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Modélisation multi-échelle du refroidissement par film liquide dans les machines 

électriques 

 

 

Résumé: Le défi de construire un solveur pour la simulation du refroidissement à l'huile 

dans les extrémités des bobinages des moteurs électriques est l'objet de cette étude. Le 

premier segment se concentre sur les phénomènes de transfert thermique du flux de film 

liquide sur une surface complexe pré-mouillée. L'objectif est de comprendre les 

mécanismes d'interaction entre le liquide et la surface complexe. Une analyse détaillée des 

résultats de la simulation est réalisée, en tenant compte des effets de paramètres variables 

tels que le nombre de Reynolds et le nombre de Prandtl. 

Suite à cela, un solveur précis VOF à deux phases couplé avec un modèle d'angle de 

contact dynamique est mis en oeuvre pour tenir compte de ce type de géométrie des 

bobinages où le film liquide s'écoule par-dessus. Tout d'abord, l'algorithme PISO équilibré 

est développé, améliorant le calcul des gradients dans l'équation de la quantité de 

mouvement, et modifiant l'algorithme de Rhie et Chow. Cette méthode révisée assure que 

la force de tension superficielle et les gradients de pression sont discrétisés de manière 

identique au même emplacement. De plus, l'algorithme de Rhie et Chow est modifié en 

intégrant la force de tension superficielle, pour équilibrer les forces de pression. La 

méthode de la fonction de hauteur est intégrée au code CONVERGE CFD, remplaçant la 

fraction de vide lisse (SVF) pour une estimation de la courbure. Par la suite, l'angle dérivé 

du modèle d'angle de contact dynamique est utilisé pour modifier la courbure des cellules 

d'interface murale. Une explication approfondie de l'algorithme est fournie, ainsi que les 

cas de test de simulation et leur corrélation avec les données expérimentales. 

S'appuyant sur les travaux précédents, un ensemble de simulations est mené pour étudier les 

phénomènes de mouillage de l'écoulement liquide sur une surface complexe plate. En cette 

occasion, la surface est sèche, et le phénomène de mouillage est étudié. Cette partie 

présente la méthodologie de simulation numérique utilisée pour modéliser ces phénomènes, 

en plus des résultats de la simulation. Une analyse détaillée de ces résultats est présentée, 

notamment les effets de la méthode de calcul de la courbure, la variation de l'angle de 

contact d'équilibre et du nombre de Reynolds 

 

 

Mots clés : Modélisation CFD, Moteurs électriques—Refroidissement, Transfert de 

chaleurs, Algorithme PISO équilibré, Fonction de hauteur, Angle de contact dynamique, 

Écoulement de film liquide sur une surface complexe 
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Well-balanced PISO algorithm, Height Function, Dynamic contact angle, Liquid film 

flow over complex surface 

 

 

Abstract: The challenge of constructing a solver for the simulation of oil cooling in electric 

motor end-windings is the focus of this study. The initial segment concentrates on heat 

transfer phenomena of liquid film flow over a pre-wetted, complex surface. The goal is to 

understand the interaction mechanisms between the liquid and the intricate surface. A 

detailed analysis of the simulation results, taking into account the effects of varying 

parameters like Reynold number and Prandtl number. Following this, an accurate VOF 

two-phase flow solver coupling with a dynamic contact angle model is implemented to take 

into account this kind of geometry of windings where the liquid film flows over. Firstly, the 

Well-balanced PISO algorithm is developed, improving the calculation of gradients in the 

momentum equation, and modifying the Rhie and Chow algorithm. This revised method 

ensures that the surface tension force and pressure gradients are discretized identically at 

the same location. Additionally, the Rhie and Chow algorithm is modified by incorporating 

the surface tension force, to equilibrate the pressure forces. The Height Function method is 

integrated into the CONVERGE CFD code, replacing Smooth Void Fraction (SVF) for a 

curvature estimate. Subsequently, the angle derived from the dynamic contact angle model 

is utilized to modify the curvature of the interface wall cells. A thorough explanation of the 

algorithm is provided, along with the simulation test cases and their correlation with 

experimental data. Building upon previous work, a set of simulations are conducted to 

study the wetting phenomena of liquid flow over a flat complex surface. On this occasion, 

the surface is dry, and the wetting phenomena is studied. This part introduces the numerical 

simulation methodology used to model these phenomena, in addition to the simulation 

results. Detailed analysis of these results is presented, including the effects of curvature 

calculation method, varying the equilibrium contact angle and Reynolds number. 

 

 

Keywords: Computational fluid dynamics, Electric motors—Cooling, Heat—Transmission, 

Well-balanced PISO algorithm, Height Function, Dynamic contact angle, Liquid film flow 

over complex surface 
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An overview of the electric motor and its associated thermal challenges is provided. This also 

highlights the current cooling techniques for electric motors and outlines the objectives of this thesis. 

1.1 Introduction 

In the last few years, electric motors have attracted the attention of the automotive industries, and 

researchers all over the world due to the benefit of environmental impact. The trend to design a more 

compact high-power electric motor is associated with new thermal management challenges. The heat 

generated inside an electric motor comes from many factors such as magnetic losses, Joule losses, 

and mechanical losses. Therefore, several parts in the engine will have to work in a stricter mode. In 

particular, the current capacity in the conductor will increase in some cases, causing the heat loss 

caused by the Joule effect to dramatically increase (the temperature of the coil rises rapidly because 

the heat produced is proportional to the square of the current). In addition, the compact design of the 

engine will reduce the space required for cooling. For this reason, a reasonably high effective cooling 

method needs to be developed to help the engine operate stably and safely. 

In our project, the active convection cooling strategy is studied, where the heat from the end-windings 

of the electric motor will be directly absorbed by the oil and transferred to the surroundings. 

 

1.2 Electric motor structure 

 

Figure 1: Main components of an electric motor [1] 

The structure of an electrical machine consists of different parts, as presented in Figure 1. In this 

configuration, the main machine components are the following: windings (made of coils), stator 
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Motor hosing

Power inverter
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laminations, rotor laminations, motor housing (or frame), and eventually the magnets (in electrical 

machines with permanent magnets). 

1.3 Thermal Issues 

The heat generated inside an electric motor comes from several factors such as magnetic losses, Joule 

losses, and mechanical losses [2,3]. The heat source of Joule losses comes from the conversion of 

electric energy to thermal energy when the current flows through the conducting material such as 

copper winding in the stator part. The magnitude of the heat energy follows the Joule–Lenz law: 𝐼2𝑅 

where 𝐼 is the electric current and 𝑅 is the electric resistance of the conductor.  

The magnetic losses or iron losses come from 2 main aspects: hysteresis loss and eddy current loss. 

Hysteresis loss is caused by molecular friction in a ferromagnetic material under an alternating 

magnetic field, and eddy current loss is caused by the induction of eddy current in the core and 

conductors held in a magnetic field. Also, in an electric motor, the heat generated by the mechanical 

energy is mainly due to mechanical friction and viscous friction.  

As stated above, the heat sources of electric motors come from a few different parts making their 

thermal management a complex challenge. It can be summarized as follows [4]: "Heat transfer is as 

important as electromagnetic and mechanical design. The analysis of heat transfer and fluid flow in 

motors is actually more complex, more nonlinear, and more difficult than the electromagnetic 

behavior". Due to the complexity of motor components and heat sources, the heat generated is 

distributed unevenly inside the electric motor and depends on the motor type and operating 

conditions.  

 

Figure 2: Thermal management impact on motor performance to support increased power [5] 
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The proper thermal management of the electric motor not only increases reliability but also minimizes 

the effect of changes in material properties, which are directly related to the torque envelope and 

efficiency, as shown in Figure 2. As a consequence, many researchers and organizations are 

developing effective cooling techniques to overcome the thermal problem. 

The main type of heat transfer inside an electric motor can be specified as below: 

Conduction heat transfer in the motor components 

Convection phenomenon specifically in airgap and end-windings 

1.4 Cooling method for electric motor 

The cooling study of an electric machine designed to achieve promising electrical objectives has a 

critical influence on its performance. Bertin [6] has studied the main possibilities and issues of heat 

removal in electric machines.  

Nowadays, the importance of finding modern cooling solutions to keep temperatures in the machine 

at acceptable value is rising. In reality, these machines are required to provide high-efficiency and 

huge power values, specifically when applied for propulsion in the acceleration phase of the car, 

compared to what was designed in the previous decades. Many institutions and researchers have 

tested, explained, and evaluated different cooling methods for automotive traction engines [5,7,8].  

Two possible strategies can be adopted to solve the thermal problems encountered. The first strategy 

consists of finding critical physical parameters that influence the heat transfer (for instance, it could 

be the structure materials used in motor construction, geometrical factors, or properties of cooling 

fluids, etc.), and working on optimizing them to fit with the adequate machine thermal design (passive 

cooling). The other strategy is to focus on developing cooling techniques allowing the highest heat 

dissipation (active cooling). A review of the literature shows that authors have mainly worked on one 

of the two strategies for improving heat extraction methods, and few have studied both [4]. Some 

parts of the machine that are classically cooled must be accurately studied under different electrical 

and environmental conditions, so that their cooling is adapted to the electrical performance of the 

machine and improves its overall efficiency. Those parts are mainly the stator, the frame, and the 

rotor. This study focuses only on the closed-loop active cooling method using Automatic 

Transmission Fluid (ATF). 

As a common aspect, the liquid cooling method offers higher performance in terms of cooling 

capacity mainly due to the higher specific heat capacity and better convective coefficient of liquids 

with respect to gaseous coolants. The closed-loop configuration ensures the absence of any foreign 

particles, but proper sealing must be adopted to avoid any coolant leakage.  
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1.4.1 Oil injection 

As illustrated in Figure 3 , numerical and experimental  research studies [9,10] have been carried out 

on oil injection technology to gain further insight into the configuration, arrangement, and cooling 

behavior to achieve maximum efficiency. Swales et al. [11] operate a closed-loop oil cooling system 

for hybrid electric vehicles powertrain motors (Figure 4). From a thermodynamic and physical point 

of view, oils and, more specifically, Automatic transmission fluids present many advantages: their 

thermal conductance is similar to water, they also work as good electrical insulators with a low 

dielectric constant, high dielectric strength, and electric resistivity. Moreover, chemical stability,  

 

Figure 3: Oil injection on end wingding of the electric motor, numerical and experimental [9,10] 

 

non-flammability are all aspects that make oils a valid alternative to standard fluids. In fact, the motor 

can be flooded without considering electric or magnetic effects since the ATF is a diamagnetic fluid. 
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In the considered patent [11], the motor can be in a cooling circuit with the transmission, such as the 

cooling oil is provided from the transmission itself. Alternatively, this cooling oil can be provided 

from a separate cooling system. In this embodiment, only a single oil feed is provided from the 

transmission to the motor: a top port delivers cooling oil for the stator, rotor, and bearings. Figure 4 

shows a flow control element which is configured to distribute the oil at desired flow rates to the 

stator and rotor; it can be a partial or complete ring. A dam member is connected or integrally formed 

with a rotor end ring to distribute the cooling oil circumferentially to the stator when the cooling oil 

is thrown outward towards the stator by centrifugal force. Moreover, a structure on the bearing 

retainer allows the oil to flow from the flow control element to the bearing. In conclusion, this patent 

describes an efficient cooling loop. In fact, by choosing proper oil, the cooling performances of the 

system can be high since the thermal oil properties are better than air, as mentioned above. On the 

other hand, the viscosity of the oil itself must be taken into account. Higher hydraulic losses have to 

be prevented: a specific pumping system is needed as well as an additional heat exchanger for oil 

cooling. 
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Figure 4: (a) Oil distribution parts (b) Oil cooling system. The coolant flow path is the black arrows 

[11] 

1.4.2 Oil spraying 

Oil spraying for cooling electric motors is also investigated by researchers [12–15].  Davin et al. [8] 

detailed the validation of the oil spray cooling, and the results have been compared against a reference 

motor with air cooling. Lubricating oil is injected as a coolant on both sides of the machine to cool 

the stator coil end-windings directly. Figure 5 reports the test motor layout. As it can be observed, the 

oil is injected through proper nozzles located near the flanges. The coolant is collected at the bottom 

by gravity and is then recirculated. Different types of nozzles have been analyzed with various oil 

spray patterns and distributions inside the motor. Figure 6 provides a useful sketch for flow 

visualization. As the oil film may not be equally distributed along with the stator coils, the cooling of 

the motor may not be uniform as well.  

 

Figure 5: Experiment setup for end-winding cooling [8] 

1.5 Objectives of the doctorate  

The direct impingement of a jet into an electric stator chamber presents a myriad of multiphysics 

challenges. These complexities arise from conditions within the end-winding stator chamber, such as 

strong airflow caused by rotor rotation and the intricate surface geometry of the end windings (Figure 

7). Accurate simulation and evaluation of heat transfer performance in this flow environment are 

particularly challenging, especially for Computational Fluid Dynamics CFD.  
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Figure 6: Sketch of oil distribution observed at null and low rotation speed [8] 

 

Figure 7. Schematic representation of multiphysics challenges in jet impingement on complex solid 

surfaces  

Airflow

Droplets

Film flow

Jet

Airflow

Film flow
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To address these multifaceted issues, our department is breaking down the larger problem into 

smaller, more manageable tasks that can be solved sequentially before being integrated. Each segment 

is assigned to different team members for specialized focus. 

In the context of my doctoral project, the objective is to develop a numerical methodology that can 

effectively simulate a liquid film flow generated by a jet impinging upon the end-windings of an 

electric motor (Figure 7). Given the naturally complex geometry of the end-windings and the critical 

role of liquid topology in heat transfer, a sophisticated two-phase flow solver is essential. This solver 

must be coupled with a dynamic contact angle model to accurately account for the complexities 

involved in the winding geometry where the liquid film flows. 

The organization of the dissertation is as follows: 

Chapter 1: Provides an overview of electric motors and their cooling methods. 

Chapter 2: Discusses the physical phenomena related to liquid film flow and wetting. 

Chapter 3: Introduces the numerical methods employed for simulating two-phase flows. 

Chapter 4: Focuses on presenting the results of heat transfer interactions between the liquid and 

various solid surfaces within the context of film flow. It should be noted, however, that the current 

Converge CFD code is insufficient for capturing the complexities of film flow over intricate surfaces. 

Chapter 5 outlines new developments aimed at enhancing the original two-phase flow algorithms 

within the commercial CFD code, Converge (https://convergecfd.com). These enhancements are 

specifically designed to better adapt to the unique challenges posed by two-phase flows in end-

winding cooling. They include: 

  - Well-balanced methods 

  - Height functions method 

  - Dynamic contact angle model 

Chapter 6: Is devoted to validating these new methods, confirming their effectiveness and accuracy. 

Chapter 7: Showcases the application of these newly developed methods on complex surfaces, 

offering a detailed analysis of the results. 
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Understanding the physical phenomena involved in liquid film flow is crucial. What is surface 

tension? Why is it important to the film flow and the physical phenomena of a liquid's wettability 

when it wets a dry surface? Since wetting behavior is rate-dependent, a mathematical contact angle 

model, which varies based on the liquid's speed, is needed to represent wettability accurately. 

2.1 Surface tension  

The liquid is one of the four primary states of matter (the others being solid, gas and plasma), where 

the molecules attract each other and create an incompressible and constant volume state. When the 

attraction force is greater than the thermal agitation, the molecules come together to change from a 

gas phase to a liquid phase, but unlike solids, they are still disordered. At the atomic scale, there are 

two types of molecules, those in the bulk liquid are attracted to other molecules by cohesive forces in 

all directions and are in a free and "happy" state [16], whereas the molecules outside the liquid only 

meet the surface and subsurface molecules, resulting in a net inward cohesive force (Figure 8). 

 

Figure 8: Diagram of the cohesive forces on molecules of a liquid 

When a molecule is on a surface, it is in an unfavorable energy state because it loses half of its 

cohesive interactions. If F is the cohesive force of a molecule within the bulk region, then a molecule 

located at the surface is roughly 𝐹/2. As the surface tension represents the energy per unit surface 

area, if 𝑎 is the molecule size and 𝑎2 the exposed area, then the surface tension is defined as 𝜎 ≅

𝐹/(2𝑎2). In a sample of oil, the interaction is the van der Waals force, 𝐹 ≅ 𝑘𝑇, which is thermal 

energy. Hence for example at 25°C, 𝑘𝑇 ≈
1

40
𝑒𝑉 which gives 𝜎 ≈ 20 𝑚𝑁/𝑚. Likewise, the surface 

tension between common oils and air are given in Table 1: 

Table 1: Surface tension of common fluids [17] 
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Name Surface tension at 20 °C in mN/m 

Benzene 28.9 

Ethanol 22.1 

Propanol 23.7 

Water(WA) 72.8 

Tetrahydrofuran(THF) 26.4 

Methanol 22.7 

Mercury 425.4 

Isopropanol 23.0 

n-Octane(OCT) 21.6 

n-Hexane(HEX) 18.4 

Glycerol(GLY) 64.0 

Carbon Disulfide 32.3 

 

Mercury exhibits the strongest cohesive force at room temperature up to 425 mN/m; water also has a 

relatively high surface tension up to 72 mN/m, thanks to hydrogen bonds.  

Although the origin of the surface tension can be explained at the molecular scale, 𝜎 is the 

macroscopic parameter and is used as explained below. 

2.1.1 In terms of energy 

As explained by De Gennes [16], surface tension is the energy that must be supplied to increase the 

surface area by a unit. Suppose someone wants to move the molecules to increase the surface area by 

an amount of 𝑑𝑆, then the work, 𝛿𝑊, required to do this can be defined as below: 

𝛿𝑊 = 𝜎𝑑𝑆 (1) 
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2.1.2 In terms of force 

In terms of force, the surface tension of the liquids is the force per unit length. As illustrated in Figure 

9, a rod bent into three sides to form a rectangle, another rod can roll freely and perpendicularly on 

two sides of the rectangle. When this system is immersed into bubble soap, for example, as soon as 

the apparatus is removed from the liquid, the mobile rod immediately moves in the direction of the 

arrow, meaning that the liquid film exerted a force on the movable rod in order to reduce its surface 

area. The magnitude of this force, called capillary force, depends on the surface tension of the liquid, 

and the work needed to move the rod by a distance 𝑑𝑥 is: 

𝛿𝑊 = 𝐹𝑑𝑥 = 2𝜎𝑙𝑑𝑥 (2) 

Where 𝑙 is the circumference of the rod in contact with the liquid. 

  

Figure 9: An example to illustrate the capillary force  

The four pictures in Figure 10 illustrate the beautiful effect of surface tension in nature. 

2.1.3 Laplace pressure 

Laplace published in 1805 that the pressure difference between the inside and outside of the droplet 

is caused by the surface tension. For instance, a droplet tends to have a spherical shape because it has  

the lowest surface tension energy. For a spherical droplet of radius 𝑅, the work done by the surface 

tension force and pressure to displace the interface by an amount 𝑑𝑅 is (Figure 11):  

𝛿𝑊 = −𝑝𝑤𝑑𝑉𝑤 − 𝑝0𝑑𝑉0 + 𝜎𝑑𝑆 (3) 

Where 𝑑𝑉𝑤 = −𝑑𝑉0 = 4𝜋𝑅2𝑑𝑅 is the volume of the droplet, 𝑑𝑆 = 8𝜋𝑅𝑑𝑅 its surface area, 𝑝𝑤 and 

𝑝0 are the pressure inside and outside of the droplet, and 𝜎 is the surface tension. 



33 

 

At the equilibrium state, 𝛿𝑊 = 0 then Equation (3) becomes: 

∆𝑝 = 𝑝𝑤 − 𝑝0 = 2
𝜎

𝑅
 (4) 

 

 

Figure 10: Pictures illustrating different phenomena based on interfacial tension (a) a gerris walking 

on water (b) a needle floating on the water surface (c) a soap bubble floating in the air (d) a water 

drop on a lotus leaf 

Thus, when crossing a curved interface, a pressure jump occurs by an amount ∆𝑝. According to (4) 

the smaller the droplet, the greater the inner pressure.  

In most configurations, the curvature is not constant. An example of interface element whose main 

radius of curvature in the two orthogonal planes are 𝑅1 and 𝑅2 (Figure 12).  

The mechanical equilibrium of the interface implies that the resultant of surface tension and pressure 

forces are zero. The mechanical balance at the interface according to the normal gives: 

(a) (b)

(c) (d)

�⃗�𝑡𝑒𝑛𝑠𝑖𝑜𝑛 + �⃗�𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = 0 (5) 



34 

 

 

Figure 11: Overpressure inside a drop (o) and outside (w) 

 

where  

�⃗�𝑡𝑒𝑛𝑠𝑖𝑜𝑛 = [−2𝜎𝑅1𝑑𝜃1 sin (
𝑑𝜃2

2
) − 2𝜎𝑅2𝑑𝜃2 sin (

𝑑𝜃1

2
)] �⃗⃗� 

(6) 

Because 
𝑑𝜃2

2
 and 

𝑑𝜃1

2
 are really small compared to 1, Equation (6) can write as: 

�⃗�𝑡𝑒𝑛𝑠𝑖𝑜𝑛 = −𝜎𝑑𝜃1𝑑𝜃1(𝑅1 + 𝑅2) �⃗⃗� (7) 

�⃗�𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 can be written as:  

�⃗�𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = ((𝑝1 − 𝑝2)( 𝑅1 sin(𝑑𝜃1) 𝑅2 sin(𝑑𝜃2))) �⃗⃗� (8) 

At first-order, the pressure force is reduced to:  

�⃗�𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = ((𝑝1 − 𝑝2)( 𝑅1𝑑𝜃1 𝑅2𝑑𝜃2)�⃗⃗� 

Finally, the total force balance is written:  

𝑝1 − 𝑝2 = 𝜎
𝑅1 + 𝑅2

𝑅1𝑅2
 

(9) 

dR

(w)
(o)

R
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Or  

𝑝1 − 𝑝2 = 𝜎(
1

𝑅1
+

1

𝑅2
) 

(10) 

Where 
1

𝑅1
+

1

𝑅2
= 𝜅 is the curvature of the interface. 

 

Figure 12: Mechanical equilibrium of a curved interface 

2.2 Wettability 

2.2.1 Thermodynamics 

Consider the static droplet placed on the solid surface. If its volume is assumed to be tiny, then it 

takes the shape of a spherical cap in order to minimize its energy, and gravity becomes negligible 

compared to the other forces. The contact angle is the angle measured in the liquid at the liquid-gas 

interface with the solid surface, as illustrated in Figure 13. It determines the wettability characteristics 

of the solid surface, and it can also reflect the relative strength of molecular interaction between liquid, 

solid, and gas. For a given gas/liquid system placed on a perfectly flat solid surface at given pressure 

and temperature, there is a unique equilibrium contact angle.  
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Figure 13: Balance of the forces that act on the triple contact line 

The contact angle at equilibrium is determined by Young's Equation. Since the force at the triple 

contact line is at equilibrium, the equation relating the contact angle and the surface tensions is: 

𝜎𝑠𝑔 − 𝜎𝑠𝑙 − 𝜎𝑙𝑔𝑐𝑜𝑠𝜃𝑒 = 0 (11) 

Where σgl, σsl and σsg are the surface tensions for gas-liquid, liquid-solid, and gas-solid interfaces, 

respectively and 𝜃𝑒 is equilibrium contact angle. 

However, this simple Equation (11) doesn't include the energy at the contact line. Pethica [18] 

modified the Young Equation by defining a line tension for a liquid droplet on an ideal solid surface. 

This led to the modified Young's Equation 

𝑐𝑜𝑠𝜃𝑒 =
𝜎𝑠𝑔 − 𝜎𝑠𝑙

𝜎𝑙𝑔
+

𝜍

𝜎𝑙𝑔

1

𝑎
 

(12) 

Where 𝜍 is the line tension, and 𝑎 is the radius of the spherical cap.  

 

2.2.2 Advancing and receding angle 

As described in the thermodynamic section, when a droplet is placed on a clean, perfect, and flat solid 

surface, the contact line will form an equilibrium 𝜃𝑒 contact angle with the wall, defined by Young's 

Equation. 

On the surface that is not perfectly flat, the static contact angle is not unique. For example, if a drop 

on a solid surface (Figure 14(a)) is deflated, the contact angle 𝜃 can reduce down to a limiting value 

𝜃𝑟, at which angle the contact line suddenly moves. This specific value is called receding contact 

angle.  

Liquid

Solid

Liquid

Gas
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Likewise, as the drop is  inflated (Figure 14(b)), the contact angle increases and exceeds the 

equilibrium contact angle, but without contact line moving. The contact angle still increases until it 

reaches a threshold value 𝜃𝑎 , called the advancing contact angle, where the contact line finally starts 

to move.  

This phenomenon can also be observed by inclining the solid surface where the larger contact angle 

at the front is the advancing contact angle, and the smaller contact angle at the rear of the droplet is 

the receding contact angle (Figure 14(d)). 

Finally, to summarize, the advancing contact angle is the maximum contact angle just before the 

contact line moves. The receding contact angle is the minimum contact angle just before the contact 

line moves. 

The hysteresis phenomenon is defined as the difference between the two limiting contact angles: the 

advancing and receding angle.  

 

Figure 14: Contact angle hysteresis: (a) receding contact angle, (b) advancing contact angle, c) 

static contact angle (d) contact angles of the droplet on the inclined surface 

The equilibrium contact angle can be calculated from the advancing and receding contact angle using 

the theoretical equation by Tadmor and confirmed by experiment [19]: 

Liquid

Liquid

Liquid

(d)

(a) (b)

(c)
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𝜃𝑒 = arccos (
𝑟𝑎𝑐𝑜𝑠𝜃𝑎 + 𝑟𝑟𝑐𝑜𝑠𝜃𝑟

𝑟𝑎 + 𝑟𝑟
) 

(13) 

Where 𝑟𝑎 and 𝑟𝑟 are the reference parameters: 

𝑟𝑎 = (
𝑠𝑖𝑛3𝜃𝑎

2−3𝑐𝑜𝑠𝜃𝑎+𝑐𝑜𝑠3𝜃𝑎
) and 𝑟𝑟 = (

𝑠𝑖𝑛3𝜃𝑟

2−3𝑐𝑜𝑠𝜃𝑟+𝑐𝑜𝑠3𝜃𝑟
). (14) 

2.2.3 Adhesion energy 

As depicted in Figure 14 (d), when inclining the solid surface, the gravity force makes the droplet 

move down. But the droplet remains at rest on the surface until the 𝜃𝑎 threshold angle is reached. The 

force that holds the droplet at rest is due to the adhesion force against gravity. To characterize this 

effect for a droplet on a solid surface, Young-Dupre [20] defined a so-call solid-liquid adhesion 

energy 𝑊𝑠𝑙: 

𝑊𝑠𝑙 = 𝜎𝑠𝑔 + 𝜎𝑙𝑔 − 𝜎𝑠𝑙 (15) 

By combining Equation (11) and Equation (15), the Young-Dupré Equation can be derived as: 

𝑊𝑠𝑙 = 𝜎𝑙𝑔(1 + 𝑐𝑜𝑠𝜃𝑒) (16) 

2.2.4 Effect of roughness on wetting 

The wetting of a liquid on a solid surface is impacted not only by the surface chemistry but also by 

the surface topography. Two distinct models, developed independently by Wenzel [19] and Cassie 

[21,22] are commonly used to explain the effect of surface roughness on the apparent contact angle 

of liquid drops. 

Wenzel model 

𝑐𝑜𝑠𝜃 = 𝑟𝑟𝑐𝑜𝑠𝜃𝑠𝑚𝑜𝑜𝑡ℎ (17) 

where 𝜃𝑠𝑚𝑜𝑜𝑡ℎ is the contact angle measured on a smooth surface of the same material, given by 

Young's Equation and 𝑟𝑟 is the ratio of the actual area of the rough surface to the projected area. 

Cassie model 
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The Cassie model postulates that the hydrophobic nature of a rough surface is caused by microscopic 

pockets of air remaining trapped below the liquid droplet, leading to a composite interface. Φ is the 

solid area fraction of the projected wet area, 𝑟𝑓 is the roughness of the solid−liquid interface. Cassie 

equation yields [23]: 

𝑐𝑜𝑠𝜃 = −1 + Φ (1 + 𝑟𝑓𝑐𝑜𝑠𝜃𝑠𝑚𝑜𝑜𝑡ℎ) (18) 

The two models consider different behaviors of a liquid droplet on a surface. The Wenzel model 

considers a liquid droplet that seeps in between the irregularities of a rough surface. The Cassie model 

considers a liquid droplet that sits on top of the irregularities, with a layer of air trapped between the 

irregularities beneath it (Figure 15). 

 

Figure 15: Schematic of Cassie state and Wenzel state [24]  

2.3 Dynamic contact angle models 

In this section, the origin of the contact angle phenomena as well as the dynamic contact angle model 

are presented in detail;  

As mentioned in Section 2.2, the contact angle is formed by the adhesion force between liquid, gas, 

and solid phase. For liquid moving quickly over a surface, the contact angle can be altered from its 

value at rest. The advancing contact angle will increase with speed and the receding contact angle 

will decrease. The discrepancies between static and dynamic contact angles are closely proportional 

to the capillary number. Many researchers have carried out experiments from the macro to the atomic 

scale to better understand the origin of dynamic contact angle [27]. Extrand [25,26] conducted 

experiments on a flat surface with a heterogeneous island as shown in Figure 16. The solid part in 

Figure 16 (a) was made of a silicon wafer with native oxide layer, while the solid part (Figure 16 (b), 

(c)) has an additional heterogeneous island obtained by depositing a drop of polystyrene (PS). First, 

the drop of water was deposited on the clean silica surface. The drop spreads on this solid surface 

Cassie state Wenzel state
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until it reaches the equilibrium contact angle 7 ± 3°. The next test is illustatred in Figure 16 (b) where 

the drop of water is deposited such that the contact line of the water droplet is on the periphery of the 

heterogeneous island; the contact angle equal 95 ± 2°. In the third test illustrated in Figure 16 (c), 

Extrand initially did the same test as second experiment, but then he gradually adding more water to 

the droplet, hence the contact line is expanded. Right after contact line touch silica surface, the contact 

angle changes abruptly from 95 ± 2° to 7 ± 3°. Hence, the contact angle is not affected by the 

material under the drop, but rather by the material near the contact line.  

 

 

Figure 16: Wetting experiments [25,26] 

To better understand hysteresis phenomena, for the first time Liu et al. [27] use helium ion microscopy 

to observe the ubiquitous 3D nanoscopic distortion along the contact line at the atomic scale (Figure 

17).  

The base material was mica, Silicon wafer and Copper plate with a Root Mean Square (RMS) 

roughness of 0.12 nm, 0.42 nm and 10.32 nm respectively. Though at the micro scale (100 m) the 

contact line seems smooth, numerous nano distortions and wrinkles appear at the nano scale (500 nm).  

As shown by the experiment, if the material is absolutely smooth, all hysteresis phenomena and thus 

the dynamic contact angle will disappear. However, the atomic roughness can trigger these 

phenomena.  

(a)

(b)

(c)

Heterogeneous island

Silicon wafer

Not here

Here

Solid

Liquid
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In their conclusions, Liu et al. [27] explain that the hysteresis phenomena, coming from the difference 

between advancing and receding contact angle is due to the static and dynamic friction of the contact 

line with the solid surface; increasing roughness leads to increasing hysteresis angle.  

 

Figure 17: 3D nanoscopic morphology of the close contact line region using helium ion microscopy 

[27] 

Thought it is possible to simulate the motion of the contact line at the molecular scale [28], this 

approach is not considered in our study. 

At the macro scale, a conflict emerges between the classical condition of adherence of fluid to the 

wall and the tangential motion of the contact line at velocity Vcl. Reconciling the two leads to a 

singularity in the expression of viscous stresses 𝜏𝑥𝑦. 

𝜏𝑥𝑦 ≈ 𝜇
𝑉𝑐𝑙

Δ
 

(19) 

𝜏𝑥𝑦 is the stress generated by a contact line. Δ is the mesh size. 

Indeed, the viscous stresses 𝜏𝑥𝑦 tend towards infinity when the mesh size tends towards 0. Many 

researchers developed models of dynamic contact angle to overcome this singularity such as Quasi-

dynamic, Kistler's dynamic [29], Shikhmurzaev [30], Cox’s model [31,32]. 

 Following Sikalo et al. [33], the dynamic contact angle depends on many parameters such as: 

𝜃𝑑 = 𝑓(𝜃𝑒 , 𝐶𝑎, 𝑊𝑒, 𝜇𝑙 , … ) (20) 

𝜃𝑒 is the static or equilibrium contact angle, 𝐶𝑎 is the Capillary number, 𝑊𝑒 is the Weber number 

and 𝜇𝑙 is the dynamic viscosity of the liquid. 
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The Capillary number is a dimensionless number representing the ratio of viscous forces to surface 

tension forces acting across an interface between two liquids and is defined as: 

𝐶𝑎 =
𝑉𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑡𝑒𝑛𝑠𝑖𝑜𝑛 
=

𝑉𝑐𝑙 . 𝜇𝑙

𝜎𝑙𝑔
 

(21) 

𝑉𝑐𝑙 is the contact line velocity, 𝜇𝑙 the viscosity of the liquid and 𝜎𝑙𝑔 the surface tension coefficient. 

The Weber number is a dimensionless number that compares the inertia force to the surface tension 

force: 

𝑊𝑒 =
𝐿𝑖𝑞𝑢𝑖𝑑′𝑠 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑡𝑒𝑛𝑡𝑖𝑜𝑛
=

𝑢2𝜌𝑙𝐷

𝜎𝑙𝑔
 

(22) 

Where 𝑢 is the velocity of the droplet just before impacting the wall, 𝜌𝑙 is the liquid density, and 𝐷 is 

the diameter of the droplet. 

2.3.1 Quasi-dynamic contact angle model 

The quasi-dynamic model is the simplest dynamic contact angle model. Fixed advancing or receding 

contact angle is imposed as a boundary condition. Though it is the most basic dynamic contact angle 

model, it is widely used in the literature (Olsson [34,35]). This model can be represented by two 

equations as: 

𝜃𝑑 = 𝜃𝑎       𝑖𝑓   𝑉𝑐𝑙 ≥ 0 (23) 

𝜃𝑑 = 𝜃𝑟      𝑖𝑓  𝑉𝑐𝑙  < 0 (24) 

2.3.2  Kistler's dynamic contact angle model 

The empirical dynamic contact angle model developed by Kistler (1993) is based on Hoffman's 

empirical function (Hoffman, 1975). In this correlation, the dynamic contact angle depends on the 

static contact angle and the contact line velocity through Ca number. The model is valid for advancing 

contact lines only. 

𝜃𝑑 = 𝑓𝐻(𝐶𝑎 + 𝑓𝐻
−1(𝜃𝑒)) (25) 

Where 𝑓𝐻 is the Hoffman's function (𝑓𝐻
−1 is its inverse) and defined as: 
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𝑓𝐻(𝜃𝑒) = 𝑐𝑜𝑠−1(1 − 2tanh (5.16((
𝜃𝑒

1 + 1.31𝜃𝑒
0.99)0.706)) 

(26) 

If the advancing contact angles are available, 𝜃𝑒 in Equation (25) and Equation (26)  can be replaced 

by them depending on the velocity direction.  

2.3.3 Shikhmurzaev's model 

The second empirical model is Shikhmurzaev's model [36]. This model is also dependent on the 

contact line velocity, through Ca number and the equilibrium contact angle. But it is also dependent 

on three phenomenological constants fitted to experiments (a1, a2, a3). The model is based on the 

theory that the solid-liquid and the liquid-gas interfaces have specific thermodynamic properties, 

which means that they behave like real phases, and that the contact line motion is a result of mass 

exchange between these two phases. 

Shikhmurzaev's model is based on the relationship between several parameters as described below:  

cos(𝜃𝑑) = cos(𝜃𝑎) −
2𝑢𝑑(𝑎1 + 𝑎2𝑢𝑟)

(1 − 𝑎2)(𝑎1 + 𝑢𝑑
2)0.5 + 𝑢𝑑

 
(27) 

For the advancing phase, Equation (27) can be written as: 

𝜃𝑑 = 𝑐𝑜𝑠−1 (cos(𝜃𝑎) −
2𝑢𝑑(𝑎1 + 𝑎2𝑢𝑟)

(1 − 𝑎2)(𝑎1 + 𝑢𝑑
2)0.5 + 𝑢𝑑

) 
(28) 

Where 𝑎1 is a constrain for the equilibrium state, which is defined as: 

𝑎1 = 1 + (1 − 𝑎2)(𝑐𝑜𝑠(𝜃𝑎) − 𝑎4 (29) 

while 𝑎2 is the dimensionless surface density, 𝑢𝑟 is the radial velocity at the interface contact with 

the solid part. 

𝑢𝑟 =
sin(𝜃𝑑) − 𝜃𝑑cos (𝜃𝑑)

sin(𝜃𝑑) cos(𝜃𝑑) − 𝜃𝑑
 

(30) 

And 𝑢𝑑  is the dimensionless contact line velocity defined as:  
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𝑢𝑑 = 𝑎3

𝑉𝑐𝑙𝜇𝑙

𝜎𝑙−𝑔
 

(31) 

For glycerol, the experiments conducted by Blake and Shikhmurzaev [30] determined the constant 

phenomenological parameters: 

𝑎2 = 0.63, 𝑎3 = 4.3, 𝑎4 = −0.08 (32) 

2.3.4 Cox's model 

This dynamic contact angle model is based on the asymptotic theory developed by Cox (1986), 

Hocking and Rivers (1982), Ngan and Dussan V. (1982) and Dussan et al. (1991), and is valid for 

both advancing and receding contact lines. It can be written as: 

𝜃𝑑 = 𝑔−1 (𝑔(𝜃𝑎𝑝𝑝) + 𝐶𝑎 𝑙𝑜𝑔 (
𝐿

𝜆
)) 

(33) 

𝜃𝑎𝑝𝑝 is the apparent contact angle in the macroscopic region which can be calculated from 𝐶𝑎 and 𝜃𝑒 

such as used in Afkhami [37], Sui and Spelt [38] or imposed to 𝜃𝑑 and 𝜃𝑟 as in Legrendre and Maglio 

[39]. L is the length scale and 𝜆 is the physical slip length. The 𝑔 function can be depicted as: 

𝑔(𝜃) = ∫
𝑥 − sin (𝑥)cos (𝑥)

2 sin(𝑥)
𝑑𝑥

𝜃

0

 
(34) 

To compare these four different dynamic contact angle models, the study of Gohl et al. [40] are 

introduced, where they studied these four different types of dynamic contact angle models to test the 

difference. The dynamic contact angle has been implemented by modifying the curvature at the near-

wall interface. For validation, the authors used glycerol droplets impacting a solid surface with a small 

impact velocity (low Weber number). The results in Figure 18 show the importance of the dynamic 

contact angle model on two-phase flow simulation. 
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Figure 18: Evolution of spreading factor [40] 

2.4 Conclusion 

Details of the physical phenomena involved in two-phase flow are elaborated upon in this chapter. 

Firstly, the root of surface tension is explored, which arises from the interactions between the atomic 

forces of a liquid. Its appearance in two-phase flow and the mechanics behind it are explained, 

allowing for the calculation of surface tension forces. Subsequently, wettability is discussed, defined 

as the force that arises between atoms of a solid surface, liquid, and gas. Since wetting behavior is 

rate-dependent, a mathematical dynamic contact angle, which varies based on the liquid's speed, is 

needed to represent wettability accurately. The dynamic contact angle are presented, with an outline 

of models attempting to calculate the actual contact angles of a liquid in various states (equilibrium, 

advancing, and receding). 

Such understanding is crucial for the development of models that accurately capture surface tension 

and wettability during the numerical development phase. 
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The actual method of solving two-phase flow numerically is detailed, along with the mathematical 

principles behind the scenes. The general equations governing two-phase flows and the numerical 

methods employed to solve them are discussed. 

3.1 Governing equations for incompressible two-phase flows 

In this study, a one-fluid set of Navier-Stokes equations for incompressible two-phase flow is used. 

The continuum conservation equation is: 

∇𝑢 = 0 (35) 

The momentum conservation equations can be written as: 

𝜌 [
𝜕𝑢

𝜕𝑡
+ ∇. (𝑢𝑢)] = −∇𝑝 + ∇[𝜇∇𝑢 + 𝜇(∇𝑢)𝑇] + 𝐹 + 𝜌𝑔 (36) 

where 𝑢 is the velocity, 𝑝 is the pressure, 𝑔 is the gravity and 𝐹 = 𝜎𝜅𝛿𝑠𝐧 is the surface tension force;  

𝜎 is the surface tension coefficient, 𝜅 and 𝐧 the surface curvature and the normal to the interface, 

respectively; δs is the Dirac function expressing the fact that the surface tension term is only 

concentrated at the interface. To solve Equation (36), it is necessary to know the viscosity 𝜇, density 

𝜌 and surface tension force of the liquids. Hence, an equation that can track the position of the 

interface over time is required. In this present study, the VOF-PLIC (VOF  Piecewise-Linear Interface 

Calculation) method [41–44] is used to describe the interface between the two fluids. 

3.2 Finite Volume Method 

In this study, the finite volume method is used to discretize the continuous equations and the flow 

variables are calculated and stored at the center of the cells. By applying the integral operator on 

Equation (36) in a single cell with the volume V as depicted in Figure (16), and then using the Green-

Gauss theorem, the continuous equations can be discretized. For example, by applying the Green-

Gauss theorem to the integral convection term, the new equation can be written as: 

∫ [∇. (𝑢𝑢)]𝑑𝑉 = ∫[𝑢(𝑢. �̂�)]𝑑𝑆
𝑆𝑉

 
(37) 
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Figure 19: Representation of the face center velocity on a control volume V 

where ∫  
𝑆

represents the integral on the face, �̂� is the normal vector on each face. Then Equation (37) 

can then be written as: 

∫[𝑢(𝑢. �̂�)]𝑑𝑆
𝑆

= ∑ ∫[𝑢𝑖(𝑢𝑖. �̂�𝑖)]𝑑𝑆𝑖
𝑆

𝑀

𝑖=1

 

(38) 

where M is the number of faces of the control volume. Equation (38) can be written as [45]:  

∑ ∫[𝑢𝑖(𝑢𝑖. �̂�𝑖)]𝑑𝑆𝑖
𝑆

𝑀

𝑖=1

= ∑[𝑢𝑓𝑖(𝑢𝑓𝑖. �̂�𝑓𝑖)]𝑆𝑖

𝑀

𝑖=1

 

(39) 

 Where 𝑢𝑓𝑖 is the face center velocity as shown in Figure 19. By doing the same for each term in 

Equation (36), this equation can be discretized totally.  

In Section 3.4, the description of how to solve these equations with the PISO algorithm [46] will be 

presented. 

3.3 Volume-of-fluid method 

When solving only the single-phase Navier-Stokes equation, an additional equation to identify the 

two fluids is added to the transportation indicator function to mark the fluids. There are many ways 

to define the indicator function depending on the method, such as the phase-field method or level-set 

method, but the VOF method is the most common, which is used in commercial and free CFD 

software such as Converge, Ansys Fluent, Star-CCM, and Basilisk [46–50]. 

In VOF method, the location of interface is implicitly tracking by this equation:  



50 

 

𝜕𝐶

𝜕𝑡
+ 𝑢. ∇C = 0 

(40) 

where 𝐶 is the void fraction which is defined in Equation (45). The density and the viscosity are 

updated as given below: 

𝜌 = 𝜌1𝐶 + 𝜌2(1 − 𝐶) (41) 

𝜇 = 𝜇1𝐶 + 𝜇2(1 − 𝐶) (42) 

The detail of construct 𝐶 can represent by a indicator function 𝐻(𝑥, 𝑡) defined as: 

𝐻(𝑥, 𝑡) = {
1             𝑖𝑓 𝑥 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑙𝑢𝑖𝑑 1,
0     𝑖𝑓 𝑥 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟 𝑓𝑙𝑢𝑖𝑑.

 
(43) 

As the assumption of immiscible and incompressible fluids is applied, the material derivative of 𝐻 is 

zero. The advection of indicator function can be described as:  

𝐷𝐻

𝐷𝑡
=

𝜕𝐻

𝜕𝑡
+ ∇(𝑢. 𝐻) − 𝐻∇. 𝑢 = 0 (44) 

 By averaging the indicator function 𝐻 in each computational cell Ω, the average volume fraction in 

the cell 𝑖 is 𝐶𝑖. The indicator function 𝐻 and the void fraction function 𝐶 are illustrated in Figure 20; 

𝐻 function has only the value 0 or 1 while the 𝐶 function can have a value between 0 and 1: 

𝐶𝑖(𝑡) =
1

𝑉
∫ 𝐻(𝑥, 𝑡)𝑑𝑉

 

Ω

 (45) 

where V is the volume of the cell 𝑖. By integrating Equation (44) in the computational cell 𝑖 and 

using Equation (45), one finds: 

𝑉
𝜕𝐶𝑖(𝑡)

𝜕𝑡
+ ∫ (𝑢. 𝑛)𝐻(𝑥, 𝑡)

 

Γ

𝑑𝑆 = ∫ 𝐻∇. 𝑢𝑑𝑉
 

Ω

 (46) 
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Figure 20: Illustration of VOF method. The indicator function field is on the left. The void fraction 

field is on the right [51] 

Finally, the Equation (46) in time  ∆𝑡 = 𝑡𝑛+1 − 𝑡𝑛 can be integrated, and for each direction:  

(𝐶𝑖
𝑛+1 − 𝐶𝑖

𝑛) = −Φ̃𝑖+1/2 + Φ̃𝑖−1/2  + 𝐶𝑖
𝑛(u𝑖+1/2 − u𝑖−1/2) (47) 

Where subscript 𝑖 + 1/2  and 𝑖 − 1/2 indicate the right face and the left face of the computational 

cell, respectively. To solve Equation (47), the calculation of the flux term Φ̃ is needed, defined as the 

amount of 𝐶 across the face during time Δt. The PLIC method is used to estimate the flux terms 

accurately by calculated the position of interface in the calculated cell.  

3.3.1 PLIC method  

The PLIC method is the method used to reconstruct the interface to get the fluxes. There are four 

steps to do:  

Estimate the normal orientation 𝒏 = 𝑛1, 𝑛2, 𝑛3. 

Construct the surface with the plane equation:  

𝑛1𝑥 + 𝑛2𝑦 + 𝑛3𝑧 + 𝑑 = 0.  (48) 

Determine 𝑑 from normal vector and void fraction 𝐶. 

Solve the void fraction equation. 

 

H function C function
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Step 1: Estimate the normal orientation 

Several algorithms have been developed to calculate the normal to the interface. In 1984, Young [52] 

developed a finite-difference method. For simplicity, the method below is detailed for a 2D mesh, 

where each coordinate is represented by two indices 𝑖, 𝑗 (Figure 21). The method can easily be 

extended to 3D. 

 

Figure 21: 2D mesh example used to estimate normal vector 

In this method, Young estimates the normal vector 𝒏 as a gradient:  

𝒏=∇ C (49) 

As highlighted in Figure 21, the normal vector 𝒏 is evaluated at each node of the mesh. For instance, 

the two components of the normal vector at the top-right node of cell i (blue point in Figure 21) are 

calculated as: 

𝑛𝑥:𝑖+1/2,𝑗+1/2=−
1

2ℎ
(𝐶𝑖+1,𝑗 − 𝐶𝑖,𝑗 + 𝐶𝑖+1,𝑗+1 − 𝐶𝑖,𝑗+1) (50) 

where ℎ is cell side and similarly: 

𝑛𝑦:𝑖+1/2,𝑗+1/2=−
1

2ℎ
(𝐶𝑖,𝑗+1 − 𝐶𝑖,𝑗 + 𝐶𝑖+1,𝑗+1 − 𝐶𝑖+1,𝑗) (51) 

The normal vector at the cell center is obtained by averaging the value of four nodes as:  

𝒏𝑖,𝑗 =
1

4
(𝒏𝑖+1/2,𝑗+1/2 + 𝒏𝑖+1/2,𝑗−1/2 + 𝒏𝑖−1/2,𝑗+1/2 + 𝒏𝑖−1/2,𝑗−1/2) 

(52) 

Young’s method is robust, but it is not as accurate as the Centered-columns scheme described below. 

The Centered-columns difference method consist of summing the void fraction in each direction to 

define the height function (ℎ𝑥 = 𝑓(𝑦) and ℎ𝑦 = 𝑔(𝑥) for 2D case). For example, in Figure 22(a) and 

n
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(b), the heights ℎ𝑦𝑖−1
 and ℎ𝑥𝑗+1

 are defined as: ℎ𝑦𝑖−1
= Δ𝑦 ∑ 𝐶𝑖−1,𝑗+𝑘

1
𝑘=−1 , ℎ𝑥𝑗+1

=

Δ𝑥 ∑ 𝐶𝑖+𝑘,𝑗+1
1
𝑘=−1 .  

Then the height function in “i” cell is approximated via a linear equation. For example, the height 

function of the “i” cell in the vertical direction ℎ𝑦𝑖
= 𝑓(𝑥) can be written as: 

𝑠𝑔𝑛(𝑛𝑦)ℎ𝑦𝑖
= 𝑛𝑥𝑥 + 𝑙 (53) 

where 𝑙 is the constant number of a linear line, 𝑛𝑥 is the slope of the straight line that can be calculated 

as: 

𝑛𝑥 = −
1

2Δ𝑦
(ℎ𝑦𝑖+1

− ℎ𝑦𝑖−1
) = −

1

2
∑ (𝐶𝑖+1,𝑗+𝑘 − 𝐶𝑖−1,𝑗+𝑘)

1

𝑘=−1

 

(54) 

 In Equation (53) the sign of the 𝑛𝑦 must be calculated explicitly to know the direction of the normal 

vector because the information on the location of the fluid is lost when summing the void fraction. 

And the distant 𝑙 is neglected since it only needs to calculate the normal vector.  

Similarly, the height function in the horizontal direction ℎ𝑥𝑥 = 𝑓(𝑥) can be linearly approximated 

by: 

𝑠𝑔𝑛(𝑛𝑥)ℎ𝑥𝑖
= −𝑛𝑦𝑦 + 𝑤 (55) 

And compute the normal vector 𝑛𝑦 based on the horizontal height function as  

𝑛𝑦 = −
1

2Δ𝑥
(ℎ𝑥𝑖+1

− ℎ𝑥𝑖−1
) = −

1

2
∑ (𝐶𝑖+𝑘,𝑗+1 − 𝐶𝑖+𝑘,𝑗−1)

1

𝑘=−1

 

(56) 

 The interface in cell 𝑖 is now characterized by two different normal vectors. To select between the 

two normal vectors, as shown in Figure 22 (a), when a line cuts two opposite sides of the stencil 3x3, 

it gives the correct slope. In this case, in the vertical direction, the interface cuts the left and the right 

side of the stencil, while in the horizontal direction, the interface does not cut the top and the bottom 

of the stencil. Hence, in this case, the normal vector estimate based on the vertical direction is more 

accurate. On the contrary, in Figure 22 (b), the normal vector should be estimated using the horizontal 

direction height function. Thus, the appropriate normal vector for each cell is chosen according to the 

following criteria: 
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|𝑛| = 𝑚𝑖𝑛(⌈𝑛𝑥⌉, ⌈𝑛𝑦⌉) (57) 

But there are many cases when the line does not cut the two opposite sides in both directions, as 

shown in Figure 22 (c). It especially appears for a coarse mesh, that is the drawback of this method. 

 

Figure 22: Volume fraction used to calculate height. (a) column-wise. (b) row-wise. (c) an off-

centered scheme 

To benefit from the advantages and limit the disadvantages of both Young’s scheme and the Centered-

columns scheme, Aulisa et al. [53] combined the two methods and named it Mixed Youngs-centered 

(MYC) method. In this combined method, the normal vector is calculated according to both Young’s 

and Centered-columns method for each direction. Then, the normal vector is chosen for each direction 

according to the criterion as follows: 

|𝑛| = 𝑚𝑖𝑛(⌈𝑛𝑥1⌉, ⌈𝑛𝑥2⌉) (58) 

 Where 𝑛𝑥1 is the slope based on Young’s method and 𝑛𝑥2 is the slope based on the Centered-columns 

method.  

Step 2: Determination of 𝐝 in Equation (48) 

When the normal vector 𝒏 is specified, the constant value 𝑑 in Equation (48) needs to be calculated. 

The key idea to determine 𝑑 is to represent the grey area in 2D or volume in 3D by a function of 𝑑 

and then use the root-finding algorithm such as Bisection, Newton's method, Steffensen's method to 

derive the 𝑑.  

(a) (b) (c)



55 

 

 

Figure 23: Geometrical basic for 2D and 3D for finding the d parameter of Equation (48). a) The 

“cut area” is the gray region inside the rectangular cell ABCD. b) The cut volume is the shaded 

volume inside the grid cell under the polygon ABCD [53,54]. 

For example, in 2D, the area of ABFGD represent as a function of 𝑑 that equal Δ𝑥Δ𝑦𝐶 then the 

equation can written as: 

Δ𝑥Δ𝑦𝐶 =
1

2𝑚𝑥𝑚𝑦
[𝑑2 − 𝐹2(𝑑 − 𝑚𝑥Δ𝑥) − 𝐹2(𝑑 − 𝑚𝑦Δy)] 

(59) 

 Where Δx, Δy is the size of the cell, 𝑚𝑥, 𝑚𝑦 is normal vector determined in the section above, C is 

the void fraction, 𝐹2 = 𝑧2 when z > 0 and zero otherwise. More detail of this method, as well as for 

3D extension, can be found in the book of Tryggvason et al. [54]. 

Step 3: Interface advection 

Once the interface is constructed, the flux terms Φ̃𝑘+1/2, Φ̃𝑘−1/2 in Equation (47) can be derived, and  

using the Euler explicit scheme, and set �̃�𝑘 = 𝐶𝑘
𝑛: 

𝐶𝑘
𝑛+1 = −Φ̃𝑘+1/2 + Φ̃𝑘−1/2  + 𝐶𝑘

𝑛(u𝑘+1/2 − u𝑘−1/2 + 1) (60) 

 

3.3.2 Surface Tension Estimation (smooth void fraction) 

The calculation of the surface tension term of Equation (36) is based on the continuum surface force 

(CSF) model of Brackbill [55]: 

2D
3D

a) b)
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𝐹 = 𝜎𝜅𝛿𝑠𝐧 = 𝜎𝜅∇�̃� (61) 

 Where C̃ is a smooth void fraction (SVF) defined by Equation (62): 

�̃�(𝑥) =
1

ℎ3
∫ 𝛼(𝑥′)𝜑(

 

𝑣

𝑥′ − 𝑥)𝑑3𝑥′ 
(62) 

 and 

𝜑(𝑥) = 0 for |𝑥| ≥
ℎ

2
 

(63) 

The curvature 𝜅 of the interface is calculated as the divergence of the interface normal vector 𝑛: 

𝜅 = −∇. 𝑛 (64) 

 with 

𝑛 =
∇�̃�

|∇�̃�|
 

(65) 

3.4 PISO algorithm for two-phase flow 

Before entering the PISO algorithm, VOF advection equation is first solved as detailed in section 3.3. 

When the new C (volume fraction) field is obtained, density and viscosity are updated from Equation 

41 and 42. Then the momentum and continuity equations are solved using the PISO algorithm.  

In the PISO algorithm, the first step, also called the predictor step, consists in solving the momentum 

equation implicitly or semi-implicitly: 

𝜌𝑐
𝑛+1𝑢𝑐

∗ =  𝜌𝑐
𝑛𝑢𝑐

𝑛 + 𝐻∗ − Δ𝑡𝜌𝑐
𝑛+1 ⟨

∇𝑃

𝜌𝑓
⟩

𝑓→𝑐

𝑛

+ Δ𝑡𝐹𝑛 
(66) 

 where the superscript 𝑛 and 𝑛 + 1 represent the current and next timestep, respectively. The 

superscript  ∗ represents the intermediate most up-to-date field values. The subscripts 𝑐 and 𝑓 indicate 

the cell-center and face-center, respectively. 𝐻∗ represents the convection, diffusion, and source 
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terms. The angle brackets operator 〈 〉 𝑓→𝑐 stands for an averaging of face-center quantity to cell-

center. 𝐹𝑛 is the surface tension force. 

When the new predictor center velocity field is updated in Equation (66), the mass fluxes at the cell's 

faces need to be evaluated since it is used in Poisson’s equation. But in our code, all the transported 

quantities are collocated at the center of the cell. Hence when using the collocated quantities, there is 

a decoupling phenomenon between pressure and velocity. This problem can result in fluctuations in 

the pressure and velocity solution that appear in the checkboard pattern.  

However, in 1983 Rhie and Chow proposed a new algorithm to eliminate this problem while 

maintaining collocated variables. This scheme consists in approximating the effect of the staggered 

grid but leaving the quantities at the center of the cell. The first term in the RHS of Equation (67) is 

the average velocity at the cell center. The second and third term of Equation (67) correspond to the 

pressure gradient term. 

𝑢𝑖+1/2
∗ =

𝑢𝑖
∗ + 𝑢𝑖+1

∗

2
−

𝑑𝑡

𝜌
(

𝑃𝑖+1 − 𝑃𝑖

𝑑𝑥
) +

𝑑𝑡

2𝜌
(

𝑃𝑖+1 − 𝑃𝑖−1

2𝑑𝑥
+

𝑃𝑖+2 − 𝑃𝑖

2𝑑𝑥
) (67) 

When the mass fluxes at the cell faces are evaluated, the new pressure is calculated as: 

∇. (
∇𝛿𝑝𝑐

∗

𝜌𝑐
𝑛 ) = ∇.

𝑢𝑖
∗

Δ𝑡
 (68) 

Where 𝛿𝑝𝑐
∗ = 𝑝𝑖

∗ − 𝑝𝑖
𝑛. Once the pressure is solved, the velocity can be updated according to Equation 

(69) 

𝜌𝑐
𝑛+1𝑢𝑐

∗∗ =  𝜌𝑐
𝑛𝑢𝑐

∗ − Δ𝑡𝜌𝑐
𝑛+1 ⟨

∇𝛿𝑝𝑐
∗

𝜌𝑓
⟩

𝑓→𝑐

𝑛

 (69) 

when velocity is updated, the other transport equations are solved. If necessary, based on the 

convergence criteria, the correction processes can be repeated, where the convergence criteria based 

on a tolerance value is represented in Equation (70): 

|𝑝∗ − 𝑝𝑛|

|𝑝∗|
≤ 𝑝𝑡𝑜𝑙 (70) 

with 𝑝𝑡𝑜𝑙 is the pressure tolerance value prescribed in the input files. So the PISO algorithm can be 

summarized as follow:  
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1. Solve VOF advection Equation (60). 

2. Solve the discretized momentum equation to compute an intermediate velocity field Equation 

(66). 

3. Compute the mass fluxes at the cell's faces using Rhie and Chow scheme Equation (67) 

4. Solve the pressure Equation (68) 

5. Correct the velocities on the basis of the new pressure field using Equation (69) 

6. Repeat from 3 depending on the prescribed number of iterations and on convergence criteria. 

Go to the next time step and repeat from 1. 

3.5 Conclusion 

There's a deeper dive into the numerical details required to solve 2-phase flow as utilized in this study. 

The discussion begins with the Navier-Stokes equation, detailing its general form and the 

discretization process. Subsequently, the Volume of Fluid method is explained in depth, given its 

significance in solving two-phase flow. Within the VOF discussion, the process of solving the VOF 

equation using the PLIC method is elaborated on, as well as how surface tension is estimated and 

incorporated into the Navier-Stokes equation to complete the mathematical system. The PISO 

algorithm is also presented to show the procedure for solving the discretized Navier-Stokes equation. 

This chapter offers a comprehensive understanding of the numerical steps, from the raw equation, 

discretization, and incorporation of equations for 2-phase flow, to the solving process.  

This foundation will be employed for setting up and analyzing 2-phase flow in following chapter.
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The actual simulation of pre-wet film flow over a corrugated surface is presented (the surface 

parameter represents the corrugated surface of end-winding). Both the hydrodynamics and heat 

transfer aspects are simulated and analyzed in detail. 

4.1 Introduction 

Heat transfer in liquid film flow is a complex phenomenon that plays a crucial role in various 

engineering applications, such as direct cooling of end windings in electric motors, heat exchangers, 

and electronics cooling [7,56–58]. The efficiency of these systems is significantly influenced by 

factors such as the geometry of the flow channel, fluid properties, and flow conditions.  

The performance, reliability, and longevity of electric motors depend heavily on efficient cooling 

mechanisms, particularly for end windings, which are subject to high temperatures during operation 

[7,57,59]. Direct oil cooling, where some part of the oil flows over the coil surface in a thin film, is 

an effective method for managing the temperature of end windings. However, the coil surfaces often 

exhibit complex geometries (Figure 1), necessitating a comprehensive understanding of the 

hydrodynamic and heat transfer properties of the liquid film flow for effective cooling. 

At low Reynolds numbers, the flow in these channels is often laminar and can be modeled as a thin 

film flowing over the channel walls [60]. In this study, the effects of varying the Reynolds and Prandtl 

number on the heat transfer characteristics of a thin film flowing over flat and corrugated surfaces are 

investigated. The Reynolds number is a dimensionless quantity that describes the relative importance 

of inertial forces to viscous forces in a fluid flow, while the Prandtl number is a dimensionless quantity 

that describes the relative importance of momentum and thermal diffusivities. The corrugated 

surfaces used in this study have a corrugated wall configuration. It is based on the size of the actual 

size of American Wire Gauge (AWG). 

This section focusses on the pre-wetting surface, a phenomenon that frequently occurs when direct 

oil is injected onto the coil surface. Investigating the pre-wetting surface is crucial for understanding 

the behavior of the liquid film flow and its impact on heat transfer performance. By examining the 

properties of pre-wetted surfaces and the associated hydrodynamics and heat transfer characteristics, 

valuable information on the characteristics of film and heat transfer can be obtained to help engineers 

estimate the best system for increasing the effectiveness of direct oil cooling in electric motor end 

windings (Figure 25). 

The results of this study are used to gain the understanding of the interactions occurring among flow 

behavior, surface geometry, heat transfer, and fluid properties in such configurations. This 
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understanding is crucial for implementing a new thermal wall law (a PhD project in our department) 

for both high and low Pr numbers. 

 

Figure 24. The experiment of Bennion  film flow over end winding [57] 

 

Figure 25: End winding of real electric motor [57] 

4.2 Liquid film flow, state of the art 

In order to understand prior results and identify potential knowledge gaps related to film flow over 

corrugated surfaces and heat transfer, a detailed review of relevant studies is provided in this section. 

Wang and Chen [61] numerically investigate forced convection in a single-phase flow through a 

periodic array of wavy-wall channels. They find out that the peaks of skin-friction coefficients and 

End Winding
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Nusselt numbers occur near the peak of the wavy wall. As the wavy amplitude wavelength ratio (𝑅𝛼) 

and Reynolds number increase, the local Nusselt number notably increases in the converging section 

of the wavy-wall channel, while showing a small change in the diverging section (Figure 2). This 

suggests that corrugated surfaces are effective heat transfer devices at significantly larger amplitude-

wavelength ratios, particularly at higher Reynolds numbers. However, it's crucial to indicate that this 

understanding is based on a single-phase flow model, thereby not accounting for the critical 

parameters intrinsic to two-phase flows such as the capillary number and surface tension forces. 

 

Figure 26. Distribution of Nusselt number at 𝑃𝑟=6.93; a) 𝑅𝑒=500; b) 𝑅𝛼 = 0.2 [61] 

Similarly, Mehta et al. [62] studied the impact of wall amplitude on the thermal and hydrodynamic 

characteristics of laminar flow in a corrugated channel. Adopting the same methodological approach 

as Wang and Chen, they manipulated the channel topologies by progressively increasing and 

decreasing the corrugation amplitude. The Reynolds number in their study varied from 5 to 200. Their 

findings highlight that the average Nusselt number exhibits independence from geometric variation 

at very low Reynolds numbers. However, a significant difference from this trend is observed at a 

Reynolds number of 200. In this case, the average Nusselt number exhibits a substantial increase, 

ranging from 10% to 40%, depending upon the geometrical topology of the channel.  

Zhao and Cerro [63] experimentally provided a detailed exploration of fluid dynamics on the behavior 

of liquid films on complex surfaces. They indicated an interesting insight into the behavior of liquid 

films at different ratios of film thickness to solid surface amplitude (𝑅𝛿). For large ratios (𝑅𝛿  >  1), 

the film has a nearly flat surface, while at ratios (𝑅𝛿  <  1), the film starts following the contour of 

the solid surfaces (Figure 27). 

b)a)

0
0.1
0.2
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𝑅𝛿 =
𝛿𝑓𝑖𝑙𝑚 𝑡ℎ𝑒𝑜𝑟𝑦

𝐻
 (71) 

 

Where 𝛿𝑓𝑖𝑙𝑚 𝑡ℎ𝑒𝑜𝑟𝑦 is film thickness by Nusselt theory, H is the depth of the corrugation or amplitude 

of corrugation.  

 

Figure 27. Film thickness on a surface; a) 𝑅𝛿 = 2.29, the free surface is nearly flat b) 𝑅𝛿 = 0.258, 

the free surface partially follows the contour of the wall [63] 

Malamataris and Bontozoglou [64] carried out numerical tests of viscous flow along an inclined wall 

with varying wall corrugation in the laminar flow regime, similar to the test of Zhao and Cerro [63]. 

The study finds that the oscillations of the free surface depend on the wall geometry and liquid surface 

tension. They also indicated that the formation of a recirculation region corresponds to the highest 

flow rates. However, these are not adequately described due to low mesh resolution and the highly 

distorted finite element mesh in that region. Similaly, Trifonow [65] numerically studies film flow 

over a corrugated channel and concludes that while increasing Re, the free surface flattens and 

becomes parallel to the flow direction. And the average film thickness is away higher than the film 

thickness calculated by Nusselt theory. Another numerical test about high-viscosity fluids falling 

a) b)
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down the vertical wavy wall was carried on by Chen et al. [66]. He points out that the free interface 

becomes flatter and film thickness is thicker when the viscosity increase.  

 

Figure 28. The effect of film thickness and corrugated profile on the formulation of circulation [67] 

Wierschem and Aksel [67] studied the formulation of vortices in film flow over strong corrugated 

bottom profiles at low Reynolds numbers. This study provides some interesting insights into the 

behavior of vortices in gravity-driven films on sinusoidal bottom profiles. They clearly indicated that 

both the waviness (ratio of wave amplitude/wavelength) of the bottom profile and the film thickness 

play significant roles in the formation of these vortices. Figure 28 a), b), c) show the vortices that 

appear when the film thickness increase, and when the waviness is very high, the second vortex appear  

(Figure 28 d), e)).  A follow-up experiment [68] was conducted regarding film flow over intensely 

undulated substrates. The study focused on the impact of inertia on the formation of circulation zones 

within the channel. The findings revealed that the size of eddies expanded with an increase in 

a) Film thickness 1.6mm b) Film thickness 1.8mm c) Film thickness 12mm

d) High waviness e) Vortex size
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Reynolds number. However, the influence of inertia force in low Reynolds number laminar flow was 

relatively insignificant. 

Scholle et al. [69] applied a novel numerical approach to investigate film flows over corrugated 

surfaces. They highlighted numerically that conventional methods such as the lubrication 

approximation and perturbation method were not adequate for channels with strong undulation. They 

introduced an innovative analytical method that utilized the representation of Stokes equation 

solutions in the form of holomorphic functions. Their results exhibited a strong correlation with their 

experimental findings. 

There are other studies on film flow and heat transfer over tubes [70–75]. They intensively studied 

the structure of flow hydrodynamic as well as heat transfer phenomena around the hot tube (Figure 

29). Surprisingly, there is a lack of research specifically focusing on the heat transfer of film flow 

over corrugated surfaces. In this study, the comprehensive research on the film flow over these 

channels is undertaken, specifically looking into the characteristics of heat transfer. 

 

Figure 29. Hydrodynamic and heat transfer of film flow over a tube; a) [75]; b) [74] 

4.3 Numerical setup and validation 

This section discusses the computational setup, numerical methods, and validation of the VOF PLIC  

method used in the study. The primary focus is on ensuring the accuracy and reliability of the 

simulation results for both flat and corrugated surfaces. 

4.3.1 Computational domain and boundary conditions 

The simulation study utilized two 2D geometries, namely a flat channel and a corrugated channel. 

The flat channel is characterized by a rectangular inlet section with a length of 1P and a high of 0.64P, 

a) b)
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which led to a downstream rectangular section with a length of 49P and a high of 1.96P. On the other 

hand, the corrugated channel shares the same geometrical dimensions as the flat channel, but with a 

corrugation pattern based on American Wire Gauge 18, with a wire radius of 0.536P and a corrugation 

wavelength of 𝑃=1.02mm. The corrugation also featured a small radius at the lowest point rounded 

by a radius of 0.0745P (Figure 30 a)). 

 

Figure 30. a) Schematic view of the flat and corrugated channel; b) Test surface [59] and the actual 

electromagnetic coil of an electric motor. 

 

Figure 31. Schematic view of applied boundary conditions of the flat and corrugated channel 

y
x

a) b)
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The boundary conditions for the fluid flow simulation are illustrated in Figure 31. The initial domain 

is pre-wetted by a liquid, while the rest of the domain is filled with air. The inlet velocity varies 

depending on the Reynolds number, but all the cases are still laminar flow, while the inlet temperature 

was set to 343 K. The outlet was subjected to a constant pressure boundary condition, while the top 

and side walls were set to open field. The walls of the inlet rectangle were set to no-slip adiabatic 

boundary conditions. Finally, the bottom wall was set to a constant temperature of 373 K. 

For the properties of the liquid, the automatic transmission oil at 343 K listed in Table 2 was used, 

while the air properties were set to those of air at a pressure of 1 atm and a temperature of 300 K. 

Table 2: Boundary conditions and liquid properties 

𝝆𝒇 𝒄𝒑,𝒇 𝝁𝒇 𝒌𝒇 𝑻𝒉𝒐𝒕_𝒘𝒂𝒍𝒍 𝑻𝒊𝒏𝒑𝒖𝒕 𝑷𝒓 𝑹𝒆 

803.6 

𝑘𝑔/𝑚3 

2247.28 𝐽

/(𝑘𝑔 ∗ 𝐾) 

0.00770027 

𝑁 ∗ 𝑠/𝑚^2 

0.13 

𝑁 ∗ 𝑠/𝑚^2 
373𝐾 

 
343𝐾 

6.65-133.1 

- 

17-101.8 

- 

 

4.3.2 Mesh generation 

In this section, a structured mesh used to simulate the bulk region of two different geometries. The 

mesh generation process for the flat and corrugated channel was described. Three different mesh 

(Mesh flat 1, Mesh flat 2, Mesh flat 3) and (Mesh corrugated 1, Mesh corrugated 2, Mesh corrugated 

3) configurations were created and illustrated in Figure 32. 

To avoid the adverse effects of irregular meshes on the wall and to improve the accuracy of heat flux 

calculations, the denser mesh was applied along the wall for flat channel and the inlaid mesh method 

(Figure 32) was employed for the heat wall boundary. The inlaid mesh method ensures that the 

distance from the center of the boundary cell to the wall is nearly constant and as heat flux depends 

on 𝑇𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡, it can increase the reliability of heat flux calculation. 

For the first mesh configuration, Mesh Flat 1, the base grid size was established at 12.5 𝜇𝑚. In the 

second configuration, Mesh Flat 2, the base grid size was halved and maintained at 6.25 𝜇𝑚. Finally, 

in Mesh Flat 3, the base grid size was kept constant, but the grid size at the wall was reduced by half 

to 3.125 𝜇𝑚. 

In terms of the corrugated mesh configurations, Mesh Corrugated 1 had a base grid size and an inlaid 

mesh size both set at 12.5 𝜇𝑚. For Mesh Corrugated 2, the inlaid mesh size was held steady at 6.5 
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𝜇𝑚 while the base grid size was halved. In Mesh Corrugated 3, the inlaid layer was further reduced 

to 3.125 𝜇𝑚.  

Given the complexity of the mesh in the corrugated channel, it requires more meticulous examination. 

The corrugated mesh quality was first verified by the estimation of the thermal boundary layer and 

hydrodynamic boundary layer. As mentioned earlier, for laminar flow, the hydrodynamic layer for 

the open channel can be approximated as follow [76]: 

𝛿 =
4.92𝑥

√𝑅𝑒𝑥

 (72) 

where 𝑥  represents the distance from the origin in the x-direction and 𝑅𝑒𝑥 is the Reynolds number 

based on the characteristic length of 𝑥. 

 

Figure 32. Three different mesh topologies for flat and corrugated channel 

Mesh corrugated 1
Base grid=12.5 
Inlaid =6.25

Mesh corrugated 2
Base grid=6.25 
Inlaid =6.25

Mesh corrugated 3
Base grid=6.25 
Inlaid =3.125

Corrugated channel

Flat channel

Mesh flat 1
Base grid=12.5 

Mesh flat 2
Base grid=6.25 

Mesh flat 3
Base grid=6.25 
Wall mesh=3.125 
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The thermal boundary layer 𝛿𝑡 is calculated based on the hydrodynamic boundary layer as:  

𝛿𝑡 = 𝛿𝑃𝑟−
1
3 (73) 

Using these equations, one can estimate the number of mesh cells that fall within the thermal boundary 

layer thickness at different positions along the channel. The worst-case scenario is when the Reynolds 

and Prandtl numbers are at their highest values, which means that 𝛿, 𝛿𝑡 are thinner and more mesh 

cells are needed to resolve them. 

The given information states that in this worst-case scenario, 92% of the domain has a number of 

mesh cells inside 𝛿𝑡 higher than 24.64. This suggests that the mesh quality is adequate for resolving 

the thermal boundary layer and hydrodynamic boundary layer in the simulation. 

Subsequently, the numerical results in Section 0 were studied to ensure that the mesh was of sufficient 

quality and density to accurately capture the flow and thermal features of interest. 

4.3.3 Validation 

In order to estimate accuracy, balance between the computational resource, the time convergence, 

grid independence, validation tests war carried out and are presented hereafter 

(Figure 33). Therefore, a simulation time of 0.5 s was chosen as a fixed time for all other 

simulations.

 

Figure 33. Time convergence study test of the corrugated channel (Mesh corrugated 3) at 𝑅𝑒 =

101.8, 𝑃𝑟 = 133; a) Outlet mass flow rate; b) Average heat flux density 

a) b)
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Time convergence study 

To validate the simulation time, the simulation with the highest Reynolds and Prandtl number in Mesh 

corrugated 3 were selected because it represents the most challenging scenario for the simulation due 

to the thin thermal boundary layer.  

The simulation achieved convergence at Time = 0.2 s for mass flow rate and 0.3 s for average heat 

flux density (Figure 33). However, the simulation was run until Time = 0.5 s to ensure strict 

convergence 

Grid dependency tests and validation 

Performing grid independence tests is crucial in terms of the reliability and accuracy of the outcomes 

derived from CFD simulations. The objective of these tests is to establish whether the solution 

produced by a CFD simulation remains unaffected by alterations in the resolution of the 

computational grid employed.  

The mesh independence test outcomes for the corrugated channel at 𝑅𝑒 = 101.8 and 𝑃𝑟 = 133 are 

exhibited in Figure 34 and Figure 35, for the three distinct meshes studied both flat and corrugated 

channel. The reason for selecting the highest 𝑅𝑒 and 𝑃𝑟 within the test range of this study is due to 

the thinnest thermal boundary layer; if validated for this case, it should be considered valid for all 

other cases in the study. Figure 34 shows the average wall stress and average heat flux, while Figure 

35 highlights the local changes, specifically wall stress magnitude and local heat flux, at positions 

𝑃 = (24 − 26). (Wall stress is determined by multiplying the dynamic viscosity with the velocity 

gradient perpendicular to the wall. Heat flux is computed by multiplying the thermal conductivity 

with the temperature gradient at the wall.) 

In reference to Figure 34, the flat channel exhibits minimal dependence on mesh of this size, 

indicating that increasing the mesh doesn't significantly affect convergence (as shown in Figure 11 a) 

and b)). In contrast, for the corrugated channel, the situation is noticeably different. The average wall 

stress demonstrated convergence between Mesh corrugated 2 and Mesh corrugated 3, with a minimal 

difference of 0.04%. Likewise, the average heat flux indicated convergence from Mesh corrugated 2 

to Mesh corrugated 3, with a difference of 0.4% (the average is calculated along the heated wall; 

henceforth, any mention of ‘average’ refers to this calculation). These findings validate the mesh's 

appropriateness for calculating average wall stress and average heat flux values. 
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Figure 34. Mesh independence test of corrugated channel at 𝑅𝑒 = 101.8, 𝑃𝑟 = 133; a) Average 

wall stress of flat channel; b) Average heat flux of flat channel; c) Average wall stress of corrugated 

channel; b) Average heat flux of corrugated surfaces 

In Figure 35, the local impact of the mesh is emphasized at dimensionless positions 𝑃 = (24 − 26). 

Similarly, the flat channel achieves convergence effortlessly at this mesh scale. The local wall stress 

magnitude (Figure 35a) doesn't exhibit substantial dependency on the mesh configuration, although 

there's a minor deviation in the case of Mesh Corrugated 1. In contrast, the local heat flux (Figure 

35b) displays considerable sensitivity to the mesh arrangement, especially at the coarse mesh of the 

corrugated channel. The local heat flux deviates notably from the outcomes observed between Mesh 

corrugated 1 and Mesh corrugated 2. Convergence of Mesh corrugated 2 and Mesh corrugated 3 is 

obtained. 

Considering these findings, Mesh flat 3 and Mesh corrugated 3 has been chosen as the optimal mesh 

for all subsequent simulations, as it ensures sufficient convergence for both global and local variables. 

  b)

c) d)
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Figure 35. Mesh independence test of corrugated channel at 𝑅𝑒 = 101.8, 𝑃𝑟 = 133 for local 

variables from 𝑃 = (24 − 26); a) Local wall stress magnitude; b) Local heat flux 

Validating CFD results with Nusselt's theory was conducted by many researchers to check the 

accuracy of the employed numerical simulation. As mentioned earlier, Nusselt's theory provides an 

analytical solution for the laminar flow of a thin liquid film along a smooth plate, which can be used 

to predict the film thickness.  

To validate numerical simulation, the film thickness is first calculated using Nusselt's theory for the 

laminar flow of a thin liquid film:  

𝛿𝑓𝑖𝑙𝑚 = (
3𝜐𝑓

2𝑅𝑒

𝑔
)

1
3

 (74) 
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where 𝛿𝑓𝑖𝑙𝑚 is the film thickness, 𝜐𝑓 is the fluid kinematic viscosity, and g is the acceleration due to 

gravity. 

 

Figure 36.  Film thickness of numerical simulation and Nusselt theory 

The calculated film thickness is subsequently compared to the film thickness derived from the 

Computational Fluid Dynamics (CFD) simulations. Figure 9 illustrates the comparison between the 

film thickness predicted by Nusselt's theory and that obtained from the CFD simulations across 

various Reynolds numbers. As the film thickness develops throughout the channel, only the section 

from 𝑃=30 to 𝑃=50 is considered to retrieve the average film thickness value. 

The results demonstrate that the numerical simulation outcomes align well with Nusselt's theory for 

low Reynolds numbers. However, as the Reynolds number increases, the discrepancies between the 

CFD simulation outcomes and Nusselt's theory become more pronounced. This can be attributed to 

the simplifying assumptions in Nusselt's theory, such as assuming uniform flow and disregarding the 

effects of waves and instabilities. Another possible reason is that the channel might not be long 

enough, causing the film to not fully develop at higher Reynolds numbers, which could result in larger 

errors for the average film thickness. 

4.4 Influence of the geometry  

4.4.1 Film flowing over a flat plate 

To start with, let’s consider a fundamental study of fluid flow over a flat surface. The primary aim of 

this section is to develop a comprehensive understanding of the film flow dynamics along a flat plate. 

This fundamental knowledge will enable us and engineers to get essential fluid dynamics concepts 
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such as the evolution of the boundary layer and the heat transfer. This is a critical study that show the 

behavior of fluids near solid boundaries, the influence of viscous forces on flow patterns, and the 

associated heat transfer properties. 

❖ Flow and heat transfer analysis 

As presented in Section 4.3, the Nusselt theory is not very accurate when Reynold is higher than 20, 

due to instability of the interface. And to detail the film flow over a flat plate, a reference case at 𝑃𝑟 =

133 is presented first. 

This section aims to investigate the behavior of a liquid film flowing over a flat plate. Specifically, 

analyzing the thickness distribution, and thermal boundary layer. Figure 37 shows the evolution of 

film thickness, hydrodynamic boundary thickness and thermal boundary layer in a flat channel at 

𝑅𝑒 = 67.8 and 𝑃𝑟 = 133. The film thickness equals 0.65 𝑚𝑚 at 𝑃 = 0, which is influenced by the 

inlet conditions. As the flow progresses, the film thickness gradually increases. The hydrodynamic 

boundary layer develops and extends towards the free interface at 𝑃 around 5 𝑚𝑚. 

On the other hand, the thermal boundary layer is thinner than the hydrodynamic boundary layer 

throughout the channel. This observation indicates that heat transfer primarily occurs within the liquid 

phase, and the effect of the interface between the liquid and the surrounding environment is negligible. 

 

Figure 37. The evolution of film thickness, hydrodynamic boundary thickness and thermal 

boundary layer in a flat channel at 𝑅𝑒=67.8 and 𝑃𝑟=133 

Figure 38 shows the influent of Reynold's number on the average heat flux of flat chanel. As the 

Reynolds number increase, the average heat flux increase. The average heat flux gradually increases 

Fully developed hydrodynamic location

Fully developed thermal 
boundary location
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from around 12500 [𝑊/𝑚2] at Re =17 to around 17500 [𝑊/𝑚2] at Re =101.8. It indicates in this 

test of Reynold range, when Re increases, the heat flux nearly linearly increases as well. 

 

Figure 38. Average heat flux of flat channel 

❖ Nusselt correlation for flat channel 

The Nusselt correlation serves as a critical tool for quantifying convective heat transfer, streamlining 

complex heat transfer problems, and conserving time and resources. This proves particularly 

beneficial in scenarios involving a flat channel, such as when conducting experimental tests for the 

cooling of electric motors. 

 

Figure 39. Velocity boundary layer development on a flat plate [77] 
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For open channel heat transfer single phase flow, Incropera and DeWitt [77] elaborate on the 

nondimensionalization of the boundary layer equations., introducing dimensionless numbers such as 

Reynolds, Prandtl, and Nusselt numbers to represent the local and average convection coefficients. 

These dimensionless numbers are used to provide a general form for the heat transfer problem, such 

as the function of the local Nusselt number depending on position, local Reynolds and Prandtl 

number: 

𝑁𝑢𝑥 = 𝑓(𝑥, 𝑅𝑒𝑥, 𝑃𝑟)  (75) 

 

And by using an analytical method, Incropera and DeWitt [77] introduce the local Nusselt number 

as: 

𝑁𝑢𝑥 = 0.332𝑅𝑒𝑥

1
2𝑃𝑟

1
3           𝑃𝑟 ≥ 0.6  (76) 

Where 𝑅𝑒𝑥 instead depend on inlet diameter. In this case, it depends on the position in the x direction 

of the flat plate.  

As shown in Figure 37, the thermal boundary layer, in this case, is thinner than the liquid interface 

and hydrodynamic boundary, which means that the heat transfer in this case only happens inside the 

liquid phase. Hence, by separating x in Equation 76, the new equation is as follows: 

𝑁𝑢𝑥 = 𝑎𝑥𝑏𝑅𝑒𝑐𝑃𝑟
1
3 (77) 

where 

𝑅𝑒 =
𝑑𝜌𝑓𝑢𝑓

𝜇𝑓
 (78) 

Here is the step-by-step procedure: 

Step 1: Local Nusselt number are calculated based on numerical results as reference:  

𝑁𝑢𝑥 =
ℎ𝑥

𝑘𝑓
 (79) 
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Step 2: From the numerical data of 𝑁𝑢𝑥, Re and Pr, the a,b,c parameters can be generated based on 

Equation (77). In this step, the a,b and c were calculated by linear regression method. The new 𝑁𝑢𝑥 

correlation estimated based on the data from numerical results as a=1.728, b=0.6, c=0.159: 

𝑁𝑢𝑥 = 1.728𝑥0.6𝑅𝑒0.159𝑃𝑟
1
3 (80) 

Step 3: Error Verification. 

Once the parameters have been generated, it is crucial to validate their fit with the numerical data. 

Figure 40 illustrates the discrepancy between the Nusselt numbers computed by the new correlation 

and the numerical results. It indicated that the Nusselt calculated by Equation (80) shows good 

agreement with numerical results. To quantitatively estimate the error between these data, error chart 

needs to be delivered. Figure 41 shows the error of Nu correlation compared with numerical results. 

The results suggest that the overall error is less than 10%, with the most significant deviation found 

around the initial region. This area likely corresponds to the location where the thermal boundary 

layer hasn't fully developed yet. This error check helps ensure the new correlation's accuracy and 

reliability. 

 

Figure 40. Comparison between the Nusselts calculated by new correlation and the numerical 

results 

numerical

equation 
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Figure 41. The error of Nu correlation compared with numerical results 

4.4.2 Effect of corrugation 

In this section, the case study 𝑅𝑒 = 67.8, 𝑃𝑟 = 133 is the boundary condition for both flat and 

corrugated surface. 

Figure 42 presents the velocity field with velocity direction represented by black arrows and iso-

contours of temperature at 50% of the absolute temperature difference, 𝑇ℎ𝑜𝑡𝑤𝑎𝑙𝑙 −  (𝑇ℎ𝑜𝑡𝑤𝑎𝑙𝑙  −

 𝑇𝑖𝑛𝑙𝑒𝑡)  ∗  0.5 (white line), for both flat and corrugated surfaces in the range 𝑃 = 24 − 26. Firstly, 

the velocity magnitude is zero at the wall and increases towards the core region for both flat and 

corrugated surface. However, the effect of corrugation on the velocity field is clearly observed, 

creating recirculation zones at the valleys of the corrugated channel, which is not present in the flat 

channel. In the flat channel, the velocity remains stable along the channel length, while in the 

corrugated channel, the velocity varies abruptly depending on the location. The flow accelerates at 

the peaks, as indicated by the thinner blue regions, whereas larger areas of low-velocity magnitude 

are observed in the valleys. This phenomenon significantly influences the shape of the iso-contours 

of temperature (white line). The iso-contours of temperature remain stable for the flat channel but 

become thinner at the peaks and expand dramatically at the valleys for the corrugated channel. 
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The corrugated channel's geometry creates recirculation zones and varying flow conditions, leading 

to a non-uniform thermal boundary layer. These observations demonstrate the significant impact of 

channel geometry on flow characteristics and heat transfer performance.  

 

Figure 42. Velocity filed with velocity direction represented by black arrows and iso-contour of 

temperature at 50% of absolute different temperature (white line) at 𝑅𝑒 = 67.8, 𝑃𝑟 = 133; a) flat; 

b) Corrugated 

A quantitative analysis is presented in Figure 43, which displays the local wall shear stress magnitude 

and heat flux for flat and corrugated surfaces at 𝑅𝑒 = 67.8, 𝑃𝑟 = 133 within the range 𝑃 = 24 − 26. 

In the flat channel, the wall stress appears constant, while the heat flux gradually decreases over 

distance. In contrast, for the corrugated channel, both wall shear stress and heat flux are highly 

dependent on location due to the corrugation. For more details on the corrugated channel. Figure 43 

a) illustrates that wall shear stress peaks earlier than the geometry, around 𝑃 = 24.9. This suggests 

that the fluid exerts the strongest force on the side of the wall where the wall's normal vector opposes 

the main flow direction. At the channel's valley, the wall shear stress decreases significantly,. On the 

other hand, the local heat flux follows a similar trend, peaking at the same position as wall stress at 

over 14000 𝑊/𝑚2 and reaching its lowest values in the area around the valley at 1000 𝑊/𝑚2.  

However, the average heat flux and wall stress values within this corrugated range are lower than 

those in the flat channel, suggesting that the corrugated channel's heat flux performance is less 

efficient than that of the flat channel. Such issue will be explored in Section 4.5. 

In conclusion, the comparison of flat and corrugated surfaces at 𝑅𝑒=67.8, 𝑃𝑟=133 reveals significant 

differences in flow characteristics and heat transfer performance. The corrugated channel's geometry 

induces recirculation zones and variable flow conditions, resulting in a non-uniform thermal boundary 

layer. 

 

a) b)
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Figure 43. Local variables of flat and corrugated channel at 𝑅𝑒 = 67.8, 𝑃𝑟 = 133 a) Wall shear 

stress magnitude; b) Heat flux 

 

Figure 44. Thermal boundary layer, hydrodynamic boundary layer, and film thickness 

To determine the hydrodynamic boundary layer thickness, different criteria are used for closed and 

open channel flows. In closed channels, the boundary layer edge is commonly defined as the point 

where the fluid velocity reaches 99% of the local average free-stream velocity. On the other hand, in 

open channel flows, the hydrodynamic boundary layer thickness is determined by analyzing the fluid 

velocity profile, with the maximum velocity used as a reference instead of the mean fluid velocity. 

4.4.3 Effect of corrugation height ratio 

In this section, the impact of varying geometries based on the ratio of bottom top height is compared 

to a reference case (1H). Three different geometries based on the ratio of the height of the bottom top, 

a) b)
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namely 0.75H, 1H (reference case), and 1.5H are studied. Here, 'H' represents the ratio between the 

reference case and the other geometries. 

In Figure 45 a), these three different cases corresponding to the three height ratios are illustrated. 

However, due to the modifications in the geometries, inlaid mesh is difficult to use.  A cut-cell mesh 

strategy, which can easily mesh any type of wall pattern, has been adopted for the wall area as 

demonstrated in Figure 45 b). This strategy can handle complex geometries more effectively than a 

structured grid. In the bulk region, the mesh is kept identical across all cases. 

 

Figure 45. Geometries configuration and mesh strategy 

To ensure that this change in mesh strategy does not significantly impact the results, a comparison of 

two mesh cases is provided in Figure 46. This comparison is carried out at a 𝑅𝑒=101.8 and 𝑃𝑟= 133, 

which represent the highest Re and Pr in this studied. The purpose of this comparison is to validate 

the effectiveness of our revised meshing strategy, affirming that the overall and local results remain 

reliable and accurate despite the changes in meshing techniques. Figure 46 a) presents a comparison 

of the local heat flux distribution between the inlaid and cut-cell mesh strategies in the range 𝑃=24 to 

𝑃=26. It can be observed that the cut-cell mesh exhibits good agreement with the inlaid mesh, 

particularly in the valley areas. However, some fluctuations occur, and stronger errors become 

apparent when the cut-cell strategy is applied to the wall in comparison to the structured inlaid mesh 

at the top area. In Figure 46 b), the average heat flux over time is presented. While the local heat flux 

0.75H 1.0H 1.5H

a) Different geometries configuration

b) Mesh topologies

Cut-cell Inlaid
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can exhibit fluctuations, the average heat flux is nearly identical for both the inlaid and cut-cell mesh 

strategies. Therefore, in order to simplify our analysis in this section, the cut-cell mesh strategy is 

applied in all forthcoming calculation. 

 

 

Figure 46. Comparative analysis of cut-cell and inlaid mesh strategies at 𝑅𝑒=101.8 and 𝑃𝑟=133: a) 

local heat flux distribution; b) evolution of average heat flux along the channel 

 

Figure 47. Velocity filed with velocity direction represent by black arrows and iso-contour of 

temperature at 50% of absolute different temperature 𝑇𝑤𝑎𝑙𝑙 − (𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑖𝑛𝑙𝑒𝑡) ∗ 0.5 (white line) at 

𝑅𝑒 = 67.8, 𝑃𝑟 = 133 

The velocity magnitude fields , thermal boundary layers, and velocity directions are visualized in 

Figure 47. Circulation can be observed at the valley of the channel. This circulation appears to move 

further away from the wall as the depth of the corrugation increases. This shift leads to the high-
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temperature area becoming thicker as the depth of the corrugation increases, as indicated by the height 

of the isocountor (white line). Furthermore, the strength of the circulation appears to increase along 

with the depth of the corrugation. 

To analyze the impact of Reynolds number on local heat flux of different geometries, the data for two 

distinct Re values: 𝑅𝑒=17 and 𝑅𝑒=101.8 has been presented. The subsequent data and figures will 

provide insights into how these different Reynolds number influence the local heat flux in different 

geometry configurations. Overall, the results clearly indicate that a higher Reynolds number leads to 

an increased heat flux Figure 48 a) and Figure 48 b). However, upon closer examination, there are an 

increase in the depth of corrugation results in higher heat flux at the top of the corrugation but 

significantly lower at the bottom.  

 

Figure 48. Local heat flux for different ratio at 𝑃𝑟=133; a) 𝑅𝑒=17; b) 𝑅𝑒=101.8 

Therefore, an evaluation of the average heat flux is necessary to understand the overall impact of the 

depth of corrugation. Figure 49 displays the average heat flux for three different corrugation 

geometries, as well as for a flat channel. Interestingly, the average heat flux of the flat channel is the 

highest and decreases as the depth of corrugation increases for all tested Reynolds numbers. This 

finding provides a counter-intuitive insight into the interplay between geometric factors and heat flux 

in fluid dynamics. 

In this section, the influence of varying corrugation height ratios (0.75H, 1H, and 1.5H has been 

analyzed. The depth of the corrugation was found to have notable effects on the flow and heat transfer 

characteristics. Circulation in the valley of the channel became stronger and moved further away from 

the wall as the depth of the corrugation increased. The average heat flux of the flat channel was found 

to be the highest and it decreases as the depth of corrugation increased for all tested Reynolds 

numbers.  
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Figure 49. Average heat flux comparison at 3 different Re for 3 different geometries and flat 

channel (H=0) 

4.5 Influent of fluid properties 

4.5.1 Effect of Prandtl number on heat transfer 

In this section, the influence of the Prandtl number on heat transfer in both flat and corrugated surfaces 

at three different Reynolds numbers (17, 67.8, and 101.8) are analyzed, noting that the flow regime 

is laminar. The results, illustrated in Figure 50, depict the average heat flux as a function of the Prandtl 

number for each channel configuration and Reynolds number. 

Upon examining the data, it becomes apparent that the average heat flux in the corrugated channel is 

consistently lower than that in the flat channel. This difference in heat flux becomes more pronounced 

as the Prandtl number increases. For instance, at 𝑅𝑒 =  17 and 𝑃𝑟 =  6.65, the difference in average 

heat flux between the flat and corrugated surfaces is approximately 100 𝑊/𝑚2. However, when the 
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Prandtl number increases to 133 at the same Reynolds number (𝑅𝑒=17), the difference in average 

heat flux between the two channels rises to around 250 𝑊/𝑚2. 

This observation suggests that the heat transfer performance in corrugated surfaces is not only 

dependent on the channel geometry and Reynolds number but is also significantly influenced by the 

Prandtl number.  

 

Figure 50. Average heat flux versus Prandtl number of the flat and corrugated channel at 3 different 

Reynolds number 

Further investigation into the local regions of the channel is required to better understand the 

underlying mechanisms responsible for these variations in heat transfer performance. Figure 51 

reveals the local heat transfer at 𝑅𝑒 = 67.8 for different Prandtl numbers, illustrating the local heat 

flux effect influenced by the Prandtl number. As indicated in section 4.4, the magnitude of heat flux 

strongly depends on location for corrugated surfaces, whereas this is not the case for flat channels. 

Figure 51  also reveals that when the Prandtl number increases, both corrugated and flat channels 

require more heat flux compared to lower Prandtl numbers. However, in corrugated surfaces, when 

the Prandtl number increases, only the sections with high altitude require more heat flux, while in the 

valleys, the heat flux appears to remain constant. 

This observation implies that the heat transfer performance in corrugated surfaces is more complex 

than in flat channels, with the channel geometry, Reynolds number, and Prandtl number all playing 

significant roles. The local variations in heat transfer performance in corrugated surfaces may be 

attributed to factors such as flow separation, vortex formation, and enhanced mixing caused by the 
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corrugated geometry. Further research is needed to better understand these effects and optimize heat 

transfer performance in corrugated surfaces for various flow conditions and fluid properties. 

 

 

Figure 51. Local heat flux of flat and corrugated channel at 𝑅𝑒 = 67.8 

For a more in-depth exploration of local hydrodynamics and heat transfer phenomena, it is  necessary 

to evaluate the temperature and velocity profiles. Figure 52 presents the velocity profile for Prandtl 

numbers of 6.65 and 133. At a 𝑃 of 25, the velocity profile in the flat channel is fully developed and 

does not change significantly. However, the situation in the corrugated channel is entirely different. 

At 𝑃=25, the velocity magnitude in the corrugated channel surpasses that of the flat channel due to 

the influence of corrugation. This effect is particularly noticeable at distances from 0.16 to 0.6 from 

the wall. 

Conversely, at the valleys (𝑃=24.5 and 𝑃=25.5), the velocity magnitude is virtually zero when the 

distance from the wall is less than 0.1 mm. This condition suggests these regions are less effective 

for heat transfer compared to others. The variations in the velocity profile in the corrugated channel 

significantly influence the heat transfer characteristics in these regions. 
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Figure 52. Velocity profile at 𝑅𝑒=67.8; a) 𝑃𝑟=6.65; b) 𝑃𝑟=133 

Figure 53 displays the temperature profile at both low and high Prandtl numbers. In the case of the 

flat channel, the thermal boundary layer is completely developed, with a thickness of less than 1mm 

at 𝑃𝑟=6.65 and less than 0.4 at 𝑃𝑟=133. On the contrary, the temperature profile undergoes a dramatic 

shift in the corrugated channel. At 𝑃=25, the temperature is less steep compared to the flat channel, 

indicating that heat transfer is more efficient here. However, at 𝑃=24.5 and 𝑃=25.5, the temperature 

profile of the corrugated channel near the wall is steeper than the flat channel, suggesting that the 

temperature gradient in this area is smaller. Consequently, this leads to a decrease in heat flux, which 

is also suggested in Figure 51. These distinct variations underline the considerable impact that the 

channel's structural characteristics exert on heat transfer properties. 

 

Figure 53. Temperature profile at 𝑅𝑒=67.8; a) 𝑃𝑟=6.65; b) 𝑃𝑟=133 

b)a)

Low velocity zone Low velocity zone

a) b)

Low velocity zone Low velocity zone
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4.5.2 Effect of Reynolds number on heat transfer 

This section focus on a detailed analysis of the Reynolds number's effect. Initially, the relationship 

between the average heat flux and the Reynolds number (Figure 54) is examined. As observed in the 

previous section, a similar trend emerges, indicating that the average heat flux is lower in corrugated 

surfaces within a Reynolds range of 17 to 101.8 and a Prandtl range of 6.65 to 133. The absolute 

difference between the flat and corrugated surfaces increases with an increase in the Prandtl number. 

Similarly, as the Reynolds number increases, the difference in average heat flux between the flat and 

corrugated surfaces also increases, providing a more detailed explanation of this phenomenon, 

showing local heat flux at 𝑃𝑟=133 and three different Reynolds numbers, namely 17, 67.8, and 101.8. 

The detail of this phenomenon can be explained in Figure 55, where local heat flux at 𝑃𝑟 = 133 and 

3 different Reynolds 17, 67.8 and 101.8 are revealed. The figure compares the heat flux in both 

corrugated and flat channels. As the Reynolds number increases, the heat flux in both types of 

channels also increases. For instance, at 𝑃= 25, the heat flux in the flat channel increases from 8000 

W/m² to 11000 W/m² as the Reynolds number increases from 17 to 101.8. Similarly, for the 

corrugated channel, the heat flux increases from 11500 W/m² to 15500 W/m² with the same increase 

in Reynolds number. However, an interesting phenomenon is observed at the valleys (𝑃= 24.5 and 

𝑃= 25.5), where the heat flux does not increase even when the Reynolds number is increased. This 

can be attributed to the structure of the wall in these areas, which causes circulation to occur, trapping 

hot fluid inside. Consequently, heat transfer to the bulk area becomes difficult, resulting in no change 

in the heat flux in these regions.  
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Figure 54. Average heat flux versus Reynolds number of flat and corrugated channel for different 

Prandtl number 

 

Figure 55. Local heat flux of flat and corrugated channel at 𝑃𝑟 = 133 

Figure 56 illustrates two distinct velocity profiles at 𝑅𝑒=17 and 𝑅𝑒=101.8. For both cases, the velocity 

in the flat channel doesn't change significantly. However, the situation in the corrugated channel is 

entirely different. The velocity profile is highly dependent on location. At 𝑃=25, the velocity 

magnitude of the corrugated channel exceeds that of the flat channel. In contrast, at 𝑃=24.5 and 

𝑃=25.5, the velocity magnitude is considerably lower than in the flat channel. These differences 

highlight the significant role of channel geometry in influencing the velocity profiles, which in turn 

impacts heat transfer characteristics. Interestingly, regardless of whether the Reynolds number is low 

or high, there is not a significant difference in the velocity. 
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Figure 56. Velocity profile at 𝑃𝑟=133; a) 𝑅𝑒=17, b) 𝑅𝑒=101.8 

Figure 57 presents the temperature profile at 𝑃𝑟=133 with two different Reynolds numbers, 17 and 

101.8. Similar to the earlier observation, the temperature profile exhibits a consistent trend, with a 

steeper profile at low Reynolds numbers and a flatter one at higher Reynolds numbers. Specifically, 

at a 𝑃=25, the temperature within the corrugated channel decreases more rapidly compared to the flat 

channel, leading to a higher heat flux in this area. However, at 𝑃= 24.5 and 25.5, the presence of a 

low-velocity zone hampers effective heat transfer, resulting in a reduced temperature gradient in this 

region and, consequently, a lower heat flux. 

 

Figure 57. Temperature profile at 𝑃𝑟=133; a) 𝑅𝑒=17, b) 𝑅𝑒=101.8 

a) b)

Low velocity zone Low velocity zone

a) b)

Low velocity zone
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4.6 Conclusions 

Based on the knowledge gain in the previous section, in this section, hydrodynamics and heat transfer 

of film flow within corrugated surfaces for Reynolds numbers less than 101.8 and Prandtl numbers 

less than 133 were examined using VOF method. The primary objective was to gain a deeper 

understanding of the interactions occurring among flow behavior, surface geometry, heat transfer and 

fluid properties in such configurations. The influence of channel geometry on flow behavior and heat 

transfer characteristics has been studied. A flat channel was used as the reference model, providing 

detailed insights into heat transfer mechanisms, flow behavior patterns, and enabling the application 

of Nusselt correlations for comparative purposes. A thorough analysis was performed to discern the 

differences between flat and corrugated surfaces, revealing notable disparities in flow characteristics 

and heat transfer performance. The corrugated channel's geometry was found to induce recirculation 

zones and create variable flow conditions, leading to a non-uniform thermal boundary layer. While 

these features may initially seem advantageous, the average heat flux and wall stress values within 

the studied range of corrugations were found to be lower 10 to 30% than those observed in flat 

channels. This result suggests that the heat transfer performance of corrugated surfaces is less 

effective than that of their flat counterparts.  

This study represents an initial effort to comprehend the hydrodynamic phenomena of liquid flow 

across complex surfaces, as well as their heat transfer properties. The findings from this research are 

important in the development and implementation of a new thermal wall law (as part of another PhD 

project in our department) suitable for low Reynolds and high Prandtl flows on both smooth and 

detailed surfaces. 
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Chapter 5  

 

Numerical method for moving contact 
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The detailed presentation of a newly developed method to accurately capture wetting phenomena is 

provided. This includes the mathematical equations and the specifics of how they are implemented 

into the CFD software. 

5.1  Background 

In Chapter 3, a detailed discussion on two-phase flow methodologies is presented, emphasizing the 

continuum surface force (CSF) method. This method, which employs a smooth void fraction (SVF) 

approach, is widely used in commercial Computational Fluid Dynamics (CFD) applications, 

including CONVERGE CFD [78]. The CSF method has been extensively used to model surface 

tension across various fixed mesh formulations for interfacial flows. This is particularly seen in 

volume-of-fluid (VOF) [79], level-set (LS) [80], and front tracking (FT) [81] interface representation 

techniques.  

In the CFS methodology, surface tension forces acting on the interface are transformed into volume 

forces in regions near the interface via delta functions of void fraction. This transformation results in 

discontinuous interfacial jump conditions which is suitable for multiphase flow simulations. 

However, a critical issue with the SVF method is the generation of unphysical flows, often referred 

to as "spurious currents". These currents become particularly problematic when dealing with contact 

angles, where capillary forces dominate the inertial forces. Spurious currents are notably highlighted 

in the case of an inviscid static drop in equilibrium without gravity, where Laplace's formula applies 

[82,83]. These currents mainly originate from a numerical imbalance between the surface tension 

force and the associated pressure gradient and from an inaccurate estimate of the curvature.  

Numerous studies have proposed various solutions to reduce these spurious currents. These methods 

range from improving curvature estimation [41], enhancing the flow algorithm [84], or combining 

superior algorithms with better interface curvatures estimation [85]. Francois et al. [85] have 

successfully eliminated these spurious currents by using well-balanced and height function method. 

However, this achievement is currently limited to a projection correction method. 

In this chapter, a balanced-force algorithm designed specifically for the Pressure-Implicit with 

Splitting of Operators (PISO) algorithm is introduced. This algorithm is characterized by a unique 

pressure-correction method, which ensures an exact balance between the pressure gradient and the 

surface tension force, thereby significantly reducing the occurrence of spurious currents. 

We also provide the implementation of the contact angle model for both the Smoothed Void Fraction 

(SVF) and height function methods. Our work aims to illuminate the inner workings of these complex 
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calculations, and their impacts on the performance and results of CFD analyses will be provided in 

the Chapter 6. 

5.2 Well-balanced PISO algorithm for two-phase flow 

It is not easy to design a numerical scheme to solve partial differential equations that can ensure the 

specific equilibrium of the continuous equations when it is discretized numerically, in particular when 

developing the numerical method to solve two-phase flow. 

This section will present in detail the Well-balanced PISO algorithm that implemented in the 

Converge code. It is developed to ensure that the surface tension force is exactly balanced with the 

pressure gradient force.  

To ensure the balanced force, the discrete approximations of both pressure gradient and surface 

tension need to be discretized at the same time and at the same place. As a consequence, the PISO 

loop is changed accordingly.  

First, the discretized first-order momentum equation at the predictor step Equation (66) has to be 

modified and can be re-written as [46,85]: 

𝜌𝑐
𝑛𝑢𝑐

∗ =  𝜌𝑐
𝑛𝑢𝑐

𝑛 + 𝐻∗ − Δ𝑡𝜌𝑐
𝑛 ⟨

∇𝑃

𝜌𝑓
−

𝐹𝑓

𝜌𝑓
⟩

𝑓→𝑐

𝑛

 (81) 

The pressure term and surface tension term are interpolated from face to cell-center in Equation (81) 

as detailed below for x direction only:  

⟨
∇𝑃

𝜌𝑓
−

𝐹𝑓

𝜌𝑓
⟩

𝑓→𝑐

𝑛

= (
𝐴𝑖+1/2𝑛𝑖+1/2

1/2𝜌𝑖+1/2
(

𝑃𝑖+1 − 𝑃𝑖

𝑑𝑥
−

𝜎𝜅𝑖+1/2(𝛼𝑖+1 − 𝛼𝑖)

𝑑𝑥
)

+
𝐴𝑖−1/2𝑛𝑖−1/2

1/2𝜌𝑖−1/2
(

𝑃𝑖 − 𝑃𝑖−1

𝑑𝑥
−

𝜎𝜅𝑖−1/2(𝛼𝑖 − 𝛼𝑖−1)

𝑑𝑥
)) 

(82) 

 Where 𝐴𝑖+1/2  and 𝑛𝑖+1/2 indicates the face area and the normal vector of the right face, respectively 

(Figure 58). To calculate this term in 3D, a loop on the three directions is required. 

The Rhie and Chow Algorithm has originally been developed for single-phase flow. Hence there is a 

need to modify and adapt the Rhie and Chow Algorithm to two-phase flow by adding the surface 

tension force in Equation 67 in order to balance the pressure forces. The modified Rhie and Chow 

algorithm is written as:  
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Since Equation 67 is too long, the authors split the modified RHS terms in three parts. The first term 

does not change: 

1𝑠𝑡 ∶  
𝑢𝑖

∗ + 𝑢𝑖+1
∗

2
 

The second and third terms are modified as: 

(83) 

  2𝑛𝑑: 
𝑑𝑡

(𝜌𝑖+1/2)
𝑛+1 (

𝑃𝑖+1−𝑃𝑖

𝑑𝑥
− (

𝜎𝜅𝑖+1/2(𝛼𝑖+1−𝛼𝑖)

𝑑𝑥
)

𝑛+1

) (84) 

 3𝑟𝑑: 
𝑑𝑡

4𝜌𝑖+1/2
(

𝑃𝑖+1−𝑃𝑖

𝑑𝑥
−

𝜎𝜅𝑖+1/2(𝛼𝑖+1−𝛼𝑖)

𝑑𝑥
) +

𝑑𝑡

4𝜌𝑖−1/2
(

𝑃𝑖−𝑃𝑖−1

𝑑𝑥
−

𝜎𝜅𝑖−1/2(𝛼𝑖−𝛼𝑖−1)

𝑑𝑥
) +

𝑑𝑡

4𝜌𝑖+3/2
(

𝑃𝑖+2−𝑃𝑖+1

𝑑𝑥
−

𝜎𝜅𝑖+3/2(𝛼𝑖+2−𝛼𝑖+1)

𝑑𝑥
) +

𝑑𝑡

4𝜌𝑖+1/2
(

𝑃𝑖+1−𝑃𝑖

𝑑𝑥
−

𝜎𝜅𝑖+1/2(𝛼𝑖+1−𝛼𝑖)

𝑑𝑥
) 

(85) 

 Finally, 𝑢𝑖+1/2
∗  can be calculated as:  

𝑢𝑖+1/2
∗ = 1𝑠𝑡 − 2𝑠𝑡 + 3𝑠𝑡 (86) 
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Figure 58: Cell index notation for the Rhie and Chow correction. A) cell-center c and face 𝑓 

location, b) stencil used to calculate the first term of pressure correction, c) stencil used to calculate 

the second term of pressure correction 

5.3 Height Function method 

As pointed out by Popinet [82], the smooth void fraction method is one of the causes of spurious 

currents. Hence, the estimate of curvature must be changed. The Height Function (HF) method is a 

good candidate to solve this problem. It is based on the idea that a local coordinate system can always 

be defined to determine the interface curvature which mean that in each cell we always can construct 

a stencil for capturing curvature. In this method, the interface curvature 𝜅 is calculated from the 

derivatives of the height occupied by the fluid, constructed by integrating the void fraction along the 

direction of the largest component of the normal interface vector [86]. However, the HF method can 

only be successfully achieved if the mesh is adequately refined. There have been several efforts to 

calculated HF: 

i-1 i i+1 i+2i-1/2 i+1/2 i+3/2

i-1 i i+1 i+2i-1/2 i+1/2 i+3/2

b)

c)

c
c

a)
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5.3.1 Standard Height Function (SHF) 

To evaluate the Standerd Height Function (SHF), few steps are followed: 

Find the maximum normal component vector and construct a 3 × 3 × 7 stencil centered on 

the cell where the curvature is evaluated. The direction of the stencil will be aligned with the 

largest interface component vector. 

Integrate the local interface height.  

Compute the curvature using finite-difference derivatives of the HF.  

To clarify the HF idea, an example of this technique is used to evaluate 3D curvature. Consider the 

largest direction of the normal vector is 𝑧 direction. Nine local heights are constructed in the 𝑧 

direction by summing the volume fraction inside the created stencil. The local HF in a 𝑖, 𝑗, 𝑘 Cartesian 

grid can be depicted as: 

𝐻𝑖,𝑗,𝑘 = ∑ 𝛼𝑖,𝑗,𝑘

𝑘+3

𝑘−3

∆𝑧𝑘   
(87) 

With 𝑖 = 𝑖′ − 1, 𝑖′, 𝑖′ + 1 and 𝑗 = 𝑗′ − 1, 𝑗′, 𝑗′ + 1. 𝐻𝑖,𝑗,𝑘 are local height functions, the index ranged 

over 7 cells from cell 𝑖, 𝑗, 𝑘 − 3 to cell 𝑖, 𝑗, 𝑘 + 3 and ∆𝑧𝑘 is the grid size in the 𝑧 direction (Figure 

59). 

The curvature 𝜅 is calculated from the height functions using second-order operator: 

𝜅 =
𝐻𝑥𝑥 + 𝐻𝑦𝑦 + 𝐻𝑥𝑥𝐻𝑦

2 + 𝐻𝑦𝑦𝐻𝑥
2 − 2𝐻𝑥𝑦𝐻𝑥𝐻𝑦

(1 + 𝐻𝑥
2 + 𝐻𝑦

2)
3
2

 
(88) 

Where the derivatives 𝐻𝑥, 𝐻𝑦, …  are calculated using a second-order finite differencing scheme. 

𝐻𝑥 =
𝐻𝑖+1,𝑗,𝑘 − 𝐻𝑖−1,𝑗,𝑘

2∆𝑥
 

(89) 

𝐻𝑦 =
𝐻𝑖,𝑗+1,𝑘 − 𝐻𝑖,𝑗+1,𝑘

2∆𝑦
 

(90) 

𝐻𝑥𝑥 =
𝐻𝑖+1,𝑗,𝑘 − 2𝐻𝑖,𝑗,𝑘 + 𝐻𝑖−1,𝑗,𝑘

2∆𝑥2
 

(91) 
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𝐻𝑦𝑦 =
𝐻𝑖,𝑗+1,𝑘 − 2𝐻𝑖,𝑗,𝑘 + 𝐻𝑖,𝑗−1,𝑘

2∆𝑦2
 

(92) 

𝐻𝑥𝑦 =
𝐻𝑖+1,𝑗+1,𝑘 − 𝐻𝑖+1,𝑗−,𝑘 − 𝐻𝑖−1,𝑗+1,𝑘 + 𝐻𝑖−1,𝑗−1,𝑘

2∆𝑥∆𝑦
 

(93) 

 

Figure 59: Illustration of the nine local height functions for curvature estimation in 3D [85] 

5.3.2 Generalized Height Function (GHF) 

The limitations of the Standard Height Function (illustrated red dashed in Figure 60) method become 

increasingly apparent in specific interface configurations, particularly when dealing with under-

resolved curvature, as illustrated in Figure 60. The Generalized Height Function method employs an 

adaptive stencil to compute heights, providing a more accurate estimate of curvature, especially in 

complex topologies. Unlike the SHF method, which uses a fixed stencil, the GHF method 

dynamically constructs its stencil. Initially, it searches in the direction where the normal vector is 

largest until it finds cells with void fractions of both 0 and 1, and then constructs the height. If the 

search yields an inconsistent column (i.e., cells with void fractions other than 0 and 1), the method 

adjusts the direction of the stencil and conducts a new search. Once all heights are identified, the 

method calculates curvature in a manner similar to the SHF method. As shown in Figure 60, the 

curvature calculated by GHF is -0.229, compared to -0.313 by the SHF method, while the exact 

curvature is -0.189. This suggests that GHF is more accurate, particularly in critical cells. 
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Figure 60. Comparison the accuracy of SHF and GHF methods at critical cell. SHF stencil (- -) and 

GHF stencil (- -) are built around critical cell [87]. 

5.3.3 Mesh decoupling 

Another case is shown in Figure 61a), where even the Generalized Height Function is not sufficient 

for calculating curvature. This typically occurs when the mesh is either too coarse or the curvature is 

so pronounced that its diameter is smaller than about 4 to 6 times the mesh size. The concept of mesh-

decoupling in Height Function was initially introduced by Liovic et al. [88]. Their method constructs 

the HF along the diagonal direction of an orthogonal mesh. Results have shown that this approach 

significantly reduces the maximum error in curvature calculations for a sphere (Figure 61b). 
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Owkes and Desjardins [89] further refined this methodology by computing the HF in a coordinate 

system that is orthonormal to the interface normal. Their method employs columns with 

parameterized width and depth, as depicted in Figure 61c), where the width is less than the mesh size. 

Results confirm that this technique is robust and does not fail in curvature calculations, provided the 

radius of curvature is greater than 2Δx. 

 

Figure 61. Boniou schematic [90] a) Non consistent HF reconstructions; b) Liovic et al. [88] mesh 

decoupled HF methodology; c) Owkes et al. [89] mesh decoupled HF methodology  

a)

b) c)
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Although the mesh decoupling method is robust and effective, it only shows significant improvement 

when the mesh at the interface is very coarse. This is rarely encountered in two-phase flow, where 

the interface is typically refined to accurately capture it. To avoid complexity in implementation, only 

GHF is implemented in the Converge code. For simplicity, we will use the term 'HF' from this point 

forward in the thesis, implicitly indicating that it refers to GHF. 

5.4 Implementation of the contact angle model 

In this section, the implementation of the Cox’s model presented in Section 2.3.4 in Converge is 

shown in details. The contact angle is implemented as a boundary condition by altering the interface 

curvature at the wall boundary cells (Figure 62). This is done by rotating interface normal in order to 

account for the contact angle as [40,55]:  

𝑛 = 𝑛𝑠 cos(𝜃) + 𝑛𝑡cos (θ) (94) 

 Where 𝑛 is the normal interface vector at the boundary, 𝑛𝑠 is the wall surface normal vector, 𝑛𝑡 is 

the tangential vector pointing along the wall into liquid, and 𝜃 is the static or dynamic contact angle. 

The main difference between the static versus dynamic contact angle model is that 𝜃 vary with time 

for the dynamic contact angle model. 

The direction of the tangential vector is given by [40]: 

𝑛𝑡 = 𝑛𝑠 ×
∇𝐶

|∇𝐶|
× 𝑛𝑠 

(95) 

As shown by the algorithm of Figure 62, before retrieving the dynamic contact angle, the contact line 

velocity 𝑉𝑐𝑙 based on the tangential component of the fluid velocity in the first cell close to the wall, 

𝑢𝑐𝑒𝑙𝑙 [40,91] needs to be calculated: 

𝑉𝑐𝑙 = 𝑛𝑠 × 𝑢𝑐𝑒𝑙𝑙 × 𝑛𝑠 (96) 

 The direction of the contact line velocity 𝑉𝑐𝑙 is also needed to establish the receding or advancing 

state. Then 𝜃 is calculated by Equation (33). 
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Figure 62: The workflow for the implementation of the dynamic contact angle in Converge 

5.4.1 Contact angle implementation with the SVF method 

In the SVF method, the contact angle is implemented as a boundary condition by altering the normal 

of the interface at the wall boundary cells, 𝐧𝐜𝐥. This is done by rotating the normal to the interface by 

an angle equal to the dynamic contact angle as: 

𝐧𝐜𝐥 = 𝑛𝑠 cos(𝜃𝑑) + 𝑛𝑡 cos(θd) (97) 

where the unit vectors 𝑛𝑠 and 𝑛𝑡 are the normal and tangential vectors to the wall, respectively. The 

dynamic contact angle 𝜃𝑑 is calculated based on the Kistler model or the Cox model. Then, the 

curvature is updated in the contact line cell and used to calculate the surface tension term, equation 

(1). 
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5.4.2 Contact angle implementation with the HF method 

In the HF method, the curvature will be directly modified in the contact line cell using fluid heights. 

For example, in 2D, for contact angle between 45° and 135, height functions are constructed 

horizontally (Figure 63a). It requires ℎ𝑖−1 parallel to the solid surface, that is defined so that the angle 

between the interface normal in the contact line cell and the solid normal is the dynamic contact angle: 

ℎ𝑖−1 = ℎ𝑖 +
Δ

𝑡𝑎𝑛𝜃𝑑
 (98) 

 where Δ is the mesh size.  This method is extended for contact angle smaller than 45° or larger than 

135°. 

To compute the curvature in the contact line cell in 3D, nine local heights are required to complete 

the stencil; but only six heights above the wall can be directly retrieved from the void fraction field. 

The three height functions below the wall (𝐻𝑖−1,𝑗−1; 𝐻𝑖,𝑗−1; 𝐻𝑖+1,𝑗−1 ) are calculated based on the 

dynamic contact angle and the existed heights as: 

𝐻𝑖−1,𝑗−1 = 𝐻𝑖−1,𝑗 +
Δ

𝑡𝑎𝑛𝜃𝑑𝑐𝑜𝑠𝛽
 

𝐻𝑖,𝑗−1 = 𝐻𝑖,𝑗 +
Δ

𝑡𝑎𝑛𝜃𝑑  𝑐𝑜𝑠𝛽
 

𝐻𝑖+1,𝑗−1 = 𝐻𝑖+1,𝑗 +
Δ

𝑡𝑎𝑛𝜃𝑑𝑐𝑜𝑠𝛽
 

(99) 

 

where 𝑐𝑜𝑠𝛽 is defined as: 

𝑐𝑜𝑠𝛽 =
(𝑛𝑥𝑦 ∙ 𝑛ℎ)

|𝑛𝑥𝑦||𝑛ℎ|
 (100) 

 

with 𝑛𝑥𝑦, the projection on xy plane of the interface normal 𝐧: 

𝑛𝑥𝑦 = 𝐧 − (
(𝐧 ∙ 𝑛𝑠)

‖𝑛𝑠‖2 ) 𝑛𝑠 (101) 
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Figure 63: 2D and 3D construction of height functions for contact angle between 45° and 135° 

5.5 Conclusion 

The updated numerical model has been introduced in the current Converge CFD software with the 

aim to more accurately capture the simulation of physical phenomena and reduce errors. First, a well-

balanced algorithm for the PISO procedure in two-phase flow is presented, which utilizes a collocated 

grid. This method discretizes surface tension and pressure gradient simultaneously at the same 

location, ensuring equilibrium. This equilibrium is crucial in minimizing spurious currents during 2-

phase flow simulations. Next, the Height Function method is introduced as an alternative to the 

traditional SVF method found in Converge CFD code. This approach offers a more accurate 

estimation of curvature, which is essential for accurately calculating surface tension force, thus 

reducing undesired spurious velocities. Additionally, the dynamic contact angle has been 

incorporated to better capture the surface tension force at the wall boundary. This aligns with the 

objectives detailed in Chapter 2, aiming to accurately depict the physical interactions between liquid-

gas and solid surfaces at the contact line.  

wall

Contact line

a) b)

Height direction
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This chapter focuses on validating the advancements introduced in Chapter 5 using various cases. 

These include a stationary droplet, a spreading droplet driven by the contact line, and a droplet 

spreading due to both gravity and the contact line. 

6.1 Introduction 

The well-balanced formulation for PISO algorithm, the HF method as well as the dynamic contact 

angle models have been implemented in Converge software [92]. Several tests were carried out in 

this chapter to evaluate the improvement provided by these methods. The unbalanced formulation of 

the PISO algorithm combined with the Smooth Void Fraction method is referred to as NWB-SVF 

method. The unbalanced formulation of the PISO algorithm combined with the Height Function 

method is referred to as NWB-HF method. Finally, the well-balanced PISO algorithm combined with 

the Height Function method is referred to as WB-HF method. 

In two-phase flow simulation with PLIC method, the max timestep of simulation to get the numerical 

stability is given by [82]: 

Δ𝑡 = √
0,5 ∗ (𝜌1 + 𝜌2)Δ3

𝜋𝜎
 (102) 

Where 𝜌1, 𝜌2 are the density on either side through the interface. 

For droplet simulation, the mesh resolution performs well when the computational domain is meshed 

at a size range from 25-64 cells per radius [40,93,94]. Hence in this study, the minimum mesh size 

1/30 radius is used for all simulations. 

6.2 Two-dimensional stationary droplet 

To evaluate the improvement provided by the WB-HF method, the case of a 2D static droplet at 

equilibrium without the effect of gravity is considered. The computational domain is a 2 m square  

and a droplet with a radius of 0.4 𝑚 is initially positioned at the center of the domain (Figure 64). 

This case corresponds to the test case analyzed by Abadie [95]. The density of the two fluids is equally 

fixed to 1000, the viscosity of the two fluids is set equally to 0.2582 𝑁
𝑠

𝑚2. The surface tension 

coefficient 𝜎 is 1.  
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Figure 64. Computational domain for the stationary droplet case 

 

Under these conditions, the steady-state momentum equation is reduced to: 

Δ𝑝 = 𝐹 ⇔  𝑝1 − 𝑝2 = 𝜎𝜅𝑒𝑥𝑎𝑐𝑡 (103) 

Since the interface of the 2D droplet is a circle, the curvature 𝜅𝑒𝑥𝑎𝑐𝑡 can theoretically be calculated 

as follows: 

𝜅𝑒𝑥𝑎𝑐𝑡 =
1

𝑅
 (104) 

By replacing 𝑅 = 0.4, the exact curvature 𝜅𝑒𝑥𝑎𝑐𝑡 is equal to 2.5 and therefore the pressure difference 

across the interface Δ𝑝 is equal to 2.5. 

The magnitude of parasitic velocity is evaluated with the maximum of the Capillary number defined 

as: 

𝐶𝑎𝑚𝑎𝑥 =
𝑈𝑚𝑎𝑥

𝑈𝜎
 (105) 

Where 𝑈𝑚𝑎𝑥 = max(|𝑼|) is the absolute magnitude of parasitic velocity, 𝑈𝜎 =
𝜎 

𝜇1
 is a non-

dimensional velocity scale; a non-dimensional time scale 𝑡𝜎 = √𝜌𝐷0
3 

𝜎
 is also defined for post-

processing. 

Ffdf
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Figure 65 shows the spurious currents field at 
𝑡

𝑡𝜎
= 10 for a fixed grid of 30 cells per radius, obtained 

with the NWB-SVF method (Figure 65a), with the NWB-HF method (Figure 65b) and with the WB-

HF method (Figure 65c). Using the SVF method to calculate the curvature results in spurious currents 

about 20 times larger than with the HF method (Figure 65a vs. Figure 65b). A better estimation of the 

curvature allows to decrease the spurious currents but also to preserve the roundness of the interface. 

However, the spurious currents in Figure 65b remain highly concentrated around the interface. 

Furthermore, as shown in Figure 65c, when the PISO algorithm is well-balanced, the spurious 

currents are reduced by about a factor of 40 and the parasitic velocity has almost disappeared around 

the interface. Hence the accuracy of the curvature calculation, as well as a consistent discretization 

scheme for the pressure gradient and surface tension force, is therefore essential to minimize spurious 

currents.  

Figure 65d presents the time evolution of the magnitude of the spurious currents. With unbalanced 

treatment of the pressure gradient and surface tension force, the SVF curvature calculation method 

gives a stable 𝐶𝑎𝑚𝑎𝑥 at 3.10−3, about 20 times greater than with the HF method. Combining the well-

balanced PISO algorithm with the HF method, 𝐶𝑎𝑚𝑎𝑥 is again reduced by 2 to 3 orders of magnitude 

despite some oscillations. The oscillations can be attributed to the fact that the HF method is not 

perfect when the height direction is strongly misaligned with the normal interface vector [83]. 

The pressure jump at the interface is also impacted by the numerical methods used to discretize the 

pressure and surface tension terms and by the curvature calculation, as illustrated in Figure 66. Indeed, 

the pressure field in Figure 66b shows strong fluctuations around the interface, whereas the pressure 

jump is sharper with the HF method and does not show any fluctuation. The pressure difference across 

the interface (𝑝1 − 𝑝2) is calculated and compared to the exact pressure Δ𝑝𝑒𝑥𝑎𝑐𝑡 The error on the 

pressure jump defined by is about 29.8% with the NWB-SVF method but drops dramatically to 0.4% 

with the WB-HF method.  

(𝑝1 − 𝑝2)

Δ𝑝𝑒𝑥𝑎𝑐𝑡
× 100% (106) 
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Figure 65. Velocity field (arrows) and droplet shapes (C = 0.5 contours) for the stationary droplet 

case at  
𝑡

𝑡𝜎
= 10: a) Unbalanced-force PISO algorithm with SVF method (NWB-SVF); b) 

Unbalanced-force PISO algorithm with HF method (NWB-HF); c) Well-balanced PISO algorithm 

with HF method (WB-HF); d) Comparison of the time evolution of the maximal spurious currents 

in the computational domain 

= = 

2.

= 
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Figure 66. Pressure field for the stationary droplet case at  
𝑡

𝑡𝜎
= 10; a) NWB-SVF method; b) 

NWB-HF method; c) WB-HF method 
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6.3 Spreading of a droplet driven by the contact line 

The objective of this section is to evaluate the impact of the method used to calculate the curvature 

on the behavior of the contact line. The test case presented in this section is reported by Legendre 

[94] and Afkhami [37]. A 3D spherical cap droplet of radius R0 = 1 is initialized on a horizontal flat 

surface at equilibrium (no gravity effect). The computational domain is a 2R0 square box. The initial 

shape of the droplet corresponds to an initial contact angle of 𝜃𝑖 = 90° (Figure 67). The wetting 

condition (no slip and contact angle) is imposed on the bottom horizontal wall whereas no slip 

conditions are imposed on the other walls of the domain. The fluid properties used in this simulation 

are: 𝜌𝑙𝑜𝑞𝑢𝑖𝑑 = 𝜌𝑔𝑎𝑠=1, 𝜇𝑙𝑖𝑞𝑢𝑖𝑑 = 𝜇𝑔𝑎𝑠 = 0.25, 𝜎 = 7.5. 

 

Figure 67. Initial drop shape and computational domain 

The computational domain is meshed at the resolution of D/64 dimension of initial diameter as 

notation as D-64 (Figure 68). 

 

Figure 68 An example of regular mesh at the resolution of D/64 

D/64
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Figure 69 presents a comparative analysis of the wetting radius ratio, specifically the initial wetting 

radius to the instantaneous wetting radius, during a fluid spreading process. This simulation was 

conducted with an equilibrium contact angle of 60° and was designed to simulate the spreading until 

a fully developed stage was reached, over a period of 4 seconds.  

In this analysis, two distinct models were employed: the Static Contact Angle (SCA) model and the 

Dynamic Contact Angle (Cox) model. As the simulation began, both models exhibited an increasing 

wetting radius, signifying droplet spreading. However, the wetting radius of the SCA model reached 

a plateau faster than the DCA model. This divergence in behavior can be attributed to the inherent 

characteristics of these models. The SCA model imposes a fixed contact angle of 60° throughout the 

process, while the DCA model dynamically adjusts the contact angle in accordance with the real-time 

progression of the droplet spreading. 

This adaptation of the DCA model provides a smoother depiction of physical wetting phenomena. 

However, the final spreading ratio revealed errors of 2.05% and 3.62% for the SVF-SCA and SVF-

DCA models respectively. As outlined in section 6.2, these errors may originate from the SVF model's 

influence on the fluid interface. This will be discussed in greater detail in the following section. 

 

Figure 69 Time evolution of the wetted radius – comparison between the SVF-SCA model and 

SVF-DCA model for equilibrium contact angles: 𝜃𝑒 = 60°; Mesh resolution was assigned at D-64 

(D/64) 

A significant technical challenge encountered during these simulations is the limited computational 

resources, a factor exacerbated by the complexity of a three-dimensional simulation. The simulations 

2.05% 3.62%
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require a substantial number of cells if implemented with a regular mesh, which becomes a constraint 

considering the resources at hand. 

Given that the global velocity in these simulations is low and the capillary forces predominate, 

capturing the fluid interface with high accuracy is crucial. As such, a reasonable mesh scale is required 

at the interface, while resolution at other locations could be reduced without compromising overall 

accuracy. This led us to test the Adaptive Mesh Refinement (AMR) method, aimed at maintaining a 

constant mesh resolution around the interface while reducing the total number of cells (as shown in 

Figure 70). 

 

Figure 70 Comparison of AMR mesh structure and regular mesh structure at the resolution of D/64, 

𝜃𝑒 = 60° 

6.3.1 Impact of mesh strategy 

In Figure 71, the spreading ratios of different cases using AMR and regular mesh is compared, with 

mesh resolution at D/64, for both DCA and SCA models. The results indicate that using AMR 

compared to a regular mesh has only a negligible impact. With the DCA model, there is hardly no 

discernible difference between the results obtained with AMR and the regular mesh. However, with 

the SCA model, a minor difference (less than 0.2%) becomes apparent from the time point of 2.7 

seconds onward. 

Interface area

Amr mesh Regular mesh
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Figure 71 Time evolution of the wetted radius. Comparison of spreading ratio between AMR mesh 

and regular mesh at the resolution of D/64, 𝜃𝑒 = 60°; 

Though this difference is small, the use of AMR results in substantial computational savings, reducing 

simulation time by almost 20 times (as demonstrated in Table 3). The average simulation time per 

timestep for AMR is approximately 2 seconds, whereas a regular mesh configuration requires about 

40 seconds per time step.  

Table 3 Comparison CPU time of AMR mesh and regular mesh 

Case 

Average CPU time per 

time-step 

(time-step* #processors) 

Number of cells 

Regular mesh SVF-sca-D-

64 
39.744 

2097152 

Regular mesh SVF-dca-D-

64 
41.184 

2097152 

Amr mesh SVF-sca-D-64 2.088 ≈ 22689 

Amr mesh SVF-dca-D-64 2.099 ≈ 22689 

 

Given this balance between cost and benefits, the application of AMR proves highly beneficial for 

this kind of simulation. Accordingly, AMR will be the chosen method for all further simulations 

discussed in Chapter 5. 
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6.3.2 Mesh convergence review 

In this study, the PLIC-VOF method is used to track the interface. This method utilizes cell face 

normal velocities to advect volume fraction, as described in Chapter 2. This implies that the method 

includes an implicit slip length at the no-slip boundary. However, this implicit slip length is 

proportional to the mesh at the contact line. Even with a no-slip boundary condition where 𝑣𝑤𝑎𝑙𝑙 =

0, the contact line can move because the velocity at the face of the contact line cell is different from 

zero. This means that when resizing the mesh at the contact line, the face velocity decreases, leading 

to a reduced implicit slip length. This results in convergence breaking when the mesh size decreases, 

as indicated by Afkhami [37]. Figure 72 shows a withdrawing plate test conducted by Afkhami [37] 

with different mesh sizes. As expected, the interface does not converge as Δ→0; the height of the 

contact line increases as the mesh size decreases. Therefore, to allow the liquid phase to slide on the 

wall, one must carefully choose the mesh so that the implicit slip-length is large enough to let the 

liquid slide, while ensuring the mesh is fine enough to yield reliable results. Put in the conclusion that 

we should try to use navier slip boundary condition. (out in the perspective_ 

 

Figure 72. a) The withdrawing plate; b) Contact line height when apply a no-slip boundary 

condition along the wall [37] 

a) b)



116 

 

 

Figure 73. PLIC method use cell face normal velocities to advect the void fraction 

6.3.3 Mesh sensitivity study 

The results presented so far have focused on a mesh resolution of D/64. However, it is important to 

conduct a mesh convergence test, particularly for capillary flow simulations to see if there are any 

effects of mesh divergence. 

Figure 74 presents the comparison of three different mesh resolutions (ranging from D/16 to D/64) 

for two models: Smooth Void Fraction-SCA (SVF-SCA) and Smooth Void Fraction-DCA (SVF-

DCA). It is obvious that mesh convergence is not achieved upon refining the mesh. This can be 

attributed to the unbalanced of solver and curvature calculation method. The PLIC approach relies on 

cell center face velocity to advect the void fraction. Face velocity near the wall is particularly sensitive 

to mesh quality, making the wetted area similarly sensitive to mesh refinement, as discussed in more 

detail in Chapter 7. Curvature calculated by SVF method also contribute to the error of wetted radius 

due to the degree of one order accuracy. Nonetheless, refining the mesh does lead to a mesh 

convergence for both SVF-SCA and SVF-DCA when compared with the theoretical radius.  

For a more in-depth look, as the simulation is launched, the radius ratio of both SCA and DCA models 

increase, influenced by the equilibrium contact angle (𝜃𝑒 = 60) (Figure 74). The SVF-SCA model 

reaches a plateau much more rapidly compared to the SVF-DCA model. Across all three mesh scales, 

the radius ratio of SVF-DCA model is at around 0.4, a behavior attributed to the SCA model's fixed 

contact angle of 60°. In contrast, the DCA model's contact angle evolves in tandem with the contact 

line velocity, leading it to reach the plateau at varied times. For instance, at a mesh scale of D-32, the 

radius ratio for the SVF-SCA case reaches 1.23 after only 0.4 seconds, while the DCA model takes 

Interface

No-slip ( )
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about 3 seconds to plateau at a radius ratio of 1.22. This suggests that it take longer and the final 

wetting area in the DCA model is smaller than that in the SCA model. 

 

Figure 74 Time evolution of the wetted radius. Grid sensitivity tests of SVF-SCA and SVF-DCA, 

𝜃𝑒 = 60° 

Contrasting these results, simulations conducted using the HF method (as illustrated in Figure 75) 

portrayed a different scenario. Both the HF-SCA and HF-DCA models showed excellent agreement 

with the theoretical exact radius, especially at mesh resolution higher than D/32. Moreover, at the 

same mesh resolution, both HF-SCA and HF-DCA converged at the same radius, unlike their SVF 

counterparts. For additional context, the HF-SCA and HF-DCA share the same trends with SVF-SCA 

and SVF-DCA. Where the radius ratio for HF-SCA reaches a plateau more quickly than HF-DCA. 

However, the HF method results are more closely aligned with theoretical predictions than those from 

the SVF method. 

At a coarser mesh resolution of D-16, neither HF model successfully converges to the theoretical 

radius. When the mesh size is reduced to D-32, both appear to align accurately with theoretical data. 

Interestingly, at an even finer mesh of D-64, only HF-DCA continues to slightly converge towards 

the theoretical radius, while HF-SCA starts to overestimate it. 
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Figure 75 Time evolution of the wetted radius. Grid independence test of HF-SCA and HF-DCA, 

𝜃𝑒 = 60° 

To comparing our findings with other research in this simulation to see any improvement, the results 

is compared with Legendre's results [39]. Legendre's work employed a two-dimensional 

axisymmetric computational domain, the interface location is control by Flux-Corrected-Transport 

schemes and the interface force is solved using the classical Continuum Surface Force model. Due to 

2D simulation can impact the curvature shape. To further emphasize this phenomenon, a specific 1/4 

domain case is introduced, which makes use of two symmetry boundary faces as shown in Figure 

76c). This scenario can be viewed as a transitional case between Legendre's setup and our fully three-

dimensional setup (the final shape of the spreading droplet is depicted in Figure 76).  

 

 

Figure 76 Numerical results of spreading droplet at final state, 𝜃𝑒 = 60°; a) HF-DCA b) SVF-DCA, 

b) ¼ domain SVF-DCA 

Figure 77a) displays the spreading ratio results. The error in the spreading ratio decreases when 

symmetry boundary conditions are applied. This result is attributed to the fact that the SVF method 

a) b) c)
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calculates curvature at the first order of accuracy. Contrastingly, the HF method calculates curvature 

at the second order, hence, even in fully 3D domain, it shows higher accuracy. In fact, the HF method 

even demonstrates less error compared to Legendre's results [39]. In a more detail, there are 

significant different between HF-DCA and SVF-DCA at final radius ratio at time equal 3s. Where 

the error of SVF-DCA is significantly higher than HF-DCA. This error is suspected to be due to its 

inability to maintain the droplet’s spherical shape, a phenomenon potentially attributed to the presence 

of spurious currents and one order accuracy. Hence to SVF-DC cannot maintain the spherical shape 

lead to final radius ratio is big different (Figure 76and Figure 77a)). 

 

 

Figure 77 Comparison with Legendre. a) spreading ratio b) Capillary number 

Figure 77b) presents the temporal evolution of the contact line velocity, using the same simulation 

data as Figure 77a). An important feature of these results is the rapid initial change in the contact line 

velocity, followed by a gradual decrease as it approaches the final state.  

The results indicate that the contact line velocity for all simulations, including the Legendre case [39], 

initially increases swiftly. Thereafter, the velocity plateaus from 10−3𝑠 to 8.10−1𝑠 before eventually 

decreasing over time to reach the final state. Notably, both the 1/4 SVF-DCA and SVF-DCA 

simulations exhibit similar trends, with minor differences occurring from 4.10−1𝑠 onward. However, 

the HF-DCA model demonstrates a slightly different trend, reaching the plateau phase slightly faster 

than the other cases. Moreover, beyond a simulation time of 1s, the Capillary numbers for the 1/4 

SVF-DCA and SVF-DCA remain robust at around 10−3, while the HF-DCA's Capillary number is 

less than 10−4. This is critical especially when simulating capillary flow, as it alleviates the errors 

associated with spurious currents in the contact line model. 

a) b)
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In an attempt to model a hydrophobic surface where the final contact angle equals 120 degrees, new 

simulations were conducted (Figure 78 and Figure 79). The results, as displayed in Figure 78, reveal 

that at the beginning of the simulation, with a contact angle of 120 degrees, the wetting radius of both 

cases decrease. However, the wetting radius in the SVF-DCA scenario is smaller than the exact radius 

and lacks stability. Contrastingly, the radius ratio in the HF-DCA model aligns with the theoretical 

exact ratio and demonstrates stability. This can be attributed to the previously discussed shortcomings 

of the SVF method in accurately capturing the interface, as further illustrated in Figure 79.  

For further clarification, the wetting areas of both HF-DCA and SVF-DCA models decrease at the 

same rate until approximately 0.2 seconds, after which they start to diverge. Around the 0.4-second 

mark, the radius ratio of the HF-DCA method converges strictly to the theoretical value of 
𝑅

𝑅0
= 0.74. 

On other hand, the radius ratio for SVF-DCA method fluctuates around 0.7. Additionally, 

examination of the iso-contours of the void fraction at the final state, as shown in Figure 80, reveals 

significant differences between the two methods. The HF-DCA model maintains a spherical shape, 

as one would physically expect. In contrast, the iso-contour for the SVF-DCA model shows a ribbed 

surface, suggesting that the numerical errors inherent to this method contribute to the distortion.  

 

Figure 78 Time evolution of the wetted radius – comparison between the SVF-DCA model and HF-

DCA model for equilibrium contact angles: 𝜃𝑒 = 120°  
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Figure 79 Numerical results of spreading droplet at final state; left SVF method, 𝜃𝑒 = 120°; right 

HF method, 𝜃𝑒 = 120 

6.4 Spreading of a water droplet 

Another test involving the spreading of a water droplet is carried out. In this case, we will take into 

account the effects of both gravity and surface tension force. The goal is to compare the new HF 

algorithm, when coupled with a dynamic contact angle model, with numerical and experimental 

results from the literature. The case considered is the Roisman experiment [93] corresponding to the 

spreading of a water droplet on a dry surface at a low Weber number at different impact velocity. The 

parameters of the experiment, along with the properties of the liquid used, are detailed in Tables 3 

and 4. These tables lay the groundwork for our simulation and allow us to accurately mimic the 

conditions and parameters of Roisman's experiment.  

Table 4. Roisman experiment parameters [93] 

Roisman-exp 

Liquid water 

Solid surface Stainless steel 

Droplet diameter D0 (mm) 2.5 

Advancing contact angle (𝜃𝑎) 120° 

Receding contact angle (𝜃𝑑) 65° 

Impact velocity (m/s) 0.16 

Weber number 0.88 

Table 5. Water and air properties for droplet spreading case 

Water properties Air properties 
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Viscosity 

(𝑷𝒂. 𝒔) 

Surface tension 

(𝑵. 𝒎−𝟏) 

Density 

(𝒌𝒈. 𝒎−𝟑) 

Viscosity 

(𝑷𝒂. 𝒔) 

Density 

(𝒌𝒈. 𝒎−𝟑 

0.00874 0.07319 1025.76 0.000018 1.225 

 

The experiment involved a water droplet splashing onto a stainless steel surface. The advancing and 

receding contact angles were measured to be 120 degrees and 65 degrees, respectively. The velocity 

of the droplet immediately before making contact with the solid wall was recorded at 0.16 m/s. The 

computational domain is a cube of 12.5 mm side length (Figure 80). All faces are set as a wall 

boundary condition. The mesh resolution is fixed at 32 cells per radius.  

 

Figure 80. Computational domain for the spreading of droplet case [93] 

6.4.1 Effect of curvature method 

To illustrate the different between different curvature method, the curvature calculation HF and SVF 

each integrated with the Kistler dynamic contact angle model are explored. As illustrated in Figure 

81a) ,it appears that both the SVF Kistler and HF Kistler models initially overestimate the droplet 

spreading factor compared to the experimental data. However, in Figure 81a), as time progresses, the 

spreading factor in the HF Kistler model starts to detach from the SVF Kistler model at time = 7.5 

𝑚𝑠. Then, the spreading factor of the HF Kistler model is closer to the experimental data, while the 

SVF Kistler model continues to overestimate the experiment data throughout the entire time period.  

2.5mm
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On the other hand, Figure 79b illustrates that the HF Kistler model is more adept at capturing the 

experimentally observed changes in height ratio compared to the SVF Kistler model. Overall, the 

figure shows droplet oscillations from 0 to 25ms. From time=0 to time=7ms, the droplet's height 

decreases, albeit with a minor rebound at around 5ms. During this phase, the HF Kistler model closely 

aligns with experimental results, whereas the SVF Kistler model overestimates the height. From 

7.5ms and 13m, after the droplet reaches its lowest height, the height starts to increase again, reaching 

a ratio of 𝐻/𝐻0=0.765. Here again, the HF Kistler model exhibits strong agreement with experimental 

data, while the SVF Kistler model underestimates the height.  

Beyond this point, the droplet continues to oscillate. The HF Kistler model remains consistent with 

the experimental data up to around 23ms, after which it begins to diverge. In contrast, the SVF Kistler 

model starts showing significant discrepancies with the experimental data from that moment onward.  

In conclusion, the HF method's ability to represent the experimental data with greater accuracy, while 

the SVF method initially overestimates and then underestimates the phenomenon. 

 

Figure 81. SVF Kistler and HF Kistler are compared with numerical and experimental results of 

Roisman [1]: a) The evolution of the spreading factor; b) The evolution of the droplet height. 

Figure 82 show the comparison between our numerical results and the experimental images from 

Roisman et al. [93]. Overall, the numerical simulation agrees well with the experiment data. However, 

some minor differences in shape are observed. This can be explained by the fact that, in the 

experiments, the droplet shape is not a perfect sphere when it contacts the solid surface. Indeed, 

Roisman [93] reported that due to the initial oscillations during droplet generation, it is difficult to 

perfectly control the initial shape of the droplet. 

D

a) b)

Roisman experiment [1]

SVF Kistler 

HF Kistler

Roisman experiment [1]

SVF Kistler

HF Kistler
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Figure 82. Numerical results of the spreading droplet obtained with HF and Cox’s models (right 

half, green) and experimental results [93] (left half). The contour is the C = 0.5 iso-surface 

6.4.2 Effect of different dynamic contact angle model 

As discussed in Section 2.3, there are several dynamic contact angle models. During the development 

phase, two different models, Kistler and Cox, are implemented. Therefore, in this section, these two 

models are compared to observe their behavior. Figure 83a) illustrates the time evolution of the 

spreading factor defined as the ratio between the wetted diameter D and the initial wetted diameter 

D0. Both dynamic contact angle models predict the evolution of the spreading droplet well, although 

the droplet diameter is slightly over predicted by the numerical simulations, including the Roisman 

CFD results. Both models behave similarly during the transient phase. However, a divergence 

becomes apparent at around the 7.5-second mark. From that point onward, the Cox model tends to 

continue overestimate the radius, while the Kistler model forecasts a lower final spreading factor that 

aligns more closely with the experimental data. 
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Figure 83b) shows the time evolution of the dimensionless droplet height defined as the ratio between 

the droplet height H and the initial droplet height H0. Both the Kistler and Cox dynamic contact angle 





 

 

models effectively replicate the experimental data and accurately predict the droplet's oscillation 

frequency. During the initial descent phase from 0 to 7ms, the CFD results of the current study align 

more closely with experimental observations than do Roisman's CFD findings. From 7 to 17ms, both 

the current study's CFD outcomes and those of Roisman track well with the experimental data, 

although the HF-Cox method slightly underestimates the height between 9 to 14ms. Beyond 1 ms, 

Roisman's CFD results fail to follow the experimental trend, while the Kistler model remains accurate 

up to 22ms and the Cox model up to 20ms. After the 22ms mark, none of the CFD models can 

faithfully reproduce the experimental data. 

 

Figure 83. Two different dynamic contact angle models are compared with numerical and 

experimental results of Roisman [93]: a) The evolution of  the spreading factor; b) The evolution of 

the droplet height 

6.5 Conclusion 

In this chapter, several tests were carried out to valid the new development (well-balanced PISO 

algorithm, Height Function method, dynamic contact angle models and the combination of these new 

developments). Initially, a two-dimensional stationary droplet was chosen to test the effects of the HF 

and well-balanced method. The results indicated that with these new implementations, errors caused 

by imbalances in the code are dramatically reduced, and the accuracy of the interface location has 

significantly improved. The spreading of a droplet, driven by the contact line and water droplet 

spreading, was tested to observe the effects of the new implementation of the dynamic contact angle. 

This showed that the dynamic contact angle significantly enhances the output of two-phase flow CFD, 

which is then compared with theoretical models as well as with experiments. 

 

Roisman experiment [1]

Roisman simulation [1]

HF Cox

HF Kistler

Roisman experiment [1]

Roisman simulation [1]

HF Cox

HF Kistler

a) b)
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Chapter 7  

 

Transient film flow over complex 

surfaces  
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How can new developments be applied to simulate corrugated channels? In this section, film flow 

over flat and corrugated surfaces will be simulated to understand the hydrodynamics of film flow 

over complex corrugated dry surfaces. 

7.1 Introduction 

In Chapter 4, the research focused on film flow over a pre-wet surface, often observed in oil injection 

flows for electric motor end windings. However, this does not represent all scenarios encountered in 

practical applications. Specifically, when oil injection begins, the motor's end winding usually 

displays a dry and intricate surface. As a result, this chapter delves into the simulation of film flow 

on these complex dry surfaces. Simulating film flow on a dry surface demands special attention due 

to the effects of the contact line, which isn’t a concern with pre-wetted surfaces. To address this, 

methodologies from Chapters 5 and 6 have been incorporated to accurately depict film flow over dry 

areas. The chosen model employs a two-dimensional computational domain as the basis to probe the 

effects of surface curvature calculation methods, equilibrium contact angles, and varying Reynolds 

numbers. The objective is to study the film's behavior on intricate surfaces under diverse setup 

parameters, which will enrich the understanding of film flow on the corrugated surfaces of motor end 

windings. 

7.2 Numerical setup 

 

Figure 84. Representation of a film injected at a constant uniform rate onto a plane inclined at an  

angle 𝛽. 

Capillary ridge

g



131 

 

Two distinct wall configurations are studied: a flat wall and a wall with a corrugated pattern (Figure 

84). The motion of the liquid film is affected by a combination of factors, including the inlet mass 

flow rate and gravitational forces. Key features of the film flow, such as the shape of the fluid interface 

and the characteristics of the capillary ridge, are influenced by forces like gravity, viscous forces, and 

surface tension. The thickness of the liquid film is theoretically calculated using Nusselt film theory 

and compared with the numerical results.  

7.2.1 Numerical domain and setup 

The reference flat wall domain configuration is based on the research of Lallement and experiences 

of Johnson  [96,97] with the objective to do 3D simulation. However, in this scope of study, only 2D 

simulation tests was conducted as it requires much less simulation time. It corresponds to a film 

injected at a constant mass flow rate with Re=0.52 onto an inclined surface at an angle of 27.9°. 

 

Figure 85. Computational domain and boundary conditions of dry channel 

The corrugated pattern is similar to what is described in Chapter 3. The initial film height at the 

injection point is set to be equal to the thickness of the film calculated by Nusselt theory (Figure 85). 

The liquid properties are a mixture of water/glycerol at ambient temperature, as follows: 

Table 6. Liquid properties at ambient temperature 

Liquid 𝜌(𝑘𝑔. 𝑚−3) 𝜐(𝑚2. 𝑠−1) 𝜇(𝑁. 𝑚) 𝜃𝑠 (𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑎𝑛𝑔𝑙𝑒) 

Water/glycerol 1210 6.9 × 10−5 0.066 38° 

Wall

Inlet

Wall

Inlet

Wall

Wall

Outflow

Outflow
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The mass flow rate can be calculated based on Re; in the reference case with Re=0.52, the mass flow 

rate is: 

�̇� = 𝜌𝜐𝑅𝑒 = 4.341 × 10−2𝑘𝑔. 𝑠−1. 𝑚−1 (107) 

The thickness of the film, calculated by Nusselt theory, is: 

𝛿𝑁𝑢 = (
3𝜐�̇� 

𝑔𝜌 sin(𝛽)
)

1
3

= 1.174 × 10−3 (108) 

7.3 Mesh study 

7.3.1 Mesh Strategy 

In order to decrease the number of mesh to get results faster, the AMR was used. To confirm the 

reliableility of AMR, the position of interface after 1s simulation was compared (Figure 87). The 

mesh strategy consists in activating AMR in the liquid only and at the  interface to compare with 

regular mesh (Figure 86). The mesh size varies from 100𝜇𝑚 to 25 𝜇𝑚.  

 

Figure 86. Comparing regular mesh vs AMR mesh 

By comparing the interface at the same time, it can be observed that the interface in both meshes are 

almost identical. Hence, AMR does not affect the simulation results, while it reduces the mesh size 

by roughly 87% and decreases simulation time by 85%. This AMR configuration is used for 

subsequent simulations in this chapter. 

 

AMR in liquidRegular mesh

liquid

gas

liquid

gas
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Figure 87. Comparing the interface position and shapre at the front of the film for the regular mesh 

and AMR in liquid, Δx=50μ𝑚, 𝑡=1𝑠, 𝜃𝑠 = 38°, Re=0.52 

7.3.2 Mesh convergence study 

In this section, a mesh study is launched to test and choose the best mesh configuration for the 

simulation, to investigate the sensitivity of transient film behavior to the grid. As previously 

mentioned (section 6.3.2), the simulation of the static contact angle model was first tested with mesh 

sizes ranging from 25𝜇𝑚 to 100𝜇𝑚  and then compared to Lallement's results (Figure 88 a.). The 

results clearly indicate that there is no mesh convergence, as explained in section 6.3.2. As the mesh 

size decreases, the implicit slip length also decreases, resulting in the contact line lagging behind 

compared to the case with a larger mesh. However, at a mesh size of Δ𝑥 = 50𝜇𝑚, the results seem to 

align with Lallement's findings. In all mesh cases, after a brief transition at the inlet, the film thickness 

equals 𝛿𝑁𝑢. Subsequently, the film thickness increases to form a capillary ridge due to the effects of 

the capillary number, contact angle, gravity, and liquid properties. 

To observe the effect of dynamic contact angle on mesh refinement, the DCA Kistler model was 

applied (Figure 88 b). Overall, after the transition period at the inlet, the film thickness decreases back 

to the height of Nu theory when Δ𝑥 is greater than 50𝜇𝑚. However, at the mesh Δ𝑥 = 25𝜇𝑚, the 

thickness, post-transition, does not revert back to 𝛿𝑁𝑢. This is because at a denser mesh, the smaller 

implicit slip length causes the contact line to move more slowly than at a coarser mesh. Therefore, at 

1s, it hasn't fully developed, preventing the film thickness from decreasing back to the theoretical 

film as observed in other cases. 

Regular mesh AMR in liquid
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In conclusion, among the three different meshes, it is evident that, as expected, there is no mesh 

convergence of the contact line for both SCA and DCA. However, it's clear that the film thickness 

equals the theoretical film in the fully developed section of the film. 

 

Figure 88. Mesh convergence test with a static and dynamic contact angle model at 𝑡 = 1𝑠, 𝜃𝑠 =

38°, Re=0.52 

The film initially wets the surface until it reaches the end of the computational domain. At this stage, 

the simulation surface is completely wet, and it will be checked for wall shear stress. As observation 

in Figure 89 a). It represents the shear stress of a fluid in relation to the wall boundary layer, extending 

from 0 to 35 mm. This is illustrated across four distinct mesh sizes, ranging from 12.5 micrometers 

to 100 micrometers. In this figure, there are four lines, with each line corresponding to a specific mesh 

size. All four lines follow a similar trend. Initially, the wall shear stress is at its highest, reaching 40 

𝑁/𝑚2. This then drastically decreases to approximately 5.5 𝑁/𝑚2, experiences a slight increase, and 

eventually levels off. Due to the similarity in these trends, it becomes challenging to discern the 

nuances between the four different mesh sizes. 

This is where Figure 89 b) comes into play. Figure 89 b) depicts the average value of the shear stress 

within a specific segment, specifically from 25 to 35 mm, for each of the four mesh sizes. By zooming 

into this range, the differences between the mesh sizes become more apparent. The average value for 

the 100 𝜇𝑚 mesh is 7%, which gradually decreases to 6.6% for the smallest mesh size. The difference 

between them isn't vast; especially when comparing the 50 𝜇𝑚 with the 12.5 𝜇𝑚, the difference is a 

mere 3%. This suggests that once the fluid has flowed past, a 50 𝜇𝑚  is sufficient to capture the 

hydrodynamic phenomena of this type of flat wall.  

a) b)
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Figure 89. Wall shear stress magnitude at Re=0.52; a) along channel b) average from 25 to 35 (mm) 

when the channel already fully wetted  

In practical scenarios, computational domains are rarely flat. Instead, they tend to be intricate, as 

exemplified by the corrugated surfaces discussed in this chapter. Meshing such domains with an 

aligned-wall mesh becomes infeasible due to their complexity. This challenge necessitates the 

adoption of alternative mesh structures, such as the cut-cell mesh, which is showed in Figure 90. This 

mesh type is versatile, capable of accommodating nearly any surface, regardless of its intricacy. 

However, its efficacy needs to be verified before extensive application. 

 

Figure 90. a) Cut-cell mesh; b) Aligned-wall mesh 

Figure 91 offers a comparative analysis of the interface profiles of cut-cell mesh against the aligned-

wall mesh at a specific instance (t=1s), considering both static (SCA) and dynamic contact angles 

(DCA) using the SVF method. Across all four simulations, a brief transmission section is evident 

where the film thickness deviates from the theoretical thickness, 𝛿𝑁𝑢. This is followed by a phase 

where the film thickness aligns with 𝛿𝑁𝑢. Notably, all four scenarios exhibit a Capillary ridge. 

However, a significant distinction emerges within the SCA model: the cut-cell mesh in the SCA 

a) b)

a) b)

wall
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context appears to have a quicker sliding motion compared to its aligned-wall counterpart. In contrast, 

when examining dynamic contact angles, the discrepancies between the cut-cell and aligned-wall 

methods are minimal.  

Drawing from these observations in Figure 91, it’s clear that when used with the DCA, the influence 

of the cut-cell mesh structure on simulation results is relatively minor. However, its effects become 

significantly more discernible when the cut-cell mesh operates in conjunction with the SCA. 

 

Figure 91. Interface profile at 1𝑠 with SVF method, Δ𝑥 = 50𝜇𝑚, 𝜃𝑠 = 38°, Re=0.52. Comparing 

SCA and DCA with different mesh structure 

Based on these simulations, the cut-cell method is applied to simulated corrugated wall . A similar 

test was conducted as with the flat channel (Figure 89), where two graphs were plotted. One is a line 

chart of four mesh sizes ranging from 100 𝜇𝑚 to 25 𝜇𝑚, and the other is a bar chart with four columns, 

each representing the average wall shear stress of the line segment from 25 to 30 mm. 

In Figure 92 a), the line chart depicts the following: initially, much like a flat channel, the wall shear 

stress in the corrugated channel reaches a peak of 40 𝑁/𝑚2. This value then experiences a sharp 

decline within the first 1 mm of the channel. However, due to the influence of the corrugated channel, 

the velocity in the boundary layer near the wall varies largely depending on the wall pattern. The wall 

shear stress has a consistent fluctuation following the pattern of the corrugated wall. On the other 

hand, Figure 92 b) depicts the average wall shear stress between 25 to 35 mm, where the wall shear 

stress exhibits stable fluctuations. 

The results suggest that in this corrugated form, the mesh's impact is greater than in a flat channel. 

For instance, the difference in mesh between 100 𝜇𝑚 and 12.5 𝜇𝑚 in this case reaches up to 33%, 

while in a flat channel, it's only 6%. Interestingly, when the mesh is reduced to 50 𝜇𝑚, the difference 



137 

 

of wall shear stress in corrugated channel is only 8%, and it drops to 6% for a 25 𝜇𝑚.. In conclusion, 

for this type of surface, a mesh size of at least 50 𝜇𝑚 is sufficient to capture most of the liquid's 

phenomena. Moreover, this coarseness ensures that the contact line can move smoothly. 

 

Figure 92. Wall shear stress magnitude at Re=0.52 a) along channel b) average from 25 to 35 (mm) 

when the channel already fully wetted 

Upon examination of the mesh and evaluation of the implicit slip length, it becomes evident that 

selecting the mesh size 𝛥𝑥 = 50𝜇𝑚 for the simulations strikes a delicate balance. This choice is based 

on tests conducted with both SCA and DCA models, alongside comparisons with Lallement’s 

findings. Specifically, a mesh size of 𝛥𝑥 = 50𝜇𝑚 is not only sufficiently fine to accurately capture 

the interface but also large enough to permit the movement of the contact line interface. This size 

ensures ample implicit slip-length for the liquid to glide smoothly, while simultaneously being fine-

tuned to yield dependable results. From now on, the mesh with Δ𝑥 = 50𝜇𝑚 will be used for both flat 

and corrugated surfaces for simulating in this chapter.  

 

7.4 Effect of curvature calculation 

Once the appropriate mesh was finalized, the next step involved examining the influence of different 

curvature methods. In this segment, the SVF method was compared against the HF method, with both 

results benchmarked against those of Lallement. Figure 93a) and b) showcase the comparison of these 

curvature methods, using the SCA and DCA models, respectively, at a delta of 50 𝜇𝑚. 

For Figure 93a), at the 1-second mark and in comparison with Lallement’s results, both the HF and 

SVF methods align closely, especially in the contact line location. However, the HF method’s 

a) b)



138 

 

interface profile seems to adhere more accurately to the trend observed with Lallement’s case, even 

at the capillary ridge. In contrast, the SVF method demonstrates slight discrepancies, particularly 

noticeable at the capillary ridge. Beyond the capillary ridge, both methods yield results in line with 

Nusselt’s theoretical calculations, indicating a film thickness ratio equal to 1. 

Figure 93b) paints a similar picture of the interfaces of both the SVF and HF methods. However, this 

time, instead of the SCA, the DCA is employed. Notably, there’s no comparison with Lallement’s 

data here, as Lallement’s results pertain solely to SCA. This line chart, with separate lines 

representing HF and SVF, indicates that when the dynamic contact angle is employed, a greater 

distance, specifically around 5mm as opposed to 2.5mm for SVF, is needed for the liquid to transition 

to the Nusselt film state, where the film thickness matches Nusselt theory. This is due to the HF is 

more sensitive to the wall contact angle and potentially change setup can help. Due to the larger 

contact angle in DCA model, which results in greater adhesion force at contact line and consequently 

slows down the fluid motion. For instance, when using the HF method, the contact line position for 

SCA is 28mm (Figure 93a), while it’s only 21mm (Figure 93b) for DCA. A similar trend is observed 

with the SVF method. Moreover, due to the increased resistance, the magnitude and height of the 

capillary ridge for DCA are greater; the peak of the DCA’s capillary ridge is roughly twice that of the 

Nusselt film thickness theory, whereas the SCA’s is around 1.6 times. 

 

Figure 93. Interface profile comparison between HF and SVF at 𝑡 = 1𝑠, 𝜃𝑠 = 38°, Re=0.52; a) 

SCA; b) DCA 

 

a) b)
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Figure 94. Numerical results with 𝜃𝑠 = 38°, Re=0.52; a) Time-dependent contact line posision b) 

Time-dependent contact line velocity magnitude 

While the interface profile allows us to observe the differences between DCA and SCA, a deeper 

analysis is necessary to understand the underlying reasons for their divergence. Figure 94a) assists in 

illustrating these differences. 

Figure 94a) plots the position of the interface over time for four distinct scenarios, accounting for the 

variations in both curvature methods (SVF and HF) and contact angle models (SCA and DCA). 

Similarly, Figure 94b) illustrates the velocity of the contact line over time for these four cases. 

From Figure 94a), it's evident that for cases employing the SCA model, both HF and SVF methods 

showcase a relatively consistent position of the contact line over time, increasing linearly. There's a 

minor deviation between 0 to 0.6 seconds, where the HF method's contact line lags slightly behind, 

but it eventually aligns closely with that of the SVF. In contrast, with the DCA model, both HF and 

SVF methods display similar contact line positions until around 0.6 seconds. After this point, the 

contact line's position in the HF method trails significantly, by about 0.05mm compared to SVF. 

Figure 94b), as mentioned, describes the velocity of the contact line (measured as half the boundary 

cell velocity). On average, the velocities in the SCA model scenarios are greater than those in the 

DCA model scenarios. This observation is logical: the SCA model holds the contact line at a fixed 

angle of 38°, which is smaller than the DCA model's contact angle. A smaller angle implies less 

resistance, leading to faster velocities. However, the phenomenon of "spurious currents" (as detailed 

in Chapter 6) introduces velocity instability in the SVF-SCA scenario compared to the HF-SCA.  

In general, at the onset, as the liquid is introduced into the channel, its velocity peaks sharply, and 

then immediately slows down. From this point, the average velocities of all four scenarios decline, 

reaching their minimum values at around 0.3 seconds. They then gradually increase until about 0.8 
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seconds, after which they stabilize. For the DCA scenarios, the velocity variations are less 

pronounced, and the average velocities are generally slower than in the SCA scenarios, as mentioned 

earlier. 

In conclusion, the distinction between the SVF and HF methods significantly influences the behavior 

of the contact line, both regarding its position and velocity. The HF method hasdemonstrated a 

superior ability to capture the interface as . However, a limitation of the HF method is that it currently 

operates only on a single processor which is impossible to run a large scale simulation, but 

improvements are anticipated in future endeavors. As a result, the following chapter will employ the 

SVF method combined with DCA for simulations. 

7.5 Comparison of transient film flow on flat and corrugated surfaces 

The evolution of liquid film flow over two distinct surfaces, flat and corrugated, was studied (Figure 

95). Observations of the liquid interface were recorded at three time intervals: 0.5s, 1s, and 1.5s. 

 

Figure 95. Interface profile comparison between flat and corrugated surface at 0.5s, 1.0s and 1.5s 

with 𝜃𝑠 = 38°, Re=0.52 

At the 0.5-second, the film interface on the corrugated surface was significantly thicker compared to 

that on the flat surface. This difference can be linked to the initial effects: the corrugations on the 

surface act as obstructions to the free movement of the liquid, resulting in a more substantial buildup. 

However, as the time extended to 1s and 1.5s, the influence of these initial effects diminished. 

Consequently, the film interface on both the flat and corrugated surfaces started to follow to the 

Nusselt film state more closely, with the theoretical film thicknesses aligning and the film thickness 

in the corrugated case was slightly thinner than in the flat case. Another observation is the film on the 
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flat surface traveled faster than that on the corrugated surface. This is illustrated in Figure 96 a), which 

depicts the changing contact line positions over time. For the flat surface, the contact line's position 

advances consistently. Initially, as the liquid is injected to the dry surface, the contact line advances 

slowly. This is because the liquid is still forming the capillary ridge. However, by 0.6s, it starts 

advancing fast, aligning with the contact line velocity depicted in Figure 96 b). On the other hand, 

the contact line position on the corrugated surface follows a distinct pattern due to its pattern. 

Particularly, from 0.3 to 0.5s, the position remains almost static. This stagnation occurs because the 

corrugated surface prevents the liquid's movement in the 𝑥 direction, causing it to accumulate in the 

y direction. By 0.5s, when the capillary ridge is big enough and the wall's cohesive force of the wall 

acting on liquid longer hold the contact line back, it begins to move again. However, its progression 

remains slower compared to that on the flat surface. 

As shown in Figure 96 b), there’s a significant fluctuation in contact line velocity magnitude of 

corrugated case. This fluctuation in the contact line are largely influenced by the corrugated pattern. 

Specifically, the liquid tends to move slower when the flow direction and the wall's normal are 

misaligned, and quicker when both directions are aligned. 

 

Figure 96. Comparison between flat and corrugated surface at 0.5s, 1.0s and 1.5s with 𝜃𝑠 = 38°, 

Re=0.52; a) Time-dependent contact line posision b) Time-dependent contact line velocity 

magnitude 

7.6 Effect of equilibrium contact angle 

In electric motor applications where liquid coolants are deployed, a myriad of materials such as 

copper, steel, and wiring are encountered. As a consequence, the equilibrium contact angle is not 

always a constant figure. This value can fluctuate based on the surface characteristics of the material 

as well as the type of coolant used. 

a) b)
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In this section, four distinct equilibrium contact angles: 38°, 60°, 90°, and 120° are investigated. These 

values are emblematic of two common surface categories: hydrophilic and hydrophobic. 

Figures 95a and 95b depict the interface profile at 1 second for both flat and corrugated surfaces, 

respectively, when the SVF-DCA method is employed. 

 

Figure 97. Interface profile comparison of four distinct equilibrium contact angles: 38°, 60°, 90°, 

and 120° at 𝑡 = 1𝑠, Re=0.52; a) SVF-DCA Flat channel; b) SVF-DCA Corrugated channel  

In Figure 97a), all four cases display a comparable trend. Yet, as the equilibrium contact angle grows, 

the dynamic contact angle increase, as explained to in section 5.4. This change affects the capillary 

ridge. A rise in the "actual" contact angle exerts a stronger adhesion force which is resistance against 

the forward movement of the contact line. Consequently, the peak of the capillary ridge moves from 

being twice the theoretical film thickness to 2.2 times its value. 

Figure 97b), also illustrates the interface profile at 1 second for the corrugated channel. Analogous 

Figure 97a), an increasing equilibrium contact angle slows down the contact line's motion, and the 

capillary ridge's peak also rises. A noteworthy distinction is the increased adhesion force experienced 

by the liquid flowing through the corrugated channel compared to the flat one. For instance, with an 

equilibrium contact angle of 60°, the liquid advances 25 mm in the flat channel at 1 second but only 

manages 22 mm in the corrugated channel. Furthermore, the highest point of the capillary ridge in 

the corrugated channel generally exceeds that in the flat channel. However, a peculiar observation in 

the corrugated channel is the emergence of air bubbles when the contact angle is at 90° and 120°. 

This suggests that with larger contact angles, the liquid fails to wet the entire corrugated surface, 

leading to this phenomenon. 

a) b)
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Figure 98. Close-up observation of the interface passing through a corrugated cycle near the wall. 

Re=0.52, 𝜃𝑠 = 120° at 𝑡 = 1.00, 1.01, 1.02, 1.03, SVF-DCA  

Further details can be observed in Figure 98, which presents the evolution of the contact line passing 

over a corrugated cycle at Re=0.52 when an equilibrium contact angle of 120 is applied. Due to the 

high contact angle and the pattern of the corrugation, the contact line touches the front side of the 

corrugated wall before it can wet the entire corrugated surface. This phenomenon results in bubbles 

being trapped within the corrugated valley. 

t=1.00s t=1.01s

t=1.02s t=1.03s
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7.7 Effect of Reynold number  

In electric machines employing the direct cooling method, liquid films are anticipated to have higher 

Reynolds numbers. Thus, the study extended beyond the effects of different contact angles, as the 

Reynolds number also exhibited considerable variations. While a previous section studied the effects 

of different contact angles, this section focuses on the variations and consequences of changing 

Reynolds numbers. 

The range of Reynolds numbers examined extended from a very low value of approximately 0.52 to 

a relatively high value of 30 (for film flow). To elucidate the effects of different Reynolds numbers, 

the capture time was normalized with respect to the Reynolds number, and the film thickness was 

compared to the theoretical film thickness as calculated by the Nusselt theory.  

For time normalization, division by Re was undertaken. Regarding normalized film thickness, as 

detailed in Table 7, varying Reynolds numbers produce different theoretical film thicknesses. As a 

result, film thickness was normalized by dividing it by the theoretical film thickness associated with 

each distinct Reynolds number, notably for the values of 0.52, 5, and 30. 

Table 7. Dependency of δNu on 𝑅𝑒 number base on (107) and (108) 

𝑅𝑒 0.52 5 30 76 100 

𝛿𝑁𝑢 0.001174 0.002496 0.004536 0.006184 0.006776 

Figure 99a) depicts the normalized interface profile at (Time/Re=0.52). It's evident that the shape of 

the capillary ridge deviates markedly with changing Reynolds numbers. The maximum height of the 

capillary ridge diminishes as the Reynolds number ascends. For instance, at Re = 0.52, the ratio of 

film thickness to theoretical film thickness is 2, while at Re = 30, this value reduces to approximately 

1.3. Furthermore, at the same normalized time (Time/Re=0.52) for different corresponding Reynolds 

numbers, the liquid travels further with the highest Reynolds number. Moreover, at the highest 

Reynolds number, the actual velocity of the contact line is also proportionally faster and based, as 

velocity increases, the actual contact angle also surges, leading to the emergence of air bubbles in the 

flow. This phenomenon was not observed at Reynolds numbers of 0.52 or 5.  This is because at higher 

Re numbers, there's a tendency for a greater contact line velocity which led to higher contact angle as 

described in section 2.3, causing the surface to become hydrophobic. 

 As a result, the interface beads up, and with high velocity, pockets of air become trapped between 

the wall and the liquid.  
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Figure 99. Interface profile for three different Reynolds numbers: 0.52, 5, and 30 at normalized time 

Time/Re = 0.52, 𝜃𝑠 = 38°; a) flat channel b) corrugated channel 

Similarly, Figure 99b) highlights the effects of Reynolds number on the corrugated channel. Broadly, 

the interface shape is akin to the flat channel, where a higher Reynolds number results in a lower max 

capillary ridge and a position further from the injection point at normalized time Time/Re = 0.52. 

However, a distinct difference is noted: even at Re = 5, numerous air bubbles emerge as the liquid 

flows. This occurrence is attributed not only to the larger contact angle but also to the velocity of the 

contact line. As illustrated in Figure 98, a higher contact angle causes the interface to touch the front 

side of the corrugation before it can wet the entire corrugated wall. However, when combined with 

high velocity, this phenomenon becomes more pronounced. 

The Reynolds number profoundly impacts the flow characteristics in both flat and corrugated 

surfaces. While general trends such as reduced capillary ridge height with increased Reynolds 

numbers are consistent across both channels, certain phenomena, like the appearance of air bubbles 

at lower Reynolds numbers in corrugated surfaces, indicate the complex of fluid dynamics. When 

combined with heat transfer, these bubbles act as insulating materials, preventing direct contact 

between the liquid and solid parts. This leads to a more complex heat transfer analysis. Additionally, 

the bubbles can alter the hydrodynamics of the liquid flow. When trapped inside the valleys of the 

corrugated surface, they reduce the area of direct contact between the liquid and the wall, further 

complicating the hydrodynamic analysis. These problems need to be taken into account carefully to 

obtain reliable results. 

7.8 Conclusion  

In this chapter, we first try to simulate 2D film flow over a dry surface between flat and corrugated 

surfaces using different parameters with the new solver we develop in Chapter 5. It is essential for 

a) b)
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3D simulations in future works. The simulation utilized the geometry described in Chapter 4, and the 

new developments from Chapters 5 and 6, to effectively simulate film flow over a dry surface. As 

AMR is crucial for two-phase flow simulations, we first tested its effect on the overall results. AMR 

reduced the simulation time by 85% while maintaining the output quality, equivalent to using a 

regular mesh with 85% fewer grid cells. 

The mesh convergence study showed that, as expected and as described in Chapter 6, there was no 

mesh convergence with the no-slip boundary condition. However, we found that with a mesh size of 

50𝜇𝑚, the results agreed with the Lallement case. 

The distinction between the SVF and HF methods greatly affects the behavior of the contact line, 

both in terms of its position and velocity. The HF method has demonstrated a superior ability to 

capture the interface with greater accuracy. However, it should be further improved for 

parallelization. 

The equilibrium contact angle plays an important role in determining how liquids move and interact 

with surfaces, particularly within corrugated surfaces. Bubbles can easy form and get trapped within 

the wall corrugations. It should be considered that due to the bubble size is influenced by the wall 

pattern. Future research should explore various types of corrugated surfaces to understand how 

different wall patterns affect bubble formation. 

Reynolds number emerges as a key factor, dictating the fluid's behavior in terms of film thickness 

and flow progression. Higher Reynolds numbers, while promoting flow progression, can also 

introduce challenges, such as air bubble formations, especially in corrugated surfaces. 

As the number and size of bubbles trapped inside the corrugated wall vary with the Reynolds number 

and equilibrium contact angle, this can introduce challenges in accurately estimating heat transfer. 

These issues should be taken into account in future studies. 

The simulations in this chapter are dedicated to future work on 3D simulations. The results and 

procedures found in this chapter can be used to further develop and properly launch simulations. The 

ultimate goal is to accurately simulate real 3D direct film flow over complex surfaces. 
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Chapter 8  

 

Conclusion and perspective 



149 

 

  



150 

 

8.1 Conclusion 

Electric motors gained global interest due to their environmental benefits. As the push for compact, 

high-power motors grows, so do thermal management challenges. Heat in these motors, resulting 

from factors like magnetic, Joule, and mechanical losses, increases strain on various engine parts. 

Specifically, higher currents can lead to significant heat increases from the Joule effect. Compact 

designs also reduce cooling space. Thus, effective cooling methods are essential for stable and safe 

operation. 

IFP Energies nouvelles, recognizing these demands, has initiated several projects encompassing 

simulation, design, and experimentation, all with the aim of producing high-efficiency electric 

motors. This thesis is embedded within the simulation phase, aiming to provide designers with 

trustworthy data regarding the heat flux of a cooling system that employs direct oil cooling to the 

end-winding of an electric motor. The goal of this work, as a component of the broader project 

mentioned above, is to devise a numerical methodology capable of effectively simulating a liquid 

film flow generated by a jet impinging on the end-windings of an electric motor. Crucially, this solver 

should integrate a dynamic contact angle model to accurately capture the intricate wettability 

phenomena present in the winding geometry, where the liquid film progresses. 

First, the introduced of electric motors, underlining the critical thermal management challenges posed 

by compact designs. It emphasizes the importance of efficient heat dissipation, with a focus on oil-

based cooling strategies. Then, a detail of physical phenomena of oil flow, or in general two phase 

flow has been detail, the surface tension and wettability which is the important aspect to able to 

simulate film flow over complex surface has been indicate. The dynamic contact angle, the angle 

between contact line and solid wall is explain in physical way as well as the mathematical model that 

able to represent that physics as present.  

The introduction of the numerical method used for two-phase flow is detailed. The Navier-Stokes 

equation and how it is discretized are presented. The VOF method that we use in this study, along 

with the details of the PLIC method that allows for accurate tracking of the interface, is also discussed. 

After the general study, the main results of this work can be summarized as follows: 

• The study of film flow over pre-wet corrugated surface, which is helping to understand 

the hydrodynamics, the corrugated surface is based on the actually size of electric wise 

that use in common electric motor. The liquid properties are the automatic transmission 

fluid. The comprehensive investigation, the hydrodynamics and heat transfer of film flow 

within corrugated surfaces for Reynolds numbers less than 101.8 and Prandtl numbers 
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less than 133 were thoroughly examined using VOF method. The primary objective was 

to gain a deeper understanding of the intricate interactions occurring among flow 

behavior, surface geometry, and fluid properties in such configurations. The study 

explored the influence of channel geometry on flow behavior and heat transfer 

characteristics, taking a systematic approach. A flat channel was used as the reference 

model, providing detailed insights into heat transfer mechanisms, flow behavior patterns, 

and enabling the application of Nusselt correlations for comparative purposes. The 

corrugated channel's geometry was found to induce recirculation zones and create 

variable flow conditions, leading to a non-uniform thermal boundary layer. While these 

features may initially seem advantageous, the average heat flux and wall stress values 

within the studied range of corrugations were found to be lower 10 to 30% than those 

observed in flat channels. This result suggests that the heat transfer performance of 

corrugated surfaces is less effective than that of their flat counterparts. 

• The development of a new numerical model allows for the reproduction of physical 

phenomena and reduces the errors in the current CFD software (Convergecfd.com). The 

well-balanced algorithm for the PISO procedure is applied to two-phase flow using a 

collocated grid. The well-balanced technique aims to discretize surface tension and 

pressure gradient simultaneously and at the same location, ensuring they are 'balanced'. 

This balance is vital for the solver to reduce spurious currents when solving for 2-phase 

flow. The height function is a method implemented to replace the existing SVF method 

in CFD code. Its purpose is to better estimate curvature, which significantly contributes 

to the overall accuracy of calculating surface tension force, thereby reducing unexpected 

spurious velocities. Subsequently, the dynamic contact angle is implemented to bridge 

the gap concerning surface tension force at the wall. The ultimate goal is to represent (as 

described in Chapter 2) the physical forces between the liquid-gas and solid surfaces at 

the contact line. To validate the new developments in the ConvergeCFD software, several 

tests were carried out on the well-balanced PISO algorithm, Height Function method, 

dynamic contact angle models, and the combination of these new developments. Initially, 

a two-dimensional stationary droplet was chosen to test the effects of the HF and well-

balanced method. The results indicated that with these new implementations, errors 

caused by imbalances in the code are dramatically reduced, and the accuracy of the 

interface location has significantly improved. The spreading of a droplet, driven by the 

contact line and water droplet spreading, was tested to observe the effects of the new 

implementation of the dynamic contact angle. This showed that the dynamic contact 



152 

 

angle significantly enhances the output of two-phase flow CFD, which is then compared 

with theoretical models as well as with experiments. 

 

• The final work of this thesis focuses on apply what developed in thesis to the film flow 

over flat and corrugated surface. The successful of using the SVF and HF with DCA on 

corrugated surface is another step closer to simulated multiphasic film flow when cooling 

end-winding using Automatic transmission liquid. In the detail, the distinction between 

the SVF and HF methods greatly affects the behavior of the contact line, both in terms of 

its position and velocity. The HF method has demonstrated a superior ability to capture 

the interface with greater accuracy. However, it should be further improved for 

parallelization. Then, several physical phenomena have been studied. The equilibrium 

contact angle significantly influences the movement and interaction of the liquid with 

surfaces, especially within corrugated surfaces. Here, bubbles can become trapped inside 

the corrugations of the wall, a factor which should be considered in the future works. 

Reynolds number emerges as a key factor, dictating the fluid's behavior in terms of film 

thickness and flow progression. Higher Reynolds numbers, while promoting flow 

progression, can also introduce challenges, such as air bubble formations, especially in 

corrugated surfaces. These setup and results in this work is continue apply to reproduce 

the 3D corrugated surface in the future works. 

8.2 Perspective 

The new model developed in this study are capable of simulating film flow over flat and corrugated 

surfaces. However, the model needs improvement in certain areas, which will be addressed in future 

works: 

• The Navier-slip boundary condition should be implemented in this model to achieve 

mesh convergence when increasing mesh resolution. 

• Since the HF method currently works with a single processor, future work should focus 

on adapting the HF method for parallel processing, which is essential for large-scale 

simulations. 

• The number and size of bubbles trapped within the corrugated wall were influenced by 

the Reynolds number and equilibrium contact angle. This can produce complicate 

problem for accurate heat transfer estimations. This problem should be considered in the 

future works. 



153 

 

• 3D simulation should be considered in future work. It would explore the current 

developments to study bubbles and heat transfer with various corrugated surfaces. 
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