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RESUMÉ SUBSTANTIEL 

Le poisson zèbre (Danio Rerio) est un petit poisson appartenant à la famille des cyprinidés et déjà 

largement utilisé pour la recherche associée au développement, à la régénération et à la toxicologie. 

L'année dernière, le poisson zèbre a démontré son potentiel dans la recherche sur les interactions 

hôte-pathogène. Ce modèle de poisson présente un degré élevé de transparence et un temps de 

génération rapide. Ces deux caractéristiques sont fondamentales pour le criblage à haut contenu et 

l'observation directe de la dissémination des pathogènes dans des larves vivantes entières. En outre, 

le système immunitaire inné du poisson zèbre est composé de leucocytes (c'est-à-dire de 

macrophages et de neutrophiles), et sa signalisation est baséee sur des cytokines dont linterféron, 

conservant ainsi un degré élevé de similitudes avec l'homme. Une autre caractéristique importante 

du poisson zèbre est la possibilité de manipuler facilement sa génétique grâce à des systèmes tels 

que le morpholino, la transposase Tol2 et CRISPR. Cela nous a permis de générer des lignées de 

poissons zèbres transgéniques afin de réguler l'expression de gènes cibles ou d'associer des 

fluorophores spécifiques (par exemple GFP et mCherry) à des protéines. 

Dans cette thèse, nous allons confronter ce modèle à différents pathogènes (virus Sindbis, SARS-

COV2 et Legionella pneumophila) afin de mettre en lumière les aspects positifs et négatifs de 

l'expérimentation sur le poisson zèbre tout en répondant à des questions biologiques importantes 

et en développant de nouveaux outils/approches expérimentaux.  

Le virus Sindbis (SINV) est un alphavirus à ARN positif simple brin transmis par des arthropodes 

(principalement des moustiques) et capable d'infecter l'homme. Cet arbovirus est largement utilisé 

comme modèle d'encéphalite virale, mais, malgré des études approfondies sur des souris, les 

mécanismes d'invasion du cerveau et de réponse immunitaire restent encore largement à élucider. 

En utilisant les outils générés par Gabriella Passoni dans le laboratoire, nous nous sommes 

concentrés sur : 1) identifier la voie d'invasion du cerveau exploitée par le SINV, 2) le rôle du 

système interféron dans le contrôle de l'infection, et 3) explorer la possibilité d'utiliser ce projet 

pour développer des modèles mathématiques capables de faire la lumière sur des paramètres 

difficilement mesurables par l'expérimentation in vivo.  
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En utilisant des constructions virales exprimant des rapporteurs fluorescents, nous avons suivi la 

propagation du SINV de la périphérie au cerveau. Nous avons montré que le SINV préfère infecter 

les fibres musculaires au cours de la première vague réplicative, où il génère une infection avec 

une propagation de cellule à cellule multidirectionnelle et transitoire. Grâce au criblage à haut 

contenu et à l'imagerie à haute résolution, nous avons identifié la population cellulaire impliquée 

dans la progression de l'infection et nous avons multiplexé les données d'imagerie avec la mesure 

de l'expression génétique de l'immunité antivirale du poisson-zèbre. Nous avons identifié dans les 

ganglions rachidiens (DRG) la principale porte d'accès au SNC utilisée par le SINV pour atteindre 

le cerveau. Grâce aux techniques utilisées, il a été possible d'observer directement la propagation 

de l'infection dans les populations du SNC. Outre les DRG, SINV s'est avéré capable d'infecter les 

interneurones et les motoneurones, en exploitant le réseau dense d'interconnexions axonales entre 

les neurones. Les résultats ont montré la présence de trois systèmes différents de propagation 

axonale ou de cellule à cellule utilisés par le SINV pour envahir le SNC, ce qui laisse entrevoir la 

possibilité d'un rôle de réservoir viral pour la moelle épinière. Nous avons associé ces résultats à 

une nouvelle perspective sur l'activité de l'interféron. En utilisant des techniques expérimentales 

pour minimiser la réponse de l'interféron à l'infection, nous avons montré que l'interféron de type 

I joue un rôle essentiel dans le contrôle de l'infection périphérique et de sa résolution.  Les données 

obtenues ont été traitées et traduites en un modèle mathématique d'équations capable de simuler 

l'évolution de l'infection dans et hors du SNC, tant en l'absence qu'en présence d'une réponse 

interféron. Ce modèle nous a permis d'obtenir des informations qu'il n'est normalement pas facile 

de mesurer expérimentalement in vivo. Par exemple, nous avons identifié le principal mécanisme 

de contrôle de l'infection par l'interféron et la quantité théorique de virions infectieux générés par 

chaque cellule infectée et productive. Pour atteindre ces résultats, de nouvelles approches et 

technologies ont été développées. Par exemple, de nouveaux protocoles d'anesthésie combinatoire 

permettent de réduire la toxicité des procédures d'imagerie de longue durée et de réduire la 

variabilité associée. En outre, pour maximiser l'efficacité expérimentale et réduire le nombre 

d'échantillons requis, de nouveaux flux de travail expérimentaux ont été créés pour multiplexer les 

protocoles d'imagerie à haut contenu et d'analyse de l'expression génique, associés au 

développement de nouveaux supports physiques pour la microscopie et de logiciels pour l'analyse 

d'images. 
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Le SARS-Cov2 est un virus à ARN monocaténaire positif enveloppé qui fait partie de la famille 

très diversifiée des coronavirus (CoVs). Pendant la pandémie, pour répondre au besoin pressant 

d'un modèle animal capable de répondre rapidement aux questions biologiques posées par ce virus, 

nous avons exploré la possibilité d'utiliser des larves de poisson zèbre. Pour réaliser des 

expériences sur ce pathogène, nous avons créé un nouveau protocole d'infection et 

d'expérimentation du poisson zèbre dans des laboratoires de niveau de biosécurité 3. Dans un 

premier temps, nous avons testé différents critères d'injection, tels que la position et la 

concentration, afin de déterminer la combinaison optimale. Pour tenter de quantifier la présence 

de la transcription virale associée à la protéine N, nous avons utilisé la qRT-PCR sur les brins 

positifs et négatifs de l'ARN viral. Nous avons testé plusieurs souches différentes, ce qui a entraîné 

l'absence d'infection et de réplication dans la plupart des sites. En concentrant nos efforts sur la 

vessie natatoire, un organe aérien souvent utilisé comme modèle pour l'infection des poumons, 

nous avons réussi à infecter systématiquement la partie caudale de cet organe. Les larves infectées 

dans la vessie natatoire présentent des résultats positifs à la fois par marquage par 

immunohistochimie et par qRT-PCR de l'ARN viral antisens. Cette dernière montre que le cycle 

de réplication du SARS-COV2 dans la vessie natatoire s'arrête après la production d'ARN viral 

antisens, ne parvenant pas à achever la réplication du virus. Malheureusement, cela indique une 

réplication virale avortée du SARS-COV2, qui réussit à infecter les cellules de la vessie natatoire, 

mais ne parvient pas à s'y multiplier et à infecter le reste de la larve. Nous avons étudié l'importance 

du récepteur ACE2 dans cette infection. Nous avons partiellement humanisé les larves en utilisant 

des plasmides contenant des constructions ACE2 humaines associées au rapporteur mCherry. Nous 

avons d'abord testé cette construction sur des cellules, observant une augmentation de 100 fois de 

l'infection, puis nous avons injecté cette construction sous le contrôle d'un promoteur ubiquitiné 

dans le poisson zèbre, obtenant un modèle d'expression mosaïque. Chez les larves, l'expression de 

l'ACE2 humain n'a pas augmenté le taux d'infection.  

Enfin, nous avons généré une nouvelle lignée de poisson zèbre transgénique qui bloque 

l'expression des interférons phi1, phi2 et phi3, bloquant ainsi complètement la réponse à 

l'interféron. Là encore, le taux d'infection du SARS-COV2 chez les larves de poisson zèbre n'a pas 

augmenté, ce qui démontre que la réplication avortée dans ce modèle est due à d'autres facteurs 

intracellulaires.  
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En outre, de nouvelles avancées dans les techniques d'humanisation du poisson zèbre ont été 

réalisées ces dernières années, ce qui laisse présager une meilleure manipulation génétique de ce 

modèle. 

Bien que le poisson zèbre de type sauvage ne se soit pas révélé être un modèle prêt à l'emploi pour 

l’infection par SARS-CoV2, ce projet nous a permis de définir les bases d'une recherche plus 

approfondie visant à identifier la cause de la réplication avortée, car elle pourrait être utilisée pour 

de futures applications thérapeutiques. 

Un autre agent pathogène humain présenté dans cette thèse est Legionella pneumophila.                     

L. pneumophila est une bactérie gram-négative, non sporogène, non capsulante et aérobie.                

L. pneumophila est à l'origine de la maladie du légionnaire (LD) et fait partie de la famille des 

Legionellaceae. Cette bactérie est très dangereuse dans la société moderne, car elle est 

extrêmement résistante et préfère se reproduire dans des endroits humides, tels que les systèmes 

de ventilation ou d'eau. En fait, ce pathogène est beaucoup plus présent dans les environnements 

urbains que dans les environnements ruraux.  

Nous avons caractérisé la dynamique d'infection de Legionella chez les larves de poisson zèbre. 

Nous avons d'abord identifié les voies d'infection militantes pour le poisson zèbre et quantifié 

l'activité des leucocytes dans la lutte contre cette infection. Les résultats ont montré que la réponse 

immunitaire à l'infection par Legionella est médiée par les macrophages.  En outre, nous avons 

observé la dynamique de la dissémination de ce pathogène dans le corps du poisson zèbre. Grâce 

à cela, nous avons découvert une nouvelle dynamique d'infection du vitellus, jamais observée 

auparavant chez Legionella. Le vitellus est un organe essentiel au développement et à la survie du 

poisson zèbre. Cet organe est organisé en une seule macrocellule et est séparé par plusieurs 

barrières du reste du corps du poisson-zèbre, avec lequel il échange constamment des nutriments. 

En fait, jusqu'à environ 6 jours après la fécondation, le vitellus est la réserve de nutriments du 

poisson-zèbre. En fait, le vitellus est imperméable au passage des leucocytes en son sein et peut 

représenter un tissu de fuite pour l'agent pathogène. Myd88 est une protéine adaptatrice de la 

réponse immunitaire médiée par les récepteurs Toll-like (TLR). Chez la souris, la présence de cette 

protéine est essentielle pour l'activation précoce du système immunitaire en cas d'infection par la 

légionelle, en activant l'inflammation et en recrutant des leucocytes. Chez l'homme, en revanche, 

Myd88 n'a pas de rôle essentiel.  
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En nous appuyant sur les similitudes du système immunitaire de l'homme et du poisson zèbre, nous 

avons utilisé une lignée de poisson zèbre avec une expression knock-out de Myd88, observant que 

même chez le poisson zèbre, cette protéine n'est pas essentielle, comme chez l'homme. De plus, 

nous avons constaté que ce type d'infection dépend de la présence du système de sécrétion T4SS. 

En utilisant des souches bactériennes mutantes pour des gènes associés à la virulence et à l'évasion 

du système immunitaire, seules les bactéries dépourvues du système de sécrétion T4SS étaient 

incapables de pénétrer dans le vitellus et étaient éliminées par le système immunitaire en peu de 

temps. Des études récentes émettent l'hypothèse d'un rôle du T4SS dans la transformation et le 

métabolisme des nutriments, en particulier des acides gras, dont le jaune d'œuf regorge. Ainsi, 

l'infection du vitellus que nous démontrons dans cet article pourrait être associée non seulement à 

l'évasion du système immunitaire, mais aussi à l'utilisation optimale de nutriments plus complexes. 

Dans l'ensemble, cette thèse a confirmé le rôle du poisson zèbre en tant que modèle ré-émergent 

pour les interactions entre l'hôte et le pathogène. Nous avons répondu à des questions biologiques 

importantes, tout en produisant de nouveaux moyens d'étudier efficacement les interactions hôte-

pathogène et de définir des stratégies à long terme pour ce type d'expérimentation. 

 

  



12 

 

RESUMÉ COURT  

Titre : 
Un voyage avec un poisson : Explorer le poisson zèbre comme modèle pour étudier les interactions 

hôte-pathogène 

 
Résumé :  
Le poisson zèbre est de plus en plus utilisé comme organisme modèle pour l'étude des interactions 

hôte-pathogène. Cela est dû à un certain nombre d'avantages, notamment son degré élevé de 

transparence, son temps de génération rapide et son système immunitaire conservé. Dans cette thèse, 

nous avons utilisé le poisson zèbre pour étudier l'infection par trois pathogènes différents : le virus 

Sindbis (SINV), le SARS-CoV-2 et Legionella pneumophila. 

 

Nous avons d'abord étudié la voie d'invasion du cerveau exploitée par le SINV. En utilisant des virus 

marqués par fluorescence, nous avons pu suivre la progression de l'infection de la périphérie au 

cerveau. Nous avons identifié les ganglions des racines dorsales comme la porte d'entrée vers le SNC 

utilisée par le SINV pour atteindre le cerveau. Nous avons également constaté que le SINV utilise 

trois systèmes de propagation axonal ou cellule à cellule différents pour envahir le SNC. 

 

Nous avons ensuite exploré l'utilisation du poisson zèbre comme modèle d'infection par le SARS-

CoV-2. Nous avons développé un nouveau protocole d'infection et d'expérimentation du poisson 

zèbre dans des laboratoires de biosécurité de niveau 3. Nous avons testé plusieurs souches différentes 

de SARS-CoV-2 et avons pu infecter la partie caudale de la vessie natatoire de manière cohérente. 

Cependant, l'infection a entraîné une réplication virale abortive et aucune propagation ultérieure. 

Nous avons étudié le rôle du récepteur ACE2 dans cette infection et généré un modèle de poisson 

zèbre humanisé pour cette protéine, mais cela n'a pas changé le résultat. 

 

Enfin, nous avons utilisé le poisson zèbre pour étudier l'infection par Legionella pneumophila. Nous 

avons caractérisé la dynamique d'infection de Legionella chez les larves de poisson zèbre et observé 

une dynamique particulière d'infection du jaune. Nous avons constaté que la réponse immunitaire à 

l'infection par Legionella est médiée par les macrophages. Nous avons également utilisé une lignée 

de poisson zèbre avec une expression knock-out de Mydd88 pour établir une corrélation avec la 

réponse immunitaire humaine et nous avons confirmé que, contrairement aux souris, le poisson zèbre 

présente le même phénotype. Enfin, nous avons identifié une nouvelle caractéristique de l'infection 

par Legionella chez le poisson zèbre, à savoir que la bactérie peut infecter le jaune de manière 

dépendante du T4SS pour échapper à la clairance par les leucocytes et absorber les nutriments. 

 

Dans l'ensemble, cette thèse démontre le potentiel du poisson zèbre en tant qu'organisme modèle 

pour l'étude des interactions hôte-pathogène. Nous avons répondu à des questions biologiques 

importantes tout en développant de nouveaux outils et approches pour ce type de recherche. 

 
Mots clefs : Zebrafish, Danio rerio, système immunitaire, virus Sindbis, SARS-CoV-2, Legionella 
pneumophila, virus, bactérie, leucocytes, macrophages, neutrophiles, neurones, système nerveux 
central, infection, interféron, système de sécrétion de type IV 
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SUMMARY 

In the latest year, Zebrafish (Danio rerio) demonstrated its potential in host-pathogen interaction 

research. This fish model has a high degree of transparency and a fast generation time, both these 

characteristics are fundamental for high-content screening and direct observation of pathogens 

dissemination in whole live larvae. Furthermore, the zebrafish innate immune system is comprised 

of leucocytes (i.e., macrophages and neutrophils), and it is interferon-based, conserving a high 

degree of similarities with humans. 

In this thesis, we will challenge this model with different pathogens (Sindbis virus, SARS-COV2, 

and Legionella pneumophila) to highlight light positive and negative sides of zebrafish 

experimentation while answering important biological questions and developing new experimental 

tools/approaches. 

Sindbis virus (SINV) is a single-stranded positive RNA alphavirus transmitted by arthropods 

(mostly mosquitos) and able to infect humans. This arbovirus is largely used as a model for viral 

encephalitis, but, despite extensive studies on mice, the mechanisms of brain invasion and immune 

response are still largely to be elucidated. Using tolls generated by Gabriella Passoni in the lab, we 

focused on: 1) identifying the route of brain invasion exploited by SINV, 2) the role of the 

interferon system in controlling infection, and 3) exploring the possibility of using this project to 

develop mathematical models able to shed light on parameters not easily measurable by in vivo 

experimentation. 

Using viral construct expressing fluorescent reporters we followed the propagation of SINV from 

the periphery to the brain. Through high-content screening and high-resolution imaging, we 

identified the cellular population involved in the progression of the infection and multiplexed the 

imaging data with genetic expression measurement of zebrafish antiviral immunity. We identified 

in dorsal Root Ganglia (DRG) the gateway to access the CNS used by SINV to reach the brain. 

Furthermore, results showed the presence of three different axonal or cell-to-cell propagation 

systems used by SINV to invade the CNS, hinting at the possibility of a role viral reservoir for the 

spinal cord. We coupled these findings with a new perspective on the activity of interferon in 

controlling the infection outside the CNS and used the data obtained to recapitulate the dynamics 

observed in a mathematical model. 
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SARS-Cov2 is an enveloped positive single-strand RNA virus part of the highly diverse 

coronaviruses (CoVs) family. During the pandemic, to answer the pressing need for an animal 

model able to answer rapidly the biological question created by this virus, we explored the possible 

use of zebrafish larvae. To perform experiments on this pathogen we created a novel protocol for 

zebrafish infection and experimentation in biosafety level 3 laboratories. We tested several 

different strains resulting in a lack of infection and replication in most of the sites. Upon 

concentrating our effort on the swim bladder, an organ often used as a model for bladder and lung 

infection, we manage to infect consistently the caudal part of this organ. Unfortunately, this 

infection resulted in an abortive viral replication and no further propagation of SARS-Cov2. We 

investigated the relevance of the ACE2 receptor in this infection, generating a humanized zebrafish 

model for this protein, but it didn’t change the outcome. Although wild-type zebrafish didn’t prove 

a ready-to-use model, in this project we still defined the basis for further investigation aimed at 

pinpointing the cause of the abortive replication, as it may be used for future therapeutic 

applications.  

Lastly, we used Legionella pneumophila as a pathogen; a gram-negative, non-sporogenous, non-

capsule forming, and aerobic bacteria. Legionella pneumophila is the cause of Legionnaires 

disease (LD), and it is part of the Legionellaceae family. We characterized the infection dynamics 

of Legionella in zebrafish larvae, observing a peculiar dynamic of yolk infection. Results showed 

that the immune response to Legionella infection is macrophage-mediated. Furthermore, we used 

a zebrafish line with knock-out Mydd88 expression to correlate with human immune response and 

confirmed that contrary to mice, zebrafish show the same phenotype. Lastly, we identified a new 

feature of Legionella in zebrafish infection, that can infect the yolk in a T4SS-dependent way to 

escape clearance by leucocytes and be able to absorb nutrients.  

Altogether, in this thesis, we confirmed the role of zebrafish as a re-emerging model for host-

pathogen interactions. We answered important biological questions while producing new means to 

proficiently investigate the host-pathogen interactions and define long-term strategies for this type 

of experimentation. 
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SHORT SUMMARY 

 
Title :  
A journey with a fish: Exploring zebrafish as a model to study host-pathogen interaction. 

 
Abstract :  
Zebrafish are increasingly being used as a model organism to study host-pathogen interactions. This is 

due to a number of advantages, including their high degree of transparency, fast generation time, and 

conserved immune system. In this thesis, we used zebrafish to study infection with three different 

pathogens: Sindbis virus (SINV), SARS-CoV-2, and Legionella pneumophila. 

 

We first investigated the route of brain invasion exploited by SINV. Using fluorescently labeled 

viruses, we were able to track the progression of infection from the periphery to the brain. We identified 

dorsal root ganglia as the gateway to the CNS used by SINV to reach the brain. We also found that 

SINV uses three different axonal or cell-to-cell propagation systems to invade the CNS. 

 

We then explored the use of zebrafish as a model for SARS-CoV-2 infection. We developed a novel 

protocol for zebrafish infection and experimentation in biosafety level 3 laboratories. We tested several 

different strains of SARS-CoV-2 and were able to infect the caudal part of the swim bladder in a 

consistent manner. However, infection resulted in abortive viral replication and no further propagation. 

We investigated the role of the ACE2 receptor in this infection and generated a humanized zebrafish 

model for this protein, but this did not change the outcome. 

 

Finally, we used zebrafish to study Legionella pneumophila infection. We characterized the infection 

dynamics of Legionella in zebrafish larvae and observed a peculiar dynamic of yolk infection. We 

found that the immune response to Legionella infection is macrophage mediated. We also used a 

zebrafish line with knock-out Mydd88 expression to correlate with the human immune response and 

confirmed that, contrary to mice, zebrafish show the same phenotype. Lastly, we identified a new 

feature of Legionella infection in zebrafish, that the bacteria can infect the yolk in a T4SS-dependent 

way to escape clearance by leucocytes and absorb nutrients. 

 

Overall, this thesis demonstrates the potential of zebrafish as a model organism for studying host-

pathogen interactions. We answered important biological questions while also developing new tools 

and approaches for this type of research. 

 
Keywords : Zebrafish, Danio rerio, Immune system, Sindbis, SARS-COV2, Legionella, virus, 

bacteria, leucocytes, macrophages, neutrophils, neurons, CNS, infection, interferon, T4SS 
 

 



16 

 

LIST OF ABBREVIATIONS 

eGFP  Enhanced Green Fluorescent Protein 

ABC  ATP-binding Cassette  

ACE2  Angiotensin-converting Enzyme 2 

AGM  Aorta-gonad-mesonephros 

ALM  Anterior Lateral Mesoderm 

ALPK1 Alpha Kinase 1 

APCs  Antigen Presenting Cells 

ARG2  Arginase Type2 

ATP  Adenosine Triphosphate 

BBB  Blood-Brain Barrier 

BSL3  Bio-Safety Level 3 

CARD  Caspase Recruitment Domain 

CCL2  Chemokine Ligand 2 

CCR2  Chemokine Receptor 2 

CD  Connecting Domain 

cDNA  Complementary DNA 

CH  Central Helix 

CHT  Caudal Hematopoietic Tissue 

CLRs  C-type Lectins 

CMs  Convoluted Membranes 

CNS  Central Nervous System 

CoV  Coronavirus 

COVID-19 Cornavirus Disease 19 

COX2  Cyclooxygenase-2 

CP  Capsid Protein 

CRISPR Clustered Regularly Interspaced Short Palindromic Repeats 



17 

 

CSF  Colony-Stimulating Factor 

CSF1R  Colony-Stimulating Factor 1 Receptor 

CT  Cytoplasmic Tail 

CXCL  C-X-C motif Ligand 

CXCR  C-X-C motif Receptor 

DAMPs Damage-associated Molecular Patterns 

DMSs  Double-membrane Spherules 

DMVs  Double-membrane Vesicles 

DRG  Dorsal Root Ganglia 

EMPs  Erythromyeloid Progenitor Cells 

ENU  Ethyl Nitrosourea 

ER  Endoplasmic Reticulum 

ERGIC ER-Golgi Intermediate Compartments 

FP  Fusion Peptide 

GBPs  Guanylate-binding Proteins 

gRNA  Genomic RNA 

HCoV  Human Coronavirus 

HCS  Hematopoietic Stem Cells 

HIF1  Hypoxia-inducible Factor 1 

hpi  Hour Post-Inoculation 

hpf  Hour Post-Fertilization 

HSCs  Hematopoietic Stem Cells 

ICM  Intermediate Cellular Mass 

IFN  Interferon 

IFNAR Interferon‑α/β Receptor 

Ig  Immunoglobulin 

IL  Interleukin 

iNOS  Induced NO-synthase 
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IP3  Inositol Triphosphate 

IRF  Interferon Regulatory Factor 

IRGs  Immunity-related GTPases 

ISG  IFN Stimulated Gene 

LAP  LC3- associated Phagocytosis 

LCV  Legionella-containing Vacuole 

LPS  Lipopolysaccharides 

LRR  Leucine-rich Repeat Motifs 

LRT  Low Respiratory Tract 

LUT  Look Up Table 

MAVS  Mitochondrial antiviral-signaling Protein 

MERS-CoV Middle East Respiratory Syndrome Coronavirus 

MHC  Major Histocompatibility Complex 

MOMP Major Outer Membrane Protein 

mRNA  Messenger RNA 

NAM  Neurogenic Associated Microglia 

NAS  Network-attached Storage Units 

NC  Nucleocapsid 

NET  Neutrophil Extracellular Traps  

NLR  Nod-like Receptors 

NOS2  Nitric Oxide Synthase 2 

NRP1  Neuropilin1 

NSP  Nonstructural Protein 

NTD  N-terminal Domain 

OM  Outer Membrane 

ORF  Open Reading Frame 

PAL  Peptidoglycan-associated Lipoprotein 

PAMP  Pathogen-associated Molecular Pattern 
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PBI  Posterior Blood Island 

PRR  Pattern Recognition Receptor 

qRT-PCR Quantitative Real-time PCR 

RBM  Receptor Binding Motif 

RdRP  RNA-dependent RNA-polymerase 

RIG-I  Retinoic acid-inducible Gene I  

RLR  RIG-I-like Receptors 

ROS  Reactive Oxygen Species 

RTC  Replication and Transcription Complex 

SAM  Synaptic-region Associated Microglia 

SARS  Severe Acute Respiratory Syndrome 

SINV  Sindbis Virus 

SLRs  Sequestosome1-like Receptors 

SR  Scavenger Receptors 

T1/4SS Type I/IV Secretion System 

TFs  Transcription Factors 

TLR  Toll-like Receptors 

TM  Transmembrane Domain 

TME  Tumor Microenvironment 

TNF  Tumor Necrosis Factor 

TRSs  Transcription Regulatory Sequences 

TSD  Teleost-specific Genome Duplication 

VAPs  Viral Adhesion Proteins 

WEEV  Western Equine Encephalitis Virus Complex 

WT  Wild Type 
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A JOURNEY WITH A FISH: EXPLORING 

ZEBRAFISH AS A MODEL TO STUDY HOST-

PATHOGEN INTERACTION 
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Chapter 1: Introduction 

1.1 General introduction to zebrafish 

Danio rerio, commonly known as the zebrafish, is a cyprinid fish that was first described by 

Francis Hamilton in 1822, in his analysis of all the aquatic species normally living in the Ganges 

River, India (Hamilton and Hamilton, 1822). Hamilton noted that the fish was "beautiful," with 

"several blue and silver stripes on each side," which led to its colloquial name. The scientific name 

of the zebrafish has undergone several changes, but the most recent and accepted name is Danio 

rerio.  This little fish can be found in most of the Indian subcontinent (Figure 1) including Pakistan, 

Bangladesh, Nepal, and Bhutan (Parichy, 2015a).  Although Hamilton found this fish in the 

Ganges, its natural habitat is slow-paced streams, stagnant pools, and rice paddies. The water in 

these habitats can be clear or muddy, and it is often rich in vegetation. This vegetation helps to 

camouflage the zebrafish from predators. 

Zebrafish are adaptable fish and can survive in a wide range of physical conditions in the wild. 

They can live in water with temperatures ranging from 12 to 39 degrees Celsius, they can tolerate 

pH levels from 5.9 to 9.8 (Arunachalam et al., 2013; Spence et al., 2006), and they can also survive 

in water with low salinity levels. This adaptability makes zebrafish well-suited for use in research. 

In stable laboratory conditions, zebrafish require more stringent conditions to remain healthy.  
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Zebrafish are omnivores, eating insects, small zooplankton, and vegetal material (Engeszer et al., 

2007; McClure et al., 2006). In captivity, zebrafish alimentations are standardized depending on 

the developmental stage. In the first larval stages zebrafish use the nutrients contained in the yolks 

to sustain themselves, but around 6-7 days post fertilization the yolk is depleted (Charles B. 

Kimmel et al., 1995). Until 30-40 days post fertilization, when the fish are considered juveniles, 

the larvae are fed with rotifers and paramecia, to mimic the zooplankton normally eaten by 

zebrafish in nature. At the juvenile sage, the alimentation switches to the pellet, whose size 

progressively increases with zebrafish aging. The basic composition of these pellets is 

standardized, but it may partially change between different producers, normally it is good practice 

to integrate this diet with live food. As nutritional supplements, often used brine shrimps, daphnia, 

and bloodworms, although daphnia is preferred as they are easy to cultivate and control in 

laboratories (Ramsay et al., 2009). The debate on the optimal nutrition for zebrafish in captivity is 

still open, as it is widely accepted that it still needs optimization, as zebrafish have a variegated 

and active diet in nature. Indeed, further optimization can further improve the resilience of 

zebrafish in captivity, increasing resistance to pathogens and stress (Kent et al., 2009; Tsang et al., 

2020). 

Both lab and wild zebrafish have a highly developed sociality, tending to form shoals to protect 

themselves from predators (Engeszer et al., 2004; Mahabir et al., 2013; Peichel, 2004). Zebrafish 

develop and transmit to their progeny their “social imprinting”, demonstrating a high variability 

depending on the pool of zebrafish observed, regardless of their isolation in the wild or in the lab 

(Martins and Bhat, 2014; Oswald et al., 2012; Robison and Rowland, 2011).  

Even during mating, a stereotyped process, an intricate hierarchical relationship between males 

and females can form, affecting embryo production (Paull et al., 2010; Spence et al., 2007). The 

female chooses the male, partially depending on the mating ritual (the male quivering and pushing 

the female), and drives him to the oviposition sites (Paull et al., 2010; Spence et al., 2007). To add 

to this variability, in nature zebrafish procreate every monsoon season, laying thousands of eggs, 

but in the laboratory this process can be monthly, if not weekly, affecting the efficiency of embryo 

generations.  
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Furthermore, the insensibility of the handler to the fine social and environmental parameters in 

zebrafish husbandry generates a relevant variability in oviposition and fecundity of the fishes and 

affects, the time, magnitude, and quality of embryos (Abdollahpour et al., 2020; Adatto et al., 2022, 

2011). 

The life expectancy of zebrafish is fairly long as it can survive 3 years on average in the wild and 

over 5 years in laboratory conditions, whereas, at around 3-4 years starts to show muscle 

degeneration, cataracts, and other indicators of senescence (Gerhard et al., 2002; Kishi et al., 

2009). 

Due to zebrafish inhabiting small ponds, pools, and paddies, it is possible to find many different 

species in the sub-family Danioninae, which besides zebrafish include species with high variability 

in size and pigmentation. We can go from the big Danio dangila (~13 cm) to the small Danionella 

(~1 cm) (Parichy, 2015a).  

While many species of this sub-family are yet to be identified, we can ask ourselves the reason 

why Danio rerio was chosen as a model for research. The less exciting and realistic answer is that 

George Streisinger, pioneer of zebrafish uses for experimentation, selected this minnow mainly 

because was readily available, easy to use, and transparent enough, propelling the creation of 

facilities in Oregon, Tubingen, and Boston (Grunwald and Eisen, 2002a; Kinth et al., 2013; 

Ruzicka et al., 2015). 

Interestingly this opens the possibility of investigating other members of the species to find more 

adapted models depending on the field of research itself. 

The history of the use of zebrafish in the laboratory is fragmented and characterized by the 

development of tools for this fairly new animal model. 

In 1960 zebrafish started to be used as a model for embryological studies, as it offered the 

possibility to directly observe embryo development. The first decade of use of zebrafish was 

characterized by a rapid turnover in the husbandry approaches, until in 1981 George Streisinger 

and colleagues published a paper to standardize this process (Streisinger et al., 1981).  

Another big revolution, then further solidified the role of zebrafish as a transversal animal model, 

is the advent of large-scale mutagenesis tools to induce mutation and perform phenotypical studies. 
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For example, the use of ethyl nitrosourea (ENU) Driever since the early ’90s (Driever et al., 1996; 

Nüsslein-Volhard, 2012). Soon after, Kawakami published the first paper on the tol2 transposable 

element (Kawakami et al., 1998). In 2004 Kawakami showed how the Tol2 transgenesis system 

can be used to stably integrate exogenous DNA into the zebrafish genome (Kawakami, 2004). This 

has become the most popular method to generate transgenic lines by simply injecting the system 

into the embryos at the 1-cell stage.  

Another genetic tool worth mentioning is the morpholino, patented in 1985 by James Summerton 

as a “method for inhibiting gene expression”. This tool demonstrated its efficacy in zebrafish in 

2000, becoming one of the most used tools to knock down gene expression in zebrafish (Nasevicius 

and Ekker, 2000).  

Finally, in 2001, the Wellcome Trust Sanger Institute used Tubingen/AB larvae to start sequencing 

the genome of zebrafish. Efforts bore fruit in 2013 with the publication of the Zv9 assembly 

containing the 1.412 gigabases of the zebrafish genome (Howe et al., 2013). At the time of writing 

this text, the most updated zebrafish genome assembly was the GRCz11.  

While, in early 2000, many already envisioned the use of zebrafish as a model for immunology, 

toxicology, and pharmacology (Berman et al., 2005; Briggs, 2002; Vascotto et al., 2011), the role 

of zebrafish in the pure developmental and embryogenesis field solidified (Grunwald and Eisen, 

2002b).  

Nonetheless, the tireless work of researchers opened the possibility of using zebrafish as a model 

to study cancer, human genetic diseases, neurological disorders (Fontana et al., 2018; Sakai et al., 

2018; Saleem and Kannan, 2018), and cardiovascular disease (Bakkers, 2011; González-Rosa, 

2022; Wilkinson et al., 2014).  

In the field of immunology, the work of many prominent scientists was pivotal in establishing 

zebrafish as a model for host-pathogen interaction and immunological research.  

One of the pioneers in the characterization of the immune system of zebrafish is Philippe 

Herbomel, who leaped forward to the live imaging of zebrafish and discovered the primitive 

macrophages of zebrafish (Herbomel et al., 1999).  
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Besides the relevant work on innate immunity, he published several papers on host-immune 

response with Lalita Ramakrishnan, Jean-Pierre Levraud, and Emma Colucci-Guyon (Colucci-

Guyon et al., 2011; Davis et al., 2002; Levraud et al., 2009).   

Other researchers that need to be acknowledged for their work are Annemarie H. Meijer for her 

work on inflammation (Meijer et al., 2008), Philip Crosier for the work on hematopoiesis 

associated with immunity (Kalev-Zylinska et al., 2002), Herman P. Spaink for the work on 

zebrafish response to infection (Meijer et al., 2004), Anne Huttenlocher for her work on the role 

of innate immunity in regeneration (De Oliveira et al., 2016) and Stephen A Renshaw for the work 

on zebrafish-pathogen interaction (Henry et al., 2013).  

Indeed, many other researchers should be put under the spotlight due to their work on zebrafish 

immunology, and they took over the responsibility of growing this field with their work and 

passion.  

Thanks to their work zebrafish are now again under the spotlight as a model that can be adopted 

to further investigate the immune system and the host response to infection and to be used to screen 

drugs, potentially opening new doors in this field and providing a powerful tool for researchers. 
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Chapter 2: Zebrafish Immune System 

In the latest years, the attention to the field of host-pathogen research increased, due to the high 

number of re-emerging viruses and increasingly resistant bacteria. This allowed researchers 

working on zebrafish to show the potentiality of this model and its immune system.  

The first question that arises discussing an alternative model immune system is how far it is from 

the human immune system. Many different reviews tried to give a clear idea of the distance or 

closeness of zebrafish or humans (Meeker and Trede, 2008; Traver et al., 2003), but giving a 

definite answer is not biologically possible.  

Zebrafish conserve many similarities in terms of tissue and organ structure and presence. For 

example, the central nervous system, liver, heart, intestine, and muscle are already used to model 

several types of diseases (Teame et al., 2019; X. Wang et al., 2021) (Figure 2). 

From the genomic stand, we can observe that at least 70% of the human genome has one or more 

direct orthologues, and reciprocally, 69% of zebrafish genes have at least one orthologue. Among 

the human orthologues, around 47% have a one-to-one relationship with zebrafish orthologues, 

and, the remaining ones, either exhibit one-to-many or many-to-one relationships (Langheinrich, 

2003). 

When looking at OMIM (Online Mendelian Inheritance in Man) and GWAS (genome-wide 

association studies) respectively 82% and 76% of human genes associated with the genetic disease 

have orthologues in zebrafish, indicating that zebrafish have a relevant potential as a model to 

study genetic human diseases (Howe et al., 2013).  
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Between 12- and 24-hour post-fertilization, zebrafish innate immune system is solely based on 

primitive macrophages' phagocytotic activity. These first macrophages emerge from the Rostral 

Blood Island of the yolk sac (Murayama et al., 2006) and progressively invade all tissues following 

the M-CSF receptor/fms/csf1r genes pathway. Those that reach the brain differentiate in microglia 

(Herbomel et al., 2001; Oosterhof et al., 2018).  

Between 25 and 48 hours post-fertilization, a transient wave of hematopoiesis starts in the posterior 

blood island, generating erythromyeloid progenitor cells (EMPs) that are multipotent 

hematopoietic progenitor cells, that will further differentiate in macrophages, neutrophils, and 

erythrocytes (Bertrand et al., 2010; Lam et al., 2004). In the aorta-gonad-mesonephros (AGM), a 

definitive wave of hematopoiesis takes place and hematopoietic stem cells (HCS) migrate toward 

the zebrafish tail and form the caudal hematopoietic tissue (CHT), analog of mammalian fetal liver 

(Kissa and Herbomel, 2010). In the CHT, these cells expand and differentiate in myeloperoxidases 

producing neutrophils and macrophages, maturing the innate immune system (Le Guyader et al., 

2008) (Figure 4). 

An ulterior migration from the CHT starts around 5dpf with the movement of HSCs towards the 

thymus and pronephros, where the latter further develop in kidney marrow in adult fish, considered 

equivalent to mammalian bone marrow (Murayama et al., 2006).  

While at 2dpf, the innate immune system is already in place, it takes around 2-3 weeks for the 

adaptative immune system to appear. This allows us to perform studies on the pure innate immune 

system response to stimuli and pathogens.  

During these successive waves, many human homologous genes are expressed in zebrafish, such 

as gata1a, scl, and lmo2 in the erythroid lineage and pu.1 in the myeloid lineage. The RUNX, ETs, 

and C/EBP family are highly conserved and, for example, the fate towards myeloid versus 

erythroid commitment is finely tuned by the Spi1 (also known as Pu.1) and Gata1, similarly to 

humans. Focusing on the markers for macrophages and neutrophils, it is widely used respectively 

mfap4 or csf1r gene (M-CSF receptor) for macrophages and mpx gene (myeloperoxidase) for 

neutrophils. Unfortunately, both largely overlap with other genes making it difficult to perfectly 

separate different leucocitary families, especially in the first 24hpf (Zakrzewska et al., 2010).  
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2.1 Zebrafish adaptative immune system 

I this thesis we will focus on the innate immune system of zebrafish, but for the sake of 

completeness we decided to provide an complementary introduction to zebrafish adaptative 

immune system; to better encompass the potential of this model. The adaptative system starts to 

develop during the innate immune system maturation, through increased expression of rag1, rag2, 

ikaros, and lck (used as a reporter for primitive thymus) (Langenau et al., 2007; Willett et al., 

2001). In parallel with the start of the kidney definitive hematopoiesis wave, the first primitive T-

cells start to develop in the thymus and at 8dpf start to circulate. At around 20dpf the B-progenitor 

cells appear in the posterior cardinal vein and dorsal aorta (Page et al., 2013). The adaptive immune 

system can be considered mature in zebrafish at 3 weeks post-fertilization (Novoa and Figueras, 

2012). Furthermore, zebrafish lack lymph nodes, but between 3 and 5 dpf develops a lymphatic 

system (Küchler et al., 2006). Its origins are still not fully clear, but it is potentially formed by LEC 

cells originating from the thoracic duct (Yaniv et al., 2006). The main lymphoid organs are the 

kidney marrow, and thymus in juvenile larvae, and the spleen in adult fish and, in the latter, we 

have the majority of APCs (antigen-presenting cells) interaction with lymphocytes (Renshaw and 

Trede, 2012).  

Indeed, even though the interactions between the innate immune system and adaptive immune 

system are conserved in zebrafish, its cells express both MHC I and MHC II (Fischer et al., 2013).  

Similarly to humans, the thymus of zebrafish shrinks with age and its role in T-cell development 

leaves space to mature T-cells migration in the kidney marrow of adult fish (Renshaw and Trede, 

2012; Traver et al., 2003). The lag in the development of an adaptive immune system is prevalently 

correlated to B-cell development, as before 3 weeks post-fertilization, they are not fully mature 

yet (Lam et al., 2004). In zebrafish, the immunoglobulins classes are only 3 (IgD, IgM, and IgZ), 

but the overall similarity with humans still allows for the use of this model (Zimmerman et al., 

2011). Furthermore, while Page et al. well characterized through direct observation B-cell 

population in zebrafish (Page et al., 2013), Liu et al. showed that contrary to humans, in zebrafish 

doesn’t exist pre-B cell stage (Liu et al., 2017; Michelle D Peñaranda et al., 2019). Yet, zebrafish 

B-cells still need to be further explored.  
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Zebrafish T-cells were largely investigated as this model was used to characterize tumor 

microenvironment response (TME).  

Using Ginbuna carp and rainbow trout, it was identified in teleost and cyprinid the presence of 

CD8 and CD4 lymphocyte populations, which corresponds to CD8+ cytotoxic cells and CD4 + Th 

or Tregs cells (Takizawa et al., 2011; Yamaguchi et al., 2019). Furthermore, in the CD8+, named 

CD8 α+ in trout, it was detected the expression of perforin and granulysin associated with perforin-

mediated cytotoxic activity. In salmon with intestinal tumors, these cells were found to infiltrate 

the TME (Bjørgen et al., 2019) and, in Japanese flounder, express Fas ligand (Toda et al., 2011; 

Yamaguchi et al., 2019). Furthermore, in salmon was identified a clear antiviral role for this 

lymphocyte population (Somamoto et al., 2014).  

Besides CD8+ lymphocytes, zebrafish have CD4+ lymphocytes, that in teleosts are cd4-like 

paralogs cd4-1 and cd4-2 (Yoon et al., 2015).  These 2 genes differ in the Ig domain structure, with 

cd4-1 exhibiting four Ig domains like mammalian and cd4-2 having fewer Ig domains (Castro et 

al., 2011; Takizawa et al., 2016). Cd4-1 express Th1, Th2, and Th17-associated transcription 

factors and cytokines upon pathogens infection, confirming that in teleost this function is well 

conserved (Maisey et al., 2016; Takizawa et al., 2016; Yoon et al., 2015). 

In zebrafish, both Th1 and Th2 are conserved. Using viral infection and bacterial infection in 

zebrafish it was observed the expression of T-bet, the transcription factor expressed by Th1, and 

higher expression of IFN γ (Igawa et al., 2006; Mitra et al., 2010).  

In both cases, this activation is associated with IL-2 and IL22 increased expression, suggesting 

that the role of CD4+ Th1 in zebrafish is conserved, although yet to be better understood (Takizawa 

et al., 2016).  

In teleosts, Th2 is better characterized than Th1 as a transgenic zebrafish line exists to monitor 

Cd4-1+ cells in different compartments, and in salmon was confirmed, that as in humans, Th2+ 

cells in the gills express il-4/13b and gata3 (Dee et al., 2016; Takizawa et al., 2011). Interestingly, 

there are relevant similarities between zebrafish and humans in regards to CD4+ Th2, as we can 

observe the same degree of heterogeneity in relationship with a subset of Th2+ cells and the 

impairing of TIM-1 and TIM-4 sharply decrease the CD4+ T cells activation in zebrafish and 

increases proliferation of CD4+ Th2 subtype (Xu et al., 2016). 
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Alongside these subsets, a Th17 and Tregs subset were identified in zebrafish. The ROR 

transcription factor family, associated with Th17 differentiation is present in zebrafish (Flores et 

al., 2007; Monte et al., 2012). In the zebrafish spleen, upon LPS (lipopolysaccharide) stimulation 

and attenuated bacterial pathogen vaccination, we can observe expression of Il-17 (in particular 

the form Il-17A), Il-22 and ROR γt, all markers of Th17 (Gunimaladevi et al., 2006; Zhang et al., 

2013). Large numbers of Th17-like cells can be found in the gut, in association with autoimmune 

and inflammatory diseases (Coronado et al., 2019).  

Always in the zebrafish gut, we can find CD4+ Tregs with a clear immunosuppressive role 

expressing the foxp3a gene (Kasheta et al., 2017; Quintana et al., 2010). Different zebrafish 

reporters and knock-downs for this gene were produced to study the Treg-like cells and further 

investigate their role in tissue regeneration (Dee et al., 2016; Kasheta et al., 2017). Many of these 

cells were seen migrating to injured organs and damaged areas to aid in tissue regeneration, 

whereas Treg ablation impaired this process (Hui et al., 2017).  

Lastly, recent studies show that zebrafish have a γδ T cells-like population, that can recognize 

antigens regardless of the MHC, and have a cytotoxic activity, as in humans (Miao et al., 2021). 

The evidence for the presence of this cell population is related to the presence of conserved 

elements in the zebrafish genome assembly and the isolation by flow cytometry of T cells 

exhibiting the CD4-/CD8+ surface markers and patterns/morphology scatter of human γδ T cells 

(Seelye et al., 2016; F. Wan et al., 2017). As in humans, these cells are mainly located in the gut 

(Picchietti et al., 2011). 
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2.2 Zebrafish's innate immune system 

As we introduced before, zebrafish's innate immune system is comprised of well-conserved 

leucocytes.  

After the first wave of primitive macrophages, already able to phagocyte pathogens, the mature 

innate immune system of zebrafish, established as early as 3 days post fertilization, is mainly 

comprised of neutrophils, macrophages, and microglia.  

Starting from neutrophils, they are the first line of defense in zebrafish, but besides being able to 

phagocyte pathogens and cellular debris, they have many other functionalities. From secreting 

cytokines, growth factors, and lipid signaling molecules, to orchestrate the behavior of immune 

cells in the microenvironment.  

Starting from 12 hours post-fertilization, the Pu.1-expressing myeloid cells are identified. During 

the primitive hematopoiesis wave these cells migrate over the yolk and differentiate in primitive 

macrophages at 20hpf, from primitive macrophages further differentiation in neutrophils takes 

place at around 30 hours post fertilization (Harvie and Huttenlocher, 2015). Starting with the 

definitive (or multilineage) hematopoiesis wave (24hpf) subsequent population of cells migrate 

and differentiate in the CHT, ultimately becoming the precursors of neutrophils, that will appear 

at 48hpf (Henry et al., 2013). Besides the neutrophils emerging from the CHT, a part of the global 

neutrophils population in zebrafish larvae is represented by randomly migrating neutrophils in the 

head mesenchyme. Starting from 4dpf, the kidney marrow will mature becoming the definitive site 

of hematopoiesis. From 3 days post-fertilization, the neutrophils can emit a burst of ROS and 

perform NETosis, the ejection of decondensed chromatin, histones, and antimicrobial proteins to 

trap microbes and kill them (Rosowski et al., 2018). Furthermore, the role of neutrophils in 

regeneration is essential and they can reverse migrate from the wounded area to continue their 

activity. More recent findings demonstrated that neutrophils play an important role in controlling 

invasive infection in late-stage infection by Aspergillus fumigatus, Cryptococcus neoformans, and 

mycobacterium (Davis et al., 2016; Rosowski et al., 2018; Yang et al., 2012).  
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Reducing neutrophil activity in late-stage infection by mucosal candidiasis in zebrafish, through 

inhibition of CxCr2, allows for easier tissue invasion and increases the host-death ratio (Gratacap 

et al., 2017). Interestingly, while the role of neutrophils in contrasting cancer is usually more 

known, recent studies show that neutrophils, in the Kras+ astrocytes tumor line of zebrafish, can 

increase the proliferation of cancer cells (Antonio et al., 2015; Giese et al., 2019; Powell et al., 

2018)w. The main marker of neutrophils is myeloperoxidase (mpx) and lysozyme (lyz). 

While neutrophils require minimal PU.1 expression, macrophages require higher and constant 

PU.1 expression. As we said at 20 hpf we have the first wave of primitive macrophages, able to 

proliferate and perform phagocytosis. Phagocytic activity is relevant both for the removal of 

apoptotic cell debris and to eliminate microbes. Indeed, neutrophils are more apt in clearing 

surface-associated bacteria, while macrophages can eliminate blood-circulating microbes. As 

previously explained, successive hematopoietic waves progressively substitute the embryonic 

macrophages with tissue-resident macrophages and kidney marrow macrophages. Macrophages, 

like neutrophils, are involved in microbes control during infection. Depending on the pathogen, 

neutrophils may be more relevant in clearing the surface bacteria, but in others, the role of 

macrophages is more fundamental. For example, infections by Salmonella and C. neoformans 

(high-virulence H99 strain) are controlled by macrophages, as their depletion increases the 

magnitude of the infection and host death ratio (Masud et al., 2019; Tenor et al., 2015). In C. 

neoformans the fungal pathogen can replicate in the macrophages, but they are needed to control 

the infection (Bojarczuk et al., 2016). Instead, in zebrafish infection with a less virulent strain of 

C. neoformans, macrophages act as a proliferative niche for the pathogens, that can replicate in the 

macrophages themselves (Davis et al., 2016). This was observed also for Burkholderia 

cenocepacia and Talomyces marneffei infections (Mesureur et al., 2017; Rosowski et al., 2018). 

Interestingly, infection by a faster-growing strain of A. fumigatus not only demonstrated the role 

of a proliferative niche of macrophages but the role of protection from neutrophils' phagocytic 

activity (Ellett et al., 2018). 

Another fundamental role of macrophages is relative to regeneration. Damaging vessels in 

zebrafish highlighted how macrophages mediated vascular repair (Liu et al., 2016).  
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Macrophages wrap around damaged vessels in the injured site and, stimulate the regeneration 

process by priming the microenvironment and performing vessel pruning at later stages (Britto et 

al., 2018; Gurevich et al., 2018; Liu et al., 2016).  

Even in the presence of nerve injury, there is evidence regarding the importance of recruited 

macrophages in the damaged area, as they are necessary to speed up the regeneration process 

(Carrillo et al., 2016; Tsarouchas et al., 2018). 

Like neutrophils, macrophages can modulate the immune environment, and this is associated with 

the ill-named process of macrophage polarization either toward pro-inflammatory or anti-

inflammatory phenotype (Tsarouchas et al., 2018). Upon injury or infection resident macrophages 

and neutrophils start to release cytokines and other paracrine factors to induce inflammation and, 

migrating macrophages that arrive in a second wave, sustain this inflammatory state until 

resolution of the problem, whereupon these macrophages switch to anti-inflammatory/pro-

regenerative paracrine signaling (Tsarouchas et al., 2018; Villalta et al., 2008). This staple 

inflammatory scenario is well-conserved in zebrafish. Upon damage, macrophages start to express 

il1b and tnfa genes to spin up inflammation and induce proliferation in the blastemal cells, and 

recruit more leukocytes (Loynes et al., 2018; Nguyen-Chi et al., 2017). Furthermore, macrophages 

regulate neutrophils' local activation, avoiding further damage induced by the neutrophils 

themselves (Tsarouchas et al., 2018).  

Another important leukocyte population is represented by the highly heterogenic microglia. 

Microglia originates from either rostral blood island and aortic gonad mesonephros (AGM) or 

exclusively AGM. The ccl34b.1+ ameboid microglia originating from precursors from both sides 

is prevalent in developing brains, it migrates to the midline optic tectum exhibiting enhanced 

phagocytose capacity against bacteria and an important role in brain development. The ccl34b.1- 

population has a more ramified and complex morphology, acting more as a “sentinel” in the adult 

brain and can switch back to ameboid upon DAMPs or PAMPs stimuli (Ferrero et al., 2018; Lyons 

and Talbot, 2015; Wu et al., 2020; Xu et al., 2015). Interestingly, the brain population of microglia 

can be divided into neurogenic associated microglia (NAM), located in the OT  and expressing 

ccl34b.1, ctsa and ctsb, and synaptic-region associated microglia (SAM), located in the hindbrain 

and expressing c1qa and c1qc (Silva et al., 2021).  
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Due to the high heterogeneity of the microglia-like populations, the marker used to visualize 

microglia is often mpeg1, but this marked is expressed in macrophages too, leaving the 

discrimination of the two leukocyte populations to the sole anatomic position of the cells.  

To solve this problem a large effort in RNA transcriptomic is being done to identify a specific set 

of markers for microglia, but at the moment is possible to partially distinguish the microglia from 

other population using Apoeb (also expressed in other brain cells), P2ry12 and 4C4 (Butovsky et 

al., 2013; Mazzolini et al., 2020; Oosterhof et al., 2017). 

Notably, already exists several different zebrafish transgenic lines labeling leukocytes (Figure 5) 

and the list is continuously expanding. 
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2.3 Zebrafish PRRs 

The activation of the immune system upon viral infection is PAMP-dependent (pathogen-

associated molecular patterns. These are elements of pathogens that, often evolutionary conserved, 

can be detected by PRRs (pattern recognition receptors) and activate the immune response. PRRs 

can directly sense pathogens when they form DAMPs (danger-associated molecular patterns). For 

example, double-strand RNA, normally not present in cells, but produced by RNA viruses during 

the replication, can be sensed by intracellular PRRs and start the immune response. PRRs can be 

located on the cell surface, on the endosome membrane, or in the cytoplasm, and depending on the 

position, they elicit a different response (Figure 6).  

As PRRs, we can find Toll-like receptors (TLR), Nod-like receptors (NLR), RIG-I-like receptors 

(RLR), Scavenger receptors, and C-Type lectins.  

TLRs are the most studied family of PRRS and in humans encompass a family of 10 proteins. In 

general, TLRs are glycoproteins with an extracellular ligand-binding domain with leucine-rich 

repeat motifs (LRR) and an intracellular domain called TIR (Toll/Interleukine1 receptor homology 

domain). Virtually, in mammals most cells can express TLRs in response to infection, but the cells 

normally expressing TLRs are macrophages, dendritic cells, and B lymphocytes. Each form of 

TLR is specialized in detecting a specific pathogen. For example, TLR4 recognizes Gram-negative 

bacteria via LPS, TLR2 Gram-positive bacteria via LTA and TLR5 recognizes the flagellin 

apparatus. Some TLRs can detect viruses, such as TLR3 which detects dsRNA, TLR7/8 detects 

single-strand viral RNA, and TLR9 unmethylated CpG DNA in both viruses and bacteria. 

Orthologs of TLRs have been identified in zebrafish and due to gene duplication, there are TLRs 

with two or more counterparts (i.e., for TLR4 there are tlr4ba/tlr4bb). Of all the TLRs in zebrafish, 

only a few identified the ligand. Nonetheless, the ligand specificity of TLR2, TLR3, and TLR5 is 

well conserved. Besides these orthologues, there are some fish-specific TLRs, like TLR22, that 

have shown sensibility to dsRNA and PolyI:C.  
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Downstream, the adaptors identified in zebrafish are Myd88, Mal/Tirap, Trif/Ticam1, and Sarm.  

NLRs are intracellular receptors with conserved structure and their family comprises 23 proteins 

in humans. They have a C-terminal ligand binding domain and an N-terminal interaction domain 

like CARD (caspase recruitment domain), PYD (pyrin domain), or BIR (baculovirus inhibitor 

repeat) domain. In mammals, NOD1 recognizes Gram-negative bacteria and NOD2 both Gram 

types of bacteria, but both can recognize other type of pathogens too. In zebrafish NOD1, NOD2, 

and NOD3 are conserved, and their antibacterial role was confirmed with Salmonella enterica. 

Furthermore, there is a subfamily of NLRs specific to teleosts and a subfamily resembling NALPs; 

associated with inflammasome oligomerization.  

Another anti-viral PRR is the RLRs. They are cytosolic PRRs able to sense a broad range of viral 

RNA and activate the interferon (IFN) cascade. As in humans, the zebrafish RLRs family is 

comprised of 3 proteins: RIG-I, MDA5, and DXH58. The structure of these proteins in zebrafish 

is different and whilst in humans RIG-I has two CARDs domains, in zebrafish we have a single 

CARD domain. IPS-1/MAVS is the mitochondrial adaptor of RLR in zebrafish, which induces the 

expression of ISGs (interferon-stimulated genes).  

Upon activation, MAVS associates with TRAF3 (tumor necrosis factor (TNF) receptor-associated 

factor) and via phosphorylation of IRF3/7 (IFN regulatory factor) activates TBK1 (Tank binding 

kinase 1), which leads to the production of type I IFN and subsequent ISGs. 

Scavenger receptors (SR) are the least studied in zebrafish. This family of surface receptors is 

highly heterogenous and mainly expressed by macrophages, dendritic cells, mast cells, and in a 

subset of endothelial/epithelial cell types. This family is normally associated with the uptake of 

LDL (low-density lipoproteins), but it can act as PRRs for LPS, LTA, microbial surface protein, 

yeast, and CpG DNA. Upon activation, the scavenger receptors increase phagocytotic activity and 

cooperate with TLRs receptors to activate cytokine release. In zebrafish, the SRs MARCO 

(macrophages receptor with collagenous structure), able to sense for example Streptococcus 

pneumoniae, and CD36, able to sense LTA and possibly Hepatitis C virus, are conserved. MARCO 

is used as a marker for adult macrophages and cd36 expression was upregulated in zebrafish 

infected with hemorrhagic septicemia rhabdovirus and downregulated in Mycobacterium marinum 

infection. 
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Lastly, only a few C-type Lectins (CLRs) have been described in zebrafish. For example, the CLRs 

MBL (mannose-binding lectin) is present in zebrafish and plays a role in Listonella anguillarum 

resistance. DC-SIGN homolog in zebrafish has been proposed as a receptor for tissue infection by 

Aeromona anguillarum. Other CLRs specific as NK cells receptor and myeloid cell receptors were 

individuated but are yet to be characterized.  
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2.4 Zebrafish Interferon response to viral infection 

The following is an extract from: “IFN-Stimulated Genes in Zebrafish and Humans Define an 

Ancient Arsenal of Antiviral Immunity” (J.-P. Levraud et al., 2019). I had the fantastic 

opportunity to contribute to this paper and you can find the full text in the Annex 2.  

Interferon response is the hallmark of antiviral response in vertebrates, marking a largely 

conserved system that evolved from the RNA interference system of plants (Figure 7) (Guo et al., 

2018; Jean-Pierre Levraud et al., 2019). The interferon system is the first line of defense against 

viral infection, and interferons (IFNs) are class II helical cytokines. Their main function is to relay 

the detection of viruses in a paracrine fashion, inducing the expression of many interferon-

stimulated genes (ISGs). The proteins associated with ISGs prime the micro- and macro-

environment, making them resilient to viral infection. (Schoggins and Rice, 2011).  

Mammalian IFNs have been classified as type I (α, β, ω, ε, and κ), type II (γ), and type III (λ) IFNs. 

Only type I and III IFNs have a marked antiviral role, while type II IFNγ is an adaptive immunity 

regulatory cytokine that is mostly expressed upon intracellular bacterial infection. 

In zebrafish, thanks to the increasing quality of the genome assembly and functional studies, four 

interferon genes (IFNφ 1-4) have been identified. These genes conserve a degree of structural 

similarity to mammalian type I IFNs. However, the debate on the subclassing and nomenclature 

of zebrafish IFNs is still open, as convergent evolution in functionality is not associated with 

structure homology. In general, the IFNφ genes can be divided into type I IFN 1/4, using the IFN 

receptors CRFB 1/5, and type II IFN 2/3, using the IFN receptors CRFB 2/5 (Figure 8) (Gan et al., 

2020). 
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Downstream, many components of the pathway components are conserved with 1 to 1 or 1 to 2 

orthologues between zebrafish and humans. In mammals, upon IFN binding to its receptor 

(IFNAR), JAK1 and TYK2 are recruited to IFNAR and induce the phosphorylation of STAT1 and 

STAT2. The phosphorylated STAT1 and STAT2 oligomerize and recruit IRF9, forming the IFN-

stimulated gene factor 3 complex (ISGF3), that induces the transcription of ISGs. In zebrafish, we 

can find the kinases JAK1, TYK2, STAT2, and IRF9, while for STAT1 we have two paralogues, 

stat1a and stat1b.(Stein et al., 2007). 

Further regulators of ISG expression are IRF1, IRF3, and IRF7. These three factors can bind and 

activate type I IFN, increasing the expression of interferons and ISGs (Gan et al., 2020). 

Furthermore, these 3 IRFs can hetero- or -homo dimerize to recruit MyD88,  further regulating the 

type I interferon response involving more intracellular pathways (Li et al., 2016; 

Wickramaarachchi et al., 2014). 

Levraud et al. 2019 demonstrated that even by inducing only a response IFN φ1-dependent, 200 

out of the 361 zebrafish ISGs have human homologs and most of the homologs are ISGs (J.-P. 

Levraud et al., 2019). This means that there are still ISGs for whom we have yet to understand 

their functionality. Nonetheless, we can identify in MX, ISG15, TRIM5, RSAD2/VIPERIN/VIG1, 

and PKR the main ISGs induced by the interferon upon viral infection (Gan et al., 2020; C. 

Langevin et al., 2013). Besides disrupting the viral infection, some ISGs have ancillary roles in 

controlling either positively (RSAD2 and MAVS) or negatively (SOCS1/2) the IFN signaling itself 

(Chen et al., 2015; Nie et al., 2014; L. Zhang et al., 2016). Furthermore, the induction of ISGs, 

regardless of the meaning of their acronym, is not exclusively interferon dependent. For example, 

MX and RSAD2 can be directly expressed upon sensing viral infection by other cellular sensors 

(Altmann et al., 2004; Li et al., 2016).   

Besides type I interferon, in zebrafish two different genes for type II interferon, commonly called 

interferon gamma, have been found. The nomenclature of these two genes is yet to be standardized 

and not much is known about the role of these interferons (Igawa et al., 2006). While in mammals 

there is a single IFNγ receptor, in zebrafish there are two. IFNGR1-1/crfb13 preferentially binds 

IFNγ1 and IFNGR1-2/crfb17 binds IFNγ2 (H. Meijer and P. Spaink, 2011).  
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Not much is known about the function of IFNγ, but structural and functional studies showed that 

STAT1, STAT2, and STAT3 are still pivotal in the downstream pathway of IFNGR, hinting that 

the signal transduction is conserved between humans and zebrafish (Gan et al., 2020). Type II 

interferon is tissue- (Grayfer and Belosevic, 2009) and developmental-staged dependent, as it is 

mainly expressed in adults, but conserves an antiviral and pro-inflammatory role (López-Muñoz 

et al., 2011).  

Type II interferon plays a role in antibacterial response too: infection by the bacterium Yersinia 

ruckeri in fish under or over-expressing IFNγ showed that its regulation is necessary for controlling 

the infection and level of inflammation (Aggad et al., 2010; Sieger et al., 2009).  

Taken together, all the information points towards a regulatory role of interferon response, immune 

system, and inflammation for IFNγ in zebrafish, similar to the regulatory role in humans.  

Proof that the zebrafish immune system is still mostly unexplored is the recent discovery of a new 

interferon, called IFNυ. This interferon shares structural and genetic similarities with other already 

known interferons, and the first experiments with grass carp reovirus (GCRV) attributed an 

important role in the ISGs-based antiviral response (Chen et al., 2022). This interferon may play a 

role in adaptive immunity too, as it was recently shown that IFNυ is significantly expressed in B 

cells in response to SVCV infection (Hu et al., 2023). 

For both IFNγ and IFNυ, more research is needed to further characterize their role in zebrafish. 

However, their existence reinforces the potential of using zebrafish as a model for host-pathogen 

studies. 
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2.5 Zebrafish antibacterial response 

Bacterial infection of zebrafish larvae started as a tool to study this model organism's immune 

system, but the incredible results obtained pushed the researchers to exploit this model in a holistic 

host-pathogen manner. Many different bacteria were tested during the past decade to define which 

ones could use zebrafish as a model organism. 

As introduced before, the response to infection starts with the detection of PAMPs by PRRs. 

Although we tried to provide an extensive list of PRRs and their role, as we saw with the IFNs, in 

zebrafish there is still work that needs to be done to fully characterize all the PRRs available. An 

example is the recent discovery of an intracellular LPS sensor called ALPK1. Briefly, this kinase 

results able to directly bind ADP-heptose, one of the sugars in the core regions of LPSs, and 

activate independently through phosphorylation of TIFA/TRAF6 dimers, that forms oligomerized 

complex called TIFAsomes, able to induce an inflammatory response (García-Weber et al., 2018; 

García-Weber and Arrieumerlou, 2020).  

Due to the high heterogeneity of downstream pathways activated, resulting from the intrinsic 

complexity and variability of pathogenic bacteria, in the following paragraph, we will focus on 

introducing the antibacterial effectors in innate immunity.  

First and foremost, we can find the secreted peptides and lipid mediators of the innate immune 

system. These lipid mediators are cytokines, interleukins, chemokines, IFNs, and small secreted 

proteins, that, altogether can prime and polarize the micro- and macro-environments in the 

different phases of infection response and resolution (Commins et al., 2010). Cytokines are a 

family of peptides involved in a multitude of biological functions. To summarize their function, 

they are produced by cells to “communicate” with themselves (autocrine), close cells (paracrine), 

or at long distances (endocrine). This communication is as relevant as hormone production and 

their dysregulation during infection can induce a “cytokine storm” (Figure 8), a loss of control 

with overproduction of proinflammatory factors, and ultimately increase tissue damage like in 

Covid-19 (Darif et al., 2021). Pathologically speaking, cytokines are involved in many different 

diseases (i.e., autoimmune disease, cancer, and infection) (Liu et al., 2021; Propper and Balkwill, 

2022).  
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Cytokines are produced by many different cells, but the main ones are the cells of the immune 

system (i.e., macrophages, neutrophils, and monocyte) and epithelial and endothelial cells (Kany 

et al., 2019).  

The hallmarks of inflammation in mammals are TNF-, IL1, IL6, IL8, and IL2, while IL10 has 

an anti-inflammatory, pro-regenerative role. Interestingly, all these mediators are synthesized as 

precursors (Bottiglione et al., 2020). Upon activation of the immune response, they are cleaved 

and activated as a secretory faction to steer the environment.  

In zebrafish, many of these factors and their receptors are conserved, although, due to gene 

duplication, we can find many more peptides to still characterize (Figure 9). Indeed, IL1 IL8 and 

IL10 have been well studied and it was confirmed that their receptors, CXCR1/2 and IL10R1 

respectively, are well conserved (Huising et al., 2004; Oehlers et al., 2010; van der Aa et al., 2010; 

Varela et al., 2012). TNF- is another well-characterized protein, as different studies confirmed its 

role in zebrafish and the receptor structure (Campos-Sánchez and Esteban, 2021; Duan et al., 

2021). Work on Mycobacterium marinum suggests that TNF plays a proinflammatory role, well 

counterbalanced by lipoxins' anti-inflammatory role, during infection; similarly, to IL12 and IL10 

balance. A pivotal role of TNF- is the recruitment of leucocytes at the site of infection (Roca et 

al., 2008; Tobin et al., 2010). 
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Lastly, as introduced before, IFNs may play a role in bacterial infection too, although it still needs 

to be better investigated.  

If the Cytokines are the messengers and the guides of the immune system, leucocytes are the 

effectors of these messages. We have already introduced before neutrophils and macrophages. 

Both are attracted by chemokines (a class of cytokines) and partially activated by the cytokines 

while producing more to keep the dynamic shift of the environment toward pro- or anti-

inflammatory polarization.  

Neutrophils are sensitive to a wide array of stimuli, as they express more than 30 different 

receptors, that can modulate their recruitment and programming (Futosi et al., 2013). Their 

recruitment can be triggered by a wide range of chemotactic signals, including danger signals 

(ATP, H2O2, NO (nitric oxide), HMGB1), cytokines (IL8, IL1, TNF), and other chemokines 

(Leiba et al., 2023).  

Upon recruitment, neutrophils can activate phagocytosis, apoptosis, NETosis, degranulation, and 

Ros production.  

Neutrophils are highly proficient in phagocytosis and once arrive in the infected area, they start to 

phagocyte bacteria and cellular debris. In comparison to macrophages, their phagocytosis is more 

active and “vacuum” rapidly the surface of tissues. Although the efficiency of this process is high, 

bacteria evolved systems to elude or take advantage of it. Once bacteria are phagocytosed, they 

are subjected to different autophagic processes,  like xenophagy, LC3/SLR membrane repair 

process, Antimicrobial peptide delivery, and LC3- associated phagocytosis (LAP) (Figure 10) 

(Muñoz-Sánchez et al., 2020a). To understand the variability associated with the phagocytosis 

process and bacterial biology, we can use the LAP as an example. This type of phagocytosis is 

beneficial for the Salmonella typhimurium host response, but the same mechanism is detrimental 

for Staphylococcus aureus, which is responsible for delivering this bacteria to a replication niche 

(Muñoz-Sánchez et al., 2020b).  
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As explained before, neutrophils can perform NETosis, where through the ejection of chromatin 

and granular protein can form a physical and chemical structure that physically traps and kills 

bacteria. This process can be vital or suicidal (Burgener and Schroder, 2020). In the suicidal 

NETosis, neutrophils start to overproduce myeloperoxidases and Ros, while the GaderminD-p30 

complex initiates a cascade that induces cytoplasmic degranulation, histone deactivation and 

creates pores on the nuclear and cellular membrane (Hakkim et al., 2010; Kambara et al., 2018; 

Sollberger et al., 2018). Upon the pore formation, the NET shoots out of the exploding cells, 

together with the granules, ROS, and myeloperoxidases (Li et al., 2010; Metzler et al., 2014). Vital 

NETosis can be canonical or noncanonical, depending on the sensing pathways stimulated. In 

canonical vital NETosis, the neutrophils are stimulated by bacteria, bacterial product, and TLR4-

activated platelets, while in the noncanonical happens by cytosolic LPS sensing. Both these 

pathways are caspase and Gasdermin D dependent, but the neutrophils can survive the NETosis 

and keep operating normally (Byrd et al., 2013; Chen et al., 2018; T. Wan et al., 2017). In zebrafish, 

this system is conserved and dependent on caspy2-Gasdermin Eb, two paralogs mammalians of 

caspase and gasdermin, and it is activated during infections from bacteria like Edwardsiella piscida 

(Chen et al., 2021). The role of NETosis in zebrafish was confirmed for S. aurus, Shigella flexneri, 

S. typhimium, Escherichia coli, and Candida albicans (Pijanowski et al., 2013). 

Degranulation is associated with NETosis and it is induced by the same signals (Figure 11). 

Granulopoyesis is conserved between mammals and zebrafish (Bennett et al., 2001). The main 

content of granules is antimicrobial peptides (i.e., cathepsin G and lactoferrin), neutrophil elastase 

(NE), MMP-9, myeloperoxidase, and ROS (Pijanowski et al., 2013).  
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Figure 10: Neutrophils deliver multiple anti-microbial molecules. 

Microbicidal products arise from most compartments of the neutrophil: azurophilic granules (also 

known as primary granules), specific granules (also known as secondary granules) and tertiary 

granules, plasma and phagosomal membranes, the nucleus and the cytosol. BPI, bactericidal 

permeability increasing protein; H2O2, hydrogen peroxide; HOBr, hypobromous acid; HOCl, 

hypochlorous acid; HOI, hypoiodous acid; MMP, matrix metalloproteinase; 1O2, singlet oxygen; 

O2−, superoxide; O3, ozone; OH, hydroxyl radical; phox, phagocyte oxidase. Source (Nathan, 

2006). 



56 

 

Associated with both NETosis and degranulation, there is ROS production, through oxidative 

burst, highly reactive oxygen species, such as H2O2, are produced. In zebrafish, P2y receptors are 

activated by ATP released by damaged cells, inducing the activation of PlC and subsequently the 

production of IP3 and Ca2+ release from the endoplasmic reticulum. Ca2+ activates Duox1, which 

promotes H2O2 production. Part of the H2O2 produced is released during the infection (along with 

other oxygen-reactive species), while cytoplasmatic H2O2 activates NF-kb, Erk, and Jnk. This 

activates the transcriptional factor Jun and Fos, expressing proinflammatory genes such as cxcl8 

(IL8) (Martínez-Navarro et al., 2020). Furthermore, H2O2 and IL8 are powerful chemoattractants 

and activators of neutrophils themselves (Figure 11), eliciting the proinflammatory polarization of 

the environment (De Oliveira et al., 2016; Martínez-Navarro et al., 2020).  

The neutrophil’s activity must be regulated to stop the release of granules and ROS upon infection 

resolution. Different signals contribute to the shifting of the environment towards pro-regenerative, 

but oxygen plays again a major role for neutrophils. The depletion of oxygen in the infected area 

particularly stress neutrophils, induces the stabilization of hypoxia-inducible factor 1 (HIF1). This 

factor determines the destiny of neutrophils after the release of the granules and ROS. At the end 

of the infection, a consistent fraction of neutrophils is dead due to apoptosis, and its debris gets 

removed by other leucocytes, but, upon stabilization of HIF1, a considerable fraction of 

neutrophils can reverse migrate, surviving and leaving the infected area (Nathan, 2006; Schild et 

al., 2020).  Furthermore, while IL8 is a powerful chemoattractant, it is known that at higher 

concentrations in vitro, it has the opposite effect. Data demonstrates that increases in IL8 can 

induce internalization of surface receptors on neutrophils, impairing further activation and 

recruitment (Buckley et al., 2006). Furthermore, as macrophages increase in the area, they can 

reduce neutrophil activation by redox and src kinases signaling, promoting reverse migration 

(Tauzin et al., 2014). 
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Interestingly, pathogens can alter the recruitment and pro-reverse migration pathway to affect 

neutrophil activity and escape the immune system in the first stage of infection (Abtin et al., 2013; 

Gonzalez et al., 2015; Spinner et al., 2016). 

While neutrophils are the first leukocytes to be recruited upon infection, they work in tandem with 

resident macrophages, that reside in different tissues to “guard” them, and subsequently recruited 

macrophages (Hall et al., 2009; Lazarov et al., 2023; Yu et al., 2017). A simplification of this 

system tries to order the leucocyte response in successive waves, with resident macrophages 

activating first, neutrophils wave following, and macrophages slowly replacing neutrophils during 

infection (Novais et al., 2009; Silva, 2010; Silva and Correia-Neves, 2012). The same can be said 

regarding the role of macrophages during infection and damage, which can polarize towards pro-

inflammatory (M1) or pro-regenerative (M2) programming (Nguyen-Chi et al., 2015a; Rougeot et 

al., 2019; Wiegertjes et al., 2016).  

Focusing again on macrophages, these cells are pivotal in the innate immune response. Like 

neutrophils, they have a strong phagocytotic activity, are activated upon PAMPs and DAMPs 

sensing (Kapellos et al., 2016; Petrovski et al., 2007), and are recruited through the CCL2/CCR2 

and CXCL11aa/CXCR3.2 axes (Sommer et al., 2021, 2020). Once internalized in the phagosomes, 

the majority of the pathogens are eliminated by lumen acidification, nutrient restriction, and release 

in the phagolysosome lumen of antimicrobial agents and ROS(Kinchen and Ravichandran, 2008; 

Slauch, 2011). Not all pathogens are eliminated by this system, and many can survive (i.e., 

Mycobacterium tuberculosis and S. typhimurium) (Aderem and Underhill, 2003; Flannagan et al., 

2012; Ray et al., 2009). 

Furthermore, some pathogens can breach the phagolysosome and invade the cytosol (i.e. Listeria 

monocytogenes) (Ray et al., 2009). Due to this, even in macrophages, there is a highly conserved 

autophagy system, based on the detection of ubiquitinated substrates (i.e. bacterial membranes), 

non-self antigen containing phagosomes (IRGs and GBPs mediated or NLRs detection) (Yoshida 

et al., 2017). In all cases, the activation of these mechanisms contributes strongly to macrophage 

polarization toward pro-inflammatory phenotype.  

The ability of macrophages to change their nature depending on the situation of the environment 

is bound to their great genetic plasticity, which allows them to assume a variety of different gene 

expression patterns (Stout and Suttles, 2004).  
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While we will often refer to M1 and M2 to address the two extremes of macrophage expression 

profiles for the sake of simplicity, we are aware that there is a broad spectrum of macrophage 

activation (Xue et al., 2014). This is even more true when we look at the different “shades” of 

phenotypical commitment of macrophages in vivo (Ginhoux et al., 2016; Nguyen-Chi et al., 

2015b).  

The molecular markers of M1 and M2 macrophages are conserved and the most important are 

nitric oxide synthase 2 (NOS2), IFNg, TNFa, IL1b, MHC class I and II, IL13, IL4, ARG2, and 

IL10 (Figure 12) (Leiba et al., 2023). 

In zebrafish, different signals that can elicit activation or polarization of M1 macrophages are 

conserved. Besides the different DAMPs and PAMPS, calcium can trigger M1 macrophage 

activation and ROS sustains M1 polarization through NF-kB and Lyn. Furthermore, HIF1a 

activates COX2, which induces the production of PGE2, resulting in the upregulation of TNF and 

IL1  Upon activation, M1 increases substantially the production of ROS and No, with the latter 

produced by upregulation of induced No-synthase (iNOS). This is associated with the release of a 

wide range of signals and increased phagocytotic activity and upregulation of MHC molecules.  
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Instead, M2 macrophages are poorly characterized in zebrafish, as the marker of this range of 

subpopulations is poorly conserved and, in general, less studied. In general, the M2 macrophage 

denomination represents a group of different phenotypes with a minor IL12 and a major IL10 

expression (Mosser and Edwards, 2008). Cumulatively, their role is to “clean” the affected area 

from remaining debris and regulate tissue regeneration and remodeling (Leiba et al., 2023). 

Recently, it was discovered that the Wilms Tumor 1b (WT1b) factor can be found in a high level 

of expression in macrophages subpopulations that accumulate in regenerating tissue, suggesting 

that this factor may be one of the markers of M2 macrophages (Sanz-Morejón et al., 2019). 

Furthermore, Denans et al. used single-cell RNAseq to try to differentiate the different 

macrophagic populations and their expression profile in zebrafish. Interestingly they observed that 

the glucocorticoid (GR) pathway is activated in parallel with the induction of anti-inflammatory 

markers and negative regulation of ROS. During the first hour post-injury, IL10 pathway 

expression increases, and at 3 hours post-injury there is upregulation of IL4 and polyamine 

signaling, which are markers of anti-inflammatory macrophages (Denans et al., 2022). 

Nonetheless, further studies are needed to better define the anti-inflammatory macrophage 

populations, especially in post-infection environments. 
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Chapter 3:                                      
Zebrafish as a model for host-pathogen 
studies: advantages and constraints 

When performing host-pathogen studies, the careful choice of an animal model is necessary to 

obtain useful data that can enrich the puzzle of information already available on both the host 

response and the pathogen.  

When mammal models are used, a mix of different approaches are used that span from intravital 

imaging to the more classic tissue biopsy to infer the data necessary. Using these methods, the 

result obtained is tiled corresponding to different organs' susceptibility to pathogens, the host's 

local response, and the global clinical signs of the infection. After that it is the work of researchers 

to patch together these tiles to have a global view of the host-pathogen interactions. Furthermore, 

this process is time-consuming, requires a high number of specimens and communal effort.  

This is where arises a gap that can be filled by other models, and zebrafish is one of these. As we 

explained, the immune system of zebrafish is close enough to mammalians to be usable as a model. 

Furthermore, zebrafish husbandry is cheaper and offers the possibility to have hundreds of samples 

for a week when working on larvae.  

Indeed, the use of larvae offers three great advantages: 1) we can observe and manipulate the host 

immunity, 2) a small size (1 mm length for 500 µm thickness) that can be used for high-content 

studies, and 3) a fully transparent system (David M. Tobin et al., 2012; Torraca and Mostowy, 

2018).  

The transparency of zebrafish, mixed with the facility in genetic manipulation, offer the possibility 

to generate reporter organism to directly observe pathogen dissemination and immune system 

response in a whole live organism. This means that it is possible to extrapolate kinetical data and 

identify tissue interactions, the cell population involved in the infection, and the interaction 

between the cells of the immune system and the pathogen.  

This less invasive system can be leveraged to perform direct observations not possible on other 

animal models and it is a clear advantage of zebrafish (Figure 13). 
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Nevertheless, it is possible to multiplex the imaging data with RNA expression patterns by RT-

qPCR, to spatially associate gene expression to specific patterns of infection and host response.  

Furthermore, the relatively easier genetic manipulability of zebrafish allows for specific cell 

population depletion, gene expression manipulation (knock-down, knock-in, or over-expression), 

and humanization.  

All of this translates into the possibility to perform high-content screening of the whole 

population's trend of host-pathogen interaction without the need to piece tiles of a puzzle, but 

directly observe all the dynamics in vivo (Carvalho et al., 2011).  

Indeed, as with all animal models, zebrafish are still far from the perfect model.  

One of this model's biggest limits is the tools available, while the massive investment and attention 

to mammals’ experimentation (first and foremost mice) resulted in the creation and optimization 

of tools for experimentation; for zebrafish, as an alternative model, the investment was, and still 

is, marginal, resulting in fewer tools available for experimentation. For example, the number of 

antibodies available for zebrafish is a fraction of the one for mice, and the same can be said for 

other tools.  

Nonetheless, in the latest year, the interest in zebrafish as a model is increasing and new tools 

appear on the market by the day (Figure 14).  
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Another important limitation of zebrafish is that it is an aquatic model and, inevitably, some organs 

reflect these anatomical differences from mammals. For example, we lack a true pulmonary 

system. Indeed, the swim bladder can act both as a model for bladder disease (for example is amply 

used for C. albicans studies) and partially as a model for lung (Chao et al., 2010; Y. Zhang et al., 

2016).  

Furthermore, zebrafish larvae rear between 24°C and 33°C. This range of temperatures makes 

zebrafish an ill model for pathogens that need a temperature of 37°C to maintain their biology. 

Recently, it was demonstrated that elevating the water oxygenation to 150% air saturation 

(hyperoxia), makes larvae more resilient to higher temperatures, pushing the limit for their rearing 

to 36-37°C (Andreassen et al., 2022). Although this result is exciting, there is still the need to 

conduct more studies and selective breeding to effectively have zebrafish strains more tolerant to 

higher temperatures. 

Lastly, as we explained, the adaptive immune system fully develops solely in juvenile fish, while 

zebrafish larvae have only an innate immune system. For some types of host-pathogen studies, this 

could be a limitation, as it would give only partial feedback on the host's immune response to 

pathogens. Indeed, in other cases can represent an advantage if the purpose is to study only innate 

immunity response.  

Nevertheless, the use of zebrafish in host-pathogen studies is expanding and recently, researchers 

are embarking on the development of adult zebrafish as models for more complex host-pathogen 

studies (White and Patton, 2023). In the history of use of zebrafish larvae as a model for host-

pathogen studies (López Hernández et al., 2015; Sullivan et al., 2021), this model gave important 

contributions. For example, the work of Lalita Ramakrishnan on tuberculosis and zebrafish 

demonstrated that zebrafish could recapitulate mechanisms observed in humans and primates, that 

are not replicated in other mammal models (Ramakrishnan, 2013). 

To conclude, zebrafish represents an alternative model that can complement more established 

mammal and primate models to enrich the possibilities of researchers that conduct host-pathogen 

studies, offering possibilities not offered by other models.  
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Chapter 4: Aim of the work 

The red line binding together the papers presented in this thesis is the exploration of zebrafish 

larvae as a model for host-pathogen interaction, using either human viruses or bacteria. An 

important aspect of this exploration is the development and testing of new approaches and 

techniques to unveil the potential of this alternative animal model.  

I focused on the transparency of zebrafish, already a well-established advantage to develop new 

physical systems and strategies to maintain fragile infected fish under intensive imaging and 

combined this to extrapolate as much data as possible regarding the kinetics associated with the 

pathogen dissemination and host response. Multiplexing the data obtained with the genetic 

expression patterns, it was possible to effectively recapitulate the holistic dynamics associated with 

host-pathogen interactions. A further step forward was the “test” application of simple 

mathematical modeling to encompass the data obtained and demonstrate both the validity of 

zebrafish as a model for infection, able to recapitulate population dynamics and infer hidden 

information that could not be easily obtained experimentally.  

Indeed, I wanted to demonstrate that this model could be used to either observe cellular level 

immune system-pathogen interactions in vivo or obtain a large amount of multiplexable global 

dynamics data with a low variability; perfect for future application in the training of AI systems 

for in silico experiments.  

To do this I created a new physical system to stabilize environmental conditions during live 

imaging of parallel samples, while lowering anesthetic toxicity, by combinatorial anesthesia, and 

physical burden by special mounting. The large amount of data obtained pushed me to develop a 

coherent data management system and image analysis pipelines. Regarding the latter, I adopted 

the same philosophy of the paper in the Annex 1, creating a modular pipeline focused on a solid 

and adaptable approach that accounts for a certain degree of error as a tradeoff in the simplicity of 

use and variability of input. The idea is to create tools that can be accessible for everyone over 

minimal self-training and would not turn in abandonware.  
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Finally, all of this was under the umbrella of relevant biological questions aimed at unraveling the 

dynamics of pathogens and host response in a holistic way in a live organism, observing which 

tissue is affected, in which way, and how the immune system behaves differently in these 

compartments.  

In conclusion, as stated at the beginning of the paragraph, in each paper I dwelt on both the role of 

zebrafish as a model and the important biological questions I was posed and developed the first, 

to answer the questions and further investigate the biological mechanism highlighted using 

zebrafish.  

Some of the biological questions you will encounter in the following articles are: How does Sindbis 

virus propagate in zebrafish larvae? Zebrafish can be used as an animal model for SARS-COV2 

and Legionella? How does zebrafish innate immune system counter these infections? 
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Spatial dynamics of peripheral and 
central nervous system infection by an 
interferon-inducing neuroinvasive virus 

Chapter1: Introduction 

1.1 Sindbis virus 
One of the most widely spread viruses in Eurasia and Africa is the Sindbis virus (SINV), a zoonotic 

alphavirus of the Togaviridae family. This virus is part of the arthritogenic alphavirus, that can 

induce chronic arthritis in humans, like the Chikungunya virus and Ross River virus. From the 

phylogenetic point of view, SINV is an “Old World” virus (accordingly to geographical placement) 

and belongs to the Western Equine Encephalitis virus complex (WEEV). Notably, SINV is the only 

Encephalitic alphavirus of the WEEV complex outside America (Adouchief et al., 2016a).  

SINV is an enveloped spherical ssRNA-positive virus, of 70 nm in diameter. The capsid is formed 

by 240 monomers and assumes an icosahedral shape, while the lipid-based envelope is host cell-

derived and covered with 80 trimeric spikes consisting of three heterodimers of E1 and E2 

glycoproteins. The genome size is 11.7kB and has two open reading frames, generating separate 

mRNA replicons for 2 types of proteins: 4 nonstructural (NSP1-4) and 5 structural (C, E1, E2, E3 

and 6K) (Figure 15) (Strauss et al., 1984; James H Strauss and Strauss, 1994). 
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SINV is internalized by clathrin-mediated endocytosis and upon low-ph-mediated fusion the 

capsid is released in the cytoplasm. After capsid disassembly, the first replication of non-structural 

polyproteins (nsPS) takes place using the 5’ ORF. The structural proteins are produced a second 

time from the subgenomic 26S unit using the 3’ ORF.  The USPS forms a replication complex with 

host proteins and viral RNA. nsP1 has guanine-7-methyltransferase and guanylyl transferase 

activities, necessary for the capping and methylation of the synthesized genome. nsP2 has on the 

N-terminal domain helicase and triphosphatase and C-terminal domain protease activity. nsP3 acts 

as a phosphatase too and, lastly, nsP4 has RNA-dependent RNA-polymerase (RdRP) activity. The 

nsPs forms a replication complex with host proteins and viral RNA to synthesize full-length minus 

strand, which will be utilized as a template to produce copies of positive strands RNA and sub-

genomic RNA. The structural proteins are transferred as pre-cleaving polyproteins to the Golgi, 

where furin cleaves the E2-E3 bond. The E1-2-3 heterotrimers interact with the C protein on the 

plasma membrane, forming an envelope-like structure around the forming nucleocapsid. The 

emerging capsid pulls with them the newly host-derived envelope, budding from the cells (Figure 

16) (Carrasco et al., 2018; Leung et al., 2011).  

The viral adhesion proteins (VAPs) and their cell surface receptor are still now well characterized, 

with scientists proposing laminin and heparan sulfate as two co-receptors for this virus (Adouchief 

et al., 2016a). Nonetheless, VAPs that could give cell specificity to SINV were suggested in the 

past years. For example, slc11a2/Nramp2 iron transporter is necessary for infection in drosophila 

and U2OS (isolated from bone sarcoma) cells, but its role has yet to be confirm on more complex 

systems(Rose et al., 2011). 
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The zoonotic cycle of SINV use mosquitos as vector and birds as amplifying hosts, but this virus 

can infect humans, small marsupials, hamsters and frogs, making its control almost impossible 

(Al-Khalifa et al., 2007; Bell-Sakyi et al., 2016; Hubálek, 2008; Kostiukov et al., 1981; KOZUCH 

et al., 1978; Lundström, 1999). 

The vector used by SINV is mainly mosquitos from Culex spp. and Aedes spp., but recently, in 

Germany, this virus was isolated in Anopheles maculipennis (Ziegler et al., 2019). The wide range 

of vectors and migratory birds that can be infected allows for the rapid spread of SINV in different 

continents and global warming is pushing this virus in the rest of Europe (Figure 17). The last 

outbreak of SINV was in Finland in 1995 with the isolation of more than 1500 patients.  

SINV is largely used as a model for viral encephalitis in mice (Sherman’ And and Griffin’, 1990), 

but its pathogenesis is still largely not known. Nevertheless, the clinical symptoms in adult humans 

are characterized. After a mosquito bites the first symptoms appear in four days, with an acute 

phase resolving in an average of 2 weeks and a hospitalization rate of 6% (Sane et al., 2011). 

Viremia in SINV infection is low with less than 103 RNA copies/ml, in comparison to 10E9-10E10 

RNA copies/ml for chikungunya (Adouchief et al., 2016a).  

The acute symptoms include itching rash, fatigue, fever, and headache, with a low percentage of 

cases with nausea, lymphadenopathy, and dizziness. After a few days, musculoskeletal symptoms 

start to appear, consisting mainly of joint symptoms (considered hallmarks of SINV disease) and 

myalgia (considered more common of arthralgia) (Adouchief et al., 2016a; Espmark and 

Niklasson, 1984). In rare cases, it is possible to observe hemorrhagic fever and viral meningitis, 

with the latter being more prominent in younger patients (Guard et al., 1982; Laine et al., 2000; 

Meno et al., 2022). 

Myalgia remains a long-lasting symptom up to more than 6 months after infection and the duration 

of this symptom depends on muscle regeneration. SINV can infect myotubes, myoblast, and 

connective tissue, inducing tissue necrosis. Interestingly, even after the resolution of muscle 

infection, the antibody titer remains high for months after the infection, hinting at the possibility 

of a yet-to-identify viral reservoir in the body (Gylfe et al., 2018; Sane et al., 2012).  
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1.2 Introduction to zebrafish CNS 

To have a clearer understanding of the following paper, it is necessary to briefly introduce zebrafish 

larvae' central nervous system (CNS).  

Zebrafish CNS comprises the brain and the spinal cord.  

Zebrafish brain is very similar in structure to that of other vertebrates and it is divided into 5 

regions: telencephalon, diencephalon, mesencephalon, metencephalon, and myelencephalon. 

Anatomically, the brain can be divided into the forebrain (telencephalon and diencephalon), 

midbrain (mesencephalon), and hindbrain (metencephalon and myelencephalon) (Figure 18) 

(Mueller et al., 2016).  

In order, the general function of each region is: 

• Telencephalon, connected in the anterior part to the olfactory bulb. This region controls 

vision, olfaction, memory, feeding, and reproductive behavior. 

• Diencephalon, composed of epithalamus, thalamus, and hypothalamus. The complete role 

of this region has yet to be discovered, but in general, it oversees sensory inputs. In 

comparison to mammals, this region lacks some characteristics in zebrafish, such as a 

connection to the isocortex (Mueller et al., 2016). 

• Mesencephalon, on the dorsal-exterior part there is the optic tectum, further divided into 

two parallel structures. The optic tectum oversees, vision, as it is connected to the optic 

nerves originating from each eye. In the ventral-interior part of the mesencephalon, there 

is the tegmentum.  

• Cerebellum, also known as the metencephalon, oversees the movement, coordinating 

proprioceptive and balance stimuli.  

• Myelencephalon, the most caudal part of the brain, from where originates the medulla 

oblongata, which connects to the spinal cord which is responsible for the autonomic 

nervous system function (respiration, cardiac and reflexes function). 

  





78 

 

It is important to briefly explain that the brain is protected by a barrier of continuous capillaries 

and specialized endothelial cells, which takes the name of the blood-brain barrier (BBB). At 3 days 

post fertilization, the BBB can block high molecular weight dyes over 900 Da; effectively blocking 

out many pathogens too (Quiñonez-Silvero et al., 2020). 

The anatomical structure of the larval zebrafish spinal cord is a meticulously organized framework 

that underlines its essential role in motor coordination and sensory processing. At the cellular level, 

the spinal cord is made up of various distinct populations of neurons and glial cells, each 

contributing to complex neural circuitry (Figure 19). The neurons of the spinal cord are organized 

into functional domains called segments, which correspond to different regions of the body. These 

segments are further divided into dorsal, intermediate, and ventral regions, each housing specific 

neuronal populations responsible for sensory relays, inter-neuronal communication, and motor 

output. Within segments of the zebrafish spinal cord, highlight the presence of diverse excitatory 

and inhibitory interneurons, motor neurons, and sensory projection neurons (Cigliola et al., 2020; 

Goulding, 2009; Lewis and Eisen, 2003; Pedroni and Ampatzis, 2019):  

- In the dorsal region we can find sensory neurons that branch on the long somatosensory 

axons that go from the tip of the tail to the hindbrain, transporting sensory information to 

the brain.  

- In the intermediate region, some interneurons form interspinal circuits necessary to 

coordinate movement and process sensory reflexes.  

- In the ventral region, there are motoneurons and axons transmitting signals from the brain 

to the periphery.  
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In addition, the indispensable contribution of glial cells, including astrocytes and 

oligodendrocytes, to neuronal support, myelination, and synaptic plasticity has been explored 

(Ackerman and Monk, 2016; Kyritsis et al., 2012). In particular, radial glia plays an important role 

in brain neurogenesis, modulating neuronal activity and brain homeostasis; functionally 

overlapping with mammals astrocytes(Jurisch-Yaksi et al., 2020). An important neuronal structure 

associated with the spinal cord is the dorsal root ganglion, these external sensory neuronal bodies 

are adjacent to the spinal cord and innervate the musculature of each somite, relaying the sensory 

stimuli inside the spinal cord. In the spinal cord, the branch and form synapses with interneurons 

and the dorsal long axon bundles (Figure 20) (An et al., 2002; Honjo et al., 2008; Kaslin and Ganz, 

2020; Kelly Kuan et al., 2004).  

 

This complex cellular composition, coupled with the precise organization of spinal cord segments, 

forms the basis of the intricate neural circuits that orchestrate locomotion, reflexes, and sensory 

integration in larvae. 
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Abstract (150 to 200 words)  34 

 35 

Organ-to-organ dissemination of viruses is a critical feature of host-virus interactions. In 36 

particular, neuroinvasive viruses are able to enter the central nervous systems (CNS), which may 37 

result in death or permanent neurological impairment. The complex mechanisms underpinning 38 

this spread are poorly understood, as they depend on a variety of parameters, including initial 39 

site of entry, route of access to the CNS, and immune responses. To better understand these 40 

phenomena, we analyzed the spatial dynamics of Sindbis virus (SINV) dissemination in 41 

transparent zebrafish larvae. Using fluorescent reporter viruses, we observed that SINV readily 42 

invaded the CNS after inoculation at various peripheral sites. While peripheral infection was 43 

transient, CNS infection was persistent and more variable. From the tail muscle, the virus used 44 

dorsal root ganglia (DRG) sensory neurons as a gateway to the spinal cord and further 45 

propagation to the brain. Within the CNS, viral dissemination resulted both from long-distance 46 

axonal transport and short distance shedding. SINV infection induced a strong and rapid type I 47 

interferon (IFN) response with a key protective role, systemic in the periphery but localized in the 48 

CNS. A mathematical model was built on this quantitative imaging foundation, that provided 49 

additional insight on strong differences in IFN responsiveness between periphery and CNS. 50 

  51 
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Introduction 52 

 53 

Invasion of the central nervous system (CNS) is one of the worst possible events during the course 54 

of a viral infection (Swanson and McGavern, 2015). This remains relatively rare because the CNS 55 

is protected by specialized barriers, notably the blood-brain barrier (BBB); but when it occurs, 56 

both the direct viral cytopathic effect and the inflammatory response induced may cause serious 57 

damage, often resulting in death or permanent neurological impairment (Venkatesan, 2015).  58 

The complex interplay between the virus and the host response has been studied in a variety of 59 

animal models, but their dynamics remain poorly understood, largely because of the difficulty of 60 

following these events in the CNS. Mathematical modeling has provided insight in viral infection 61 

dynamics, typically relying on repeated blood sampling.  62 

The larva of the zebrafish Danio rerio has recently emerged as a powerful model to study host-63 

pathogen interactions. Its small size and transparency are key advantages; by full-body intravital 64 

imaging, using pathogens encoding fluorescent reporter genes, it is possible to follow their organ-65 

to-organ dissemination in real time and at high resolution (David M Tobin et al., 2012). Here, we 66 

took advantage of these properties to understand the propagation of a neuroinvasive virus in 67 

vivo.  68 

Sindbis virus (SINV) is a single-strand positive RNA virus belonging to genus Alphavirus, 69 

transmitted by mosquitoes to its natural bird hosts but also sometimes to mammals including 70 

humans. While SINV causes only mild symptoms in humans (Adouchief et al., 2016b), other 71 

members of this genus include major human pathogens such as chikungunya virus (CHIKV) (J H 72 

Strauss and Strauss, 1994a). Several members of this group, such as Eastern Equine Encephalitis 73 

Virus and Venezuelan Equine Encephalitis Virus are known to cause fatal encephalitis in humans. 74 

While CHIKV was mostly reputed to cause arthralgia and myalgia, the massive breakthrough that 75 

occurred in La Reunion Island revealed that it was also encephalitogenic, particularly in newborns 76 

(Das et al., 2010). SINV is used to study viral encephalitis in mice; it is generally injected directly 77 

in the brain, but in can propagate from the periphery to the CNS in newborns, particularly with 78 

strains adapted by multiple intracerebral passages (Lustig et al., 1988). More generally, SINV is 79 

well known to infect neurons and it may be used as a tool to label neurons and trace neural 80 

circuits (Furuta et al., 2001).  81 

We have previously established that SINV was neuroinvasive in zebrafish larvae, relying on axonal 82 

transport, but not on BBB infection or opening, or on macrophage-mediated entry, to gain access 83 

to the CNS after peripheral inoculation (Passoni et al., 2017). SINV induced a rapid and strong 84 

type I interferon (IFN) response in zebrafish larvae after intravenous (IV) infection; knocking 85 

down IFN receptors revealed that this response was protective, preventing rapid death of 86 

infected larvae (Boucontet et al., 2018). Nevertheless, we observed that in wild-type larvae, SINV 87 

infection persisted or kept progressing in the CNS, in contrast to periphery where it appeared to 88 

be transient. Remarkably similar kinetics of IFN induction, and comparable persistence 89 

specifically in the CNS, had also been observed in zebrafish infected with CHIKV (Palha et al., 90 

2013), despite a different CNS entry route (Passoni et al., 2017). This lead us to hypothesize that 91 

localization of IFN responses may play a key role in organ-specific persistence of CHIKV (Levraud 92 

et al., 2014). 93 

 94 

 95 
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To address these issues, we decided to perform detailed and quantitative analyses of SINV 96 

propagation from periphery to CNS. Because IV injection result in variable infection patterns, 97 

presumably due to stochastic initial infection of a few cells among a very large target pool in the 98 

whole body, we tested other injection routes which also systematically resulted in CNS entry, but 99 

with a more predictable pattern. Focusing on intramuscular (IM) injections in caudal somites, we 100 

observed that infection of peripheral cells was transient, while CNS infection was progressive and 101 

more variable. We identified sensory neurons in dorsal root ganglia (DRG) as a major entry way 102 

to the spinal cord and observed short- and long-range propagation modes within the CNS. 103 

Knocking down IFN receptors resulted in much stronger infection, most notably in periphery 104 

where transiency was lost, but also in the CNS. Mathematical modeling indicated that strong 105 

differences in IFN responsiveness must exist between periphery and CNS to account for these 106 

observations, which was consistent with imaging of IFN reporter zebrafish larvae. This study 107 

paves the way for a deeper understanding of the mechanisms at play in pathogen- and host 108 

response- mediated neurological damage during viral encephalitis. 109 

  110 
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Results 111 

 112 

Organ to organ propagation of SINV 113 

 114 

 115 
Figure 1: Dynamics of infection associated to different routes of injection. 116 

A) Scheme of 3dpf zebrafish larva showing routes of injection (LEFT) and compartmentalization 117 

of larva for quantification of viral presence frequency patterns inside (red) or outside (cyan) the 118 

CNS in anterior or posterior part of the larva (RIGHT). “PC” Pericardial Cavity, “IM” Intramuscular, 119 

“IV” Intravenous and “SC” Spinal Cord. B) Representative images of larvae injected in different 120 

sites with a mix of SinV:GFP (green) and SinV:mCherry (magenta) strains, and followed for 4 days 121 

upon injection. C) Quantification of viral presence frequency patterns relative to different routes 122 

of injection divided by anterior (head)/posterior (tail) area and periphery (cyan)/CNS (red) 123 

compartments (n=24; 2 independent experiments).  Scale bar 1mm. 124 
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To establish a global picture of SINV dissemination in zebrafish larvae, we compared different 125 

routes of virus inoculation. We co-injected two viruses encoding eGFP or mCherry with an 126 

otherwise identical backbone derived from the pTE3’2J SINV clone, previously established to be 127 

a of relatively low virulence in zebrafish (Boucontet et al., 2018; Passoni et al., 2017). The 128 

concomitant injection of two colors was used to highlight eventual presence of hierarchical 129 

propagation patterns. The virus mix was injected to 3 days post fertilization larvae (dpf), either 130 

intravenously (IV), intramuscularly (IM), inside the pericardial cavity, or in the spinal cord (Figure 131 

1A). Intracerebral injection was also attempted but not pursued because of rapid mortality. For 132 

each route of injection type, two dozen larvae were followed, split over two independent 133 

experiments conducted on different weeks. Fluorescence images of infected larvae were taken 134 

daily up to 4 days post injection (dpi) using a widefield microscope at low magnification (Figure 135 

1B), allowing to follow each injected larva over time during the infection.  136 

Images were scored blindly to determine infected organs with either the eGFP or the mCherry 137 

virus (Figure 1 - source data 1). To verify that the two viruses are equally infectious, we compared 138 

the localization of mCherry and eGFP foci.  We did not notice an obvious bias except in the 139 

proximal kidney tubule, which we know result from reuptake of fluorescent proteins from the 140 

renal filtrate, which are then directed to acidified endosomes in tubule cells (Eshbach and Weisz, 141 

2017) where eGFP but not mCherry fluorescence is quenched; we also routinely observe a 142 

comparable signal in uninfected mCherry-expressing transgenic larvae. Thus, this difference in 143 

the kidney does not result from infection. We used Fisher's exact test to compare the frequencies 144 

of infection by the GFP and mCherry virus in 5 areas for the 4 injection sites and 4 time points 145 

(i.e., 80 comparisons) (Figure 1 – supplement 1). We found only 3 cases where the test indicated 146 

significantly different frequencies (p<0.05); with 80 tests performed, this is what is expected from 147 

random fluctuations. Therefore, as expected, the two viral clones display similar tropism and 148 

infection dynamics. 149 

 150 

 151 
 Figure 1 – supplement 1.  152 

Comparison of frequencies of infection by SINV-GFP and SINV-mCherry in five compartments, at 153 

different timepoints, in wild type larvae injected with a mix of 30 PFU SINV:GFP and SINV:mCherry 154 

by intravenous, intramuscular, pericardium or spinal cord inoculation. Differences in frequencies 155 

were considered to be statistically different for p<0.05 using Fisher’s exact test. 156 
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To compare the infection patterns over time and inoculation route, we tabulated the frequency 157 

of infection of 36 different body areas areas, deduced from our low-resolution images (Figure 1 158 

– source data 2) and performed principal component analysis (PCA) of this dataset (Figure 1 – 159 

supplement 2A). The two independent replicate groups at a given injection site behaved similarly, 160 

indicating that our procedure was reproducible. Spinal cord injected animals were quite separate 161 

from other samples. Interestingly, all groups showed a similar trend towards a higher PC1 162 

coordinate value with time, with peripherally injected animals progressively getting closer to 163 

spinal cord injected animals.  Accordingly, the sites with the highest positive weights in PC1 were 164 

the brain and spinal cord regions (Figure 1 – supplement 2B). Thus, this evolution in the PCA plane 165 

over time essentially reflects the progressive invasion of the central nervous system by this 166 

neuroinvasive virus. 167 

Bloodstream injection (Figure 1B, first row) yielded the broadest pattern of early infection. Tail 168 

muscle was often infected, undoubtedly because of the needle having to pass through somite to 169 

reach the main tail blood vessels. This is reflected by the close trajectories of IV and IM groups 170 

on the PCA graph (Figure 1 – supplement 1B). Positive organs distant from the injection site, and 171 

thus likely infected by bloodborne virus, included the liver, jaw, gills, heart, peripheral nerve 172 

ganglia, and the conspicuous syncytial yolk cell. Infection of these distant sites was quite variable 173 

from larva to larva. Consistent with our initial description of the SINV model in zebrafish (Passoni 174 

et al., 2017), infection propagated later to the central nervous system, where it lasted, unlike 175 

peripheral infection which was mostly transient. We plotted the frequencies of infection of 176 

significant areas of peripheral tissue and CNS in the anterior and posterior regions (Fig 1C) and 177 

this trend is observed in both regions. 178 

 179 

Intramuscular injections (Figure 1B, second row) resulted in a more localized pattern. Early 180 

injection was typically restricted to the injected somite, then propagated to the closest somites 181 

(but rarely beyond) and often to nearby fin mesenchyme. Spinal cord infection almost 182 

systematically ensued, first at the position slightly anterior to the injected somite, then 183 

propagating both anteriorly and posteriorly. Occasional infections were observed in the anterior 184 

regions (Figure 1C) presumably because of some leakage of the inoculum into the blood when 185 

injecting IM. 186 

 187 
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 188 

Figure 1 – supplement 2.  189 

A) Principal component analysis of the frequency table of infection, comparing the different 190 

injection sites and the different time points (d1 and d4 correspond to day 1 and 4 post inoculation; 191 

arrows show time progression for a given group of larvae; intermediate days not shown for 192 

clarity) . The two independently injected groups for each site were treated separately to assess 193 

reproducibility. B) table of weights (loadings) of each body region in the PCA analysis. The red 194 

oval contains CNS regions.   195 

Pericardial cavity injections (Figure 1B, third row) also resulted in a reproducible pattern. Heart, 196 

gill, and jaw mesenchyme were infected early, as well as mandibular muscles. Infection then 197 

propagated to the hindbrain. Remarkably, infection was never observed in the posterior region 198 

(Figure 1C). 199 

Spinal cord injections (Figure 1B, fourth row) resulted in early infection of entire segments of the 200 

spinal cord, which then propagated to the rest of the spinal cord, hindbrain, and rest of the brain. 201 

Some tail muscle infection was also observed at early times; we interpret this as a primary event 202 

because the needle had to pass through muscle to reach the spinal cord. By contrast, almost no 203 

infection of anterior peripheral regions was observed (Figure 1C). 204 

A striking mutual exclusion of the eGFP and mCherry positive cell patches was observed in spinal 205 

cord injected larvae (Figure 1B). On closer examination, it was also systematically observed at 206 

other sites with all injections. The only cell for which we observed unquestionable co-infection 207 

by SINV-GFP and SINV-mCherry was the syncitial yolk cell (in 6/24 IV-injected and 5/24 IM-208 

injected larvae).  209 

Infections near the injection site almost always included both eGFP and mCherry positive cells; 210 

by contrast, infected patches appearing at a distant site (except yolk) were typically single-211 

colored, indicating initial seeding by a single virion. 212 
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A bottleneck effect was also observed for neuro invasion events: among 20 IM-injected larvae 213 

with clear dual color initial muscle infection, 12 later displayed dual-color and 7 single-color 214 

invasion of the spinal cord; while among 24 pericardium-injected larvae with dual color infection 215 

of the jaw/gill area, 7 later had a dual-color infected brain and 15 a single-color infected brain. 216 

Assuming that multiple instances of BBB crossing occur independently from each other, we can 217 

calculate using Poisson's law (Figure 1 – supplement 3) that there are ~3 events of successful CNS 218 

entry (range, 1.7 to 4.4) after IM injection and ~2 such events (range, 1.2 to 2.6) after pericardial 219 

injection. 220 

In the tail, infection of caudal muscles preceded invasion of spinal cord, while anteriorly, infection 221 

of facial/jaw muscles preceded hindbrain invasion , which was consistent with the axonal 222 

transport of SINV we had established previously (Passoni et al., 2017). For the rest of the study, 223 

we decided to focus on IM tail injections because of its clear pattern of muscle to spinal cord 224 

propagation, relative thinness of the infected region facilitating imaging, and relevance for entry 225 

route of this mosquito-transmitted virus. 226 

 227 

 228 

 229 

230 
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Sensory and motor neurons contribute to spinal cord invasion 250 

 251 

In our earlier work (Passoni 2017), we had already noted that infection of muscle fibers was 252 

followed by infection of neurons that innervate this somite.  Here, we analyzed these events in 253 

greater detail by inoculating SINV-mCherry to Tg(elavl3:GFP) (also known as HuC:GFP) reporter 254 

zebrafish, labelling all neurons, or Tg(vsx2:GFP) (also known as axl1:GFP), labelling many 255 

interneurons. Time-lapse imaging by confocal microscopy detected the first infected cells at ~7 256 

hours post-injection (6.86±0.38 hours, mean±SD, n=7 larvae). During the first 24 hours, infection 257 

progressed in the periphery (Figure 2A; movie S1); infected cells prominently included muscle 258 

fibers but also numerous stromal cells between myotomes (in myoseptum and myocommata), in 259 

the caudal hematopoietic areas, in the conjunctive tissue dorsal to the somites (Figure 2A, top 260 

row, movie S1), and sometimes in fin mesenchyme (Figure 2B, movie S2).   261 

During the second day pi, infection largely stalled in the periphery (Figure 2A, bottom row; movie 262 

S3). Interestingly, movement of bright mCherry specks was often observed, suggesting that 263 

fragments of dead infected cells had been phagocytosed by a wandering leukocyte (movie S3). 264 

By contrast, infection started to be detectable in the spinal cord. When a neuron got infected, 265 

we first observed fluorescence in its soma, and labelling of its axon a few hours later, as expected 266 

for a soluble fluorescent protein produced in the soma. The first visibly virus-fluorescent axons 267 

invariably innervated the infected muscle area, suggesting that this axon had carried the virus to 268 

the spinal cord a few hours earlier (Figures 2B, C). 269 

The somitic muscle is innervated by motor and by sensory neurons. To identify which neuron 270 

subtype was infected first, we performed time-lapse imaging of the infection using the 271 

motoneuron reporter line Tg(mnx1:GFP) infected with SINV-mCherry. We could identify the first 272 

neurons becoming infected, first by their soma becoming mCherry-positive and a few hours later 273 

by their axons being labelled. Figure 2C and movie S4 show infection of neuron that became just 274 

visible at 24 hpi, at the start of the timelapse. Three hours later, its axon was visibly labelled; as 275 

expected, it innervated the infected ventral trunk area. This axon ran close but distinct from that 276 

of the GFP+ motor neurons, and 3D reconstruction (movie S5) indicated that the soma of this 277 

axon was located lateral to the spinal cord, in a dorsal root ganglion (DRG). Thus, in this case, the 278 

first infected neuron was a sensory DRG neuron.  279 

 280 

  281 
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 282 
Figure 2: Timelapse imaging after IM inoculation of SINV, showing infection of the somite and 283 

identification of the first infected neurons.  284 

Confocal in vivo imaging of zebrafish larvae expressing GFP transgenes (green) infected IM with 285 

SINV:mCherry (magenta), maximal projections. A) Selected time-points from timelapse of 286 

Tg(elav3:GFP) larvae showing somite infection developing during the first and second days. Note 287 

that top and bottom rows correspond to two different larvae. Yellow arrowheads point to a 288 

wandering leucocyte containing fluorescent material. Black arrow points to a dying muscle fiber. 289 

B) Selected time-points from in vivo timelapse of a Tg(axl1:GFP) larva showing infected neurons 290 

innervating the infected zone in the ventral somite. Green-filled arrowheads point to an infected 291 

neuron with its axon already labelled by mCherry at start of timelapse; red-filled arrowhead point 292 

to another neuron with its axon becoming visibly labelled only later. The dotted line indicates the 293 

boundary between the trunk and the ventral fin. C) Selected time-points from in vivo timelapse of 294 

an infected Tg(mnx1:GFP) larva, revealing that the first infected neuron is not a motoneuron as 295 

its axon is not labelled by GFP. D,E) Confocal images of infected Tg(ngn1:GFP), showing infection 296 

of a DRG sensory neuron (D) and of a motor neuron (E). Scale Bar, 200µm in A-C, 100µm in D-E. 297 
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To directly visualize infection of sensory DRG neurons, we inoculated SINV-mCherry into 298 

Tg(ngn1:GFP) fish, in which these cells are strongly labelled. We confirmed that a DRG sensory 299 

neuron often became infected before spinal neurons (Figure 2D; movie S6). In at least one case, 300 

however, when starting the time-lapse at 25 hpi, the most heavily infected neuron was clearly a 301 

motoneuron (Figure 2E), movie S7); a DRG sensory neuron was also infected, but its axon, unlike 302 

the axon of the infected motoneuron, was not mCherry-positive, indicating it had been infected 303 

later. Thus, both sensory and motor neurons may be the first infected neuron mediating SINV 304 

entry to the CNS.  305 

Overall, our data suggest that CNS entry may be slightly more frequent via sensory neurons than 306 

via motoneurons; indeed, from our timelapse movie series, we observed that, at 24 hpi, one or 307 

more DRG neuron was already infected in 6 out of 8 fish, while one or more motoneuron was 308 

infected in 4 out of 8 fish. Considering that our statistical analysis from 2-color virus IM injections 309 

revealed 3 independent CNS entry events on average, entry in the spinal cord may be mediated 310 

by both muscle-innervating neuronal subtypes in a given fish. 311 

 312 

 313 

  314 
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Short- and long-range dissemination of SINV within the spinal cord 315 

 316 

We then examined how the infection propagates inside the CNS. We hypothesized that the virus 317 

could propagate either to its direct neighbors after budding from the soma or to distant cells 318 

using axon-mediated travel. Our high-resolution time-lapses revealed both short- and long-319 

distance dissemination in the spinal cord. In one case (Figure 3A, Movie S8) starting at 24 hpi we 320 

initially see an infected motoneuron (magenta arrow) and, 50µm rostrally, three infected 321 

neurons close to each other (green arrow).  In a few hours, we can detect a group of newly 322 

infected neurons surrounding this latter cluster (yellow arrows), as well as an isolated neuron 323 

100µm upstream (cyan arrow), with a few immediate neighbours becoming fluorescent later 324 

(blue arrow). By 38hpi, axons that connect the long-distance clusters became visibly fluorescent.    325 

Secondarily infected neurons were observed in all zones of the spinal cord without an obvious 326 

preference and included some axl1+ interneurons (not shown).  327 

This axon-mediated propagation could span very long distances, as seen on fig 3B, where we see 328 

the appearance of infected cells in the hindbrain between 82 and 96hpi, more than one 329 

millimeter away from the entry site in the spinal cord. Such a propagation to the brain was 330 

however not systematic; the larva shown in 3C, injected on the same day as the one in 3B, had a 331 

stronger and locally increasing spinal cord infection, but it did not propagate to the brain. 332 

Long spinal axons labelled by the virus reporter could be detected either in the dorsal or the 333 

ventral spine (Figure 3D), suggesting that long distance propagation is mediated either by sensory 334 

or motor pathways. 335 
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Figure 3: Propagation of SINV within the CNS.  337 

A) Progression of SINV infection in the spinal cord,  confocal timelapse (40x objective) 338 

Tg(ngn1:GFP) (GFP not shown, see movie S7 for uncropped two-color images) infected IM with 339 

 SinV: mcherry, mCherry shown in grayscales. Neurons already infected at onset of the timelapse 340 

are shown with a magenta arrow (motoneuron) and green arrow (three neurons inside the cord).  341 

As infection progresses, a distant rostral neuron becomes infected (cyan arrow), while more 342 

neurons also become infected in the close vicinity of previous ones (yellow and blue arrows). 343 

B,C) Time points from confocal acquisition (10x objective)  of Tg(mnx1:gal4; UAS:nfsB-mCherry), 344 

in magenta, infected with  SinV:GFP (green). Arrows indicates infected cells: B) Long distance 345 

dissemination of SinV in absence of intermediate clusters between first point of entry in the spinal 346 

cord and brain secondary infection C) Short distance dissemination of SinV by clustering from 347 

primary point of entry in the spinal cord and secondary cluster in direction of the 348 

brain. D) Confocal images (40x objective) of infected long somatosensory axons connecting brain 349 

and periphery of Tg(ngn1:GFP) infected Intramuscularly with 30 PFU  SinV:mCherry (magenta). 350 

Arrows indicates infected DRGs and dotted line delimit respectively dorsal somatosensory long 351 

axons (Top) and ventral somatosensory long axons (Bottom). Black and white images shows only 352 

the SinV:mCherry channel.  Between dotted lines: infection of dorsal (top) and ventral (bottom) 353 

long somatosensory axon bundle. Yellow arrow: infected DRG.. Scale bar highlight as they ar not 354 

visible on the panels 355 

  356 
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Death of infected sensory neurons  357 

 358 

Although we imaged hundreds of infected neurons in our time-lapse experiments, their death 359 

was rarely observed and, because of considerable interindividual variability it was not possible 360 

to infer a post-infection survival time. Death of infected DRG sensory neurons was repeatedly 361 

seen, however (see below). In addition, since DRG neurons have a stereotypical distribution and 362 

are easy to count in the Tg(ngn1:GFP) transgenic fish, we observed that when we started imaging 363 

IM-injected fish at 48 hpi or later, some DRG neurons were typically already missing at the level 364 

of the initial injection (1.57±0.90 at 72 hpi, n=7). Thus, infected DRG sensory neurons probably 365 

survive infection for a shorter time than spinal neurons. 366 

Interestingly, when an infected DRG neuron dies, its synaptic connections may survive it briefly. 367 

By timelapse imaging of Tg(ngn1:GFP) larva infected with SINV-mCherry, we observed a dorsal 368 

spinal axon decorated with double-labeled speckles, upstream and 120µm downstream of an 369 

infected DRG neuron. This is consistent with the typical size and T-shape of the spinal axon tract 370 

of DRG neurons (Bernhardt et al., 1990), and we interpret these speckles as synapses of this 371 

infected DRG neuron onto the ascending somatosensory tract. The abrupt death of the neuron 372 

coincided with the disappearance of the rostral-most speckle, and shortly followed by 373 

progressive loss of other speckles, with the 7 caudal-most ones disappearing synchronously 374 

about 1 hour after the soma (figure 3 - supplement 1; movie S9).  375 

  376 
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 377 

Figure 3 – supplement 1. Death of an infected DRG neuron.  378 

Confocal imaging (40x objective), maximal projection of Tg(ngn1:GFP) larvae infected IM with 379 

SINV:mCherry (magenta), derived from movie S9. A) Superposition of the two channels, with long 380 

dorsal axons between dotted lines, yellow arrows indicating speckles and cyan arrow indicating 381 

infected DRG neuron. B) Selected time points of solely GFP channel. Long dorsal axons between 382 

dotted lines, yellow arrows indicating speckles and cyan arrow indicating infected.  383 
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Entry via sensory neurons favours brain infection 385 

 386 

To functionally test for the relative role of motor and sensory neurons in spinal cord invasion, we 387 

performed depletion experiments (Figure 4). DRG neurons were prevented from differentiating 388 

from neural crest by injecting in eggs an antisense morpholino targeting the erbb3b transcripts 389 

(Dooley et al., 2013) (Figure 4A-D). Motor neurons were transiently depleted by a chemogenetic 390 

approach, treating Tg(mnx1:gal4 ; UAS:nfsB-mCherry) larvae with metronidazole (MZ) prior to 391 

infection (Davison et al., 2007) (Figure 4E-H). After infection by SINV, spinal cord was invaded in 392 

all groups (Fig 4B,F), consistent with the notion that both sensory and motor neurons may carry 393 

the virus from periphery to CNS. One notable difference, however, was that propagation of the 394 

infection to the brain was rarer in DRG-depleted animals, while its frequency was unchanged in 395 

MN-depleted ones (Figure 4CG). Thus, the sensory neuron route appears to provide a privileged 396 

way to reach the hindbrain. 397 

 Unexpectedly, somite infection was more persistent in DRG-depleted, but not MN-depleted 398 

larvae (Figure 4D,H).  399 

 400 

 401 
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SINV induces a strong IFN response, associated with transient peripheral infection 413 

 414 

After this qualitative analysis, we performed quantitative measurements of infection dynamics 415 

after IM inoculation.  416 

First we performed qRT-PCR on whole larval lysates to measure the expression of viral and host 417 

genes.  Strong expression of viral transcripts was measured at 24 hpi, remained stable at 48 hpi; 418 

a stronger dispersion was observed at 72 hpi, with a ~10 fold decrease in most animals but no 419 

decrease in a few others (Figure 5A). A strong type I IFN response was induced, with a sustained 420 

ifnphi1 induction (Figure 5B) but transient ifnphi3 induction (Figure 5C). Accordingly, MXA, which 421 

as an ISG can be induced by both IFN1 and IFN3 (Aggad et al., 2009), was induced in a strong, 422 

sustained manner (Figure 5D). 423 

After this whole-body analysis, to distinguish the dynamics of infection in periphery from CNS, 424 

we designed a semi-automatic 2D image analysis pipeline (Figure 5E; see methods). By 425 

segmenting the virus-encoded fluorescence signal from areas corresponding to CNS (spinal cord 426 

and brain) and periphery (rest of the body, excluding yolk and eyes), we quantified the extent of 427 

infection in these two compartments over time (Figure 5F). We verified that the data generated 428 

buy this image analysis pipeline fitted with qPCR-based quantification by infecting larvae for one 429 

to three days and imaging them before lysis and RNA extraction; the sum of periphery+CNS 430 

positive pixels was remarkably well correlated with SINV-E1 transcripts quantification in the 431 

whole larva (Figure 5 supplement 1).  432 

As expected from our initial qualitative analysis (Figure 1), infection in periphery was 433 

quantitatively transient, with a peak of fluorescence around 36 hpi, while infection in the CNS 434 

started later and increased until 4 dpi, tha latest point analyzed. Interestingly, the variance of the 435 

signal in the periphery was relatively low during the whole time-course, while it greatly increased 436 

with time in the CNS. This reflects a strong heterogeneity in individual courses of infection of the 437 

CNS (Figure 5F), with some fish that appeared to control the infection while it exploded in other 438 

ones.  439 

In conclusion, infection in the periphery is transient and consistent among individuals, with a 440 

peak at around 36 hpi; by contrast, CNS infection is progressive but also much more variable. 441 

 442 
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 451 
Figure 5 supplement 1. Correlation of qRT-PCR and image quantification 452 

N=23 infected fish + 6 uninfected. Red color indicates IFNs KD larvae and blue color control 453 

morpholino injected larvae and different shape (round, square or triangle) represents different 454 

dpi. The Y axis is relative to RT-qPCR quantification of SINV-E1 gene and X axis is relative to image 455 

analysis quantification of percentage of positive area for SINV-GFP. 456 

 457 

Type I IFN response is systemic in periphery but largely restricted to myeloid cells in CNS 458 

 459 

To better understand this difference between peripheral and CNS compartments, we imaged IFN 460 

response reporter larvae infected with SINV. Tg(MXA:mCherry) inoculated with SINV-GFP 461 

displayed strongly elevated overall mCherry fluorescence (Figure 6A,B), with a 24h-delay relative 462 

to endogenous MXA expression (Figure 5D) as previously observed with other reporter 463 

transgenes (Palha et al., 2013). Virtual sectioning (Figure 6C) revealed that the MXA:mCherry 464 

transgene was highly induced in all gut, liver and skin. However, in the spinal cord, only a few 465 

positive cells are detected, always in the vicinity of infected neurons but distinct from them. 466 

Therefore, response to IFN is systemic in peripheral epithelia but seems to be restricted to a few 467 

cells in the spinal cord. Similarly, imaging of Tg(ifnphi1:mCherry) reporter fish revealed very few 468 

positive cells inside the spinal cord, despite a clear increase of mCherry positive leukocytes at the 469 

site of peripheral infection and, to a lesser extent in the entire body (Figure 6 supplement 1). 470 

Time-lapse imaging of scattered MXA or ifnphi1-reporter positive cells in the periphery or in the 471 

spinal cord revealed that positive cells were mobile (not shown). Thus, we imaged macrophage 472 

reporter fish Tg(mfap4:mCherry). While we could not detect microglia or macrophages inside the 473 

spinal cord of uninfected larvae, a few mCherry positive cells were observed in proximity to 474 

infected spinal cord areas. Using time-lapse, we even could image macrophages entering the 475 

spinal cord, with a directionality towards the infected segments (Movie  S10, Figure 6D). 476 
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In conclusion, while we observe a systemic type I response in the periphery, only very few IFN or 489 

ISG-positive cells were observed in the spinal cord in the vicinity of highly infected areas, and our 490 

data strongly suggest that these cells are macrophages attracted to the infection site. 491 

 492 

 493 

 494 
Figure 6 supplement 1. IFNphi1 reporter cell imaging during SINV infection. Live confocal imaging 495 

of representative single larvae over time, maximal projections, merge of transmitted light and red 496 

and green fluorescence channels. 497 

 498 

 499 

 500 

 501 

Control of SINV infection by the type I IFN response 502 

 503 

To delineate the role of this type I IFN response, we used morpholinos to transiently knock-down 504 

type I IFN receptors as previously established (Palha et al., 2013). IFN-R morphant larvae IM-505 

injected with SINV displayed a more widespread and severe infection (Figure 7A; quantified 506 

below) with strong mortality (Figure 7B). Accordingly, qRT-PCR analysis revealed a higher viral 507 

burden (Figure 7C). IFN induction was stronger in IFN-R morphants, as expected from the higher 508 

viral burden (Figure 7D,E). MXA induction was lower at 24 hours (Figure 6F), as expected with 509 

IFN-R knockdown; at 48 and 72 hpi, it was similar to that of controls, still consistent with IFN-R 510 

knockdown when considering stronger type I IFN expression.   511 

To quantify the impact of IFNR knockdown in CNS and periphery, we used our image analysis 512 

pipeline (Figure 5E). Infection was quantitatively stronger both in CNS and in peripheral 513 

compartments. In IFNR morphants, infection stabilizes but does not decrease in the periphery, 514 

while massive CNS infection systematically occurs (Figure 7G). 515 
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 516 
Figure 7: Analysis of kinetics and gene expression of INF knock-down  larvae infected with SinV. 517 

A) Top: Significative fluorescent images of Tg(elavl3:GFP) larvae infected with 30 PFU  518 

SinV:mCherry IM  and injected either with IFNr or Control morpholino. The same larvae were 519 

followed each day. Bottom: Survival curve of Interferon Knock-down, wild type infected and not 520 

infected fish with 30 PFU  SinV:mCherry IM. (n=44, 2 independent experiments) B) Real time 521 

quantification of gene expressions of SINV-E1, infphi1, infphi3 and mxa of zebrafish larvae 522 

infected with 30 PFU ) SinV:mCherry IM, or uninfected (control) injected with  either IFNr or 523 

Control morpholino and sampled every 24 hours from the same experimental pool. (n=12, 2 524 

independent exp) C) Pixel quantification of SinV:mCherry signal percentage in whole body (Left), 525 

CNS (Center) or periphery (right) of IFN KD and WT larvae. Injection30 PFU  IM. (n=21, 2 526 

independent exp) (***P < 0.001; **P < 0.01; *P < 0.05; not shown - not significant) 527 
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In our previous analysis of route of SINV entry to the CNS (Passoni et al., 2017), an important 528 

observation was that the endothelial cells were not infected by SINV, excluding BBB infection. 529 

We verified if endothelium infection occurred in IFNR morphants using Tg(Fli1:GFP) larvae 530 

infected with SINV-mCherry. After fixation and transparization, high-resolution imaging could 531 

exclude infection of endothelial cells even in strongly infected IFNR morphants (Figure 7 532 

supplement 1, movie S11). 533 

Thus, type I IFN responses play a key role in controlling SINV infection, both in periphery and in 534 

CNS. Route of CNS entry does not appear to be affected by this response, however. 535 

 536 

 537 

 538 

 539 

 540 
Figure 7 supplement 1. High resolution confocal images of fixed larvae immunostained for GFP 541 

(green) and mCherry (magenta) to reveal vessels and virus-infected cells. Maximal projection. See 542 

Movie S11 for a rotating view. 543 
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Mathematical modeling of the infection 545 

 546 

To get insights into the in vivo dynamics of the infection in the whole animal, we generated a 547 

differential equation-based model, based on (Best et al., 2017), as detailed in Annex. The model 548 

considers two largely separate compartments, periphery and CNS. Briefly, each compartment 549 

includes three cellular subsets (Figure 8A): uninfected target cells, infected cells in eclipse phase 550 

(still functional and not yet producing virus), and productively infected cells entirely diverted into 551 

making new virions. Each compartment also has a pool of free virus and a pool of type I IFN. IFN 552 

induction pathways are highly conserved in zebrafish and mammals (Christelle Langevin et al., 553 

2013). We considered two ways that IFN may be produced: via the Rig-I-like receptor (RLR) 554 

pathway, detecting of viral RNA in the cell cytosol of eclipse phase cells, or via the Toll-like 555 

receptor (TLR) pathway, detecting free virions. We also considered three ways that IFN may 556 

counteract the infection: by preventing virus from successfully entering a target, by preventing 557 

eclipse phase cells from entering productive state, and by accelerating the death of productively 558 

infected cells. Ignoring the effect of IFN amounted to modeling infection in IFNR-deficient larvae.  559 

  560 





112 

 

We fitted the parameters based on available literature and our own experimental data. To better 570 

translate our image quantification data into amount of infected cells, we performed flow 571 

cytometry (FC) to estimate the fraction of infected cells in larvae. Fluorescent reporters in our 572 

SINV strains are co-expressed with viral structural proteins, which are expressed during the late, 573 

productive stage of the infection (J H Strauss and Strauss, 1994a). Control and IFNR-morphant 574 

larvae were infected IM with SINV-GFP for one to three days, imaged, then dissociated to assess 575 

the fraction of GFP positive cells by FC. Imaging and FC results were well correlated (Figure 8 576 

supplement 1), although not as well as imaging and qRT-PCR data (figure 5 supplement 1), 577 

possibly because dissociation efficiency is tissue-dependent, introducing biases. This, however, 578 

revealed that in the strongest infections, up to 20% of the cells may become GFP positive. Since 579 

not all larval cells are infectable by the virus (e.g, endothelial cells) we estimated that death would 580 

occur when half of target cells had become productively infected in the periphery. 581 

 One parameter that was difficult to assess was the rate of new virus production per infected cell. 582 

However, plausible values could be attributed to other parameters unrelated to IFN response. In 583 

IFNR-deficient larvae, rate of virus production determines when this threshold of 50% infected 584 

cells is reached. Considering that IFNR-deficient larvae typically die in two to three days from the 585 

infection, we could estimate the rate of new virus release by productively infected cells, which 586 

was surprisingly low: approximatively 1 virus per hour and per cell. The corresponding simulation 587 

is displayed on Figure 8B. 588 

To fit the parameters of IFN response in periphery, we used the fact that in IFN-competent fish, 589 

infection peaks between 24 and 48 hpi (Figure 5G); our FC data suggest that at this time point, 590 

approximatively 1% of the cells should be productively infected. We found parameter values that 591 

reasonably recapitulated this peak and the following decay (Figure 8C). For this decay to occur, 592 

the RLR pathway was required, and IFN had to accelerate the death of infected cells (see annex).  593 

 594 

 595 
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 596 
 597 

Figure 8 supplement 1. Correlation of flow cytometry measurement and image-based 598 

quantification of the number of infected cells 599 

N=24 infected fish + 5 uninfected 600 

 601 

 602 

These parameters result in a robust control of the infection, which is the situation observed in 603 

periphery. The situation in the CNS was different and parameters had to be adjusted to better 604 

reflect our results. We assumed that the BBB prevents the passage of IFN or free virions between 605 

the two compartments; the same overall model is therefore used for the CNS. Since we detected 606 

the first SINV-fluorescent neurons around 24 hpi and determined statistically an average of 3 607 

independent CNS entry events, the CNS simulation starts with 3 productively infected cells, at a 608 

time corresponding to 24hpi. 609 

Since death of infected neurons was rare, we reduced the parameter for CPE-induced death. 610 

Also, based on known properties of neurons (Viengkhou and Hofer, 2023) and our results with 611 

MXA and IFN reporter fish, we lowered the effectiveness of the RLR pathway. Our simulations 612 

still yielded a robust control if the infection. Finally, we reduced the impact of the IFN response 613 

on infected neurons and found that by making it 10 times less efficient than in the periphery, the 614 

infection would more or less stabilize close to the limit of overwhelming infection (Figure 8D). 615 

This would be as close as possible to the variable outcomes we observed, with CNS infection 616 

being sometimes controlled and sometimes not, in a model that is by essence deterministic. 617 

In conclusion, despite its limitations, our model unveiled plausible values for two unknown 618 

parameters of SINV infection in zebrafish: productively infected cells release approximately only 619 

one infectious virion per hour, and the IFN response is is ten times less efficient in the CNS than 620 

it is in periphery. 621 
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Discussion 622 

 623 

Taking advantage of the exquisite imaging assets of zebrafish larvae, we describe here in detail 624 

the spatial dynamics of a viral infection as it propagates from periphery to CNS in a whole 625 

vertebrate. Our previous work had established that SINV is neuroinvasive in zebrafish (Passoni et 626 

al., 2017). This had been performed using IV injection, yielding highly variable patterns of 627 

infection. Here, we compared several inoculation sites, and found that this variability can be 628 

reduced, although CNS invasion always occurred. When the virus was injected in the pericardial 629 

cavity, the infection was confined to the anterior half, with invasion of the hindbrain, probably 630 

via cranial ganglia. Upon IM injection in a caudal somite, peripheral infection remained localized 631 

to the tail, from where the virus invaded the spinal cord, and sometimes later spread to the brain. 632 

Subsequently, we focused on the outcome of IM injection, which reflected most closely natural 633 

SINV transmission by a mosquito bite. Furthermore, the thinness of the tail favored high-634 

resolution imaging, and the relatively simple organization of the spinal cord facilitated the 635 

analysis of CNS entry and propagation.  636 

After IM injection, SINV showed a strong tropism for muscle fibers and for stromal cells between 637 

somites or close to ventral or dorsal vessels (but not for endothelial cells themselves). This 638 

muscular tropism is relevant to the clinical features of SINV infection in humans, who sometimes 639 

develop long-lasting myalgia, associated with cycles of necrosis and regeneration in the patient 640 

muscles (Sane et al., 2012). Indeed, we observed rapid death of infected cells in zebrafish muscle, 641 

but not in a cyclical manner; in the time frame of our observations, peripheral infection appeared 642 

to be fully resolved. Although we did not analyze it in detail, muscle regeneration clearly 643 

occurred, not surprisingly considering the naturally potent regeneration abilities of zebrafish 644 

larvae. However, when IFN receptors were knocked down, the larvae lost the ability to control 645 

virus propagation in muscle, resulting in widespread areas of infection over multiple somites and 646 

subsequent extensive necrosis. 647 

Spinal cord invasion always starts in the segment that innervates the infected somite, which is 648 

entirely consistent with CNS entry by axonal transport, as demonstrated previously (Passoni et 649 

al., 2017). As this could involve either motor or sensory neurons, we used time lapse imaging to 650 

determine which became infected first. We observed both situations – and since we have also 651 

established that 3 independent CNS entries occur per larvae, entry may occur by both sensory 652 

and motor neurons in the same larva. To establish the relative importance of both gateways, we 653 

performed depletion experiments. Spinal cord invasion still occurred after elimination of either 654 

sensory or motor neurons, confirming that both populations may constitute the entry route to 655 

the CNS. Still, some remarkable differences were observed after sensory or motor neuron 656 

depletion. Most strikingly, subsequent spread of SINV to the brain was suppressed when DRG 657 

sensory neurons were depleted. This would be expected if long-distance axonal propagation of 658 

SINV was more efficient by anterograde than by retrograde transport – a hypothesis that will be 659 

put to the test in the future. Surprisingly, DRG neuron depletion also had an impact on the 660 

periphery, resulting in more extensive somite infection. This suggests that DRG sensory neurons 661 

may somehow contribute to the antiviral response, possibly by playing an important immuno-662 

sensing role. 663 

 664 
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However,  DRG depletion was achieved by knocking down erbb3b, a transcription factor 665 

expressed in neural crest progenitors, preventing them to differentiate into sensory neurons or 666 

melanophores (Dooley et al., 2013), raising the possibility that another unknown neural crest-667 

derived cell type may prevent virus spread.  668 

High-resolution imaging clearly showed that most, if not all cells infected in the spinal cord were 669 

neurons; the other prominent cell type, radial glia, would have been readily identified by their 670 

typical morphology if they had become fluorescent upon infection. We observed two modalities 671 

of virus dissemination inside the CNS: axon-mediated long-distance transport (almost always in 672 

the anterior direction) and local cell-to-cell spread, most likely by virus shedding from neuronal 673 

soma. This resulted in the formation of progressively growing clusters. Cluster formation was 674 

particularly evident in larvae directly inoculated in the spinal cord with a mixture of SINV-GFP and 675 

SINV-mCherry, where stable territories of green and red fluorescent neurons became established 676 

without mixing. This remarkable virus exclusion phenomenon was actually observed everywhere, 677 

with the notable exception of the yolk. Superinfection exclusion has been well documented for 678 

SINV, requiring at most 1h after initial infection to be established (J H Strauss and Strauss, 1994b). 679 

Unlike other cells, the very large size of the yolk syncytial cell makes it likely that it could be 680 

infected by several virions simultaneously, and more time would also be required for exclusion 681 

signals to travel to travel to the entire cell. 682 

This cluster growth played a clear role in progression of infection in the CNS, but axonal long-683 

distance spread played a decisive role, at it seeded new distant clusters in the spinal cord and, 684 

more importantly, in the brain, starting with the hindbrain where the targets of spinal neurons 685 

reside. CNS infection was highly variable among individuals, with some larvae that managed to 686 

control the virus and others where a runaway infection occurred; apparition of new clusters in 687 

the anterior spine and in the brain was a major difference between the two groups. What is 688 

causing this initial difference is unclear but clearly of critical importance; as stated above, initial 689 

entry via sensory neurons, rather than motoneurons, is likely to be a major determinant. 690 

SINV induces a strong type I IFN response in larvae. The dynamics of this response, as revealed 691 

by qRT-PCR in the whole larvae after IM inoculation, are very similar to those measured after IV 692 

infection of SINV (Boucontet et al., 2018) or of its relative CHIKV (Palha et al., 2013). The effect 693 

of knocking down IFN receptors was also similar, with a much stronger overall infection resulting 694 

in the death of most larvae within 2 to 3 days. We used reporter transgenes to assess the 695 

localization of IFN responses. ISG expression, as determined in Tg(MXA:mCherry) larvae, was 696 

highest in the gut and the skin; it was also high in leukocytes, particularly near to infected sites. 697 

Skin expression was remarkably uniform, being detected even in regions farthest from the 698 

infection, revealing a systemic IFN response in the periphery. This probably explains why SINV 699 

infection is efficiently controlled in the periphery, with a stereotypic transient infection. 700 

Interestingly, in IV-inoculated larvae, we observed at least one exception to this: when infection 701 

occurred in the swim bladder, it was highly persistent, which would be worth of future 702 

investigation. The situation in the CNS was very different, with MXA reporter expressing being 703 

restricted to a few mobile cells found only in already extensive clusters of infected neurons. It is 704 

very likely that these cells are macrophages attracted from the outside; indeed, we could 705 

document the entrance of macrophages into the spinal cord, with a clear directional tropism 706 

towards the infected clusters. What is attracting these macrophages would be an important 707 

question to address in the future. 708 
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To get deeper insights into the mechanisms by which the IFN response the infection in the 709 

periphery and in the CNS, we resorted to mathematical modeling. The parameters of our 710 

differential equation model were first determined for the peripheral compartment. After 711 

establishing various parameters based on literature or our literature data, we used simulations 712 

to fit the remaining ones. To match the survival time of IFN-R knockdown larvae, our model 713 

yielded an unexpected result for the rate of virus release by productively infected cells: about 714 

one infective virion per hour. This may appear very low since transmission electron microscopy 715 

of SINV-infected cells typically reveals many virions budding simultaneously at the plasma 716 

membrane; time-lapse imaging of tagged viruses detected several budding events per minute 717 

(Jose et al., 2015). However, it should be kept in mind that not all viral particles are infective 718 

virions; actually, comparisons of PFU titers and amount of viral genomes in typical BHK-produced 719 

SINV suspensions indicate than less than 1% of particles are infective (Poirier et al., 2015). Thus, 720 

this rate of 1 virion/infected cell/hour is not unrealistic; and it is sufficient to yield an explosive 721 

increase of the infection, if not counteracted by host immunity. 722 

Our model allowed for various modalities of IFN production and impact of IFN on the infection. 723 

Testing these in turn did not allow to reach definitive conclusions, but indicated that the RLR 724 

detection pathway was important, and that IFN is probably accelerating the death of infected 725 

cells, as we hypothesized previously (Levraud et al., 2014). One notable difference in our 726 

simulations, when comparing the different possible impacts of IFN, was in the amount of cells in 727 

eclipse phase (see Annex). These are currently undetectable in our current and developing means 728 

to visualize them would be important to test key hypotheses regarding infection dynamics in vivo. 729 

The model also suggested that IFN were much less efficient on neurons than on peripheral cells. 730 

As far as we know this has not been compared directly, but it is well established that non-731 

neuronal cells of the CNS (e.g. microglia or astrocytes) have a stronger response to IFN than 732 

neurons; furthermore, the repertoire of ISGs produced by neurons is relatively narrow 733 

(Viengkhou and Hofer, 2023). This can be understood as a tradeoff between the need to protect 734 

the CNS from viral infection and the deleterious impacts of neuroinflammation. 735 

Our mathematical modeling has important limitations. First, our choice of parameters is 736 

sometimes arbitrary, if plausible, and will have to be refined in the future. The equations 737 

governing eclipse cells are clearly too simple, since in presence of a strong IFN response, our 738 

model induce eclipse cells to remain in this state forever; a return pathway to the target state, 739 

or to a transient refractory state, should be included in a more realistic – but more complex – 740 

model. Most important for the CNS component of our model, the localization IFN response is not 741 

taken in account. In all likelihood, local neuron-to-neuron spread of the virus is soon 742 

counteracted by the local IFN response; but when axonal transfer results in a new infection focus 743 

at a very distant site, this new area is probably completely unprotected for some time. 744 

Nevertheless, the extensive of imaging data proved of high value to guide modelling and reveal 745 

novel features governing dissemination of viruses through the whole organisms, and particularly 746 

for the very important events of CNS invasion. It would be particularly relevant to adapt this 747 

approach to drug discovery, possibly with the help of artificial intelligence to better discover 748 

homologies between effective patterns and predicted drug effects.   749 

 750 

 751 

752 
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Material and methods 753 

 754 

 Ethical Statement 755 

Animal experiments described in the present study were conducted according to European Union 756 
guidelines for handling of laboratory animals and were approved by the Ethics Committee of Institut 757 
Pasteur. 758 

Zebrafish lines 759 

Zebrafish were handled as explained in (Laghi et al., 2022). Wild-type zebrafish (AB strain), initially 760 
obtained from ZIRC (Eugene, OR, USA), were raised in the aquatic facility of Institut Pasteur. After natural 761 
spawning, eggs were collected, treated for 5 min with 0.03% bleach, rinsed twice, and incubated at 28°C 762 
in Petri dishes in Volvic mineral water supplemented with 0.3 µg/ml methylene blue (Sigma-Aldrich, St. 763 
Louis, Missouri, USA). After 24 h, the water was supplemented with 200 µM phenylthiourea (PTU, Sigma-764 
Aldrich) to prevent pigmentation of larvae. After this step, incubation was conducted at 24°C or 28°C 765 
depending on the desired developmental speed. Developmental stages given in the text correspond to 766 
the 28.5°C reference (C B Kimmel et al., 1995). At 3 dpf, immediately before infections, larvae that had 767 
not hatched spontaneously were manually dechorionated. Owing to silencing issues of some UAS-driven 768 
transgenes, breeders were carefully screened to select those whose progeny yielded full expression; 769 
correct fluorescence expression by larvae was checked before experiments. Sex of larvae is not yet 770 
determined at the time of experiments.  771 

 772 

Viruses  773 

Sindbis viruses were produced on BHK cells [originally obtained from American Type Culture Collection 774 

(ATCC), #CC-L10], according to (Hardwick and Levine, 2000). The SINV-GFP strain used here corresponds 775 

to the SINV-eGFP/2A strain described in (Boucontet et al., 2018), whose genome is based on athe bybrid 776 

TE12 strain backbone. The SINV-mCherry strain was generated on the same backbone, replacing the eGFP 777 

coding sequence with mCherry. Viruses were titered on Vero-E6 cells (ATCC #CRL-1586).   778 

 779 

 780 

 781 
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Injections 782 

Injections and handling of larvae were performed as in (Passoni et al., 2017). Briefly, zebrafish larvae aged 783 
70-72 hpf were inoculated by microinjection of ~30 PFU viral SINV particles (∼1 nl of supernatant from 784 
infected BHK cells, diluted with PBS to ~3x107 PFU/ml). Before injection larvae were anesthetized with 0.2 785 
mg/ml tricaine and positioned and oriented in the groove molded in 2% low melting agarose. Using a 786 
micromanipulator, the capillary was then inserted at the desired site and two pulses performed to inject 787 
approximately 1 nl. Larvae were then distributed in wells of culture plates with water containing PTU and 788 
kept at 28°C. For ethical reasons, all larvae used in the experiments were euthanized by anesthetic 789 
overdose at 7 dpi. 790 

Lysis, RNA Extraction, and RT-qPCR of Larvae 791 

RNA was extracted from individual larvae, which were first deeply anesthetized. After removal of almost 792 
all water and addition of RLT buffer (Qiagen), larvae were dissociated by 5 up- and-down-pipetting 793 
movements. Tubes may then be frozen at -20°C for a few days. Total RNA was then extracted with a 794 
RNeasy Mini Kit (Qiagen) without the DNase treatment step and a final elution with 30 µl of water. 795 

RT was performed on 6 µl of eluted RNA using MMLV reverse transcriptase (Invitrogen, Carlsbad, CA, USA) 796 
with dT17 primer (for polyadenylated transcripts). cDNA was diluted with water to a final volume of 100 µl, 797 
of which 5 µl was used as a template for each qPCR assay. 798 

Real-time qPCR was performed with an ABI7300 (Applied Biosystems, Foster City, CA, USA). Quantification 799 
was performed using a SYBR assay using the Takyon SYBR Blue MasterMix (Eurogentec, Seraing, Belgium) 800 
with primer pairs. These primers typically span exon boundaries to avoid amplification of contaminating 801 
genomic DNA. The eef1a1l1 (also known as ef1a) was used as a housekeeping gene for normalization. 802 

Morpholino and Plasmid Injection in Eggs 803 

Morpholino antisense oligonucleotides (Gene Tools, Philomath, OR, USA) were injected (1 nl volume) in 804 
the cell or yolk of AB embryos at the one- to two-cell stage. crfb1 splice morpholino (2 ng, 805 
CGCCAAGATCATACCTGTAAAGTAA) was injected together with crfb2 splice morpholino (2 ng, CTATGAA 806 
TCCTCACCTAGGGTAAAC), knocking down all type I IFN receptors (Aggad et al., 2009). Erbb3b morpholino 807 
was used to prevent differentiation of DRG neurons and injected alone (2 ng, 808 
TGGGCTCGCAACTGGGTGGAAACAA) (Dooley et al., 2013). Control morphants were injected with 4 ng 809 
control morpholino, with no known target (GAAAGCATGGCATCTGGAT CATCGA). 810 
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Live Widefield Fluorescence Imaging 812 

Live fluorescence imaging was performed as explained in  (Laghi et al., 2022). SINV-GFP-infected larvae 813 
were imaged with an EVOS FL Auto microscope (Thermo Fisher Scientific, Waltham, MA, USA) using a 2× 814 
planachromatic objective (numerical aperture, 0.06), allowing capture of the entire larva in a field. Before 815 
imaging larvae were anesthetized with 0.2mg/ml tricaine and placed in individual wells of 24-well plate 816 
cell culture plate. Agarose 2% molds were used to properly set each larva in the same relative position. 817 
Transmitted light and fluorescence (GFP or Texas Red cube) images were taken. After imaging larvae were 818 
rinsed in water with 0.3 µg/ml methylene blue (Sigma-Aldrich, St. Louis, Missouri, USA) and transferred 819 
to individual wells of a 24-well plate cell culture plate in water with 200 µM phenylthiourea (PTU, Sigma-820 
Aldrich) and stored in incubator at 28 C.   821 

Live Confocal Imaging 822 

Confocal imaging was performed as in (Viana et al., 2023). Injected larvae were mounted in lateral or 823 
ventral position in 35 mm glass-bottom-Dishes (Ibidi Cat#: 81158) or in glass bottom-8well-slides (Ibidi 824 
Cat#: 80827). Larvae were immobilized using a 1% low-melting-point agarose (Promega; Cat#: V2111) 825 
solution and covered with Volvic water containing 0.2mg/ml tricaine. A Leica SP8 confocal microscope 826 
equipped with two PMT and Hybrid detector, a 10X dry (PL Fluotar 10X dry:0.30), 20X IMM (HC PL APO 827 
CS2 20X/0.75), or a 40x water IMM (HC PL APO CS2 40X/1.10) objective, a X–Y motorized stage and with 828 
LAS-X software, was used to live image injected larvae. To generate images of the whole larvae, a mosaic 829 
of confocal z-stack of images was taken with the 10X or 40X objective using the Navigator tool of the LAS-830 
X software. The acquisitions were performed either in conventional settings or resonant scanning, the 831 
latter being post processed with the Lightning tool of the LAS-X software to eliminate noise 832 
(deconvolution). After acquisition, larvae were washed and transferred in a new 24-well plate filled with 833 
1 ml of fresh Volvic water per well, incubated at 28°C and imaged again under the same conditions over 834 
time. 835 

Considering the image analysis strategy adopted and the need to adjust the acquisition setting to avoid 836 
over or under saturation of the sensor, the strategy adopted to set acquisition parameters always 837 
followed the same rule. Every single channel was brought up to saturation of true signal (ignoring 838 
saturation of noise from yolk or eye) and subsequently lowered enough to remove the saturation. At every 839 
timepoint this calibration is repeated on a batch of random samples and applied to the whole timepoint. 840 
In this way the whole range of emission is captured for every image, without affecting the integrity of the 841 
subsequent threshold-based analysis. 842 
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Image analysis 844 

Image analysis was performed using FIJI software (Schindelin et al., 2012) and CellProfiler (Carpenter et 845 
al., 2006). Fluorescent images acquired through EVOS imaging were normalized (i.e., flip, crop and 846 
denoising) using a FIJI script (Script 1). After normalization a threshold check (biovoxxel toolbox plugin) 847 
was used to identify the best thresholding strategy for each channel, that resulted to be “Triangle dark” 848 
and “IsoData dark”. Subsequently all the images were threshold using the same method (script 1). Both 849 
the binary masks and the normalized images were fed to Cell profiler pipeline (pipeline 1) to perform area 850 
filtering, segmentation, and measurement. All these operations were performed in batch.  The final 851 
output obtained is a measurement of positive pixel area normalized to the constant area of the image, 852 
segmented in CNS and Periphery. Only the tg(INFphi1:mCherry) experiment was quantified from confocal 853 
images and for this all the operation were performed through CellProfiler software directly (pipeline2). In 854 
this case the threshold was performed directly in CellProfiler using “Otsu three class” method.  855 

Statistical analysis 856 

The difference between means was evaluated using analysis of variance (ANOVA) or two-tailed unpaired 857 

t-test. For multiple comparison Bonferroni’s method was applied. Non-Gaussian data were analyzed with 858 

Kurskal-Walli’s test followed by Dunn’s Multiple comparison. For Normal distributions Kolmogorov-859 

Smirnov test was used.  P<0.05 was considered statistically significant (symbols: ***P<0.001; **P<0.01; 860 

*P<0.05). Survival data were plotted using the Kaplan-Meier estimator and log-rank tests were performed 861 

to assess differences between groups. Statistical analyses and PCA were performed using Prism software. 862 

 863 

Model building 864 

 865 

Model building was realized using Berkeley Madonna software. This software numerically solves 866 

ordinary differential equations and difference equation. All the details on the parameters used 867 

in this software are accessible in the Annex. 868 
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Annex1: Construction of a mathematical model of SINV infection 
 

We first built a single-compartment model of the infection, with the help of the Berkeley 

Madonna software (Figure 1). The model, essentially based on (Best et al., 2017), allows for 

a variety of actions of the interferon response, so they can be tested in turn. 

 

 
Annex1 Figure 1. Flowchart of the single-compartment model built with Berkeley 

Madonna. A simplified version of the model is shown in Figure 8A of the main article. 
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The model starts with a population of 105 target cells (T). In the presence of free virus, some 

of these cells get infected, entering first an eclipse phase (E) during which they do not 

produce the virus, before transiting to the productive phase of infection (P), where they start 

to release new infective virions at a fixed rate. We neglect the death or proliferation of target 

or eclipse cells, but the cytopathic effect causes the death of productively infected cells at a 

given rate.  

 

Virions decay at a fixed rate and are also lost when infecting target cells. In the absence of a 

host response, this model is governed by the following equations: 

 

dT/dt = -bV(T/T0)            where b is the rate of infection (T0 is the initial population) 

dE/dt = bV(T/T0) - kE                    where k is the rate of transition from eclipse to productive 

dP/dt = kE - dP           where d is the rate of cytopathic effect-induced death 

dV/dt = gP - cV - bV(T/T0)           where g is the rate of virion production per productively    

infected cells; and c is the rate of virus decay 

 

By fluorescence microscopy, we detect the first wave of infected cells around 7 hours post 

inoculation; as the fluorescent reporter is co-expressed with structural genes, this 

corresponds to entry into a productive state. Therefore, we set the infection rate of target 

cells by free virus (b) at 0.5 per hour, implying a median time of 1 hour for a virus to cause a 

cell to enter the eclipse phase, and the transit rate from eclipse to productive state (k) at 0.1 

per hour, implying a median duration of the eclipse phase of ~6 hours. 

The death rate of productively infected cells (d) was set at 0.03 per hour, corresponding to 

a median survival time of ~24 hours for productively infected cells, a value consistent with 

our imaging data. The half-life of SINV in culture medium is 4 hours at 37°C (Purifoy et al., 

1968); it should be a bit longer at 28°C, so we set virus decay rate (c) at 0.1 per hour (i.e. 

half-life of 6 hours). 

After setting these parameters at plausible values, we were left with the more difficult task 

of estimating the rate of virus production per productively infected cell (g). However, we 

know that larvae lacking IFN response die from overwhelming infection between 48 and 72 

hours after inoculation of ~30PFU of SINV (Figure 7 of main paper). We thus ran our model 

with an initial value of 30 for V and various values g (Figure 2). Except for extremely low 

values of g (<0.036) where infected cells may die before producing a new virus, this 

differential equation system ultimately leads to complete infection; we considered that larva 

death would occur when half the cells would have become productively infected or dead (e.g, 

T+E<T0). To our surprise, this threshold was reached between 48 to 72 hours for values of p 

ranging from 0.6 and 1.5, much lower than we would have anticipated. Thus, according to 

our model and assumptions, productively infected cells release only one new infective viral 

particle every hour. 
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Annex 1 Figure 2. Results of running the model without an interferon response.  

A) simulation of model evolution with a virus production rate (g) set a 1 per infected cell per 

hour. Other parameters: b=0.5, d=0.03, k=0.1, c=0.1.). B) Effect of varying the value of g on the 

time required for half of the initial cell population to have died or entered the productive phase. 

 

We tested if this result was highly sensitive to the previous choice of parameters, by doubling 

and halving them one by one while keeping g=1. The highest sensitivity was observed for the 

rate of transit from eclipse to productive state k (Figure 3A). If this rate was halved 

(corresponding to a mean transition time of 14 hours), the threshold of 50% infected cells 

would be reached for values of g ranging from 1.3 to 4 (Figure 3B). Thus, even for this low 

value of transit meantime, the rate of infectious virus production would be no more than a 

few virions per hour for each productively infected cell. 

For the rest of the modeling, we kept k=0.1 and g=1.  
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Annex1 Figure 3. Parameters sensitivity analysis. 

A) sensitivity of the model to the choice of initial parameters. B) effect of variation of the virus 

production rate for two different values of transit rate. 

 

We then incorporated the role of the interferon response, adding as a last variable the 

amount of free interferon (F), which starts at zero. We considered two detection pathways 

for the virus: either cytosolic viral RNA (RLR pathway) or extracellular/endosomal virions 

or fragments thereof (TLR pathway). RLR pathway would be activated in infected cells, but 

since SINV, like many viruses, shuts off host cell translation, we consider that no IFN would 

be released by productively infected cells; only cells in the eclipse phase would release IFN 

via this pathway. By contrast, we hypothesize virions would be detected by sentinel cells that 

do not get infected, as is the case for macrophages (Passoni et al., 2017). Thus, RLR 

production is proportional to the value of E and TLR production to the value of V. In addition, 

IFN decays at a constant rate, leading to this equation: 

 

dF/dT = rE + tV – hF         r() is the rate of IFN release by eclipse phase cells 

t() is the rate of IFN released upon detection of virions 

  h is the rate of IFN decay 

 

In humans, the half-life of recombinant IFNa has been measured at around 6 hours 

(Gutterman et al., 1982). We thus set h at 0.08 for a half-life of zebrafish IFN around 8 hours 

at 28°C.  

We could not guesstimate values for r and t, but we expect that both pathways contribute to 

the IFN pool based on our findings where knock-down of the key RLR pathway adaptor MAVS 

reduced but did not abolish the IFN response of zebrafish larvae infected with the closely 

related chikungunya virus (Palha et al., 2013). Thus, we started by setting them at an equal 

value of 0.1 each (note that the value of the IFN unit is arbitrary – this choice will result in 

values of F of similar magnitude as V, which is convenient for the graphical representation). 
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If IFN is inactive, this results in an exponential increase of E, P, V, and F for two days, until all 

target cells have been infected. 

 
Annex 1 Figure 4. Result of running the model with IFN production, assuming IFN is 

inactive.  

Parameters values: b=0.5, d=0.03, k=0.1, c=0.1, g=1, r=0.1, t=0.1, h=0.08, e = f = q = 0. 

 

We then considered that IFN may counteract the infection via three mechanisms: preventing 

infection of target cells (if a virus attempts to infect a target cell but fails due to IFN response, 

it is still lost from the free virion pool), preventing the transit of eclipse cells into the 

productive state, and accelerating the death of productively infected cells (by any 

mechanism, such as direct effect of IFN on these cells or by activating killer immune cells). 

Following (Best et al., 2017), we assumed that IFN inhibited these events in a near-linear 

fashion, thus modifying our initial equations by adding the terms in bold below: 

 

dT/dt = (-bV(T/T0))/(1+eF)                       e() is the inhibition of infection by IFN 

dE/dt = bV(T/T0)/(1+eF) – kE/(1+fF)      f() is the inhibition of transit by IFN 

dP/dt = kE/(1+fF) - dP*(1+qF)                q() f is the induction of death by IFN  

dV/dt = gP – cV - bV(T/T0) 

 

Our experimental results indicate that in IFN-competent larvae, the amount of productively 

infected cells in the periphery should peak at approximately 36 hours, then decline. We thus 

assessed the time and height of the peak values of P to fit the three unknown IFN-based 

inhibition parameters. 

We first tested equal values for e f and q on the model (Figure 5A, B). Except at very low 

values (10-5 or less) for which all target cells got infected, adding this IFN response resulted 

in a stabilization (but not disappearance) of the infection after a peak, which was reached 

earlier if the IFN response was stronger.  
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The height of this peak was inversely proportional to the strength of the IFN response. The 

peak was reached at ~36 hours for e = f = q = 0.003, with 230 infected cells, a value that 

appears consistent with our microscopic observations. 

 
Annex 1 Figure 5. Initial fitting of the IFN inhibition values.  

Parameter values for the simulation on the left: b=0.5, d=0.03, k=0.1, c=0.1, g=1, r=0.1, t=0.1, 

h=0.08, e = f = q = 0.03. 

 

To determine the relative importance of these three modes of inhibition, we first canceled 

each of them in turn, keeping the other two at 0.03 (Figure 6). In simulations where the death 

of productive cells was not accelerated by IFN, no peak of infection is observed, only a 

plateau, this mode seems critical to reflect our experimental data. The importance of the 

other two modes is less clear. If transit is not blocked, the peak is attenuated; if infection is 

not blocked, a large population of eclipse cells is retained. In our model, not only was 

accelerated death necessary, but it was also sufficient; with a value q set at 0.01, our 

simulation reached a peak at 36 hours with dynamics globally similar to that shown in Fig 

5A.  

 
Annex 1 Figure 6. Testing the different pathways by which IFN may counteract the 

infection.  

Other parameter values: b=0.5, d=0.03, k=0.1, c=0.1, g=1, r=0.1, t=0.1, h=0.08. 

e = f = q = 0.003
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Finally, we tested the exclusion of the RLR or the TLR pathways for IFN induction. Keeping 

e = f = q = 0.003, we set either r or t to 0 (Figure 7). Interestingly, RLR detection alone 

resulted in a clear peak, while TLR detection only resulted in a plateau, indicating that RLR 

detection was critical while the TLR pathway may not play a major role. 

 

 
Figure 7. Testing the impact of the RLR and TLR pathways.  

Other parameter values: b=0.5, d=0.03, k=0.1, c=0.1, g=1, e = f = q = 0.03. 

 

Having established parameter values for which our model reflected relatively well SINV 

infection in the periphery, we turned to the CNS compartment.  

Here we assume that the BBB prevents virion and IFN exchange between the periphery and 

CNS so that simulations are run independently in the two compartments. A few neurons 

initially get infected by axonal transport, and our experimental data indicate, on average, 

three independent events, with the first neurons expressing virus-encoded fluorescence 

around 24 hp. Thus, the simulation starts with no free virus, but 3 productively infected cells 

(in practice, this makes very little difference after the first three hours). Here, t=0 would 

correspond to 24 hp. 

The model parameters for CNS could not be identical to those we determined in the 

periphery, as this would result in rapidly controlled infection. However, given the very large 

parameter space that could match the increased viral spread in the CNS, it was impossible to 

achieve unsupervised parameter fitting; we used arbitrary fitting guided by the literature 

and experimental data.   

We considered that the following parameters should remain unchanged between periphery 

and CNS: rate of infection (b=0.5), rate of transit from eclipse to productive (k=0.1), rate of 

new virion production (g=1), rate of virus decay (c=0.1), rate of IFN decay (h=0.08).  

Death of infected neurons was a rare event in our live imaging data (except for the very small 

population of DRG neurons). Accordingly, we reduced the cytopathic effect-induced death 

rate (d=0.01 instead of 0.03). This alone had little effect on the simulation. 

Neurons are known to be poor IFN producers (Viengkhou and Hofer, 2023). For this reason, 

we strongly reduced the rate of IFN produced by eclipse cells via the RLR pathway (r=0.01 

instead of 0.1). By contrast, since we observed ifnphi1-expressing leukocytes inside the 

infected CNS, the sentinel cell TLR pathway IFN source was unchanged (t=0.1).  

This still resulted in a controlled infection but with a 3-fold increase in the maximal number 

of productively infected cells. 

e = f = q = 0.003

r = 0   t= 0.1
Detection via TLR only

r = 0.1   t= 0
Detection via RLR only
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Finally, neurons are also known to have a narrow ISG response to IFNs (Viengkhou and 

Hofer, 2023). This is consistent with the lack of expression of the MXA:mCherry transgene 

that we observe in neurons. At this stage we do not know what pathways are affected at this 

stage, we first tested lowering equally all IFN impacts modeled here: blockade of infection, 

blockade of transition to productive phase, acceleration of death of infected cells. Reducing 

these effects resulted in a proportional increase in the peak number of productively infected 

cells. We observe a strong variability in the CNS of our experimental fish: some appear to 

control the infection, while others do not. This variance cannot be replicated in our 

mathematical model which is deterministic; however, parameters yielding an infection that 

is controlled only very close to the upper limit would reflect this, as small changes would 

result in this life-or-death outcome. This is attained when the three parameters that reflect 

IFN control (e, f, q) are reduced 10-fold (Figure 8A). We then tested the relative importance 

of these three parameters by setting each to zero in turn. The impact on the total number of 

productively infected cells (our observable value) was relatively modest, but dramatic 

differences were observed in the number of uninfected target cells and eclipse phase cells 

(Figure 8B). 

 

In conclusion, although our simulations do not allow us to draw firm conclusions on the most 

appropriate values in the CNS, they suggest that IFNs are ~10 times less protective on 

neurons than on peripheral cells. 
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Figure 8. Adaptation of the model to the CNS compartment.  

A) simulation with all three IFN-impact parameters. Other parameter values: b=0.5, d=0.01, 

k=0.1, c=0.1, g=1, r=0.01, t=0.1, h=0.08. B) The model ran with one of the three IFN-impact 

parameters set to zero, while the other two are set at 3.10e-4. Other parameters as in A.  
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Chapter 3: Outlook 

I consider this paper as the main paper from my PhD as I designed and performed all the 

experiments and analysis related.  

Our paper investigated a wide range of questions, making it challenging to determine the best 

direction to take due to the technical obstacles involved. The data obtained generated several 

ramifications, making it difficult to narrow down our focus. Despite this, we ultimately decided to 

concentrate on three key questions: how the virus spreads in zebrafish larvae, how it infiltrates the 

CNS and brain, and whether mathematical modeling can provide additional insights. 

We demonstrated that zebrafish can be used as an animal model to study SINV proficiently.  

The SINV virus initially infects muscle cells and rapidly replicates, spreading cell-to-cell without 

a set directionality. This infection is transient in periphery and resolves between 2- and 3 days post-

infection. Our research has shown that Dorsal Root Ganglia cells act as gateways for SINV, 

allowing it to invade the spinal cord and the brain. These sensory neurons innervate the muscle 

and can be infected by SINV, which uses the axons to enter the Spinal cord and infect the CNS. 

SINV can then spread from cell to cell, infecting interneurons and forming local clusters of 

infection, through short axonal transport, forming short distance clusters, and long axonal 

transport, using DRGs connection to long somatosensory axons to invade the brain. By contrast, 

motoneurons can be infected by SINV providing access to the brain, but do not provide a gateway 

for direct brain infection. Our study using fish with impaired interferon response demonstrated that 

interferon Type I 1 and 3 are highly expressed during SINV infection and are necessary to 

resolve the peripheral infection and protect the CNS. IFN expression remains sustained during 

infection, while IFN 3 expression declines over time.  

Using mathematical modeling we simulated the infection of peripheral and CNS compartments in 

both wildtype and interferon receptor knock-down larvae, extrapolation values relative to the 

number of infective virions produce by infected cells, and the relevance of RLR pathways in the 

interferon response to infection. 
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These observations were achieved through diverse methods, including a novel approach that was 

developed to address the research problem. To investigate the virus propagation, a semi-high-

content approach was employed in conjunction with semi-automatic image analysis, which 

enabled us to generate and use low-variance data for mathematical modeling. Additionally, a new 

multiwell multi-medium mounting system and combinatorial anesthetic were developed to 

facilitate high-resolution imaging of fragile infected zebrafish over long time lapses without 

compromising their physiology. The mathematical model yielded important insights that were not 

easily measurable by biological experimentation and were designed with a user-friendly approach, 

using software like Berkley Madonna with an accessible learning curve. The study demonstrates 

how zebrafish larvae can serve as a "researcher-friendly" animal model for mathematical modeling 

based on kinetical data. 

From a personal stand, the behavior of the innate immune system during its passage from the 

periphery to the CNS is particularly intriguing. The data suggests that this passage is highly 

variable and involves a different immune response mechanic, not solely interferon driven. 

Interferon may play a protective role, but it is more likely a neuroimmune reflex elicited by sensory 

neurons that signal the infection in the CNS. This reflex could be responsible for the observed 

variability in CNS infection and different infection outcomes. Additionally, the similar phenotype 

between DRG deficient morphants and Interferon receptor morphants further supports this idea. 

Hypothetically, this system could work by blocking intracellular transport, activity, and apoptosis 

induction to hinder viral propagation without releasing granular contents that could worsen tissue 

damage. However, this hypothesis requires further validation through additional studies. 

For this, we will perform single-cell RNAseq on infected cells in interferon morphants and 

compartments to find more information regarding the different actors of immune response to virus 

infection. 
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Exploring Zebrafish Larvae as a COVID-
19 Model: Probable Abortive SARS-CoV-2 

Replication in the Swim Bladder 

Chapter 1: Introduction 

1.1 Sars-CoV2 

SARS-Cov2 is a virus part of the highly diverse coronaviruses (CoVs) family. The CoVs family is 

called Coronaviridae and can be further divided into the subfamily Orthocoronavirinae, and 

genera alphacoronavirus, betacoranvirus, gammacoronavirus and deltacoravirus. The alpha- and 

beta- coronavirus exclusively infect mammals and are respiratory and enteric viruses (Corman et 

al., 2018; Gorbalenya et al., 2020). Coronaviruses are not a novelty of the latest year, as strains 

such as HCoV-OC43, HCoV-229, HCoV-NL63, and HCoV-HKU1 have long been circulating in 

the population and are known as “common seasonal cold”. The most pathogenic and dangerous 

CoVs are the middle east respiratory syndrome (MERS-CoV) and the severe acute respiratory 

syndrome (SARS-CoV) viruses. The last iteration of the evolution of this family is the SARS-

Cov2, which we, unfortunately, got familiar with during the pandemic (Lamers and Haagmans, 

2022). 

These viruses can infect upper respiratory tracts and lungs in humans, inducing severe symptoms 

with high mortality. Specific antiviral drugs for SARS-Cov2 have been developed but used only 

as a backup therapy as their widespread use is expected to quickly lead to the selection of resistant 

variants.  

SARS-COV2 is an enveloped positive single-strand RNA virus, with a genome of >30kb (Figure 

21).  
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This large genome is flanked at 5’ and 3’ by untranslated regions, containing cis-acting RNA 

structures necessary for RNA synthesis. Two large open reading frames (ORF1a and ORF1b) are 

at the 5’ ending, which occupy a large portion of this capped and polyadenylated ending. These 

two ORFs translate into 15-16 non-structural proteins (nsp), necessary for the formation of the 

viral replication and transcription complex (RTC). The RTC oversees RNA processing, RNA 

modification, and RNA proofreading, as the large genome needs to be replicated at full length to 

be incorporated in new viral particles.  At the 3’ there are interspersed ORFs for structural proteins 

and sub-genomic mRNAs (sg mRNAs) (Artika et al., 2020; Perlman and Netland, 2009).  

Starting from ORF1a and ORF1b are produced two different polyproteins called pp1a and pp1b, 

which quantity is determined by -1 ribosomal frameshift efficiency (Irigoyen et al., 2016; Perlman 

and Netland, 2009). From pp1a, the nsp1-11 is released, and from pp1b the nsp12-16 (Gao et al., 

n.d.; Kamitani et al., 2006; Schubert et al., 2020; Thoms et al., 2020). Nsp3 and nsp5 are proteases 

that cleave the polyproteins. The nsp2-16 is part of the RTC, whereas nsp2-11 primes the cellular 

environments to accommodate the RTC, and nsp12-16 has enzymatic functions such as RNA 

synthesis, RNA modification, and RNA proofreading. Nsp12 is an RNA-dependent RNA 

polymerase (RdRP) and has nsp7 and nsp8 as cofactors. Nsp10 and nsp13 have 5’-triphosphatase 

activity, while nsp14 and nsp16 have N7-methyltransferase and 2’-O-methyltransferase activity, 

forming the capping machinery (Chen et al., 2011, 2009; Eckerle et al., 2007; Ivanov et al., 2004). 

In SARS-Cov2, the positive single-strand RNA is firstly translated in a full-length negative sense 

copy, which acts as a template for more positive RNA. The new synthesized positive RNA copies 

act as amplification templates for nsps/RTCs production or get packed in new virions. A hallmark 

of coronavirus is the discontinuous viral transcription process, that produces nested sub-genomic 

RNAs. This mechanism is mediated by transcription regulatory sequences (TRSs) (Di et al., 2018; 

Sawicki and Sawicki, 1995). During the negative strand synthesis, the machinery can encounter 

the TRSs upstream of the ORFs in the 3’ portion of the genome. When this happens, the machinery 

stops the synthesis of the filament and resumes it in a downstream leader TRS, close to the 5’ end, 

skipping the synthesis of different portions of the viral genome and generating different sgRNA. 

This mechanism could be involved in SARS-COV2 rapid evolution, as non-canonical RNA fusion 

events were recorded in the past (Kim et al., 2020; Sola et al., 2015; V’kovski et al., 2020). A 

practical application of this mechanism is that, starting with purified RNA from an infected 
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sample, one can specifically generate cDNAs from the positive strand transcripts which are 

polyadenylated, using a (dT)15 primer, or from the negative strand transcripts using a TRS-specific 

primer. It is thus relatively simple to measure positive or negative viral RNA by qRT-PCR. 

Besides, the nsp, SARS-Cov2 has several structural proteins (figure 22), that form a helically 

symmetrical nucleocapsid, composed of the +ssRNA and structural proteins.  

- S protein (spike) gives the virus the “corona” aspect, forming a homotrimeric spike-like 

structure on the surface of the envelope. Each S protein has several domains, such as N-

terminal (NTD), receptor binding motif (RBM), receptor binding domain (RBD, in the 

RBM), furin cleavage site, fusion peptide (FP), central helix (CH), connecting domain 

(CD), heptad repeat (HR1/2), transmembrane domain (TM) and cytoplasmic tail (CT). 

Each protein S folds to form three-dimensional structures containing exposing the S1/RBD 

domain, which recognizes and binds the ACE2 receptor on the host surface. This binding 

promotes conformational changes that expose the S2 subunit, containing the FP, CH, CD, 

and HR1/2. This allows for membrane fusion with the host cell and infection by SARS-

COV2 (Casalino et al., 2020; Huang et al., 2020; Moreira et al., 2020; Yadav et al., 2021). 

- M protein (membrane) is an O-linked glycoprotein of 30kDa, possessing three 

transmembrane domains. This protein associates with the nucleocapsid, facilitating the 

virus assembly and it is conserved in the family (Yadav et al., 2021). 

- E protein (envelope) is a 12 kDa protein with a conserved structure. This protein is essential 

for pathogenesis, release, and virus assembly (Wang et al., 2020). 

- N protein (nucleocapsid) forms a complex structure that binds to the +ssRNA packaging it 

in a beads-on-a-string fashion. Besides forming this helical nucleocapsid, it is involved in 

virion assembly and transcription efficiency (Yadav et al., 2021).  
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In addition to ACE2 receptors, a broad range of entry cofactors were suggested in the past years, 

such as lectins (DC-SIGN and L-SIGN) (Amraei et al., 2021; Jeffers et al., 2004; Yang et al., 2004), 

phosphatidylserine receptors (TIM and TAM) (Jemielity et al., 2013; Richard et al., 2017) and 

transmembrane glycoproteins (CD147) (Chen et al., n.d.; Shilts et al., n.d.), but the most relevant 

for the following paper is neuropilin1 (NRP1) (Daly et al., 2020; Li et al., 2021). NRP1 is strongly 

expressed in respiratory endothelial cells and weakly expressed in ciliated cells (i.e., goblet cells); 

cell populations in organs with a high tropism for this virus (Cantuti-Castelvetri et al., 2020).  

An important co-factor, necessary for the fusion is a type II transmembrane protein with protease 

activity called TMPRSS2. This protein is implicated in the infection process by both influenzas 

and SARS viruses and it is expressed in the gastrointestinal, respiratory, and urogenital epithelium. 

In these tissues, only goblet secretory cells, type II pneumocytes, and enterocytes express both 

ACE2 and TMPRSS2 in humans (Jackson et al., 2021). 

After the fusion, the virus can enter by endosomal entry, with acidification and cathepsinL-

mediated fusion, or directly by membrane fusion with the cell membrane (Jackson et al., 2021). In 

both cases, the capsid is released, and the following uncoating of viral RNA. As explained, this 

phase starts the gRNA translation with the production of nsp and the formation of the RTC 

complex. The infection induces the extensive remodeling of endoplasmic reticulum (ER) 

membranes, forming a complex structure of double-membrane vesicles (DMVs) and convoluted 

membranes (CMs) (Malone et al., 2021). These replicative organelles become viral factories where 

the RTC produces copies of +ssRNA and sg-mRNA. With the production of the structural proteins, 

a fraction of the new +ssRNA is used to form new nucleocapsids, while the S, M, and E proteins 

transmigrate to the ER-Golgi. These proteins transit through the ER-Golgi intermediate 

compartments (ERGIC) where their interaction with formed nucleocapsid forms the viral envelope 

by budding (Malone et al., 2021; V’kovski et al., 2020). The newly formed viral particles are then 

secreted by exocytosis (V’kovski et al., 2020) (Figure 23). 
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Chapter 2: Article
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Chapter 3: Outlook 

In this project, I performed experiments in BSL3, imaging, image analysis, and part of the RT-

qPCR. From the technical point of view, a large amount of time was dedicated to the creation and 

optimization of injection and handling protocols for zebrafish larvae in BSL3. We had to find new 

technical solutions, both physical and biological, to experiment with the safety rules without 

affecting zebrafish biology. Fundamental was the collaboration with Marco Vignuzzi lab and 

Veronica Rezelj to the realization of this work. 

Although the project did not show a clear applicability for zebrafish as an animal model for SARS-

CoV2, created protocols that can be adapted and used in other BSL3.  

In the paper, we showed the presence of abortive infection of swim bladder cells, with only a 

partial replication of the virus taking place and no further infection of propagation. Due to the 

complexity of the tissue and the difficulties in handling SARS-CoV2-infected samples at the time, 

it was not possible to identify the cell population involved. 

While the experiments did not induce a proper infection, the abortive infection of zebrafish can 

still be used to identify which proteins are missing and are responsible for complete virus 

replication. Identifying these proteins is of interest as they could be used as targets for specific 

antiviral drugs if conserved in humans. 

Moreover, we attempted the expression of human ACE2 proteins in zebrafish, demonstrating that 

is possible, although not sufficient. The development of humanization protocols for zebrafish is 

important as it could be a powerful tool in further developing zebrafish as an animal model for 

human pathogens infection.  

Indeed, now there are no clear protocols to humanize zebrafish to increase susceptibility to 

infection. Granted the easiness of genetic manipulability of zebrafish, without a clear vision of 

which proteins need to be humanized for each pathogen in zebrafish, the process of adaptation of 

this animal to different pathogens could be too slow and expensive. Nonetheless, from a different 

point of view, the humanization process itself can be a powerful tool to reconstruct intracellular 

pathways associated with proficient infection and results in the generation of a permissive 

zebrafish line.  
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Indeed, this latter approach is already used in mice with different degrees of success, showing that 

more than a problem of feasibility, the delay in the creation of humanization protocols for zebrafish 

is associated with a lack of commitment by the research community (Brehm et al., 2013; Dash et 

al., 2021; Li and Di Santo, 2019). 
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Hiding in the yolk: A unique feature of 
Legionella pneumophila infection of 

zebrafish 

Chapter 1: Introduction 

1.1 Legionella Pneumophila 

Legionella is a gram-negative, non-sporogenous, non-capsule forming, and aerobic bacteria. 

Legionella spp. was initially isolated in 1947 and classified as a “rickettsia-like” bacteria. In 1977 

its classification changed and was included in the same species and serogroup of the Philadelphia 

bacterium (Jackson, 1952). The classification as Legionella pneumophila followed the 

identification of this bacteria as a cause of Legionnaires disease (LD), including it in the 

Legionellaceae family (Piano et al., 1984). L. pneumophila has a degree of motility depending on 

the serogroup, is viable between 25 and 37 °C, and forms biofilm to protect itself (Konishi et al., 

2006). Furthermore, this bacterium can infect humans by inhalation of infected organisms, and it 

is normally a risk factor for air cooling systems, spas, and other appliances that may 

vaporize/nebulize water (Figure 24) (Brady and Sundareshan, 2017; Sanford, 1979). Moreover, 

Legionella can also propagate by human-to-human contact (Novais et al., 2009).  
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The inner membrane is composed of a bilayer of phospholipids containing proteins such as FeoB, 

IraA/IraB, phosphatidylethanolamine, and phosphatidylcholine (Hindahl and Iglewski, 1984). In 

particular, it has been shown that FeoB, a GTP-dependent iron transporter, and IraA/IraB, two 

methyltransferase proteins, play a role in the inactivation and replication of macrophages 

(Petermann et al., 2010) (Iliadi et al., 2022). 

The periplasm is the space between the inner and the outer membrane and it contains many soluble 

enzymes and antigens, and the classic Gram-negative thin peptidoglycan that plays a fundamental 

role as a virulence factor and in the survival of Legionella in macrophages and amoeba. One of the 

most important antigens present in the periplasm is the peptidoglycan-associated lipoprotein 

(PAL), which is used as an alternative diagnostic test for Legionella since it is expelled in the 

urines of infected patients (Journal et al., 2010; Shevchuk et al., 2011). 

The outer membrane is the most external layer, and it is formed by a bilayer of phospholipids, 

lipopolysaccharides (LPS), lipoproteins, and other structural proteins. Although the components 

of this membrane are still not well-characterized, researchers identified proteins such as PlaB, a 

phospholipase involved in the destruction of the host membrane and signaling pathways (Iliadi et 

al., 2022). 

One of the several proteins present on the external surface of Legionella is the major outer 

membrane protein (MOMP), necessary for adhesion to host cells and interfering with the host's 

chemotactic activity (High et al., 1993). MOMP can also affect the expression of the host immune 

system factors like IL10, FOXO1, and NOD1 (Yang et al., 2021). Another important virulence 

factor in Legionella is the macrophage infectivity potentiator (Mip), which influences 

macrophages activity during the first stage of respiratory epithelium infection, increases 

chemotaxis, and inhibits the phagocytosis (Nintasen et al., 2007; Shen et al., 2022). Lastly, we can 

find the LPS, the main antigen of Gram-negative bacteria, involved in the adhesion of Legionella 

to the host cells (Papian et al., 2020). 

L. pneumophila induces low respiratory tract (LRT) infection, which brings forth a pneumonia-

like disease. This is possibly due to the ability of this bacterium to invade the tissue and the ability 

to use macrophages as a replication niche. To “prime” macrophages as a permissive environment 

for replication, Legionella uses secretory factors that affect almost all the aspects of the 

intracellular environment.  
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The most relevant of these factors is the Type IV secretion system (T4SS), encoded by dot/icm 

genes, that allows the formation of “specialized vacuoles” (Legionella containing vacuole, LCV) 

exploiting mitochondria, ER-derived membrane and other host proteins (Molmeret et al., 2004) 

(Figure 26). As LCV mature, this structure's resemblance to rough ER develops, with the studding 

of this membranous structure with ribosomes (Isberg et al., 2008). T4SS is responsible for a variety 

of fundamental activities, such as cell invasion, replication, apoptosis, and exit from host cells 

(Cheng et al., 2022; Ge et al., 2022; Lockwood et al., 2022). The dot/icm genes are involved in 

conjugation, micropinocytosis, phagocytosis, apoptosis of macrophages, and pore formation 

(Iliadi et al., 2022). This shows that T4SS is important for Legionella virulence during infection, 

nevertheless, in L. pneumophila, there are T2SS and T1SS. T2SS secretes more than 25 proteins 

and degradation enzymes, and also factors that affect host innate immunity and survival at low 

temperatures (Cianciotto, 2013; Tyson et al., 2014). Instead, T1SS consists of an ATP-binding 

cassette (ABC) transporter, that act as a membrane fusion protein, and secretes lipases, adhesins, 

and iron-scavenger proteins (Qin et al., 2017; Spitz et al., 2019).  
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Moreover, was adopted a new image analysis method to quantify the relative number of bacteria 

and leucocytes, whether macrophages and/or neutrophils, in the periphery or the yolk of each larva. 

Our project will move forward with Clarisse Leseigneur as the new post-doc to identify the soluble 

factor released by Legionella in the yolk and investigate the immune response to Legionella 

infection and its behavior in zebrafish. 
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IMAGING AND ZEBRAFISH 

 

As we explained, one of the most useful advantages of zebrafish larvae is the transparency, which 

coupled with their reduced size, allows for unique imaging of a mid/large number of samples to 

observe in vivo cell/tissue/pathogen interactions.  

A large number of my efforts went to the optimization of zebrafish imaging.  

I streamlined the workflow and identified critical handling points:  

• Anesthetic: normally tricaine is used, on fragile larvae imaged in small wells for >24h it 

generates toxicity, especially under evaporation which induces water acidification.  

• Mounting: Normally larvae are mounted in 1% low melting agarose, but under long 

imaging, the physical constraints in growing larvae and edemas induced by pathogens, 

speed up death by tail-tip crooking and blood circulation block 

• Imaging: 2 types of imaging were needed for the papers. The first is a high-content 

screening of whole larvae and the second is a low/mid-high resolution, high-speed imaging 

of whole larvae or single tiles.  

• Data handling, post-processing, and image analysis: Due to the large size of images it is 

necessary to create specific data handling rules to store and work on the images (single 

experiment ~1.5 Tb). After the images need to be processed and analyzed conserving a 

user-friendly spirit to advantage the whole laboratory.  

To resolve the first problem of anesthetic toxicity, I opted for combinatorial anesthesia, usually 

used in mammals. I focused on using the two widespread anesthetics for zebrafish, Tricaine, and 

Isoeugenol(Swinburne et al., 2015). Tricaine mesylate, also known as Tricaine methanesulfonate, 

is a widespread benzocaine-derived anesthetic for fish. This compound easily permeates the larvae, 

blocking neuronal depolarization by competitive binding of sodium channels (Carter et al., 2011). 

Isoeugenol is a compound extracted from clover and characterized by a distinctive clover smell. 

Isoeugenol is used as a common anesthetic even in humans as it inhibits the pain sensation by 

blocking GABA receptors (Kheawfu et al., 2022). In both cases, the anesthetic effect is exercised 

on nervous cells and does not block muscle depolarization.  



234 

 

Nonetheless, testing different combinations, I managed to reduce to the minimum the amount of 

anesthetic by combining these two compounds in a sodium-buffered solution to avoid tricaine 

induce acidification. As this solution is still not optimal, I am designing a chemically inducible 

transgenic line expressing bungarotoxin under the heavy chain myosin promoter control, to block 

the neuromuscular junction. Regardless, neither of these solutions can block completely twitching 

by involuntary muscle depolarization, so more tests are needed to find a combination that can 

block both neuronal signaling and muscle twitching. Nonetheless, when studying viruses like 

SINV, it is advisable to test different anesthetics to exclude competitive binding with the receptor 

class on the neuromuscular junction that may be used by the virus to enter the synapse.  

For the mounting, the purpose was to set the x, y, z coordinates of each larva in the respective 

medium, while avoiding physical constraints. For this purpose, I designed several molds with 

different approximations of zebrafish larvae shapes. After identification of the best shape, the mold 

was used to shape phytagel 1% in each well simultaneously. Each larva can slip in the grove and, 

to avoid physical constraints, it is blocked by hydrogel or low melting agarose 0.6% gel at room 

temperature. This further eliminates the risk associated with encasing larvae in solidifying hot 

agarose. To stabilize the larvae, as the stage of our microscopes moves, we further added a thin 

sheet of agarose 1% on the top of the multilayer mounting.  

Regarding imaging, although many new technologies are now available and optimized for 

zebrafish high-content screening on ultra-fast high-resolution imaging, I optimized the pre-

existing microscopes available in the laboratory.  

For mid/high content screening we used a simple EVOS flauto2 by thermofisher. This microscope 

is mainly used for cell cultures, so it is not optimized for zebrafish images. Coupling the mold 

system previously explained with a Fiji script to reconstruct and normalize each well, we managed 

to automate the acquisition process satisfactorily using 24 or 48 multiwells. All the images used 

for global dissemination in the SINV paper were generated with this method.   

For low-content screening and high-resolution imaging, many new technologies such as Scape 

light sheet technology or hybrid widefield/confocal technology appeared in the latest year and 

focused a part of their effort on zebrafish larvae imaging (Voleti et al., 2019; Z. Wang et al., 2021). 

Nonetheless, these systems are still expensive and were not available at the time of 

experimentation.  
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For this purpose, I optimized the use of a Leica sp8 confocal equipped with resonant scanning and 

a moving stage. Resonant scanning technology is based on a fast-spinning mirror that can reach 8 

kHz (normal confocal speed has a maximum average of 1.5 kHz). The fast-rotating mirror 

associated with bidirectional scanning allows fast imaging and reduces photobleaching. In 

contrast, this speed increases the number of lost photons and is subject to manual aligning of 

bidirectional scanning. Nonetheless, upon optimization of hardware and software settings (i.e., 

data transfer type, integration method, and bit depth) it was possible to balance phototoxicity, 

acquisition speed, and resolution. With this approach I was able to acquire large portions of 

zebrafish larvae, in the whole thickness, to observe leucocyte behaviors on an average of 8 

zebrafish for experiments or acquire whole larvae confocal images of an average of ~12 larvae to 

increase resolution and being able to observe tissue dynamics.  

Indeed, the optimization work of the confocal acquisition setting was an interesting part of the 

work as we were pushing the hardware and software of the machine to the limit, often discovering 

new bugs in the system that we reported to Leica directly.  

Nevertheless, the data generated from such types of experimentation was increasingly large, with 

single experiments reaching easily the 2Tb size. This required a different approach to data 

handling, as Institut Pasteur data structures were not able to handle it.  

I created a data mirroring system using two sinology network-attached storage units (NAS). The 

first was able to export with direct rapid connection large quantity of data at <5Gb/s and the second 

mirrors the data from the first NAS to conserve a security copy of raw data. With this solution, I 

was able to divide in shards the bigger files to operate on them. 

For example, as I explained the resonant scanning image can be “noisy” as a large percentage of 

photons are lost. To solve this problem, I applied two layers of denoising and deconvolution. The 

first one uses the Leica addon directly during live acquisition, thanks to the speed of the first NAS, 

and the second, in post-processing uses the slower NAS.  

Returning to the high-content screening, the challenge was the normalization of each larvae image 

and successive analysis. For the normalization, I designed a Fiji script to automatically denoise by 

Gaussian filter each image and subsequently record the original intensity. The script proceeds with 

tophat filtering and light correction. It stretches the LUT and re-crops the larvae.  
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As the intensity of the signal produced by the pathogen increases over time, it was impossible to 

set parameters of acquisition at the start of the experiment that would avoid sensor oversaturation. 

This means that was necessary to adjust the parameters each day, effectively eliminating the 

possibility of using integrated intensity for quantification. To solve this problem, I parametrized 

each acquisition on the saturation value of the sensor for the brightest larvae and reduced said 

value by 5%. In this way, I was able to be sure to acquire the totality of the intensity range without 

under or over-saturation. Subsequently, for analysis, I used thresholding instead of intensity.  

Using the BioVoxxel toolbox I identify the best thresholding method and imported it into the Fiji 

script, thresholding each larvae in the same way (“Qualitative and Quantitative Evaluation of Two 

New Histogram Limiting Binarization Algorithms,” n.d.). The binary images were imported in a 

cell profiler script, which segmented the positive area in objects and applied filters on the size, 

robustness, and circularity of the object. Finally, these objects were semi-automatically cleaned to 

remove specific signals and masked to divide the signal in each compartment. As we standardized 

the image dimension, the number of positive pixels was further divided by the number of pixels 

for each image. Instead, for neutrophils, for example, the same approach was used to directly 

control the number of cells.  

The purpose of using this approach, as shown in Annex 1 was to create a user-friendly and robust 

method, that does not require a high degree of training and continuous support by a programmer, 

but, instead, can be used, optimized, and updated by less image analysis savvy biologists. Indeed, 

CellProfiler software is fully annotated, and it is a module based while it allows for the creation of 

Python personalized modules and Fiji scripts integration, it has a mild learning curve.  

Instead, for the large image generated by high-resolution imaging, all the post-processing (i.e., 

normalization, denoising, edging) was conducted in Fiji. The 4D reconstruction was conducted on 

Imaris software. The surfacing and further post-processing were established on a random pool of 

images and automatically applied to all the experiments, while the contouring of compartments 

(i.e., the yolk for paper 3) was manual.  

To conclude, besides the work on the biological question, I embarked on the optimization process 

of the laboratory workflow, with the ideal aim to perform data mining of kinetical data from the 

images generated and to improve experiment consistency. Unfortunately, the technologies to 

perform this type of inquiry are still limited.  
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For example, the variety of genetically encoded proteins is still limited as there are close to none 

near-infrared fluorescent proteins available for zebrafish larvae, forcing the multiplexing of close-

spectrum fluorescent proteins that often yield unsatisfactory results in vivo.  

At the moment of writing this thesis, I embarked on a collaboration to create an fully automatic 

platform able to perform the image screening and genetic screening I performed in the papers, 

aiming in the future to develop a system for data mining able to pour in a database the host-

pathogen variables extracted from different zebrafish lines and pathogens. These data could be 

useful to train machine learning systems to identify homologies between patterns of already 

studied pathogens or new emerging pathogens and identify protein family targets for humanization 

or new immunological pathways.  
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GLOBAL CONCLUSIONS 

“The red line binding together the papers presented in this thesis is the exploration of zebrafish 

larvae as a model for host-pathogen interaction, using either human viruses or bacteria. An 

important aspect of this exploration is the development and testing of new approaches and 

techniques to unveil the potential of this alternative animal model. “ 

Through a series of papers, I investigated the potential of zebrafish larvae as a model for studying 

host-pathogen interactions, with a focus on human pathogens. My work aimed to answer complex 

biological questions and develop new methodologies.  

One of my key findings, detailed in the first paper, was the identification of the propagation route 

of the Sindbis virus in zebrafish larvae. This research revealed the role of the spinal cord as a viral 

reservoir and highlighted parallels between zebrafish and humans. For example, muscle infection 

in zebrafish was coherent with human myalgia (Sane et al., 2012). Additionally, the persistence of 

IgM in humans after the resolution of muscle infection hints at the presence of a “long SINV” 

replicative niche. Our findings suggested that the "long SINV" replicative niche in humans could 

be the equivalent of zebrafish spinal cord. These discoveries have important implications for the 

study of host-pathogen interactions and the development of new treatments and therapies. 

Indeed, we demonstrated that this model can rapidly generate relatively consistent data of the 

whole statistical population, which are perfect for mathematical modeling. Factoring this, a topic 

I would like to explore in the future is the coupling between zebrafish experimentation and in silico 

simulation through machine learning, as it could further speed up research and prove a useful tool.  

Moreover, we demonstrated that SINV can be used as a tool to discriminate the intricate network 

of connection in live zebrafish, to complement the already well-known use of SINV as a vector 

for gene therapies (Lundstrom, 2001; Scherwitzl et al., 2020; Xiong et al., 1989).  

Following my purpose of exploring zebrafish potential and the urgent need to understand the 

infection caused by this emerging virus, I approached the project on SARS-CoV2. In this paper, 

we detail the possibility of using zebrafish as a model for this pathogen, a possible humanization 

of the ACE2 receptor, and further challenge the technical difficulties of zebrafish experimentation 

in BSL3. 
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 Although the project did not yield marked positive results, it still defined the “go-no go” for this 

type of project and increasingly demonstrated the potential of investing in zebrafish humanization 

and research to create ad-hoc models for pathogens and/or identify key proteins in pathogen’s 

intracellular pathways.  

In the third paper, we positively explored the possibility of using zebrafish as an animal model for 

L. pneumophila, finding interesting parallelism between zebrafish and human infection, lacking in 

mice. Furthermore, we characterize a unique T4SS-dependent behavior of Legionella in zebrafish 

yolk. One of the technical challenges we solved in this paper is imaging. Due to the rapidity of 

leukocyte movement and the large area to image for a long time, I developed new sample 

preparation and data handling and quantification to effectively observe the interaction in 4D and 

measure the leukocyte recruitment.  

To conclude, my perspectives are to keep investigating the zebrafish immune system to pathogen 

infection while in parallel developing new techniques aimed to maintain a physiologic 

environment (i.e., a chemically inducible line expressing bungarotoxin under heavy chain myosin), 

automatization (platform for automatic screening on microfluidic chips), machine learning based 

on zebrafish data and humanization protocols.  

From the biological point of view, a topic I would like to explore is the priming of the 

microenvironment in the intersection between the periphery and CNS in the frame of single or 

double infection and subsequent tissue regeneration. To clarify this sentence, I want to focus on 

the neuro-immune reflex, and in detail on immunity carry-over from the periphery to CNS; 

investigating the mechanisms of immune sensing and associated elicitor pathways. I would like to 

keep a holistic vision of the process of infection, using both viruses and bacteria to identify the 

different pathways associated to immune sensing and further delve in co-infection scenarios, that 

are often overlooked for a matter of complexity. Indeed, this is the reason to focus on new 

techniques and tools. Moreover, I would like to investigate the presence of alternative forms of 

immunological memory and observe if it affects the regeneration post infection too.  

Lastly, while investigating these topics, I would still characterize new mechanisms on pathogen 

side, as we did for Legionella and Sindbis virus papers.  

 



240 

 

I won’t hide the fact that these past years of work on viruses greatly expanded my interest in these 

pathogens, which in their relative “simplicity” are able to generate complex mechanisms with 

incredible efficiency. For this reason, in the future, I will always try to expand my knowledge of 

pathogens and build part of my career around them. 

I am aware that these fields are wide and possibly dispersed and for this reason I would focus on 

the use of emerging pathogens and their treatments.  
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