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Résumé

L’avènement du Cloud computing a révolutionné le paysage de la technologie moderne, offrant aux
organisations une flexibilité, une capacité de passage à l’échelle et une accessibilité sans précédent
dans l’exploitation des ressources informatiques à distance via Internet. Des innovations clés telles
que le serverless, les conteneurs et les machines virtuelles ont joué des rôles cruciaux dans le remode-
lage de la manière dont les entreprises opèrent et fournissent des services. Le serverless, incarné par
le "Function as a Service" (FaaS) et mise en œuvre à l’aide de conteneurs, permet aux développeurs
d’exécuter du code sans gérer de serveurs, rationalisant les processus de développement et amélio-
rant l’agilité.

À notre époque de prise de décision basée sur les données, des solutions de stockage efficaces,
parmi lesquelles la virtualisation du stockage, sont primordiales. La virtualisation du stockage
émerge comme un facilitateur de la gestion efficace du stockage dans les environnements cloud, ab-
strayant l’infrastructure de stockage sous-jacente et permettant une évolutivité et une optimisation
des ressources sans faille. Cependant, la croissance rapide des données et l’évolution des besoins
des utilisateurs ont amené de nouveaux défis tels que la gestion des sauvegardes, la réduction de la
latence d’accès au stockage et la tolérance aux pannes dans les environnements de stockage distribué.

Cette thèse présente trois contributions significatives pour relever ces défis:

• un format de disque virtuel évolutif pour résoudre le problème de passage à l’échelle de disques
virtuels composés de longues chaines de snapshots. Ce nouveau format adapte la gestion du
disque virtuel lorsque la taille de la chaîne de sauvegarde augmente.

• un système de mise en cache opportuniste des données pour les plateformes FaaS. Ce système
exploite l’existence de mémoire surréservée et l’état de maintien actif des environnements
d’exécution pour offrir un environnement d’exécution rentable pour les fonctions FaaS.

• un système de stockage distribué qui tire parti de l’existence de répliques secondaires de
données pour garantir l’équilibre de la charge des demandes et l’équité de la gestion des
ressources.

Nous avons construit un prototype de chacune de nos contributions et validé leur efficacité en
effectuant plusieurs évaluations avec une série de benchmarks.

Cette thèse met en évidence la nécessité d’adapter notre compréhension du stockage à un nou-
veau monde basé sur les données.

Mots-clés: Stockage virtuel, Stockage distribué, Format de disque virtuel, Stockage à distance
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Abstract

The advent of cloud computing has revolutionized the landscape of modern technology, offering
organizations unprecedented flexibility, scalability, and accessibility in leveraging computing re-
sources remotely over the Internet. Key innovations such as serverless computing, containers, and
virtual machines have played pivotal roles in reshaping how businesses operate and deliver ser-
vices. Serverless computing, incarnated by Function as a Service (FaaS) and implemented using
containers, enables developers to execute code without managing servers, streamlining development
processes and enhancing agility.

In our era of data-driven decision-making, efficient storage solutions are primordial. Storage vir-
tualization emerges as an enabler of efficient storage management in cloud environments, abstracting
underlying storage infrastructure and allowing scalability and resource optimization. However, the
rapid data growth and evolving user needs pose challenges such as backup management, latency
reduction, and fault tolerance in distributed storage environments.

This dissertation presents three significant contributions addressing these challenges:

• a scalable virtual disk format to address the problem of scaling up virtual disks composed of
long chains of snapshots. this disk format adapts the management of the virtual disk when
the size of the backup chain increases.

• an opportunistic caching system of data functions for FaaS platforms. this system leverages
overbooked memory and the keep-alive state of sandboxes to give a cost-effective running
environment for FaaS functions.

• a distributed storage system that leverages the existence of secondary replicas of data to
ensure load balancing of requests and resource management equity.

We build a prototype of each of our contributions and validate their effectiveness by conducting
several evaluations with a series of benchmarks.

This dissertation highlights the need to adapt our storage comprehension to a new data-based
world.

Keywords: Virtual Storage, Distributed storage, virtual disk format, Remote Storage
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1.1 Context and Problem Statement
In the rapidly evolving landscape of modern technology, cloud computing has emerged as a cor-
nerstone, reshaping how businesses operate and deliver services [48]. This has been more visible
in recent years with for example the venue of the COVID pandemic crisis [28]; thus increasing the
flexibility of working options cloud computing provides for employees, notably remote workers, and
different levels of data security offered. At its core, cloud computing offers flexibility, scalability,
and accessibility, enabling organizations to leverage computing resources remotely over the Internet
rather than relying solely on local infrastructure. Cloud computing then offers different types of
service denoted as XaaS (X as a Service [33]) where we can find traditional ones such as Infrastruc-
ture as a Service (IaaS), Platform as a Service (PaaS) or Function as a Service (FaaS), with any of
them used depending on the level of control we want to keep on the infrastructure provided by the
cloud provider.

FaaS, sometimes confused as serverless computing, represents a significant departure from tra-
ditional server-based models; it has grown in popularity in recent years and its usage is expected
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to skyrocket in the years to come [58]. In a serverless architecture, users can execute code without
provisioning or managing servers, they write their functions, and the cloud provider executes them
on demand following certain triggers, e.g. an event occurs or a click on a website’s like. This allows
more efficient resource utilization and streamlined development processes. FaaS abstracts away
infrastructure concerns, enabling developers to focus solely on writing code, thereby accelerating
development cycles and enhancing agility[103, 106].

Virtualization is the main technology that makes cloud computing possible. Indeed, it permits
the separation of a physical resource into one or more virtual devices isolated and managed in-
dependently, thus ensuring flexibility and scalability as said before. With virtualization, we can
create isolated environments such as virtual machines and containers to execute cloud applications.
Virtual machines (VMs) provide a virtualized abstraction of physical hardware [10], enabling mul-
tiple operating systems and applications to coexist on a single physical server. Moreover, VMs
enable rapid provisioning and deployment of computing resources, empowering businesses to scale
dynamically in response to fluctuating demand. Another technology, more recently used in cloud
computing, is containerization. Containers, like virtual machines, isolate the resources of a physical
machine [99]. They are more lightweight in the sense that they don’t have to take into account
hardware isolation when deployed. They are used as the main unit of execution for FaaS func-
tions. Containerization enables developers to package applications and their dependencies into
standardized units, facilitating seamless deployment across diverse environments. By encapsulating
applications within containers, organizations can achieve consistency in development, testing, and
deployment workflows, leading to improved efficiency and reliability.

In this era of data-driven decision-making and digital transformation (Big Data, AI, IoT), the
importance of storage in cloud computing cannot be overstated. As organizations increasingly
rely on cloud-based solutions to store, process, and analyze vast amounts of data, efficient and
reliable storage solutions are essential. Storage technologies in cloud environments must be scalable,
resilient, and cost-effective to effectively accommodate diverse workloads and data types.

To ensure the same flexibility and accessibility of storage as cloud technologies do, we need to
take advantage of Storage Virtualization. Storage virtualization is "the process of presenting a
logical view of the physical storage resources" [105]. Storage virtualization emerges as an enabler
of efficient storage management in cloud environments. By abstracting underlying storage infras-
tructure from higher-level storage services, storage virtualization decouples storage resources from
physical hardware, allowing seamless scalability and resource optimization [130]. This abstrac-
tion layer enables organizations to uniformly aggregate and manage disparate storage resources,
simplifying storage provisioning, management, and maintenance tasks.

There are several ways to implement storage virtualization. As depicted in Figure 1.1, when
it comes to VMs, hypervisors offer a storage component responsible for managing the virtual disk
of the virtual machine. This storage component saves the virtual disk as a file with a specific
format (such as Qcow2 [96], VMDK [119], or VHD [76]). These files are generally stored on
a dedicated distant distributed storage [46] where features like snapshotting/backup, distribution,
and replication [132] are often presented to ensure flexibility and reliability for end-user applications.
Concerning FaaS storage, since containers are stateless, functions usually store or retrieve the data
needed for their execution from a distant storage (e.g. get a dataset on AWS S3 to apply data
analytics processes) [10, 114].
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Figure 1.1: Global overview of Virtual Storage in Cloud environments

However, with the rapid growth of data [111], new issues appeared and influenced Cloud envi-
ronments impacting cloud providers and users.

With the will to maintain trust backup and resilient VMs, users store all the states of their
VMs’ disk files are used for performing many backups. To ensure optimal backup time, the concept
of incremental backup using Copy-On-Write was created. When a backup must be done, there is
no copy of the VM disk file; instead, a new empty file is created and becomes the VM’s actual
disk, while a link with the old file is maintained, which becomes the backup. In case the VM needs
to read old data, it can follow the link to read from the backup file. if the number of backups
increases, the length of the backup chain also increases, leading to a longer chain. Though the
existing virtual disk formats were not designed for this kind of utilization, we need to go through
the entire chain following each link to fetch specific data, resulting in performance degradation.
On the other hand, while CPU and memory have undergone more research than storage lately,
execution of functions is becoming faster and faster. This leads to FaaS functions’ bottleneck no
longer being function execution time but rather data extraction and storing time since data are
often stored on distant storage [37]. Another issue stemming from inefficient storage virtualization
concerns the management of the distributed storage cluster itself. Due to possible storage server
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faults, we need to efficiently manage replication on the distributed storage to maintain constant
high performance of data-intensive end-user applications. Additionally, because storage nodes are
often unequally utilized [72], we must ensure the best usage of each storage node while managing
replication.

Overall, current cloud storage virtualization offerings are suboptimal as they require too much
input/expertise from non-expert users and they fail to scale to modern environments and to condi-
tions of operations that have become common in today’s data centers (e.g. high snapshot frequency,
data access latency, variability in the latency/performance of the various nodes composing a dis-
tributed storage system)

To caricature briefly, too much data can slow down cloud systems. Making copies for safety can
make things slower, and even though computers are fast, getting data from storage can be slow.

This dissertation details three significant contributions that propose potential solutions to the
problems mentioned above.

1.2 Contributions

1.2.1 OFC: Opportunistic FaaS Cache

The first contribution of this dissertation tackles the problem of FaaS functions’ latency. Existing
works aim to provide a local storage for the functions when executed. Past works [62, 22] proposed
to dedicate resources (providing improved storage performance) that must be booked, configured,
and tuned by the cloud tenants, which is at odds with the benefits (don’t take care of the hardware
deployed) expected from the serverless. We tackle this problem by proposing a more intelligent
system OFC. OFC is an opportunistic caching system that leverages memory that would otherwise
be wasted due to memory over-provisioning and sandbox keeping alive and uses this memory to
serve as a cache for the distributed storage of the FaaS platform. The relevant contributions are as
follows:

• OFC leverages Machine Learning especially decision trees to accurately predict function mem-
ory needs in a FaaS system;

• OFC leverages overbooked memory as well as sandbox keep-alive to design a cost-effective,
elastic, and fault-tolerant caching system;

• We implement OFC in Apache OpenWhisk [88] an open-source well-known FaaS system.

• We present the evaluation of OFC, demonstrating that it improves by up to 82% and 60%
respectively the execution time of single- and multi-stage FaaS applications.

1.2.2 SVD: Scalable Virtual Disk format

In the second contribution of this dissertation, we address the problem of performance degradation
in long snapshot chains generated by both cloud providers and users and try to resolve it by
proposing a new virtual disk format denoted as SVD, Scalable Virtual Disk.

The relevant contributions are as follows:
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• We characterize snapshot length in a large-scale cloud provider, Outscale [91]. We assess for
the first time performance and memory footprint scalability issues due to a long snapshot
chain and explain the origin of the problems;

• We design and implement SVD, a scalable virtual disk format, a retro-compatible extension
of the Qcow2 format addressing these problems;

• We evaluate a prototype of our solution in various situations, demonstrating the effectiveness
of our approach by improving up to 30% of performance on RocksDB benchmarks and by
reducing to 15× the memory footprint.

1.2.3 Nami, a constraints-aware replica selection system

Finally, this dissertation’s third contribution tackles the NUDA problem (Non-Uniform Disk Ac-
cess). Due to a non-optimal implementation in known large distributed storage systems (Ceph [24],
Gluster [52] ...), sometimes storage nodes are not equally used leading to a subset of storage nodes
to be overused affecting the application’s performances. Nami, the proposed system, takes advan-
tage of the replica to ensure an equal load balancing in distributed storage systems. The relevant
contributions are as follows:

• We present our system Nami based on metrics chosen by system administrators which lever-
age the existence of secondary replicas to ensure load balancing and equal usage of resources;

• We evaluate Nami and demonstrate an improvement in I/O throughput up to 30% on various
benchmarks and a reduction of the variance in resource utilization to 14% for a 10-storage
nodes cluster.

1.3 Scientific Publications

International Conferences and Journals

• Nami: Navigating between replicas in distributed storage systems
Kevin Nguetchouang, Pierre Olivier, Alain Tchana
IEEE Transactions on Cloud Computing — TCC 2024 (under review)

• SVD: A Scalable Virtual machine Disk Format
Kevin Nguetchouang, Stella Bitchebe, Theophile Dubuc, Mar Callau-Zori, Christophe
Hubert, Pierre Olivier, Alain Tchana
IEEE Transactions on Cloud Computing — TCC 2024

• An Opportunistic Caching System for FaaS platforms
Djob Mvondo, Mathieu Bacou, Kevin Nguetchouang, Lucien Ngale, Stéphane Pouget,
Josiane Kouam, Renaud Lachaize, Jinho Hwang, Tim Wood, Daniel Hagimont, Noël De
Palma, Bernabé Batchakui, Alain Tchana
European Conference on Computer Systems — Eurosys 2021
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National Conferences

• sQemu : vers un stockage virtuel scalable
Kevin Nguetchouang, Stella Bitchebe, Théophile Dubuc, Pierre Olivier, Alain Tchana,
Mar Callau-Zori
COMPAS 2022

• FaaSCache : Système de cache mémoire opportuniste et sans surcoûts pour le
FaaS
Kevin Nguetchouang, Lucien Ngale, Stephane Pouget, Djob Mvondo, Mathieu Bacou,
Renaud Lachaize
Journées Cloud 2020

1.4 Outline
The rest of the document is structured as follows.

• Chapter 2 details our contribution related to OFC, a caching system for FaaS platforms. It
presents the Machine learning process, cache design, and evaluation.

• Chapter 3 presents a characterization of snapshots/backups chain in a cloud environment, our
scalable virtual disk format SVD, and its evaluation.

• Chapter 4 assesses the problem of non-equally used disks in distributed storage, our solution
Nami leveraging secondary replica and its evaluation.

Ending this dissertation, a conclusion that resumes our findings and shares some interesting
perspectives for the future.
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CHAPTER 2

Efficient Storage for FaaS using an Opportunistic
Caching system

In this chapter, we introduce OFC, a transparent, vertically and horizontally elastic in-memory
caching system for FaaS platforms, distributed over the worker nodes. We build our OFC proto-
type based on enhancements to the OpenWhisk FaaS platform, the Swift persistent object store,
and the RAMCloud in-memory store.
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2.1 Introduction

Over the past few years, the Function as a Service (FaaS) paradigm has deeply reshaped the way
to design, operate and bill cloud-native applications. The user just uploads the functions, which
will be automatically triggered by events (e.g., timer, HTTP request). Because of their stateless
nature, most functions follow the Extract-Transform-Load (ETL) pattern [37], meaning that the
function first (E ) reads data (e.g., an image) from a remote persistent storage service (e.g., an
object store such as AWS S3), then (T ) performs some computation (e.g., image blurring), and
finally (L) writes the result to the remote storage.

The two main performance limitations of current FaaS platforms are well known [58, 53], namely
their scheduling latency and function execution latency. The former limitation has received a lot
of attention in recent years [73, 5, 85, 77, 37, 3, 32, 19]. Here, we focus on the latter. An acute
issue here is the performance bottleneck introduced by the lack of data locality. Indeed, current
FaaS platforms are typically made from two very distinct layers: a compute infrastructure and
remote storage backends. This decoupling is a double edged sword: FaaS applications benefit from
unmatched elasticity but are hurt by the latency and throughput limitations of the backends for any
access (E&L phases) to persistent or shared transient state. This problem is exacerbated in the case
of function pipelines (e.g., for analytics) [62, 22] where the output of a function is the input of an-
other, and intermediate outputs/inputs are destroyed once used, because most of the current FaaS
platforms do not support direct and efficient communication between function instances [58, 53].
Prior works [62, 22] proposed to dedicate resources (providing improved storage performance) that
must be booked, configured and tuned by the cloud tenants, which is at odds with the benefits ex-
pected from the serverless paradigm. Other works focusing on function pipelines have enabled direct
and efficient communications between function instances, by leveraging platform-specific assump-
tions and features [5, 108, 125]. The Cloudburst platform [110] improves locality via per-worker
data caches, which interact with a specialized storage backend using specific, coordination-free con-
sistency protocols; to the best of our knowledge, Cloudburst requires manual/static provisioning of
dedicated cache resources (esp. memory) on each worker.

In this chapter, we present OFC (Opportunistic FaaS Cache), an opportunistic RAM-based
caching system to improve function execution time by reducing E&L latency, both for single-
stage functions and function pipelines. OFC achieves this in a cost-effective manner for the cloud
provider, no additional efforts (administration, code modifications) for cloud tenants, and no degra-
dation of the data consistency and persistence guarantees. To achieve this, OFC repurposes memory
which would otherwise be wasted due to memory over-provisioning and sandbox keep alive. Indeed,
the analysis of FaaS traces (including the AWS Lambda repository) [109] reveals that users tend
to over-provision the memory capacity guaranteed to their functions. Also, to accelerate function
instance setup, FaaS platforms typically keep function sandboxes alive for several minutes (e.g.,
10 in OpenWhisk and 20 in Azure) [106, 122] for serving future invocations related to the same
function code. OFC opportunistically aggregates these idle memory chunks from all worker nodes
to provide a distributed caching system for E&L phases.

This idea raises three main questions: (Challenge #1) How to accurately predict, at the function
invocation granularity, the amount of memory needed by a sandbox (warm or cold)? (Challenge #2)
How to build a vertically scalable caching system, with a capacity (up/down) scaling latency that
is adequate even for short function executions (i.e., in the range of seconds or milliseconds) [109]?
(Challenge #3) How to manage the caching system transparently (unmodified application code),
efficiently (consistency and performance guarantees), and reliably (persistence and fault tolerance)?
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For Challenge #1, we leverage machine learning (ML). Contrary to IaaS, in FaaS the provider
has access to a wealth of information (such as function code, actual input parameters and runtime
library), which makes ML appropriate in this context. In addition, the very high rate of invocation
of a (performance sensitive) cloud function makes learning a model fast, because a training dataset
is quickly accumulated. Moreover, most functions use a well-known set of common data types (e.g.
multimedia), and their resource needs (especially memory) are correlated (although non-trivially)
with some input parameters. OFC goes further and, for each function, extracts the main features
that characterize its memory requirements and builds its prediction model. When a function is
invoked, the actual memory size assigned to its sandbox is calculated using its associated ML
model. Therefore, the difference between the booked memory (specified by the cloud tenant) and
the predicted size is used for increasing the size of the cache on the worker node that hosts the
sandbox.

For Challenge #2, the difficult aspect is the scaling down of the caching system when a worker
node is lacking memory. To address this challenge, we use two strategies. First, we reduce the
pressure on the caching system by evicting as early as possible data that are unlikely to be reused
in the future. Second, we implement an optimized algorithm for object migration, allowing to keep
hot objects in another worker node of the distributed cache.

For Challenge #3, we leverage ML, as well as several systems and data caching policies. First,
a data item is cached only if it is likely to significantly improve the overall function execution time.
To this end, OFC builds another model that outputs an estimation indicating whether or not the
cache would yield improvements. Second, intermediate input/output data generated by pipelined
functions are removed (but not persisted to the remote storage) from the caching system once the
pipeline execution ends. Finally, to achieve the remaining goals, OFC implements several other
techniques, among which: (i) asynchronous data persistence on the remote storage implemented
using helper FaaS functions, (ii) adaptation of the FaaS scheduler for locality (functions are prefer-
ably run on a worker node hosting a copy of the cached data), and (iii) consistency management on
the remote storage backend using “shadow objects” (i.e., placeholders for new object versions). We
prototype OFC using popular software stacks: Apache OpenWhisk (OWK) [88] as the FaaS plat-
form and OpenStack Swift [114] as the remote storage. We use RAMCloud [89] as the distributed
in-memory caching system.

In summary, we make the following contributions: (i) leveraging ML to accurately predict
function memory needs in a FaaS system; (ii) leveraging overbooked memory as well as sandbox
keep-alive to design a cost-effective, elastic and fault-tolerant caching system; (iii) the evaluation
of OFC, demonstrating that it improves by up to 82% and 60% respectively the execution time
of single- and multi-stage FaaS applications.

2.2 Background and motivations

2.2.1 Background

We now provide background details on Apache OpenWhisk (OWK), the FaaS framework that we
leverage in our prototype implementation. Like most FaaS platforms, OWK supports polyglot
users to pick a programming language of their choice (e.g., Python, NodeJS, etc.) and ways to
configure trigger rules (e.g., HTTP requests to a given URL, updates within a given object storage
bucket, etc.). Figure 2.1 highlights the basic steps of FaaS platforms’ functioning.
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Figure 2.1: General FaaS functioning

1. The user submits the source code of his function on the FaaS platform and thus creates a
function.

2. This function is associated by the user with one or more event source(s) using rules.

3. When an event from a source occurs, the platform automatically triggers the execution of the
function in a sandbox, which is most often a container.

4. The function runs in the sandbox and performs the specific task that the user gave it

5. At the end of its execution, it notifies the platform and sends it the results of its execution.

In addition to single-stage functions, OWK provides support for function pipelines (a.k.a. “work-
flows” or “sequences”), which consist of a parallel and/or sequential composition of functions as you
can see in the first function invocation is triggered by an external event and the next ones are
driven by the platform, based on the completion of the function invocations and their dependency
graph. Function pipelines are becoming increasingly popular for implementing massively parallel
tasks (e.g., data analytics) in a simple and cost-effective manner [57, 62, 92, 58, 22].

Sandbox management When a function invocation is triggered, the corresponding request is
forwarded to the OWK Loadbalancer, which is responsible for choosing a worker node that will run
the function. To do so, the Loadbalancer maintains the current status (e.g., available resources) of
all worker nodes and, using a hash of the function ID and tenant computes the identifier (index) of
the home worker, which is the preferred worker for handling the request. This affinity is aimed at
improving code locality on the workers. Each worker node hosts a component named Invoker, in
charge of informing the Loadbalancer with the current status of the node and creating and starting
function “sandboxes”. The latter are implemented with Docker containers in OWK.

Finally, we highlight three important aspects of sandbox management, which are also common to
most FaaS platforms. First, for security, a given sandbox is never shared or reused between distinct
functions or tenants. Second, a sandbox processes only a single invocation at a time. Third, to
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Figure 2.2: Extract-Transform-Load

amortize start-up costs and mitigate cold-start effects, a sandbox is generally kept alive for some
time (600 s in OWK) in anticipation of future invocations of the same function.

FaaS storage management Since users writing their functions have no control over the under-
lying server resources, they cannot use the local storage to store their data. They are mandatory
to use distant storage to fetch data needed by their functions and then store their results on that
distant storage; leading them to an Extract- Transform-Load model executing function (see Fig-
ure 2.2).

This means that functions can be severely impacted by the time of Extraction and Load of data
depending on the access times to the chosen distant storage.

2.2.2 Motivation

This section shows that worker nodes in FaaS platforms have an abundance of wasted memory
capacity that can be used to build a distributed caching system cost-effectively, i.e., without the
additional infrastructure required in prior works [62, 22]. We explain why machine learning is needed
to reach this goal, and we also show that ETL-based functions could be a potential beneficiary of
such a caching system.

2.2.2.1 Memory waste

Figure 2.3 illustrates how a sandbox uses memory during its lifetime on a worker node. In this
example, the sandbox handles three events (E1-E3), which trigger three sequential invocations of
the same function. We summarize in this figure the two main sources of memory waste in FaaS
platforms.

The first cause of waste is that cloud tenants often overdimension the memory resources con-
figured for their function sandboxes. For example, a survey of AWS Lambda usage reports that
54% of sandboxes are configured with 512MB or more but that the average and median amounts
of used memory are actually 65MB and 29MB [101]. We believe that this trend is mainly due to
workload variations: the same function code can be triggered with different arguments and input
data, which may lead to different memory needs. For illustration, Figure 2.4 plots the memory
usage of a sample function that blurs an image, as a function of the input size and as a function of
its processing-specific argument (the blurring radius).
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Figure 2.3: Timeline of a function sandbox with memory waste due to over-dimensioning and the
keep-alive policy.

It shows that for the same function, memory usage varies widely depending on the arguments
and input data, justifying resource over-dimensioning practiced by cloud tenants. Hence, we believe
that this trend is likely to remain and that the resulting waste may even grow as the available range
of memory configurations for sandboxes keeps increasing [13].

The second cause of waste is the sandbox keep alive policy. Indeed, to mitigate the long latency
of sandbox cold starts, FaaS platforms typically keep a sandbox running for several minutes (e.g.,
10 in OWK and 20 in Azure) [106, 122] after handling the first event (E1 in Figure 2.3) that
triggered its startup. Consequently, the resources assigned to a sandbox may remain unused for
long time intervals. Shahrad et al. [106] observed in Microsoft Azure Functions that “45% of the
applications are invoked once per hour or less on average, and 81% of the applications are invoked
once per minute or less on average. This suggests that the cost of keeping these applications warm,
relative to their total execution (billable) time, can be prohibitively high.”. The authors introduced a
histogram-based solution to predict invocation frequencies and patterns for each function; this way,
a sandbox can be started just before the next function invocation and shut down upon completion.
Such an approach works well for some workloads but must fall back on sandbox keep-alive in var-
ious circumstances (e.g., phase changes, burstiness), which are likely to become more prevalent as
FaaS is increasingly used for more diverse and intensive applications, and also used as a means to
absorb unpredictable load spikes. Besides, despite a number of recent optimizations, the overhead
of cold starts is still significant: with general purpose, production-grade sandboxing technologies
(e.g., containers or microVMs), a cold start latency under high load is in the range of hundreds of
milliseconds [73, 77, 3], which is sensitive for very short functions and interactive/parallel applica-
tions. Consequently, some FaaS providers offer the possibility to book pre-provisioned, long-lasting
sandboxes [11]. Overall, sandbox keep-alive remains an important technique for FaaS platforms for
the time being, and we propose to leverage the (physical) memory waste that stems from it.
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Figure 2.4: Illustration of the relation between a function’s memory usage and two parameters:
byte size of input data (top), and a function-specific argument (bottom).

2.2.2.2 Memory prediction using machine learning

In order to use the wasted memory described above, we need to estimate how much is available. In
this section, we justify why we turn to machine learning for this task.

Figure 2.4 illustrates the complex relation between a function’s arguments and input data, and
its memory usage. In particular, the top figure plots memory usage against the byte size of the input
data: we see that no precise correlation can be established. In other words, accurately predicting
memory waste only from the byte size of the input data is not possible. Additionally, the bottom
figure plots memory usage against the function’s specific argument (the blurring radius): again, no
precise correlation can be established from this feature alone. We have observed the same kind of
trend with many other multimedia processing functions (e.g., image resizing and format conversion,
speech recognition, video grayscale conversion, text summary). Furthermore, the FaaS platform has
no information about a function’s specific arguments: it only knows about their list and names,
not about their nature, range, behavior, etc., thus adding complexity to the task of predicting the
memory usage of a function.

In summary, predicting memory waste for a function invocation requires to take into account
uncharacterized function-specific arguments in addition to features of the input data. As shown
below, machine learning (ML) can manage this complexity without prior knowledge.

2.2.2.3 Remote shared data store latency

We measure the impact of the systematic utilization of a remote shared data storage (hereafter
RSDS) imposed by the FaaS model to ETL-based functions. To this end, we run in AWS example
single-stage functions (image processing) and example multi-stage functions (analytics). We use
AWS S3 as the RSDS and we experiment with various input sizes. Figure 2.5a, first bar series,
presents the contribution of each ETL phase for one image processing function (sharp_resize). For
instance, E&L represents up to 97% of the total execution time for a 128 kB image size. Figure 2.5b,
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Figure 2.5: Duration of the ETL phases for a common image processing function (resizing) and
a pipeline of data analytics functions (word count). The functions run on an OWK environment
deployed on AWS EC2 using 3 compute nodes provided by t2.medium instances. We measure the
execution times using AWS S3 as our RSDS (first bar series) and ElastiCache Redis as our IMOC
(second bar series).

first bar series, presents results for MapReduce word count. E&L represents up to 52% of total
execution time for a 30MB input text file.

A typical way [22] to address this bottleneck is to use an in-memory object cache (IMOC)
such as Redis between the cloud functions and the RSDS. The second bar series in Figures 2.5a
and 2.5b show the results of the same experiments as above when S3 is replaced with Redis. We
can see that the contribution of E&L becomes negligible. However, the utilization of such an
IMOC-based solution is not without downsides for FaaS tenants. They must explicitly allocate
and manage IMOC resources. In addition, they must modify their function’s code (or introduce
a library) to interact with the IMOC layer and also to address potential consistency issues. All
these constraints and extra burden are at odds with FaaS principles. OFC, the system that we
propose, achieves performance benefits comparable to an IMOC-based solution but without the
aforementioned limitations.

2.3 Design assumptions

Our design principles are not tied to the specific components used in our prototype (OWK and
Swift) but they do rely on a small number of assumptions, which we mention below. Overall, we
assume a fail-stop model (with details similar to RAMCloud [89]).

For the FaaS infrastructure, we only assume two characteristics, which are very common in
current platforms: (i) the use of a sandbox keep-alive strategy (either via a simple idle timeout
like in OWK and AWS Lambda, or through a control-loop approach like in Kubernetes-based
platforms) and (ii) the use of a (per-function) central component to dispatch invocation requests to
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the sandboxes (like the controller component of OWK or the scheduler component of Kubernetes-
based platforms).

For the remote storage system, we do not make any major assumption. First of all, we are
agnostic to the data abstraction level (e.g., file-based, object-based or key-value interface). We
simply assume the possibility to register handlers, to be triggered upon the invocation of certain
operations. In addition, we aim at supporting storage systems with various consistency guarantees
including strong ones, such as linearizability. We believe that this is important because this sim-
plifies the work of applications developers (a number of object storage systems are now evolving
towards stronger consistency semantics [47, 12]) and a strongly consistent storage backend also
simplifies the design of hybrid applications combining FaaS and other services (e.g., Infrastructure
as a Service). For caching, we assume that the remote storage supports transparent interposition.
We store full copies of the object data in the cache, and we focus on small objects (10MB or less)
because they benefit the most from caching (as shown in §2.2.2.3). Note that some of the work-
loads that we study use large data sets (hundreds of megabytes) but that the corresponding input,
intermediate and output data are actually split into many small objects.

Finally, we assume that the ML infrastructure has access in clear text to the function invocation
arguments and also to the object’s metadata. We leave the support of black-box/encrypted inputs
to future work.
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Figure 2.6: OFC architecture overview. All color-filled boxes are new components that we add to
OWK.

2.4 OFC overview

Figure 2.6 presents the architecture of OFC. Components that we add to OWK in order to provide
OFC are indicated by color-filled boxes in the diagram and “new ” in our description. When OWK’s
Controller receives a function invocation request, it first asks the (new) Predictor to predict the
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amount of memory (noted Mp) that should be assigned to the sandbox (details in §2.5.1). The
Predictor also returns a boolean (noted shouldBeCached) indicating whether it is beneficial (i.e.,
will lead to a significant decrease in execution time) to cache the data objects read/written during
the function invocation (§2.5.2). Based on Mp, the Controller then selects the invoker (worker)
node that will handle the function invocation request (§2.6.5). OFC modifies the native selection
algorithm, by taking into account (i) the amount of memory currently provisioned in the existing
and idle sandboxes for the same function (if any) and (ii) data locality (an invoker node holding
the master/in-memory copy of an object in its cache instance is prioritized). In addition to the
default information sent by the Controller to the selected invoker node, the request also includes
Mp and shouldBeCached. Upon receiving this information, the invoker node, via the (new) Sizer
component, (re)sizes the sandbox.1 Finally, the (new) CacheAgent resizes (down/up) the caching
storage (§2.6.4) depending on the new contribution of the function to the cache.

Read and write operations performed by a function to the RSDS are transparently captured
at execution time by the (new) Proxy component, which uses our (new) rclib library to redirect
them to the caching system. To provide the basic functionalities of the latter, OFC relies on
RAMCloud [89] (components with RC prefix in the figure), a RAM-based durable key-value store
(§2.6.1). For write operations, the caching storage is only solicited when shouldBeCached is true
(§2.6.3 for the caching policies). In this case, Proxy injects in the FaaS platform a Persistor function
to asynchronously persist the cached data to the RSDS (§2.6.2).

To take into account false predictions of Mp (lower than the actually needed memory), the
execution of each function is locally monitored by a (new) Monitor component (§2.5.3). The latter
has two goals. First, it can ask the Sizer to quickly increase the memory capacity of a sandbox
when the latter lacks memory. Second, after the completion of every function invocation, it sends
the (maximum) amount of memory consumed to the (new) ModelTrainer component. The latter
periodically retrains all memory prediction models using these numbers and updates the Predictor.

Overall, our prototype implementation requires the following volumes of new or modified lines
of code: 5 kLoC for OWK (7.5% of the original code base) including the ML part, 10 kLoC for
RAMCloud (6%), 15 LoC for Swift (0.3%).

2.5 ML modules

The Predictor and the ModelTrainer work together to give predictions on two topics: (i) the memory
requirements of a function invocation, and (ii) the performance improvement that the latter can
achieve with the cache.

2.5.1 Prediction of physical memory requirements

The Predictor performs on a per-invocation basis: using the function’s memory model, learned by
the ModelTrainer through the function’s lifetime. It takes as input the parameters of the function
invocation request, and outputs the predicted memory requirement of the invocation. We store
all the function models in OWK’s database (CouchDB), so when a function is invoked and OWK
fetches its metadata, it also gets its model to be used by the Predictor.

1On a cold start, the invoker will create the new container with this memory constraint; on a warm start, it
updates the memory constraint of the existing container selected to run the invocation.
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2.5.1.1 ML algorithm

Our choice of the ML algorithm, and the features considered for modeling, is guided by the following
constraints, on which we expand below: model update, model output, model inputs, and prediction
speed.

Model update We must be able to update the model throughout a function’s lifetime for two
reasons: first, the model is blank when the function is uploaded to the FaaS platform, and second,
once the model is in use, it must be corrected in case of bad predictions. This warrants either for an
algorithm that accepts incremental updates, or for maintaining a training dataset that is updated
with more exhaustive data before retraining the model.

Model output We loosely defined the model’s goal as “predicting the amount of memory”, but
actually we settle with predicting a range. Indeed, OWK defines a range of permitted memory
allocations, ([0, 2]GB by default). We divide this into intervals in order to formulate the model as
a classifier, making it easier to do predictions, as commonly practiced [26]. Hence, the amount of
memory to allocate is the upper bound of the predicted interval. We discuss the size and number
of classification intervals in §2.7.1.

Model inputs and specificity The input to the model can only include features that are readily
available from an incoming request to the FaaS platform. For instance, a function that blurs images
does not expect the same arguments as a function that compresses audio; because the nature of
function inputs (image, audio, video, etc.) vary, so do the features that can be extracted from a
request as input to the model. Thus, we must learn one model per function, that is capable of
handling function-specific arguments.

Prediction speed The memory prediction intervenes on the critical path of a function invoca-
tion, which must guarantee low latencies. Wang et al. [122] measured median cold start latencies
for various FaaS providers in the order of 100ms, and median warm start latencies in the order of
10ms. Thus, we set the target prediction time at 1ms.

Based on these criteria we choose decision trees: they can be seen as a cache lookup operation,
where the Predictor looks up the amount of memory used previously for a given set of features [117].
Moreover, decision trees are fast at classifying. We elect to use the J48 decision tree algorithm (a
Java implementation of C4.5 [98]) with 16MB intervals from 0 to 2GB. Section 2.7.1 shows the
results validating our choices.

2.5.1.2 Feature selection and processing

We select features depending on the function’s input type: image, audio, and video. When applying
ML to such inputs, the usual goal is to characterize the content, e.g., identifying shapes in an image.
However, this is not the case here: our models do not learn the content of the processed media,
but rather the descriptive features available in the function request parameters or media metadata,
which may affect memory usage.

J48 does not require pre-processing the features, but we avoid extracting them on the critical
(invocation) path whenever possible. We leverage the fact that in our situation, all data objects
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reside in the RSDS: we extract the features when an object is created, and store them alongside
it, as a background task. The only case in which we perform the extraction synchronously is when
a function invocation stems from a storage trigger (object creation or update). We define a set of
common input features, e.g., input file size is used for all functions, while image processing functions
include pixel dimensions, and audio/video functions include duration, etc. Further, function-specific
arguments are also used as input features (for instance, an image blurring function would receive,
along with the image itself, a blurring radius). The evaluation results in §2.7.1 demonstrate that
these feature sets are sufficient to make accurate predictions.

A FaaS platform such as OWK has the knowledge of the list and values of arguments sent to
a function, so it is easy to extract them to be used as features. However, no semantic information
is known about the arguments themselves. This raises two challenges. First, how to identify
the function arguments that correspond to object identifiers (needed for feature extraction, as
mentioned above)? In the case of functions triggered by object creations, the target objects are
determined automatically; otherwise, we rely on manual annotation of the function arguments.
Second, regarding the remaining arguments, how to feed the ML algorithm with their opaque
values? (Are they floats? What is their range? Are they nominal/discrete values?) A benefit of
decision trees such as J48 is that this information is mostly not required; only for nominal values
do we need to learn their ensemble. This is easily done because we actually keep a training set of
invocations in order to update the model when necessary (see §2.5.3), so we can have an exhaustive
view of all the nominal values that the function ever received.

2.5.2 Caching benefit prediction

We state that caching is beneficial for a given invocation when the (wall clock) time taken to extract
and load the data dominates the total execution time. This is expressed as the ratio Te+Tl

Te+Tt+Tl
being

greater than 0.5; with Te, Tt, and Tl corresponding respectively to the time taken by the extract,
transform, and load phases. In this case, the Predictor is a binary classifier that outputs a boolean
telling if caching is useful. Learning this information is similar to predicting memory intervals: we
also use J48, with the same features, learning one model per function.

2.5.3 Managing prediction errors

2.5.3.1 Memory prediction

Underprediction has negative effects on the invocation: it may experience swapping activity, re-
sulting in degraded performance, or even abrupt termination by the Out-Of-Memory (OOM) killer
daemon of the Linux host.

As a first step to avoid this situation, the memory predictions are not actually used until the
ML model is accurate enough, which we define as a maturation criterion.

Definition 1. Let Ck be the k-th classification interval; a greater k corresponds to a higher amount
of predicted memory, and k∗ is the index of the true interval.

The maturation criterion is:

• 90% exact-or-overpredictions (EO-predictions): the model predicts Ck with k ≥ k∗ for 90%
of the cases;
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• 50% of underpredictions are within one interval of Ck∗ : when the model predicts Ck with
k < k∗, we have k = k∗ − 1 for at least 50% of the cases.

Once the predictor meets these requirements, we further mitigate the underprediction problem in
three ways. First, we conservatively use the next greater interval as the predicted memory amount,
which ties into the criterion of “50% of underpredictions are within one interval of the correct
prediction” described above. By doing so, 50% of underpredictions become exact predictions, and
we ensure that we have (0.9 + 0.1 × 0.5) = 95% EO-predictions. Second, if an invocation fails
because of the OOM killer, it is immediately retried with the memory limit raised to the amount
set by the tenant. Third, OFC also monitors invocations during their execution to measure the
actual memory usage (by periodically reading statistics from cgroup, the facility used by Docker).
Whenever a problem of memory exhaustion is detected, the model is corrected quickly to take into
account this error for future invocations under the same conditions.

In addition, OFC also attempts to dynamically detect sandboxes with high memory pressure
and dynamically raise their memory cap. We enable this approach only for invocations that have
run for at least 3 s. Indeed, shorter invocations are frequent (50% of the invocations in the study
of Shahrad et al. [106]) and unlikely to be affected by under-predictions for memory sizing. Hence,
we avoid the monitoring overheads in the case of short invocations.

2.5.3.2 Caching benefit prediction

An error from this model will not degrade performance compared to a setup without a cache. If
the cache is predicted useless but could have been useful (false negative), there is no performance
degradation, only a lost opportunity; and in the event that the cache is predicted useful but ends
up useless (false positive), it only puts a slight overhead on the CacheAgent component.

2.5.3.3 Retraining

For both models, prediction errors are corrected after the fact by periodically updating them. Given
that J48 is not an incremental model, the ModelTrainer needs to fully re-train the models when new
data is available. We make this practical by maintaining a small, but valuable training dataset: after
the Predictor maturation criterion described above is reached, we only add data about invocations
for which the memory model predicted an interval that was too low, or extremely too high (the
model predicted Ck with k − k∗ > 6). We also give a higher weight to the training data about
underprediction cases in order to better avoid them.

2.6 Cache design
This section details how OFC implements its caching system in OWK, and how it is managed and
used.

2.6.1 Cache storage
Our infrastructure leverages the RAMCloud [89] distributed key-value store (with data partitioning
and replication) for the management of the cached data. More precisely, in our design, each machine
running an OWK Invoker also hosts an instance of a RAMCloud storage server (which comprises
two components: a master and a backup; the former manages the in-memory storage of the primary
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copy for some of the objects and the latter handles the on-disk storage for the backup copies of
other objects). The storage capacity of RAMCloud is dynamically adjusted, both horizontally
and vertically. Unlike in a vanilla RAMCloud setup, OFC allocates only a fraction of an Invoker
machine’s resources to a storage server; this fraction depends on the memory booked but left unused
by functions. Section 2.6.4 describes the scaling process of each server instance.

We chose to use RAMCloud for four main reasons: (i) it is specifically aimed at aggregating
the (main memory and disk) capacity of the cluster nodes, (ii) it achieves very low latency, (iii)
it provides strong consistency and fault tolerance guarantees, and (iv) it ensures durability and
efficient RAM usage (backup copies are stored on disk rather than RAM). Besides, RAMCloud is
optimized for storing small data objects, which is in line with the object sizes that benefit the most
from the cache,2 for the workloads that we consider (see §2.2.2.3). We leave for future work the
(efficient) support for arbitrary object sizes.

Regarding fault tolerance, the cache mainly relies on the support provided by RAMCloud (repli-
cation and fast recovery) and OWK (retries of failed/timed-out invocations). The cache is trans-
parent regarding the fault tolerance model to be considered by application developers (functions
are expected to have idempotent side effects).

2.6.2 Persistence and consistency
Given our objective of transparency, the caching layer introduced by OFC must not degrade the
consistency and persistence guarantees offered by the RSDS.3 This section describes how we achieve
this goal. In a second part, we then explain when and how these constraints can be relaxed in order
to improve performance.

To keep the RSDS up to date, OFC must synchronously forward write requests (i.e., regarding
a create, update or delete operation for an object) to the RSDS. The rcLib uses the following
approach in order to achieve better performance: the synchronous request issued to the object store
contains an empty payload and is used to create a placeholder (hereafter named “shadow”) for the
newly created/updated object Obj. It is associated with a set of metadata tags (both in the cache
and in the RSDS): two version numbers, respectively for the latest version of Obj and the latest
version available in the RSDS (a discrepancy between the two indicates that the RSDS does not
store Obj ’s current data payload). Once the synchronous RSDS request has completed and the
write has been persistently stored in RAMCloud, the rcLib acknowledges the request to the client
application (function) and schedules the persistor, a background task running as a (FaaS) function.
The persistor code consists in (i) pushing Obj ’s payload from the cache (RAMCloud) to the object
store and (ii) update its metadata. The version numbers are also used by persistor tasks to enforce
that successive updates to the same object are (asynchronously) propagated in the correct order
to the RSDS. Our experiments show that this mechanism, akin to write-back, is always beneficial
even for small payloads, and thus is always used for cached objects.

The notion of shadow object is also useful to provide strong consistency guarantees when a
client application directly issues a request to the RSDS (e.g., typically, a non-FaaS application).
Here, we leverage the support for webhooks provided by Swift: a callback function is registered
and triggered upon each read request. The webhook checks if the RSDS holds the latest version

2By default, the maximum object size in RAMCloud is 1MB. We extended it to 10MB based on our observations.
3Some object storage systems (like Swift and AWS S3) do not provide very strong consistency guarantees such as

linearizability. In such a case, client applications must typically avoid concurrent accesses to mutable objects or rely
on an external synchronization facility. In our work, we assume that applications are designed according to these
guidelines if needed.
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of the object (by comparing the values of the two above-described version numbers). If this is not
the case, the webhook notifies the OWK controller so that the latter can boost the scheduling
of the corresponding persistor task. The webhook only terminates (and allows the completion of
the external read request) once the latest data payload is available in the RSDS. Similarly, if an
external client issues a write request while the cache holds a copy of the object, a webhook is used to
(synchronously) invalidate the cached copy in RAMCloud before performing the operation on the
RSDS. Besides, in the case of several function invocations performing (concurrent or serial) accesses
to a cached object, strong consistency is enforced by RAMCloud. RAMCloud provides linearizable
semantics for failure-free scenarios and strongly-consistent “at-least-once” semantics otherwise [89],
and can be extended to support full linearizability and multi-object transactions [66].

While the above-described techniques (synchronous write requests, persistors and webhooks)
are useful to provide full transparency, we observe that they are not always necessary in practice.
Indeed, in many FaaS use cases, most or even all of the accesses to the object store are mediated
through the FaaS code. Therefore, our system allows tenants to disable the above-mentioned
facilities (via metadata tags and settings, on the scale of each bucket/object/account) in order to
improve performance. In such a case, the consistency between the cache and the object store is
relaxed (writes are only propagated lazily to the object store, upon the cache eviction decisions
discussed in §2.6.3) and persistence relies on the (on-disk) replication provided by RAMCloud.

2.6.3 Caching policy

To improve cache usage for the functions that will benefit the most from it, OFC relies on the
following heuristics for admitting objects in the cache and evicting them.

For a given invocation of function F, an object is considered for caching only if it satisfies two
conditions. First, it must be smaller than the maximum object size allowed in the cache; we use
10MB in our prototype, according to our cache efficiency characterization (see §2.2.2.3). Second,
as explained in §2.5.2, the predicted performance benefits of the cache for F and the corresponding
object(s) must be significant. Furthermore, in the case of a pipeline, the output objects produced
by the intermediate stages (functions) of the pipeline are removed from the cache when the last
function of the pipeline has completed. In addition to the previous policies, final output objects
(i.e., produced at the end of a pipeline or by a single-stage function) are discarded from the cache
as soon as they have been written back to the remote storage.

In addition, to reclaim more space, the cacheAgent periodically evicts objects that have not been
recently accessed. We extended RAMCloud to maintain, for each object, a read access counter
naccess and a timestamp Taccess that records the epoch of the last access. In our current setup
(tuned empirically), this periodic eviction is triggered every 300 s, and the eviction criteria are:
naccess < 5 or Taccess > 30min.

2.6.4 Autoscaling

The horizontal scaling (in/out) of OFC relies on the support provided by OWK and RAMCloud.
Below, we mostly focus on how OFC supports vertical scaling. OFC opportunistically hoards the
unused (but already booked) memory on each Invoker node. Within an Invoker node, workload
variations introduce two main challenges regarding this aspect. First, given that the memory
consumption of most functions is input-sensitive, a sandbox may have widely fluctuating memory
requirements during its lifetime (recall that a sandbox may serve multiple invocations of the same
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function). Second, unexpected load spikes may require to quickly release some (or even all) of the
cache resources in order to accommodate more demanding requests and/or a greater number of
sandboxes. Our design is impacted by three quantitative aspects. The first aspect is the end-to-end
time needed to process an empty function throughout the (distributed) OWK infrastructure, which
is in the range of 8ms. The second aspect is the time required to dynamically reconfigure (i.e.,
scale up or down) the memory pool of a RAMCloud instance, which is in the range of dozens of
milliseconds, as shown in §2.7.2.1. The third aspect is the time taken to adjust the resource limits
of a sandbox (in OWK, which uses Docker, this is a syscall to the cgroup Linux subsystem), which
is in the range of 24ms.

To address the first challenge, we adjust the memory of a sandbox for each invocation: scaling
up the memory resources of a sandbox involves scaling down the ones of OFC, and vice versa. We
optimize the critical path by executing all the memory capacity adjustements asynchronously: the
function invocation is processed before the completion of the memory resizing operations (cgroup
syscall for the sandbox and RAMCloud control request). Yet, in the case of a sandbox capacity
scale-up, this may introduce the risk of memory capacity violation, leading to the failure of the
function invocation (which implies retrying the invocation, and leads to increased completion times
and waste). This risk is exacerbated by potential memory under-predictions and bursty workloads.
To mitigate the occurrences of such events, each Invoker node provisions a slack pool of memory,
whose size (initially 100MB) is adjusted every 120 s based on an estimation by sliding window, of
the local memory churn (measured every 60 s).

To address the second challenge of fast reclamation of the cache resources, we use the following
decentralized approach. The cacheAgent on an Invoker node must choose and release objects from
the local cache instance. It first selects the output objects (in the case of function pipelines, final
outputs) that have been persisted on the RSDS but not yet discarded locally. If more space is
required, the cacheAgent proceeds with input objects and evicts them on an LRU basis (until
enough space is available). In parallel, it also triggers the write-back of the dirty output objects
and discards them upon completion. The cacheAgent attempts to keep the hot input objects in
the cache by offloading their master (in-memory) copy to another RAMCloud storage node. To
achieve this, we do not rely on the standard object migration protocol supported by RAMCloud
(which systematically sends the target object to the destination node); instead, we use the following
optimized approach to speed up the migration. For each object O chosen for eviction on a node
Mold, a new master node Mnew is elected among the backup nodes (i.e., holding an on-disk copy
of O). O is then loaded in the memory of Mnew, and Mold removes it from main memory (but
becomes a backup and keeps an on-disk copy). This way, no inter-node transfer of O is necessary.
By doing so, OFC ensures high availability of the remaining cached objects and maintains the
required replication factor for fault tolerance.

2.6.5 Request routing

We aim at (i) achieving good load balancing between the invoker nodes (regarding the load incurred
by the function invocations but also by the caching service), (ii) limiting the cache management
overheads (e.g., memory resources adjustments and transfers of cached objects between nodes), and
(iii) improving data locality.

To this end, we modify the policy used by OWK’s Loadbalancer component (see §2.2.1) to route
function invocation requests. Similar to the original design, a request for a function F is always
routed to an idle (warm) sandbox set up for F if there is one (to avoid cold starts), and otherwise,
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a new sandbox is immediately created (to avoid queueing latency behind long-running requests).
If a new sandbox must be created, the target Invoker node is preferably the one currently hosting
the master (in-memory) cached copy in its local RAMCloud storage instance (if it exists and has
sufficient resources). To find such a node, the controller parses the function invocation request (to
extract the object ID among the arguments) and queries the RAMCloud coordinator. If there are
multiple available sandboxes, the routing algorithm uses the following criteria, by decreasing order
of priority: (i) the difference between the current memory capacity of the sandbox and the predicted
capacity for the new invocation (smallest difference is preferred); (ii) the available memory capacity
on the Invoker node (if the capacity must grow); (iii) the locality of the data (sandboxes co-located
with the requested object are preferred); (iv) the idle time of the sandbox (more recently used
sandboxes are preferred, so that the older ones can eventually time out and be reclaimed if they
are in surplus).

2.7 Evaluation
This section presents the evaluation results of OFC.
Evaluation goals and methodology. We evaluate the following aspects: (i) concerning the
ML module, the accuracy of the prediction model, the prediction time, and the model maturation
quickness; and, (ii) concerning the caching system, the overall performance gain and costs.

The testbed is composed of 6 physical machines, interconnected via a 10Gb/s Ethernet switch
running Ubuntu 16.04.7 LTS. The hardware characteristics are as follows: 2 Intel Xeon E5-2698v4
CPUs (20 cores/CPU), 512GB of RAM, an Intel Ethernet 10G 2P X520 Adapter, and a 480GB
SSD. We use one machine to host all the OFC controllers (Model Trainer and Controller boxes
in Figure 2.6). Another machine is dedicated to the storage system. The remaining machines are
FaaS worker nodes.
Benchmarks. We evaluate single- and multi-stage functions. For the former, we use 19 multimedia
processing functions, available online (see our code repository in §2.1). For multi-stage functions,
we study four applications: two data analytics applications as in [62] (a MapReduce-based “word
count” application; Thousand Island Scanner (THIS) [this], as well as (in §2.7.2), a distributed video
processing benchmark), a cloud-based Illegitimate Mobile App Detector (IMAD) application [123]4,
and an image thumbnail generator pipeline (Image Processing) from the ServerlessBench suite [131].

We run each experiment 5 times and report the average results.

2.7.1 ML model evaluation
2.7.1.1 Accuracy

We first evaluate the accuracy of ML predictions concerning memory requirements, with various de-
cision tree algorithms: J48 (an implementation of C4.5 [98]), RandomForest [18], RandomTree [97]
and HoeffdingTree [54]. Then, we discuss the results regarding the prediction of caching benefits.

Prediction of physical memory requirements. We use cross-validation to prevent overfit-
ting. Moreover, we experiment with n = {64, 128, 256} intervals, with respective interval sizes of
{32, 16, 8}MB. Table 2.1 shows evaluation results. It demonstrates that J48 and RandomForest are

4We reimplemented IMAD as a sequence of serverless functions.
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the most accurate algorithms: with 16MB intervals, they achieve more than 80% accuracy, and
more than 90% accuracy on EO-predictions; remember that we are interested in EO-predictions
because it is a component of the maturation criterion, as explained in §2.5.3. An interval size of
16MB also allows keeping prediction times very low, as shown further below. Ultimately, we elect
to use J48 because its prediction time is much shorter than RandomForest’s (see §2.7.1.2).

Our results also demonstrate that overpredictions are not a problem because, as shown in
Figure 2.7, they remain close to the correct value: 90% of them are within 3 intervals of the correct
one, resulting in an average memory waste of only 26.8MB with 16MB intervals. In any case,
EO-predictions are always favored over underpredictions. Indeed, as explained in §2.5.3, we use the
next greater interval; Figure 2.7 does not reflect this behavior and shows raw predictions.

Table 2.1: Evaluation of ML algorithms with varying interval sizes. Results are fractions of exact,
and exact-or-over predictions, averaged over all functions.

Interval size Algorithm Exact (%) Exact-or-over (%)

32MB

HoeffdingTree 81.09 87.65
J48 91.27 95.77
RandomForest 92.66 96.20
RandomTree 89.84 94.23

16MB

HoeffdingTree 72.01 84.81
J48 83.35 92.73
RandomForest 84.82 92.76
RandomTree 79.23 88.69

8MB

HoeffdingTree 63.40 79.17
J48 75.88 87.91
RandomForest 78.17 89.42
RandomTree 72.27 84.12

Prediction of cache benefit. Here, we validate our choice of J48 to predict caching benefit (as
defined in §2.5.2). The precision of the model is 98.8% ; a higher precision means the model is
more often correct when predicting that the cache is useful. Its recall is 98.6% ; a higher recall
means the model detects more exhaustively the cases in which the cache is useful. The F-measure
— the harmonic mean of precision and recall, used as a global efficiency score — is 98.7%. These
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results outperform the other classifiers, so we find J48 is a good fit to predict cache benefit.

2.7.1.2 Prediction speed

We evaluate the classification speed, i.e., the time taken for a single prediction, for our two models.
Results are shown in Figure 2.8. Over all functions, and with a memory interval size of 16MB, the
median memory requirements prediction time is 3.19 µs, and the 99th percentile is 12.54 µs. The
classification speed for the cache benefit model is similar to the speed of predicting memory usage,
so overall the global prediction speed remains negligible. For reference, the prediction time using
RandomForest (an algorithm that produces prediction results of quality similar to J48) is 106.29 µs
at the median, and the 99th percentile is 173.05 µs.

2.7.1.3 Model maturation quickness

We also checked the model maturation quickness, i.e., the number of training inputs that the model
needs to learn from, in order to be accurate enough, as defined by the two criteria from §2.5.3.
Only the maturation quickness of the model that predicts memory is evaluated, because using the
model that predicts cache benefits is subordinated to using the former — and prediction errors of
the latter are not problematic. Remember that we are in a context where the model is learned
over time, so the number of training inputs that represents the quickness is actually a number of
invocations of the model’s function. We start checking the maturity after 100 invocations, so this
is a minimum. In our evaluation, the median maturation quickness is 100 invocations; this result
includes 11 of 19 functions that matured in 100 invocations or less. 75% of the functions matured
with less than 250 invocations, and 95% did so under 450 invocations. As an illustration, Shahrad
et al. [106] state that 99.6% of the functions they study are invoked at least once per minute, so
95% of them would mature in less than 450min (7 h 30min).

2.7.2 Cache performance evaluation

We perform two types of experiments. We first evaluate OFC while running a single function. We
then evaluate OFC while running several sandboxes concurrently, for diverse function invocations.
We compare against two alternatives based on standard OWK: OWK with all data stored in the
Redis in-memory cache (noted OWK-Redis), or OWK with all data in the Swift persistent RSDS
(OWK-Swift). These baselines represent the best and worst-case data access time respectively.

2.7.2.1 Micro evaluations

Benefits of OFC’s cache. We first run each of our multimedia and data analytics functions alone
using OFC and our two baseline configurations. We do this while varying the input data size and
compare the end-to-end latency. Regarding OFC, we evaluate three scenarios for fairness: (LH
— LocalHit) the input data is in OFC’s cache, on the same worker node that runs the function,
(M — Miss) the input data is not in the cache, and (RH — RemoteHit) the input data is in the
cache but on a different worker node. Recall that in OFC, outputs are always buffered (i.e., stored
in RAMCloud in write-back mode) regardless of the scenario, which helps multi-stage functions.
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Figure 2.9: Duration of ETL phases for 6 common image processing functions and 2 multi-stage
data analytics functions (IMAD, and ServerlessBench - Image Processing). We compare OWK-
Swift, OWK-Redis and OFC (under scenarios LH, M , and RH). 27
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We present results for 6 single-stage functions and the 4 multi-stage pipelines, shown in Fig-
ure 2.9. Each stacked bar in the figure shows the time for the Extract, Load, and Transform phases
bottom to top. In scenario LH, OFC outperforms OWK-swift by up to ≈82% for single-stage
functions (180ms down to 32ms for the wand_edge function with 16 kB input) and up to ≈60%
for multi-stage functions (105 s down to 35.84 s for THIS with 125MB input). In absolute numbers,
OFC reduces the latency of wand_edge by a total of 150ms (with respectively 42 and 108ms of
savings for the Extract and Load phase). Overall, OFC achieves very close results w.r.t. OWK-
Redis (with maximum differences ranging from −3% to 2% in completion times). We attribute
these minor differences to two main sources: (i) design and implementation differences between
the two caches (Redis and RAMCloud) and (ii) in the case of small requests, the overhead of the
Predictor and Sizer components of OFC, which adds about 6ms of latency.

In scenario M , the difference between OFC and OWK-Redis is more pronounced since all initial
accesses must go to Swift. OWK-Redis outperforms OFC by up to 65% for single-stage functions
and up to 46% (336.25 s to 207.48 s for THIS with 300MB input) for multi-stage functions. However,
OFC still outperforms OWK-swift in this scenario by up to 75% for single-stage functions and up
to 24% (see wand_edge function with 16 kB input data) for multi-stage functions (see THIS with
125MB input data). This is explained by the fact that although the input data comes from the
RSDS in OFC, outputs are always cached i.e., (the Load phase is improved).

The results of scenario RH show that retrieving cached data from a remote worker node still
provides a significant speedup compared to reading from Swift. Compared to scenario LH, remote
access increases execution time by up to 12.76% for single-stage functions (19.6ms up to 22.1ms
for the wand_denoise function with 1 kB input) and up to 0.85% for multi-stage functions (6.52 s
up to 6.57 s for map_reduce with 30MB input).

In all OFC scenarios, the time needed to persist a shadow object to the RSDS in the Load phase
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is constant (about 11ms) since its size is independent of the output size.

Potential negative impact. OFC’s cache can introduce a delay on function setup when the
worker node lacks memory. We only show the results for wand_sepia as the observations are the
same for other functions. We evaluate four scenarios regarding the status of the worker node. In
the first scenario, Sc1, shrinking the cache does not involve data migration/eviction. In the second
scenario, Sc2, shrinking the cache requires data migration. In the third scenario, Sc3, shrinking
requires eviction without migration. We compare these scenarios with the baseline, noted Scb,
where the execution of the function does not require any cache shrinking. In the scenarios Sc1−3,
the current memory size of the (warm) container is 64MB (the smallest configurable memory in
OWK). We consider input data sizes ranging from 1 kB to 3072 kB, which result in function memory
requirements between 84MB and 152MB.

Figure 2.10: Impact of OFC’s cache scaling on the wand_sepia function’s latency. For each
scenario, we plot the scaling time, the time for the container memory limit update (noted cgroup
syscall), and the overall function execution time.

Figure 2.10 presents, for each scenario, the following metrics: the time needed to scale down OFC’s
cache, the time needed to increase the container’s cgroup memory (noted cgroup-sys), and the
overall function execution time. The time cgroup-sys phase is constant, in average 23.8ms (0.8 s
for the cgroup syscall and the remainder being the docker update command.). The scaling time
in Sc1 as well as in Sc3 is also constant, in average 289 µs and 373 µs respectively. It varies in Sc2
according to the aggregated size of the migrated objects. For this experiment, the migration times
range from 401 µs (20MB to migrate) to 2.2ms (88MB). More generally, we measure migration
times of 0.18ms for 8MB, 1.2ms for 64MB, 3.8ms for 256MB, 7.5ms for 512MB and 13.5ms for
1GB. In the worst case (1 kB input size), OFC’s cache scaling (cache shrink+cgroup syscall) takes
24.3ms in total, which represents a 50.4% overhead on the overall execution time (48.2ms). We

29



CHAPTER 2. EFFICIENT STORAGE FOR FAAS USING AN
OPPORTUNISTIC CACHING SYSTEM

believe that this scenario is likely to be rare w.r.t. our data caching policy, which tries to free as
early as possible the unused data from the cache.

2.7.2.2 Macro-experiments

Methodology. OFC’s efficiency depends on the workload characteristics. We built FaaSLoad,
a load injector for OWK, which allows emulating several tenants with different loads. In this
experiment, we consider one FaaS function per tenant. Overall, FaaSLoad prepares the input
data (in the RSDS) for the invocations of each function, then performs the function invocations at
different intervals within a given observation period. The invocation interval can be configured as
periodic or based on the exponential law.

We set up 8 tenants and associate each of them with a distinct function from Figure 2.9. Our
RSDS is Swift. We run FaaSLoad for 30 minutes. Functions invocation intervals follow the
exponential law with λ = 1

60 , corresponding to a mean invocation interval of 1 minute. We consider
three different profiles of cloud tenants, which use distinct approaches to configure the memory size
of their functions: (i) naive, i.e., always reserving the maximum memory size allowed by OWK
(2GB); (ii) advanced, i.e., reserving the maximum amount of memory that has been used by a
function (according to the previous runs); (iii) normal, i.e., reserving 1.7x the memory size chosen
by an advanced tenant, a common situation in practice [109]. In a given experiment, all tenants
have the same profile (naive, advanced or normal). We compare the results achieved by OFC to
those of our baseline, OWK-Swift.
Results. Figure 2.11 reports the total execution time for all invocations of each function, per each
tenant profile. For each scenario, OFC always outperforms OWK-Swift, with an improvement
between 23.9% and 79.8% (54.6% in average). For most functions, we observe slightly better
results with naive tenants than with advanced ones (2–3 % of difference), because, in the naive
case, OFC’s memory capacity is larger (thus yielding more cache hits) than in advanced (see
Figure 2.12).

Table 2.2 reports internal OFC metrics during these experiments. First, we note that there was
no abrupt function termination due to memory shortage (line 9). Second, the cache hit rate is high
(up to 98.9% for naive, line 10). However, there is a high rate of scale-up/down operations (line
1-5) due to the variability of function inputs (hence the need to reclaim and add memory from/to
the cache). However, this does not really impact the overall function execution time since cache
scaling up/down takes a negligible time (line 6). For the above workload, the data is relatively easy
to cache but, as noted previously, OFC provides benefits even on cache misses due to optimizing
the load stage and caching intermediate objects during multi-stage requests. To show this, we also
run the experiment with more tenants, 24 (3 per function) instead of 8 (1 per function). Due to
space constraints, we present only a summary of the results. We observe a lower hit ratio of up to
32.3%; yet, no failed invocation due to memory pressure is experienced (regardless of the tenant
profiles). Besides, OFC’s latency improvements fall from 23.9—79.8% to 4.5—44.9% due to the
lower hit ratio.

2.8 Related Work
FaaS performance bottlenecks. We have previously discussed FaaS systems that use “serverful”
(i.e., non-serverless) components as workarounds to mitigate performance bottlenecks stemming
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Figure 2.11: Sum of the execution times of all invocations for each function in three scenarios
(distinct tenant profiles).

Table 2.2: OFC internal metrics observed for the macro workloads with 8 tenants and three different
user profiles.

Metrics Normal Advanced Naive

1 # Scale up 96 94 95
2 Total scale up time (s) 28.8 28.2 28.5

3 # Scale down (no eviction) 225 224 226
4 # Scale down (migration) 7 4 4
5 # Scale down (eviction) 0 0 0
6 Total scale down times (s) 85.4 81.2 83.2

7 # Bad predictions 7 7 7
8 # Good predictions 231 230 232

9 # failed invocations 0 0 0

10 Cache hit ratio (%) 98.21 93.12 98.9

11 Ephemeral data generated (GB) 300 300 300

from shared/persistent state management [62, 92, 22]. Below, we focus on other works.
Cloudburst [110], designed concurrently to OFC, also uses caches co-located with function

executors and seamlessly supports existing functions. Cloudburst relies on the Anna key-value store,
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Figure 2.12: OFC’s cache size evolution throughout the three experiments.

which introduces specific assumptions in terms of consistency semantics and protocols between the
FaaS workers and the backend storage service. Cloudburst leverages relaxed data consistency for
maximum scalability and availability, whereas OFC is geared towards stronger consistency and
persistence guarantees to support a broader set of use cases (e.g., hybrid FaaS/non-FaaS workloads
interacting through a shared remote storage). Moreover, Cloudburst’s authors do not discuss in
details how the worker caches are provisioned and sized. OFC’s memory hoarding/prediction
techniques could be leveraged by Cloudburst.

Faasm [108] accelerates data movement between function instances, through the use of shared
memory, both within a worker node and across worker nodes, using an abstraction akin to a
distributed shared memory. Faasm relies on specific assumptions regarding the sandboxes runtime
(language-based isolation) and the programming interface exposed to tenants for developing their
applications.

Infinicache [121] leverages FaaS sandboxes and their keep-alive policy to implement an elastic in-
memory caching service that is more cost effective than traditional ones (e.g., Redis-based services
like AWS ElastiCache) for large objects. Infinicache relies on dedicated FaaS sandboxes (for caching)
that must be booked by Cloud tenants, who must also modify their applications to use the service.

OFC differs from the above works by offering full transparency for legacy cloud functions, no
restriction on the choice of language or runtime for the functions, and only minor modifications of
the FaaS and the backend storage infrastructure. Unlike the above systems, it harvests existing idle
memory and does not require tenants nor cloud operators to provision and dimension dedicated
resources for storage and data exchanges. Furthermore, OFC predicts memory usage and caching
efficiency via ML techniques.

Lambada [82] is a specialized framework (for interactive data analytics) aimed at mitigating
the performance of FaaS platforms, without any “serverful” component, thanks to domain-specific
optimizations. Our work is focused on transparent and generic optimizations for FaaS applications
based on the “ETL” pattern [37]. Boxer [125] has recently improved Lambada by enabling direct
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network communication (and hence, direct data exchange) between function instances, which could
also bring benefits to a broader range of use cases [40]. OFC’s approach remains useful even when
direct communications between functions are possible, because it accelerates the “E” and “L” phases
of the “ETL” pattern (very common in FaaS applications, not only in function pipelines).

FaaSCache [41] helps fine tuning the keep-alive policy of a FaaS platform by leveraging insights
from the well-established caching literature. OFC is complementary to this approach, which does
not address data caching and exchange, nor mitigation of memory waste caused by input variability.

Machine learning for resource management. A number of works have leveraged ML to
optimize server applications and cloud infrastructures [29, 26, 42, 50, 70, 4]. We focus here on the
most closely related to our work.

Resource Central [26] is used within Azure to collect telemetry data of resource usage in vir-
tual machines (VMs), learn (offline) the behavior of these VMs, and provide a service for online
predictions to resource managers (e.g., VM placement decisions). The authors mention examples
based on different ML algorithms for the prediction of various metrics regarding the resource usage
and lifetime of VMs. Our work considers the case of function invocations, which have very small
durations and “white box” inputs.

COSE [4] uses statistical learning to determine the best configuration (w.r.t. SLAs and cost)
for a cloud function. In contrast, our work aims at predicting the memory requirements and I/O-
sensitivity of a function, in order to transparently mitigate storage performance bottlenecks, a
major source of cost and performance overheads in FaaS workloads.

The Monitorless project [50] studied several ML approaches to infer the performance degradation
of non-FaaS cloud applications and opted for RandomForest despite long classification times. OFC
requires fast classification since it uses the ML model on the critical path of function invocations.

Seer [42] uses deep learning and monitoring to infer the cause of QoS violations in microservices-
based applications. For issues attributed to memory capacity, Seer resizes the resources of the
corresponding container. Seer is not aimed at predicting memory consumption on a per-request
basis.

2.9 Summary
In this chapter, we have introduced OFC and shown that such a caching layer allows significant
performance improvements for the execution of diverse FaaS workloads in a cost-effective manner
leading to an efficient management of storage of data used by the these workloads. Moreover,
OFC’s approach can be retrofitted in existing cloud infrastructures (FaaS platforms and object
storage services) with limited modifications, is fully transparent for application-level code, and
does not require to explicitly book or provision additional storage resources.

33





CHAPTER 3

Efficient Storage for VMs using a Scalable Virtual Disk
Format

In this chapter, We first study virtual disk utilization in a large-scale public cloud. Then we
demonstrate, through experimental measurements, that existing long chains of snapshots lead to
virtualized storage performance and memory footprint scalability issues and finally we present
SVD, a new virtual disk format extending Qcow2 to address these problems.
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Figure 3.1: Performance slowdown incurred by virtualization for different types of applications.
The results are presented on a logarithmic scale. Lower is better.

3.1 Introduction

As said previously a few times already, virtualization is the keystone technology that enables
cloud computing. However, virtualization comes with the overhead on application performance.
This overhead has been well studied [14, 55, 64, 90, 120, 79, 2, 49]. Although it concerns all
types of resources (CPU, RAM, network, disk), they are not all affected with the same inten-
sity. Figure 3.1 shows the performance degradation coming from virtualization for a wide range
of benchmarks including Stream [56] (memory intensive), NPB [30] (CPU-intensive), netperf [102]
(network-intensive), as well as the Linux dd command (disk-intensive, throughput-oriented) and
fio [69] (disk-intensive, latency-oriented), when they run in AWS EC2 (t2.medium instance type),
Microsoft Azure (Standard_B2s instance type), a virtualized private cloud, and on a bare metal
private cloud without virtualization1. We use the latter as the baseline. We can observe that the
two disk-intensive applications (dd and fio) experience the highest slowdown. For fio, it is about
1,639× the degradation experienced by NPB.

Surprisingly, and contrary to the other resource types, very little research work focuses on
improving storage virtualization in the cloud. Hence, it is essential to bridge this gap, especially
in the context of the exploding popularity of data-centric applications (big data, ML, and AI
trends). Storage virtualization is peculiar as it is still implemented through complex multi-layered
architectures [65, 134] (see §3.2). Further, disk virtualization generally uses complex virtual disk
formats (Qcow2, QED, FVD, VDI, VMDK, VHD, EBS, and so on). These not only perform the
task of multiplexing the physical disk into virtual ones but also need to support standard features
such as snapshots/rollbacks, compression, encryption, etc. All these layers of indirection are the
source of the disk virtualization overheads.

This chapter studies Linux-KVM/Qemu (hereafter LKQ), a very popular virtualization stack.
LKQ supports several virtual disk formats, among which Qcow2 [96] is widely adopted in produc-
tion [80]: all the principal Linux distributions offer Qcow2 cloud images [20, 25, 23, 100], and it is

1We chose t2.medium and Standard_B2s to match the VM size that we used in our private cloud.
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also the main supported format in major cloud computing platforms including OpenStack [87] and
Apache CloudStack [7]. A salient feature provided by Qcow2 is the capacity to create incremental
Copy-On-Write (COW) snapshots (backing files) to save the state of the virtual disk at a given
point in time and to reduce storage space usage. The virtual disk of a VM can thus be seen as a
chain linking multiple backing files. We try to identify and solve scalability issues on such snapshot
chains.

Our first contribution (§3.3) is the presentation of the characterization of chain length in the
infrastructure of our cloud partner, a large-scale public cloud provider with several data centers
spread over the world, using LKQ/Qcow2 for virtualized storage. We observe that snapshot oper-
ations are frequent (some VMs are subject to more than one snapshot creation per day) for three
main reasons. First, cloud users leverage snapshots to create recovery points for fault tolerance
reasons periodically. Second, cloud users and providers use snapshots to achieve efficient virtual
disk copy operations and share elements, such as the OS/distribution base image between several
virtual disks. Third, cloud providers use the snapshot feature to transparently distribute a virtual
disk made of multiple chained backing files, among several storage servers, for load-balancing and
capacity reasons and to avoid fragmentation. For all these reasons, we observe that the length of a
chain can be very high. We identify chains composed of up to 1, 000 backing files. To our knowledge,
this is the first research work performing such characterization. Prior works [27, 107, 6] mainly
focused on the characterization of virtualized CPU and memory utilization in the cloud and there
is also a patent submitted in 2015 but being extended without convincing solution nowadays [118].

Our second contribution (§3.4) is to show by experimentation that long chains lead to perfor-
mance and memory footprint scalability issues. For illustration, using a synthetic benchmark based
on dd, we measured up to 91% of IO throughput decrease and up to 180× memory footprint in-
crease for a chain composed of 1, 000 backing files. We found that the origin of this problem lies in
the fundamental design of the Qcow2 format: the Qcow2 driver in Qemu manages each backing file
individually in a recursive fashion, without a global view of the entire chain composing the virtual
disk. The evaluations of other formats (Microsoft Hyper-V’s VHDX, VMWare’s VMDK, and IBM’s
FVD) show that they use a similar approach, thus suffering from the same issue.

Our third contribution (§3.5), called SVD, is to address these scalability issues by evolving the
virtual disk format and introducing two principles: 1) direct access upon an I/O request, regardless
of their position in the chain; 2) using a single metadata cache, avoiding memory duplication
by being independent of the chain length. The implementation of these principles raises three
challenges. First, we should allow backward compatibility, which is essential to facilitate cloud
operators’ adoption of our solution. Second, we should preserve all Qcow2 features. Third, we
should preserve crucial optimizations such as prefetching that come naturally with the current
Qcow2 format. To cope with the above challenges, SVD extends the Qcow22 format to indicate
the backing file which contains each cluster of the virtual disk. We rely on reserved bits in Qcow2’s
metadata to preserve backward compatibility. We implement these principles by extending, on the
one hand, the Qemu’s Qcow2 driver and, on the other hand, the snapshot operation. We thoroughly
evaluate our prototype and demonstrate that it tackles Qcow2’s aforementioned scalability issues.
For example, on a virtual disk backed up by a chain of 500 snapshots, RocksDB’s throughput is
increased by 48% versus vanilla Qemu. The memory overhead on that chain is also reduced by 15×.

The rest of the chapter is organized as follows. §3.2 presents the background needed to un-
derstand how virtual disk formats work. §3.3 presents virtual disk characterization results. §3.4

2We consider the latest version of Qcow2 available at the time of the writing. Note that in some wiki pages [95]
the term QcowX could be found. It refers to Qcow2 version X.
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Figure 3.2: Overview of the Qcow2 format.

presents and assesses the scalability issues handled in this work. §3.5 presents our design to address
the identified scalability issues. §3.6 presents the evaluation results of our design. §3.7 presents the
related work. §3.8 summarize the chapter.

3.2 Background

The goal of our work is twofold: the characterization of snapshot chains in a public large-scale cloud
and handling of two scalability issues happening in long snapshot chains. This section presents the
necessary background to understand our contributions.

Qcow2 Overview. The Qcow2 format enables copy-on-write snapshots by using an indexing
mechanism implemented in the format and managed at runtime in the Qcow2 driver, running in
Qemu, to map guest IO requests addressing virtual sectors/blocks to host offsets in the Qcow2
virtual disk file(s). Figure 3.2 shows an overview of the Qcow2 format. Without any snapshot, a
virtual disk is contained in a single file. The file is divided into units named clusters, containing
either metadata (e.g., a header, indexing tables, etc.) or data representing ranges of consecutive
sectors. The default cluster size is 64 KB. Indexing is made through a 2-level table, organized as
a radix tree: the first-level table (L1) is small and contiguous in the file, while the second-level
table (L2) could be spread among multiple non-contiguous clusters. The header occupies cluster 0
at offset 0 in the file, and the L1 tables come right after the header. For performance reasons, the
RAM caches L1 and L2 entries (see below).

Qcow2 Snapshotting. Today, the most common way to create a live incremental snapshot of
a virtual disk F for a given VM is to create a new empty Qcow2 file E and set it as the current
disk (called active volume) for the VM while the previous virtual disk F is set as the backing
file for E. The backing file will be queried for clusters read by the VM not present in E. All
write operations made by the VM will be directed to the active volume (E), while read operations
will be directed either to E if the addressed sectors are present or to backing files if not. Hence,
a virtual disk snapshotted several times comprises an active volume and a chain of backing files
per snapshot. With time, backing file chains can become very long (see §3.3), being sometimes
composed of hundreds or even thousands of files.

Our first contribution characterizes backing file chains in our cloud partner’s infrastructure. Our
second contribution slightly modifies the snapshotting algorithm.
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Qcow2 Cache Organization. To speed up access to L1 and L2 tables, Qemu caches them in
RAM. It creates and manages one cache for the active volume and one cache per backing file. Each
cache is managed independently of the others. In the following paragraph, we describe how these
caches work. Qemu maintains a separate cache for the L1 and L2 table entries. With its small
size, the entire content of L1 is loaded in RAM at VM boot time. The cache of L2 entries is
populated on-demand, with a prefetching policy. We, therefore, focus on describing the caching of
L2 entries, as they are likely to suffer from misses, thus influencing IO performance. On a cache
miss, Qemu brings into the cache a set of L2 entries, a slice of configurable size, among which
the entry at the origin of the miss. The slice is also the granularity of the cache eviction policy,
which is LRU. A cache entry includes the file offset of the slice (noted l2_slice_offset), the
number of threads that currently use the slice (noted ref), the actual L2 entries composing the
slice, and a field indicating whether a data cluster referenced by an L2 entry has been modified
(noted dirty); l2_slice_offset services as the tag when searching an entry in the cache, which
is fully associative.

Qcow2 Cache Utilization. Every IO request issued by the guest OS to virtual disk vb traps
inside Qemu. It is then handled by a thread running the para-virtualized disk driver in Qemu. One
of its (driver) main goals is to translate vb to a data cluster offset inside the active volume or a
backing file.

From vb, Qemu computes l2_slice_offset, l2_slice_index, and l2_index. It then looks if
there is an entry in the cache that matches l2_slice_offset. If it exists, Qemu increments the
corresponding ref. Next, thanks to l2_slice_index, it reads the L2 entry. If the latter describes
an allocated data cluster (hereafter cache hit), then Qemu reads the offset of the data cluster. If the
cluster is not allocated (hereafter cache hit unallocated), Qemu considers the cache of the following
backing file in the chain. If the slice is not in that cache, Qemu will try to fetch it from the actual
backing file associated with the current cache. If the slice exists on disk, it is brought into the
cache. Otherwise, Qemu considers the cache of the following backing file and so forth.

Write requests need additional actions. First, the dirty field of the slice is set to 1. If the L2
entry is found in a backing file (not the active volume), Qemu allocates a data cluster on the active
volume and performs the copy-on-write. If despite the whole chain scanning, the L2 entry is not
found, Qemu creates a new data cluster in the active volume. In any case, Qemu configures L1 and
L2 tables accordingly, both on disk and in the active volume’s cache. A cache entry can be evicted
either when the VM is terminated or when the cache is full.

IO Request Journey on a Chain. Qemu manages a chain snapshot-by-snapshot, starting from
the active volume. Figure 3.3 illustrates the journey of an IO request for a chain of size 2: the base
image (B) and the active volume (V). We assume that all L2 indexing caches are empty. We also
assume a scenario in which virtual disk files are hosted on an NFS server mounted on a compute
node running the VM. Let us assume that cluster number 2 is the target cluster, and it resides in
B (meaning that it has not been modified since the creation of V). 1 The driver starts by parsing
V’s indexing cache. To handle the cache miss, Qemu performs a set of function calls with some of
them 3 accessing over the network the Qcow2 file to fetch the missed entry from V’s L2 table.
According to its prefetching feature, Qemu fetches a slice of L2 table entries from V, and 4 fills
V indexing cache. In Figure 3.3, we assume that the size of a slice is two entries. Thus, V’s cache
includes two valid entries at the end of the first cache miss handling process: cluster 1 and cluster
2. After this step, 5 PV driver hits V’s cache, but the state of cluster 2 is marked unallocated
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Figure 3.3: The journey of an IO request. (vb stands for virtual disk block)

because the referenced data cluster resides on B. 6 This cache hit unallocated event triggers the
same Qemu functions used for handling a cache miss. Qemu moves to the parent snapshot (B) for
cache hit unallocated events. In fact, at VM startup, Qemu initializes a linked list corresponding to
the snapshot chain of the VM’s virtual disk. The caches of all the snapshots are also initialized at
that time. 6 The first access to B’s cache generates a miss 7 . After handling this miss ( 8 - 10 ),

the offset of cluster 2 is returned to the driver. From there, 11 the latter can issue the IO request
(consider reading here).

3.3 Chain Length Characterization

Over the entire year 2020, we performed a daily measurement of the length of each chain in our
cloud industry partner’s infrastructure. The study targets a datacenter located in Europe. The
number of VMs in 2020 in this region is 2.8 million, corresponding to one VM booted every 12
seconds, demonstrating the large scale of our study. The software and workloads running in the
VMs are highly varied. However, it is worth noting that our partner specializes in business-to-
business. Hence, the VMs run enterprise workloads as opposed to private individual ones. Similar
to existing cloud providers, the region runs VMs internal to our partner in addition to client VMs.
Qcow2 chains back up the VMs’ virtual disks in the region.

Chain Length. Our study covers a vast dataset, with the number of daily chains considered in
the hundreds of thousands. Figure 3.4a presents the evolution of the longest chain’s length over
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the period. As we can see, there is always a chain with at least a length of 800 snapshots, and the
longest chain can have a length of more than 1,000.

We studied in details a daily measurement made during the period when the longest chain was
of a length greater than 1000. Figure 3.4b shows the CDF for chains and files (active volumes and
backing files) with respect to the chain length (for a file, to the length of the chain it belongs to).
Most chains are relatively slight: chains of length ten or lower represent nearly 50% of the total
number of files, and more than 80% of the chains, in the platform. We can observe a jump around
size 30, with chains of size 30-35 files representing a relatively large proportion: 10% of the chains
and 25% of the files. This is because, for a subset of the chains, the backing file merging operation,
named streaming, is triggered around size 30. That operation merges the layers corresponding to
multiple backing files into one. The files that can be merged in this way correspond to unneeded
snapshots, i.e., deleted client snapshots and the ones made by the provider. Streaming helps reduce
the size of some chains, however, note that valid (non-deleted) client snapshots cannot be merged.
Further, although they are infrequent, there is a non-negligible number of chains of size 100 and
above.

Take-away 1: Long chains, with up to 1,000 backing files, do exist. The chain size threshold
triggering streaming will cap the maximum size of many chains in the infrastructure.

Chain Sharing. Certain backing files are shared and belong to chains corresponding to different
virtual disks. The two main sources of sharing are virtual disk copy operations, as well as the use by
multiple VMs of virtual disk base OS distribution images offered by the provider. A virtual disk copy
is made by transforming the active volume into a backing file, and creating 2 new active volumes
on top, forming 2 chains: all the backing files are thus shared between the 2 chains. Concerning
base OS distribution images, they are generally composed of multiple snapshots corresponding to
the different construction steps followed by the provider: the corresponding backing files are thus
shared between all chains using a given base image. This is illustrated on top of Figure 3.5.

In Figure 3.6, each point corresponds to a chain of the daily measurement previously considered.
The chain’s length is indicated by its X value, and the number of backing files in the chain that
are shared with at least another chain is indicated by the Y value. Note that in theory, a chain of
length N can share from 0 up to N−1, files with other chains, i.e. all backing files without counting
the active volume. Overall, the degree of sharing is highly variable among chains. We can observe
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Figure 3.6: For each chain C of a daily measurement, the percentage of backing files shared with
another chain according to the length of C.

a significant amount of chains of variable length with no sharing at all (Y value of 0). The high
number of chains with a length N < 30 allows us to witness, for these chains, almost all possible
degrees of sharing (from 0 to N − 1). The large number of points around size 30 corresponds to
the high number of chains of that length, due as explained above to the streaming threshold being
set to 30. Although the number of chains of size superior to 30 is smaller, one can still observe
a variable degree of sharing for some of these. Note that, base OS images are generally made of
around 5 chained backing files.

Take-away 2: Backing files can be shared between several chains when multiple VMs use the
same base OS image, or to achieve virtual disk copy. The degree of sharing among chains in the
infrastructure is highly variable. Past a certain length (5+), most of the sharing is due to virtual
disk copies.

Snapshot Creation Frequency. We investigated the frequency of snapshot (i.e., backing files)
creation. We looked in our daily measurement, for each snapshot creation operation, the time
elapsed since the creation of the previous link in the chain (either a backing file or the active
volume for a first snapshot).

This data is presented on Figure 3.7. Each point corresponds to a set of snapshot creation
operations, placed on the Y axis into buckets corresponding to different elapsed time windows
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since the last link creation. Each point’s X value corresponds to the position in the chain of the
created backing files. Finally, the size and color of each point denotes how many snapshot creation
operations are represented by the point, as a percentage of the total number of operations counted
in our daily measurement.

We observed that most of the snapshots have chains of size inferior to 30. This is due to the
high number of chains of these sizes, stemming from the streaming threshold set to 30. Further,
although the frequency of snapshot creation is overall highly variable, many snapshots are created
with a relatively high frequency (daily or more). Past work [91] noted peaks at up to 58 snapshots
per hour. One can also observe that the long chains result from relatively frequent (daily/weekly)
snapshotting done by clients (i.e., non-mergeable through streaming).

Take-away 3: Although the snapshot-creating frequency varies widely among chains, a non-
negligible amount of chains experience high frequency snapshotting. Long chains belong to this
subset, with daily/weekly snapshots created. These snapshots are made by clients and cannot be
merged with streaming.

Origins of Long Snapshot Chains The emergence of long snapshot chains in modern vir-
tualized environments is due to a combination of factors. First, for data backup/fault tolerance
purposes, most cloud providers offer the client the possibility to create disk snapshots regularly, for
example, every 24 hours or on-demand through an API. The chain length will thus grow according
to the snapshot frequency. Even when the client deletes certain snapshots, they are kept by the
provider as they form a necessary part of the Qcow2 chain backing the disk the VM in question
is currently using. Second, snapshots may be performed by the cloud provider itself due to thin
provisioning strategies; Virtual disk space being allocated on-demand, a disk may grow above the
boundaries of the physical disk storing it. In addition, combined with distributed storage, a snap-
shot allows the virtual disk to transparently continue to grow on another physical disk without data
transfer. Although they are not visible to the client, such snapshots will be placed in the chains in
the same way as the client-made snapshots and will participate in the chain’s size increase.

As mentioned above, reducing chain size with streaming has a limited effect because the cloud
provider has no control over the client-made snapshots. Furthermore, streaming impacts guest I/O
performance: we measured the disk latency from the guest with ioping on a standard SSD (WD
Blue) and noted a 100x increase during streaming. Streaming can be quite long according to the
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Figure 3.8: I/O performance and memory footprint evolution with snapshot chain size.

size of the merged snapshots, and a streaming operation needs to abort if the client decides to
reboot/halt the VM.

Take-away 4: Long chains are due to the client- as well as provider-made snapshots, and to the
limitations of the methods (e.g., streaming) to reduce their length.

3.4 Problem With Long Snapshot Chains

3.4.1 Problem Statement
From the illustration presented in Figure 3.3, the reader can intuitively see the two scalability issues
posed by Qcow2 for long chains. The first is the memory footprint increase caused by L2 entry
duplication in indexing caches. In Figure 3.3, clusters 1 and 2 are present in the two indexing
caches. The second consequence is the negative impact on IO request latency. We can formalize
the average cache miss cost (Y ) using this equation:

Y = [(Hit% × TM ) + (Miss% × (TD + TL + TF ))+

(UnAl% × TF )]×N
(3.4.1)

where TM is the RAM access time (about 100ns), TD is the disk access time (about 80µs), TL is
the time to traverse all software and network layers (about 5µs), TF is the time to traverse only
the software (about 1µs), N is the chain length, Hit%, Miss%, and UnAl% are respectively the
hit, miss and unallocated events ratios. Because TD, TL, and TF are too high compared to TM ,
even a tiny miss and unallocated ratio will lead to significant performance degradation [115]. Long
snapshot chains exacerbate this degradation.

3.4.2 Assessment
A VM running on a long Qcow2 snapshot chain sees its performance and memory footprint seriously
impacted. To demonstrate these points, Figure 3.8 shows the evolution of these two metrics for

45



CHAPTER 3. EFFICIENT STORAGE FOR VMS USING A SCALABLE
VIRTUAL DISK FORMAT

a VM running on a virtual disk with variable chain sizes, ranging from 0 to 300 snapshots. The
total virtual disk size is 20 GB and each snapshot contains an incremental layer of 60 MB. All files
reside locally on the host’s SSD. The VM has 4 GB of allocated RAM, 4 vCPUs and runs Ubuntu
18.04. The read throughput is measured within the VM by reading the entire disk with dd right
after 1) a first call to dd on the entire disk to ensure L1/L2 caches are fully populated and 2) a
guest page cache drop to assure that the Qcow2 file is accessed. The memory footprint is measured
from the host as the hypervisor’s peak Resident Set Size (RSS) observed during the execution of
the dd command.

As one can observe, although with small chains the read throughput is not substantially im-
pacted, when the chain size grows performance drops significantly. On a virtual disk with a chain
size of 300, the read throughput only reaches 39% of what can be achieved on a disk with no
snapshots. Regarding memory consumption, with no or a few snapshots the memory overhead that
Qemu presents on top of the 4 GB used by the VM is negligible. However, with long snapshot chains
that overhead becomes significant: with 300 snapshots, 711 MB of additional RAM are consumed
by Qemu. We used the massif heap profiler of Valgrind to investigate memory consumption and
discovered that the memory footprint increase is due to various data structures that are allocated
on a per-snapshot basis. The main culprit for the high memory consumption with long chains is the
L2 indexing cache. There is one Qcow2 driver instance running in the hypervisor for each Qcow2
snapshot in a chain. Although the maximum L2 cache size defaults to 1 MB [44], in our experiment
we set it to ≈2.7 MB which is the maximum value to manage all the cache of a 20 GB disk – setting
it lower seriously impacts performance. However, because there is one cache per driver instance
and one instance per snapshot, one can conclude that the cache-related memory footprint increases
linearly with the number of snapshots in the chain. We also profiled the Qemu hypervisor from the
host during the execution of the aforementioned dd test on the 300 snapshots-long case and found
that the guest only executes for 7% of the time. Qemu’s disk driver threads consume the remaining
time.

These numbers were gathered on Qemu 4.2 but we also confirmed this behavior on a very recent
(v6.0) version. We focus on 4.2 in the rest of this work as it is the version used by our cloud
provider partner at the moment of the research investigation. Although this version may seem
outdated, cloud providers notoriously use old software versions with backported security updates
(i.e. long-term support) for obvious stability reasons.

Other formats We also evaluated other popular virtual disk formats, including Hyper-V’s VHDX
[76] and VMWare’s VMDK [119]. As shown in Figure 3.9, these formats suffer from the same
scalability problems. problems. We notice that the amount of overhead is not the same here as
in the Qcow2 format, this is because virtual disk and snapshots management are different in each
format but despite this fact, the scalability problem remains present.

Take-away 5: Long chains lead to memory footprint and IO performance scalability issues.
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Figure 3.9: I/O performance and memory footprint for various disk formats.

3.5 Design of SVD: Scalable Virtual Disk

This section presents SVD, a solution to the two scalability issues identified in the previous sections
regarding performance and memory consumption. Ideally, both metrics should be as independent
as possible from the length of the backing file chain length.

3.5.1 Principles and Challenges

SVD relies on two fundamental principles, illustrated in Figure 3.10: 1) direct access to on-disk
indexing/data clusters, regardless of their position in the chain, upon guest I/O requests; 2) using
a single unified indexing cache, avoiding duplication of cache entries by being independent of the
chain length. We apply the first principle through a backward-compatible modification of Qcow2,
requiring the storage of additional metadata in virtual disk images and an update to the Qcow2
driver in the Qemu storage stack. Applying the second principle only requires a careful modification
of the Qcow2 driver.

A significant challenge the implementation of SVD faces is its transparent and fast integration
within the infrastructure of our cloud partner (and within cloud infrastructures in general). Our
solution should be compatible with the different backends that can hold disk backing files in today’s
cloud infrastructure. These can be stored directly on the host disk, accessed by the host through
the network, and served by centralized NFS servers or distributed file systems. Hence, we propose
to modify a popular existing disk format rather than propose a new one [115]. A related challenge
is also backward compatibility. Existing Qcow2 images lacking our format’s metadata should still
work with our updated version of Qemu (without performance/memory consumption gains on long
chains). In addition, images using our format should work with Qemu that do not run our updated
Qcow2 driver (once again without gains on long chains). Alternatively, vanilla disk images can be
easily converted to our format to benefit from the performance/memory footprint enhancement on
long chains.
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Figure 3.10: Vanilla Qemu (left) compared to our SVD, which follows two principles: direct access
and unified indexing cache.

3.5.2 Format Improvement

When a guest issues an IO request, Qemu sequentially scans the active volume and all the backing
files in the chain until the proper one is found, which is inefficient. Our design eliminates that chain
scanning operation. We introduce new metadata in the format indicating, for each data cluster, the
backing file that contains the latest (i.e., valid) version of the cluster. We call this metadata the
backing_file_index. We leverage unused bits in L2 table entries to store that information.More
precisely, we use 16 bits to encode backing_file_index in each L2 entry.

3.5.3 Unified Cache and Direct Access

With direct access, we maintain a single unified cache for the entire disk, independently of the length
of the backing file chain. Our cache has the same organization as the vanilla Qcow2 cache presented
in §3.2. As a reminder, a cache entry corresponds to a slice and contains: l2_slice_offset (playing
the role of the tag), ref, dirty, and the L2 entries composing the slice. As noted in the previous
section, in SVD an L2 entry contains backing_file_index in addition to the default Qcow2 values.
The Figure 3.11 presents the new I/O journey with SVD contrary to the one presented in §3.2

Contrary to the vanilla version where l2_slice_offset was specific to each backing file, in
our version, l2_slice_offset is related to the active volume. In addition, one can find L2 entries
describing data clusters belonging to distinct backing files in the same slice. Therefore, the read and
write operations are performed as follows in SVD. Let us consider vb, the offset of a virtual block
that the guest wishes to read. Using the same functions a Qemu, SVD computes l2_slice_offset,
l2_slice_index and l2_index. If both the slice and the L2 entry exist in the unified cache and that
backing_file_index contained in the L2 entry corresponds to the active volume, there is a cache
hit and the offset of the cluster data to be read is in the L2 entry. If backing_file_index does not
correspond to the active volume, this is a cache hit unallocated. SVD locates on disk the backing
file corresponding to backing_file_index and reads from it the slice at offset l2_slice_offset.
Let sb be that slice and sv be the slice currently contained in the unified cache. SVD traverses
all sb entries and updates the L2 entries in sv with the corresponding contents in sb under the
following condition: the value of backing_file_index of the L2 entry in sv is lower or equal to
that of backing_file_index of the L2 entry in sb. We call “cache correction” these replacement
operations. Then it sets dirty to 1 in sv, so the slice will be written to disk when it is evicted from
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Figure 3.11: I/O journey in SVD with common cache using the new column backing_file_index
in the cache structure

the cache. If the L2 entry does not exist in the slice, there is a cache miss, and the entry needs to
be allocated as in Qemu. This means the guest is asking for a data cluster that does not yet exist
on the virtual disk. If the slice is not yet present in the cache, there is a cache miss, and the slice is
either fetched from the active volume if it exists, or allocated if not. These operations are similar
to Qemu. It is important to note that cache correction is executed once when we resolve a cache
miss for a data cluster and is no longer executed till the data cluster is evicted from the cache and
needs to be prefetched from the image disk later.

3.5.4 Snapshotting

In Qemu, a new Qcow2 active volume is created on snapshot creation, with very little information
(the header, the L1 table, and refcounts). We updated the snapshot creation logic to copy the
entire content of both L1 and L2 tables from the previous active volume to the newly created active
volume, now a backing file. The algorithm that we implement is as follows. Let new_volume be
the file that will become the new active volume and old_volume the old one. We intervene in the
creation of the L1 table. Recall that it is always located at the second cluster of any Qcow2 file.
Let new_l1 be the new L1 table and old_l1 the L1 table of old_volume. After the allocation of
new_l1, we parse all the old_l1 entries. For each entry we create the corresponding L2 table in
new_volume, then we set the current new_l1 entry with the offset of that L2 table. Let new_l2 be
that new L2 table and old_l2 be the L2 table pointed to by old_l1 in old_volume. Then we copy
the whole content of old_l2 to new_l2.

Consequently, a new active volume always contains all L2 tables of the previous backing files.
The copy of L2 tables may lengthen disk snapshotting time compared to the vanilla version. We
could have implemented a copy-on-demand solution. However, that would mean impacting the
critical path of I/O requests. This approach would increase tail latency, requiring chain scanning
to find the valid backing file. The evaluation results show that the disturbance brought by the
snapshot operation upon guest I/O performance is mainly acceptable, as the total size of L2 tables
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is, in the worst case, in the order of MB. In addition, we believe that VM owners are likely to accept
the small price of a slight increase in snapshotting time, to benefit from an essential boost in I/O
performance.

3.6 Evaluation

Here we present an evaluation of SVD, aiming to answer the following three questions:

Q1) Does SVD eliminate the memory footprint scalability issue of Qemu? (§3.6.2)

Q2) Does SVD eliminate the IO performance scalability issue of Qemu? (§3.6.3-3.6.4)

Q3) To what extent does SVD increases snapshotting time and disk overhead? (§3.6.5)

3.6.1 Evaluation Setup

Methodology. We systematically compare SVD with Qemu. We limited our comparison to only
Qemu because its current version embeds the optimizations that prior academic works presented.
We evaluate several configurations by varying three parameters: the chain length (1-1,000); the
virtual disk size (50GB, 150GB); as well as the cache size (from 30% to 100% of the cache size
needed to hold the entirety of L2 entries to index a full disk, i.e., from 1.9 MB to 6.25 MB for a 50GB
disk size, and from 5.6 MB to 18.75 MB for 150 GB). For all experiments, we uniformly distribute
valid clusters on the backing files of the disk’s chain; meaning that all clusters are equally likely to
be accessed. The virtual disk is populated at 90% with random data for experiments with micro-
benchmarks using the Linux dd command, and at 25% for experiments with macro-benchmarks
using the RocksDB client [36]. The release of SVD includes a highly configurable chain generation
script.

Unless otherwise indicated, the size of the L2 cache is set so that it can hold all L2 entries to
index the entire disk. All results presented in this section are an average value of 5 runs.

Testbed. To have a representative test environment, we employ two servers: the compute node
running VMs and the storage node holding virtual disk files. Each server has 32 Intel Xeon Gold
CPU cores, clocked at 2.10GHz, 192 GB of RAM, Samsung
MZ7KM480HMHQ0D3 SATA SSD. They are linked with a 10Gbps Ethernet connection. The
storage node serves the virtual disk files through NFS. Both servers run Debian 10 with Linux
4.19.0 as the host OS. All VMs run Ubuntu 18.04 with Linux 4.15.0 and are configured with 4GB
of memory and four vCPUs. Unless otherwise indicated, the virtual disk size is 50GB.

Metrics and Benchmarks. We collect two types of metrics, high-level and low-level metrics.
The former directly impact the end-user’s perceived Quality of Service. We consider VM startup
time, memory overhead, application execution time, and I/O disk throughput. The memory over-
head is the additional memory consumed by Qemu on top of the VM’s allocated pseudo-physical
memory. Low-level metrics represent internal costs that help explain high-level metrics. They are:
the total number of cache misses, the number of cache hit unallocated, and the cache lookup la-
tency. The lookup latency is the time to find a data cluster’s valid offset in the caching system.
Storage benchmarks are run in the guests. We use microbenchmarks, including Linux dd (which

50



3.6. EVALUATION

sequentially read the entire disk from the guest i.e. dd if=/dev/sda of=/dev/null bs=4M) and
fio [69] (70% random access, half reads and half writes, with iodepth of 32 and with direct write),
as well as macro-benchmarks, RocksDB-YCSB [36] and a measurement of the VM boot time.

For the rest of this section, when we talk about snapshots, it will be a chain of snapshots
referencing each other with the data evenly distributed over all the snapshots, like the users (or
the cloud provider) who would take snapshots regularly. Another difficult choice made in this
section was the choice of the length of snapshots (50 and 500). It was not significant to make
the experiments with all possible chain lengths. So we focus on two lengths. The first one (50
snapshots in a chain) used to represent the common length in cloud environment validated by our
cloud provider partner and the former one (500 snapshots) used to represent the worst case which
doesn’t appear that much but when it appears, is very impacting from the user point of view.

Note It is important to note that most of the benchmarks are read-intensive because Qemu
bottlenecks only appear when we have to fetch data in the whole chain, while write operations are
always done in the active snapshot (the last one in the chain).Contents/svd/
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Figure 3.12: Memory overhead of SVD and Qemu after reading the entire disk from the guest with
dd, while varying chain length. Lower is better.

3.6.2 (Q1) Memory overhead

For this experiment, we measured Qemu’s resident set size after having read the entire disk from
the guest using dd and subtracted from this measurement the amount of RAM given to the VM
(4GB) to compute Qemu’s memory overhead. Figure 3.12 shows the results. One can observe that
SVD significantly reduces the memory overhead when the chain length increases. The memory
savings are as follows: 205 MB for a chain length of 50 (3.9× reduction), 2303 MB for a length
of 500 (15.2×), and 4289 MB for a length of 1,000 (17.6×). Although it scales much better than
vanilla Qemu, SVD’s memory overhead slightly increases with the chain size. This is due to other
per-snapshot data structures in Qemu that are not directly related to the caches. Finally, note that
SVD comes at the cost of a slight memory footprint increase over vanilla when the disk has no
or a tiny number of snapshots – a cost that is amortized by the better scalability starting from 5
snapshots.
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3.6.3 (Q2) Low-level Metrics

We use the same setup as in the previous section.

Cache Misses and Cache Hit Unallocated. We instrumented SVD and vanilla Qemu to
measure the number of cache misses, the number of cache hits unallocated, and the number of
cache accesses per backing file of the chain. Figure 3.13 shows the results.

We can see that SVD leads to fewer cache misses compared to Qemu, as Figure 3.13a shows.
We measure up to 10× for chain length 1,000. This difference is explained by the fact that Qemu
does not implement a cache correction mechanism as we do in SVD (see §3.5). Therefore, when an
L2 entry is only present in the cache of the backing file of index m in the chain, Qemu will generate
n−m+ 1 cache misses walking the chain to get it, where n is the chain length.

Concerning the number of cache hits unallocated, it is constant under SVD, see Figure 3.13b.
The increase compared to a virtual disk composed of a single active volume (chain length 1) is less
than 1% for the chain length 1,000. Concerning Qemu, the number of cache hit unallocated increases
10, 000, 000× for the chain length 1,000; 4, 000, 000× for the chain length 500 and ≈ 600, 000× for
the regular chain of length 50. This is once again explained by the fact that Qemu looks up several
caches during the chain walk.

In the experiment with a chain of length 500, we count the total number of cache lookups
and plot their distribution, according to which backing file in the chain holds the requested data,
in Figure 3.13c. Due to the chain walks, caches are much more frequently accessed under Qemu
compared to SVD. The gap is about 1,500%. The spike that appears for backing file zero, the base
virtual disk image, corresponds to the boot of the VM. In fact, during that time, several IO read
requests are performed on read-only files (such as vmlinuz). The spike on snapshot 500 corresponds
to the accesses made on the active volume.

Cache Lookup Latency. We measured the cache lookup latency on two chain lengths: 1 and
100. Figure 3.14 presents the distribution of cache lookup latencies for all IO requests performed
during the execution of the dd benchmark. We can observe that for both systems, the mean latency
value changes according to the chain length. However, SVD leads to a better latency than Qemu
when the chain length increases: the mean latency is 490 ms under Qemu and 270 ms with SVD,
i.e., 1.8x faster. Contrary to Qemu, latency values under SVD are located around two mean values,
120 ms and 270 ms. 120 ms corresponds to the cache hit mean latency, while 270 ms corresponds
to the cache hit unallocated mean latency. Theoretically, according to the direct access principle
implemented by SVD, only one value of cache hit unallocated latency can be observed compared to
Qemu. We do not observe the same kind of distribution under Qemu because, in this experiment,
data clusters are uniformly distributed over all backing files. Therefore, most IO operations lead
to a variable amount of cache hits unallocated, i.e., chain walks of variable length, according to
the target data location in the chain. This translates into highly variable and, on average higher
latencies in Qemu.

Concerning the variance of latencies value it appears that Qemu has a higher value than SVD.
For the chain length of 1 snapshot, the variance is quite the same (≈ 10) because there are not many
backing files and many caches to go through. But when we go up to a chain of 100 snapshots, the
variance latency value of Qemu (17) is higher than SVD’s value (12) while in Qemu we go through
all the caches of all snapshots, we have more diverse values of latencies where we go through essential
and the same caches with SVD and then we have fewer latency values to process the variance.
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Figure 3.13: During an entire disk read with dd, the number of (a) cache misses, (b) the number
of cache hit unallocated, and (c) the distribution of cache lookups according to which backing file
holds the addressed data. Lower is better.
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3.6.4 (Q2) High-level Metrics

3.6.4.1 Macro-benchmarks

VM Boot Time. VM boot time is a critical metric in the cloud [74, 83]. Figure 3.15 compares
the time it takes to boot a VM under SVD and Qemu while varying the chain length and the
virtual disk size. The boot time increases rapidly with the chain length under Qemu: it goes from
about 10 seconds on a chain of size 1 to more than 40 seconds (4×) on a chain of size 1000. On the
contrary, with SVD that increase is moderate: from 10 seconds to 17 seconds (1.7×).

The increase in boot time for SVD can be explained by the slight increase in the number of
cache misses and cache hit unallocated discussed above. We can see that the size of the virtual disk
has a negligible impact on the results.

Cloud Workload: RocksDB-YCSB. We created a RocksDB database that fills 40% of the
VM disk size, populated using the YCSB client, generating a uniform distribution of valid clusters
on the Qcow2 chains generated. We used three YCSB workloads: YCSB-C, which simulates a
user performing read-only requests; YCSB-B, which simulates a user performing a mix of write
and read requests but most reads; and YCSB-D, which realizes more write vs. read requests
We experimented with two L2 cache sizes (1 MB and 3 MB) and two chain lengths (50 and 500
snapshots). We measured the throughput and execution time (RocksDB’s two performance metrics)
of YCSB for a total of 500K requests.
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Figure 3.16: RocksDB-YCSB results for YCSB-C.

Figures 3.16a and 3.16c show the results for the throughput metric. Even if the performance
of both versions decreases when the length of the chain increases, SVD still outperforms Qemu for
both chain lengths (33% for length 50 and 47% for length 500). Further, with a fixed chain length
at 500, the throughput of YCSB is almost constant while varying the cache size, regardless of the
Qemu system.

Figures 3.16b and 3.16d present the execution time results. As for the throughput, SVD im-
proves Qemu. Considering a chain of 50 backing files, SVD reduces the execution time of YCSB by
36% for 1MB cache size and 22% for 3MB cache size. For a chain of 500 snapshots, the improvement
is about 40% with 1MB of cache size and 36% with 3MB cache size. For throughput and execution
time, the improvement of SVD over Qemu is more significant when the chain length increases.

Figure 3.17 shows that even when there are more write requests (YCSB-D), as soon as the
system uses read requests, performance are impacted.

Performance improvement status It’s important to recall that Rocksdb is a key-value store
based on the log-structured merge-tree data structure so the data are more often kept in memory so
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Figure 3.17: RocksDB-YCSB results for YCSB-D.
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Figure 3.18: Throughput of Linux dd under SVD and Qemu with various chain length Higher is
better.

it’s almost normal we don’t have the same gap of performance improvement compared to another
storage. But despite this fact, there is still an overall non-negligible improvement from our SVD
solution when dealing with heavy usage in cloud provider infrastructures.

3.6.4.2 Micro-benchmarks

Disk Throughput: Linux dd. The throughput of dd is presented in Figure 3.18 for both systems
managing chains of various sizes. We can observe no degradation under SVD while Qemu severely
degrades the throughput of dd when the number of backing files increases. Qemu incurs a slowdown
of up to 84% for the chain length 1,000.

Impact of the Cache Size with fio. We studied the effect of varying the cache size for SVD
and Qemu. In this experiment, we use a chain of length 500 and set the total cache size used by
Qemu to equal that used by SVD. Because Qemu uses one cache per layer in the chain, when SVD
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Figure 3.19: fio throughput while varying the cache size. (100% reads) Chain length of 500
snapshots. Higher is better.

is given cache size of S, Qemu would get S/L with L being the chain length. We vary the cache size
given to each system from 1MB to 4GB and measure the disk read throughput with fio performing
random reads of small size (4 KB) on the disk node in /dev on one side and on another size random
reads and few write.
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Figure 3.20: fio throughput while varying the cache size. (70% read - 30% write) Chain length of
500 snapshots Higher is better.

Figure 3.19 shows the results. We can observe that SVD significantly outperforms Qemu in all
cases. With both systems, performance is sensitive to the cache size. Concerning Qemu, perfor-
mance steadily increases up to 4 GB of cache. This is due to the large amount of memory required
by this multi-cache solution. Regarding SVD, although peak performance is also achieved at 4
GB (6 MB/s vs. 2.5 MB/s for 1 MB of cache), from 32 MB, the payback from adding more cache
size diminishes significantly. This value thus represents an excellent trade-off between near-peak
performance and memory footprint. This demonstrates the high efficiency of SVD vs. Qemu.

Figure 3.20 shows similar results when operations are mixed between reads and writes with more
reads. Here, performance gains from SVD are lower than Qemu’s because write operations do not
need to go through the chain, avoiding the performance issue.

In summary, if we want to consider Qemu optimal in term of execution time and throughput,
we need to choose the maximum value of cache chose considering the minimum value of cache that
can cache all clusters’ data metadata which is in the case of this experiment 4GB for each 500
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Figure 3.21: Impact of SVD on snapshotting. Lower is better.

snapshots i.e. ≈ 7MB per snapshot.

3.6.5 (Q3) Overhead

As stated in §3.5.4, when creating a snapshot under SVD, L2 tables are copied to the newly created
file. This may incur two overhead types: disk usage and snapshotting time.

Disk space. The disk space overhead per snapshot depends on both the VM’s disk size and
cluster size and the number of allocated clusters in the disk. We can model that overhead in the
worst-case scenario, i.e., when every cluster is allocated (the disk is full), as follows: given SSQ and
SV Q being respectively the size of a newly created (i.e. empty) snapshot under SVD and Qemu,
we compute the disk size of SSQ using the following formula:

SSQ = SV Q +
VM_disk_size

cluster_size
× L2_entry_size (3.6.1)

By default, an L2 entry is 8 B, a cluster is 64 KB, and SV Q is 256 KB. Using the above formula,
we can compute SSQ while varying the VM disk size from 50 GB to 200 GB. Figure 3.21a shows
that per-snapshot overhead. It increases linearly with the size of the VM disk. To compute the
total disk overhead (still in the worst case), the per-snapshot cost needs to be multiplied by the
chain length. Recall that from our characterization, we observed that the dominant virtual disk
size in the cloud is 50 GB, giving, according to our model, a per-snapshot overhead is about 6 MB.
This gives a total overhead, in the worst case, of 60 MB for a chain of length 10 (0.1% of the virtual
disk size), 600 MB for length 100 (1.2%), and 6,000 MB for length 1000 (12%).

Snapshotting Time. We measured the time spent to create a new snapshot under SVD and
Qemu for different VM disk sizes. The results are presented on Figure 3.21b. Due to the copy of
all L2 entries, SVD takes much more time to create a snapshot than Qemu. For a 50GB VM, we
need about 70ms to create a snapshot under SVD and 7× less time under Qemu. Furthermore, this
overhead increases with the VM disk size. Indeed, for a 200GB VM, the snapshot creation time
under SVD is about 12× that of Qemu. Nonetheless, in absolute, the snapshot creation latency is
quite low under SVD (in the order of ms). It allows for a relatively high snapshot frequency.

We indeed generate an overhead when creating a snapshot in terms of time and space. For the
time overhead, we add an overhead that grows in a logarithmic order (slowly) and we assume that
increasing a little bit (unperceivable to the end user) the time is an excellent tradeoff against the
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Table 3.1: Snapshot creation time.

VM Disk Size(GB) vQemu Time(ms) SVD Time(ms)
50 10 70
100 15 156
150 21 233
200 23 265

overhead time on each request that we are resolving with SVD. For the space overhead, it depends
on the virtual machine disk size. Knowing that users reserve light VMs for their tasks i.e. with
small disk size, the size of the overhead space on the host disk will be negated.

It is important to notice that this overhead only occurs at snapshot creation. L1/L2 tables
are not updated in backing files when the active volume is accessed. The principle of backing files
is to maintain an old state so when the active volume is modified, it’s only him who is modified.
Then, there is no aftereffect update in the backing files behind the active volume so no additional
overhead.

3.6.6 Evaluation Summary

We introduce and assess how SVD improves performance compared to the default Qemu using two
new features: direct-access and unified caching. As depicted in Figure 3.12, unified caching helps
decrease the amount of metadata (L2 entries) cached by maintaining a shared cache for all opened
backing files. With direct-access, we can directly access the backing file containing the L2 entry we
seek. Figure 3.13c illustrates that with SVD, we achieve direct access to the cache of the backing
file containing the data, whereas Qemu engages in multiple recursive cache accesses of the backing
files until it reaches the desired data.

3.7 Related Work

Virtual Disk Formats. Fast Virtual Disk [115] is a virtual disk format proposed by IBM in 2011,
that increases I/O performance by avoiding using a host filesystem, reducing the size of on-disk
metadata, and using an on-disk journal. FVD supports only internal snapshots, which means that
the chain is stored in a single file. This may not be as flexible as the external snapshots offered by
the format we focus on, Qcow2, for example, when subsets of a chain need to be stored on different
storage nodes for load-balancing or capacity reasons. It is also unclear how FVD performs on long
chains composed of hundreds or thousands of snapshots. FVD presents a set of optimizations in
scenarios where the virtual disks reside on network-attached storage: copy-on-read and adaptive
prefetching. They help to improve I/O access times by hiding network latency and this remains
compatible with SVD since we maintain old features of Qcow2 active while extending it. These
optimizations are efficient with distributed storage but are orthogonal with our problem since they
do not permit resolving the long chain problem on local storage. The system we propose is an
evolution of Qcow2 which is backward compatible with vanilla Qcow2 disk, something that makes
adoption much easier versus proposing an entirely new format. Finally, FVD can be considered
as deprecated as it was developed for Qemu 0.14, dating from 2011, and has not been ported to
modern versions.
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Parallax [75] is a distributed architecture storing virtual disk images and using commodity
servers as storage backends, as opposed to high-end storage arrays/switches. Among other features,
Parallax offers low-overhead and high-frequency snapshots and notes, similar to our work, that the
performance overhead and memory consumption of traditional formats such as Qcow2 increases
with snapshot chain sizes. Similar to FVD, migrating an existing cloud environment to Parallax
requires significant changes to the virtualized storage system’s architecture, whereas we rely on the
widely used Qcow2 format, and are backward-compatible with environments that do not use our
system. Further, contrary to our Qcow2 format, Parallax does not support sharing of virtual disk
images, a feature heavily used in the industry to lower storage overheads of commonly used volumes
e.g. base images.

Storage Performance and Availability during VM Migration. Noting that VM migration
significantly disrupts guest I/O performance, A few papers [63, 133] focus on maintaining good
storage performance and availability during migration. Netchannel [63] proposes various techniques
to maintain local/remote virtual disk availability during migration. One is the ability to switch
the physical device associated with a virtual one seamlessly. Another proposed technique is the
capacity for migrated VMs initially plugged into a local disk on the host to transparently keep
using that disk through a proxy once they are migrated to another host. In another study [133],
the author proposes to study the storage I/O the behavior of guests to infer the most efficient data
transfer schedule to reduce disruption as much as possible during VM migration.

Scheduling Impact on Virtual Storage Performance. Several studies [86, 60] noted that
VM scheduling could have a non-negligible impact on guest I/O performance. The authors of a
study [86] characterize the impact on processor and I/O performance of various VM scheduler con-
figurations, for concurrently-running guest with CPU- and bandwidth-intensive, as well as latency-
sensitive behaviors. In another paper [60], the authors propose a guest task-level priority-boosting
technique to selectively increase the priority of I/O-bound tasks to increase storage performance
while maintaining CPU fairness.

Virtualized Storage Performance and Power Consumption. Other studies focus more
generally on virtualized storage performance and power consumption [128, 116]. Ye et al. [128] note
that existing power consumption reduction techniques for non-virtualized HDDs do not apply in
a virtualized setting. They propose to bridge the semantic gap between VM and VMM through
several techniques tailored for such environments, reducing disk spin-ups and increasing disk sleep
times, to save energy. Another paper [116] focuses on the particular problem of interrupt delivery
to VMs, including the ones coming from block devices. The authors propose an optimized interrupt
delivery system for KVM. It is mostly evaluated on network workloads but also shows moderate
performance improvements on storage workloads.

Cloud Storage and File Systems. Finally, several papers [93, 16, 71] focus on cloud storage and
filesystems. The Frugal Cloud File System [93] proposes integrating multiple services (AWS EBS,
Azure Cache, etc.) into a single solution that aims to be flexible from the performance and cost point
of view. DepSky [16] introduces a cloud-based storage system targeting security/dependability by
spreading and replicating storage over multiple clouds. Depot [71] proposes a cloud storage system
that can tolerate buggy clients and servers to minimize trust assumptions.
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3.8 Summary
For the first time, we presented the characterization of snapshots’ chain length in a large-scale public
cloud. Among other results, our analysis revealed the presence of long snapshot chains, leading to
scalability issues for both memory footprint and performance. We present SVD, a solution to
these two issues in the form of a slight extension of the Qcow2 format while preserving backward
compatibility. We built SVD following the principles of direct access and single indexing cache,
regardless of the chain length. We evaluated SVD extensively and compared it with vanilla Qemu
using a wide range of benchmarks, demonstrating that our solution effectively tackles the above
issues. For instance, SVD improves the IO throughput of RocksDB by up to 48% compared to
Qemu and reduces the memory footprint by 15x when the chain length is 500.
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CHAPTER 4

Efficient Distributed Storage using Constraints-based
Replica Selection

This chapter describes the NUDA (Non-Uniform Disk Access) issue and his impact on load bal-
ancing in distributed storage. It also presents Nami, a novel solution we establish to address
temporal load balancing in distributed storage.
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4.1. INTRODUCTION

4.1 Introduction

The explosion of data, coupled with the desire to process them fast and automatically (AI/M-
L/IoT), puts significant pressure on storage systems. These systems are becoming one of the main
bottlenecks in data centers [113, 43]. Storing data almost indefinitely, serving it in record time
(milliseconds, or even microseconds for certain applications [15, 8]), and ensuring no loss in case of
a crash are essential requirements.

To address these needs, storage systems have been developed in recent years based on two prin-
ciples: server aggregation and replication [59]. Server aggregation federates the power (capacity
and computation) of multiple machines (called storage nodes) to store as much data as possible,
preventing a bottleneck at a single location. Replication involves storing the same data on multiple
storage nodes, ensuring fault tolerance. Glusterfs [52] and Ceph [24] are two of the most popu-
lar open-source distributed storage systems that follow these principles for their performance and
robustness.

Distributed storage systems grapple with a pivotal question: how can we ensure that all storage
nodes, on average, experience similar levels of usage? This issue is commonly called the load-
balancing problem. Unlike other resources such as CPU, which can be measured with a single-
dimensional usage metric, distributed storage presents a unique challenge due to its dual compo-
nents: spatial and temporal usage. Spatial usage is defined as the amount of bytes utilized on the
storage device, typically expressed in gigabytes (GB). Temporal usage, on the other hand, refers
to the volume of input/output (IO) requests executed within a specific time frame, denoted in I/O
operations per second (IOPS). Up to now, existing distributed storage systems have predominantly
focused on spatial usage load-balancing. This occurs at data block creation time, encompassing the
creation of data replicas.

This work focuses on temporal load balancing, which is more dynamic compared to spatial load
balancing. We show in Section 4.2.2 that existing systems such as Ceph [24] and Gluster [52] leave
the system in what we call a Non-Uniform Disk Access (NUDA) state. These storage systems
statically choose one replica as the primary block, that is the block accessed by all I/O requests in
the direction of a particular data, while other replicas of the same data block serve as backups in
case of failure. Due to workload variation, statically choosing the primary replica that satisfies I/O
request load-balancing is practically impossible.

Previous works [59, 51, 61] proposed replica migration for IOPS balancing. However, using
replica migration for IOPS balancing faces practical challenges. The migration time is lengthy, not
suitable for real-time I/O request responses, and saturates network links, disrupting ongoing I/O
requests. Applying this approach in a large-scale cloud environment exacerbates these issues. Even
Ceph’s authors acknowledged [78] that capacity balancing alone is insufficient for load balancing
across storage nodes.

Other studies [129, 84, 9] have explored the replica selection approach. This approach involves
choosing any replica, rather than a single one as nowadays’ distributed storage systems [24, 52]),
to handle I/O requests and balance the I/ over the storage system. However, these studies have
some limitations. Ye et al. [129] introduced a simulation-based solution for a specific set of requests
to a particular dataset. The challenge is that it requires knowing the incoming set of requests
beforehand, which is practically impossible in today’s highly dynamic cloud and IoT systems. Nwe
et al. [84] focused solely on storage system latency and targeted non-scalable systems like HDFS
and MongoDB, in contrast to scalable systems like Ceph and Gluster. This narrow focus limits
the applicability of the findings to non-scalable storage environments. Awang et al. [9] proposed a
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simulator that considers the potential affinity between data and outputs a set of replicas to use to
balance IOPS in storage systems. While these works highlight the replica selection approach, they
primarily rely on simulations and don’t delve deeply into the possibilities offered by the approach,
focusing on non-truly scalable storage systems.

We exploit the existence of secondary replicas to dynamically select the most suitable replica
and storage node for each I/O request, thereby distributing accesses across as many nodes as pos-
sible. While this concept is straightforward, its implementation poses several challenges, including
comprehending the storage system’s dynamics through metrics and adapting the replica’s usage
based on heuristics implemented by the system administrators.

The proposed system denoted as Nami, achieves this goal by dynamically assigning a weight to
each storage node. These weights indicate the probability of a storage node being chosen to fulfill
a data block I/O request.

Our initial investigation (Section 4.2.2) highlights the odd utilization of resources and the pres-
ence of NUDA in distributed storage systems such as Ceph and Gluster. For illustration, using
a synthetic benchmark based on fio [38], we measured up to 40% standard deviation of storage
nodes’ disk usage. We found that the origin of this problem lies in the fact that these systems
choose for each data block a replica as the primary one to serve IOPS and leave the other replicas
to be used only in case of failures. Knowing that it’s impossible to assert primary replica will
be distributed equally between disks (Section 4.2.2). This leads to the disparity in disk accesses
depending on the access patterns of clients’ applications.

In a subsequent phase (Section 4.3), we aim to address the issue of the NUDA state by intro-
ducing a dynamic replica selection approach that preserves the spatial load-balancing feature at the
same time. We propose Nami, a solution to this problem that can be implemented in any distributed
storage system. A key feature of Nami is to allow sysadmins to implement its weight calculation
algorithm based on observed system requirements (disk usage, node’s latency, disk type). Another
key feature of Nami permits to dynamic change weights of storage nodes by collecting periodically
a set of metrics used in the weight calculation. For illustration, we present and implement Nami in
Ceph [24] with two weights computation algorithms based on the latency metric; the first algorithm
ranks on order storage nodes’ network latency - the less the latency is, the more the weight is. The
second algorithm is more participatory, the calculation of each weight depends not only on the
network latency of the storage node but also on the latencies of every node.

The final part of this chapter involves the evaluation (Section 4.4) of Nami. Using each of the two
weight calculation algorithms presented, we assess the I/O throughput of popular benchmarks like
fio [38] and RocksDB [36] with fixed and variable emulated latencies during workload execution. We
observe a performance increase with Nami by up to 30% compared to vanilla Ceph. Furthermore,
the measurement of disk utilization demonstrates that Nami balances requests more evenly across
disks, resulting in a final disk utilization standard deviation of 13% compared to 40% with Ceph. At
the end, we compare the benefits of the two weight computation algorithms that we introduced. We
observe that the first algorithm (based on ordered latencies) has a smaller failure rate of selecting
a good replica when we choose a replication factor of 3; whereas the second algorithm based on a
(participatory computation) has a smaller failure rate with a replication factor of 4; meaning that
the efficiency of the weight calculation heuristic also depend on the intern configurations of the
distributed storage.

In summary, this chapter contributes:

• An exploration of server resource utilization (spatial and temporal) in existing distributed
storage systems.
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Figure 4.1: Distributed storage systems architecture.

• Presentation of our replica selection approach called Nami and the implementation of a
prototype in the Ceph storage system.

• Evaluation of Nami, demonstrating an increase in I/O throughput and a more balanced usage
of storage system resources.

4.2 Background and Motivations

4.2.1 Background

Distributed Storage Systems Distributed storage systems play a crucial role in the efficient
management and availability of data in modern computing environments. Unlike centralized storage
systems, distributed storage systems distribute data across multiple nodes, referred to as storage
nodes, typically within a local network. This approach provides enhanced resilience, increased
elasticity, and improved performance.

In our study, we have chosen the Shared-Nothing storage system (SN-SS) as our distributed
storage architecture [59]. This choice is justified by its recognized scalability, robustness, and
reliability, especially suitable for long-term write-intensive needs [59, 72]. The configuration of such
an architecture is illustrated in Figure 4.1.
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The SN-SS is a category of distributed storage system where compute nodes, and hosting user
applications (such as virtual machines, containers, and bare-metal apps) are entirely independent
of storage nodes. Storage nodes are connected to a local network to facilitate maintenance and data
migration operations; client nodes access them through a wide area network (WAN) such as the
Internet or an enterprise’s intranet. It is essential to note that data is stored in fixed-size blocks,
typically a few kilobytes, with the block being the smallest storage unit in operating systems [67].

Client nodes (or computation nodes) contain client applications (such as virtual machines, etc.).
These applications use an interface to access the distributed storage, which can be a disk mount
point or a client daemon. This interface presents the entire distributed storage cluster as a single
central storage for all applications. It is responsible for determining to which storage node I/O
requests must be directed to retrieve data.

Replication in Distributed Storage Data replication is an important feature of distributed
storage systems, ensuring the same data availability in case of node or network failures. The
implementation of replication involves creating identical copies of data on multiple nodes, providing
redundancy and fault tolerance.

When a client application wants to write a data block (Figure 4.2), a storage node is chosen by
an interface (using the CRUSH algorithm not relevant to expand in our study) to the distributed
storage as shown in Figure 4.1 for its initial write, referred to as the primary replica. This storage
node represents the primary node for that data. Other nodes are chosen to store replicas of this
data in parallel in the background. However, as long as the primary replica is safely stored, the data
is considered written, and the client can be informed. All of this is made by taking into account
capacity balancing which ensures the equitable sharing of data in each storage node.

During data reading, operations are primarily directed to the primary replica. However, the
existing capacity balancing policies implemented by mainstream distributed storage systems do not
guarantee an equitable distribution of primary replicas. This uneven distribution can lead to the
unequal utilization of storage nodes.

To illustrate this point, consider the data distribution shown in Figure 4.3, where two primary
replicas of different data blocks are located on the same node, for instance here the primary of the
red data block and the primary of the yellow data block are stored on the storage node S1. In case
of two I/O requests to the red and the yellow data blocks, the storage node S1 will be overloaded
because I/Os are directed to primary replicas, while the storage nodes S2 and S3, which also possess
the same data blocks remain completely free and unused.

Other possible scenarios could be when the first storage node is overloaded in terms of network
load, but I/O requests continue to be directed to it, while other nodes are available. There are several
similar cases (disk usage of storage nodes, CPU-dependent background tasks, etc.) where utilizing
secondary replicas could significantly improve the storage system’s performance and, consequently,
that of client applications.

4.2.2 Replica selection and Migration in Cloud Storage

In today’s digital era, the exponential growth of data necessitates robust storage infrastructures
capable of handling immense volumes of information while ensuring reliability, availability, and
performance; this is even more true with the massive coming of Edge computing. Distributed storage
networks have emerged as a fundamental framework to meet these escalating demands, distributing
data across multiple nodes [24, 52, 104]. One method to ensure those escalating demands is for
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Figure 4.2: Write workflow in distributed stor-
age systems.[126]

Figure 4.3: Example of data repartition where
more primary replicas are presented on a single
node.

example usage of data replication when they are created or data migration when faults occur on
some servers. However, the efficient selection of replicas and the migration policy within these
networks pose significant challenges that directly impact system performance and reliability.

In these distributed environments, selecting the optimal replicas for read and write operations is
a complex task [17]. Factors such as minimizing latency, ensuring data consistency, load balancing,
and fault tolerance are critical considerations. Suboptimal choices can lead to increased access
times, reduced throughput, data inconsistency, or even vulnerability to system failures. Some
works combine migration of replicas [81] dealing with the fact that migrations, even though costly,
save more time for the request. The main challenge is when to migrate. Papers like [61] showed
how it is difficult to plan a good migration and that it depends on too many factors as clients or
providers.

Improved selection strategies can mitigate latency, enhance data availability, optimize resource
utilization, and increase disk lifetime in data centers for the sake of providers.

We conduct an experiment in a distributed storage of 12 nodes: 3 compute nodes where we
execute workloads and 9 storage nodes which make up the storage cluster. The distributed storage
systems used are Ceph [24], (one of the best-known open-source distributed storage solutions), and
Gluster [52], (one of its great competitors over the years [31, 1]). We run a various number of VMs
simultaneously from 1 to 10 distributed between compute nodes; each VM runs a fio workload [38];
random R/W with 70% reads and 30% an iodepth of 4 and the default libaio engine. The replication
factor is 3. Section 4.4 presents in detail the experimental setup.

Figure 4.4 shows the utilization of each disk during the execution of the workload. It is the
percentage of disk bandwidth used among all storage nodes on both Ceph (Figure 4.4a) and Gluster
(Figure 4.4b) clusters. One striking observation is the unequal usage of nodes (then disks); while
some are fully utilized, others remain significantly underused. In Ceph, we observe that the standard
deviation of disk utilization is 30% with the most used node at almost 100% while the least used
is at 25%. In the case of Gluster, we have a larger standard deviation larger (43%). It is less
catastrophic in Ceph due to its policy of capacity balancing [21]. A similar analysis was conducted
by Ceph developers [78].

This discrepancy can result in two main concerns: Firstly, it may lead to performance unpre-
dictability due to the presence of unused disks. Secondly, the lifespan of overused disks might
decrease. It is important to note that replacing a disk in the cloud or applying any maintenance
operations can be costly for the provider due to data migration [127]. All this shows how the cluster
state is important in the choice of an optimal replica selection algorithm.

Current approaches to replica selection often rely on heuristics or basic algorithms that may

69



CHAPTER 4. EFFICIENT DISTRIBUTED STORAGE USING
CONSTRAINTS-BASED REPLICA SELECTION

(a) Ceph cluster. (b) Gluster cluster.

Figure 4.4: Disks usage during workloads. The percentage indicates the average percentage of the
node’s disk usage over the workload

not adequately address the complexities of modern distributed systems or may rely on migration
policies [112, 61]. Some approaches prioritize proximity or load distribution without considering
dynamic network conditions or varying access patterns, resulting in suboptimal performance and
resource inefficiency [39].

We conduct another analysis to understand why capacity balancing is not sufficient to handle
query balancing. Using the same setup of cluster storage presented above, we fill 5 times the
distributed storage with 13 VMs’ virtual disks of size 50GB and we collect the distribution of
primary replica over the storage nodes.

In Figure 4.5, we present the repartition of primary blocks on Ceph and Gluster. We observe that
on Ceph (Figure 4.5a), storage nodes have unbalanced primary replica distribution; for example,
storage node S9 has the lowest number of replicas at the 2nd filling (12) where he has the highest
in the 5th filling (54). On Gluster it is different because administrators when setting up the cluster
storage, can choose the storage nodes that will contain all the primary replicas but the number of
these storage nodes is always N/rep where N is the number of storage nodes and rep the replication
factor; in our case, it is 9/3 i.e. 3 storage nodes who will contain all the primary replica equally
distributed between them. During each filling of the storage node (Figure 4.5b) we vary these 3
storage nodes.

This raises two main concerns: the first is that primary replicas are non-equally distributed
between all the storage nodes so, knowing that I/O requests use the default primary replica, it
logically leads to unbalancing of I/O requests; the second concern is the fact that after each filling
of the storage, the storage nodes with the high number of primary replica is never the same. All
this shows that capacity balancing is not enough to achieve IOPS load balancing.

In conclusion, with modern distributed storage systems, the primary replica, from which all
read requests are served, is allocated statically and does not change throughout time. However, the
storage system is a dynamic environment and the performance of storage nodes, as seen from each
of the clients, will evolve. Hence, a static primary replica allocation is suboptimal.
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(a) Ceph cluster.

(b) Gluster cluster

Figure 4.5: Primary replica distribution among storage nodes after 5 distinct fillings of the storage.

4.3 Constraints-aware Replica Selection with Nami

4.3.1 Overview

Figure 4.6 depicts the architecture of Nami. Nami aims to optimize the selection of replicas based
on constraints predefined by the storage cluster’s sysadmin. It incorporates several key components
to ensure a balanced distribution of loads and optimal performance of the storage system. This
section provides a more in-depth exploration of each component, its functioning, and its interaction
with other elements of the system.

Metrics Collector The Metrics Collector is the initial component of our architecture responsible
for retrieving metrics associated with each storage node. An instance is presented on each node
of the distributed storage system and frequently collects metrics. These metrics include network
latency, current disk load primarily, and other relevant parameters configurable by the system
administrators. Real-time data collection provides an accurate snapshot of the current performance
of each node. (step a.)

Controller The Controller plays a central role in the decision-making process. It aggregates
metrics collected by the Metrics Collector and employs heuristics to assign a weight (Weight
adaptor) to each storage node. These weights represent the relative probability of a node being
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Figure 4.6: Architecture of Nami with 3 clients and 3 storage nodes. Mi and Wi are resp. the
metric and the weight of Si

a,b,c steps are background periodic steps.
1-4 steps are I/O request handling steps

selected during an I/O request to a replica. The Controller also ensures the dynamic updating of
these weights based on changes in the environment. (steps b. and c.). This entity takes as input
the heuristic to be used in defining node weights and executes it when there is a variation in metrics
collected by the Metrics Collector.

Weight database The Weight Database is a key-value store that persistently retains the weights
assigned to each storage node and the metrics used by the Weight adaptor. Each storage node has
access to this store to retrieve weights associated with different nodes since it is distributed and
replicated. This distributed approach ensures continuous availability of weights and lightweight
access, even in the event of node failure or network disruption.

Object Requester Each client node in the storage system is equipped with an Object Requester
component [24, 52] that sends I/O requests to the storage cluster; we modify it to consider weights
during request handling. When an I/O request is initiated (step 1.), the Object Requester intervenes
using weights stored in the Weight Database (step 2.). It applies sorting to determine optimal
storage nodes, from which one is selected to serve the request (step 3.), minimizing perceived
latency for the client. This proactive approach ensures that each request is directed to a replica
that optimizes the overall system performance.

4.3.2 Metrics Collector

The Metrics Collector plays a central role in the dynamic collection of metrics associated with
each storage node. This operation occurs periodically with a configurable period, and all metrics
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are retrieved and stored in the Distributed Store. A key characteristic of this component is the
meticulous management of writes to avoid unnecessary overload on the Weight Database. As metric
collections happen periodically, constant writes to the key-value store that may not be necessary
can be averted.

Periodic Collection The Metrics Collector is programmed to query each storage node at defined
intervals, thus regularly collecting metrics. These metrics encompass access latency, system load,
node availability, network bandwidth, and other relevant parameters. A powerful tool for retrieving
these metrics is the sar tool from the sysstat suite [45]. Since storing is done in the Weight Database,
which is a key-value store, each entry takes the form of ”CnMm”→ [v1, v2, ..., vn], with Cn being the
client from which the metric originates, Mm the mth activated metric, and the array vi containing
all metric values we collected on each storage node i of the cluster. For example, assuming the
latency is the metric illustrated in figure 4.6. the metrics presented as a matrix will be stored in
the key-value store like this:

key→ Value
C1_lat→ [1, 2, 3]
C2_lat→ [1, 1, 2]
C3_lat→ [3, 2, 1]

The periodicity of this collection ensures a real-time representation of the system’s performance.

Weights Storing Rather than storing all metrics collected in a raw manner, the Metrics Collector
considers the variation in values. It compares new metrics with previously stored values to determine
the need for an update. This approach avoids unnecessary writes and reduces the load on the
Distributed Store. A strategy based on the standard deviation between new and old values decides
whether to modify metrics in the database. This adjustable approach allows adaptation to diverse
environments where the frequency of changes may vary. It provides an efficient mechanism to keep
the Weight Database updated while minimizing unnecessary data storage and processing.

4.3.3 Weight Adaptor

The Controller initiates a Weight Adaptor that performs weight calculations using the previously
collected metrics. This component is relevant for assigning weights to storage nodes, thereby in-
fluencing the selection of replicas; one of the features of Nami and what makes it flexible is to
possibility for sysadmin to write and include their weight compute algorithm. In this section, we
present two different heuristics of the Weight Adaptor will be presented, highlighting the subtlety
and adaptability of this approach.

Consider the following matrix of latency values between a client Ci and a storage node Si in
milliseconds (Table 4.1). We will use this matrix to illustrate our algorithms.

4.3.3.1 Algorithm 1: Latency-Ordered Weights

This heuristic, while relatively simple, proves to be effective in optimizing node selection based
on latency (see $4.4). It assigns a higher weight to the node with lower latency (algorithm 1).
The underlying idea is to prioritize nodes that provide faster response times, thereby enhancing
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C1 C2 C3
M1 1 1 3
M2 2 1 2
M3 3 2 1

Table 4.1: Matrix example of latencies

Algorithm 1: Latency-ordered weighting
Data: Mij metrics gathered by the ith client on each Sj

Data: n number of clients
Data: m number of storage nodes
Result: Wij weights returned by the ith client
initialize(Wij);
sort_desc(Mij);
for j ← 1 to m do

W [i, j]← m− indexOf(M [i, j]) + 1 ; /* lowest latency has higher weight value
*/

the overall system performance. The adaptability of this approach lies in its ability to adjust the
acceptable latency threshold according to the specific requirements of the system.

For instance, considering the latency matrix in Table 4.1, the corresponding weight matrix would
be the ones on Table 4.2

C1 C2 C3
W1 3∗ 2∗ 1
W2 2 2 2
W3 1 1 3∗

Table 4.2: Matrix weight algorithm 1
(*) node likely to be selected

Thus, storage node S1 is more likely to be chosen (during the period when we collect these
latencies) to serve replicas for requests from clients C1 and C2 because it has the highest weight
for each of these clients. However, given that it will be solicited by two client nodes, it can quickly
become overloaded. The sysadmin might be tempted to define a weight calculation algorithm that
depends on other storage nodes. An example of such a calculation algorithm could be the following.

4.3.3.2 Algorithm 2: Participatory weighting

The second heuristic we present here introduces a participatory approach where each storage node
is assigned a weight based on the average latency of the storage node seen by other clients (see
algorithm 2). The higher the average latency for a particular node, the higher its weight. The goal
is to prioritize the storage node that has the least influence on others when there are numerous
requests. This approach encourages a balanced distribution of load and considers the relative
performance compared to the entire storage network.
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By employing this participatory strategy, the system not only focuses on the performance of
individual nodes but also considers their impact on the overall network. The objective is to prioritize
nodes that, when accessed, contribute less to the latency experienced by other clients. This can
lead to a more equitable distribution of the storage load and enhance the overall efficiency of the
storage system.

Algorithm 2: Average-based weighting
Data: Mij metrics gathered by the ith client on each Sj

Data: n number of clients
Data: m number of storage nodes
Result: Wij weights returned by the ith client
initialize(Wij);
initialize(tmp) ; /* buffer array */
for j ← 1 to m do

tmp[j]←
∑n

k=1,k ̸=i Mkj

m−1 ; /* average of metrics seen by other clients */

sort_desc(tmp);
for j ← 1 to m do

W [i, j]← indexOf(tmp[j]) ; /* high average has high weight */

In this manner, with our example in Table 4.1, the new weight calculation would yield the
following result:

C1 C2 C3
W1 2∗ 1∗ 1
W2 1 1∗ 2
W3 1 1∗ 3∗

Table 4.3: Matrix weight algorithm 2
(*) node likely to be selected

In this scenario, the options for client C2 are more diverse, allowing us to choose storage node
S2 to avoid overloading nodes S1 and S2 which are the optimal choices for C1 and C3 respectively.

4.3.3.3 Weight Calculation Flexibility

It is important to emphasize that we offer significant flexibility to administrators here. They have
the freedom to choose the heuristic that best suits their needs, adjust the parameters of existing
ones, or even add new custom ones to align with specific storage infrastructure requirements, as
demonstrated with the two previous heuristics. In summary, the Controller represents the most
subtle point of the architecture, enabling advanced and adaptable analysis of metrics to assign
weights to storage nodes. The two algorithms presented here do not pretend to be efficient ones
or concurrent with each other; they illustrate the diversity of possible approaches, thus providing
a robust solution for the optimal selection of replicas based on the specific needs of the system.
The flexibility offered to administrators ensures continuous adaptation to changes in the storage
environment.
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4.3.4 Object Requester

The Object Requester component comes into play when an I/O request is issued, utilizing the
weights assigned by the Controller to guide the selection of the optimal storage node. This section
will detail the request process based on weights, also emphasizing the redirection of requests to the
chosen node holding the replica. As replica selection mechanisms exist in almost all contemporary
distributed storage systems [24, 52, 104, 112], the significance lies in showcasing how our weight-
based solution is concretely applied in a distributed storage environment.

4.3.4.1 Request Routing

When an I/O request is initiated, the Object Requester steps in to select the optimal storage node
based on the assigned weights. The routing process is as follows:

Weight Retrieval Before making a decision, the Object Requester checks if a cached version of
node weights are present in memory. If so, it uses these weights for routing. Otherwise, it proceeds
to retrieve weights from the Distributed Weight Database.

Node Selection Based on the obtained weights, the Object Requester chooses the optimal storage
node to fulfill the request. This selection is made respecting the weight distribution, where a node
with a higher weight has a greater probability of being chosen.

Request Redirection If the selected node possesses the requested replica, the request is redi-
rected directly to that node. Otherwise, the Object Requester employs the standard routing process
to locate the next node with the highest weight containing the replica and redirects the request to
that node.

4.3.4.2 Weight Caching

To minimize performance impact, weights are cached in RAM. They are updated only when changes
are detected in the distributed storage, signaling a weight update by the Controller. This approach
prevents unnecessary remote weight retrieval operations for each request, ensuring efficiency in the
system. To implement this, Nami installs a watcher on the distributed key-value store. This
watcher acts as a monitoring mechanism, keeping track of changes in the weights stored in the
Weight Database. By doing so, the system can promptly respond to updates initiated by the
Controller, maintaining a real-time and synchronized awareness of weight changes across the storage
nodes.

The installation of a watcher not only optimizes the efficiency of weight management but also
contributes to the overall responsiveness of the system. It enables a proactive adjustment of weights
without the need for constant polling, ensuring that the Object Requester has access to the most
up-to-date weight information when making decisions during I/O requests. This dynamic and
responsive approach to weight management enhances the adaptability of the system to changing
conditions, promoting stability and optimal performance in diverse operational scenarios.

The sequence diagram in Figure 4.7 summarizes all these operations. A watcher continually
operates, obtaining weights from the weight database and storing them in the RAM of the Object
Requester. When an I/O request happens, the cached weights are accessed. These weights help
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Figure 4.7: Watcher processus and request routing.

identify the optimal storage node, which has a replica of the required data, and the request is then
directed to that node.

4.3.5 Ceph Integration
We prototype Nami into Ceph [126] to demonstrate its functionality in a real-world environment.
The choice of Ceph is based on its possession of all the characteristics of existing scalable and
distributed storage systems, its widespread use worldwide, its proven track record (10 years of
longevity), and, importantly, its open-source and community-driven nature.

Metrics Collector Despite being implemented in Python [94] as a script, this component stands
out for its flexibility. For the proposed heuristics, tools such as sar [45] and ping were utilized to
retrieve metrics such as latencies and disk usage rates of storage nodes.

Once decided on the metrics to use, the sysadmin implements a Python function which will
return the metrics and this function will be passed as a parameter of our weight adaptor to calculate
the different storage nodes’ weights.

Controller The Controller serves as the configuration or administration server for Ceph clusters.
We run background scripts like weight database updater when metrics change, including various
heuristics of the Weight adaptor.
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Weight database Each collected metric and computed weight is stored in etcd [35]. We chose
etcd for its essential attributes in distributed systems. It is reliable, lightweight, distributed, and
incorporates recognized consensus algorithms such as Paxos.

Object Requester This component incurred more costs as it required modifying the Ceph code.
The goal was to modify this class while maintaining the integrity of the Ceph application. The
Ceph blog [124] helped identify functions involved in I/O requests that we needed to modify to
include our weight-based routines. Before each read/write operation, the _calc_target function
calculates the target storage node for the request. Since our algorithm needs to retrieve the list of
weights at each call to this function, an etcd watcher is added to the initialization of each storage
system client to avoid frequent reads from the store.

Then, only two places in the code were modified. The function _calc_target and the construc-
tor of Objecter where we added the watcher behavior.

The watcher activates only when there is a variation in weight values in the store above a set
and configurable threshold. When activated, it retrieves weights to store in memory. Thus, the
_calc_target function uses the values in memory to select the replica that will serve the request.

4.4 Evaluation
Here we present an evaluation of Nami and the in-depth study made around it, aiming to answer
the following three questions:

Q1) Does Nami increases the overall I/O performance ?

Q2) Does Nami resolve the NUDA state problem i.e. the huge deviation and discrepancy in the
usage of disks in cluster storage?

Q3) How many times the replica selected by Nami is really used ?

4.4.1 Evaluation Setup
Methodology. We compare ceph [24] with and without Nami prototype included. We evaluate
several configurations by varying three parameters: the number of Virtual Machines running a
fio [38] benchmark (1 to 10 virtual machines); the number of replicas of the storage system (3, 4)
and the weight adaptor algorithm used as presented in section 4.3. Note that we are not using
erasure coding to fully take advantage of secondary replicas.

Testbed. To have a representative test environment, we employ twelve servers in cloudlab [34]
organized as follows: two compute nodes running VMs that will be running a particular workload
- a fio/YCSB benchmark in the VMs; nine storage nodes forming the cluster storage where all VM
images (virtual disk) will be stored during experiments; and one node where the weight adaptator
algorithm is executed. Each server has 32 Intel Xeon Gold CPU cores, clocked at 2.10GHz, 192 GB
of RAM, Samsung
MZ7KM480HMHQ0D3 SATA SSD. They are linked with a 25Gbps Ethernet connection. Both
servers run Ubuntu 20.04 with Linux 5.19.0 as the host OS. All VMs run Ubuntu 18.04 with Linux
4.15.0 and are configured with 4GB of memory and four vCPUs. Unless otherwise indicated, the
virtual disk size of all VMs is 50GB.

78



4.4. EVALUATION

Figure 4.8: Fio Throughput of Ceph vanilla and Ceph-Nami with the weight adaptor algorithm
varying and the number of parallel workloads running varying

Metrics and Benchmarks. We collect two types of metrics, including high-level and low-level
metrics. The former directly impacts the end user’s perceived Quality of Service. We consider
application execution time and I/O disk throughput. Low-level metrics represent internal costs
that help explain high-level metrics. They are the disk utilization, the deviation in utilization, and
the number of replica selections made during the workload execution.

We use fio [38] (microbenchmarks), as well as macro-benchmarks, RocksDB-YCSB [36]. The
fio benchmark parameters are the same in all experiments: random R/W with 70% reads and 30%
writes. The YCSB-C workload is the one used on the RocksDB benchmark execution.

It is important to note that most of the benchmarks are read-intensive because the concept of
replica selection frequently appears when we have to fetch data in the whole storage, while write
operations are always new or are preceded by reads in case of deletion or update.

4.4.2 Throughput (Q1)

Throughput in a storage system is one of the most significant metrics as it directly reflects the
system’s performance for both administrators and end users. In this section, we present two types of
results. The first, a more general metric, is the average throughput of our experimental benchmarks
(fio and RocksDB-YCSB). The second explores the evolution of throughput during the experiments’
execution.

4.4.2.1 Mean Throughput

We vary the number of VMs running on the compute nodes, and the weight calculation heuristic
(algorithm) also varies between the two presented in Section 4.3. It is important to recall the
described algorithms: Algorithm 1 embodies a "selfish" heuristic, where the weight assigned to
each node is contingent solely upon its latency; conversely, Algorithm 2 embodies a participatory
approach wherein node weight is influenced by the latencies observed across other nodes. The
results are depicted in Figure 4.8.
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Figure 4.9: RocksDB Throughput using YCSB-C Workload of Ceph vanilla and Ceph-Nami with
the weight adaptor algorithm varying and the number of parallel workloads running varying

Figure 4.8 illustrates that as the number of workloads attempting to access the storage system
increases, the throughput decreases. Without Nami, the decrease is significantly more pronounced
due to the lack of efficient redirection to replicas on free storage nodes. This holds for any chosen
weight adaptor heuristic. We observe a performance gain ranging from 9% for an environment with
4 parallel workloads to 26% for 10 workloads, demonstrating the effectiveness and scalability of
Nami.

When there’s only one workload in progress, algorithm 1 outperforms algorithm 2. This supe-
riority arises because there is no need for consultations between node latencies, given the singular
workload. However, when dealing with four or seven parallel workloads, algorithm 2 proves more
effective. In this scenario, it becomes essential to consult the latency metrics of all storage nodes
to ensure a well-balanced distribution of requests among these concurrent workloads.

In Figure 4.9, we presented the throughput results of our experiment when the workload is
the YCSB-C (read-intensive) of RocksDB. It appears that independently of the number of parallel
workloads running, Nami seems to be a little better; an increase of 3% for 4 parallel workloads to
20% for 10 parallel workloads. But the increase in performance is less visible than on fio benchmark
because RocksDB is an in-memory key-value store; then, our approach is effective only when data
requested are not in RAM and we need to go for storage nodes to fetch data.

4.4.2.2 Evolution of Throughput

In this subsection, we explore the behavior of Nami when there are dynamic changes in the system.
To achieve this, we run the same experimentation as in the previous section but vary the latency of
the storage nodes’ network card. We use the traffic control (tc) tool [68] in Linux for this purpose,
introducing an artificial latency of 1ms between the 250th and 350th seconds of our experimentation.
The added artificial latency aims to simulate unforeseen actions in real cloud environments, such
as maintenance, VM migrations [59], and others.

Figure 4.10 presents the results. We observe that during the period of latency modification,
without Nami, there is a clear and instant performance drop of 50ms, explained by Ceph not
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(a) 1 workload (b) 4 workloads

(c) 7 workloads (d) 10 workloads

Figure 4.10: Evolution of Throughput during Workloads.
(*) heuristic used: Algorithm 1

considering latency variations when choosing replica locations. With Nami, which accounts for
this, there is initially a half-second performance dip as the latency is abruptly changed, requiring
the monitoring server to recalculate weights for all storage nodes. Subsequently, a clear stabilization
is visible, and the throughputs during the latency change range are nearly the same as when there
is no artificial latency, demonstrating that Nami considers latencies and often selects replicas on
storage servers with lower latencies. Nami allows for a performance gain of 26% for 1 workload,
increasing to 33% for 10 workloads.

4.4.3 Resource Utilization (Q2)

We have observed that Nami appears to be more or less effective based on the performance illus-
trated in the previous section. The aim here is to present slightly more granular metrics to explain
why Nami seems so promising. For clarity and space considerations, we will limit our results to
the first heuristic, and whenever we refer to balancer, it pertains to the first heuristic presented in
Section 4.3.
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(a) 1 workload with Ceph (b) 1 workload with Nami

(c) 4 workloads with Ceph (d) 4 workloads with Nami

Figure 4.11: Evolution of node’s disk usage during workloads. The nodes without values are com-
pute nodes; they are not interesting in our studies. The percentage indicates the mean percentage
of the node’s disk usage over the workload.

4.4.3.1 Disk Utilization

We analyzed and retrieved disk utilization rates using the sar tool [45] during our experiments, and
the results are depicted in Figure 4.11.

For 1 workload (Fig 4.11a), which presents disk utilization on the vanilla Ceph system, we
observe that disks are inequitably used. When the most used disk is at almost 90% usage, some
others are at 20− 30%, indicating that a few storage nodes are serving most of the requests. With
Nami (Fig 4.11b), all disks are more likely to be equally used, allowing them to handle more requests
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Figure 4.12: Network usage (in Kib transferred/s).Higher is better

and leading to better I/O throughput.
In summary, we observe a 40% standard deviation of disk usage for all nodes of the storage

cluster without Nami and only 13% standard deviation when using our efficient replica selection
approach, demonstrating more equitable disk usage.

4.4.3.2 Network Usage

In addition to disk utilization rates, sar also allowed us to retrieve the network activity of our
storage nodes, presented in Figure 4.12.

Figure 4.12 illustrates how the average network usage evolves based on the number of workloads.
Notably, for 10 workloads, Nami produces a higher average network usage. This can be explained
by the fact that storage nodes without Nami were not all utilized to transfer data on the network,
resulting in a decreasing average with many low values and very few high values involved in the
calculation. With Nami, all nodes are utilized, preventing low values from dragging down the
average.

While Figure 4.12 is an error bar, the second observation is the variation measured by the
standard deviation of network usage among the storage nodes. With Ceph, the variations are too
large proving once again that the network card of some storage nodes is less used because those
nodes serve fewer requests, whereas, with Nami, there are very few variations due to the equal
distribution of requests achieved through replica selection.

4.4.4 Replica Selection Effectiveness (Q3)

In this section, we aim to demonstrate the impact of our replica selection Nami on I/O requests and
the utilization of chosen replicas. We executed the same workloads as before, varying the weight
calculation algorithm presented in Section 4.3, and adjusting the replication factor (rep factor)—the
number of replicas generated by the system when writing new data (2, 3).
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Algorithm 1
rep factor = 3 rep factor = 4

# workloads % replica
selected

% failed
requests

% replica
selected

% failed
requests

1 19.91 0.28 14.94 2.44
4 14.88 0.62 14.84 1.52
7 19.71 0.52 14.51 1.2
10 18.08 0.98 15.40 1.13

Algorithm 2
rep factor = 3 rep factor = 4

# workloads % replica
selected

% failed
requests

% replica
selected

% failed
requests

1 11.97 0.87 23.94 0.43
4 7.26 1.57 14.52 0.78
7 6.78 2.01 13.57 1
10 9.1 1.46 18.18 0.73

Table 4.4: Replica selection statistics

Our dynamic replica selection approach appears effective as it manages to choose a significant
percentage of replicas to meet the requirements of requests. According to Table 4.4, for a rep factor
of 3, approximately 20% of requests utilized replicas other than the default primary replicas, and
15% for a rep factor of 4. This is explained by the redirection of requests to other replicas, taking
into account precomputed weights.

The selection rate of replicas by the second heuristic is even higher (up to 24%). Recall that this
heuristic computes weights based on metrics from other client nodes (Section 4.3), offering greater
diversity in replica selection.

The low request failure rate (≈ 1% in Table 4.4) indicates that the selected replicas generally
successfully respond to requests. This could be attributed to the relevance of the selection criteria
in the weight computing algorithm. In our case, the highlighted criterion is the access latency
of storage nodes described in Section 4.3. Therefore, it is conceivable to implement adaptation
algorithms allowing chosen replicas to effectively meet requirements.

One last point we wanted to highlight is that the rate of chosen replicas and the request failure
rate can also be influenced by the system’s replica factor. This could be a more or less impactful
criterion in the weight computing algorithm we choose to implement. As we observe in our results,
the replication factor of 3 grants less failure rate for algorithm 1 whereas it is the rep factor of 4
that grants a lower failure rate for algorithm 2.

4.5 Related Work

Numerous studies have been conducted in the field of load balancing for storage systems, here we
talk about reviews on replica management with a particular focus on data migration and replica
selection.

Replica Migration Several works [59, 51, 61, 81] have been undertaken to enhance replica
management in distributed storage systems. Some aim to balance capacity utilization among storage
nodes [59, 51], assuming it will lead to a load usage equilibrium.

Others, like [61, 81], proposed synchronous or asynchronous data migration plans to balance
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workload, regardless of capacity balance among storage nodes. It is noteworthy that these works
consider different constraints in making migration decisions. For instance, [81] uses replica geolo-
cation to propose migration plans based on the origin of I/O requests, while [51] considers VM disk
images and suggests image or block-oriented data migrations. On the other hand, GoSeed[61] acts
as a simulator and post- or pre-workload calculator to determine an optimal migration policy based
on replica states and access patterns.

Replica Selection In [129], Ye et al. presented a replica selection algorithm for distributed
storage systems based on a quorum. Their algorithm aims to select a group of replicas (quorum) to
which I/O requests are directed to optimize performance. The algorithm relies on a Monte Carlo
simulation considering a list of read/write requests to determine the replica set to use. However,
this requires a precise view of the system activity (number of requests incoming ), which is not
always feasible in diverse applications, such as VM or container-based environments.

Nwe et al. [84] introduced a replica selection algorithm for non-scalable storage systems like
HDFS, and MongoDB ([72]). This algorithm only considers latency metrics to select the replica set
for improved overall system performance. In contrast, with Nami, we consider various metrics such
as resource balance (disk and network) and allow users to adapt the replica selection algorithm by
adding other metrics. Moreover, Nami focuses on distributed scalable storage systems, anticipating
future increases in data volumes.

In [9], the authors assumed an inherent affinity between data and sought to predict access
patterns to select a particular replica set. However, this may be limiting given the diverse range of
possible applications in cloud infrastructures, leading to numerous access patterns and the challenge
of choosing the best replica for I/O requests.

4.6 Summary
In conclusion, we have proposed a novel architecture designed to optimize replica selection in storage
clusters based on constraints defined by the sysadmin to manage efficiently distributed storage
systems. Compared to existing replica selection strategies, our approach stands out by providing a
more holistic view of system dynamics, accommodating diverse constraints, and offering flexibility in
adapting the replica selection algorithm. Furthermore, Nami focuses on scalability, anticipating the
future growth of data volumes in storage clusters. We also evaluate the impact of a good weighting
of storage nodes when the system varies during workloads. These evaluations and scalability tests
help to validate the effectiveness and efficiency of the Nami architecture and show an increase
in the standard deviation usage of disks from 40% to 13% and an overall increasing throughput
performance of ≈ 30%.
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Conclusions

Summary

In this dissertation, we have explored the evolving landscape of cloud computing, focusing on the
storage virtualization of key technologies such as serverless computing, containers, and virtual ma-
chines. The contributions presented in this dissertation addressed critical challenges faced by storage
systems in cloud computing environments, offering innovative solutions to improve performance,
scalability, and reliability.

Firstly, we introduced OFC, an opportunistic caching system designed to reduce latency to
access storage in Function-as-a-service (FaaS) platforms. By leveraging machine learning and over-
booked memory resources often done by end-users to set up a cost-effective environment to execute
functions, OFC demonstrated significant improvements in function execution times, enhancing the
efficiency of FaaS applications.

Secondly, we proposed the Scalable Virtual Disk (SVD) format to address the issue of long
snapshot chains generated by cloud providers and users. Through careful design and evaluation,
SVD showed promising results in improving performance and memory footprint scalability, offering
a practical solution to snapshot management challenges.

Lastly, we presented Nami, a system aimed at addressing the Non-Uniform Disk Access (NUDA)
issue as well as resource inequity utilization in distributed storage environments. By leveraging
secondary replicas and constraints-based load balancing techniques coupled with system adminis-
trators’ specific chosen metrics, Nami effectively mitigates performance disparities among storage
nodes, enhancing overall system reliability and resource utilization.

These contributions represent significant advancements in the field of cloud computing stor-
age, offering practical solutions to pressing challenges faced by cloud providers and users alike.
Through empirical evaluations and real-world simulation deployments, we have demonstrated the
effectiveness and scalability of our proposed solutions.
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Perspectives
Enhancement of Current Contributions

There are several avenues for enhancing the current contributions to ensure broader adoption by
the community for real-world applications.

Improve prototype features The existing implementation of OFC presently only intercepts
requests to an Apache OpenSwift distant storage [114]. Expanding its capabilities to dynamically
intercept requests to various distant storage platforms, such as AWS S3 [12], could be valuable.
Evaluating the feasibility and cost implications of integrating this new functionality would be ben-
eficial. Also, one interesting study will be to look for the feasibility of a unique model for all
categories of functions instead of one model for each category. This will help reduce the file size of
all the models used while the FaaS platform is running.

A Converter tool Regarding SVD, while we have ensured backward compatibility in its design,
enabling users to seamlessly transition from Qcow2 to SVD for existing chains based on Qcow2,
remains a priority. Developing a tool capable of facilitating this conversion would significantly
enhance our contribution.

Future Directions

Machine Learning to look for relevant metrics While Nami primarily adopts an approach-
oriented perspective, addressing the challenge of system administrators lacking clarity on which
metrics to prioritize for equitable resource allocation is essential. Developing a module that utilizes
Machine Learning to classify these critical metrics could greatly assist system administrators in
decision-making processes.

Exploit emerging hardware Talking.gm about SVD, a promising direction involves considering
emerging storage hardware, such as NVMe (persistent memory), to further refine its efficiency.
Leveraging NVMe allows for optimizing data cluster storing order and I/O request sequencing to
maximize overall bandwidth utilization. Additionally, with NVRAM, the need for frequent L1 and
L2 cache flushing is minimized, and persistent storage of L1/L2 tables eliminates the overhead
associated with snapshot creation in SVD. These advancements promise to significantly enhance
the performance of SVD by mitigating unnecessary overhead.
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