
HAL Id: tel-04723807
https://theses.hal.science/tel-04723807v1

Submitted on 7 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Characterizing and Optimizing Distributed Machine
Learning Systems : Towards a Multi-Objective Approach

Yasmine Djebrouni

To cite this version:
Yasmine Djebrouni. Characterizing and Optimizing Distributed Machine Learning Systems : Towards
a Multi-Objective Approach. Machine Learning [cs.LG]. Université Grenoble Alpes [2020-..], 2024.
English. �NNT : 2024GRALM009�. �tel-04723807�

https://theses.hal.science/tel-04723807v1
https://hal.archives-ouvertes.fr


THÈSE 
Pour obtenir le grade de 

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES

École doctorale : MSTII - Mathématiques, Sciences et technologies de l'information, Informatique
Spécialité : Informatique
Unité de recherche : Laboratoire d'Informatique de Grenoble

Caractérisation et Optimisation des Systèmes d'Apprentissage 
Machine Distribué : Vers une Approche Multi-Objectif

Characterizing and Optimizing Distributed Machine Learning 
Systems: Towards a Multi-Objective Approach

Présentée par :

Yasmine DJEBROUNI
Direction de thèse :

Vania MARANGOZOVA
MAITRESSE DE CONFERENCES HDR, UNIVERSITE GRENOBLE 
ALPES

Directrice de thèse

Sara BOUCHENAK
PROFESSEURE DES UNIVERSITES, INSA Lyon

Co-directrice de thèse

 

Rapporteurs :
SEBASTIEN MONNET
PROFESSEUR DES UNIVERSITES, POLYTECH ANNECY - CHAMBERY
GAËL THOMAS
DIRECTEUR DE RECHERCHE, CENTRE INRIA DE SACLAY

Thèse soutenue publiquement le 20 février 2024, devant le jury composé de :
DENIS TRYSTRAM,
PROFESSEUR DES UNIVERSITES, GRENOBLE INP

Président

VANIA MARANGOZOVA,
MAITRESSE DE CONFERENCES HDR, UNIVERSITE GRENOBLE 
ALPES

Directrice de thèse

SARA BOUCHENAK,
PROFESSEURE DES UNIVERSITES, INSA LYON

Co-directrice de thèse

SEBASTIEN MONNET,
PROFESSEUR DES UNIVERSITES, POLYTECH ANNECY - 
CHAMBERY

Rapporteur

GAËL THOMAS,
DIRECTEUR DE RECHERCHE, CENTRE INRIA DE SACLAY

Rapporteur

ALEXANDRE BENOIT,
PROFESSEUR DES UNIVERSITES, POLYTECH ANNECY - 
CHAMBERY

Examinateur





To my family, with love.





Remerciements

Je tiens à exprimer ma sincère gratitude envers ma directrice de thèse, Vania Marangozova,

pour avoir partagé avec moi son expertise en recherche académique et systèmes distribués,

ainsi que pour m’avoir guidée avec ses critiques pertinentes lors de la rédaction de ce mémoire.

Je salue son regard critique mais aussi son ouverture d’esprit. Merci également, Vania, pour

m’avoir soutenue durant ces trois années, tant sur le plan personnel que professionnel.

Mes remerciements distingués s’adressent également à ma co-directrice, Sara Bouchenak,

pour avoir partagé avec moi sa maîtrise de la recherche académique et des systèmes distribués.

Je salue sa disponibilité, sa motivation et ses critiques pertinentes, des éléments clés qui ont

enrichi mon expérience. Merci, Sara, j’ai appris tant de choses de toi.

Je souhaite également exprimer ma vive gratitude envers Pr. Gaël Thomas, Pr. Sébastien

Monnet, Pr. Alexandre Benoit et Pr. Denis Trystram d’avoir accepté de faire partie du jury de

ma thèse.

Je tiens à témoigner ma reconnaissance et toute ma gratitude envers ma famille pour toute

leur affection, leur soutien constant et leurs encouragements. Merci mon cher père et ma

chère mère, merci mes chères sœurs. Merci à tous mes amis proches, qui m’ont soutenue et

inspirée durant ces trois années.

Un grand merci à tous les membres des laboratoires LIG et LIRIS, et à l’école doctroale MSTII

de Grenoble. En particulier, merci à l’équipe ERODS, pour l’agréable ambiance de travail et

les nombreux bons moments passés ensemble. Je garderai longtemps un souvenir ému de

mon passage parmi ERODS qui m’a tant enrichi.

Je tiens à exprimer mes remerciements à Georges Da Costa, Lynda Ferraguig, Nawel Benarba,

Ousmane Touat, Isabelly Rocha, Pasquale De Rosa, Valerio Schiavoni, Angela Bonifati et

Pascal Felber. Leur expertise, leurs conseils et leur soutien ont joué un rôle significatif dans

l’avancement de mes travaux.

Merci infiniment à tous !

Grenoble, 20 Novembre 2023 Y. D.

i





Abstract

The past decade has witnessed a significant rise in the utilization of Machine Learning (ML)

across various domains. This is attributed to the design of powerful learning techniques and

advancements in hardware, enabling the development of sophisticated ML systems. However,

the exponential growth of ML workloads from the utilization of massive datasets has outpaced

ML systems’ capabilities. This has led to the emergence of Distributed Machine Learning

(DML), involving the execution of ML algorithms on distributed platforms. DML presents

numerous challenges, including configuration complexity and models’ fairness concerns.

In the first part of this thesis, we address the configuration challenge in DML systems deployed

in data centers. We conduct extensive experiments to collect DML workload traces and

analyze their performance under different configurations, shedding light on the impact of

tuning strategies. We show that the multi-level parameter tuning (i.e., hyper-parameters

and platform parameters jointly tuned) improves model quality and training time, while also

optimizing resource costs.

In the second part, we focus on Federated Learning (FL), a contemporary DML paradigm

designed for privacy-preserving collaborative learning across distributed nodes. We address

the significant challenge of bias and unfairness in FL models outcomes. To tackle this is-

sue, we propose the ASTRAL framework for bias mitigation in FL models, demonstrating its

effectiveness in mitigating bias while maintaining accuracy.

Keywords: Distributed Machine Learning, Workload characterization, Federated Learning,

Bias, Fairness
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Résumé

La dernière décennie a vu une augmentation significative de l’utilisation de l’apprentissage

machine (ML) dans divers domaines. Cette évolution est attribuée aux nouvelles techniques

puissantes d’apprentissage et aux progrès du matériel, qui ont permis le développement

de systèmes d’apprentissage machine avancés. Cependant, la croissance exponentielle des

traitements de l’apprentissage machine due à l’utilisation d’énormes ensembles de données

a dépassé les capacités des systèmes ML. Cela a conduit à l’émergence de l’apprentissage

machine distribué (DML), qui implique l’exécution d’algorithmes de ML sur des plateformes

distribuées. Le DML présente plusieurs défis, notamment la complexité de configuration et

des problèmes d’équité des modèles.

Dans la première partie de cette thèse, nous abordons le défi de la configuration des systèmes

DML déployés dans les centres de données. Nous menons des expériences approfondies

pour collecter des traces de traitements DML et analyser leur performance sous l’impact de

différentes stratégies de configuration. Nous montrons que la configuration conjointe des

hyperparamètres et des paramètres de la plateforme améliore la qualité du modèle et le temps

d’entrainement, tout en optimisant les coûts.

Dans la deuxième partie, nous nous concentrons sur l’apprentissage fédéré (FL), un paradigme

DML contemporain conçu pour l’apprentissage collaboratif préservant la confidentialité.

Nous nous attaquons à un défi important de l’apprentissage fédéré, à savoir le biais dans les

résultats des modèles. Pour résoudre ce problème, nous proposons la plateforme ASTRAL pour

la mitigation du biais dans les modèles FL. Nous montrons son efficacité dans l’atténuation

des biais tout en maintenant la précision.

Mots clefs : Apprentissage Automatique Distribué, Caractérisation des Workloads, Apprentis-

sage Fédéré, Biais, Équité
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1 Introduction

1.1 Context and Problem Statement

The past decade has witnessed a significant increase in the utilization of Machine Learning

(ML) due to the emergence and the prevalence of powerful learning techniques [74, 162, 77].

Furthermore, the evolution of hardware has played a crucial role in enabling the design and

development of powerful accelerators, which have greatly contributed to the enhancement of

ML systems [196, 99, 65].

ML entails the extraction of latent patterns from input data to construct models that facilitate

the generalization of learned patterns to new data. These models are used in order to make

predictions and guide decision-making processes. Today, ML is extensively applied across

numerous domains. In healthcare, it is used for accurate disease diagnosis [219]. In the finance

sector, ML plays a crucial role in credit scoring [203]. E-commerce platforms leverage ML

to deliver personalized recommendations tailored to individual users [245]. ML also finds

its way into everyday applications, enabling tasks such as speech recognition [6], language

translation [121], sentiment analysis [12], and facial recognition [24].

In order to enhance the quality of learned models and enable ML solutions for predictive tasks

in complex applications, a substantial volume of data may be required [212]. However, the

exponential growth of ML workloads resulting from the utilization of massive datasets has out-

paced the growth of computing power of hardware. Consequently, designers and developers

have turned to novel strategies to enable computationally intensive workloads. Among these

strategies, the distribution of ML workloads across multiple nodes and the transition from

non-distributed ML systems to distributed ML systems have gained prominence, and have

lead to the emergence of Distributed Machine Learning (DML).

DML involves the execution of ML algorithms on multiple nodes forming platforms known

as DML Platforms (DMLPs). DML leverages distributed computing architectures to enable

parallel processing and efficient utilization of computational resources for ML tasks. DML

typically allows exploiting massive amounts of input data called training data. This data can

1



Chapter 1 Introduction

already exist in a central site such as a data center, or be pooled to a central site from various

locations. The popularity of DML has increased with the emergence of libraries such as Spark

MLlib [139] and TensorFlow [1], enabling users to effortlessly deploy their ML algorithms on

already existing distributed computing platforms like Spark [238] and Hadoop [218]. With

the widespread adoption of cloud infrastructures, DML platforms started being offered as a

service [58]. This service empowers clients to train their own models by leveraging distributed

infrastructure and platforms provided by service providers.

Despite their advantages, DML platforms introduce a significantly more complex execution

environment compared to a non-distributed environment deployed on a single machine. This

complexity stems from various new aspects that come into play and need to be taken into

account when utilizing DML including workload parallelization, computations distribution,

node communication, results synchronization, and aggregation of intermediate and final

results. Each of these factors contributes to the overall complexity of the execution environ-

ment and significantly impacts the performance of the platform. Consequently, it is crucial

to implement and configure each one of these aspects effectively, according to the specific

requirements of the target workload, making the DML configuration challenging. Indeed,

platforms like Spark offer more than 180 configuration parameters [90]. Furthermore, for

developers and data scientists who are unfamiliar with distributed environments, identifying

potential bottlenecks or determining the optimal configurations for DML workloads is a diffi-

cult task due to to the opaque relationship between different configuration parameters and

the execution of DML workloads.

Other critical challenges of DML include the communication overhead arising from the trans-

mission of a substantial volume of geographically distributed data and concerns regarding

data privacy. As a response to these challenges, a novel ML paradigm known as Federated

Learning has emerged [135]. FL is a DML paradigm designed to operate in a collaborative

environment where data is already distributed across multiple computing nodes, usually geo-

graphically distributed, and is not transmitted through the network, preserving its privacy and

improving communication efficiency. Instead of sharing data, the participants in FL, known

also as clients, share their learned models. However, the inevitable presence of statistical and

hardware heterogeneity among the clients poses significant challenges in these systems. This

heterogeneity involves uneven data distribution among different clients at the network’s edge,

as well as variations in computing and communication resources. FL thus rises issues like

unequal client participation, and the potential for biased ML models favoring certain clients

due to under-representation of specific clients.

In this thesis, we address two distinct research challenges. Firstly, we investigate the configu-

ration issue in the context of a DML system deployed in a data center environment. In this

system, a massive volume of data is independent and identically distributed among com-

puting nodes of a data center that collaborate to construct a ML model. We use workload

characterization to assess DML system performance and study configuration impacts. We

perform extensive experiments with popular DML workloads, analyzing how different settings
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affect performance, advancing DML system optimization knowledge.

Afterwards, we shift our attention to the more contemporary DML system, federated learning

(FL) [135], where heterogeneous parties in terms of data and hardware collaborate to create

an ML model. In this context, we identify a pressing concern, namely, the pervasive issue of

bias and unfairness in FL models’ outcomes. We provide an overview of the current state of

bias mitigation in FL and identify several limitations and challenges associated with existing

research efforts. Consequently, we propose, implement, and extensively evaluate a bias

mitigation framework tailored specifically for FL.

1.2 Research Objectives and Contributions

In the following, we present our research objectives and contributions.

1.2.1 Characterizing Distributed Machine Learning Workloads

Our Objectives. The optimization of DML systems performance presents several challenges

that need to be addressed to ensure their efficient performance and resource utilization. Some

of the key challenges include managing configuration complexity. Our first objective is to

address this challenge. To do so, it is crucial to conduct a comprehensive study focused on

characterizing the configuration requirements of DML workloads. Indeed, workload char-

acterization plays a pivotal role in understanding the performance characteristics of DML

systems by quantifying and analyzing performance metrics of their workloads such as model

quality and execution time under various platform configurations. This field of study utilizes

experimental approaches that involve collecting and analyzing measurements generated by

the targeted infrastructures during their operational phase. By leveraging advances in work-

load characterization, researchers and practitioners can gain insights into the performance of

DML workloads, identify potential bottlenecks, and make informed decisions to enhance the

overall performance and efficiency of DML systems.

Our Contributions. Our initial contributions are in the field of workload characterization of

DML and are presented in the following points:

• We collect traces of DML workloads from extensive experiments conducted on two

popular distributed ML and DL libraries, MLlib [139] and BigDL [38], running on a Spark

cluster. In total, 13 widely used ML and Deep Learning (DL) algorithms were applied

to 6 different real-world datasets. The collected traces amount to a total of 16 GB and

include application-level performance metrics as well as platform and system-level

metrics. These traces are publicly accessible at https://github.com/DMLCharacterization/

DMLCharacterization/.
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• We perform a detailed analysis of the statistical distributions of our DML workloads and

discuss their common patterns and characteristics that we observed.

• We conduct in-depth experiments with different configuration strategies and compare

their effectiveness in terms of model quality, training time, inference throughput, and

resource costs. These strategies include tuning only the hyperparameters of the learning

algorithms, tuning only the lower-level platform parameters, and finally, jointly tuning

both the hyperparameters and platform parameters.

• We derive key insights, including the main aspects characterizing distributed ML/DL

workloads and the counter-intuitive behavior of workloads involving high-dimensional

data.

1.2.2 Mitigating Bias in Federated Learning

Our Objectives. To address data privacy issues in DML, the DML community has proposed

federated learning (FL) [135]. In FL, data remains with the clients. Only information defining

the locally learned model, i.e., model parameters, is exchanged with the server or the clients

during the learning process. Since data remains with the clients, FL ensures data privacy and

reduced communication costs. However, despite its advantages, the FL approach introduces

several challenges such as the heterogeneity of hardware resources and the heterogeneity

of data among different clients [244], leading to the exacerbation of bias in FL models [155].

Bias in ML is a phenomenon that occurs when ML systems produce unfair models due to

the use of unbalanced, incomplete, or flawed datasets, models, and training procedures.

Biases can have serious consequences for some demographic groups, including lower service

quality, reduced revenue, or even illegal actions. In FL, additional challenges are introduced in

front of bias mitigation compared to the classical ML run on a single node without privacy

constraints. Firstly, due to privacy constraints, FL is characterised by the lack of visibility of the

training data, limiting the ability to perform bias analysis to identify biased data, and mitigate

potential biases as in classical ML. Indeed, classical ML bias mitigation techniques require

access to data. Moreover, FL involves training ML models on distributed data sources, which

are often heterogeneous in terms of data distribution, data quality, and hardware resources.

This heterogeneity can lead to variations in the contribution and participation of the different

clients. Thus even when the data don’t contain biases, the FL inherent heterogeneity may

introduce potential biases in the training process, mainly in the clients’ models aggregation

and in the clients’ selection components of FL. Thus, FL must contend with the challenges of

heterogeneity to be unbiased.

Our contribution. We propose ASTRAL, a novel framework for mitigating bias in FL. The goal

of ASTRAL is to keep FL models bias below a specified threshold while maintaining high model

accuracy. To achieve this, we propose an FL aggregation method that adjusts the contributions

of FL clients’ local models based on their impact on the global model’s bias and accuracy.
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Unlike existing approaches, ASTRAL has the capability to handle bias with regard to multiple

demographic groups existing in data and supports bias mitigation for different bias metrics. To

evaluate the effectiveness of ASTRAL, we conduct extensive experiments using five widely used

datasets and various FL settings. We compare ASTRAL against three other FL bias mitigation

techniques, examining model bias, accuracy, scalability, and robustness to client heterogeneity.

The results demonstrate that ASTRAL outperforms existing approaches in mitigating bias while

maintaining high accuracy. Our main contributions can be summarized as follows:

• We design and implement the ASTRAL framework, which effectively ensures a bias limit

while preserving model accuracy in FL.

• We ensure that ASTRAL accommodates the presence of multiple demographic groups

and supports various bias metrics, making it adaptable to different practical scenarios,

outperforming state-of-art techniques.

• We conduct a thorough evaluation of ASTRAL using seven datasets and diverse FL

settings, providing comparisons with three alternative bias mitigation techniques. The

evaluation shows the scalability and effectiveness of ASTRAL, independently of data

heterogeneity, size and the number of participating clients.

• We provide the ASTRAL software prototype and the datasets used in our experiments,

accessible at https://github.com/FL-Bias/ASTRAL.

1.3 Summary of Scientific Production

In the following, we list the publications, communications, software, and datasets resulting

from this thesis.

1.3.1 Publications and Communications

• Yasmine Djebrouni, Nawel Benarba, Ousmane Touat, Sara Bouchenak, Angela Bonifati,

Pasquale Derosa, Pascal Felber, Vania Marangozova, and Valerio Schiavoni. 2023. Bias

Mitigation in Federated Learning for Edge Computing. Proceedings of the ACM on

Interactive, Mobile, Wearable and Ubiquitous Technologies. 7, 4, Article 157, 35 pages.

• Yasmine Djebrouni, Isabelly Rocha, Sara Bouchenak, Lydia Chen, Pascal Felber, Vania

Marangozova, and Valerio Schiavoni. 2023. Characterizing Distributed Machine Learn-

ing Workloads on Apache Spark. In Proceedings of the 24th International Middleware

Conference (Middleware ’23). Association for Computing Machinery, New York, NY,

USA, 151–164.

• Yasmine Djebrouni. 2022. Towards Bias Mitigation in Federated Learning. In the 16th

EuroSys Doctoral Workshop.

• Lynda Ferraguig, Yasmine Djebrouni, Sara Bouchenak, and Vania Marangozova. 2021.

Survey of Bias Mitigation in Federated Learning. In Conférence Francophone d’Informatique

en Parallélisme, Architecture et Système (ComPAS’2021).
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• Yasmine Djebrouni, Isabelly Rocha, Sara Bouchenak, Lydia Chen, Pascal Felber, Vania

Marangozova-Martin, and Valerio Schiavoni. 2021. Characterizing Distributed Machine

Learning and Deep Learning Workloads. In Conférence Francophone d’Informatique

en Parallélisme, Architecture et Système (ComPAS’2021).

1.3.2 Developed Software and Published Dataset

• Software:

– LACAN https://github.com/DMLCharacterization/LACAN/

– ASTRAL https://github.com/FL-Bias/ASTRAL

• Dataset: DISTMLBENCH https://github.com/DMLCharacterization/DMLCharacterization/

1.4 Thesis Roadmap

This thesis is structured as follows. In Chapter 2, we present the necessary background on DML.

Then, in Chapter 3, we introduce our contribution to DML workloads characterization by

providing background and literature review on DML characterization. Afterwards, in Chapter 4,

we present our DML characterization methodology. In Chapter 5 we present our collected

traces and the traces analysis. Chapter 6 introduces our contribution to bias mitigation in FL,

we provide there generalities on FL and bias, discuss existing works in bias mitigation in FL,

and motivate our work. Then, in Chapter 7, we present ASTRAL, the bias mitigation framework

that we have proposed. We present a detailed evaluation of ASTRAL and assess its effectiveness

in Chapter 8. Finally, Chapter 9 concludes this thesis and discusses our research perspectives.

6

https://github.com/DMLCharacterization/LACAN/
https://github.com/FL-Bias/ASTRAL
https://github.com/DMLCharacterization/DMLCharacterization/


2 Background on Distributed Machine
Learning

In this chapter, we present generalities on Distributed Machine Learning (DML). Firstly, we

provide a background on machine learning (ML), its components, and its pipeline. Afterwards,

we discuss the motivation behind the widespread adoption of Distributed Machine Learning

(DML). We present various methodological approaches designed to enable the execution of

DML. We also discuss several optimizations implemented within these systems, which aim to

address the distinctive challenges posed by DML.

2.1 Machine Learning

2.1.1 Overview of Machine Learning

Computer science has empowered humans to program machines, providing them with the

means to give precise instructions to machines to accomplish specific tasks. This has resulted

in the automation of numerous processes across various domains. For instance, in the field of

finances, machines automation has played a significant role in data management and min-

ing [21]. Similarly, in education, a wide range of programs have been developed to implement

teaching mechanisms and support learners in achieving pedagogical objectives [202], while

the industrial sector has witnessed the prevalence of several software solutions that assist

humans in managing various tasks [151]. These advancements in technology have undeniably

improved the quality of human lives.

In the mid-20th century, researchers began exploring new techniques that enable machines to

learn and make autonomous decisions, without relying on explicit programming and detailed

instructions. This marked the advent of ML. One of the early pioneers in this field was Frank

Rosenblatt, who along with his team, constructed a machine known as the Perceptron, capable

of recognizing letters of the alphabet from images [66]. This breakthrough in computer science

opened doors for increased automation and reduced human effort in various domains.

ML is the set of methods within the field of computer science enabling machines to acquire
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decision-making capabilities. The term "Machine Learning" itself signifies the ability of

machines to learn how to make decisions without being literally programmed [57]. Specifically,

ML algorithms learn patterns and relationships from data, and build a decision model that

serves as a representation of the learned patterns and relationships. This model is used by

machines to generalize the acquired knowledge, enabling them to make predictions and take

decisions when faced with new data in future scenarios.

ML methods typically leverage existing data and ground truth collected from the real world.

In addition, ML methods exploit mathematical formulations of reward or penalty, as well

as statistical and optimization approaches to search for the best model with regard to the

formulated reward or penalty, and to the data at the disposal of the machine. The process of

learning a ML model is referred to as ML training. The data used during that process is called

the training data. The process of using the learned model is typically referred to as ML test or

ML inference, while the data used here is called the test or inference data.

Data

Data in ML refers to the input observations or records, issued from the real word. It embeds

real world patterns and relationships and is used to build ML models. Data can come in various

forms and can be categorized as structured or unstructured. Structured data is organized in a

tabular format with rows and columns. Each row represents a data record, and each column

represents a specific property or feature of that record. Examples of structured data include

data in spreadsheets, databases, or CSV files. On the other hand, unstructured data does not

follow a specific format or organization. It can include text documents, images, audio files,

or any other form of data that does not have a predefined structure. To train an ML model,

the data is typically divided into two subsets: training data and testing data. The training data

is used to train the model, allowing it to learn patterns and relationships from it. The testing

data is used to evaluate the performance of the trained model on unseen data, and thus assess

its accuracy and generalization capacity.

Ground Truth

The ground truth in ML represents the desired pattern that an ML algorithm aims to discover

and learn [112]. It is the truth that the models’ outcomes should be consistent with, and the

reference against which the performance and accuracy of the models are assessed. The ground

truth can take various forms, such as labels that classify data records into classes, or numerical

values that measure a phenomenon and that the ML method should learn to predict.

Sometimes, depending on the ML use case, the ground truth is available and is fed to the

algorithm along to the training data, to allow it to learn a model that predicts outcomes

consistent with the ground truth. Other times, it is not available. The algorithm should deduce

the patterns by itself.
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Machine Learning Model

A model in ML is a mathematical representation that is learned from the training data to

make predictions or decisions. It captures the patterns and relationships in the provided data.

Generally, a model is defined by a parametric function that maps the training data features

to the ground truth. The model parameters are typically real numbers that are learned or

adjusted during the training process. Different types of functions can be used to define a

model. They can range from simple functions like a regression line [200], which represents a

linear relationship between the input feature and the ground truth, to complex functions like

artificial neural networks [108], which consist of interconnected layers of artificial neurons

that process data (see §2.1.4). However, it’s worth noting that not all models are defined solely

by parameters and mathematical functions. Some models are based on decision rules. These

models take the input features of a data record and pass them through a set of decision rules to

make a prediction or decision. Decision trees are an example of such models [177]. In addition,

some models, like k-nearest neighbors (KNN) [170], are defined by distance functions. KNN

outputs decisions for new instances based on their proximity or similarity to the labeled

instances in the training data, using a distance metric such as the euclidean distance.

2.1.2 Machine Learning Pipeline

A ML pipeline typically consists of three main phases. First is the training phase, where the ML

model is learned. Afterwards, the model proceeds to the testing phase where its performance

is evaluated. Finally, the model is deployed and put into practical use.

Training

ML training plays a fundamental role in a ML pipeline, as it involves the process of applying

ML algorithms to build the ML model. This means finding the optimal model that accurately

fits the given training data and the potentially associated ground truth. To find such model, a

decision penalty known as the loss function is formulated and optimized during the training

phase. It quantifies the disparity between the predicted outputs generated by the model and

the actual outcomes provided in the ground truth.

More formally, let D = {(x1, y1), (x2, y2), . . . , (xn , yn)} ⊂X ×Y , be the training data, where xi ∈X

represents the feature vector of the i th record, yi ∈Y represents the ground truth value for

that record, and n ∈N is the records number. We denote the ML model with a function fθ,

where θ ∈ Rd represents the d-dimensional model parameters’ vector. fθ takes as input a

feature vector from X and returns a value from Y . We denote the loss function by L , it takes

as input the training data, the ground truth, and the values predicted by fθ, and returns the

overall error of fθ predictions. The goal of the training phase is to find the optimal values of θ

that minimize L .

There exists multiple functions for L , depending on the problem at hand. For instance,
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in regression tasks, where the goal is to predict continuous values, common loss functions

include the mean squared error (MSE) [41] or mean absolute error (MAE) [20]. The MSE

measures the average squared difference between predicted and the ground truth, while the

MAE calculates the average absolute difference.

In classification tasks, where the objective is to assign data points to predefined classes,

different loss functions are used. For example, for binary classification, when there are two

classes in the ground truth, typically referred to as positive and negative, the cross-entropy

loss [132] (also known as log loss) is commonly employed. It quantifies the difference between

the predicted probability of the positive class, and the actual ground truth label.

In addition to regression and classification tasks, ML training techniques are also applicable

to clustering tasks. Clustering is the process of grouping similar data points together based

on their intrinsic characteristics or patterns. Unlike regression and classification, clustering

does not involve the ground truth. Formally, the training data in clustering contains only

features vectors, i.e., D = {x1, x2, . . . , xn} ⊂X . A clustering algorithm thus doesn’t aim to learn

the ground truth. Instead, it aims to discover inherent similarities between the data records,

and then to groups similar data records in clusters. One commonly used loss function for

clustering techniques is the sum of squared distances between data points and the centers of

their assigned clusters [126]. It measures how close are data points to their assigned clusters.

To minimize the loss function and identify the best-fitting model for the training data, various

algorithms are employed. regardless of whether the model is a parametric function with fixed

parameters or a set of decision rules that accurately represent the relationships in the training

data. One approach is to apply optimization techniques like gradient descent [184]. Different

training algorithms are presented in §2.1.3.

Test and Deployment

Once the model is trained, it goes through the test phase. Here the model fθ is applied to

unseen data known as the test data. The outputs of the model is then used to assess its

performance. Various metrics are used to measure the model’s performance depending on its

type.

In regression tasks, metrics such as mean squared error (MSE) [41], and mean absolute error

(MAE) [20] are used. In addition, there is the and R-squared [141] metric that measures the

proportion of variance in the ground truth explained by the model.

In binary classification tasks, several common metrics are used to evaluate the performance of

the classification model. These metrics include accuracy, precision, recall, and F1-score [173].

Accuracy calculates the proportion of correctly classified instances, while precision measures

the proportion of true positive predictions out of the predicted positive instances. Recall

measures the proportion of true positive predictions out of the actual positive instances, and

the F1-score combines precision and recall to provide a balanced measure of performance.
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Clustering models are evaluated using metrics such as the Silhouette Coefficient [191] and

the Sum of Squared Errors (SSE) [153]. The Silhouette Coefficient measures the separation of

clusters, providing a value between -1 and 1, with higher values indicating better-defined and

well-separated clusters. SSE measures the overall intra-cluster compactness by summing the

squared distances between each data point and its assigned cluster centroid.

Once validated, the model is deployed on machines. Deployment involves integrating the

model into the target system or application, making it available for real-time predictions or

decision-making tasks.

2.1.3 Types of Machine Learning Training Algorithms

An ML algorithm, also called ML method or ML technique, is a specific computational proce-

dure or set of rules that machines use to build ML models from data and ground truth. It is

executed in the training phase and usually involves the optimization of an objective function

leading to the definition of the ML model. There exist several approaches to train models in

ML. In the following, we present the most known approaches.

Gradient Descent Based Algorithms

Widely used in ML, these methods rely on the gradient descent optimization algorithm [184]

to optimize the loss function and determine the best parameters that fit the training data. The

gradient descent process involves iteratively updating the parameters using the algorithm

presented in Algorithm 1. Precisely, in each iteration of gradient descent, the gradients of the

loss function of the training data with respect to each parameter are computed (see Line 3

in Algortihm 1). These gradients denoted by {∆θi }i =d
i =1 indicate the direction of the steepest

descent through the loss function values towards the loss function minimum. Once the

gradients are computed, the parameters are adjusted by subtracting a portion of the gradients

from their current values (see Line 5 in 1). This update allows the parameters to move closer

to the optimal values that minimize the loss function. The portion to be subtracted from the

weights is computed by multiplying the gradient per a factor γ called the learning rate. Here the

learning rate controls the magnitude of the update, and thus the speed of the convergence. The

convergence of the optimization process occurs when the gradients become sufficiently small,

indicating that further updates to the parameters would make little difference. This means

that the algorithm has found a locally or globally optimal solution. Several ML algorithms

are based on gradient descent, including linear regression, logistic Regression [111], support

Vector Machines (SVM) [130], and artificial neural networks.

In gradient descent based optimization approaches, the computation of gradients can be

tailored to different strategies. Gradients are essentially the derivatives of the loss function

with respect to each model parameter. The choice of how these gradients are computed

characterizes the three main variants of gradient descent. In Stochastic Gradient Descent
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Algorithm 1: The general gradient descent algorithm; different choices of the learning rate
γ, number of iterations T , and the loss function for L (θ) may lead to different models.

Input: Initial parameters θ, training data D = {(x1, y1), (x2, y2), . . . , (xn , yn)}, number of iterations T ,
learning rate γ

Output: Final parameters θ
1. for t = 1 to T
2. Estimate ∇L (θ) using D

3. For each component θi of θ, compute∆θi = ∂L (θ)
∂θi

4. For each component θi of θ, compute: θi := θi −γ∆θi

5. return θ

(SGD), Gradients are computed using only one randomly selected data point in each itera-

tion [17]. This introduces stochasticity and faster updates, making it computationally efficient,

particularly for large datasets. In Batch Gradient Descent [81], gradients are computed using

the entire training dataset in each iteration. This provides a more accurate estimate of the

direction for parameter updates but can be computationally expensive, especially for large

datasets. In Mini-Batch Gradient Descent [81], gradients are computed using a randomly

sampled subset or "mini-batch" of the data in each iteration. This strikes a balance between

the efficiency of SGD and the stability of batch gradient descent, allowing for quicker updates

that are less computationally intensive than the full dataset.

Decision Rule Based Algorithms

Decision rule-based algorithms involve learning a set of rules from the training data to make

decisions. In these algorithms, rules are formulated as conditions based on feature values,

serving as criteria for classifying or predicting outcomes. Each rule represents a specific com-

bination of feature values that guides the decision-making process. For instance, in a decision

tree algorithm, a rule could be expressed as follows: "IF age ≥ 30 AND nb_weeks_worked ≥ 48,

THEN classify as ’high income’" [201]. These rules are learned during the training phase by

recursively partitioning the data based on the feature values of the data points, resulting in a

hierarchical structure for decision making. The partitioning process aims to create data parti-

tions that maximize the separation or purity of data points belonging to different classes [201].

The quality of a split is evaluated using metrics such as Information Gain and Gini Impurity,

commonly employed in decision tree algorithms [201].

Ensemble Methods

Ensemble methods involve combining multiple models to create a single, more powerful

model. There are two common ways to combine models: boosting [68] and bagging [18].

Boosting is a sequential approach where multiple models are trained iteratively. Each sub-

sequent model focuses on the instances that were poorly predicted by the previous models.
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Figure 2.1: Foundations of Deep Learning: (A) One neuron neural network (equivalent to the
Logistic Regression model), (B) Visualization of various activation functions, (C) Single hidden
layer shallow network, and (D) Multi-layer neural network with over two hidden layers [50].

By emphasizing the difficult instances, boosting aims to improve the overall performance.

The final model is a weighted combination of these individual models, where each model’s

contribution is determined by its performance. Bagging, short for bootstrap aggregating,

involves training multiple models on different subsets of the training data. Each model is

trained independently, and the predictions from all models are combined using averaging or

voting to make the final prediction. By creating diverse models on different subsets, bagging

helps reduce the model variance and improve generalization performance. Both boosting

and bagging methods leverage the collective knowledge of multiple models to enhance the

overall prediction capability. Examples of these algorithms are ensemble methods, such

as Random Forest [13] (combining decision trees through bagging) and Gradient Boosting

Decision Tree [103] (combining decision trees through boosting).

Instance Based Algorithms

In contrast to other approaches, Instance-based algorithms do not explicitly learn models but

instead memorize the training data. During the prediction phase, these algorithms calculate

the proximity of the input data to the stored training instances using a distance function.

They then provide predictions based on the labels or values of the nearest records in the

training data. One example of an instance-based algorithm is the K-nearest neighbors (KNN)

algorithm.
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2.1.4 Deep Learning

Deep Learning (DL) is a subfield of ML that uses Artificial Neural Networks (ANN) [230]

to construct powerful models capable of learning from complex data. ANNs are complex

mathematical functions represented by interconnected nodes and edges that looks like neural

networks, hence the name. An ANN is defined by its structure, including the number of

neurons, links between neurons, and layers. More elements define an ANN. Each neuron in an

ANN applies a specific function, known as an activation function [188], to the input data. The

role of activation functions is to generate non-linear relationships between the input and the

output. There are many activation functions (some of them presented in Figure 2.1(B)). The

connections between neurons are represented by edges, which define the flow of information

through the network (see Figure 2.1(D) and Figure 2.1(C)).

There are several types of ANN, such as Fully Connected Networks (FCNs), where each neuron

is connected to every neuron in the preceding and succeeding layers, facilitating compre-

hensive information processing. Convolutional Neural Networks (CNNs) [80] specialize in

capturing spatial patterns in data, particularly images, by utilizing convolution operations. Re-

current Neural Networks (RNNs) [137] are designed for sequential data analysis, incorporating

loops to capture temporal dependencies.

During training, the parameters of an ANN, including the weights assigned to edges and

biases assigned to neurons, need to be learned. Optimization techniques like gradient descent

are commonly employed to update and adjust these parameters to minimize the difference

between the predicted and actual outputs.

The complexity, flexibility, and structured nature of artificial neural networks enable them

to learn complex relationships and extract meaningful features from data, making them a

powerful tool in the field of ML, for both supervised and unsupervised learning.

2.2 Scaling Machine Learning Techniques

Nowadays, both large and small organizations leverage the power of massive amounts of data

collected from various sources such as social media accounts [10], health records [48], and

computer logs [113], to extract valuable insights that can be applied to their strategies.

ML presents an optimal approach to unlock the potential inherent in Big Data. First, it is a

data-driven technology. The injection of larger volumes of data into ML systems enriches the

knowledge base and amplifies the system’s learning capacity. Thus, it enables the extraction of

valuable information from extensive and diverse data sources. Moreover, ML possesses the

capability to adapt to complex datasets that are ubiquitous in our era such as text, images,

or audio data and that are characterized by their high number of features, the presence of

non-linear relationships between variables, and the presence of temporal dependencies. The

adaptability of ML to such data is rooted in the inherent flexibility and learning capacity of ML
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algorithms. By adjusting the structure and the parameters of models, and by increasing their

complexity when necessary, they can effectively capture and represent the complex patterns

and relationships present in complex data.

However, in specific instances where ML is applied to Big Data, the process of ML can become

excessively time-consuming due to the intensiveness and complexity of the computations.

To address this challenge, designers resorted to increasing the scalability of ML training

techniques to large and complex data through two main strategies: scaling-up and scaling-

out. The test phase, in comparison, is typically less computationally demanding. Therefore,

optimization efforts focus on either the training, or test phase of complex models deployed

on constrained devices like real-time prediction models in autonomous vehicles. On the

following, we present techniques used to scale ML training techniques.

2.2.1 Scaling Up

This approach augments the resources of the node running ML training, leading to improved

performance and scalability. Enhancing computation resources by allocating additional

powerful processing units is widely explored in ML literature due to its advantages. It allows

running faster computations and parallelizing the workload on the same machine, significantly

reducing the overall execution time.

GPUs (Graphics Processing Units) have become the predominant choice for accelerating

ML techniques [196]. Early work by Steinkraus et al. [196] used GPUs, specifically the AT1

Radeon X800 and NVlDlA GeForce 6800 Ultra, to implement a two fully-connected layers

network. They achieved a threefold speedup compared to CPU usage. Their work inspired

the utilization of GPUs for more complex models like Multilayer Perceptrons (MLPs) [71] and

Convolutional Neural Networks (CNNs) [80]. Indeed, modern GPU nodes have made MLPs

more affordable and suitable for large datasets [32]. Moreover, running convolution operations

that are inherently parallelizable on GPUs has significantly benefited CNNs performance

during training and inference [172, 227].

In contrast to GPUs, FPGAs (Field-Programmable Gate Arrays) [102] provide adaptable hard-

ware configurations and frequently offer superior performance per watt for crucial DL sub-

routines, including sliding-windows computation [65]. For these subroutines, FPGA provided

significantly faster performance with speedups up to 11× and 57× compared to GPUs and

CPU, except for small inputs sizes [65]. Nevertheless, the programming of FPGAs necessitates

specialized hardware expertise, thereby restricting their utilization primarily to researchers

and application scientists who possess knowledge and proficiency in this domain [110].

TPUs (Tensor Processing Units) [228] are recent processing units developped by Google,

primarily designed for DL inference and training [99]. TPUs are used in Google Cloud data

centers to handle massive amounts of data. Google claims that TPUs are, on average, 15-30

times faster than contemporary GPUs or CPUs [99, 187].
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Numerous benchmarking studies have been conducted to evaluate and compare the perfor-

mance of these different accelerators for ML tasks. Authors of [187] and [65] indicate that

accelerated hardware including CPUs, GPUs, FPGAs, and TPUs, provide significant and some-

times comparable performance improvements for neural network training and inference. The

choice of specialized hardware depends on the specific data, model and its requirements.

Additionally, benchmarking studies must be continuously updated and frequently run due to

the rapid evolution and changes in deep learning models [187].

2.2.2 Distributed Machine Learning (Scaling Out)

In this approach, an ML workload is distributed across multiple machines or workers that

collaborate in order to run ML in a parallel way. This approach has given rise to a new research

discipline known as Distributed Machine Learning.

In their work [212], the authors highlight several reasons for choosing scaling out ML (DML)

over scaling up, or even combining both strategies instead of solely relying on scaling up. First,

DML allows for horizontal scalability by adding more nodes to the system. This increases

I/O bandwidth enabling the handling of larger datasets compared to a single specialized

hardware node. Then, DML across multiple nodes can be more cost-effective than investing in

expensive specialized hardware. Finally, DML across multiple nodes enhances fault tolerance.

If one node fails or experiences issues, the overall system can still function by offloading the

workload to the remaining nodes. In the following, we shed light on DML and the different

strategies used to enable it.

2.3 Distributed Machine Learning

Distributed Machine Learning, also known as DML, refers to multi-node ML or DL algorithms

and systems that are designed to improve performance and scale to more training data and

bigger models [225].

There exist several strategies, known as DML paradigms, that allow distributing training pro-

cesses of ML models across multiple machines or computing nodes. Among these paradigms,

parallelism paradigms play a pivotal role. They focus on how the workload is divided and how

data is partitioned across several computation nodes. Thus, they address the challenge of ef-

fectively leveraging distributed resources to handle the computational demands of large-scale

datasets and complex models which is the core of DML.

Architecture and synchronization paradigms complement parallelism paradigms by address-

ing broader aspects of DML. Architecture refers to the underlying structure or nodes’ con-

nections pattern that governs communication and coordination between distributed nodes,

impacting aspects such as fault tolerance, scalability, and communication efficiency.

On the other hand, synchronization paradigms deal with the crucial aspect of ensuring consis-
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Figure 2.2: Data parallelism: The training data is divided into smaller subsets called shards,
and each shard is assigned to a specific worker node holding a copy of the model.

tent updates and coordination between distributed workers during training. Synchronization

plays a pivotal role in achieving convergence and maintaining consistency across the dis-

tributed system. Together, the three paradigms form the foundational pillars for developing

efficient and scalable DML systems.

2.3.1 Parallelism Paradigms

There exist mainly two scalability dimensions that motivated parallelism paradigms: The

data scale and the model scale. These two scales have motivated data and model parallelism.

Other parallelism paradigms exist, they leverage the combination of both data and model

parallelisms.

Data Parallelism

With datasets reaching unprecedented sizes, it became increasingly difficult to accommodate

them and perform model training efficiently on a single computing node. This challenge

has motivated for the emergence of the data parallelism paradigm [224]. In data parallelism,

multiple computing nodes work together in a coordinated manner. Each node has its own

copy of the ML model. The training data is divided into smaller subsets called shards, and

each shard is assigned to a specific computing node. Each node trains its own model copy

using its assigned data shard as presented in Figure 2.2.

During the training process, each node generates partial updates for the model based on its

local training data. These partial updates represent the changes that should be made to the

model to improve its performance. In particular, in the prevalent gradient descent-based

algorithms, the partial updates computed by a node are equal to the gradients computed

by that node using its local loss function. Once a training iteration is complete, the partial

updates from all the nodes are aggregated. Typically, a central node receives the partial updates

17



Chapter 2 Background on Distributed Machine Learning

W
or

ke
r 

1
W

or
ke

r 
2

W
orker 3

W
orker 4

Figure 2.3: An example of model parallelism showing a five layer deep neural network parti-
tioned across four workers (blue rectangles). Nodes with edges that cross partition boundaries
(thick lines) will need to have their state transmitted between workers [43].

from each node and computes the overall update that needs to be applied to the model. The

aggregation of partial updates is performed through summation [224].

It is important to note that for this summation to be valid, the data should be distributed

among the nodes independently and identically [224], which is typically assumed in DML sys-

tems implementing data parallelism. In other words, each data shard should be representative

of the overall dataset, and there should be no overlap or dependency between the shards. If

the data distribution is not independent and identical, the summation of updates would not

accurately reflect the update that could have been computed on the entire training data.

Once the central node computes the overall update, it updates its own copy of the model and

distributes the updated model to all the nodes. The updated model is then used for the next

iteration of training, and the process repeats until the model converges to a satisfactory level

of performance.

One drawback of data parallelism is the increased communication overhead required to syn-

chronize the updates among the devices. As the number of devices increases, the amount

of communication and synchronization can become a bottleneck, impacting training effi-

ciency. Additionally, data parallelism may encounter challenges when dealing with imbal-

anced datasets, as the workload may not be evenly distributed across devices, leading to

slower convergence or sub-optimal results. These challenges motivated many works that have

proposed solutions for efficient communication and synchronization as we will present §2.3.2

and §2.3.3.

Model Parallelism

In certain scenarios, ML models can become excessively large, especially in the case of DL

models that contain billions of parameters. Consequently, these models may surpass the

18



Background on Distributed Machine Learning Chapter 2

memory capacity of a single computing node. To address this issue, the concept of model

parallelism has been introduced.

In model parallelism, the model is distributed across multiple computing nodes as presented

in Figure 2.3. The training data is fed to the workers responsible for the initial stage of the

model training. For example, for DL models, this stage consists in the computations done

by the first layers of the model (done by Workers 1 and 3 in Figure 2.3). When the initial

stage of training is performed, its results are propagated to subsequent workers responsible

for subsequent training stages, until the entire model is trained. Model parallelism faces a

significant challenge in determining how to divide the model into partitions and assign them to

workers [133]. Such decisions can be made by human experts based on heuristics and intuition

regarding which parts of the model should reside on specific nodes [166]. However, more

sophisticated methods exist. In [143, 142], researchers introduced a reinforcement learning-

based method that uses a predictive model to determine which subsets of operations within

a TensorFlow graph should be executed on available workers. Initially, the model partitions

are subjected to permutations between the workers, measuring performance metrics such as

execution time (e.g., for a training iteration) and using them as reward signals. If performance

improves, the permutation is retained, and additional permutations are performed until

performance convergence is achieved.

Model parallelism is not without limitations. Interdependencies between a model’s parti-

tions lead to high communication overhead between workers which leads to congestion and

synchronization delays. Consequently, increasing the level of model parallelism does not

necessarily result in accelerated training [142]. Another potential drawback to consider is that

several workers may be idle simultaneously, especially when it’s not their turn to handle the

training stage.

Hybrid Parallelism

To overcome the limitations of data parallelism and model parallelism, researchers have

adopted a hybrid approach that combines both techniques. Pipeline parallelism is a hybrid

approach proposed by [154] and [91]. In pipeline parallelism, the training data is divided

into micro-batches, and the model is partitioned by assigning specific stages to individual

workers. Each worker is responsible for loading a distinct portion of the model for training.

It then computes outputs for a set of micro-batches, propagates these outputs to the next

set of workers as soon as they become available, and continues computing outputs for the

remaining micro-batches. The calculations overlap between two stages residing on different

workers when the data from the first stage is ready for processing by the second stage, and the

first stage is ready to process a new micro-batch of data. Consequently, pipeline parallelism

can be viewed as a combination of data parallelism, where data is processed concurrently

across multiple layers, and model parallelism, where the model is divided among the workers.

Other hybrid approaches exist. For convolutional neural networks (CNNs), The author of [107]

19



Chapter 2 Background on Distributed Machine Learning

proposed to leverage data parallelism for convolutional layers, while model parallelism is

applied to fully-connected layers. The idea is that model parallelism is efficient when there

is high computation per neuron activity, which is the case in fully-connected layers [107]. In

contrast, data parallelism is effective when there is high computation per weight, as seen in

fully convolutional layers [107].

Another example of a hybrid parallelism approach is Hypar [194], which mixes data and

model parallelism. For model parallelism, Hypar searches for the best layer-wise parallelism

configuration to minimize communication during training using dynamic programming. Its

evaluation demonstrates performance gains and energy efficiency improvements compared

to default data parallelism, outperforming other hybrid-parallelism methods as well [107].

Other works explore and implement hybrid parallelism techniques. For instance, [4] pro-

poses a method combining model and data parallelism, along to a Genetic Algorithm-Based

Heuristic Resources Allocation (GABRA) mechanism for optimal distribution of partitions

on available GPUs to optimize training time. Another study [52] introduces a library for

implementing hybrid-parallel 2D CNNs, while [163] extends this work to support 3D data.

2.3.2 System Architecture Paradigms

During data-parallel training, workers’ updates are brought together at each iteration to

combine their knowledge. Thus, an essential consideration in DML systems is effective

collaboration among the workers. This involves determining the communication channels

and establishing clear communication patterns between the workers. Deciding which workers

communicate with each other and how they exchange updates is crucial for ensuring efficient

collaboration during training.

Parameter Server Architecture

The parameter server architecture [115] is a distributed framework that consists of a central

node known as the server or parameter server, connected to multiple worker nodes. In this

architecture, the parameter server holds a copy of the model parameters that are accessible to

all workers. Across the training iterations, the workers send their updates computed on their

respective data shards to the server. The server incorporates these updates into the model

and communicates the updated model back to the workers as presented in Figure 2.4. The

parameter server paradigm is widely used in DML systems and has been implemented in

popular platforms such as TensorFlow, Spark, and PMLS.

However, this architecture faces certain challenges. One significant concern is its vulnerability

to failures. If the server experiences a breakdown, the entire system collapses, leading to

disruptions in training. Additionally, the parameter server architecture may encounter poten-

tial bottlenecks at the server level due to the communication overhead involved in handling

updates from all the workers.
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Figure 2.4: Parameter server architecure: the parameter server updates the model by applying
on it the average of the worker’s partial updates.

Peer-to-peer (P2P)

To mitigate the fault tolerance issues associated with the parameter server architecture, an

alternative approach called the peer-to-peer architecture has been proposed. In this architec-

ture, workers establish direct communication among themselves, eliminating the dependency

on a parameter server node. Within the P2P architecture, all the workers are fully connected

to each others. Each worker receives updates from each of the other workers and performs an

all-reduce operation to aggregate the received updates. Then, each incorporates the computed

update into their respective models. However, it’s important to note that this architecture

introduces a notable challenge in the form of significant communication overhead. In fact, the

communication cost in a network with n workers scales with O (n2). As the network expands,

the communication demands between workers can become excessively burdensome.

In their paper [183], the authors present BrainTorrent, a DML framework designed specifically

for medical applications, operating without a central server in a peer-to-peer fashion. The

learning process follows an iterative approach. In each iteration, a worker initiates a connec-

tion request to all other workers in order to compare their model versions. Only those workers

with more recent model versions send their updates to the initiating worker. Subsequently, an

aggregated model is created by combining all the received models, which is further fine-tuned

using the local data of the worker who initiated the connection request.

Ring All-Reduce

To address the weak fault tolerance of the parameter server architecture and reduce the

communication overhead observed in peer-to-peer (P2P) architectures, an alternative solution

known as the ring-based peer-to-peer architecture, or ring-allreduce, has been proposed.

In the ring-based architecture, workers are connected in a circular ring topology rather than a
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Figure 2.5: The Bulk Synchronous Parallel synchronization model [242].

fully connected network. Each worker propagates its computed updates to its neighboring

worker in the ring topology. Upon receiving an update, the neighbor worker performs a

summation operation with its own update. This process continues through several rounds of

communication between pairs of workers, allowing the last worker in the ring to accumulate

an aggregation of updates from all other workers. Subsequently, this worker communicates its

aggregated update to the other nodes in a pairwise manner.

Baidu was among the pioneers in proposing the use of ring-allreduce for data parallel deep

learning training [78]. Uber’s Horovod [186] replaced Baidu ring-allreduce implementation

with NVIDIA’s library "NCCL" [93] to implement the ring-allreduce communication pattern.

However, it is worth noting that this architecture may introduce potential delays as workers

have to wait for sequential communication with each other to compute the overall updates.

2.3.3 Synchronization Paradigms

For data-parallel training, a synchronization paradigm answers the question: When exactly

should the communication between the workers happen. It ensures that workers operate on

the same version of the model. Additionally, such paradigm may consider the tolerance for

workers to use slightly outdated parameter versions. This will allow handling the trade-off

between the the training quality and the training speed. We present in the following the

different synchronization paradigms in DML.

Synchronous Learning

Synchronous learning follows the Bulk Synchronous Parallel synchronization model (BSP) [208,

76] presented in Figure 2.5. In synchronous training, the updates of the model are synchro-

nized among workers after each iteration, typically involving the processing of a batch of data.

A single iteration of this paradigm includes three distinct stages. Firstly, in the computation

phase, the different workers execute computations on the model derived from the preceding
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iteration using their data shards. Subsequently, in the communication phase, workers com-

municate the results of their computations to each other, leveraging the system architecture.

Finally, in the synchronization phase, workers synchronize their progress using a barrier

mechanism, ensuring that no worker proceeds to the next iteration until all workers have

completed the communication step [31].

Synchronous training is widely adopted in popular open-source deep learning frameworks

like TensorFlow [1], and MXNet [26]. One of the primary advantages of this approach is that,

when coupled with data parallelism, it ensures the convergence of parallel training towards

the optimal model that would have been achieved when training on all the gathered data

without parallelization. However, a limitation of this approach is that faster workers must

wait at synchronization barriers until slower workers complete their computations, which can

introduce delays and hinder overall progress [31]. This is known as the straggler problem. It is

common in heterogeneous environments, where the participating nodes vary in terms of data

distribution and computational power, leading to variation in the processing speed.

An aggressive synchronization scheme called A-BSP was proposed by Wang et al. [215] to

tackle data and computational power heterogeneity. A-BSP employs a strategy where, upon

completion of its workload, the fastest worker retrieves the current updates from the remain-

ing workers who have partially processed their input data. Thus, this approach implements

aggressive synchronization that forces slow workers to synchronize. Additionally, unprocessed

data is given priority in subsequent iterations to ensure algorithm convergence. The effec-

tiveness of this approach has been demonstrated in frameworks such as Spark and PMLS

(Petuum) [224].

Asynchronous Learning

In asynchronous training, workers have the autonomy to update their models independently,

without waiting for each other’s updates. This approach grants them utmost flexibility in

their training process and effectively eliminates any concerns regarding slower workers. The

authors of the paper [178] introduce a strategy for implementing asynchronous learning in

non-distributed multi-processor environments, which they named HOGWILD!. In HOG-

WILD!, parallel processors have equal access to shared memory and can individually modify

components of the model, all without the need for memory locks. Although this lock-free

scheme might initially seem prone to failure, as workers could overwrite each other’s progress,

the authors demonstrate that as long as processors only modify small portions of the model,

memory overwrites are infrequent and introduce minimal computational errors when they

do occur [178]. The authors provide both theoretical and experimental evidence of nearly

linear speedup with the number of processors in typical use cases. The HOGWILD! scheme

has been successfully applied to neural network training [45]. DOGWILD! [160] is a distributed

implementation of HOGWILD!.

Other existing asynchronous training algorithms primarily focus on enhancing training per-
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formance through an asynchronous communication strategy. They adopt a simple update

method for each worker’s local model, i.e., the model trained on the worker. In this method, the

local model of a worker is entirely replaced with the global model computed by all the nodes

during the training process. Consequently, these existing algorithms do not take into account

the heterogeneity among workers when updating their local models, leading to delayed model

convergence. The authors of [104] aim to accelerate model convergence. To achieve this, they

propose a novel update rule for the local models in asynchronous distributed training: after

applying the computed local update to their respective locals models, workers further apply

an additional update where the local model is replaced by a weighted average between the

local model and the global model. This approach reduces the disparity between workers’ local

models and the global model, facilitating faster convergence.

Asynchronous training is a well-established technique, and numerous implementations are

available in popular frameworks such as TensorFlow, MXNet, CNTK [185], and PyTorch [167].

Bounded asynchronous Learning

To alleviate the detrimental effects of asynchronous learning on convergence speed, several

protocols have been proposed to impose constraints on asynchrony. These protocols, known

as Bounded Asynchronous Learning, introduce constraints such as the maximum number

of iterations or the allowed number of unsynchronized workers. One notable approach is

Asynchronous ADMM [241], which employs a "partial" synchronization barrier. Instead of

requiring full synchronization among all workers in each iteration, only a subset of workers

need to synchronize. This means that updates from slower workers are incorporated into the

global model less frequently compared to faster workers. To ensure sufficient freshness of

updates, a bounded delay condition is enforced. Specifically, every worker’s update must be

taken into account at least once every τ iterations, where τ is a parameter ≥ 1 defined by the

user.

Another method to bound asynchronicity is by allowing workers to train with outdated param-

eters while restricting the degree of staleness. By setting a limit, such as a specific number of

iterations, workers can make independent progress, mitigating the impact of stragglers and

improving efficiency. It is worth noting that ML algorithms exhibit intrinsic self-correction

behavior due to their iterative-convergent nature. Small computation errors incurred during

training are gradually mitigated by subsequent iterative improvements [176]. Hence, a minor

staleness in parameters only minimally affects the overall convergence. The Stale Synchronous

Parallel (SSP) model, introduced by Cipar et al. [31], offers a framework for delayed updates,

allowing for a time lag between a worker updating parameters and other workers observing

the effects of those updates. The delay is specified in terms of the number of iterations.

Building upon SSP, Dai et al. [39] proposed Eager SSP (ESSP). ESSP eagerly propagates the

updates of workers in contrast to SSP where updates are retrieved by a worker only when

its state becomes significantly outdated. Te authors show ESSP achieves faster convergence
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compared to SSP both theoretically and empirically. ESSP has been implemented in the PMLS

system [224].

To address heterogeneity among workers, Jiang et al. [96] suggest incorporating dynamic

learning rates alongside SSP. Based on a worker’s speed, its learning rate is adjusted to mitigate

the impact of stale updates on global model compared to fresh updates. Notably, Li [19]

mentioned in a GitHub discussion that SSP was not implemented in MXNet due to minimal

observed delays resulting from uniform GPU-intensive operations, rendering the benefits of

SSP relatively insignificant.

2.4 Privacy-Preserving Distributed Machine Learning

In many practical use cases of DML, data transfer plays a pivotal role. There are several reasons

for this. Firstly, in some cases, data is inherently distributed across multiple sites due to its

origin from diverse sources, such as various organizations or wearable devices. To leverage this

data effectively, it becomes necessary to pool it into a central location. There it can undergo

crucial preprocessing steps like cleaning and analysis, which are essential for ensuring data

quality and preparing it for training on DML platforms. Furthermore, data transfer enables

better resource optimization. By transferring data between nodes, DML frameworks like

Spark can distribute the training workload (data and computation) across multiple resources

according to the availability of the latter. This dynamic allocation of tasks and data helps

optimize the overall training process.

However, data transfer rises concerns about privacy leakage. Data privacy is crucial to protect

individuals’ personal information from unauthorized access. It ensures that sensitive data

such as social security numbers, financial records, and health information remains secure,

mitigating the risks of identity theft, fraud, and other malicious activities against individu-

als [217]. Data privacy also builds trust between individuals and organizations. Since data

privacy is important in today’s world, several laws and regulations exist to ensure it is re-

spected. They mainly outline guidelines for the collection, storage, and sharing of data with

third parties. The most widely discussed data privacy laws include GDPR [86] and CCPA [79].

The increasing awareness of privacy requires a DML system to take privacy-preserving into

consideration. Privacy-preserving DML system generally protects some or all of the following

information [211]: i) Input training data, ii) Output predicted labels, iii) Model information,

including parameters, structure, and loss function, iv) Identifiable information, such as which

site a record comes from.

Federated learning [135] is a recent DML paradigm introduced by Google that enables data

owners to collaborate on training ML models while preserving data privacy. Instead of sharing

raw data, participants train models on their local data and exchange only the models parame-

ters in an iterative process. At each iteration, the clients’ models are averaged to get one shared

model. FL offers notable advantages, but also presents several challenges, particularly in the

areas of data privacy, training performance, and model fairness.
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2.5 Summary

This chapter provides an overview of DML. We have explored the core concepts of both ML

and DML. We have delved into the motivations behind the adoption of DML. We presented

diverse approaches designed to enable DML. Additionally, we presented several optimizations

implemented in these systems as responses to the unique challenges presented by DML.

In the following, we will focus on two major challenges associated with DML systems, namely

DML configuration complexity and bias issues in FL. We will present these two challenges,

discuss related work addressing them, and propose our contributions.
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Overview

Several well-supported distributed machine learning (DML) libraries and platforms exist (e.g.,

MLlib [139], BigDL [38], TensorFlow [1], etc.), contributing to the prevalence of DML. Such

libraries allow users to easily run learning methods on distributed clusters dedicated to big

data processing. In order to optimize the performance of DML services in terms of model

training time, model quality and high inference throughput, existing DML services using

DML libraries and platforms are carefully tuned. However, tuning DML is a difficult task as

the complexity of the underlying distributed platforms may be overwhelming. Uninitiated

users, i.e., data scientists, are more familiar with tuning parameters related to the algorithmic

approach of the learning method (i.e., hyper-parameters), lacking an in-depth understanding

of the trade-offs and challenges to parameterize DML platforms. System administrators focus

on tuning distributed platforms without considering high-level hyper-parameters, unaware of

the implications of the platform on the quality of the learning models.

Characterizing DML workloads is essential for optimizing performance and have gained a lot

of attention from researchers. The available characterization works provide valuable insights

into specific aspects of DML workloads, however they often lack a comprehensive view of

the entire tuning landscape. Indeed, existing characterization work generally highlight the

impact of hyper-parameters on model quality or the influence of platform parameters on

execution times, but they do not always bridge the gap between these two crucial dimensions

of tuning. In this part we shed light on the joint tuning of platform- and hyper-parameters,

in order to provide guidance to both data scientists and systems administrators in their

workload optimization. We first start by providing background on workload characterization

and DML configuration. Then, we review existing literature on the issue and motivate our

work. Afterwards, we present our contribution including a comprehensive study of joint

configuration impact, DML trace collection and analysis results, and key observations and

recommendations for DML operators and data scientists.





3 Background and Related Work

In this chapter, we start by introducing Distributed Machine Learning (DML) workload char-

acterization. We then delve into the Apache Spark platform that we use in our study, exploring

its configuration challenges. Subsequently, we present a comprehensive review of existing

DML workload characterization studies conducted on Spark and other popular platforms. We

highlight the limitations inherent in these studies, and we illustrate these limitations through

several use cases empirically. Finally, we briefly introduce our proposed approach to address

the identified research problem.

3.1 Background on Workload Characterization in Distributed Ma-

chine Learning

The characterization of workloads represents an important step in the design of computer

systems including DML systems. It involves developing a deep understanding of the proper-

ties of workloads and how they execute, thus providing a better understanding of resource

utilization and guiding performance optimization at both hardware and software levels.

In the literature, there are no commonly accepted definitions for the term "workload". How-

ever, some authors have mentioned this term in their work and provided their definitions.

In [190], the authors define a workload as a task performed by an entity during a given period

that requires access to a combination of resources, including the processor, storage, disk

input/output, and network bandwidth. Authors in [168] define a workload as a set of work-

flows, which are sets of tasks. It has been observed that in the literature, although different

definitions exist, workloads primarily refer to different sets of tasks performed by an entity.

A workload can be broken down into basic components (e.g., tasks) for which characteristics

can be observed. The term "characteristics of workloads" refers to the specific attributes

and patterns of the tasks or jobs that a computer system or network is expected to handle.

These attributes can dynamically change during the execution or can remain static. Different

workloads have different characteristics, and the choice of the best platform to execute a given
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workload depends on the nature and characteristics of the workload.

The characterization of workloads involves mainly quantifying and analyzing workloads

characteristics. It relies on experimental methods to collect and analyze measurements

from infrastructures during their operation and has two main stages: measurement and

analysis. Measurements should be specific to the components of interest (e.g., the whole

workload, or its tasks) and capture their static and dynamic properties. Various monitoring

tools like command-line utilities or profiling tools (e.g., PCM [169]) are used to collect these

measurements, but careful attention is needed to manage data volume and avoid impacting

workload execution. Sampling of collected data may be necessary to facilitate analysis. Once

measurements are collected, data analysis explores workload attributes and characteristics to

create models. These models summarize workload properties and allow for the generation

of synthetic workloads for performance evaluation. Analysis techniques include statistical

analysis, graphical analysis, multivariate analysis (clustering), and modeling data distribution.

3.1.1 Background on Spark-Based Distributed Machine Learning

In our work, we focus on DML workloads. We use Spark as our DML platform. Spark [236] is a

distributed computing platform that was originally designed for processing large-scale data.

Over time, Spark has evolved to support DML as well, thanks to the introduction of its Machine

Learning (ML) libraries, namely MLlib and Spark ML [55]. One of the key features of Spark is its

ability to leverage data parallelism (see Chapter 2 §2.3.1) and its dataflow computation model,

where computations are represented as a directed graph in which nodes are computations and

data flow along the edges. Furthermore, in Spark, intermediate and output results of jobs can

be stored in memory, which is known as Memory Computing. This approach greatly enhances

the efficiency of data processing, particularly for iterative ML algorithms. Spark represents

data transformations as a directed acyclic graph (DAG) composed of multiple data-parallel

operators. Each vertex of a Spark DAG represents an RDD (Resilient Distributed Dataset) [237],

which is Spark’s fundamental data structure, and each edge represents an RDD transformation.

An edge directs from earlier to later stages in the RDD transformation. The DAG is submitted

to the platform’s scheduler to define the transformation stages and manage the corresponding

computation tasks. In Spark, ML methods exist as distributed and parallel algorithms provided

by libraries like MLlib [139] and BigDL [38]. The most appropriate method for the domain of

interest is to be chosen and applied out-of-the-box.

A Spark based system consists of a driver process running inside a central node (known as

the master node), along with multiple executor processes running on several nodes (known

as worker nodes). The driver takes on the responsibility of scheduling the executors and

maintaining the global model while the executors perform the computation on their data

partitions. The training process unfolds through several iterations involving each a series of

steps. As a first step, the driver broadcasts the current model to all the executors. Secondly,

each executor computes updates for the global model using its partitioned data. Thirdly,
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Figure 3.1: Infrastructure of a typical Spark based DML system deployment.

executors send the computed updates back to the driver. Lastly, the driver collects and

aggregates the updates collected from the executors, employing them to edit the model in a

similar protocol to the parameter server architecture (see Chapter 2 §2.3.2). Once the model is

trained, it is cached on each machine and can serve inference requests. Spark manages the

distributed training described above by generating a sequence of jobs from the DML workloads.

Jobs consist of a set of stages running several parallel and independent computation tasks.

Tasks are scheduled and processed by executors. For inference, the workflow is similar. The

deployment of a pre-trained model across the cluster is managed by a single Spark job through

its broadcast mechanism [223].

Figure 3.1 illustrates a typical Spark based system architecture. It includes a physical cluster

composed of a master node and worker nodes, a distributed computing platform like Spark, a

distributed data storage system (HDFS [192]) and DML libraries (MLlib [139] and BigDL [38]).

3.1.2 Background on Spark Configuration

Workload characterization serves as the foundation for identifying performance bottlenecks

or areas where the system configuration may not effectively meet the workload’s demands,

thus guiding configuration tuning. Configuration tuning is the process of adjusting system pa-

rameters to address these bottlenecks and align the system’s configuration with the workload’s

requirements. DML environments come with many configuration parameters, classified in

two categories.

Platform parameters. The list of tunable parameters in distributed platforms is extensive.

Hadoop [204] and Spark [7] support more than 50 and 180 configurable platform parameters,

respectively. These parameters usually fall in one of the following types: (i) memory-related,

(ii) data representation, (iii) scheduling, (iv) parallelization, and (v) data distribution. The

two main aspects of platform parameters considered in most distributed computing systems

for learning deal with parallelization degree and memory management. In Spark, one sets

the number of executors an application should use, as well as the number of cores to assign
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to each of these executors. For memory, Spark lets users define resources not only for the

executors but also for the drivers, as well as other memory related parameters, e.g., the ratio

between the Java heap and Spark’s memory cache.

Model hyper-parameters. These impact directly the training process while being external

to the model. Examples include the maximum number of iterations for the convergence of

the model [229, 248, 73], the maximum depth of decision trees for decision trees based ML

algorithms, or the number of trees in random forests.

3.2 Related Work on Workload Characterization in Distributed Ma-

chine Learning

In the following, we present studies related to DML characterization in the context of Spark

and then general characterization solutions. Table 3.1 summarizes the related work.

3.2.1 Spark-specific DML Characterization Studies

While there are numerous studies on the characterization of Spark workloads, only few tackle

the performance of ML workloads. Te state of the art in DML workload characterization for

Spark involves a nuanced analysis of ML algorithm-specific behaviors and understanding of

the specific patterns if any. Works focus also on resource requirements of different workloads

representative of real world workloads, and challenges associated with running ML workloads

on the Spark platform such us Spark parameters tuning. Research in this area aims to pro-

vide benchmarks and insights that enable practitioners to optimize resource utilization and

improve the efficiency of ML tasks on the Spark platform.

SparkBench [114] is a benchmarking suite, where three ML methods are considered as part of

a larger set of applications. It characterizes the workloads in terms of data access patterns, job

execution time and system resources consumption. SparkBench supports synthetic datasets

and briefly explores the variation of one Spark parameter (the number of cores per Spark

executor). Using SparkBench, the authors observed that memory is intensively used across

all workloads. Moreover ML workloads in particular are CPU intensive. Finally, the authors

observed that the the parallelism degree of workloads impacts the execution time significantly.

In [136], McSherry et al. introduced COST (Configuration that Outperforms Single-Threaded

configuration) as a new metric for evaluating DML systems and platforms. This metric de-

scribes the configuration under which a distributed solution surpasses a competent single-

threaded implementation. Motivated by this example, [15] considers efficient single-threaded

implementations of supervised machine learning algorithms and, on the other hand, ex-

plores distributed solutions. Through experiments conducted on Spark, it demonstrated that

two nodes (8 cores) constitute sufficient hardware congestion to outperform a competent

single-threaded implementation on both tested platforms.
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Authors in [159] investigate ML based tuning approaches for Spark. they propose a framework

that can automatically search and identify the set of recommended Spark platform settings

that may improve performance significantly compared to the default settings. Specifically, for a

dozen of Spark settings that may affect performance identified by state-of-the-art, authors first

use Latin hypercube design strategy to identify a set of configurations to benchmark the system

and collect training data. The considered parameters are related to memory management,

prallelization degree, and shuffle operations. Next, authors train performance prediction

models using collected data in order to use them to predict the most effective configuration.

To evaluate their framework, the authors used nine different applications among which ML

methods as KMeans, Support Vector Machines, Matrix Factorization, and Decision Trees. The

evaluation shows that the framework can improve runtime significantly and the improvement

ranges between 22.8% to 40.0% depending on applications.

In [150] the authors analyze ML performance on Spark and compare it to Hadoop [218] in

terms of runtime, and memory, network and CPU consumption. They vary the number of

Spark nodes and the dataset size and observe the effect on performance. The work focuses

only on the K-Nearest Neighbours (KNN) [35] method over a single tabular dataset. The results

show that the runtime of the KNN algorithm implemented on Spark is 4 to 4.5 times faster

than Hadoop. Spark’s ability to hold data in memory makes it suitable for iterative algorithms.

This saves I/O (Input/Output) operations of intermediate results, which is a large part of the

time wasted on the Hadoop. Moreover, Hadoop uses more resources, including CPU and

network due to its longer execution time and disk access. On the other hand, the memory

usage in Hadoop is less than Spark due to Spark’s in memory computations.

3.2.2 General DML Workload Characterization Studies

Other DML characterization works consider different DML platforms. Works such as [243]

and [15], compare DML platforms by running selected workloads in a specific configuration

and collecting metrics such as execution time, memory usage, CPU utilization, and network

usage. [243] examines the architectural design of some platforms (Spark, TensorFlow, PMLS,

and MXNET) and its impact on DML workloads. All these platforms follow the dataflow

computation model. They find that for complex ML tasks, especially for training deep neural

networks, the basic dataflow model of Spark fails due to its lack of support for mutable state

(in-place update) and the iterative nature of these workloads. On the other hand, advanced

dataflow systems like MXNET and TensorFlow and parameter server systems like PMLS enable

cyclic computation graphs with mutable states which result in better performance. A similar

finding regarding basic dataflow systems was reported by [15]. The authors stated that while

able to adapt robustly to increasing dataset sizes, basic dataflow systems such as Apache Spark

or Apache Flink without mutable states face inefficient execution of learning algorithms on

high-dimensional data.

In [29], the authors highlights a gap in the literature concerning CPU-based DNN training,
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especially using Horovod with TensorFlow and PyTorch. The research aims to address specific

challenges, including the impact of the number of CPU cores on DNN training performance,

the influence of batch size on different CPU architectures, the comparison between single-

process (SP) per node and multiple-process (MP) per node configurations and which of

them better exploits all the available CPU cores, the interplay between CPU clock speed and

core count with DNN architecture, and the comparison of CPU and GPU performance for

various models and frameworks. The proposal suggests employing a multi-process (MP)

approach for single-node training, showcasing superior performance compared to a single-

process (SP) approach. The optimal process per node (ppn) configuration for SP depends

on the available CPU cores, with specific configurations offering the best performance for

Intel and AMD processors in TensorFlow. PyTorch, however, performs optimally with a ppn

configuration equal to the number of cores. The proposed MP approach outperforms SP on a

single CPU, providing up to 1.35× and 1.47× better performance for TensorFlow in ResNet-152

and Inception-v4, respectively. TensorFlow demonstrates better CPU performance compared

to PyTorch, while PyTorch outperforms on GPUs. TensorFlow scales well up to 4 nodes, and

the CPU architecture Skylake shows up to 2.35× better performance than K80s, with V100

surpassing Skylake by up to 3.32×. For PyTorch on Skylake, tuning HOROVOD CYCLE TIME

provides up to 1.25× better performance for ResNet-50.

The work presented in [214] focuses on tracing the execution of DML workloads using Ten-

sorFlow on top of Alibaba’s Platform of Artificial Intelligence (PAI), a machine learning-as-

a-service platform. The authors characterize various resource requirements and identify

performance bottlenecks in the thousands of daily training jobs submitted to PAI, considering

diverse computing, communication, and I/O constraints. The analysis reveals that I/O time is

non-negligible, especially for single-node training workloads, and may become a potential

performance bottleneck for distributed workloads after optimizing gradient communication.

The authors establish simple analytical performance models based on key workload features

to expose fundamental performance bottlenecks. These models estimate potential perfor-

mance gains under different software architectures and hardware configurations, focusing on

system architecture choices (PS or AllReduce), the benefits of high-speed multi-GPU intercon-

nects like NVLink, and how performance bottlenecks may shift with different configurations.

Case studies demonstrate that the estimated performance using analytical methods closely

aligns with actual measurements. The authors explore optimization techniques, including

mixed-precision training, operation fusion, and changes to system architectures, providing

observations and implications for improving practical deep learning training workloads.

In [94], the author address the challenges of managing multi-tenant clusters used for training

DL workloads with GPUs. The authors introduce Philly, a service in Microsoft designed for

resource scheduling and cluster management for training jobs. They conduct a comprehensive

two-month workload characterization, analyzing around 100,000 jobs from hundreds of users.

The study explores the impact of factors such as gang scheduling, locality requirements, and

failures on cluster utilization. The analysis highlights the influence of waiting for locality

constraints on queuing delays and discusses how locality-aware scheduling affects GPU
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utilization for distributed training jobs. The paper identifies reasons for job failures, with

programming errors being a predominant factor. Based on their findings, the authors provide

three guidelines to enhance the next generation of cluster schedulers for deep neural network

(DNN) workloads, emphasizing the trade-off between queueing delay and adherence to

locality constraints, the isolation of jobs on dedicated servers to minimize interference, and

early detection and prevention of failures.

In [216], authors explore the challenges of running DML in large GPU clusters, focusing on the

Alibaba PAI. The authors present an extensive two-month workload trace collected from a pro-

duction cluster with 6,742 GPUs, covering a diverse range of ML algorithms and frameworks

submitted by over 1,300 users. The study addresses challenges such as low utilization caused

by fractional GPU uses, long queueing delays for short-running task instances, and difficulties

in scheduling high-GPU tasks. Solutions include GPU sharing for low-GPU workloads, predict-

ing task durations for improved scheduling, and employing a reserving-and-packing policy

for hard-to-schedule high-GPU tasks. The paper also discusses open challenges, including

load imbalance in heterogeneous machines and potential bottlenecks on CPUs during data

processing and simulation tasks. The insights derived from the analysis aim to inspire further

research in optimizing ML workload scheduling and GPU cluster management, providing

valuable considerations for system optimization opportunities.

3.2.3 General Distributed ML and DL Benchmarking Solutions

In response to the rapid evolution of DML, numerous recent initiatives have emerged with

the goal of establishing generic ML benchmarks suitable for a wide array of software and

hardware platforms. One such notable work is MLBench [146], designed specifically for

supervised ML benchmarking. MLBench is a public and reproducible collection of reference

implementations and benchmark suite for DML algorithms, frameworks and systems. It offers

compatibility with popular frameworks such as TensorFlow and PyTorch. While MLBench

emphasizes various performance metrics, it does not include detailed execution traces.

TBD [247] addresses the increasing importance of efficiently training deep neural network

(DNN) models in various domains, highlighting that existing evaluations often focus on infer-

ence and image classification, neglecting the diversity of DNN applications and models. The

authors propose a comprehensive benchmarking suite covering six major application domains

and eight state-of-the-art models. The benchmark takes into account multiple frameworks,

and datasets and places a particular focus on metrics related to training throughput (number

of data records processed in a unit of time), CPU/GPU utilization, and memory usage. The

benchmark suite is complemented by an analysis toolchain designed for end-to-end perfor-

mance analysis, including memory profiling tools for major DNN frameworks. The paper

addresses three main challenges: the significant differences between training and inference,

the need for workload diversity in benchmarks, and the identification of critical bottlenecks in

hardware resources during training.
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DLBench [59] on benchmarking DL frameworks by considering three main dimensions: the

impact of computational environments (CPU, GPU), different types of datasets, and various

DL architectures. The study compares six popular DL frameworks (TensorFlow, MXNet,

PyTorch, Theano, Chainer, and Keras) evaluating their performance in terms of training

time, accuracy, convergence, CPU and memory usage on both CPU and GPU environments.

Additionally, it assesses the impact of different DL architectures (CNN, Faster R-CNN, LSTM)

on performance and system resource consumption using diverse datasets. The paper provides

a holistic approach to benchmarking DL frameworks and makes its source code and detailed

experiment results accessible for repeatability.

3.2.4 Discussion

The current state-of-the-art in DML workload characterization exhibits several limitations.

Regarding trace publication, to the best of our knowledge, the only related works that have re-

leased their traces are Philly [94], DLBench [59], Weng et al.[216], and Yang et al.[226]. However,

these traces primarily focus on job descriptions and CPU/GPU/memory consumption.

Published works often lack a comprehensive coverage of classical ML and DL methods, and

provide an incomplete view of the tuning landscape. Notably, some works cover various ML

libraries parameters but lack a detailed exploration of distributed platforms parameters and

vice-versa, neglecting potential interactions between the two groups of parameters. As far as

we know, PipeTune [182] is the only work that profiles DML workload executions to jointly

tune hyperparameters and infrastructure parameters. Nevertheless, it concentrates on deep

learning methods provided by the DL library of Spark, namely BigDL, and doesn’t uncover the

black-box relationships between tuning the parameters of the platform and the library and

the workloads.

Finally, the exploration of the impact of platform parameters on the model quality in diverse

DML workloads is limited. [165] observed, in a single specific case of image segmentation,

a direct impact of Spark parallelization parameters on model quality. However, as far as we

know, no other work has explored this phenomenon more in-depth.

The work we present in the following is the first study considering both classical machine

learning and deep learning and analyzing the impact of jointly configuring hyper- and platform

parameters. We also explore the impact of platform parameters on the model quality. Our

DML traces are released to the community.

3.3 Problem Statement and Propositions

In this section, we motivate our work and present our contributions.
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Table 3.1: Overview of related work

Machine Deep Published Training Inference Hyper- Platform Distributed ML
learning learning traces parameters parameters platform library

SparkBench [114] 3 7 7 3 7 7 3 Spark MLLib
Mostafaeipour et al. [150] 3 7 7 3 7 3 7 Spark, Hadoop Ad hoc implementation
Nguyen et al. [159] 3 7 7 3 3 7 3 Spark MLLib
PipeTune [182] 7 3 7 3 3 3 3 Spark BigDL
MLBench [146] 3 7 7 3 3 7 3 Google Kubernetes TensorFlow, PyTorch
TBD [247] 7 3 7 3 3 3 3 TensorFlow, MXNet, CNTK
DLBench [59] 7 3 3 3 3 7 7 TensorFlow, MXNet, PyTorch, Theano, Chainer, Keras
MLPerf [147] 7 3 7 3 3 3 7 diverse Ad hoc implementation
Philly. [94] 7 3 3 3 7 7 3 Philly Ad hoc implementation
Mengdi et al. [214] 7 3 7 3 7 7 7 PAI TensorFlow
Weng et al. [216] 7 3 3 3 3 7 7 PAI TensorFlow, PyTorch, AliGraph
Yang et al. [226] 7 3 3 3 3 7 7 CloudBrain-I TensorFlow, PyTorch
Our work 3 3 3 3 3 3 3 Spark MLLib, BigDL

3.3.1 Problem Statement

DML environments are challenging to configure as they come with many configuration pa-

rameters. Several tools exist to fine-tune the hyper-parameters of learning methods [64, 34, 97]

and the configuration parameters of the underlying distributed computing platforms [158, 85].

These two tasks, usually conducted separately, require different expertise: data scientists for

the former, system administrators for the latter. We claim that DML workloads would benefit

from more advanced tools for joint configuration of hyper- and platform parameters, leading

to better performance optimization.

To illustrate the issue, in the following we consider three examples of distributed learning

workloads. For each one of them, we set a performance objective (e.g., model accuracy, model

training time or inference throughput), comparing the following configuration strategies:

(i) tuning only hyper-parameters of the learning method as done by the data scientist, (ii) tun-

ing only platform parameters as done by the system administrator and (iii) jointly tuning

hyper-parameters and platform parameters in a coordinated approach between the data sci-

entist and system administrator. In the rest of the chapter, strategies (i) and (ii) are referred to

as single-level tuning strategies, because each of them only handles the configuration tuning

of parameters related to one level of the DML system, either the application (ML methods)

level, or the platform (DML platform) level. On the other hand, strategy (iii) is referred to as

a multi-level tuning strategy as it involves tuning parameters of different levels of execution.

We show to which extent these strategies improve the baseline system with its default con-

figuration. For each case, we show the configurations yielding the best performance for the

considered objective. The error bars represent the 95% confidence intervals of the represented

values, and are almost equal to zero due to low variation in data. Default Spark configuration

values are shown in Chapter 4 §4.2. Further details (i.e., tuning strategy, experimental setup,

DML learning methods, datasets, etc.) are given in Chapter 4.

Figure 3.2(a) shows the model quality of the Gradient-Boosted Tree method on the DDF

dataset. The model quality is measured by the R2 coefficient as it is used for regression models.

In the best-case scenario, the modeled and observed values are identical, resulting in a R2 of

100%. Tuning hyper-parameters (i.e., depth of the decision tree, number of iterations) has no

effects on the model quality compared to the baseline. Tuning platform parameters provides
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Figure 3.2: Comparing different configuration strategies

an improvement of +30%. Surprisingly, for this workload, platform parameters have much

higher impact on model quality than hyper-parameters. This contradicts the general belief

that model quality should be improved through hyper-parameter tuning as usually done by

data scientists. Furthermore, combining both levels of configuration of platform parameters

and hyper-parameters improves the model quality by +38%.

Figure 3.2(b) illustrates the case of the workload running MLP (Multi-Layer Perceptron) on

the DDF (Driveface) dataset, atop the Spark platform. We compare the improvements of

the model training time for the three configuration strategies against the baseline. Tuning

hyper-parameters (i.e., number of iterations and the convergence threshold) improves the

training time by +75%. Intuitively, decreasing their values implies less computations and,

thus, decreases the training time. Tuning the platform parameters achieves up to +42%

improvement. Indeed, increasing the parallelization degree (i.e., number of cores or Spark

executors) accelerates the computation. Combining both levels of configuration leads to the

best improvement, reducing the training time by +83%.

Figure 3.2(c) considers the inference throughput of a workload that runs K-means on the Higgs

dataset. We see that the hyper-parameters, including the number of iterations and conver-

gence tolerance, improve inference throughput by 0.3%. Instead, platform tuning results in

a better improvements (+16%). The reduction of the execution time due to parallelization

translates into an improved inference throughput. Nonetheless, a coordinated configuration

of hyper-parameters and platform parameters, achieves an improvement of +18%, better

than the single-level approach. These use cases highlight the potential benefits of multi-level

tuning for DML workloads with regard to several aspects including model quality, training

time, and inference throughout.

3.3.2 Our Contributions

To clarify the interplay between platform parameters and hyper-parameters, and provide

guidance to both data scientists and system administrators, we carry out an extensive workload

characterization. We rely on multiple DML workloads composed of 13 ML algorithms and

6 ML datasets, considering both classical ML and deep learning algorithms. We compare
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different configuration strategies against several criteria, including model quality, training

time, inference throughput, and resource costs. We consider the performance metrics in

isolation before studying the trade-offs. Our study makes the following contributions:

• We perform the first comprehensive study of the joint impact of both hyper-parameters

and platform parameters on different types of DML workloads. We consider three

strategies of tuning: only hyper-parameters, only lower-level platform parameters, and

jointly tuning both. We study the performance metrics in isolation and their trade-offs.

Noteworthy, we are the first to consider the DML general case and report that multi-level

parameter configuration (i.e., hyper-parameters and platform parameters jointly tuned)

improves model quality and training time, while also optimizing resource costs.

• We collect and release (see [49]) traces from our extensive experiments leveraging two

popular DML libraries (MLlib [139], BigDL [38]) atop two Spark clusters [236]. Our

statistical analysis can help the future development of modeling and simulation tools of

DML workloads, as well as tools for synthetic DML trace generation.

• We derive several observations and key takeaways concerning the characteristics of DML

workloads. We also provide a number of recommendations for both DML service opera-

tors and data scientists. We release our deployment code to facilitate reproducibility of

our results.

3.4 Summary

In the realm of DML, workload characterization plays a significant role. It provides crucial

insights into the behavior and resource utilization patterns of DML tasks, aiding system de-

signers, researchers, and practitioners in optimizing performance and resource allocation.

However, while several DML workload characterization works exist, they often exhibit limita-

tions in terms of trace publication, coverage of classical ML and DL methods, and exploration

of the whole and complex tuning landscape of DML environments.

This chapter presented background and related work on DML workload characterization

and identified an important open research problem. In the upcoming chapter, we will delve

into our first contribution, a workload characterization study on Spark, building upon the

limitations identified in the current state-of-the-art. Leveraging the released traces from our

work, we aim to provide a comprehensive view of tuning classical ML and DL methods in

a distributed setting. Through empirical analysis and experimentation, we will study the

relationships between hyperparameters, platform parameters, and the behavior of popular

DML workloads. This exploration will contribute valuable knowledge to the field, addressing

gaps in understanding DML and paving the way for more effective DML systems.
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4 Characterization Methodology

In the following, we present our DML workload characterization methodology conducted on

Spark platform. We first describe the DML workloads we consider (§4.1) and the configuration

parameters (§4.2). We also detail the exploration methodology of the configuration parameters

space to understand their impact on the workloads’ performance. Then, we present the

performance metrics of interest (§4.3) and the hardware setup on which the characterization

study is run (§4.4).

4.1 DML Workloads

We consider a workload running on a DML system as a tuple consisting of a dataset and a

learning method.

ML Datasets. We consider six commonly used and publicly available datasets [156, 221, 44, 46,

213, 11] shown in Table 8.1 (the CC columns in Tables 8.1 and 4.2 indicate the color codes used

later in the graphs). We selected datasets that vary in terms of content type (e.g., text, images),

number of records, number of features, and total size, in order to collect heterogeneous traces.

We use random split to define the training and inference sets. 80% of each dataset is used for

model training, the remaining 20% for inference.

ML Methods. We test 13 state-of-art ML methods commonly used by data scientists including

9 MLlib’s methods and 4 BigDL’s methods (see Table 4.2). The MLlib methods implement

clustering, classification or regression and are based on different learning methods such as

means, decision trees, and linear regression. BigDL provides deep neural networks (DL), we

consider several methods with the following architectures: a CNN consisting of 9 layers, a

GRU with 7 layers, a LENET5 (a specific CNN for the MNIST dataset) with 5 layers and a LSTM

with 7 layers.

In the rest of the chapter, the names of the workloads are composed of the name of the dataset

followed by the name of the learning method. For example, for the DDF dataset and the
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Table 4.1: Learning datasets

CC Dataset Description #Records #Features Size

DDF (Drive-
face)

Images sequences
of subjects while
driving [46].

606 6 400 19.9 MB

DGS (Drift)

Measurements from
16 chemical sensors
utilized in a discrim-
ination task of 6
gases [213].

13 910 129 40.3 MB

DHG (Higgs)

A collection of kine-
matic measures to de-
tect signal processes
which produce Higgs
bosons [11].

11 000 000 28 7.5 GB

DN
(News20)

Messages collected
from 20 different
newsgroups [156].

118 845 2 68.7 MB

DFM (fash-
ion MNIST)

Images of fashion
articles, associated
with labels from 10
classes [221].

700 000 784 54.9 MB

DM
(MNIST)

Handwritten digit im-
ages for ML research
[44].

70 000 784 52.4 MB

Table 4.2: Learning methods

Library Category ML Method CC

MLlib

Clustering
KM (K-Means)
BKM (Bisecting K-Means)
GMM (Gaussian Mixture Model)

Classification
DT (Decision Tree)
MLP (Multilayer Perceptron)
BLR (Binomial Logistic Regression)

Regression
LR (Linear Regression)
RFR (Random Forest Regressor)
GBT (Gradient-Boosted Tree)

BigDL Classification

CNN (Convolutional Neural Net-
work)
GRU (Gated Recurrent Unit)
LENET5 (Convolutional Neural Net-
work)
LSTM (Long Short-Term Memory)

clustering methods KM, BKM, and GMM, we have the DDF-KM, DDF-BKM and DDF-GMM workloads.

4.2 Parameter Settings

We deploy each workload (i.e., dataset and ML method) on the corresponding DML environ-

ment (i.e., MLlib or BigDL on a Spark cluster). For each deployed workload, we investigate the

performance variation under the tuning of the learning method hyper-parameters and Spark

platform parameters. We consider during the tuning default values of hyper-parameters and

Spark platform parameters, and variations for hyper-parameters and variations for different
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Spark parameters. Each experiment is replicated three times, which is enough due to low

variations in data (see the confidence intervals in our plots).

Hyper-parameters. Based on previous results [67, 179, 175], we choose hyper-parameters

with high impact on performance in terms of execution time and accuracy. These include: the

maximum depth of tree-based algorithms, the maximum number of iterations to reach model

convergence, and the learning rate and batch size of deep neural networks. Table 4.4 provides

further details about the hyper-parameters and their values.

Platform Parameters. We leverage existing studies [131, 7] that evaluate which Spark param-

eters affect performance most. These include scheduling, data transfers, data storage and

representation, parallelization and memory management. Details about the used configura-

tion parameters and their values are in Table 4.3.

In most cases, ML experts optimize hyper-parameters while system administrators configure

the underlying distributed computing platforms. However, advanced tools that combine

hyper-parameter optimization with platform configurations could potentially increase the

performance of DML workloads. To investigate this, we consider and evaluate three tuning

strategies, (i) tuning only hyper-parameters of the learning method as done by the data scien-

tist, (ii) tuning only platform parameters as done by a system administrator and (iii) jointly

tuning hyper-parameters and platform parameters. In §5.2 we compare these three strategies.

The adopted tuning process depends on the strategy objective. Strategy (i) (respectively

(ii) ) assesses the impact of individual hyper-parameters (respectively platform-parameters).

As such, we varied one parameter at a time while keeping the others at their default Spark

values. In strategy (iii), we study potential interdependencies between platform parameters

and hyper-parameters. To achieve this, we vary the platform parameters and the hyper-

parameters together, akin to grid-search tuning [120]. In practice, the exploration process

may be helped by tools like Pipetune [182] which integrates system parameters as hyper-

parameters and thus varies them together. The process may be sped up by automation tools

for parallel exploration of parameter combinations. A collaboration between data scientists

and system administrators is necessary to select relevant parameters and their values’ range.

4.3 Characterization Metrics

Application-level Metrics. Application-level metrics capture different aspects related to DML

applications, including the execution time and the quality of the underlying model. We

report the training time and normalize it per thousand records. We report the inference

execution time in the form of inference throughput, i.e., the number of requests processed per

second (reqs/s). The quality of a classification model is typically measured through training

accuracy [180], to measure how well the trained model fits the training data. Some methods

such as clustering algorithms (e.g., K-Means) use the silhouette metric to evaluate the similarity
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Table 4.3: Spark platform parameters

Configuration
aspect

Spark platform parameters Description Values

Parallel
computing

EXEC_NUM
(executor.instances)

Number of executors

Single-level tuning:
(One executor per node),
MLlib: 1, 2, 3, 4, 5, 6, 7, 8, 12, 48,
72, 96; BigDL: 1, 2, 4
Multi-level tuning:
(One executor per node), 2, 4,
6, 8

EXEC_COR (executor.cores) Number of cores per executor

Single-level tuning:
(4 for Cluster1, 8 for Cluster2),
MLlib: 1, 2, 3, 4, 5, 6, 7, 8, 10, 12,
14, 16;
BigDL: 1, 2, 4, 8
Multi-level tuning:
(All node cores), 1, 2, 4

Memory
management

EXEC_MEM
(executor.memory)

Amount of memory per executor

(1 GB),
MLlib: 5 GB, 10 GB, 15 GB,
20 GB, 25 GB, 30 GB., 50 GB.,
70 GB., 100 GB.; BigDL: 4 GB,
8 GB, 16 GB, 24 GB, 32 GB

MAX_SIZ_INF
(reducer.maxSizeInFlight)

Maximum size of map outputs to fetch simultane-
ously from reduce tasks

12 MB, (48 MB), 72 MB, 128 MB,
256 MB, 512 MB

PD_BUFS
(shuffle.io.preferDirectBufs)

Must use off-heap buffers to reduce garbage collec-
tion during data transfer

(true), false

STR_MEM
(storage.memoryFraction)

Fraction of Java heap to use for Spark’s memory
cache

10%, 20%, 40%, (60%), 80%

Data
compression

COMP_CODEC
(io.compression.codec)

Codec to compress internal data such as RDD parti-
tions, shuffle outputs, etc.

snappy, lz4

RDD_COMP (rdd.compress) Must compress serialized RDD partitions true, (false)
SHF_SPL_COMP
(shuffle.spill.compress)

Must compress data spilled during shuffles (true), false

Scheduling LOC_WAIT (locality.wait)
How long to wait to launch a data-local task on a
less-local node

10 ms, 100 ms, 500 ms, 1 s, (3 s),
10 s

Serialization SER (serializer) Data serialization mechanism (Java), Kryo

Shuffle
SHF_COMPR
(shuffle.compress)

Must compress map output files true, false

SFL_BUF (shuffle.file.buffer)
Size of in-memory buffer of shuffle file output
stream

8 KB, (32 KB), 64 KB, 128 KB,
256 KB, 512 KB

Table 4.4: Hyper-parameters

Hyper-
parameters

Description Values MLlib / BigDL method

maxIter
Maximum number of iterations to achieve conver-
gence.

5, 10, 15, 20, 50, 100
BLR, MLP, BKM, KM, GMM, GBT, LR,
CNN, GRU, LSTM, LENET

maxBins
Number of classes for the discretization of continuous
variables

4, 16, 32, 48 DT, GBT, RFR

maxDepth Maximum depth of decision trees before convergence 5, 10, 15, 20 DT, RFR, GBT

tol Convergence threshold for stopping the algorithm
0.000001, 0.0001,
0.01, 0.1

KM, GMM, MLP, BLR, LR

numTrees The number of decision trees built 10, 20, 50, 100, 150 RFR
stepSize Model learning rate 0.003, 0.03, 0.3 GBT, MLP, CNN, GRU, LSTM, LENET

blockSize Batch size
32, 128, 256, 512,
1024

MLP, CNN, GRU, LSTM, LENET

of an object to its own cluster’s objects. Other metrics used with regression algorithms include

R-squared (R2), root mean squared error (RMSE) and mean absolute error (MAE) [129].

Platform-level Metrics. We use SparkMeasure [195] to collect metrics from the Spark cluster.

The reported metrics include: (1) task duration (ms), i.e., the total time to perform the task;
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Table 4.5: Examples of collected metrics

Application-level metrics Description
Training accuracy Percentage of predicted values that match the actual values in the training dataset
Inference throughput Number of records inferred by unit of time

Silhouette
Evaluation metric for clustering methods. It measures how similar an object is to its own
cluster

R2 Score
Proportion of the variance in the dependent variable that is predictable from the independent
variable(s)

RMSE (root mean square error) The square root of MSE
F1 score Harmonic mean between precision and recall
Platform-level metrics Description
Task duration Total elapsed time
Task deserialization time Elapsed time spent to deserialize this task
Garbage collection time Total JVM garbage collection time
Result serialization time Elapsed time spent serializing the task result
Shuffle wait time Time that tasks spent blocked waiting for shuffle data to be read from remote machines
Records read Total number of records read
Infrastructure-level metrics Description
CPU usage Percentage of used CPU.
Memory usage Percentage of memory utilization
Network traffic Amount of bytes read from and written to the network.
Energy consumption Trapezoidal integral of power measurements collected per second.

(2) task deserialization time (ms), i.e., the time spent to deserialize a given task; (3) shuffle

time (ms), i.e., the time spent to transfer data between tasks and stages; and (4) JVM garbage

collection time (ms).

Infrastructure-level Metrics. From each cluster node, we collect CPU usage (from

/proc/stat), the memory usage (from /proc/meminfo), the network traffic (using

/proc/net/netstat and filtering sent/received bytes), and the energy consumption. We

collect power measurements every second via the processor counter monitor API [169].

4.4 Experimental Setup

We use Spark 2.4.0 as distributed computing platform and HDFS 2.7.7 as distributed file

system. The used DML library is MLlib (v2.4.0) [139] or BigDL (v2.4.0) [38]. We conduct our

experiments on two clusters as described below.

Cluster 1. Cluster 1 is a 4-nodes cluster equipped with a quad-socket Intel E3-1275 CPU

processor, 8 cores per CPU, 64 GiB of RAM, 480 GB SSD drives, on a switched 1 Gbps Ethernet

LAN, running Ubuntu Linux 16.04.1 LTS.

Cluster 2. To consider more hardware diversity and run bigger workloads, we also deploy

a 24-nodes cluster, dual-socket 8 core Intel Xeon E5-2630 CPU, 128 GB RAM, 600 GB HDD,

2× 10 Gbps Ethernet, running Debian GNU/Linux 9.7.

Why DML on CPUs Still Matters.

In our work, we leverage general purpose CPUs to execute DML workloads. While the use of
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specialized hardware, e.g., GPUs and TPUs, may lead to remarkable performance improve-

ments for DML, CPU-based clusters remain a preferred choice in many cases. Indeed, CPUs

come with established performance in terms of models’ quality, execution time and inference

throughput. Recent studies [144, 117, 161, 125, 22] indicate that CPUs remain competitive

and may even surpass GPUs in terms of performance, making CPU clusters a cost-effective

solution for a broad range of application domains. [161] and [125], for example, put forward

CPUs’ mature development ecosystem, recent hardware advancements for ML treatments

and latency benefits. They successfully scale DNN inference and respectively obtain 3,94x

and 1,6x speedups for convolution computations and DNN model compression. [144] and

[117] show that CPUs are better suited for applications that need more memory, have irregu-

lar memory accesses and varying degrees of parallelism. Examples of such applications are

multi-dimensional convolutions and digital pathology.

Another major advantage of CPUs compared to dedicated HW accelerators is the lower cost

in terms of both initial investment and maintenance. Using general-purpose CPUs in a

data center or using cloud service is usually less expensive and more prevalent than using

specialized hardware [9]. CPUs are characterized by their ease of access, their portability, and

their scalability.

Finally, CPUs remain the frugal choice for mobile devices and at the edge, as they typically

consume less power than GPUs [145, 144].

4.5 Summary

In this chapter, we presented a detailed DML workload characterization methodology. The

chapter begins by providing an overview of the DML workloads considered, along with a

discussion of the relevant configuration parameters. The exploration methodology employed

to understand the impact of these configuration parameters on workload performance is

then outlined. Additionally, the chapter introduces the performance metrics of interest. The

following chapter presents the results of the execution of the characterization methodology,

describing the collected traces and offering insights derived from them.
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5 Experimental Results

In this chapter, we present the results and findings obtained from our DML workload char-

acterization study conducted on the Spark platform. The chapter begins by offering insights

into the identified patterns, trends, and performance nuances observed during the analysis of

the collected traces. Afterwards, we delve into the intricate details of the experimental out-

comes, shedding light on how various configuration parameters and tuning strategies impact

the performance of DML workloads. The chapter also discusses unexpected observations

encountered during the traces analysis.

5.1 Traces Overview and Analysis

First, we suggest possible uses of the traces collected during our experiments. Then, we

present their statistical features.

5.1.1 Potential usages

Synthetic Trace Generation. Using our traces’ statistical profiles, e.g., the distribution of the

number of tasks and their duration or the distribution of CPU and memory usage, one can

generate artificial traces that mimic real-world behaviors. Such traces can be used for resource

utilisation analysis, performance analysis, troubleshooting, etc. Thus one can reason about

DML systems, without the need for real experimentations. We refer to [25, 106, 70] for tools

and techniques for synthetic trace generation from real traces.

Table 5.1: Collected DML workload traces

Trace description #Records #Features Size
Infrastructure-level traces 43,346,092 11 5.3 GiB
Platform-level traces 41,481,857 42 10.8 GiB
Application-level traces 12,934 18 9.6 MiB
Total 84,840,883 Up to 42 16.2 GiB
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Figure 5.1: Distribution of application-level metrics

Workload Modeling and Simulation. Our traces can be used to build abstract models that

simulate DML workloads. These models capture workload patterns, that can be used to predict

performance, characterize DML workloads, optimize existing DML platforms, and even design

new platforms embedding the workloads’ specificities. The analysis and the modeling of

workloads have already been considered in different application domains including data

centers, the cloud and the web [69, 127, 171].

5.1.2 Statistical Analysis

We have harvested metrics at the application-, platform- and the infrastructure levels. Our

traces have been collected on both clusters 1 and 2 (see §4.4). All in all, they consist of 16.2

GiB of data with more than 80 millions records (see Table 5.1). The traces are available on a

public archive for the research community [49]. We employ box-and-whiskers plots to report

the statistical distribution of our metrics. The values are grouped by the ML library used in the

experiments (MLlib or BigDL) and by the learning phase (training or inference).

Application-level Traces. Figure 5.1 reports the statistical distribution for three of the col-

lected application-level metrics, i.e., training time, accuracy and inference throughput. Fig-

ure 5.1(a) shows normalized training times for a training set of 1,000 records. In our experi-

ments: 50% of the MLlib cases have very short training times (≤ 0.4 s) and 25% have training

times between 25 s and 30 min. BigDL training times span between 4 s and 47 s. MLlib ex-

hibits high variation while BigDL is more stable. The greater dataset and learning methods

heterogeneity in our MLlib workloads compared to BigDL explains these behaviours.

Figure 5.1(b) gives the models quality metrics: accuracy for classification models, R2 for

regression models, and silhouette for clustering models. The median model quality for MLlib

workloads is 66.4%, and up to 99.5%. For BigDL, it is between 98% and 100% for 75% of

the workloads. BigDL methods are deep learning methods that have the ability to discover

hidden patterns in the training data, leading to more representative models of the training

data compared to MLlib classical ML methods.

Finally, Figure 5.1(c) shows that the median inference throughput of our BigDL workloads

(476 reqs/s) is less than that of MLlib workloads (around 37,747 requests/s). Indeed, classical
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(a) Task duration (b) Deserialization time (c) Data shuffle

Figure 5.2: Distribution of platform-level metrics

ML inference is cheaper and more time-efficient than DL-based inference. In DL, the learned

models are more complex than classical ML [89]. The cost gets proportional to the learned DL

network complexity.

Platform-level Traces. Figure 5.2 represents the distribution of 3 Spark metrics: (a) task

duration (b) task serialization duration, which is the necessary time for loading tasks by

executors, and (c) data shuffling duration, which corresponds to data transfers time. Results

include both the training and inference phases. As shown in Figure 5.2(a), short tasks (in the

1–100 ms range) are very common with BigDL with up to 79% of the tasks. Less common for

MLlib, they are up to 50% for training, and even less for inference where 75% of tasks last at

least 3,000 seconds. Longer tasks are more frequent in the inference phase for both MLlib and

BigDL. Inference tasks that last more than 100 ms represent 21% for BigDL and up to 98% for

MLlib. In training, such tasks represent only 3% for BigDL and 47% for MLlib.

Task deserialization (Figure 5.2(b)) is very fast (i.e., ≤ 10 ms) in 75% of BigDL training tasks,

and in 25% to 50% for the other tasks. It is longer (10 ms-10,000 ms) in 75% of MLlib inference

tasks but at maximum 50% of the other tasks.

Data shuffling (Figure 5.2(c)) is negligible for 75% of all tasks. However, it reaches up to

10,000 ms for training tasks and up to 100 ms for inference tasks, i.e., it can be equal to the

duration of the whole task (Figure 5.2(a)).

Infrastructure-level Traces. Figure 5.4 reports the infrastructure measurements of energy

consumption, network traffic, CPU and memory usage. Figure 5.4(a) indicates that up to 25%

of MLlib workloads consume very little energy i.e., ≤ than 0.4 Wh. BigDL inference executions

consume at least 0.2 Wh and BigDL training at least 0.6 Wh. However, BigDL workloads

consume at most 17 Wh whereas the consumption reaches up to 340 Wh for MLlib. This is

directly related to the longer MLlib executions.

Regarding memory usage, Figure 5.4(b) shows all our BigDL workloads to be memory-intensive,

with at least 70% of memory usage. Also, our workloads are memory-bound and not CPU-

bound as CPU usage does not exceed 30% in 75% of all measurements (Figure 5.4(c)).

Finally, Figure 5.4(d) shows collected measurements of network traffic. We observe that
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(a) Energy consumption (b) Memory usage

(c) CPU usage (d) Network traffic

Figure 5.3: Distribution of infrastructure-level metrics (CPU usage, memory usage, network
usage and energy consumption)

inference for both MLlib and BigDL workloads involves the lowest network traffic: 75% of

inference executions consume at most 800 MiB. In contrast, in 50% of MLlib and BigDL training

network traffic exceeds 1 GiB. This is due to the per-iteration exchanges needed to build the

model.

5.2 Characterizing DML Workloads

To characterize the sensitivity of DML workloads to different configuration parameters and

strategies, we study the effect of varying only platform parameters (§5.2.1) and of varying

only hyper-parameters (§5.2.2). We then compare single-level vs. multi-level parameter

configuration strategies (§5.2.3) and analyze unexpected behavior with some distributed

learning workloads (§5.2.4). These strategies and performance metrics are first considered

in isolation, then their trade-offs are discussed in §5.2.5 which tackles multi-level and multi-

objective tuning in the context of AI-as-a-Service.

These results concern both Cluster 1 and Cluster 2 (see §4.4). Due to space limitations, §5.2.3,

§5.2.4 and §5.2.5 focus on a subset of workloads.

5.2.1 Tuning Platform Parameters

We characterize the impact of platform parameters on training time and inference throughput

by varying each parameter individually, for each DML workload. We measure the relative

performance variations obtained while tuning each platform parameter. We consider that pa-

52



Experimental Results Chapter 5

(a) Energy consumption (b) Memory usage

(c) CPU usage (d) Network traffic
Figure 5.4: Distribution of infrastructure-level metrics (CPU usage, memory usage, network
usage and energy consumption)

rameters have high impact on performance if their corresponding variation ≥ 20%. Parameters

which incur variations in the 10%-20% range have medium impact. Finally, if the variations are

≤ 10%, we consider those low impact. We present the results in the heat map representations

of Figures 5.5(a) and 5.5(b), where we use a 3-color scheme (shades of grey), from dark grey

(high impact) to white (low impact). The considered platform parameters (vertical axis) are

introduced in §3.1 (additional details of the parameters values are in Table 4.3).

For the majority of the workloads, the number of Spark executors (EXEC_NUM) and the number

of cores per executor (EXEC_COR) play key roles, as they control the parallelization, impacting

the performance particularly while training.

In addition, the default behavior of Spark with regard to these parameters is to create as many

executors as there are nodes, and to exploit all the available cores on a node. However, our

experiments have demonstrated that this configuration is not optimal for several workloads,

such as those involving DDF. Therefore, it is advisable to perform tuning in order to determine

the most suitable degree of parallelization for each specific workload. Our first observation

concerning DML workloads is thus the following.

Observation 1 : DML workloads’ performance is significantly impacted by parallelization.

Figure 5.5(a) shows that for ensemble learning methods (e.g., random forests and gradient-

boosted trees) run on datasets with many features (from 100 and beyond) the training phase

is highly impacted by the SHF_COMPR parameter.
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Figure 5.5: Impact of platform parameter on performance (dark-grey for high: > 20%, light-
grey for medium: 10% ≤ 20%, white for low: < 10%)

Examples of high impact of SHF_COMPR include DDF-RFR, DDF-GBT, DGS-RFR. DGS-GBT exhibits

an impact close to the high impact threshold (19%). These workloads trigger frequent shuffle

operations. According to our experiments, keeping the default Spark’s shuffle compression

behavior, i.e., SHF_COMPR set to True, generally reduces the size of data during shuffle, causing

less network traffic and therefore faster training time.

Observation 2 : Training ensemble learning methods on datasets with large number of features

significantly benefits from shuffle data size reductions.

Our large datasets highlight that LOC_WAIT (i.e., the timeout after which a data-local task is

launched on a distant node) can significantly affect the training time, in particular for jobs

that deal with large amounts of data. Examples are workloads with the Higgs dataset ((DHG)

and four methods for clustering and classification (DHG-KM, DHG-MLP, DHG-BLR and DHG-GBT).

For workloads such as DHG-BLR and DHG-GBT, increasing this parameter from 10 ms to 1 s or

3 s (which is the default value, as presented in Table 4.3) allows to wait more for a task to be
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run on the same node where its data is before sending it to another node. This prevents huge

data transfers and shuffles that consume time and bandwidth, and thus significantly impacts

efficiency.

Observation 3 : Training with large datasets is significantly impacted by task re-scheduling.

Figure 5.5(b) shows that in addition to parallelization parameters, the MAX_SIZ_INFLIGHT,

SFL_BUF and STR_MEM parameters also impact the performance. MAX_SIZ_INFLIGHT controls

the maximum size of shuffled data and thus affects network communication. Setting it too

low may lead to network bottlenecks, while setting it too high may increase memory usage

and resource contention, indirectly impacting inference throughput. For example, in our

experiments, the highest tested value for MAX_SIZ_INFLIGHT, i.e., 512 MB, yielded the best

performance for DDF-MLP while it yielded the worst performance for DGS-BKM (all tested

values are presented in Table 4.3). The default value of this parameter (i.e., 48 MB) was not

the best value for most workloads. Thus, tuning is necessary to find the best value of this

parameter and this for each workload. SFL_BUF defines the buffer size for reading shuffled

data. A smaller buffer increases disk I/O, negatively affecting inference throughput, while a

larger buffer may increase memory usage to affect cluster performance. STR_MEM manages

heap space for caching and shuffle data. Setting it too high may limit resources for inference,

while setting it too low can impact query performance and inference throughput. Similarly to

MAX_SIZ_INFLIGHT, both SFL_BUF and STR_MEM need tuning to find the best value for each

workload.

5.2.2 Tuning Hyper-parameters

We investigate the impact of hyper-parameters on our models’ quality considering accuracy

for classification tasks, R2 coefficient for regression tasks and silhouette score for clustering

tasks. We vary individually several hyper-parameters, such as the number of iterations, the

number of classes for discretization of continuous variables and the depth of decision trees

(see the full list in Table 4.4).

In Figure 5.6 we distinguish: (i) high-impact hyper-parameters for variations beyond 5%,

(ii) medium-impact for variations in the 5%-1% range, and (iii) low-impact parameters, for

variations ≤ 1%. Note that empty (i.e., white) cells indicate that the corresponding hyper-

parameters have low impact or are irrelevant for the target learning methods. We observe that

the maxIter hyper-parameter, i.e., the parameter giving the maximum number of iterations

for a given learning method, has high impact on the quality of several methods like BKM (e.g.,

DDF-BKM, DGS-BKM and DHG-BKM workloads) and MLP (e.g., DGS-MLP and DHG-MLP workloads).

Further, maxDepth and maxBins are also impactful hyper-parameters for decision-tree (DT)

methods.

For BigDL workloads, the number of epochs lightly affect the methods accuracy. Instead, the

stepSize and batchSize hyper-parameters affect several BigDL workloads.
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Figure 5.6: Impact of hyper-parameter on performance (dark-grey for high: > 5%, light-grey
for medium: 1% ≤ 5%, white for low: < 1%)
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Figure 5.7: Single-level vs. multi-level configuration on cluster 1 (1st row model quality, 2nd

row training time, 3d row inference throughput).

5.2.3 Single-level vs. Multi-level Configuration

To compare the impact of the single-level vs. the multi-level configuration on training time,

inference throughput, and model quality, we consider the following three configuration strate-

gies: (1) tuning hyper-only parameters, (2) tuning platform-only parameters, and finally (3)

jointly tuning hyper-parameters and platform parameters. We consider high impact parame-

ters as identified in §5.2.1 and §5.2.2. Hyper-only parameters include the maximum number of

iterations, the tolerated convergence threshold, and the tree depth for tree-based algorithms.

Platform-only parameters mainly include the parameters for controlling parallelization, i.e.,

the number of executors per worker node, and the number of cores per executor. When tuning
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Figure 5.8: Single-level vs. multi-level configuration on cluster 2 (1st row model quality, 2nd

row training time, 3d row inference throughput)

jointly hyper-parameters and platform parameters, the previously considered parameters are

varied together.

Figure 5.7 gives the best raw values for model quality, training times and inference throughputs

obtained with the three configuration strategies, for different workloads run on Cluster 1. The

performance of the default Spark configuration is represented by a dashed line. Default

configuration values are shown in Table 4.3. The error bars represent the 95% confidence

intervals. The low metric variation for some cases makes the error bar too narrow to be visible.

In Figure 5.7(a)-(d) and Figure 5.7(i)-(l), we see that, for the same workload, the multi-level

configuration strategy achieves the best strategy for model quality and inference performance.

Indeed, it improves the other approaches up to 37% for R-squared score and up to 45% for

inference throughput. In Figure 5.7(e) we observe that the multi-level configuration strategy

is the best configuration strategy for the training time of DDF-GBT. It reduces training time

by 71% compared to the platform-only approach and by 27% compared to the hyper-only

approach. Multi-level configuration achieves the best improvements also for the training time

of DHG-GBT (Figure 5.7(h)), as well as for the inference throughput of DGS-MLP (Figure 5.7(j),

DHG-DT (Figure 5.7(k)) and DHG-GBT (Figure 5.7(l)). The multi-level configuration consistently

outperforms Spark’s default configuration.

For the workloads shown in this experiment, the multi-level configuration strategy achieves

the best model quality (e.g., in Figure 5.7(a), (b), (c), (d)). Surprisingly, Figure 5.7(a) and Fig-

ure 5.7(b) reveal that for the concerned workloads the platform-only approach is better than
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Figure 5.9: Comparison with hyper-parameters only

the hyper-only approach. For DDF-GBT the improvement goes up to 28% while for DGS-MLP
it is up to 0.6%. This is unexpected since platform parameters are not supposed to impact

model quality. The issue is further explored in §5.2.4.

We observe the same phenomena on Cluster 2, as shown in Figure 5.8. For the shown work-

loads, DHG-KM, DHG-MLP and DHG-DT, the multi-level strategy provides the best results for

training time and inference throughput. As for model quality, it achieves the same or better

performance compared to both the hyper-only and the platform-only approach.

In summary, our results demonstrate that the joint configuration of platform parameters and

model hyper-parameters consistently outperform other configuration strategies. It is better

than tuning platform-only parameters, tuning hyper-only parameters, or the default Spark

configuration. Specifically, the multi-level tuning approach achieved better results than tuning

platform-only parameters for 86%, 100%, and 86% of the workloads in terms of training time,

inference throughput, and model quality, respectively. It also outperformed tuning hyper-only

parameters for 57%, 100%, and 71% of the workloads, in terms of training time, inference

throughput, and model quality, respectively. Finally, the multi-level tuning approach yielded

better performance compared to the default Spark configuration for all presented workloads

and metrics.

Observation 4 : The multi-level configuration strategy leads to the exploration of new configu-

rations that outperform single-level configuration strategies.

5.2.4 Unexpected Impact of Platform Parameters

The unexpected behavior observed in Figure 5.7(a) shows higher model quality due to the

tuning of platform parallelization parameters, namely number of cores and number of ex-

ecutors. To study more in-depth this behavior, in Figure 5.9 we compare the platform-only

and the joint configuration strategies to the hyper-only strategy, taken as a baseline. When
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Figure 5.10: Aggregation of partial models during DML job

the comparison between platform-only and hyper-only parameters is positive, configuring

platform parameters does improve model quality. When the value is negative, we have the

standard case of model quality conditioned by hyper-parameters.

Surprisingly, platform parameters have a strong impact for three of our datasets: DGS, DDF
and DP. The latter (DP [40]) is a high-dimensional dataset with 5,409 features, added to our

benchmark on Cluster 2 (see Chapter 4 §4.4). From Figure 5.9, we observe that DDF is the most

affected. Interestingly, it is the dataset with the highest number of features (see Table 8.1).

At the opposite, DHG, the dataset with the lowest number of features, is never impacted by

the platform parameters and its model quality benefits almost exclusively from the hyper-

parameter configuration. This brings the following counter-intuitive observation.

In Spark, parallelization can impact model accuracy in unexpected ways when dealing with

high-dimensional data. We attribute this phenomenon to Spark’s data partitioning and task

parallelization strategies. Indeed, the number of cores in Spark determines how many parti-

tions can be processed in parallel. Each core processes one data partition at a time and the

intermediate results are combined at the end of each training iteration (see Figure 5.10). Dur-

ing the training, ML methods’ error, which represents the objective function to be optimized

by the ML process, is computed locally within each partition. In the case of high-dimensional

data, these partitions exhibit higher dimensionality and a smaller number of instances com-

pared to other datasets. Consequently, the local computation of the error across different

partitions can lead to the identification of distinct local optima, varying in quality depend-

ing on the partitioning strategy, specifically the number and content of the partitions. As a

consequence, the degree of parallelization influences the partitioning and, subsequently, the

quality of the optima. Interestingly, similar observations were made in a few prior studies. The

same phenomenon was reported in [5] with the Genetic Algorithm and in [165] with the SLIC

algorithm when applied to high-dimensional data.

Observation 5 : One must take into account platform parameters as they may directly benefit

model quality.
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Figure 5.11: Impact of different configuration strategies. Quality vs. training time in 1st column,
quality vs. cost in 2nd column, and quality vs. inference throughput in 3r d column.

5.2.5 Multi-level and Multi-objective Analysis

In this section we consider DML workloads in the context of AI-as-a-Service. We consider the

problem of a service operator who needs to train on a dataset of 2M records and searches

for a configuration fulfilling the following threefold objective: (i) provide the best accuracy,

(ii) minimize training time, and (iii) result in a minimal training cost. We apply the previously

presented strategies (platform-only parameters, hyper-only parameters and hyper+platform

parameters) to the AI-as-a-Service configuration and compare their impact on the actual

service performance and cost. We consider an AI-as-a-Service as if deployed in Amazon EC2

(N. Virginia) [9]. Following AWS pricing scheme, we consider computing instances similar to

our experimental setup, i.e., 8 vCPU with 64 GB of memory, billed $0.46/hour. Outbound data

transfers are charged $0.05 per GB.

The first row of Figure 5.11 illustrates the case of DDF-GBT. It compares the three configuration

strategies in terms of model quality, training time, inference throughput and training cost. We

consider the maxDepth and maxIter hyper-parameters, and the numbers of executors and

cores as platform parameters. The goal is to achieve at least 70% of model R2, with the shortest

possible training, and the cheapest possible training costs. In Figure 5.11(a) we observe that

the joint configuration strategy leads to an average model training time that is 22% faster than
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the platform-only strategy and 26% faster than the hyper-only one. It also has the best R2,

training cost and inference throughput trade-off as shown in Figure 5.11(b) and Figure 5.11(c).

The second row of Figure 5.11 considers the same analysis but in the case of DGS-DT. We

consider maxDepth and maxBins hyper-parameters and the same (executors and cores)

platform parameters. We can see that, compared to the other two strategies, the platform-only

parameters strategy has shorter training time but much lower accuracy. On the other hand,

the hyper-only parameter and the multi-level configurations have similar accuracies, training

times and inference throughputs, but the latter optimizes resources costs up to 54% (see

Figure 5.11(e)). We can therefore state the following.

Observation 6 : Multi-level configuration may not improve single-level configuration’s perfor-

mance but may lower costs.

The third row of Figure 5.11 focuses on the BigDL workload DN-LSTM. We keep the same

platform parameters (number of executors and cores) and use the number of epochs and the

batch size as hyper-parameters. What we observe is similar to our first case: the strategy that

configures both hyper- and platform parameters achieves the best trade-off between accuracy,

costs and training time. In this case, the strategy succeeds in dividing the costs per two. Given

the experiments with both MLlib and BigDL, we observe the following.

Observation 7 : The combination of hyper- and platform parameter configurations may be

beneficial across several perspectives (e.g., model quality, training time and costs), to both

MLlib and BigDL workloads.

5.3 Key Takeaways

From our detailed analysis and observations, we derive high-level takeaways and recommen-

dations for both DML service operators and data scientists.

(1) For many DML workloads, the joint configuration of platform parameters and model

hyper-parameters provides better performance and allows cost savings. Our use-cases

show that if the tuning of model hyper-parameters and platform parameters are conducted

separately, respectively by the data scientist and the system operator, one might observe

contradicting and negative side-effects, reducing the overall performance and increasing the

execution cost of DML workloads.

Data scientists and DML service operators should jointly configure model hyper-parameters

and the underlying platform parameters to obtain greater benefits in terms of training time,

model quality, inference throughput and resources costs.

(2) Surprisingly, platform-level parameters may have higher impact on model quality

than hyper-parameters. Model accuracy is usually impacted by model hyper-parameters
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and not by the underlying distributed computing platform parameters. Counter-intuitively,

we observe the contrary in the cases of workloads with high-dimensional datasets where

parallelization impacts model accuracy, which happens as a result to Spark’s parallelization

approach.

Data scientists should include platform parameters while tuning the accuracy of high-

dimensional models.

(3) Most DML workloads benefit significantly from the tuning of parallelization. We show

that the performance of most DML workloads in terms of training time and inference through-

put is highly impacted by the number of ressources (processes and cores) used for paralleliza-

tion.

DML service operators should always tune EXEC_COR and EXEC_NUM in Spark.

(4) Workloads involving ensemble learning methods and datasets with large number of

features benefit from shuffle data size reduction. We show that the training time of ensemble

learning methods executed on datasets with large number of features is negatively impacted

by important shuffle data compression.

DML service operators and data scientists should enable shuffle data compression (SHF_COMPR)

for ensemble learning methods executed on datasets with large number of features.

(5) DML workloads involving large datasets are significantly impacted by task re-

scheduling. Workloads that deal with large amounts of data would benefit from tuning

when tasks on local data are to be launched on remote nodes.

DML service operators should tune the LOC_WAIT parameter when dealing with datasets with

a large number of records.

5.4 Summary

We conducted a DML workload characterization on diverse and heterogeneous workloads

from 13 widely used learning methods, with 6 real-world datasets. Our extensive execution

traces [49] amount for a total of 16.2 GiB and over 80 million records. We provided an analysis

of the statistical distributions of the traces, showing their main characteristics. Our extensive

experiments showed the importance of a multi-level configuration strategy for jointly tuning

DML hyper-parameters and lower-level platform parameters. Unexpectedly, we observed for

some distributed learning workloads that configuring platform parameters has higher impact

on the model quality than tuning hyper-parameters.

We derived several interesting observations to characterize DML workloads. We then drew

out key takeaways and provided a number of recommendations for DML service operators

and data scientists. We claim that DML workloads need more advanced tools that guide

the joint configuration of hyper- and platform parameters as this approach may result in

better performance. We hope that our observations inspire the development of such tools.
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Finally, we publicly release our collected traces to help researchers and practitioners in future

DML studies, such as building realistic modeling and simulation tools of DML workloads, or

building tools for synthetic DML trace generation.

The results of our experimental characterization will be useful for both data science developers

and system administrators architects, and will motivate future research and collaborations

to propose new DML tuning tools allowing for optimal mapping between DML workloads’

computations and the underlying platform execution models.

As future perspectives, we will characterize other DML platforms than Spark to further enrich

the understanding of DML workloads in diverse environments.

In the following chapter, we shift our attention to another challenge of DML systems, namely

the issue of bias in federated learning.
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Overview

Federated learning (FL) [135], an emerging Distributed Machine Learning (DML) paradigm,

is gaining attention as a promising approach to intelligent services. It allows multiple data

owners referred to as clients to collaboratively build a Machine Learning (ML) model by

sharing models learned from their data while keeping data private at their premises. This

approach offers a number of advantages over traditional DML. In the latter, data is typically

aggregated from various locations to a central data center where training is performed in

a distributed manner using the data center nodes. FL thus result in increased privacy and

reduced data transfers compared to DML. In particular, FL has great promise for improving

the capabilities of distributed learning systems in critical domains where data is sensitive,

such as disease diagnosis [27], smart governance [164], and smart security [95].

Despite the advantages of FL, it is important to acknowledge and address its challenges. One

key concern in FL is the potential for model bias and unfairness. Bias or unfairness are present

in a system whose decisions are prejudicial against users based on their sensitive attributes.

Sensitive attributes capture sensitive and demographic information that is protected by law

and may include, among others, race, religion, gender, and age [14, 60]. Instances of unfair ML

algorithms in the real world are abundant. For example in [231, 193], the authors show that

health sensors like oximeters consistently misclassify individuals of color as they have mostly

been tested on white populations. Similarly, voice recognition models may exhibit higher

accuracy for men than for women due to the differences in vocal characteristics between

genders. Women’s voices are generally higher in pitch and thinner, making it more challenging

for accelerometers to capture their voice features compared to men [199].

In FL, bias can be caused by clients that inadvertently train biased models because of their

biased local data and then propagate bias to the global aggregated model. Bias in FL can also

result from other sources. For exemple, FL participating clients may indeed exhibit variability

not only in their local data distributions but also in connectivity and resource availability.

However, as this variability may reflect the demographic and socio-economic profiles of clients,

client exclusion may reduce model representativeness and increase the likelihood of bias [231].

The potential harm of biased AI and ML techniques ignited several legislative actions, e.g., the

National AI Initiative Act in the US [206] and the EU AI Act [205], aiming at promoting fairness,

accountability, and transparency in AI systems. Bias represents a widely recognized concern

that has been extensively explored in ML [138, 28]. However, bias mitigation techniques

used to achieve fairness in classical (i.e. centralized) ML are incompatible with the privacy

constraints of FL.

In this part, we address the bias mitigation problem in FL. We first provide background on FL

and bias, and review FL bias mitigation literature. Then we propose ASTRAL, a bias mitigation

framework that constrains bias below a given threshold, while maintaining FL model accuracy

as high as possible. We carry extensive empirical evaluations to validate our proposal and

compare it to other FL bias mitigation techniques.





6 Background and Related Work

In this chapter, our attention shifts towards the critical domain of bias mitigation within

the specefic DML paradigm: Federated Learning (FL). We first establish a comprehensive

understanding of the foundational concepts and challenges associated with bias in FL systems.

We provide a background on FL systems, bias in the FL context, and the relevant bias metrics.

Subsequently, we explore the current research landscape and diverse methodologies aimed at

mitigating bias in FL systems. This involves an exploration of existing works, their challenges,

and lays the groundwork for our contributions. As we conclude the chapter, the problem

statement section outlines the specific challenges and complexities intrinsic to addressing

bias within FL systems.

6.1 Background on Federated Learning

Federated learning (FL) is a distributed learning paradigm that allows data owners (or clients)

to collaboratively train an ML model without exchanging their data. In FL systems, data is

usually distributed among clients in a non-IID manner (non-identically and independently

distributed) [87], which is one of the main aspects that distinguish it from classical DML

systems. The local data of client ck is denoted Uk and contains nk samples of data. Uk is

referred to as the local distribution of client k. The union of all clients’ data is denoted U and

is referred to as the global distribution. We use X = (X1, X2, .., Xd ) to denote the features, where

d is the features number. X takes on values in X . We use Y to refer to the class label variable

that represents the classification decision for an instance x of X and takes on values in Y .

The objective of the FL system is to learn fθ : X →Y , where fθ denotes a classification model

learned over the union of the clients’ data, and θ is a d-dimensional vector of parameters that

define fθ. θ contains the real values representing the parameters. fθ predicts for an instance

(x, y) ∈X ×Y an approximation ŷ of the label y as : ŷ = fθ(x). To learn the objective model

fθ, the clients collaboratively search for the set of parameters θ that minimizes the system

classification loss L, where L is a measure of the overall prediction error of fθ and is defined as

the weighted average of the classification loss of all participating clients. The objective of the
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system can be formulated as follow :

argmin
θ

L(θ) =
M∑

k=1
wk Lk (θ) (6.1)

Where M ∈ [1, N ] is the number of participating clients. {wk }k=M
k=1 denotes the aggregation

weights defined by the aggregation method adopted by the system, such that wk ≤ 1,∀k ∈
[1, M ], and

M∑
k=1

wk = 1. Lk (θ) denotes the local loss at client k and is defined by the averaged

loss over the data instances of Dk , i.e., Lk (θ) = 1
nk

∑
(x,y)∈Dk

l (x, y,θ). l is a loss function defined =

that measures the prediction error for an instance (x, y) ∈X ×Y using a classifier defined by

θ ∈Θ. One key example of l is the cross-entropy loss (see Chapter 2 §2.1.3).

In FL, when data is distributed in independant and identical fashion (i.i.d), and all FL clients

participate in the process, the learning task as described is equivalent to learning an ML model

that minimizes the expected value of a loss function using the dataset D such that

D = U =
k=N⋃
k=1

Dk

.

In order to optimize the loss defined in Equation 6.1, the FL server and clients follow the FL

protocol presented in the following. Assuming the FL protocol is composed of a total of T

communication rounds. Given a client selection policy Ψ and an aggregation policy Γ, at each

communication round t ∈ [1,T ] the FL system performs the following procedures :

• Participant selection: The server selects a subset of M participants among the N exist-

ing clients in the FL system using the selection policy Ψ. Let P = {c1, ..,cM } denotes the

set of the selected clients, such that M ≤ N .

• Model initialization: The server sends the global model θt−1 learned in the previous

round to the participants P . In the special case of t = 1, the server either sends a

randomly initialized model or a pre-trained model θ0.

• The local update process: Each client from P trains the received global model θt−1 on

its own private data Dk to learn θt
k . The learning is done by minimizing the local loss

function Lk , the learned parameters {θt
k }k=M

k=1 are sent to the server.

• The global aggregate process : The classical FL aggregation method for combining

clients’ models is FedAvg [135]. It aggregates the clients’ parameters to obtain the

parameters of the global model. It uses Equation 6.2 according to which the weight

of a client’s parameters is proportional to the quantity of its data. The output of the

FL system is a classification model that predicts the class label value for an unlabeled
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Figure 6.1: Example of bias in FL systems

data instance x ∈X . The model’s prediction for x is referred to as ŷ . The quality of the

model’s predictions is usually measured with metrics such as model accuracy, precision

or recall (see Chapter 2 §2.1.3).

θt =
k=N∑
k=1

nk

|U | .θ
t
k (6.2)

6.2 Background on Bias

Bias in ML is defined as the presence of prejudice or favoritism in a FL model outcome that

disproportionately affects certain individuals based on their sensitive attributes such as race or

gender [138]. Such bias leads to unfair outcomes and exacerbates existing social inequalities.

It can result in a range of negative consequences, such as denying opportunities, resources, or

services to certain individuals or groups. ML model bias with respect to sensitive attributes has

been addressed in several studies in the emerging field of ethical ML [63, 56, 101]. These studies

consider different bias concepts including statistical parity difference [56], equal opportunity

difference [82] and discrimination index [240]. While these concepts differ somewhat, they

all quantify bias by examining if and how the outcomes of the models depend on sensitive

attributes. In the literature, these concepts are grouped under the term of group fairness [56].

Sensitive attributes are defined by law and include, among many others, race, age, gender,

health situation, etc. [60, 14]. A sensitive attribute, denoted S j , typically has two possible

values that we denote by v j
1 and v j

2 . It separates data into two demographic groups. Usually,

we refer to these groups as privileged and unprivileged groups. In fairness literature, the

privileged group is a group that has historically been at a systemic advantage [128], while the

unprivileged group has been disadvantaged. For example, in the United States, race has been

a significant factor in determining access to resources and opportunities. White individuals

have had more advantages than individuals from other racial groups, and are thus identified
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as the privileged group. However, it is important to note that the definition of privileged and

unprivileged groups may vary depending on the context and the specific task at hand.

Bias in ML arises from issues like unbalanced, incomplete, or flawed datasets, leading to unfair

models. In FL, bias can originate from biased local data on clients. Client variability in FL,

including data distribution and resources, coupled with unequal FL selection and aggregation

can also contribute to bias. For example, let us consider the FL use case of smart healthcare

in which several hospitals use FL for activity recognition [157], as illustrated in Figure 6.1. A

central server aggregates into a global model the hospitals’ local models that are trained using

sensor data collected from their local patients. An imbalance in the collected data can result

in a biased model against underrepresented groups.

6.3 Background on Bias Metrics

To quantify bias, a variety of metrics have been proposed [56, 82]. These metrics operate under

the assumption that the sensitive attribute is binary (we explore in section 8.1 the way we

binarize sensitive attributes in our experiments). We denote the number of sensitive attributes

as sa, and the model outcome variable, which we consider binary for simplicity, as Ŷ ∈ {0,1}.

The value 1 is referred to as the positive outcome, while 0 is referred to as the negative outcome.

In the following, we briefly detail the different bias metrics considered in our work. In practice,

the choice of which metric to use depends on the specific context, the type of discrimination

that needs to be addressed, and the desired outcome of the system.

Statistical Parity Difference (SPD) is a classical bias metric for binary classifiers used to

measure the demographic parity fairness notion [56]. It measures the difference between

the positive outcome rates for the two groups defined by the considered sensitive attribute.

A model is fair and ensures demographic parity if its SPD is equal to zero. If the SPD is

different than zero, it indicates that the model is more likely to assign positive predictions

to one particular group. Given a dataset U and a sensitive attribute S j , SPDS j is defined

in Equation 6.3, with PrU being the probability distribution of U . SPD is used in systems

interested only in the prediction outcome. For example, consider the use case of a mobile

recruiting application [16]. Measuring the SPD with respect to attributes such as race or gender

on the output of the hiring system can indicate whether the model is hiring candidates of

certain demographic groups more than the others.

SPDS j = PrU (Ŷ = 1|S j = v j
1 )−PrU (Ŷ = 1|S j = v j

2 ) (6.3)

Equal opportunity Difference (EOD) is used to reflect the fairness notion of equality of op-

portunity [82]. Unlike SPD, EOD imposes constraints on the correct or true positive predic-

tions [82]. Formally, EOD measures the difference between the correct positive predictions
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for the two groups defined by S j , as presented in Equation 6.4. It is more prone to be used

in systems where not only the outcome but also the quality of prediction matter, such as

identifying dangerous individuals from cameras’ footage [8].

EODS j = PrU (Ŷ = 1|S j = v j
1 ,Y = 1)−PrU (Ŷ = 1|S j = v j

2 ,Y = 1) (6.4)

Discrimination Index (DI) quantifies the variation of the F1 score between the two groups

defined by a sensitive attribute S j [240]. The F1 score is a statistical measure that evaluates the

quality of a binary classification model, and is equal to the harmonic mean of the recall and

the precision measures. Formally, DI for a model θ with regard to the sensitive attribute S j is

calculated as in Equation 6.5, where F 1
S j =v j

i
(θ) denotes the F1 score of the model θ computed

using only data records from the group with S j = v j
i . DI is more prone to be used in systems

where the prediction quality is of utmost concern such as healthcare applications [3]

D IS j = F 1
S j =v j

2
(θ)−F 1

S j =v j
1
(θ) (6.5)

6.4 Related Work on Bias Mitigation in Federated Learning

Bias is a well-known problem studied in ML [138, 28]. In FL, there are different categories of

bias problems depending on the considered FL fairness notion. The first category of problems

deals with (i) collaborative fairness which aims to reward clients with high contribution to the

FL process with better models in terms of performance compared to low-contributing clients.

The second category deals with (ii) performance fairness which aims to achieve a performant

FL model for the different clients with regard to their local distributions. The third category

deals with (iii) group fairness, where the aim is to prevent any discrimination in the FL model

against particular data groups based on their sensitive attributes.

6.4.1 Collaborative Fairness in FL

Several works study the first type of bias problems [124, 232]. In [124], the authors introduce

CFFL. In CFFL, collaborative fairness is quantified via the correlation coefficient between par-

ticipant contributions (test accuracies of clients’ models which characterize their individual

learning capabilities on their own local datasets) and participant rewards (test accuracies of

final models received by the participants). CFFL evaluates and iteratively updates the con-

tributions of participants, ensuring that each participant receives models with performance

commensurate with their contributions.

In [232], the authors propose the FLI payoff-sharing scheme, which incentives FL data owners
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to contribute high-quality data to the FL system. Data owners who have contributed a large

set of high-quality get rewarded by a higher share of revenues generated by the FL system.

Experimental evaluations of FLI show that it achieves the highest expected revenue for a data

owner compared to other existing payoff-sharing schemes.

6.4.2 Performance Fairness in FL

Other works focus on addressing the second category of bias problems, specifically those

related to performance fairness. For instance, AFL [148] aims to ensure that the global model

is optimized for any target distribution. To achieve this, AFL optimizes the model for a

distribution formed by any mixture of the clients’ distributions. This is accomplished by

minimizing the worst convex loss combination of clients’ losses. In doing so, the framework

ensures a high-performing model for the worst-case scenario, and consequently, a high-

performing model for clients in general.

In a different approach, the authors of [246] tackle the complexities of cross-device feder-

ated learning, with a specific focus on wearable devices. They pinpoint challenges stem-

ming from network communication instability causing biased client selection. The authors

categorize clients into three groups: (1) over-represented, (2) under-represented, and (3)

never-represented, referring to those selected too frequently, too infrequently, and never or

rarely selected, respectively, due to their network capabilities. Their primary emphasis is on

addressing bias resulting from unfair client selection in the third group. Clients in this category,

whose data patterns differ significantly from those of well-connected clients selected most

frequently, encounter diminished model performance on their distribution due to skewed

learning. To mitigate this issue, the authors raise the network capacity threshold, enabling

equitable client selection irrespective of networking conditions. Additionally, they introduce a

mechanism to identify the most crucial updates from the FL clients.

Additionally, [118] introduces FedCHAR, a personalized FL system. FedCHAR enhances both

accuracy and fairness in model performance by leveraging the inherently similar relationships

between FL clients. The distinguishing features of FedCHAR include dynamic clustering

and adaptability to the inclusion of new users or changes in dataset composition, making it

well-suited for realistic FL-based scenarios.

6.4.3 Group Fairness in FL

In our study, we focus on the third type of bias issue, specifically group fairness. Various tech-

niques exist for mitigating group fairness biases in Federated Learning (FL), encompassing

both client-side [2] and server-side methods [101, 234, 51, 235, 233]. Client-side methods

typically involve adjusting local loss with bias penalties that quantify discrimination against

demographic groups. These techniques may also rely on reweighing client data records based

on sensitive attributes. However, global bias mitigation is not guaranteed, given the heteroge-
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neous data distribution among FL clients [61]. For instance, a sensitive group considered a

minority in the global distribution (e.g., African-American) might be a majority for a specific

client (e.g., credit data in a black-majority city such as Detroit), so reweighing a clients’ major-

ity group to locally mitigate bias in that client might not only fail to mitigate global bias but

potentially exacerbate it.

On the other hand, several works follow a server-side approach for FL bias mitigation [53,

30, 240, 239, 61, 36]. In this approach, local debiasing methods are done but in coordination

between clients and are orchestrated and oriented by a server. Other server-side methods are

completely server-sided and do not require any local debiasing. Generally, in the process of

applying server-side bias mitigation, the clients may need to exchange additional information

with the server about their data constitution or local model metrics.

AgnosticFair [53] considers the SPD metric. It applies a minimax gaming optimization between

the clients and the server to minimize the global loss under a bias constraint that imposes a

threshold on the bias. However, since SPD is not a convex function, AgnosticFair considers

a convex approximate for it. Thus, the bias constraint does not ensure that the threshold is

respected by the objective bias metric itself. AgnosticFair assumes the presence of a single

sensitive attribute in data [53] and requires exchanges of local bias information at each FL

learning round.

Another proposal is FCFL [36], which takes into account the SPD and EOD metrics. It frames

the problem as a multi-objective constrained optimization task and resolves it, guaranteeing

that the global FL model adheres to the bias constraint on each client’s distribution while

maintaining consistent accuracy across clients. The primary objective is to ensure group

fairness at each client’s level rather than focusing on the global distribution. In FCFL, bias

and loss information of clients are exchanged in each FL round. Similar to AgnosticFair, it

addresses only bias related to a single sensitive attribute.

FairFL [240] explores various metrics of group fairness, employing a different approach with

client selection based on their individual performance. At each FL round, FairFL dynamically

chooses the optimal set of FL clients that collectively optimize as much as possible accuracy

and bias simultaneously. The global bias and accuracy in FairFL are estimated through the

average of local accuracies and bias measurements provided by individual clients at each

round. While FairFL accounts for multiple sensitive attributes, it fails to effectively reducing

bias for each of the existing groups [240].

FairFed [61] adjusts the weights of clients for the server global aggregation with the aim

of minimizing SPD and EOD as much as possible. Specifically, each client conducts local

debiasing on its individual dataset. Then, to enhance the effectiveness of local debiasing

globally, clients assess the fairness of the global model on their respective datasets in each

FL round. They subsequently collaborate with the server to collectively adjust the model

aggregation weights. These weights are determined based on the disparity between the global

fairness measurement (calculated on the entire dataset) and the local fairness measurement
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Table 6.1: Summary of state-of-the-art bias mitigation methods related to group fairness

System Handling multiple sensitive attributes Ensuring a bias threshold Generic approach
Abay and al. [2] 7 7 3
AgnosticFair [53] 7 7 7
FCFL [36] 7 3 7
FairFL [240] 3 7 3
FairFed [61] 7 7 3
GIFAIR-FL [233] 3 7 7
q-FFL [116] 3 7 7
ASTRAL 3 3 3

at each client. The adjustment process favors clients whose local fairness measures align with

the global fairness measure.

Finally, there exist works that explicitly address group fairness by addressing performance

fairness for groups of FL clients clustered according to their sensitive attributes. Specifically,

q-FFL [116] considers an FL setting where each client belongs to a demographic group, thus

clients can be clustered into groups based on their sensitive attributes. Their solution focus

on accuracy group fairness. It encourages a more equitable distribution of accuracy across FL

clients by reweighing the aggregate loss and assigning higher weights to clients with higher

losses. Their approach results in improving performance for all FL clients and thus for the

demographic groups they belong to. GIFAIR-FL [233] considers a similar setting and focuses

also on accuracy group fairness. It offers an optimization-based approach to address group

fairness with regard to model accuracy among groups of clients. This is achieved through

the application of regularization methods that penalize variations in model accuracy be-

tween clients’ groups during the training leading to uniform accuracy between demographic

groups. A particularity of q-FFL and GIFAIR-FL is that they reduce discrimination between

demographic groups under the assumption that each FL client can be clearly assigned to

a demographic group. However, if this assumption is not met, the used approach does not

guarantee group fairness. In this thesis, we refrain from making any assumptions regarding a

client’s affiliation with a specific demographic group. Specifically, clients can hold data records

belonging to one demographic group or to different ones.

6.4.4 Discussion

In summary, most existing bias mitigation methods typically address bias for a single sensitive

attribute at a time. They don’t provide a mechanism to ensure a predefined bias value on the

objective metric. Instead, they aim to minimize the bias objective metric as much as possible,

often relying on approximations, which may be insufficient. In addition, they lack generality

as they are tailored to support specific bias metrics. This limits their applicability across

diverse domains with varying bias guarantee requirements. Table 6.1 presents a comparison

of various bias mitigation methods, including our proposed solution. To the best of our

knowledge, ASTRAL stands out as the only FL bias mitigation approach capable of handling
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Figure 6.2: Bias propagation in FL

multiple sensitive attributes. It ensures that the model bias remains below an adjustable

threshold while maximizing accuracy, and it accommodates any bias metric.

6.5 Problem Statement and Propositions

6.5.1 Why Bias Matters in Federated Learning

In FL, the presence of biased data at an FL client may lead to the propagation of bias to all

the FL clients, including the “fair” ones, thus rendering the whole system biased. Indeed,

clients that have unbiased local data, that allow them to train fair models, can “inherit” a

biased global FL model, due to the biased FL clients, as shown in Figure 6.2(a). This rises a

problem, since classical FL protocols do not allow selecting clients based on their data due to

FL privacy constraints. To illustrate these phenomena, we implement an activity recognition

FL scenario that uses motion data collected from wearable sensors from several patientsI.

Here, we consider gender as sensitive attribute and DI as the bias metric. We compare the

DI of the following two models. The first model is trained using classical centralized ML on

a FL client denoted c1, with a balanced data subset of men and women. The second model

is trained collaboratively by c1 and other FL clients holding the remaining data using the

classical FL protocol FedAvg. We present the corresponding bias values in Figure 6.2(b). We

can observe that FL induces a much higher bias on the resulting model (right bar). Indeed, the

unbiased FL client c1 inherited bias from the other FL clients.

IThese experiments use the ARS dataset (see section 8.1), executed on our experimental environment (see sec-
tion 8.2).
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Figure 6.3: Existing FL bias mitigation methods are not able to achieve the defined threshold

6.5.2 On the Importance of Maintaining Bias Below a Threshold

Minimizing the gap between groups without establishing a specific threshold may lead to

two potential outcomes: either a model with reduced bias but still exhibiting more bias than

desired, or a model with no bias but compromised accuracy. The latter occurs because, in the

pursuit of mitigating bias to the greatest extent, the model may excessively compensate for

certain groups without considering the underlying ground truth. Moreover, fixing a threshold

in a bias mitigation system ensures that the system is consistent with legal requirements.

Indeed, in many real-world scenarios, quotas are defined to ensure that certain groups are

not unfairly disadvantaged. For example in the United States, their exist a rule known as

the 80% rule, or the four-fifths rule, that is imposed on companies in their hiring process to

fight against hiring discrimination [92]. It ensures that the quotient of the hiring rate of the

unprivileged group on the privileged group’s is no less than 80%.

6.5.3 Existing FL Bias Mitigation Methods Are Not Able to Limit Bias Below a
Threshold

To investigate the effectiveness of FL bias mitigation methods, we consider the same activity

recognition FL scenario as above, initially without any bias mitigation, and subsequently,

using two state-of-the-art bias mitigation techniques. We evaluate the bias (DI) of the learned

FL model with regard to gender and report the results in Figure 6.3(a). It reveals that the FL

model created without any bias mitigation methods has a DI of 25%, surpassing the threshold

3%. We then apply two bias mitigation techniques: FairFL* and FairFed* (described in details

in section 8.3). FCFL (see section 8.3), another bias mitigation technique cannot be applied

since it does not support bias mitigation with regard to DI. We can see from Figure 6.3(a) that

none of these methods succeeds in reducing bias below the typical 3% bias threshold within

the setting shown in Figure 6.3(b). This illustrates the fact that bias mitigation represents a

real challenge in FL.
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Table 6.2: Bias mitigation with re-
gard to single sensitive attribute age –
Adult dataset

Systems SPDag e (%) SPDr ace (%) SPDg ender (%)
FedAvg 13 4 13
FCFL 1 9 19

Table 6.3: Bias mitigation with re-
gard to single sensitive attribute race
– MEPS dataset

Systems SPDr ace (%) SPDg ender (%)
FedAvg 5 8
FCFL 2 10

6.5.4 Why Not Handling Multiple Sensitive Attributes May Induce More Bias

FL applications typically use data that contains multiple attributes that can be considered

sensitive. For example, data collected from mobile applications may include information on

an individual’s gender, race, and age, while data collected from sensors and other ubiquitous

devices may include attributes revealing the region and socio-economic information, among

others. Therefore, data in general is characterized by the presence of several sensitive attributes.

Although several works have been conducted to mitigate bias in FL, most of them focus on

mitigating bias with regard to only one sensitive attribute at a time. This may be problematic,

as optimizing a model to be unbiased with regard to one sensitive attribute does not guarantee

bias mitigation for other sensitive attributes. Even worse, mitigating bias with regard to

one sensitive attribute may exacerbate bias with regard to the other sensitive attributes. We

have observed this phenomenon when applying the state-of-the-art bias mitigation method

FCFL on several datasets considering the SPD metric. FCFL handles single attribute bias

mitigation only. Table 6.2 and Table 6.3 show bias measurements collected from the FL model

resultant from this method and obtained using respectively the dataset Adult that contains

three sensitive attributes, and MEPS that contains two sensitive attributes. We report the

model bias for the two datasets with regard to one sensitive attribute that was considered

during the mitigation (bias column at left), and also bias with regard to the other sensitive

attributes that exist in the dataset (bias columns at right). As we can see, although FCFL

mitigates model bias with regard to age for the Adult dataset, and with regard to race for the

MEPS, it exacerbates the model bias with regard to the remaining sensitive attributes. Thus

it is important to design bias mitigation techniques that handle bias mitigation for all the

sensitive attributes that exist in data.

6.5.5 Our Propositions

To address the bias mitigation problem in FL, we propose ASTRAL, a bias mitigation framework

that constrains bias below a given threshold, while maintaining FL model accuracy as high as

possible. ASTRAL proposes a novel and self-corrective FL aggregation method, which reweighs

FL clients’ local models contributions based on their impact on the global FL model’s bias

and accuracy. In contrast to its competitors, ASTRAL allows dealing with multiple sensitive

attributes at a time, and supports bias mitigation with regard to any given bias metric. To

showcase ASTRAL’s results in terms of model bias, accuracy, scalability, and robustness to

clients heterogeneity, we conduct an extensive evaluation across seven widely used datasets.

Our findings confirm that ASTRAL outperforms existing FL bias mitigation approaches.
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6.6 Summary

In this chapter, we focused on bias mitigation within FL environments. We provided back-

ground on FL systems, bias phenomena in FL, and relevant bias metrics with real-world

examples. Subsequently, we surveyed existing works for bias mitigation in FL pointing out

their limitations. Among the limitations, we emphasized the critical importance of main-

taining bias below defined thresholds for legal compliance and ethical considerations and

explored the necessity for handling multiple sensitive attributes concurrently, shedding light

on potential pitfalls associated with mitigating bias for individual attributes. The problem

statement section articulates these specific challenges in addressing bias within FL systems.

The subsequent chapter introduces ASTRAL, our bias mitigation framework for FL. ASTRAL

aims to constrain bias below a specified threshold while maximizing FL model accuracy. It

employs a novel and self-corrective FL aggregation method, reweighing FL clients’ local model

contributions based on their impact on the global FL model’s bias and accuracy. Distinguishing

itself from competitors, ASTRAL handles multiple sensitive attributes simultaneously and

supports bias mitigation across various metrics.
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In this chapter we present ASTRAL, a FL framework for bias mitigation. First, we define formally

the problem of bias mitigation in FL in section 7.1. Then, we present an overview of ASTRAL to

solve the formulated problem in section 7.2. We describe in detail the design principles of our

solution in section 7.3. Finally, in section 7.4, we provide analytical insights of ASTRAL.

7.1 Problem Formulation

The problem of bias mitigation in FL consists in designing an FL system that produces FL

models meeting a predetermined bias threshold, and this for all the sensitive attributes existing

in data simultaneously. As respecting bias constraints should not come at the expense of

accuracy, the accuracy of the resulting FL model should be kept as high as possible. The

target distribution in FL systems is the global distribution U , thus the bias and the accuracy

objective must be ensured for the global distribution U [135].

More formally, the defined problem of FL bias mitigation can be formulated as a constrained

optimization problem as follows. Given an FL model with parameters θ, the accuracy A(θ) of

the model should be maximized (Equation 7.1), while the model bias βS j (θ) with regard to

each sensitive attribute S j does not exceed a predefined threshold ε (Equation 7.2). Here β is

used to denote any bias metric (SPD , EOD , DI , etc. (See section 6.2)).

max
θ∈Rd

A(θ) (7.1)

s.t |βS j (θ)| ≤ ε,∀S j ∈ {S1 . . .Ssa} (7.2)

The global model parameters θ can be expressed as a linear combination of the local clients’

parameters θ1,θ2 . . .θN , and this according to the aggregation formula in Equation 6.2. If

θk ∈Rd are the local parameters for client ck , and wk ∈R the weight assigned to this client for

the aggregation, the global model parameters produced in a FL round are computed according
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to Equation 7.3.

θ =
k=N∑
k=1

wk .θk (7.3)

To simplify Equation 7.3, we represent clients’ aggregation weights as the vector w = (w1 . . . wN ),

and clients’ parameters as the N ×d matrix Θ (Equation 7.4). In Θ, row k contains the d

parameters for client ck , d being the number of parameters of the learning model.

Θ =

θ
1
1 . . . θd

1

. . . . . . . . .

θ1
N . . . θd

N

 (7.4)

Thus, we have θ = w .Θ. Therefore, the problem formulated by Equation 7.1 and Equation 7.2

can be expressed using the clients’ weights w and thus formulated as follows:

max
w∈RN

A(w .Θ) (7.5)

s.t βS j (w .Θ)| ≤ ε,∀S j ∈ {S1 . . .Ssa} (7.6)

In order to solve the constrained maximization problem formulated by Equation 7.5 and Equa-

tion 7.6, our solution finds the best real number aggregation weights w1, w2 . . . wN .

Bias metrics in Equation 7.6 are known to be non-convex functions [220]. As a result, the

considered problem is also non-convex. Thus, the considered problem is computationally

intractable using exact methods, i.e. it can not be solved efficiently in polynomial time [72].

Furthermore, the exploration of the search space becomes intractable when considering trivial

optimization methods like grid search. Indeed, as our search space is potentially infinite

(w ∈ RN ), we have to resort to more sophisticated methods to more efficiently explore the

search space. Thus, to find the best weights vector w , we apply a black-box optimization

method, which does not require a specific type (convexity, continuity, etc.) of the studied

function [181]. The black-box optimization relies on the exploration of different candidates of

aggregation weights through a metaheuristic-based algorithm. The algorithm guides efficient

and non-exhaustive exploration of the search space and outputs the best weights that optimize

the objectives at the end of the learning.
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7.2 Overview of ASTRAL

Figure 7.1 presents an overview of the architecture of ASTRAL, which intervenes at each FL

round at the FL server-side after receiving the client’s parameters and before the aggregation

step. Specifically, ASTRAL applies the pipeline described in Figure 7.2 to calculate the weights

used for aggregating the FL client model updates in a way that ensures the aggregated global

model bias remains below a fixed threshold while maximizing accuracy.

Figure 7.1: Overview of ASTRAL architecture

ASTRAL’s pipeline at the server level consists of an iterative optimization process with three

essential steps to explore diverse aggregation weights and select the best among them with

regard to our objectives, as shown in Figure 7.2. Initially, the server receives the local models

of FL clients and the bias threshold as input and launches the ASTRAL’s pipeline. The first

step in each iteration of the pipeline involves Model Generation (Figure 7.2-Ê) which uses

the Differential Evolution algorithm (DE) to construct a population of potential aggregation

weights and corresponding global models [197]. The second step, i.e., Model Evaluation

(Figure 7.2-Ë), targets the assessment of the accuracy and the bias of each global model

created in the first step and computes upon those two measurements each global model’s

score. Finally, Model Selection (Figure 7.2-Ì) uses the scores computed in Figure 7.2-Ë to

select the best global models to keep in the population. The process iterates and loops back to

Figure 7.2-Ê with the updated population, until reaching a predefined termination condition.

It then outputs the final model which is the model that has the best score of all the population
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with regard to the objectives of the constrained optimization problem (see section 7.1). Once

the iterative process stops, the current FL round is terminated, and the selected model will be

sent to the FL clients at the beginning of the next round.

init. popul. &
mutation

crossover

aggregation

Model 
Generation

Model 
Evaluation

Model 
Selection

global 
model

iterate on updated population

client 
models

bias
threshold

bias & 
accuracy selection

termination
condition

model
scoring

➊ ➋ ➌

Figure 7.2: The ASTRAL pipeline at the FL server-side

7.3 ASTRAL Design Principles

Here, we describe in details the steps of the ASTRAL pipeline, presented in Algorithm 2. The

pipeline starts by the random initialization of a first population of potential candidates for

aggregation weights w . ASTRAL iteratively modifies this population through the three intro-

duced processes: Model generation (lines 7-11 of algorithm 2), Model evaluation (line 12

of algorithm 2) and Model selection (lines 13-16 of algorithm 2). At the end of the pipeline, the

best aggregation weight is selected and applied on the clients models to output the optimized

global model.

7.3.1 Model Generation

During model generation, current aggregation weights candidates are modified to create

new candidate solutions called offspring candidate solutions. Precisely, if P is the current

population of candidate solutions, then this module creates for each wi ∈ P an offspring

individual Twi
using the mutation and crossover operators from the DE algorithm, as follows.

First, the mutation operator selects randomly two members of the population e1 and e2. Their

difference, scaled by a factor F , is used to mutate the best member of the population b, as

follows: mwi
= b +F ∗ (e1 −e2) (line 8). Then, the crossover operator creates the offspring Twi

by randomly selecting a component wk from wi ’s components, i.e., {w1 . . . wN }, and replacing

it with the corresponding component from the mutant vector mwi
(line 9). The mutation and

crossover operators introduce randomness and maintains diversity of populations. Finally,

the weight candidate solutions and their offsprings are used to compute global aggregated

models (lines 10-11).
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Algorithm 2: ASTRAL bias mitigation pipeline at server level

Inputs :Θ: models’ parameters of FL clients
ε: Global FL model bias threshold

Output :θwbest : Global FL model’s parameters meeting ε bias threshold with the highest
model accuracy

1 Initialise population P with random vectors of weights of FL clients’ updates
2 Initialise max_iter to the maximum #iterations of Differential Evolution
3 Initialise nb_iter to 0, Pnew as empty, and termination_condition to False
4 do
5 foreach vector of weights of FL clients’ updates wi ∈ P do

// Model Generation
6 Select randomly e1 and e2 from P
7 Select the best individual b from P
8 Create mutant vector mwi

using e1,e2,b
9 Create offspring vector Twi

using DE crossover operator between wi and mwi

10 Create model θwi
by applying weigths wi on clients’ model parametersΘ

11 Create model θTwi
by applying weigths Twi

on clients’ model parametersΘ

// Model Evaluation
12 Compute score of θwi

and score of θTwi
with regard to ε bias threshold and high

accuracy, and store them in Scor e(θwi
) and Scor e(θTwi

) respectively

// Model Selection
13 if Scor e(θTwi

) > Scor e(θwi
) then

14 Add Twi
to Pnew

15 else
16 Add wi to Pnew

17

18 nb_iter++
19 Replace the content of P by the content of Pnew

20 if all elements of P have similar scores, or if nb_iter = max_iter then
21 Set termination_condition to True

22 while termination_condition 6= True;
23 Find among elements of P the vector of weights wbest with the highest score
24 Compute new global FL model θwbest by applying wbest onΘ
25 return θwbest

7.3.2 Model Evaluation

This step evaluates the accuracy and bias of the models generated in the Model Generation

part, and assigns a score to each using a fitness function (line 12). To define an appropriate

fitness function for our problem, we follow the known approach of black-box constrained

optimization where the fitness function is composed of two main terms: the objective function,

and a global penalty term [134, 98]. The objective function term represents the goal of the

problem and measures how well a solution performs in achieving this goal, which in our case
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is model’s accuracy. The global penalty term is to be subtracted from the objective function in

the fitness function formula. Its role is to take into account all the constraints imposed by the

problem by penalizing solutions that do not respect the constraints, which in our case are the

bias constraints. The global penalty term is the sum of penalties of the different constraints

of the problem. A penalty is usually proportional to the deviation from the constraint and

takes various forms, such as squared penalty and absolute penalty. Squared penalty gives

more penalty to solutions that deviate more from the constraint. When the deviation from the

constraint is below 1, the squared penalty gives this deviation even smaller weight. In our case,

the deviation from the bias constraints is generally below 1. We apply on our constraints the

absolute penalty that does not exacerbate or underestimate deviations from the constraints.

Thus, the fitness function of ASTRAL is defined as follows:

Scor e(θw ,ε) = A(θw )− ∑∣∣∣βS j (θw )
∣∣∣>ε

∣∣βS j (θw )
∣∣ (7.7)

Where Scor e(θw ,ε) is the fitness of a solution candidate w , with ε being the predefined

bias threshold, θw = w .Θ being the corresponding global model to w , A(θw ) its accuracy

and βS j (θw ) the model bias with regard to the sensitive attribute S j ∈ {S1 . . .Ssa}. The global

penalty term is computed by summing bias penalties of all the sensitive attributes S j whose

bias exceeds the predefined bias threshold ε. This fitness function is then used to evaluate

the fitness scores of candidate models during the model evaluation step. The computation of

these fitness scores and global metrics in practice is described afterwards in the dedicated

paragraph.

7.3.3 Model Selection

After the models’ evaluation, the system uses the selection operator to compare the parent w

with its offspring Tw and only keeps the best in terms of model fitness in the new population

called Pnew (line 13-16). After iterating through all current elements in P , the latter is replaced

with the newly updated population Pnew . Finally, the system has a termination condition

to determine whether it should finish ASTRAL execution for the current round or send back

the updated population for a new iteration (lines 20-21). This termination condition can be

whether the number of iterations done through ASTRAL has reached a maximum value denoted

max_i ter , or if all elements of P have similar scores. If the termination condition is respected,

then ASTRAL identifies the best individual wbest , which is the aggregation weight that results

in the model with the best score (line 21). It then computes the associated aggregated model

as the new global model θwbest (line 24) for the current round. The new global model is sent

back to the clients to use at the beginning of the next FL round.

The described ASTRAL’s pipeline is executed at each FL round. It may occur that for some

rounds, the final population does not contain solutions that conform to the bias constraints.

In that case, the selection operator selects solutions that do not respect the bias constraints. To

overcome this issue, we rely on the exploration capabilities of ASTRAL, which we explain in the
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next section and which showed high effectiveness in finding high quality solutions during the

evaluation process (see Chapter 8). Another efficient strategy we employ is increasing when

necessary the size of the populations to be explored in order to explore better the search space.

Nevertheless, our empirical analysis shows that such scenario is infrequent. Our approach

demonstrated its ability in generating high-quality feasible solutions, in the FL early rounds

(see Chapter 8). At the end of the FL rounds, ASTRAL outputs the best global model among the

rounds’ global models in terms of bias and accuracy objectives.

7.3.4 How FL Server Calculates Global Metrics

A pivotal factor in mitigating bias within the ASTRAL framework is the server’s ability to

compute the global model accuracy and bias metrics in each iteration of ASTRAL’s pipeline

(See Equation 7.7). The server uses the exchanged model updates and a proxy dataset at

its possession to get the required metrics, obviating the need of sharing additional sensitive

information. Using proxy dataset has found application in previous contexts such as [122]

and [23]. In these works the proxy dataset is used for knowledge distillation enabling the

transfer of knowledge from individual client models to the global model. Likewise, FedLAW

uses a globally consistent proxy dataset and the gradient descent algorithm to optimize FL

aggregation [119]. Within ASTRAL, the use of this proxy dataset gives a strategic advantage in

mitigating bias. In Chapter 8 §8.12, we show the effectiveness of our proposed method, even

when the proxy dataset diverges from the training data distribution.

To evaluate global metrics on the server-side without requiring a proxy dataset, alternative

methods exist. One method involves cryptographic techniques such as secure aggregation [61],

where global metrics are computed by aggregating values from participating FL clients at the

server without revealing individual values. However, this approach introduces a computational

overhead. Another approach, similar to [198], involves considering a subset of the clients as

proxy data holders and computing the required metrics from these clients, while not including

them in the training. Additionally, in the absence of proxy data, artificial data can be generated

using existing privacy-preserving data generation methods in FL [222].

7.4 Analytical Insights

7.4.1 Maximizing FL Model Accuracy

ASTRAL finds the solution that maximizes accuracy by integrating the accuracy in the fitness

function. This allows to assign high fitness scores to high accuracy solutions leading to their

systematic selection as the best solution candidates by our pipeline. Furthermore, ASTRAL

is able to ensure globally optimal solutions that maximize accuracy as much as possible by

optimizing the exploration of the search space. First, ASTRAL leverages mutation, crossover,

and selection operations, which are critical in forming sequences of populations and generat-

ing both diverse and good quality solutions. These operations are applied iteratively at the
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server level, enabling ASTRAL to explore the search space more effectively. Then, ASTRAL runs

through several FL rounds, which further enhances exploration, as explained in the following.

At the start of each round, the pipeline of ASTRAL sends the global model to the clients for

training. The clients subsequently submit their models (locally trained) to ASTRAL at the end of

the round. Each client has its own local model, which represents its unique knowledge learned

from its local data. The pipeline of ASTRAL then explores new populations of aggregation

weights to apply to these local models. The exploration of new aggregation weights leads

to the exploration of new global models. The explored global models of each FL round are

formed via a linear combination of the local models’ parameters using the aggregation weights

candidates. Formally, at each round, ASTRAL explores a potentially new subspace of the global

model search space, equivalent to the span generated from the algebraic basis formed by the

local models of the clients of the round. The span generated by the algebraic basis formed by

the local models of the clients for a round t is formally defined by the following equation:

Spant (θt
1,θt

2, . . . ,θt
N ) = {w1.θt

1 +w2.θt
2 +·· ·+wN .θt

N |w1, w2, . . . , wN ∈R} (7.8)

where θt
1,θt

2, . . . ,θt
N are the local models of the clients at round t . By combining the local

models of clients in different FL rounds, ASTRAL can leverage the collective knowledge and

learning from various training perspectives, depending on the FL round. The exploration

of different spans generated by the local models as we progress through multiple FL rounds

enhances the exploration of the search space.

7.4.2 Ensuring FL Model Bias Below a Threshold

In ASTRAL, the bias constraints are enforced by including them in the penalty term of the

fitness function defined in Equation 7.7. Specifically, the penalty assigned to a model given a

bias objective is computed as the sum of all the left terms of bias inequality constraints that

are not respected, as follows:

penal t y(θw ,ε) =
∑

S j∈[S1,Ssa ]
max(0,βS j (θw )−ε) (7.9)

This penalty ensures that models that exceed the bias threshold are penalized proportionally

to the magnitude of their bias, while the models that do not exceed the bias threshold are not

penalized and thus are the ones selected as potential solutions. The exploration capacities of

ASTRAL described above have also crucial role at ensuring the bias objective. By leveraging

the DE operators, and by exploring different spans generated by the local models of different

clients in each FL round, ASTRAL effectively explores diverse subspaces of the global model

search space. This allows to discover a diverse array of solutions that meet the bias constraints.
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7.4.3 Generic Approach to Handle Several Bias Metrics

ASTRAL’s generic framework can accommodate a wide range of bias metrics. Its black-box op-

timization approach does not require any specific conditions on the function being optimized,

or the constraints, such as continuity or derivability. Moreover, leveraging black-box optimiza-

tion offers another advantage to ASTRAL compared to existing methods. ASTRAL stands out

as a bias mitigation solution by successfully optimizing the objective bias constraint itself

without relying on approximations or surrogate functions. For instance, AgnosticFair [53]

adopts an exact optimization technique and thus resort to approximate the statistical parity

difference metric with its convex proxy, the decision boundary fairness metric [234]. However,

this approximation fails to provide guarantees regarding the mitigation of statistical parity

difference [234, 220].

7.4.4 Algorithm Complexity Analysis

The algorithm complexity of the proposed solution outlined in algorithm 2 depends on the

algorithm complexity of ASTRAL’s pipeline steps. The pipeline functions over a maximum

of maxi ter iterations. In each iteration, the aggregation weights population of size |P | is

browsed, and the model generation, evaluation and selection operations are applied. The

model generation process (lines 6-11) comprises the selection of the best solution candidate,

which cost depends on |P |. Then the mutation and crossover operations are applied, with

costs proportional to number of the participating clients k that represents the dimension

of the aggregation weights. The model generation process also includes the cost of creating

the global models corresponding to the mutant and crossover vectors, dependant on k ·d ,

where d is the number of parameters of the learning model. The model evaluation phase (line

12) cost depends on c, the cost of applying the fitness function on a candidate solution. The

fitness function computations costs depend on how the FL server calculates global metrics

(See section 7.3). Finally, during the model selection phase (lines 13-16), the population is

updated based on the evaluation scores, introducing a constant cost. When the stopping crite-

ria is met, in the worst case attaining the predefined maximum iteration count maxi ter , the

weights with the highest scores are selected, and used to create the new global FL model (lines

23-24). This operation entails a cost depending on |P |+ (k ·d). Thus, the overall complexity is

formulated as follows:

C = O (maxi ter · |P | · (|P |+k +k ·d + c)+|P |+k ·d) (7.10)

As presented in previous studies [75], population size does not exceed 50 for most engineering

problems. Thus, model generation operations are less intensive than the model evaluation

and |P | is lower than c. The algorithm complexity of the proposed method is expressed
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as Equation 7.11.

O (maxi ter · |P | · (k ·d + c)) (7.11)

Taking this complexity into consideration helps to determine the various factors impacting the

computational cost of ASTRAL. Reducing both of population size and the maximum iteration

count and adopting low-cost techniques to get models’ metrics reduces significantly ASTRAL’s

cost, and allows it to scale efficiently to complex models and data, and high number of clients.

The calibration of these parameters depends on the unique requirements of the given scenario

and the characteristics of the used data and models.

7.5 Summary

In this chapter, we delved into the design of ASTRAL, exploring its architecture and components.

We justified design decisions, demonstrating how ASTRAL tackles challenges in existing FL

bias mitigation works. In the upcoming chapter, we evaluate ASTRAL’s performance through

empirical analysis and experiments, demonstrating its practicality and effectiveness in real-

world scenarios.
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In this chapter, we assess the effectiveness of our bias mitigation proposal with three popular

bias metrics, seven widely used datasets and various experimental setups. Specifically, we

seek to answer the following questions:

• How efficient is ASTRAL in reaching bias constraint compared to other techniques?

(in §8.4)

• How efficient is ASTRAL in maximizing accuracy while reaching bias constraint com-

pared to other techniques? (in §8.5)

• In what ways might the mitigation of a single sensitive attribute result in more bias?

(in §8.6)

• How well does ASTRAL meet different fairness objectives, from the least stringent to the

most stringent? (in §8.7)

• How scalable is ASTRAL with regard to the data size? (in §8.8)

• How scalable is ASTRAL with regard to the number of clients? (in §8.9)

• How scalable is ASTRAL with regard to different FL clients participation ratios? (in §8.10)

• How robust is ASTRAL with regard to data heterogeneity? (in §8.11)

• What is the impact of the data distribution of the proxy dataset on ASTRAL’s perfor-

mance? (in §8.12)

• How stable is ASTRAL’s bias mitigation? (in §8.13)

• What is the cost of ASTRAL in terms of bias, accuracy, and communication efficiency

trade-offs? (in §8.14)

We first describe the datatsets, implementation details and experimental setup, and the bias

mitigation techniques against which we compare. Then, we present the empirical evaluation

of ASTRAL.
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Table 8.1: Characteristics of the real-world datasets used in our evaluation. We include: topic,
the geographical location (Loc.), the total number of raw and cleaned records, the number of
available attributes (#Attr.), the sensitive attributes and the target class.

Dataset Topic Loc. #Records #Attr. Sensitive Other Target
(cleaned) Attributes Attributes Class

ARS Healthcare ASTL 75,128
(75,128)

9 gender acceleration on
axis x,y,z,signal
strength

activity

MobiAct Healthcare GR 16,756,325
(1,852,861)

16 age, gender activity, roll,
pitch, acc_x

activity

CelebA Emotion
recognition

CN 202,599
(202,599)

3074 age, gender Images’ pixels
values

emotion

KDD Finance US 299,285
(272,507)

41 age, gender,
race

education level,
work, category,
native country

income

DC Finance NL 60,420
(60,420)

12 age, gender citizenship,
birth country,
education level

job

Adult Finance US 48,842
(48,842)

15 age, gender,
race

education
level, hours,
worked/week,
native country

income

MEPS Healthcare US 35,428
(33,401)

134 gender,
race

occupation, US
region, income

health

8.1 Datasets and Models

We use seven real-world datasets, chosen specifically for their well-known bias issues. Table 8.1

summarizes their characteristics.

ARS. The ARS ubiquitous dataset is used for activity recognition of healthy older people using a

batteryless wearable sensor dataset [189]. It has been collected in two clinical rooms equipped

with four and three RFID reader antennas respectively. Fourteen volunteers aged between

66 and 86 years were trialed. Each wore a wearable sensor (W2-ISP) at the sternum level,

and undertook a series of scripted activities including (i) lying on a bed, (ii) sitting on a bed,

(iii) sitting on a chair, and (iv) ambulating. The classification task is to predict whether a

person is lying or not for ambulatory monitoring. The only sensitive attribute present in this

dataset is gender. To accomplish the learning task of ARS, we use a linear support vector

machine model. In the case of FCFL which does not support SVM models, we employ logistic

regression.

MobiAct. The MobiAct dataset has been designed for smartphone-based human activity

recognition [210]. It contains data collected from accelerometers, gyroscopes, and orientation

sensors of smartphones. It captures various daily activities performed by 66 participants with

more than 3200 trials. Our primary objective is to identify individuals who are standing and

those who are not. The sensitive attributes are gender and age. To accomplish the learning
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task, we employ a 3-layer Multilayer Perceptron (MLP) model [152].

CelebA. CelebA is a public dataset containing over 200,000 facial images of 10,177 different

celebrities [123]. Each image is annotated with 40 attribute labels including gender and age

as sensitive attributes. As learning task we consider emotion recognition, more precisely

smile detection. We use a deep learning model composed of the ResNet18 convolutional

neural network [83] and a fully connected neural network. ResNet18 is used to process the

dataset images’ pixels while the other network is used to process ResNet18’s outcomes and the

sensitive attributes of the images. The whole model outputs the classification result.

KDD. The KDD dataset contains weighted census data extracted from the 1994 and 1995

population surveys conducted in the US [54]. It includes 299,285 records with 41 attributes

including age, education level, race, gender, etc. The prediction task is to determine whether

an individual’s income exceeds $50K or not. To perform this task we use a logistic regression

model. Sensitive attributes are age, gender (men, women), and race. We binarized the race

attribute into two groups, considering as privileged the Whites, Asians and Pacific Islanders,

and unprivileged all others. Similarly, we binarized the age attribute by considering privileged

all people aged between 30 and 60, and unprivileged all the others.

DC. The Dutch Census dataset collects census information in the Netherlands in 2001 [109].

It includes 60,420 records with 12 attributes. The prediction task is to classify a person’s

occupation as having high or low prestige, the model used for this task is logistic regression.

Sensitive attributes are age and gender. We binarized the age by considering privileged those

whose age is below 50, and unprivileged the others.

Adult. The Adult dataset contains 48,842 records and a total of 15 attributes [105], extracted

from the 1994 US Census database. It includes individuals’ information such as age, education

level, race, gender, etc. The prediction task is the same as KDD, considering the same sensitive

attributes. The used model here is logistic regression as well. We applied the same binarization

process to the race and age attributes of Adult as in KDD.

MEPS. The MEPS dataset originates from the Medical Expenditure Panel Survey in the US [33].

It consists of 35,428 records with 134 attributes. The task is to predict whether an individual

has used medical facilities more than 10 times. To do so, we apply a logistic regression model.

Sensitive attributes are gender and race. We binarized the race attribute, considering Non-

Hispanic Whites as privileged, and the others as unprivileged.

For all the datasets, the binarization of non-binary sensitive attributes is done through a

preprocessing step. The binarization is necessary since bias metrics are defined for binary

sensitive attributes only. It involves clustering the sensitive attribute values into two groups

based on the positive outcome ratio computed for each group using the ground truth. The

group with higher ratios is classified as privileged, while the other group is unprivileged.

The value of the sensitive attribute is then replaced by the obtained binary representation.
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Additionally, in each group of experiments performed with the same dataset, we initialize

the training with the same initial model. It provides a fair ground for experimentation and

comparison with baselines.

8.2 Implementation and Experimental Setup

ASTRAL is implemented in Python (v3.9) and PyTorch (v1.10). We use the SciPy implementation

of Differential Evolution [47]. By default, we set in our experimentations the initial population

size to 15, we set 8 parallel workers, and keep the other method parameters equal their default

values. We run our experiments on a testbed platform with the following characteristics: 2×
Intel Xeon E5-2650 v4 (14 cores), 128 GB of RAM and 2× NVIDIA GTX 1080 Ti. We simulate a

network with a download speed of 20 Mbps and an upload speed of 5 Mbps. Datasets are split

into three distinct subsets, namely training set (80%), test set (10%), and proxy dataset (10%)

to compute global metrics (section 7.3). To emulate FL clients and run the FL process, the

training set is distributed according to the FL settings of each experiment. In our experiments,

data is distributed among FL clients in a non-IID setting using Dirichlet function with regard

to a particular sensitive attribute for each dataset [88]. This means that each FL client receives

a different distribution of data based on the considered sensitive attribute. For each value v j

of the sensitive attribute S j , we sample pv j ∼ Di r (α) with α parameter, and allocate a portion

pv j ,k of the data points with S j = v j to client k. The heterogeneity of the distributions across

clients is controlled via α parameter. When α→∞, the distributions are IID, whereas smaller

values of α lead to more heterogeneous distributions. In our experiments, we generate clients

data distributions with α = 0.02. The FL number of clients varies depending on the dataset,

with respectively 4 clients for MEPS and CelebA, 5 for KDD, 10 clients for both ARS, DC and

Adult. For MobiAct, we use a subset of the whole dataset (12 clients) that exhibits bias since

the dataset as a whole, with a total of 66 clients, does not demonstrate bias. Logistic regression

models are applied to Adult, MEPS, KDD and DC datasets. For Adult and MEPS datasets, we

use a batch size of 128 and a learning rate of 0.01, while for KDD, we use a model with the

same batch size and a learning rate of 0.001. In the case of DC, we use a batch size of 256 and

a learning rate of 0.0005. For ARS dataset, we use a batch size of 1024 and a learning rate of

0.001 with SVM model. For MobiAct, we use a Multilayer perceptron with a batch size of 256

and a learning rate of 0.01. For CelebA, we use a ResNet18 based model with a batch size of

1024 and a dynamic learning rate initialized to 0.01. In several bias mitigation works [53, 36],

the typical bias threshold is considered to be 3%. Thus, we consider this threshold per default

in our study. Further details of the implementation and experimental setup can be found

in ASTRAL’s repository, where we provide the software prototype, the used datasets, and the

configuration settings: https://github.com/FL-Bias/ASTRAL

8.3 Baselines

We compare ASTRAL against the following FL methods.
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FCFL [36]. This state-of-the-art FL bias mitigation method formulates a per-client bias

mitigation problem, where the objective is to guarantee a bias constraint on each client

local distribution while maintaining similar model accuracy across all clients. This is done

through gradient-based optimization. We use the original FCFL implementation [37], based

on PyTorch 1.6 and Python 3.7.

FairFed*. As far as we know, the software prototype of FairFed [61] is not publicly available. We

implement the algorithm presented in FairFed, and adapt it to reweigh client’s updates based

on their bias and the predefined bias threshold. More precisely, given a sensitive attribute S j

and a bias metric β, in order to mitigate bias in FairFed*, a factor is applied to the classical FL

weight wk from Equation 6.2, depending on the amount of bias βS(θk ) of client k. Formally,

we compute the weights w ′
k as w ′

k = wk .g (βS(θk )), where:

g (βS(θk )) = e−b(− log(1−|βS j (θk )|)a

(8.1)

where a and b are two constant parameters. We tune them in each experiment to obtain the

best model with regard to accuracy and bias objectives. The function g is inspired by the

Prelec reweighing function [174]. Thus, FairFed* favors clients with lower model bias.

FairFL*. FairFL proposes a client selection policy that relies on a reinforcement learning algo-

rithm and selects participants depending on their contribution to the final model’s bias [240].

Since the original software prototype of FairFL is not publicly available, we implemented a

simple heuristic, referred to as FairFL*, that selects at each round clients whose local models’

bias is below the given threshold ε. More formally, wk in Equation 6.2 is set to 0 for every θk

for which there exists a sensitive attribute S j ∈ {S1 . . .Ssa} such that βS j (θk ) > ε.

FedAvg [135]. We also consider the case of FedAvg, where no bias mitigation is applied, and

where default FL model aggregation and client selection are used (see Chapter 6 §6.1). This

allows us to compare the FL model accuracy obtained in ASTRAL with the case where no bias

mitigation is applied.

We note that among the mentioned techniques, only FairFL* supports the existence of multiple

sensitive attributes in data. Instead, FCFL and FairFed* can only handle single sensitive

attribute bias mitigation. Additionally, it is not a trivial task to adapt the two latter methods to

handle multiple sensitive attributes bias mitigation.

8.4 Comparison of ASTRAL against Existing FL Bias Mitigation

Mechanisms

We start by evaluating how ASTRAL addresses bias when considering several sensitive attributes

simultaneously. We consider multiple sensitive attributes depending on the dataset columns

as follows: for KDD and Adult, we consider gender, race, and age; for DC, MobiAct and CelebA,
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Figure 8.1: Bias mitigation with regard to multiple sensitive attributes using SPD, EOD and DI
metrics – KDD, DC, MEPS, Adult, ARS, CelebeA and MobiAct datasets – With respectively 5, 10,
4, 10, 10, 4, and 12 FL clients and a bias threshold of 3%.

sensitive attributes are gender and age; for MEPS sensitive attributes are gender and race. The

ARS dataset contains only one sensitive attribute (gender), but we still include the results of

applying ASTRAL on it. To assess its effectiveness, we compare ASTRAL against FedAvg and

FairFL*. We only use FairFL* because it is the only method that can handle multiple sensitive

attributes, as mentioned in section 8.3. In all experiments, we fixed a bias constraint of 3%,

and our evaluation includes SPD, EOD, and DI metrics. We report the model’s bias results

in Figure 8.1. We observe that ASTRAL matches the bias constraint for all the multiple sensitive

attributes scenarios with the different datasets and bias metrics. FedAvg and FairFL* do not

satisfy the bias constraint. We explain this as follows. First, FedAvg does not mitigate bias by

design, so it yields biased models. Then, for FairFL*, the method takes a highly pessimistic

approach. In most of the experiments, it does not select any client model for aggregation

from the first round because their local models are already biased; so it just outputs the initial

model. Exceptional cases are when FairFL* is applied on DC considering DI metric, on MobiAct

considering SPD and EOD, and on CelebA considering the different bias metrics. In the latter

cases, FairFL* is able to select clients that meet the bias constraint, resulting in an unbiased
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model. However, since FairFL* allows less clients to join the training, it achieves low accuracies

compared to ASTRAL. For example, for DC when considering DI, FairFL* achieves 81% while

ASTRAL achieves 83%. More bias and accuracy trade-offs results are shown in section 8.5.
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Figure 8.2: Trade-off between bias and model accuracy

8.5 Trade-off Between Bias and Model Accuracy

In the following, we evaluate the effectiveness of ASTRAL in terms of bias and accuracy trade-

offs. To do so, we report measurements of bias with regard to multiple sensitive attributes along

with measurements of accuracy. We consider the baseline system without bias mitigation

(i.e., FedAvg), FairFL*, and ASTRAL. The measurements are collected for each method and

dataset at 10 representative rounds. The representative rounds are the percentiles 10th , 20th

... until the 100th of the FL rounds’ ordered values. In addition to these rounds, we include

the performance of each method at the round where it achieves its highest accuracy while

maintaining the bias constraint. Due to space limitations, we present the results considering
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different bias metrics for ARS (Figure 8.2(a)), MobiAct (Figure 8.2(b) and Figure 8.2(c)), CelebA

(Figure 8.2(d) and Figure 8.2(e)), and Adult (Figure 8.2(f), Figure 8.2(g), and Figure 8.2(h)). The

bias threshold is fixed to 3%.

The reported measurements indicate that ASTRAL consistently maintains the bias objective for

the different sensitive attributes of the considered datasets across the considered rounds. Si-

multaneously, ASTRAL achieves higher model accuracies compared to the other bias mitigation

technique FairFL* and this for all the datasets, we refer this to FairFL*’s clients selection ap-

proach that results in low accuracies. ASTRAL is even able to reach higher accuracy compared

to the baseline which does not mitigate bias by design in the case of ARS and MobiAct. This

result is explained by the effectiveness of ASTRAL’s algorithm in selecting the best aggregation

weights that maximize the system accuracy, allowing to reach the best trade-offs of bias and

accuracy in our experiments.

8.6 Mitigating Single Sensitive Attribute Bias May Induce a Higher

Bias With Regard to the Other Sensitive Attributes

To measure how bias mitigation on a single sensitive attribute affects the model bias on other

sensitive attributes within the same dataset, we compare ASTRAL with the two other state of

the art methods, that handle a single sensitive attribute, namely FCFL and FairFed*. We fix a

bias constraint of 3%, and we consider one single sensitive attribute for each dataset: age for

KDD and Adult, race for MEPS and gender for DC, ARS and MobiAct. Table 8.2(a), Table 8.2(b)

and Table 8.2(c) show the results respectively for a set of experiments done on the SPD, EOD

and DI bias metrics. The second column from left for each table reports bias measurements

on the sensitive attribute considered during bias mitigation, while the two last columns report

bias measurements on the remaining sensitive attributes.

We observe that focusing solely on mitigating bias with respect to one sensitive attribute may

have unwanted consequences with regard to the others. For instance, the EOD of FairFed*

for KDD dataset on the age sensitive attribute, shown in Table 8.2(c), is equal to 3%, showing

that the model bias on the age sensitive attribute is mitigated. However we see that for the

same scenario, the EOD on the race sensitive attribute increased when comparing FedAvg and

FairFed*, from 12% to 21%. So, mitigating the bias towards one sensitive attribute does not

guarantee mitigating the bias for the other sensitive attributes, and worse, it may degrades

them. The same phenomenon is observed for SPD and DI with both FCFL and FairFed* for

Adult, MEPS, KDD and MobiAct as shown in Table 8.2(a), Table 8.2(b), and Table 8.2(c). On the

contrary, ASTRAL is able to mitigate bias with regard to all sensitive attributes simultaneously.
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Table 8.2: Exacerbation of bias when mitigating considering a single sensitive attribute, with
SPD, EOD, and DI – the first bias column from left represents the bias with regard to the
sensitive attribute considered by the mitigation mechanism

(a) Mitigating bias with regard to
SPD

Adult
System SPDag e (%) SPDr ace (%) SPDg ender (%)
FedAvg 13 4 13
FCFL 1 9 19
ASTRAL 3 1 3
MEPS
System SPDr ace (%) SPDg ender (%)
FedAvg 5 8
FCFL 2 10
ASTRAL 0 3
MobiAct
System SPDg ender (%) SPDag e (%)
FedAvg 13 14
FairFed* 3 21
ASTRAL 3 3

(b) Mitigating bias with regard to
DI

KDD
System DIag e (%) DIr ace (%) DIg ender (%)
FedAvg 20 5 14
FairFed* 0 22 8
ASTRAL 3 1 1
Adult
System DIag e (%) DIr ace (%) DIg ender (%)
FedAvg 10 6 4
FairFed* 0 13 13
ASTRAL 3 3 2

(c) Mitigating bias with regard to
EOD

KDD
System EODag e (%) EODg ender (%) EODr ace (%)
FedAvg 29 9 12
FairFed* 3 2 21
ASTRAL 1 3 0
DC
System EODg ender (%) EODag e (%)
FedAvg 8 4
FairFed* 3 6
ASTRAL 3 3
Adult
System EODag e (%) EODg ender (%) EODr ace (%)
FedAvg 8 8 17
FairFed* 0 10 20
ASTRAL 1 3 3
MEPS
System EODr ace (%) EODg ender (%)
FedAvg 6 14
FairFed* 2 16
ASTRAL 2 2

8.7 Evaluation of Bias Mitigation under Different Bias Constraints

To determine if ASTRAL is able to enforce different stringent bias constraints on the FL model,

we run our solution under more or less strict bias constraints, using KDD dataset with age,

gender and race as sensitive attributes, and considering the SPD metric. The results are

presented in Figure 8.3. It shows the global model’s bias with regard to the three sensitive

attributes, measured in different setups with different bias limits imposed. We observe that

ASTRAL is able to successfully provide FL a model that satisfies the objective for all the sensitive

attributes, even when hardening the bias constraint.

8.8 FL System Scalability with Regard to the Data Size

We analyze how ASTRAL performs when varying the size of the training data. For this set of

scalability experiments, we consider the SPD as the bias metric. We also consider the KDD

dataset, split in several partitions of data, each containing a different percentage of data

records of the whole dataset. We include the data from each partition in the ones with a larger
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Figure 8.3: Effectiveness of bias mitigation under different bias thresholds

number of records. Namely, the 10% partition is included in the 20% partition, and so on,

until reaching the 100% partition, which contains the whole KDD train set. Figure 8.4 reports

bias measurements without bias mitigation (i.e., FedAvg) and with ASTRAL, and shows how

ASTRAL performs as a function of the partition size for KDD. We observe that ASTRAL’s trend is

extremely stable for this dataset. ASTRAL maintains the bias metric to 3%, ensuring the bias

objective as data size increases, and this for the three sensitive attributes age, gender and

race, as shown by Figure 8.4(a), Figure 8.4(b), and Figure 8.4(c). In summary, ASTRAL’s bias

mitigation is not affected by the data scale.
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Figure 8.4: ASTRAL’s scalability with regard to the data size scale

8.9 FL System Scalability with Regard to the Number of Clients

We analyze how ASTRAL performs with the number of FL client. We consider the KDD dataset,

where we configure FL setups ranging from 10 clients to 100 clients. We include the data from

a specific client setup in the data of the other FL setup with a more significant number of

clients. Namely, the 10-client setup data is included in the 20-client setup data, and so on,
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until reaching the 100-client setup, which contains the whole KDD train set. For each client

setup, we used the same data distribution, experimental setup, and hyper-parameters for

ASTRAL and we set the bias threshold to be 3%. We report how ASTRAL performs with the

number of clients compared to FedAvg baseline in Figure 8.5, showing SPD on age, gender

and race sensitive attributes. We observe that for every number of clients, ASTRAL succeeds at

making the global model respect the bias threshold.
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Figure 8.5: ASTRAL’s scalability with regard to the number of clients scale

8.10 FL System Scalability with Regard to Client Selection Ratios

In addition to evaluating ASTRAL’s performance when varying the number of FL clients, we

assess ASTRAL’s robustness under different FL client participation ratios. We gradually increase

the ratio of selected clients participating in a FL round, from 30% to 100% out of 10 FL clients,

using ARS dataset. The corresponding results for model accuracy and model bias measured

through SPD are presented in Figure 8.6. The results show that ASTRAL consistently ensures

that the global model adheres to the bias threshold while maximizing model accuracy with

different client selection ratios. However, we observe that when 3 FL clients are selected, the

model accuracy decreases compared to FedAvg. This can be explained by the fact that having

only 3 FL participating clients reduces the aggregation weights search space for ASTRAL and,

thus, impacts accuracy.

8.11 Robustness of Bias Mitigation with Respect to Clients’ Data

Heterogeneity

To evaluate a FL solution, a comprehensive benchmark must investigate its behavior in

practical FL settings, in the presence of data heterogeneity. In this section, we evaluate how

ASTRAL performs under different client’s data heterogeneity degrees. To achieve this, we use

KDD dataset. We generate several FL setups using Dirichlet process. We vary the α parameter

of the Dirichlet process to control how identical the clients are in each setup. Smaller α values
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Figure 8.6: ASTRAL’s scalability with regard to client selection ratios

result in a more heterogeneous data distribution among clients, while larger values lead to

more similar and uniform clients as shown in Figure 8.7. We evaluate ASTRAL under different

levels of heterogeneity, with α ∈ [0.1,0.2,0.5,1] and α→∞. We consider for bias mitigation

the three sensitive attributes age, gender, and race, and the SPD metric.
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Figure 8.7: Different non-IID client data distributions – More heterogeneous distribution from
left to right – KDD dataset with 5 FL clients

Figure 8.8 shows the SPD values of both FedAvg and ASTRAL for the considered Dirichlet

parameters, for age, gender, and race. ASTRAL consistently satisfies the 3% bias constraint at

different levels of heterogeneity. These findings demonstrate that ASTRAL remains unaffected

by varying data heterogeneity levels and effectively addresses bias concerns.

8.12 Impact of Data Distribution of Proxy Dataset on Bias Mitiga-

tion

In order to investigate the impact of the proxy dataset’s data distribution on the proposed

method, we evaluate the performance of ASTRAL with three distinct proxy datasets. These

include one dataset that is representative of the training distribution, and two others deviating

from the training distribution. We quantify the dissimilarity between the proxy datasets and

the training data using the 1-Wasserstein distance [209], a proven metric for comparing data
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Figure 8.8: Effectiveness of bias mitigation under different levels of clients’ data heterogeneity

distributions [207, 62, 84]. It explores dissimilarity by optimally mapping one distribution to

another. The higher the distance value, the further apart the two distributions are. The range

of the distance is influenced by the inherent characteristics of the data.

We show the evaluation results for ARS dataset in Figure 8.9, where we present the Wasserstein

distances between the considered proxy datasets distributions and the training data distribu-

tion, the model bias (SPD) for each considered case, and the model accuracy. We observe that

ASTRAL is able to successfully mitigate bias while achieving high accuracy for the different

considered cases. Furthermore, we observe that when the proxy dataset’s distribution is repre-

sentative of the training data, ASTRAL achieves the highest accuracy as it can leverage fully

the knowledge gained from the local models trained on the training distribution to construct

the global model. As the proxy dataset diverges more from the training data distribution,

the accuracy of the model obtained by ASTRAL declines. This is because it becomes more

challenging to leverage the knowledge gained from one distribution (the training distribution)

to produce a high-quality overall model with regard to a different distribution. This problem,

that we consider orthogonal to our work, is known in ML literature as data shift [149]. There

are several strategies and techniques that can be employed to mitigate its impact such as data

augmentation, data monitoring, regularization techniques, etc. [149].

8.13 Stability of Bias Mitigation

In this section, we analyze the stability of ASTRAL at ensuring the bias threshold constraint

through FL rounds. For that, we perform bias mitigation using ASTRAL applied on the SPD

metric on all datasets. To be able to compare ASTRAL’s stability to all the state of art methods

at once, including FairFed* and FCFL, we report results from experiments considering one

sensitive attribute for each dataset: gender for DC, ARS, CelebA and MobiAct, age for KDD and

Adult and race for MEPS. The results for ARS, MobiAct, CelebA, KDD, DC, Adult and MEPS

are reported respectively in Figure 8.10(a), Figure 8.10(b), Figure 8.10(c), Figure 8.10(d), Fig-

ure 8.10(e), Figure 8.10(g), and Figure 8.10(f). We can observe that for all the datasets, ASTRAL
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Figure 8.9: Impact of different data distributions of proxy datasets on bias mitigation

maintains the bias under the threshold constraint for all the FL rounds, meaning that ASTRAL’s

pipeline is able to find feasible solutions that ensures the bias constraint starting from the first

round. FairFL* fails as its restrictive policy makes it ignore all clients, except in MobiAct, CelebA

and Adult where it selects some clients, but resulting in a global model with less accuracy. We

explained this observation in section 8.4. The FairFed* policy reduces bias for the different

datasets but only ensures the threshold for ARS, MobiAct and temporary for DC and CelebA.

Moreover finding the proper aggregation weights that reduce bias in this method is a slow

process compared to ASTRAL. As for FCFL, it is not compatible with the use of ResNet applied

to CelebA dataset and MLP used with MobiAct. Consequently, the results are unavailable for

this method on these particular datasets. It succeeds in guaranteeing the bias constraint only

for MEPS and Adult. We observe on MEPS that in the first dozens rounds, FCFL struggles to

keep the bias constraint in check and only stabilizes after 38 rounds. We observe a similar

behavior on the Adult dataset for FCFL, only reaching stability in bias constraint respect after

300 rounds. In general, FCFL needs more FL rounds to stabilize. This is because FCFL relies

on a gradient-based algorithm that modifies the global model after each local iteration at

the clients’ level, trying to ensure the optimization objective in the long run. For KDD and

DC, FCFL is not able to reach the predefined threshold. For ARS, FCFL is not able to stabilize

while maintaining the bias objective. As the authors mentioned in their work [36], FCFL’s

objective is to ensure the bias threshold for each client at its local level. This implies that, when

data among clients is heterogeneous, and the global distribution is not represented by the

individual clients distributions, than even if FCFL mitigates bias locally it does not mitigate

it with regard to the global distribution. Meanwhile, ASTRAL manages to directly reach and

stabilizes bias constraint within the first FL round on all datasets.

8.14 Cost Analysis

In order to assess how practical a given bias mitigation mechanism is, we evaluate its cost

in terms of the number of FL rounds necessary to meet a bias constraint and maximize

accuracy, as well as in terms of the amount of data exchanged over the network by the FL bias
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Figure 8.10: Stability of bias mitigation

mitigation protocol and its total execution time. We evaluate the different bias mitigation

mechanisms (FairFL*, FairFed*, FCFL, ASTRAL) constraining SPD below 3%, on all the datasets

KDD, DC, Adult, MEPS, ARS, CelebA, and MobiAct. In order to be able to consider FCFL in

this comparative evaluation, and since the former only handles a single sensitive attribute,

we evaluate the cost of all systems with bias mitigation for a single sensitive attribute. As

mentioned previously, we have not been able to conduct experiments with FCFL for MobiAct

and CelebA due to its lack of support to ResNet and MLP models.

We show the results in Table 8.3. The column 100th of Table 8.3 presents the measurements

collected when the bias mitigation methods reach their highest accuracy while maintaining

bias under the predefined threshold. The column 95th (respectively 90th) presents the mea-
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Table 8.3: Cost of bias mitigation. We show results for the max (100th), the 95th and the 90th

percentile of accuracy

100th 95th 90th

Dataset System FL
Round

Exchanged data
(KB)

Accuracy FL
Round

Exchanged data
(KB)

Accuracy FL
Round

Exchanged data
(KB)

Accuracy

ARS FairFL* 7 7 7 7 7 7 7 7 7
ARS FairFed* 48 38 93 16 13 90 11 9 88
ARS FCFL 519 649 83 7 7 7 7 7 7
ARS ASTRAL 26 20 95 1 0.8 92 1 0.8 92
MEPS FairFL* 7 7 7 7 7 7 7 7 7
MEPS FairFed* 7 7 7 7 7 7 7 7 7
MEPS FCFL 12,636 80,357 86 79 502 81 50 318 78
MEPS ASTRAL 1 4 86 1 4 86 1 4 86
Adult FairFL* 31 245 79 5 39 78 2 16 76
Adult FairFed* 7 7 7 7 7 7 7 7 7
Adult FCFL 7,691 91,631 82 111 3,534 78 74 882 74
Adult ASTRAL 13 103 80 1 8 79 1 8 79
DC FairFL* 7 7 7 7 7 7 7 7 7
DC FairFed* 27 211 71 7 7 7 25 195 70
DC FCFL 7 7 7 7 7 7 7 7 7
DC ASTRAL 116 906 78 2 16 76 1 8 73
KDD FairFL* 7 7 7 7 7 7 7 7 7
KDD FairFed* 7 7 7 7 7 7 7 7 7
KDD FCFL 7 7 7 7 7 7 7 7 7
KDD ASTRAL 6 93 75 1 15 74 1 15 74
MobiActFairFL* 2 590 76 7 7 7 7 7 7
MobiActFairFed* 7 7 7 7 7 7 7 7 7
MobiActFCFL 7 7 7 7 7 7 7 7 7
MobiActASTRAL 5 1,475 94 1 295 89 1 295 89
CelebA FairFL* 8 3 GB 54 7 7 7 7 7 7
CelebA FairFed* 10 3 GB 76 7 7 7 7 7 7
CelebA FCFL 7 7 7 7 7 7 7 7 7
CelebA ASTRAL 33 11 GB 89 10 3 GB 85 7 2 GB 80

surements collected when a method achieves a required accuracy defined as 95% (respectively

90%) of the maximum accuracy achieved for the dataset. For example, the maximum accuracy

achieved for the dataset DC is 78%, by ASTRAL. the column 95th presents the measurements

of all methods applied on DC when they achieve 95% of the maximum accuracy, i.e., 74%. The

presence of a cross mark indicates that a method is not able to mitigate bias while achieving

the required accuracy.

Overall, FairFL* is able to meet the bias constraint only with Adult, FairFed* meets it for ARS

and for DC, FCFL meets it with Adult and MEPS, and ARS, and ASTRAL achieves the bias

objective with all the datasets. For KDD, ASTRAL reaches the bias objective while scoring its

highest accuracy at FL round 6, and scores more than 95% of its maximum accuracy starting

at FL round 1. The amount of exchanged data is between 15 KB and 93 KB. In contrast,

FairFL* and FCFL are not able to reach the bias objective for that dataset. For the DC dataset,

ASTRAL takes 116 rounds to reach its highest accuracy (78%), and only 2 rounds to reach

the accuracy (76%). In general, it ensures higher accuracy compared to FairFed*. For Adult,

ASTRAL reaches its maximum accuracy while fulfilling the bias objective at FL round 13, with

103 KB of exchanged data. This is far better than FairFL* and FCFL which score their maximum

accuracy only after respectively 31 and 7,691 FL rounds, and after respectively 245 KB and

91,631 KB of exchanged data. If FCFL is able to achieve the bias objective at earlier rounds, it

is at the expense of a lower accuracy (74%). The trend is even stronger with MEPS for which

ASTRAL scores its maximum accuracy at FL round 1, while FCFL scores the same maximum

accuracy after its 12,636th FL round. ASTRAL needs 4 KB of exchanged data, while FCFL uses
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80,357 KB. As explained in section 8.13, FCFL takes typically more FL rounds to stabilize

because it requires from the clients to communicate with the server after each local iteration

at the client’s level, via a gradient-based algorithm. In other terms, one FL round in FCFL

comprises necessary one local epoch of training. For the ARS dataset, we observe that FairFL*

does not achieve the bias constraint due to the selection process which fails from the first

round. FairFed* reaches the bias constraint starting from round 11, and achieves the best

accuracy while respecting the bias constraint at round 48. FCFL reaches the bias constraint

only after more than hundred rounds, and achieves the best accuracy while respecting the

bias constraint only at round 519. ASTRAL is able to ensure the bias objective directly from the

first round with an accuracy of 92%. Moreover, it achieves the best accuracy of 95% compared

to the other methods while respecting the bias threshold at round 26. For both MobiAct and

CelebA, ASTRAL maintains the bias objective while achieving the highest accuracies compared

to FairFL* and FairFed*. Moreover, ASTRAL outperforms FairFL* and FairFed* in terms of

accuracy starting from early rounds, 1st round for MobiAct and 7th for CelebA. In summary,

these experiments show that ASTRAL is a practical FL bias mitigation solution, and is more

efficient than state-of-the-art solutions in terms of maximizing accuracy, communication

rounds, and amount of exchanged data.
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Figure 8.11: Trade-off between execution time, accuracy and bias

In the following we are interested in analyzing the trade-offs between accuracy, bias, and

execution time for the considered bias mitigation methods. The trade-offs measurements are

presented for all the datasets in Figure 8.11. Each sub-figure presents the accuracy and bias

of the different bias mitigation methods for a given dataset, at the round where the methods

attain 90% of the highest observed accuracy (see column 90th of Table 8.3). Each sub-figure

also presents, through labels, the total execution time to achieve the required objective of a
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method including the clients’ training time, the models’ transmission time, and the necessary

time for models’ aggregation at the server level.

We can observe from Figure 8.11 that ASTRAL is the only method that consistently occupies

the upper-left square of the graphs, limited by the required accuracy threshold at the bottom

and the predefined bias threshold on the right. This shows that ASTRAL consistently attains

the highest accuracies while ensuring bias mitigation.

In terms of execution time, ASTRAL’s performance ranges from just a few seconds to around

12 minutes, except for the case of CelebA, where ASTRAL’s execution time stands out. In this

particular scenario, ASTRAL’s overall execution time is relatively higher compared to that of

the other datasets. This difference can be attributed to the overhead involved in training

a complex model like ResNet on the large image dataset of CelebA. Moreover, specifically

for the CelebA case, we noted that ASTRAL’s algorithm requires additional time to identify

the optimal aggregation weight. This phenomenon is attributed to the characteristics of the

model and data employed in this particular use case. Nevertheless, as mentioned in our

earlier discussions, ASTRAL’s execution time can be optimized through the fine-tuning of its

hyperparameters. Furthermore, making use of parallelization, such as employing multi-core

machines at the server level, greatly benefits the execution time of the Differential Evolution

algorithm [42].

8.15 Summary

We presented ASTRAL, a novel FL aggregation method designed to mitigate bias for FL systems.

ASTRAL finds the best combination of FL clients’ local model parameters in order to obtain

a global FL model ensuring that bias remains below a given threshold, while keeping model

accuracy as high as possible. ASTRAL allows for a per-use-case bias threshold configuration, a

practical approach that can be easily deployed in diverse FL applications. ASTRAL handles the

presence of multiple sensitive attributes in data and mitigates bias for all of them simultane-

ously. It also supports by design bias mitigation for any bias metric, adapting bias mitigation

to diverse practical use cases. Through our extensive empirical study of ASTRAL with seven

real-world datasets, we assessed its performance in terms of bias and accuracy objectives, scal-

ability, and robustness against data heterogeneity. The results show that ASTRAL’s aggregation

approach that provides the best possible aggregation weights with regard to our objectives

leads to effective bias mitigation and model accuracy. We intend to further extend this work

as follows. We plan to extend multi-objective approach of ASTRAL to consider additional

elements on top of bias and accuracy, including privacy, robustness, and efficiency [100].

As the use of FL gains more traction across several applications, it becomes apparent that

mitigating bias and optimizing accuracy may not be sufficient. Privacy must also be taken into

account to protect sensitive information. Similarly, robustness is essential for ensuring that

FL models are not susceptible to attacks [140]. Incorporating these additional aspects into

the multi-objective approach results in effective and reliable models that can be trusted to be
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leveraged for FL systems.
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9 Conclusion and Research Perspectives

In the following, we present the conclusion and the research perspectives of this thesis.

9.1 Conclusion

This thesis has addressed two major issues encountered in DML systems, yielding two signifi-

cant contributions. Our first contribution involves a characterization study of DML workloads

aiming at the optimization of DML models quality, execution time and cost. Our second

contribution introduces ASTRAL, a bias mitigation mechanism designed for FL.

Specifically, in the initial part of this thesis, we delved into configuration challenges within

DML systems with the objective of improving the understanding of DML execution and

enhancing DML performance. We have conducted an extensive workload characterization

using the Spark platform and popular ML methods and datasets on a distributed cluster, while

varying configuration parameters. We have analyzed the impact of different configuration

parameters and tuning strategies on the performance of DML workloads in terms of execution

time, model quality, and cost. We have provided observations on DML workloads behavior

and recommendations to both system administrators and data scientists on optimizing the

accuracy, execution time, and cost of their DML workloads. The experiments traces are

publicly available for the benefit of researchers and practitioners. This work has been accepted

for publication at Middleware 2023.

In the second part of this thesis, we have focused on fairness issues within a specific DML

framework: Federated Learning. We have introduced ASTRAL, a novel bias mitigation frame-

work that aims at achieving fairness in FL models outcomes while maintaining models’ accu-

racy as high as possible. ASTRAL employs black-box optimization techniques to accomplish its

objectives. It allows for a per-use-case bias threshold configuration and handles the presence

of multiple sensitive attributes by mitigating bias for all of them simultaneously. ASTRAL also

supports by design bias mitigation for multiple bias metric, adapting bias mitigation to diverse

practical use cases. We have provided a publicly available software prototype of ASTRAL for the

111



Chapter 9 Conclusion and Research Perspectives

benefit of researchers and practitioners. This work has been accepted in the 2023’ proceedings

of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT).

9.2 Research Perspectives

We outline in the following research directions stemming from our work.

9.2.1 Characterizing DML on Different Platforms and Designing Tools for DML
Multi-Objective Performance Optimization

Our current study mainly investigates DML workloads using the Spark platform. An important

improvement would be to expand our research to other platforms with different processing

and programming models, e.g., TensorFlow [1]. This broader view will help us compare DML

platforms, and assist DML practitioners in choosing the right platform for their workload.

A more long-term research direction for our first contribution involves the development of

novel and efficient tools capable of fine-tuning DML. In order to ensure the optimal system

configurations, such tools should consider the different existing parameters that impact

the different aspects of performance such as model quality, execution time, and resources

consumption, while taking into account the trade-offs and interactions between parameters.

Novel DML tuning tools should also enable users to simultaneously achieve multiple objectives

related to the metrics of interest. To address these challenges, first steps involve building

mathematical models or simulations that capture the relationships between configuration

parameters and multiple performance metrics, and investigating optimization techniques

that efficiently explore interactions between configuration parameters.

9.2.2 Improving the Efficiency and Generalization of ASTRAL

Our current implementation of ASTRAL relies on the black box-optimization algorithm of

differential evolution. This algorithm requires a relatively large number of evaluations of

the objective function, which can increase the computational cost, especially for complex

or computationally expensive objective functions. The efficiency of ASTRAL could benefit

from a comparison among existing black-box optimization algorithms in terms of their so-

lutions quality and their computational cost. In addition, while we have evaluated ASTRAL’s

performance using group fairness metrics, we should also assess its performance with other

fairness notions metrics, namely performance fairness and collaborative fairness. Moreover,

even though ASTRAL does not need any data from FL clients, it doesn’t protect the clients

against malicious attacks that could expose their sensitive information from the model param-

eters. Thus, we plan to extend the multi-objective approach of ASTRAL to consider additional

objectives along with bias and accuracy, including ensuring privacy and robustness against

malicious attacks.
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9.2.3 Identifying and Addressing Sources of Bias in Learning Systems

Looking ahead, broader and long-term research prospects include identifying more sources

of bias in FL in particular and in ML in general, and creating strategies to reduce bias in the

different steps of the learning process. ASTRAL currently helps to mitigate bias in FL resulting

from biased clients’ data and uneven clients’ participation, but there are other parts of the

learning process that may induce bias to the overall system.

Researchers need to investigate how the datasets used to tune the system or to moderate the

training process are gathered and annotated, and whether they introduce bias unintentionally.

Indeed, if these datasets are not sampled to be representative of the target distribution then

the model performance metrics collected on these datasets will yield an inaccurate and biased

idea about the real model performance. Developing ways to create representative datasets is

challenging especially under privacy constraints but remains necessary.

Furthermore, the selection of fairness metrics is a decision that requires careful consideration

to avoid introducing bias into the system. Indeed, optimizing one metric may negatively

impact another. Thus, it is essential to establish and analyze relations and trade-offs between

various fairness metrics to clarify the implications of adopting one fairness notion rather than

another. Research efforts should additionally focus on the feasibility of optimizing multiple

fairness notions simultaneously. Such analysis will lead to the formulation of clear guidelines

for choosing the most suitable fairness metrics, taking into account the specific characteristics

of the learning use case, data, models, and the perspective of the stakeholders.

Similarly, the choice of the sensitive attributes is important. Bias is often linked to sensitive

attributes like race, gender, or age. However, we should explore all potential sensitive attributes

and handle these attributes carefully to ensure fairness in the FL process for all demographic

groups.

Decisions about the fairness metrics, sensitive attributes, and other aspects like training

moderation are generally not automatic and are made by humans. Thus the makeup of teams

involved in the process can affect fairness. Examining the diversity and the workflow within

these teams and understanding how they impact the fairness of decision-making and ML

systems outcomes is another research path. Here, collaborations between ML/FL practitioners,

researchers, and human and societal sciences researchers can provide insights to establish

guidelines and best practices for ML/FL teams.

Finally, in all ML pipelines data can change over time, causing data shifts that can introduce

new forms of bias. Developing methods to continuously watch and evaluate the learning

system to detect and correct such shifts is essential for maintaining fairness during the learning

process.
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