for the MWEF, it is possible to compute the RWEF using the following message
passing relations:

• In the parity node case depicted in Figure 2.2, we define θwend
xi→f as:

θwend
xi→f =

(
θ
wend(0)
xi→f

θ
wend(1)
xi→f

)
=

(
Awend
N (Txi |xi = 0)(X)

Awend
N (Txi |xi = 1)(X)

)
(2.30)

In this case, θwend
f→x2

can be computed from θwend
x0→f and θwend

x1→f as:

θwend
f→x2

=

LTwend

(
θ
wend(0)
x0→f θ

wend(0)
x1→f + θ

wend(1)
x0→f θ

wend(1)
x1→f

)
LTwend

(
θ
wend(0)
x0→f θ

wend(1)
x1→f + θ

wend(1)
x0→f θ

wend(0)
x1→f

) (2.31)

where LTwend(.) denotes the operator that only selects the monomials of a degree
lower or equal to wend.

• Similarly, in the configuration described in Figure 2.3, to each message coming
from a parity node fi, we associate θwend

fi→x defined as:

θwend
fi→x =

(
θ
wend(0)
fi→x

θ
wend(1)
fi→x

)
=

(
Awend
N (Tfi |x = 0)(X)

Awend
N (Tfi |x = 1)(X)

)
(2.32)

In that case:

θwend
x→f2

=

LTwend

(
θ
wend(0)
f0→x θ

wend(0)
f1→x

)
LTwend

(
θ
wend(1)
f0→x θ

wend(1)
f1→x

) (2.33)

The proof for equations (2.31) and (2.33) is given in Appendix B.

Example 2.2.6. Figure 2.6 gives an illustration of the computation of the RWEFs
A3

8(C8([1, 0], 0)) and A3
8(C8([1, 0], 1)) for a polar code of length N = 8. In this case,

p = [1, 0, 0, 0, 0, 0, 0] and wend = 3. The computation is performed bu applying Equation
(2.31) in the case of a parity node and Equation (2.33) in the case of a check node. We

49

Chapter 2. On the distance properties of pure and pre-transformed polar
codes

(
1
X

) (
1
X

) (
1
X

) (
1
X

) (
X
1

) (
1
X

) (
1
X

) (
1
X

)

(
1 +X2

2X

) (
1 +X2

2X

) (
2X

1 +X2

) (
1 +X2

2X

)
(
1 + 2X2 +��X

4

4X2

) (
2X + 2X3

2X + 2X3

)

(
2X + 14X3 +���12X5

2X + 14X3 +���12X5

)

A3
8(C8([0, 1], 0))

A3
8(C8([0, 1], 1))

 =

2X + 14X3

2X + 14X3



v0 v1

u2

x1 x5x3 x7 x0 x4 x2 x6

Parity node
Variable node
Hidden variable node

Figure 2.6: Factor graph of u2 for the computation of A3
8(C8([1, 0], 0)) and A3

8(C8([1, 0], 1))

can see from the figure that at each computation step, the monomials with a degree greater
than 3 are eliminated.

2.2.3 Computational complexity analysis

In this section, we further explore the computational complexity for the computation of
the MWEF, and RWEF of polar cosets.

• For the computation of the MWEF, depending on the configuration (parity node
case or variable node case), a certain number of arithmetic operations has to be
performed.
In the parity node case, equation (2.24) is applied. This results in at most 12
arithmetic operations. In the variable node case, Computation of (2.26) results
in 4 arithmetic operations (two multiplications and two additions). Given that
on each graph factor of ui, N − 1 nodes have to be evaluated, the computational
complexity defined as the total number of arithmetic operations is at most equal to
12(N − 1). Moreover, is is important to note that the computation of the minimum
weight for polar cosets only necessitates 6(N − 1) arithmetic operations, employing
the same logic.

• For the computation of the RWEF up to a certain weight wend, the polynomial
Awend
N (X) is comprised of a maximum number of monomials equal to wend. In the

following, we will focus on this worst case.
As for the computation of the MWEF, depending on the configuration a certain

50

2.3 Low complexity algorithm for the computation of minimum distance
properties for pure and pre-transformed polar codes

number of arithmetic operations has to be performed.
In the parity node, the execution of Equation (2.31) results in 8w2

end arithmetic
operations. In the variable node case, Equation (2.33) requires 4w2

end arithmetic
operations. The parity node case has the highest complexity, so we will only
consider this case.
Given that on each factor graph of ui, N −1 nodes have to be evaluated, the overall
computational complexity is at most equal to 8(N − 1)w2

end. It’s important to
note that the worst-case computational complexity of the RWEF is described by
considering a scenario that is highly unlikely in practice. Actually, the number of
elements in the RWEF up to a weight wend is significantly less than wend.

2.3 Low complexity algorithm for the computation of mini-
mum distance properties for pure and pre-transformed
polar codes

2.3.1 Pure polar code case

We proved in Section 2.2 that we are able to compute the minimum weight and its related
number of occurrences for any polar coset CN (ui0). In this section, we express any polar
code as a union of disjoint cosets and take advantage of the results of Section 2.2 to
compute the overall number of occurrences of codewords with minimum weight for a
polar code.

As described in [50], any polar code C can be formulated as the disjoint union of the
following cosets:

C =
⋃

us−1
0 ∈Ls

CN (us−1
0 , us = 0) (2.34)

where s denotes the index of the last frozen bit and the set

Ls =
{
us−1
0 ∈ {0, 1}s|ui = 0,∀i ∈ F

}
Ls represents the set of all the possible prefixes while taking into account the frozen bits.

The expression given in Equation (2.34) is explained by the fact that after the last frozen
bit s, the suffixes uN−1

s+1 take values in {0, 1}N−1−s as they are all information bits. These

51

Chapter 2. On the distance properties of pure and pre-transformed polar
codes

suffixes, along with their associated prefixes, collectively describe the entirety of the code.
In order to compute the overall minimum distance and the corresponding number of
occurrences, one approach is to compute the minimum weight of each coset comprising C
separately. Then, by tallying the occurrences of codewords with the overall minimum
weight, the number of codewords with minimum weight is obtained based on Equation
(2.34). This can be done by computing the MWEF of each coset composing C.

An issue arises when examining the coset CN (us0), as its minimum weight is equal to 0

because of the presence of the all-zero codeword. Consequently, there is a risk of missing
potential codewords with minimum weight that might be found within CN (us0) if we
solely focus on computing its minimum weight. The proposed solution is to compute for
the coset CN (us0) the Reduced Weight Enumeration Function with wend = d∗(C) instead
of the Minimum Weight Enumeration Function. To this matter, we express A∗

C\{0}(X)

the MWEF of C \ {0} as:

A∗
C\{0}(X) = LP


∑

us0 ∈ Ls
us0 6= 0s0

A∗
N (CN (us0))(X) +Ad

∗
N (CN (0s0)(X))− 1


(2.35)

Equation (2.35) results from exploring the minimum weight and its associated number
of occurrences for all the remaining cosets in the list at the sth step, except for the
coset CN (us0) where the RWEF is evaluated for wend = d∗. Subsequently, the minimum
distance is derived from the exponent of the monomial A∗

N (CN (us0)), while the number
of occurrences is determined by its coefficient.

In order to achieve a deterministic computation of d∗ and A∗, we need to compute the
MWEF for each coset included in

{
C \ 0N−1

0

}
. The total number of cosets to explore

can therefore be expressed as:

nc = (2γ − 1) + (N − s) (2.36)

where γ, referred to as the mixing factor in [50], denotes the total number of information
bits before the last frozen bit.
It is clear that even for moderate code sizes, the resulting computational complexity
may become prohibitive. For this reason, we propose an algorithm that provides a
deterministic computation of both the minimum distance and its number of occurrences
while only exploring the relevant cosets for the computation of d∗ and A∗.

52

2.3 Low complexity algorithm for the computation of minimum distance
properties for pure and pre-transformed polar codes

Knowing that we are able to compute the MWEF for any polar coset CN (ui0), it is possible
to propose an enumeration structure similar to a list decoder that has the advantage
of pruning cosets with a constraint of their minimal weight and only exploring relevant
cosets.
We note that in the case of pure polar codes, the minimum distance d∗(C) of a code
C is known as explained in Chapter 1. Therefore the known value of the overall code
minimum distance can be used as a threshold to eliminate irrelevant paths. Algorithm 1
gives the details of the proposed approach. It operates as follows:

1. For each i ∈ [[0, s]], all the possible information vectors ui0 at an exploration step i

are listed.

2. For each of the aforementioned paths, w∗(CN (ui−1
0 , ui)) is computed.

3. The cosets with w∗(CN (ui−1
0 , ui)) > d∗(C) are discarded. Those cosets are irrelevant

to the computation of the total number of occurrences as equation (2.2) leads to:

w∗(CN (uN−1
0)) 6 w∗(CN (u1

0)) 6 ... 6 w∗(CN (u0)) (2.37)

This means that ∀ CN (ui+1
0) such that w∗(CN (ui+1

0)) < d∗(C), @j ∈ [[i+1;N − 1]]

such that w∗(CN (uj+1
0)) = d∗(C). In other words, no codeword with minimum

weight can be found in a coset whose minimum weight is greater than d∗(C).

4. When i = s, the MWEF is computed for all the cosets remaining in the list except
for the coset CN (0s0). The number of cosets with minimum weight is counted.

5. For the coset CN (0s0), the RWEF with wend = d∗(C) is computed and the overall
number of occurrences A∗(C) of the polar code is obtained thanks to Equation
(2.35).

Figure 2.7 gives an insight of Algorithm 1 for a (32, 10) polar code. In this case, d∗(C) = 8,
s = 25 and the information set I = {15, 22, 23, 24, 26, 27, 28, 29, 30, 31}. The information
bits are represented in green and the frozen bits in red. At each enumeration stage, a
path that is eliminated for having a minimum weight greater that the code’s overall
minimum distance is represented in gray. It means that at each decoding step, any coset
that has a minimum weight greater than 8 is discarded. When reaching the last frozen
bit, the MWEF is computed for each one of the remaining paths and the overall MWEF
of the code is computed.

53

Chapter 2. On the distance properties of pure and pre-transformed polar
codes

0

0

1

0

1

0

1

0

0

0

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

Enumeration stage 15 16 21 22 23 24 25

0

8

0

16

8

8

0

8

8

0

8

8

12

8

12

0

8

8

8

8

8

8

8

1 + 28X28

8X8

8X8

8X8

8X8

8X8

8X8

8X8

8X8

8X8

Figure 2.7: Example of Algorithm 1 for a (32, 10) polar code

54

2.3 Low complexity algorithm for the computation of minimum distance
properties for pure and pre-transformed polar codes

Algorithm 1: Computing A∗(C) of a pure polar code
Input: Polar code C(N,K,F)

1 s ← index of the last frozen bit
2 L← 1
3 L ← {0} /* List to store prefixes */
4
5 for i ∈ [[0; s]] do
6 for l ∈ [[1;L]] do
7 Compute w∗ of the cosets in the list
8 Discard the cosets for which w∗ > d∗(C)
9 L← |L|

10 end
11 if i = s then
12 Compute the MWEF of the remaining cosets in the list except for CN (0s0)
13 Compute Ad

∗(C)
N (CN (0s0))(X)

14 A∗ ← Sum of the computed occurrences
15 end
16 end
17 Return (A∗(C))

2.3.2 Results

Let Ci denote the number of remaining cosets at an enumeration step i. The total
number of evaluated cosets nr is:

nr =
s∑
i=0

Ci (2.38)

Algorithm 1 consists in s − 1 loop iterations where the minimum weight of Ci cosets
is evaluated, and one loop (When i = s) where the MWEF of the remaining cosets in
the list is evaluated except for the coset C(us0) where the RWEF with wend = d∗(C) is
evaluated. As the computational complexity for computing the minimum weight, MWEF
and RWEF up to wend = d∗(C) of a polar coset are at most equal to 6(N − 1), 12(N − 1)

and 8d∗(C)2(N − 1), the overall computational complexity TC∗ of Algorithm 1 is at most
equal to:

TC∗ =

s−1∑
i=0

6(N − 1)Ci + 12(N − 1)(Cs − 1) + 8d∗(C)2(N − 1) (2.39)

Algorithm 1 has been applied on a wide range of polar codes, for different code rates and

55

Chapter 2. On the distance properties of pure and pre-transformed polar
codes

N 128 256 512 1024 2048
K 96 64 192 128 384 256 768 512 1536 1024
R 3

4
1
2

3
4

1
2

3
4

1
2

3
4

1
2

3
4

1
2

s 73 98 193 201 385 417 771 897 1545 1809
γ 41 34 129 73 257 161 515 385 1033 785

d∗ 4 8 8 8 8 8 8 16 8 16
A∗ 96 304 61536 96 53440 64 24960 36032 11008 896

nc 2.1e12 1.7e10 6.8e38 9.4e21 2.3e77 2.9e48 1.07e155 7.8e115 INF 2e236

nr 114 167 406055 210 317031 450 358938 178870 43489 1555
Cmax 1 10 15122 1 6690 1 2113 4514 385 1

Table 2.3: Minimum distance and number of occurrences values for different polar codes

a code length up to N = 2048 2. For the polar codes with N ≤ 1024, the frozen bits set
is the one specified in the 5G standard [9]. For N = 2048, the frozen bits set is generated
with density evolution [62] with design Eb/N0 = 3dB.

Table 2.3 summarizes the minimum distance d∗, the associated occurrences A∗, the
last frozen bit s, the mixing factor γ, the total number of explored cosets nr and the
maximum list size reached Cmax = max

i∈[[0,N−1]]
Ci for different polar codes.

It is important to point out that the simplification introduced in Algorithm 1 drastically
reduces the number of explored cosets. This can be observed by comparing nc and nr.
The reduction in terms of complexity is significant, which explains the ability of the
proposed algorithm to easily process any type of polar code.

Figure 2.8 shows the evolution of the number of explored coset at each enumeration step
until the last frozen bit is reached for a (128, 64) polar code under 5G and RM construc-
tions. We can see from this figure that in the case of polar code under 5G construction
represented in Figure 2.8a, a maximum number of 9 cosets is explored, whereas the
maximum number of explored cosets is equal to 87509 in the case of a RM construction.
The (128, 64) polar code constructed under 5G standard has parameters d∗ = 8 and
A∗ = 304, whereas it has parameters d∗ = 16 and A∗ = 94488 under RM construction.
This shows that the number of explored cosets varies following the considered code con-
struction and is higher for codes with a higher number of codewords with minimum weight.

2We can even compute d∗ and A∗ for larger code sizes and for any desired code rate.

56

2.3 Low complexity algorithm for the computation of minimum distance
properties for pure and pre-transformed polar codes

0 20 40 60 80 100
0

2

4

6

8

10

Enumeration stage

Ev
al

ua
te

d
co

se
ts

(a) (128,64) polar code under 5G construc-
tion

0 50 100
0

2

4

6

8

·104

Enumeration stage

Ev
al

ua
te

d
co

se
ts

(b) (128,64) polar code under RM con-
struction

Figure 2.8: Number of evaluated cosets at each enumeration step

2.3.3 Extension to pre-transformed polar codes

2.3.3.1 Representation of pre-transformed polar codes with polar cosets

We show in this section that the previous work on polar codes can be extented to PAC
codes and polar codes with dynamic frozen bits. To start with, it is interesting to observe
that as the pre-transformation for polar codes with dynamic frozen bits is only applied to
frozen bits, they can be seen like PAC codes where the generator function g is dynamic
following the decoding step i and each generator function gi at a decoding step i can be
expressed as:

gi =

{
[g0, g1, ..., gi−1] if i ∈ F

[1] otherwise
(2.40)

Given this observation, for the rest of this section, we will consider only PAC codes, as
the difference between PAC codes and Polar codes with dynamic frozen bits lies solely in
their precoding rules.
Similar to regular polar codes, a PAC code CPAC can be defined as follows:

CPAC =
⋃

us
0∈Bs

CN (us−1
0 , us) (2.41)

57

Chapter 2. On the distance properties of pure and pre-transformed polar
codes

u0 = 0
u1 = 0
u2 = 0
u3 = 0
u4 = 0
u5 = 0
u6 = v6

u7 = v7 + v5
u8 = v8 + v6
u9 = v9 + v7

u10
u11
u12
u13
u14
u15



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


Figure 2.9: PAC transformation with N = 16 and K = 8

where Bs defines the set:

Bs =

{
us0 ∈ {0, 1}

s+1|ui = g(vi0),∀i ∈ [[0; s]]

vi ∈ {0, 1},∀i /∈ F , vi = 0, ∀i ∈ F
(2.42)

Example 2.3.1. Figure 2.9 depicts a (16, 9, [1, 0, 1]) PAC code with a frozen index set
F = {0, 1, 2, 3, 4, 5, 8, 9}.

As shown in figure 2.9, the red bits denote the information bits before the last frozen bit.
The blue bits represent the information bits after the last frozen bit. The overall PAC
code can be represented as:

CPAC =
⋃

u9
0∈B9

CN (u8
0, u9 = 0) (2.43)

where B9 defines the set:

B9 =

u9
0 ∈ {0, 1}

10|


ui = 0∀i ∈ [[0; 5]]

ui = vi + vi−2∀i ∈ [[6; 9]]

ui = {0, 1}∀i ∈ [[10; 15]]

vi ∈ {0, 1}∀i /∈ F , vi = 0∀i ∈ F


58

2.3 Low complexity algorithm for the computation of minimum distance
properties for pure and pre-transformed polar codes

2.3.3.2 Relaxed minimum distance properties of pre-transformed polar codes

To the best of the author’s knowledge, there is no explicit way to directly compute
the minimum distance of pre-transformed polar codes. In this section, we are focusing
on the determination of both minimum distance and its number of occurrences for
pre-transformed polar codes.

Similarly to the pure polar codes, the MWEF A∗
CPAC\{0}(X) can be expressed as:

A∗
CPAC\{0}(X) = LP


∑

us0 ∈ Bs
vs0 6= 0s0

A∗
N (CN (us0))(X) +Ad

∗
N (CN (0s0))(X)− 1


(2.44)

The overall algorithm that describes the computation of d∗ and A∗ is given in Algorithm
2. There are two main differences compared to Algorithm 1:

• At each decoding step i, the remaining vi0 are listed and a pre-transformation is
applied to obtain the different ui0. w∗ is computed for each one of ui0.

• There is no direct way to compute the minimum distance of PAC codes. As
demonstrated in [25], any rate-1 linear pre-transformation on polar codes including
convolutional encoding does not deteriorate the minimum distance properties of
polar codes. This means that the minimum distance of PAC code CPAC(N,K,F ,g)
is greater or equal to the minimum distance of the polar code C(N,K,F). Therefore,
an incremental method is used to determine d∗. We first set the threshold on the
minimum weight of explored cosets to d∗(C), i.e wstart = d∗(C). If no codewords can
be enumerated at the very last enumeration step, wstart is incremented until finding
codewords whose minimum distance is equal to wstart. This achieves determining
d∗(CPAC) and A∗(CPAC).

2.3.3.3 Minimum distance and associated number of occurrences results for
pre-transformed polar codes

The analysis of the computational complexity of Algorithm 2 follows the same rules as
the complexity of Algorithm 1.

Algorithm 2 was applied on a range of PAC codes, for different code rates and different

59

Chapter 2. On the distance properties of pure and pre-transformed polar
codes

Algorithm 2: Computing d∗ and A∗ of a PAC code
Input: PAC code CPAC(N,K,F ,g)

1 s ← index of the last frozen bit
2 L← 1
3 dstart ← d∗(C)
4 A∗(CPAC) = 0
5 while A∗(CPAC) = 0 do
6 for i ∈ [[1; s]] do
7 if i ∈ F then
8 for l ∈ [[1;L]] do
9 vi[l]← 0

10 ûi[l] = g(v̂i0[l]))
11 Compute w∗ and A∗ of CN (ui−1

0 [l], ui[l]))
12 Discard the paths for which w∗ > d∗

13 L← |L|
14 end
15 else
16 L ← L

⋃
L′ /* L′ is a copy of L */

17
18 for l ∈ [[1;L]] do
19 [vi[l], vi[l

′]]← [0, 1]
20 ûi[l] = g(v̂i0[l]))
21 ûi[l

′] = g(v̂i0[l
′]))

22 Compute w∗ and A∗ of CN (ui−1
0 [l], ui[l])) and CN (ui−1

0 [l′], ui[l
′]))

23 Discard the cosets for which w∗ > d∗

24 L← |L|
25 if i = s then
26 Compute the MWEF of the remaining cosets in the list except for

CN (0s0)
27 Compute Ad

∗(C)
N (0s0)(X)

28 A∗ ← Sum of the computed occurrences
29 end
30 end
31 end
32 A∗ ← Occurrences of d∗
33 Return (d∗, A∗)
34 d∗ ← d∗ + 2

35 end
36

60

2.3 Low complexity algorithm for the computation of minimum distance
properties for pure and pre-transformed polar codes

(N,K) F d∗ A∗
PAC Cmax nr

∑
i∈B 2|K

f
i |(f − i) [58]

(64, 22) RM 16 500 57 1061 65192

(128, 64) RM 16 3120 2825 58329 7265295

(256, 192) GA 4dB 8 53456 10326 227624 977664

(512, 256) GA 2dB 16 36256 6074 139822 133968

Table 2.4: Minimum distance and number of occurrences

frozen set constructions. We will refer to the Gaussian Approximation (GA) construction
with design-SNR of XdB [63] as GA XdB and to the Reed Muller construction as RM.
Table 2.4 summarizes the minimum distance d∗, the associated occurrences A∗ for both
polar and PAC configurations. The (d∗, A∗) values highlighted in green were corroborated
with results in [58]. It is possible to estimate the computational complexity of [58] as the
total number of explored cosets :

∑
i∈B 2|K

f
i |(f − i).

The complexity comparison also shows that the proposed algorithm clearly outperforms
the algorithm proposed in [58]. In particular, for RM constructions, the number of
explorations reduction is very significant. In terms of execution time, our MATLAB
code time execution was compared to the MATLAB code time execution of [58] that
can be found in [64] using a computer with 2 cores i5 and a 3.1GHz processor. For a
(128,64) PAC code with a RM construction, our simulation time is around 11 seconds
whereas [64]’s running time is around 25 minutes. Note that unlike Algorithm 1, the
algorithm proposed in [58] is only valid for polar and RM constructions, no comparison
can be undertaken with other kind of frozen set constructions.

Table 2.5 summarizes the values of d∗ and A∗ for codes with block length
N = {128, 256, 512}, R = {1/3, 1/2, 3/4} with the frozen bit sets specified in the 5G
standard [9] and different generator polynomials. It can be seen from the table that
the choice of the generator polynomial can have different impacts on the number of
codewords with minimum weight.
In particular, in the case of (128, 96), (256, 128) and (512, 256), the precoding have no
impact on the number of codewords with minimum weight. This is due to the fact that
all the codewords with minimum weights are located in the cosets CN (0i−1

0 , ui = 1), i ∈
[s + 1, N − 1]. As those cosets are the same for polar and PAC codes, the precoding
has no impact on these particular cosets. The impact of the pre-transformation on the
number of codewords with minimum weights has been further discussed in [65].

The evolution of the number of explored cosets at each enumeration step until reaching

61

Chapter 2. On the distance properties of pure and pre-transformed polar
codes

N g
R = 1/3 R = 1/2 R = 3/4

d∗ A∗ nr d∗ A∗ nr d∗ A∗ nr

128

[1] (Polar) 16 1304 1826 8 304 167 4 96 114
[1,0,1] 16 1304 1581 8 304 127 4 96 73
[1,0,1,1,0,1,1] 16 776 711 8 256 121 4 96 58
[1,0,1,1,0,1,1,0,1,1] 16 824 798 8 288 125 4 96 58

256

[1] (Polar) 16 816 788 8 96 210 8 61536 406055
[1,0,1] 16 816 715 8 96 210 8 61536 390870
[1,0,1,1,0,1,1] 16 688 390 8 96 210 8 36256 131814
[1,0,1,1,0,1,1,0,1,1] 16 688 399 8 96 210 8 36488 133022

512

[1] (Polar) 16 352 654 8 64 450 8 53440 317031
[1,0,1] 16 352 578 8 64 450 8 53440 317031
[1,0,1,1,0,1,1] 16 224 526 8 64 450 8 40640 172639
[1,0,1,1,0,1,1,0,1,1] 16 256 546 8 64 450 8 42688 187347

Table 2.5: Minimum distance and number of occurrences parameters for PAC codes

0 20 40 60 80 100
0

2

4

6

8

10

Enumeration stage

Ev
al

ua
te

d
co

se
ts

(a) (128,64) PAC code under 5G construc-
tion

0 50 100
0

1,000

2,000

Enumeration stage

Ev
al

ua
te

d
co

se
ts

(b) (128,64) PAC code under RM construc-
tion

Figure 2.10: Number of evaluated cosets at each enumeration step for a (128, 64) PAC
code

the last frozen bit for a (128, 64) PAC code under 5G and RM constructions is shown
in Figure 2.10. We can see from this figure that in the case of 2.10a, a maximum
number of 9 cosets is explored, which have been reduced to 3 at the last enumeration
step due to the precoding, whereas the maximum number of explored cosets is equal
to 2625 in comparison to 87509 for a pure polar code in the case of a RM construction
represented in Figure 2.8b. This proves that the precoding not only reduces the final
number of occurrences but also reduces the number of cosets with minimum weight at
each enumeration step.

62

2.3 Low complexity algorithm for the computation of minimum distance
properties for pure and pre-transformed polar codes

0 100 200 300 400 500 600
100

101

102

103

104

105

106

107

K

d∗

A∗
Polar

A∗
PAC

Figure 2.11: Representation of d∗ et A∗ for N = 512 and g = [1, 0, 1, 1, 0, 1, 1] depending
on K

The computation of d∗ and A∗ for N = 512 and K ∈ [[1;N]] for the 5G standard frozen
bit set is summarized in Figure 2.11 for both polar and PAC codes with a generator
polynomial g = [1, 0, 1, 1, 0, 1, 1]. The frozen bit sets are the ones specified in the 5G
standard [9]. This proves that we are able to compute d∗ and A∗ for any desired code
rate for a specific frozen bit set. Moreover, it can be observed that d∗ is the same for
polar and PAC codes for any code rate for a specific frozen set. The loss of performance
as code rate increases is explained by the A∗ value increase.
Results in Figure 2.11 also confirms that the number of occurrences of codewords with
minimum weight for polar codes is greater or equal than for PAC codes. The cases where
there is an equality in the number of occurrences of codewords with minimum weights
result from the fact that all the codewords with minimum weights result from cosets
CN (0i−1

0 , ui = 1), i ∈ [[s+1;N − 1]]. As for those cosets, the convolutional transformation
has no effect, the number of occurrences remains the same.

63

Chapter 2. On the distance properties of pure and pre-transformed polar
codes

N 128 256 512 1024
R 1/4 1/2 3/4 1/4 1/2 3/4 1/4 1/2 3/4 1/4 1/2 3/4
s 113 97 66 226 197 145 465 417 385 961 897 770

N − lCRC 117 117 117 245 245 245 501 501 501 1013 1013 1013

Table 2.6: Last enumeration step for pure and polar codes with CRC

2.3.4 Extension for polar codes with CRC

In this section, we leverage the previous findings for polar codes concatenated with a
CRC. As the precoding of polar codes with a CRC differs from the one in the case of
PAC codes or polar codes with DFB, we propose in this section a method to compute
the minimum distance and its associated number of occurrence in the case of polar codes
with CRC.

2.3.4.1 Representation of polar codes with CRC as union of polar cosets

Given a polar code with CRC, as the CRC bits are located at the end of the sequence.
Therefore, a polar code concatenated with a CRC CCRC can be expressed as:

CCRC =
⋃

u
N−lCRC−1
0 ∈LCRC

C(N−lCRC−1)
N (uN−lCRC−2

0 , ulCRC−1) (2.45)

Where lCRC denotes the length of the CRC and LCRC denotes the set LCRC ={
uN−lCRC−1
0 ∈ {0, 1}N−lCRC |ui = 0,∀i ∈ F

}
.

Table 2.6 represent the index of the last frozen bit s for pure polar codes and the value
of N − lCRC for a 5G configuration using a CRC of length 11 from [9] for different block
lengths and rates. It is observed that N − lCRC is higher than s and the difference is
more significant for higher rates. This is one of the reasons why computing the minimum
distance properties for polar codes with CRC is more complex than for pure polar codes.
It is also important to note that as there is no direct way to determine the minimum
distance for polar codes with CRC, the same incremental search presented in Algorithm
2 is maintained in order to determine the minimum distance.
Algorithm 3 gives details about the computation of minimum distance and related number
of occurrences for polar codes with CRC. The algorithm operates as follows:

• The minimum distance dstart is initialized to the value of the minimum distance of
the pure polar code.

• At each decoding step i, the different prefixes ui0 are listed. w∗ and A∗ are computed

64

2.3 Low complexity algorithm for the computation of minimum distance
properties for pure and pre-transformed polar codes

for each one of the cosets defined by the prefix ui0. The cosets with a minimum
weight greater than the minimum distance are discarded.

• At the last enumeration step, i.e i = N − lCRC , a CRC is generated for all the
prefixes remaining in the list. The overall minimum distance of the remaining
codewords d∗(CCRC) and number of occurrences A∗(CCRC) are computed.

• If A∗(CCRC) = 0, dstart is incremented and the whole process is repeated. When
A∗(CCRC) > 0, the number of remaining codewords with minimum weight is
obtained.

Algorithm 3: Computing d∗ and A∗ of a polar code with CRC
Input: Polar code with CRC CCRC(N,K,F ,gCRC)

1 L← 1
2 L ← {0} /* List to store prefixes */
3 dstart ← d∗(C)
4 A∗(CCRC)← 0
5 while A∗(CCRC) = 0 do
6 for i ∈ [[0;N − lCRC − 1]] do
7 for l ∈ [[1;L]] do
8 Compute w∗ of the cosets in the list
9 Discard the cosets for which w∗ > dstart

10 L← |L|
11 end
12 if i = N − lCRC − 1 then
13 Generate the CRC for the remaining prefixes and compute the associated

weights
14 A∗ ← Occurrences of dstart
15 end
16

17 end
18 Return (dstart, A

∗(CCRC))
19 dstart ← dstart + 2

20 end
21

Algorithm 3 consists in N − lCRC loop iterations where Ci cosets are evaluated at each
loop. The complexity of the proposed method is driven by the total number of evaluated
cosets nr:

nr =

N−lCRC−1∑
i=0

Ci (2.46)

65

Chapter 2. On the distance properties of pure and pre-transformed polar
codes

N lCRC
R = 1/4 R = 1/2 R = 3/4

d∗ A∗ nr d∗ A∗ nr d∗ A∗ nr

128
6 16 2 2717 8 19 9115 6 16 44164
11 24 44 41359 12 6 254427 8 1794 108234166
16 24 9 159906 12 5 1228279 6 38 10180408

256
6 32 914 621650 16 2728 4551547 8 2900 7719514
11 32 69 1091711 16 191 11497563 8 178 26717927
16 32 9 1483775 16 19 17482381 8 32 54780533

512
6 32 270 466565 16 2378 6954710 8 7919 8368192
11 32 21 669854 16 81 7370891 8 87 8548390
16 32 2 559627 16 12 18363311 8 12 12452226

Table 2.7: Minimum distance and number of occurrences parameters for polar codes
with CRC

Table 2.7 summarizes the values of d∗, A∗ and nr for different block lengths, rates and
CRC polynomials. The frozen bit sets and the CRC polynomials are the ones specified
in the 5G standard. Compared to pure polar codes with the same rates, we can see from
the table that the polar codes with CRC have larger minimum distances that pure polar
codes. As an example, a (128, 64) pure polar code has a minimum distance of 8, whereas
the same polar code with CRC has a minimum distance of 12.
To better illustrate how the CRC enlarges the polar code minimum distance, we represent
in Figure 2.12 the weight repartition of the cosets during the last 11 enumeration steps
for a (128, 64) polar code CRC11. For this specific code, the minimum distance is
d∗ = 12 and the associated number of occurrences is A∗ = 6. This means that during
the enumeration process, the cosets with weights lower or equal to 12 were kept in the
list. At the last enumeration step (corresponding to 117), the CRC was applied on all
the previously kept cosets. This implies that only one codeword is kept from every coset
since the rest of codeword bits are determined by the CRC. When applying the CRC,
the retained codewords are not necessarily those with the final minimum weight after
the CRC check. Consequently, codewords with a weight of 8 are eliminated due to their
failure to pass the CRC and the number of codewords with a weight of 12 is lowered.

In order to illustrate the evolution of the minimum distance and associated number of
occurrences for polar codes with CRC, Figure 2.13 represents the evolution of d∗, A∗ and
Cmax for a polar code with N = 128, a CRC11 from the 5G standard [9] depending on
the rate.
Figure 2.13 shows that for each interval of codes having the same d∗, Cmax is monotonic.
However, it is noted that unlike for pure polar codes, PAC codes or polar codes with

66

2.3 Low complexity algorithm for the computation of minimum distance
properties for pure and pre-transformed polar codes

0

0.2

0.4

0.6

0.8

1

1.2
·105

08

12

08

12

08

12

08

12

08

12

08

12

08

12

08

12

08

12

08

12

01216202428323640
44
48
52

56

60

64

68

72

76
80
84
889296100104108112116

Enumeration stage

N
um

be
r

of
co

se
ts

1

0

1,000

2,000

3,000

12162024
28

32

a

Figure 2.12: Weight distribution of the polar cosets of a (128, 64) polar code with CRC11
during the last 11 enumeration steps

dynamic frozen bits, A∗ is not necessarily monotonic for each interval of codes having
the same d∗. This is due to the fact that the CRC bits are generated from K − lCRC
bits and as K varies, the final codewords vary. In other terms, for pure polar codes, if c
is a codeword of a (N,K) polar code, it is also a codeword of any (N,K +Ki) such that
Ki ≤ N −K polar code. But, it is not necessarily the case for polar codes with CRC.
Table 2.8 contains the Average Visited Nodes (AVN) of Algorithm 3 and the PC-SCREM
algorithm in [51] for N = 128 polar code constructed by PW and concatenated to a CRC
of length 11 defined by 0xCBB. In our study case, the AVN of algorithm 3 is nr× log2(N).
We can observe from the table that we are able to find the same values of d∗ and A∗. It
is also important to note that the number of AVN in our case is lower by several orders
of magnitude.

67

Chapter 2. On the distance properties of pure and pre-transformed polar
codes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
100

101

102

103

104

105

106

107

R

d*

A*

Cmax

Figure 2.13: Evolution of d∗, A∗ and Cmax for a polar code with N = 128 and CRC11
depending on the code rate

N R d∗ A∗ AVN Algorithm 3 AVN [51]
128 1/4 16 3 37877 7× 106

128 1/2 12 147 5749163 109

128 3/4 4 12 500983 3× 106

Table 2.8: Minimum distance properties and AVN of N = 128 polar code with PW
frozen set construction

2.4 Computation of the partial weight spectrum of pure
and pre-transformed polar codes

As we showed in Section 2.2.2.3, it is possible to compute the RWEF of any polar coset
for weights less or equal to wend. This leads to a generalisation to Algorithms 1, 2 and 3
to enable the computation of the partial weight spectrum for pure and pre-transformed
polar codes. Similarly to the MWEF of a polar code, the RWEF of a polar code Awend

C (X)

can be expressed as:

Awend
C (X) =

∑
us0 ∈ Ls

Awend
N (CN (us0))(X) (2.47)

68

2.4 Computation of the partial weight spectrum of pure and pre-transformed
polar codes

Algorithm 4 gives the details of the computation of the partial weight spectrum for polar
codes. This algorithm can be generalized to pre-transformed polar codes as described in
section 2.3.3. The main differences with the algorithm proposed to compute the minimum
distance and the related number of occurrences are the following:

• Given a fixed wend, at each enumeration step, the minimum weight of each coset is
computed and the cosets with a minimum weight greater than wend are discarded.
At the first decoding step, it is not necessary to compute the whole spectrum for each
coset since if the minimum distance of the coset is greater than the fixed threshold,
then the coset contains no codewords with weights lower than the threshold and
can therefore be discarded. As the computational complexity for computing the
minimum distance of a coset is much lower than the computational complexity
of computing the whole spectrum, this contributes in reducing the computational
complexity further.

• At the last enumeration step, i.e when the last frozen bit is reached, the minimum
weight and associated number of occurrences is computed for all the cosets remaining
in the list. To achieve additional complexity reduction, the partial weight spectrum
is calculated solely for cosets whose minimum weight is strictly lower than wend.

Algorithm 4: Computing the partial spectrum of a pure polar code
Input: Polar code C(N,K,F), wend

1 s ← index of the last frozen bit
2 L← 1
3 for i ∈ [[1; s]] do
4 for l ∈ [[1;L]] do
5 Compute w∗ of the cosets in the list
6 Discard the cosets for which w∗ > wend
7 L← |L|
8 end
9 end

10 if i = s then
11 Compute w∗ of the cosets in the list
12 Discard the cosets for which w∗ > wend
13 Compute the RWEF of the remaining cosets in the list
14 end
15 Return Awend

N (X)

Figure 2.14 represents the overall algorithm’s process for a (32, 9) polar code with
wend = 12. The information set is defined by I = {16, 23, 24, 26, 28, 29, 30, 31, 32}. We

69

Chapter 2. On the distance properties of pure and pre-transformed polar
codes

can see from this figure that the overall RWEF is:

A12
C (X) = 1 + 20X8 + 32X12 (2.48)

The same approach described in sections 2.3.3 and 2.3.4 can be applied to adapt

a
a
a
a
a


0

0

1

0 0

0

1

0

1

0

1

0

0

0

0

1

0

1

0

1

0

0

0

0

0

0

16 17 22 23 24 25 26 27

0

16

0 0
0

8

0

8

8

8

0

8

8

0

8

8

12
8

12

0

8

8

12

8

12

1 + 4X8

8X8

4X8

16X12

4X8

16X12

A12
C = 1 + 20X8 + 32X12

Figure 2.14: Relaxed spectrum enumeration for a (32, 9) pure polar code

Algorithm 4 for computing the reduced spectrum of PAC codes, polar codes with DFB,
or polar codes with CRC.

2.4.1 Partial distance spectrum results

This section presents an overview of the results obtained from computing the reduced
polar spectrum for both pure and pre-transformed polar codes. Moreover, it includes a
comparative analysis of the computational complexity associated with each spectrum
generation technique presented in Algorithm 4 and the complexity of the algorithm
proposed in [14]. In order to enable a fair comparison, we compare the computational
complexity of Algorithm 4 to the time complexity of the algorithm proposed in [14].

Algorithm 4 consists in s loops in which the minimum weight of Ci cosets is evaluated
at each enumeration step. At the last enumeration step, i.e. when i = s, the RWEF
up to the weight wend is computed for all the cosets remaining in the list except for the
cosets whose minimum weight is equal to wend. For those specific cosets, the RWEF

70

2.4 Computation of the partial weight spectrum of pure and pre-transformed
polar codes

Code (128,48) (128,64) (128,80)

Swend

w Aw w Aw w Aw

16 1817 8 288 8 4312
20 17464 12 832 10 2368
22 384 16 75864 12 374240
24 311060 18 6272 14 1267648
26 32128
28 3566024
30 1688167

TCwend 45× 109 1532× 105 1.8× 109

ΣN (X)
Subcode [14] 8672× 109 3831× 109 4585× 109

Table 2.9: Partial weight distribution of randomly pre-transformed polar codes

is equivalent to the MWEF. Let Cwend
s define the number of cosets having a minimum

weight equal to wend at the last enumeration step. The computational complexity TCwend

Algorithm 4 is at most equal to:

TCwend =

s∑
i=0

6(N − 1)Ci + 8wend
2(N − 1)(Cs − Cwend

s) + 12(N − 1)Cwend
s (2.49)

Table 2.10 provides an overview of the codeword distribution up to a specified weight for
various Polar and PAC codes. Notably, the complexity of Algorithm 4 is significantly
lower, often by several orders of magnitude, compared to the algorithm presented in [14]
when the comparison is applicable. It’s worth noting that the complexity value presented
for Algorithm 4 represents the worst-case scenario and may be higher than the actual
complexity. Additionally, the table demonstrates that PAC codes generally exhibit
superior distance properties compared to polar codes. Table 2.9 presents the computed
partial weight distribution for randomly pre-transformed polar codes, allowing for a
comparison of the computational complexity of the partial weight spectrum computation
for polar codes with DFB. It should be pointed out that as the precoding is performed
randomly, exact reproducibility of values is not feasible, but values within a close range
can be obtained. Comparing the overall complexity of Algorithm 4 with that of the
algorithm in [14], we observe a significant reduction in computational complexity by
several orders of magnitude. In [14], the overall running time for a C++ implementation
on a computer with 6 cores i7 and a 3.2GHz processor is provided. In that case, the
running time for a randomly pre-transformed (128, 64) polar code is approximately one
hour and a half. In contrast, our MATLAB implementation on a computer with 2 cores
i5 and a 3.1GHz processor achieves a running time of less than 1 minute.

71

Chapter 2. On the distance properties of pure and pre-transformed polar
codes

(N,K) Type (w,Aw) ΣN (X)
Subcode [14] TCwend

(128, 64)
Polar (8, 304), (12, 768), (16, 161528)

(20, 4452096), (24, 166137744)
- 6× 109

PAC
(8, 256), (12, 960), (16, 76056)

(18, 18176), (20, 2455744), (22, 2857216)

(24, 86360192)

- 24× 109

(256, 128)
Polar (8, 96), (16, 111344), (20, 385024)

(22, 4452096), (24, 49907232)
- 6× 109

PAC
(8, 96), (16, 46320), (18, 3712)

(20, 430336), (22, 62976)

(24, 23598368)

- 6× 109

(512, 256)
Polar (16, 44640), (24, 12529152), (28, 95059968) 20816× 109 241× 109

PAC (16, 28000), (18, 384), (20, 16768)

(22, 3168), (24, 7706240), (26, 199360)
- 120× 109

(1024, 512)
Polar (16, 20672), (24, 2124800), (28, 262144) 63× 109 17× 109

PAC (16, 17472), (20, 768), (24, 1533696)

(28, 238)
- 10× 109

(2048, 1024) Polar (16, 896), (32, 36067264) 2195801× 109 5799× 109

Table 2.10: Partial weight distribution of pure and pre-transformed polar codes

72

2.5 Conclusion

2.5 Conclusion

In conclusion, this chapter presents a new low complexity algorithm designed to determine
the minimum distance or more generally the partial weight spectrum of both pure and
pre-transformed polar codes. In a first part, an approach that essentially relies on
computing the distance properties of polar cosets is presented. Subsequently, each pure or
pre-transformed polar code is expressed as a union of these disjoint cosets. By discarding
the polar cosets that have no impact on the computation of the desired distance properties,
this method ensures a deterministic computation, a crucial advantage over some of the
existing techniques. The main advantages of the proposed method are the following:

1. This method operates independently of rate-profiling construction and imposes
no restrictions on it, in contrast to other methods where the information set has
to obey to the partial order constraint. This is because the computation of the
MWEF and RWEF of polar cosets does not depend on any particular structure.

2. This method can be applied to pure polar codes but also extented to PAC codes,
polar codes with dynamic frozen bits or polar codes concatenated with a CRC. In
all of the mentioned cases, the presented method fully adapts to the choice of the
precoding.

3. Comparative analysis with established methods underscores the superiority of this
approach, demonstrating lower computational complexity in comparison to existing
methods in the literature

We present in Chapter 3 a generalization if this work enabling the computation of the
reduced spectrum of pure, pre-transformed punctured and shortened polar codes. The
objective is to propose in the same optic, a method that can adapt to every puncturing
and/or shortening pattern.

73

3 About the distance properties of
Punctured and Shortened pure
and pre-transformed polar codes
This chapter focuses on the determination of the distance properties of pure and pre-
transformed punctured and shortened polar codes. Our contributions consist in two
parts: 1) Computation of the distance properties of what we define as rate-compatible
polar cosets, 2) Introducing a low-complexity algorithm that computes the overall desired
distance properties of pure and pre-transformed punctured and shortened polar codes.

3.1 Context . 76

3.2 Rate-compatible pure and pre-transformed polar codes 76

3.2.1 Punctured polar codes . 76

3.2.2 Shortened polar codes . 78

3.2.3 Rate-Compatible Pre-Transformed polar codes 79

3.3 Computing the minimum weight of rate-compatible polar cosets 80

3.4 Weight enumeration function of rate-compatible polar cosets 82

3.4.1 Case of punctured polar codes 82

3.4.2 Case of shortened polar codes 84

3.5 Extension to the Reduced Weight Enumeration Spectrum of punctured
and shortened polar cosets . 85

3.6 Computing the distance properties of Rate-Compatible pure and pre-
transformed polar codes . 87

3.7 Distance properties results for punctured and shortened polar and PAC
codes . 91

3.7.1 Minimum distance Properties 91

3.7.2 Reduced weight spectrum . 93

3.8 Conclusion . 98

75

Chapter 3. About the distance properties of Punctured and Shortened pure
and pre-transformed polar codes

3.1 Context

The Ultra-Reliable Low Latency Communication (URLLC) scenario poses stringent
requirements for both ultra-low latency and high error correction performance approaching
maximum likelihood (ML) decoding. Achieving these objectives is particularly challenging
for short blocklengths. But it is essential to meet the expectations in terms of ultra-low
latency without significant impact of performance degradation.

Usually, polar codes are constructed with sizes that are powers of 2. It limits their
applicability in scenarios requiring short blocklengths. To overcome this limitation,
various techniques such as puncturing and shortening have been introduced [66–71].
These methods enable the construction of rate-compatible polar codes. with more flexible
code lengths.

The determination of the distance properties of punctured and shortened polar codes
is crucial for optimizing their performance under maximum likelihood decoding. This
knowledge allows for the optimization of puncturing and shortening patterns, as well as
the associated rate-profiling, to achieve desired performance objectives. Additionally,
considering the impact of pre-transformation on punctured and shortened polar codes is
essential for enhancing their distance properties and ultimately building more reliable
codes. Investigating how pre-transformation techniques affect the distance properties of
punctured and shortened codes provides insights into how to design more robust and
efficient coding schemes. Authors of [14] introduce a method for determining the partial
weight spectrum of shortened and punctured polar codes. While this method offers
some innovative insights, its practical utility is hindered by its significant computational
complexity. Furthermore, extending the method to pre-transformed punctured and
shortened polar codes exacerbates this issue, particularly because the original approach
already suffers from high computational complexity when applied to pre-transformed
polar codes. This chapter is dedicated to the computation of the distance properties of
punctured and shortened pure and pre-transformed polar codes.

3.2 Rate-compatible pure and pre-transformed polar codes

3.2.1 Punctured polar codes

A punctured polar code denoted by CP (Np,K,F) is obtained from a parent polar code
C(N,K,F) by not transmitting N −Np codeword bits. We denote by P the puncturing
pattern and P = |P| = N−Np. P describes the indexes of the non-transmitted codeword
bits, i.e., the transmitted codeword is xP̄ .

76

3.2 Rate-compatible pure and pre-transformed polar codes

From the decoder’s perspective, the punctured codeword bits are considered as erased.
Therefore, they are totally unknown to the decoder. The LLRs associated to the punctured
positions are therefore set to zero. It is important to note that the unreliability of the
codeword bits xP , caused by the fact of being unknown to the decoder, is transmitted
to the initially transmitted vector u. Thus, some of the bits of u are considered as
incapable [69], i.e. bits that have an LLR equal to 0. Therefore, it is not possible to take
a decision for those specific bits. We define the set of incapable bits as follows:

Definition 3.2.1. Let CP (Np,K,F) be a punctured polar code by the pattern P. We
denote by UP the set of incapable bits such as:

i ∈ UP ⇐⇒ Li = 0 (3.1)

It has been showed in [72] that:

|UP | = |P| = P (3.2)

In other words, puncturing P codeword bits generates exactly P incapable bits. It is
therefore essential to freeze the incapable bits as their LLR values cannot be resolved
during SC decoding. Indeed, this can lead to an error floor from the performance point
of view since their associated LLRs are equal to 0 and a decision cannot be made. In all
the following, we will denote by FP = F

⋃
UP the set of frozen bits for punctured polar

codes.
It is important to point out that any method proposed for computing the frozen set
for punctured polar codes [66–69] guarantees that UP ⊆ FP . One of the major open
questions regarding punctured polar codes is the choice of the puncturing pattern P that
guarantees better performance for punctured polar codes. It is essential to note that in
the case of punctured polar codes, the choice of the information set heavily depends on
the choice of the puncturing pattern P.

In this context, various puncturing techniques have been introduced to address this
challenge. One approach involves using density evolution to determine FP [66,67]. In
this case, a given puncturing pattern is used to simulate channel polarization through
density evolution, enabling the identification of the incapable bits. Subsequently, the
code is constructed by selecting the optimal information set adapted to the puncturing
scheme. It’s worth noting that this method requires to optimize the information set based
on density evolution for each channel output. Alternatively, simpler puncturing patterns
have been proposed. For instance, in [68], a Quasi-Uniform Puncturing (QUP) method
was introduced. Additionally, [69] presented a low-complexity puncturing technique for

77

Chapter 3. About the distance properties of Punctured and Shortened pure
and pre-transformed polar codes

polar codes based on the Bit-Reversal permutation (BRP).

3.2.2 Shortened polar codes

As for punctured polar codes, a shortened polar code denoted by CS(Ns,K,F) is obtained
from a parent polar code C(N,K,F) by removing N −Ns codeword bits. The difference
resides in the fact that unlike for punctured polar codes, the non-transmitted codeword
bits in the case of shortened polar codes are set to a known value, usually 0. In all the
following, we will fix that shortened codeword bits have to be set to zero. We denote by
S the shortening pattern and S = |S| = N −Ns. S describes the indexes of the cancelled
codeword bits. This means that the transmitted codeword is xS̄ and xS = 0.

From the decoder’s perspective, the shortened codeword bits are perfectly known to be
equal to zero. Therefore, their associated LLR values are set to infinity or in practical
to a large positive value. Since the shortened codeword bits are perfectly known to the
decoder, they lead to very reliable elements of u qualified as overcapable [69]. We define
the set of overcapable bits as:

Definition 3.2.2. Let CS(Ns,K,F) be a shortened polar code by the pattern S. We
denote by US the set of overcapable bits such as:

i ∈ US ⇐⇒ Li =∞ (3.3)

In practice, the condition xS = 0 is only satisfied if ui = 0, i.e. frozen ∀i ∈ US . We
denote by FS = F

⋃
US the set of frozen bits in the case of shortened polar codes.

In the case of systematic polar codes [73], shortening is straightforward. However, for non-
systematic polar codes, shortening is more complex since it involves determining the exact
S bits to set to zero (or frozen) to ensure xS = 0. Shortening was initially introduced as a
puncturing technique in [74]. The proposed method starts with the matrix GN , identifies
columns with weight 1, selects a column that meets this criterion, adds its index to the
shortening pattern, and finally removes the row and column corresponding to the position
of ”1”. This process is iterated S times. In [74], shortening of the final bits of the mother
polar code was suggested, as it follows the aforementioned procedure. Alternatively,
in [75], Dynamic Frozen Bits were used to ensure xS = 0. A joint optimization of the
shortening set and the remaining frozen set were introduced in this article to identify
the most suitable rate-profiling for a shortened polar code. Additionally, a shortening
pattern based on the Bit-Reversal Permutation is proposed in [69] .

78

3.2 Rate-compatible pure and pre-transformed polar codes

3.2.3 Rate-Compatible Pre-Transformed polar codes

In the context of pre-transformed polar codes, the mapping u = vT where T is an
upper triangular matrix is considered. Finally, authors of [71] introduced symmetric
puncturing strategies that have been proved to outperform the aforementioned puncturing
techniques.

In the case of punctured polar codes, as the values of punctured codeword bits are
considered erased and unknown, the precoding step does not affect puncturing. Therefore,
any puncturing pattern that is proposed for polar codes can be used similarly for pre-
transformed polar codes.

However, in the case of shortened polar codes , the shortening constraint implies that
xS = 0. This constraint cannot be guaranteed in the case of shortened pre-transformed
polar codes, as the fact of ensuring that vUS = 0 does not necessarily lead to uUS = 0.

In this context, a constraint is proposed in [76] for the pre-transformation for shortened
polar codes. The constrained pre-transformation consists in:

ui =

{
vi if i ∈ US∑m−1

j=0 gjvi−j otherwise
(3.4)

By enforcing vUS = uUS = 0, the condition xS is achieved. In all the following, we will
consider the constraint given in equation (3.4) for the shortened pre-transformed polar
codes.

One of the main open questions regarding rate-compatible pure and pre-transformed
polar codes is the rate-profile construction. For this reason, in this chapter, we propose a
low complexity algorithm capable of computing the minimum distance and the associated
number of occurrences of rate-compatible pure and pre-transformed polar codes. This
approach is an extension to the one detailed in Chapter 2. It offers the advantage of not
assuming any specific structure (a) for the frozen bit set, (b) for the pre-transformation
or (c) for the shortening and puncturing patterns. It, therefore, aids in the design of
puncturing shortening patterns, pre-transformation parameters, and frozen bit sets for
punctured/shortened polar codes, thereby enhancing their decoding performance.

79

Chapter 3. About the distance properties of Punctured and Shortened pure
and pre-transformed polar codes

3.3 Computing the minimum weight of rate-compatible
polar cosets

In this section, the concept of rate-compatible Polar Cosets is introduced. We can adapt
an approach introduced in [77], which enables the computation of the minimum weight
of polar cosets, to calculate the minimum weight of rate-compatible cosets. We detailed
in Chapter 2 the principle of message-passing rules applied to compute the minimum
weight of a given polar coset. In this section, we modify the way of defining polar cosets
in the case of rate-compatible polar codes in order to take the puncturing or/and the
shortening effect into account. We define rate-compatible punctured and shortened polar
cosets respectively as:{

CPN (ui0) = {xP̄ |x ∈ CN (ui0)}
CSN (ui0) = {xS̄ |x ∈ CN (ui0),xS = 0}

(3.5)

where V̄ denotes the complement of the set V. This representation is different from
C(i)N (ui0) in the way that it takes the effect of puncturing or shortening into account. It
is thus possible to compute w∗(CPN (ui0)) and w∗(CSN (ui0)) using an approach that is
similar to the one used to define the LLR values of rate-compatible polar codes.
In the case of punctured polar codes, given xi such that i ∈ P, the value of xi
is erased. Therefore, it does not play any role into the determination of the different
codewords weights. When taking this into consideration, each leaf node xi, i ∈ P is
initialised as follows:

µxi =

(
0

0

)
(3.6)

This is explained by the fact that the value of xi is not taken into consideration whether
it is equal to 0 or 1 since it is not transmitted.

Example 3.3.1. An illustration of a distance factor graph of bit u4 is given by Figure
3.1. We consider configurations for a punctured polar code. In this configuration, N = 8,
K = 4 and P = 2. The puncturing pattern is P = {0, 4} and the frozen bit set is
F = {0, 1, 2, 4}. The evaluated cosets are CP8([0, 1, 0, 0], 0) and CP8([0, 1, 0, 0], 1), thus
p = [0, 1, 0, 0]G3

0 = [1, 1, 0, 0, 0, 0, 0, 0]. In the case of the punctured codeword bits x0

and x4, they are initialised to
(
0

0

)
, the rest are initialized according to (2.15). The

message passing is based on Equations (2.11) and (2.14) We can see from Figure 3.1 that

80

3.3 Computing the minimum weight of rate-compatible polar cosets

(
0
1

) (
0
1

) (
1
0

) (
0
1

) (
0
0

) (
0
0

) (
0
1

) (
0
1

)

(
0
2

) (
1
1

) (
0
0

) (
0
2

)

(
1
1

) (
0
0

)

(
1
1

)

f

u4

x1 x5x3 x7 x0 x4 x2 x6

Parity node
Variable node
Hidden variable node

Figure 3.1: Tanner Graph of u4 decoding for a punctured polar code with N = 8 and
P = 2

µf→u4 =

(
w∗(C8([0, 1, 0, 0], 0))
w∗(C8([0, 1, 0, 0], 1))

)
=

(
1

1

)
.

In the case of shortened polar codes, the shortening pattern is defined to guarantee
that xi = 0, i ∈ S. This means that there are no codeword configurations with xi = 1.
This leads to the following initialization for every leaf node xi such that i ∈ S:

µxi =

(
0

∞

)
(3.7)

As the second row of µxi defines the weight of the relative configuration to xi when xi is
equal to 1, setting it to infinity (or in practical to a large positive value) prevents it from
appearing in any configuration of minimum weight.

Example 3.3.2. An illustration of a distance factor graph of bit u3 is given by Figure
3.2. We consider configurations for a shortened polar code. In this configuration,
N = 8, K = 4 and S = 2. The shortening pattern is S = {3, 7} and the frozen
bit set is F = {0, 1, 3, 7}. The evaluated coset are CS8([0, 1, 0], 0) and CS8([0, 1, 0], 1),
thus p = [0, 1, 0]G2

0 = [1, 1, 0, 0, 0, 0, 0, 0]. In the case of the shortened codeword bits x3

and x7, they are initialised to
(

0

∞

)
, the rest are initialized according to (2.15). The

message passing is based on Equations (2.11) and (2.14) We can see from Figure 3.2.

that µu3 =

(
2

∞

)
. This means that w∗(CS8([0, 1, 0], 0)) = 2 for u3 = 0. On the other

81

Chapter 3. About the distance properties of Punctured and Shortened pure
and pre-transformed polar codes

(
0
∞

) (
0
∞

) (
1
0

) (
0
1

) (
1
0

) (
0
1

) (
0
1

) (
0
1

)

(
0
∞

) (
1
0

) (
1
0

) (
0
1

)

(
1
∞

) (
1
1

)

(
2
∞

)

v0 v1

u3

x1 x5x3 x7 x0 x4 x2 x6

Parity node
Variable node
Hidden variable node

Figure 3.2: Tanner Graph of u3 decoding for a shortened polar code with N = 8 and
S = 2

hand, w∗(CS8([0, 1, 0], 1)) = ∞. This reflects the fact that the initialization takes into
account the absence of configurations where u3 = 1 in the shortened polar code, as u3 is
constrained to be 0 by the shortening pattern.

3.4 Weight enumeration function of rate-compatible polar
cosets

We showed in Section 2.2.2.2 that it is possible to simultaneously compute the minimum
weight and it related number of occurrences for a polar coset. We show in this section
that similar rules can be applied in order to compute the minimum weight and associated
number of occurrences for a rate-compatible polar coset.

3.4.1 Case of punctured polar codes

Let CPN (ui0) denote a punctured polar coset and by A∗
N (CPN (ui0))(X) the MWEF

of CPN (ui0)(X) . The aim is to compute A∗
N (CPN (ui0))(X). In this case, the initial

messages that are sent from the leaf nodes representing the MWEF of each xi is:

θxi =

(
1X0

1X0

)
(3.8)

82

3.4 Weight enumeration function of rate-compatible polar cosets

This is explained by the fact that both configurations of xi for which xi = 0 and xi = 1

do not affect the final codeword weight since it is erased. As there is no need to change
the graph structure, the message passing equations (2.24) and (2.26) can be applied to
compute the MWEF of a punctured polar codes. However, there is a modification that
needs to be taken into consideration in the case of punctured polar codes. Actually, as a
punctured polar coset CPN (ui0)) describes the affine space generated by the punctured
last N − i− 1 rows of the generator matrix, the resulting punctured matrix may not be
full rank due to puncturing. Therefore, in the case of punctured polar codes, the final
MWEF of a punctured polar coset has to be divided by 1

2
N−i−1−rk(GPN−1

i+1
)
. where rk(.)

computes the rank of a matrix. We can see that when the matrix GPN−1
i+1 is full rank,

then 1

2
N−i−1−rk(GPN−1

i+1
)
= 1.

Example 3.4.1. An illustration of a distance factor graph of bit u3 is provided by Figure
3.3. Configurations for a punctured polar code are considered. In this configuration, we
consider the parameters N = 8, K = 2 and P = 4. The puncturing pattern P = {0, 2, 4, 6}
and the frozen bit set F = {0, 1, 2, 3, 4, 6}. The evaluated cosets are and CP8([0, 0, 0], 1),
thus p = [0, 0, 0]G2

0 = [0, 0, 0, 0, 0, 0, 0, 0].

(
1
X

) (
1
X

) (
1
X

) (
1
X

) (
1
1

) (
1
1

) (
1
1

) (
1
1

)

(
1
2X

) (
1
2X

) (
2
2

) (
2
2

)

(
1

4X2

) (
4
4

)

(
4

16X2

)

v0 v1

u3

x1 x5x3 x7 x0 x4 x2 x6

Parity node
Variable node
Hidden variable node

Figure 3.3: Tanner Graph of u3 decoding for a punctured polar code with N = 8 and
P = 2

In this case, the cosets CP8([0, 0, 0], 0) and CP8([0, 0, 0], 1) describe the space generated
by the matrix GP 7

4 given in Figure 3.4. We can see from Figure 3.4 that due to the
presence of two zero rows, the rank of the matrix is equal to 2 instead of 4 when taking
the puncturing into account. This means that A∗

N (CP8([0, 0, 0], 0))(X) = 1
28−3−1−2 .4 = 1

and A∗
N (CP8([0, 0, 0], 1))(X) = 1

28−3−1−2 .16X
2 = 4X2. The vectors in CP8([0, 0, 0], 1)

are enumerated in Figure 3.4. This corroborates the obtained result, i.e. there are four

83

Chapter 3. About the distance properties of Punctured and Shortened pure
and pre-transformed polar codes

u0

u1

u2

u3

u4

u5

u6

u7



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1


Figure 3.4: Transformation matrix for N = 8 and P = 4



1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 1 0 1 1 0 1 0
1 0 1 0 0 1 0 1
0 0 1 1 1 1 0 0
1 1 0 0 0 0 1 1
1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1
0 1 1 1 1 0 0 0
1 0 0 0 0 1 1 1
1 1 0 1 0 0 1 0
0 0 1 0 1 1 0 1
1 0 1 1 0 1 0 0
0 1 0 0 1 0 1 1
0 0 0 1 1 1 1 0
1 1 1 0 0 0 0 1



=



1 1 0 0
0 0 1 1
1 1 0 0
0 0 1 1
0 1 1 0
1 0 0 1
0 1 1 0
1 0 0 1
1 1 0 0
0 0 1 1
1 1 0 0
0 0 1 1
0 1 1 0
1 0 0 1
0 1 1 0
1 0 0 1


Figure 3.5: Vectors of CP8([0, 0, 0], 1) with minimum weight

distinct vectors whose minimum weight is equal to 2.

3.4.2 Case of shortened polar codes

Let CSN (ui0) denote a shortened polar coset. The aim is to compute A∗
N (CSN (ui0))(X).

In this case, the initial messages that are sent from the leaf nodes representing the MWEF
of each xi is:

θxi =

(
1

0

)
(3.9)

This is explained by the fact that there is no configuration for which a shortened codeword
bit xi is equal to 1 since this is imposed by the shortening pattern. The term 0 can be
interpreted as ”0X∞”.
The same message passing equations (2.24) and (2.26) are applied to compute the MWEF

84

3.5 Extension to the Reduced Weight Enumeration Spectrum of punctured
and shortened polar cosets

of shortened polar cosets. In the case of shortened polar codes and due to the shortening
constraints described in [74], the matrix GSN−1

i+1 , has a full rank. Therefore, unlike
puncturing, no further operations are required in order to compute the MWEF.

Example 3.4.2. An illustration of a distance factor graph of bit u3 is provided by Figure
3.6. Configurations for a shortened polar code are considered. In this configuration, we
consider the parameters N = 8, K = 4 and S = 2. The shortening pattern is S = {3, 7}
and the frozen bit set is F = {0, 1, 3, 7}. The evaluated cosets are CS8([1, 0, 0], 0) and
CS8([1, 0, 0], 1), thus p = [1, 0, 0]G2

0 = [1, 0, 0, 0, 0, 0, 0, 0]. In the case of the shortened

(
1
0

) (
1
0

) (
X
1

) (
1
X

) (
X
1

) (
1
X

) (
1
X

) (
1
X

)

(
1
0

) (
2X
1

) (
2X
1

) (
1
2X

)

(
2X
0

) (
2X
2X

)

(
4X2

0

)

v0 v1

u3

x1 x5x3 x7 x0 x4 x2 x6

Parity node
Variable node
Hidden variable node

Figure 3.6: Tanner Graph of u3 decoding for a shortened polar code with N = 8 and
S = 2

codeword bits x3 and x7, they are initialised to
(
1

0

)
, the rest are initialized according

to (2.27). The message passing is based on Equations (2.24) and (2.26) We can see

from Figure 3.6. that θu3 =

(
4X2

0

)
. This means that A∗

N (CSN ([0, 1, 0], 0))(X) = 4X2

for u3 = 0. Consequently, there are 4 codewords of minimum weight 2. On the other
hand, A∗

N (CSN ([0, 1, 0], 1))(X) = 0. This underscores that the initialization considers
the absence of configurations in the shortened polar code where u3 = 1, as u3 is forced to
be equal 0 by the shortening pattern.

3.5 Extension to the Reduced Weight Enumeration Spec-
trum of punctured and shortened polar cosets

Similarly to Section 2.2.2.3, it is possible to extend the computation of the MWEF of a
rate-compatible polar coset to the computation of the RWEF up to a fixed weight wend

85

Chapter 3. About the distance properties of Punctured and Shortened pure
and pre-transformed polar codes

(
1
0

) (
1
0

) (
1
X

) (
1
X

) (
X
1

) (
1
X

) (
1
X

) (
1
X

)

(
1
0

) (
1 +X2

2X

) (
2X

1 +X2

) (
1 +X2

2X

)

(
1 +X2

0

) (
2X + 2X3

2X + 2X3

)

(
2X + 4X3 +��2X5

0

)

v0 v1

u3

x1 x5x3 x7 x0 x4 x2 x6

Parity node
Variable node
Hidden variable node

Figure 3.7: Factor graph of u3 for the computation of A3
8(CP8([1, 0, 0], 0)) and

A3
8(CP8([1, 0, 0], 1))

thanks to the same relations in (2.31) and (2.33). We denote by Awend
N (CPN (ui0))(X)

and Awend
N (CSN ((ui0))(X) the RWEF for weight lower or equal to wend of a punctured

and shortened polar coset respectively.

In the case of punctured polar cosets, where puncturing alters the generator matrix and
may lead to non-full rank configurations, adjustments are necessary to adapt the RWEF
for accurate weight spectrum computation similarly to the MWEF. This implies that the
coefficients of the RWEF of a punctured polar coset Awend

N (CPN ((ui0)) has to be divided
by 1

2
N−i−1−rk(GPN−1

i+1
)
.

In the case of a shortened polar coset, no further adaptation need to be undertaken.

Example 3.5.1. An illustration of the computation of the RWEFs A3
8(CP8([1, 0, 0], 0))

and A3
8(CP8([1, 0, 0], 1)) for a polar code of length N = 8 is provided by Figure 3.7. In

this case, we consider p = [1, 0, 0, 0, 0, 0, 0] and wend = 3. The computation is performed
by using Equation (2.31) in the case of a parity node and Equation (2.33) in the case of
a check node. We can see from the figure that at each computation step, the monomials
with a degree greater than 3 is eliminated.

86

3.6 Computing the distance properties of Rate-Compatible pure and
pre-transformed polar codes

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12

u13

u14

u15



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


Figure 3.8: Transformation matrix G16.

3.6 Computing the distance properties of Rate-Compatible
pure and pre-transformed polar codes

In this section, we take advantage of the results on the computations of the minimum
weight as well as the MWEF of rate-compatible polar cosets to compute the overall
minimum distance and number of codewords of minimum distance of rate-compatible
pure and pre-transformed polar codes.
Similarly to equation (2.34), starting with an example, we show that in the case of a
rate-compatible polar code, CV can also be written as the disjoint union of the following
cosets:

CV =
⋃

us−1
0 ∈Ls

CV(s)N (us−1
0 , us = 0) (3.10)

Where s = max(F). Note that s is the last frozen bit of F not of FV , i.e., it only
considers the bits that has not been frozen due to the puncturing/shortening constraint.

Example 3.6.1. Let us consider the polar code shortened from the parent code (16,7)
using the bit-reversal permutation shortening pattern of length 2. The transformation
matrix G16 is shown in Figure 3.8. The rows and columns deleted of the transformation
matrix due to the shortening are highlighted in green.

In this figure, the frozen bits of indexes F = {0, 1, 2, 3, 4, 5, 8}, are represented in black,

87

Chapter 3. About the distance properties of Punctured and Shortened pure
and pre-transformed polar codes

the shortened bits of indexes S = {7, 15} in green. The remaining information bits are
represented in red for the ones before the last frozen bit and in blue for the ones after the
last frozen bit.
Let us consider the shortened polar coset CS16(u8

0). For any u8
0 such that ui = 0 ∀i ∈ F ,

and ui = {0, 1} ∀i ∈ I, the shortened polar coset CS16(u8
0) forms a subset of the

shortened polar code CS. In fact, by definition of CS16(u8
0), the shortened bits u7 and u15

are constrained to be zero. Therefore, the total shortened polar code CS can be described
as:

CS =
⋃

u80∈L8

CS16(u8
0) (3.11)

where L8 =
{
u7
0 ∈ {0, 1}

8 |ui = 0 ∀i ∈ F
}

.

Based on Equation (3.10), we can apply the same algorithm described in Chapter 2 in
order to compute the number of codewords with minimum distance or more generally
the reduced weight spectrum for rate-compatible pure and pre-transformed polar codes.
Note that Equation (3.10) can also be generalised to pre-transformed polar codes as it
was shown in Chapter 2. In this context, the MWEF of a punctured or shortened polar
code A∗

C\{0}(X) can be expressed as:

A∗
CV\{0}(X) = LP


∑

us0 ∈ Ls
us0 6= 0s0

A∗
N (CVN (us0))(X) +Ad

∗
N (CVN (0s0)(X))− 1


(3.12)

Similarly, the RWEF up to a weight wend of a punctured or shortened polar code Awend
C (X)

is expressed as:

Awend
CV (X) =

∑
us0 ∈ Ls

Awend
N (CVN (us0))(X) (3.13)

Algorithms 1 and 2 summarise the computation of the reduced weight spectrum in the
case of punctured and shortened PAC codes respectively. The algorithms operate as
follows:

• For each i ∈ [[0, s]], all the prefixes ui0 = g(vi0) that remained in the list at an
exploration stage i are listed.

88

3.6 Computing the distance properties of Rate-Compatible pure and
pre-transformed polar codes

• For each of the aforementioned prefixes, w∗(CVN (ui0)) is computed.

• The cosets with w∗(CVN (ui0)) > wend are discarded. Those cosets are irrelevant to
the computation the partial weight spectrum with the threshold on weight wend as:

w∗(CVN (ui0, ui+1)) > w∗(CVN (ui−1
0 , ui)) (3.14)

This means that ∀ CVN (ui0, ui+1) with w∗(CVN (ui0, ui+1)) < wend, @j ∈ [[i +

1;N − 1]] such that w∗(CVN (uj−1
0 , uj)) = wend. In other words, if a coset has a

minimum weight w > wend, then no codeword within that coset can have a weight
lower than or equal to wend.

• When i = s, the partial weight spectrum is obtained by computing the RWEF of
the cosets that remained in the list. The sum of the RWEFs results in the RWEF
of the punctured/shortened PAC code as shown in Equation (3.13).

Figure 3.9 and 3.10 represent the overall algorithm’s process for a (20, 7) punctured polar
and PAC code with wend = 8. The puncturing set is defined by

P = {0, 2, 4, 8, 10, 12, 16, 18, 20, 24, 26, 28}

and the information set I = {15, 22, 23, 27, 29, 30, 31}. We can see from Figure 3.9 that
the overall RWEF in the case of punctured pure polar codes is:

A8
CP(X) = 1 + 2X2 +X4 + 14X8 (3.15)

This is justified by the fact that, at the last enumeration stage, i.e. when i = s = 25,
rk(GP 31

26) = 4 and therefore 1

2
N−i−1−rk(GPN−1

s+1)
= 1

4 . This explains why the count of
codewords for each weight is divided by 4.

The same principle holds for PAC codes. However, it’s worth noting that for PAC codes,
the minimum distance of the code increased from 2 in the case of pure polar codes to 6

for PAC codes. This indicates that the pre-transformation implemented for PAC codes
raised the minimum distance of the code from 2 to 6.

89

Chapter 3. About the distance properties of Punctured and Shortened pure
and pre-transformed polar codes

a
a
a
a
a


0

0

1

0 0

0

1

0

1

0

1

0

0

0

0

0

0

15 16 21 22 23 24 25

0

10

0 0
0

2

0

10

2

8

0

8

8

0

2

8

0

2

8

1 +X4 + 6X8

2X2

8X8

A8
CP(X) = 1 + 2X2 +X4 + 14X8

Figure 3.9: Relaxed reduced spectrum enumeration for a (20, 7) punctured polar code

a
a
a
a
a


0

0

1

0 0

0

1

0

1

0

1

0

0

0

0

0

0

15 16 21 22 23 24 25

0

10

0 0
0

2

0

10

2

8

0

8

8

0

2

8

0

6

8

1 +X4 + 6X8

8X6

8X8

ACP8(X) = 1 +X4 + 8X6 + 12X8

Figure 3.10: Relaxed reduced spectrum enumeration for for a (20, 7) punctured PAC
code

90

3.7 Distance properties results for punctured and shortened polar and PAC
codes

Algorithm 1: Enumeration of the low-weight codewords of punctured PAC codes
Input: Rate compatible punctured PAC code CP(N,K,F ,g),P, wend
Output: Reduced spectrum with weights less or equal to wend

1 L← 1
2 L ← {0} /* List to store prefixes */
3
4 for i ∈ [[0; s]] do
5 for l ∈ [[1;L]] do
6 if i ∈ F then
7 for l ∈ [[1;L]] do
8 vi[l]← 0
9 ûi[l] = g(v̂i0[l]))

10 Compute w∗ of CPN (ui−1
0 [l], ui[l])

11 Discard the prefixes for which w∗ ≥ wend
12 L← |L|
13 end
14 else
15 L ← L

⋃
L′ /* L′ is a copy of L′ */

16
17 for l ∈ [[1;L]] do
18 [vi[l], vi[l

′]]← [0, 1]
19 ûi[l] = g(v̂i0[l]))
20 ûi[l

′] = g(v̂i0[l
′]))

21 Compute w∗ of CPN (ui−1
0 [l], ui[l]) and CPN (ui−1

0 [l′], ui[l
′])

22 Discard the cosets for which w∗ ≥ wend
23 L← |L|
24 end
25 end
26 end
27 if i = s then
28 Compute the RWEF of the remaining paths in the list
29 Compute the RWEF of the overall code Awend

CP (X)

30 end
31 Return Awend

N (CP)

3.7 Distance properties results for punctured and short-
ened polar and PAC codes

3.7.1 Minimum distance Properties

Table 3.1 lists the minimum distance d∗, the associated number of occurrences A∗ as
well as the total number of explored cosets nr of punctured pure and pre-transformed
polar codes. The code rates R = 1/3 and R = 1/4 are considered. For both tables, the

91

Chapter 3. About the distance properties of Punctured and Shortened pure
and pre-transformed polar codes

Algorithm 2: Enumeration of the low-weight codewords of shortened PAC codes
Input: Rate compatible Shortened PAC code CS(N,K,F ,g),S, wend
Output: Reduced spectrum with weights less or equal to wend

1 L← 1
2 L ← {0} /* List to store prefixes */
3
4 for i ∈ [[0; s]] do
5 for l ∈ [[1;L]] do
6 if i ∈ F then
7 for l ∈ [[1;L]] do
8 vi[l]← 0
9 if i ∈ S then

10 ui[l]← 0 /* PAC constraint from (3.4). Only in the
shortening case */

11

12 else
13 ûi[l] = g(v̂i0[l]))
14 end
15 Compute w∗ of CSN (ui−1

0 [l], ui[l])
16 Discard the prefixes for which w∗ ≥ wend
17 L← |L|
18 end
19 else
20 L ← L

⋃
L′

21 for l ∈ [[1;L]] do
22 [vi[l], vi[l

′]]← [0, 1]
23 ûi[l] = g(v̂i0[l]))
24 ûi[l

′] = g(v̂i0[l
′]))

25 Compute w∗ of CSN (ui−1
0 [l], ui[l]) and CV(i)N (ui−1

0 [l′], ui[l
′])

26 Discard the cosets for which w∗ ≥ wend
27 L← |L|
28 end
29 end
30 end
31 if i = s then
32 Compute the RWEF of the remaining paths in the list
33 Compute the RWEF of the overall code Awend

CV (X)

34 end
35 Return Awend

N (CS)

dynamic frozen bits are generated as a random combination of previous information
bits. The frozen bit sets referred to as 5G are the ones specified in the 5G standard [9]
and the ones referred to as 5G-RM are the ones introduced in [76]. Referring to Tables

92

3.7 Distance properties results for punctured and shortened polar and PAC
codes

3.2 and 3.1, the 5G-RM rate profile, when applicable, enhances the minimum distance
of shortened polar codes. It is also observed, that both pre-transformations (PAC and
DFB) reduce the number of codewords with minimum distance. The reduction is more
significant in the case of the 5G-RM rate-profiling.

R N S Code Type 5G 5G-RM
d∗ A∗ nr d∗ A∗ nr

1/2

128 48 (80,40)
Polar 8 1078 22116 - - -
PAC 8 582 11789 - - -
DFB 8 486 9554 - - -

256 96 (160,80)
Polar 8 508 16933 16 104470 4659318
PAC 8 300 10049 16 4166 51129
DFB 8 348 11639 16 2920 19054

512 192 (320,160)
Polar 8 120 6384 16 81500 1157676
PAC 8 120 6384 16 22876 229005
DFB 8 120 6384 16 17184 136029

3/4

128 48 (80,60)
Polar 4 764 25873 - - -
PAC 4 636 21649 - - -
DFB 4 620 21131 - - -

256 96 (160,120)
Polar 4 120 6208 8 81820 1550796
PAC 4 120 6208 8 21116 207530
DFB 4 120 6208 8 17179 132831

512 192 (320,240)
Polar 8 110584 1282001 - - -
PAC 8 73784 565874 - - -
DFB 8 69392 515953 - - -

Table 3.1: Minimum distance properties of pure, PAC and DFB shortened polar codes

3.7.2 Reduced weight spectrum

This section summarizes the experimental results obtained on the partial weight distribu-
tion for a wide range of pure and pre-transformed rate-compatible polar codes. For each
code, we compute the exact number Aw of codewords of weight w for all ≤ wend.
Table 3.3 gives the partial weight spectrum of punctured shortened polar and PAC
codes for N = {128, 256, 512, 1024}, P = {48, 96, 192, 384} and S = {48, 96, 192, 384},
respectively. We apply puncturing for the codes with code rate R = 0.25 and shortening
for codes with code rate R = 0.5. This choice aligns with the 5G standardization, where
shortening is used for high rates and puncturing for low rates [9]. In the case of PAC
codes, the polynomial g = [1, 0, 1, 1, 0, 1, 1] is chosen. The frozen bit sets are the ones
specified in the 5G standard [9].
The results for the number of codewords with minimum weight of shortened polar and

93

Chapter 3. About the distance properties of Punctured and Shortened pure
and pre-transformed polar codes

R N P Code Type 5G
d∗ A∗ nr

1/4

128 48 (80, 20)
Polar 8 30 160
PAC 8 2 61
DFB 8 2 67

256 96 (160, 40)
Polar 8 12 131
PAC 8 8 130
DFB 8 12 131

512 192 (320, 80)
Polar 16 476 2923
PAC 16 76 391
DFB 8 100 471

1/3

128 48 (80, 27)
Polar 8 38 127
PAC 8 14 65
DFB 4 14 67

256 96 (160, 53)
Polar 8 76 571
PAC 8 8 200
DFB 8 20 236

512 192 (320, 107)
Polar 8 24 395
PAC 8 12 392
DFB 8 16 393

Table 3.2: Minimum distance properties of pure, PAC and DFB punctured polar codes

PAC codes (results highlighted in red) were corroborated with results in [76]. To the
best of the author’s knowledge, the full results for the partial weight spectrum of PAC
codes have not been reported in the literature. As shown in Table 3.3, PAC codes have
fewer low-weight codewords.
Moreover, a computational complexity comparison of the proposed algorithm to the one
introduced in [14] is provided in Table 3.4. To this end, the punctured and shortened
patterns were defined randomly to accommodate with the results given in [14]. This is
made possible by the ability of Algorithm 1 to be adapted to any puncturing/shortening
pattern. The results are shown for a (200, 100) polar code with the same rate-profiling.
We showed in [77] that the computation of the minimum weight of a coset has a worst-case
computational complexity equal to 6(N − 1). Algorithm 1 has therefore a worst case
computational complexity equal to 6nc(N − 1), whereas the algorithm proposed in [14]
has a computational complexity dominated by the term ΣN (X)

Subcode. It is shown in Table
3.4 that the number of codewords with a specific weight obtained via Algorithm 1 is
in the same range of the results computed in [14]. Note that since the puncturing and
shortening are done randomly, we cannot reproduce exactly the same results. Table
3.4 shows that the computational complexity of Algorithm 1 is lower by several orders
of magnitude. For instance , it is indicated in [14] that the overall running time for a
C++ implementation on a computer with 6 cores i7 and a 3.2GHz processor in the case

94

3.7 Distance properties results for punctured and shortened polar and PAC
codes

of a randomly shortened (200, 100) polar code is approximately 28 hours. In contrast,
our MATLAB implementation on a computer with 2 cores i5 and a 3.1GHz processor
achieves a running time of less than 10 minutes.

95

Chapter 3. About the distance properties of Punctured and Shortened pure
and pre-transformed polar codes

(N,K) Type (w,Aw)

(80, 20)
Polar (8, 30), (16, 173), (20, 256)(24, 8040) (28, 7424)

PAC (8, 2), (12, 8), (14, 8), (16, 109), (18, 56), (20, 920), (22, 504), (24, 2456)
(26, 5352), (28, 11528), (30, 11304) (32, 34194)

(160, 40)
Polar (8, 12), (16, 382), (24, 2220), (32, 55533), (40, 663536)

PAC
(8, 8), (16, 230), (18, 64), (20, 64), (22, 64), (24, 2120), (26, 960)
(28, 1216), (30, 1472), (32, 16557), (34, 16448), (36, 19264)
(38, 22080), (40, 286240)

(320, 80)
Polar (16, 476), (24, 11584), (28, 12288), (32, 117598), (36, 12288)

(40, 678208), (44, 589824), (48, 15764476)

PAC
(16, 76), (18, 16), (20, 32), (22, 16), (24, 208), (26, 112), (28, 352), (30, 112)
(32, 9694), (34, 2928), (36, 12512), (38, 8176), (40, 160848), (42, 52496)
(44, 224544), (46, 192784), (48, 3669484)

(640, 160)
Polar (16, 344), (24, 2688), (32, 117004)

(40, 3741824)

PAC (16, 20), (24, 24), (32, 11652), (34, 64)

(36, 704), (38, 64), (40, 47032)

(80, 40)
Polar

(8, 1078), (12, 32128), (14, 45056)

(16, 971821), (18, 2191360)

(20, 35615872)

PAC
(8, 582), (10, 608), (12, 14848)

(14, 46624), (16, 446125), (18, 1810400)

(20, 11718144)

(160, 80)
Polar (8, 508), (12, 2496), (16, 320030)

(20, 9821632)

PAC (8, 300), (12, 2112), (16, 92862)

(18, 15616), (20, 2453568)

(320, 160)
Polar (8, 120), (16, 183116), (20, 731136)

PAC (8, 120), (16, 74540), (18, 6080)

(20, 568832)

(640, 320)
Polar (16, 69496), (24, 27166592)

PAC (16, 43544), (18, 736), (20, 25408)

(22, 6208), (24, 16013568)

Table 3.3: Partial weight distribution of punctured and shortened polar and PAC codes

96

3.7 Distance properties results for punctured and shortened polar and PAC
codes

(N,K) (200, 100)
Random Shortening

(200, 100)
Random puncturing

(w,Aw)

(8, 194) (7, 12)

(12, 456) (8, 35)

(16, 67867) (9, 115)

(20, 1319413) (10, 332)

(22, 696208) (11, 710)

(12, 1349)

(13, 2934)

(14, 6737)

(15, 16490)

(16, 41033)

(17, 98835)

(18, 235252)

(19, 561588)

ΣN (X)
Subcode [14] 56257× 109 128664× 109

TCwend
78× 109 48× 109

Table 3.4: Partial weight distribution of (200, 100) randomly punctured / shortened
polar codes

97

Chapter 3. About the distance properties of Punctured and Shortened pure
and pre-transformed polar codes

3.8 Conclusion

In this chapter, we expanded upon the contributions of Chapter 2 to enable the computa-
tion of the number of codewords with minimum or low weight for punctured and shortened
pure and pre-transformed polar codes. We introduced the concept of rate-compatible
polar cosets to account for the effects of puncturing and shortening. Subsequently, we
demonstrated that, similarly to polar cosets, the distance properties of rate-compatible
polar cosets can be efficiently determined thanks to factor graphs. This paved the way
for the development of a generic low-complexity algorithm for computing the minimum
distance properties, or more generally, the reduced weight spectrum of punctured and
shortened pure and pre-transformed polar codes.

Our experimental results underscored the significantly reduced computational complexity
of the proposed algorithm compared to existing approaches. Additionally, we illustrated
that, under specific rate-profile configurations, pre-transformed shortened/punctured
polar codes demonstrate enhanced performance thanks to the improvements of their
distance properties.

The next chapter combines the insights gained from the current and preceding chapters in
order to provide an analysis on the different parameters that enables code constructions
offering a trade-off between distance properties and decoding computational complexity.

98

4 Towards a trade-off between
distance properties and SCL de-
coding complexity of polar codes
This chapter begins by introducing a method to optimize the rate-profile construction
of polar codes, focusing on their distance properties. Since polar codes designed solely
with distance constraints perform poorly under SCL decoding with a moderate list size,
we investigate the parameters that influence the average list size required to achieve
Maximum-Likelihood performance. Additionally, we explain how certain paths can be
pruned during the list decoding process without impacting the overall performance.

4.1 Introduction . 99
4.2 Distance properties based rate-profile for PAC codes 102

4.2.1 Overall algorithm . 104
4.2.2 Rate-profile construction results 108

4.3 Tailored list decoding of polar codes 110
4.3.1 Decoding tail in SC-based algorithms 110
4.3.2 Tailoring in the case of SCL decoding 110

4.4 About the average list size that reaches ML performance 119
4.4.1 Difference to True Path Metric (DTPM) 120
4.4.2 Correlation of codewords with minimum weight of a coset . . . 123
4.4.3 Determination of αi . 125
4.4.4 DTPM estimation results . 126
4.4.5 Average List size for ML decoding 128
4.4.6 Average list size estimation results 129

4.5 Conclusion . 135

4.1 Introduction

Polar codes performance under near-ML decoding is essentially dependant to their weight
spectrum and more specifically to their number of low weight codewords. The advantage

99

Chapter 4. Towards a trade-off between distance properties and SCL
decoding complexity of polar codes

behind leveraging distance properties in code definition lies in their ability to offer
constructions for which the ML bound is near to the achievability bound. Consequently,
it makes their performance under near-ML decoders such as the Fano decoding very
appealing. In the previous chapters, we introduced a streamlined approach for computing
the partial weight spectrum of various types of polar codes: pure, pre-transformed,
punctured and shortened. This method is one of the efficient pathways towards the
design of codes based on their distance properties. In previous works, such as [78], Monte
Carlo simulations were used to identify good codes under Fano decoding. In [42], PAC
code constructions are introduced based on a genetic algorithm to optimize distance
properties. Both [42] and [78] proposed codes that perform close to the RCU bound when
decoded under Fano decoding. These constructions hold particular appeal, especially for
short-length codes where achieving the ML performance entails only moderate decoding
computational complexity. However, both of these methods are limited by their high
decoding computational complexity for higher block-lengths. For moderate to high block
lengths and using SCL decoding with a moderate list size, both pure and precoded polar
codes tend to perform poorly. This has prompted extensive research aimed at developing
polar and precoded polar codes that achieve a balance between strong distance properties
and effective performance with short to moderate list sizes. It can also be considered
to adapt the decoders in order to reduce the overall computational complexity. Three
primary approaches were pursued in the state of the art:

1. The first approach involves constructing codes that strike a balance between their
distance properties, which influence their ML bounds, and the computational
complexity of decoding process. Several methods have been explored in this regard.
Firstly, [44] introduced constructions similar to RM-polar, considering both the
distance properties of the code and the reliability of information bits. While
demonstrating improved performance under short list decoding, this construction
relies on Monte Carlo simulations, resulting in high computational complexity.
Similarly, [43] proposed a bit-channel selection algorithm that considers both the
effect of the polarization effect and the ML decoding performance as selection
criteria. In [79], a genetic algorithm was used to design rate-profile tailored to a
specific decoding algorithm. [80] put forth a recursive algorithm for the rate-profiling
polar codes with dynamic frozen bits, also emphasizing both distance properties and
performance under SCL decoding with moderate list sizes. In [45], a novel approach
is proposed based on the identification information-theoretic quantities associated
with the required list size, on average, to achieve ML performance, thereby proposing
rate profiles that outperform standard polar codes. This approach was further
revised in [46], where a genetic algorithm was applied to develop new rate-profile

100

4.1 Introduction

strategies for polar codes with dynamic frozen bits. [81] devised a search-constrained
optimization method to evaluate the performance of PAC codes under Fano decoding.
It enables to offer performance near the RCU bound while reducing the Average
Number of Visits (ANV) of the Fano decoder. These methodologies collectively
aim to strike a balance between code performance and computational complexity.
Thereby, they address the limitations associated with decoding algorithms for polar
codes.

2. Another approach involves the optimization of the various precoding formats
in order to improve the distance properties of polar codes. For example, [51]
proposed optimizing the CRC for polar codes for specific block lengths and code
rates. This optimization yields concatenated polar codes with CRC that exhibit
better performance compared to those employing conventional CRC polynomials.
Additionally, [12] introduced a precoding technique known as "row merging" to
substitute the typical rate-1 precoding used in PAC codes, while either maintaining
or enhancing the distance properties of polar codes. Expanding upon this method,
[82] broadened the scope by constructing row-merged polar codes with increased
code rates without compromising their distance properties. Furthermore, [83]
employed a greedy strategy to fine-tune row-merged polar codes, resulting in codes
with even stronger distance properties.

3. A last way is to reduce the size of the list whenever it is relevant during the
decoding process. In this context, [84] and [85] introduced criteria following which
either SC or SCL are performed on a decoding step. Other methods, such as [86]
essentially relied on the pruning of paths for which the metric value is greater than
a threshold. [87] introduced a path metric range that allows for the reduction of
the list size when it takes large values. Some of these approaches can significantly
reduce the average list size for a moderate performance loss but, as any dynamic
method, it suffers from a worst case complexity that is actually equivalent (if not
worse) to the complexity of the SCL.

This chapter shifts focus to the different strategies that aim to construct codes with good
distance properties and/or reduce the decoding computational complexity. In particular,
we present:

1. A greedy algorithm for the design of PAC polar codes based on their distance
properties (This approach can also be generalised to polar codes with other pre-
transformation cases) . This algorithm relies on the contributions presented in the
previous chapters and offers code constructions that perform near the achievability

101

Chapter 4. Towards a trade-off between distance properties and SCL
decoding complexity of polar codes

bound for short-length PAC codes under SCL decoding with moderate list size.

2. A pruning technique for both SCL and CA-SCL decoders that enables, from a
certain index to switch from list decoding to SC decoding while not altering the
performance.

3. An upper bound on the average list size required to achieve ML performance under
SCL decoding process. This estimation is based on path retention probabilities at
each decoding step and enables to have an idea on the computational complexity
of a near-ML decoding of polar codes. Unlike the bounds presented in [45], this
approach takes into account the impact of pre-transformation. Moreover, it is
adaptable to punctured and shortened pure and pre-transformed polar codes.

4.2 Distance properties based rate-profile for PAC codes

We present in this section a rate-profile construction for PAC codes. Note that this
method is presented for PAC codes but can also be extented to any pre-transformed polar
code. This construction is based on the results of Chapter 2 that enable the efficient
computation of the distance properties of PAC codes. In order to simplify the optimization
matter, we mainly focus on the minimum distance properties i.e. the minimum distance
and the number of codewords with minimum distance. First, we outline the overall
procedure of the algorithm. Following this, we introduce a simplification to reduce its
computational complexity.
The goal of rate-profile construction is to choose K information bits from a total of N
available bits. We propose a greedy method that selects information bits incrementally
until K bits have been chosen. At each step, the selected information bit is the one that
either maximizes the minimum distance or minimizes the number of codewords with the
minimum weight. This allows an order on the bits following their distance properties.
To do so, this rate-profile construction relies on the RM scores assigned to each row of
the generator matrix. Initially, the last bit N − 1, i.e., the bit associated to the last
row of the generator matrix, has the highest RM score. Therefore, it is the first one
appended to the information set. Then, during each iteration for the selection of the
next information bit, the bit associated to the row with the highest remaining RM score
and maximizing the minimum distance and/or minimizing the number of codewords with
minimum weights is selected at a time. This process is repeated until ordering all the
bits.

Example 4.2.1. The process of the rate-profile construction is represented in Figure 4.1
for the 6th and 7th step for a PAC code with N = 16 and g = [1, 0, 1, 1, 0, 1, 1]. Starting

102

4.2 Distance properties based rate-profile for PAC codes



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12

u13

u14

u15

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12

u13

u14

u15

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12

u13

u14

u15

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12

u13

u14

u15

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12

u13

u14

u15

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12

u13

u14

u15

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12

u13

u14

u15

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12

u13

u14

u15

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12

u13

u14

u15

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12

u13

u14

u15

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12

u13

u14

u15

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12

u13

u14

u15

64 64 64 64 64 64 64 64 64 64 64 64 64d∗ 8 6 4 6 4 4 4 4 6 4 4 4

64 64 64 64 64 64 64 64 64 64 64 64 64A∗ 8 16 4 16 4 4 4 4 48 4 4 8

Information bit
Frozen bit

Potential unfrozen bit

Figure 4.1: (16, 7) proposed rate-profiling for a PAC code

from a (16, 5) PAC codes, all the bits with an associated row weight greater or equal to 8
have been selected. Therefore, we only consider the bits with row weights equal to 4, i.e.
u3, u5, u6, u9, u10 or u12. To determine the next information bit position, we iterate
through the bits one by one, unfreezing each one and evaluating the resulting distance
properties. By computing the minimum Hamming distance d∗ and the associated number
of occurrences A∗ for each configuration, we identify the setup that offers the best distance
properties. During this process, we initially unfreeze bit u3, followed by bit u6, as these
steps lead to the most favorable rate-profile constructions in terms of distance properties.

Remark 1: Note that this process guarantees the largest minimum distance in the case
of pure polar codes. But it may not be true in the case of pre-transformed polar codes.
Actually, since the pre-transformation can enhance the code’s minimum distance, specific
configurations can have a minimum distance d∗ while having information bits whose
associated weight rows are lower than d∗. This is the case in [42] where the presented
(128, 64) PAC code has a minimum distance of 16 while having information bits whose
associated row weights are equal to 8. Therefore, the proposed approach in this section
only provides a near optimal construction.

Remark 2: The considered rate-profile construction is based on a greedy algorithm
that during each iteration selects the information bits that maximizes the minimum
distance or/and minimizes the number of codewords with minimum weight. This method
is sub-optimal as the optimal construction of a (N,K) pure or pre-transformed polar
code would require considering all the possible combinations of K bits. Considering the
example of the (64, 32) polar code, 32 information bits have to be chosen among 64 bits.
In that case, the number of possible combinations is equal to C64

32 ≈ 1832624140942590534

103

Chapter 4. Towards a trade-off between distance properties and SCL
decoding complexity of polar codes

which makes considering this approach infeasible.

4.2.1 Overall algorithm

In order to compute d∗ and A∗ for each configuration, the algorithms proposed in Chapter
2 are applied. However, a simplification can be introduced in order to further reduce the
computational complexity. Starting with an example, we show how the simplification
operates.

Example 4.2.2. Figures 4.2a and 4.2b represent the enumeration process in order to
determine d∗ and A∗ detailed in Algorithm 2 in Chapter 2 for (16, 6) and (16, 7) PAC
codes with g = [1, 0, 1, 1, 0, 1, 1].

0

0

0

0

0

0

0

0

0

0

0

0

0 1

0 1

0 1

0 1

0 1 0 1

0 1 0 1

4

4 4

4 4

4 4

6 6

6 6 6 6

6 6 6 6

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12

(a) (16, 6) PAC code

0

0

0

0

0

0

0

0

0

0

0

0

0 1

0 1

0 1

0 1

0 1 0 1

0 1 0 1

4

4 4

4 4

4 4

6 6

6 6 6 6

6 6 6 6

1

1

1

1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

4

4

4

4 4

4 4 4 4

4 4 4 4

4 4 4 4

4 4 4 4

4 4 4 4 4 4 4 4

6 6 6 6 6 6 6 6

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12

(b) (16, 7) PAC code

Figure 4.2: Determination of d∗ and A∗ for a (16, 6) and (16, 7) PAC code

In contrast to the (16, 6) configuration, the (16, 7) setup involves the bit u3 being unfrozen.
This implies that both the cosets where u3 = 0 and u3 = 1 have to be evaluated. Since
the case where u3 = 0 has already been explored in the (16, 6) configuration, there is
no need to process it again. Since the minimum distance and the number of codewords

104

4.2 Distance properties based rate-profile for PAC codes

with minimum weight has been computed for the (16, 6), we only have to consider the
case where u3 = 1 for the (16, 7) configuration. At the end of the enumeration, if the
minimum weights of the (16, 6) configuration and the (16, 7) configuration are equal,
which is verified in this case, the total number of codewords with minimum weight is
obtained as the sum of the number of codewords with minimum weight computed for the
(16, 6) code and the number of codewords with minimum weight computed for the (16, 7)

code without considering u3 = 0. This simplification avoids re-computing the dashed
graph in Figure 4.2a that has been computed during the previous step. However, it should
be noted that the computational complexity reduction highly depends on the position of
the new unfrozen bit. In Figure 4.2, the number of avoided computations corresponds to
half of the total number of computations. It is the maximum number of computations
that can be removed. In other cases, the number of avoided computations might be less or
even equal to 0. Thus, a case where u12 is unfrozen is represented in Figure 4.3b. We can
observe that, the last frozen is no longer u12 but is u10. It means that, all the previous
steps have to be re-computed.

Algorithm 1 contains the details of the considered approach. The main steps can be
described as follows:

• a set of indexes is defined. This set is composed with the indexes whose associated
row weights are equal to the highest remaining RM score.

• From this set, one bit is unfrozen at a time and the minimum distance and the
number of codewords with minimum weight are computed. This computation is
based on the approach explained in Example 4.2.2. Thus, only the paths resulting
from unfreezing the considered bit are considered and the overall minimum distance
and the number of codewords with minimum distance are determined by combining
this result and the previous computations of d∗ and A∗

• The configuration that guarantees the highest minimum distance and/or the lowest
number of codewords with minimum weights is chosen and the information set is
updated accordingly.

• The process is iterated until ordering all the channels.

This approach offers a significant advantage by generating a channel order based on the
minimum distance characteristics inherent to the polar code under consideration, unlike
the methodology proposed in [42], where an execution of the algorithm is necessary for
every specific code rate. Moreover, no genetic algorithm with a costly iterative process
has to be applied.

105

Chapter 4. Towards a trade-off between distance properties and SCL
decoding complexity of polar codes

0

0

0

0

0

0

0

0 1

0 0

0 1

0 1

0 1 0 1

0 0 1 1

0

0

0

0

0

0

0 8

0 0

0 8

0 8

0 8 8 8

0 8 8 88

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12

(a) (16, 5) PAC code

0

0

0

0

0

0

0

0 1

0 0

0 1

0 1

0

0

0

0

0

0

0 8

0 0

0 8

0 8

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12

(b) (16, 6) PAC code

Figure 4.3: Determination of d∗ and A∗ for a (16, 5) and (16, 6) PAC codes

106

4.2 Distance properties based rate-profile for PAC codes

Algorithm 1: Channels order based on distance properties
Input: N,g
Output: Set of ordered channels I according to distance properties

1 I ← {N − 1} d∗ ← N , A∗ ← 1, K ← 1, s← N − 2
2 while K < N do
3 Ip ← SelectRMIndexes(N, K)
4 for i ∈ Ip do
5 I ← I

⋃
{i}

6 dtemp ← 0, Atemp ← +∞
7 [di, Ai, si]← ComputeAD(N, I,g, i, s, d∗, A∗)
8 if di > dtemp then
9 dtemp ← di, Atemp ← Ai, iopt ← i

10 else if di = dtemp then
11 if Ai < Atemp then
12 Atemp ← Ai, iopt ← i

13 end
14 I ← I\{i}
15 end
16 d∗ ← dtemp, A∗ ← Atemp, I ← I

⋃
{iopt}

17 end
18 return R

1 subroutine ComputeAD(N, I,g, iprev, sprev, dprev, Aprev)
2 F ← Ī, s← max(F)
3 if s 6= sprev then
4 Perform Algorithm 2 in Chapter 2
5 return (d∗, A∗)

6 else
7 for i ∈ [[0, s]] do
8 if i 6= iprev then
9 Perform the same steps of Algorithm 2 in Chapter 2

10 else
11 for l ∈ [[1;L]] do
12 [ui[l], si+1[l]]← conv(1, si[l])
13 Compute w∗ and A∗ and discard the paths for which w∗ > dprev
14 end
15 end
16 end
17 if d∗ = dprev then
18 return (d∗, A∗ +Aprev)
19 else
20 return (d∗, A∗)
21 end
22 end

107

Chapter 4. Towards a trade-off between distance properties and SCL
decoding complexity of polar codes

4.2.2 Rate-profile construction results

We present in this section the rate-profiling constructions obtained for different code-
lengths in the case of PAC codes. In all the following, we denote by PAC*, PAC codes
with rate-profiles obtained using Algorithm 1. Their distance properties and the perfor-
mance of code under this construction are then discussed.
Figure 4.4a represents the different minimum distances and associated number of occur-
rences for a PAC* codes with N = 64 and g = [1, 0, 1, 1, 0, 1, 1] using Algorithm 1 and
5G rate-profiling. We can see from this figure that the minimum distance is enhanced
and/or the number of codewords with minimum distance is reduced. For instance, a
(64, 8) PAC code has a minimum distance of 16 under 5G construction, whereas it has a
minimum distance equal to 24 under the construction based on Algorithm 1.
In order to evaluate the performance of short codes with a rate-profile built following

0 20 40 60
100

101

102

103

104

105

K

d* 5G
A* 5G
d* PAC*
A* PAC*

(a) Evolution of d∗ and A∗ for a PAC code with
N = 64 under Algorithm 1 and 5G construction

1 2 3 4 5
10−4

10−3

10−2

10−1

100

Eb/N0

FE
R

PAC* codes for N = 64

L = 16
L = 32
RCU

R = 0.75R = 0.5

(b) Performance of PAC* codes with N =
64 and K = {16, 32} under list decoding
with L = {16, 32}

Figure 4.4: Construction of PAC* rate-profile and performance evaluation for N = 64

the proposed approach, Figure 4.4 shows the performance of a PAC* code with N = 64

for different code rates and under SCL with different list sizes. The performance results
are compared to RCU bound. Under the rate-profile construction described in Algorithm

108

4.2 Distance properties based rate-profile for PAC codes

1, both (64, 32) and (64, 48) PAC* codes yield similar performance to the RCU bounds
with SCL decoding with list size L = 32. This shows that this method enables to built
rate-profiles that yield performance very close to RCU bound. Moreover, it is also
observed that a small list size (L = 32) enables to achieve the maximum likelihood
performance and that even SCL decoding with a list size L = 16 performs closely to the
RCU bound. While the (64, 32) PAC codes in [44] and [78] have d∗ = 8 and A∗ = 8, in
our case, d∗ = 8 and A∗ = 6. In the case of the (64, 48) PAC* code, d∗ = 4 and A∗ = 16.
The (64, 48) PAC code under 5G rate-profiling has d∗ = 4 and A∗ = 320.
The evolution of d∗ and A∗ are represented in Figure 4.5a for a PAC* codes with N = 256

and g = [1, 0, 1, 1, 0, 1, 1].

The same observations for the PAC* codes with N = 256 can be made. In fact, the rate-
profiling introduced in Algorithm 1 enhances the minimum distance and/or reduces the
number of codewords with minimum weight compared to a 5G rate-profiling. Figure 4.5b
shows the performance of a (256, 128) PAC* code under list sizes 64 and 256. However,

0 50 100 150 200
100

101

102

103

104

105

K

d* 5G
A* 5G
d* Algorithm 1
A* Algorithm 1

(a) Evolution of d∗ and A∗ for a PAC code with
N = 256 under Algorithm 1 and 5G construction

1 1.2 1.4 1.6 1.8 2 2.2 2.4
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0

FE
R

(256, 128) PAC* code

L = 64
L = 256
ML lower bound
RCU

(b) Performance of PAC* codes
with N = 256 and K = 128 under
list decoding with L = {64, 256}

Figure 4.5: Construction of PAC* rate-profile and performance evaluation for N = 256

on these cases, the SCL decoder have poor performance even under list decoding with
list size L = 256. This observation serves as a catalyst for the investigations detailed
in subsequent sections. This pursuit is motivated by the inadequacy of distance-based

109

Chapter 4. Towards a trade-off between distance properties and SCL
decoding complexity of polar codes

rate-profile constructions under list decoding with moderate list sizes, which deliver sub-
optimal results for medium-length codes. The challenge lies in identifying the decoding
steps at which a larger list size is necessary to approximate ML-decoding performance
for a given rate profile. In the next section, we introduce an initial approach that allows
switching from SCL decoding to SC decoding at a certain step in the decoding process,
while maintaining the same performance as SCL or CA-SCL decoding.

4.3 Tailored list decoding of polar codes

4.3.1 Decoding tail in SC-based algorithms

It has been observed in [8] that a genie-assisted SC algorithm drastically improves the
decoding performance. In such an approach, a "genie" is applied to correct up to two
errors during the SC decoding process. In other words, during SC-based decoding, the
very first errors have a major impact on the decoding performance. In Figure 4.6, the
distribution of the first error positions of the SC decoder is provided for 1000 sequences
that the SC decoding process failed to correctly decode from a (256, 128) polar code.
This Monte Carlo simulation shows that the end of the decoding sequence, here denoted
as "tail", is almost error-free. This means that applying list-decoding at the end of
the sequence is superfluous. Actually, a simple SC decoder would provide very similar
performance. Based on this observation, we propose a simplification of the SCL and the
CA-SCL decoding algorithms in which the "tail" of the sequence is decoded with SC
decoding. More precisely, starting from a certain index ω = N − T , the path metrics are
no longer updated nor is the metric sorting process. Instead, the L paths are kept and
an SC decoding is performed independently on each one of these paths. At the end of
the decoding, the path with the lowest path metric is selected. The determination of the
index ω depends on the considered decoder (SCL or CA-SCL).

4.3.2 Tailoring in the case of SCL decoding

Let us denote by γ the number of information bits before the last frozen bit s of a polar
code. It has been proven in both [45] and [88] that an SCL decoder with a list size
equal to 2γ achieves Maximum Likelihood decoder performance. In this case, γ denotes
the previously defined mixing factor, i.e. the number of information bits before the last
frozen bit. it is explained in [88] that this implies that after the last frozen bit s, the
SCL decoding can be replaced with a decoder that selects the path that has the closest
distance to the received codeword. In other words, the SCL decoder is performed on the
first s bits. Then at the sth decoding step, the proposed method is applied to compute

110

4.3 Tailored list decoding of polar codes

0 50 100 150 200 250
0

50

100

150

200

250

300

350

400

First error position in the frame

N
um

be
r

of
er

ro
rs

Figure 4.6: First error position histogram for a (256,128) polar code decoded with an SC
decoding algorithm at Eb

N0
= 3 dB

the distance of the received codeword to all the cosets generated by the prefixes in the
list. Only the coset with the minimum distance is kept then an SC decoding is performed
on this particular coset.

In this section, we leverage this result to demonstrate that transitioning from Successive
Cancellation List (SCL) decoding to Successive Cancellation (SC) decoding after the last
frozen bit s does not impact decoding performance for a list decoding with an arbitrary
list size L. Furthermore, we establish that the coset with the minimum distance from
the received codeword corresponds to the coset with the lowest metric. This assertion is
valid for pure and precoded polar codes.

4.3.2.1 SCL decoding metrics

In this section, we express the path metrics of SCL decoding in terms of the distance
between the received codeword and the cosets within the list. This explains why SCL
decoding becomes unnecessary after processing the final frozen bit.
It has been shown in [26] that given the lth prefix remaining in the list ui0[l], the path

111

Chapter 4. Towards a trade-off between distance properties and SCL
decoding complexity of polar codes

metric mi(u
i
0[l],y) can be expressed as:

mi(u
i
0[l],y) = − log

(
P
(
Ui

0 = ui0[l]|Y = y
))

(4.1)

mi(u
i
0[l],y) can also be expressed as :

mi(u
i
0[l],y) =

1

2σ2
min

x∈CN (ui
0[l])

(
||y − x||22

)
− 1

2σ2
min

v∈{−1,1}n

(
||y − v||22

)
(4.2)

The detailed proof in given in Appendix C The path metric of a prefix ui0[l] is formed by
two terms:

• The term 1
2σ2 min

x∈CN (ui
0[l])

(
||y − x||22

)
represents the minimum Euclidean distance of

the received codeword to the coset generated by ui0[l].

• The term 1
2σ2 min

v∈{−1,1}n

(
||y − v||22

)
represents the minimum Euclidean distance of

the received codeword to any codeword in FN2 . This term is common to all the
metrics mi(u

i
0[l]).

Therefore the path metrics at a specific step i during SCL decoding process directly
illustrates the minimum Euclidean distance between the received codeword y and the
cosets generated by ui0[l], ∀l ∈ [1, L]. In the rest of this analysis, we only focus on the
term 1

2σ2 min
x∈CN (ui

0[l])

(
||y − x||22

)
since the other term is common to all paths.

Let us consider SCL decoding with a list size L at the sth step (i.e. last frozen bit’s step).
We denote by us0[lmin] the path in the list with the least metric ms(u

s
0[lmin]).

ms(u
s
0[lmin]) =

1

2σ2
min

x∈CN (us
0[lmin])

(
||y − x||22

)
− 1

2σ2
min

v∈{−1,1}n

(
||y − v||22

)
Since CN (us0[lmin]) ⊂ C, there exists xmin ∈ CN (us0[lmin]) such that:

ms(u
s
0[lmin]) =

1

2σ2
||y − xmin||22 −

1

2σ2
min

v∈{−1,1}n

(
||y − v||22

)

Hence, it’s unnecessary to further investigate the remaining paths on the list. Each of
these paths, characterized by the prefix us0[l], has a metric higher than that of us0[lmin].
Consequently, they cannot yield a codeword with a metric equal to or lower than the
codeword in CN (us0[lmin]). Thus, retaining solely the path with the lowest metric at the
sth decoding step does not impact the performance of the list decoder. The next step
consists in finding the best candidate xmin.

112

4.3 Tailored list decoding of polar codes

To ensure the identification of the codeword xmin with metric ms(u
s
0[lmin],y), it’s

essential that for all j ∈ [s+1, N −1], mj(u
j
0[lmin],y) = ms(u

s
0[lmin],y). To achieve this,

the chosen path at the (s+ 1)th decoding step must not increase its associated metric
compared to the sth decoding step. As demonstrated in Chapter 1, the path metric
mi+1(u

i+1
0 [l]) can be represented as follows:

mi+1(u
i+1
0 [l]) =

{
mi(u

i
0[l]) if sign(1− 2ûi(l)) = sign(L(n)

j)

mi(u
i
0[l]) + |Li| otherwise

Thus, to ensure mj(u
j
0[lmin],y) = ms(u

s
0[lmin],y)∀j ∈ [s+ 1, N − 1], it must hold that

sign((1 − 2ûj [l])) = sign(Lj) for all j ∈ [s + 1, N − 1]. It means that employing a
Successive Cancellation (SC) decoder on the path us0 for the final N − s− 1 decoding
steps ensures the discovery of xmin without compromising performance compared to
employing Successive Cancellation List (SCL) decoding for the last N − s− 1 steps.
From these observations, we propose a modification to the SCL decoding algorithm,
named the Tailored Successive Cancellation List (T-SCL) decoder. This modification
maintains performance while decreasing the computational complexity of the decoding
process. Algorithm 2 provides a detailed overview of the proposed approach, which
entails the following key steps:

• An SCL decoding process is performed and the L potential best paths are kept in
the list for the first s enumeration steps.

• At the sth enumeration step, the path with the least metric us0[lmin] is selected. All
the other paths remaining in the list are discarded.

• An SC decoding is performed on us0[lmin] for the rest of the N − s − 1 decoding
steps and the final codeword is obtained.

Note that the proposed decoding process can be extended to Polarization-Aided Con-
catenated (PAC) codes and polar codes with Dynamic Frozen Bit (DFB) schemes. The
steps remain identical, with the only variation being the consideration of precoding for
ui0 at each decoding step. The fundamental approach of selecting the path with the least
metric after the last frozen bit and performing SC decoding on the chosen path remains
consistent

The reduction in terms of computational complexity arises from exploring only one path
after the last frozen bit, as opposed to the exploration of L paths in a conventional SCL
decoder. This eliminates the need to explore L − 1 additional paths and avoids the

113

Chapter 4. Towards a trade-off between distance properties and SCL
decoding complexity of polar codes

Algorithm 2: T-SCL decoding process
Input: Polar code C(N,K,F), L

1 s← max(F);
2 for i ∈ [[0, s]] do
3 Perform step i of SCL
4 end
5 us0[lmin]← path in the list with least metric
6 for i ∈ [[s+ 1;N − 1]] do
7 Perform SC decoding of ui on path ui0[lmin]
8 end
9 return uN−1

0 [lmin]

N 128 256 512

K 32 64 96 64 128 192 128 256 384

s 113 98 73 229 201 193 481 417 385

Table 4.1: Values of s for 5G rate-profiling

sorting operation of metrics to retain paths with the lowest metric in the list. The extent
of computational complexity reduction varies depending on the position of the last frozen
bit s. Smaller values of s result in fewer SCL decoding steps and greater reductions in
terms of computational complexity.

The level of reduction differs based on the specific code construction and primarily relies
on the value of s. Generally, in conventional rate-profiled polar codes, smaller values
of s correspond to higher code rates. Tables 4.1 and 4.2 illustrates the values of s for
different code lengths and rates in the case of 5G and RM rate-profilings. Notably, lower
code rates tend to have higher values of s. Additionally, it’s observed that s is greater for
RM rate-profiles compared to 5G rate-profiles. For instance, for a (128,64) polar code,
s = 98 for 5G rate-profiling compared to s = 113 for RM rate-profiling.

Figures 4.7a and 4.7b, show the evolution of the FER of polar codes under 5G and
RM rate-profilings for a (128, 64) code under different list sizes. Figures show that the
FER curves superimpose in all the different cases which further confirms the proposed
approach. The same results are observed for larger code sizes.

N 128 256 512

K 29 64 99 37 93 163 130 256 382

s 121 113 97 249 241 225 497 481 449

Table 4.2: Values of s for RM rate-profiling

114

4.3 Tailored list decoding of polar codes

1 2 3

10−4

10−3

10−2

10−1

100

Eb
N0

in dB

FE
R

SCL L = 4

SCL L = 16

SCL L = 64

T-SCL L = 4

T-SCL L = 16

T-SCL L = 64

(a) 5G construction

1 2 3

10−2

10−1

100

Eb
N0

in dB
FE

R

SCL L = 2

SCL L = 8

T-SCL L = 2

T-SCL L = 8

(b) RM construction

Figure 4.7: Performance of (128,64) Polar code under T-SCL decoding

4.3.2.2 Tailoring in the case of CA-SCL algorithm

In this section, tailoring within the context of the CA-SCL algorithm is considered.
Initially, it is shown why the strategy outlined for SCL decoding cannot directly be
applicable to CA-SCL decoding. Then, the adapted approach tailored specifically for
CA-SCL decoding is explained.
The difference between SCL and CA-SCL decoding resides in the fact that the path with
the least metric is not necessarily the one chosen at the end of the decoding. Indeed, this
path also has to check the CRC. Subsequently, choosing the path with the least metric
after the last frozen bit and only exploring that specific path does not apply. Indeed,
if this path doesn’t check the CRC, the decoding process is declared to be failed. This
implies that the paths with the best metrics have to be kept in the list until the end of
the decoding.

Therefore, we propose a simplification of the CA-SCL decoding algorithm in which the
"tail" of the sequence is decoded with SC decoding. More precisely, starting from a certain
index ω = N − T , the path metrics are no longer updated nor is the metric sorting
process. Instead, the L paths are kept and an SC decoding is performed independently
on each one of these paths. We also introduce S as the set of the indices where splitting
is considered on the tail. In this case, |S| defines the number of splits that are performed
on the tail. Algorithm 1 gives the details of the T-CA-SCL decoding algorithm. The

115

Chapter 4. Towards a trade-off between distance properties and SCL
decoding complexity of polar codes

decoding process is performed into two major steps:

1. The first step consists in decoding uN−T
0 . During this decoding step, T-CA-SCL

algorithm is identical to an SCL decoder. We denote L the list of the candidate
paths at the end of this step. This phase is illustrated for L = 4 in Figure 4.8.

2. The second step starts with the decoding of the N − T + 1th bit. During this step,
two different processes are considered depending on the decoding step:

• i /∈ S: typically, the bits at the end of the sequence lead to one path being
much more favorable than the other. This means that in most cases, it is
very unlikely to make a false decision by choosing the favorable path. At this
point, an SC decoder is performed on each one of the previously kept paths
separately. Thus, no path sorting nor metric updating are needed.

• i ∈ S: sometimes, the bits at the end of sequence can be unreliable. Hard
decision making at this point may lead to non negligible errors. In this
particular case, an SCL decoding is performed on those specific bits. As an
example, figure 4.8 shows a splitting on the tail for uS1 .

Note that frozen bits are set to zero and are omitted in Algorithm 1. A CRC check is
then applied to return the decoded sequence. By this way, the T-CA-SCL algorithm can
achieve lower computational complexity by removing both metrics sorting and updating
for a significant number of decoding steps.

u0

0

1

u1

0

1

0

1

0

1
0

1

0

1
0

1

0

1

1

0

0

1

0

1

0

10

1

0

1

0

1

uS1 uN−1

aaOutputCRC
Check

Figure 4.8: T-CA-SCL decoding process illustration.

Algorithm 3 implies that, for each investigated polar code, the parameters T and S

have to be fixed. Since in contrast to the SCL decoding where the tailoring start can

116

4.3 Tailored list decoding of polar codes

Algorithm 3: T-CA-SCL decoding
Input: Polar code P(N,K,F), T, S, L

1 for i ∈ [[0;N − T]] do
2 Perform step i of SCL
3 end
4 L ← list of the SCL paths
5 for i ∈ [[N − T + 1;N]] do
6 if i /∈ F and i /∈ S then
7 foreach l ∈ L do
8 SC decoding of ui on path l
9 end

10 else
11 Perform step i of SCL
12 end
13 end
14 valid← The path with the least metric that verifies the CRC
15 if valid = false then
16 Report a decoding failure
17 return u[valid]

be determined analytically, in the case of a CA-SCL decoding, there is no direct way
to obtain T . Hence, the parameters T and S are determined thanks to a heuristic
approach. The heuristic described in Algorithm 4 performs Monte Carlo simulation on
100000 frames with a T-CA-SCL decoder and gradually increases the tail size T until the
FER performance decreases. As some unreliable channels are located at the end of the
sequence, in order to further increase T without significantly degrading the performance,
the decoder can perform list decoding on the unreliable bits with indices S.

Algorithm 3 was applied to 6 different polar codes (R = {1/2, 3/4} and N = {128, 256,
512}) selected from the 5G standard [9]. Table 4.3 summarizes T and S values obtained
for these codes. The ratio ρ = (T − |S|)/K represents the proportion of bits decoded
without splitting. Depending on the considered code, this ratio can reach as much as
∼45%. In other words, almost half of the information bits are decoded without metric
update nor metric sorting without degrading the decoding performance.

Error rate Monte Carlo simulations were performed on the six selected polar codes.
The decoding performance curves in Figures 4.9a and 4.9b confirm that the T and S

parameter selection enables the T-CA-SCL algorithm to perform very close to CA-SCL
algorithm. The same trends were observed for larger list sizes.

117

Chapter 4. Towards a trade-off between distance properties and SCL
decoding complexity of polar codes

Algorithm 4: T-CA-SCL algorithm parameter generation
Input: Polar code P(N,K,F)

1 S = {�}, T = 0, j = 0;
2 Y : set of 10000 noisy codewords;
3 FER ← T-CA-SCL(P, T , S, Y);
4 while FER ∼ FERCA−SCL do
5 FER ← T-CA-SCL(P, T , S, Y);
6 if FER ∼ FERCA−SCL then
7 T ← T + 1;
8 else
9 sj = T ;

10 j ← j + 1;
11 end
12 end
13 return (T , S)

N 128 256 512 128 256 512
K 64 128 256 96 192 384
R 1/2 1/2 1/2 3/4 3/4 3/4
S 113 209,225 289 97 � �
|S| 1 2 1 1 0 0
T 23 54 93 45 87 126

ρ(%) 34 36 36 46 45 32

Table 4.3: Polar code and T-CA-SCL decoding parameters

118

4.4 About the average list size that reaches ML performance

0 2 4
10−4

10−3

10−2

10−1

100

Eb
N0

in dB

FE
R

(128,64) T-CA-SCL

(128,64) CA-SCL

(256,128) T-CA-SCL

(256,128) CA-SCL

(512,256) T-CA-SCL

(512,256) CA-SCL

(a) R = 1/2

0 2 4
10−4

10−3

10−2

10−1

100

Eb
N0

in dB
FE

R

(128,96) T-CA-SCL

(128,96) CA-SCL

(256,192) T-CA-SCL

(256,192) CA-SCL

(512,384) T-CA-SCL

(512,384) CA-SCL

(b) R = 3/4

Figure 4.9: Polar codes decoding: CA-SCL versus T-CA-SCL for L = 8

4.4 About the average list size that reaches ML perfor-
mance

In the previous section, it was demonstrated that transitioning from SCL decoding to
SC decoding starting from a specific index maintains the same performance level as a
list decoder. Consequently, conducting a simple SC decoding on particular positions
ensures the overall performance of the SCL decoder. Leveraging these insights, this
section aims to estimate the average list size required during each decoding step for a
particular code construction to achieve ML decoding performance. The authors of [45]
presented innovative entropy-based methods for estimating lower and upper bounds on an
information-theoretical quantity that approximates the average list size required by the
SCL decoder to achieve ML performance. Although these bounds are easily computed
using density evolution, the proposed upper bound does not consider the impact of
frozen bits on the list size evolution, resulting in reduced accuracy. Additionally, the
proposed lower bound underestimates average list sizes for certain configurations. Another
limitation of [45] is the exclusion of the effects of precoding.

In this section, we introduce a new upper bound on the average list size required by the

119

Chapter 4. Towards a trade-off between distance properties and SCL
decoding complexity of polar codes

SCL decoder to achieve ML performance. This method analyzes the properties of the
prefixes remaining in the list at each decoding step i. It also accounts for the effects of
pre-transformation and can be generalized to rate-compatible pure and pre-transformed
polar codes. A significant advantage of the proposed method is that it simultaneously
calculates both the distance properties and the average list size needed to achieve ML
performance.

4.4.1 Difference to True Path Metric (DTPM)

In order to highlight the effect of the list size during SCL decoding, we first start by
decomposing the error probability of an SCL decoder into two terms. Then, we focus on
the term related to the list size. Let us denote by CML the event of correct decoding
using a ML decoder and by ESCL the event of failed decoding using an SCL algorithm.
Then the probability of failed decoding using an SCL decoder can be expressed as:

P(ESCL) = P(ESCL|CML)P(CML) + P(ESCL|C̄ML)︸ ︷︷ ︸
=1

P(C̄ML)

= P(ESCL|CML)P(CML) + P(C̄ML)

(4.3)

Equation (4.3) yields that the probability of error of SCL decoding is expressed as the
sum of two terms:

• The term P(C̄ML) translates the probability of ML decoding failure and is therefore
independent of the list size of the SCL decoder.

• The term P(ESCL|CML)P(CML) represents the probability that the SCL decoder
fails while ML decoding would have succeeded. This scenario typically occurs
when the true codeword is no longer present in the list at the end of the decoding.
It means that the correct decoding path was excluded from the list at a specific
decoding step i. Excluding the correct decoding path from the list at a given
decoding step precludes its re-inclusion, leading to the decoding error.

In the following, we describe the mechanism leading to the ejection of the correct decoding
path from the list at a particular decoding step. It is the starting point leading to the
evaluation of the average list size that is necessary at each decoding step to achieve ML
performance i.e. so that P(ESCL|CML) ≈ 0. In all the following, and for simplification
matters, we will suppose that the true transmitted codeword is the all-zero codeword.
This hypothesis remains valid given the linearity of the code. Let us consider the ith

decoding step of an SCL decoder with a list size L. The correct decoding path 0i0 is

120

4.4 About the average list size that reaches ML performance

excluded from the list if there exists more than L− 1 paths ui0[l] that have a path metric
less than the metric of the correct decoding path. In other terms, given the list of paths
L:

0i0 /∈ L ⇔ ∃M ⊆ L| |M| > L− 1 and mi(u
i
0[l]) < mi(0i0) ∀ui0[l] ∈M (4.4)

Given a path ui0[l] at a decoding step i, the aim is to evaluate the probability that its
associated path metric is lower than the path metric of the true path. We introduce the
notion of Difference to True Path Metric (DTPM) of a path ui0[l] defined as:

ψi(u
i
0[l]) = mi(u

i
0[l])−mi(0i0) (4.5)

Using Equation (4.2), ψi(ui0[l]) can be written as:

ψi(u
i
0[l]) =

1

2σ2
min

x∈CN (ui
0[l])

(
||y − x||22

)
− 1

2σ2
min

x′∈CN (0i
0)

(
||y − x′||22

)
(4.6)

In all the following we make the following hypothesis

Hypothesis 4.4.1. a

1. ∀i ∈ [[0, N − 1]], argmin
x∈CN (0i

0)

(
||y − x||22

)
= 0N−1

0 This means that:

∀i ∈ [[0, N − 1]], min
x∈CN (0i

0)

(
||y − x||22

)
≈ ||y − 1||22

In other words, for each decoding step, we suppose that the closest codeword to
the received codeword is the all-zero codeword. Note that this is not always true
since at early decoding steps, there can be other codewords in the coset with a closer
Euclidean distance to the received codeword. This means that in general,

min
x∈CN (0i

0)

(
||y − x||22

)
≤ ||y − 1||22

This hypothesis therefore tends to underestimate ψi(ui0[l]).

2. ∀i ∈ [[0, N−1]], argmin
x∈CN (ui

0)

(
||y − x||22

)
= x∗ = 1−2c∗ such that w(c∗) = w∗(CN (ui0)).

This means that:

∀i ∈ [[0, N − 1]], min
x∈CN (ui

0)

(
||y − x||22

)
≈ min

x∈X ∗

(
||y − x||22

)
121

Chapter 4. Towards a trade-off between distance properties and SCL
decoding complexity of polar codes

where X ∗ is the set defined by:

X ∗ =
{
x = 1− 2c|c ∈ CN (ui0) and w(c) = w∗(CN (ui0))

}
Stated differently, it is assumed that during each decoding step, the nearest codeword
of a coset CN (ui0) to the received codeword is one of the codewords with the minimum
weight within that coset. This assumption is justified by the observation that
codewords with the minimum weight within a particular coset are more likely to
have a smaller Euclidean distance compared to other codewords with higher weights
within the same coset.

Based on these hypothesis, ψi(ui0[l]) can be expressed as:

ψi(u
i
0[l]) ≈

1

2σ2
min
x∈X ∗

||y||22 + ||x||22 − 2

N−1∑
j=0

yjxj

− ||y||22 − ||1||22 + 2

N−1∑
j=0

yj

≈ 1

σ2
min
x∈X ∗

N−1∑
j=0

yj(1− xj)

(4.7)

Given that xj = 1− 2cj , ψi(ui0[l]) is finally expressed as:

ψi(u
i
0[l]) = min

c∈C∗

N−1∑
j=0

2

σ2
yjcj (4.8)

where C∗ defines the set:

C∗ =
{
c ∈ CN (ui0[l])|w(c) = w∗(CiN (ui0[l]))

}
The objective is to evaluate the probability P(ψi(ui0[l]) ≤ 0). Note that since we un-
derestimate ψi(ui0[l]) when using Hypothesis 4.4.1, the probability P(ψi(ui0[l]) ≤ 0) is
overestimated. Hence, we provide an upper bound on P(ψi(ui0[l]) ≤ 0).
Let us first consider the term z = 2

σ2

∑N−1
j=0 yjcj . Since we made the hypothesis that

∀c ∈ C∗, w(c) = w∗(CiN (ui0[l])) = w∗
i,l, z is the sum of w∗

i,l random variables ∼ N (1, σ2).
Therefore, z follows a Gaussian law with mean 2w∗

i,l

σ2 and variance 4w∗
i,l

σ2 , i.e. z with
distribution N (µi,l =

2w∗
i,l

σ2 , σi,l =
4w∗

i,l

σ2).

Authors of [89] detailed the expression of the Probability Density Function (PDF) of
the minimum of Ai,l Gaussian random variables with identical means and variances. In
particular, when the random variables are supposed to be correlated with an identical

122

4.4 About the average list size that reaches ML performance

correlation factor ρi,l, the CDF of ψi(ui0[l]) and the PDF of ψi(ui0[l]) are respectively
expressed as:

fψi(ui
0[l])

(v) =

∫ +∞

−∞

1
√
ρi,lσi,l

f̃ψi(ui
0[l])

(t)φ

√1− ρi,lt−
v−µi,l
σi,l√

ρi,l

 dt (4.9)

Fψi(ui
0[l])

(v) =

∫ +∞

−∞

√
1− ρi,l
√
ρi,lσi,l

F̃ψi(ui
0[l])

(t)φ

√1− ρi,lt−
v−µi,l
σi,l√

ρi,l

 dt (4.10)

where Φ(v) and φ(z) denote the CDF and the PDF of the law N (0, 1) respectively.
Consequently, F̃ψi(ui

0[l])
(v) and f̃ψi(ui

0[l])
(v) denote the CDF and the PDF the law of the

minimum of Ai independent normal variables (ρi,l = 0) :

F̃ψi(ui
0[l])

(v) = 1− (1− Φ(v))Ai,l−1 (4.11)

f̃ψi(ui
0[l])

(v) = Ai,l(1− Φ(v))Ai,l−1φ(v) (4.12)

The computation of Ai is easily obtained from the results of Chapter 2. Indeed, they
enable to compute, for a specific polar coset its minimum weight and the number of
codewords with minimum weight. The main difficulty in Equation (4.9) is the computation
of the correlation ρi,l. This computation is presented and justified in the next section.

4.4.2 Correlation of codewords with minimum weight of a coset

In this section, we focus on the computation of the correlation factor ρi between the
elements of minimum weight of a specific coset. The problematic is the following: given a

number A of random variables zi =
N−1∑
j=0

2
σ2 yjcij such that w(ci) = d, we want to express

ρ̄ the average correlation between the random variables zi, i ∈ [[0, A− 1]], i.e.:

ρ̄ =

A−1∑
i=0

A−1∑
k=0
k 6=i

corr(zi, zk)

A(A− 1)
(4.13)

123

Chapter 4. Towards a trade-off between distance properties and SCL
decoding complexity of polar codes

The choice of computing the average value of the correlation comes from the fact that to
the best of the author’s knowledge, there is no direct way to characterize individually
the correlation of each couple of elements in a coset unless knowing the exact codewords,
leading to high computational complexity. We propose in the following an approach that
can be applied for this computation. First, let us express the correlation coefficient of
two random variables zi and zk:

corr(zi, zk) =
cov(zi, zk)√
V(zi)V(zk)

=
4

σ4

N−1∑
j=0

N−1∑
l=0

cijcklcov(yj , yl)√
V(zi)V(zk)

=
4

σ4

N−1∑
j=0

cijckjV(yj)√
V(zi)V(zk)

=

N−1∑
j=0

cijckj

d

(4.14)

Equation (4.14) translates that the correlation of zi and zk essentially depends the
number of positions for which cij = ckj = 1, i.e. on the number of common ’ones’ of the
two codewords ci and ck. ρ̄ can be further expressed as:

ρ̄ =

A−1∑
i=0

A−1∑
k=0
k 6=i

N−1∑
j=0

cijckj

dA(A− 1)

=

N−1∑
j=0

A−1∑
i=0

A−1∑
k=0
k 6=i

cijckj

dA(A− 1)

=

N−1∑
j=0

A−1∑
i=0

A−1∑
k=0
k 6=i

cijckj


dA(A− 1)

=

N−1∑
j=0

αi(αi − 1)

dA(A− 1)

(4.15)

124

4.4 About the average list size that reaches ML performance

where αi is the number of codewords for which the ith codeword bit is equal to 1. In the
following, we propose a method that enables the computation of αi.

4.4.3 Determination of αi

In this section, we discuss the determination of the common number of ones the ith

codeword with minimum weight of a coset. This approach relies on the same message
passing formalism detailed in Chapter 2 for the computation of the minimum weight
and the associated number of codewords of polar cosets. Let us denote by Cxj=bN (ui0) the
subset of the polar coset CN (ui0) defined as:

Cxj=bN (ui0) =
{
x ∈ CN (ui0)|xj = b

}
(4.16)

where b ∈ {0, 1}. Starting with an example, we show how Cxj=0
N (ui0) and Cxj=1

N (ui0)

can be computed for each j ∈ [[0, N − 1]]. We denote by A∗
N (C

xj=b
N (ui0)) the MWEF of

Cxj=bN (ui0).

Example 4.4.2. Figure 4.10 shows the MWEF factor graph of bit u4 for a polar code
with N = 8, p = [0, 0, 0, 0, 0, 1, 1, 1]. The message passing enabling the computation of

(
1
X

) (
1
X

) (
1
X

) (
X
1

) (
1
X

) (
X
1

) (
1
X

) (
X
1

)

(
1
X

) (
1
X

) (
1
X

) (
X
1

) (
1
X

) (
X
1

) (
1
X

) (
X
1

)

(
1

X2

) (
X
X

) (
X
X

) (
X
X

)

(
X
X

) (
2X2

2X2

)

(
4X3

4X3

)
u4

x1 x5x0 x4 x2 x6 x3 x7

Parity node
Variable node
Hidden variable node

(
8X3

8X5

) (
8X3

8X5

) (
4X3

4X3

) (
4X3

4X3

) (
4X3

4X3

) (
4X3

4X3

) (
4X3

4X3

) (
4X3

4X3

)

(
8X3

8X4

) (
8X3

8X4

) (
4X3

4X2

) (
4X2

4X3

) (
4X3

4X2

) (
4X2

4X3

) (
4X3

4X2

) (
4X2

4X3

)

(
8X3

8X3

) (
4X2

4X2

) (
4X2

4X2

) (
4X2

4X2

)

(
2X
2X

) (
2X2

2X2

)

(
1
1

)

Figure 4.10: Tanner Graph of u4 decoding for a polar code with N = 8

messages represented in red enables the computation of A∗
8(u

3
0, 0) = 4X3 and A∗

8(u
3
0, 1) =

4X3 in this case. The MWEFs A∗
N (u

i
0|xj = 0) and A∗

N (u
i
0|xj = 1) ∀j ∈ [[0, N − 1]]

are exactly defined by the messages arriving at the leaf nodes after the message passing
represented in green. The final messages taking into account the effect of the different
xi are represented in black. For instance, in the case of x0, A∗

N (u
3
0|x0 = 0) = 8X3 and

125

Chapter 4. Towards a trade-off between distance properties and SCL
decoding complexity of polar codes

A∗
N (u

3
0|x0 = 1) = 8X5. This means that all 8 codewords with a minimum weight equal

to 3 have x0 = 0 since the codewords with x0 = 1 have a minimum weight equal to 5.
In the case of x1, A∗

N (u
3
0|x1 = 0) = 4X3 and A∗

N (u
3
0|x1 = 1) = 4X3. This means that

there are 4 codewords of the coset CN (u3
0) for which x1 = 0 and 4 for which x1 = 1.

In this case, knowing that there are 4 codewords of the coset with x1 = 1, the number
of codeword couples having both x1 = 1 is equal to 4×3

2 = 6. This computation of the
different αj ∀j ∈ [[0, N − 1]] concludes the computation of the correlation factor ρ in
Equation (4.15).

4.4.4 DTPM estimation results

In this section, estimations of ψi(ui0[l]) are presented for different decoding steps and
paths. We also show the impact of the minimum weight and associated number of
occurrences. Figure 4.11 gives histograms of ψi(u72

0 [l1]) and ψi(u
72
0 [l2]) as well as their

associated PDFs using Equation (4.9) for a (128, 64) PAC code and Eb/N0 = 3dB.
ψi(u

72
0 [l1]) and ψi(u

72
0 [l2]) denote the DTPM estimations for two different paths with

prefixes of 73 bits. The minimum weight, associated number of occurrences as well
as the values of the correlation ρ are summarised in Table 4.4. The accuracy of the
approach is justified in Figure 4.11 since the DTPM is well estimated in both of cases.
Table 4.4 shows that both cosets have the same minimum weight and correlation factor.
C128(u72

0 [l2]) has a higher number of elements with minimum weight than C128(u72
0 [l2]).

The estimation of both DTPMs is shown in Figure 4.11. it shows that the distribution
ψi(u

72
0 [l2]) stochastically dominates the distribution ψi(u

72
0 [l1]). This implies that the

CDF Fψi(u72
0 [l2])(0) ≥ Fψi(u72

0 [l1])(0) resulting in a higher probability of keeping the path
u72
0 [l2] in the list. This can be explained by exploring the expressions of ψi(ui0[l]) . In

fact, since ψi(ui0[l]) is the random variable that is defined as the minimum of A random
variables with the same PDF, increasing A results in the reduction of Fψi(ui

0[l])
(0).

Coset C128(u72
0 [l1]) C128(u72

0 [l2])

w∗ 16 16
A∗ 128 2048
ρ 0.49 0.49

Table 4.4: Distance properties of C128(u72
0 [l1]) and C128(u72

0 [l2])

126

4.4 About the average list size that reaches ML performance

0 20 40 60 80
0

2

4

·10−2

PD
F

Estimated PDF
Monte Carlo

(a) Case A∗ = 128

0 20 40 60 80
0

2

4

·10−2

PD
F

Estimated PDF
Monte Carlo

(b) Case A∗ = 2048

Figure 4.11: Histograms and PDFs of ψ72(u
72
0 [l1]) and ψ72(u

72
0 [l2])

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5
·10−2

PD
F

A* = 128
A* = 2048

Figure 4.12: PDFs of both DTPMs

127

Chapter 4. Towards a trade-off between distance properties and SCL
decoding complexity of polar codes

4.4.5 Average List size for ML decoding

In this section, we detail how the previous computations are used to evaluate an upper
bound on the overall average list size capable of achieving the ML performance of polar
codes. When considering a decoding step i, the minimum number of prefixes ui0 that has
to stay of the list in order to achieve ML performance is the number of prefixes having
ψ(ui0) ≤ 0. In other terms, at this step, the list size Li can be expressed as:

Li =
∑

ui0 ∈ {0, 1}
i

uj = 0, ∀ j ∈ F

1(ψ(ui0) ≤ 0) (4.17)

We denote by L̄i the average list size that achieves the ML performance at the ith

decoding step. From Equation (4.17), L̄i is expressed as:

L̄i = E(Li) =
∑

ui0 ∈ {0, 1}
i

uj = 0,∀ j ∈ F

P(ψi(ui0) ≤ 0) (4.18)

Note that since we computed an upper bound on P(ψi(ui0) ≤ 0), L̄i is considered an
upper bound on the average list size to reach ML performance.
Equation (4.18) implies that in order to evaluate each L̄i, the probability P(ψi(ui0) ≤ 0)

has to be evaluated for a number γi = |
{
j ∈ Ii

}
| of prefixes. As γi can be very high, a

simplification of L̄i is proposed as follows:

L̄i ≈
∑

ui0 ∈ {0, 1}
i

uj = 0, ∀j ∈ F
w∗(CN (ui0)) ≤ wend

P(ψi(ui0) ≤ 0) (4.19)

This simplification stems from the observation that the prefixes producing codewords
with weights close to the code’s minimum overall weight tend to represent the paths that
were more probable to remain in the list. We designate wend as a value marginally higher
than the code’s minimum weight.
Algorithm 5 details the different steps required in order to compute L̄i. The algorithm
operates as follows:

1. During each step, the minimum weight and its associated number of occurrences
are determined for each coset associated to the remaining prefixes in the list. The

128

4.4 About the average list size that reaches ML performance

cosets having a minimum weight greater than wend are discarded.

2. For the remaining prefixes, the correlation factor ρ is calculated, and P(ψi(ui0) ≤ 0)

is determined using Equations (4.10) and (4.11). It’s worth noting that since
P(ψi(ui0) ≤ 0) relies mainly on the minimum weight, the associated number of
occurrences, and the correlation factor, it can be computed once for polar cosets
sharing the same parameters.

3. The average list size is only computed until the last frozen bit. This is because, we
showed in Section 4.3.2.1 that after the last frozen bit, if the true path persists in
the list, it can be retrieved using solely an SC decoding process (i.e. list decoding
with a list size equal to 1).

It’s worth noting that Algorithm 5 shares significant similarities with previously proposed
algorithms for computing the partial weight spectrum of polar codes, as both rely on the
minimum weight and associated number of occurrences of polar cosets. Consequently,
when determining the list size required for ML decoding, the partial weight spectrum
can also be computed. It corresponds to a significant advantage, as the computations
performed simultaneously serve for evaluating both the distance properties and the
computational complexity of decoding process.

Algorithm 5: Computing the average list size required for ML decoding performance
Input: Polar code C(N,K,F), wend

1 s ← index of the last frozen bit
2 L← 1
3 for i ∈ [[1; s]] do
4 for l ∈ [[1;L]] do
5 Compute w∗ and A∗ of the cosets in the list
6 Discard the cosets for which w∗ > wend
7 Compute the correlation factor ρ and P(ψi(ui0) ≤ 0)
8 L̄i ←

∑
ui
0∈L

P(ψi(ui0) ≤ 0)

9 L← |L|
10 end
11 end
12 Return L̄

4.4.6 Average list size estimation results

In this section, we compare the results obtained via Algorithm 5 to the ones obtained
using Monte Carlo simulations. Figure 4.13 illustrates the evolution of the proposed

129

Chapter 4. Towards a trade-off between distance properties and SCL
decoding complexity of polar codes

0 20 40 60 80 100 120
0

2

4

6

8

K

lo
g2
(L

)

Average ML reaching list size: simulation VS estimation

Monte Carlo
Analytic

Figure 4.13: log2(L̄i): Estimation VS simulation for (128, 64) a PAC code under RM
construction

upper bound for a (128, 64) PAC code under RM construction with Eb
N0

= 0.5dB and
wend = 20. We give on the same figure the evolution of log2(L̄i) estimated using the
described approach in Algorithm 5 as well as using a Monte-Carlo approach. Figure 4.13
shows that log2(L̄i) estimated using Algorithm 5 is close to the estimated list size via
Monte-Carlo simulations. Note that the estimation is represented for relatively low signal
to noise ratio since when defining the required list size for reaching ML performance, we
are more interested in the rare received codewords that need a large list size in order to
be correctly recovered. Those rare events are more visible for low signal to noise ratios.

In order to understand why the RM configuration requires a larger list size in order to
reach ML performance, we take a closer look on the DTPM at the first decoding steps.
Figure 4.14 represents the pdf of the DTPM ψ([014

0 1]) for Eb
N0

= 0.5 (Note that in the
case of RM construction, u15 is the first information bit). It is highlighted in the figure
that ψ([014

0 1]) almost takes only negative values implying that Fψ([014
0 1])(0) ≈ 1. This

means that the path [014
0 1] is almost always kept in the list. The values of fψ([014

0 1])(v) are
controlled by w∗(C128([014

0 1]))) = 16 and A∗(C128([014
0 1]))) = 281474976710656. While

the minimum weight of the coset is relatively high, the number of codewords of the
coset with minimum weight is very high resulting in a higher probability of keeping
the path in the list as explained in Section 4.4.4. In order to highlight the effect of
precoding on the average list size for reaching ML performance, Figure 4.15 represents

130

4.4 About the average list size that reaches ML performance

−100 −50 0 50 100 150
0

1

2

3

4
·10−2

PD
F

Estimated PDF
Monte Carlo

Figure 4.14: Representation of fψ([014
0 1])(v)

A16 A18 A20

Polar RM 94488 0 0
PAC RM 3120 2696 95828

Table 4.5: Number of low weight codewords in the (128, 64) pure polar and PAC codes

the estimation of the average list size in the case of pure polar and PAC codes under
RM constructions with Eb

N0
= 0.5dB and wend = 20. Figure shows that a pure polar

under RM construction requires a smaller list size to achieve ML performance than a
PAC codes. This validates the results presented in Chapter 1 (cf. Figures 1.11b and
1.13b) where a pure polar codes reaches its ML bound under SCL decoding with L = 64

while PAC code under RM construction reaches its ML bound under SCL decoding with
L = 256. The number of low weight codewords of pure polar and PAC codes under RM
construction are represented in Table 4.5. While PAC encoding considerably reduced the
number of codewords with minimum distance 16, it leads to the formation of codewords
with weights 18 and 20. Figure 4.16 shows the evolution of the pdf of ψ(u84

0 [l1]) and
ψ(u84

0 [l2]) for a (128, 64) PAC code under RM construction with parameters given in
Table 4.6.

Coset C128(u84
0 [l1]) C128(u84

0 [l2])

w∗ 16 20
A∗ 8 131072

Table 4.6: Distance properties of C128(u84
0 [l1]) and C128(u84

0 [l2])

131

Chapter 4. Towards a trade-off between distance properties and SCL
decoding complexity of polar codes

0 20 40 60 80 100 120
0

2

4

6

8

10

i

lo
g 2
(L̄

i)

Polar RM
PAC RM

Figure 4.15: log2(L̄i): Estimation for (128, 64) pure polar and PAC codes under RM
construction

−20 0 20 40 60 80 100 120
0

1

2

3

4

5
·10−2

PD
F

d* = 16, A* = 8
d* = 20, A* = 131072

Figure 4.16: PDFs of ψ(u84
0 [l1]) and ψ(u84

0 [l2])

While C128(u84
0 [l1]) has a lower minimum weight than C128(u84

0 [l2]), the number of
occurrences of codewords with minimum weight is much higher in C128(u84

0 [l1]), making
the distribution of ψ(u84

0 [l1]) stochastically dominant on the distribution of ψ(u84
0 [l2]).

In order to further highlight the effect of the rate-profiling on the list size required to
reach the ML performance, we represent in Figure 4.17a the evolution of log2(L̄i) for
(256, 128) PAC codes constructed using Algorithm 1 and a novel design aiming to reduce
the average list size needed to reach ML performance based on freezing some of the

132

4.4 About the average list size that reaches ML performance

A16 A18 A20 A22

PAC* 0 0 894 310
PAC proposed 6228 96 120224 1456

PAC+ [90] 13904 1824 307808 25728

Table 4.7: Number of low-weight codewords

information bits that make the list size bigger and unfreezing some of the frozen bits.
The new information set is

I ′ = {28, 31, 43, 45, 46, 47, 54, 58, 60, 86, 89, 90, 92, 106, 139}
⋃
I

\ {120, 139, 141, 163, 172, 197, 202, 209, 210, 212, 216, 225, 226, 228, 232}

and Eb/N0 = 1.5dB. The partial weight spectrum of both configurations is represented
in Table 4.7.

Figure 4.17a highlights the difference in L̄i between both configurations. This modification
on the other hand decreased the minimum distance from 20 to 16 as it can be observed in
Table 4.7. The performance of the proposed PAC code is compared to the performance
of the PAC+ [90] under list decoding of size L = 32 in Figure 4.17b. Figures shows
that the proposed PAC construction outperforms the PAC+. In fact, it can be observed
from Table 4.7 that A∗ = 6628 for our construction, whereas it is equal to 13904 for the
PAC+.

133

Chapter 4. Towards a trade-off between distance properties and SCL
decoding complexity of polar codes

0 20 40 60 80 100 120 140 160 180 200 220 240

0

1

2

3

4

5

6

7

8

9

10

i

lo
g 2
(L̄

i)

List size evolution

PAC*
PAC proposed

(a) List size evolution

1 1.5 2 2.5 3
10−4

10−3

10−2

10−1

100

Eb/N0
FE

R

(256, 128) PAC codes, L = 16

PAC*
PAC proposed
RCU

ML lower bound

(b) Performance of PAC codes

Figure 4.17: List size evolution and performance of (256, 128) PAC codes under SCL
decoding with L = 16

134

4.5 Conclusion

4.5 Conclusion

This chapter was dedicated to the definition of the various parameters necessary to
estimate the list size requirement for achieving ML performance under SCL decoding.

Initially, we introduced an algorithm that facilitates code constructions that solely
consider the distance properties of pre-transformed polar codes. This construction
is based on putting into practice the results of the previous chapters that allow the
determination of the distance properties of polar codes. While this construction showed
promising performance for short block lengths under list decoding with moderate list
sizes, it resulted in poor performance under SCL decoding with moderate list sizes for
larger block lengths. This observation prompted the motivation to determine the different
parameters that impact the average list size required to achieve ML performance for a
given code construction.

Our first contribution consisted into determining when the list decoding becomes unnec-
essary. This approach relied on determining the indexes starting from which list decoding
can be replaced by an SC decoder without altering the performance of polar codes. This
approach was first presented for SCL decoder and then extended to CA-SCL decoder.

The next contribution involved estimating an upper bound on the required list size to
achieve ML performance under SCL decoding. The process began by expressing the
condition necessary to keep the true decoding path within the list at each decoding step,
leading to an analytical expression of newly defined DTPMs for the different prefixes at
each step of list decoding. By identifying the various parameters that influence these
DTPMs, an estimation of an upper bound on the required list size was formulated. This
bound accounts for the impact of pre-transformation and adjusts to the specifics of each
code construction. Experimental results validate the accuracy of the proposed bound
and elucidate the impact of the code construction on the list size. Additionally, a newly
designed rate-profile is introduced to demonstrate the method’s effectiveness for code
design, taking into account both distance properties and SCL computational complexity.

135

Conclusions and perspectives

Conclusions

Since their discovery by Arikan in 2008, polar codes have garnered increasing attention
owing to their attractive property of asymptotically approaching Shannon’s capacity.
Their simplicity in encoding and decoding, particularly when compared to other codes,
along with their adaptability to puncturing and shortening techniques, further contribute
to their appeal. However, achieving Shannon’s capacity typically involves very large
block lengths. In practice, it is challenging for the realm of short to moderate block
lengths.

This thesis manuscript primarily addresses two scientific challenges. Firstly, it focuses
on the efficient determination of distance properties of polar codes, considering various
transformations that can be applied to them. Secondly, it delves into the computational
complexity of decoding under a given code construction. The objective is to propose
methods that can help to establish a trade-off between code performance under optimal
decoding and the computational complexity of decoders approaching optimal decoding.

In the second chapter, the focus was on addressing the challenge of determining
the minimum distance and its associated number of occurrences for both pure and
pre-transformed polar codes. The chapter demonstrated the feasibility of computing
the minimum weight and the corresponding number of occurrences of polar cosets using
the factor graph representation of a polar coset. This approach enabled the selective
consideration of relevant polar cosets involved in generating codewords with minimum
weight, thereby determining the overall minimum distance and number of occurrences of
the entire code. Furthermore, our contributions were extended to compute partial weight
spectra of both pure and pre-transformed polar codes.

A notable advantage of this method is its complete independence from the specific
code construction and pre-transformation employed. Experimental results underscored

137

Conclusions and perspectives

the significantly lower computational complexity of this method compared to previous
approaches in the literature.

The third chapter extends the findings of the second chapter to take into account the
effects of puncturing and shortening on polar codes distance properties. Introducing
the concept of rate-compatible polar cosets, the minimum distance and its associated
number of occurrences are computed while considering the impact of puncturing and
shortening. By accounting for these transformations, the proposed approach facilitates
the computation of the minimum distance and associated occurrences of punctured
and shortened (pre-transformed) polar codes, or more generally, their partial weight
spectrum. Notably, our approach is flexible and can be adapted to various puncturing or
shortening strategies. Once again, numerical results underscore the significantly reduced
computational complexity of the proposed method compared to previous techniques in
the literature.

In the fourth chapter, the focus shifts towards the requirements regarding list size of the
decoding process that is necessary to achieve Maximum Likelihood performance. Initially,
it is demonstrated that from a specific decoding index, the Successive Cancellation
List decoder can be substituted with a simple Successive Cancellation decoder without
incurring any performance loss. Subsequently, constructions are studied in this chapter,
revealing that, for short codes, constructions emphasizing the enhancement of polar code
distance properties can achieve ML performance under moderate list sizes. However,
this observation does not hold for larger block lengths, prompting an exploration of
the parameters that impact list size requirements for getting close to optimal code
performance.

A key contribution of this chapter in the proposal of an upper bound on the average list
size required to achieve ML performance. It is shown that this bound depends on the
introduced difference to true path metric of relevant polar cosets at each decoding stage.
Numerical results demonstrate that the estimated bound closely aligns with Monte Carlo
simulations. Similar to previously proposed methods, this approach can be adapted to
different pre-transformations and/or puncturing or shortening patterns. One can note its
versatility and applicability across various scenarios.

Perspectives

The various contributions outlined in this manuscript opens up numerous avenues for
further research and exploration.

138

Conclusions and perspectives

Expanding upon the insights provided in Chapter 2, the proposed method for computing
the distance properties of polar cosets is not restricted to polar codes built solely using
Arikan’s kernel. Rather, it can be applied to a broader class of polar codes that are based
on different kernels known as Multikernel polar codes [91]. Multikernel polar codes have
been proven to yield the same polarization properties as Arikan’s polar codes in [92]
when verifying sufficient conditions. The key requirement for applying this method is
that the factor graphs that enable the determination of distance properties must have
a tree construction, i.e., a cycle-free structure. This condition holds true not only for
Arikan’s kernel but also for Multikernel constructions where the decoding graph factors
exhibit a tree-like structure. Generalizing this approach to Multikernel polar codes offers
several benefits. Firstly, it facilitates the estimation of their performance under Maximum
Likelihood decoding. Thus, it enables to provide to the code designer valuable insights
into code capabilities. Furthermore, it can be leveraged for code construction purposes,
enabling the design of Multikernel polar codes optimized for specific performance criteria
or application requirements.

In Chapter 4, the methods detailed in Chapters 2 and 3 can be leveraged to optimize
code constructions in terms of distance properties. These distance properties are not
only crucial for decoding performance but also play a major role in optimizing various
parameters associated with polar codes. For instance, the results can be used to optimize
parameters such as the CRC generator polynomial in the case of polar codes concatenated
with a CRC, or the generator polynomial for Polarization Adjusted Convolutional (PAC)
codes. Additionally, the distance properties can inform the optimization of puncturing
and shortening patterns and their associated rate-profiles. The low-complexity nature
of the proposed algorithm for computing distance properties enhances its utility for
optimization tasks. Thus, designers can explore a wide range of parameter configurations.

Actually, the integration of the results from Chapters 2, 3, and 4 provides a complete
framework for analyzing and optimizing polar code constructions. By combining these
insights, it becomes possible to identify the distance properties of a specific code construc-
tion and at the same time establish an upper bound on the required list size for achieving
Maximum Likelihood performance. This approach enables the design of polar codes that
offer an efficient tradeoff between performance and decoding computational complexity.
Consequently, the requirements of different use cases can be achieved. Understanding
the underlying factors that influence the required list size for optimal performance
and distance properties allows for the construction of codes optimized dedicated to
communication scenarios.

Finally, the metric computation method introduced in Chapter 4 in order to compute

139

Conclusions and perspectives

the average list size for ML decoding can also be effectively applied for path pruning
purposes. In fact, by setting a predefined threshold for the metric, knowing that we are
able to have insights on the metric, paths that exceed this threshold can be identified
and pruned from consideration during the decoding process. This pruning mechanism
helps to reduce the computational complexity of decoding algorithms by eliminating
paths that are less likely to correspond to the correct codeword.

140

Appendices

A Demonstration of equations 2.24 and 2.26

Let N = 2n. ∀u ∈ {0, 1}2N , authors of [50] prove that:

C2N (u2i, u2i+1) = {(c1, c2)|c1 ∈ CN (u2i,even ⊕ (u2i,odd, u2i+1)), c2 ∈ CN (u2i,odd, u2i+1)}

(20)

This means that ∀c = (c1, c2) ∈ C2N (u2i, u2i+1)|w(c) = w∗(C2N (u2i, u2i+1)) then:{
w(c1) = w∗(CN (u2i,even ⊕ (u2i,odd, u2i+1)))

w(c2) = w∗(CN (u2i,odd, u2i+1))
(21)

This means that ∀c = (c1, c2) ∈ C2N (u2i, u2i+1) of minimum weight,

w(c) = w∗(CN (u2i,even ⊕ (u2i,odd, u2i+1)) + w∗(CN (u2i,odd, u2i+1))

.
In order to build a codeword c = (c1, c2) ∈ C2N (u2i, u2i+1) with the least weight, we
must first select c1 from CN (u2i,even ⊕ (u2i,odd, u2i+1)) of minimum weight and c2 from
CN (u2i,odd, u2i+1) also of minimum weight. if CN (u2i,even ⊕ (u2i,odd, u2i+1)) contains A1

codewords with minimum weight and CN (u2i,odd, u2i+1) contains A2 codewords with
minimum weight then there exists A1A2 ways to build c. In other words, the number of
codewords of minimum weight contained in C2N (u2i, u2i+1) is A1A2. Combining both
results amounts exactly to the multiplication of the MWEF, i.e.:

A∗
2N (u2i, u2i+1) = A∗

N (u2i,even ⊕ (u2i,odd, u2i+1))A
∗
N ((u2i,odd, u2i+1)) (22)

C2N (u2i, u2i+1) can be written as:

C2N (u2i, u2i+1) = C2N (u2i, 0)
⋃
C2N (u2i, 1) (23)

141

Conclusions and perspectives

Three different cases may occur:

• The first case is if w∗(C2N (u2i, 0)) > w∗(C2N (u2i, 1)). In that case:

A∗
2N (u2i, u2i+1) = A∗

N (u2i, 0) = A∗
N (u2i,even ⊕ u2i,odd)A

∗
N (u2i,odd, 0)

because all the codewords in
⋃
C2N (u2i, 1) are of strictly higher weight and do not

contribute in the minimum weight computation of the polar coset.

• The second case if w∗(C2N (u2i, 0)) < w∗(C2N (u2i, 1)). Similarly to the first case,

A∗
2N (u2i, u2i+1) = A∗

N (u2i, 1) = A∗
N (u2i,even ⊕ (u2i,odd, 1))A

∗
N (u2i,odd, 1)

.

• The third case is if w∗(C2N (u2i, 0)) = w∗(C2N (u2i, 1)). In this case,

A∗
2N (u2i, u2i+1) = A∗

N (u2i, 0) +A∗
N (u2i, 1)

. This is explained by the fact that as both cosets contain codewords with minimum
weight, summing the monomials A∗

N (u2i, 0) and A∗
N (u2i, 1) will take into account

the overall number of occurrences of codewords with minimum weight.

If we consider the operator LP (.) that, given a polynomial, only keeps the monomial of
least power, the three aforementioned cases can be summarised with:

A∗
2N (u2i)(X) = LP (

∑
u2i+1∈{0,1}

A∗
N (u2i,even⊕(u2i,odd, u2i+1))(X)A∗

N (u2i,odd, u2i+1)(X))

(24)

�

Equation (2.24) can also be deduced when expressing C2N(u2i+1) as [50]:

C2N (u2i+1) = {(c1, c2)|c1 ∈ CN (u2i+1,even ⊕ u2i+1,odd), c2 ∈ CN (u2i+1,odd)} (25)

B Proof for equation (2.31) and (2.33)

As for the computation of MWEF, starting from:

C2N (u2i, u2i+1) = {(c1, c2)|c1 ∈ CN (u2i,even ⊕ (u2i,odd, u2i+1)), c2 ∈ CN (u2i,odd, u2i+1)}

142

C Demonstration of equation 4.2

(26)

This means that ∀c = (c1, c2) ∈ C2N (u2i, u2i+1)|w(c) ≤ wend then:
w(c1) ≤ wend
w(c2) ≤ wend

w(c1) + w(c1) ≤ wend

(27)

In order to build a codeword c = (c1, c2) ∈ C2N (u2i, u2i+1) of weight less or equal to
wend, we must first select c1 from CN (u2i,even⊕ (u2i,odd, u2i+1)) of weight less or equal to
wend and c2 from CN (u2i,odd, u2i+1) also of weight less or equal to wend and make sure
that w(c1) + w(c1) ≤ wend. The number of codewords of weight wi ≤ wend contained
in C2N (u2i, u2i+1) is obtained by counting all the possible configurations of c1 from
CN (u2i,even⊕(u2i,odd, u2i+1)) and c2 from CN (u2i,odd, u2i+1) such that w(c1)+w(c2) = wi

Combining both results amounts exactly to the multiplication of the RWEF, i.e.:

Awend
2N (u2i, u2i+1) = Awend

N (u2i,even ⊕ (u2i,odd, u2i+1))A
wend
N (u2i,odd, u2i+1) (28)

As C2N (u2i, u2i+1) = C2N (u2i, 0)
⋃
C2N (u2i, 1) then in order to compute the RWEF of

C2N (u2i, u2i+1), we have to sum the RWEFs of C2N (u2i, 0) and C2N (u2i, 1) and remove
the monomials with degrees greater to wend. This leads to:

A∗
2N (u2i)(X) = LTwend

(
∑

u2i+1∈{0,1}

A∗
N (u2i,even⊕(u2i,odd, u2i+1))(X)A∗

N (u2i,odd, u2i+1)(X))

(29)

�

Equation (2.24) can also be deduced when using Equation (25)

C Demonstration of equation 4.2

The term P
(
Ui

0 = ui0[l]|Y = y
)

in Equation (4.1) can be formulated as:

P
(
Ui

0 = ui0[l]|Y = y
)
=

∑
uN−1
i+1 ∈FN−i−1

2

P
(
U = [ui0[l],u

N−1
i+1]

∣∣∣y) (30)

=
P(U = u)

p(y)

∑
uN−1
i+1 ∈FN−i−1

2

(
y|U = [ui0[l],u

N−1
i+1]

)
(31)

143

Conclusions and perspectives

In the case of an AWGN channel, the probability of transition is determined by:

p (y|u) = 1

(2π)n/2σn
e−

1
2σ2 ||y−x(u)||22

where x(u) = 1− 2c and c = uG. Besides, since P(U = u) = 2−N and p(y) is expressed
as

p(y) =
∑
u

p(y|u)P(U = u)

, P
(
Ui

0 = ui0|Y = y
)

is finally expressed as:

P
(
Ui

0 = ui0|Y = y
)
=

∑
uN−1
i+1 ∈FN−(i+1)

2

e−
1

2σ2 ||y−x(u)||22

∑
v∈{−1,1}n

e−
1

2σ2 ||y−v||22
(32)

Therefore, the path metric mi(u
i
0,y) is expressed as:

mi(u
i
0[l],y) = log

 ∑
v∈{−1,1}n

e−
1

2σ2 ||y−v||22

− log

 ∑
uN−1
i+1 ∈FN−(i+1)

2

e−
1

2σ2 ||y−x(u)||22


= max?

v∈{−1,1}n

(
− 1

2σ2
||y − v||22

)
− max?

uN−1
i+1 ∈Fn−(i+1)

2

(
− 1

2σ2
||y − x(u)||22

) (33)

Under min-sum approximation of the decoding process, (33) can be simplified by replacing
the operator max? by max:

mi(u
i
0[l],y) ' max

v∈{−1,1}n

(
− 1

2σ2
||y − v||22

)
− max

uN−1
i+1 ∈Fn−(i+1)

2

(
− 1

2σ2
||y − x(u)||22

)
=

1

2σ2
min

uN−1
i+1 ∈Fn−(i+1)

2

(
||y − x(u)||22

)
− 1

2σ2
min

v∈{−1,1}n

(
||y − v||22

) (34)

Finally, mi(u
i
0[l],y) can be expressed as :

mi(u
i
0[l],y) =

1

2σ2
min

x∈CN (ui
0[l])

(
||y − x||22

)
− 1

2σ2
min

v∈{−1,1}n

(
||y − v||22

)
(35)

�

144

Bibliography

[1] E. Arikan, “Channel polarization: A method for constructing capacity-achieving
codes for symmetric binary-input memoryless channels,” IEEE Trans. on Inf. Theory,
2009.

[2] C. E. Shannon, “A mathematical theory of communication,” The Bell
System Technical Journal, vol. 27, pp. 379–423, 1948. [Online]. Available:
http://plan9.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf

[3] R. C. Bose and D. K. Ray-Chaudhuri, “On a class of error correcting binary group
codes,” Information and control, vol. 3, no. 1, pp. 68–79, 1960.

[4] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,” Journal of
the society for industrial and applied mathematics, vol. 8, no. 2, pp. 300–304, 1960.

[5] A. Viterbi, “Convolutional codes and their performance in communication systems,”
IEEE Transactions on Communication Technology, vol. 19, no. 5, pp. 751–772, 1971.

[6] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit error-correcting
coding and decoding: Turbo-codes. 1,” in Proceedings of ICC’93-IEEE International
Conference on Communications, vol. 2. IEEE, 1993, pp. 1064–1070.

[7] R. Gallager, “Low-density parity-check codes,” IRE Transactions on information
theory, vol. 8, no. 1, pp. 21–28, 1962.

[8] I. Tal and A. Vardy, “List decoding of polar codes,” in 2021 IEEE International
Symposium on Information Theory (ISIT), 2011.

[9] 3GPP TS 38.212 V17.4.0, “5G; NR; multiplexing and channel coding,” 2023.

[10] E. Arıkan, “From sequential decoding to channel polarization and back again,” arXiv
preprint arXiv:1908.09594, 2019.

145

http://plan9.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf

Bibliography

[11] P. Trifonov and V. Miloslavskaya, “Polar codes with dynamic frozen symbols and
their decoding by directed search,” in 2013 IEEE Information Theory Workshop
(ITW), 2013, pp. 1–5.

[12] S. Gelincik, P. Mary, A. Savard, and J.-Y. Baudais, “Preserving the minimum
distance of polar-like codes while increasing the information length,” in 2022 IEEE
International Symposium on Information Theory (ISIT). IEEE, 2022, pp. 2130–2135.

[13] B. Shuval and I. Tal, “Strong polarization for shortened and punctured polar codes,”
arXiv preprint arXiv:2401.16833, 2024.

[14] V. Miloslavskaya, B. Vucetic, and Y. Li, “Computing the partial weight distri-
bution of punctured, shortened, precoded polar codes,” IEEE Transactions on
Communications, 2022.

[15] C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross, “A semi-parallel successive-
cancellation decoder for polar codes,” IEEE Transactions on Signal Processing,
vol. 61, no. 2, pp. 289–299, 2012.

[16] M. Bardet, V. Dragoi, A. Otmani, and J.-P. Tillich, “Algebraic properties of polar
codes from a new polynomial formalism,” in IEEE ISIT, 2016.

[17] C. Schürch, “A partial order for the synthesized channels of a polar code,” in 2016
IEEE International Symposium on Information Theory (ISIT), 2016, pp. 220–224.

[18] R. Mori and T. Tanaka, “Performance of polar codes with the construction using
density evolution,” IEEE Communications Letters, vol. 13, no. 7, pp. 519–521, 2009.

[19] P. Trifonov, “Efficient design and decoding of polar codes,” IEEE transactions on
communications, vol. 60, no. 11, pp. 3221–3227, 2012.

[20] D. E. Muller, “Application of boolean algebra to switching circuit design and to error
detection,” Transactions of the I.R.E. Professional Group on Electronic Computers,
vol. EC-3, no. 3, pp. 6–12, 1954.

[21] J. Dai, K. Niu, Z. Si, C. Dong, and J. Lin, “Does gaussian approximation work well
for the long-length polar code construction?” IEEE Access, vol. 5, pp. 7950–7963,
2017.

[22] B. Li, H. Shen, and D. Tse, “A rm-polar codes,” arXiv preprint arXiv:1407.5483,
2014.

[23] N. Hussami, S. B. Korada, and R. Urbanke, “Performance of polar codes for channel
and source coding,” in IEEE ISIT, 2009.

146

Bibliography

[24] B. Li, H. Shen, and D. Tse, “An adaptive successive cancellation list decoder for
polar codes with cyclic redundancy check,” IEEE Communications Letters, 2012.

[25] B. Li, H. Zhang, and J. Gu, “On pre-transformed polar codes,” 2019. [Online].
Available: arXiv2019,arXiv:1912.06359

[26] A. Balatsoukas-Stimming, M. B. Parizi, and A. Burg, “Llr-based successive cancella-
tion list decoding of polar codes,” IEEE Transactions on Signal Processing, vol. 63,
no. 19, pp. 5165–5179, 2015.

[27] H. Yao, A. Fazeli, and A. Vardy, “List decoding of arkans pac codes,” Entropy,
vol. 23, no. 7, 2021. [Online]. Available: https://www.mdpi.com/1099-4300/23/7/841

[28] J. M. Wozencraft, “Sequential decoding for reliable communication,” 1957. [Online].
Available: https://api.semanticscholar.org/CorpusID:14879562

[29] F. Jelinek, “Fast sequential decoding algorithm using a stack,” IBM Journal of
Research and Development, vol. 13, no. 6, pp. 675–685, 1969.

[30] R. Fano, “A heuristic discussion of probabilistic decoding,” IEEE Transactions on
Information Theory, vol. 9, no. 2, pp. 64–74, 1963.

[31] K. Niu and K. Chen, “Stack decoding of polar codes,” Electronics Letters, vol. 48,
pp. 695–697, 2012. [Online]. Available: https://api.semanticscholar.org/CorpusID:
117052030

[32] K. Chen, K. Niu, and J. Lin, “Improved successive cancellation decoding of polar
codes,” IEEE Transactions on Communications, vol. 61, no. 8, pp. 3100–3107, 2013.

[33] V. Miloslavskaya and P. Trifonov, “Sequential decoding of polar codes,” IEEE
Communications Letters, vol. 18, no. 7, pp. 1127–1130, 2014.

[34] G. Trofimiuk, N. Iakuba, S. Rets, K. Ivanov, and P. Trifonov, “Fast block sequential
decoding of polar codes,” IEEE Transactions on Vehicular Technology, vol. 69,
no. 10, pp. 10 988–10 999, 2020.

[35] Y. Polyanskiy, H. V. Poor, and S. Verdu, “Channel coding rate in the finite block-
length regime,” IEEE Transactions on Information Theory, vol. 56, no. 5, pp.
2307–2359, 2010.

[36] M. Rowshan, A. Burg, and E. Viterbo, “Polarization-adjusted convolutional (pac)
codes: Sequential decoding vs list decoding,” IEEE Transactions on Vehicular
Technology, vol. 70, no. 2, pp. 1434–1447, 2021.

147

arXiv 2019, arXiv:1912.06359
https://www.mdpi.com/1099-4300/23/7/841
https://api.semanticscholar.org/CorpusID:14879562
https://api.semanticscholar.org/CorpusID:117052030
https://api.semanticscholar.org/CorpusID:117052030

Bibliography

[37] M. Moradi, “On sequential decoding metric function of polarization-adjusted convo-
lutional (pac) codes,” IEEE Transactions on Communications, vol. 69, no. 12, pp.
7913–7922, 2021.

[38] G. Vazquez-Vilar, A. G. i Fabregas, T. Koch, and A. Lancho, “Saddlepoint ap-
proximation of the error probability of binary hypothesis testing,” in 2018 IEEE
International Symposium on Information Theory (ISIT). IEEE, 2018, pp. 2306–2310.

[39] J. Font-Segura, G. Vazquez-Vilar, A. Martinez, A. G. i Fàbregas, and A. Lancho,
“Saddlepoint approximations of lower and upper bounds to the error probability
in channel coding,” in 2018 52nd Annual Conference on Information Sciences and
Systems (CISS). IEEE, 2018, pp. 1–6.

[40] G. Durisi and A. Lancho, “Transmitting short packets over wireless channelsan
information-theoretic perspective,” 2020, https://gdurisi.github.io/fbl-notes/.

[41] M. C. Cokun, G. Durisi, T. Jerkovits, G. Liva, W. E. Ryan, B. T. Stein,
and F. Steiner, “Efficient error-correcting codes in the short blocklength
regime,” Phys. Commun., vol. 34, pp. 66–79, 2018. [Online]. Available:
https://api.semanticscholar.org/CorpusID:56517208

[42] T. Tonnellier and W. J. Gross, “On systematic polarization-adjusted convolutional
(pac) codes,” IEEE Communications Letters, vol. 25, no. 7, pp. 2128–2132, 2021.

[43] M.-C. Chiu and Y.-S. Su, “Design of polar codes and pac codes for scl decoding,”
IEEE Transactions on Communications, vol. 71, no. 5, pp. 2587–2601, 2023.

[44] S. K. Mishra, D. Katyal, and S. A. Ganapathi, “A heuristic algorithm for
rate-profiling of polarization adjusted convolutional (pac) codes,” Oct. 2021.
[Online]. Available: http://dx.doi.org/10.36227/techrxiv.16735351.v1

[45] M. C. Cokun and H. D. Pfster, “An information-theoretic perspective on successive
cancellation list decoding and polar code design,” IEEE Transactions on Information
Theory, vol. 68, no. 9, pp. 5779–5791, 2022.

[46] V. Miloslavskaya, L. Yonghui, and B. Vucetic, “Frozen set design for precoded polar
codes,” 2023. [Online]. Available: arXiv:2311.10047

[47] M. Moradi, A. Mozammel, K. Qin, and E. Arikan, “Performance and complexity of
sequential decoding of PAC codes,” CoRR, 2020.

[48] T. Tonnellier and W. J. Gross, “On systematic polarization-adjusted convolutional
(pac) codes,” IEEE Communications Letters, 2021.

148

https://api.semanticscholar.org/CorpusID:56517208
http://dx.doi.org/10.36227/techrxiv.16735351.v1
arXiv:2311.10047

Bibliography

[49] R. Polyanskaya, M. Davletshin, and N. Polyanskii, “Weight distributions for succes-
sive cancellation decoding of polar codes,” IEEE Transactions on Communications,
vol. 68, no. 12, pp. 7328–7336, 2020.

[50] H. Yao, A. Fazeli, and A. Vardy, “A deterministic algorithm for computing the
weight distribution of polar code,” IEEE Transactions on Information Theory, 2023.

[51] J. Piao, K. Niu, J. Dai, and C. Dong, “Sphere constraint based enumeration methods
to analyze the minimum weight distribution of polar codes,” IEEE Transactions on
Vehicular Technology, vol. 69, no. 10, pp. 11 557–11 569, 2020.

[52] M. Valipour and S. Yousefi, “On probabilistic weight distribution of polar codes,”
IEEE communications letters, vol. 17, no. 11, pp. 2120–2123, 2013.

[53] Q. Zhang, A. Liu, and X. Pan, “An enhanced probabilistic computation method
for the weight distribution of polar codes,” IEEE Communications Letters, vol. 21,
no. 12, pp. 2562–2565, 2017.

[54] Y. Li, H. Zhang, R. Li, J. Wang, G. Yan, and Z. Ma, “On the weight spectrum of pre-
transformed polar codes,” in 2021 IEEE International Symposium on Information
Theory (ISIT). IEEE, 2021, pp. 1224–1229.

[55] M. Rowshan, V.-F. Drăgoi, and J. Yuan, “On the closed-form weight enumeration
of polar codes: 1.5d-weight codewords,” arXiv preprint arXiv:2305.02921, 2023.

[56] Z. Ye, Y. Li, H. Zhang, J. Wang, G. Yan, and Z. Ma, “On the distribution of weights
less than 2w min in polar codes,” IEEE Transactions on Communications, 2024.

[57] M. Rowshan, V.-F. Drăgoi, and J. Yuan, “Weight structure of low/high-rate polar
codes and its applications,” arXiv preprint arXiv:2402.12707, 2024.

[58] M. Rowshan and J. Yuan, “Fast enumeration of minimum weight codewords of PAC
codes,” in IEEE ITW, 2022.

[59] A. Zunker, M. Geiselhart, and S. Ten Brink, “Enumeration of minimum weight
codewords of pre-transformed polar codes by tree intersection,” in 2024 58th Annual
Conference on Information Sciences and Systems (CISS). IEEE, 2024, pp. 1–6.

[60] T. Richardson and R. Urbanke, Modern Coding Theory, Chapter 2, Cambridge
University Press, 2008.

[61] R. Mori and T. Tanaka, “Performance and construction of polar codes on symmetric
binary-input memoryless channels,” in IEEE ISIT, 2009.

149

Bibliography

[62] I. Tal and A. Vardy, “How to construct polar codes,” IEEE Transactions on Infor-
mation Theory, vol. 59, no. 10, pp. 6562–6582, 2013.

[63] P. Trifonov, “Efficient design and decoding of polar codes,” IEEE Transactions on
Communications, 2012.

[64] https://github.com/mohammad-rowshan/Fast-Enumeration-of- Minimum-Weight-
Codewords-of-PAC-Codes.

[65] M. Rowshan and J. Yuan, “On the minimum weight codewords of pac codes: The
impact of pre-transformation,” IEEE Journal on Selected Areas in Information
Theory, 2023.

[66] L. Zhang, Z. Zhang, X. Wang, Q. Yu, and Y. Chen, “On the puncturing patterns
for punctured polar codes,” in 2014 IEEE International Symposium on Information
Theory, 2014, pp. 121–125.

[67] J. Kim, J.-H. Kim, and S.-H. Kim, “An efficient search on puncturing patterns for
short polar codes,” in 2015 International Conference on Information and Communi-
cation Technology Convergence (ICTC), 2015, pp. 182–184.

[68] K. Niu, K. Chen, and J.-R. Lin, “Beyond turbo codes: Rate-compatible punctured
polar codes,” in 2013 IEEE International Conference on Communications (ICC),
2013, pp. 3423–3427.

[69] V. Bioglio, F. Gabry, and I. Land, “Low-complexity puncturing and shortening of
polar codes,” in 2017 IEEE Wireless Communications and Networking Conference
Workshops (WCNCW), 2017, pp. 1–6.

[70] K. Niu, J. Dai, K. Chen, J. Lin, Q. Zhang, and A. V. Vasilakos, “Rate-compatible
punctured polar codes: Optimal construction based on polar spectra,” arXiv preprint
arXiv:1612.01352, 2016.

[71] L. Chandesris, V. Savin, and D. Declercq, “On puncturing strategies for polar
codes,” in 2017 IEEE International Conference on Communications Workshops
(ICC Workshops). IEEE, 2017, pp. 766–771.

[72] D.-M. Shin, S.-C. Lim, and K. Yang, “Design of length-compatible polar codes based
on the reduction of polarizing matrices,” IEEE Transactions on Communications,
vol. 61, no. 7, pp. 2593–2599, 2013.

[73] G. Sarkis, I. Tal, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Flexible and
low-complexity encoding and decoding of systematic polar codes,” IEEE Transactions
on Communications, vol. 64, no. 7, pp. 2732–2745, 2016.

150

Bibliography

[74] R. Wang and R. Liu, “A novel puncturing scheme for polar codes,” IEEE Commu-
nications Letters, vol. 18, no. 12, pp. 2081–2084, 2014.

[75] V. Miloslavskaya, “Shortened polar codes,” IEEE Transactions on Information
Theory, vol. 61, no. 9, pp. 4852–4865, 2015.

[76] X. Gu, M. Rowshan, and J. Yuan, “Rate-compatible shortened pac codes,” in
2023 IEEE/CIC International Conference on Communications in China (ICCC
Workshops), 2023, pp. 1–6.

[77] M. Ellouze, R. Tajan, C. Leroux, C. Jégo, and C. Poulliat, “Low-complexity
algorithm for the minimum weight distribution of polar codes.” IEEE
Communications Letters (submitted). [Online]. Available: https://filesender.renater.
fr/?s=download&token=de39230e-6748-4e5f-b1e8-e7669a888eb1

[78] M. Moradi and A. Mozammel, “A monte-carlo based construction of polarization-
adjusted convolutional (pac) codes,” arXiv preprint arXiv:2106.08118, 2021.

[79] A. Elkelesh, M. Ebada, S. Cammerer, and S. Ten Brink, “Decoder-tailored polar
code design using the genetic algorithm,” IEEE Transactions on Communications,
vol. 67, no. 7, pp. 4521–4534, 2019.

[80] V. Miloslavskaya, B. Vucetic, Y. Li, G. Park, and O.-S. Park, “Recursive design
of precoded polar codes for scl decoding,” IEEE transactions on communications,
vol. 69, no. 12, pp. 7945–7959, 2021.

[81] M. Moradi and D. G. Mitchell, “Pac code rate-profile design using search-constrained
optimization algorithms,” arXiv preprint arXiv:2401.10376, 2024.

[82] S. Gelincik, P. Mary, J.-Y. Baudais, and A. Savard, “Achieving pac code performance
with scl decoding without extra computational complexity,” in ICC 2022-IEEE
International Conference on Communications. IEEE, 2022, pp. 104–109.

[83] A. Zunker, M. Geiselhart, L. Johannsen, C. Kestel, S. t. Brink, T. Vogt, and N. Wehn,
“Row-merged polar codes: Analysis, design and decoder implementation,” arXiv
preprint arXiv:2312.14749, 2023.

[84] Z. Zhang, L. Zhang, X. Wang, C. Zhong, and H. V. Poor, “A split-reduced successive
cancellation list decoder for polar codes,” IEEE J. Sel. Areas in Commun., vol. 34,
no. 2, pp. 292–302, 2016.

[85] L. Zhang, A. Cao, J. Qiao, and Y. He, “A crc-aided sr-scl decoding algorithm for
polar codes,” in 2019 IEEE MTT-S International Wireless Symposium (IWS), 2019,
pp. 1–3.

151

https://filesender.renater.fr/?s=download&token=de39230e-6748-4e5f-b1e8-e7669a888eb1
https://filesender.renater.fr/?s=download&token=de39230e-6748-4e5f-b1e8-e7669a888eb1

Bibliography

[86] M. Moradi and A. Mozammel, “A tree pruning technique for decoding complexity
reduction of polar codes and pac codes,” IEEE Transactions on Communications,
2023.

[87] M. Rowshan and E. Viterbo, “Stepped list decoding for polar codes,” in 2018 IEEE
10th International Symposium on Turbo Codes & Iterative Information Processing
(ISTC). IEEE, 2018, pp. 1–5.

[88] A. Fazeli, A. Vardy, and H. Yao, “List decoding of polar codes: How large should
the list be to achieve ml decoding?” in 2021 IEEE International Symposium on
Information Theory (ISIT). IEEE, 2021, pp. 1594–1599.

[89] Y. L. Tong, “The multivariate normal distribution,” 1989. [Online]. Available:
https://api.semanticscholar.org/CorpusID:125040417

[90] M. Rowshan, S. H. Dau, and E. Viterbo, “On the formation of min-weight codewords
of polar/pac codes and its applications,” IEEE Transactions on Information Theory,
2023.

[91] F. Gabry, V. Bioglio, I. Land, and J.-C. Belfiore, “Multi-kernel construction of polar
codes,” in 2017 IEEE International Conference on Communications Workshops
(ICC Workshops). IEEE, 2017, pp. 761–765.

[92] M. Benammar, V. Bioglio, F. Gabry, and I. Land, “Multi-kernel polar codes: Proof
of polarization and error exponents,” in 2017 IEEE Information Theory Workshop
(ITW). IEEE, 2017, pp. 101–105.

152

https://api.semanticscholar.org/CorpusID:125040417

Bibliography

153

	Résumé
	Abstract
	Résumé étendu
	Table of contents
	List of figures
	List of tables
	List of acronyms
	Introduction
	Generalities on Polar codes
	Principle of polar codes
	Channel coding
	Binary-Discrete Memoryless Channels (B-DMC)
	Polar codes
	Successive Cancellation decoding of polar codes

	Construction and properties of polar codes
	Partial order of synthetic channels
	Rate-profiling construction
	Distance properties of polar codes

	On the pre-transformation of polar codes
	Polarization-Adjusted Convolutional (PAC) codes
	Polar codes with Dynamic Frozen Bits
	Impact of precoding on the distance properties of polar codes

	Decoding of pure and pre-transformed polar codes
	Successive Cancellation List decoding
	Concatenation with a Cyclic Redundancy Check
	Sequential decoding of polar codes

	Performance of pure and pre-transformed polar codes under different decoding schemes and constructions
	Short-length codes
	PAC codes
	Larger length codes

	Problematics and conclusions

	On the distance properties of pure and pre-transformed polar codes
	Context
	Graph computation of the minimum distance and associated number of occurrences of polar cosets
	Polar cosets
	Computation of the minimum distance properties of a polar coset
	Computational complexity analysis

	Low complexity algorithm for the computation of minimum distance properties for pure and pre-transformed polar codes
	Pure polar code case
	Results
	Extension to pre-transformed polar codes
	Extension for polar codes with CRC

	Computation of the partial weight spectrum of pure and pre-transformed polar codes
	Partial distance spectrum results

	Conclusion

	About the distance properties of Punctured and Shortened pure and pre-transformed polar codes
	Context
	Rate-compatible pure and pre-transformed polar codes
	Punctured polar codes
	Shortened polar codes
	Rate-Compatible Pre-Transformed polar codes

	Computing the minimum weight of rate-compatible polar cosets
	Weight enumeration function of rate-compatible polar cosets
	Case of punctured polar codes
	Case of shortened polar codes

	Extension to the Reduced Weight Enumeration Spectrum of punctured and shortened polar cosets
	Computing the distance properties of Rate-Compatible pure and pre-transformed polar codes
	Distance properties results for punctured and shortened polar and PAC codes
	Minimum distance Properties
	Reduced weight spectrum

	Conclusion

	 Towards a trade-off between distance properties and SCL decoding complexity of polar codes
	Introduction
	Distance properties based rate-profile for PAC codes
	Overall algorithm
	Rate-profile construction results

	Tailored list decoding of polar codes
	Decoding tail in SC-based algorithms
	Tailoring in the case of SCL decoding

	About the average list size that reaches ML performance
	Difference to True Path Metric (DTPM)
	Correlation of codewords with minimum weight of a coset
	Determination of i
	DTPM estimation results
	Average List size for ML decoding
	Average list size estimation results

	Conclusion

	Conclusions and perspectives
	Appendices
	Demonstration of equations 2.24 and 2.26
	Proof for equation (2.31) and (2.33)
	Demonstration of equation 4.2

