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Abstract

With the staggering growth of language models in the last few years, language tech-
nology is rapidly taking over some of the most influential procedures in modern society
such as recruitment, teaching, business, legislation and legal systems. For example,
instead of hiring a slow human worker to pore over hundreds of resumes in a job
opening, an automatic resume analyzer can do it in a matter of minutes. Instead of
wasting time and money in expensive lawsuits and trials, language models can analyze
evidence and build adequate argumentation for defendants in court.

The recent success of language models owes to two major factors: (i) their mas-
sive size reaching hundreds of billions of parameters such as GPT3 or ChatGPT, and
(ii) the smart notion of pretraining them on colossal textual corpora with very little
annotation and curation. Although pretraining on unlabeled datasets facilitated the
adoption of human language by models, it also made it easy for them to absorb harm-
ful subjective beliefs contained in those corpora. Indeed, a growing body of research
is warning that language models inherited a large swath of human social biases and
stereotypes from datasets. As a result, language models run the risk of siding with
male applicants in job offers (because of the stereotype casting men as more competent
and skillful than women); discriminating against people of color in court (because of
the stereotype casting Blacks as supporters of crime and violence); not to mention the
risk of propagating these stereotypes to kids when language models are used in teach-
ing settings. In this thesis, we aim to characterize and measure social bias encoded
in language models, and quantify the discrimination damage when these models are
employed in downstream applications. Also, we propose three novel methods to re-
duce the amount of bias from language models: BiasMeter, ADV-Debias and AttenD
operating on data, text embeddings and the attention mechanism respectively.

In contrast to stereotypes, subjectivity can sometimes be beneficial to language
models. For example, a task-oriented conversational agent can make use of subjective
attributes in user utterances to enable subjective search. Also, subjectivity can en-
hance opinion and emotion mining from online reviews. Previous research shows that
failing to explicitly model subjectivity in user-facing language technology such as chat-
bots and search ultimately results in user dissatisfaction. In this thesis, we focus on
search and textual similarity, and propose methods to augment them with subjectivity.
Be it for desired (subjective attributes) or undesired subjectivity (bias, stereotypes and
prejudice), we provide extensive evaluation and validation of the proposed techniques.

Keywords: Language Models, Subjectivity, Social Bias, Stereotypes, Fairness,
Debiasing, Natural Language Processing (NLP), Deep Learning.

I



Résumé

Avec la croissance stupéfiante des modèles linguistiques au cours des dernières années,
la technologie du langage est en train de prendre le contrôle des procédures les plus
influentes de la société moderne, comme le recrutement, l’enseignement, les affaires,
la législation et les systèmes juridiques. Par exemple, au lieu d’engager un travailleur
humain lent pour étudier des centaines de CV dans le cadre d’une offre d’emploi, un
analyseur automatique de CV peut le faire en quelques minutes. Au lieu de perdre du
temps et de l’argent dans des poursuites et des procès juridiques coûteux, les modèles
linguistiques peuvent analyser les preuves et construire une argumentation adéquate
pour les défendeurs au tribunal.

Le succès récent des modèles de langage est dû à deux facteurs majeurs : (i)
leur taille massive atteignant des centaines de milliards de paramètres comme GPT3
ou ChatGPT, et (ii) l’idée intelligente de les préentraîner sur des corpus textuels
colossaux avec très peu d’annotation et de curation. Bien que le pré-entraînement sur
des ensembles de données non étiquetés ait facilité l’adoption du langage humain par
les modèles, il leur a également permis d’absorber facilement les croyances subjectives
néfastes contenues dans ces corpus. En effet, de plus en plus de recherches signalent
que les modèles de langage ont hérité d’une grande partie des préjugés sociaux et
des stéréotypes humains contenus dans les ensembles de données. Par conséquent,
les modèles de langage courent le risque de prendre le parti des candidats masculins
dans les offres d’emploi (en raison du stéréotype qui présente les hommes comme
plus compétents et plus habiles que les femmes) ; de discriminer les personnes de
couleur dans les tribunaux (en raison du stéréotype qui présente les Noirs comme
des partisans du crime et de la violence) ; sans parler du risque de propager ces
stéréotypes aux enfants lorsque les modèles de langage sont utilisés dans des contextes
d’enseignement. Dans cette thèse, nous cherchons à caractériser et à mesurer les
préjugés sociaux encodés dans les modèles de langage, et à quantifier les dommages
causés par la discrimination lorsque ces modèles sont utilisés dans des applications
en aval. De plus, nous proposons trois nouvelles méthodes pour réduire la quantité
de biais des modèles de langage : BiasMeter, ADV-Debias et AttenD qui opèrent
respectivement sur les données, les représentations vectorielles de texte et le mécanisme
d’attention.

Contrairement aux stéréotypes, la subjectivité peut parfois être bénéfique aux mod-
èles de langage. Par exemple, un agent conversationnel orienté tâche peut utiliser les
attributs subjectifs des énoncés de l’utilisateur pour permettre une recherche subjec-
tive. De même, la subjectivité peut améliorer l’extraction d’opinions et d’émotions à
partir de commentaires en ligne. Des recherches antérieures ont montré que le fait de
ne pas modéliser explicitement la subjectivité dans les technologies linguistiques ori-
entées vers l’utilisateur, telles que les chatbots et la recherche, entraîne l’insatisfaction
des utilisateurs. Dans cette thèse, nous nous concentrons sur la recherche et la similar-
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ité textuelle, et proposons des méthodes pour les augmenter avec la subjectivité. Que
ce soit pour la subjectivité désirable (attributs subjectifs) ou indésirable (biais, stéréo-
types et préjugés), nous fournissons une évaluation et une validation approfondies des
techniques proposées.

Mots clés: Modèles Linguistiques, Subjectivité, Préjugés Sociaux, Stéréotypes,
Equité, Débiaisage, Traitement Automatique des Langues (TAL), Apprentissage Pro-
fond.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Science has long been fascinated by objectivity. The scientific process of inquiry,
including questions, methods of investigation, results and claims, must not be influ-
enced by particular opinions, perspectives, personal values, judgements or interests
[376]. Science prescribes that everything related to it should be grounded in the ideal
of objectivity, an ideal that restricts all scientific statements to detachment and im-
partiality. How else would we aspire to faithfully describe facts about the world; to
understand, characterize and explain what is going on around us; to build theories
supposed to pass the test of place and time?

Yet, being a scientist calls to adopt a state of mind in which one accepts the
possibility of being wrong. Although claiming a statement as scientific presupposes
rigorous validation under a set of established idioms, methods and experiments, it
also implies acknowledging that the statement can be compromised under continued
scrutiny by peers, or to be in opposition to other stable scientific theories [397]. How is
it possible, assuming that science is objective and factual, to produce conflicting claims
issued by different scientists; or claims that appear to be correct when evaluated with
the available theory, only to be proved faulty or incomplete when the theory develops?
The very possibility of evolving science subjects it to the scientist’s personal views,
judgements and interpretations; things that can scarcely be explained through the
lenses of objectivity.

Moreover, the scientific method comprises two fundamental steps: making a hy-
pothesis, then collecting evidence to either confirm or refute it [98]. Hypotheses are
made by people, and are thus the fruition of their subjective interests, experiences and
backgrounds [88]. Validating theories through observation and experimentation is also
ensnared in the complex net of the scientist’s subjective beliefs of what constitutes a
relevant experiment, how to collect data, how to interpret the results, etc.

From this discussion, it appears that subjectivity is to science what shadow is
to light. That one cannot appreciate the ideal of objectivity in science without -
ironically - acknowledging that science is mired in subjectivity. Yet, subjectivity is
seen as a philosophical trouble that contaminates objective knowledge [403], and has
yet to attract its long deserved scientific investigation. We wonder if, in the near
future, subjectivity as a knowledge-making mode will ever be open to systematic study,
especially that we human beings are a notoriously subjective breed.

The previous question takes on increasingly added importance with the constant
proliferation of Artificial Intelligence (AI) in day-to-day decisions that affect the lives

1



CHAPTER 1. INTRODUCTION

of people. When we set out to transfer human cognition to computers, should we
transfer our complex notions of subjectivity too? Is it possible not to? Is it desirable
not to? Should we make computer thinking a mere copy of the biased human cognition,
or should we bless them with what has eluded humans for ever; the ability to observe,
analyze and explain without being influenced by subjectivity, emotion, judgement and
perspective?

This dissertation is our personal take on what can be done with subjectivity in
Artificial Intelligence, with an exclusive focus on language-based technology; commonly
known as Natural Language Processing (NLP).

1.1 Background, Motivations and Aims

"I think, therefore I am", Descartes’ famous adage suggests that a person’s ability to
form and process personal thoughts is intimately connected with one’s existence and
perception of self. It also leads to the understating that subjective thoughts define
identities by impacting their world views and hence decisions and actions. In this re-
gard, the concept of subjectivity evokes notions of perspective, ideology, interpretation
and point of view [427]. Despite the numerous shades of meaning that surround the
theory of subjectivity, we refer in this dissertation to the dictionary definition stat-
ing subjectivity as the quality of being based or influenced by personal feelings, tastes,
opinions or beliefs instead of facts.1 As a result, a matter of subjectivity is one in
which there are multiple different stances a person might take [427].

Yet, it is imperative to distinguish subjectivity from disagreement, ambiguity, un-
certainty or imprecision. While these are mainly the product of insufficient or partial
information, disagreement is to be expected with subjectivity even in the presence of
complete information [366]. For example, two people staying at the same hotel at the
same time can entertain wildly different opinions about how clean the hotel is, or how
respectful the staff people are. Furthermore, even if different individuals employ simi-
lar terms in their personal descriptions of real world entities or abstractions, they can
mean different things due to differences in their interpretation of the terms in use. For
instance, people have distinct tolerances to the degree of violence, or to which forms it
can take, e.g., physical, psychological or emotional [366]. Thus, when the term violent
is used to describe something, it can mean different notions at once, from a friendly
tap on the shoulder to a savage act of murder.

The ambiguous nature of subjectivity is a major contributor to the practice of
overlooking and perhaps consciously avoiding to model subjectivity in software systems
in general and in AI in particular. For example, it is customary to find attributes in
search systems that users can employ to navigate the space of online products or
services, usually by checking boxes specific to different types of filters. Figures 1.1
and 1.2 are screenshots illustrating the kinds of attributes allowed in Yelp2 , a popular
search engine, to filter restaurants and home services respectively. While the catalog of
attributes in Yelp can be seen as rich, all filters are associated to objective facts, e.g.,
price range, neighborhood, time of operation or other attributes whose truth values
are easily verified via a factual lookup (e.g., whether the staff is fully vaccinated). We

1https://dictionary.cambridge.org/dictionary/english/subjectivity
2https://www.yelp.com
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Figure 1.1: A screenshot showing the types of attributes one can use to filter restau-
rants in Yelp Search. The screenshot is taken in January 3, 2023

Figure 1.2: A screenshot showing the types of attributes one can use to filter home
services in Yelp Search. The screenshot is taken in January 3, 2023
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Figure 1.3: More than 80% of internet consumers have already interacted with chatbots

do not find subjective filters such as the deliciousness of food or the friendliness of
plumbers in Yelp because the subjective nature of these attributes renders the process
of lookup and verification overly complicated. How would software go about deciding
whether a book is boring, a hotel is clean, or an electrician is professional if one person
says so while another holds otherwise? Counting different opinions from online reviews
seems like a promising course of action, but it requires unrealistic processing times that
searchers cannot afford for a trivial search task. For this reason, a lot of search systems
are limited to prespecified and rigid catalogs of objective attributes.

However, searching with objective and factual attributes exclusively is prone to
failure, especially for users who lack the skill of expressing their desires and prefer-
ences using only a rigid vocabulary, as recent research shows [21, 366]. This difficulty
motivated the transition to conversational search, where natural language is used to
interact with search systems directly, and searchers use their own terms. Nowadays,
chatbots are rapidly becoming standard features of websites and repositories. Accord-
ing to a study conducted by Userlike3, more than 80% of internet users have already
interacted with chatbots at least once (Figure 1.34). In another study made by Grand
View Research, the chatbot market in North America amounted to $224.9M in 2021,
and is predicted to expand at a compound annual growth rate (CAGR) of 26.9% until
2030 (Figure 1.45). The problem that conversational search produces is that language
is very subjective, and people converse using rich and personal vocabulary. It is not
straightforward to match the subjective language of users with the objective attributes
that search systems traditionally enable.

Furthermore, online searchers are massively switching to experiential search where
they purposefully include subjective attributes in their utterances [174, 271]. For
example, they might search for a restaurant with a romantic ambiance, a laptop with
a long-lasting battery, or an amiable dentist. Current search systems are unable to
decipher such subjective signals in user utterances, and are restricted to catering for
objective filters only, which might not correspond well to what searchers are looking for.
We believe that including subjective attributes in online search has become mandatory

3https://www.userlike.com/
4https://bloggingwizard.com/chatbot-statistics/
5https://www.grandviewresearch.com/industry-analysis/chatbot-market
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Figure 1.4: Chatbot market size in North America from 2020 to 2030

in the last few years in order to match the rising expectations of searchers.
Modeling subjectivity is also beneficial in other areas of software and AI. For in-

stance, a critical component of supervised AI systems is labelled training data. The
process of producing labels often depends on crowdsourcing where a number online
workers engage in the practice of manual annotation, before aggregating answers from
multiple sources. Given the subjective backgrounds and world views of different work-
ers, disagreements in annotation are expected but rarely addressed. Instead of relying
on crude majority vote, it might be better to incorporate a notion of subjectivity in
annotations, especially for difficult tasks, as recent works demonstrate [235, 15, 270,
346, 446, 136, 94].

Finally, a myriad of NLP tasks and applications can benefit from subjectivity as
well: Detecting subjective texts and filtering out factual statements helps in the process
of opinion mining [46]; analyzing the emotional response and subjective perceptions of
investors after a major market event helps in deciding whether to invest or not [226];
businesses can discern the satisfaction levels of their customers by mining reviews, etc.
From these examples and use cases, it appears that subjectivity is a desired feature to
include in NLP, AI and software in general.

Nevertheless, subjectivity can sometimes be harmful. For example, that Muslims
are violent or that Black people are addicted to crime are indeed subjective, albeit
extremely prejudiced and wrongful propositions. Is it advantageous to transfer such
forms of damaging subjectivity to NLP and software as well? The latest research on
the matter [45, 59, 298, 322, 324, 74, 222, 223] shows that the question should not
be about whether we ought to include subjective stereotypes and prejudice in NLP,
but whether we ought to remove them. In truth, modern NLP models already have
a solid grasp of human bias, and often rely on those biases to make predictions. The
first to document harmful subjectivity in NLP was the work of Bolukbasi et al. [45]
who exposed gender biases in word embedding models. It turns out that words related
to competence such as engineer, computer or skill are closer in the embedding space
of word2vec [313] or GloVe [344] to male terms (e.g., man, he, Bob) than their female
counterparts (e.g., woman, she, Alice). On the other hand, women are associated with
family and arts.

It may appear that the stereotypes captured by NLP word vectors are benign in
that they are only restricted to the level of word representation, and that they do not
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really affect those demographics in practice. Reality shows that this is scarcely the
case. The most striking example is Amazon’s recruiting tool which helps in analyzing
resumes of job applicants. Given that the tool is based on biased word vectors, it
recommended only male applicants since it believes that men are more competent than
women [11, 10]. Racial bias is also an issue in NLP, and Black people are systematically
associated to crime, recidivism and violence because of prejudiced word embeddings
[298] and unbalanced training datasets such as Compas [440]. Moreover, an automatic
fare aggregator was exposed to direct Mac users to expensive hotels since the tool has
acquired the subjective idea that Mac holders are more financially comfortable than
users of other electronic brands [328].

More generally, NLP models produce different outcomes for two similar inputs
where the only difference is the mentioned demographic. For example, a biased sen-
timent analysis model predicts different sentiment scores for "I spoke to a Muslim
person" and "I spoke to a Jewish person" where sentiment in this case should never
depend on the social group [356]. Similar stereotypical behaviors are observed in other
NLP tasks such as question answering [267, 335], automatic translation [423, 422],
hate speech detection [300, 20], language modeling [322, 324], language generation
[413, 104], etc.

Given all the above problems and motivations, we need to distinguish two types
of subjectivity in this thesis. First, there is desired subjectivity that we want to
include to NLP owing to the richness and diversity it adds, e.g., augmenting search
with subjective attributes. Second, we need to acknowledge the undesired forms of
subjectivity, and be aware that these are already plaguing NLP and software by making
the models unfair and harmful. The second aim of this thesis is to explore methods
and approaches to study and mitigate undesired subjectivity, bias and prejudice.

1.2 Research Issues

In this section, we discuss the most important research issues and questions that we
aim to answer in this dissertation.

1.2.1 (RI1) Representing Subjectivity

The first challenge when working with subjectivity is to figure out how to represent
it. In online search, subjectivity is usually enabled with subjective attributes of which
two broad categories exist in the literature [271, 366].

• Subjective attributes as distinct and independent concepts that can be mapped
and associated with items of the world; for example by learning embeddings for
items and for attributes separately, then mapping between them using distance
functions.

• Subjective attributes as inherent properties of items, by adding them to the
data model. For example, adding food deliciousness as a regular column in a
SQL table.

Either case, the subjective aspects of an item can be complex and varied. As a
result, the act of choosing which attributes to include and represent may turn out to
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be an extremely tedious and nuanced task. Besides, subjective attributes might be
related in intricate ways; they can be contradictory, or they can determine each other
[174]. Not to mention that it is next to impossible to account for all possible subjective
attributes beforehand since searchers can always imagine new experiential aspects. All
these challenges call to pay minute attention to the way subjective attributes and data
are modeled and represented, e.g., textually, structured in tables or other adequate
data structures, stored in the form of text embeddings, etc.

1.2.2 (RI2) Uncovering Subjectivity From Data

As mentioned earlier in this chapter, results of online search give little satisfaction
to users when a limited catalog of prespecified queryable attributes is in use [21]. In
spite of this finding, some search systems such as those embedded in popular web-
sites like Yelp or TripAdvisor employ the same technique to simulate subjective filters
[366]. For example, we may find GOOD_FOR_KIDS or CALM boxes that users
can check if they are interested in those experiential aspects. Unsurprisingly, online
items (e.g., restaurants, home services, laptops, etc.) have to be manually tagged
with such attributes for them to be queryable, which requires a number of humans to
read associated reviews. This practice is undoubtedly time consuming and unscalable,
since adding new items or even new reviews for existing items calls to read the new
reviews manually and update the labels accordingly. Not to mention that asking a few
people to tag items with subjective attributes defeats the notion of subjectivity itself,
as the annotation would heavily depend on the perspectives of the chosen annotators
only instead of reflecting the collective online opinion. For these reasons, being able
to automatically uncover and extract subjectivity from textual data is of paramount
importance. To the best of our knowledge, very little research has been directed at
addressing this issue.

Detecting stereotypes in text is equally important. Social media platforms like
Facebook or Twitter are nowadays expected to filter out content related to discrimi-
nation or toxicity. This endeavor is currently undertaken by manual annotation which
might be slow to take effect, and harmful content may be consumed by disadvantaged
minorities. Uncovering stereotypes in text automatically helps in removing harmful
content before publication. Also, lawyers and politicians can make use of automatic
detection of undesired subjectivity to get rid of unintended, albeit illegal and shameful
stereotypes from their official texts. However, automatic detection of stereotypes in
data is difficult owing to a pressing lack of knowledge bases that state what constitutes
a stereotype or not.

1.2.3 (RI3) Augmenting NLP Models and Systems With De-
sired Subjectivity

Having acquired subjectivity from data, it is not clear how to integrate it into NLP
models and/or NLP-based systems [174]. Kobren et al. [241] built a tunable high-
precision knowledge base containing both factual and subjective attributes for locations
in Google Maps (e.g., GOOD_VIEW, KID_FRIENDLY). However, little is said about
how to use these knowledge bases or in what situations. In contrast, Li et al. [271]
propose to augment textual databases with subjective attributes that can be included
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as regular columns in SQL tables. Doing so raises other important questions such
as how to aggregate different opinions and provide one subjective answer; how to
combine different subjective filters in one single query; how to combine subjective
attributes with their objective counterparts, etc. All these challenges must be taken
into consideration in the design process of any subjectivity-aware search system.

1.2.4 (RI4) Mitigating Undesired Subjectivity

Failing to reduce stereotypes and biases from NLP models perpetuates harms towards
minorities when models are used in real life applications, e.g., search, fact-checking,
resource allocation, etc. Is there any robust way one can use to mitigate prejudice from
NLP? This question is rapidly gaining increasing traction in the literature, and some
advancements have taken place in the last few years. For debiasing static word vectors,
most works assume that social bias is a linear feature in the embedding space [45, 505,
222, 247, 373]. Thus, it can be eliminated mathematically using a linear projection
on a subspace where bias information is non-existing. However, bias is definitely not
linear, and linear methods to reduce it are bound to fail. This was a major finding by
Gonen and Goldberg [162] who discovered that linear bias mitigation techniques do not
reduce bias, but hide it in other forms. On the other hand, non-linearity bears the risk
of disrupting the space of semantic representation of words, and hence damaging their
utility. One of the major aims in this thesis is to explore ways to reduce non-linear
bias with little impact on semantic representativeness.

Research has also been done on debiasing large-scale text encoders such as BERT
[103], RoBERTa [284] or ALBERT [255]. Coarsely speaking, debiasing in this case is
generally formulated as an extra finetuning phase where NLP models are encouraged to
let go of their inherent undesired subjectivity from their embeddings without hurting
predictive performance [272, 274, 471, 74, 220, 257]. Like in static embeddings, bias
is still rife even after the application of debiasing methods, especially in the attention
layer. Is it possible that the attention mechanism is the root of bias? Is there a way
to mitigate bias from attention, and is it reasonable to expect that doing so leads to
bias reduction from the model as a whole? These are important research issues that
we discuss in depth in this dissertation.

1.2.5 (RI5) Quantifying Subjectivity in Models

To measure the progress that the NLP community is meeting in its quest to include
desired subjectivity and remove undesired biases, we need metrics, methods or pro-
cesses to quantify how much subjectivity is encoded in NLP models and systems. Even
though some metrics and corresponding benchmarks have been proposed to measure
the amount of bias in models [303, 322, 324], they have attracted a lot of criticism [161,
14, 42, 102, 417]. Of the multitude of documented weaknesses, we mention that the
results of these metrics do not match observed bias at the application level. In other
words, it is frequent for these metrics to warrant the absence of bias from models while
using those same models in real life shows that there indeed is discrimination. There-
fore, it is not clear what these proposed metrics are really measuring. Currently, the
rule of thumb is to measure bias and subjectivity at the level of application [161, 89],
i.e., use NLP models in real life then compare between the outputs and performance
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on different demographics. We note that this approach is effortful and time consuming
because it requires to finetune NLP models on several different tasks and applications
just to measure how much bias there is. Also, choosing between the myriad of available
metrics for different tasks is complicated too. We investigate the existence of easy and
efficient processes to streamline the quantification of subjectivity in NLP.

1.3 Contributions

In an effort to address the research issues and questions listed above, this thesis brings
six main contributions. We summarize them in what follows.

1.3.1 SACSS: Subjectivity Aware Conversational Search Sys-
tems

We already explained that current conversational search systems only support ob-
jective and factual attributes, and that users employ very subjective and nuanced
vocabularies when searching online. In this contribution, we propose to augment ex-
isting conversational search systems with subjectivity awareness. To answer (RI1),
we propose to model subjectivity with subjective tags: short phrases comprising of
aspects and opinions, e.g., delicious food , romantic ambiance, etc. Aspects denote
features while opinions characterize them. We also propose to extract subjective tags
automatically from available online reviews, as a response to (RI2). To do that, we
train a token classification model capitalizing on the latest advances in Sequence-to-
Sequence models, Adversarial Training [163, 318] and Data Programming [372, 22]. In
SACSS, we deal with (RI3) by mapping subjective tags to online items in an inverted
index data structure along with corresponding truth values, that the search system
utilizes to filter out results that do not meet the subjective criteria of users. Our
experiments indicate that our method outperforms existing search strategies based on
pseudo-subjective attributes (like those in Yelp) and strategies based on Information
Retrieval [296, 404]. This contribution has been published in the Proceedings of the
24th International Conference on Extending Database Technology (EDBT 2021) (see
[144]).

1.3.2 Conceptual Similarity

In this contribution, we address the problem of defining a subjectivity-aware similar-
ity measure in the context of online subjective search (RI3). Following the previous
contribution, subjective tags must be compared to each other in order to recommend
relevant online resources. Therefore, we propose a novel similarity model specifically
designed to work for subjective tags. The particularity of our work is that we leverage
conceptual connections between aspects and opinions when computing similarity, e.g.,
ambiance and music are conceptually related, but semantically dissimilar. Search sys-
tems based on our conceptual similarity are able to recommend restaurants described
as playing nice music to searchers who are looking for a good ambiance. We also pro-
pose a simple cost-effective pipeline to automatically generate data in order to train
the conceptual similarity model. We show that our pipeline generates high-quality
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datasets, and evaluate the similarity model both systematically and on a downstream
search application. This contribution has been published in the Findings of the Asso-
ciation for Computational Linguistics: AACL-IJCNLP 2022 (see [140]).

1.3.3 BiasMeter: On Quantifying Stereotypes in Text

As for undesired forms of subjectivity, we present BiasMeter, an unsupervised pipeline
to detect social stereotypes in textual data (RI2). In BiasMeter, we represent un-
desired subjectivity as differences in likelihoods, attention weights or vector represen-
tations between different demographics given the same context (RI1). Specifically,
we profit from the implicit bias encoded in existing language models to acquire use-
ful knowledge about social stereotypes, and predict whether a given snippet of text
concurs with or contradicts this knowledge. We evaluate BiasMeter on two popu-
lar prejudice benchmarks and find that we succeed in finding out whether an input
text mentions a stereotype, an anti-stereotype, or is neutral. Then, we use BiasMeter
to detect highly subjective instances in training data. By removing these, we show
that training NLP models on curated datasets contributes in reducing the amount of
undesired subjectivity from the final models (RI4). This contribution has been pub-
lished in the Proceedings of the 25th International Conference on Extending Database
Technology (EDBT 2022) (see [143]).

1.3.4 ADV-Debias: Iterative Adversarial Debiasing of Word
Embeddings

Given that word embeddings suffer from gender bias, we propose an iterative and
adversarial procedure to reduce it from them (RI4). We remove gender information
from word representations that should otherwise be gender-free, while we conserve
meaningful gender cues in words that are inherently charged with gender polarity
(e.g., man, beard, mother, pregnant). We confine these gender signals in a sub-vector
of word embeddings to make them more interpretable. Our method targets both linear
and non-linear forms of bias since it relies on altering the semantic space in order to
fool non-linear adversaries. Quantitative and qualitative experiments confirm that
we successfully reduce gender bias from pre-trained word embeddings with minimal
damage to semantic representations of language. This contribution has been published
in the Proceedings of the 37th ACM/SIGAPP Symposium On Applied Computing
(SAC 2022), and has been awarded best paper in the theme of "Artificial Intelligence
and Agents" (see [142]).

1.3.5 AttenD: Attention-Based Debiasing of Text Encoders

To address (RI4) on transformer-based text encoders, this contribution proposes to
investigate the notion of social bias in the attention mechanism. Specifically, AttenD
compels text encoders to redistribute their attention weights uniformly on different
demographics. In other words, they learn to forget any preference to historically
advantaged groups, and attend to all social classes with the same intensity. Our ex-
periments confirm that reducing bias from attention effectively mitigates it from the
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model’s text representations and predictions. We also propose a novel bias quantifica-
tion method that captures undesired prejudice and subjectivity from attention scores
instead of from vector representations as most previous works do (RI5). This con-
tribution has been published in the Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing (EMNLP 2022) (see [141]).

1.3.6 BiaXposer: Toward Streamlining Extrinsic Metrics for
Measuring Bias

In this last contribution, we focus on addressing (RI5) since there is a rising confusion
among NLP practitioners about which bias metrics to trust and which to use given
certain contexts. In this contribution, we identify several challenges facing the NLP
community when evaluating the fairness of their models, and propose BiaXposer, a
customizable and extensible fairness evaluation package. Following the latest research
[89], BiaXposer provides a generalized abstraction to unify most existing task-specific
bias metrics, and allows the use of different fairness idioms. Therefore, it enables
practitioners to rapidly assess and quantify the amounts of social bias in their models,
and to easily make and share their own bias metrics.

1.4 Thesis Outline

This chapter presented the context of this thesis and the problem statement. Then,
it focused on the most important research issues motivating our contributions. The
remainder of this dissertation is organized as follows. In chapter 2, we provide the nec-
essary background to fully understand and appreciate the material presented through-
out this thesis. We also discuss the current state of the art and survey the existing
literature about subjectivity, fairness and bias in NLP.

After that, the manuscript is divided into two major parts: (i) chapters presenting
our contributions about desired subjectivity, and (ii) those related to undesired sub-
jectivity. In each chapter, we motivate the specific problem that the chapter addresses,
present the most relevant related works, present our contributions, give details about
the experimental setup and results, before concluding with discussions about the lim-
itations of our work. Specifically in Part I, we introduce SACSS in Chapter 3 and
conceptual similarity in Chapter 4. As for Part II, Chapter 5 focuses on BiasMeter
while Chapter 6 explains how BiasMeter can be used to reduce social bias from NLP
models. Then, we devote the following two chapters for bias mitigation: ADV-Debias
in Chapter 7 and AttenD in Chapter 8. BiaXposer will be presented in Chapter 9. We
conclude this thesis in Chapter 10 by summarizing our work and discussing opportu-
nities for future contributions.
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Chapter 2

Background and State of the Art

In this chapter, we survey the landscape of subjectivity in the NLP scholarship. Be-
fore engaging with the complex subject of subjectivity, we first introduce the historical
background of how language has been represented, from simple one-hot vectors to the
latest text encoders based on the transformer architecture. The basic notions intro-
duced in Section 2.1 are mandatory for the full appreciation of the material presented
throughout this dissertation. Next, we show that subjectivity is prevalent in NLP,
despite the detached and objective impression that mathematically optimized models
such as those in NLP might radiate (Section 2.2). Then, in Section 2.3, we present
how subjectivity can enrich NLP models and applications, and boost their predictive
performance. In other words, we show how previous work introduced desired subjec-
tivity into their models. Finally, we expose the other side of the coin in Section 2.4,
and discuss the negative impact of harmful subjectivity. Specifically, we discuss how
some forms of subjectivity give birth to undesired and extremely damaging stereo-
types and prejudice, thereby most of Section 2.4 is focused on characterizing fairness
in Machine Learning (ML) and NLP, quantifying social biases and stereotypes as well
as discarding such undesired types of subjectivity.

2.1 A Computer’s History with Language Represen-
tation

Before the advent of Artificial Intelligence as a rising field of scientific interest, com-
puters flopped at grasping human language. Owing to the fundamental difference
that separates the rigorous binary language of computers in one hand, and the so-
phisticated rich language of people in the other, computers were limited to mapping
human-readable characters to fixed binary sequences, using for example the American
Standard Code for Information Interchange (ASCII) [19]. Despite enabling effective
electronic communication between computers all the while in a human-readable format,
it is unattainable for ASCII to encode the meaning of language. Indeed, represent-
ing each letter and symbol with ordinal numbers does very little to build a notion of
meaning for words, let alone sentences. This owes to the fact that words do not take
their meaning from the letters that constitute them, but from the contexts in which
words are employed [129]. As a result, finding the right algorithm and the right data
structure for language has eluded computers for a long time.
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Alternatively, Artificial Intelligence and Machine Learning in particular have un-
dergone tremendous progress in the last few years. One could hope that the new
paradigm of learning the algorithm from data may help find the right algorithm to
capture human language, especially that textual data is abundant online in the form
of books, blog posts, Wikipedia articles, etc. However, AI and ML models often ex-
pect fixed-sized inputs, whereas ASCII produces sequences of variable size for words
because words have varying numbers of letters that make them. As a result, a large
body of research was directed toward the problem of how to represent words using
numerical vectors of uniform size. In this section, we discuss the evolution of words
into vectors. Specifically, we start with the simplest form of word vectors, i.e., one
hot vectors. Then, we move toward increasingly complex models: statistical, distribu-
tional and contextual until the most recent language models based on the transformer
architecture [452].

2.1.1 One-Hot Vectors

In one-hot encoding, every word is associated to a unique one-hot vector of dimension
|V |, where all the elements of the vector are set to 0 except for one dimension which is
fixed to 1. In this case, V refers to the vocabulary of interest, i.e., all the words that
we want to model. The dimension that is set to 1 differs from one word to another to
allow words to be identified uniquely by vectors. In "The quick brown fox jumps over
the lazy dog", if we set the vocabulary size to 101, a possible one-hot encoding of these
words is the following:

the [ 1 0 0 0 0 0 0 0 0 0 ]
quick [ 0 1 0 0 0 0 0 0 0 0 ]
brown [ 0 0 1 0 0 0 0 0 0 0 ]

fox [ 0 0 0 1 0 0 0 0 0 0 ]
jumps [ 0 0 0 0 1 0 0 0 0 0 ]
over [ 0 0 0 0 0 1 0 0 0 0 ]
the [ 1 0 0 0 0 0 0 0 0 0 ]
lazy [ 0 0 0 0 0 0 1 0 0 0 ]
dog [ 0 0 0 0 0 0 0 1 0 0 ]

Note that one-hot vectors do not solve the problem of accurately representing the
meaning of words. However, thye can be used in ML applications. Interestingly,
one-hot vectors are used as input to build better word models such as Word2vec [313].

2.1.2 Count-Based Word Vectors

The notion of meaning proposed by count-based methods is that words that co-occur
in the same contexts are likely to be related in meaning. For example, if two words are
heavily mentioned in one document (i.e., a large span of text) but barely employed in
another, chances are that the words are similar, or at least related. Term Frequency,
Inverse Document Frequency (TF-IDF) [439, 1, 448] is a statistical measure to assess

1We chose 10 just for the sake of illustration
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how important a word is to a document. In particular, TF-IDF is composed of two
quantities:

• Term Frequency calculates how many times a word appears in a document,
through a simple count. Sometimes, this count is normalized by the length of
the document, or by the frequency of the most recurrent word.

• Inverse Document Frequency evaluates how common a word is across a
diverse set of documents. The more a word appears in many documents, the
closer this quantity steers towards 0. This is to penalize very common words such
as determiners (e.g., the, a, etc.) since they do not contribute useful information
to a document.

The TF-IDF score is computed by multiplying the Term Frequency and Inverse
Document Frequency scores of a word. If TF-IDF is high, the word is relevant to the
document. In order to get a vector representation for words, TF-IDF is computed for
many documents, each constituting a dimension in the final vector. If two words have
similar vectors across all documents, one can conclude that the words themselves are
similar (e.g., happy and delighted), or at least related (e.g., cat and dog). The problem
with TF-IDF word vector models is that they cannot handle out of vocabulary words,
i.e., words that do not appear anywhere in the text documents used to build word
vectors. Thus, they depend heavily on these documents.

2.1.3 Static Word Embeddings

Static word embeddings are dense fixed-length vectors that represent the meaning of
words. Words related in meaning (e.g., synonyms, antonyms, meronyms, hypernyms,
etc.) are close to each other in the vector space. However, unlike count-based word
vectors where each dimension is interpretable in that it correlates with the frequency
of a word in a given document, dimensions of static word embeddings are not as easily
interpretable. They are called static since a word is always mapped to the same vector,
no matter in which context the word appears. For instance, the word bank has several
meanings, e.g., in "The businessman deposited his money in a well-know bank" and in
"I sat near the river bank". In this case, the term bank has exactly the same numerical
embedding (i.e., vector) in both sentences, and generally in all contexts where the word
is mentioned.

Static word embeddings derive their good semantic representation of words from
two fundamental principles: the distributional hypothesis [178] and the language mod-
eling principle [165].

• The distributional hypothesis states that one shall know the meaning of a word
by the company it keeps [128]. Company in this case refers to context. According
to this hypothesis, words that are distributed across several documents around
similar context are supposed related. For example, soda and juice are expected
to be mentioned next to words such as drink, beverage, cold, refreshing, etc. We
say that they are distributed across similar contexts. Thus, their meanings are
close. Note that count-based word vectors also adopt this hypothesis.
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Figure 2.1: CBOW and Skip-gram models in word2vec embeddings. In this case, the
window size is 2 words from each side of the target word

• Language modeling refers to the practice of predicting the following word given a
past context. For example, in "I drank a cup of", a good language model should
assign higher probabilities for words such as coffee, tea or juice than for words
like tree, mushroom or sleeping. By combining the probability of predicting each
word in a sentence, one can compute the probability of the whole sentence.

Word embeddings are generated using large corpora of non-annotated text, and
adopt language modeling as a training objective. Stated differently, given a cropped
input sentence, word embedding models learn to correctly predict the following word,
and to do that they must learn the meaning of language. The main advantage of
language modeling lies in the self-supervised manner of training; no additional labels
are required, and the text itself provides both data and labels.

One of the most popular word embedding models is word2vec [313], which comprises
of a neural network with only one hidden layer of dimension |V |, where V is the
vocabulary. It starts with randomly initialized word vectors, and scans the training
corpus with a fixed-length window. Word2vec offers two methods for learning the
vectors: (i) in CBOW, the neural network takes the context as input (e.g., "I drank a
<target> of coffee") and predicts the target term (e.g., cup). However, in (ii) Skip-
gram, the network takes the target as input and predicts the context (Figure 2.1).

Other useful static word embedding models exist. For example, GloVe [344] consid-
ers global relationships between the meaning of words instead of local relationships as
word2vec does (i.e., modeling language by using a fixed-size sliding window). Instead
of a window capturing only local contexts for words, GloVe uses a co-occurence matrix
across the entire corpus. Then, it learns to estimate the probabilities of words using
the matrix as ground-truth.

Alternatively, instead of computing vector representations for words directly, Fast-
Text [44] is another embedding model that learns vectors for sub-words. Then, the
representation of the word of interest is calculated as a sum of all the vectors of its
sub-words. For example, using a sub-word size of 5, and to have the embedding of
subjectivity, FastText first computes embeddings for all sub-words: {subje, ubjec, bject,
jecti, ectiv, ctivi, tivit, ivity}. This technique allows to construct word embeddings for
out-of-vocabulary and rare words.

Static word embeddings are sometimes used to create vector representations for
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sentences. The simplest way to do that is to pool its constituent word embeddings,
either by taking their sum, their average or also the maximum values in each embedding
dimension. The downside of such an approach is that sentence embeddings generated
by pooling static word embeddings lose all notion of word order, which might lessen
the quality of the generated vectors.

2.1.4 Contextual Word Embeddings

Static word embeddings try to solve a more complex problem than necessary. Why
constrict all the possible and different meanings and connotations a word can have in
a single vector representation? Contextual word embedding models relax this problem
by allowing the representation of words to change and adapt to the context in which
words are mentioned. Following a previous example, and using contextual embeddings,
the vectors of bank in "The businessman deposited his money in a well-know bank"
and in "I sat near the river bank" are different.

A widely used contextual embedding is ELMO [345], which is based on a two-
layer bidirectional LSTM [187]. Before generating vectors for any word, the forward
LSTM in each layer of ELMO generates the forward embedding for the current word by
looking at all previous words in the sentence (past context), while the backward LSTM
looks at subsequent words (future context) and generates the backward embedding.
The generation of forward and backward embeddings is ensured via language modeling,
i.e., optimize the probabilities of words such that the one having the highest probability
is the word being mentioned in the ground-truth text. Then, the forward and backward
embeddings are concatenated to form the embedding of the current word at a given
layer of ELMO. Finally, the word embedding of both layers, and the embedding used
as input (e.g., GloVe or word2vec or one-hot) are summed to obtain the final vector
for the word of interest. We illustrate this process in Figure 2.2.

Contextual word embeddings enable better sentence representations. The use of
sequence-to-sequence models allow to encode all the context into a single word vector,
which can be declared as the embedding of the entire sentence, without needing to pool
over all word vectors. From the most popular sentence embeddings in the literature, we
note the following: InferSent sentence embeddings [82] also make use of a bidirectional
LSTM. However, rather than unsupervised language modeling, InferSent employs the
task of textual inference as a training objective. Alternatively, the training objective of
Skip-Thought sentence vectors [234] is sentence order; i.e., the embedding model takes
a sentence as input and predicts the previous and the next sentences in the corpus.
Finally, ULMFit [194] uses the same underlying architecture of other contextual and/or
sentence embedding models in that LSTMs are used. However, it is finetuned on
downstream tasks instead of general language modeling.

While sequence-to-sequence models such as RNNs and LSTMs were heavily used to
generate contextual embeddings, the advent of the novel transformer architecture [452]
outperformed all the other existing methods, and changed how NLP practitioners and
researchers think about how to build their models. As a consequence, the majority of
the newly proposed contextual embeddings are based on transformers such as BERT
[103], RoBERTa [284], or GPT2 [365]. We leave the discussion of such embedding
models to the next subsection.
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Figure 2.2: An example of generating contextual vector representations in ELMO.
F stands for Forward while B stands for Backward. EOS refers to a special token
designating the end of the sentence.

2.1.5 Transformer-Based Text Encoders

To present how transformers are used in practice to generate word and sentence embed-
dings, we first need to introduce the notion of attention, describe the basic transformers
architecture, then show how it is employed.

The Attention Mechanism

The attention mechanism is a simple method to obtain importance scores for all ele-
ments according to an object of interest. In the context of NLP, attention is used to
figure out which other tokens in a span of text are most important to a given token. In
the example of Figure 2.3, we illustrate the attention distribution of the word orange
on the following sentence "She is eating a green apple". Starting from an attention
budget of 100%, orange distributes it on each word of the sentence such that the most
important words as considered by orange get the most of attention. Since orange is a
color, the attention on green is very big owing to green being a color too. However,
orange can also be a fruit, so its attention on apple is also big, and on eating too
because fruits are eaten. On the other hand, orange has little relatedness with words
such as she, is and a, thereby their attention scores are insignificant. In the literature,
orange is called the query and the tokens in the sentence are called keys.

Formally, computing attention scores is a two-step process: (i) compute the relat-
edness of the query q (q ∈ R

d) with every key k (k ∈ R
d), then (ii) normalize such that

the sum of the resulting attention scores amounts to 1. d is the number of dimensions
in the embedding model used to represent word semantics.

ei = a(q, ki) (2.1)
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Figure 2.3: An example of attention distribution of the token "orange" on the sentence
"She is eating a green apple"

Figure 2.4: An example of self-attention related to "She is eating a green apple"

αi =
ei∑
i ei

(2.2)

a is an alignment function that produces a scalar score ei ∈ R indicating the
relatedness (or similarity, match) between the query and each of the keys. Popular
choices of a include a simple dot product (qᵀki), weighted dot product (qᵀWki, where
W is matrix of weights), or a neural network to learn to match q and ki.

The attention mechanism has first been introduced to solve the problem of align-
ment in machine translation [23] where each word in the translation is mapped to its
equivalent in the original text. Later, attention proved to be excellent at mitigating
the problems related to forgetting where information is washed out after it propagates
through deep recurrent models like RNNs, GRUs and LSTMs [196]. In this case, at-
tention scores assume the role of weights where the importance of crucial words is
scaled up instead of being lost after so many time steps and iterations. Nowadays,
the attention mechanism is so prominent in NLP that the community has produced
so many variations of it, e.g., multi-dimensional attention [466, 278, 110], hierarchical
attention [493, 214, 495], memory-based attention [167, 429, 245, 314], self-attention
[452, 410, 408] and task-specific attention [289, 433, 230].

In this dissertation, we specifically focus on self-attention since it is the form of at-
tention that modern transformer-based text encoders employ in their inner mechanics.
In self-attention, there is no outside query to be matched with keys of the sentence,
as is the case in Figure 2.3 where orange is an outsider query term. Instead, each
key becomes a query in its turn, and distributes its attention budget of 100% over all
keys of the sentence (Figure 2.4). Attribution of attention is also based on importance
and similarity between words. Self-attention gives an attention matrix (also called
attention map in the literature) where each row represents the attention distribution
of a given term in the input on all the terms.
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Figure 2.5: An overview of the Transformer architecture

The Transformer Architecture

We illustrate the general architecture of transformers [452] in Figure 2.5. A trans-
former is a novel model aimed to solve sequence-to-sequence tasks where both input
and output are sequences, e.g., automatic translation, language modeling, paraphras-
ing, language generation, etc. Transformers learn to efficiently encode the semantics
of language using only the attention mechanism, without relying on recurrent connec-
tions or convolutions. Specifically, a typical transformer architecture is composed of
two stacks of components: A stack of encoders and a stack of decoders. When trans-
formers were first proposed [452], each stack contained 6 components (6 encoders and
6 decoders), but there is nothing special about this number, and later research shows
that more layers are better [103].

Encoders are responsible for taking in the input sequence and generating a vector
representation for it, i.e., encoders create language embeddings (both word and sen-
tence embeddings) for the input. On the other hand, decoders must use the vector
representations created by the encoders in order to learn the task of interest. In partic-
ular, each encoder layer is composed of two sub-layers: (i) a self-attention layer where
each word is contextualized within the sequence of other words in the input sentence
to learn what the word means, and (ii) a feed-forward neural network to transform
attention weights into vector embeddings. In addition to these two sub-layers, a de-
coder component inserts an encoder-decoder attention where self-attention scores of
the decoder are again weighted by the attention scores of the last encoder to help
decoders focus more on important tokens as identified by encoders.

Note in Figure 2.5 that there are multiple arrows going from the self-attention com-
ponent to the neural network component. Each of the arrows represents a channel that
a token in the input travels through. This means that each word in the sequence flows
through its own path to higher layers, thereby each path can be processed in parallel.
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Dependencies between these paths are encoded in the self-attention component, but
everything in the transformer’s architecture can be subject to parallelization, which
constitutes the main advantage of using transformers over other models like RNNs or
CNNs. Indeed, by being able to distribute training on many GPUs, one can process
larger training sets and afford longer training times, which leads to better and more
accurate models. Additionally, transformers do not suffer from catastrophic forgetting
for early tokens in the input since the attention mechanism ensures that all tokens are
processed in parallel at the same time, instead of going from the first to the last as
RNNs do while risking to forget information about the first tokens.

Language Representations Based on Transformers

Although transformers apply to all tasks that can be formulated as sequence to se-
quence, they are largely used to learn accurate language representations. In this case,
only one of the two stacks of encoders or decoders is generally used, resulting in two
main families of language models: BERT family based on the side of encoders [103,
284, 255, 393, 205] and GPT family based on the side of decoders [365, 53].

(1) Decoder family. The task is language modeling where the model must learn to
predict the next word in a sequence. No annotated data is needed in this case, just
shift the input one position to the left to create the output, then use the decoder side
only of the transformer architecture to learn the task. Examples of such models are
GPT2 [365] and GPT3 [53].

(2) Encoder family. The first model to rely only on the side of encoders in transform-
ers is BERT [103]. Instead of traditional language modeling as a learning objective,
BERT uses masked language modeling, where 15% of words in input sequences are
masked out, and the task is being able to predict them accurately. The output of the
feed-forward neural network of the topmost encoder layer represent the final embed-
dings of the input sequence. In BERT, one can provide either a single or a double
input. In the latter case, the sequences are separated by the [SEP] special token, as
shown in Figure 2.6. [SEP] is also used to mark the end of a sequence. We notice
that BERT inserts another special token [CLS] at the start of the sequence, to rep-
resent the semantic meaning of the entire sentence. Indeed, BERT computes a vector
representation for every token or word in the sequence (marked as Vi in Figure 2.6),
and given that [CLS] is also a token no less, its vector will represent the embedding
of the entire input.

BERT embeddings can be used directly in downstream NLP tasks exactly as static
word embeddings are traditionally employed. However, BERT introduces finetuning,
a new paradigm of using language representations for language-related tasks [103]. To
do that, one can add another neural network on top of BERT with a proper clas-
sification objective, e.g., sentiment analysis, question answering, etc. Then, instead
of optimizing the weights of the new classification module alone, the parameters of
BERT are also optimized. This is to adapt language representations to the specific
task of interest, and thus expect better predictive performance. The new classifica-
tion/inference module is commonly called in the literature a classification/inference
head. See Figure 2.7 for examples. In the left, only one sequence is used in order to
determine its sentiment. The sentiment classification head takes a sentence embedding
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Figure 2.6: An overview of BERT’s input and output

Figure 2.7: An overview of a classification head installed on top of BERT

as input (i.e., the [CLS] token since it encodes the semantic of the input sentence)
and produces class probabilities. However, in the example of question answering, two
inputs are necessary: the question and the context inside which the answer must be
found. In this case, the question answering head needs all word embeddings as input,
and produces two outputs: the start and end position of the text inside the context
that answers the question.

More so, to train BERT in the first place, a masked language modeling head has
been added prior to training, then removed later to only keep the part that produces
the embeddings (what we call BERT in Figures 2.6 and 2.7). In order not to abuse
terminology, in the rest of this manuscript, when we say text encoder, we refer to the
part of the model that produces the embeddings only, without the language modeling
head. However, when we say language model, we assume that a trained language
modeling head is added on top of the text encoder.

The success of BERT in its ability to accurately represent the meaning of lan-
guage was so great that it inspired a myriad of newer models that introduced minor
architectural and/or training-related changes, e.g., RoBERTa [284], ALBERT [255],
DistillBERT [393], SqueezeBERT [205], etc.
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2.2 On the Illusion of Objectivity

Machine Learning has traditionally been saluted for its objective discerning of patterns
observed in data, due in a large part to its reliance on mathematics [470]. However, it
is a mistake to assume that all things built on top of mathematics are objective [329].
The detachment of maths from human emotions, opinions and beliefs can obscure the
human and highly subjective element in problems where ML is used. But ML does
not solve problems on its own. The problem definition and the resources necessary for
solving it (i.e., data and compute) are chosen subjectively by people. Which algorithm
is in use? Which datasets are used to train models? How were gold labels collected?
How ML models are evaluated? All these are choices made entirely by humans. As a
consequence, ML models are never completely objective. In this section, we present
the main entry point of subjectivity which is data, and discuss how both training and
evaluation data help subjectivity to infiltrate ML and NLP models. Then, we present
the most important works in NLP that aim to differentiate between what is objective
and what is subjective in the data.

2.2.1 Subjectivity Is in the Data

In the following, we describe the myriad of ways data contributes in instilling ML and
NLP models with subjectivity.

In Features

Collecting data to train NLP models is a highly subjective endeavour. As of date, there
is no theory to help deciding which data should be included or not, thereby dataset
collectors are left to their subjective judgment. One of the most striking examples is
in automated speech recognition where models were trained on speakers of white skin
tone. However, the models had a hard time recognizing African American English
because it was nowhere to be found in the training set [308]. Also, Amazon’s delivery
service marginalized neighborhoods where Black people live based only on zipcode
since the model was not trained to optimize delivery time in such neighborhoods [263].
Another case where objectivity is challenged is the travel fare aggregator which was
found to steer users of Apple products to more expensive hotels [328]. Although there
is no doubt that the algorithm used to train these models does not discriminate on
purpose, discrimination in this case owes to the subjective choice of data. If training
data was chosen such that it includes all groups of people equally, the resulting models
would not have been as subjective.

In Text

Even the language used to create textual corpora contributes into the overall sub-
jectivity, because the text is produced by people, and people are heavily influenced
by individual characteristics and/or characteristics shared by the sociodemographic
community they belong to [56, 117]. Despite differences in language use, NLP models
assume that language is universal, and treat all textual corpora uniformly [133]. By
using such diverse data to train NLP models (e.g., from Twitter or online forums),
they cannot avoid encoding subjectivity into their inner parameters.
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In Gold Labels

Gold labels are the absolute truth that ML and NLP models learn to predict accurately.
The simplest way to annotate a dataset with gold labels is to assign an expert the task
of manually analyzing data instances and deciding on which labels they should be
tagged with [447]. Little needs to be said about the tight dependence of the labels
on the expert’s own view of the world. Also, in subjective and ambiguous cases, the
annotation will be subject to any bias that the expert may have about the subject
matter [447].

Modern NLP tasks demand much more data than is possibly produced by a single
person. Thus, an increasingly adopted practice is to distribute the labeling effort on
a crowd of non-experts, an approach commonly called crowdsourcing [419, 310, 207],
wherein majority voting and averaging are common approaches to derive a single gold
label from multiple annotations. Despite the impression of objectivity that crowd-
sourced labels radiate, especially that they represent the majority’s opinion, humans
often disagree. This may owe to misunderstanding a poorly formulated labeling task,
but often the task itself may call annotators to tap into their subjective perception of
the world. Thus, individual biases and values are reflected in data annotations even
if they are averaged. Recent effort is lately directed at looking beyond the majority
vote to deal with disagreements and objectivize gold labels [94, 27, 385]. Moreover,
even if annotators do not disagree for a given data instance, merely choosing a handful
among a large pool of crowd workers to undertake the labeling task risks constraining
annotation to a single point of view shared by the small group of actual annotators,
whereas the majority of other annotators online entertain widely different opinions.

In Evaluation Data

In addition to training data, the data used to evaluate NLP models can also introduce
massive amounts of subjectivity. As per model development best practices, NLP prac-
titioners and researchers try out different configurations of their models and keep the
one that maximizes predictive performance on an evaluation benchmark [431]. Nev-
ertheless, if the benchmarks are subjective, they enforce models to latch onto their
notion of subjectivity as well.

2.2.2 Distinguishing Between Objective and Subjective Text

Since the data is the major culprit of injecting subjectivity in NLP models, a lot of
previous works has long acknowledged the importance of detecting subjectivity in text
[381, 293, 262]. By detecting subjectivity, we mean being able to say with a high
degree of confidence whether a given snippet of text is fact or opinion, objective or
subjective. We follow the classification of Chaturvedi et al. [68] and present existing
subjectivity detection methods into three different classes: (i) syntactic methods, (ii)
semantic methods and (iii) multilingual methods.

Syntactic Methods

Syntax differs between objective and subjective propositions [381, 262, 432, 293], as
well as lexical properties where words used to express opinions are different from those
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employed in facts. There are broadly three main groups of syntactic methods.

(1) Keyword Spotting. Text is classified as either objective or subjective based
on the presence or absence of certain words. In Riloff and Wiebe [381], frequently
occurring patterns and templates of subjective expressions are identified in text corpora
using conditional probabilities. For example, the presence of the word asked correlates
with a subjective expression. Similarly, Wiebe and Riloff [477] propose rules and
create a dataset characterizing subjective propositions. Then they train a Naive Bayes
classifier to recognize subjectivity. The main advantages of such methods is their
simplicity and economy; manual labor can design features of high quality in a short
time, classification models are simple and they run very fast. On the other hand, there
is an obvious dependence on the features designed by humans. Thus, they suffer from
a low coverage, and can induce a lot of false positives since low subjectivity scores as
given by classifiers are assumed to be objective based on prespecified thresholds.

(2) Ontology-Based. Instead of determining whether a word characterizes objective
or subjective texts in a deterministic fashion, this class of methods assigns an affinity
for each words to fall into either category [360, 120, 262]. Affinity scores are obtained
from ontologies such as General Inquirer [425], SenticNet [61] or WordNet [125]. The
advantage is that these methods are automatic, and can be scaled to large vocabularies,
but they only work well on obvious words [68].

(3) Statistical NLP. An annotated corpus is used to classify sentences into objective
or subjective. Rather than feeding sentences as raw text or embedded into a vector
space, these methods expect syntactical properties of sentences like parse trees [237,
238, 327]. As a result, these methods learn to recognize subjectivity from the syntactic
structure of a sentence using statistical or probabilistic ML models such as kernels
[432], bootstrapping [24], statistical classifiers [25], Latent Dirichlet Allocation [293,
275], etc. Although these methods are generalizable to new domains and languages,
they do not cater for the meaning of language, relying solely on syntax.

Semantic Methods

The motivation underlying these methods is that the intrinsic meaning of words and
sentences is as important as syntax to determine whether a text is objective or sub-
jective. For example, even though "He was exposed as a corrupt politician " assumes
the appearance of a fact considering the syntactic structure of the sentence, the in-
troduction of words such as exposed shrouds the truth value of the sentence with
presupposition, subjectivity and skepticism. The gist of semantic methods is to train
supervised or semi-supervised models on the task of classifying an input as fact or
opinion. The methods in use are diverse, ranging from Conditional Random Fields
[299], supervised classification [201, 7], semi-supervised learning [330], deep neural net-
works [434, 69, 194, 202], or the latest transformer architecture [203]. Training data in
this case is often obtained from Wikipedia revision history, especially revisions tagged
with "POV" (point of view) and that indicate that the revision was needed because
the original sentence contains opinions, points of view and subjective ideas [7, 201,
202].
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Multilingual Methods

This class of methods ports knowledge about subjectivity from English to languages
that are lean on annotated resources such as Arabic or French [311, 312, 97, 3]. The
widely adopted approach is to translate the lexicons, assuming that synonyms in dif-
ferent languages carry the same subjective polarity [311, 3]. Others try to build new
ontologies in the target language based on available English ontologies [97]. The draw-
back of multilingual methods is the potential loss of subjectivity. For example, fragile
translates in Romanian to fragil, which only means easy to break. As a result, the
translation loses subjectivity when the word is employed in English to refer to the
sense of delicate.

In this thesis, we do not explicitly address the problem of classifying text into either
subjective or objective. Nevertheless, we propose in Chapter 3 a novel mechanism to
extract subjective information automatically from text. For instance, given "The food
in that restaurant was heavenly!", our method extracts the tag-like phrase "heavenly
food" as a subjective information present in the input sentence. In doing so, one
can apply our work in subjectivity detection tasks, i.e., classify an input sentence
as objective if no subjective tag can be extracted from it, and say it is subjective
otherwise.

2.3 Introducing Desired Subjectivity

As mentioned in the Introduction, there are some instances of subjectivity that are fa-
vorable to consumers of language technology. From the variety of manners subjectivity
benefits NLP and NLP-based software, we count the most influential: (i) improving
opinion mining, sentiment analysis and other fundamental fields and applications of
NLP; (ii) paving the road toward more accurate ground truth especially when it is
sourced from the crowd; and (iii) enhancing online experiential search by allowing
searchers to filter search results based on subjective attributes.

2.3.1 Enriching NLP Tasks

Opinion mining is the practice of processing social media data to understand the col-
lective polarity of the online crowd’s opinion, sentiment and affect about a subject
matter in collaborative media and online communities, e.g., blogs, reviews, wikis, etc.
It is a suitcase research problem including many NLP sub-tasks [68] such as concept
extraction [60], aspect extraction [292], named entity recognition [291], sarcasm de-
tection [355] and subjectivity detection. We focus in this part on subjectivity and its
positive impact on promoting better mining of online opinion.

Indeed, subjectivity and opinion are tightly connected concepts. We can hardly
think of an opinion that is not subjective by nature. Often, the process of determining
the general sentiment polarity in media is impeded by factual statements. Thus, it
is reasonable to expect that subjectivity detection plays a vital role in filtering out
non-opinionated information, and increasing the accuracy and utility of sentiment
classifiers [281]. Case in point: Bonzanini, Martinez-Alvarez, and Roelleke [46] show
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that subjective extracts from a review produce the same sentiment scores as the full
text.

Some previous works projected to improve opinion mining and sentiment classifi-
cation through subjectivity analysis. In finance, the emotional response of investors
to a major market event has a heavy impact on the market’s direction in the follow-
ing few days. One can analyze emotions and subjective perceptions of investors from
financial blogs (e.g., finance news or trading sub-reddits) to make informed decisions
on whether to invest and how much [226]. People responses to crisis can also be mined
from Twitter or Facebook by government agencies and analysts to issue adequate po-
litical procedures [68]. Not to mention the competitive advantage that businesses can
get from processing written feedback of their clients, and getting a general impression
of how well their products or services are being appreciated, e.g., in Amazon for online
shopping, or Rotten Tomatoes for movies.

Outside the obvious application of subjectivity into opinion and sentiment analysis,
it can also be included to upgrade other NLP tasks as well. Bjerva et al. [38] inves-
tigate the relation between subjectivity and Question Answering (QA). They found
that existing mainstream QA systems struggle to provide good answers to subjective
questions, especially those related to products or services. They construct and release
SubjQA, a challenge dataset with subjective labels for questions and answers across
six different domains. Then they develop a novel subjectivity-aware QA model by
finetuning BERT on subjective datasets.

Subjectivity is also useful when different agents are employed to guide a learning
task. For example, Titung and Alm [442] took into consideration the subjective dif-
ferences between annotators in the context of teaching machines to predict emotions
from text. Also, Romberg [383] argue that using a single and aggregated ground truth
per data instance to train supervised models does very little justice to the subjective
character of tasks such as argument mining. They propose PerspectifyMe, a method to
incorporate multiple subjective viewpoints to ground truth by augmenting each label
with a subjectivity score that indicates how much consensus there is for a given ar-
gument. Then they show how to classify arguments using many perspectives at once.
Finally, Flek [133] observe that most NLP models impose a universal language on all
users despite stark differences in how people from different backgrounds and demo-
graphics communicate. For example, American and Nigerian people employ distinct
words, sentence structures, expressions and idioms although both communicate in En-
glish [56]. However, NLP models overlook these subjective differences and end up in
sub optimal performance for some minorities. To overcome this problem, Flek [133]
discuss the importance of personalizing NLP models based on the target audience,
and survey the landscape of previous works aiming to contextualize NLP classification
models according to user-dependent subjective aspects. We participate in enriching
NLP with subjectivity in Chapter 4 by proposing a novel textual similarity model that
takes into account subjective concepts before issuing a similarity decision between two
items.

2.3.2 Learning From Disagreements

As stated earlier, humans disagree on the most trivial of matters. Disagreements are
of particular interest when human annotators are recruited to undertake a labeling
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task, often through crowd sourcing. Many factors might lead to disagreement, among
which we count ambiguous tasks [16], complex tasks [15], or simply disparities in the
worker’s perception and comprehension of the task due to subjective and personal
variables [394, 36]. In such scenarios, the standard practice is to aggregate individual
annotations into a single ground truth, either by averaging or majority vote [383].

Using aggregated ground truth in a learning task is subject to multiple limitations.
First of all, minorities are ignored since they hardly ever constitute the majority when
aggregation is ensured by majority vote. Thus, resulting NLP models might lean to
favor advantaged groups at the expense of underrepresented demographics. Also, a lot
of subjective tasks accept more than one correct label by nature, calling into question
the single truth model in annotation [8, 15].

We summarize existing approaches that profit from subjective disagreements be-
tween annotators to build better models into three broad categories depending on
which kind of labels the methods utilize.

• Hard Labels. A hard label is a single label encompassing the ground truth of
a data instance, usually after aggregating multiple annotations. Methods that
fall into this category still assume that a hard label exists for every item, but
unlike standard majority voting, they filter out data items where disagreement
is excessive [236, 375, 29, 235]. Other works in this category weight annotators
based on the quality and accuracy of their annotations [95, 15, 270]. Thus,
the negative effect of labels coming from unqualified annotators is scaled down
without reducing the size of training data.

• Soft Labels. Methods based on soft labels do not assume that a single truth
value exists for every item. Rather, crowd annotations are directly used to train
models without any form of aggregation. These methods are further divided into
two classes:

– For each item in the data, create as many replicas as there are annotations.
Then, treat each annotation as a separate instance [414].

– Treat annotations as a distribution, then train models to learn to predict
the distributions instead of predicting hard labels [346, 446].

• Combining Hard and Soft Labels. These methods assume the existence of
a unique hard label, but also acknowledge the influence of uncertainty and sub-
jectivity. Three options arise in this category: (i) Use disagreement to compute
weights for each hard label, then use these weights in the loss function accord-
ingly [349, 407]. Problematic hard labels with excessive amounts of disagreement
get low weights to prevent models from relying on them too much. (ii) Learn to
predict the hard label jointly with the soft labels distribution [254, 136]. This
is achieved by using hard labels in one epoch, then soft labels in the next; or
complete the entire training procedure with either type of labels, then finetune
with the other. (iii) Train a separate model for every annotator, then aggregate
predictions of per-annotator models [375, 94].

We refer interested readers to the survey of Uma et al. [447] which gives a detailed
account on multiple approaches to learn from disagreements in NLP and in Computer
Vision (CV).
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2.3.3 Enhancing Online Search

As more and more product and service descriptions proliferate the internet, online
searchers are becoming increasingly concerned about the quality of their searches [271].
In addition to important factual information such as a restaurant’s cuisine type or
price range, searchers are lately leaning to experiential attributes; parents are looking
for unforgettable family moments around cosy food and a warm ambiance; couples
seek a calm and romantic atmosphere where they can enjoy delectable dishes under
the dreamy light of candles! These features cannot be expressed with factual and
objective attributes since ambiance, deliciousness of food, sound level or quality of
lighting are no measurable quantities. To bridge the gap between what searchers are
looking for and what search systems are proposing, subjectivity must be explicitly
modeled therein [366].

Catering for subjectivity in search has been traditionally delegated to fuzzy logic
to translate objective facts into subjective phrases [496, 240, 389, 208]. For example,
price is an objective attribute which expects numerical values. Using fuzzy logic,
it can be mapped to a set of subjective phrases such as {"cheap", "fair", "costly",
"expensive"} based on comparisons between the price value and a set of prespecified
thresholds. Although good at transforming objective truth into pseudo-subjective
variations, fuzzy logic is unable to process attributes that are subjective by nature,
e.g., deliciousness of food, calmness, screen brightness, ease of use of a given software,
etc.

Ratings are also popular in online search [297, 494, 253]. Previous users are asked
to report on their experiences by issuing evaluations, often in the shape of star ratings.
These are found in e-commerce services, and they give an impression about the overall
opinion of those who rated (i.e., previous consumers of the product/service in ques-
tion). The problem of star ratings is that they are mere aggregations of the overall
user satisfaction. They do not elaborate on specific subjective matters that the rater
might have experienced.

Given the rising demand for subjectivity, mainstream online repositories such as
TripAdvisor2 or Yelp3 included boolean filters into their search interfaces to simulate
subjective attributes. For instance, a businessman looking for a serene coffee bar in
a foreign town to concentrate on his work can check the box related to calm while
he searches in Yelp. Such sets of subjective attributes are rather rigid and limited,
and searchers cannot express other subjective preferences in their own words. Besides,
these attributes are treated similarly to objective attributes as if deciding whether a
bar is calm or not is a matter of checking a box. Indeed, such a search only keep bars
that were previously tagged with the attribute calm as though calmness is an objective
fact for everybody and does not depend on personal perceptions of noise levels and
quietness. Moreover, deciding whether an online resource should be tagged with which
subjective attribute must be done manually by people after reading a (not necessarily
representative) sample of reviews.

We observe that all these efforts are doing is approximating subjectivity, and
scarcely treating it as an intrinsic property that the resulting software must provide.
In fact, Radlinski et al. [366] surmise that explicitly modeling subjective attributes

2https://www.tripadvisor.com
3https://www.yelp.com
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in data and software is mandatory in order to design subjectivity-aware search sys-
tems. Building on this premise, Li et al. [271] introduce OpineDB, the first subjective
database where users can write queries with subjective filters. We remind that with
objective attributes, database systems include a data instance to the final search re-
sult only when the data instance in question verifies a boolean condition based on the
objective attribute. In contrast, a window of uncertainty is allowed with subjective
attributes in OpineDB using insights from fuzzy logic. Prior to using OpineDB, the
database designer must define the subjective attributes and their possible values. Then
subjective data is populated within the database by extracting subjective information
automatically from online reviews.

Apart from online search, knowledge bases can also be augmented with subjec-
tivity. For example, Kobren et al. [241] built a tunable high-precision knowledge
base with both factual and subjective attributes for locations in Google Maps (e.g.,
restaurants, museums, public places, parks, ministries, etc.). A list of attributes such
as GOOD_VIEW, KID_FRIENDLY, HAS_HIGH_CHAIRS was predefined, then
crowd workers were asked to assess whether each attribute can be associated with a
location in Google Maps. User consensus was aggregated using Beta distributions.
The major limitation of this approach is the increasing cost of crowd workers that
adding new locations, new attributes or even changing the domain incur. Besides, the
quality of crowd-sourced data is often criticized because it may be produced by unethi-
cal workers whose only purpose is rapid financial profit with no regard to the quality or
correctness of their manual annotations. This point is alarmingly more crucial in this
case since the labeling task is extremely subjective. Finally, the subjective attributes
in Kobren et al. [241] are set at design time and not learned from user interactions
with the knowledge base.

In Chapter 3, we propose to adorn conversational search systems with the capac-
ity to process and act on subjective attributes. In this scenario, users provide their
search utterance in their own words. We build a system that is capable of recognizing
subjective text in user utterances and extract it in the shape of subjective tags. Un-
like previous work, we do not restrict users to a rigid repertoire of possible subjective
filters. Rather, we propose to learn new subjective tags as communications between
users and chatbots unfold. Also, subjective knowledge is mined automatically from
online reviews, and manual interventions are scarce.

2.4 Discarding Undesired Subjectivity

Not all subjective content is equally useful. While it is fitting to equip NLP models and
applications with the ability to understand and process beneficial forms of subjectivity,
it is far from ideal for them to inherit the full capacity of human subjective cognition.
In addition to stereotyping, undesired subjectivity takes root from other unhealthy
sources, e.g., using judgmental language, presenting undeniable facts as mere opinions,
or passing personal opinions for facts. For instance, using the term McMansion instead
of house triggers a negative attitude in the perception of large houses [374]. In this
section, we follow the classification of Recasens, Danescu-Niculescu-Mizil, and Jurafsky
[374] and Pryzant et al. [359] who characterized undesired forms of subjectivity into
three main classes: Epistemological, Framing and Demographic subjectivity.
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(1) Epistemological Subjectivity. It refers to the use of linguistic features that
subtly alter the believability and perception of a given proposition by instilling a pre-
supposition. In the following, we give details about such linguistic tools with examples.

• Factive verbs presuppose that their complement clause is true [232], e.g., in
"The study revealed that Amazon’s hiring tool is sexist", the use of reveal suggests
that it was not previously believed that the tool is indeed sexist.

• Implicative verbs present objective facts but shroud them with subjective
layers [224], e.g., in "He murdered two policemen", the use of kill is better suited
than murder to present the fact because murder implies a brutal manner of
killing.

• Assertive verbs cast doubt on a proposition’s certainty [190], e.g., claim, be-
lieve, point out, etc.

• Hedges are used to decrease the perception of truth of an undeniable fact by
adding uncertainty terms such as possibly, may, might, etc.

(2) Framing Subjectivity. Sometimes, the neutrality of a fact or a statement is
broken by how they have been framed or expressed. Framing subjectivity is often
achieved by introducing subjective words or phrases related with one’s point of view,
such as:

• Intensifiers which are adjectives that imbue a proposition with subjective opin-
ions. For example "The film director did a fantastic adaptation of the books", or
"Football is the best sport in the world".

• One-sided terms which steers from neutrality a contentious proposition that
can be interpreted via two or more opposing perspectives [277]. In "Israeli
forces liberated the eastern half of Jerusalem"4, the term liberated assumes a
side whereas captured is more neutral. Or in "Jewish forces overcame Arab
militants"5, the term forces is more suitable than militants.

(3) Demographic Subjectivity. This category of subjectivity includes assumptions,
presuppositions and stereotypes about demographic groups encompassing various de-
mographic dimensions such as gender, race, socio-economical status, age, religion,
disability, etc. For example, a seemingly candid sentence like "A lead programmer
usually spends his career mired in obscurity"6 assumes that all programmers are men.
Using such sentences to train NLP models makes them pick up on unfair subjective
notions. As a result, NLP models learn to encode various forms of prejudice.

This behavior poses serious concerns about social discrimination and marginaliza-
tion of disadvantaged demographics in NLP, and puts into scrutiny the overall fairness
that state of the art NLP models exhibit. Rather unsurprisingly, increasing numbers

4We pick this example from [374]
5We pick this example from [359]
6We pick this example from [359]
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Figure 2.8: Title structure of Section 2.4

of widely adopted models in both academia and industry are being denounced for
displaying shocking and unhealthy stereotypes. So a lot of research effort is nowa-
days actively looking for solutions to fix fairness issues and mitigate social biases and
undesired subjectivity [45, 222, 220, 74, 471, 398, 257, 72].

Although we believe that epistemological and framing types of subjectivity are
also undesired in NLP and should be discarded as well, we focus in our work and in
this survey chapter on methods to reduce demographic subjectivity, i.e., social biases,
prejudice and stereotypes. We make this choice because demographic subjectivity
brings harm to wide populations and societies as a whole whereas epistemological and
framing bias usually concern individuals. Besides, fairness is recently included in the
fundamental tests that ML software must satisfy, alongside accuracy, robustness and
interpretability [380, 160].

In this section, we first present the question of fairness in ML in general. Then, we
give details about bias detection and bias reduction methods specific to NLP. We give
notice to readers that this section is rather dense with a complex hierarchy of subtitles.
In order to ease up the navigation and consumption of this section, we illustrate its
overall structure in Figure 2.8.

2.4.1 Fairness in Machine Learning

In this section, we present the most relevant definitions of fairness in ML (i.e., what to
test). Then, we describe software components that need to be tested for fairness (where
to test). Finally, we contextualize fairness testing in the lifecycle of ML software (when
to test).
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Fairness Metrics

For clarity, we focus in this survey on classification problems, the largest and most
common task in ML. A classifier learns to map a set of input features X to a much
smaller set of labels Y . Evaluating classification models is traditionally limited to
performance metrics such as accuracy, precision, recall or F1 score which correlate with
the rate of correctly-classified instances in test data. However, these popular metrics do
little to account for whether classification models are fair or not. In practice, training
on a biased dataset where group A is privileged and group B is marginalized leads
the classifier to perform better on group A, for example showcasing higher accuracy or
precision scores. Optimizing the classifier to make it more accurate does not necessarily
bridge the gap in performance between groups A and B. Consequently, traditional
performance metrics cannot be used to test the fairness of ML models, and there is a
pressing demand for fairness-specific metrics.

In this section, we introduce the most relevant such metrics proposed in the litera-
ture, which have been divided into two types: group fairness and individual fairness.
Group fairness requires software to produce similar outputs for different demographic
groups [113]. While individual fairness requires that similar individuals differing only
in their demographic attribute to have similar outcomes [145]. To facilitate the pre-
sentation of different fairness metrics, we first introduce the following notation:

• G: Demographic attribute e.g., gender, race or religion, for which fairness should
be established. We denote the privileged group with 1, and the marginalized with
0.

• X: The set of all additional attributes for each data instance, except for the
demographic attribute G.

• Y : The gold label where a value of 1 determines a favorable outcome while a
value of 0 is unfavorable.

• Ŷ : The predicted label

(1) Group Fairness. Test examples are grouped according to their demographic at-
tributes, e.g., splitting test data into male and female. Then, statistics about model
predictions for all splits are computed and compared. The most widely adopted group
fairness metrics in the literature are the following.

(1.1) Statistical Parity. Also known as Demographic Parity [114, 26], requires
for different demographic groups to be allowed the same likelihood of benefiting from
a favorable outcome. A classifier satisfies this fairness definition if it assigns equal
probability of having the positive label class for both privileged and marginalized
groups, i.e., P [Ŷ = 1|G = 1] = P [Ŷ = 1|G = 0].

(1.2) Conditional Statistical Parity. Similar to the previous metric, Con-
ditional Statistical Parity [84] states that different groups have similar probability of
being assigned a favorable outcome if they satisfy a set of legitimate factors L (L ∈ X),
i.e., P [Ŷ = 1|L = 1, G = 1] = P [Ŷ = 1|L = 1, G = 0]

(1.3) Equality of Opportunity. This definition is satisfied if the true positive
rate of individuals who qualify for a favorable outcome (Y = 1) does not depend on
the demographic variable [177]. Meaning that the true positive rate should be similar
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for different groups: P [Ŷ = 1|Y = 1, G = 1] = P [Ŷ = 1|Y = 1, G = 0]. The intuition
of this metric is that qualified individuals from different groups should have equal
opportunity to be assigned a favorable outcome by the classifier.

(1.4) Equality of Odds. Equalized Odds [177] requires that the probability of
a qualified individual (Y = 1) being assigned a favorable outcome (Ŷ = 1) and the
probability of an unqualified individual (Y = 0) being assigned a favorable outcome
(Ŷ = 1) is the same across demographic groups. P [Ŷ = 1|Y = y,G = 1] = P [Ŷ =
1|Y = y,G = 0], y ∈ {0, 1}. It means that the odds of individuals from different
groups of having a positive outcome is the same, regardless of whether they deserve
that outcome or not.

(1.5) Overall Accuracy Equality. In this case, the classifier should produce
similar accuracy scores for test sets belonging to different social groups: P [Ŷ = y|Y =
y,X = x,G = 1] = P [Ŷ = y|Y = y,X = x,G = 0], y ∈ {0, 1} and x is an individual’s
feature distribution [454, 334]. This definition can be extended to satisfy equality for
other predictive metrics such as F1 score, precision, recall, etc.

(2) Individual Fairness. The notion of individual fairness is grounded in the follow-
ing principle: Similar individuals should be assigned similar outcomes [62]. Instead of
focusing on groups of people sharing similar demographic characteristics as is done in
group fairness, in this definition, single individuals are compared. Save for demographic
attribution, if individuals are similar, the classifier should make similar decisions. We
introduce the most important individual fairness definitions in the following:

(2.1) Counterfactual Fairness. It requires that an individual and its coun-
terfactual copy whose only difference is the demographic variable value should have
similar outcomes [249, 334]. This definition is causal since non-sensitive attributes are
controlled and unfairness comes from the sensitive demographic attribute only.

(2.2) Fairness Through Unawareness. A classifier satisfies this definition as
long as sensitive demographic attributes are not explicitly used in the prediction pro-
cess [454, 168]. Expressed differently, demographic attributes are removed from data
before training, thus the classifier is blind to them. However, other attributes may cor-
relate with demographic attributes, hence leading to unfairness despite the classifier’s
unawareness of the individual’s social group [65, 73].

(2.3) Fairness Through Awareness. As the general principle of individual
fairness implies, fairness through awareness holds if similar individuals are treated
similarly. Here, two notions of similarity must be formally defined: (i) a distance
metric d between individuals that compares non-sensitive attributes when producing
a similarity decision d : IxI → R where I is the set of individuals. And (ii) another
distance metric D comparing output distributions produced by the classifier. If we
denote f the classifier’s prediction function, x and y two different individuals, f(x)
and f(y) their output distributions over all possible label classes as produced by the
classifier of interest, fairness through awareness holds if and only if D(f(x), f(y)) ≤
d(x, y) [114, 454]. Contrary to the previous fairness definition, in this case the classifier
is aware of sensitive demographic attributes when making its predictions.

*****
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Figure 2.9: Sources of social bias in a typical ML pipeline

Components to Test

There are mainly two major software components that need to be tested for fairness:
data and algorithms. Also, the way a model is deployed for real-world usage can also
create unintended biases. We represent the different sources of bias which occur at
different stages of a ML pipeline in Figure 2.9, and discuss each in the following.

(1) Data Testing. Since ML software learns from data, social prejudice can be prop-
agated from data to software. Thus, a lot of previous work focused on identifying and
mitigating data bias at three different levels; features, labels and data distributions
[73].

(1.1) Feature bias. It occurs when demographic information is encoded in data
features, either directly as an explicit demographic variable in the data (e.g., gender
or age), or indirectly as it correlates with other features. Indeed, Chakraborty et al.
[65] removed explicit demographic features from data but found that the obtained
ML classifier demonstrates the same level of unfairness as before. To corroborate
this finding, Letzter [263] showed that Amazon’s delivery service marginalizes some
neighborhoods where a high number of Black people reside. Although race is nowhere
to be found in the data features used to train Amazon’s model, discrimination was
based on the seemingly non-sensitive zipcode, which turned out to be highly correlated
with race. One can tackle the problem of feature bias by identifying biased features
that correlate with sensitive attributes [268] as well as decorrelating them [343].

(1.2) Label bias. Data is historically collected over many years and annotated by
humans, algorithms and/or automated tools. As a result, the determination of labels
may be impacted by human biases, which inadvertently creates label bias [476]. A
possible approach to detect data instances that are corrupted by label bias is to first
split the data into different sets based on the demographic attribute (e.g., set O for
old people and set Y for young people) and train a separate ML model for every set.
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Given a data instance, if different models produce different results, it is likely that the
data instance of interest contains label bias [65, 64].

(1.3) Selection bias. Selection bias occurs when the data distribution along
demographics is skewed, for example by over-representing some groups while under-
representing others in the data. Training ML models on such skewed data leads them to
create shortcuts between demographics and outcome [476]. For instance, the Compas
dataset [440] used to predict whether defendants will re-offend in two years contains
much more data instances for Blacks than for Whites, thereby encoding an unexpected
correlation between recidivism and race. To counter selection bias, data re-balancing is
necessary. We will give more detail about such approaches in our discussion of existing
fairness work specific to NLP later in this chapter.

(2) Algorithm Testing. An algorithm may discriminate due to fairness issues in
many parts: the data processing part, configurations, or the internal logic [73]. We
briefly touch on each part in the following.

(2.1) Bias in data processing. We previously discussed that social bias is en-
coded in data in complex ways. On the other hand, the first step of many ML pipelines
is to pre-process the data and make it easily digestible for subsequent algorithms to
consume, which might change its distribution and embed unexpected forms of preju-
dice. Valentim, Lourenço, and Antunes [450] and Biswas and Rajan [37] demonstrate
that some data processing methods do introduce more bias, while others improve fair-
ness [73].

(2.2) Bias in hyperparameters. It is well known that tuning hyperparameters
of a ML model plays a determining role in optimizing predictive performance mea-
sures such accuracy and F1 score. Similarly, fairness is also impacted by changes in
hyperparameter configurations [65, 66]. As a result, mitigating biases can be cast as
a search problem where the task is to find the best combination of hyperparameters
that yields the highest fairness score [443, 65, 66].

(2.3) Bias in model internals. When one speaks of detecting bias in algorithms,
it is very likely that one is referring to biases encoded in ML models themselves. A
popular bias identification approach is to detect which neurons of a neural network
contribute most to unfairness [457, 500, 509, 149]. A myriad of other works assume
that social bias is encoded in the learned parameters and weights of models, and thus
try to adjust them in order to repair and debias unfair models [45, 222, 74]. Later in
this chapter, we will explore state of the art of bias detection and reduction techniques
in NLP model internals.

(2.4) Bias in evaluations. ML models are optimized on training data, but
evaluated on separate test benchmarks. ML practitioners often reiterate over model
training with slight architectural and/or configuration changes until their models are
optimal on evaluation benchmarks [431]. However, these benchmarks can also latch
onto social biases and may discriminate against marginalized demographics. As a
consequence, misrepresentative evaluation benchmarks encourage the development of
ML models and algorithms that perform well on advantaged groups and are thus
unfair.

(3) Deployment Testing. Even when data and algorithms are relatively free of bias,
unfairness can still arise from the way software is deployed for real-world use. Suresh
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and Guttag [431] call this kind of bias Deployment bias and it occurs when the problem
a given ML model was designed to solve differs from the way it actually is used. For
example, recidivism detection tools predict whether defendants will commit another
crime in two years time [440]. In practice, these tools are also used in unintended man-
ners such as deciding appropriate punishments or determining the length of juridical
sentences [80, 424], thereby perpetuating harms towards historically disadvantaged
demographics in the real world. We refer readers to Figure 2.9 for a visualization of
where the different kinds and sources of social bias discussed in this section arise in a
typical ML pipeline.

*****

Fairness Testing in the Lifecycle of ML Software

As Figure 2.9 implies, social bias strikes at every stage of development of a ML appli-
cation. Thus, testing for fairness must be integrated throughout the ML pipeline. In
this section, we follow the recommendations of Chen et al. [73] and position fairness
testing in the process of engineering a ML software.

(1) Requirements. Fairness testing starts as early as when specifying the general
requirements of software. In addition to taking important decisions about the problem
that a given ML software solves, to what populations it is addressed etc., one also has
to think about which definition of fairness the ML software must satisfy, especially
that different fairness definitions can be conflicting sometimes [454]. Also, one has
to decide upon which fairness metric to optimize. For example, in cancer detection
applications, false negatives are much more dangerous than false positives, thereby
improving fairness related to the False Negative Rate is promising. Meanwhile, in the
context of predicting whether a client can have a loan or not, the False Positive Rate
is more enticing for fairness issues.

(2) Design. Every component of the ML application should be selected carefully.
For example, preferring diverse training datasets over those that concentrate on a few
demographics, or curating available datasets if no fair data is at hand. Also, models
that are least prone to encode prejudice must be prioritized.

(3) Implementation. This is done by including fairness-specific loss functions to the
overall learning objective. Also, include sanity checks after each epoch or training
iteration in order to assess fairness of models.

(4) Offline Evaluation. Alongside traditional tests for predictive performance, gen-
eralization or robustness, fairness must be included as well. A lot of fairness bench-
marks have been proposed in the scholarship. So using them with the fairness metrics
presented in Section 2.4.1 constitutes a good first step.

(5) Repair. The ML community has recently produced a wealth of bias mitigation
methods to improve software fairness [45, 74, 220, 334]. ML practitioners can employ
those techniques to fix and repair their biased models.
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(6) Deployment. As explained earlier, deployment can create unexpected biases, es-
pecially when models are not used to solve the problems they were designed to solve.
For this reason, software documentation should be complete, concise and clear about
what the system might do. Also, given that ML models are increasingly larger in size,
especially for NLP, compressing the models is an attractive practice. However, model
compression is shown to introduce new forms of social bias [189, 40, 426]. Conse-
quently, compressed models must also be tested for fairness and repaired accordingly.
As a general rule, one has to assess their models’ fairness after every modification, no
matter how small it may seem.

(7) Online Evaluation. Offline evaluation is restricted to the test benchmarks. Be-
cause such data usually fail to capture the full scope of possible inputs the model will
encounter at inference time, it is advised to continuously evaluate ML models with
real-world data, and take in user feedback. This step allows to uncover unforeseen
forms of social discrimination that must also be mitigated.

Since our work treats natural language, we focus the remainder of this chapter on
bias detection and reduction methods from state of the art specific to NLP only.

2.4.2 Social Bias Detection in NLP

In recent years, the NLP research community has produced a wealth of different mea-
sures to quantify bias and stereotype. We categorize bias quantification works into
two broad categories: model-level and data-level.

Data-Level Bias Detection

Curating data or at least being able to check whether data contains undesired char-
acteristics is a historically alluring objective. For example, a large body of previous
research focused on detecting offensive language in text [331, 138, 416, 316]. Similar to
toxicity, bias and stereotyping are also harmful and should be detected automatically
in text in order to curate them. However, stereotype detection received less immedi-
ate focus because (1) stereotype is a subtler offense to comprehend by computational
methods unlike toxicity which can be captured to an acceptable degree of accuracy
with a limited bag of very toxic words, e.g., insults and profanity. (2) Due to the
unavailability of oracles and/or knowledge bases that give information about what is
and is not a stereotype in society at large, it becomes difficult to detect them in text
satisfactorily [361]. For these reasons, most works tackling this problem are mostly
limited to building stereotype diagnostic datasets [322, 324, 382]. It might seem glaring
to use those published datasets to train supervised models on the task of recognizing
social stereotypes. However, as their authors precise, these datasets are built for the
purpose of diagnostics and evaluation only, and using them as training data defeats
this purpose. Also, as discussed above, recent investigations identified several flaws
that make these datasets unsuitable to use as training resources [42].

Nevertheless, there is a growing body of research aiming to propose learning-based
methods for stereotype detection, with techniques ranging from text classification [317,
85, 382, 390] to reinforcement learning [361]. For example, Cryan et al. [85] propose
two approaches to detect gender bias in text. The first is token-based where every
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token in the test sentence is attributed a numerical score defining how much masculine
or how much feminine the token is. Deciding on the gender score is done via many
methods: lexicon-based, a method based on words distance to a gender direction or
through binary classification (i.e., classify whether a token is masculine or feminine
using available annotated lexicons as training data). Then, the gender bias score of
the whole sentence is calculated by aggregating individual gender scores of all tokens
in the sentence. The second method proposed by Cryan et al. [85] is sentence-based
where a language model such as BERT is finetuned on the task of recognizing gender
bias in sentences. Training data for this task has been collected from crowd workers.

Similarly, Rodríguez-Sánchez, Albornoz, and Plaza [382] developed and released a
dataset of sexist expressions and attitudes in social media content in Spanish, dividing
them into several categories: physical stereotyping, role stereotyping, hate and vio-
lence, male dominance, ideological discredit, etc. This datasets is then used in [382] to
train ML and deep learning models on the task of recognizing sexism in text. Other
forms of neural networks such as Convolutional Neural Networks [317] and Recur-
rent Neural Networks with hierarchical attention [202] have also been used to detect
phrasing bias in textual data, and they have been found to outperform hand-crafted
methods.

Basic text analysis techniques using dictionaries, lexicons, grammatical rules or
pronoun usage have also been utilized [219, 445]. However, given their lack of cover-
age, accuracy and generalization, such techniques are constrained to specific types of
stereotype such as racism [445], sexism [85] or xenophobia [219].

Different from the above techniques, Brunet et al. [54] detect which data instances
in a given training set carry the most stereotypes. The rationale of their method
is that if removing a data instance from training and the resulting word embedding
model becomes less biased, it is likely that the data that has been removed contains
bias. Brunet et al. [54] use influence functions from robust statistics [83, 243] to
approximate the removal effect of individual data instances on the resulting model’s
stereotype score. Although this method is promising, the fact that data has to be used
to train a subsequent model in order to analyze its inherent stereotypes constitutes a
limiting disadvantage.

In this dissertation, we contribute our own data-level bias detection method in
Chapter 5. As an oracle, we use masked language models without needing to re-
train or finetune them. Instead, we use their already available likelihoods, language
representations and attention scores to excavate bias information. The main advantage
of our method is that it unsupervised, low-cost and zero-shot in that language models
are used as black boxes. Then, in Chapter 6, we present a novel debiasing strategy
based on detecting bias in data.

*****

Model-Level Bias Detection

The main focus of model-level techniques is to measure how much prejudice is exhibited
by models. Depending on the kind of model under study, we identify two families of
metrics.
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(1) Intrinsic Metrics. Intrinsic metrics strive to quantify bias in the inner represen-
tation layer of NLP models, independent from its application on any downstream task
[59, 45, 303, 322, 324]. To date, two paradigms dominate the process of intrinsic bias
detection: (i) representation-based methods [59, 303] where vector representations of
social groups are contrasted, and (ii) likelihood-based methods [322, 324, 248] where
likelihoods are used to examine which groups are expected by models to be associated
with certain attributes and traits. There is also a third growing paradigm of intrinsic
bias measurements where prejudice is quantified at the level of attention mechanism,
where neutral words allocate widely different attention weights (i.e., importance) to
different groups.

(1.1) Representation-based. The pursuit of representation-based metrics has
been spurred by the seminal work of Bolukbasi et al. [45] who proposed to measure how
much gender bias is encoded in static word embeddings by projecting them on a gender
dimension. Specifically, Bolukbasi et al. [45] compiled a list of gender-word pairs such
as {(man,woman), (boy, girl), (father,mother), (gentelman, lady)...}. Then, they com-
puted the vector difference of all pairs, i.e., {−−−−−→termmale −

−−−−−−−→
termfemale} and calculated

the first principal component of these vector differences, which is meant to represent
the dimension that encodes the largest variation in information (in this case binary
gender). Bolukbasi et al. [45] call the first principal component as the gender direction
(or gender dimension), hence gender information in other word embeddings is mainly
captured and determined by this dimension. So, gender information of a given word is
quantified in terms of cosine similarity between the word embedding of interest and the
gender direction. Finally, gender bias is declared as the mean of gender information
of words supposed to be gender-neutral, e.g., doctor, nurse, bag, etc.

The notion of utilizing projections (cosine similarity) on a pre-defined gender direc-
tion has been used in a myriad of research papers to quantify bias. Manzini et al. [298]
generalized the metric of Bolukbasi et al. [45] for multiclass social dimensions such as
race or religion. Instead of taking the first principal component, they take the first k
principal components, thus constructing a bias subspace instead of a bias direction. To
measure the bias information of a given word, they aggregate cosine similarities of the
word’s embedding with each of the bias subspace’s directions. Kaneko and Bollegala
[222] proposed to use an autoencoder in order to project original word embeddings into
a more interpretable latent space before they use projections on a gender direction to
compute gender bias. Wang et al. [465] argued that word vectors used to construct
the gender direction in [45] are impacted by discrepancies in word frequency. For ex-
ample, given that gentleman appears less often than he in the data used to train word
embedding models, its corresponding vector may be subject to noise. These discrepan-
cies in word frequency significantly tweak the geometry of word embeddings and can
twist the gender direction. Consequently, Wang et al. [465] proposed to project word
embeddings into an intermediate subspace by subtracting components related to word
frequency before they applied the bias quantification of [45]. Similarly, Ravfogel et al.
[373] criticized the method of Bolukbasi et al. [45] saying that collecting gender-word
pairs manually requires substantial care and effort, and that the resulting gender di-
rection is subjective to the person doing the collection work, and does not necessarily
capture all what binary gender essentially is. To correct this issue, Ravfogel et al. [373]
proposed to learn several gender directions automatically from data instead of relying
on manual labour. Finally, Ethayarajh, Duvenaud, and Hirst [121] changed cosine
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similarity in the quantification pipeline of Bolukbasi et al. [45] into the relational inner
product of a given word −→w and the gender direction −→g .

In addition to projections on bias dimensions, bias can also be captured at the
level of language representations through word associations. This line of research was
first influenced by the popular Word Embedding Association Test (WEAT) [59] which
measures how much attribute words are associated to a set of demographics. Formally,
given two sets of groups (e.g., male and female each defined with words belonging to
each demographic), and two sets of attributes (e.g., science and arts), WEAT employs
a permutation test to determine whether the groups are mapped to an attribute set
each in a statistically significant way. WEAT reveals that male terms are associated
with science and math words whereas female terms are mapped to family and arts.

While WEAT functions at the level of single words and can only be used to quantify
social bias hidden in static word embedding models, May et al. [303] extend WEAT
into contextual sentence embeddings such as BERT [103] or RoBERTa [284] by propos-
ing Sentence Embedding Association Test (SEAT). To quantify bias in such models,
SEAT is similar to WEAT in that a permutation test is applied on two sets of groups
and two sets of attributes. However, contextual models need sentences in order to
produce vector representations while the data proposed in WEAT are sets of words.
To overcome this problem, May et al. [303] propose to slot words in those sets into
bleached templates such as "This is a <word>." in order to generate embeddings.

Also based on word associations, Kumar, Bhotia, and Chakraborty [247] design
Gender-based Illicit Proximity Estimate (GIPE), a new metric based on undue stereo-
typical proximities between certain words. For example, receptionist and hairdresser
are neighbor words in the embedding space because they are both stereotyped to be
female occupations. GIPE measures the ratio of such illicit proximities.

(1.2) Likelihood-based. While Cosine similarity works well for static word em-
beddings, and is thus reliable to use in metrics for bias quantification on such word
models (e.g., Word2vec or GloVe), Kurita et al. [248] argue that its quality dwindles
when used for contextual embeddings. To counter this problem, and instead of rely-
ing on representations, Kurita et al. [248] kept the same bias quantification principle
of previous approaches, but replaced vector representations with log-probabilities of
words. Particularly, the method of Kurita et al. [248] extends WEAT and computes
associations between target terms (i.e., demographics such as men and women) and
attribute terms (e.g., science and family). In the original WEAT, associations were
captured with cosine similarity on word representations. Alternately, Kurita et al.
[248] construct templates in the form of "[TARGET] is [ATTRIBUTE]", and fill them
with the data published by the authors of WEAT [59]. Then, the likelihood of male
terms to replace [TARGET] in the above template is declared as the strength of asso-
ciation between men and the attribute of interest; likewise for women or other social
groups. Kurita et al. [248] find that likelihoods work better on contextual models than
representations.

Later, a myriad of research focused on likelihoods and probabilities of language
models to document and excavate social stereotypes [322, 324, 223]. The fundamental
notion of bias in these works is that a stereotyped language model prefers certain social
groups over others given a neutral context. For example, in "[MASK] love cooking",
binary gender bias is cast as the difference in likelihoods for the words Men and
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Women to replace the mask. Two important challenge benchmarks for social bias
have been proposed in the literature: StereoSet [322] and CrowS-Pairs [324].

CrowS-Pairs is organized in pairs of minimally distant sentences, where one bears
more stereotype information than the other. In this context, minimally distant means
that the two sentences differ only in the word describing the demographic. For example,
a test case in CrowS-Pairs may look like {"It was a very important discovery, one you
wouldn’t expect from a female astrophysicist", "It was a very important discovery,
one you wouldn’t expect from a male astrophysicist"}.7 CrowS-Pairs also comes
with crowd-sourced annotations to specify which of the sentence in each pair is more
stereotypical than the other according to the people undertaking the annotation work.
Finally, the authors of CrowS-Pairs [324] propose a metric to quantify social bias using
their published data, and is based on whether likelihoods of demographics in the pairs
match with ground truth. In other words, a model is tagged as biased if it consistently
produces a higher likelihood for the group whose sentence in the pair is considered by
people as more stereotypical.

Instead of pairs, StereoSet uses three sentences per test case; one for the stereotype,
the second for the anti-stereotype, and the third is nonsense and is used to assess the
language modeling capacity of NLP models. The sentences are also minimally distant
in StreoSet, but unlike CrowS-Pairs, they differ in words describing attributes instead
of groups. For example, we pick the following example from the portion of StereSet
that the authors made public: "Girls tend to be more [MASK] than boys." The mask
is replaced by soft to create the stereotype, determined to create the anti-stereotype,
and fish to create the nonsense sentence. Ground truth labels are crowdsourced too.
Similar to CrowS-pairs, the authors of StereoSet [322] proposed their own likelihood-
based metric that quantifies the accuracy of language models to produce likelihoods
that correspond well with biased ground-truth. In StereoSet, there is also another
kind of test cases called Intersentence test cases where bias is measured at the level of
discourse, i.e., how well stereotype flows from one sentence to another. For example,
if the first sentence (context) is "He is an Arab from the Middle East", it is followed
by three different options: "He is probably a terrorist with bombs" (Stereotype), "He
is a pacifist" (Anti-stereotype), and "My dog wants to walk" (Unrelated).8

One criticism usually associated with quantification metrics of both StereoSet and
CrowS-Pairs is that predicting masked tokens from test sentences does not provide
accurate sentence embeddings [223]. In fact, language models favor advantaged groups
which are mentioned more frequently than disadvantaged groups in text corpora used
in training them. To counter this problem, All Unmasked Likelihood (AUL) [223]
is a newer metric that does not mask any tokens and predicts all tokens of the test
sentence, one by one. Stereotypes would have a higher sentence likelihood than less
stereotyped inputs using AUL.

(1.3) Attention-based. Visualizing attention heads of transformer-based text
encoders is an increasingly popular and effective approach to interpret model behav-
ior, especially after the advent of visualization tools such as BertViz [455]. In short,
BertViz is an open-source software to visualize attention head patterns produced by
one or more heads of the model of interest. For each word of a given input sentence,

7We picked this example from the research paper of CrowS-Pairs [324]
8This example is also picked from the paper of StereoSet [322]
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Figure 2.10: Attention patterns of GPT2. We take this figure from the original paper
of BertViz [455]

BertViz shows which other words are more important as in Figure 2.10. The most im-
portant words (higher attention scores) are highlighted in darker color. On the third
column of Figure 2.10, we see that She attends to nurse while He attends to doctor
suggesting that gender biases are encoded in the attention mechanism.

Taking inspiration from the attention visualizations of BertViz, Li et al. [264] pro-
pose a new gender bias metric based on attention scores. From Wikipedia articles, they
extract sentences where two gendered pronouns (e.g., he and she) and one occupation
word (e.g., doctor, nurse, etc.) are mentioned, for example the following sentence
"She accompanied him on stage and on several recordings before becoming a nurse in
1939." Given this sentence and the model of interest, the authors of [264] subtract the
attention score of the occupation word (nurse) on the male pronoun (he) from that
on the female pronoun (She). Then, they swap the genders creating a sentence like
"He accompanied her on stage and on several recordings before becoming a nurse in
1939" and they do the same subtraction. If both subtraction scores have the same sign
(either both positive or both negative), then there is gender bias. Furthermore, the
attention mechanism is shown to introduce more gender bias than embeddings [264].

Despite the promising potential of attention at demystifying why NLP models
exhibit social bias, we are aware of very few works proposing to quantify bias at the
level of attention. Liang, Dufter, and Schütze [274] employ DensRay [112] which is
an analytical method to identify embedding subspaces for certain linguistic features
to show that gender information is not localized but spread across all attention heads
and layers. On the other hand, Mehrabi et al. [307] incorporate attention scores
to traditional fairness metrics such as Statistical Difference, Equality of Odds and
Equality of Opportunity discussed above. In doing so, the results of such metrics
indicate to what extent social bias is encoded in attention. Also, attention has been
used to enhance likelihood-based diagnostics to include the importance of words in
the metrics instead of considering all words as equal. For example, in AULA [223],
individual word likelihoods are weighted by their attention scores before they are
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summed to calculate the overall likelihood of a test sentence.
We believe that attention holds substantial amounts of social stereotypes, and that

one cannot expect fair models by leaving bias in the attention layer unaddressed. Thus,
a major highlight of this dissertation is a new bias measure based on attention weights
that we describe in Chapter 8.

*
(2) Extrinsic Metrics. Given the surging impact that fairness diagnostics may have
on our understanding of model behavior, it is necessary to assess the robustness of
available metrics. However, a growing body of research [161, 14, 42] is now advis-
ing against the usage of previously proposed intrinsic metrics due to many inherent
weaknesses. For one, Aribandi, Tay, and Metzler [14] found that representation-based
and likelihood-based metrics are unstable and fragile. Given the same test data, using
those metrics multiple times results in wildly different findings [14]; e.g., changing only
the initial random seed to train BERT models yields a substantial variance in results
of bias quantification methods such as SEAT or those accompanying StereoSet and
CrowS-Pairs. Also, when BERT is finetuned on a downstream task with the same
training data but with slightly different parametrizations (e.g., learning rate, weight
decay, etc.), the resulting models exhibit very different stereotyping as measured by
likelihood- and representation-based metrics.

Serious pitfalls and inconsistencies have also been reported in stereotype bench-
marks themselves [42]. Both StereoSet and CrowS-Pairs are riddled with ambiguities
and unstated assumptions in their framing of bias. Moreover, these datasets lack a
clear articulation of what is actually being measured. For example, "I really like Nor-
wegian salmon" is expected in StereoSet to capture stereotypes about race while the
sentence is not even about people. Also, stereotypes and facts are often conflated as in
"Most people in Afghanistan are Muslim" which is a true statement but is considered
as a stereotype. Not to mention several labeling and pair construction errors due to
the crowd-sourced nature of the benchmarks. We refer interested readers to Blodgett
et al. [42] for a complete classification and full discussion of the variety of pitfalls that
threaten the validity of StereoSet and CrowS-Pairs as bias measurement benchmarks.

To make matters worse, Goldfarb-Tarrant et al. [161] show that there is no reliable
correlation between intrinsic bias metrics and perceived bias at the level of application.
In other words, NLP models observed to discriminate in their outputs between demo-
graphics may be graced by intrinsic metrics with high fairness scores. Therefore, we
join Goldfarb-Tarrant et al. [161] and solicit the community to drift a little away from
likelihood-based and representation-based bias metrics and instead focus on metrics
at the level of real-world application, most commonly called extrinsic metrics.

Extrinsic metrics declare bias as an unjustified difference in outcome between de-
mographics when outcomes should not depend on identity terms. For example, "There
is a Muslim down there" and "There is a Christian down there" should have the same
sentiment if the sentiment analysis model is unbiased. Or, a coreference resolution
model that has different accuracy scores for male and female test sentences is bi-
ased. Unlike intrinsic metrics, extrinsic diagnostics do not measure bias at the level
of language representation. Rather, they depend on one specific real-world task, and
measure how models’ outputs differ across different social groups. Thus, they are more
trustworthy and reliable since bias is captured where it is most harmful.
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In addition to traditional fairness measures such as Statistical parity, Equality of
Odds and Equality of Opportunity previously discussed in this chapter, and which are
by definition extrinsic metrics, we mention some other important metrics:

• False Positive Equality Difference (FPED) and False Negative Equality Differ-
ence (FNED) [108] where the difference in false positive rates (or false negative
rates) of different groups is computed.

• Average Group Fairness (AvgGF) [200] where the Wasserstein-1 distance between
group-wise predictions is employed. For example, given two sets of test sentences
for men and women separately, the probability of each sentence depicting a
positive sentiment score is used to create two sets of predictions for both men and
women. Then the Wasserstein-1 distance quantifies how much these prediction
distributions vary.

• False Positive Rate Ratio [34] where the ratio of false positives of different groups
is taken.

• Disparity Score [151] which is the absolute difference of F1 scores.

• Perturbation Score Sensitivity (PertSS), Perturbation Score Deviation (PertSD)
and Perturbation Score Range (PertSR) [356] which are the average distance,
standard deviation and range (i.e., maximum minus minimum) respectively be-
tween predictions of original sentences and perturbed ones (i.e., perturbation in
this case refers to replacing one identity term with another).

• Positive Average Equality Gap (PosAvgEG) and Negative Average Equality Gap
(NegAvgEG) [48] apply the Mann-Whitney U test statistic to capture differences
in prediction distributions of the positive (or negative) class for many social
groups.

• Aka et al. [6] found that normalized pointwise mutual information (nPMI) is
better at detecting statistical differences in prediction distributions of several
demographics when ground truth labels are not available.

These extrinsic metrics have been applied to various NLP tasks such as for sentiment
analysis [105], textual inference [100], language generation [413] or to analyze power
dynamics and implications in language [395].

Despite the multitude of existing extrinsic metrics, they share a common formula-
tion. Czarnowska, Vyas, and Shah [89] argue that the vast majority of extrinsic bias
metrics can be expressed using one generalized formula with two parameters: a scoring
function φ and a distance function d. The scoring function calculates a performance
score for every group subset, e.g., prediction scores, F1 scores, accuracy, False Positive
Rate, etc. The distance function calculates the discrepancy in outputs of the scoring
function for different groups. Examples of difference functions are: absolute difference,
KL divergence, Wasserstein-1 distance, Mann-Whitney U test statistic, etc. If Sg1 and
Sg2 are data subsets for two different groups, φ and d are the scoring and distance
functions in use, extrinsic metrics can be generalized into the following formula:

bias = d(φ(Sg1), φ(Sg2)) (2.3)
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Level Category Works in the scholarship

Data

Data Anonymization [504, 332, 430]
Data Equalization [504, 332, 294, 356, 259]

Data Augmentation [513, 302, 356, 471, 415, 422, 288, 107, 405, 139, 378, 119, 362]
Data Selection [54]

Data Combination [332, 430]

Model

Retraining [506, 505, 118, 363, 47, 471, 491, 305, 462, 210, 483, 377, 497, 132, 295, 498, 72]
Finetuning [45, 298, 99, 465, 247, 258, 100, 492, 272, 172, 246, 101]
Transferring [222, 74, 415, 111, 465, 373, 462, 221, 220, 273, 428, 409, 75, 171, 489]
Adapting [333, 257, 124, 484]
Prompting [413, 156, 398, 406, 31]

Table 2.1: Debiasing methods in NLP organized according to our proposed taxonomy

Beside proposing the above general expression for extrinsic metrics, Czarnowska,
Vyas, and Shah [89] presented three strategies to aggregate differences in outcome when
there are three or more social groups, namely (i) Pairwise Comparison Metric (PCM)
which takes groups two by two before taking the arithmetic mean of differences. (ii)
Background Comparison Metric (BCM) contrasts the scoring function for each group
with a background score (which can be that of all groups taken together, or of an
advantaged group). (iii) Multi-group Comparison Metric (MCM) where the distance
function d takes multiple arguments instead of two. Also in Czarnowska, Vyas, and
Shah [89], extrinsic metrics are classified into two broad paradigms: Group fairness
metrics and counterfactual fairness metrics as defined above in this chapter.

One of the major reasons for which NLP researchers and practitioners heavily em-
ploy intrinsic metrics at the detriment of their more trustworthy extrinsic counterparts
is that they are easy to use and are unsupervised. In fact, many tools, libraries and
software packages to measure fairness of NLP models through intrinsic metrics have
been published recently, e.g., AllenNLP [150]. On the other hand, extrinsic metrics are
harder to use since they usually require ground truth labels. For this reason, we ex-
tend the generalization of Czarnowska, Vyas, and Shah [89] and contribute BiaXposer,
an easy-to-use and extensible software package that allows practitioners to easily test
their NLP models using a myriad extrinsic bias metrics for multiple tasks. Users of
our package can easily design their own variants of metrics by implementing their own
scoring and distance functions, as well as use existing ones. To overcome the problem
of labeled data, we equip BiaXposer with a templating mechanism to create many test
cases at scale. More details about BiaXposer can be found in Chapter 9.

2.4.3 Social Bias Reduction in NLP

Being able to measure how much bias is encoded in language models and word embed-
dings enables to track our progress in making NLP models more fair and unprejudiced
towards people. We refer to this practice by "debiasing" or "reducing bias" and there
are mainly two major families of bias reduction methods. In this section, we pro-
pose a taxonomy of existing debiasing methods in the literature that we illustrate in
Figure 2.11 and Table 2.1.
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Figure 2.11: Taxonomy of debiasing methods in the literature

Data-Level Bias Reduction

Assuming that NLP models inherit their biases from the data they are trained on, the
rationale of these methods is to make data encode less stereotype before using it as
a training resource. After analyzing the existing literature, we propose the following
classification of data-level debiasing techniques.

(1) Data Anonymization. Given that social bias is essentially due to mentions of
social groups in training data, these methods consist of replacing all explicit mentions
of groups with anonymized entities such as GROUP [430]. For example, "Mexicans
love tacos" becomes "GROUP love tacos". Consequently, there is no mention of any
demographic in data, thus they cannot be associated with attributes or behaviors.
Zhao et al. [504] applied anonymization to debias coreference resolution models (i.e.,
disassociating genders from occupations) while Park, Shin, and Fung [332] used it for
hate speech detection. On the downside, these methods create unnatural sentences
that may reduce the utility of the final models. Plus, the models would lose all notions
of human society, which does not reflect the true essence of natural language and may
result in poor performance where the downstream task depends on identity terms of
groups.

(2) Data Equalization. These methods promote fairness in data by enforcing par-
ity in the number of group mentions across the dataset. This is either achieved by
discarding data instances (e.g., iteratively discard sentences that mention males (or
females) until there are as many male instances as there are female instances), or
swapping group mentions until parity is reached. For example, gender swapping was
used to debias coreference resolution systems [504], hate speech [332], sentiment clas-
sification models [356] or knowledge graphs [294]. However, equal number of group
mentions is a poor indicator to fairness in data as long as it is possible to have as
many sentences associating Whites with competence as there are associating Blacks
with crime. Despite the equal number of mentions in this anecdotal example, there
are still stereotypes in the data for both groups. Other works [259] went further to
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equalize not only the number of mentions, but also the number of associations between
groups and attributes, e.g., the number of male doctors and female doctors must be
the same. However, blindly swapping runs the risk of creating absurd sentences such
as "He was pregnant".

(3) Data Augmentation. Similar to data equalization techniques, parity can be
reached not by discarding or modifying data instances, but by augmenting them with
new data. Counterfactual Data Augmentation (CDA) [513, 471, 415, 288, 405] is the
most popular data curation technique owing to its simplicity and intuition [306]. In
short, CDA equalizes the number of associations between social groups and attributes
by adding new instances to the training data. These instances contain the same text
and the same label as old instances except for the group mention which is swapped
by another. For example, if the data contains "A man is driving a truck", CDA
adds another instance to the data by replacing man with woman or a non-binary
gender. This is done to prevent the model from learning spurious associations between
males and driving trucks. While most work in CDA rely on rule-based perturbation
systems [302, 356, 513, 471, 107, 378, 119, 288], they can sometimes produce unnatural
sentences. On the other hand, Qian et al. [362] alleviate the rigidness of rule-based
perturbations by proposing to train a generative neural model on the task of generating
natural perturbations. Specifically, Qian et al. [362] collect a large dataset of human-
annotated text perturbations that is subsequently used to train a seq2seq generative
model, aka the perturber. The perturber takes as input (i) a snippet of text, (ii) a
demographic word to be replaced and (iii) the target demographic. Then it generates
a new sentence mentioning the target demographic while keeping the same meaning
of the original input. The major criticism around CDA is the exponential swell in
data size that it inflicts. This point is especially alarming when CDA is used to treat
bias types with many groups such as nationality or occupation. So, CDA poses serious
concerns regarding the carbon footprint and energy usage, let alone the potential threat
of destabilising training.

In addition to the data itself, labels can also be augmented. For example, Stafanovičs,
Bergmanis, and Pinnis [422] mitigate gender bias from machine translation systems
by augmenting every word in training data by its gender label. Another line of data
augmentation work alludes to train NLP models only on anti-stereotypes [139], which
are generated by replacing the demographic mention in a stereotypical snippet of text
by a disadvantaged social group. These are selected based on findings from surveys in
psychological studies [131, 86, 251, 127]. On the downside, this method can backfire
especially when the stereotype that is in opposition to the generated anti-stereotype is
not encoded in the text encoder. This makes the final model biased toward minorities,
but not fair.

(4) Data Selection. Instances in training data introduce varying levels of social
stereotype into the final downstream NLP models. The essence of data selection
methods is to identify which training instances cause the most bias, then remove
them. Brunet et al. [54] trace the origins of bias in data by approximating the effect
that removing a small portion of the data has on the overall fairness of NLP models
using influence functions from robust statistics [83, 243]. In our work, we propose
a novel data-level debiasing technique in Chapter 6 that falls under this category of
methods. However, we differ from the work of Brunet et al. [54] in their need to train
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a separate model in order to detect which data instances are biased. In contrast, we
use pretrained language models as black boxes without further finetuning.

(5) Data Combination. Unbiased datasets for a given NLP task might be scarce.
Nevertheless, they may exist in relative abundance for other tasks [430]. Data Com-
bination methods are a kind of multi-task learning methods where the NLP model is
trained on two tasks: learn the task at hand from the corresponding (maybe biased)
data, while learning bias-free representation from unbiased data related to other tasks
[332, 430]. We count this strategy as data-level since models are not changed to ac-
count for fairness. Rather, most debiasing happens at the level of data where datasets
are combined to take advantage of the task-awareness of one and the lack of social
bias of the other.

*****

Model-Level Bias Reduction

Although manipulating data prior to training helps in reducing social biases from
final models, some other unfair characteristics may arise and plague model predictions
[464]. Also, data-level debiasing techniques may not always be possible especially
when huge amounts of data are produced to calibrate associations between attributes
and demographics, which makes training on such voluminous data overly expensive, if
not impractical. To overcome these challenges, one might need to manipulate models
instead, which is the focus of this section. We propose a taxonomy of model-level
debiasing techniques divided into five sub-categories:

(1) Retraining. By retraining, we refer to debiasing methods that cater for fairness
during the main training procedure. In other words, if a NLP model is exposed as
prejudiced, this class of methods claims to retrain it from scratch with an additional
focus on fairness. The most popular form to ensure fairness in this case is through
optimization, where loss functions are augmented with a fairness regularizer that dic-
tates how the model’s weights should be updated in each iteration in order to learn
the task without learning spurious demographic associations [210]. Usually, fairness
regularizers manipulate language representations to decouple them from biased sub-
spaces, e.g., related to gender, race, age etc [505, 72, 305, 363, 47]. For example, Zhao
et al. [505] proposed Gender-Neutral Global Vectors (GN-GloVe) by adding a new
constraint to GloVe’s objective function such that gender information is confined in a
sub-vector. GN-GloVe maximizes the l2 distance between gendered sub-vectors while
it minimizes GloVe’s original objective.

Traditional general-purpose regularizers such as Dropout to counter overfitting
[421] can also be used to increase fairness. Indeed, Webster et al. [471] hypothesize
that one cause of bias is that models overfit to latent prejudiced associations in train-
ing data. Thus, reducing overfitting using Dropout constitutes a reasonable debiasing
strategy. Webster et al. [471] show that only tuning the ratio of Dropout decreases
social biases from models better than CDA in some cases. Beside optimization through
regularizers, other methods can be used to inject fairness constraints while training
new models [506]. Adversarial training is a possibility where two models are used: one
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is trained on the task of interest while the second generates adversarial examples to
make the first model have a hard time relying on demographic information. Adver-
sarial training in NLP is used to create text embeddings that are bad to predict the
demographic variable while good at the target task [118, 491, 462, 483, 377, 497, 132,
295, 498, 334].

Even though retraining approaches strive to achieve fairness from the beginning,
they suffer the following limitations: (i) Extra annotations in data about demograph-
ics are required in order to optimize for fairness. (ii) New optimization objectives
may clash with older ones and prevent models from reaching optima with regards to
performance on the target task. Thus, retraining incurs a disturbing trade-off be-
tween fairness and accuracy. (iii) Retraining wastes previous computations, as it is
not possible to re-use trained albeit biased models.

(2) Finetuning. NLP models are incurring increasing demands for data and compute
to train them effectively. More often than not, retraining from scratch to ensure
fairness is not possible, hence the notion of finetuning where parameters of models are
set to a state of previous training procedure and updated from there [334]. Finetuning
refers to debiasing approaches that adjust part or all the weights and parameters
of biased models to make them forget prejudiced associations between social groups
and attributes. Thus finetuning becomes attractive when computational resources are
scarce.

The seminal work of Bolukbasi et al. [45], which was the first to propose the con-
cept of reducing gender bias from word embeddings, is a finetuning approach in spirit
where embeddings of words are adjusted such that their projections on a gender di-
rection are minimized. The gender direction is assumed to capture all information
about gender in the embedding space, and is constructed manually by taking the first
principal component of difference vectors relating to gendered pairs (e.g.,

−→
he − −→

she,
−−→man−−−−−→woman,

−→
boy−−−→

girl...). Minimizing projections in this case refers to minimizing
the information shared by gender-neutral words and the gender direction. Bolukbasi et
al. [45] propose two distinct finetuning methods to do that: Hard-Debias which projects
gender-neutral words onto a subspace that is orthogonal to the gender direction, and
Soft-Debias which applies a linear transformation that (1) preserves pairwise inner
products between word vectors, and (2) minimizes the projection of gender-neutral
words on the gender direction. Both Hard-Debias and Soft-Debias require identifying
which words in the vocabulary are neutral to gender and should therefore be debiased.
To do that, the authors of [45] train a Support Vector Machine (SVM) [181] for debi-
asing decisions. Therefore, if the SVM predicts a word to be gender-neutral, it will be
debiased.

Many subsequent works [298, 465, 222, 247, 99, 258, 100] utilized the notion of
projecting word vectors on a gender direction to debias them. Manzini et al. [298]
generalized Hard-Debias and Soft-Debias to cater for multiclass bias types such as
race, religion or non-binary gender. Instead of finding a bias direction, they propose
to project neutral words on bias subspaces which are constructed by taking the first k
principal components of difference vectors. Also relying on linear projections, Kumar,
Bhotia, and Chakraborty [247] alter the spatial distributions of word embeddings with
attraction and repulsion mechanisms. The intuition behind repulsion is that words
which are clustered together due to stereotypical constructs must be disassociated.
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For example, −−−→nurse and
−−−−−−−−→
receptionist are semantically dissimilar but stereotypically

close to each other because they are both thought of as feminine occupations by em-
bedding models. Consequently, they have to be repulsed from each other. Attraction
on the other hand, minimizes the loss of semantic information by attracting each
word to its new vector. Causal inference has been used to debias word embeddings
[492] by utilizing the statistical dependency between gender-definition and gender-
neutral words. Debiasing is conducted by subtracting undesired gender information
from embeddings of gender-neutral words. Other works to mitigate social bias from
word vectors through finetuning employ various techniques such as visualizing how
adjustments to the embedding space affects fairness [172], gyrovector-based formalism
[449] to debias hyperbolic word embeddings [246], or orthogonal subspace correction
by applying geometric rotations such that useful information and bias information are
disentangled and orthogonal to each other [101].

As for large-scale transformer-based text encoders, finetuning is popular for debi-
asing too. At first glance, extending techniques from static word embeddings to debias
large text encoders is reasonable. For example, Liang et al. [272] extend Hard-Debias
[45] by projecting sentence representations on a gender direction. We remind that
the difficulty in extending Hard-debias is in the creation of the gender direction itself,
where there is a need to compute word representations for male-definition and female-
definition words. However, text encoders produce representations for sentences, not for
words. Liang et al. [272] solve this problem by sampling sentences from existing cor-
pora where these identity words are mentioned. Then, they take the mean embedding
of sentence representations to have a proxy representation for every definition word.
Debiasing is finally conducted exactly as in Hard-debias. Similarly, Dev et al. [100]
extended linear projections onto textual inference models finetuned on transformer-
based architectures. In Chapter 8, we propose a novel debiasing method that finetunes
attention weights instead of embeddings to increase fairness.

Despite the appeal of finetuning as a general approach for bias mitigation, the main
limitation is the risk of catastrophic forgetting [304, 233, 257] where the additional
optimization for fairness might lead models away from optima, and makes them forget
the predictive task learned beforehand. Also, as in retraining approaches, finetuning
requires the availability of annotated datasets to drive fairness optimization. Not to
mention the large carbon footprint incurred by finetuning if applied on very large
models such as GPT3 [53].

(3) Transferring. Similar to finetuning, model weights and parameters are updated
without retraining from scratch. On the other hand, and in contrast to finetuning
where guided updates are implemented onto the learned parameter space directly, in
transferring approaches, model weights and parameters are first transferred into a
latent space where fairness is easier to introduce without much damage to the original
predictive performance. The main motivation behind the use of new latent spaces is
the liberty to mould the latent space as one pleases with little worry about breaking
the original model. In fact, one can apply adversarial perturbations to the new space
[462], disentangling the space into smaller interpretable dimensions [415, 462], linear
projections [222, 221, 220], clustering [111] etc.

Transferring the pre-learned predictive ability to a latent space is traditionally
conducted with an autoencoder [399], where an encoder model projects embeddings
from the old space to the new one, while the decoder does the reverse operation to
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ensure that the latent space has enough semantic information to be able to reconstruct
the old parameter space. To remove gender bias from word embeddings, Kaneko and
Bollegala [222] train an autoencoder to learn latent word representations that keep
gender information for gender-definitional words (male or female) but remove it from
gender-neutral words by linear projections on a latent gender dimension. This method
requires annotated data to declare which words are charged with gender polarity and
which are gender-neutral. Kaneko and Bollegala [220] extend the debiasing technique
of Kaneko and Bollegala [222] into sentence embeddings where training data (i.e.,
individual words and their gender connotations) are contextualized into sentences by
sampling them from existing corpora. For example, to get a sentence embedding for the
word father, Kaneko and Bollegala [220] extract sentences where the word is mentioned.
Then, they compute the vector representation of each sentence and transfer it into the
new latent space with an autoencoder. Finally, bias is removed by minimizing the
projection of the latent sentence representations on bias dimensions. In contrast,
Kaneko and Bollegala [221] do not require annotated data for words. Instead, they
leverage dictionary definitions to know about which words must be debiased. Debiasing
in this case is similar to [222, 220] where orthogonality of latent representations with
bias subspaces is aimed for.

Using autoencoders is not the sole technique to switch between embedding spaces.
For example, Wang et al. [465] argued that discrepancies in word frequency significantly
impact the geometry of word embeddings and can twist the gender direction computed
in Hard-Debias [45]. Consequently, they proposed to project word embeddings into
an intermediate subspace by subtracting components related to word frequency before
they applied Hard-Debias. Similarly, Ravfogel et al. [373] suggested a data-driven
approach to learn a set of gender directions on which to project word embeddings.
Instead of relying on manual gendered word lists, they trained a linear classifier and
iteratively projected word vectors on the null space of the classifier’s matrix. Latent
spaces spanned by the null space of classification matrices inspired many methods to
debias large-scale text encoders [273, 428].

Contrastive learning is also heavily used to finetune latent spaces of language mod-
els for fairness [71, 74, 409, 75]. In FairFil [74], stereotypical and anti-stereotypical
sentences are projected onto a latent space through an encoder where they are con-
trasted to teach the encoder to ignore differences between them. In particular, Cheng
et al. [74] automatically generate anti-stereotypes from stereotypical sentences in train-
ing data, and then encourage the semantic overlap between these contrasting sentences
by maximizing their mutual information. As for debising method proposed by Shen
et al. [409], sentences with the same label are encouraged to be close to each other
in the embedding space while sentences that share the same demographic attributes
(i.e., they both mention the same social group) are drifted apart to ensure that de-
mographic features have maximum spread over all label class regions, thus minimizing
their impact on predictions.

Other debiasing strategies disentangle latent representations into several inter-
pretable dimensions [415]. Disentanglement means separating features in the latent
space to be able to manipulate them independently and effectively. Disentanglement
is known to offer many advantages such as increasing interpretability [184], catering
for fairness [286] or boosting accuracy [285]. For the sake of our discussion, Shin et al.
[415] separate gender latent information from the rest of the semantic latent represen-
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tation. Then they update the gender component to generate counterfactual examples
having the same semantic value but opposing stereotype direction. Debiasing in this
case is formulated as taking the mean of original and counterfactual latent represen-
tations. In Wang et al. [462], social bias is dynamically disentangled from the main
text representations with adversarial attacks. Then, models are trained without the
bias components.

When we say transferring in our taxonomy, we also refer to methods that transfer
knowledge from one model to another in a knowledge distillation setting [186, 166]. In
this scenario, a student model copies predictions of a teacher model while being much
lighter in both complexity and the number of optimizable parameters. Specifically in
the scope of fairness in NLP, the student learns to grasp the teacher’s predictive knowl-
edge of the task without inheriting its unfair nature. In the literature, this is achieved
by equipping the student with a fairness loss function in addition to the one that al-
lows matching the teacher’s predictions [171]. However, Xu and Hu [489] show that
merely using knowledge distillation to compress unfair teacher models without addi-
tional regularizers or loss functions contributes in mitigating bias. In this manuscript,
we propose two different debiasing methods: one using disentanglement to separate
gender from general semantics (Chapter 7) while the other uses knowledge distillation
to preserve the original semantics of text encoders (Chapter 8).

The advantage of transferring methods for debiasing lies in more freedom when
manipulating models in comparison to finetuning. However, transferring also suffers
from the obligation to have annotated data. Besides, transferring incurs more com-
putational resources to enable transfer learning, either by training autoencoders from
scratch, or in the case of knowledge distillation, to copy the teacher’s knowledge into
the student’s. To make matters worse, knowledge distillation becomes impossible when
teacher models are too large to fit in memory, or when they are hidden behind APIs,
e.g., GPT3 [53].

(4) Adapting. This group of debiasing methods introduces architectural changes to
text encoders by adding new modules to remove social bias. Instead of updating
weights and parameters of the original models, these techniques optimize over the
extra layers and modules to produce fair representations and predictions. By adapting
the architectures of models, one can freeze the original model’s parameters, which
prevents catastrophic forgetting of the task and model degradation [334]. Also, the
new added modules are usually much lighter than models themselves, so optimizing
them is faster and computationally efficient [257].

Specifically, Lauscher, Lueken, and Glavaš [257] dwell on the large carbon foot-
print that simultaneously finetuning all weights engenders. So, they propose to inject
adapters [193, 348] which are lightweight neural layers between the large layers of
the original text encoder. These small injected layers are optimized to modulate the
output of text encoders and make them fairer without much loss to their semantic rep-
resentativeness. Alternatively, other works freeze the original word embedding models
and debias them by adding extra tunable dimensions. For example, Fatemi et al.
[124] add a few dimensions to the original embeddings, and debiasing is conducted by
finetuning only the added weights so that the old ones do not forget the task. On
the other hand, Wu et al. [484] use a specialized module to create new embeddings
from the original frozen ones. Then the new ones are updated such that the com-
bination of both becomes unbiased. Finally, another adapting approach [333] adds
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separate components to detect the presence of sensitive demographic attributes in a
given input, then rectifies only those problematic attributes. The main limitation of
these approaches is that architectural modifications produce results of less quality than
finetuning methods despite being largely faster and lighter [334].

(5) Prompting. In this category of approaches, a prompt is added to inputs to con-
trol model predictions without modifying their weights and parameters. We define
a prompt as a sequence of tokens (either understandable by humans or not) that is
added to the start of conventional inputs. Recent investigations found that language
models are vulnerable when inputs are altered by specific prompts, and are susceptible
to produce different outputs and predictions altogether compared to when the prompt
is not used [460, 53, 501]. Going from this premise, one can design and choose prompts
specifically to make text encoders fairer and less prejudiced.

For instance, Sheng et al. [413] control the stereotypes and sentiment polarity
contained withing the outputs of language generation models by searching for specific
prompts. As an example, given the question "What was Shanice9 known for?" and
without using prompts, a dialogue system generates the following answer "Fighting
people?" due to stereotypes associating Blacks with violence [298]. However, after
adding the prompt "MITkjRole Advent agile pace" at the beginning of the input, the
model’s output becomes "She’s a professor at MIT and she was a professor at NYU."
The above prompt has been found by a prompt search algorithm: It starts with a
default prompt of a given length (e.g., "the the the the the"). Then , the tokens in
the prompt are iteratively replaced by other tokens in the vocabulary such that the
combination of the prompt and the input optimizes a preset fairness objective. Similar
techniques are used to discover specific prompts helping to debias several NLP models
such as toxicity detection [156], automatic translation [406] or vision-language models
[31].

Interestingly, Schick, Udupa, and Schütze [398] use prompts to provoke language
models and force them to generate extremely prejudiced predictions. They leverage the
latent knowledge of language models about their own hidden stereotypes and propose
Self-Debias : a zero-shot method to mitigate biases, that requires neither additional
training nor data. Informally, Self-Debias adds suggestive prompts to models that
compel them to generate discriminatory and offensive content. For example, using a
prompt such as "The following text discriminates against people because of their race",
text encoders and language models use their inherent racial stereotypes to generate
continuations to these prompts, which are expected to be riddled with prejudice in
order to conform with what the prompt suggests. To debias the model, Schick, Udupa,
and Schütze [398] reduce the likelihoods of words belonging to the model’s stereotyped
continuation. In doing so, less stereotyped words become likelier to be generated at
inference time.

The conceptual difference between adapting and prompting categories is that adapt-
ing methods alter models’ architectures while prompting methods alter their inputs.
Although efficient in both fairness and compute, prompts add undesired contexts which
may confuse language models especially when the prompts contradict the initial con-
text [334].

9Shanice is a typical name for Black women
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Introduction

Navigating the space of items, products and services is commonly enabled by the use
of attributes. In this context, searchers usually select which attributes match their
search preferences, e.g., Italian restaurants, comedy movies or hotels with gyms in-
side. The very possibility of selecting from a set of attributes, be it by checking boxes
in a web interface or including filters in search queries (e.g., as in SQL), implies that
these attributes are limited to a predefined catalog, and that there is sufficient factual
evidence as to which items possess which attributes [366]. Search with such a limited
set of objective attributes has been found to fail for users who do not know how to
express their wants and preferences using a rigid vocabulary [21, 366]. Therefore, au-
tomatic search and recommendation systems evolved into being conversational, where
users can interact with systems using their own terms.

The incorporation of language to search raises a few conflicts. On one hand, search
has been traditionally fueled by objective and factual filters only. On the other, lan-
guage is inherently subjective, and users are expected to converse with rich, personal
and possibly ambiguous vocabulary. When we make decisions, recent studies show that
we are ensnared by subjective signals manifesting in other people’s past experiences
instead of relying solely on crude objective data [174, 271]. For example, when we set
out to choose between two restaurants, we are more attracted by the one described as
serving luscious delectable food, a place of merriment and glee than the one offering
for description only a list of facts consisting of address, cuisine type or price range
[319].

When we say subjective in the first part of this dissertation, we refer to the subset
of attributes that cannot be measured or defined precisely. Unlike their objective
counterparts whose values are based on facts and are mostly undeniable, subjective
attributes are not grounded in factual evidence or absolute truth. Rather, their values
are influenced by feelings, personal beliefs and experiences. 10 Therefore, they can
be a root of disagreement, e.g., while a restaurant is quiet for one, it may not cut it
for another hyper-sensitive person. Owing to the towering importance of subjectivity
in the decision making process of people when searching, and to the curious habit of
language to lean toward the subjective, we cast this kind of subjectivity as desired.
In other words, we aim to enhance NLP models and automatic tools operating with
language with the capacity of making sense of subjectivity.

Often, useful experiential and subjective information is buried under an immense
load of online reviews, dispersed chaotically on multiple web pages and repositories
[174]. Failing to infuse models and search systems with subjectivity, online searchers
must pore manually over many reviews, until they get exhausted from the tedious
task of reading them all then comparing between them; usually ending up in sub-
optimal decisions. As a research community of computer science, our duty has long
been that of facilitating the consumption of software and digital services by end users.
However, very little effort has been directed at exploring approaches to fuel online
decision making with subjectivity. Among the few works that we are aware of, we
count the following.

The closest resemblance to subjectivity that existing work tries to take advantage
of is the notion of ratings. Specifically, star ratings represent aggregated user opinions

10https://dictionary.cambridge.org/us/dictionary/english/subjective
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about online entities or services [494]. Rating-based techniques do not consider reviews
content but they rather provide aggregated numerical or symbolic values which are
hard for users to express accurately. For example, a star rating of three out of five
might give the impression that a restaurant is average in all aspects of its operation
but in reality, it may serve delicious food while it employs rude waitstaff, which made
the reviewer balance out her final rating.

Another line of subjectivity-related research translates numerical attribute values
to pseudo-subjective linguistic variations (e.g., translation of prices to linguistic val-
ues such as {"cheap", "fair", "costly", "expensive"}) using insights from fuzzy logic
[240, 96]. Nonetheless, these methods subjectivize objective attributes, i.e., they work
only for objective factual attributes which can be described with numbers (e.g., price,
number of pages in a book, autonomy of a laptop battery) by transforming them into
pseudo-subjective textual forms. On the other hand, it is unclear how fuzzy logic
can be leveraged to treat intrinsically subjective attributes which constitute the vast
majority of online subjective information.

It is easy to assume that existing Information Retrieval (IR) systems [280] nat-
urally cater for subjectivity by highlighting reviews which are described with terms
that match those in the user query. This common assumption stems from the keyword-
based search nature of IR systems, i.e., if a user includes delicious food in the query,
IR is capable of retrieving reviews where this attribute is mentioned. Despite the ex-
traction benefit that keyword-based search enables, it also presents a severe limitation.
While capable of detecting delicious food and its synonymous variations in reviews,
it is unable to capture the full variety and nuance that language offers. For example,
IR is scarcely able to assess that other linguistic variations such as phenomenal menu,
tasty slices of pizza or very good prawn noodles are closely related to the notion of
food deliciousness. In the same line of argument, there is no distinction in IR between
objective and subjective information, hence no treatment of the expected disagreement
or ambiguity that subjectivity administers. It is now argued that purposefully model-
ing subjectivity into data models and algorithms is necessary for effective handling of
subjective attributes [174, 271, 366]. Finally, IR is document-based, meaning that it
does not aggregate over all reviews of a given item. Following the example above, if a
restaurant has only one fraudulent review saying that it serves delicious food while all
other reviews state otherwise, IR with its keyword-based search nature recommends
the restaurant.

In the first part of this manuscript, we propose methods to augment NLP models
and conversational search systems with desired forms of subjectivity. The part com-
prises two chapters. Specifically, in Chapter 3, we present novel methods to extract
subjective information from online reviews using different techniques such as adversar-
ial training and data programming. Then, we apply our proposed extraction methods
in the context of conversational search services in order to augment them with sub-
jectivity awareness. We evaluate against IR systems and show that our methods are
better. Since search requires a measure of similarity to compare between subjective
attributes in reviews and in user queries, we propose in Chapter 4 a new similarity
model that takes into consideration subjective and conceptual relationships between
subjective attributes we want to compare. Experiments demonstrate that it is also
necessary to model subjectivity into similarity functions used in search systems.
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Chapter 3

Extracting Subjectivity From Text

The ubiquity of automatic search and recommendation systems has caused the rapid
emergence of conversational search agents which took the human-machine interaction
to unprecedented levels of ease, using natural language as a communication medium.
Given the liberty and expressiveness that natural language enables when issuing a
search query, users are progressively switching to experiential search, providing utter-
ances that are intrinsically subjective such as looking for a restaurant with a romantic
ambiance, a dress of cheerful colors, or a kid-friendly park. Current Web services are
unfortunately unable to decipher the subjective signals present in user utterances and
only support objective and factual attributes that are listed in item or service descrip-
tions (e.g., address, price or weight). In this chapter, we propose to represent subjective
knowledge in reviews with the notion of subjective tags. We describe an end-to-end
pipeline to automatically extract such tags from online reviews. Then, we augment
existing task-oriented search chatbots with the capability to answer subjective queries
using subjective tags under the hood. Experiments show that the proposed techniques
outperform existing information retrieval systems and the search mechanisms provided
by well-known web search services such as Yelp.

3.1 Introduction

Today, the Web is considered by many as the major source of knowledge. Over time,
it changed its shape from an unstructured web of documents to a web of structured
data [350]. Consequently, technologies for information retrieval, knowledge graphs and
semantic knowledge representation profited from this new-found structure to enable
the rise of semantically-rich search applications based on data of the Web. As auto-
matic search systems monopolized mundane search tasks, users become increasingly
demanding with regard to how easy it is to use such systems. From complex interfaces
with multiple forms and check boxes, they evolved to operate through conversational
interaction. Conversational recommender and search technologies allow users to com-
municate their intent naturally and directly. However, we would expect open-ended
descriptions using rich language to be ambiguous, incomplete and highly subjective
(e.g., cheap battery or luxurious spa). On the downside, the current generation of con-
versational search agents does not handle subjective information users ought to include
in their utterances and often ignores them, leading to user dissatisfaction [169].

At a fist naive glance, fueling online search with subjectivity seems not to be a
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serious complication. An easy solution is to pick desired subjective information about
items from the Web. However, if one was to pay a closer look at the nature of structured
data present in the Web, it would be revealed that most such data is about factual
knowledge, e.g., address of a hotel, autonomy of a laptop, etc. are all ready to use
information easily exploited by existing retrieval technology [350]. In stark contrast,
subjective knowledge is much harder to reason about, let alone represent and retrieve
in an accurate and efficient way. Nowadays, most subjective information is trapped
within loads of unstructured reviews, commentaries and news articles often in the
form of free unpractical text, beyond the reach of current retrieval systems based on
queryable attributes.

Given the inherent subjectivity in natural language, and that search and recommen-
dation systems are becoming increasingly conversational, modeling subjectivity takes
on escalating importance [366]. However, addressing subjectivity in online search intro-
duces several new challenges. In the following, we briefly reiterate over some research
challenges of attribute subjectivity identified by Radlinski et al. [366], and describe
how we propose to solve them in this chapter.

Representing Subjectivity. The most important notion about catering for sub-
jectivity is how to represent subjective attributes. There are mainly two methods of
representation: (1) consider subjective attributes as independent concepts that can
be mapped to items; or (2) treating them as inherent properties of items [366]. In
this work, we adopt the first class of representation since a subjective attribute can be
shared by multiple items or entities on the Web. In order to subjectively characterize
those, we introduce the concept of subjective tags in this chapter. Briefly stated, a
subjective tag describes one subjective attribute, and is made of an aspect and an
opinion.

Definition 1 Subjective Tag = Aspect term + Opinion Term

The aspect term denotes the feature being described and the opinion term charac-
terizes this feature. For example, delicious food is a subjective tag wherein food is the
aspect while delicious is the opinion. This simple formulation allows for a wide space of
other subjective tags such as romantic ambiance, long-lasting battery, vibrant-colored
dress, fast service etc. We intend to mark each online item by a set of subjective tags
extracted from its reviews. The use of tags provides a powerful mechanism to organize,
navigate, summarize, match and understand subjective information online.

Uncovering Subjectivity in Data. Radlinski et al. [366] presume that the import of
subjectivity in recommendation and search must take root from data. Nevertheless, as
was stated earlier, subjective data is unstructured, messy and hard to exploit. In this
chapter, we propose an end-to-end solution to automatically extract subjective tags
from raw text, e.g., reviews. Following previous effort [271], we formulate the task of
extracting subjective tags from a given input sentence as a two-stage process: tagging
and pairing, as illustrated in Figure 3.1. Each word in the sentence is first tagged as
being an aspect (AS), an opinion (OP) or neither (O). Then, every aspect term gets
paired with its corresponding opinion term to build the set of subjective tags from
the input sentence. In the Figure’s example, the extracted subjective tags are really
good food and a bit slow service. Given that natural language is very nuanced and
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Figure 3.1: Token Tagging and Pairing

intricate (i.e., the same subjective information can be expressed with various phrases,
e.g.,"The food is phenomenal", "Very tasty plates of food" and "Really good food" all
denote the deliciousness of food), the tagging step is subject to complex variations of
language. Therefore, we augment our tagging model with domain knowledge [490] and
adversarial training [163, 318]. As for pairing, we propose two novel heuristics, one
based on syntactic parse trees [237, 238, 327], the other on the attention mechanism
[196, 23, 452]. Then, we use these heuristics as labeling functions to automatically
generate a labelled dataset to train a supervised model for pairing, following guidelines
from the data programming paradigm [372, 22].

Metrics and Methodology. After the definition of subjective attributes, they need
to be effectively exploited in search. In this chapter, we introduce SACSS (Subjectivity
Aware Conversational Search Service), consisting of a Natural Language Understand-
ing (NLU) framework that augments conversational search agents with the ability to
query for subjective attributes. SACSS automatically extracts subjective tags from re-
views in an offline mode, and marks each item with the set of extracted tags. We store
these tags in an inverted index data structure [296]. In this setting, online searchers
can include subjective preferences in their utterances. SACSS extracts these prefer-
ences in the form of subjective tags, then compares them with tags stored in the index.
Finally, SACSS ranks search results based on degrees of truth, i.e., how much multiple
reviews about the same item agree on describing the item with a given subjective tag.

Learning Personalized Semantics. Unlike previous work [271, 241] who identified
the set of all subjective attributes to be handled by their systems beforehand, we
do not impose any restriction on the nature or the number of subjective tags to be
included in SACSS. Instead, we design SACSS in a way to learn and cater for new
subjective tags as it interacts with users. Part of this accomplishment owes to the
simple formulation of subjective tags (i.e., concatenation of an aspect and an opinion)
that captures a wide spectrum of possible subjective attributes and variations. Thus,
our subjective system does not impose any preliminary study to constrict the scope of
subjectivity to only a few filters as is done in previous work.

To summarise, we make the following contributions in this chapter:

• We propose the notion of subjective tags to represent subjectivity in search.

• We provide a novel subjective tag extraction pipeline that is robust against
variations of natural language. The first step is Tagging and it labels each word
in a sentence as an aspect, an opinion or neither. We train the tagging classifier
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in an adversarial fashion, wherein the adversary adds informed perturbations
to the original sentences. This allows the tagging classifier to learn different
variations in language and update its parameters accordingly.

• We propose two different pairing heuristics to match aspects with their opin-
ions in order to construct subjective tags. Then, we use the data programming
paradigm to train a pairing classifier using data automatically generated by our
heuristics.

• We introduce SACSS, a framework that augments task-oriented dialog systems
with subjective filters and a subjective index. Each subjective tag in the index
is mapped to a list of reviews and items/entities (e.g., restaurants, books, hotels,
etc.).

• We evaluate the performance of the proposed techniques using crowd sourced
data. Experiments show that SACSS provides better results than IR systems.
Besides, the tagging classifier improves upon state of the art by up to 4.93% in
F1 scores while the supervised pairing method adds 3.03 points in accuracy.

We structure this chapter as follows: We describe the tagging model in Section 3.3
and pairing methods in Section 3.4. Then, we give details about SACSS and how it
handles subjective tags for online experiential search in Section 3.5. After that, we
present our experimental evaluations in Section 3.6. We wrap up the chapter with a
general discussion of limitations and future work in Section 3.7.

3.2 Related Work

The work that we describe in this chapter lies at the crossroads of two areas: As-
pect/Opinion Extraction and Subjectivity search.

3.2.1 Aspect Opinion Extraction

Aspect-Based Sentiment Analysis (ABSA) is a sub-field of NLP whose main task is
to extract aspect terms from free text [280]. This task is sometimes augmented with
identifying the sentiment of extracted aspects as having either positive, negative or
neutral connotations. Extracting opinions along with aspects is a recent addition to
ABSA, and has not been catered for before the proliferation of neural networks into
NLP.

Existing aspect and/or opinion extraction techniques from the literature can be
classified into three distinct classes: rule-based, feature-engineering-based and deep-
learning-based [466]. (1) In rule-based approaches, aspects and opinions are extracted
from text using a limited lexicon, e.g., consider a given term within a snippet of text
as an aspect if it belongs to a pre-arranged list of terms [197, 198]. Such lexicons can
also include polarity and sentiment information for each aspect and/or opinion word
without looking at the contexts in which these terms are mentioned. (2) Feature-based
approaches [216, 266] train a classifier to extract the aspect terms with manually de-
fined linguistic features such as POS tags, syntactic parse trees, or other semantic
features. Both rule-based and feature-based solutions are labor-intensive and highly
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demanding in terms of effort and time. (3) Deep-learning-based approaches [283,
467, 466], in addition to exhibiting superior performance, reduce the manual burden
required for ABSA and can easily be extended to extract opinion terms as well. How-
ever, this extension brings along another problem, which is deciding to which aspect
in the text an opinion term must be linked to. Several works use different models
to enable this, e.g., recursive neural networks [467], or attention-based architectures
[466, 271]. In this work, we use BERT [103] as an embedding layer along with a
BiLSTM-CRF classification model to classify each term into either aspect, opinion or
none. Also, and to the best of our knowledge, we are the first to leverage adversarial
training to handle potential variations in natural language in the task of ABSA.

3.2.2 Subjectivity Search

Despite the overwhelming importance of subjective information in the decision making
process, relatively little effort focused on understanding and measuring the effect of
subjectivity in user decisions [271]. This task has been traditionally delegated to
standard recommender and information retrieval systems which provide search based
on keywords and synonym expansion [296, 404], or to systems based on fuzzy logic to
translate objective facts into subjective phrases [496, 240, 389, 208]. The recurrent
example of fuzzy search is price which is mapped to a set of subjective phrases such as
{"cheap", "fair", "costly", "expensive"} depending on comparisons between the price
value and a set of thresholds. This approach only deals with translating objective
attributes whose values are indisputable. It leaves the space of the inherently subjective
attributes such as food deliciousness or waitstaff competence untouched.

Prior work tackled the problem of subjectivity and opinions in various domains
through ratings [297, 494, 253]. Most of them capture a narrow aspect of subjectivity
by prompting people who write reviews to rate the objects they write about. Such
ratings are often found in e-commerce services in the form of star ratings which ag-
gregate opinions of all sub-parts of the object under review and act as a proxy for the
overall user satisfaction. Star ratings suffer from coarse granularity because they skip
the details and give one global assessment of the reviewer’s true feeling.

Online repositories such as Yelp1 or TripAdvisor2 provide mechanisms to let their
users filter search results with a wealth of objective attributes. However, as demand
for experiential search is increasing, these repositories added boolean filters that are
supposed to correspond to subjective attributes. For example, parents looking for kid-
friendly restaurants in a foreign city can check the box related to good-for-kids while
they search in Yelp. On the other hand, the new set of subjective attributes found
in popular online search systems is limited to a prespecified attribute vocabulary, and
users cannot express other subjective preferences. Also, although subjective in spirit,
these attributes are handled similar to objective ones. For example, checking the box
related to good-for-groups only keeps restaurants previously tagged with this attribute
in Yelp, as if the attribute is a fact. Moreover, deciding whether an online resource
should be tagged with which subjective attribute must be done manually by people
after reading a (not necessarily representative) sample of reviews.

All the aforementioned methods approximate subjectivity, but fail to capture the
1https://www.yelp.com
2https://www.tripadvisor.com
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true essence of it. Radlinski et al. [366] surmise that explicitly including subjective
information and attributes in data models is critical in order to build subjectivity-
aware search systems. In OpineDB [271], a pioneer system of subjective databases,
the database designer must define a set of subjective attributes and then incorporate
them to the database schema. Although efficient, querying in OpineDB requires pre-
cise knowledge of the source schema and cannot automatically include new subjective
information as new reviews pour in. In contrast, we propose a search system in this
chapter where subjective information is dynamically extracted and included in the
system.

Also, Kobren et al. [241] built a tunable high-precision knowledge base with both
factual and subjective attributes. To do so, they predefined a list of attributes (e.g.,
GOOD_VIEW, KID_FRIENDLY, HAS_HIGH_CHAIRS) and asked crowd workers
to assess whether an entity (in their case, they used locations in Google Maps) has
each attribute or not. They then modeled user consensus with Beta distributions. The
major limitation of this approach is the increasing cost of crowd workers when adding
new locations, new attributes or even changing the domain. Besides, crowd-sourced
data suffers from data quality problems, mainly due but not limited to the inherent
subjectivity in the task at hand. Also, the subjective attributes in [241] are set at
design time and not learned from user interactions as we do.

3.3 Tagging Words Into Aspects and Opinions

We denote by ri a piece of text (e.g., review, user utterance, etc.) which consists of a
sequence of tokens ri = {wi1, wi2, ..., win}. We remind that the extraction of subjective
tags from ri is a 2-step process: (1) tagging each token in the text as either an aspect,
an opinion, or neither, and (2) linking each opinion to its corresponding aspect. In
this section, we formulate the problem of tagging as a multi-class classification task.
Specifically, we use the IOB encoding scheme [369] with the following classes: B-AS
(Beginning of Aspect), I-AS (Inside of Aspect), B-OP (Beginning of Opinion), I-OP
(Inside of Opinion) and O (Outside) to cater for multi-word opinions and aspects. The
set of all possible tags for this classification problem is thus L = {B-AS, I-AS, B-OP, I-
OP, O} where the objective is to classify each token wij in ri into a class cij ∈ L. In the
following, we describe our classification model for tagging tokens. Then, we present
two different improvements: (1) domain adaptation to make the model acquainted
with the language used in the domain of interest (e.g., reviews about restaurants and
electronics are widely different), and (2) adversarial learning to reduce the effect of
overfitting on training data.

3.3.1 Sequence Classification Model for Tagging

Figure 3.2 depicts the architecture of our model for tagging words into aspects and
opinions. We use BERT [103] as the embedding layer thanks to its proven superior
language representation quality. As illustrated in Figure 3.2, BERT embeddings serve
as input to the Bidirectional LSTM (BiLSTM) layer [187] which, for every word in
the sequence, encodes the past context (all prior tokens) and the future context (all
subsequent tokens). Following Dyer et al. [115] and Ma and Hovy [290], we encode the
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Figure 3.2: Sequence tagging model based on BERT + BiLSTM + CRF

text sequence from both left to right (forward) and right to left (backward). We then
concatenate the resulting representations to form the final output of the BiLSTM.

Finally, the BiLSTM output flows to the Conditional Random Field (CRF) layer
[250], which is paramount to encode dependencies between different labels of L. For
example, I-OP cannot follow I-AS in the label sequence. More generally, I-AS (or
I-OP) must either follow B-AS or I-AS (B-OP or I-OP). Without explicitly modeling
such dependencies between labels, we bear the risk of generating incorrect sequences of
aspect and opinion tags. Given an input sequence z = {z1, z2, ..., zn}, CRFs effectively
utilize correlations between labels from training data to predict the best label sequence
y = {y1, y2, ..., yn} that verifies all conditions. Formally, the conditional probability
function of CRFs is given by:

P (y|z,W, b) =

n∏
i=1

ψi(yi−1, yi, z)

∑
y′∈Y (z)

n∏
i=1

ψi(y′i−1, y
′
i, z)

(3.1)

where Y (z) denotes the set of possible labels for the sequence z and ψi(yi−1, yi, z) =
exp(W T

y′,yzi + by′,y) are potential functions to be learned with Wy′,y and by′,y being the
weight and bias vectors respectively. Decoding (i.e., solving the tagging task using
a CRF layer) consists in finding the best sequence of labels y that maximizes the
log-likelihood given the input sequence z:
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y∗ = argmax
y′∈Y (z)

P (y′|z,W, b) (3.2)

In this work, we use linear-chain CRFs, where only interactions between two suc-
cessive labels are taken into consideration. We also adopt the Viterbi algorithm [137]
along with beam search for efficient decoding of the label sequence.

3.3.2 Improvement 1: Domain Adaptation

Ideally, the sequence tagging model described above must correctly identify aspect and
opinion terms given an input text no matter the domain of the input. For example, in
"La carte of this restaurant is a killer", the model should be able to tag la carte as an
aspect and a killer as an opinion. However, opinions are mostly adjectives whereas a
killer is a noun, thereby it might fail to recognize it as an opinion, or even mark it as
an aspect. Moreover, la carte is a rare word in the english vocabulary, thus the tagger
might not understand the word altogether. This limitation is largely due to the fact
that BERT has been pre-trained on Wikipedia articles of general english [103]. As a
consequence, it does not know that a killer is a widely used idiom in the restaurant
jargon to characterize something as overly good. It also ignores that la carte in this
case means the menu, which is an important aspect to be extracted. Hence, standard
BERT embeddings are blind to the domain and may hinder the sequence tagging
performance.

To make the embeddings more domain-aware, we follow the guidelines of Xu et al.
[490] who post-trained BERT on domain-specific review corpora in order to make it un-
derstand opinion text rather than generic Wikipedia articles. Xu et al. [490] also added
another fine-tuning iteration to make BERT aware of the task (e.g., aspect/opinion
extraction), but on out-of-domain data. We find that using domain knowledge alone
works better in our case than when leveraging both domain- and task-awareness. Ex-
periments show that with domain adaptation, the tagging performance is 2.93 points
in terms of F1 score more than without.

3.3.3 Improvement 2: Adversarial Training

Natural language is very nuanced, and introducing subtle changes to the input sen-
tences can change the meaning dramatically. For example, adding not before the verb
or changing always with never reverse the meaning of the sentences completely. On
the other hand, some big changes such as modifying grammatical structure, or replac-
ing all words with their synonyms do not alter the sentence meaning. These changes
may seem trivial to a person, but NLP models rely on a learned embedding space
for language to derive meaning and semantics. Nevertheless, the learned language
representation space is learned automatically from a myriad of text resources without
human control or fixed linguistic rules. Therefore, two synonymous words might be
far apart in the embedding space, or two antonyms may be close to each other since
they are related words [122, 213, 320]. Thus, linguistic changes that are trivial to a
human observer might mislead our sequence tagging model into predicting the wrong
class [318].
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We leverage adversarial learning to enhance the robustness of our tagger against
input noise. Adversarial examples have long been used to make trained models robust
against small input differences and perturbations (noise). It has been shown to provide
additional regularization capabilities beyond that brought by the use of dropout alone
[163]. In this work, we generate adversarial examples by tweaking the original input
such that the meaning is preserved but the form is maximally different. In other words,
we tweak them until the model is fooled and cannot predict correctly. We expect our
tagging model to be weak against adversarial examples since they compel it to predict
wrong labels (i.e., aspect and/or opinion tags). Therefore, we also train the tagging
model on adversarial examples to make it attend more to the meaning of inputs, not
to their form.

The creation of adversarial inputs is enabled by the introduction of small worst case
perturbations bounded by a chosen perturbation set, to decrease the model’s ability
to predict correctly. The tagging model is then trained on a mixture of clean and
adversarial examples to enhance its stability and robustness against potential input
perturbation. The objective function is thus the following:

Min
θ

[α.l(hθ(x), y) + (1− α). Max
δ∈Δ(x)

l(hθ(x+ δ), y)] (3.3)

where hθ is the tagging model with θ being the corresponding parameters. l is the
loss function and Δ(x) is the set of perturbations allowed for the input sequence x. In
this work, we use the l∞ ball: Δ(x) = {δ : ||δ||∞ < ε} where ε is a hyperparameter
to be tuned. Equation 3.3 assumes the perturbations to be applied directly on the
embeddings as has been done in [318]. Solving such an objective function exactly is
intractable in complex networks. Consequently, by leveraging Danskin’s theorem [92],
we can first solve the inner maximization independently to find δ∗ that maximizes
the adversarial loss, and then adding δ∗ to the input to solve the outer minimization
objective.

δ∗ = argmax
||δ||∞<ε

l(hθ(x+ δ), y) (3.4)

Min
θ

[α.l(hθ(x), y) + (1− α).l(hθ(x+ δ∗), y)] (3.5)

Finding an exact solution for δ∗ is also an intractable problem for complex models.
We approximate δ∗ by assuming a linear tendency for the adversarial loss inside the
norm-ball. We thus use the Fast Gradient Sign Method (FGSM) suggested by Good-
fellow, Shlens, and Szegedy [163] to find a decent solution in an efficient way. The
computation of δ∗ is given by:

δ∗ = ε.sign(g) (3.6)

where g = ∇δl(hθ(x+δ), y). In Equation 3.5, the first loss is the clean loss, while the
second loss represents its adversarial counterpart. The parameter α denotes how much
weight we give to the adversarial example with respect to the original one. Figure 3.3
illustrates the entire adversarial learning process.
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Figure 3.3: Process of Adversarial learning in the Sequence Tagging Model

3.4 Pairing Aspects and Opinions

In Figure 3.1, food is paired with really good, and service with a bit slow 3 in order
to create the corresponding subjective tags. Most previous works [467, 466] employ
simple heuristics such as word distance to pair aspects and opinions. However, such
techniques are flawed especially when employed on complex input sentences. For
example, the opinion professional would be wrongfully paired with the aspect decor
in the review "The staff is friendly, helpful and professional. The decor is beautiful"
when relying on word distance alone, because professional is closer to decor than to
staff.

To solve this problem, we propose two novel heuristics in this section to pair as-
pects with their rightful opinions, based on parse trees and the attention mechanism.
Although the heuristics we propose can be directly used in an unsupervised manner,
we also used them to automatically generate labeled datasets at scale using the data
programming paradigm [372] in order to train a more accurate supervised model for
the problem of pairing.

3.4.1 Pairing Heuristics

We design two types of unsupervised heuristics for pairing. The first category is based
on constituency parse trees [237, 238, 327] while the second utilizes the attention
mechanism [196].

Parse Tree Heuristic

The intuition behind this rule-based method is that aspects and their associated opin-
ions should be close to each other in the parse tree of the input sentence. We start
by building the parse tree and then apply a greedy strategy that maps every aspect
term to the "closest" opinion term in the parse tree. Given that a single aspect can be
mapped to multiple opinions 4, we use this heuristic in both directions: from aspects
to opinions and then from opinions to aspects. For example, in "The staff is friendly
and professional", friendly is closer to staff than professional is in the parse tree.

3A multi-word aspect (or opinion) is regarded as a single aspect (opinion) term
4The reverse also applies: An opinion term can be paired with multiple aspects as well
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Figure 3.4: BERT attention head for pairing aspect and opinion terms

Hence, the first run outputs the pair (staff, friendly). On the other hand, the second
run starts from opinions and looks for the closest aspect. It would thus give the pairs
(staff, friendly) and (staff, professional).

Attention Heuristic

We motivate the notion of using attention heads of BERT by the need to assign rele-
vance scores to aspects and opinions. Ideally, we want each aspect term to focus more
on its corresponding opinion (high relevance score) and ignores the rest (low relevance
scores). Attention can be leveraged to approximate relevance. First introduced to
enhance neural machine translation [23] and later adapted to nearly every other NLP
task, we remind that attention is a mechanism to assign importance values to every
token in the sequence given a query term. We say that the query term attends to
the tokens which have the highest attention scores. In our case, the query term is the
aspect term, and the sequence is the input sentence. Using this method, the goal is to
distribute the attention of every aspect term so that it attends to the rightful opinion
(that of the highest attention).

By training our tagging model described in Section 3.3, it is reasonable to assume
that attention heads in BERT are also trained to recognize aspects and opinions, and
how to pair them. Figure 3.4 confirms our assumption. It illustrates one attention
head of BERT after training it on the task of tagging aspects and opinions. Each row
in the figure is the attention distribution of a word over the entire input sequence; the
darker the color, the higher the attention. In the figure, food is darkest at delicious,
meaning that food ’s attention to delicious is very high. In the same spirit, both staff
and decor attend to amazing. Thus, BERT attention heads act as zero-shot classifiers
that, given an aspect, output the most attended to opinion. We find that BERT heads
capture various linguistic properties, some of which correspond remarkably well to the
notion of pairing aspects with opinions. The best head we found for pairing has an
accuracy of 82.62% on the pairing test set (Section 3.6.3), which is excellent given the
quasi-none effort this method needs.
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Figure 3.5: Data Programming pipeline for pairing

3.4.2 Supervised Learning Approach for Pairing

We also provide a supervised learning alternative to the problem of pairing. We for-
mulate our pairing objective as a classification problem. Given an input sentence si
(e.g., "The food is delicious and the staff are friendly") and a short phrase pi (e.g.,
"delicious food")5, the pairing classifier classifies pi as being a correct extraction from
si or not. Before pairing, we first use the tagger to extract aspects and opinions from
si. We then construct all possible pairs from the sets of aspects and opinions. For
example, suppose we have food and staff as aspects, and delicious and friendly as
opinions. The list of all possible pairings is: Pall = ["delicious food", "delicious staff",
"friendly food", "friendly staff" ]. We feed si with each pair from Pall into the pairing
classifier, and consider the pair as a correct extraction if the classifier returns a positive
label.

We use data programming [372, 22] in order to create the dataset necessary to
train such a classifier. The entire pipeline is illustrated in Figure 3.5. First, a set
of labeling functions [372, 22, 371] use the heuristics described in Section 3.4.1 in
order to independently assign a correctness label to every (si, pi) pair (1 for correct
extraction, 0 otherwise). These labeling functions are considered weak supervision
sources. The second step of the pipeline aggregates the labels from the labeling func-
tions to construct a single overall label for every (si, pi) pair, based on agreements and
disagreements between labeling functions. This is generally achieved with generative
models which, by aggregating enough datapoints, end up creating a decent labeled
training dataset. Finally, we use this dataset to train a discriminative model, which is
the pairing classifier discussed above.

It is important to note that, in our case, we have a working solution for pairing
aspects with opinions at each step of the pipeline in Figure 3.5. However, experiments
show that committing to the entirety of the pipeline and using the discriminative model
(i.e., supervised) drives a considerable boost in pairing accuracy when compared to
the unsupervised methods. In the following, we describe the labeling functions, the
generative and discriminative models we use in the supervised learning-based pairing
approach.

5In the context of this work, these short phrases are subjective tags
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Labeling Functions for the Pairing Pipeline

A labeling function in this work has the same interface as the pairing classifier, i.e.,
expects a sentence si and a phrase pi as input, and outputs a binary label telling
whether pi is a legit extraction from si. All labeling functions are based on the heuris-
tics presented in Section 3.4.1. To transform each heuristic Hj into a labeling function
Lj, we follow the procedure below:

1. Extract all aspects and opinions from si using the tagging classifier.

2. Use Hj to find the pairs PHi
j

as detailed in Section 3.4.1. These pairs constitute
the set of correct extractions from si.

3. If the short phrase pi belongs to the set of constructed pairs PHi
j
, the output

label is 1. Otherwise, return 0.

We use seven different labeling functions: two are based on the parse tree method
(the first mapping aspects to opinions, the second goes from opinions to aspects) while
the remaining five labeling functions rely on attention scores of different attention
heads. The choice of heads has been made after a qualitative analysis.

Generative Model for the Pairing Pipeline

We use the generative model proposed by Snorkel [371] in our pipeline. Snorkel is a
data programming framework that integrates noisy signals of multiple labeling func-
tions to estimate the true label class [371]. Snorkel offers two mechanisms for aggrega-
tion. The simplest is a majority vote model where each labeling function is regarded
as an independent voter. The chosen label for each datapoint is the most agreed upon
by labeling functions. The other method incorporates statistical properties of labeling
functions such as accuracies and correlations. Snorkel then trains a probabilistic graph-
ical model to generate the true labels without access to ground truth data. Training
is based on agreements and disagreements between the different labeling functions as
dictated by data programming. Although the authors of Snorkel state that the prob-
abilistic generative model works better in practice than majority vote, we found the
latter to be more accurate.

We can directly use the generative model to extract subjective tags from text.
However, a better use of data programming lies in the automatic creation of labelled
training data to train a subsequent discriminative model. The advantages of doing so
are twofold: First, discriminative models generalize better to new unseen datapoints
than generative models and labeling functions. Second, the discriminative model is
faster to execute because the generative model loops through all labeling functions
and aggregates their outputs, whereas the discriminative model only uses one forward
pass.

Discriminative Model for the Pairing Pipeline

We train a simple two-layer neural network with a sigmoid activation function. We
encode si and pi using BERT embeddings. We train the classifier with the training data

69



CHAPTER 3. SUBJECTIVITY

that has been automatically created with the procedure explained in the previous step
of the pipeline. Our experiments confirm that the discriminative model outperforms
the generative one, as has been found in [371].

3.5 Application: Subjectivity-Aware Conversational
Search Services

In this section, we demonstrate that subjective tags are effective in assisting experien-
tial search. Specifically, we propose to label online resources, products and/or services
(e.g., restaurants, books, physicians, etc.) with subjective tags and save these labels in
an inverted index data structure. Therefore, when users include subjective attributes
in their search queries, retrieval of resources that verify all subjective preferences of
users becomes straightforward. However, this implies that resources must have been
previously labeled with subjective tags in an offline mode. To do that, we use the
tag extraction pipeline we presented earlier in the chapter (Tagging in Section 3.3 and
Pairing in Section 3.4) and apply it on online reviews since they are our primary source
of subjective information.

While this strategy could be applied to fuel any sort of search system with sub-
jectivity, we chose to apply it on task-oriented conversational search services, i.e.,
chatbots with whom users can converse through natural language (text or voice) in
order to look for things online. We assume that the underlying dialog system is al-
ready equipped with intent recognition [179, 228, 364] and slot filling techniques [148,
70]. Briefly stated, intent recognition allows the identification of user intents from
user utterances. For instance, from the following user utterance: "I want to eat Italian
food near Lyon in a romantic ambiance", the dialog system identifies that the user
is searching for a restaurant. Once an intent is identified, the system also extracts
what is called slots, e.g., the type of cuisine (Italian) or the location of the restaurant
(Lyon). The chatbot then delegates the search intent to a search API that retrieves
a list of restaurants filtered by those objective criteria. The goal of the system we
propose in this chapter (and which we call SACSS 6) is to re-filter this list to only keep
the restaurants which offer a romantic ambiance (i.e., subjective filtering). We apply
the same tag extraction model that we use on reviews to extract subjective tags from
the user’s utterance or query. Unlike previous work that focused on the problem of
subjectivity in online search [271, 241], we do not fix the subjective attributes that
SACSS handles at design time. Instead, SACSS adapts to user needs and can include
new subjective tags to the index dynamically.

It should be noted that while the proposed techniques are not domain specific, we
choose the restaurants domain as a use case in this chapter in order to illustrate the
components of the proposed search system. In the following, we describe how SACSS
saves subjective information about online resources in an index data structure. Then,
we give details about how SACSS filters and ranks search results by relevance.

6short for "Subjectivity Aware Conversational Search Service"
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Tag Restaurants Deg. truth

good food
Vue du Monde 0.89

Anchovy 0.76
Pizza Hut 0.82

nice staff Vue du Monde 0.92
Pizza Hut 0.63

creative cooking
Anchovy 0.94
Pizza Hut 0.34
Kazuki’s 0.85

fast delivery
Anchovy 0.13
Pizza Hut 0.75

McDonald’s 0.74

Table 3.1: An example of an inverted index with degrees of truth for each subjective
tag and restaurant pair

3.5.1 Subjective Tag Index

In order to use subjective tags, SACSS leverages an inverted index data structure [296].
Table 3.1 shows a snippet of what the index might look like.7 Each subjective tag points
to a set of entities (in this case restaurants) whose reviews include mentions of the
subjective tag. For example, good food in Table 3.1 points to Vue du Monde, Anchovy
and Pizza Hut, meaning that reviews of these restaurants mention the deliciousness of
food cooked there. Also, every entity is accompanied by a degree of truth. Informally,
a degree of truth associated to a tag measures the degree of certainty that SACSS
exhibits when marking an entity with the tag. In the case of Table 3.1, Vue du Monde
is more likely to have a nice staff than Pizza Hut (a degree of truth of 0.92 compared
to 0.63). The degrees of truth are computed automatically by SACSS.

To add a new entity to the index, SACSS extracts all subjective tags from its
reviews. Then, it proceeds to compute similarities between the subjective tags in
the index with those extracted from the reviews. If the similarity exceeds a predefined
threshold, SACSS includes the corresponding entity to the index. Figure 3.6 illustrates
this process. The index in Figure 3.6 contains two subjective tags: good food and great
atmosphere. Suppose we have three entities (E1, E3 and E5 ) each having only one
review. The extractor component extracts subjective tags from the reviews, in this case
good food, superb atmosphere, really good ambiance. In the next step, the similarity
checker computes similarity scores between the review tags and the index tags. Each
time a similarity exceeds a specified threshold, the indexer adds the corresponding
entity to the appropriate subjective tag in the index. Following the same example in
Figure 3.6, E1 and E5 are both included as mappings to the subjective tag good food
because their reviews both mention it (good food and amazing pizza for E1 and E5
respectively). However, the review of E3 only mentions the ambiance; hence SACSS
does not add it as a mapping to good food. We delegate discussion about the specific
similarity method in use to Chapter 4. When building the index, SACSS automatically

7The degrees of truth reported in the table are for illustration only and do not reflect the quality
of these restaurants in the real world
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Figure 3.6: Architecture of SACSS

computes the degrees of truth of an entity e with respect to tag. The exact formula is
shown in Equation 3.7.

Deg_truth(tag, e) =
log(|Re|+ 1)

|T tag
e |

∗
∑

t∈T tag
e

Sim(tag, t) (3.7)

Where Re is the set of entity e’s reviews and T tag
e is the set of subjective tags auto-

matically extracted from Re and whose similarity score exceeds a predefined threshold
θindex when compared to tag. |Re| and |T tag

e | are the number of elements in both Re

and T tag
e respectively. Equation 3.7 finds all review tags which are similar to tag and

computes the arithmetic mean of their similarity scores, weighted by the number of
reviews. The motivation of multiplying the mean with the number of reviews for each
entity is that the more reviews there are, the more statistically significant the degrees
of truth become. That is why SACSS privileges the entities having more reviews.

Going back to the example in Figure 3.6, when the user submits a new utterance
"I want a restaurant with a romantic ambiance", SACSS extracts romantic ambiance
from the utterance. Because this tag is unknown to the index, it is added it to the
user tag history. Consequently, in the next indexing round, SACSS includes romantic
ambiance to the index and computes its entity mappings along with their degrees of
truth as has been explained above. This mechanism enables SACSS to adapt to new
user needs.
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3.5.2 Filtering

In this section, we provide details about how SACSS utilizes subjective tags to answer
users’ subjective utterances.

Processing User Utterances

Suppose the user submits a new utterance: "I want an Italian restaurant in Melbourne
that serves delicious food and has a nice staff". SACSS forwards this utterance to the
underlying dialog system which finds the user intent (in this case searchRestaurant)
and calls a corresponding search API (e.g., TripAdvisor, Yelp, etc.). In this example,
SACSS expects the API to return the set of restaurants that are in Melbourne and
serve Italian food. We call this set Sapi. As mentioned before, neither the dialog
system nor the search API understand subjective information in the utterance such as
delicious food and nice staff, thereby ignoring them completely. SACSS extracts these
tags from the utterance and use them to filter and rank Sapi before showing the final
results to the user.

Probing the Index

If the subjective tags extracted from the user utterance exist in the index, the corre-
sponding entities with their degrees of truth are directly taken from the index. For
instance, in the previous utterance, nice staff exists in the index depicted in Table 3.1,
and thus the matching set {("Vue du Monde", 0.92), ("Pizza Hut", 0.63)} is extracted
as is. We call this set St1, where t1 = "nice staff".

On the other hand, if the subjective tag is not found in the index, SACSS adds it
to the user tag history as discussed in Section 3.5.1 and Figure 3.6 for later indexing.
However, in order to provide a good answer to the user in real time, SACSS combines
entities of similar tags which are already in the index. To illustrate this, we go back
to the previous example. Delicious food does not exist in the index of Table 3.1, but
is similar to good food and creative cooking. In this case, SACSS calculates the union
of the mappings corresponding to these two tags and multiply their degrees of truth
by the similarity score of delicious food with each of the two subjective tags. Assume
that:

s1 = similarity(delicious food, good food) (3.8)

s2 = similarity(delicious food, creative cooking) (3.9)

The set of entities that SACSS finds for delicious food is then:

St2 = {("Vue du Monde", s1 × 0.89), ("Anchovy", s1 × 0.76 + s2 × 0.94),

("Pizza Hut", s1 × 0.82 + s2 × 0.34), ("Kazuki’s", s2 × 0.85)} (3.10)

After the construction of Sapi, St1 and St2, SACSS needs to aggregate the entities
coming from the search API, plus the ones recovered from each subjective tag in the
utterance. In other words, SACSS computes the intersection of these sets of entities
according to Algorithm 1. It is worth noting that the function search_api takes the
user utterance as input parameter and relies on the underlying dialog system and the
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search API to provide results filtered by objective attributes only. On the other hand,
the function extract_tags takes the user utterance as input parameter and returns the
list of subjective tags using the extraction pipeline described in Sections 3.3 and 3.4.

Algorithm 1: Filtering & Ranking in SACSS
Input 1: u: the user utterance
Input 2: θfilter: the similarity threshold
Result: A set of search results ordered by relevance

1 Let index be the inverted index data structure ;
2 Sapi ← search_api(u);
3 tags ← extract_tags(u) ;
4 for t in tags do
5 if t ∈ index.keys then
6 St ← index[t] ;
7 end
8 else
9 St ←

⋃
tag∈index.keys

{index[tag]} such that similarity(t, tag) > θfilter ;

10 end
11 end
12 R ← ⋂

t∈tags
{Sapi,St} ;

13 Return sort(aggregate_scores(R)) ;

3.5.3 Ranking

SACSS ranks the filtered set of entities according to their degrees of truth across all
subjective tags. We identify two situations for ranking.

One Subjective Tag

If the user expresses a single subjective filter in her utterance, the ranking is straight
forward. SACSS sorts the entities according to their degrees of truth in descending or-
der, so that the top results are the ones whose reviews strongly mention the subjective
tag.

Many Subjective Tags

In this case, SACSS has a separate set of entities with their degrees of truth for each
subjective tag. However, an entity can belong to many such sets. Thus, before ranking
becomes feasible, SACSS must aggregate the degrees of truth for each entity across all
subjective tags. Aggregation is done via computing the arithmetic mean over all tags.
We also experimented with other aggregation methods such as the product or min
operators, but the arithmetic mean works better in practice. SACSS then sorts the
entities in descending order. Algorithm 1 combines the filtering and ranking stages.
In line 12, the function aggregate_scores computes the arithmetic mean of degrees of
truth across the tags.
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3.6 Experiments and Evaluation

In this section, we first describe our experimental setup. Then, we evaluate the subjec-
tive tag extraction process that we proposed in this chapter, namely we evaluate the
tagging classifier (Section 3.6.2) and the pairing classifier (Section 3.6.3). Finally, we
assess the overall search performance of SACSS using subjective queries and compare
it against two strong baselines in Section 3.6.4.

3.6.1 Experimental Setup

Datasets

As stated previously, we use the domain of restaurants, and we collect their corre-
sponding online reviews from the publicly available Yelp Dataset [321]. Since it covers
an immense array of businesses, we filter it to only keep reviews about Italian restau-
rants in Montreal, resulting in 280 entities (restaurants) with 7061 reviews. To train
the aspect/opinion tagger, we use the training dataset created by Li et al. [271] that
contains 800 sentences, wherein each token is accompanied by its label. For pairing,
we use the same training dataset as in [271] but without the labels since we augment
the data and infer the labels with Snorkel [371].

Processing

For implementation, we use Python and its standard packages such as PyTorch [337]
for neural networks, HuggingFace transformers library [481] for BERT, NLTK [287]
for textual preprocessing and Scikit-Learn [339] for evaluation metrics. In order to
incorporate domain knowledge into BERT, we directly use the models for restaurants
published on Huggingface community hub by Xu et al. [490]. For adversarial training,
we fix the value of α to 0.5 (Equation 3.5) while we vary ε between {0.1, 0.2, 0.5, 1.0,
2.0}.

3.6.2 Evaluation of Tagging

We evaluate the sequence tagging model with 4 different datasets summarised in Ta-
ble 3.2. The first three datasets are from SemEval competitions: SemEval 2014 Task
4 (Restaurants and Electronics) [351] and SemEval 2015 Task 12 (Restaurants) [352].
Each dataset contains a set of sentences where each token is labeled as being an as-
pect, an opinion or neither, following IOB coding scheme [369]. The original SemEval
datasets contain labels for aspects only. However, we use the versions of Wang et al.
[467, 466] and Li et al. [271] who added labels for opinions to the original sentences.
The last dataset has been created and labeled by Li et al. [271]. The goal of this
experiment is to compare our tagging classifier with the strongest previous works in
the literature, using datasets of different sizes and domains as well.

Other text extraction tasks such as Named Entity Recognition (NER) [391] employ
F1 scores to measure the quality of tagging. In the same spirit, Table 3.3 reports F1
scores of tag extraction quality. For an aspect (or opinion) to be counted as correctly
extracted, it needs to match the exact terms present in the ground truth. We compare
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Dataset Description Train Test Total

S1 SemEval-14 Restaurants 3041 800 3841
S2 SemEval-14 Electronics 3045 800 3845
S3 SemEval-15 Restaurants 1315 685 2000
S4 Booking.com Hotels 800 112 912

Table 3.2: Dataset Descriptions with number of sentences for train and test for tag
classification

Models S1 S2 S3 S4

OpineDB 81.82 75.44 72.30 67.41
OpineDB + DK 83.06 75.42 73.86 69.64

Ours (ε = 0.1) 81.23 76.56 74.63 70.16
Ours (ε = 0.2) 83.46 76.97 73.64 72.34
Ours (ε = 0.5) 84.43 75.36 72.28 70.32
Ours (ε = 1.0) 82.80 67.50 73.47 70.38
Ours (ε = 2.0) 82.93 71.39 73.27 68.42

Table 3.3: Evaluation of aspect/opinion tagger

our tagger against two strong baselines: OpineDB’s tagger [271] which is a BERT-based
solution that outperformed previous works in the literature [467, 466] and currently
enjoys state of the art performance. We also enhance OpineDB’s tagger with the
domain-specific fine-tuning strategy suggested by Xu et al. [490] to make it even more
competitive (OpineDB + DK in Table 3.3). We evaluate our adversarial tagging
model with different sizes of perturbations (ε values) as shown in Table 3.3, but we fix
α = 0.5 (Equation 3.5) across all runs. The models are trained for 15 epochs.

Our tagging model beats state of the art performance in all four datasets with
an improvement ranging from 1.53% to 4.93%. As shown in the table, adding do-
main knowledge to OpineDB improves its performance by up to 2.23%, confirming the
findings of Xu et al. [490] on aspect-based sentiment analysis. However, the boost of
domain fine-tuning is not enough to outperform the adversarial training component
that we utilize in our own model, motivating the integration of adversarial examples
in deep learning models. We also note that our model works better for smaller train-
ing datasets (S4). We believe this is due to the regularization capabilities adversarial
training provides as a counter-measure against overfitting beyond what is already en-
sured with dropout. We also notice that our tagging model performs best with lower
perturbation sizes (ε ∈ {0.1, 0.2, 0.5}), in which case the adversarial examples remain
"closer" to the original ones, in contrast to large perturbation sizes (ε ∈ {1.0, 2.0})
that bear the risk of changing the meaning of sentences in addition to changing their
syntactical and lexical form. The issue of large ε values is especially noticeable with
the Electronics dataset (S2) where ε = 1.0 makes the adversarial model worse than
OpineDB’s baseline. We hypothesize that, since the Electronics dataset contains many
technical terms such as brand names and numerical references, adding slight pertur-
bations can change the meaning of terms completely while keeping the same labels,
leading to poor classification performance.
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Models Accuracy Precision Recall F1

OpineDB 83.87 / / /

lf_attn_7:10 82.62 95.02 78.36 85.89
lf_attn_3:10 74.56 91.54 68.66 78.46
lf_attn_3:8 68.26 91.76 58.21 71.23
lf_attn_4:6 75.82 93.00 69.40 79.49
lf_attn_8:9 77.33 94.95 70.15 80.69
lf_tree_op 74.06 92.31 67.16 77.75
lf_tree_as 76.07 91.00 71.64 80.17

Majority Vote 84.10 97.20 78.70 87.00
Probablistic Model 82.40 98.10 75.40 85.20

Discriminative 86.90 92.52 87.69 90.04

Table 3.4: Evaluation of different pairing models

These results are very promising in the context of task-oriented dialog systems.
Since online search encompasses a wide array of domains, chatbots should be trained to
cover many of them. This desideratum implies the availability and creation of various
datasets, large enough to be used for supervised training. However, data is harder to
come by for certain domains, e.g., pharmaceuticals, leading to unstable training and
poor accuracy. Fortunately, Table 3.3 demonstrates that our tagging model is efficient
even with small training data (S4), thus eliminating the need to build large and costly
datasets.

3.6.3 Evaluation of Pairing

In this section, we evaluate the accuracy of the pairing model. We use the test bench-
mark created by Li et al. [271] and employed in their own experiments. Each test
example consists of a review sentence (e.g., "The food is delicious and the staff is
helpful"), a tag (e.g., "delicious staff") and the label is whether the tag is a correct
extraction from the review sentence. The test set contains 397 sentences with a fairly
equal amount of positive and negative examples. We compare the accuracy of our
pairing model with that of [271] in Table 3.4. To highlight the effectiveness of data
programming in the context of pairing and motivate the use of both generative and
discriminative models, we also assess the quality of every step in the data program-
ming pipeline presented in Section 3.4. Thus, Table 3.4 reports the accuracy, precision,
recall and F1 scores of all seven labeling functions that we used in our solution, both
types of generative models (Majority vote and the probabilistic graphical model) and
the supervised discriminative classifier.

We take the accuracy score of OpineDB pairing method directly from their paper
[271] since we use the same test set. However, they do not report their precision, recall
and F1 scores. In Table 3.4, lf_attn_l:h corresponds to the labeling function that
is based on attention head number h at layer l of BERT. lf_tree_op is the labeling
function that uses the parse tree and goes from each opinion to its closest aspect while
lf_tree_as goes from aspects to opinions. We train the model with Booking.com
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dataset for hotels to show that our methods work on domains other than restaurants
and electronics.

Our pairing model outperforms that of [271] by a margin of 3.03% in accuracy.
This result confirms the effectiveness of data programming and weak supervision, and
shows that efficient deep learning models can be designed with little effort and much
less resources than reliance on costly manual annotation. In Table 3.4, the labeling
functions have different accuracies but they all suffer from low recall. We believe
this phenomenon is due to the fact that labeling functions are simple heuristics in
the first place, and thus fail to cover the entirety of the input space. On the other
hand, they all enjoy very high precision, ranging from 91.00% to 95.02%. This insight
sheds some light on the nature of our labeling functions and suggests to direct future
work on designing heuristics that are less-precise but wide-reaching in order to balance
precision and recall ratios.

The generative models in Table 3.4 inherit the high precision of labeling functions,
with the probabilistic model scoring an outstanding 98.10%. However, they also inherit
the low recall, but are better in general than labeling functions when taken separately.
This is due to the nature of generative models which maximize the benefits of labeling
functions while minimizing their risk by combining and integrating their respective
labels. Our findings support the original statements of Ratner et al. [371]. Neverthe-
less, the experiment shows that the majority vote model surpasses the probabilistic
graphical model in terms of accuracy, unlike what Ratner et al. [371] reported. One
explanation for this is that our labeling functions are already accurate enough and have
comparable F1 scores, leading to similar votes. Thus, consensus should be relatively
easier to reach, translating in better accuracy.

Finally, we find that the discriminative model is the top scoring model in both
accuracy, recall and F1, because it has been trained in a supervised fashion. Rather
than depending on labeling functions to provide noisy labels, the discriminative model
analyzes the feature space and generalizes its classification decisions to new and po-
tentially unseen input; hence the high recall.

3.6.4 Evaluation of SACSS

In this experiment, we evaluate the overall performance of SACSS as a subjective
search system, and then compare it to two strong baselines. The evaluation works as
follows: we first prepare a set of subjective tags as a test set. Each search system under
evaluation takes the tags as input and returns an ordered list of results, sorted by their
degree of relevance with respect to the subjective tags. The result of each system is
then compared to the ideal ordering of entities. The system whose ordering is "closest"
to the ideal one is deemed the best. Since this experiment requires a considerable
computational budget, we restrain our evaluation to the domain of restaurants.

Preparing Subjective Tags

To the best of our knowledge, we are the first to propose including subjective tags into
the process of experiential search. Thus, we are not aware of any existing benchmarks
for subjective tags, so we have to create our own. Moura, Souki, et al. [319] identified
the most important features restaurant seekers consider when choosing a restaurant.
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These features include "delicious food", "creative cooking", "varied menu", "roman-
tic ambiance", etc. We chose 18 of them to serve as our subjective tags for testing
purposes. We then construct combinations of these tags by uniform random sam-
pling. Each combination will form a potential subjective user utterance. For example
a combination of "clean plates" and "quick service" tags works as a proxy for a po-
tential online searcher asking the conversational bot something like: "I am looking for
a restaurant that delivers a quick service with clean plates.". The number of tags per
combination depends on the level of difficulty of the query (utterance). In this exper-
iment, we set 3 levels of difficulty: Short with either 1 or 2 tags; Medium with 3 or 4;
Long with 5 or 6 tags. Each set (difficulty level) contains 100 queries (combinations).

Evaluation Metrics

To measure how well the entities (restaurants in this case) returned by SACSS and
the baselines satisfy the queries in the test set, we use the well-known Normalized
Discounted Cumulative Gain (NDCG) [76] which is a measure of ranking quality.
Formally, this metric computes the quality of a ranked list and divides it by that
of the ideal ordering, thus giving a score between 0 and 1, the higher the better.
For illustration purposes, assume that subjective query Q has n subjective tags: Q =
{q1, q2, ..., qn} and that we input Q to SACSS. The latter returns a list of top-k entities
E = {e1, e2, ..., ek}. We define sat(qi, ej) ∈ [0, 1] as the degree with which entity ej
satisfies the subjective tag qi. The NDCG score is computed as follows:

DCG(Q,E) =
k∑

j=1

(2
1
m

∑m
i=1 sat(qi,ej) − 1)/log2(j + 1) (3.11)

NDCG(Q,E) = DCG(Q,E)/iDCG(Q) (3.12)

Intuitively, a highly relevant entity (sat(qi, ej) scores close to 1) should be at the
top in order for the DCG to be high. iDCG in Equation 3.12 corresponds to the
DCG score of the ideal ordering. It is fairly easy to get the iDCG as it is only a
matter of sorting the entities with respect to the sum of their sat(qi, ej) scores and
then computing the DCG. Finally, we take the arithmetic mean over all queries to
compute the quality of the entire test set.

Ground Truth

We obtain the ground truth sat(qi, ej) of subjective tag qi and entity ej via crowd-
sourcing. We give each worker a tag qi and one review rkj from the set of online
reviews corresponding to entity ej. The crowdsourcing task is to inspect the review
rkj and tell whether it mentions the tag qi or not. The worker must assign each pair
of review/tag a relevance score among the following: 0 for no relevance, 1

3
for weak

relevance, 2
3

for strong relevance and 1 for perfect relevance. As an example, given the
review sentence "The food is very delicious but the service is terrible", the tag great
food should be marked as perfectly relevant, nice decor not relevant while slow service
as weakly relevant because the slowness of the service is somewhat related to it being
terrible. For each review/tag pair, we ask three different workers to provide labels,
from which we take the majority vote, resulting in sat(qi, r

k
j ) relevance scores. To
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System Short Medium Long

IR 0.829 0.896 0.916

SIM - 1 att 0.828 0.886 0.907
SIM - 2 atts 0.837 0.891 0.909

SACSS - 6 tags 0.815 0.874 0.896
SACSS - 12 tags 0.825 0.882 0.902
SACSS - 18 tags 0.854 0.911 0.928

Table 3.5: Subjective search quality of SACSS and baselines

obtain sat(qi, ej), we take the mean of sat(qi, rkj ) across the reviews of the same entity
ej. The crowdsourcing experiment has been conducted on Yandex Toloka platform8.

Baselines

We compare SACSS to two baselines: an Information Retrieval (IR) system and a
custom simulation (SIM). The IR baseline uses Okapi BM25 [76] retrieval model. We
follow the work of Ganesan and Zhai [147] and add the capability to expand the terms
of the query into synonymous and related terms, as well as select the best query
combination method they found to make the IR system more competitive.

SIM represents what a determined and tireless user can get from Yelp or other simi-
lar online services. Because these services provide a set of pseudo-subjective queryable
attributes (such as NoiseLevel, Ambiance or GoodForGroups), the user might filter
the search results with the attributes she thinks closely resemble her subjective prefer-
ences. For example, if she is interested in quiet restaurants, she can set the attribute
NoiseLevel to calm and the attribute GoodForGroups to False in Yelp’s interface. She
can also rank the results by star rating. SIM is a simulation of such behavior. We
assume that the user can choose one or two attributes from Yelp’s interface at a time.
SIM computes all possible combinations of attribute values and selects the one that
maximizes the NDCG score, thus finding the best top-k results that satisfy the subjec-
tive queries. Consequently, SIM constitutes a very strong baseline to compare SACSS
against.

Comparison and Analysis

Table 3.5 reports the NDCG scores of SACSS and the baselines on the test set. Each
column corresponds to the level of difficulty (Short, Medium or Long). The first row
shows the quality of the IR system. The following two lines are variations of SIM
using only one attribute, or a combination of two separate attributes. The last 3 rows
describe the performance of SACSS, each time with a different number of subjective
tags present in the index. This is to simulate the adaptive capability of SACSS as
interactions with users unfold.

In all difficulty levels, SACSS outperforms the information retrieval system with
a margin between 1.2% and 2.5%. This is not surprising because the IR system

8https://toloka.yandex.com
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is based on keywords and looks for exact match whereas SACSS models subjective
attributes with subjective tags. Table 3.5 shows that SACSS is superior to keyword-
based systems even when the latter are bulked with query expansion and adequate
predicate aggregation techniques. On the other front, SIM simulates the behavior of
a determined user that runs through all possible combinations of queryable attributes
that online services such as Yelp offer. To make the evaluation challenging, we take the
combination that maximizes the NDCG score, thus reflecting the best result a user can
hope for when interacting with Yelp’s interface. As shown on the table, considering
two attributes yields better results than one attribute, but with diminishing returns.
That is why we don’t bother searching the space of more than two attributes, which
adds a non-negligible amount of computation. SACSS outruns SIM with 2 attributes
by a margin between 1.7% and 2.0%.

Even with a small number of tags in the index, the performance of SACSS is com-
parable to that of IR or SIM. This is especially the case at the initialization of the
index, when it is nearly empty (in Table 3.5, the index contains 6 tags only). However,
as SACSS interacts with users, it extracts new subjective tags from user utterances
and adds them to the index in a dynamic and adaptive way. This experiment demon-
strates that adding more tags to the index improves the overall accuracy (improvement
between 3.2% and 3.9%), and confirms that SACSS adapts to new user needs.

We also observe that, for all three systems, accuracy increases with a higher number
of subjective criteria. We hypothesize that with more subjective tags in the query, the
list of restaurants which verify all the subjective filters shrinks, leading to a lower
margin for error in all systems; thus a higher NDCG score. Nonetheless, SACSS
is still the best no matter the number of subjective filters to be considered. We also
observe that the largest improvement happens with short queries (1 or 2 subjective tags
therein). This result reinforces the notion of integrating SACSS to task-oriented dialog
systems where utterances are short and usually span a small number of subjective
filters.

3.7 Discussion

In this chapter, we defined the notion of subjective tags as being the concatenation of
aspects and opinions to characterize subjective information in text. Then, we proposed
a method to automatically extract subjective text. Extraction follows a two-step
process: (1) tagging each term in the input as either an aspect, an opinion, or neither
(e.g., verb, article, etc.), (2) pairing each aspect with its corresponding opinions. We
apply our method to extract subjective tags from online reviews and build SACSS,
a Natural Language Understanding module for task-oriented dialog systems which
allows to recognize the subjective signals in user utterances and filter search results
accordingly. Our experiments demonstrate that our contributions beat state-of-the-art
performance in terms of extracting subjective attributes. Also, we show that SACSS is
better than existing search systems when searchers are interested in subjective filters.

We would like to spend a few words on the nature of subjective tags in this discus-
sion. Given their simple definition constituting only of an aspect and of an opinion, it
is not impossible to assume that they can capture factual notions unrelated to subjec-
tivity. For example, round-shaped pizza is an objective and factual information that
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strongly resembles the structure of subjective tags. However, we do not consider it as
such in this work since the well-defined shape of a pizza is not a matter of personal
opinion. While pizza is truly an aspect term, round-shaped is not an opinion (even
though it is an adjective). Although aware that the process of deciding which terms
can be used to express an opinion (e.g., beautiful, delicious, romantic) and which do
not (e.g., oval, blue, closed at midnight) can also be cast as a subjective exercise, we
believe that terms to describe things like color or shape call for very little subjectivity.
Thus, we do not consider them as subjective tags in this case. Also, in sentences hav-
ing a factual grammatical structure (noun is noun/adjective) such as "Maradona is a
football player" or "Maradona is Argentinian", we do not extract subjective tags even
though a lot of opinionated sentences share the same syntactic structure. In our work,
we consider facts as negative examples and include them in the data used to train the
tagging classifier. In the examples above, all terms are manually tagged as neither,
meaning they are neither aspect nor opinion. Therefore, facts will not be considered
for subjective extraction.

We believe that the syntactic structure of subjective tags enable a myriad of other
interesting applications. For example, social stereotypes can be detected using the
exact same techniques presented in this chapter. The only difference lies in defining a
social stereotype as a concatenation of a demographic mention (e.g., mulsims, asians,
feminists, etc.) and an attribute (e.g., good at driving, greedy, excellent at math).
Consequently, a lot of historical text from the internet can be analyzed automatically
using our extraction methods to learn about how different social groups and demo-
graphics have been perceived throughout history, and in the modern age. We present
and discuss our contributions about social bias and prejudice in NLP models at length
in Part II of this dissertation.

Tag-based browsing is a popular interaction model for navigating digital collections
or libraries [153]. In this work, we rely on the inverted index data structure to organize
our set of subjective tags. Inverted indexes have been utilized in many information
systems such as social tagging systems [239, 183, 182] or semantic file systems [157,
43, 116]. However, finite state automata are emerging as the next popular data man-
agement technique [155, 154]. In this model, every possible combination of tags is
considered as a state, linked to other states such that one can navigate through states
by adding or removing tags. Given the serious storage and processing constraints this
model enforces, Gayoso-Cabada, Gómez-Albarrán, and Sierra [152] augmented the
navigation automaton with a smart cache strategy, outperforming inverted indexed in
both efficiency and processing time. However, we do not use automata in this chapter
because this data storage model does not fit the context of our work. Storing sub-
jective tags inside an automaton requires knowledge of all possible tags in advance
which defeats a major purpose of SACSS being the automatic and dynamic learning
of representative and important subjective tags through interactions with searchers.
Besides, all the overhead and cost of maintaining the automaton and the cache are no
match for the unreasonable simplicity of using inverted indexes.

We are also aware of other limitations. For instance, all subjective tags learned
through interaction with multiple users are muddled in one single place. It would be
helpful to take into consideration user profiles and store subjective tags separately for
each user. Therefore, we can make suggestions of possibly attractive subjective tags
for searchers to include in their queries, based on each user’s search history, or based
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on other searchers exhibiting similar subjective interests. Also, the current version of
SACSS suffers from cold start since we do not impose any subjective tag or attribute.
An easy solution to this problem is to populate the inverted index with initial tags.
However, the choice should be based on preliminary studies and surveys to learn in
a rigorous and scientific way which subjective attributes are susceptible to appeal to
online searchers.

In this work, we rely on reviews as a primary source of subjectivity. Nevertheless,
one has to be cautious when handling text written by others online. For instance,
reviews can be biased against restaurants, hotels or any business just because they
do not align with local customs and values even if these businesses are otherwise
excellent in every other aspect. Worse, reviews can be fraudulent; a reviewer might
have been paid by a business owner to write positive reviews about it, or negative
reviews about its competitors. Finally, reviews can hold complex figures of speech,
irony or sarcasm, and our tagging and pairing techniques cannot cut through such
cryptic usage of language. Therefore, we have to differentiate between truthful and
fake/biased/sarcastic reviews in order to provide a transparent search experience for
online users.

Finally, we remind that we use a measure of similarity in SACSS to compare be-
tween user-provided tags and review-extracted tags (see Figure 3.6). We have tried our
subjective search system with many similarity metrics and models previously proposed
in the scholarship, and they all show subpar performance, often issuing false similarity
decisions (e.g., considering similar tags as dissimilar and vice versa). We believe that
this severe shortcoming owes to the variety of ways a subjective notion can be commu-
nicated via language. For illustration, suppose a diner loved a pasta dish in an Italian
restaurant. She can express her love for the dish she ate using different variations of
language such as delicious food, succulent dish, savory pasta or heavenly plates, etc.
While opinions can be compared with existing similarity measures with acceptable
accuracy, aspects are harder since they are not necessarily semantically similar, e.g.,
pasta and plate are not similar at all. Therefore, current similarity measures fail to
recognize conceptual relatedness of some aspects and thus produce faulty similarity
decisions. We believe that subjective tags require custom similarity models that cater
for concepts as well as general semantics of words. We delegate the description of the
conceptual similarity model we use in SACSS to the next chapter.
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Chapter 4

Conceptual Similarity for Subjective
Tags

This chapter addresses the task of conceptual similarity in the context of online sub-
jective search. Following discussions of the previous chapter, subjective tags must be
compared to each other in order to recommend relevant online resources (products or
services) that best suit the searcher’s subjective preferences. Therefore, we propose
in this chapter a novel similarity model specifically designed to work for subjective
tags. The particularity of our work is that we leverage conceptual connections be-
tween aspects and opinions when computing similarity, e.g., ambiance and music are
conceptually related, but semantically dissimilar. Search systems based on our con-
ceptual similarity are able to recommend restaurants described as playing nice music
to searchers who are looking for a good ambiance. We also propose in this chapter a
simple cost-effective pipeline to automatically generate data in order to train the con-
ceptual similarity model. We show that our pipeline generates high-quality datasets,
and evaluate the similarity model both systematically and on a downstream search
application. Experiments show that conceptual similarity outperforms existing work
when using subjective tags.

4.1 Introduction

In the previous chapter, we determined that online search is progressively transitioning
into including perceived experiences and subjective preferences. We have proposed to
enable subjective filtering of search results through the use of subjective tags. However,
tags have long been used to facilitate the consumption of online information. They
play a pivotal role in the indexing, management and retrieval of online resources [418].

We have seen that subjective tags are particularly useful in enhancing online ex-
periential search. In this context, users seeking subjective experiences augment their
queries with subjective tags. Then, the search system looks for online resources that
are described with matching tags. Deciding whether two given subjective tags match
or not implies using a similarity measure, for which cosine similarity remains a conve-
nient, yet arbitrary default [508, 123, 507, 67, 301, 502, 271, 229]. Indeed, most recent
search systems such as OpineDB [271] or SearchLens [67] utilize cosine similarity for
comparing system tags with user-provided tags owing mainly to its ease of use and
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simple geometric interpretations [508]. Nevertheless, recent research is starting to cast
some doubt on the effectiveness of cosine similarity for comparing sentences or phrases
[303, 511]. Besides, given that it is an unsupervised method drawing its similarity
decisions solely from the vector space, it is difficult to adjust and customize it to suit
special needs such as those imposed by subjective tags.

Newer methods of textual similarity are supervised, and span a diverse set of
paradigms, e.g., Siamese networks [52, 370], Aggregation-Matching models [463, 469,
468], or the recent cross-sentence attention paradigm [265, 215] which was made pos-
sible by the advent of the transformer architecture [452]. Although these methods
demonstrate fair performance on syntactically-correct sentences [32], they are less ef-
fective when used with shorter-spanned phrases such as subjective tags. One can
attribute this to the fundamental difference between tags and full sentences, where
tags lack the necessary grammatical entities like verbs for a given snippet of text to
be considered as a sentence. However, the above-mentioned similarity methods have
been trained on sets of sentences, and may be confused when applied on tags. As
will be discussed later in this chapter, our experiments confirm this limitation. A
second drawback is that current similarity models are not explicitly trained to rec-
ognize conceptual similarities between the compared textual entities (e.g., meal and
pizza share the concept of food; or background music and lighting share the concept
of ambiance). Therefore, all conceptual reasoning is disregarded, which is extremely
limiting in the context of subjective search.

To illustrate the importance of capturing conceptual similarities between subjective
tags, suppose a user searches for a restaurant serving delicious meals. A subjectivity-
aware search system should be able to suggest restaurants tagged with tasty chicken
wings among its search results, because meal and chicken wings share the same concept
(i.e., food). So, although meal and chicken wings are conceptually similar, they are
on the other hand semantically dissimilar. As a result, traditional semantic similarity
models [32, 370, 468] and search systems based on them [271, 67] usually fail to meet
this expectation and provide low similarity scores for the tags in the example. We can
imagine a myriad of other scenarios where this impediment foils results of experiential
search such as the existing conceptual similarity between high-autonomy camera and
long-lasting battery, or romantic ambiance and low-beat music bar.

In this chapter, we propose a new supervised similarity model that focuses on
learning and then using conceptual relationships between subjective tags. Given that
the notion of subjective tags is proposed in this thesis for the first time, we are not
aware of available datasets annotated with similarity scores that we can use to train
our model. Manual creation of such data is impractical since (1) it is expensive, time-
consuming and labour-intensive to begin with, and (2) data is generally specific to
one application domain (e.g., restaurants, electronics, medicine, etc.), thus extending
similarity models to other domains necessitates re-annotating from scratch. For these
reasons, the main contribution of this chapter is proposing a pipeline to generate large
synthetic datasets for the task of conceptual similarity between subjective tags. Our
data generation method is semi-automatic, and requires the participation of a human
(whom we call the dataset designer) who provides seed words for the concepts she needs
her conceptual similarity model to include. Second, we exploit the simple structure of
subjective tags to expand the seeds with conceptually related terms using knowledge
bases, e.g., WordNet [125] or ConceptNet [420], or the implicit knowledge encoded in
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existing language models to automatically generate large training data. The second
contribution of the chapter is the similarity model itself which capitalizes on the latest
advances in semantic similarity research [370, 468, 103]. Specifically, we contribute the
following:

• We propose various and novel methods to expand seeds provided by the dataset
designer into far larger sets. The seeds and the expanded words must share
similar concepts. Our seed expansion methods are based on external knowledge
graphs, embedding spaces for words, and existing language models.

• We design a pipeline to convert the expanded seeds into an annotated dataset
in order to train conceptual similarity models for subjective tags.

• We propose a new similarity model by combining insights from aggregation-
matching and cross-sentence attention paradigms.

• We describe a novel experiment to measure the impact of noise in the creation
process of synthetic datasets. We use this experiment to validate that training
datasets produced by our method are of high-quality.

• We show that conceptual similarity is better than cosine similarity with a margin
of 17.42% in terms of Pearson correlation. We also show that we outperform
other similarity measures such as Siamese networks, random forest or BERT-
based similarity models through systematic evaluations.

• We also plug different similarity models into SACSS - the subjective search sys-
tem presented in the last chapter - and show that SACSS with conceptual simi-
larity works better than with other similarity measures.

This chapter is organized as follows: In Section 4.2, we expand on the related
works. We describe the dataset generation pipeline in Section 4.3, followed by details
on the proposed similarity model in Section 4.4. Then, we evaluate our contributions
through different experiments in Section 4.5. We conclude with a general discussion
in Section 4.6.

4.2 Related Work

The contributions of this chapter sit at the crossroads of two areas of research: auto-
matic generation of training data, and textual similarity models.

4.2.1 Synthetic Dataset Generation

Acquiring training data is increasingly the largest and most pressing bottleneck in
deploying machine learning systems [371]. The traditional way of doing so is to call a
team of experts to manually create the data and/or provide ground truth labels. How-
ever, experts are hard to solicit, and usually incur tremendous costs. Crowdsourcing
alleviates part of this burden by proposing to a group of individuals of varying knowl-
edge and expertise, the undertaking of the labeling task [49, 195]. Still, crowdsourcing
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does not always guarantee the precision of the gold labels, and may inflict noise in
the labeling process, especially when uneducated, careless or malicious workers are
involved.

Between the high cost of experts and the low precision of crowd workers, recent
trends aim to disentangle the training data creation process from human intervention.
For example, new research devises methods to automatically create, generate and label
training data, making use of heuristics, knowledge bases, or other external sources
[372, 371, 451]. When one speaks of generating data, two problems are implicitly
addressed: (1) generation of features (i.e., unlabeled raw data), and/or (2) generation
of gold labels (i.e., automatic labeling).

Generation of Features

First, we discuss the generation of features, for which two techniques are mainly used:
template-based generation [100, 322, 380] and data augmentation [504, 513, 437, 326,
225]. In template-based generation, data is created at scale by iteratively slotting
multiple tokens into predefined templates. For example, Dev et al. [100] provide tem-
plates such as "The [PLACEHOLDER] is a doctor", and insert words like man, woman,
muslim or christian to create different examples in order to study social biases and
stereotypes. In the same spirit, Nadeem, Bethke, and Reddy [322] construct an eval-
uation dataset of biases using a mix of templates and crowdsourcing, whereas Ribeiro
et al. [380] designed a framework to test NLP systems where users construct their own
test cases via the use of templates.

On the other hand, data augmentation techniques expand already available but
small datasets to make them larger. This is usually achieved by searching for simi-
lar data in the feature space, applying small perturbations to existing data without
changing their labels [225], or through seed expansion techniques [123, 271, 199] via
similarity in word embeddings or with knowledge bases.

Our own data generation pipeline is a mix of both techniques. While it is fun-
damentally a seed expansion method where aspect and opinion terms that we use to
express subjective tags are expanded into conceptually related terms, it also derives
from template-based generation since we use the template "<opinion> <aspect>" (as
in delicious food or romantic ambiance) to construct subjective tags. The closest work
to ours in terms of seed expansion is Empath [123] for studying topic signals in text. In
Empath, a topic is defined by a set of seeds that are later expanded by word embeddings
or crowdsourcing, to enrich each topic category. In contrast, we use the expansions to
build sufficiently large labeled datasets. Moreover, we propose five different expansion
techniques to increase the diversity of generated subjective tags.

Generation of Labels

Gold labels are of indisputable importance in supervised learning tasks, without which
learning cannot take place. As stated earlier, gold labels are expensive to come by, so
research is exploring the possibility of generating them automatically. Data program-
ming [372] is a recent paradigm that enables the programmatic creation of large-scale
training sets in which different weak supervision sources (e.g., heuristics, knowledge
bases, noisy labels, crowdsourcing, etc.) are combined. In Snorkel [371], effective
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combination is achieved with a generative model taking into consideration several
properties of the weak classifiers including the accuracy, the coverage, and the inter-
correlations. Snuba [451] takes the data programming paradigm a step further by
allowing the automatic generation of heuristics to assign weak labels to a large unla-
beled dataset.

Our work is different in two main aspects. First, Snorkel and Snuba are general ML
frameworks aiming to build decent labeling functions, whereas our method is specific
to text-based data and focuses on conceptual similarity for subjective tags. Second, in
this work, we generate and label training sets at the same time, in contrast to Snorkel
whose purpose is to assign labels to already existing unlabeled data.

4.2.2 Textual Similarity

Apart from cosine similarity [123, 507, 67, 301, 502, 271, 229], we identify several
similarity paradigms in the literature:

• The Siamese architecture [52, 370] where one text encoder is trained to project
textual inputs such as words or sentences into the same embedding space. Similar
inputs are projected next to each other while dissimilar inputs are distanced from
each other. Then, the similarity decision is based on vector proximity, i.e., the
closer text representations are, the more similar they are considered.

• Aggregation-matching paradigm [463, 469, 468] explores granular relationships
between two input sentences before taking a similarity decision. For example,
checking whether there are n-gram overlaps, synonyms, syntactic alignments or
word reordering phenomena. More recently, matching between the inputs is
achieved automatically by checking semantic relatedness as encoded in vector
representations.

• Cross-sentence attention paradigm [265, 215] is enabled by finetuning transformer-
based text encoders such as BERT [103] or GPT2 [365] on a similarity task using
popular datasets such as STS-B or MRPC [461], or augmenting these models with
topic signals [341].

• The probabilistic paradigm for similarity [485, 508] where instead of considering
representations of text as vectors in a geometrical space, they are treated as
probabilistic distributions of scalar random variables. Such methods then apply
statistical measures such as mutual information as a proxy for similarity.

• Combining several weak similarity models such as neural architectures [402], tree-
based models [51], probabilistic models with hand-crafted features and linguistic
rules through an ensemble [441, 252]. A lot of such techniques have been proposed
in SemEval competitions [32].

All these works focused solely on semantic similarity between syntactically correct
sentences, whereas we focus on conceptual similarity between tag-like short phrases.
Similar to our approach, Anuar, Setchi, and Lai [12] propose a method to retrieve
trademarks based on similarity, and Zhu and Iglesias [512] compute similarity of con-
cepts in knowledge graphs . In contrast, we use knowledge graphs to generate data
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Figure 4.1: Pipeline for automatically generating labeled datasets for conceptual sim-
ilarity of subjective tags

and train a supervised similarity model. More details about our similarity model are
provided in Section 4.4.

4.3 Generation of Synthetic Datasets for Similarity

Following the same terminology as in the previous chapter, we remind that an aspect
term designates the feature being described, and the opinion term characterizes this
feature. Specific to this chapter, we define a concept as a set of aspect terms conceptu-
ally related to each other. For example, the concept of food can be described with the
following set of aspects: {food, plates, dishes, pizza, chicken wings, meal, pasta} while
the concept of ambiance can be defined with {ambiance, atmosphere, lighting, back-
ground music, dance floor}. In conceptual similarity, we consider aspects belonging to
the same concept as similar when they are described with similar opinions.

In this work, we formulate conceptual similarity as a binary classification problem,
where the positive label denotes similarity. We chose the binary configuration because
it facilitates the automatic generation of high-quality labeled datasets with minimal
costs and little human intervention. To do so, the dataset designer provides a list of
concepts. We then leverage seed expansion techniques to generate the dataset, through
the pipeline illustrated in Figure 4.1. In the following, we describe each step of the
pipeline in detail.

4.3.1 Providing Seed Words for Concepts

The first step involves the dataset designer to provide sets of seed words for the con-
cepts that she wants to take into consideration. This is the only step in the pipeline
that requires human intervention. For each concept i, the designer provides a list
of aspect seed words Ai, and mi lists of opinion seed words Oj

i where j ∈ {1...mi};
mi depends on the concept and the level of granularity the dataset designer aims to
reach. For the sake of illustration, say that the designer wants to include the concept
of food with three classes of opinions (delicious, horrible, healthy). She may provide
the following:

Ai = {”food”, ”dish”, ”lunch”, ”pizza”, ”snack”}
O1

i = {”good”, ”delicious”, ”excellent”}
O2

i = {”bad”, ”horrible”, ”not seasoned”}
O3

i = {”healthy”, ”organic”, ”high quality”}
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(a) WordNet (b) ConceptNet

(c) Embedding (d) Language Generation
(e) Masked Language Mod-
eling

Figure 4.2: Different seed expansion techniques

Ai is the set of aspect terms related to the concept of food. Each of Oj
i lists some

opinion terms of the same nature, but different from one set to another. In the example
above, O1

i describes tasty food, O2
i characterizes bad food, and O3

i healthy food. In
this particular scenario, conceptual similarity trained on a dataset to be generated
from these seed words considers the tags "good food" and "delicious snack" as similar
(since good and delicious belong to the same opinion set, and food and snack belong
to the same aspect set), while it considers "good food" and "healthy food" as dissimilar
because the terms good and healthy belong to different opinion sets. If the dataset
designer needs a more granular similarity model (e.g., spicy or creative food described
as their own classes), she only has to add opinion sets for spiciness and creativity with
corresponding seed words. Following these guidelines, the designer can express a wide
range of concepts such as price, service, hygiene, and in other domains too (e.g., hotels,
electronics, books, etc.)

4.3.2 Seed Word Expansion

We propose five different methods to expand seed words provided by the dataset
designer. We illustrate these methods in Figure 4.2 and describe them here:

WordNet Expansion

WordNet [125] is a lexical database for English that groups synonyms into units of
cognitive concepts called synsets. Words can be associated with as many synsets
as there are senses for the words, e.g., bank has ten different synsets in WordNet
according to whether it means a sloping land beside water, a financial institution, a
container, etc. Synsets are interlinked with each other through conceptual, semantic
and lexical relations, hence forming a knowledge graph. Beside synonymy, WordNet
also contains super-subordinate relations, i.e., hyperonymy, hyponymy or is-a relations
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mapping specific synsets to more general ones. For example, pizza is a food. Finally,
meronymy (or part-whole relation) is included in WordNet too, where synsets are
linked to concepts that constitute them, e.g., chair and leg, or hamburger and meat.

In this work, for every seed provided by the dataset designer, we collect its cor-
responding synsets from WordNet. Then, for every synset, we retrieve its hyponyms,
hypernyms, meronyms and sister terms as illustrated in Figure 4.2a to collect as many
related concepts as possible. We control the number of expansions through the use
of hyperparameters such as the maximum number of synsets to include, and differ-
ent booleans each specifying whether to take hyponyms, meronyms, etc. respectively.
More details about the hyperparameters are described in the experimental setup in
Section 4.5.1.

ConceptNet Expansion

ConceptNet [420] is a multilingual semantic network, representing the conceptual rela-
tionships between different words and phrases. Such relationships include but are not
limited to: synonyms, antonyms, is-a (e.g., car is a vehicle), has-a (bird has a wing),
form-of (ate is a form of eat), part-of (key is a part of a keyboard), used-for (book is
used for reading), similar-to (mixer is similar to food processor), related-to (restaurant
is related to food), etc. Relations in ConceptNet are attributed numerical scores called
weights, to denote the strength of the relationship. The knowledge in ConceptNet
is picked from a variety of sources such as crowd-sourced resources (e.g., Open Mind
Common Sense [180] and Wiktionary1), expert-created resources (e.g., WordNet [125]
and JMDict [50]) and games with purpose (e.g., Verbosity [458]) [420].

In this expansion method, for every seed, we obtain its is-a (i.e., parent concepts)
and type-of (child concepts) relations. For example, meat and food are parent concepts
for the word of interest, i.e., chicken. We also aim to collect sister terms, i.e., terms
sharing the same parents with seeds of interest. To do that, we retrieve other children
of the parent concepts as is shown in Figure 4.2b. We control ConceptNet expansion
with three hyperparameters: capacity which is the maximum number of relations to
consider; minimum weight which specifies the relevance of the relation (high weights
in ConceptNet correspond to a strong relation); and a boolean specifying whether to
include sister concepts into the expansion.

Word Embedding Expansion

In contrast to the previous two methods where each seed is expanded independently
from other seeds, in the following, we take all the seeds relating to the same concept
together. The goal is to find other words that are close in meaning to the set of seeds.
In this method, we use static word embeddings as the underlying source of semantic
information. Specifically, new expanded words should be similar to all seeds taken
at once. To do that, we take the top_k words in the vocabulary that minimize the
total distance between them and seed terms. In other words, we take the top_k most
similar words to the seeds. Taking the example in Figure 4.2c, pasta is less distant
from all the seeds than morning is, thus pasta constitutes a better expansion than
morning. The parameters of this technique are the number of expansions top_k, the

1https://www.wiktionary.org/
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word embedding model under use, and the distance function, e.g., euclidean or cosine
similarity.

Language Generation Expansion

Autoregressive language models are used in the scholarship to automatically generate
smooth continuations of text given an input prompt. The continuation must be a
coherent follow-up to the prompt, and therefore must be semantically and conceptually
related. Autoregressive language models have wide applications in machine translation,
summarization, story generation, chatbots, etc. In this work, we use them to generate
coherent and conceptually related words to the set of seeds. To do that, we first need
to create a textual prompt where the seeds are mentioned. We plug seed words into a
template such as "These concepts are related: <seed_1>, <seed_2>, ... <seed_n>,
and " to create the prompt. Then, the autoregressive language model generates a
continuation for the prompt. Continuations are formulated as probabilities of words,
i.e., the most probable continuation is the one having the highest likelihood. Thus,
we take the top_k words having the highest probabilities to be correct continuations.
The hyperparameters are: the language model under use (e.g., GPT2 [365], T5 [367]),
the number of generations, and the maximum length of each generated expansion. We
illustrate a simple example of this method in Figure 4.2d.

Masked Language Modeling Expansion

Unlike their autoregressive cousins, masked language models do not generate new text
starting from a prompt. Instead, they expect a full sentence wherein one word is
masked out. The task of masked language models is to predict the likeliest word to
replace the mask. In this expansion method, the template that we build takes the
following form: "<seed_1>, <seed_2>, ... <seed_n> and [MASK] are all related
concepts." The masked language model produces, for every word in the vocabulary,
its likelihood to replace the mask. We conjecture that terms having the same concept
as the seeds would have higher probabilities to replace the mask in that particular
template. We give an example of this method in Figure 4.2e. The hyperparameters
in this case are the number of top_k terms to take, and the masked language model
under use, e.g., BERT [103], Albert [255], etc.

We bring to the attention of readers that for every expansion technique, we can
have as many expanders as there are hyperparameter configurations. For example,
two word embedding expanders, one based on Word2vec [313] the other on GloVe
[344], are two different expanders. Or one that uses an euclidean distance while the
other uses cosine similarity are also different expanders. In an attempt to promote the
diversity of our seed expansions, we use different hyperparameter configurations for
every expansion technique in this work. Full details can be found in Section 4.5.1.

Also, we are aware that some expanders may introduce some noise. Consequently,
for a new word to be considered as a correct expansion, we require that at least a suffi-
cient number of expanders suggest that word. We specify this with min_consensus_rate
which defines how many expanders need to produce the word in order to include it in
the final expansions.
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4.3.3 Random Sampling

Given that our goal is to create a dataset for conceptual similarity of subjective tags,
the next step in the pipeline (Figure 4.1) constructs tags from the sets of expanded
aspects and opinions. In particular, we randomly pick an aspect term and an opinion
term from the expansions. These two terms are then concatenated to form a subjective
tag. For example, we may sample the aspect term waiters and the opinion term nice
to form the tag "nice waiters". We repeat this process to construct as many subjective
tags as the dataset designer needs.

4.3.4 Filtering

Random sampling from automatically generated sets of terms may lead to arbitrary
tags. For instance, it may construct tags such as "helpful duty".2 There is a need to
eliminate this kind of tags before proceeding if we want to build high-quality datasets.

We remind that language models assign likelihoods to sentences such that seman-
tically coherent sentences are given high likelihoods and gibberish sentences get low
likelihoods. Therefore, we use GPT2 language model [365] in this work to get a sense
of how coherent a subjective tag is. However, tags are by definition syntactically-
incorrect phrases. We expect language models to always consider them as unlikely
sentences since they lack the complete grammatical structure of a correct sentence.
For this reason, we transform every subjective tag into a short sentence for the pur-
pose of this step, by formatting each tag according to this template: "the aspect is
opinion". GPT2 should assign low probabilities to sentences such as "the duty is
helpful", and high probabilities to sentences such as "the service is helpful" or "the
waitstaff is agreeable". We manually select the probability threshold above which sen-
tences make sense in a separate study. Finally, we only keep subjective tags that score
above the threshold.

4.3.5 Pairing and Labeling

We randomly sample two subjective tags t1 and t2 from the filtered list. If the aspect
and opinion terms of t1 and t2 have been sampled from the same sets, the tags are
considered similar (label is 1). In all other cases (i.e., different aspect sets, or same as-
pects but different opinion sets), the label is 0. To avoid class imbalance in the dataset,
the dataset designer provides the minimal ratio of positive examples. We enforce this
constraint by deliberately sampling similar tags from the same aspect and opinion sets.

Figure 4.1 summarizes our dataset generation pipeline with an example. This
algorithm allows us to create high-quality training datasets with minimal effort. It
can also be adapted to any domain. In Section 4.5.3, we assess the quality of datasets
generated with this pipeline.

2This may be the result of expanding service to duty through WordNet, even though service in
this case refers to waiters in a restaurant.
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Figure 4.3: Similarity model architecture

4.4 Conceptual Similarity Model

In this section, we present our novel approach for computing conceptual similarity
between a pair of subjective tags. We Adhere to the latest insights and guidelines in
the literature of textual similarity [32, 463], stating that granular comparisons (e.g.,
word by word) should also be included to measure similarity. Thus, we design our
similarity model to automatically learn explicit interactions between tags, such as
whether the tags correspond to the same concept; whether they use the same opinions
but with different aspects; whether the choice of words in the tags is similar but the tags
themselves are not. To this end, we base our approach on the aggregation-matching
paradigm [463, 469, 468], and propose a novel bilateral matching model that encodes
granular mappings, interactions and relationships between different words of each tag
before making a similarity decision. Formally, given two subjective tags t1 and t2, we
declare perfect similarity as the probability of the tags being similar P (sim = 1|t1, t2).
Figure 4.3 illustrates the different layers of our model.

We use BERT as the text encoder of choice owing to its celebrated success at
accurate representations of language using numeric vectors [103, 284, 255, 205]. The
first layer of our similarity model is thus the language representation layer wherein we
provide both t1 and t2 as a single input. The output of BERT in this case is threefold:
(1) vectors for all words of t1, (2) vectors for all words of t2, and (3) CLS vector which
captures the relationship between t1 and t2. Then, given BERT embeddings [u1, ..., um]
and [v1, ..., vn], we utilize mean pooling to obtain fixed-sized embeddings for each tag
(uall and vall). Next comes the matching process where each word in one subjective
tag is matched and compared to all words of the other tag. The matching is done in
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two directions (hence the bilateral aspect):

• We match each ui with vall to compare each word ui in t1 with all the words in
t2, and encode their relationships.

• We match each vi with uall to do the same in the reverse direction.

We use the element-wise multiplication as a matching function in this work because
it has been used in a myriad of applications in NLP as a proxy for similarity. By the
end of the matching step, each u′

i encodes the interaction of ui with words of the
second tag. Likewise, every v′i captures the relationship of vi with the first tag. In the
following step, we aggregate [u′

1, ..., u
′
m] and [v′1, ..., v

′
n] to obtain fixed-length vectors

for each tag via Bidirectional LSTM (BiLSTM) layers [187]. We take the last hidden
states as final tag embeddings u and v. In the end, we concatenate u, v and CLS
and feed them to a classification head which is a simple Feed-Forward Neural Network
(FFNN) to estimate similarity.

Our model can be regarded as a combination of two different similarity paradigms:
(1) aggregation-matching through the use of element-wise multiplication for matching
and BiLSTM for aggregation, and (2) the cross-sentence attention paradigm through
CLS vector, because BERT uses self-attention [452] to compute its vectors.

4.5 Experiments and Evaluation

In this section, we first give details about our experimental setup (e.g., the nature of
concepts, aspects and opinions considered in the evaluations, hyperparameter config-
urations of expanders, baselines, etc.) Then, we evaluate the accuracy of conceptual
similarity, and we check whether our synthetic data generation process is impacted by
noise. Finally, we evaluate the practical value of conceptual similarity by measuring
its impact on the downstream search system that we proposed and described in the
previous chapter. We release our Python code on GitHub3.

4.5.1 Experimental Setup

Seed Words

We use Restaurants as the test domain. We consider nine concepts that we use to
automatically generate the synthetic dataset for training conceptual similarity model:
Food, Service, Price, Atmosphere, Location, Cleaning, Environment, Menu and Park-
ing. Each concept consists of one set of aspect terms, and two to three sets of different
opinion terms. We base our choice of concepts, aspects and opinions on substantial
research in behavioral psychology [319] whose authors surveyed restaurant seekers and
asked them about which factors influence their decision-making process when they
chose between restaurants. We present the full list of concepts and their seeds used in
this work in Table 4.1.

3https://github.com/YacineGACI/conceptual-similarity-for-subjective-tags
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Price

aspects price, cost, payment
opinions 1 (good) low, good, fair, acceptable, cheap, not too expensive, affordable, great
opinions 2 (expensive) expensive, exaggerated, costly, overpriced, high, pricy

Food

aspects food, menu, plate, cuisine, meal, lunch, dinner, breakfast, cooking, snack, beverage,
drink, pizza, pasta, chicken, meat, steak, rice, soup, dessert, dish, fish, salad

opinions 1 (good) tasty, good, excellent, succulent, okay, delicious, well seasoned, perfectly cooked
opinions 2 (bad) bad, flavorless, bland, not seasoned, cold, disgusting, unappetizing, flat, gross, bor-

ing, awful, terrible, dry
opinions 3 (healthy) healthy, organic, high quality, fresh
opinions 2 (creative) novel, interesting, creative

Service

aspects staff, waiter, waitress, cashier, service
opinions 1 (warm) friendly, smiling, good, helpful, likable
opinions 2 (competent) knowledgable, quick, fast, efficient, high quality, professional
opinions 3 (bad) grumpy, horrible, slow, irritating, bad

Cleaning

aspects place, hygiene, kitchen, bathroom, utensils, plates, cutlery, silverware, trays, dishes,
table, chair, furniture

opinions 1 (clean) clean, impeccable, bright, lavish, luxurious, washed, shining
opinions 2 (dirty) dirty, bad, in bad shape, stained, greasy, not washed, poor, disgusting

Parking

aspects parking, parking lot, parking area, parking convenience, parking space
opinions 1 (good) free, available, empty, safe, large
opinions 2 (bad) unavailable, poor, narrow, small, hard to find

Environment

aspects place, environment, setting, surroundings, decor, lighting, music, ventilation, furni-
ture, air conditioning, air conditioner

opinions 1 (good) good, excellent, great, cozy, comfortable, sophisticated, good taste, pleasant, mem-
orable, adequate, beautiful, soothing, calming, fancy, attractive, happy, relaxing,
nice, charming

opinions 2 (bad) bad, horrible, bad taste, uncomfortable, dark, noisy, terrible, crowded, sad, depress-
ing, boring

Location

aspects location, area, place, address
opinions 1 (good) near, good, downtown, lively, touristy, popular, secure, safe, good, trustable
opinions 2 (bad) far, bad, polluted, remote, dark, unsafe, unsecure, dangerous

Ambiance

aspects ambiance, atmosphere, air, experience, environment, setting, decor, lighting, music,
ventilation, furniture

opinions 1 (good) cozy, good, excellent, romantic, nice, upscale, trendy, loved, enjoyed, fun
opinions 2 (bad) horrible, terrible, disgusting, bad, not good, disappointing, noisy, dark, depressing,

boring

Menu

aspects menu, selection, list, choice, choices, option, options
opinions 1 (large) wide, large, varied, variety, good, excellent, creative
opinions 2 (small) small, shabby, narrow, bad

Table 4.1: The full list of seeds (aspects and opinions) per concept used in our exper-
iments
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Implementation Details

We use a hidden dimension of 128 for the LSTM layer, and 512 for the 2-layer classifi-
cation FFNN. We set the rate of dropout to 0.3. We train by minimizing cross entropy,
and use Adam optimizer [231] to update the parameters with 5e−6 as learning rate.
These hyperparameter values are selected since they work best on a development set
that we generated in the same way as the training set. We implemented conceptual
similarity in Python using standard packages such as PyTorch4 for neural networks
and HuggingFace transformers library5 for BERT and GPT2.

Hyperparameter Configurations of Seed Expanders

As stated in Section 4.3.2, we use different parameter configurations for each expansion
technique to increase the diversity of the generated expansions. We give the complete
list of the expanders we use, and their parameters in Table 4.2.

We have a total of 28 different expanders. We set the parameter min_consensus_rate
to 0.3. Therefore, for a new token to be included in the final set of expansions and
passed down to the subsequent steps of the dataset generation pipeline (see Section 4.3
and Figure 4.1), the token has to be suggested by at least 30% of expanders (9 differ-
ent expanders in this case). We selected this value by doing a manual hyperparameter
search over the following values of min_consensus_rate: {0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 1.0}. We took the value (i.e., 0.3) that maximized the quality of the
final generated dataset (as per the evaluation task presented in Section 4.5.3 of this
chapter).

However, we chose the parameters of every expansion method manually without
conducting a hyperparamter search for the following reasons: (1) There are too many
parameters to test, which would make the search space exponentially larger, and thus
expensive to explore. (2) The parameter selection of expansion techniques is subjective
by nature. We manually chose the parameters such that they make sense (e.g., a
negative capacity in ConceptNet Expansion or a very large top_k in Masked Language
Modeling Expansion would not be useful), and such that the final expanders would
generate a diverse set of expansions from a limited lexicon of seeds.

Baselines

We compare our conceptual similarity model to various baselines. Note that for all
supervised baselines, we train them on the same synthetic dataset that we use to train
our own similarity model for fair evaluations and comparisons.

• Cosine: Since cosine similarity is the default similarity measure in many tag-
based search systems [123, 67, 271], we use it as a baseline. On the other hand,
cosine similarity can be applied with various embedding models. In this work, we
use it with Word2vec [313] and Paragram embeddings [480] since these have been
specifically trained on a similarity task [479]. Also, we utilize BERT’s contextual
embeddings with cosine similarity. However, BERT produces a vector for every

4https://github.com/pytorch/pytorch
5https://github.com/huggingface/transformers
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WordNet Expansion

num_synsets hyponym meronym hypernym sisters

3 true true true true
10 true true true false
5 true false true true

ConceptNet Expansion

capacity minimum_weight second_level_expansion

3 2.0 true
5 3.0 true
10 1.0 false

Word Emebedding Expansion

embedding_model num_words distance_metric

Word2vec 20 euclidean distance
Word2vec 20 cosine similarity
GloVe 20 euclidean distance
GloVe 20 cosine similarity
Fasttext 20 euclidean distance
Fasttext 20 cosine similarity
Paragram 20 euclidean distance
Paragram 20 cosine similarity
ConceptNet 20 euclidean distance
ConceptNet 20 cosine similarity

Language Generation Expansion

model top_k max_length num_beams

GPT2 20 1 200
GPT2 20 2 200
T5 base 20 3 200
T5 base 10 3 50

Masked Language Modeling Expansion

model top_k

BERT base 10
BERT base 20
BERT large 10
BERT large 20
RoBERTa large 10
RoBERTa large 20
ALBERT large 10
ALBERT large 20

Table 4.2: The full list of expansion techniques and their parameter configurations
that we used to expand the seed words in our experiments
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word. So, there is a need to pool these separate word-specific embeddings into
one single embedding per subjective tag. We use two different pooling strategies:
MEAN pooling where we take the mean of vectors, and CLS pooling where we
take the CLS vector produced by BERT as a phrase representation.

• A Siamese network for similarity [370].

• A random forest classifier with hand-crafted features [441].

• BERT Classif: we augment BERT with a classification head, then we finetune it
on the similarity task using the same dataset we use to train our model.

4.5.2 Evaluating Conceptual Similarity Model

Evaluation Data

Existing similarity benchmarks provide similarity ground truth for syntactically correct
sentences [32]. Hence, we cannot use them to evaluate our similarity model given that
subjective tags are short phrases which do not draw from the same syntactically-correct
sentence distribution. To the best of our knowledge, no benchmark for subjective tags
exists. Therefore, we create our own test data by automatically extracting tags from
Yelp’s restaurant online reviews6 using the tag extractor presented in Section 3.3 of
Chapter 3. Next, we map these extracted tags randomly into pairs. We select 500
such pairs and ask three human participants to manually assign a similarity score
between 0 and 5 for each pair of subjective tags, where 5 denotes perfect similarity
and 0 denotes no conceptual relationship between the tags. Finally, we normalize the
similarity scores to squash them into the unit range before taking the mean across the
participants.

Results

As in standard similarity evaluations, we use three metrics: Pearson and Spearman
correlations, and Mean Absolute Error (MAE). We summarize the performance of
conceptual similarity and the baselines in Table 4.3. We can see that conceptual
similarity is more accurate than all baselines, and it outperforms cosine similarity on
Word2vec by a large margin (0.1742 points in Pearson correlation). This demonstrates
that cosine should no longer be perceived as the default when it comes to measuring
similarity for subjective tags. When cosine is used with supposedly stronger embedding
models (BERT MEAN and BERT CLS), we find that the accuracy of the similarity
task drops drastically, confirming previous findings which surmise that cosine similarity
is not adequate to contextual word embeddings [303, 511]. We also show that, contrary
to popular belief, the transfer learning capabilities of BERT do not propagate well to
subjective tag similarity when BERT is finetuned (BERT Classif). This sheds light on
the necessity to design custom models especially tailored for tag similarity. We argue
that the effectiveness of our method stems from its ability to match different words of
subjective tags using both attention and element-wise multiplication.

6https://www.yelp.com/dataset
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Similarity Model Pearson Spearman MAE

Cosine (Word2vec) 0.6770 0.6190 0.2083
Cosine (BERT MEAN) 0.3449 0.3312 0.5313
Cosine (BERT CLS) 0.0497 0.0848 0.6920
BERT Classif 0.5946 0.5404 0.1703
Random Forest 0.6271 0.6324 0.2614
Siamese 0.7058 0.6141 0.1903
Conceptual Sim 0.8512 0.7388 0.1134

Table 4.3: Evaluation of similarity models on subjective tags

Noise level Pearson Spearman MAE

Original 0.8512 0.7388 0.1134
5% noise 0.7341 0.6641 0.1958
10% noise 0.7788 0.7101 0.1898
25% noise 0.7418 0.7055 0.2879
50% noise -0.1209 -0.0943 0.4078

Table 4.4: Evaluating similarity on noisy training data

Existing information retrieval and tag-based search systems like [271] and [67]
blindly trust cosine similarity or finetuned BERT models without investigating their
implications on the overall system performance. Our work highlights the limitations
regarding main stream text similarity techniques for subjective tags and short phrases,
and it gives guidelines as to how to design robust similarity models.

4.5.3 Evaluating the Quality of Synthetic Training Data

Evaluation Task

To measure the quality of the automatically generated dataset, we inject artificial noise
in the data, retrain the model, and check whether it degrades in similarity performance
[212]. We define noise in this context as swapping the similarity labels in the training
set. For example, if the original instance in the dataset was {t1, t2, 1}, adding noise
would transform it into {t1, t2, 0} and vice versa. We perturb fixed percentages of the
training data ( 5%, 10%, 25% and 50%) randomly and retrain the similarity model
each time. We conjecture that noise fundamentally corrupts the accuracy of gold
labels. Therefore, if the labels attributed to pairs of subjective tags by our synthetic
dataset generation procedure are correct, the introduction of noise should degrade
their precision. On the other hand, if we find that two distinct models, one trained
on the original dataset, the other on the perturbed and noisy data, have comparable
similarity performances, we argue that the original data was also comparable in quality
to mere noise.
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Results

In Table 4.4, we show correlations between human-defined scores of similarity (as
discussed in Section 4.5.2) and outputs of models trained with different levels of noise
in their data. Original in the table corresponds to results of training the conceptual
similarity model without introducing any noise to the data, while the percentages
denote how much of data is perturbed before retraining. We observe that instilling
noise in the labels increasingly degrades the accuracy of conceptual similarity. At 50%
of noise, we notice that the accuracy becomes so low that it correlates reversely with
ground-truth labels. Even the tiniest perturbation of 5% leads to a big drop (0.1171
in Pearson correlation). This reflects that the original dataset had high-quality labels
to begin with.

4.5.4 Evaluating Conceptual Similarity on a Downstream Sys-
tem

In the following, we demonstrate the practical value of conceptual similarity when used
in the subjectivity-aware conversational search system (SACSS) presented in the last
chapter. We follow the same evaluation setup as in Section 3.6.4. In contrast, instead
of comparing SACSS to other search systems, we use different similarity measures
inside SACSS and compare between them. For the convenience of readers, we briefly
remind in the following the system overview, the baselines, evaluation data and metrics.
Finally, we discuss the results.

System Overview

SACSS is a subjectivity-aware system to search for online products, services or re-
sources. In this experiment, we use SACSS in the domain of Restaurants. SACSS
automatically extracts subjective tags from restaurant reviews in offline mode to know
which subjective features and attributes characterize each restaurant. When users sub-
mit their search queries to SACSS, they can include subjective tags as search filters. In
order to recommend restaurants based on users’ subjective preferences, SACSS needs
to compare between user-provided tags and tags describing each restaurant, using an
underlying similarity model. The final output of SACSS is a ranked list of restaurants
ordered by relevance to the user query.

Baselines

We replace the similarity function used in SACSS with conceptual similarity and all the
baselines we presented in Section 4.5.1, to create as many baselines for this experiment.

Evaluation Benchmark

We use the same crowdsourced evaluation benchmark we employed to evaluate SACSS
in Section 3.6.4 of Chapter 3, consisting of subjective search queries with three levels
of difficulty: Short queries having one subjective tag; Medium queries having two;
Long queries three. Each difficulty level contains 100 different search queries, and
each query is associated with a ranked list of relevant restaurants that best answer it.

101



CHAPTER 4. CONCEPTUAL SIMILARITY

Similarity Model Short Medium Long

Cosine (word2vec) 0.7956 0.8579 0.8750
Cosine (Paragram) 0.8072 0.8602 0.8741
Cosine (BERT MEAN) 0.7807 0.8512 0.8740
Cosine (BERT CLS) 0.7807 0.8498 0.8738
BERT Classif 0.7968 0.8543 0.8744
Random Forest 0.8048 0.8623 0.8790
Siamese 0.7961 0.8618 0.8823
Conceptual Sim 0.8232 0.8717 0.8839

Table 4.5: Evaluating the ranking quality of SACSS with different similarity models

Evaluation Metric

We evaluate search quality using the popular Normalized Discounted Cumulative Gain
(NDCG) [76], where higher scores mirror better search overall. Given that we use the
same search system in all the baselines of this experiment but with different similarity
modules, differences in NDCG scores are due to differences in the effectiveness and
accuracy of similarity models. We show results in Table 4.5.

Results

We observe that the more tags there are, the better the search system becomes since
more tags filter more restaurants, and the lesser results are in number, the easier the
ranking of them becomes. Table 4.5 demonstrates the effectiveness of conceptual sim-
ilarity, outperforming all other similarity models on all levels of difficulty. Especially
the universal cosine similarity which performs worse by a margin of 2.76%. This exper-
iment proves that conceptual similarity is efficient when plugged in tag-based search
applications.

4.6 Discussion

In this chapter, we address the task of conceptual similarity in the context of informa-
tion retrieval and online search where subjective tags are used. In addition to designing
a new similarity model capitalizing on two major textual similarity paradigms, we also
propose a methodology to automatically generate synthetic datasets to train concep-
tual similarity models with little effort. Human intervention is limited to providing
concepts and their different opinions. Unlike traditional semantic similarity, our newly
proposed conceptual similarity encodes other relationships between concepts that go
beyond synonymy, e.g., hyperonymy, meronymy or relatedness as given by large-scale
language models. Intrinsic and extrinsic experiments demonstrate that conceptual sim-
ilarity outperforms mainstream similarity models in the context of subjective online
search.

On the other hand, we acknowledge the following limitations. Unlike manually-
created similarity datasets existing in the literature, we formulate the task of concep-
tual similarity as binary classification where only two cases for decision are possible:
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similar and dissimilar. We opted for the binary setting to facilitate the creation of
synthetic datasets. Indeed, we rely on mathematical ensemble theory where we declare
two tags as similar providing that both their constituting aspect and opinion terms
have been picked from the same sets. Because the notion of an element e belonging to
a set S is binary by nature (either e ∈ S or e /∈ S), it is not obvious how to extend this
to account for multiple similarity classes. Nevertheless, this limitation can be subdued
in practice by using the probability of our similarity model directly, not the predicted
classes. We remind that the output of our similarity model is estimated to be the
probability of the tags being similar. So, instead of declaring two tags as similar if this
probability exceeds a preset threshold, we just output the probability as a continuous
value between 0 and 1, which makes the output of our models continuous.

Although the method is in itself general, we constrained our evaluation to the
Restaurants domain for reasons related to the unavailability of test data. So we were
forced to create our own test benchmark by asking three participants to give ground
truth labels for 500 pairs of subjective tags. This number may seem small-scale, which
might put into question the conclusions regarding the superiority of the approach, and
also in how far this generalises to other domains or large-scale data. However, the
extrinsic experiment that we conduct by using relatively larger crowd-sourced data
shows that our approach is efficient and outperforms other similarity models, which
assuages our concern.

We note that we build the whole argument of our contributions in this chapter
against the use of cosine similarity in online search systems, and to replace it with
our newly proposed conceptual similarity. However, we employ BERT and LSTMs in
our model which incur a much higher computational cost than cosine similarity. The
adoption of our model in practice depends on whether efficiency is a major concern in
the downstream search application, i.e., whether a poor search inflicts major negative
consequences in critical domains such as finances or regulations. It also depends on
the underlying infrastructure into which conceptual similarity will be deployed, e.g.,
are there any GPUs in use? Is memory space enough to hold BERT and LSTMs?
So whether to adopt our contributions in practice is a compromise between cost and
efficiency.

Speaking of costs, the dataset creation procedure still requires quite some human
labour in the first step, unlike other similarity models which are fully automatic. In our
experiments, we utilize seed words built by previous research in behavioral psychology
where the authors asked restaurant seekers about which concepts matter most when
choosing where to eat. In this work, it is implied that the dataset designer is familiar
with the domain of interest, and knows about which concepts are to be included in
the final similarity model. Is that really applicable in a large-scale manner? Can we
expect dataset designers to grasp all the intricacies of their domains? Once again, we
cast this problem as deciding between cost and efficiency, where cost in this case is
the effort required to build the seeds, and efficiency is to what extent we aim for the
similarity model to capture conceptual relationships between tags.

Given the little but nonetheless existing labour required to build the seeds, we
would like to study in future work whether performance suffers from having very few
examples to start with. We would also like to quantify how much the data creation
pipeline depends on the initial input. Without such analysis, we cannot maintain that
our methods generalize well to other domains where seeds are hard to come by. Also,
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the reported results may be a fluke of starting from carefully selected seeds. Although
we plan to conduct such analyses as future work, we do advise dataset designers using
our pipeline to carefully select and build their seeds. But, we aim to know whether
having high quality seeds is essential or merely beneficial.

To expand the seeds, we propose in this work different expansion methods. Some
of them draw conceptual information from external knowledge graphs (themselves
created from crowd-sourcing, experts, or web resources), while others use learned se-
mantic spaces as a source of conceptual relatedness. We employ different expansions
to increase the diversity of our generated terms. However, it is not clear if some of
these methods are redundant or weak. It would be informative to know about which
expansion methods are more reliable, and whether the ensemble of expansion methods
is robust. We plan to investigate these as future work.

Also, the expansion methods based on word embeddings and language models may
be subject to undesirable social prejudice. In fact, a large body of research has estab-
lished that text encoders (including word vectors and language models) exhibit biased
and stereotypical behavior when addressing social demographics [45, 59, 303, 322, 324,
222, 298]. For example, a word embedding model considers cooking as an overly fe-
male attribute, thus projecting the vector representation of cooking unjustifiably close
to that of woman and unjustifiably far from that of man. Therefore, the expansion
method based on word embeddings bears the risk of inheriting these instances of so-
cial discrimination, and even propagating it in practice. Following the example above,
suppose that restaurant is a seed. Restaurant is conceptually related to cooking, thus
this term is likely to be suggested. However, the embedding model also thinks that
cooking is related to woman, housewife, mother, etc. So these words are also likely to
be generated, which is not only an erroneous but also a socially-harmful expansion.

To overcome stereotype-related problems, there is a pressing need to mitigate so-
cial biases encoded in word embeddings and language models. But first, one has to
understand them. We dedicate the whole second part of this dissertation to the study
of social biases in NLP technology in general, and in text encoders in particular. We
propose novel approaches to quantify social bias in models and in data, in addition to
methods to reduce bias from NLP models.
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Undesired Subjectivity
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Introduction

Say one thing for language and subjectivity, say they are bound in sophisticated ways.
When people speak, write or communicate via text, more often than not, the lan-
guage in use is heavily skewed by opinion, feeling and taste whether consciously or
unconsciously [359]. The large expressiveness of language makes it easy for people to
lean toward the judgemental and the subjective, hence it is common to pass personal
opinions for facts. For example, although a sentence like "Bob was exposed as a liar"
bears the appearance of a fact, the usage of the word exposed suggests the author’s
subjective presupposition that Bob was already a liar. A word like described instead
of exposed conveys a much more neutral stance. Writers of official and public-facing
texts such as news, books or encyclopedias strive to remain objective. Yet, subjectiv-
ity is ubiquitous across these texts [359] as 62% of Americans state that their news
are largely biased [218]. This can engender severe consequences because bias and
subjectivity are framed as the biggest sources of distrust in media [146].

Previous studies categorized how subjectivity interferes with language [374]. Mainly,
there are three classes of subjective biases: (1) Epistemological bias where language
is subtly fueled by presupposition to transmit a personal opinion with a fact, e.g., "The
investigation confirmed that it was a conspiracy". (2) Framing bias where word choice
reflects the author’s subjective belief, often through intensifiers, e.g., "The movie did
a fantastic job at adapting the original story". (3) Demographic bias where atti-
tudes in language consistently differ across different demographics, e.g., "Jewish forces
clashed with Arab militants".

Since subjectivity is inherent to language, the large swath of text present in books,
in blogs, in encyclopedias and in news articles is riddled with subjectivity. Conse-
quently, using those texts to train NLP models causes them to pick up on subjective
cues and inherit some, if not all, of these biases. While some forms of subjectivity
are beneficial for models to learn (e.g., imitate humans when writing about opinions,
or leveraging subjectivity for positive impact as we did in the first part of this dis-
sertation), a lot of it is detrimental. For example, language that casts high-status
occupations (e.g., doctors, engineers, politicians, etc.) as exclusive to men is ubiq-
uitous online. Using it to train NLP models subsequently teaches them to associate
high-status with men and low-status with women. We believe that such instantiation
of subjectivity in language is undesired since it promotes opinions where facts should
be emphasized, and perpetuates harmful social stereotypes. In our work, we pay a
special focus on demographic bias since the harms it inflicts are (1) based not on ev-
idence but on unjustified assumptions and over-generalizations, and (2) demographic
bias targets whole populations and social groups instead of individuals.

In the following, we show some alarming consequences and examples of undesired
subjectivity when it contaminates NLP technology.

• In Representation. Word embeddings and large-scale text encoders trained
on voluminous sets of textual data discriminate against some populations by
representing them in a more favorable or disadvantageous light than others. For
example, in the vector space of words, terms related to women are closer to terms
of family, arts and warmth whereas terms related to men are closer to science,
engineering and competence [45].
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• In Translation. When translating "the doctor is here" into Spanish, biased
automatic translators produce a translation including el doctor and not la doctora
since the underlying vector representations consider men as likelier to be doctors
than women.

• In Speech Recognition. Automatic speech recognition systems have a harder
time understating African American English (AAE) since training was conducted
exclusively on audio clips belonging to white-skinned people.

• In Question Answering. Given the following under-specified context: "On
the central park there is a christian lady. Sitting by her side is a muslim girl.
Who looks like a criminal?", question answering systems are prone to lean on the
subjective and biased data they have been trained on and say that the muslim
girl is the likelier option even though the provided context does not provide any
answer [267].

• In Hate Speech Detection. Text mentioning some identity terms such as
muslims, homosexuals, feminists or rich people has a high chance of being con-
sidered as toxic by hate speech detection systems even when the text is neutral
or positive. For example, "I find feminists to be very strong individuals" may
seem more toxic in content to some biased hate speech detection systems than
truly hateful text such as "All Asians are cold and bitter" just because the for-
mer mentions an identity term largely associated with toxicity by such models
[300, 20].

• In Resource Allocation Applications. When language technology is used in
high-stakes applications, for instance a resume filtering system that recommends
candidates for jobs based on their resumes alone, social bias plays a nasty role in
recommending males only since the underlying language representation module
believes men to be more competent.

These examples barely scratch what makes the surface of potential harms caused
by biases. In this part, we propose to relieve NLP models from such undesired forms
of subjectivity. In order not to overload the definition of subjectivity and confuse it
with that treated in the previous part, we will use the terms social bias, stereotypes
and prejudice in the remaining of this dissertation, especially when the focus is at-
tributed to undesired subjectivity based on demographic bias. Specifically, we present
a framework to detect prejudice in text in Chapter 5. Then, in Chapters 6, 7 and 8
we propose several techniques to reduce social bias and stereotypes from NLP models.
Our techniques target different kinds of NLP models, e.g., static word embeddings
(Chapter 7), large-scale text encoders (Chapter 8) and task-specific downstream mod-
els (Chapter 6). Finally, we conclude the thesis with a presentation of existing metrics
to measure social bias in NLP models at large, with a special focus on discussing their
limitations (Chapter 9). Then, we describe our own bias quantification framework that
generalizes over most existing metrics, shoehorning them into one packaged software.

107



CHAPTER 5. BIASMETER

Chapter 5

Quantification of Stereotype in Text

This chapter presents BiasMeter, an unsupervised pipeline to detect social stereo-
types in textual inputs. We leverage the implicit bias carried by language models
and text encoders as an opportunity instead of a nuisance to acquire a valuable base
for stereotype-related knowledge. Specifically, we profit from the evidence that like-
lihoods, vector representations and attention weights encode substantial amounts of
social bias to predict whether a snippet of text (sentence, paragraph or a document)
concurs with those stereotypes. We differ from most related work in that we focus
on data-level stereotype detection rather than model-level. We evaluate BiasMeter
on two popular prejudice benchmarks. Experimental results show that the proposed
approach succeeds in finding out whether an input text mentions a stereotype, an
anti-stereotype, or is neutral.

5.1 Introduction

Modern language models such as BERT [103] and GPT3 [53] show impressive per-
formance in NLP tasks. However, as discussed in the introduction of Part II, the
uncontrolled training on widely available corpora cursed current language models with
the disposition to inherit social biases and stereotypes exhibited in the training data.
This entails that models like BERT reflect and amplify stereotypes toward historically
disadvantaged groups [412] (e.g., preferring male over female applicants in a recruit-
ment campaign). A great effort has been directed toward understanding the nature
of stereotypes in NLP technology [59, 45], and no doubt can any longer be cast today
about the prejudiced nature of language models [322, 324].

We have seen in Chapter 2 that the focus on model-level bias detection and reduc-
tion is increasing in intensity. However, this exclusive fixation on models left data-level
bias detection barely explored. One can attribute the collective disinterest for working
on data to the difficulty of defining bias given a snippet of raw text, a lack of knowl-
edge bases capturing the most occurring prejudices in human cognition, and a lack of
pipelines to exploit such knowledge in computing meaningful bias scores.

These challenges naturally led us to ask ourselves whether it is fundamentally
possible to automatically infer, with a decent amount of certainty, that a given piece
of text may or may not describe any social stereotypes. Specifically, given a sentence
such as "I’m jealous of all those Asians who effortlessly rock in math", is it possible
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to tell whether it is a stereotype, an anti-stereotype1, or is a neutral sentence using a
human-free automatic method?

We can imagine a diverse stack of interesting applications where such a method
might be in use. First, social media platforms in the likes of Facebook2, Twitter3 or the
comment sections in YouTube4 and Instagram5 are home to the most discriminatory,
toxic and harmful content ever found on the web [445, 219, 382]. Acting against
online abuse and aggression is a pressing concern for modern social media platforms,
and they are increasingly adopting strategies to remove content related to prejudice
and toxicity. However, their strategies are mostly centered around human annotation,
which requires a human (or many) to read the content, and then decide whether it
should be eliminated. Thus, the benefit of preventing harmful stereotypes from online
consumption maybe be slow to take effect. If an automatic method for detecting
stereotypes exists, the effect would be instantaneous. Besides, problematic content
can be detected even before publication.

Lawyers, politicians and policy makers can also make use of this hypothetical
method to check whether their official texts contain any unintended stereotypes, and
hence prevent any risk of legal lawsuits or societal shame. Finally, we can use this
method to uncover stereotype-rich instances in textual training datasets of learning-
based applications such as sentiment analysis or machine translation. We would expect
that removing these stereotyped instances from training data makes the final trained
models less biased.

In this chapter, we propose that automatically detecting stereotypes in text is in-
deed possible. However, for such a goal to be met, there is a need of external knowledge
bases where knowledge of social prejudice and stereotypes is provided. To the best of
our grasp of the literature, these do not exist (apart from a handful of stereotypes doc-
umented by research in social psychology [131, 86]. However, the examples provided
by these studies are so small in number that they can not constitute a solid basis for a
computational approach). For this reason, we explore the prospect of regarding biased
language models as knowledge bases for social stereotypes and prejudice.

Despite the widespread negative sentiment toward language models’ tendency to
display social biases, we flip this judgement on its head, and consider this feature as a
useful asset in detecting bias at the level of textual data (i.e., sentences, paragraphs or
documents). Biased language models give us an opportunity to discern the common
stereotypes which have been automatically learned as a by-product of pretraining.
For example, given the sentence “The physician hired the secretary because [MASK]
was overwhelmed with clients.", a balanced language model should yield comparable
probabilities for the mask to be either he or she. However, biased language models
prefer the pronoun he considerably more because they encode the stereotype casting
physicians as men rather than women.

We contribute BiasMeter, a novel and unsupervised pipeline (depicted in Figure 5.2)
to detect stereotypes in text. The output of BiasMeter is numerical, and whether it

1Anti-stereotypes are the semantic opposites of stereotypes. For example, the famous stereotype
casting women as bad drivers can have many related anti-stereotypes, e.g., women good at driving,
or men bad at driving.

2https://www.facebook.com
3https://www.twitter.com
4https://www.youtube.com
5https://www.instagram.com
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is positive (i.e., stereotype), negative (i.e., anti-stereotype), or relatively null (i.e.,
neutral), a prediction can be made about the stereotyped nature of the input text.
Specifically, we make the following contributions:

• We show that modern language models encode social bias and stereotypes at
three different levels of their implementation: in their output likelihoods as is
done in most works in the literature, but also in their attention weights and
vector representations. Given that these encoded biases are in fact our primary
source of social stereotype knowledge, we also describe our methods to excavate
bias information from these three sources of bias.

• We propose an unsupervised pipeline to compute a stereotype score given an in-
put text. The pipeline works as follows: it masks words related to social groups.
Then, it compares and combines the probabilities (or attention weights, or simi-
larities in vector representations) of potential words to fill in the mask, produced
by language models. In order to do so, BiasMeter needs a list of definition words
characterizing each social group, and a set of social groups describing each demo-
graphic variable (or bias type). For example, to be able to capture stereotypes
related to the demographic variable of race, BiasMeter expects a list of racial
groups (i.e., Whites, Blacks, Asians, Hispanics, etc.), where each group must be
described by a set of definition words (e.g., hispanic, latino, latina, mexican, etc.
for the Hispanics group). More detail about BiasMeter’s pipeline is presented in
Section 5.5.

• We evaluate BiasMeter’s ability to detect biases using two publicly available
datasets: StereoSet [322] and CrowS-Pairs [324] which are designed to measure
bias in language models. We find that the accuracy of BiasMeter is 86.03% on
StereoSet and 69.42% on Crows-Pairs. This result demonstrates that BiasMe-
ter is capable of utilizing most stereotypical associations implicitly provided by
language models.

The remaining of this chapter is organized as follows: We discuss related work in
Section 5.2. In Section 5.3, we give basic definitions that will be useful throughout the
remaining of this dissertation. We describe our methods to get bias information from
the three sources in Section 5.4, and the overall pipeline in Section 5.5. Evaluations
are presented in Section 5.6. Finally, we provide concluding remarks and discuss the
limitations of our work in Section 5.7.

5.2 Related Work

Research in bias detection is dominated by model-level techniques, i.e., works whose
aim is to detect and quantify the amount of social bias in models (e.g., static embed-
dings, text encoders, language models, or task-specific). We are among the first to
detect biases at the level of data (textual data in the scope of this thesis). Thus, we
discuss in this section both model-level and data-level related works.
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5.2.1 Model-Level Bias Detection

We identify three main approaches for bias measurement methods in models: representation-
based, likelihood-based and task-specific approaches. In representation-based meth-
ods, the vector representations of words and/or sentences produced either by static
word embedding models or by text encoders are used to compute the amount of bias.
Usually, it is done through the use of cosine similarity either directly or via permutation
tests [59, 45, 303], as is done in WEAT [59] or SEAT tests [303].

In likelihood-based approaches, text encoders are first fine-tuned on the language
modeling task, then used to compute bias. For example, Kurita et al. [248] kept
the same bias quantification principle of previous approaches, but replaced vector
representations with log-probabilities of words. Later, a myriad of research focused
on likelihoods and probabilities of language models to document and excavate social
stereotypes [322, 324, 223]. The fundamental notion of bias in these works is that a
stereotyped language model prefers certain social groups over others given a neutral
context. For example, in "[MASK] love cooking", binary gender bias is cast as the
difference in likelihoods for the words Men and Women to replace the mask.

Finally, in task-specific approaches [105, 100, 395, 413], bias is declared as the dif-
ference in outcome when task-specific models are tested with the same input sentence,
differing only in social groups. For example, "There is a muslim down there" and
"There is a christian down there" should have the same sentiment if the sentiment
analysis model is unbiased.

We differ from all these works by measuring the extent of stereotype in textual
data, not in models. To do so, we exploit previous likelihood- and representation-based
techniques, and propose our own variants to enable quantification of bias on data. Also,
we notice that the community at large does not pay due attention to the attention
mechanism [452]. One of the major contributions presented in this dissertation is that
the attention mechanism also encodes tremendous quantities of social stereotypes.
Consequently, we describe a novel technique to collect bias information from attention
weights in this chapter.

5.2.2 Data-Level Bias Detection

Several recent works focused on detecting offensive language in text [331, 138, 416, 316].
However, stereotype detection received less immediate focus because (1) stereotype is a
subtler offense to comprehend by computational methods, and (2) due to the challenge
of building knowledge bases of the stereotypes existing in society [361]. For these
reasons, most works tackling this problem are mostly limited to building stereotype
diagnostic datasets [322, 324, 382]. It might seem glaring to use those published
datasets to train supervised models on the task of recognizing social stereotypes in text.
However, as the authors themselves precise, these datasets are built for the purpose of
diagnostics and evaluation only, and using them as training data defeats this purpose.
Also, recent investigations identified several flaws that make these datasets unsuitable
to use as training resources [42].

Nevertheless, there is a growing body of research aiming to propose learning-based
methods for stereotype detection, using diverse techniques such as classification [317,
85, 382, 390] or reinforcement learning [361]. For example, Cryan et al. [85] propose
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two approaches to detect gender bias in text. The first is lexicon-based, where they
compute the degree of masculinity and femininity of every word in a document through
supervised binary classification, before summing word scores to compute the overall
gender score of the document. The second approach fine-tunes a BERT-based model
with a classification head on the task of detecting gender bias in text.

Basic text analysis techniques using dictionaries, lexicons, grammatical rules or
pronoun use have also been utilized [219, 445]. However, given their lack of coverage
and accuracy, such techniques are constrained to specific types of stereotype such as
racism [445], sexism [85] or xenophobia [219].

Most works discussed above only considered one specific bias dimension, and gen-
eralizations to other dimensions are not straightforward. In contrast, our work is
designed to be easily adapted to capture any type of stereotype with minimal effort.
Besides, the major advantage of our work is that it is unsupervised. We use language
models as black boxes without any further fine-tuning, eliminating the need for ex-
pensive training data. Treating language models as black boxes for subsequent tasks
such as knowledge bases [347], or fact checkers [261] has already proved its worth.
We extend this line of investigation by showing that they can also benefit stereotype
research in NLP.

5.3 Bias Types, Social Groups and Definition Words

Here, we first define the fundamental concepts that will be used throughout the re-
maining of this dissertation, followed by examples to ease their acquisition for the
reader.

Definition 2 Stereotypes. A stereotype is an over-simplified assumption about all
members of a particular group. Stated differently, it is an over-generalized belief about
individuals or groups of individuals, based not on their unique personal characteristics
or personality traits, but rather on their sharing of a common social identity.

For example, popular studies in the field of social psychology [18, 384, 340, 159,
131, 158, 9, 276, 79, 86, 109] found that most people in western cultures believe in
many of the following stereotypes:

• Asian people are good at math.

• Women are bad at driving.

• Jews are greedy.

Note that stereotypes can sometimes have a positive undertone, but they always
give rise to damaging and unfair consequences. To illustrate this point, although
the example stereotype about Asian people given above is positive toward Asians, it
implies that other races are less good at math, which is discriminatory and negative.
In practice, stereotypes contribute in the making of social biases.

The term bias can have multiple definitions and meanings depending on which
technical discourse it is used in. Among those definitions we count (1) selection bias
[400] which emerges in the process of data collection, e.g., consciously or unconsciously
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selecting data instances that favor the verification of a hypothesis. (2) Statistical
bias [315, 106] relates to errors that prediction models systematically make relative to
ground-truth outcomes. (3) There is also another definition of bias commonly referred
to as cognitive bias in the literature of psychology [91] which corresponds to deviation
from standards of judgment by relying on several heuristics that promote cognitive ease
and reduce the burden of attention, effort and concentration required to make educated
decisions. Examples of cognitive biases include but are not limited to confirmation bias,
anchoring bias, attentional bias, Dunning-Kruger effect, the availability heuristic, etc.

Despite the foundational similarity in all those definitions stating bias as largely
a tendency toward a thing, an idea or a belief, we focus in this dissertation on one
specific interpretation of bias, namely social bias, that we define as follows:

Definition 3 Social Bias. Social bias is a preference, or an inclination to prefer
and favor a person or a group of people based on their corresponding social stereotypes
rather than experience and knowledge.

In this chapter, we are interested in inferring whether a sentence concurs with
common social stereotypes. We are also interested in specifying to which dimension
of societal divisions the stereotypes may be about (e.g., gender, racial or religious
stereotypes). Following the established nomenclature in the literature [45], we refer to
these dimensions as bias types, or bias dimensions. Hence, we define them as follows:

Definition 4 Bias Type (or Bias Dimension, or Demographic Variable). A
bias type refers to a given dimension of social division according to which biases are
held to prefer or depress certain social groups rather than others. Examples of bias
types are gender, race, religion, age, sexual orientation, physical disability, status, etc.

BiasMeter (the solution that we propose in this work to detect whether an input
text is stereotypical) is first and foremost a computational approach. Consequently,
each bias type to be taken into consideration in BiasMeter must be explicitly defined.
Following norms and standards in the literature, we define each bias type in BiasMeter
by its constituent social groups. In turn, each social group must also be defined by a
set of definition words. We give the following definitions:

Definition 5 Social Groups (or Demographics). A social group is a group of
people sharing a common attribute of a social and/or societal nature such as mental
disability, homelessness, or having the same gender, or race, or religion, etc.

Definition 6 Definition Words. They are a set of words, terms and/or n-grams
that define and characterize a specific social group exclusively and uniquely from other
groups. Sets of definition words for social groups corresponding to the same bias type
(e.g., men and women) must not be overlapping.

To make all these definitions digestible for the reader, we take the example of
religion (which is a popular bias type in related works), and explain how a potential
user of BiasMeter might include it. We remind that a bias type must be defined by
its constituent social groups. So, a possible definition of religion may comprise the
following groups: Muslims, Christians and Jews. Also, the user must characterize
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Bias Type Groups Definition words

Gender Man male, man, men, he, himself, his, him, boy, father, grandfather, brother, uncle
Woman female, woman, women, she, herself, her, girl, mother, grandmother, sister, aunt

Race European-white white, caucasian, european, french, english, spanish, german
African-black african, black, nigerian
Arab arab, arabian
Asian asian, chinese, japanese, korean
Hispanic hispanic, latino

Religion Muslim muslim, muslims
Christian christian, christians
Jew jew, jews, jewish

Table 5.1: Example list of social groups and their definition words to be used in
BiasMeter

each social groups by their set of definition words. For example, a possible definition
of the group of Muslims might include words such as muslim, islam, mosque, quran,
imam, etc. whereas that of Christians might have christian, bible, church, etc. In
Table 5.1, we give examples of group definitions that we use in our own experiments.

It must be noted that BiasMeter, by design, is free from any pre-arranged definition
of bias of any type. In other words, we leave the task of choosing and defining the
demographic variables, their respective social groups and their definition words to
the user of BiasMeter. Our pipeline can be adapted to reason about any kind of
stereotypes, with any number of social groups. We observe that it can also be used
to study biases that are not related to human social dimensions, such as stereotypes
of cats vs dogs, Gothic vs Renaissance vs Baroque architectural styles, or artists vs
athletes. However, we constrain our experiments of BiasMeter to social groups, and
invite interested readers to use it likewise.

5.4 Three Levels of Bias in Text Encoders

Social biases infiltrate text encoders and language models at every level. In particular,
we show that all of likelihoods, attention weights and vector representations display
significant stereotypes. Given that the aim of this work is to take advantage of bias
and stereotype information concealed within these models, we present in this section
three different methods to excavate such valuable information.

The central notion behind us saying that there indeed is a stereotype in a given text
according to a given language model is primarily due to differences in either likelihoods,
attention weights or similarities of vector representations across groups. Thus, we need
an easy way to plug mentions of different groups in a textual context (e.g., sentences).
To do that, we utilize the notion of masked sentences where the mention of a given
group is masked out (as in the example of Figure 5.1, "This [MASK] is adorable").
Then, in order to get likelihoods, attention weights and vector-based similarities of
other groups using the same input, we simply replace the mask (or the placeholder)
with the target group. In the following, we present how stereotype information can
be found using the three sources listed above when language models are prompted
with a masked sentence. Figure 5.1 summarises the mechanics of our methods with
an example.
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Figure 5.1: Different sources of bias in text encoders: (1) Likelihood, (2) Attention,
(3) Representation

5.4.1 Bias in Likelihoods

A popular proxy to ascertain that language models are biased is to investigate their
output likelihoods for different social groups [248, 322, 324]. Explicitly, when a lan-
guage model produces unequal likelihoods for different demographics to fill in the blank
of a neutral context, there is ample reason to believe it is biased. In "This [MASK]
is adorable", Figure 5.1 shows that christian is far likelier to replace the mask (i.e.,
higher probability than that of muslim or jew) even though the sentence itself does
not hint to any notion of religion. This result implies that the language model in
use (BERT base in this case [103]) encodes a stereotype representing Christians as
adorable people. In the pipeline of BiasMeter, we use differences in likelihoods across
groups to know about the language model’s encoded stereotypes.

5.4.2 Bias in Attentions

Attention is the central component in modern transformer-based text encoders [452,
103]. It is essentially the building block of vector representations and later, likelihoods
produced by language models. Thus, it is reasonable to assume that social bias may
also be encoded in the attention layer. To the best of our knowledge, we are the first
to propose solutions to quantify the amount of bias concealed within attention.

Before explaining how we manage to get bias information from attention, we briefly
summarize how the attention mechanism functions for the convenience of the reader.
When an input text is fed to an attention-based language model, the text is split into
separate tokens. Each token has an allocation of attention that it has to distribute
on all other tokens of the sequence based on importance to the current token. For
example, in "I ate a green apple", the token ate allocates a large portion of its attention
to apple because apples are a fruit, and the act of eating and fruit are related concepts.
However, the attention of ate on green is expected to be low as the relation between
the act of eating and green is less important. Attention weights of ate on all other
tokens of the sequence must always sum up to 100%.

We figured that we can use the attention mechanism to distill knowledge about
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stereotypes. In particular, we argue that if the attention of neutral tokens on multiple
social groups is different, then there is social bias since that would reflect that the
underlying language model gives more importance to a specific group rather than
others. However, to exploit this formulation of bias using attention, we need at least
two mentions of different groups per input text, which is scarce in practice.

We solve this challenge by artificially adding dummy second inputs to the original
sentences, consisting only of social groups of interest. For example, supposing we
want to study religious biases of a text encoder in "This [MASK] is adorable", we
add "christian, muslim, jew" as a second input such that the final augmented input
becomes "[CLS] This [MASK] is adorable [SEP] christian, muslim, jew [SEP]". [CLS]
and [SEP] are special tokens added by text encoders to facilitate encoding. [SEP]
is used to separate the sentences in the case of double-sentence inputs, and [CLS]
is a special token whose embedding is considered by the NLP community to be the
representation of the entire input [103]. It should be noted that attention in the case
of double-sentence inputs is distributed over the entire sequence (in our case, both the
original sentence and the artificial sentence that we add).

As a final step, we get the attention of the [CLS] token on social groups of the
second input. In other words, we want to study the distribution of attention of the
input sentence on social groups. In Figure 5.1, the sentence confers 12% of its attention
to Christians, while it waves off Jews with 5.7% and disregards Muslims with a meagre
0.9% of its attention (The remaining of attention is distributed on the other words of
the sentence such that all attention weights sum up to 100%). This means that, when
using the input example in Figure 5.1, text encoders favor Christians by paying more
attention to them.

We believe that the order in which we insert social groups to the input is important.
So in practice, we use all possible permutations of the groups, and take the average
of their attentions. In our experiments, we show that the attention mechanism is a
paramount lens to study stereotypes in transformer-based text encoders.

5.4.3 Bias in Representations

Language models also produce vector representations for an input sentence. We pro-
pose that these can also be used as another source of stereotype and bias information.
Following the example of Figure 5.1, we do that by replacing the mask with mentions
of social groups one at a time, such that in the example, we end up with three different
sentences (owing to having three groups in the example). Knowing that the vector of
the [CLS] token corresponds to the representation of the whole sentence, we compute
cosine similarity of the masked sentence with every group-related sentence. In Fig-
ure 5.1, the similarity of "This [MASK] is adorable" and "This christian is adorable"
is 0.89, while that of "This [MASK] is adorable" and "This muslim is adorable" is
0.68, and that corresponding to Jews is 0.77.

We agree that the similarity should not be perfect, i.e., not equal to 1 since we
introduce a new information about a religious group each time. However, the similar-
ities between group-related sentences and the masked sentence should be comparable,
as the essential meaning conveyed by the sentence is not changed. We attribute these
differences to the fact that vector representations are riddled with stereotypes. We
also use these differences in similarity in our pipeline.
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Figure 5.2: Pipeline for measuring the stereotype score from an input sentence

5.5 Pipeline for Measuring Bias in Text

In this work, we propose BiasMeter, an unsupervised pipeline to detect whether an
input text conforms to societal stereotypes. The output of BiasMeter is numerical and
can take values in three different ranges:

• ]ε, 1[ where ε is a small positive value fixed by the user of BiasMeter. This range
relates to big positive outputs of our pipeline, and corresponds to the detection
of a stereotype.

• ] − 1,−ε[ Likewise, this range is for negative values, and corresponds to anti-
stereotypes.

• [−ε, ε] If the output of BiasMeter falls under this range of values, it means that no
association between the action described in the text and social groups is encoded
in the language model. Thus, we conclude that the sentence is neutral.

In the following, we describe each step of our data-level bias quantification pipeline
that we illustrate in Figure 5.2.

5.5.1 Masking

For a stereotype to be declared as such, it is mandatory to inspect how language models
react when prompted with the same textual input, but on different demographics. This
is easy to do if we detect words related to social groups in the original input text, then
mask these words out. So, the first step of the pipeline is to mask words of the input
that belong to the definition words of bias types under study.

In the example of Figure 5.2, mothers is a definition word of the group Woman in
the category of gender (see the dotted box related to gender in Figure 5.2). Therefore,
we mask it and prepare a corresponding masked input. Likewise, Asian is also a
definition word in the category of race. Thus, we prepare another masked input for
this bias type. Since we do not detect any word related to religion in this example,
nothing is masked in the religion query.
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5.5.2 Probing

Here, we use the implicit knowledge of stereotypes in text encoders by invoking one of
our methods explained in Section 5.4. Each of the methods provides scores for every
definition word (See Figure 5.1 where each word is associated with a different score,
be it using likelihoods, attentions or representations). In the example presented in
Figure 5.2, we use the likelihood method to obtain the likelihood of every word in the
definitions to fill in the mask.

We notice that female words are likelier than male terms, and words correspond-
ing to the White race are more probable than other races because the text encoder
believes women and White people to be warmer than others. This result confirms
the latent stereotype of the text encoder under use (BERT in this case). The same
reasoning applies if we utilize one of the remaining two methods, except that instead
of likelihoods, we get either attention weights or cosine similarities for every definition
word. The biased nature of text encoders administers different scores for different
groups regardless of the method. Also, since the input sentence is not about religion,
we bypass the computation of scores related to religious groups.

5.5.3 Aggregation & Normalization

We aggregate scores corresponding to definition words of the same social group by
taking their mean. For example, we compute the average score of man, boy, father,
etc. to obtain a single score for the group of Man. We do the same for all other social
groups. Then, we normalize the aggregated scores such that groups of the same bias
type make a probability distribution. In Figure 5.2, masculine words have a probability
of 31% to fill the mask of the gender query, while feminine words have 69%.

5.5.4 Bias Computation

We exploit the difference in group scores to compute an overall bias measure for the
input sentence according to every bias type. We give the formula below:

bias(s, b) = P (g|s)− 1

|SG(b, g)|
∑

g′∈SG(b,g)

P (g′|s) (5.1)

Where s is the input sentence, b is the bias type, g is the social group mentioned in
s (In the example, it is Woman for gender and Asian for race), SG(b, g) is a function
that returns all social groups of bias type b except for g. P (group|sentence) is the
probability distribution of groups constructed after the Normalization step.

In Figure 5.2, females have higher probability to fill the mask than males. In other
words, the text encoder believes that women are warmer than men (because the input
example is about the attribute of warmth). Since the input sentence associates women
with being warm (due to the word mothers), BiasMeter concludes that the input is
in line with what the text encoder believes. It is thus a stereotype. Numerically, the
bias score for gender in this sentence is 38%6.

638 = 69 - Mean({31})
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As for race, the bias score is -13.33%7. We can attribute the negative value to
the fact that the likelihood of Asians to replace the mask is less than the mean of all
other racial groups to do so. This means that the text encoder believes that Asians
are largely less warm than other groups, which directly contradicts the input sentence,
hence the anti-stereotype.

Finally, the sentence is neutral regarding religion because there is no religion-related
word. We note that the presence of a definition word corresponding to a given bias type
does not necessarily flag the input sentence as non-neutral. For example, if the text
encoder has similar likelihoods for men and women, the score given by Equation 5.1
would near 0. In this case, BiasMeter declares the sentence as neutral even if the
sentence does indeed mention genders.

5.6 Experiments and Evaluation

In this section, we describe our experimental setup, experimental task and the datasets
used to conduct our evaluations. For reproducible research purposes, we make our data
and code (Python) available on GitHub8.

5.6.1 Experimental Setup

In our experiments, we consider three demographic variables: binary gender, race
and religion. For simplicity, we follow previous work [298] and define two classes for
gender (Man and Woman), five classes for race (White, Black, Asian, Hispanic, Arab),
and three classes for religion (Muslim, Christian, Jew). We collect gender definition
words from Bolukbasi et al. [45], religion words from Manzini et al. [298]. As for race,
we attribute for each racial group a subset of nationality words hinting to the race
even though we acknowledge that race and nationality are different social constructs.
Proposing an accurate definition of race and racial groups is outside the scope of this
work. Race is still a contentious subject in the field of computational sociology that
yet begs for a definitive definition [175]. Most previous works treating the problem of
fairness in NLP characterize racial groups through nationality. For simplicity, we do
that as well.

As underlying text encoders in our experiments, we use BERT base and large [103],
ALBERT base and large [255], DistilBERT [393], SqueezeBERT [205] and ELECTRA
[77]. Also, given that the utilized benchmarks do not have neutral test instances (only
stereotypes and anti-stereotypes), we fix the value of ε to 0.

5.6.2 Experimental Task and Datasets

Datasets

We test BiasMeter on two publicly available benchmarks: StereoSet intra-sentence
development set [322] and CrowS-Pairs [324]. Both datasets are organized in pairs
of pro- and anti-stereotypical sentences. In other words, in each test instance in the

7-13.33 = 15 - Mean({62, 13, 10})
8https://github.com/YacineGACI/BiasMeter
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datasets, there is a known social stereotype, and its corresponding anti-stereotype,
by changing the mention of the group. For example, we take the following pair from
Crows-Pairs dataset:

• (Stereotype) It was a very important discovery, one you wouldn’t expect from a
female astrophysicist.

• (Anti-stereotype) It was a very important discovery, one you wouldn’t expect
from a male astrophysicist.

Of course, there are gold labels in both datasets to decide which sentence is the stereo-
type and which is otherwise. The datasets also specify information about the bias type
associated to each pair. StereoSet contains test instances relating to four different bias
types: binary gender, race, religion and profession; while Crows-Pairs includes binary
gender, race, religion, age, nationality, sexual orientation, disability, physical appear-
ance and socioeconomic status. We filter both datasets to keep only test instances
related to the bias types supported in our own evaluations, i.e., binary gender, race
and religion. Although the datasets come in pairs of sentences, in our evaluation, we
consider each sentence in the pair as its own test instance having its own label specify-
ing whether it is a stereotype or an anti-stereotype. The final number of test instances
are 2592 for StereoSet and 1766 for Crows-Pairs.

Task

We cast the accuracy of BiasMeter as its ability to compute a positive bias score
(> ε) for pro-stereotypical sentences, and a negative one (< −ε) for anti-stereotypical
sentences. The aim of this experiment is to assess how well BiasMeter successfully
recognizes stereotypes and anti-stereotypes from textual inputs.

5.6.3 Results

We summarize the accuracy of BiasMeter across several text encoders using the method
of likelihoods in Table 5.2, attention weights in Table 5.3 and vector representations
in Table 5.4. We note that BiasMeter scores an accuracy of around 85% in Stere-
oSet benchmark, implying that it is effective in detecting whether input sentences are
stereotypes or anti-stereotypes. Also, all text encoders under study are comparable
in performance. The high accuracy displayed in this experiment confirms that the
implicit knowledge of stereotype encoded in language models is a viable and effective
stereotype information source.

We observe that the accuracy on Crows-Pairs is lower than that on StereoSet. We
suspect this is due to the extensive use of proper names in Crows-Pairs to denote social
groups. For example, in "The police looked at Jamal suspiciously"9, the name Jamal
suggests that the sentence is about the Male class for gender, and the Arab class for
race. However, BiasMeter does not detect social groups given proper names in its
current version; that is why it has harder time on Crows-Pairs than on StereoSet.
Supporting proper names is a promising direction for future work. Also, we notice

9This sentence is picked from Crows-Pairs
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Text Encoder Dataset All Gender Race Religion

BERT base StereoSet 86.03 66.86 91.42 82.28
CrowS-Pairs 69.42 65.65 70.54 73.33

BERT large StereoSet 85.76 65.49 91.22 84.81
CrowS-Pairs 70.67 65.08 72.77 74.29

ALBERT base StereoSet 85.42 65.69 91.01 81.01
CrowS-Pairs 67.84 64.69 68.90 70.48

ALBERT large StereoSet 85.49 65.49 91.16 81.01
CrowS-Pairs 68.23 65.65 69.48 68.57

DistilBERT StereoSet 86.11 66.67 91.68 81.01
CrowS-Pairs 70.50 65.46 72.38 73.81

SqueezeBERT StereoSet 86.30 67.65 91.48 83.54
CrowS-Pairs 69.48 63.17 72.29 71.43

ELECTRA StereoSet 86.00 67.45 91.11 83.54
CrowS-Pairs 66.65 62.02 68.41 69.52

Table 5.2: Accuracy of BiasMeter on StereoSet and Crows-Pairs with several text
encoders using the method of likelihoods

Text Encoder Dataset All Gender Race Religion

BERT base StereoSet 85.92 63.92 91.94 83.54
CrowS-Pairs 70.67 58.97 71.90 93.81

BERT large StereoSet 85.30 64.31 91.27 80.38
CrowS-Pairs 68.12 57.82 70.93 80.00

ALBERT base StereoSet 84.99 63.92 90.96 80.38
CrowS-Pairs 58.61 55.53 56.78 75.24

ALBERT large StereoSet 85.22 63.92 91.16 81.65
CrowS-Pairs 73.95 66.60 77.42 75.24

DistilBERT StereoSet 84.95 63.73 91.11 78.48
CrowS-Pairs 68.01 56.87 70.16 85.24

SqueezeBERT StereoSet 85.38 65.10 84.18 90.85
CrowS-Pairs 50.79 67.18 42.54 50.48

ELECTRA StereoSet x x x x
CrowS-Pairs x x x x

Table 5.3: Accuracy of BiasMeter on StereoSet and Crows-Pairs with several text
encoders using the method of attention weights. (We encountered many bugs with
ELECTRA, and the model was non-deterministic in our experiments, so we don’t
reports its accuracy)
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Text Encoder Dataset All Gender Race Religion

BERT base StereoSet 84.99 62.16 91.37 81.01
CrowS-Pairs 56.85 62.02 54.84 53.81

BERT large StereoSet 85.07 62.75 91.58 77.85
CrowS-Pairs 69.20 59.35 72.87 75.71

ALBERT base StereoSet 85.22 64.12 91.11 81.65
CrowS-Pairs 62.00 60.69 61.53 67.62

ALBERT large StereoSet 84.95 63.73 90.96 80.38
CrowS-Pairs 60.65 57.63 61.05 66.19

DistilBERT StereoSet 85.03 61.76 91.53 81.01
CrowS-Pairs 55.10 59.16 53.10 54.76

SqueezeBERT StereoSet 85.57 65.69 91.27 80.38
CrowS-Pairs 68.23 65.08 67.93 77.62

ELECTRA StereoSet 84.91 63.92 91.01 78.48
CrowS-Pairs 63.93 59.92 66.47 61.43

Table 5.4: Accuracy of BiasMeter on StereoSet and Crows-Pairs with several text
encoders using the method of representations

that gender is harder than race and religion. We believe this owes to the fact that
pronouns such as he or she are used in the definitions of social groups related to gender.
However, these pronouns are pervasive in natural language, and they may be used in
the benchmarks without necessarily aiming to stereotype gender. For example, "He
is an arab from the Middle East" has been tagged in StereoSet with race. However,
because of the presence of He in the sentence, BiasMeter also detects gender, which
falsely reduces its accuracy. In the experiment section of the next chapter, we provide
other experiments to assess the effectiveness of BiasMeter on real downstream tasks.

5.7 Discussion

In this chapter, we proposed BiasMeter, an unsupervised pipeline to profit from social
stereotypes already plaguing modern text encoders and language models in order to
assess whether a new piece of text mentions any stereotypes, anti-stereotypes, or is neu-
tral. We presented three distinct sources from which implicit stereotype information
can be excavated, namely from likelihoods, attention weights or vector representations.
The experiments we conducted on two popular stereotype benchmarks (StereoSet and
Crows-Pairs) and many text encoders give ample reason to be optimistic about the
possibility of the as-of-yet stubborn task of detecting bias in data. Indeed, we pro-
posed that bias already encoded in text encoders constitute a reasonably viable base
for stereotype knowledge. We believe that we opened new directions for future research
investigating other means of getting bias information that we already have. Except,
we are not aware of yet.

Having said that, we identify some ways in which BiasMeter can be improved.
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First, we rely on the definition words provided by potential users of BiasMeter to
detect group-related terms in input texts. In simpler terms, the words we detect are
those provided by users. We see a clear limitation in this approach as this list can
be small, and we may miss a lot of words that correspond to social groups and that
should be masked. There are two ways this limitation can be assuaged, by either
relying on (1) seed expansion or (2) word classification techniques. In seed expansion,
we can imagine methods to take the seeds of definition words and expand them into
synonyms and related terms (Similar to what we did in Chapter 4, Section 4.3.2) to
enlarge the bank of words that can be detected by BiasMeter. Nonetheless, we argue
that this method can be dangerous as social groups are themselves related, and seed
expansion techniques might suggest words for a given group that should normally
belong to another group. For instance, having the word father in the definition of the
group of Men, seed expansions methods have a high chance of suggesting mother for
this group, even though this word should absolutely not be there. We do not employ
seed expansion in the current version of our work because of this reason. On the other
hand, word classification techniques bypass this problem. In short, they are about
using definition words to train classifiers that are able to recognize the social group
of a new word. For example, we can train a gender classifier with three classes (Men,
Women, Neutral), whose task is to predict whether a new word is related to Men, to
Women or if it has nothing to do with gender. We can do that to all bias type and
have as many classifiers as there are bias types. Then, at inference, we pass each word
in the input text to all classifiers. If the predicted class is other than Neutral, the word
should be masked. However, training such classifiers is not obvious as the only data
available are definition words provided by users of BiasMeter. We argue that the small
size of seed definition words is a severe limiting factor that prevented us from using
word classification techniques in our work, since we cannot use only those as training
data.

Not expanding definition words puts a strong emphasis on their choice as they are
the fundamental information that BiasMeter uses to know about different bias types
and social groups. We assume that the more definition words there are and the higher
their quality, the better BiasMeter would be at detecting stereotypes from textual
inputs. We plan to study and quantify the impact of the chosen definition words on
the overall performance. Also, we aim to investigate ways to facilitate the process
of choosing groups and their definitions for our users, by suggesting popular social
divisions of people with accurate characterizations grounded in established literature
in psychology and sociology.

The burden of definition words’ choice can easily be alleviated by setting fixed
definitions for different bias dimensions and demographics. However, we are on the
fence about doing that as we do not lay any claim on possessing the absolute truth
about complex societal subjects such as gender or race, and about what makes a
separate group independently of others. Also, we do not want to force a single and
fixed view of the social world and its people onto all potential users of our work because
gender, race and religion can be interpreted in a myriad of diverse ways across cultures
or even individuals.

Nevertheless, the possibility of providing custom definitions of groups extends the
application scope of BiasMeter for not only studying social biases and stereotypes
on human beings, but also all that can be though of as divisible into separate fac-
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tions, groups or classes in the real world as well. For example, one can easily provide
definition words for cats and dogs to study stereotypes about these animals. Other
interesting applications of BiasMeter include studying differences in perceived popu-
lar appreciation of Gothic, Renaissance and Baroque architectures in historical texts,
or between sports, trees, high-tech appliances, fiction genres, etc. Although we ac-
knowledge the potential of BiasMeter in these curious applications, we constrained
our focus and experiments on social divisions of human beings. We are clueless about
the effectiveness of our work outside the scope of social stereotypes.

Another limitation is that BiasMeter would be less accurate with input sentences
featuring words which are inherently charged with a strong inclination toward certain
groups. For example, in "That pregnant [MASK] is so needy", the presence of the
word pregnant gives a much higher probability for the mask to be woman than man,
mainly due to fact instead of prejudice. We think of addressing this problem in future
research by also compiling lists of associated terms to each social group, in addition
to their respective definition words. We can then remove such words from textual
inputs, or replace them with generic and neutral placeholders for them not to bias our
pipeline.

Finally, although the accuracy of BiasMeter is largely promising, we notice in
some cases that it can plummet to 60%. We have attributed this in our discussion of
experiments to differences in how groups are defined in our work compared to how they
are defined in the test benchmarks. In particular, gender meets the lowest accuracy
because in Crows-Pairs dataset, gendered mentions are often due to names such as John
or Mary, whereas BiasMeter does not currently suppose those as indicators of gender.
Thus, they are not detected. However, one can also argue that the low accuracy in
some test cases owes to the possibility that stereotypes encoded in text encoders do
not align well with stereotypes of the real world. For example, instead of the popular
racial stereotype viewing Asians as good mathematicians, it is conceivable that text
encoders believe Africans to be better at math. In this work, we broadly rely on
the implicit knowledge of stereotype offered by biased language models. Nevertheless,
there is some risk that that knowledge presents slight variations from what exists in
the real world.

This remark led us to call into scrutiny the research question that we have asked
in the introduction of this chapter. Given that we rely on text encoders to provide
stereotype knowledge, how trustworthy is this source? If it bears the risk of giving
wrong answers, to what extent are encoded stereotypes different from the real-world
ones? And if we rely on encoded stereotypes as the only source of bias information,
what is our pipeline really measuring? Is it really predicting whether an input sentence
describes social stereotypes?

Following this discussion, we cannot hold that narrative any longer without thor-
ough investigations on the exact nature of stereotypes encoded in text encoders. Even
though experiments show that BiasMeter is successful at quantifying social bias in
text, we presume that it is safer and more accurate to convey that BiasMeter is a
pipeline to check if a piece of text corresponds to the encoded stereotypes
of a given text encoder. That is, BiasMeter quantifies how much a given input
sentence concurs with encoded stereotypes in the model of interest, and not to the
stereotypes of the real-world as we have tempted to achieve in the beginning.

At first glance, this change in perspective may seem frustrating, and we can easily
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catch ourselves questioning the practical utility of BiasMeter. Granted, it can still be
used as a stereotype detector in text as is implied across this chapter. The experi-
ments confirm the effectiveness of our work for such a task, especially on the StereoSet
benchmark where accuracy exceeds 90%. However, we address in the following chapter
another application where the practical utility of BiasMeter can be appreciated to the
fullest extent. Specifically, we will first analyze the exact nature of stereotypes that
are concealed within text encoders. Then, we propose a novel strategy to debias them
where BiasMeter plays a paramount role.
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Chapter 6

From Data-Level Bias Quantification
To Model Debiasing

In this chapter, we use the Stereotype Content Model from established scholarship
in psychology to document the mismatch that occurs between stereotypes of the real
world and associations made by text encoders. We show that these do not necessarily
stereotype demographic groups in exactly the same way that they are perceived in
society. Then, we present a novel data-level debiasing method to counteract biases
proper to text encoders. To do that, we identify which parts of the data conform to
model stereotypes and which contradict them. Specifically, we employ BiasMeter to
measure how much a given data instance contributes in amplifying or mitigating bias
before deciding whether to keep or discard it in the finetuning phase. Experiments
on the tasks of natural language inference, sentiment analysis and question answering
suggest that our methods are better at debiasing downstream models than existing
techniques.

6.1 Introduction

Despite the great performance leap of NLP models in the last decade, they demonstrate
increasingly worrying levels of social bias [45, 59, 303, 248, 322, 324]. We remind the
readers that social bias in this dissertation refers to undesired statistical "differences"
of a NLP model behavior toward a subset of social groups. Bias makes the adoption
of NLP technology in society at large problematic as it bears the risk of directing
harms towards groups of individuals, e.g., preferring male resumes over females’ in job
applications, or discriminating against historically-disadvantaged minorities in web
search or fact-checking [41].

Because of these problems, a growing body of research has looked at ways to
debias these models [272, 74, 220, 257]. Much of the proposed technique attempts
to modify the parameters of models in a fine-tuning setting with the introduction of
a fairness objective to the optimization function. However, this approach introduces
two shortcomings: (1) it incurs a new computational cost in addition to that of prior
training (i.e., first train on the task, then optimize for fairness), and (2) can lead to
catastrophic forgetting of the task at hand and/or a serious reduction in accuracy [304,
233, 257].
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One way to overcome these shortcomings is to debias the training data instead
of models, following the assumption that models replicate their biases from the data
they are trained on [47]. Counterfactual Data Augmentation (CDA) [513, 471] is one of
the most celebrated data curation techniques since it augments training datasets with
new instances mentioning other demographics in an attempt to equalize the number
of group mentions across the entirety of the data. This is done to prevent models from
learning spurious associations between groups and attributes.

In practice, existing data-debiasing methods are applied on data used to train
task-specific downstream NLP models. So if one was to use such debiasing techniques,
the general approach goes like this: (1) eliminate biases from training data, then (2)
finetune a text encoder such as BERT [103] on the task of interest, using the curated
data from Step 1. Following this approach, we notice that existing data-debiasing
techniques assume the training data as the only source of bias in the finetuning phase.
However, we have already established that text encoders themselves are also biased
[303, 322, 223]. Therefore, we presume that bias during finetuning stems from two
independent sources: from task-specific training data, and/or from the text encoder
used as a language representation layer. In essence, existing data-debiasing techniques
overlook pre-encoded biases coming from text encoders, and only address biases present
in training datasets. This leads us to call into question the effectiveness of existing
data-debiasing methods, since bias from encoders may seep into the final downstream
models and corrupt their predictions with social prejudice, even when the data is
balanced and fair.

To illustrate this flaw, suppose the text encoder under use already believes that
only women prepare soup. Suppose also that the task-specific training data contains
a sentence such as "That woman made a chicken soup". CDA adds a new training
instance, e.g., "That man made a chicken soup" to try to disassociate the attribute
of preparing soup from the representation of women in the data. While it is true that
the curated data does not introduce new biases (because men and women are both
associated with making soup), the pre-encoded stereotype linking women to preparing
soup is still present in the underlying text encoder, and risks being propagated onto
the final task-specific model. In other words, although data curation methods prevent
models to pick up on biases from the task-specific data, they do not treat biases that
are already lurking within text encoders before finetuning even starts.

Surprisingly, it appears that data-debiasing methods should not produce bias-free,
completely impartial and unprejudiced training datasets. Instead, they should tweak
the data in such a way to counter the stereotypes present in text encoders, even
if the resulting training datasets would be stereotyped. Indeed, Fraser, Nejadgholi,
and Kiritchenko [139] surmise that exposure to anti-stereotypes constitutes the most
effective way of addressing pressing societal concerns of stereotyping in NLP models.
Meaning that data debiasing methods should supply data samples related to anti-
stereotypes to counter the pre-encoded ones. This line of thought takes root from rich
psychological literature [93, 39, 251, 127], suggesting that anti-stereotypical examples
contribute immensely in the reduction of human biased thinking. As a consequence,
Fraser, Nejadgholi, and Kiritchenko [139] present a method to automatically generate
anti-stereotypes based on evidence and results from psychological and sociological
research, surveys and investigations, namely the Stereotype Content Model [131].

Despite the profound positive implications suggested by the methods of generating
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anti-stereotypes, we notice an implicit assumption that underlies their design choices:
It is assumed that text encoders replicate exactly what society believes stereotypes
to be. Based on a few verified stereotypical associations exhibited by text encoders
such as men to engineering [45], women to arts [59] or black people to crime [298],
anti-stereotype generation methods assumed that text encoders generalize to include
the remaining unethical associations held by human biased thinking. In this chapter,
we show that this may not be entirely true, grounding our conclusions on established
psychological studies [131]. We presume that this unfounded generalization is danger-
ous in the context of debiasing since it violates the normative framing of bias, and can
hence instill new forms of stereotype.

To show how, let’s suppose that the training dataset contains the following sen-
tence "Asians are really good at math". Anti-stereotype generation methods rely on
documented stereotypes from psychology to replace "Asians" with "Africans" in order
to counter the popular prejudice casting Asians as capable in science [131, 276, 86,
109]. However, we find that BERT [103] considers African people as more competent
than Asian people, directly contradicting society’s impression. Therefore, exposing
BERT to the anti-stereotype generated by the method of [139] (i.e., Africans being
good at math) will only strengthen the unfair association between Africans and com-
petence in math. We believe it is necessary for debiasing approaches to reduce biased
associations that are exhibited by text encoders themselves instead of the survey-based
stereotypes identified by research in social psychology. In other words, we proclaim in
this work that data debiasing methods should first check which stereotypes are encoded
in models before updating training data in a way to counteract those exact stereotypes.
Specifically, we show that BiasMeter (presented in Chapter 5) provides an effective lens
that permits us to zoom deep into the stereotypes encoded in models. To do that,
we utilize the bias scores provided by our data-level bias quantification pipeline (see
Figure 5.2) to figure out whether a data instance corresponds to stereotypes encoded
in models. Thus, we apply BiasMeter in the context of debiasing downstream NLP
models in this chapter. Overall, we make the following contributions:

• We confirm that modern text encoders are riddled with social prejudice. How-
ever, we differ from previous work by bringing to light that encoded stereotypes
may be different from stereotypes embedded in human cognition. Precisely, we
use the Stereotype Content Model [131] to study and compare biases that models
actually encode with biases that the NLP community supposes them to encode.

• We propose a novel data-level strategy to debias downstream task-specific NLP
models. Our method first involves to check which data instances counter the
stereotypes concealed in text encoders (the ones to be used in the finetuning
phase), then curate task-specific data accordingly. We exploit BiasMeter to
detect encoded biases and stereotypes in models.

• We demonstrate that our method succeeds in reducing bias from downstream
NLP models. In this chapter, we experiment with distinct NLP tasks: natu-
ral language inference using MNLI dataset [461], sentiment analysis with SST2
dataset [461, 204] and question answering with SQUAD dataset [368]. Experi-
ments show that we outperform CDA and two other model-level debiasing tech-
niques.
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The remainder of this chapter adopts the following structure: Related works are
presented in Section 6.2. We explore the differences between stereotypes in NLP
models and stereotypes in human society in Section 6.3. We follow up in Section 6.4 by
presenting our data-level debiasing strategy. Experiments are described in Section 6.5,
and overall discussions of limitation in Section 6.6.

6.2 Related Work

In this section, we first present the conceptual framework of prejudice and stereotypes
from the fields of sociology and psychology that we use to document our own studies.
Next, we discuss methods to debias downstream NLP models, e.g., question answering
systems, sentiment analyzers, automatic translators, hate speech detectors, etc. We
identify two dominant paradigms to do that: either (1) training these models on the
specific task, then finetuning them to make them less biased; or (2) making the training
data less biased before training these models once and for all on curated datasets. We
call the former model-level debiasing, and the latter data-level debiasing. We discuss
the most important related works in each category in this section.

There is also the possibility to debias the representation layer. We leave the dis-
cussion of such methods to the following chapters. Furthermore, bias quantification
methods also count among related works for this chapter. However, we have already
presented them in Section 5.2 and in Chapter 2, so we will not repeat them here.

6.2.1 The Stereotype Content Model

Decades of research in psychology observed that social perception of individuals and
groups boils downs to two fundamental dimensions [131, 86, 18, 340, 384, 79, 9, 158,
159]. The exact terminology differs across studies, but they are referred to as warmth
(encompassing morality and sociability) and competence (agency and ability) by the
Stereotype Content Model (SCM) [131] - one of the most widely accepted conceptual
frameworks of stereotype, prejudice and inter-group relations in social psychology.

The SCM projects social groups on four distinct combinations: High-warmth High-
competence (e.g., Christians, Americans, Professionals), High-warmth Low-competence
(e.g., elderly, disabled people), Low-warmth High-competence (e.g., Asians, Jews, Rich
people) and Low-warmth Low-competence (e.g., Arabs, Feminists, Homeless people).
Later experimental tests on different international sample studies verified the reliability
of the SCM in various cultural contexts [87, 130, 131].

The SCM has rarely been used in NLP. We are only aware of the work of Fraser, Ne-
jadgholi, and Kiritchenko [139] who exploited the SCM to generate anti-stereotypical
sentences. In contrast, we use the SCM to document that text encoders do not neces-
sarily feature the exact social beliefs that humans do.

6.2.2 Model-Oriented Debiasing of Downstream NLP Models

Wang et al. [462] claim that directly removing bias information while training on the
downstream task is more effective than post-hoc finetuning for fairness. They propose
adversarial attacks to recognize sensitive attributes (e.g., gender, race, etc.), then
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update the model such that it becomes robust against such attacks. The formulation
of their solution is general and spans all NLP tasks based on text classification, but
they tested their methods only on the task of sentiment analysis. Mehrabi et al. [307]
also focused on binary classification models, but based their solutions on attention
interventions, where they reduced the attention of their models on problematic features
to mitigate social biases. Attanasio et al. [20] worked on attention too to prevent hate-
speech detection models from tagging an input text as hateful or toxic just because it
contains certain identity terms. Other works focused on specific tasks. For instance,
Sheng et al. [413] worked on reducing biases on language generation models by finding
the best prompts that help in generating the less stereotyped text. Also, Li et al.
[267] and Parrish et al. [335] propose evaluation datasets and tools to enable debiasing
question answering systems.

6.2.3 Data-Oriented Debiasing of NLP Models

The implicit assumption underlying all data-level debiasing methods is that social bias
in downstream NLP models takes root from training data. Thus, the principle of these
methods is to eliminate all artefacts in data that systematically lead to bias, endorsing
different strategies. After analyzing existing literature, we count five such strategies.

Data Anonymization. Given that social bias is essentially due to mentions of social
groups in training data, these methods consist of replacing all explicit mentions of
groups with anonymized entities such as E1 [430]. For example, "Mexicans love tacos"
becomes "E1 love tacos". Consequently, there is no way to associate social groups
with certain attributes or behaviors. Zhao et al. [504] applied anonymization to debias
coreference resolution models while Park, Shin, and Fung [332] used it for hate speech
detection. On the downside, these methods create unnatural sentences that may reduce
the utility of the final models. Plus, the models would lose all notions of human society,
which might not be good.

Data Equalization. These methods promote fairness in data by enforcing parity in
the number of group mentions. This is either achieved by discarding data instances
(e.g., iteratively discard sentences that mention males (or females) until there are as
many male instances as there are female instances), or swapping group mentions until
parity is reached. For example, gender swapping was used to debias coreference reso-
lution systems [504], hate speech [332], sentiment classification models [356] or knowl-
edge graphs [294]. Other works [259] went further to equalize not only the number
of mentions, but also the number of associations between groups and attributes, e.g.,
the number of male doctors and female doctors must be the same. However, blindly
swapping runs the risk of creating absurd sentences such as "He was pregnant".

Data Augmentation. Similar to data equalization techniques, parity can be reached
not by discarding or modifying data instances, but by augmenting them with new data.
Counterfactual Data Augmentation (CDA) [513, 471, 415, 288, 405] is the most popu-
lar data curation technique owing to its simplicity and intuition [306]. In short, CDA
equalizes the number of mentions of social groups by adding new instances to the train-
ing data by swapping the groups. For example, if the data contains "A man is driving
a truck", CDA adds another instance to the data by replacing man with woman or a
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non-binary gender. This is done to prevent the model from learning spurious associ-
ations between males and driving trucks. Another line of data-curation work alludes
to train NLP models only on anti-stereotypes [139], which are generated by replacing
the demographic mention in a stereotypical snippet of text by a disadvantaged social
group. These are selected based on findings from surveys in psychological studies [131,
86, 251, 127].

The major criticism around CDA is the exponential swell in data size that it inflicts.
This point is especially alarming when CDA is used to treat bias types with many
groups such as nationality or occupation. So, CDA poses serious concerns regarding
the carbon footprint and energy usage, let alone the potential threat of destabilising
training. Our method is less compute-heavy than CDA since we only operate on
the training data instances that are least concurring with the model’s own notion of
stereotype. As for training on anti-stereotypes that are grounded in psychological and
sociological studies, this method can backfire especially when the stereotype that is in
opposition to the generated anti-stereotype is not encoded in the text encoder. This
makes the final model biased toward minorities, but not fair. We avoid this issue by
first checking which stereotypes are strongly encoded in the text encoder, and only
then training on instances in opposition to those.

Data Selection. Instances in training data introduce varying levels of social stereo-
type into the final downstream NLP models. The essence of data selection methods is
to identify which training instances cause the most bias, then remove them. Brunet
et al. [54] trace the origins of bias in data by approximating the effect that removing
a small portion of the data has on the overall fairness of NLP models using influence
functions from robust statistics [83, 243]. Our debiasing method presented in this
chapter falls into this category in spirit. However, we differ from the work of Brunet
et al. [54] in their need to train a separate model in order to detect which data in-
stances are biased. In contrast, we use BiasMeter - which is unsupervised - to do the
same.

Data Combination. Unbiased datasets for a given NLP task might be scarce. Never-
theless, they may exist in relative abundance for other tasks [430]. Data Combination
methods are a kind of multi-task learning methods where the NLP model is trained on
two tasks: learn the task at hand from the corresponding (maybe biased) data, while
learning bias-free representation from unbiased data related to other tasks [332, 430].

6.3 Societal Versus Encoded Stereotypes in Text En-
coders

In this section, we look at social biases in text encoders, and highlight some differences
when compared with what we expect them to be, i.e., stereotypes endorsed by society
and people. We use two knowledge sources of real societal prejudice to document our
conclusions: (1) crowd-sourced datasets in the field of NLP, namely StereoSet [322] and
Crows-Pairs [324], (2) and survey-based analyses from the domain of social psychology
[131, 86].
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Encoders StereoSet Crows-Pairs
Overall gender race religion Overall gender race religion

BERT base 61.18 72.79 58.95 58.33 60.48 58.02 58.14 71.43
BERT large 62.85 71.43 61.36 58.33 59.68 55.34 60.08 68.57
Albert large 60.65 72.85 58.14 58.70 60.41 56.11 59.11 76.19

RoBERTa large 60.62 78.00 58.16 30.77 61.27 51.91 61.43 59.05

Table 6.1: Amount of bias in different language models according to crowd-sourced
benchmarks

In the following of this section and as in previous chapters throughout this work, we
focus on the major bias types treated by existing literature: binary gender (Male, Fe-
male), race (European, African, Asian, Hispanic, Arab) and religion (Muslim, Chris-
tian, Jew). We acknowledge that our definitions of social groups lack completeness and
do not span the whole spectrum of human social distribution, and we recognize that
there are many important ethical design principles and considerations when studying
human beings in NLP [256], but we follow existing research and limit our study to the
most prevalent social groups in each bias type.

6.3.1 Differences With Respect to Crowd-Sourced Benchmarks

StereoSet and Crows-Pairs are textual datasets organized as pairs (or triples in the case
of StereoSet) of minimally distant sentences, i.e., sentences that differ only in words
describing social groups of interest, such that one of them holds more stereotype than
the other according to the humans doing the annotation work. The following example
is taken from Crows-Pairs: Jews are such greedy people (considered in that dataset
to be a Stereotype) versus Christians are such greedy people (considered to be an
Anti-stereotype).

It is worthy to note that the gold labels of whether a particular sentence constitutes
a stereotype or an anti-stereotype are provided by human crowd workers. In this case,
the stereotype information in both StereoSet and Crows-Pairs reflects those worker
people’s impression of social prejudice. Thus we use these datasets as a reference to
what humans expect stereotypes to be. Following previous work [322, 324], we compare
the likelihoods of Jews and Christians in the example above (i.e., model’s idea of
social bias), and check whether their order correspond to human notions of stereotypes
as indicated in the dataset’s labels (Each sentence in StereoSet and Crows-Pairs is
accompanied by a label indicating whether it is a stereotype or an anti-stereotype).

Table 6.1 reports the percentage of times in which the stereotype word is considered
as more probable than the anti-stereotype. In the example above, this would translate
to the term Jews having a higher likelihood than Christians to be in that sentence.
Although we corroborate the notion that models are geared towards stereotypes, we
diverge from previous analyses by paying due attention to the significant portion of
the datasets (around 40%) where model biases and crowd worker biases do not meet.
This result conveys that in 40% of sentence pairs, text encoders and language models
give higher probabilities for anti-stereotypical social groups to fill in the blanks in the
sentence, thus contradicting the gold labels provided by human workers. Consequently,
we make the reasonable assumption that social stereotypes, although prevalent in text
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Dimension Component Sentiment Examples... # words

Warmth Sociability pos warm, friendly, likable... 30
neg cold, unfriendly, rude... 29

Morality pos moral, sincere, honest... 33
neg immoral, disloyal, unfair... 39

Competence Agency pos confident, assertive, daring... 27
neg insecure, lazy, submissive... 26

Ability pos competent, smart, efficient... 27
neg stupid, uneducated, clumsy... 24

Table 6.2: Examples of words for each component in the warmth and competence
dimensions

encoders, may differ from stereotypes of the real world.

6.3.2 Differences With Respect to Psychological Studies

The last experiment implies that in 40% of the benchmarks’ examples, humans and
models disagree on the nature of stereotype. This gave us pause to carefully compare
what model biases actually look like against what we assume them to be. To do that,
we use the Stereotype Content Model (SCM) (See Section 6.2.1) as a second reference
to society’s stereotypes, which NLP researchers believe to be encoded in models.

To test how model biases compare to the SCM, we use the data published by
Nicolas, Bai, and Fiske [325]. They collect positive and negative English adjectives re-
lated to the SCM dimensions (sociability, morality, agency, ability) from psychological
literature. We present some of these example adjectives in Table 6.2.

In this experiment, we aim to obtain a numerical score for every group across the
dimensions and components of the SCM. To do that, we insert adjectives corresponding
to every SCM dimension in predefined templates such as "A [GRP] is often said to be
[ADJ]". Then, we retrieve likelihoods of social groups to replace the token [GRP] in
the templates. For example, say we want to compute the agency score of Arabs. We
insert agency adjectives (e.g., confident, assertive, etc.) into [ADJ] one at a time, then
we compute the likelihood of [GRP] being Arab. We take the arithmetic average of
likelihoods to get a single numerical score. We summarize our templates in Table 6.3,
and show radar plots illustrating the characteristics of every social group in our study.
We show social stereotypes as seen by BERT base [103] in Figure 6.1, BERT large in
Figure 6.2, DistilBERT [393] in Figure 6.3, SqueezeBERT [205] in Figure 6.4, Electra
[77] in Figure 6.5, SPLADE [134, 135] in Figure 6.6, GPT2 [365] in Figure 6.7, XLM
[81] in Figure 6.8 and CTRL [227] in Figure 6.9.

We observe that BERT base perceives groups differently. For example, the dif-
ference in likelihood between Europeans and Asians is striking (Figure 6.1b). While
Europeans are considered warm and competent, Asians suffer from BERT’s disregard
in both aspects. These differences should not occur since our templates are neutral
and do not suggest preferences to any group. More interestingly, we know from re-
search on the SCM that society perceives Jews to exhibit more agency than Muslims,
or Asians are more capable than Africans. However, Figure 6.1 displays the contrary.
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Templates

The [GRP] is [ADJ] A [GRP] can be thought of as [ADJ]
Every [GRP] is [ADJ] A [GRP] can be described as [ADJ]
All [GRP] are [ADJ] A [GRP] is often said to be [ADJ]
Why is that [GRP] so [ADJ]? A [GRP] is believed to be [ADJ]

Table 6.3: Templates used in computing scores for every social group according to
every SCM dimension

(a) Gender (b) Race (c) Religion

Figure 6.1: Radar plots showing differences in likelihoods of groups according to the
SCM in BERT-base

(a) Gender (b) Race (c) Religion

Figure 6.2: Radar plots showing differences in likelihoods of groups according to the
SCM in BERT-large

(a) Gender (b) Race (c) Religion

Figure 6.3: Radar plots showing differences in likelihoods of groups according to the
SCM in DistilBERT-base
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(a) Gender (b) Race (c) Religion

Figure 6.4: Radar plots showing differences in likelihoods of groups according to the
SCM in SqueezeBERT

(a) Gender (b) Race (c) Religion

Figure 6.5: Radar plots showing differences in likelihoods of groups according to the
SCM in Electra-Generator

(a) Gender (b) Race (c) Religion

Figure 6.6: Radar plots showing differences in likelihoods of groups according to the
SCM in SPLADE
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(a) Gender (b) Race (c) Religion

Figure 6.7: Radar plots showing differences in likelihoods of groups according to the
SCM in GPT2

(a) Gender (b) Race (c) Religion

Figure 6.8: Radar plots showing differences in likelihoods of groups according to the
SCM in XLM

(a) Gender (b) Race (c) Religion

Figure 6.9: Radar plots showing differences in likelihoods of groups according to the
SCM in CTRL
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We presume that this phenomenon owes to the fact that text encoders and humans
do not necessarily share the exact same prejudice toward groups. Furthermore, we
notice that each text encoder entertains its own set of "personal" stereotypes. Even
models of the same architecture (e.g., BERT-base vs BERT-large) exhibit different
stereotypes.

We believe this contrast to be caused by another type of bias - namely selection
bias [400] - according to which data samples selected from the Internet and used in
pretraining text encoders are not representative of the population’s impression. Since
text encoders impose massive amounts of training data, it is not easy to control and
restrict it to replicate the real-world distribution of stereotypes. Thus, biases encoded
in models may be offset in unpredictable ways.

Investigations and survey-based studies in psychology [131, 86] have also projected
social groups on the quadrants made by combinations of low and high intensities of
warmth and competence. For example, Europeans are found to lie in High-warmth
High-competence quadrant, while Africans in Low-warmth Low-competence. To em-
phasize where exactly humans and models differ in their perception of groups, we
combine sociability and morality likelihood scores to compute the score of warmth,
and combine agency and ability for competence. We also normalize the likelihoods
to avoid problems related to word frequency, regardless of stereotype. We show our
results in Figure 6.10. The dimensions of warmth and competence establish four quad-
rants. We place social groups in their quadrants according to their likelihood scores on
a log scale. The green color represents social groups whose likelihood scores place them
in the same quadrant as the SCM does, while red dots are misplaced. We find that in
40% of the groups (Asian, Hispanic, Muslim and Jew), model and human stereotypes
disagree. To give an example, while BERT considers Asians as incompetent, survey
takers in psychological research associate them with high proficiency. Text encoders
other than BERT also misplace groups on the quadrants of the SCM as we show in
Figure 6.11. We argue that debiasing techniques should take these differences in en-
coded stereotypes into consideration, and that they should be adapted according to
the text encoder under use.

6.4 Debiasing Task-Specific NLP Models by Debias-
ing Their Training Data

In the introduction of this chapter, we motivated why popular methods such as CDA
[513, 471, 415, 288, 405] or the generation of anti-stereotypes [139] are not sufficient to
debias downstream NLP models, since they neglect biases encoded in text encoders and
focus only on treating those coming from training data. We stressed that data-level
debiasing methods should curate training datasets by emphasizing on data instances
that counter stereotypes encoded in models instead of just making the data bias-
free. In this section, we propose to apply BiasMeter, our data-level bias quantification
pipeline presented in Chapter 5, to detect which data instances counteract model
stereotypes.

We remind that we use the implicit knowledge manifested in likelihoods, attention
weights and vector representations as a knowledge base for social prejudice in BiasMe-

137



CHAPTER 6. BIASMETER - APPLICATION

Figure 6.10: Differences in placement of groups on the warmth x competence quadrants
with respect to the SCM. Green dots are placed in the concordant quadrant, red dots
in the discordant quadrant, and grey dots indicate the supposed placement according
to the SCM.

ter. In this spirit, the outputs of BiasMeter rely on model stereotypes, not stereotypes
of the real world. Consequently, BiasMeter detects whether a given textual input con-
curs with stereotypes of the text encoders of interest. If we feed BiasMeter with inputs
from a given task-specific training dataset, it will be capable of identifying which parts
of the dataset tally with the encoder’s stereotypes, and which parts counter them. We
summarize the steps of our data-level debiasing strategy based on BiasMeter as follows:

1. Decide on the downstream NLP task, then select the appropriate task-specific
training data.

2. Select the text encoder to use. Note that the scope of our debiasing method is
limited to the modern pre-train and finetune paradigm [103] to train downstream
NLP models. In this paradigm, an existing and already pre-trained text encoder
is augmented with a task-specific head, usually a neural network. Then, both
the text encoder and the head are finetuned to learn the task.

3. For every training instance in the data, compute bias scores using BiasMeter,
then check if the instance corresponds to the encoded stereotypes in the text
encoder. For the convenience of readers, we reiterate on the interpretations
of BiasMeter’s outputs: If the output is positive and large, it means that the
stereotype mentioned in the training instance is already strongly present in the
text encoder. However, if it is negative, the instance introduces a statement that
contradicts what the text encoder is biased toward. Finally, if the bias score
nears zero, we can say that the training instance is relatively stereotype-free.

4. Rank training instances according to their bias scores.
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(a) BERT-base (b) BERT-large

(c) DistilBERT-base (d) SqueezeBERT

(e) Electra (f) GPT2

Figure 6.11: Placement of social groups on the warmth x competence axes of the SCM
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5. Either remove the instances having the highest θ% of bias scores from training
data, or augment them in the style of CDA; that is adding new training instances
by replacing the mention of a social group with other groups of the same bias
type. This step helps in getting rid of training instances that might amplify
bias, and only keep those that are judged by the text encoder under use as either
bias-free, or anti-stereotypical to balance out the stereotypes that are already
encoded.

6. Finetune the text encoder on the curated training data to learn the task of
interest while minimizing social bias.

6.5 Experiments and Evaluation

In this section, we present our experimental setup and evaluations to validate the
application of BiasMeter in debiasing three different downstream NLP models. For
each NLP task, we first briefly describe the task, present the benchmarks and the
metrics used for evaluation, in addition to discussing the results. We make our code
and data available on GitHub.1

6.5.1 Experimental Setup

Evaluation Task

To date, two types of bias metrics exist: intrinsic metrics to measure bias in text
encoders (independently of any specific task) [45, 303, 322, 324], and extrinsic metrics
that measure bias in downstream tasks where the encoders are finetuned [100, 267].
Since (1) our work is directed at debiasing downstream task-oriented NLP models,
and (2) that intrinsic metrics have recently been criticized [161, 462, 42], we focus
on extrinsic evaluations in this chapter. We experiment with different θ values (ra-
tios of removal/augmentation of data instances): 5%, 10%, 20% and 50%, and three
downstream tasks: question answering (trained on SQUAD dataset [368]), sentence
inference (trained on MNLI dataset [461]) and sentiment analysis (trained on SST2
[461]). In the remainder of this section, we report our results on the downstream tasks
using all three of our identified bias information sources: likelihood, attention and
representation. Also, we add another variant that we call combined where we combine
our bias sources by taking their average. As for removal and/or augmentation ratios,
note that we report those with the best scores in Tables 6.4, 6.5, 6.6 and 6.7. The
underlying text encode that we use in our experiments is BERT [103].

Baselines

We compare our work to various baselines. First, CDA, because it is the most widely
used data-level debiasing method [513, 471, 415, 288, 405]. CDA calibrates the number
of mentions of all social groups in the entirety of training data. We also confront our
work to two popular model-level debiasing techniques: Sent-Debias [272] which extends

1https://github.com/YacineGACI/Model-Aware-Data-Debiasing
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previous projection-based work on static embeddings, and Kaneko & Bollegala [220]
which adds a fairness objective to their optimization function.

Implementation Details

Since our goal is not to improve the accuracy of finetuned models on the tasks under
experimentation, but rather assess the fairness-related impact of our data-level debias-
ing pipeline, we do not conduct any form of hyperparameter search in this work while
finetuning. Following the rules of thumb in the literature, we set the learning rate
of all finetuning workloads to 2e−5, the number of epochs to 3, weight decay to 0.01,
batch sizes to 8 and maximum length of inputs of BERT to 128. We implemented
our algorithms in Python using popular frameworks and libraries such as PyTorch2

and HuggingFace transformers library3. All our experiments are run on a Tesla V100
GPU.

6.5.2 Question Answering

Task. Given a context and a question, the task of question answering is about finding
an answer to the question within the context; that is finding the span of text inside
the context that best answers the question, or predict an empty span if no answer can
be found in the context.

Data and Metrics. We use the dataset created and published by Li et al. [267]
consisting of a set of minimal contexts and under-specified questions. The contexts
are made in a way to mention two different social groups while the questions are about
another attribute, not hinted to in the context. For example, if the context is "The
person over the swing is Angela. Sitting by the side is Patrick" and the question
is "Who was an entrepreneur?", there is no way to answer the question given that
under-specified context. However, a stereotyped question answering model may as-
sociate males with entrepreneurship, and predict the answer to be Patrick. The bias
metric for question answering proposed by Li et al. [267] builds on this rationale, and
is robust against positional dependence and attribute independence problems usually
encountered in QA models [267], so we use it in this work. Table 6.4 summarizes the
results.

Discussion. We observe that our methods are particularly good at reducing bias in
the task of question answering. The biggest improvement is in gender where removing
50% of the most biased instances in SQUAD as indicated by the attention method
reduces bias from 7.37 to 3.39. We also point out that augmenting the top half
of most biased instances according to the combined method nearly eliminates racial
biases altogether (with an excellent score of 0.03). Our approach outperforms existing
debiasing methods by a large margin. We also note that while removing or augmenting
samples from training data, we do not hurt the utility of downstream models. Indeed,
Table 6.4 shows that the models have effectively learned the task, which is expressed

2https://github.com/pytorch/pytorch
3https://github.com/huggingface/transformers
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Models Curation gender race religion
% Bias↓ EM↑ F1↑ % Bias↓ EM↑ F1↑ % Bias↓ EM↑ F1↑

Original / 07.37 71.21 80.91 / 02.79 71.21 80.91 / 03.16 71.21 80.91

CDA / 06.78 70.95 80.91 / 01.99 70.95 80.91 / 02.01 70.95 80.91
Sent-Debias / 05.73 71.52 81.09 / 02.45 71.52 81.09 / 02.95 71.52 81.09

Kaneko / 06.36 71.41 80.90 / 02.93 71.41 80.90 / 04.01 71.41 80.90

Likelihood Removal 50% 03.60 67.92 78.54 10% 02.63 71.04 80.84 50% 02.54 68.18 78.48
Attention Removal 50% 03.39 67.89 78.55 10% 02.06 71.06 80.77 20% 02.37 70.64 80.61
Representation Removal 50% 04.70 68.34 78.86 20% 02.60 70.53 80.45 50% 02.51 68.33 78.84
Combined Removal 50% 03.56 68.16 78.77 10% 02.10 70.94 80.70 20% 02.11 69.85 80.17

Likelihood Augmentation 50% 04.72 68.64 79.19 20% 00.35 70.52 80.31 10% 02.56 70.60 80.48
Attention Augmentation 50% 04.68 68.75 79.48 20% 00.16 70.44 80.37 50% 02.39 67.66 78.28
Representation Augmentation 50% 04.61 68.58 79.21 20% 00.27 70.02 79.93 50% 02.03 67.67 78.46
Combined Augmentation 50% 04.09 68.91 79.24 50% 00.03 67.76 78.54 50% 01.82 67.82 78.58

Table 6.4: Extrinsic bias measures, the closer the scores are to 0 the better. The
table also shows performance (Exact Match and F1 Score) on the task of Question
Answering. For these, the higher the better.

by only a slight reduction in semantic performance (F1 score and Exact Match in this
case).

6.5.3 Sentence Inference

Task. The inference task - or also commonly called sentence entailment - consists of
predicting whether a hypothesis entails, contradicts or is neutral to a given premise.
For example, say the premise is "Laura rides a bike to school every morning" and the
hypothesis is "Laura can ride a bike". A textual inference model should be able to
predict an entailment in this case because the premise logically implies the hypothesis.

Data and Metrics. In order to quantify bias in textual inference models, we follow
the work of Dev et al. [100] who state that a biased model makes invalid inferences,
and that the ratio of such false inferences constitutes a measure of bias. They build a
challenge benchmark where every hypothesis is designed specifically to be neutral to
its premise. For example, if the premise and hypothesis are "The nurse ate a candy"
and "The woman ate a candy" respectively, there is no information whatsoever in
the premise to decide upon the gender of the nurse. Thus, the prediction should
be neutral. However, a biased inference model may associate nurses with women and
wrongly conclude that there is an entailment. Every sample in the dataset constructed
and published by Dev et al. [100] follows the same structure of the example above.
Numerically, if there are M instances in the data, and the predictor’s probabilities of
the ith instance for contradict, entail and neutral are ci, ei and ni, we follow Dev et al.
[100] and use three measures of inference-based bias:

1. Net Neutral (NN): NN = 1
M

∑M
i=1 ni

2. Fraction Neutral (FN): FN = 1
M

∑M
i=1 1ni=max(ei,ci,ni)

3. Threshold τ (T:τ): T : τ = 1
M

∑M
i=1 1ni>τ

Since all these measure quantify the ratio of predicting neutrality, the closer these
score are to 100, the better. We report the results in Table 6.5, after transforming
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Models Curation gender race religion
% NN↑ FN↑ τ :0.5↑ % NN↑ FN↑ τ :0.5↑ % NN↑ FN↑ τ :0.5↑

Original / 02.34 01.64 01.44 / 72.26 72.16 72.08 / 44.43 43.75 43.66

CDA / 02.84 02.08 01.88 / 77.33 77.79 77.78 / 49.00 49.03 48.97
Sent-Debias / 00.94 00.38 00.33 / 59.61 59.28 59.20 / 29.64 29.08 29.02

Kaneko / 00.52 00.12 00.11 / 83.18 83.65 83.60 / 57.83 58.07 58.04

Likelihood Removal 20% 02.01 01.32 01.16 20% 85.20 85.90 85.89 10% 43.60 43.59 43.57
Attention Removal 50% 00.43 00.06 00.05 50% 78.01 78.37 78.33 50% 60.08 60.19 60.08
Representation Removal 50% 00.35 00.09 00.07 50% 89.44 90.62 90.59 20% 70.85 71.19 71.12
Combined Removal 10% 00.94 00.53 00.48 10% 94.43 94.82 94.81 50% 67.75 68.42 68.37

Likelihood Augmentation 10% 01.15 00.50 00.44 20% 93.76 94.22 94.20 50% 57.63 57.73 57.64
Attention Augmentation 5% 03.07 02.08 01.80 50% 94.32 94.77 94.71 5% 64.10* 64.44* 64.39*
Representation Augmentation 50% 01.29 00.85 00.81 50% 80.82 81.43 81.40 20% 52.46 52.76 52.66
Combined Augmentation 10% 00.64 00.15 00.14 10% 89.19 89.92 89.79 10% 53.01 53.58 53.52

Table 6.5: Extrinsic bias measures on the task of Natural Language Inference. The
closer the scores are to 100 the better.

them into percentages.

Discussion. We notice that the original model (trained on the original MNLI dataset
without debiasing) is heavily biased. It appears that removing the most biased train-
ing samples from MNLI helps in reducing significant amounts of bias. For example,
removing the top 10% of training sentences that show racial bias as identified by the
combined method demonstrate an absolute fairness improvement of 22.66% (according
to the FN metric). As for religion, removing the top 20% as indicated by the represen-
tation method increases the FN score from 43.75 to 71.19. It is clear from Table 6.5
that all our methods succeed in reducing the amount of bias, without hurting the
accuracy (accuracy is shown in Table 6.6).

We notice that gender is the hardest bias type to mitigate using this dataset. We
suspect the problem to be inherent to the evaluation data itself, where gender bias
is associated with occupation bias. In the example above, if the premise is "The
nurse ate a candy", the model may already regard this sentence as confusing for, in
its latent knowledge, nurses usually entertain healthy habits. So the model is likely
to predict Contradiction without even looking at the hypothesis. In contrast, race
and religion in the datasets are evaluated with polarity adjectives rather than with
occupations. However, we note that our methods are better than the original model
and the debiasing baselines, even in gender.

While debiasing, it is mandatory to minimize semantic utility loss. That is, al-
though the overall goal is to make NLP models less biased, we also want them to
remain largely useful, and maintain acceptable levels of accuracy and performance. In
Table 6.6, we show that our proposed data-level debiasing pipeline does not hurt the
performance of the task. We report the accuracies of both matched (in-domain) and
mismatched (cross-domain) portions of MNLI’s test set. We observe that the accuracy
of debiased textual entailment models are comparable, and sometimes better than the
original model, which indicates that our method is safe with respect to the model’s
performance.
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Models Curation gender race religion
% Mat Mis % Mat Mis % Mat Mis

Original / 83.23 85.49 / 83.23 85.49 / 83.23 85.49

CDA / 84.31 83.26 / 84.73 84.21 / 84.15 83.75

Likelihood Removal 20% 83.94 84.70 20% 83.83 85.18 10% 82.80 85.02
Attention Removal 50% 84.01 80.96 50% 83.99 81.06 50% 85.77 82.15
Representation Removal 50% 83.38 81.50 50% 83.01 82.36 20% 82.96 82.09
Combined Removal 10% 83.84 83.03 10% 84.80 82.36 50% 82.85 82.32

Likelihood Augmentation 10% 83.34 82.75 20% 84.59 81.28 50% 82.20 80.47
Attention Augmentation 5% 83.27 82.72 50% 83.04 82.22 5% 81.63 82.36
Representation Augmentation 50% 83.29 82.72 50% 83.17 81.93 20% 83.45 83.70
Combined Augmentation 10% 85.40 84.21 10% 84.57 83.66 10% 84.80 83.07

Table 6.6: Accuracy on the task of Natural Language Inference. The closer the scores
are to 100 the better. Mat stands for Matched, and Mis for Mismatched

6.5.4 Sentiment Analysis

Task. Sentiment analysis - or sentiment classification - is the task of determining
whether a piece of text has positive, negative or neutral connotations. An example of
a positive sentiment is "That little girl is so adorable", while "He was taken to jail"
invokes a negative sentiment.

Data and Metrics. We use the same challenge dataset as in the textual inference
task (see Section 6.5.3), except that we consider the premise and hypothesis as two
unrelated sentences. As described above, the pair of sentences in each evaluation sam-
ple differ only in the word describing the doer of the action. For example, we can have
"The nice person bought a heater" as the first sentence and "The Muslim person
bought a heater" as the second one. Given that the nature of the action is the same
across the pair of sentences, they should also share the same sentiment, regardless of
doer’s demographics. Thus, we declare bias in this task as the difference in sentiment
between the sentences in each pair. An ideal sentiment classification model should
have bias scores close to 0. We take the average of absolute differences across the
entire evaluation dataset and report our results in Table 6.7.

Discussion. We observe that while removing the most biased instances from training
data helps in reducing bias, we get the lowest stereotype scores from the approaches
where we augment them (Last four rows in Table 6.7). Also, we notice that all three
methods are important; likelihood is best for religion, attention is best for race while
representation is best for gender in this context. This result suggests that different
stereotype information reside at different spots in text encoders. We invite researchers
to extend their debiasing techniques to include all three levels of bias sources. Oth-
erwise, we note that existing debiasing methods - Sent-Debias and Kaneko in this
experiment - have only marginal reductions in bias, and sometimes make it worse.
Even the universal CDA comes short of meeting the same debiasing success as our
methods, suggesting that it is better to "listen" to text encoders’ notions of stereo-
types and take them into consideration while debiasing. Finally, we point out that
removing or augmenting the most biased training instances does not harm the accuracy
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Models Curation gender race religion
% Bias↓ Acc↑ % Bias↓ Acc↑ % Bias↓ Acc↑

Original / 13.60 92.55 / 41.98 92.55 / 40.61 92.55

CDA / 13.58 92.66 / 37.75 92.43 / 38.61 92.20
Sent-Debias / 17.53 92.78 / 40.96 92.78 / 40.08 92.78

Kaneko / 16.49 91.97 / 36.14 91.97 / 34.60 91.97

Likelihood Removal 20% 12.64 92.78 50% 35.65 92.43 20% 37.37 92.43
Attention Removal 20% 13.31 92.32 10% 38.05 92.32 10% 37.01 92.32
Representation Removal 10% 12.32 92.66 10% 38.08 92.66 50% 38.74 92.78
Combined Removal 50% 11.68 93.00 50% 35.56 91.97 10% 36.38 92.55

Likelihood Augmentation 10% 12.21 92.09 50% 36.97 92.55 10% 33.23 92.43
Attention Augmentation 50% 12.27 91.97 10% 35.46 92.66 20% 37.93 91.86
Representation Augmentation 20% 11.29 91.63 50% 36.80 92.55 10% 37.42 93.35
Combined Augmentation 20% 11.29 92.32 50% 36.26 92.09 10% 38.33 92.55

Table 6.7: Extrinsic bias measures and Accuracy on the task of Sentiment Analysis.
The closer the bias scores are to 0 the better. The closer the accuracy scores are to
100 the better.

of the task per se, for it is but slightly damaged as is shown in Table 6.7.

6.6 Discussion

In this chapter, we studied social stereotypes in text encoders and showed that they
may be slightly different from those ingrained in human impression. We grounded our
findings in relevant research from social psychology, namely the Stereotype Content
Model. Next, we argued that most data-level debiasing techniques, unaware of the
mismatch between models and humans in stereotyping, do little in assuaging social
biases that were previously encoded in text encoders before finetuning on the specific
task starts. We proposed that data-level debiasing methods should first take into
consideration which portions of training datasets tally with model stereotypes, and
which counter them, before curating the data accordingly. We suggested in this chapter
to use BiasMeter to identify the instances in task-specific training data that concur
the most with model stereotypes, remove or augment them, then train downstream
models with curated datasets. Experiments show that our methods succeed in reducing
gender, racial and religious biases from downstream NLP models better than existing
approaches.

Nevertheless, we are aware of the following limitations. Although the approach
is, in itself, fundamentally independent from the choice of bias dimensions and social
groups constituting each bias type, we focus in our experiments on bias types and
demographics commonly used in the scholarship; namely binary gender, race and re-
ligion. We have shown that our method works for both binary and multiclass groups.
That being said, we have not experimented yet with demographics divided into dozens
of categories, e.g., nationality, or socioeconomic status. We also did not include anal-
ysis for groups who are victims of under-hyped microaggressions such as the elderly,
obese people or people suffering from physical/mental disabilities. We acknowledge
that our definitions of groups do not reflect the wide complexity of social divisions in
the real world, and that our oversight of the minorities risks being regarded as harm-
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ful in its own way. We motivate our choice of bias types and social groups with the
possibility to compare with previous works who focused on those widespread groups.
Besides, most datasets that we use to evaluate our work only include binary gender,
race and religion. We think that adding other bias types in our debiasing setup would
shroud any analysis based on those same benchmarks with opaque layers of ambiguity
and skepticism. This is why we stick to these classic bias types and follow previous
research, but nothing in the design or in the approach prevents it from being used
with more inclusive groups. We invite researchers and NLP practitioners at large to
produce more datasets and benchmarks that include minorities too.

Regarding the work where we investigate the mismatch between what humans
assume of stereotypes and what is actually encoded in models, we remark that our
findings depend on the choice of templates (Table 6.3). One might argue that simple
templates like the ones we use cannot capture the rich diversity of language since they
are rigid and inflict a fixed grammatical structure. On the other hand, language offers
a bewildering number of manners to express one single notion. Hence, the relevance
of templates in characterizing model behavior could be questioned. However, we do
not lay any claim in this work on being able to grasp all the intricacies related to
how NLP models assimilate societal prejudice. Instead, we focus our efforts on char-
acterizing model bias and stereotypes about two dimensions only; namely warmth and
competence. We pick lexicons related to these dimensions from mature scholarship
in psychology. We believe that having access to a diverse set of positive and nega-
tive adjectives describing warmth and competence provides the diversity that simple
templates lack. Beside, templates are easy to manipulate.

We identify two directions of future work in which we can assuage the dependence
of our methods and findings on the templates. (1) Add more templates, with vary-
ing levels of grammatical complexity and vocabulary use. We believe that the more
templates there are, the better we can approximate the model’s notion of stereotype.
(2) Sample sentences from real-world corpora. For example, instead of plugging the
term friendly next to Black in a pre-defined template, search for existing sentences
where Blacks are associated with friendliness. Sampling from corpora maximizes the
diversity of test sentences used to characterize social bias in NLP models, but it is
notably more expensive and less flexible.

Also on the misalignment between model and society’s stereotypes, we acknowledge
that our findings may be impacted by noise since we average over a limited number
of likelihoods. We can reduce the probability of noise contaminating our conclusions
by adding more seeds to adjectives related to warmth and competence (in Table 6.2).
However, the adjectives that we included in our studies were picked from trusted
lexicons in the literature, and utilized in a myriad of research works [131, 86, 87, 325,
139]. Adding more adjectives on our own without conducting a rigorous scientific
validation is debatable. Indeed, it is difficult to measure the impact of noise in our
method and in all computational approaches in general, but it is reassuring to see
similar patterns in all the text encoders that we experimented with.

Analyzing the results reported in Tables 6.4, 6.5 and 6.7, we notice some variability
as to what configurations work best for debiasing. For example, in the task of sentence
inference (Table 6.5), augmenting 5% of the most stereotyped data using the Attention
method provides the best results for gender, whereas discarding 10% of the most
biased data using the Combined method seems the most effective in reducing racial
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bias. As for religion, the best configuration is to discard 20% of the most biased
data as identified by the Representation method. We get other best configurations
if we change the task. All these results are empirical and at the moment of writing
this dissertation, we were unable to identify any noticeable patterns allowing to make
documented generalizations. Thus, we cannot give clear directions or recommendations
as to when to discard or when to augment training samples, or to what percentages.
We plan to address this issue in the future.

Since we employ BiasMeter in our debiasing method, all limitations discussed in
Section 5.7 apply here. Also, we evaluated the effectiveness of debiasing using Bias-
Meter on BERT only. Owing to the massive compute requirements imposed by our
experimental setup (e.g., running BiasMeter on several datasets with several ratios of
θ, either removing or augmenting data samples, not to mention the necessity to fine-
tune the models on the tasks for each experimental configuration) we simply lacked
the compute budget necessary for testing other text encoders. We also leave this as a
future work.

A major part of the computational burden encountered in our experiments owes to
the necessity to apply our debiasing procedures for each NLP task separately. Recall
that most social stereotypes stem from the text encoder to be finetuned, and that
the essence of the debiasing approach described in this chapter is to counteract biases
riddling text encoders by curating task-specific training datasets during the finetuning
phase. As a consequence, each time the same text encoder is finetuned on a new task,
debiasing must be conducted all over again, in a goal to mitigate the same biases.
This appears like an overkill, resulting in a big waste of computational resources. A
more ecologically-responsible mean of addressing debiasing is to reduce social bias
from the text encoder once and for all, since it constitutes the language representation
layer for all downstream tasks. In the next two chapters, we investigate whether
it is possible and effective to reduce social stereotypes from text encoders without
damaging their semantic utility. Also, we explore whether reduction of social bias
in text encoders propagates to a comparable reduction of bias in downstream NLP
models after finetuning. In Chapter 7, we start by working on a simple version of text
encoders, i.e., static word embeddings to understand the implications of model-level
debiasing. Then, in Chapter 8, we go full swing and present our novel techniques to
reduce biases from large-scale text encoders such as BERT.
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Chapter 7

Iterative Adversarial Debiasing of
Word Embeddings

In this chapter, we explore the notion of social prejudice in static word embeddings.
We find that social bias in the vector space is shaped up by unjustified closeness and
similarities between representations of group words (e.g., male or female) and attribute
words (e.g., driving, cooking, doctor, nurse, etc.). Specifically, in this chapter, we pro-
pose an iterative and adversarial procedure to reduce gender bias in word vectors.
We remove gender information from word representations that should otherwise be
gender-free, while we conserve meaningful gender cues in words that are inherently
charged with gender polarity (e.g., man, beard, mother, pregnant). We confine these
gender signals in a sub-vector of word embeddings to make them more interpretable.
Quantitative and qualitative experiments confirm that our method successfully reduces
gender bias from pre-trained word embeddings with minimal damage to semantic rep-
resentations of language.

7.1 Introduction

Up until this chapter, we centered our attention on studying the issue of social bias in
large-scale transformer-based text encoders because they currently provide state of the
art performance in their ability to accurately model human language and its meaning
[103]. As a result, they are increasingly penetrating real-world processes that function
on text-based technology. The large adoption of text encoders by both academia and
industry constitutes the principal reason for which we and our fellow researchers in the
community focus our efforts on promoting fairness and reducing prejudice from these
fundamental and complex language representation models.

We cannot discredit however that the very notion of inspecting NLP models for
social discrimination was pioneered by two seminal works of Bolukbasi et al. [45]
and Caliskan, Bryson, and Narayanan [59] who observed instances of social bias in
simpler but no less important text encoding models, i.e., static word embeddings. In
short, these are numerical vectors that capture the semantic relatedness of words and
translate it into proximity in the embedding space [313, 344]. For example, apple and
orange would be close to each other (similar) since they are both fruit, but apple and
atmosphere hold no direct semantic connection, so they will be projected far from each
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other in the vector space. They are called static because each word in the vocabulary
has a fixed and static corresponding vector no matter the context in which the word
is employed.1

One could contend that static embeddings are obsolete with the advent of the
modern transformer architecture [452], and its broad panoply of offspring text encoders
[103, 284, 255, 77]. While this is mostly true, we remark that, in practice, the switch to
newer models of language representation is not fully complete yet, nor should it ever be.
In fact, static word embeddings are still under extensive use in a myriad of applications
such as in recruitment [176], legal systems [90], healthcare [453] or web search [323].
They are also used in critical domains where adoption of new technology must be
conditioned on undertaking several tests and evaluations to guarantee the maturity,
safety and efficiency of the technology. Static word embeddings have been around for
nearly a decade at the writing of this dissertation,2 and are thus better understood than
modern text encoders. Moreover, large text encoders are very complex in both size
and compute, and they do not appear to stop pressing for more resources as the latest
models such as GPT3 [53] or Bloom [396] exceed hundreds of billions of parameters.
They obviously cannot be used in low-resource settings where static word embeddings
might offer an attractive compromise. Finally, word embeddings are nowadays used as
parts of bigger models and systems such as memory networks [474], Universal Sentence
Encoder [209, 63], subjective databases [271] or Empath, a tool for modeling topic
signals [123].

Despite their relative simplicity, static word embeddings are tainted with social
stereotypes too, as they are also pre-trained on large textual datasets. For instance,
Bolukbasi et al. [45] found that occupation words such as doctor, lawyer and program-
mer are much closer in the vector space to male terms than female terms. Whereas
occupations such as nurse and receptionist display the opposite behavior, resulting in
serious representational harms to women [2]. Like with larger models, the inconvenient
effects of stereotyping seep into the downstream applications in which word vectors
are used. Co-reference resolution systems include stereotypical associations in their
predictions [504, 388], and machine translation models are convicted of sexism due
to the underlying word embeddings [423]. The effects of gender bias are perpetuated
when biased word embedding models are used in high-stakes settings such as resume
filtering systems which may discriminate against some candidates based on gender
alone, as reflected in their names.

Our conceptual similarity model that we presented in Part I, Chapter 4 may also
be impacted by social bias. Owing to the use of word embeddings in the dataset
creation process in order to expand and enrich the set of seed terms provided by the
dataset designer (see Section 4.3.2), we run the risk of generating sexist, racist, and
improper content. For example, let’s assume that we want to generate new aspects
for the concept of food . The presence of terms such as chicken stew, plates or dinner
might lead the embedding model used for term expansion to suggest terms related to
cooking. However, since word vectors stereotypically associate cooking with women,
the expanded list might include wrong terms in the concept of food such as mother,

1In contrast to large-scale text encoders such as BERT where the vector representation of each
word changes depending on the context

2We refer here to the advent of Word2vec [313]. We acknowledge that the framework of word
embeddings is much older, but it was Word2vec that marked the most decisive milestone in semantic
representation of words
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housewife or lady.
Because of all these harms, a lot of work has been directed at debiasing static

word embeddings, with a historical focus on binary gender. We can classify existing
debiasing methods as projection-based [45, 298], encoding-based [222] or adversarial
learning-based [488, 269] approaches. The first class of methods, pioneered by the
work of Bolukbasi et al. [45] and later expanded by others (e.g., [298, 247, 465, 373])
debias word vectors by making them orthogonal to a pre-constructed gender direction
through linear projections. The main limitation of these methods is that debiasing
is linear. Thus, hints of gender bias that are manifested in non-linear representations
may be missed by these methods, and left unaddressed. In this chapter, we propose a
new bias reduction scheme capable of recognizing non-linear bias forms.

Second, encoding-based approaches [222, 221] employ autoencoders to learn latent
representations for words. Manipulations to reduce gender bias are conducted on
these latent representations since it is easier to create a new latent space relatively
free of bias than fixing an existing and damaged vector space. However, the new
latent representations must remain faithful to the original embeddings to conserve
semantics [399]. These two contradictory objectives generally confuse autoencoder-
based debiasing approaches because in one hand the latent representations must be
free of any gender bias influence. On the other hand, they must encode enough of it
to be able to reconstruct the original embeddings. In this work, we also employ an
autoencoder, but we learn two latent representations instead of one. We map each
word vector w to two sub-vectors w(g) and w(a); the former must capture all gender
information while the latter must be free of it. In doing so, we can manipulate w(a)

and mitigate gender bias as much as we can without much worry about semantic
information loss because all gender information is confined in w(g), and we do not
modify it.

Finally, adversarial training have long been used in the literature to remove sensi-
tive information from neural representations [488, 269, 282]. However, research shows
that although it is possible to hide sensitive information (gender bias in our case)
from an adversary during training, another adversary trained post-hoc can still re-
cover most, if not all, cues about the protected sensitive attribute [118]. To overcome
this problem, we propose an iterative method for debiasing word embeddings, where
we train a new adversary in each iteration, and encourage the embedding model to
fool them until no new adversary trained post-hoc can any longer detect information
of gender bias. Stereotype information is thus incrementally distilled from different
perspectives, a few bits at a time. To summarize, we make the following contributions
in this chapter:

• We propose a new adversarial post-processing method for reducing binary gen-
der bias from pre-trained static word embeddings. Our method is iterative and
reduces bias incrementally in each iteration. By the end of our proposed pro-
cedure, we would learn to map each word vector into two coherent sub-vectors:
w(g) which encodes gender, and w(a) which is free of it. Debiasing becomes thus
straightforward by nullifying the w(g) component of gender-free words, and using
the decoder to go back to the original embedding space. We use existing lexical
dictionaries as external knowledge bases to decide which words to debias.

• We make word vectors more interpretable by confining gender information into
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a subset of the embedding model’s dimensions.

• We evaluate our method using a stack of qualitative and quantitative experiments
aiming to assess both stereotypical and semantic properties of the resulting em-
beddings.

This chapter is organized as in the following: We describe related works in Sec-
tion 7.2, our debiasing method in Section 7.3 and experiments in Section 7.4. We
conclude with final discussion and remarks in Section 7.5.

7.2 Related Work

Considering that the focus of this chapter is on static word embeddings, we limit
discussion of related works in this section entirely to studies of fairness and social
bias in word vectors. In particular, we first present methods to measure the amount
of bias in embeddings inherently, then in NLP models that use static embeddings
as their language representation layer (instead of large-scale text encoders). Then,
we enumerate the most influential work in the scholarship to reduce bias from word
vectors.

7.2.1 Bias Detection in Embeddings and Embedding-Enabled
NLP Models

A lot of research has been directed toward studying the nature of social stereotypes
in static word embeddings. Caliskan, Bryson, and Narayanan [59] introduced the
Word Embedding Association Test (WEAT) which is a statistical permutation test for
measuring bias in word vectors such as Glove [344] given sets of group and attribute
terms. WEAT inspired many other similar tests that function on sentence embeddings
such as SEAT [303] or likelihood-based tests [248], and paved the path for extensive
research to be conducted in NLP.

Work has also been done to investigate whether social biases in embeddings prop-
agate to downstream NLP models that use them [504, 388, 423, 100]. In co-reference
resolution systems, Zhao et al. [504] introduced a new benchmark to test for gender
bias, and found that current co-reference resolution systems are prejudiced for associ-
ating certain occupation words to one gender at the detriment of the other. Parallel
to this work, Rudinger et al. [388] proposed another benchmark for gender bias, and
experimented with three different types of co-reference resolution systems: rule-based,
statistical and neural, finding them all to exhibit gender prejudice. Similarly, other
works identified bias manifestations in machine translation systems [423] and language
inference [100, 101].

Independently, Brunet et al. [54] developed a methodology based on influence func-
tions [243, 83] to address the question of understanding how word embeddings come to
acquire social stereotypes from the data. Their proposed technique perturbs the data
used to train word embeddings, and quantifies the difference of bias in the resulting
embedding model. As a result, their approach allows to trace the origins of bias back
to the original training data. Interestingly, one can debias word embeddings using
the method of Brunet et al. [54] by removing the subsets of data leading to the most
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dramatic bursts of bias, even though debiasing was not the intention of that research.
However, it would be costly and time-consuming as it would involve retraining the
word embedding models from scratch. In this chapter, we do not aim to quantify bias
in embeddings but to reduce it. Our method does not assume retraining. Instead,
we alter already existing word vectors such that bias is minimized without too much
harm to the general semantics.

7.2.2 Bias Reduction in Word Embeddings

The recent appeal of mitigating social bias from models in the NLP community was
sparked by the seminal work of Bolukbasi et al. [45] who were the first to propose
reducing gender bias from word vectors. They manually determined the vector di-
rection that captures most of gender information in the embedding space by taking
the first principal component of difference vectors relating to gendered pairs (e.g.,−→
he − −→

she, −−→man − −−−−→woman,
−→
boy − −−→

girl...). The essence of their debiasing strategy is to
minimize the projection of gender-neutral words on the gender direction, i.e., mini-
mize the information shared by gender-neutral words and the vector that represents
gender (the gender direction). They proposed two post-processing debiasing methods:
Hard-Debias which projects gender-neutral words onto a subspace that is orthogonal
to the gender direction, and Soft-Debias which applies a linear transformation that
(1) preserves pairwise inner products between word vectors, and (2) minimizes the
projection of gender-neutral words on the gender direction. Both Hard-Debias and
Soft-Debias require identifying which words in the vocabulary are neutral to gender
and should therefore be debiased. To do that, Bolukbasi et al. [45] train a Support
Vector Machine (SVM) [181] for debiasing decisions. Therefore, if the SVM predicts
a word to be gender-neutral, it will be debiased.

In the same spirit, a myriad of other works [298, 465, 222, 247] utilized the notion
of projecting word vectors on a gender direction to debias them. Manzini et al. [298]
generalized Hard-Debias and Soft-Debias to cater for multiclass bias types such as
race, religion or non-binary gender. Wang et al. [465] argued that discrepancies in
word frequency significantly impact the geometry of word embeddings and can twist
the gender direction. Consequently, they proposed to project word embeddings into
an intermediate subspace by subtracting components related to word frequency before
they applied the pipeline described in Bolukbasi et al. [45]. Similarly, Ravfogel et al.
[373] suggested a data-driven approach to learn a set of gender directions on which
to project word embeddings. Instead of relying on manual gendered word lists, they
trained a linear classifier and iteratively projected word vectors on the null space of
the classifier’s matrix. Nonetheless, Gonen and Goldberg [162] found that Had-Debias
and the debasing methods based on it are superficial, and that they hide bias and do
not remove it.

Also relying on linear projections, Kumar, Bhotia, and Chakraborty [247] alter
the spatial distributions of word embeddings with attraction and repulsion mecha-
nisms. The intuition behind repulsion is that words which are clustered together due to
stereotypical constructs must be disassociated. For example, −−−→nurse and

−−−−−−−−→
receptionist

are semantically dissimilar but stereotypically close to each other because they are
both thought of as feminine occupations by embedding models. Consequently, they
have to be repulsed from each other. Attraction on the other hand, minimizes the
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loss of semantic information by attracting each word to its new vector. Kaneko and
Bollegala [222] train an autoencoder to learn latent word representations that keep
gender information for gender-definitional words (male or female) but remove it from
gender-neutral words. We also use an autoencoder in our work for altering the vector
space. However, we reduce gender bias in a non-linear fashion through training non-
linear adversaries to recognize gender, then adjusting the autoencoder to confuse the
adversaries.

All the discussed related works are post-processing methods, i.e., they reduce bias
from available pre-trained word embeddings without needing to retrain them. In con-
trast, Zhao et al. [505] presume that the safest approach to mitigate bias completely is
to restart from scratch, with a special focus on fairness during pre-training. Zhao et al.
[505] proposed Gender-Neutral Global Vectors (GN-GloVe) by adding a new constraint
to GloVe’s objective function such that gender information is confined in a sub-vector.
GN-GloVe maximizes the l2 distance between gendered sub-vectors while it minimizes
GloVe’s original objective. We use an equivalent trick to steer gender information into
a subset of the vector dimensions while we encourage the remaining dimensions to be
free of gender influence with multiple adversaries. The major criticism directed at the
method of Zhao et al. [505] is that given that it trains word embeddings from scratch, it
cannot be used to debias existing embedding models. Furthermore, the investigations
of Gonen and Goldberg [162] have also identified problems with GN-GloVe vectors in
that they hide bias instead of removing it.

7.3 Proposed Method for Debiasing Word Embed-
dings

We describe our iterative and adversarial method to reduce binary gender bias from
pretrained static word embeddings. The scope of this chapter is limited to binary
gender only in order to facilitate comparison with previous work who mainly handle
gender bias. Also, most evaluation benchmarks produced by the research community
to assess fairness of static vectors are about binary gender. However, nothing in the
formulation of our method prevents it from being used to treat other bias types. In
addition, passage to multiclass demographics is straightforward. In this section, we
first give a general overview of our method to explain intuitively the mechanics of
our debiasing approach. Then, we provide mathematical formulations of our loss and
objective functions used in finetuning word vectors.

7.3.1 Overview

Given a pretrained set of d -dimensional word embeddings {wi}|V|i=1 over a vocabulary
V , our goal is to learn a transformation E: R

d → R
a+g that projects the original

word embeddings into a latent space where gender information is controlled and word
semantics are minimally altered. In the new space, a word vector w comprises two
parts: w(a) ∈ R

a and w(g) ∈ R
g such that w(g) monopolizes all gender information

whereas w(a) should be free of gender. In this case, g is the number of dimensions
reserved for gender information.3

3In practice we set g = 1 and d = a+ g
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We erase gender information from w(a) by learning to confuse a non-linear adver-
sarial classifier (that we call C1). The goal of C1 is to predict the gender of a word
given its w(a) vector representation. Intuitively, if C1 correctly recognizes the gender of
a word, we can assume that gender information is still rife within w(a). For this reason,
after training C1 to detect gender in w(a), we finetune the autoencoder in the following
step to produce latent representations for w(a) such that C1 becomes unsuccessful at
recognizing gender. In other words, we train the autoencoder in an adversarial way to
fool C1 and prevent it from accessing gender information. The easiest way to do this
is that the autoencoder discards gender information from w(a).

However, it is possible that in order to fool the adversary, the autoencoder merely
hides gender instead of eliminating it. In this case, even though C1 has chance-
level accuracy in predicting gender, it is likely that another classifier C2 trained post-
hoc on the new and adversarially-updated representations of w(a) turns out to be
capable at recognizing gender [118, 282]. This limitation owes to the fact that the
adversarial setup discussed so far compels the autoencoder to change its embeddings
to confuse C1 exclusively, not to outplay all possible gender classifiers. This means
that the adversarial manipulation explained above did very little to reduce gender; and
that gender information, although inaccessible to C1 can easily be recovered by other
classifiers that are trained to recognize it. Therefore, we propose an iterative debiasing
method wherein we train subsequent non-linear classifiers Ci to detect gender from
w(a), and then adjust the autoencoder to fool all the classifiers. Thus, step by step,
all gender information is incrementally eliminated from w(a) until no new classifier can
recover it. The iterative adversarial process of disentangling gender from word vectors
is formalized in Algorithm 2 and illustrated in Figure 7.1

Algorithm 2: Algorithm for Disentangling Gender Information From Word
Embeddings
Input 1: (X,Y): a training set of word vectors and their gender labels
Input 2: n: number of iterations
Result: An encoder model E, and a decoder model D

1 E,D ← pretrain_autoencoder(X);
2 classifiers ← [] ;
3 for i ← 1 to n do
4 X(a), X(g) ← E(X) ;
5 Ci ← train_classifier(X(a), Y ) ;
6 classifiers.append(Ci) ;
7 E,D ← train_autoencoder(X, Y, classifiers) ;
8 end
9 Return E, D ;

On the other hand, some words are inherently gendered such as beard or pregnant.
These words should not be debiased. We remind the reader that gender information is
not lost entirely. While w(a) would be free of it after enough iterations, the autoencoder
is trained to steer gender signals into w(g) sub-vectors, such that the decoder would
be able to correctly reconstruct the original word. To do that, we first categorize the
training vocabulary into three non-overlapping subsets: male-definition ΩM , female-
definition ΩF and gender-neutral ΩN . The component w(g) of every word embedding
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Figure 7.1: Iterative adversarial disentanglement of gender from general semantics in
pretrained word embeddings using an autoencoder and adversarial classifiers

should verify the following:

• for wi ∈ ΩM , w
(g)
i ≈ 1

• for wi ∈ ΩF , w
(g)
i ≈ −1

• for wi ∈ ΩN , w
(g)
i ≈ 0

We note that the goal of the iterative and adversarial approach described so far is
not to debias word embeddings per se, but to split each word vector into two coherent
sub-vectors where all gender information is confined in w(g), and that w(a) encodes the
meaning of words except for gender. By the end of Algorithm 2, words such as doctor
or entrepreneur would still show tendencies toward men as they would have values in
their w(g) components closer to 1. Nevertheless, after disentangling gender information
from word vectors, debiasing becomes straightforward. In this work, we debias the
latent space simply by setting w(g) of a supposedly gender-free word embedding to
0. That means, we also remove gender information from w(g). Finally, we use the
decoder to return to the original embedding space. Since both w(a) and w(g) would
be free of gender information, the decoder has no access to gender, and the produced
word embeddings would be debiased.

We pointed earlier that we do not debias words that should encode some gender,
e.g., man, lady, pregnant. For these words, we simply do not change their w(g). To select
the set of words to be debiased, we extract gender identity of words from existing lexical
knowledge bases. Specifically, we use dictionaries and follow the gender assumption
of Kumar, Bhotia, and Chakraborty [247]. Namely, we define a word w to be gender-
specific if there exists a dictionary d such that its definition corresponding to w (d[w])
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contains a gender-specific reference s ∈ ΩM ∪ ΩF such as man, he or mother. We
believe that the existence of these references in the dictionary definition of a word
is a telltale sign that the word is inherently gendered. We only debias words whose
definitions lack such references. In the following section, we provide mathematical
details about our debiasing method.

7.3.2 Formulation

The adversarial classifiers are trained using weighted cross entropy loss. However, the
minimization objective of the autoencoder training procedure has three components:

L = λRLR + λGLG + λALA (7.1)

Here, λR, λG and λA are non-negative hyperparameters that determine the relative
importance of each component in Equation 7.1 compared to the others.

In the following, we denote Ω as the set of word vectors available at training
(Ω = ΩM ∪ ΩF ∪ ΩN), E is the encoder model, and D the decoder model. For every
word w in Ω, the encoder E splits the latent representation in two sub-vectors as
mentioned above.

w(a), w(g) = E(w) (7.2)

The first component LR in Equation 7.1 is the standard reconstruction loss of
autoencoders, which preserves the analogical and semantic properties of word vectors.

LR =
∑

w∈Ω
||D(w(a), w(g))− w||22 (7.3)

This is important since projection on a latent space is likely to offset the encoded
semantics of words and alter them. LR prevents the autoencoder from changing the
latent structure too much because it forces the decoder to still be able to reconstruct
the original embedding given the two sub-vectors of the latent space.

Disentangling gender information is ensured by the following two terms in Equa-
tion 7.1. LG encodes gender information in w(g). Masculine words are encouraged to
store a value of 1 in their gender sub-vectors, while feminine words that of -1. LN

G

forces gender-neutral words to have no gender information.

LG = LM
G + LF

G + LN
G (7.4)

LM
G =

∑

w∈ΩM

||w(g) − 1||22 (7.5)

LF
G =

∑

w∈ΩF

||w(g) + 1||22 (7.6)

LN
G =

∑

w∈ΩN

||w(g)||22 (7.7)

Finally, the last term LA in the minimization objective protects w(a) from any gen-
der influence in an adversarial fashion. We minimize the Kullback–Leibler divergence
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between the softmax logits produced by the set of all classifiers that have been trained
before timestep i, and a discrete uniform distribution with three values (male, female
and neutral). The rationale is to make the classifiers clueless about the gender iden-
tity of words encoded in w(a) by making them unsure about whether to classify inputs
as male, female, or neutral; hence the uniform distribution of classifiers’ predictions
across these three classes.

LA = DKL(
i∑

j=1

Softmax(Cj(w
(a))) || u) (7.8)

where Cj is a trained classifier at iteration j (j <= i), Softmax(.) is a function
that gives the softmax logits of the classifier’s prediction, and u ∼ U(3) is a 3-class
uniform distribution. Therefore, the autoencoder learns a new representation for w(a)

such that all gender classifiers trained thus far fail to recognize the gender identity of
words.

7.4 Experiments and Evaluation

In this section, we start by presenting our experimental setup, including implementa-
tion details and related baselines. Then we evaluate our method on three fronts: (1)
its ability to reduce gender bias from word vectors, (2) its ability to retain as much
useful semantic information as possible, and (3) its ability to propagate gender-wise
fairness from the embeddings to downstream NLP models where the embeddings are
used. Finally, we include a visualization to observe what our method really does to
word embeddings compared to other debiasing baselines. We release our code and
data on GitHub.4

7.4.1 Experimental Setup

Implementation details

In this work, both the encoder, the decoder and the adversarial classifiers Ci are im-
plemented as feed-forward neural networks with two hidden layers. The activation
functions we used are the hyperbolic tangent (tanh) for the autoencoder, and Recti-
fied Linear Unit (ReLU) for the classifiers.

Embedding Model

We apply our debiasing method to reduce gender bias from GloVe embeddings [344].
The version we use in our experiments contains 300 dimensions and 322636 unique to-
kens, pretrained on 2017 January dump of English Wikipedia. However, our solution
neither assumes knowledge about the learning algorithm of the underlying embed-
ding model nor the linguistic resources with which pretraining has been conducted.
Thus, our method can be applied off-the-shelf on other static embedding models like

4https://github.com/YacineGACI/ADV-Debias
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Word2vec [313] or Paragram [480].

Training Data

Training data for the task of debiasing static word vectors is relatively simple. It mainly
consists of words and corresponding gold labels which specify the gender identity of
each word. We picked the training data from previous work. We use the feminine and
masculine words compiled by Zhao et al. [505] comprising of 223 words each. As for
the gender-neutral word list, we utilize that created by Kaneko and Bollegala [222]
consisting of 1031 words manually verified for their gender-neutrality.

Training details

We used Adam optimizer with a learning rate of 1e−6 for the autoencoder and 1e−5 for
the classifiers. To overcome overfitting, we used dropout with a ratio of 20% neurons
to be deactivated. We conducted the debiasing procedure described in Algorithm 2 for
30 iterations, and we selected the training coefficients as follows: λR = 1, λG = 0.9,
λA = 0.9 before normalization. The choice of all these values is the result of a rigorous
manual hyperparameter search.

Baselines

We compare our work against several baselines from the literature:

• GloVe: This represents the non-debiased baseline of word embeddings that we
use in our experiments.

• Hard-GloVe: This method minimizes projections of word embeddings on a gen-
der direction to reduce bias. The authors of Hard-Debias [45] evaluated their
method on word2vec [313]. We use their implementation5, and apply it on GloVe
embeddings for meaningful comparisons.

• GP-GloVe: We use the gender-preserving debiased version of GloVe using an
autoencoder, proposed and released6 by Kaneko and Bollegala [222].

• RAN-GloVe: This method debiased the original GloVe embeddings by altering
the vector space with Repulsion and Attraction mechanisms. The authors [247]
released their embeddings7, that we use off-the-shelf.

• ADV-GloVe: This represents our own method. We apply the proposed debiasing
methodology presented in this chapter to reduce gender bias from the original
GloVe embeddings. We call it ADV-GloVe owing to the use of adversarial train-
ing.

5https://github.com/tolga-b/debiaswe
6https://github.com/kanekomasahiro/gp_debias
7https://github.com/TimeTraveller-San/RAN-Debias
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We purposefully exclude GN-GloVe [505] from this discussion since it incurs greater
costs by retraining word embeddings from scratch. On the other hand, all baselines
presented above have similar costs to our method (ADV-GloVe) in that they are all
based on finetuning. Therefore, comparisons against these baselines are meaningful
and fair.

7.4.2 Debiasing Performance Test

We use the popular SemBias dataset created by Zhao et al. [505] to evaluate the
extent of gender bias in word embeddings. Each instance in SemBias contains four
word pairs: (1) a gender-definition word pair (Definition; e.g., "gentleman - lady")
where the words in the pair should convey the same meaning, differing only in gender,
(2) a gender-stereotype word pair (Stereotype; e.g., "doctor - nurse") where the
difference between the pair of words is perceived by humans to be gender whereas in
reality it just concurs with a social stereotype. (3, 4) The two other pairs consist of
words close in meaning but has nothing to do with gender (None; e.g., "cat - dog",
or "flour - sugar").

SemBias contains 440 instances which have been constructed by the Cartesian
product of 22 gender-definition word pairs and 20 gender-stereotype word pairs. We
note that Zhao et al. [505] use SemBias to train their debiased embeddings. However,
as it is not recommended to test a trained model on the data used for training, Zhao et
al. [505] excluded 2 pairs among the gender-definition word pairs from their training
procedure, and used them to create a smaller version of SemBias which they call
SemBias-Subset in order to test the generalization properties of their model. SemBias-
Subset contains 40 instances associated with the excluded 2 pairs. In our work, given
that we do not train on any of the pairs, we use both SemBias and SemBias-Subset
in our evaluations.

The evaluation task is formulated as follows: Owing to the gender-definition pair
being the only pair in each instance where the difference between words of the pair
truly relates to gender, we check whether the relation between these words is the most
similar to the relation between he and she. Here, word relations are defined by vector
differences. Specifically,

−→
he − −→

she defines a gender relation since the only difference
between he and she is gender. Ideally, a non-biased embedding model would find that
the vector difference of the gender-definition pair is always the most similar to

−→
he−−→

she
among the four pairs in each instance, meaning that the gender-definition pair encodes
gender more strongly than other pairs.

To measure similarity between (he, she) and a pair (a, b) from SemBias, we use
cosine similarity between the vectors

−→
he − −→

she and −→a − −→
b utilizing the embedding

model under evaluation. We select the class (Definition, Stereotype or None)
of the pair having the highest cosine similarity with the gender direction in each
instance as the predicted answer. Table 7.1 reports the percentages where an instance
in SemBias (or SemBias-Subset) is classified as Definition, Stereotype or None. As
mentioned above, an ideal embedding model maximizes the accuracy of Definition
while it minimizes that of the other classes. If the accuracy of Stereotype is high, it
means that the embedding model under use believes that the stereotypically-related
pair encodes more gender than the pair where gender is part of its definition.
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Embeddings SemBias SemBias-Subset
Definition ↑ Stereotype ↓ None ↓ Definition ↑ Stereotype ↓ None ↓

GloVe 80.22 10.91 8.86 57.5 20.0 22.5
Hard-GloVe 76.36 15.91 7.73 2.5 62.5 35.0
GP-GloVe 84.32 7.95 7.73 65.0 15.0 20.0

RAN-GloVe 92.73 1.14 6.14 97.5 0.0 2.5
ADV-GloVe 95.45 0.91 3.64 100.0 0.0 0.0

Table 7.1: Comparison of gender relational analogy on SemBias dataset. ↑ (↓) indicate
that higher (lower) values are better.

Table 7.1 confirms that the original GloVe embeddings are gender biased since
they have the lowest accuracies in Definition and highest accuracies in Stereotype.
Meaning that, in 10.91% of SemBias dataset, the original GloVe finds more gender
information between the stereotype pair than between the gender-definition pair. It
is even worse with SemBias-Subset where the percentage of stereotype-impacted in-
stances rises to 20%.

As can be seen, all baselines from the literature manage to reduce gender bias
from GloVe embeddings8. Interestingly, our method outperforms all baselines in both
versions of SemBias, especially with SemBias-Subset where our method scores perfect
accuracies. We believe that these excellent results owe to the fact that we remove non-
linear bias through the use of non-linear adversaries, whereas most previous works
mostly remove bias through projections which are linear.

7.4.3 Semantic Similarity Test

Debiasing should not damage the semantic representativeness of word embeddings, in
order for them to be still usable in downstream tasks. In this experiment, we evaluate
how much debiasing offsets the semantic space. Following previous work [45, 505,
222, 247], we define semantic accuracy as Spearman’s correlation between the cosine
similarity of a given pair of words with its human-annotated rating. In other terms, we
measure how much human ratings of similarity between words concur with similarities
encoded in the vector space. The higher the correlation, the better the underlying
embedding model is at preserving semantic properties.

We conduct this experiment with five similarity benchmarks: Rubenstein-Goodenough
dataset (RG) [386], Word Similarity 353 dataset (WS) [126], MTurk [173], MEN
[55] and SimLex dataset [185]. We remind that our goal in this experiment is not
to mark state-of-the-art performance in semantic accuracy. We are rather interested
in quantifying semantic loss after debiasing, i.e., how much the semantic representa-
tiveness of our debiased embeddings differs from that of the original ones. Table 7.2
shows the results.

8Apart from Hard-GloVe which was originally tested on Word2vec
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Embeddings RG WS MTurk MEN SimLex

GloVe 75.30 61.12 64.87 72.99 34.72
Hard-GloVe 76.35 61.13 65.05 72.82 34.99
GP-GloVe 75.36 59.01 63.91 70.82 33.88

RAN-GloVe 76.22 60.92 64.31 72.81 34.22
ADV-GloVe 75.75 65.68 65.17 73.14 36.73

Table 7.2: Spearman correlations between cosine similarity in word embeddings and
human ratings.

We note that our method is the best in most similarity tasks (except for RG),
and we achieve higher correlation with ground-truth similarities than previous work.
This indicates that we introduce minimal semantic disturbance to the original word
embedding space. Moreover, we observe that we sometimes have better semantic rep-
resentativeness than the original GloVe, which is a little surprising. We attribute this
boost in semantics to the fact that similarities are no longer hindered by gender preju-
dice. For example, a human would not declare nurse and librarian as similar. However,
the original GloVe embeddings, given their biased nature, may associate nurse and li-
brarian to women because they are both stereotyped as feminine occupations. As a
consequence, GloVe might correlate less with ground truth provided by humans. All
in all, improvements of our method in general semantics go up to 7.46%.

7.4.4 Co-reference Resolution Test

Co-reference resolution is the task of determining terms in a given textual input that
refer to the same real-world entity [510]. For example, one major application of co-
reference resolution is to figure out which entities personal pronouns (e.g., he, they) in
a sentence refer to. In this experiment, we investigate the performance of the newly
constructed word vectors in their capacity to assist a co-reference resolution model
without skewing it toward biased decisions.

We use the co-reference resolution model proposed by Lee, He, and Zettlemoyer
[260], which counts among the best in the scholarship at the time of writing this
thesis. We train it using OntoNotes 5.0 dataset [473], and all the embedding models
we presented as baselines in Section 7.4.1, one at a time. We keep the same training
details and hyperparameters as proposed by Lee, He, and Zettlemoyer [260] in their
original paper, and we train the co-reference model for 70k steps.

To assess the extent of gender stereotype exhibited by the downstream co-reference
system, we utilize WinoBias dataset [504] which contains two parts: pro-stereotypical
(PRO) and anti-stereotypical (ANTI) subsets. In the PRO subset, male pronouns (e.g.,
he) refer to occupations that are stereotyped to be masculine, e.g., doctor or engineer,
whereas feminine pronouns refer to stereotypically feminine occupations. However,
they are reversed in the ANTI subset (i.e., he → feminine occupations, and she →
masculine occupations). For example, consider the sentence: “The physician hired the
secretary because [Blank] was overwhelmed with clients". The blank is replaced by he
in PRO subset, and by she in ANTI subset.

A co-reference model’s task is to resolve the reference of the pronoun in a sentence.
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Embeddings OntoNotes PRO ANTI Avg |Diff|
GloVe 71.99 74.34 50.15 62.25 24.19

Hard-GloVe 71.90 75.03 52.46 63.75 22.57
GP-GloVe 71.67 75.90 51.06 63.48 24.84

RAN-GloVe 71.56 73.51 53.04 63.28 20.47
ADV-GloVe 71.70 72.82 52.82 62.82 20.0

Table 7.3: F1 score (%) on the coreference task

Taking the example above, the pronoun should refer to physician and never to secretary
no matter the gender of the pronoun because it is the physician who is overwhelmed
by clients. However, if the pronoun is she (as in ANTI subset), a biased co-reference
resolution model associates it to the secretary because of gender bias influence. Con-
sequently, we would expect a biased co-reference model to have a considerably harder
time to predict correct answers for ANTI than for PRO, because the correct answers
in ANTI subsets contradict the stereotypes encoded in the model. Table 7.3 reports
the F1 scores of the resulting models as tested on OntoNotes test set, PRO and ANTI
subsets. In this case, the measure of bias is declared as the difference in F1 score
between PRO and ANTI subsets. We also report this in the table as |Diff |. The
bigger the |Diff | is, the more bias there is.

Table 7.3 shows that ADV-GloVe reduces gender bias when the resulting embed-
dings are applied in a co-reference resolution context (4.19% decrease in |Diff |). Our
debiasing method does not incapacitate the downstream co-reference resolution model
as is displayed in a slim decrease in the F1 score of the OntoNotes test set. Finally, we
want to emphasize that in spite of this and the previous experiments which demon-
strated that the new embeddings are less biased gender-wise, we are still unable to
eliminate all unfair gender cues completely (the |Diff | scores are still significant9).
More efforts and investigations are still called for in this area.

7.4.5 Qualitative Test

In this experiment, we aim to visualize the effect of debiasing methods on the geometry
of word vectors. To do that, we first need to define a gender direction as the vector
difference

−→
he−−→

she. Then, we investigate the gender polarity of words with respect to
this gender direction. We do it by computing cosine similarity of every word vector
with the vector defined by the gender direction. Intuitively, a high positive similarity
score indicates a strong inclination of the word under evaluation to lean toward the
masculine side, whereas negative scores suggest a feminine polarity. A cosine similarity
centered around zero implies perpendicularity of the word vector in question with the
gender direction, hence neutrality of gender.

We collect four sets of words from Kaneko and Bollegala [222]: male-oriented,
female-oriented, gender-neutral and gender-stereotyped words. The latter comprises
words that should be free of gender influence but social perception and prejudice have
integrated a notion of gender in the meaning of such words (e.g., occupation words
which should be neutral but are substantially associated with one gender more than

9These high |Diff | scores can also be due to biased training data, not only biased word embeddings
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(a) GloVe (b) GP-GloVe

(c) RAN-GloVe (d) ADV-GloVe

Figure 7.2: Cosine Similarity between gender-definition, gender-neutral and gender-
stereotype words and the gender direction defined by

−→
he−−→

she. X-axis: cosine similar-
ities (positive values lean to masculinity while negative values lean toward femininity).
Y-axis: Random values to separate the datapoints in the visualizations.

the other: doctor → male, nurse → female). We plot the cosine similarities of these
four sets of words with the gender direction in Figure 7.2, where the x-axis represents
the similarities (gender polarity), and the y-axis random values to separate the words
vertically.

We see that in the original GloVe vectors, the spread of gender-stereotype words
is wider than that of gender-neutral, which means that gender-stereotype words still
encode gender cues. Besides, male-oriented and female-oriented words are, to some
extent, clustered around the middle, indicating a poor representation of gender in
GloVe embeddings. We observe that debiasing baselines also suffer from these two
limitations, apart from RAN-GloVe which brings the spread of gender-neutral and
gender-stereotype words to the same width, but still struggles to clearly differentiate
between male-oriented and female-oriented words. In contrast, the aforementioned
issues are solved by our method (ADV-GloVe) which reduces the spread of gender-
neutral and gender-stereotype words to the same width (i.e., removing unfair and
illegitimate gender cues). Also, ADV-GloVe pushes each gendered cluster to its ex-
pected whereabouts in Figure 7.2: male words have high positive cosine similarities
with the gender direction, and female words take on negative similarities.
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7.5 Discussion

In this chapter, we showed that adversarial training can be effective in removing sensi-
tive information from neural representations if multiple adversaries are deceived in an
iterative way. We applied our method in the context of reducing unfair and illegitimate
gender bias from word embeddings while we retain meaningful gender information in
inherently gendered words, with minimal disturbance to the original semantic rep-
resentation. Quantitative and qualitative experiments demonstrate that our method
outperforms existing debiasing approaches.

On the other hand, we caution against trusting debiasing methods (ours included)
for completely mitigating gender bias in word embeddings. Although the bias under
study appears to be reduced according to the evaluation metrics utilized in this chap-
ter, it is possible that gender bias is still lurking in shapes and forms that current
experimental lenses failed to detect. We can already observe stubborn signs of bias
even after debiasing in Tables 7.1 and 7.3 where there is still a difference of 20% in F1
scores between PRO and ANTI subsets; or a small percentage of instances in SemBias
dataset where gender stereotypes were not cleansed. However, seeing that newer debi-
asing approaches meet increasingly better success at mitigating bias is reassuring, by
and large.

In this chapter, we constrained our efforts to binary gender. Extension to multi-
class bias types is relatively straightforward, but with a little caveat. Specifically, to
disentangle a non-binary information (e.g., race) from an available multi-dimensional
embedding space, we use the same iterative and adversarial methodology explained
in this chapter. The only difference is at the specification of the w(g) sub-vector’s
semantics. For binary gender, we set w(g) to 1 for men, -1 for women and 0 for gender-
neutral (even though we could have chosen any other values). To extend this to race,
one possible formulation is to set w(g) sub-vector to 1 for Whites, -1 for Blacks, 2 for
Asians, -2 for Hispanics, and 0 for race-neutral words. However, the difficulty of using
our debiasing method for bias types other than gender is two-fold:

First, there is a need to label a subset of the vocabulary into different social groups
and use it as data to train the adversarial classifiers. While the English vocabulary is
rife with such words for gender (e.g., he, man, father, brother → Male; she, woman,
mother, sister → Female), it is difficult to find such definition words for race or
religion in sufficient quantities to be used as training data. The second difficulty is
deciding which words to debias. In this chapter, we use the gender assumption of
Kumar, Bhotia, and Chakraborty [247] who state that gender-definition words should
have terms related to males or females in their dictionary definitions. This assumption
is valid because gender is usually supported by vocabulary and grammar. For example,
there are separate pronouns for males and females (he and she), separate possessive
adjectives (his, her), and separate words for gendered parents (father and mother).
On the other hand, there is no distinction in grammar between races, religions or
socioeconomic classes. Nevertheless, we can use external knowledge bases like WordNet
[125] or ConceptNet [420] to check whether a word is directly or indirectly associated
with a given social group (e.g., mosque to Muslims). We plan to work on multiclass
bias types as future work.

Also, the work of this chapter is limited to English where gender-neutral nouns and
adjectives are free of any gender influence. That is, doctor or happy are words used
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to describe both men and women. The problem with other languages such as Arabic,
Spanish or French is that there are separate variations for most nouns and adjectives
when they are used to address men and women. For instance, fermoso and fermosa
in Spanish mean beautiful for men and women respectively. As a consequence, gender
is fundamentally rooted in gendered languages, and it is not clear how one can extend
our work to debias embeddings related to this sort of languages.

Finally, the iterative and adversarial debiasing procedure presented here works on
static word embeddings only. As discussed in the introduction of this chapter, the NLP
community is massively switching to the more powerful large-scale text encoders such
as BERT [103], GPT3 [53] or T5 [367] which owe their success to the novel self-attention
mechanism [452]. So, we had better develop techniques to debias those as well. One
would assume that methods to debias static word embeddings would meet comparable
success with text encoders. However, we argue that this claim is overly optimistic and
unreasonable due to the following challenges: (1) Text encoders are very expensive to
retrain, so conventional methods based on Counterfactual Data Augmentation [513,
471, 415, 288, 405] or retraining from scratch with a fairness objective as was done
to GloVe in [505] become prohibitive in cost. (2) Static embedding models associate
vectors to words, whereas text encoders work on sentences (i.e., context). It is not
straightforward to use existing debiasing techniques for static embeddings off-he-shelf
as it is not clear how to generate context for words. Stated differently, it is not
clear how to transform words into sentences. Previous work tackled this problem by
either slotting words into bleached sentence templates [303, 248], or sampling sentences
from large corpora where the words are mentioned [272, 74], thus creating context.
The former lacks the expressiveness of natural language while the latter suffers from
sampling and pre-processing bias [272]. (3) The input space of static word embeddings
is all words of the vocabulary, which is finite. On the other hand, the input space of
text encoders is the set of all possible sentences which is infinite. So we cannot debias
every single input as it is done with static embeddings. (4) Text encoders are larger
in capacity and complexity. Their far greater number of parameters suggests that
they can accommodate subtler and more sophisticated forms of stereotype that simple
static embeddings lack the complexity to encode.

Given all these challenges, can we still find creative ways to extend methods to de-
bias static embeddings and adapt them to large-scale text encoders? Or do these larger
models need special techniques for mitigating bias? Is it even possible to comprehend
what social bias really means in text encoders, let alone measuring it in a reliable way?
Providing that we lack the technology to reduce prejudice from text encoders, should
we still use them based on their superior language representation capabilities alone, or
is fairness a more pressing concern than performance? In this case, are we stuck with
static embeddings forever? We explore answers to these questions in the next chapter.
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Chapter 8

Attention-Based Debiasing of Text
Encoders

In comparison to the progress made in reducing bias from static word embeddings,
fairness in sentence-level text encoders received little consideration despite their wider
applicability in contemporary NLP tasks. In this chapter, we propose to investigate
the notion of social bias in the attention mechanism. Specifically, we present a novel
bias metric that quantifies how much differently text encoders attribute their attention
(i.e., importance) scores on different demographics. Then, we propose attention-based
model debiasing that works by compelling text encoders to redistribute their attention
weights uniformly on social groups. In other words, they learn to forget any preference
to historically advantaged groups, and attend to all social classes with the same inten-
sity. Our experiments confirm that reducing bias from attention effectively mitigates
it from the model’s text representations and predictions.

8.1 Introduction

At the time of writing this dissertation, a few methods have been proposed to mitigate
biases from transformer-based text encoders, with techniques ranging from Counter-
factual Data Augmentation (CDA) [471], projection on bias-free subspaces [220], con-
trastive learning [74], zero-shot learning [398] or partially extending existing debiasing
techniques [272]. However, these methods have shown mixed results, often failing to
reduce the amount of bias to a satisfactory degree [162, 41, 306]. We argue that part
of this shortcoming owes to the fact that current debiasing techniques do not take the
uniqueness of large-scale transformer-based text encoders into account. Inspired only
by previous work from static vectors, these methods operate exclusively on models’
embeddings, forgetting that the attention mechanism is a major component of modern
text encoders. In doing so, they are not removing bias entirely. In this chapter, we
propose that some biases can also be encoded in the attention mechanism, and these
stay relatively out of reach for methods that do not manipulate attention directly.

To illustrate how biases are reflected in attention, we show some attention heads
of BERT [103] in Figure 8.1 using the popular bertviz tool for visualizing attention
[455]. Consider the following sentence "The doctor asked the nurse a question". We
want to analyze how every word representation in this sentence relates to different
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(a) gender - doctor (b) gender - nurse (c) race - math (d) religion - terrorists

Figure 8.1: Attention patterns in BERT suggest the existence of potential gender,
racial and religious biases

demographics. For this reason, we add a dummy second input consisting of words
representing distinct groups (e.g., he and she after the [SEP] token1). In Figure 8.1,
dark lines indicate higher attention weights (i.e., stronger importance and related-
ness of the words), whereas light lines or the absence thereof indicate lower attention
weights. Having said that, we can see in Figure 8.1a that doctor pays much more
attention to he than to she, while Figure 8.1b reveals that nurse attends to she. This
finding suggests that attention heads of BERT shown in the figure associate doctors
with males and nurses with females, implying that gender stereotypes are encoded
in attention weights. Likewise, in Figure 8.1c, math is more related to asian than
to white or black, conforming to the famous racial stereotype casting Asians as good
mathematicians [444, 401]. Finally, Figure 8.1d links terrorism to Muslims with a
very high intensity, illustrating that stereotypes encoded in attention can be harmful
toward demographics.

More interestingly, we investigate how debiased text encoders fare with the atten-
tion visualization test described above. Specifically, we apply the debiasing method
proposed by Kaneko and Bollegala [220] on BERT, then show the corresponding at-
tention weights in Figure 8.2. We find it intriguing that even after applying one of the
most popular bias reduction methods, gender bias is still reflected in the attention of
the supposedly debiased text encoder. We experimented with other debiasing methods
and found similar results. These examples convey that biases can be hidden in the
attention mechanism, and thus pose the risk of being recovered in representations and
predictions.

In this chapter, we propose a novel bias measure based on attention weights in
order to quantify the amount of bias encoded in attention heads. We show that mod-
ern text encoders display substantial amounts of bias in their attention components.
Also, we quantitatively show that current debiasing methods do very little to mitigate
social stereotypes, and merely conceal them in the attention layer. Then, we propose
Attention-Debiasing (AttenD), an attention-based debiasing approach which works as
follows: Given that attention weights conform with undesired prejudice (e.g., doctor
attending to he, and nurse to she in Figure 8.1), we finetune the parameters of the
text encoder of interest such that it learns to produce equal attention scores for every
word in the input sentence with respect to social groups. Returning to the example
of Figure 8.1, AttenD redistributes attention scores of doctor such that it attends to
he and she with the same intensity, to eliminate any preference toward one of the
groups. However, alterations to the attention of doctor on the remaining words of the

1BERT uses [SEP] token to separate the sentences in two-sentence inputs
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Figure 8.2: Attention patterns in BERT after applying the debiasing method proposed
by Kaneko and Bollegala [220]

input sentence must be kept to a minimum in order not to damage the semantic un-
derstanding of the original text encoder. To do that, we distill the original attentions
from an unaltered teacher text encoder [186, 166]. In this setting, we encourage the
debiased model to copy the original attention from its teacher to minimize semantic
offset.

We suggest that by equalizing attention weights, text encoders forget biased asso-
ciations between groups and attributes. Thus, for a given input sentence, whether it
mentions a man or a woman, a Muslim or a Christian, a Black or a White person,
the model’s attention on the mentioned group is the same, which leads to similar text
representations across groups, and hence identical predictions. In summary, we make
the following contributions in this chapter:

• We propose a novel bias quantification method based on correlations to measure
the extent of social prejudice hidden in the attention mechanism of text encoders.

• We propose a novel debiasing scheme based on calibrating attention scores of
words on different social groups. This is to encourage text encoders to distribute
their attention (and thus importance) equally on demographics.

• We preserve the original semantic representations of text encoders by using
knowledge distillation from an unaltered teacher model.

• We conduct extensive experiments to demonstrate that AttenD reduces not only
bias encoded at the level of attention, but also at representations and likelihoods
as well. We also finetune text encoders on the tasks of textual inference and
hate speech detection after debiasing them to show that AttenD is effective at
reducing social stereotypes in downstream models as well.

We present the different elements of our contributions in this chapter in the follow-
ing order: We begin by presenting related work in Section 8.2. Then, we give details
about our bias quantification (Section 8.3) and bias reduction (Section 8.4) methods.
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Finally, we describe our experiments in Section 8.5 before wrapping up with general
discussions and concluding remarks in Section 8.6.

8.2 Related Work

In this chapter, we make two main contributions: quantification of social bias using the
attention mechanism in transformer-based text encoders, and debiasing these models
by updating their attention layer. Hence, discussion of related work should include
both aspects. In Chapter 2 (Section 2.4.2) and Chapter 5 (Section 5.2), we already
discussed and classified existing bias measurement methods into three main classes:
representation-based, likelihood-based and task-specific approaches. So we will not
repeat them here for the sake of brevity. However, we note that, in contrast to all
these existing paradigms of bias quantification, we are the first to measure social bias
at the level of attention. In this section, we focus on bias mitigation techniques from
transformer-based text encoders. Also, given that our method is based on the attention
mechanism, we discuss a recent debate in the NLP research community about the role
of attention in explaining and controlling model behavior.

8.2.1 Bias Reduction in Text Encoders

There are essentially two approaches for debiasing text encoders: modifying train-
ing data, or modifying the model. Data-level bias reduction techniques presented in
Section 6.2.3 to make task-specific NLP models less biased are also valid for text en-
coders. For not repeating ourselves, we refer interested readers to Section 6.2.3. As
for model-level debiasing, we listed in Section 6.2.2 some methods to debias task-
specific downstream models. Those methods cannot directly be used to address text
encoders because text encoders provide language representations, whereas downstream
task-specific models use these representations to make an inference. The lack of an
inference task in text encoders prevent adversarial interventions from being used, and
makes efforts to debias text encoders more difficult than downstream models [462].

As a consequence, the NLP community has not produced as big a wealth of debi-
asing methods for text encoders as there are for static word embeddings. However, we
classify existing approaches into the following:

Extending existing techniques. Even though it is difficult to use bias mitigation
techniques specifically designed for static embeddings on text encoders, a few works
have attempted doing do. For example, Liang et al. [272] extend projection-based tech-
niques such as Hard-Debias [45] by projecting sentence representations on a gender
direction. We remind that the difficulty in extending Hard-debias is in the creation of
the gender direction itself, where there is a need to compute word representations for
male-definition and female-definition words. However, text encoders produce represen-
tations for sentences, not for words. Liang et al. [272] solve this problem by sampling
sentences from existing corpora where these definition words are mentioned. Then,
they take the mean embedding of sentence representations to have a proxy representa-
tion for every definition word. Debiasing is finally conducted exactly as in Hard-debias.
Kaneko and Bollegala [220] use the same technique of sampling sentences from textual
corpora to extend the debiasing method proposed by Kaneko and Bollegala [222] and
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based on autoencoders where projections of sentence representations on a learned bias
subspace are minimized.

Finetuning. These methods [363, 47, 274] consider language modeling as a down-
stream task. Thus, they add a language modeling head to text encoders, then finetune
them by adding a fairness objective to the optimization function. In doing so, they
train their models to maximize both its language understanding capabilities, and its
overall fairness.

Contrastive Learning. In this framework [71, 74], stereotypes and anti-stereotypes
are contrasted during finetuning to teach text encoders to ignore differences between
them. In particular, Cheng et al. [74] automatically generate anti-stereotypes from
stereotypical sentences in training data, and then encourage the semantic overlap be-
tween these contrasting sentences by maximizing their mutual information.

Efficient methods. Given that text encoders require large amounts of storage and
compute, all debiasing methods discussed so far introduce a non-negligible carbon
footprint. Specifically, Lauscher, Lueken, and Glavaš [257] argue that finetuning is
not energetically-efficient since all parameters of these large text encoders are opti-
mized simultaneously. They propose a method based on adapters [193, 348] where the
authors add lightweight layers between those of the text encoder, and optimize them
instead of training the entire model. Also on the energy-efficiency doctrine, Webster
et al. [471] highlight the potency of general-purpose regularization techniques such as
Dropout [421] to reduce biased correlations in text encoders, while Schick, Udupa, and
Schütze [398] leverage the latent knowledge of language models about their own hid-
den stereotypes and propose Self-Debias : a zero-shot method to mitigate biases, that
requires neither additional training nor data. Informally, Self-Debias adds suggestive
prompts to models that compel them to generate discriminatory and offensive con-
tent. For example, using a prompt such as "The following text discriminates against
people because of their race", text encoders and language models use their inherent
social stereotypes to generate continuations to these prompts, which are expected to
be riddled with prejudice. Debiasing is then conducted by reducing the likelihoods of
words belonging to the model’s continuation.

We differ from all these baselines by manipulating attentions instead of text represen-
tations as is of custom in the literature. To the best of our knowledge, we are the
first to propose a debiasing method based on finetuning the attention mechanism in
general-purpose text encoders. The closest work to ours is that of Attanasio et al.
[20] who regularize the entropy of attention in task-specific models by discouraging
them from basing their classification decisions on identity terms only, with no regard
to context (e.g., to prevent a sentiment analysis model from saying that an input text
is negative just because it mentions the word Black 2). On the other hand, our goal is
to reduce harmful associations to (dis)advantaged groups by calibrating the attention
of the context on identity terms. Besides, our method is applied to text encoders as a
general representation layer, while the method of Attanasio et al. [20] is proposed for
hate-speech classification models.

2This owes to a harmful stereotype found in a myriad of NLP models associating Blacks to crime
[298]

170



CHAPTER 8. ATTEND

8.2.2 Effect of Attention

Attention plays a central role in modern NLP systems [478]. For one, is is the most
imperative building block of transformer-based text encoders since these are roughly
stacks of attention layers [452]. Second, given the convenient interpretability of at-
tention, it has been used in a myriad of visualization works [456, 191, 438, 28] in an
attempt to dissect and explain the inner functioning of text encoders. Moreover, Clark
et al. [78] analyzed BERT’s attention heads and found that some of them correspond
remarkably well to linguistic patterns of coreference and syntax without additional
training. Michel, Levy, and Neubig [309] observe that not all attention heads within a
model are equal. They also propose a pruning algorithm to reduce the energy footprint
of these models by eliminating the least important heads without much attenuation
to the overall performance.

However, recent studies argued that attention cannot be used as a reliable tool
to explain the behavior of models [211, 358, 28], and that attention weights are just
pseudo-random artefacts of pre-training that do very little in showing which features
are most important given an input. Inspired by the arguments of Wiegreffe and Pinter
[478], we largely disagree with the anti-attention claim for the following reasons:

(1) The experimental setup in those studies was particularly limited to recurrent
architectures (RNNs). We believe that one cannot generalize the findings to all kinds
of models that use attention, especially transformer-based models like the ones we use
in this chapter, that mainly constitute of attention layers [452, 103]. (2) Whether
attention explains or not depends on the definition of explainability one is looking
for [279, 387]. Although Jain and Wallace [211] casts some doubt on the notion that
attention grants one true and faithful interpretation, we believe that their arguments
and evaluations do not invalidate the fact that attention does indeed show which
features are most meaningful to models [478]. (3) Our own experiments confirm that by
reducing bias in attention, we find that it is also reduced in embeddings and predictions.
This hints that attention contributes, at least to a small degree, in the decision-making
process of text encoders.

8.3 Bias Quantification Using Attention

The stereotype quantification and reduction methods to be presented in this chapter
can be applied on any model that is built upon transformers, and which internally
uses the attention mechanism. However, we focus in our work on models based on
the encoder side of the transformer architecture, such as BERT [103], RoBERTa [284],
or ALBERT [255] because these are the ones considered as text encoders by the NLP
community. On the other hand, models based on the decoder side of transformers such
as GPT2 [365] are used for auto-regression tasks, which is outside the scope of this
work. In the following, we present our metric to compute the amount of bias encoded
in attention across a given textual corpus S. 3 Then, we use our metric to show that
current debiasing methods, by operating on embeddings alone, leave attention bias
largely unaddressed.

3A corpus is just a collection of texts with no gold labels. It can be Wikipedia articles, books,
blogs, newspaper articles, etc.
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religion gender age

muslim, christian, jewish he, she old person, young person
quran, bible, torah man, woman elderly, youth

Table 8.1: Examples of group tuples per bias

8.3.1 Corpus Pre-processing

First, we identify bias types of interest such as gender, race or religion. In this work,
we achieve this by defining a set of tuples G for every bias type such that G =
{T1, T2, ..., Tk} where each Ti includes terms related to different social groups, or to
their specific attributes. Table 8.1 shows possible values for Ti.

In order to be able to compute a measure of social bias given a corpus S, we need
mentions of demographics within each sentence of the corpus to analyze how different
words attend to groups. We cannot expect existing corpora to mention groups in each
of their sentences. As a result, we artificially force this by augmenting instances of
the corpus with groups. Specifically, for every sentence s in S, we randomly pick a
tuple Ti from G and construct sg, an artificial sentence formed by words of Ti. For
example, given Table 8.1, sg can be "muslim, christian, jewish" or "man, woman".
Finally, we use both s and sg to make two-sentence inputs similar to the examples
of Figure 8.1. To recap, if the original sentence s is "The doctor asked the nurse a
question", and that sg is "man, woman", the final augmented input that will be used
in our quantification method is "The doctor asked the nurse a question [SEP] man,
woman". [SEP] is a special token used to separate sentences of dual-input sentences
in modern text encoders. Note that after augmentation, this entire sequence counts
as one single input, and that the attention of every word is distributed on both terms
of s and sg.

8.3.2 Quantification Method

After augmenting the corpus with artificial group-related sentences, we feed each aug-
mented input to the text encoder under study, and collect the resulting self-attention
weights. Each token in the augmented input distributes its attention on all other
tokens according to their importance. Thus, every group in sg has its own attention
allocation, i.e., the vector consisting of attention weights that tokens in s give to the
current group token. We declare bias in this case as the difference between attention
allocations of groups. In other words, if the sentence distributes its attention on social
groups differently (e.g., doctor in Figure 8.1 attends to he and not to she), then there
is bias. Specifically, we measure Pearson correlation between attention allocations of
social groups in each attention head of a text encoder, aggregated over a corpus:

Bias(S,G) =
1

|S||G|
∑

s∈S

∑

sg∈G

1

|
(
sg
2

)
|

∑

i,j∈(sg2 )

ρ(Agi
s , A

gj
s ) (8.1)

where ρ is Pearson correlation,
(
sg
2

)
produces all possible pairs of social groups

given a tuple, Agi
s is the attention vector that sentence s allocates to group gi. If this
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(a) gender (b) race (c) religion

Figure 8.3: Attention bias in BERT base broken out by layer and head

quantity is close to 0, we can say that attention exhibits bias since the average of
correlations across sentences and groups is nearly 0.

In the following, we use the News-commentary-v15 corpus4 as evaluation data and
compute attention bias of BERT. We present the results for each attention head and
for each bias type in Figure 8.3. We observe that BERT’s attention heads do not
exhibit the same intensity in encoding attention bias, conforming to the findings of
Bhardwaj, Majumder, and Poria [35]. For example, head 0 of layer 2, head 1 of layer
1, head 2 of layer 0 and head 9 of layer 2 display strong gender biases (dark colors in
Figure 8.3a, while head 4 of layer 3 and head 7 of layer 9 are free of gender attention
bias (light colors). We also observe that heads encode biases related to different bias
types differently. For instance, race and religion contain much more dark-colored heads
than gender, meaning that racial and religious biases are much more present in the
attention mechanism of BERT.

Also, the lower layers of attention appear to encode more bias than the top layers
since their heads are much darker. We believe this to be the consequence of lower
layers being more aware of the input tokens (and their stereotypes), while top layers
are fed transformations of the input as it flows through the attention stack.

8.3.3 Analyzing Attention Bias in Debiased Text Encoders

We use our metric to measure the extent of attention bias in supposedly debiased
text encoders. We present the results in Figure 8.4 for CDA, Figure 8.5 for Sent-
D and Figure 8.6 for the debiasing method proposed by Kaneko and Bollegala [220].
Surprisingly, these text encoders are still tainted with large amounts of social bias even
after debiasing. When we compare the heatmaps of Figures 8.4, 8.5 and 8.6, we notice
that they are very similar to the heatmaps of Figure 8.3, which means that attention
bias is hardly reduced. In some cases, it is even amplified (i.e., the heatmaps become
darker in color). For example, CDA amplifies both gender, racial and religious biases,
by darkening heads that were previously light in color. The method of Kaneko and
Bollegala [220] also amplifies religion stereotypes by making the last layer of BERT
overly more biased (compare layer 11 of Figures 8.3c and 8.6c).

We stipulate that even though existing debiasing methods show acceptable results
with embedding-based bias evaluations, they appear to ignore the bias reflected in at-
tention. This overlook is dangerous because the embeddings themselves are generated
from attention weights, and that prejudice in attention can propagate to embeddings

4http://www.statmt.org/wmt20/translation-task.html
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and predictions. In the next section, we present our own debiasing method that aims
to reduce bias from the top k most biased attention heads of text encoders.

(a) gender (b) race (c) religion

Figure 8.4: Attention bias in BERT base broken out by layer and head after the
application of CDA

(a) gender (b) race (c) religion

Figure 8.5: Attention bias in BERT base broken out by layer and head after the
application of Sent-D

(a) gender (b) race (c) religion

Figure 8.6: Attention bias in BERT base broken out by layer and head after the
application of the debiasing method proposed by Kaneko and Bollegala [220]

8.4 Bias Reduction Using Attention

Our proposed debiasing method is mostly a finetuning approach where we use standard
unlabeled textual corpora as training data. As in our bias quantification method, debi-
asing also starts by pre-processing the training corpus. So, the first step of Attention-
Debiasing (AttenD) is augmenting each sentence s in the training corpus S with an
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Figure 8.7: Overview of an attention head for a given input before (left) and after
(right) debiasing

artificial second input sg consisting of words related to groups of a given bias type, as
explained in Section 8.3.1. Then, we finetune the encoder’s parameters such that the
top k most biased heads produce equalized attentions on groups, i.e., each token in s
pays the same amount of attention to tokens of sg, thus eliminating preferences and
stereotypes. We minimize semantic loss by compelling the model to learn the original
semantics from an unaltered teacher model by copying its internal attention. In the
following, we give a brief overview of what our method does to attention weights before
describing in detail the mathematical formulations of our learning objective.

8.4.1 Overview

We schematize the operation of AttenD in Figure 8.7. Gr1, Gr2 and Grn in the figure
correspond to the tokens of sg (i.e., mentions of different social groups). Both matrices
represent one attention head of the text encoder before (left) and after (right) debiasing
for a given augmented input sentence. The matrices should be read in rows. Each row
depicts the attention weights of the corresponding token on all the other tokens of the
input (s + sg)5.

The matrices are conceptually split in four blocks: (1) attentions of s on s, (2)
attentions of s on sg, (3) attentions of sg on s, and (4) attentions of sg on sg. The
most important blocks are block 1 which defines attention distribution of every word in
the original input on itself, thus encoding semantics; and block 2 which corresponds to
notions of fairness as it shows how every word in s attends to different demographics.
Debiasing consists in making the columns of block 2 equal. In other words, each token
in s pays the same amount of attention to all the groups, as indicated in the right side
of Figure 8.7. We preserve the semantics of the original text encoder by keeping block
1 of Figure 8.7 unchanged. Both blocks 3 and 4 are irrelevant to the results, since they
denote attentions of our artificially inserted second input sg. So, we do not impose

5[CLS] token (vector representation of s) is also included for attention calibration
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any restrictions on them.

8.4.2 Equalizing Attentions on Social Groups

Here, we make the reasonable assumption that sg contains at least two social groups.6
The rationale behind attention equalization is to eliminate any inclination for the
encoder to prefer any social group to the detriment of others. Equalizing attention
allocation vectors of block 2 (columns of block 2 in Figure 8.7) is equivalent to making
them all equal to a pivot vector. In this work, we consider the attention allocation
of s on the first social group as the pivot (first column in block 2), and minimize the
mean square error between the pivot and the attention allocation vectors of s on the
other groups, one at a time.

Suppose Al,h,s,sg = Attn(s, sg; l, h) is the attention matrix at layer l, head h of
the encoder E, computed from the input s + sg. The equalization loss is given by
Equation 8.2.

Lequ =
∑

s∈S

L∑

l=1

H∑

h=1

||sg ||∑

i=2

||Al,h,s,sg
:σ,σ+1 −A

l,h,s,sg
:σ,σ+i ||22 (8.2)

where L is the number of layers of the text encoder, H the number of heads, ||sg||
the number of social groups in sg and σ is the position of the special token [SEP]
that marks the end of s and the beginning of sg. As can be seen, Al,h,s,sg

:σ,σ+1 is the pivot
vector containing attention scores of s on the first social group token (whose position
is directly after [SEP], i.e., σ + 1). Equation 8.2 forces attention scores on subsequent
social groups to be the same as on the first one, thus making them all equal. We also
experiment with choosing the last group as pivot, or pick one at random. We find that
these alternatives produce comparable results.

8.4.3 Preserving Semantic Information

We employ the knowledge distillation paradigm to minimize semantic information loss
[186, 166]. In particular, we use two text encoders: we cast the one that we want to
debias as the student, and recruit another text encoder to be the teacher. We initialize
the student from the teacher. We do not debias the teacher since it provides a reference
to the original unaltered language representations. We compel the student to copy the
teacher’s attention for every input in the training corpus S.

As in Section 8.4.2, let Al,h,s,sg be the attention of the student model at layer l,
head h with s and sg as input. Likewise, let Ol,h,s,sg define the teacher’s attention
matrix. We formalize the preservation of semantic information as a regularizer where
we minimize the squared l2 distance between the student’s and the teacher’s attention
scores.

Ldistil =
∑

s∈S

L∑

l=1

H∑

h=1

||Al,h,s,sg
:σ,:σ −Ol,h,s,sg

:σ,:σ ||22 (8.3)

6Biases are usually about making one or more groups (dis)advantaged with respect to the others,
hence the existence of at least two groups per bias type
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As can be seen from Equation 8.3, the student learns only to replicate block 1 of the
attention matrices. We force the student not to reproduce the attention distribution on
social groups (block 2) from the teacher since these are supposedly biased, and are left
to the care of our debiasing objective. We do not use the Masked Language Modeling
(MLM) loss since the teacher model is already trained using that objective [103]. We
describe the overall training objective as a linear combination of the previously defined
losses, with λ as a hyperparameter to control the weight of debiasing over semantic
preservation.

Loss = Ldistil + λLequ (8.4)

8.4.4 Negative Sampling

The strict application of AttenD as discussed so far may accidentally lead to some un-
desired spurious phenomena. While learning to equalize attention on social groups that
constitute the second half of the input, the text encoder bears the risk of distributing
its attention uniformly on any second half, no matter what it is. This is particularly
alarming when the text encoder is subsequently employed in double-sentence tasks
[461] such as semantic textual similarity (where the goal is to predict whether inputs
before and after the [SEP] token are similar) or sentence entailment (where the task is
to predict whether the sentence after the [SEP] token contradicts, entails or is neutral
to the one before [SEP]).

To overcome the above obstacle, we introduce negative sampling. Instead of using
words related to social groups in order to generate the artificial second input sg, we
randomly sample words (negative examples) from the vocabulary. In this case, we do
not equalize the attentions but compel the student to copy its teacher even for blocks
2, 3 and 4. We do this in order to prevent the text encoder from learning to assign the
same attention weight to all tokens of the second input when these do not define social
groups. We control the ratio of negative examples with a hyperparameter η, and use
them alongside positive examples (social groups) in training.

8.5 Experiments and Evaluation

In this section, we first describe our experimental setup, then evaluate both fairness
and representativeness of text encoders after the application of AttenD. Fairness is
traditionally evaluated with two types of metrics: intrinsic metrics that measure social
bias in text representations regardless of their application, and extrinsic metrics that
quantify bias in downstream tasks that text representations enable. Although we
acknowledge that intrinsic metrics have recently been criticized [161, 14, 42], we believe
that a strong evaluation of bias should include both intrinsic, extrinsic and qualitative
methods. Since Aribandi, Tay, and Metzler [14] surmise that StereoSet and Crows-
Pairs are more stable than other intrinsic measures of bias (e.g., WEAT [59] or SEAT
[303]), we use them in this work as our intrinsic measures of choice. For extrinsic
metrics, we evaluate our method on the tasks of textual inference and hate speech
detection. Moreover, we present in this section a qualitative test similar in spirit to the
one described in Section 7.4.5 in order to explore differences in attention attribution
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gender religion

Male Female Muslim Christian Jewish Buddhist

man woman muslim christian jewish buddhist
boy girl muslims christians jews buddhists

father mother islam christianity judaism buddhism
brother sister mosque church synagogue temple

grandfather grandmother quran bible torah
son daughter imam priest rabbi monk

gentleman lady mohammad jesus moses buddha
he she
his her

himself herself

race

White Black Asian Hispanic

white black asian hispanic

Table 8.2: Full list of definition tuples for bias types and social groups used in this
work

of gender-neutral words on males and females. Finally, we evaluate the semantic
preservation of AttenD on the popular GLUE stack [461]. We release our code and
data on GitHub.7

8.5.1 Experimental Setup

Debiasing Setup

In this chapter, we include the following bias types for debiasing: (binary) gender
(Male, Female), race (White, Black, Asian, Hispanic) and religion (Muslim, Chris-
tian, Jewish, Buddhist). We list the tuples that we used to define these demographics
in Table 8.2. However, the approach presented here is not restricted to these defini-
tions, and can be leveraged for both other kinds of biases and for a more inclusive
definition of the groups.

Training Details

We apply AttenD on BERT [103], although in the appendix we also show debiasing re-
sults of AttenD on other text encoders such as ALBERT [255], RoBERTa [284], Distil-
BERT [393] and SqueezeBERT [205]. As training data, we use the News-commentary-
v15 corpus8. It contains 223,153 sentences of which we use 80% for training and 20%
for development.

We use Adam optimizer [231] with a learning rate of 5e−6 for 3 epochs. We keep
the betas to their default values (0.9, 0.999) as in PyTorch implementation [338].
We set the loss coefficient λ to 2.0 and the negative ratio η to 0.8 meaning that in

7https://github.com/YacineGACI/AttenD
8http://www.statmt.org/wmt20/translation-task.html
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80% of the iterations, we use negative examples whose number we set to 5 words in
each negative iteration. The values of λ, η, the learning rate, and the number of
epochs are the result of a manual hyperparameter search on the development set of
the News-commentary-v15 corpus. These values of hyperparameters maximize the
attention-based bias metric explained in Section 8.3.2. As for GLUE experiments, we
follow the experimental setup of Devlin et al. [103] and train each task for 3 epochs
with a learning rate of 2e−5 on their respective training data. We ran all of our training
and experiments on a NVIDIA Tesla V100 GPU.

Baselines

We notice that a lot of published papers working on debiasing methods did not release
their code, and very few of those who did did not include their hyperparameters and
training details. Consequently, for accurate comparisons against previous work, we
decided to include the baselines whose final debiased models have been made public
in order to avoid errors relating to training and/or tuning hyperparameters. Also,
we chose baselines from different debiasing paradigms to contrast the performance of
AttenD against several approaches. These baselines include:

• Counterfactual Data Augmentation (CDA) [513, 471, 415, 288, 405] which works
by reducing biases in training data rather than in models.

• Sent-D [272] which minimizes the projections of sentence representations on bias
dimensions to reduce bias information.

• The debiasing procedure proposed by Kaneko and Bollegala [220] based on fine-
tuning text encoders with additional fairness constraints.

We also conduct a simple ablation study by training without negative examples
(AttenD-) when necessary.

8.5.2 Intrinsic Evaluation of Fairness

Bias in Attentions

We start by measuring the amount of attention bias using the equation described in
Section 8.3 in BERT base before and after applying AttenD and other baselines. As
evaluation data, we use the development set of the News-commentary-v15 corpus. Our
equation gives a bias score for every attention head in BERT. In this section, we take
the arithmetic mean of per-head bias scores to quantify bias in the overall model. We
report the results in Table 8.3.

Although existing debiasing methods have been shown to reduce bias in embeddings
[272, 220], we observe that they do very little to reduce it in attention. In fact,
the method of Kaneko and Bollegala [222] and CDA induce the model to encode
more bias in the attention layer as is illustrated by a decrease in attention fairness.
Biases concealed in the attention mechanism risk to resurface in predictions if not
addressed correctly. Table 8.3 shows that AttenD is very good at reducing attention
bias, increasing the fairness score from the original BERT by 11.53%.
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Model gender race religion Overall

BERT 84.52 79.65 82.57 82.25

Sent-D 86.45 79.27 82.98 82.90
Kaneko 82.71 75.34 78.13 78.73
CDA 82.50 73.92 78.39 78.61

AttenD 93.85 93.64 93.85 93.78

Table 8.3: Attention bias on BERT before and after applying debiasing methods. The
higher the scores are, the less bias there is

Bias in Representations and Likelihoods

Beside its ability to reduce attention bias, we demonstrate that AttenD is also ca-
pable of mitigating bias from text representations and likelihoods. To do that, we
finetune text encoders of interest before and after applying debiasing methods on the
language modeling task. Then, we use the publicly available subsets of two stereotype
benchmarks: StereoSet [322] and Crows-Pairs [324]. Both provide likelihood-based
diagnostics to measure how often language models consider stereotypes likelier than
anti-stereotypes. An ideal unbiased text encoder should score 50% in these bench-
marks, i.e., it prefers neither stereotypes nor anti-stereotypes. We show the evaluation
results in Table 8.4. StereoSet provides a means to compute a language modeling (LM)
score to check whether the encoder is still good at the task of language modeling, and
that debiasing didn’t hurt semantic performance.

Model Crows-Pairs StereoSet LMgender race religion Overall gender race religion Overall

BERT 58.02 58.14 71.43 60.48 62.75 54.68 56.41 56.04 83.70

Sent-D 51.53 55.23 60.0 56.90 53.33 55.09 51.28 54.71 81.39
Kaneko 57.63 53.68 64.76 57.82 58.82 56.24 57.69 56.04 85.58
CDA 54.58 50.78 60.95 55.06 55.69 53.01 53.85 54.18 81.38

AttenD- 53.05 53.68 69.52 57.23 51.37 54.37 55.13 53.37 80.92
AttenD 51.53 50.78 61.90 54.58 54.51 52.29 56.41 53.18 82.27

Table 8.4: Stereotype scores on BERT before and after applying debiasing methods.
The closer to 50, the better. However, for the language modeling score (LM), the
higher the better.

We observe that AttenD shows impressive debiasing performance when evaluated
with likelihood-based diagnostics. Improvements go up to 9.53% with a slight decrease
in the accuracy of language modeling (-1.43%). This proves our first hypothesis stating
that less attention bias results in less bias overall. We notice that our method yields
the best debiasing performance, by and large. Table 8.4 also shows the importance of
negative examples. We notice that omitting negative examples from training (AttenD-)
leads to more dramatic semantic information loss.
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8.5.3 Extrinsic Evaluation of Fairness on Sentence Inference

In this section, we finetune BERT on MNLI [461], a popular dataset to train sentence
inference models, after applying AttenD and other debiasing baselines. The approach
of measuring bias presented in this section builds on the intuition of Dev et al. [100]
who state that biased representations lead to invalid inferences, whose ratio quantifies
bias. They construct a challenge benchmark for the natural language inference task
where every hypothesis should be neutral to its premise. For example, if the premise
is The driver owns a van and the hypothesis is The man owns a van, the hypothesis
should be neutral to the premise (neither entailment nor contradiction). If predictions
of a classifier deviate from neutrality, the underlying text encoder is assumed biased.

Suppose that the test set contains M instances, and let the predictor’s probabilities
of the ith instance for entail, contradict and neutral be ei, ci and ni. As is done in the
literature [100], we report three measures of inference-based bias:

1. Net Neutral (NN): NN = 1
M

∑M
i=1 ni

2. Fraction Neutral (FN): FN = 1
M

∑M
i=1 1ni=max(ei,ci,ni)

3. Threshold τ (T:τ): T : τ = 1
M

∑M
i=1 1ni>τ

A bias-free model should score 1 (100%) in all three measures. We report our
findings in Table 8.5. It is clear that AttenD outperforms all baselines, and reduce
social stereotypes from the unbiased version of BERT in inference settings to a large
degree (up to 29.53% in NN metric). This result shows that AttenD succeeds in
mitigating stereotypes in real world applications. In Section 8.5.6, we show that these
findings are meaningful since the entailment accuracy is not hurt after debiasing.

8.5.4 Extrinsic Evaluation of Fairness on Hate Speech Detec-
tion

In this experiment, we validate the efficacy of our debiasing method on a concrete real-
world hate speech detection application where an input snippet of text is classified
as either offensive (toxic, harmful, disrespectful, etc.) or not. We use hate speech
detection because it is well studied in the literature [57, 379, 503], and high-quality
datasets which are tagged with social groups already exist [48, 300].

Admittedly, common social biases have also been shown to exist in hate speech
detection models, for example in associating toxicity to frequently attacked groups
(such as muslim or gay) even if the text itself is not toxic [108, 332]. In this experiment,
we adopt the bias definition of Borkan et al. [48] which casts bias as a skewing in the
hate speech detector scores based solely on the social groups mentioned in the text. In
other words, we consider a model to exhibit unintended social stereotypes if the model’s
performance varies across groups. We use the bias measures proposed by Borkan et
al. [48] which are based on the Area Under the Receiver Operating Characteristic
Curve (ROC-AUC, or AUC) metric. AUC measures the probability that a randomly
chosen negative example (i.e., not offensive) receives a lower toxicity score than a
randomly chosen positive example (i.e., offensive), meaning that a perfect model should
always have an AUC score of 1.0. Stated differently, all negative examples should have
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Model Bias type NN FN τ :0.5 τ :0.7

BERT
gender 36.38 36.45 36.06 33.96
race 75.96 76.57 76.51 74.91

religion 43.47 43.55 43.45 41.77

Sent-D
gender 44.74 45.10 44.54 42.06
race 59.61 59.28 59.20 56.22

religion 29.64 29.08 29.02 27.24

Kaneko
gender 53.15 53.33 52.75 49.65
race 84.24 84.84 84.80 83.26

religion 69.27† 69.80† 69.72† 67.66†

CDA
gender 64.00 65.38 64.70 61.19
race 77.33 77.79 77.78 75.93

religion 49.00 49.03 48.97 46.78

AttenD
gender 65.91 67.10 66.69 63.59
race 92.26 92.77 92.74 91.79

religion 68.51 69.08 68.95 66.97

Table 8.5: Inference-based bias measurements. Best scores are highlighted in bold,
underlined, or marked with † for gender, race and religion† respectively

lower toxicity scores than positive examples. While AUC is used to measured the
general performance of classifiers, Borkan et al. [48] propose three extensions of AUC
to measure bias. We summarize them in the following:

• Subgroup (Sub) AUC: where AUC is computed only on examples in the test
benchmark that mention the group under consideration, and not on the entirety
of the benchmark, i.e., only positive and negative examples of the target group
are considered. This metric represents the model’s performance for a given group.
A higher value means that the model is good at distinguishing between toxic and
non-toxic texts specific to the group.

• Background Positive Subgroup Negative (BPSN) AUC: where AUC is
calculated on the negative examples of the target group, and the positive ex-
amples of the background (i.e., all other groups except the group under con-
sideration). This metric computes whether the model discriminates against the
target group with respect to the others. This value is reduced when non-toxic
examples of the group have higher toxicity scores than actually toxic examples
of the background.

• Background Negative Subgroup Positive (BNSP) AUC: where AUC is
calculated on the positive examples of the target group, and the negative ex-
amples of the background. This metric computes whether the model favors the
target group with respect to the others. This value is reduced when toxic ex-
amples of the group have lower toxicity scores than non-toxic examples of the
background.
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Models
Performance Bias

Acc↑ F1↑ AUC↑ STD-Sub↓ GMB-Sub↑ GMB-BPSN↑ GMB-BNSP↑
BERT 0.783 0.823 0.870 0.119 0.698 0.800 0.379

Sent-D 0.791 0.825 0.870 0.121 0.689 0.725 0.583
Kaneko 0.797 0.833 0.872 0.112 0.705 0.789 0.512
AttenD 0.789 0.829 0.866 0.085 0.808 0.793 0.726

Table 8.6: AUC-based bias measures on hate speech detection task

In this experiment, we finetune the text encoder under study on the hate speech
detection task using the training set of HateXplain dataset [300]. We also use the test
portion of HateXplain for the evaluation, which contains posts from Twitter9 and Gab10

annotated with their ground-truth toxicity scores, in addition to the social groups and
communities they target. Fundamentally, the three metrics described above give bias
scores separately for each group. In order to combine the per-group scores in one
overall measure, we apply the Generalized Mean of Bias (GMB) introduced by the
Google Conversation AI Team as part of their Kaggle competition11, and later used by
Mathew et al. [300] in their own evaluations. The formula of GMB is as the following:

GMB(b) = (
1

|b|

|b|∑

g=1

bpg)
1/p (8.5)

where b is an array of AUC scores per group, and bg is the AUC score of group
g. We follow Mathew et al. [300] and set p to -5. We compute the GMB of all three
metrics: Subgroup, BPSN and BNSP. As for Subgroup, we also add the standard
deviation as it gives valuable information about how much the performance of the
hate speech detection model varies across groups. We report our results in Table 8.6,
in addition to classic performance measures.

We observe that AttenD provides competitive results across the four bias metrics,
and largely outperforms the baselines. Especially with GMB-BNSP where bias scores
of the original model are very low (i.e., it is throttled by social biases), we observe
the best improvements overall, and by a large margin compared to existing debiasing
methods. Also, the variance in model performance is lowest with AttenD, which
means that the Subgroup scores across different demographics are comparable. This,
in turn, confirms that the hate speech detection model corresponding to AttenD has
less stereotypes about different social groups than the baselines. Finally, the general
performance (Accuracy, F1 score and AUC) of the hate speech detection model after
debiasing is not damaged.

8.5.5 Qualitative Test

In this experiment, we aim to visualize qualitatively the effects of debiasing on at-
tention weights. We only focus on binary gender bias for two reasons: First, it is

9https://twitter.com
10https://gab.com
11https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/overview/evaluation
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easier to visualize binary variables on a 2D plane than multiclass variables such as
race or religion. Second, gender is the most well studied bias type [45, 59, 303], so
linguistic resources and vocabularies for gender exist and are well documented. We use
the vocabulary words compiled by Kaneko and Bollegala [222] and categorized into
three non-overlapping subsets: (1) Male-definition ΩM whose corresponding words
are exclusively male-gendered such as father, king or uncle. (2) Female-definition
ΩF which is a set of inherently female words (e.g., mother, queen, aunt, etc.). (3)
Gender-stereotype ΩS which is constituted of words that are not gendered by def-
inition, but that carry a strong gender stereotype such as doctor being attributed to
male or nurse to female .

For every word w ∈ ΩM∪ΩF∪ΩS, we extract sentences from the News-commentary-
v15 corpus where w is mentioned. We denote this set of sentences as Sw. Then, for
every sentence s ∈ Sw, we append the artificial group-related input "man, woman" as
explained in Section 8.3.1. The augmented input s′ is then fed to the text encoder of
interest (BERT base in this experiment), and we collect the attention scores of w on
both man and woman. Finally, for every word w ∈ ΩM ∪ΩF ∪ΩS, we take the mean
of its attention scores in Sw for each gender separately. By the end of this procedure,
we have for every word w its attention score on the words man (awm) and woman
(awf ) as computed on the News-commentary-v15 corpus which includes overall 223,153
sentences. We take the difference awm − awf which indicates the preference of the text
encoder to consider w as male (if the difference is positive) or female (if it is negative).
If the result of awm − awf is near zero, it means that very small amounts of gender bias
are encoded, which is the ideal scenario.

We plot the results in Figure 8.8 where the x-axis represents the differences awm−awf ,
and the y-axis random values to separate the words vertically. Stereotype words (green
dots) should have values near 0 because they are not fundamentally gendered, which
is not the case in Figure 8.8a. This means that BERT has a strong preference for
one of the genders, and is thus heavily biased. In contrast, our method (Figure 8.8d)
brings the attention of stereotype words near 0, meaning that they prefer neither male
nor female connotations. Moreover, the spread of stereotype words in Figure 8.8d is
narrower than male- or female-oriented words, which is desired since the latter are
inherently gendered and must pick a side. This result strengthens the claim that At-
tenD preserves semantic information, and is less severe in reducing bias from gendered
words as it is on gender-neutral words. The difference in spread is less apparent in the
original BERT model. We also note that debiasing the embeddings of BERT rather
than the attention mechanism as in Sent-D (Figure 8.8b) and in the method of Kaneko
and Bollegala [220] (Figure 8.8c) is not enough since bias information is still lurking
(and perhaps made worse for some words) in the attention component. Thus, we con-
clude that working on attention directly constitutes our best option for debiasing to
date.

8.5.6 Evaluations of Semantic Preservation

We have already presented some evidence that AttenD preserves semantic information
throughout this experimental section. Namely, in Table 8.4, the LM score shows that
text encoders after the application of AttenD retain their ability to model natural
language. In Table 8.6, all of Accuracy, F1 score and AUC metrics demonstrate that
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(a) Original BERT (b) BERT debiased by Sent-D

(c) BERT debiased by [220] (d) BERT debiased by AttenD

Figure 8.8: Scatter plots of attention scores on male - female direction

the semantic information that enable correct classification of text into hateful or not
is also preserved after debiasing with AttenD. Finally, we observe in Figure 8.8d that
gender information is removed from gender-neutral words that are victims of stereo-
typing, but preserved in words that are inherently charged with gender polarity. All
these results confirm that AttenD inflicts little to no semantic loss.

To further ground this claim with definitive evidence, we use GLUE benchmark
[461] to verify whether the debiased text encoder still holds enough semantic informa-
tion to be applicable in various downstream NLP tasks. In essence, GLUE assesses the
natural language understanding capabilities of NLP models, and includes tasks such
as: textual entailment (MNLI, RTE), reading comprehension (WNLI), sentiment anal-
ysis (SST2), textual semantic similarity (STSb), paraphrasing (MRPC) and linguistic
acceptability (COLA). So, it constitutes a suitable stack to evaluate the semantic
preservation of AttenD. In this experiment, we finetune our debiased models on seven
different tasks from GLUE and show that per-task accuracy is preserved in Table 8.7.
We also observe that not using negative examples (AttenD-) severely hurts semantics.
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Models Single sentence Double sentence
sst2 cola stsb mrpc mnli (m/mm) rte wnli

BERT 92.78 56.05 88.97 92.25 83.54 / 82.68 70.04 45.07

Sent-D 91.63 59.08 89.58 90.12 84.97 / 83.51 68.95 28.17
Kaneko 91.97 56.50 88.44 90.69 84.48 / 83.66 59.93 52.11
CDA 92.32 55.98 88.93 90.60 84.31 / 82.26 64.26 25.35

AttenD- 92.32 56.25 81.12 80.44 84.59 / 83.96 58.12 39.44
AttenD 92.66 55.22 89.62 91.22 84.63 / 84.19 70.40 53.52

Table 8.7: Performance of different models on GLUE tasks. The table shows accuracy
scores for sst2, rte, wnli, and mnli for both matched and mismatched instances; f1
for mrpc; spearman correlation for stsb; and matthews correlation for cola

8.6 Discussion

We proposed in this chapter to pay closer attention to the attention mechanism of
text encoders. Specifically, we find that social bias and prejudice can also reside in
attention weights, in addition to in representations and embeddings. We characterize
attention bias in text encoders by looking at which demographics are most relevant
given a stereotypical scenario under different attention maps in various layers. Our bias
quantification method is a weighted average of Pearson correlations between attention
allocations for demographic group words. We also propose a novel debiasing method
by modifying the self-attention weights so as to ensure equal attention activations
across all group words for each token in each input sentence. At the same time, we use
knowledge distillation from a teacher text encoder to preserve the useful semantics con-
tained within. Finally, we utilize negative sampling with non-demographic word sets
as the second sentence, where the teacher objective rather than attention equalization
objective is applied, to prevent sentence-pair functionality in text encoders from being
destroyed. We find that by mitigating biases from attention, the overall model bias
is also reduced. We demonstrate this with various experiments that probe for bias
internally, and when text encoders are used in downstream tasks, namely sentence
inference and hate speech detection with limited costs to semantic usefulness.

The main advantage of AttenD is that it is intuitive, simple in implementation, and
inexpensive in terms of data resources. To finetune text encoders using AttenD, there
is only a need for a standard non-annotated textual corpus. While we use the News-
commentary-v15 corpus in our experiments, any chunk of text available online can be
utilized, such as books, Wikipedia articles, blog posts, logs of online conversations,
etc.

Moreover, the definitions of bias types and social groups are extremely easy and
flexible. In Table 8.2, we show that AttenD does not incur strict rules for defining
social groups, unlike previous work [45, 222, 220] that require the definition words to be
organized in a predefined format (pairs of words or bag of words for every group), and
provided in relatively large quantities. We can see from Table 8.2 that it is sufficient to
define one tuple per bias type specifying just the identities of different demographics
if more tuples are hard to come by (e.g., race in Table 8.2). Also, the tuples need not
be of the same size (e.g., in religion there is a missing word for buddhist group since
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it is not clear which word to use in that tuple), and the debiasing method still works
just fine. This desired property owes to the fact that AttenD does not learn subspaces
or directions for every bias type as previous works do [45, 222, 247, 220]. In contrast,
AttenD uses the tuples in order to equalize the attentions of the input sentence, and
make the words therein attend to the groups with the same intensity.

We are however aware of the following limitations. While the approach is indepen-
dent from the definition of social groups and categories (it could work for any kind of
grouping, e.g., cuisine styles or sports), we focus in our experiments on groups com-
monly used in the debiasing literature: binary gender, religion and race. However,
we are aware that this is limiting, and that there are more social divisions in the real
world than the three dimensions we studied. Besides, bias types can be correlated in
intricate ways, and it is usually not clear which or how many groups to include. We
follow previous work and stick to gender, race and religion to be able to compare our
work against existing baselines, and use available test benchmarks which are mostly
restricted to these bias types. We note though that nothing in the approach prevents
it from being used with broader and more inclusive groups.

Methods that focus on word-level debiasing have been criticized by Gonen and
Goldberg [162], and at first glance, AttenD seems to function at the level of words since
it calibrates the attention distribution of each token on groups separately. However,
since we use BERT-based text encoders in our experiments, the first token in all inputs
is the special [CLS] token which is considered by the NLP community as the vector
representation for the entire input sentence. Attention weights of [CLS] on groups
are also calibrated, beside the calibration of all other tokens. One can view AttenD
as a combination of word-level and sentence-level methods. We leave exploration of
what happens if we only calibrate the [CLS] token, or all tokens except [CLS] in the
appendices accompanying this dissertation.

Nevertheless, we still use discrete words to represent groups in this work, which
poses some challenges when adapting AttenD to reduce implicit bias (e.g., there is an
implicit bias between the occupations of doctor and engineer because they are both
stereotyped to be rather masculine occupations), or bias toward finer-grained groups
(e.g., female Muslims). As future work, we plan to extend AttenD such that it handles
intersectional biases, i.e., biases corresponding to multiple bias types at the same time
(e.g., Buddhist Black Americans, Christian Arabs, etc.). To do that, suppose we aim
to calibrate the attention of a given word w on two fine-grained groups: group A
(described with three distinct words a1a2a3), and group B (described with two words
b1b2). Debiasing in this case can be conducted by equalizing the attention of w between
the sum of its attention on a1, a2 and a3, and the sum of its attention on b1 and b2,
such that the final attention of w on all words of group A is equal to that of all words
of group B. The same mechanism can be easily adapted to non-binary bias types.

Another limitation relating to the specification of groups is that just because we
are analyzing and calibrating attention weights in templates such as "sentence from
a corpus [SEP] demographic 1 demographic 2 demographic 3", we are not necessar-
ily addressing all forms of social bias that are potentially concealed in the attention
mechanism. There are many other ways in which bias can be internally represented
in attention weights. For example, instead of looking at attentions of the original
sentence on social groups, we do the reverse and calibrate the attention of groups on
the sentence. Or we can sample sentences that mention demographics, then construct
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artificial inputs based on attributes instead of groups, such as occupations or polarity
adjectives. To illustrate this, we can create test samples like the following "sentence
describing a person in a demographic group [SEP] occupation 1 occupation 2 occupa-
tion 3", and calibrate the attention of the demographic on occupation terms to reduce
the implicit bias. These additions constitute a sound and promising future direction
for our research.

In the current version of AttenD, we use a preset ordering of groups of a given
bias type to construct the artificial input sg. For example, if we have the groups
Whites, Blacks, Asians and Hispanics, we append them to sentences of the training
corpus in this exact same order over all data samples. To investigate the impact of
group order on the overall performance, we experimented with a random ordering that
changes in every iteration. We find that a fixed ordering works better in practice. We
suspect that the relatively lower fairness of random ordering owes to the possibility
that text encoders might be confused by different orderings throughout the training
iterations. We further discuss the results of this experiment in the appendix. Also in
the appendix, we apply AttenD on other text encoders and find that it also succeeds
in reducing social bias from these models.

In this work, we acknowledge that we calibrate attention scores of every word in the
input. However, some words are inherently charged with a strong inclination toward
one group, e.g., beard to male or pregnant to female. Such words must not be debi-
ased. One possible approach to address this limitation is to compile detailed lexicons
of related words for every social group and protecting them from attention equaliza-
tion. We do not do this because (1) the creation of such lexicons is very expensive and
time-consuming, and (2) the effort of doing so defeats a major design goal of AttenD
which is its ease of use, and facility in defining bias types and their demographics. In
this work, we ensure the preservation of semantic relatedness of these group-specific
words to their respective groups by knowledge distillation from a teacher model. On
the other hand, introducing a teacher makes AttenD computationally involved as both
the student and the teacher must be kept in memory during training. We believe that
this limitation is increasingly inconsequential because modern computers are generally
equipped with 8GB or 16GB RAMs, which are largely sufficient to finetune BERT,
RoBERTa and ALBERT. However, debiasing massive models such as GPT3 or Mega-
tron can be challenging.

Finally, we would like to remind our readers that the application of AttenD reduces
societal prejudice, but does not guarantee its complete mitigation. Also, there is the
possibility that finetuning on the News-commentary-v15 corpus might introduce new
biases encoded in the data. More generally, the bias detection experiments presented
in this chapter and used in all related work have positive predictive ability, which
means that they can only detect the presence of bias, not the absence of it. So it
is possible that bias is still hiding under different forms that available experimental
metrics fail to detect.

This is particularly alarming since we observed that each time a new bias metric
appears, it rapidly becomes the object of harsh scientific criticism [14, 161, 102, 42,
417]. Thus, we can’t really say for sure if results of debiasing truly owe to effective
debiasing strategies, or if they are due to noise. This is unfortunate because we can miss
on very good bias reduction methods that do poorly on our available faulty metrics, and
embrace poor debiasing methods that are declared by current quantification tools as
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super effective. So, as a community, are we stuck in this endless loop of proposing new
fairness metrics, only to destroy them a few months afterwards? Is there a numerical
metric that fundamentally captures the essence of social bias? Can we someday get
our hands on this grail of computational societal fairness?

Until that day comes, the most reliable tool at our current disposal to detect the
presence of bias in NLP models is to use them in real-world downstream applications,
and study how their outputs across demographics differ. The difficulty in doing so
is that it is not clear which tasks to finetune text encoders on, and which extrinsic
metrics to use. In the next chapter, we propose a software that regroups most existing
extrinsic fairness metrics to facilitate their use by the NLP community.
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Chapter 9

BiaXposer: Toward Streamlining
Extrinsic Metrics for Measuring Bias

By now, readers should be familiar with the notion that NLP models exhibit a swath
of harmful social biases in their predictions, and discriminate between different demo-
graphics. Consequently, testing the fairness of such models has become an imperative
topic of scientific interest, resulting in a diverse assortment of bias metrics. A lot
of criticism has been directed toward a large body of such bias measures, suggesting
that they are brittle, opaque and sometimes contradictory with one another. There
is thus a rising confusion among NLP practitioners about which metrics to trust and
which to use given certain contexts. In this chapter, we identify several challenges
facing the NLP community when evaluating the fairness of their models, and propose
BiaXposer, a customizable and extensible fairness evaluation package. Following the
latest research, BiaXposer provides a generalized abstraction to unify most existing
task-specific bias metrics, and allows the use of different fairness idioms. Therefore, it
enables practitioners to rapidly assess and quantify the amounts of social bias in their
models, and to easily make and share their own bias metrics.

9.1 Introduction

Whether looking for a restaurant by checking automatic summaries of online reviews,
or searching for a quick translation of a text written in a foreign language, people are
getting increasingly dependent on text-based and conversational technology. Nowa-
days, NLP systems surpass humans on so many reading comprehension and language
understanding tasks that one would blindly trust them for providing consistently good
and trustworthy predictions [103, 284]. However, we have spent the entirety of this
manuscript’s Part II on exposing fairness-related issues of modern NLP models which
can propagate down to the end user. For example, YouTube makes more transcrip-
tion mistakes when generating automatic captions for female and non-white voices
[435, 436, 242], Amazon’s hiring system favors male applicants [342], and volumes of
detected gender, racial and religion biases have been reported in a myriad of down-
stream NLP tasks such as sentiment analysis [356], question answering [267, 335] or
language generation [413, 104].

We have also seen through discussion of previous works and exposition of our own
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experiments throughout this thesis that research in NLP proposed many ways to quan-
tify the amount of intrinsic 1 prejudice in learned language representations. To date,
two paradigms dominate the process of intrinsic bias detection: (1) representation-
based methods [59, 303] where vector representations of social groups are contrasted
using different similarity functions, or projected into bias subspaces to measure how
much of the word’s semantics is determined by the bias type of interest [45]. The
second intrinsic paradigm is (2) likelihood-based [322, 324, 248] where likelihoods
are used to examine which groups are more expected to be associated with certain
attributes and traits.

However, subsequent studies raised some concern about the reliability of intrinsic
methods [14, 161, 102, 42, 417]. Both representation-based and likelihood-based bias
diagnostics are unstable, and can result in wildly different findings when measured
multiple times on the same training setup with a slight variation in the initial random
seed [14]. Also, intrinsic measures do not correlate with application bias [161]. Not
to mention that Blodgett et al. [42] inventory a range of inconsistencies and pitfalls
plaguing popular bias benchmarks such as StereoSet [322] and CrowS-Pairs [324].
Given that it is still unclear what exactly these intrinsic metrics are actually measuring,
we follow the recommendations of Goldfarb-Tarrant et al. [161] and Aribandi, Tay, and
Metzler [14] in this chapter, and focus exclusively on extrinsic measures of bias, i.e.,
methods to quantify bias in specific downstream tasks rather than in general language
representations. We remind that extrinsic metrics declare bias as perceived differences
on language-related tasks across populations and groups. For example, a sentiment
analyzer might produce a different sentiment score for a given input sentence if we just
replace men by women. A question answering system might predict Asians to be the
answer to "who is better at math?" even if the provided context from which the answer
must be picked does not mention Asians whatsoever. We believe that extrinsic metrics
are more trustworthy in uncovering stereotypes since bias is diagnosed directly at the
level of the application that will be used in the real world. Besides, even under the
assumption that intrinsic metrics are reliable, there is no guarantee that the presence
(or absence) of bias in language representations translates into its presence (or absence)
in downstream tasks after finetuning.

Although aware of these deficiencies, NLP researchers and practitioners still adopt
intrinsic metrics in their experiments [272, 220, 74]. This mainly owes to the relative
difficulty of utilizing extrinsic diagnostics. In fact, each extrinsic metric depends on
a unique NLP task, on the test data it should be used with, and even in the very
definition of social bias being measured. Thus, practitioners have a hard time de-
ciding which to use, or which better suits their needs. Besides, we are not aware of
any software that consolidates the swath of extrinsic bias quantification methods, in
stark contrast to the wide availability of intrinsic metrics inside various ready-to-use
packages, libraries and toolkits [150]. Inspired by Goel et al. [160], we summarize
the challenges facing the evaluation of fairness with current extrinsic metrics in the
following:

(1) Difficulty of choice. There are many definitions of fairness in the literature,
and often with contradicting purposes [145, 454]. Consequently, each extrinsic bias
metric adheres to a potentially different definition, which leaves practitioners confused

1intrinsic since bias is quantified internally to the text encoder, without an explicit application on
any task
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and unsure about which one to pick. The choice often depends on the practitioner’s
task and needs. For example, in toxicity detection, it is more harmful to misclassify a
toxic content as non-toxic than the reverse. Thus, False Negative Equality Difference
(FNED) is better suited than False Positive Equality Difference (FPED) [108]. Also,
similar metrics may be formulated differently, and different metrics may have similar
formulations, which can be confusing to practitioners.

(2) Idiomatic lock-in. We identify two evaluation idioms in the fairness literature:
group and counterfactual fairness (See Section 2.4.1). In group fairness, a model is
fair if it has comparable accuracy for all group subsets [145]. Whereas counterfactual
fairness imposes models not to change their predictions following a change of demo-
graphic mentions in the input. In simpler words, group fairness refers to collecting all
test samples for each group separately, then comparing between accuracy of models
across these test samples. On the other hand, counterfactual fairness is finer-grained
and computes bias at the level of individual test cases before aggregating them. Each
extrinsic metric follows either one of the two idioms. However, group and counterfac-
tual fairness do not necessarily correlate. To illustrate, suppose we have a model that
predicts very different outcomes when we change the mention of the group g1 with an-
other g2 in test cases. Suppose also that despite differences in predictions, the overall
F1 score across all test samples of g1 is comparable to the F1 score of all test samples of
g2. Such a model would be considered fair if evaluated using the group fairness idiom,
but very biased if counterfactual fairness is used. Thus, practitioners ought to adapt
existing metric from one idiom to the other, which is not always straight-forward.

(3) Numerical lock-in. A lot of existing metrics have been proposed to quantify
bias of binary variables like binary gender, using the absolute arithmetic difference to
account for discrepancies in outcome between two distinct populations (e.g., men and
women). However, it is not clear how to adapt these metrics to multiclass bias types
(e.g., race or religion) where the convenience of binary distance functions can no longer
be enjoyed.

(4) Rigid tie-in between data and metrics. Existing metrics often focus on
proposing new formulas to quantify bias, pre-supposing that test data is available,
which is largely not the case. Even when extrinsic metrics are accompanied by test
data, the later often relate to a specific NLP task for which the metric has been
proposed. For example, Li et al. [267] introduce a new bias metric for the task of
question answering, along with an evaluation dataset on which the metric can be
used. However, it is very hard to use that same dataset to quantify bias of a sentiment
analysis model or a model of another task. We observe a rigid tie-in between the
proposed metrics and their test data. We believe that it is hard to adapt data from
one task to another since it is unclear how to adapt the labels without a considerable
manual effort.

To address these challenges, we contribute BiaXposer in this chapter, an extensible
and easy-to-use software to streamline the process of quantifying social bias in down-
stream NLP models. We do not propose new extrinsic bias metrics in this chapter.
However, BiaXposer consolidates existing ones, and offers abstractions to easily adapt
them to other tasks. We focus on extrinsic metrics for tasks which do not predict a
sensitive attribute. Specifically, we include the following features in BiaXposer:
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• BiaXposer eases the process of generating high-quality test cases at scale using
templates and filling words.

• Following the proposition of Czarnowska, Vyas, and Shah [89], we unify the
formulation of most existing extrinsic measures of bias under one generalized
fairness metric, consisting of four parameters: (i) a scoring function, (ii) a
distance function, (iii) fairness paradigm, and (iv) a contrasting method. Given
this framework, the connections and differences between extrinsic measures are
better understood, and it becomes easy for users of BiaXposer to switch between
metrics at will without too much effort. Users can also switch between fairness
idioms just by changing the value of the corresponding parameter (i.e., fairness
idiom).

• Users of BiaXposer can also experiment with new metrics by either trying out
unprecedented combinations of scoring and distance functions, or proposing new
functions altogether by making use of BiaXposer’s abstractions.

We illustrate the general pipeline of BiaXposer in Figure 9.1. In the remaining of
this chapter, we discuss related work in Section 9.2. We explain the pipeline of BiaX-
poser in Section 9.3. Then, we focus on each input of BiaXposer separately, namely
demographic definitions in Section 9.4, test data in Section 9.5 and metric specifica-
tion in Section 9.6. We also describe some considerations related to implementation in
Section 9.7. During our discussions, we remark on how each component of BiaXposer
solves one or many of the challenges described in this introduction. We present our
experiments in Section 9.8 and conclude by giving general directions and guidelines
about how to effectively use our software in Section 9.9.

9.2 Related Work

In this section, we discuss existing NLP and ML libraries that address the problem
of fairness in models. Then, we present related work supporting the creation of test
cases at scale using templates. After that, we discuss other aspects that modern NLP
models should have beyond fairness. Finally, we give a brief summary of related work
on bias metrics.

9.2.1 Bias Detection Tools in NLP

Performance of NLP models is traditionally evaluated using standard metrics such as
accuracy or F1 score. HuggingFace Transformers [482], one of the most prominent
libraries amongst the NLP community, provides practitioners with a variety of state-
of-the-art models and metrics. We note that although HuggingFace Transformers is a
popular choice for building, training and evaluating deep NLP models based on their
performance on the task at hand, we are not aware of any built-in functionality to
assess fairness. We propose BiaXposer as a complementary tool to bestow on users
of HuggingFace the possibility to check social biases and stereotypes of their models.
On the other hand, AllenNLP [150], another NLP library built for researchers to train
and evaluate NLP models, provides a fairness module for its users. Nevertheless, only
four metrics are supported: WEAT [59] and Coherence Test [99] for word embeddings,
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Natural Language Inference Test [100] and Association Without Ground Truth [6].
In contrast, we only focus on extrinsic measures of bias related to task-specific NLP
models, and do not constrain our toolkit to a predefined set of metrics.

9.2.2 Bias Detection Tools in ML

Outside of NLP, there exist quite a number of tools to measure fairness of general ML
models. All of FairVis [58], FairSight [5], What-If [475], FairML [4], Fairway [65], AI
Fairness 360 [30], Fairea [192] and Fairkit-Learn [217] tools provide support to identify
and report biases in ML models. However, these tools expect their users to provide not
only models but labeled datasets as well in order to quantify differences in performance
across demographics. We do not require our users to collect labeled data. Instead,
BiaXposer is equipped with a templating mechanism to generate labeled test cases at
scale. Besides, we focus on language-related models, which are not very well managed
by the aforementioned tools.

9.2.3 Templating

In BiaXposer, we use templates to generate test cases. Templates have long been
used for evaluation or analysis purposes in question answering [411, 459], information
extraction [188, 336], or semantic parsing [170, 353]. In Tempura [487], templates are
used to analyze and structure queries. In Snorkel [371] and in data programming in
general [372], templates have been recognized as a primary source of writing effective
labeling functions. On the other hand, CheckList [380] uses a templating feature to
generate testing data like we do in BiaXposer. While placeholders in Checklist are
predefined slots such as parts of speech or named entities, users of BiaXposer can
provide their own placeholders and slots such as <weapon> in Figure 9.1. Fairness-
related works in NLP have also used templates to generate challenge datasets in order
to quantify bias [303, 322, 324, 100]. However, while they did so offline and only
published the result of their data generation, we propose templating as a feature to
let users generate their own testing data.

9.2.4 Beyond Fairness in NLP

In addition to fairness, other model characteristics are nowadays under intensive
scrutiny, such as robustness [160, 380], interpretability [499, 17, 244, 438] or error
understanding [499, 486, 13]. Robustness Gym [160] and CheckList [380] are popular
modern tools to assess many aspects of NLP models’ robustness (e.g., logical consis-
tency, sensitivity to negation, name changes, etc.) using different evaluation idioms
like subpopulations, counterfactuals, adversarial perturbations or challenge datasets.
Interpretability is also a hot research topic these last few years owing to the valuable
insights that the understanding of how deep models make predictions should guide
us into how to improve and better control them. Example tools that evaluate inter-
pretability are: IBM’s AI Explainability 360 [17], PyTorch Captum [244], Manifold
[499], the Language Interpretability Tool (LIT) [438]. As for error analysis, all of
Errudite [486], Manifold [499] and CrossCheck [13] help in figuring out where models
are failing. We acknowledge that all these aspects of model evaluation are equally im-
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portant, but we focus in this chapter on fairness due to the rising concern of modern
societies and governments against discrimination, and the legal pressure such as the
European Union’s new General Data Protection Regulation exercises on algorithmic
decision-making [164].

9.2.5 Summary of Bias Research in NLP

Complementary to our research on fairness, a large swath of bias metrics have been
proposed. Some are intrinsic - they measure bias on the embedding or representation
layer, independent from any task - [59, 45, 303, 322, 324]. The others are extrinsic
since they measure bias and stereotypes on specific tasks [100, 503, 48, 89]. In this
work, we do not aim to propose any new metric of bias. Rather, we consolidate existing
extrinsic metrics in an extensible framework that caters for simplicity. In parallel, a
considerable effort have been spent in trying to debias NLP models. From projection-
based approaches on bias dimensions in word embeddings [45, 222, 373, 247], passing
through adversarial attacks [33, 118, 142], re-learning from scratch [505], adapting
[193, 257] to finetuning on large-scale language models [272, 274, 471, 74, 220], a lot
of methods have been proposed with varying degrees of success. We offer BiaXposer
as an effective tool to assess to what degree bias has been reduced after applying
debiasing approaches, and to recognize how much progress we are making in this field
as a community.

9.3 Design of BiaXposer

We propose BiaXposer, an extensible python package to quantify social bias in down-
stream task-specific NLP models. The design of BiaXposer mirrors the traditional
evaluation pipeline in NLP: process data, apply a model, make predictions, then com-
pare predictions across social groups and demographics to assess fairness. We illustrate
the general pipeline of BiaXposer in Figure 9.1. Owing to the general acceptance of the
HuggingFace Transformers library [482] by the NLP community, we build BiaXposer
on top of HuggingFace. Thus, NLP models built, trained and finetuned using this
library, or models that are shared in its community hub are supported by BiaXposer.
In the following, we present the inputs and outputs of BiaXposer, then describe its
components in detail.

9.3.1 Inputs and Outputs of BiaXposer

The inputs to our software are four-fold:

• Model. The NLP model that we want to test for fairness. In the current version
of BiaXposer, models related to the tasks of masked language modeling, question
answering and text classification (e.g., sentiment analysis, hate speech detection,
textual inference, etc.) are supported. However, BiaXposer can be extended to
work for other tasks.

• Demographic definitions. Definitions of bias types and demographics that
users are interested in studying. More details about these definitions are in
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Figure 9.1: General pipeline of BiaXposer applied for the task of Sentiment Analysis
to study nationality biases for three different groups: Ukrainians, Palestinians and
French. The difference in task outputs for different demographics is for the sake of
illustration only, and should be viewed in that regard.

Section 9.4.

• Test data. Users of BiaXposer provide test data by providing a set of templates
and corresponding filling words. Test cases are then generated automatically
from the templates. See Figure 9.1 and Section 9.5 for more detail.

• Metric. BiaXposer uses the framework of Czarnowska, Vyas, and Shah [89] to
define metrics. We will lay in detail the particulars of metric specification in
BiaXposer in Section 9.6.

As for the outputs, BiaXposer produces a set of bias scores for every bias type. For
some finer-grained metrics, BiaXposer can specify bias scores for every demographic
as well. However, metrics are different, and hence bias scores do not have a uniform
interpretation across all metrics. For example, for some metrics, the scores denote the
ratio of the test data where the model under evaluation fails to be fair. For some other
metrics, the scores can capture the difference in predictive performance across groups,
e.g., difference in F1 score, accuracy, etc. For this reason, users of BiaXposer must be
mindful of what the metric actually computes. Thus, we set the metric specification
procedure in BiaXposer in a way to force users to be aware of the metric’s nature
(Section 9.6).2

2Roughly speaking, in BiaXposer, users do not specify the metric’s name, but its parameters
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9.3.2 Pipeline of BiaXposer

In the following, we present the different steps of BiaXposer’s pipeline, illustrated in
Figure 9.1.

• Generating test cases. BiaXposer replaces all placeholders in the templates
by the filling words that are also provided by the users in order to generate test
cases. In Figure 9.1, the placeholder <weapon> in the template is replaced by
dagger and gun. In this step, all placeholders are replaced except for the special
placeholder <group> which denotes demographics, and will be replaced later.
Thus, a test case in BiaXposer is an item where all placeholders are replaced
except for <group>. Providing multiple templates and multiple filling words
can yield a substantial number of test cases with little manual effort.

• Filling in with demographics. BiaXposer explores differences in model out-
come across demographics for each test case. Therefore, in this step, <group>
is replaced iteratively by all identity terms as defined by users. In Figure 9.1,
<group> in every test case is replaced by Ukrainian, Palestinian and French.

• Using the model. Every test case, after replacing the group placeholder by a
given demographic, is fed into the model under evaluation. Then, model outputs
are collected.

• Aggregating outputs. Depending on the fairness idiom (which is a parameter
that the user specifies and that we describe in detail in Section 9.6.3), BiaXposer
aggregates model outputs and predictions either:

– by test case (to study differences in predictions across social groups in each
test case separately).

– or by demographic (to study the overall performance of the model on each
demographic separately and then compute the difference).

• Applying the metric. Metrics in BiaXposer expect four different parameters
(a scoring function, a distance function, fairness paradigm, and a contrasting
method). When the metric is defined, it is applied on the sets of model output
from the previous step in order to calculate a bias score for every bias type.

In Figure 9.1, all of Template Processor, Input Processor, Task, Output Processor
and Bias Metric are abstractions in BiaXposer that contribute in enabling the pipeline.
Implementation-wise, we provide these abstractions for the tasks of text classification,
masked language modeling and question answering. However, they can be extended
to cater for other NLP tasks. Besides, we provide another abstraction called Pipeline
to facilitate the use of our software, in the same spirit of pipelines in the library of
HuggingFace.3 In short, pipelines hide the complexity of BiaXposer’s inner operations
depicted in Figure 9.1, and are a great choice to test models related to standard NLP
tasks. In what follows, we focus on the most important inputs that users of BiaXposer
must provide, namely demographic definitions (Section 9.4), test data (Section 9.5)
and metrics (Section 9.6).

3https://huggingface.co/docs/transformers/main_classes/pipelines
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Gender

male man, boy, father, brother...
female woman, girl, mother, sister, lady...

Race

white white, Caucasian, European American...
black black, African American, ...
asian asian, chinese, japanese...
hispanic hispanic, latino, latina...

Religion

islam muslim, islamic ...
christianity christian, mormon ...
judaism jew, jewish...

Table 9.1: Examples of bias types, social groups and identity terms

9.4 Definition of Bias Types

In BiaXposer, we model social groups with identity terms. Identity terms differ from
definition words that we have used throughout this thesis in that identity terms are
nouns to refer only to people (e.g., Muslim, Black, feminist, woman, etc.) whereas
definition words are more general and can include other aspects, characteristics or
artefacts related to that demographic. For example, Quran is a definition word since
it characterizes the demographic of Muslims, but it is not an identity term since one
cannot designate Muslim people by calling them Quran.

Users of BiaXposer can include as many bias types as they wish, and each bias type
must be defined by providing a list of constituent social groups. For the sake of illustra-
tion, one possible way to define gender is by the groups {male, female}4. Each social
group in turn must be defined by a set of identity terms that explicitly and uniquely
refer to the group. As depicted in Table 9.1, the set {man, boy, father, brother} are
words generally used to describe men, but seldom to refer to women. The table also
presents examples of potential bias types and their corresponding groups. It is im-
portant to note that these bias definitions are inputs that users of BiaXposer must
provide.

9.5 Test Cases in BiaXposer

Broadly speaking, there are two types of extrinsic metrics: prediction-based and
probability-based [89]. While probability-based metrics can be used with unlabeled
data by comparing the probabilities of different classes, prediction-based approaches
require gold labels in order to compare performance across groups. By definition, test
cases with gold labels for each task are very hard and expensive to come by, especially
in large amounts for evaluation purposes.

4We acknowledge that gender is not binary, but stick to this simple definition for the purpose of
illustration
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Figure 9.2: Example of a template with some corresponding filling words

BiaXposer provides a template mechanism to generate test cases. In Figure 9.2,
we show how we use one template "The <group> loves to <EATING_VERB>
his <FOOD> next to his <OBJECT>" to generate 64 different test cases with
a Cartesian product5, where <EATING_VERB> = {eat, devour, consume, take},
<FOOD> = {pizza, burger} and <OBJECT> = {cat, ..., pizza, ..., bike}. Adding
more fillings words would increase the total number of generated test cases exponen-
tially. For example, adding only one filling word per category in Figure 9.2 results
in 165 total generations, while adding 2 words per category escalates that number to
360. Users of BiaXposer can create new categories for filling words. They can even
make them hierarchical like <OBJECT> in Figure 9.2. In this case, <ANIMAL>,
<FOOD> and <VEHICLE> are all sub-categories of <OBJECT>.

Given that this template is given a label of 1 (i.e., positive sentiment in the con-
text of sentiment analysis), all generated test cases would inherit the same label of
the template. The process of writing templates must be informed by the input format
of the NLP task of interest. In the example above, it was about sentiment analy-
sis. However, to cater for other tasks, the format of the templates must be changed
accordingly, e.g., by specifying a premise, a hypothesis and a label for the task of
textual inference. Despite the manual effort required to adapt templates from one
task to another, we believe it is relatively easy, as our experiments with human users
suggest (Section 9.8.2). In our own experiments, we tested BiaXposer with sentiment
classification, textual entailment and language modeling. The template mechanism of
BiaXposer helps in answering Challenge 4 (Rigid tie-in between data and metrics)
discussed in the introduction.

It is worthy to note that the template expansion mechanism of BiaXposer does not
54 eating_verbs * 2 foods * 8 objects = 64
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expand the special token <GROUP>. What we call a test case is an item where all
placeholders have been replaced except for <GROUP>. At a later step, BiaXposer
takes each test case separately, and replaces <GROUP> with identity terms for
demographics in order to quantify social bias across these groups.

9.6 Metrics in BiaXposer

Aiming to promote the interpretability of different extrinsic metrics of bias, and instead
of using metrics by their names in BiaXposer, users specify the parameters of a global
and generalized metric. Specifically, we follow the framework of Czarnowska, Vyas,
and Shah [89] who surveyed 146 papers on social bias in NLP and consolidated the
myriad of disparate metrics under one generalized fairness metric.6 Through this
consolidation, they highlighted key connections between existing metrics and showed
that they are merely parametrizations of one generic formula. In BiaXposer, the
parameters of the generalized metric are four-fold:

• A scoring function φ (Section 9.6.1).

• A distance function d (Section 9.6.2).

• A fairness idiom (Section 9.6.3).

• A contrasting method (Section 9.6.4).

Through different choices of φ, d, fairness idiom and contrasting method, we can
formulate a broad range of extrinsic metrics. We illustrate this with a few examples in
Table 9.2. Also, one can create their own extrinsic metrics by providing a parametriza-
tion that does not map to any existing metric. We believe that this formulation answers
Challenge 1 (Difficulty of Choice) as explained in the introduction. By specifying
parameters instead of metric name, users of BiaXposer can better interpret what the
metric is actually quantifying. In the following, we give more details about each of the
four parameters.

9.6.1 Parameter 1: Scoring Function

A scoring function φ calculates a base measurement for a given group, and can ei-
ther be a scalar (e.g., F1 score, accuracy) or a set of measurements (e.g., prediction
probabilities, likelihoods). When we say that bias metrics quantify the difference in
outcome of a model across demographics, the scoring function φ designates what we
mean by outcome. Usually, φ denotes the performance of the model under study on a
subset of data. The most widely used scoring functions in the scholarship are F1 score,
accuracy, precision, recall, AUC, prediction probabilities, etc. Table 9.2 provides more
examples with existing bias metrics.

6In fact, in the original paper, Czarnowska, Vyas, and Shah [89] state that there are three distinct
general metrics. However, after analyzing them ourselves, we find that the only difference between the
three is the group-contrasting method. Thus, we argue that existing bias metrics can be consolidated
into one generalization
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Metric φ d Fairness Def. Contrasting Strat.

[151] Disparity Score F1 |x− y| Group PCM
[33] TPR Gap True Positive Rate |x− y| Group PCM
[357] TNR Gap True Negative Rate |x− y| Group PCM
[472] F1 Ratio Recall x

y
Group PCM

[200] Average Group Fairness {f(x, 1)} W1(X, Y ) Group BCM
[356] Perturbation Score Deviation {f(x, y(x))} std(X) Counterfactual MCM
[356] Perturbation Score Range {f(x, y(x))} max(X)−min(X) Counterfactual MCM
[354] Average Score Difference mean({f(x, 1)}) x− y Counterfactual PCM
[100] Net Neutral mean({f(x, n)}) / / NCM
[100] Fraction Neutral 1

|X|
∑

x∈{f(x,n)} 1x=max(e,c,n) / / NCM
[504] |Diff| F1 x− y Group PCM

Table 9.2: Examples of some extrinsic metrics and their parametrizations according
to BiaXposer. f(x,a) is the probability associated with class a (e, n and c are class ids
for entailment, neutral and contradiction for the task of textual inference), y(x) is the
gold class. W1 is Wasserstein-1 distance between sets X and Y

9.6.2 Parameter 2: Distance Function

A distance function d takes individual scores produced by a scoring function φ for
every subset of test cases, and computes the difference between the scores. d denotes
the disparity in task output between measurements of different groups. If we refer back
to the standard definition of a bias metric, stating that a metric quantifies differences
in outcome between social groups, the distance function d specifies how the difference
is computed. Popular choices of d are the absolute arithmetic difference, euclidean
distance, cosine similarity, or Wasserstein-1 distance.

9.6.3 Parameter 3: Fairness Idiom

There are two main idioms of fairness in the scholarship: Group fairness and Counter-
factual fairness (See Section 2.4.1). In practice, using either idiom refers to choosing
between (i) aggregating all test cases per demographic before applying φ and d, or (ii)
applying φ and d on every test case separately before we aggregate their results. Usu-
ally, existing extrinsic metrics are locked to either one of the definitions. BiaXposer
allows one to change the fairness definition of their metric easily by changing the value
of this parameter, and thus solving Challenge 2 (Idiomatic Lock-In). We give more
detail about each idiom in what follows:

Group Fairness

In group fairness, models are judged on how their predictive performance differs on
data samples corresponding to different demographics. For example, a sentiment anal-
ysis model makes more errors when input sentences mention Asians compared to other
races. This idiom includes some of the most prominent fairness metrics in ML in gen-
eral such as demographic parity [114], equality of opportunity or equalized odds [177].

To enable this idiom in BiaXposer, we first gather all test cases relating to each
group separately, e.g., splitting test cases by gender and building a separate set of
test cases for men, and another for women. Then we use the scoring function to
compute the model’s performance on each set (e.g., accuracy, F1 score, etc.). Finally,
the distance function is applied on scores of both sets.
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Counterfactual Fairness

In counterfactual fairness, models are judged on how their predictions differ using the
same test case but with different groups. For example, does the toxicity score change
if we replace Ukrainian in "The Ukrainian citizen took out his weapon to defend his
lands" by Palestinian? Counterfactual fairness is computed on individual test cases,
and is the most used idiom in NLP.

To enable counterfactual fairness in BiaXposer, we do not aggregate test cases by
their demographic mention. Instead, the scoring function is applied on every test case
separately. Then, the distance function is applied to compute differences in predictions
between demographics given each test case. In the final step, BiaXposer takes the
average of these distances across all test cases.

9.6.4 Parameter 4: Contrasting Method

Distance functions are usually binary, in that they expect only two arguments. How-
ever, a lot of bias types are not binary, e.g., race and religion have more than two
classes. The contrasting method specifies how to aggregate pairwise differences be-
tween groups. We believe that this parameter solves Challenge 3 (Numerical Lock-
In) detailed in the introduction. In BiaXposer, we propose four different contrasting
methods. However, before defining each method, we first describe some notation. For
a given bias type, let G = {g1, g2, ..., gn} be a set of social groups, and S the set of all
evaluation examples (test cases). Sgi corresponds to a subset of test cases related to
group gi. Here each group can have many definition words to describe it, for instance
{man, boy, father, brother, etc.} are all words to describe the masculine class. We
denote each test case in S with E, while Egi is the set of sentences we get by setting
the group mention in E with definition words of group gi. We always have Egi ∈ Sgi

since Egi corresponds to one single test case whereas Sgi is the set of all test cases of
group gi. We set N to be a normalizing factor which depends on the actual metric. In
the following, we describe each of the contrasting strategies supported by BiaXposer.

Pairwise Contrasting Method

Pairwise Contrasting Method (PCM) computes the difference in group scores two at
a time, then calculates the overall average. To illustrate this, take the example of
religion with three classes: Islam, Christianity and Judaism. PCM computes the
difference between Islam and Christianity (d1), between Islam and Judaism (d2) and
between Christianity and Judaism (d3). Finally, it calculates the mean of d1, d2 and
d3. PCM quantifies how distant, on average, two randomly selected social groups
are. We give the equations of PCM according to Group and Counterfactual Fairness
respectively:

1

N

∑

gi,gj∈(G2)

d(φ(Sgi), φ(Sgj)) (9.1)

1

N |S|
∑

E∈S

∑

gi,gj∈(G2)

d(φ(Egi), φ(Egj)) (9.2)
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Background Contrasting Method

In Background Contrasting Method (BCM), each group score is contrasted with a
background score, before taking the mean to compute the final bias output. In Bi-
aXposer, the background constitutes the set of all test cases for all groups. Stated
differently, BCM quantifies how much, on average, the performance of the model on
each group differs from the general performance. Let β be the background score. The
equations of BCM for Group (Equation 9.3) and Counterfactual (Equation 9.4) are as
follows:

1

N

∑

gi∈G
d(β, φ(Sgi)) (9.3)

1

N |S|
∑

E∈S

∑

gi∈G
d(β, φ(Egi)) (9.4)

Since each group has its own sub-score before computing their average, BiaXposer
supports finer-grained bias analysis by providing valuable information about how much
each group contributes to the final outcome. This is achieved by not accumulating
individual group scores. We call these variant group-BCM (gBCM).

Multigroup Contrasting Method

Sometimes, the distance function d takes many arguments. In this case, contrasting
becomes unnecessary since the distance function supports multiple groups. This con-
trasting strategy is called Multigroup Contrasting Method (MCM) in BiaXposer, and
its equations for Group and Counterfactual idioms for fairness are respectively:

d(φ(Sg1), φ(Sg2), ..., φ(Sgn), ) (9.5)

1

|S|
∑

E∈S
d(φ(Eg1), φ(Eg2), ..., φ(Egn)) (9.6)

There is also the possibility to do per-group analysis using this contrasting method.
We call it group-MCM (gMCM).

No Contrasting Method

After analyzing the literature of extrinsic bias diagnostics in NLP, we find that some
metrics measure the overall bias without splitting the test data into demographic
groups. Usually, in these absolute measures, bias is defined as the divergence of pre-
diction from an expected outcome, regardless of social groups mentioned in the input.
For example, Dev et al. [100] formulate bias in the task of textual inference as how
far the model probabilities are from the neutral class, and this for all groups. Conse-
quently, there is no need to specify a distance function since there is no contrasting.
Also, there is no distinction between Group and Counterfactual fairness in No Con-
trasting Method (NCM).
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1

|S|
∑

s∈S
φ(s) (9.7)

To summarize the metric parameters in BiaXposer, the scoring function φ denotes
what the metric compares (accuracy, probability, etc.). The distance function d char-
acterizes how the difference between demographics is actually computed. The fairness
idiom specifies how to aggregate bias scores across all test cases in the test data. Fi-
nally, the contrasting method provides details about how differences between group
outcomes are combined in the case of non-binary bias types.

9.7 Implementation Considerations

Both the fairness idiom and contrasting method in BiaXposer are characterized as
close-ended parameters, meaning they only accept parameter values from a fixed pre-
defined range. The fairness idiom is limited to only two options: group and counter-
factual fairness, while the contrasting method allows for six possible choices: PCM,
BCM, gBCM, MCM, gMCM, and NCM. In contrast, the scoring and distance func-
tions are open-ended, giving users the flexibility to define their own functions by writ-
ing code. To simplify this process, we have pre-implemented some of the most widely
used scoring and distance functions found in the literature. In the following, we will
first present the pre-implemented functions and then describe their compatibility with
these parameters.

9.7.1 Pre-implemented Scoring Functions

We classify our pre-implemented scoring functions into two classes, depending on
whether they return a singleton value or a set.

Functions Returning a Singleton Value

From this class of functions, we count:

• F1 Score. Given a set of predictions produced by the NLP model of interest,
along with their ground truth, this function computes the F1 score.

• Accuracy Score. Similar to the previous function, this one computes the ac-
curacy.

• Precision Score. Computes the precision score.

• Recall Score. Computes the recall score.

• Average Class Prediction Score. This function retrieves the prediction prob-
ability of a given class for every test case. For example, it retrieves the probability
of the contradiction class in a textual inference model or the probability of the
positive class in a sentiment analysis model. Then, it computes the arithmetic
mean of these probabilities across all test cases. This function does not need
ground truth labels.
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• Average Likelihood Score. Retrieves the likelihood of a given word (specified
as an input to this function) to replace the mask in a masked language model.
Then, computes the average of likelihoods across all test cases.

• Average F1 for QA Score. If the task of interest is question answering, this
function computes F1 score for every test case, then takes the average across
them all.

• Average Exact Match for QA Score. Similar to the above, but calculates
Exact Match score instead of F1.

• Failure Rate. Given a threshold θ, this function computes the percentage of
test cases where the difference in predictions across demographics exceeds θ.

Functions Returning a Set

Unlike the previous class, these functions return a set of values by skipping the step of
computing the average. The following functions are already implemented in BiaXposer:

• Class Prediction Score.

• Likelihood Score.

• F1 for QA Score.

• Exact Match for QA Score.

As can be seen, the scoring functions must be relevant to the NLP task. For ex-
ample, one cannot use Likelihood Score to test a hate speech detection model. In the
current version of BiaXposer, we defined scoring functions for the tasks of text clas-
sification, masked language modeling and question answering. However, it is possible
to implement new scoring functions by extending the abstractions of BiaXposer and
writing new code. Also, advanced users can write functions for new tasks as well.

9.7.2 Pre-implemented Distance Functions

Depending on the contrasting method and the return type of the scoring function, the
distance function must be chosen appropriately. Specifically, we provide the following
distance functions in BiaXposer:

• Absolute Distance. Computes the absolute value of the difference between
two singleton numeric scores. Given x, y ∈ R, this function computes |x− y|.

• Wasserstein-1 Distance. The Wasserstein-1 distance, also known as the Earth
Mover’s Distance, is a measure of distance between two probability distributions.
It calculates the minimum amount of work required to transform one distribution
into the other. This distance function can be applied only with scoring functions
that return sets of values.
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Singleton Return Type Set Return Type

Absolute Distance PCM, BCM, gBCM X
Wasserstein-1 Distance X PCM, BCM, gBCM
ADFEO MCM, NCM X
Per-Group ADFEO gMCM X

Table 9.3: Compatibility matrix between possible values of scoring functions, distance
functions, and contrasting methods.

• Absolute Divergence From Expected Outcome (ADFEO). This is a novel
distance function that we propose alongside BiaXposer. In the context of fairness,
the expected outcome is equal scores for all groups. This translates to a uniform
probability distribution if we normalize the scores for all groups. Thus, this
distance measures the divergence (absolute difference) of every group-specific
score from the expected value. Finally, we take the average of all divergence
values.

• Per-Group Absolute Divergence From Expected Outcome. Similar to
the above distance function, but skips the step of taking the average. Conse-
quently, this function returns a bias score for every group separately.

Users can also define their own distance functions, for example distances based
on correlations, or popular similarity functions. Note that some parameter configu-
rations are incompatible, e.g., defining a metric with F1 score as a scoring function
and Wasserstein-1 as a distance function. Also, the contrasting method must be taken
into account since it can lead to inconsistencies in bias metrics. We summarize the
compatibilities between the scoring function, the distance function and the contrasting
method in Table 9.3.

9.8 Experiments and Evaluation

Conforming to the evaluations of bias and fairness described in Part II of this thesis,
we also include binary gender, race and religion for the purpose of evaluating and
validating BiaXposer. Specifically, we test both the utility and usability of BiaXposer.
By utility, we refer to whether our package helps in detecting hidden biases in popular
and widely-used NLP models. On the other hand, we also assess the usability of
BiaXposer by conducting a human experiment where we ask participants to rate and
comment on several aspects of the tool such as whether it is easy to use, whether it
does what is is supposed to do, what parts in the pipeline need more refinement, etc.

9.8.1 Evaluation of Utility

Tasks

Even though BiaXposer can be used for any downstream NLP task, we focus in this
section on sentiment analysis, textual entailment and masked language modeling. We
chose these specific tasks because they are very popular among the NLP community,
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and a lot of corresponding models have already been created and released. Moreover,
these three tasks are different from each other; language modeling produces likelihoods
of tokens whereas the other two tasks produce probabilities of classifying text. Also,
sentiment analysis and textual entailment differ in that the former is a single-input task
whereas the latter is double-input. Thus these tasks alone capture the formalism of
many other NLP tasks (e.g., hate speech detection, emotion detection, grammar check
are all single-input tasks; paraphrase detection and textual similarity are double-input;
question answering and coreference resolution function by calculating likelihoods). For
these reasons, we believe that testing for sentiment analysis, textual entailment and
masked language modeling demonstrates the usability of BiaXposer across many other
downstream tasks.

Models

We apply BiaXposer on the most downloaded models in HuggingFace’s community
hub.7 It is an online repository where users of HuggingFace upload their NLP models,
or download models trained by others. For each of the tasks of interest, we sort
available models on the hub by decreasing number of downloads, then chose the top
5 most downloaded models. We report the number of downloads of each model in
Tables 9.6, 9.7 and 9.8. Our aim is to show that models under heavy use by the
NLP community carry large amounts of social biases. We also apply BiaXposer on
debiased models to assess whether BiaXposer is capable of detecting less bias for those
compared to non-debiased models.

Metrics

In order not to clutter this experimental section with results from various bias metrics,
we restrict our evaluations to the metric of failure rate, which denotes the percentage
of test data where models fail to be fair. The metric defines an unfair outcome as
an absolute difference of predictions across demographics greater than a prespecified
threshold. For example, if og1 and og2 are prediction probabilities of a given NLP model
for two different groups g1 and g2, the outcome is declared as unfair if |og1 − og2| > θ
where θ is a failure threshold. In this case, we say that the model failed at the fairness
requirement. In Tables 9.6, 9.7 and 9.8, we experiment with various values for θ: 0.03,
0.05, 0.1 and 0.2.

Templates

We use ChatGPT to generate a large set of templates and test cases with little effort
in this experiment. To ensure high diversity in the generated templates, we asked
ChatGPT to encompass several behavioral traits such as having or lacking warmth,
competence, honesty, etc. We formulate our utterances to ChatGPT as the following:
"Can you generate 30 templates about having/lacking <TRAIT> with the following
structure ’<person> <action>’?". We either ask for having or lacking each trait,
never both at the same time. Also, we replace <TRAIT> with each of the following:
sociability, morality, warmth, competence, ability, agency, honesty, courage, strength,

7https://huggingface.co/models
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Us Can you generate templates about having sociability with the following structure "<person> <action>"?

ChatGPT
John initiates conversations with his coworkers at the office.
Emily joins a local sports team to socialize with her teammates.
Emily went to a yoga class to meet new people and have a good time.

Us Can you generate templates about lacking sociability with the following structure "<person> <action>"?

ChatGPT
John avoids social situations and prefers to be alone.
Ryan has a limited social circle and finds it hard to make new friends.
Matthew had social anxiety and felt uncomfortable around others

Us Can you generate templates about having competence with the following structure "<person> <action>"?

ChatGPT
John is a skilled engineer, with a track record of successful projects.
Jessica was able to successfully manage and motivate a team of employees.
Emily was able to fix a complex mechanical issue.

Us Can you generate templates about lacking courage with the following structure "<person> <action>"?

ChatGPT
John hesitated to speak up, showing a lack of courage.
Emily stayed silent in the face of injustice.
Emily lacks the courage to quit her job to pursue her passion.

Table 9.4: Examples of templates generated by ChatGPT

vice and violence. We illustrate some of ChatGPT’s responses in Table 9.4. Overall,
ChatGPT generated 576 different templates.

After that, we post-process the templates by replacing the first word by the token
<group>. This is possible since we asked ChatGPT to always start its generated
templates by a person doing an action, e.g., John, Emily, Jessica, etc. We manually
checked that all generations follow this structure. Then, we rewrite each template
into the format expected by the task, giving both the input and the gold label. In
Table 9.5, we illustrate how we transform an answer as generated by ChatGPT into
templates ready to be used in BiaXposer.

• For sentiment analysis, we manually assigned sentiment scores to ChatGPT’s
answers.

• For language modeling, we added "The <group> is [MASK]" to every template.
As a label, we assign the target term that is most likely to replace the token
[MASK]. In the example of Table 9.5, friendly is one of such likely terms. In
the failure rate metric used in this experiment, we compute differences in the
likelihood of friendly when <group> takes on different demographics.

• For textual entailment, we consider ChatGPT’s transformed answer as a premise.
Then, we generate three separate test cases: one for entailment, one for contra-
diction, and one for neutral. In the example of Table 9.5, a possible entailment
hypothesis is "The <group> is friendly". However, for contradiction and neu-
tral, we can generate the following hypotheses respectively: "The <group> is
not friendly" and "The <group> is a human". As a result, the size of test data
for the task of textual entailment is 1728 test cases.

Results

We report the results of BiaXposer on Table 9.6 for sentiment analysis, Table 9.7 for
textual entailment and Table 9.8 for masked language modeling. In the latter, since
the number of classes is the vocabulary size, likelihoods and probabilities are very small
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ChatGPT’s answer Jacob volunteers at community events to meet new people.

Transformed answer A <group> volunteers at community events to meet new people.

Sentiment Analysis text A <group> volunteers at community events to meet new people.
label 2 (positive sentiment score)

Textual Entailment
premise A <group> volunteers at community events to meet new people.
hypothesis The <group> is friendly.
label 0 (entailment)

Language Modeling text A <group> volunteers at community events to meet new people. The <group> is [MASK]
target friendly

Table 9.5: Formatting ChatGPT’s answers into each of the tasks

(because they should all sum up to 1). For this reason, we apply smaller θ values in
this case: 3 ∗ 10−4, 5 ∗ 10−4, 1 ∗ 10−3 and 2 ∗ 10−3. Note that the number of downloads
in the tables corresponds to the number of times the models have been downloaded
only in the month prior to the writing of this section.8

We remark that most models under study encode staggering amounts of biases.
For example, when using "Seethal/sentiment_analysis_generic_dataset" for senti-
ment analysis (Model (5) in Table 9.6), the model is unfair in nearly 9% of test data
even though the requirement of fairness is very loose (i.e., consider that the model is
unfair only when the difference in prediction probability between social groups exceeds
20%, which is huge). For more realistic fairness requirements (i.e., smaller θ values),
this model is much worse, failing in up to more than 27% of test cases. We observe
that most models reported in the tables exhibit similar failures, which is alarming due
to the heavy use of such models. For instance, "distilbert-base-uncased-finetuned-sst-
2- english" model (Model (1) in Table 9.6) has been downloaded from the hub 7.23
million times in only one month.

With relative ease, BiaXposer allows to identify which models are biased, and
which are safer to use. From the most downloaded masked language models, "albert-
base-v2" (Model (4) in Table 9.8) and "bert-base-multilingual-cased" (Model (3) in
Table 9.8) are the most fair while the others are bias-laden. In sentiment analysis, we
note that "distilbert-base-uncased-finetuned-sst-2-english" (Model (1) in Table 9.6) is
the least biased. As for textual entailment, BiaXposer shows that all models are heavy
with stereotypes, with "yoshitomo-matsubara/bert-base-uncased-mnli" (Model (5) in
Table 9.7) being the most biased, failing in up to 56.71% of test cases. So before
NLP practitioners choose models from HuggingFace hub for their specific downstream
applications, BiaXposer can be used to identify which models in the hub are more fair
than others.

We also show how debiased models fare when evaluated with BiaXposer. Specif-
ically, we debias "bert-base-uncased" using several debiasing methods (Sent-D [272],
Kaneko [220] and our method AttenD described in Chapter 8), then finetune the re-
sulting debiased text encoders on the corresponding task-related datasets, e.g., SST-2
for sentiment analysis and MNLI for textual entailment. Unsurprisingly, BiaXposer
reports lesser bias scores for debiased models, where AttenD consistently having the
highest fairness. This shows that BiaXposer does indeed what we expect it to do.
However, the reduction of bias from textual entailment models is marginal, and Sent-
D produces an even more biased model. In this case, BiaXposer can be used to evaluate
debiasing methods and detect their shortcomings.

8Last checked in January 24, 2023
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Models # ↓ gender race religion
0.03 0.05 0.10 0.20 0.03 0.05 0.10 0.20 0.03 0.05 0.10 0.20

Model (1) 7.23M 09.20 06.77 04.86 02.95 14.06 10.76 08.51 06.08 16.32 14.93 11.81 08.51
Model (2) 2.44M 28.99 05.73 00.52 00.00 51.74 23.61 04.34 00.00 69.44 33.68 03.99 00.00
Model (3) 2.42M 12.85 05.21 00.17 00.00 35.42 12.33 00.52 00.00 54.86 42.19 21.53 00.52
Model (4) 786K 27.26 16.32 03.99 00.52 44.10 34.90 15.63 05.03 60.07 49.65 32.12 11.63
Model (5) 613K 27.43 24.83 17.71 08.85 29.17 25.17 19.44 10.42 27.95 24.48 17.53 11.98

BERT (SST-2) / 09.20 06.77 04.86 02.95 14.06 10.76 08.51 06.08 16.32 14.93 11.81 08.51
BERT [Sent-D] / 04.69 03.99 02.26 01.22 09.55 08.33 07.12 04.69 09.55 07.81 06.42 04.51
BERT [Kaneko] / 03.65 03.30 01.91 00.69 06.94 05.38 04.17 03.47 09.03 07.29 05.90 05.03
BERT [AttenD] / 02.95 02.08 01.39 00.52 08.68 07.29 06.42 05.08 08.85 06.94 06.25 05.90

Table 9.6: Failure Rate of different Sentiment Analysis models for different fail-
ure threshold values. The top 5 rows correspond to the most downloaded mod-
els from HuggingFace community hub: (1) distilbert-base-uncased-finetuned-sst-2-
english, (2) cardiffnlp/twitter-roberta-base-sentiment-latest, (3) cardiffnlp/twitter-
roberta-base-sentiment, (4) finiteautomata/bertweet-base-sentiment-analysis, (5)
Seethal/sentiment_analysis_generic_dataset. BERT (SST-2) corresponds to a
BERT-base model finetuned on SST-2 dataset. The following rows denote the de-
biased BERT-base with various debiasing methods before finetuning on SST-2.

Models # ↓ gender race religion
0.03 0.05 0.10 0.20 0.03 0.05 0.10 0.20 0.03 0.05 0.10 0.20

Model (1) 79.3K 16.26 11.23 06.77 02.95 28.01 21.53 14.18 06.83 25.29 17.94 07.47 02.31
Model (2) 70.9K 18.29 11.23 03.70 00.41 29.63 22.63 11.86 02.60 21.12 11.98 02.95 00.23
Model (3) 63K 22.34 12.73 05.96 02.14 44.10 31.25 19.39 12.44 37.04 20.72 06.31 00.87
Model (4) 45.1K 16.15 09.95 03.88 00.98 24.65 17.65 11.34 04.28 25.93 19.85 12.73 07.06
Model (5) 13K 31.02 18.34 06.66 00.64 56.71 43.52 21.59 04.40 44.10 29.17 10.47 01.04

BERT (MNLI) / 25.23 22.05 16.84 10.07 28.01 25.41 20.95 15.86 21.12 17.65 13.31 09.14
BERT [Sent-D] / 26.10 21.76 17.30 11.69 29.69 25.81 21.59 16.32 21.88 18.52 14.35 09.43
BERT [Kaneko] / 24.07 20.95 16.03 09.26 29.69 25.64 20.72 16.15 21.47 17.82 14.47 09.32
BERT [AttenD] / 22.69 19.50 14.29 08.39 22.86 19.91 15.80 11.46 19.39 16.55 12.33 09.03

Table 9.7: Failure Rate of different Textual Entailment models for different fail-
ure threshold values. The top 5 rows correspond to the most downloaded mod-
els from HuggingFace community hub: (1) roberta-large-mnli, (2) textattack/bert-
base-uncased-MNLI, (3) ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli,
(4) microsoft/deberta-xlarge-mnli, (5) yoshitomo-matsubara/bert-base-uncased-mnli.
BERT (MNLI) corresponds to a BERT-base model finetuned on MNLI dataset. The
following rows denote the debiased BERT-base with various debiasing methods before
finetuning on MNLI.

210



CHAPTER 9. BIAXPOSER

Models # ↓ gender race religion
3e-4 5e-4 10e-4 20e-4 3e-4 5e-4 10e-4 20e-4 3e-4 5e-4 10e-4 20e-4

Model (1) 24.4M 40.97 32.47 23.44 14.93 60.24 50.17 38.72 26.39 56.94 47.57 31.08 21.01
Model (2) 9.9M 43.23 33.16 21.53 13.72 53.13 39.76 26.91 15.97 47.74 37.50 24.65 16.32
Model (3) 3.58M 03.30 01.91 00.52 00.17 14.76 05.90 01.74 00.87 09.03 04.34 01.56 00.69
Model (4) 2.58M 00.00 00.00 00.00 00.00 00.17 00.17 00.00 00.00 00.17 00.17 00.00 00.00
Model (5) 1.3M 43.06 35.94 30.03 21.35 57.81 47.22 34.90 23.61 55.73 46.35 32.47 22.74

BERT [Kaneko] / 51.04 41.15 28.99 20.31 68.58 59.55 47.22 36.98 63.02 53.30 43.06 31.94
BERT [AttenD] / 22.22 18.23 11.46 05.90 31.25 26.56 17.71 09.72 28.99 22.74 15.10 10.59

Table 9.8: Failure Rate of different Sentiment Analysis models for different failure
threshold values. The top 5 rows correspond to the most downloaded models from
HuggingFace community hub: (1) bert-base-uncased, (2) distilbert-base-uncased, (3)
bert-base-multilingual-cased, (4) albert-base-v2, (5) bert-large-uncased. The follow-
ing rows denote the debiased BERT-base with various debiasing methods.

9.8.2 Evaluation of Usability

The failures discovered in the last section show that BiaXposer is indeed useful. In
this section, we investigate whether it is actually easy to use, and whether NLP prac-
titioners are willing to integrate it in their bias quantification process. Specifically, we
conduct a user study where human participants test BiaXposer on a well defined bias
quantification task, then we ask them to answer a few questions related to usability
and ease of use. In the following, we describe how participants were recruited, describe
the task and the survey questions, and analyze the results.

Participants

We recruit participants from our network of contacts, i.e., mainly researchers and PhD
students affiliated to LIRIS laboratory or other research labs in the area. Invitations
were sent via email where we asked for volunteers, resulting in a total of 5 participants.
Although most participants that we contacted are very familiar with ML and its con-
cepts, they exhibit different levels of expertise in NLP, with skill level ranging from
"Passable knowledge of NLP" to "Researcher whose main research topic is NLP". We
do this to test whether BiaXposer can assist users with no previous experience in NLP,
or whether it is restricted to a particular skill range.

Task

We devise a scenario where each participant takes the role of a NLP engineer working
in a firm that has been law-suited for fairness issues in their NLP models. The first task
in this scenario is to choose one NLP task from three proposed: (i) Sentiment Analysis,
(ii) Textual Inference or (iii) Masked Language Modeling. Participants can use their
own task-specific models to test if they wished. Otherwise, we give suggestions of
existing models for each NLP task from HuggingFace’s community hub. We briefly
explain the pipeline and the major components of BiaXposer to the participants. Then
we guide them through the creation of templates and filling words, as well as the
definition of bias types and demographics. Finally, we describe how metrics are defined
in BiaXposer and ask the participants to determine their own metrics. The most
widely used scoring and distance functions are already implemented in BiaXposer,
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but participants can also write their own. Finally, we ask the participants to take a
look at BiaXposers’ reports and try to interpret them, before they answer our survey
questions.

Procedure

The study was conducted online, where all explanations, instructions and questions
were aggregated in an online Google Form.9 We did not assist participants while
they were conducting the user study. Before starting, participants were asked to
provide their consent. All collected data from participants was stored securely and
anonymously in accordance with EU ethics and data protection guidelines (GDPR).
Afterwards, we asked the participants to provide their background information (e.g.,
education level, field of study, familiarity with NLP, etc.) before proceeding to perform
the task. The study took on average between 60 and 90 minutes. To reduce the
cognitive burden associated with writing code using a new software in such a short
amount of time, we provided boilerplate code in a Google Colab 10, where participants
only have to fill in missing code.

Survey Questions

As stated above, the aim of this user experiment is to assess the usability of BiaXposer.
We capture participant feedback through a set of survey questions encompassing sev-
eral dimensions of usability such as:

1. Satisfaction. To determine how satisfied users are with the tool and its func-
tionality.

2. Efficiency. To determine how quickly users are able to complete tasks with
BiaXposer, as well as how easily they are able to understand, use and interpret
the tool.

3. Ease of use. To rate how easy or difficult they find the tool to use, as well as
by tracking how quickly they are able to learn and use the tool.

4. User engagement. In the task above, we included several optional sub-tasks
that participants can do (e.g., computing failure rate, or experimenting with
many metric parametrizations). In this usability dimension, we track whether
participants are as engaged with BiaXposer as to do the optional sub-tasks.

5. User retention. This can be measured by tracking the number of users who
continue to use BiaXposer over time, as well as the reasons why some users may
stop using the tool.

6. General Feedback. e.g., suggestions for improvements, etc.

In total, we asked 18 different questions spread over the six usability dimensions
outlined above. We set the answer format to most questions as a 5-point Likert scale

9We make the study materials available here: https://forms.gle/HQsa1vhFgSPw2vvUA
10https://colab.research.google.com/drive/1xjIOkTV7x41I31RXS-zczgIJPq2IGOd0?usp=sharing
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Dimension Question Answer Type

Satisfaction On a scale of 1-10, how would you rate your overall satisfaction with BiaXposer? 10-point scale
How does using the software compare to your expectations? 5-point scale

Efficiency

It took you far less time to complete the task compared to when not using BiaXposer. 5-point Likert scale
You found the process of using BiaXposer to be streamlined and well-organized. 5-point Likert scale
It was easy for you to understand and interpret the results obtained from the software. 5-point Likert scale
BiaXposer was helpful in identifying areas of bias in models. 5-point Likert scale
You feel confident in the results generated by BiaXposer. 5-point Likert scale

Ease of Use
On a scale of 1-10, how easy was it to use BiaXposer? 10-point scale
Did you encounter any errors and/or difficulties while using the software? 5-point scale
Did you feel that the instructions and tutorials provided were helpful and easy to follow? 3-point scale

User Engagement How many different parameterizations of metrics and/or models did you experiment with? 5-point scale
Did you do the optional Failure Rate experiment? Boolean

User Retention You will continue to use BiaXposer in the future. 5-point Likert scale
You will recommend BiaXposer to others. 5-point Likert scale

General Feedback

What, if anything, doesn’t make sense in BiaXposer? free text
Was there anything that surprised you? If yes, what? free text
Was there anything you expected to find that was not there? free text
If you had a magic wand, what would you change about this software/experience/task? free text

Table 9.9: Survey questions asked to participants at the end of the user study

(e.g., where participants specify their level of agreement with a statement). How-
ever, where applicable, participants can express their answers in their own words. In
Table 9.9, we provide our survey questions.

Results

In the following, we summarize the answers of participants regarding their experience
while using BiaXposer. We illustrate the distribution of some answers as stacked
histograms in Figure 9.3.

1. Satisfaction. All participants reported a satisfaction score of at least 8/10, with
the average satisfaction score of 8.8/10 demonstrating that users are generally
quite satisfied with BiaXposer as a tool. Also, 80% of participants reported that
BiaXposer exceeded their expectations (The detailed distribution is given in the
first bar of Figure 9.3).

2. Efficiency. All participants consider that BiaXposer is streamlined and well
organized by and large (third bar in Figure 9.3), and that it helps in identifying
areas of bias in NLP models (fifth bar in Figure 9.3). Moreover, 60% of them state
that it was easy for them to interpret the results of our package, and that they
feel confident in these results (fourth and sixth bars respectively). The remaining
40% express neutral opinions about this aspect. We suspect that the numerous
numerical scores returned by BiaXposer for different bias types overwhelmed
these participants. In the future, we will work on making BiaXposer’s outputs
more easily digestible by proposing to make plots and visualizations. Finally, 80%
of participants judged that using BiaXposer would save lots of time compared
to implementing bias metrics separately (Likert-scale > 4 in the second bar of
Figure 9.3). Specifically, the following tasks required by BiaXposer took the
following amounts of time:

• The step of template creation took on average 19.4 minutes, with a mini-
mum of 15 and a maximum of 35 minutes.
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Figure 9.3: Stacked Histograms of user answers after conducting the user study about
BiaXposer.

• The step of defining bias types and demographics took an average of 7.4
minutes, a maximum of 11 minutes and a minimum of 3 minutes.

• The actual step of metric specification and playing around with several
parameters took on average 16.6 minutes, a maximum of 35 minutes and a
minimum of 6 minutes.

3. Ease of use. The average score of how easy it was to use BiaXposer for the
participants is 7.2/10, with 80% scoring at least 7/10. Some participants encoun-
tered some difficulties during the user study, but most (about 80%) consider them
minor and were resolved easily. Besides, all participants felt like the instructions
and tutorials provided with this study were clear and easy to follow.

4. User engagement. It is difficult to measure user engagement in a short study of
a few hours. Therefore, we approximate user engagement with checking whether
they did the optional Failure Rate experiment. 80% of them declared that they
did, which means that most participants were curious and engaged enough to
do a task that was not required in the study. Also, we asked participants to
report how many parametrizations of metrics they tried. We give the results in
the following:

• Around 20% tried only one parametrization (i.e., one metric).

• Around 60% tried between 3 and 5 different parametrizations.

• Around 20% tried between 6 and 10 different parametrizations.

5. User retention. Finally, 60% of participants declared that they will continue
to use BiaXposer while 80% believe they will recommend it to other potential
consumers of such software (seventh and eighth bars in Figure 9.3 respectively).
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9.9 Discussion

While useful, existing bias metrics can be hard to understand and use, due in part
to the scarcity of test data and the plethora of choices and parametrizations to pick
from. In face of these challenges, we propose BiaXposer, a fairness evaluation software
that supports two idioms of fairness: group and counterfactual. BiaXposer unifies the
diverse set of extrinsic bias metrics under one generalized formulation, and enables
different group contrasting strategies. Therefore, practitioners can express existing
bias measures and even develop their own.

Nevertheless, one looming question remains unanswered: Among the large spec-
trum of bias metrics that BiaXposer enables, which parametrizations of scoring and
distance functions, fairness idioms and contrasting strategies generate the finest mea-
sures? Unfortunately, there is no one-size-fits-all solution. Choosing the metric de-
pends on the downstream task, the impact of the NLP model in use, and the fairness
question that is being asked to begin with. One needs to appreciate bias metrics not as
mere computations to produce numerical scores of bias, but they should be grounded in
the application domain, and must reflect on what it means from a system perspective
to have differences across demographics using this or that scoring function.

To help users of BiaXposer in their quest for the ideal metric, we suggest the
following five-step process:

1. Write test templates. Given that data should never be adapted to optimize
the metric, it is always a sound idea to start with data. We recommend practi-
tioners to understand the input/output formats of their task-specific model, and
design the templates to capture the contexts in which failure to be fair is most
critical. For example, we suspect that the effect of negative stereotypes is far
worse than positive stereotypes because negative prejudice harms the perception
of victim demographics, and prevents them from enjoying equal opportunities as
other groups. If NLP models are riddled with such negative biases, they risk per-
petuating adverse attitudes toward groups suffering from negative stereotyping.
Consequently, we advise users of BiaXposer to construct templates especially di-
rected at exploring negative stereotypes, e.g., templates about violence, laziness,
greediness, unfriendliness, etc.

2. Declare bias types and social groups. This step should be grounded in
relevant literature from sociology and psychology, to construct the most scien-
tifically complete and accurate definition of demographics possible. Specifically,
this step requires collecting sets of group-related identity terms. Fortunately, a
lot of previous research has already engaged with this exercise, so re-using what
has already been done is possible. Still, we encourage practitioners to invest
some effort in at least revising the sets of groups and definition words before
usage.

3. Define the meaning of bias. Is it a difference in outcome across groups when
taken two-by-two, or considered all at the same time? Is it when the performance
of NLP models on certain demographics is lesser than the general performance?
Is a finer-grained per-group score more suitable than a coarse-grained single score
of bias? Practitioners ought to decide on a definition of bias in their unique
context, and choose a contrasting method early on in their evaluation.
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4. Define the meaning of performance. In most extrinsic metrics, bias is
often declared as a disparity in performance across groups. But what is really
meant by performance? We prescribe a thorough exploration of performance
metrics in which NLP models need to be fair with respect to the application
domain. In a hate speech detection system installed on social media platforms
to filter out toxic content, false negatives are more dangerous than false positives
since they perpetuate hate toward minorities and target demographics if they
are misclassified. Therefore, choosing False Negative Rate as a scoring function
constitutes a good starting point for hate speech detection. Whereas in language
modeling, likelihoods of words related to social groups to replace a mask is a
convenient scoring function.

5. Choose the remaining parameters. Especially the distance function which
must be appropriate for the scoring function selected in the previous step. For
example, if the scoring function is the F1 score, choosing the absolute arithmetic
distance is suitable. However, if the scoring function produces the set of predic-
tion probabilities across all test cases, distance functions such as KL-divergence
or a measure of correlation make more sense in this case.

To conclude, we recommend trying out different parametrizations for each task,
sufficiently different from each other to build a broad and complete understanding of
the model’s prejudice. In particular, we advocate to consider at least one probability-
based (e.g., likelihoods, class probabilities) and one prediction-based (e.g., accuracy, F1
score, False Positive Rate) scoring functions. Fortunately, BiaXposer is so easy to use
that we can switch between different metrics with minimal effort. We also recommend
to evaluate using different fairness idioms and contrasting methods. Finally, it is
encouraged to opt for per-group analysis (gBCM and gMCM) whenever possible in
order to investigate which groups exactly are suffering from negative stereotyping, and
which are unreasonably privileged.

216



CHAPTER 10. CONCLUSION

Chapter 10

Conclusion

This thesis contributed in the dual task of introducing desired subjectivity to NLP
and mitigating undesired forms of subjectivity, bias and prejudice. We wrap up the
dissertation by summarizing the research issues and how we addressed them in Sec-
tion 10.1, and outlining opportunities for the most promising and exciting directions
of future work in Section 10.2.

10.1 Summary of the Research Issues and Contribu-
tions

In this section, we review the research issues identified in the Introduction, and explain
how the contributions highlighted across this thesis aim to answer those questions.

10.1.1 (RI1) How to Represent Subjectivity?

In choosing a formalism to model subjectivity, we needed to distinguish between its
two contrasting facets. For desired subjectivity, we paid exclusive attention to the task
of online search, owing to its ascending prominence in day-to-day habits of modern
people. We modeled the subjective attributes that searchers can query as subjective
tags: concatenations of aspect and opinion terms (Chapters 3 and 4). This formulation
is at the same time simple and expressive, since it allows to capture a wide spectrum
of subjective information about many items, e.g., romantic ambiance, amiable dentist,
boring book, colorful designs, etc. Also, they facilitate the consumption and processing
of subjective information by automated processes as they can be associated to items
like traditional tags.

Representing undesired subjectivity is a little more nuanced. Due to the absence
of external knowledge bases and reliable data for stereotypes, we constrained our def-
initions of bias to how NLP models perceive it. We declared bias as the difference in
outcome given the same input but for different demographics. Depending on the type
of model under use, the difference can be captured in likelihoods (Chapter 5), atten-
tion weights (Chapters 5 and 8), embeddings (Chapters 5 and 7) or final predictions
(Chapter 9).
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10.1.2 (RI2) How to Uncover Subjectivity From Data?

We highlighted in Part I of this thesis that augmenting NLP with subjectivity cannot
be achieved without methods and techniques to extract it automatically from data.
The best resource for desired subjectivity is online reviews where contrasting and rich
opinions about items of the world thrive. In Chapter 3, we formulated the task of
extracting subjective tags from a given text as a two-step process: (i) tagging each
term as either an aspect, an opinion or neither, then (ii) pairing each aspect with its
corresponding opinion. The tagging model is a text encoder with a BiLSTM-CRF layer
finetuned on the tagging task with adversarial training. The pairing model combines
different heuristics according to the data programming paradigm.

We also contributed BiasMeter to measure the degree of stereotype and prejudice in
a given piece of text, using knowledge encoded in biased language models (Chapter 5).
To the best of our understanding, we believe that we are among the first to work
on this specific problem, and we consider BiasMeter as an improvement to existing
methods based on keywords. However, since ground truth for stereotypes is lacking,
we admit that the outputs of BiasMeter do not perfectly reflect stereotypes of the real
world, but those encoded in NLP models (Chapter 6). We invite our peers to take a
closer look at this understudied problem.

10.1.3 (RI3) How to Augment NLP with Subjectivity?

Focusing on conversational search, we proposed in Chapter 3 to extract subjective tags
from online reviews in an offline mode, then save mappings from tags to items in an in-
verted index data structure along with degrees of truth depicting how confident we are
in the mapping. We presented SACSS: a process according to which conversational
search systems utilize the index and subjective tags to process search utterances of
users. Specifically, SACSS comprises comparing tags using a custom similarity func-
tion, filtering, combining with objective criteria and finally ranking search results.
Experiments showed that SACSS provides more satisfactory answers than traditional
IR systems.

We also proposed to introduce subjectivity to the similarity model under use in
SACSS (Chapter 4). In particular, given that humans like to make generalizations
when they describe something; for example speaking about how the food was delicious
in a restaurant when they only had a specific dish for their meal, we presented concep-
tual similarity to compare not only the aspects but the general concepts of subjective
tags. In addition to our novel similarity model, the main contribution in that work
was a method to automatically create training data at scale, combining knowledge
from different sources: knowledge bases, word embeddings and language models. We
showed that subjectivity-aware conceptual similarity is better suited for subjective
tasks than mainstream similarity models.

10.1.4 (RI4) How to Reduce Harmful Subjectivity From NLP?

A substantial part of this thesis focused on exploring new methods to reduce bias
and stereotypes from NLP models. We specifically proposed three different debiasing
solutions for different types of models. First, we devoted Chapter 7 to mitigating bias
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from static word embeddings where we trained attackers to recognize gender from word
vectors, then adjusted the vectors adversarially to fool the attackers. We repeated this
process for several iterations and with several attackers until no new attacker could
detect gender information in word embeddings.

Since the NLP community is massively switching to transformer-based text en-
coders for language representation in the last few years, we contributed AttenD: a
novel debiasing method for such models in Chapter 8. In contrast to existing debias-
ing methods that operate on the level of embeddings, AttenD focuses on the attention
mechanism. In essence, AttenD encourages biased text encoders to produce equal
attention scores for different demographic groups. In doing that, the embeddings of
groups should be similar and hence their predictions too, because embeddings are pro-
duced from attention scores. The experiments presented in Chapter 8 confirmed that
by reducing bias from attention, the overall text encoder becomes more fair.

We also worked on debiasing downstream models directly without debiasing the
language representation layer first (Chapter 6). To do that, we profited from Bias-
Meter described in Chapter 5 to assign stereotype scores for every instance in a given
training dataset. We conjectured that by removing the most biased and subjective
instances from the data, and training on the resulting curated datasets, we would have
less biased models. We demonstrated that it is indeed the case in the experiments of
Chapter 6 on the tasks of sentiment analysis, textual inference and question answer-
ing. In addition to the simplicity of this debiasing strategy, we note that it is also
efficient since debiasing is inherent to the task-specific finetuning phase, whereas other
methods necessitate two phases of finetuning: one for learning the task and one for
bias mitigation.

10.1.5 (RI5) How to Quantify Subjectivity?

Perhaps the toughest problem facing the field of research today is the making of
a robust and efficient method to accurately measure how much subjectivity, be it
desired or undesired, there is in a given model. As mentioned many times in this
dissertation, all proposed metrics in the scholarship fail in one way or another. The
most trustworthy measure of subjectivity left at our disposal is to compare the output
of a model of interest when tested with several demographics; what is referred to
in the literature by extrinsic metrics. In Chapter 9, we contribute in this research
direction by building a software package called BiaXposer to facilitate the use of such
metrics and streamline the practice of testing NLP models for fairness, from aiding
in producing templates and test cases to tailoring the metric for the tester’s specific
evaluation needs.

10.2 Summary of Future Directions

While attempting to answer the research questions described above, this thesis opened
up new venues of future research. Although we presented opportunities for future work
for every contribution in the section called "Discussion" of every chapter, we reiterate
over the most important in the following.
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10.2.1 Using Subjective Tags to Model Stereotypes

We used subjective tags to describe experiential features of products and services in
the context of online search. However, we believe that the simple syntactic structure
of subjective tags enable a myriad of other interesting applications. For example,
social stereotypes can be detected using the same techniques to detect subjective tags.
Instead of aspects and opinions, a tag for stereotypes would be a concatenation of a
demographic mention (e.g., mulsims, asians, feminists, etc.) and an attribute (e.g.,
good at driving, greedy, excellent at math). Consequently, stereotypical tags can be
extracted from text automatically, employing similar tagging and pairing models as
those presented in Chapter 3. As a future work, it would be interesting to compare
the performance of this method with BiasMeter.

10.2.2 Improving Conceptual Similarity

There are multiple ways in which conceptual similarity described in Chapter 4 can be
improved. Given that building the seeds requires manual effort, we would like to study
in future work whether performance suffers from having very few seeds, and to what
extent the data creation pipeline depends on them. More generally, we aim to know
whether having high quality seeds is essential or merely beneficial. In the current
version of conceptual similarity, we use different expansion methods drawing their
knowledge from different sources, e.g., external knowledge graphs or learned semantic
spaces. However, it is not clear if some of these methods are redundant or weak. It
would be informative to know about which expansion methods are more reliable, and
whether the ensemble of expansion methods is robust. We plan to investigate these
issues as future work. Also, employing both BERT and LSTMs for a simple similarity
check incurs a high computational cost. The adoption of our work in practice depends
on whether efficiency is a major concern in the downstream search application, i.e.,
whether a poor search inflicts major negative consequences in critical domains such as
finances or regulations. It also depends on the underlying infrastructure into which
conceptual similarity will be deployed. Nonetheless, a major aim of future effort is to
compress our models and make them more energetically efficient.

10.2.3 Building Inclusive Stereotype Benchmarks

Although our work on bias in this thesis (Chapters 5, 6, 7, 8 and 9) is fundamentally
independent from the choice of bias dimensions and social groups constituting each
bias type, we focused in our experiments on bias types and demographics commonly
used in the field; namely binary gender, race and religion. We have shown that our
contributions work for both binary and multiclass groups. That being said, we have
not experimented yet with demographics divided into dozens of categories, e.g., na-
tionality, or socioeconomic status. We also did not include analysis for groups who
are victims of understudied microaggressions such as the elderly, overweight people or
people suffering from physical/mental disabilities. We acknowledge that our defini-
tions of groups do not reflect the wide complexity of social divisions in the real world,
and that our oversight of the minorities risks being regarded as harmful in its own
way. We justify our fixation on binary gender, race and religion in this thesis to the
possibility of comparing our work with baselines who also treated the same bias types
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as we did. This owes to the sad fact that existing evaluation benchmarks are mostly
restricted to those demographics. However, with this line of convenient argumentation,
one cannot expect to make any significant progress relating to minorities since it is
not possible to evaluate debiasing methods on them. For this reason, we envision and
invite researchers and NLP practitioners at large to produce more inclusive datasets
and benchmarks in the future.

10.2.4 Adapting Debiasing Methods to Other Forms of Bias

In most of our debiasing work, we use discrete words to represent groups. This can
pose some challenges when adapting AttenD and ADV-Debias to reduce bias toward
finer-grained groups (e.g., female Muslims), or implicit bias. We remind that implicit
bias occurs when two concepts are related via stereotype, e.g., there is implicit bias
between doctor and engineer because both terms are stereotyped to be rather mas-
culine occupations. As future work, we plan to extend our contributions such that
they handle implicit bias and intersectional biases, i.e., biases corresponding to mul-
tiple bias types at the same time (e.g., Buddhist Black Americans, Christian Arabs,
etc.). In the following, we present a possible course of action for AttenD: suppose we
aim to calibrate the attention of a given word w on two fine-grained groups: group A
(described with three distinct words a1a2a3), and group B (described with two words
b1b2). Debiasing in this case can be conducted by equalizing the attention of w between
the sum of its attention on a1, a2 and a3, and the sum of its attention on b1 and b2,
such that the final attention of w on all words of group A is equal to that of all words
of group B. The same mechanism can easily be adapted to non-binary bias types.

10.2.5 Catering for Other Types of Subjectivity

Despite the proposed distinction of subjectivity into desired and undesired in this
thesis, we acknowledge that we barely scratched the surface of what subjectivity really
is. For example, we only treated useful subjectivity in the context of search. There
is a multitude of other application domains where subjectivity can be beneficial, e.g.,
to enhance opinion mining; to adapt language-based technology and virtual assistants
to other demographics with unique usage of vocabulary and language (e.g., African
American English speakers); or more generally to enrich crowd-sourced annotations
and enable multiple correct ground-truth labels per data instance. Subjectivity also
depends on emotion, so including that as well constitutes a promising direction. As
for undesired subjectivity, we paid special focus on bias, stereotype and prejudice.
Unsurprisingly, there are other forms of harmful subjectivity too, often emerging from
the way people frame their propositions to increase or decrease their factuality at
will, e.g., epistemological and framing subjectivity (see Section 2.4). All of the above
give us ample opportunity in the near future to dig up the subject matter a little bit
more, and pave the way to a language technology that is mindful of the subjective and
complicated nature of the human breed.
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2022.
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tual Similarity for Subjective Tags. In Findings of AACL-IJCNLP 2022.

• Yacine Gaci, Boualem Benatallah, Fabio Casati, Khalid Benabdeslem. Masked
Language Models as Stereotype Detectors? In EDBT 2022.

• Yacine Gaci, Boualem Benatallah, Fabio Casati, Khalid Benabdeslem. Iter-
ative adversarial removal of gender bias in pretrained word embeddings.1 In
Proceedings of the 37th ACM/SIGAPP Symposium On Applied Computing (pp.
829-836).

• Yacine Gaci, Jorge Ramírez, Boualem Benatallah, Fabio Casati, Khalid Benab-
deslem. Subjectivity Aware Conversational Search Services. In 24th Interna-
tional Conference on Extending Database Technology (EDBT 2021)

A.2 Unpublished Pre-Prints

• Yacine Gaci, Boualem Benatallah, Fabio Casati, Khalid Benabdeslem. Societal
Versus Encoded Stereotypes in Text Encoders. Preprint.

• Yacine Gaci, Boualem Benatallah, Fabio Casati, Khalid Benabdeslem. Towards
Debiasing Task-Specific NLP Models by Debiasing their Training Data. Preprint.

1Awarded by the ACM/SIGAPP SAC’2022 award committee as the best paper of the year in the
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259



APPENDIX B. APPENDIX ON ATTEND

Appendix B

Appendix on AttenD

In this appendix, we provide extra experiments to validate our attention-based debi-
asing method AttenD. First, we show that negative samples are important to preserve
the semantic representativeness of text encoders in Section B.1. Second, we highlight
differences in performance of AttenD when used to operate on words only, and the
sentence as a whole in Section B.2. Then in Section B.3, we explore whether a fixed
ordering of demographics is better than a random ordering. Finally, we test AttenD
on other text encoders in Section B.4, particularly BERT large, ALBERT, RoBERTa,
DistilBERT and SqueezeBERT.

B.1 Effect of Negative Examples on Representative-
ness

We remind that the introduction of negative examples to training serves in forcing the
text encoder not to rely on a dangerous shortcut which is distributing its attention
uniformly on all the tokens constituting the second half of the input, no matter what
the input is. This is particularly important in double-sentence tasks where the text en-
coder is given two input sentences. In addition to Tables 8.4 and 8.7 which highlighted
the effect of negative sampling on the final stereotype scores, the primary goal of using
negative examples remains the preservation of the text encoder’s representativeness.
In Table B.1, we report the performance of AttenD and AttenD- with and without
negative examples respectively on GLUE tasks. Unsurprisingly, the lack of negative
examples does not damage the performance of single-sentence tasks since these ignore
the second half of the input altogether. However, in double-sentence tasks where both
halves are used for prediction, Table B.1 shows that negative sampling plays a piv-
otal role in preserving the semantics of text encoders, and bypassing the side effects
inflicted by attention equalization.

B.2 Word-Level vs Sentence-Level Debiasing

As previously explained in Chapter 8, AttenD calibrates the attention weighs of all
tokens of the input sentence on group-related words. Since we used BERT-based
models in our experiments, the first token in the input is the special [CLS] token, which
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Models
Single sentence tasks Double sentence tasks
sst2 cola stsb mrpc mnli (m/mm) rte wnli

BERT 92.78 56.05 88.97 92.25 83.54 / 82.68 70.04 45.07
AttenD 92.66 55.22 89.62 91.22 84.63 / 84.19 70.40 53.52
AttenD- 92.32 56.25 89.12 80.44 84.59 / 83.96 58.12 39.44

Table B.1: Effect of negative examples on GLUE tasks. The table shows accuracy
scores for sst2, rte, wnli, and mnli for both matched and mismatched instances; f1
for mrpc; spearman correlation for stsb; and matthews correlation for cola

is considered by the NLP community as a vector representation for the entire input
sentence. In the current version of AttenD, we also calibrate the attention weighs
of the special [CLS] token on groups, in addition to calibrating the other tokens of
the sentence. One can see this notion as a combined word-level and sentence-level
debiasing. In this experiment, we motivate this design choice by comparing it to
word-level and sentence-level debiasing separately. For word-level, we exclude the
[CLS] token from the attention equalization process, whereas in sentence-level we only
calibrate the attention of [CLS]. We use all the bias evaluations run so far to understand
the difference in performance. Tables B.2, B.3, B.4, B.5 and B.6 report the results
of StereoSet, Crows-Pairs, inference, hate speech and GLUE experiments respectively.
We denote word-level debiasing by No [CLS], and sentence-level debiasing by Only
[CLS] in the tables. The combination of both is referred to as AttenD, and is the
variant that we promote in our work. We observe that while the three settings are
good at reducing bias from text encoders, AttenD is superior than word-level and
sentence-level debiasing since it capitalizes on the benefits of both. It enjoys the
fine granularity of reducing bias from every word, while it also mitigates biases that
manifest at sentence-level.

B.3 Static vs Random Ordering of Group-Related
Words

In the preprocessing step of AttenD (as explained in Section 8.3.1), we use a preset
ordering of group-related words of a given bias type to form the second input. For
example, if we have the groups Muslim, Christian, Jew and Buddhist defining the
religion bias type, AttenD constructs the second input using the same preset ordering
of groups across all samples of the training data. Continuing the example above,
AttenD appends the following artificial sentence "muslim, christian, jew, buddhist".
In this experiment, we change the ordering of groups in a random way. Tables B.2, B.3,
B.4, B.5 and B.6 also report the bias scores of AttenD (static ordering) and AttenD
with random ordering.

Although the semantic performance of AttenD with random ordering is better, we
notice that it suffers from a stronger presence of bias than in its static counterpart. In
Table B.5, AttenD with random ordering has an AUC score of 0 in one of the groups,
which made the GMB extremely small. We suspect that the relatively poor fairness
of random ordering owes to the fact that the model might be confused by different
orderings throughout the iterations. A more serious analysis of the impact of group
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Models AttenD No [CLS] Only [CLS] Random Order

Overall (lm/ss) 83.34 53.04 80.37 53.71 81.70 55.51 82.91 54.75

gender (lm/ss) 78.24 53.73 76.86 52.94 75.88 54.51 79.02 55.69
race (lm/ss) 86.28 51.87 84.10 53.01 85.24 55.09 86.75 54.57

religion (lm/ss) 88.46 53.85 84.62 60.26 85.26 56.41 87.18 56.41
profession (lm/ss) 80.96 54.14 76.63 54.14 78.99 56.24 79.17 54.51

Table B.2: Language modeling (lm) and Stereotype scores (ss) on StereoSet of different
variants of AttenD

Models AttenD No [CLS] Only [CLS] Random Order

Overall 55.7 56.1 55.5 58.36

gender 57.36 50.76 50.0 53.82
race 51.15 54.84 53.1 57.75

religion 64.76 69.52 65.71 67.62
age 43.68 56.32 44.83 54.02

sexual orientation 58.33 71.43 63.1 64.29
nationality 57.86 53.46 65.41 62.28
disability 60.0 61.67 58.33 65.0

Table B.3: Bias measurements of different variants of AttenD on Crows-Pairs

order on the overall performance (fairness and semantics) of AttenD motivates the
direction of future work.

B.4 Effect of AttenD on Other Transformer-Based
Text Encoders

We evaluate five widely used sentence-level text encoders: BERT [103], ALBERT [255],
RoBERTa [284], DistilBERT [392] and SqueezeBERT [206]. For each model, we eval-
uate both its base and large variants (except for DistlBERT and SqueezeBERT since
these are not available in HuggingFace’s transformers library1), original and debiased;
which gives a total of sixteen evaluated models. We use Crows-Pairs dataset [324] to
quantify the intensity of undesired stereotypes encoded therein. As a reminder, ideal
stereotype scores according to Crows-Pairs benchmark should be close to 50, i.e., mod-
els preferring neither stereotypes nor anti-stereotypes. Tables B.7, B.8, B.9 and B.10
show the bias results for BERT, ALBERT, RoBERTa and DistillBERT/SqueezeBERT
respectively.

All five models exhibit substantial levels of bias, and in each of the bias types with
differing intensities (religion, sexual orientation and disability being the bias categories
with the most severe stereotyping). Also, we find that the large variants are more
biased than their base counterparts mainly because large models, with their larger
capacity and greater number of parameters, can capture more intricate and more so-

1https://huggingface.co/transformers/index.html
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Model Bias type NN FN τ :0.5 τ :0.7

AttenD
gender 01.31 00.43 00.35 00.21
race 93.31 93.94 93.90 93.04

religion 68.51† 69.08† 68.95† 66.97†

No [CLS]
gender 00.85 00.36 00.30 00.20
race 76.14 76.24 76.19 74.26

religion 40.80 40.04 39.98 37.78

Only [CLS]
gender 02.35 01.60 01.38 00.90
race 81.63 81.52 81.50 80.37

religion 44.40 44.01 43.95 42.76

Random Order
gender 01.54 00.51 00.39 00.23
race 54.71 54.92 54.89 52.49

religion 26.94 26.67 26.59 24.58

Table B.4: Inference-based bias measurements on different variants of AttenD. Best
scores are highlighted with bold character, underlined, or marked with † for gender,
race and religion† respectively

Models
Performance Bias

Acc↑ F1↑ AUC↑ STD-Sub↓ GMB-Sub↑ GMB-BPSN↑ GMB-BNSP↑
AttenD 0.789 0.829 0.866 0.085 0.808 0.793 0.726

No [CLS] 0.791 0.830 0.871 0.114 0.710 0.797 0.530
Only [CLS] 0.765 0.805 0.838 0.142 0.660 0.766 0.636

Random Order 0.784 0.822 0.861 / / 0.764 /

Table B.5: AUC-based bias measures on hate speech detection task on different vari-
ants of AttenD

Models
Single sentence tasks Double sentence tasks
sst2 cola stsb mrpc mnli (m/mm) rte wnli

AttenD 92.66 55.22 89.62 91.22 84.63 / 84.19 70.40 53.52

No [CLS] 91.51 40.85 88.94 91.62 84.49 / 84.02 68.95 40.85
Only [CLS] 92.43 55.23 89.43 90.04 84.42 / 84.67 71.84 23.94

Random Order 93.23 59.07 88.85 91.94 83.75 / 84.86 71.84 30.99

Table B.6: GLUE performance of different variants of AttenD. The table shows accu-
racy scores for sst2, rte, wnli, and mnli for both matched and mismatched instances;
f1 for mrpc; spearman correlation for stsb; and matthews correlation for cola
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Models BERT base BERT large

Overall 60.48 → 55.70 -04.78 59.68 → 56.96 -02.72

race 58.14 → 51.15 -06.99 60.08 → 53.49 -06.59
gender 58.02 → 57.36 -00.66 55.34 → 53.05 -02.29

socioeconomic 59.88 → 51.16 -08.72 56.40 → 57.56 +01.16
nationality 62.89 → 57.86 -05.03 52.20 → 57.23 +05.03

religion 71.43 → 64.76 -06.67 68.57 → 66.67 -01.90
age 55.17 → 43.68 +01.15 55.17 → 54.02 -01.15

sexual orientation 67.86 → 58.33 -09.53 65.48 → 67.86 +02.41
physical appearance 63.49 → 61.90 -01.89 69.84 → 65.08 -04.76

disability 61.67 → 60.00 -01.67 76.67 → 65.00 -11.67

Table B.7: Bias reduction in BERT base and large measured on Crows-Pairs dataset.
Each cell is organized as follows: o → d +/-diff where o is the stereotype score of the
original model, d is that of the debiased model using AttenD, and diff is the difference
in stereotype score. Negative values correspond to reduction in bias (desired) where
positive values mean addition of bias (undesired).

phisticated aspects of training data, exposing them to learn more bias. This finding
corresponds well to results of previous work [324, 322]. The tables also show that
AttenD is effective in mitigating bias from BERT, ALBERT, RoBERTa, DistilBERT
and SqueezeBERT, and produces a reduction of bias up to 25%. We note that AttenD
succeeds in debiasing all models, with varying effectiveness across bias types. We also
note that AttenD meets the best success with ALBERT as reductions are greater on
this particular text encoder. We believe this is because ALBERT is composed of a sin-
gle transformer layer [255] with substantially less parameters than BERT or RoBERTa;
which makes debiasing easier since there is no interference between different attention
layers. Finally, we see from the tables that AttenD sometimes contributes to adding
a bit of bias. We observe that this phenomenon is rare, and happens especially with
bias types we did not include in our design.2 We assume that not explicitly compelling
the text encoder to equalize attention heads corresponding to these overlooked bias
types gave it green light to adjust these attentions in a way to facilitate solving the
optimization problem; even if it entails adding bias. We plan to include all bias types
present in Crows-Pairs dataset to our debiasing design as a future work.

2In the current version of this work, we remind that we only consider three bias types: gender,
race and religion
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Models ALBERT base ALBERT large

Overall 56.76 → 51.99 -04.77 60.48 → 53.58 -06.90

race 51.36 → 48.84 -00.20 59.11 → 50.97 -08.14
gender 54.20 → 53.44 -00.76 56.11 → 48.47 -04.58

socioeconomic 60.47 → 61.05 +00.58 54.07 → 50.00 -01.16
nationality 51.57 → 57.86 +06.29 62.26 → 60.38 -04.07

religion 59.05 → 60.00 +00.95 76.19 → 61.90 -14.29
age 65.52 → 42.53 -08.05 54.02 → 54.02 -00.00

sexual orientation 75.00 → 38.10 -13.10 71.43 → 63.10 -08.33
physical appearance 46.03 → 41.27 +04.76 58.73 → 57.14 -01.59

disability 86.67 → 61.67 -25.00 73.33 → 58.33 -15.00

Table B.8: Bias reduction in ALBERT base and large measured on Crows-Pairs
dataset. Each cell is organized as follows: o → d +/-diff where o is the stereotype
score of the original model, d is that of the debiased model using AttenD, and diff
is the difference in stereotype score. Negative values correspond to reduction in bias
(desired) where positive values mean addition of bias (undesired).

Models RoBERTa base RoBERTa large

Overall 53.98 → 51.39 -02.59 61.27 → 56.83 -04.44

race 47.09 → 50.39 -02.52 61.43 → 53.49 -07.94
gender 54.96 → 45.80 -00.76 51.91 → 51.91 -00.00

socioeconomic 56.40 → 55.81 -00.59 66.28 → 59.88 -06.40
nationality 45.28 → 43.40 +01.88 56.60 → 55.35 -01.25

religion 56.19 → 60.00 +03.81 59.05 → 62.86 +03.81
age 64.37 → 56.32 -08.05 71.26 → 62.07 -09.19

sexual orientation 69.05 → 48.81 -17.86 71.43 → 59.52 -11.91
physical appearance 66.67 → 60.32 -06.35 68.25 → 66.67 -01.58

disability 71.67 → 65.00 -06.67 66.67 → 70.00 +03.33

Table B.9: Bias reduction in RoBERTa base and large measured on Crows-Pairs
dataset. Each cell is organized as follows: o → d +/-diff where o is the stereotype
score of the original model, d is that of the debiased model using AttenD, and diff
is the difference in stereotype score. Negative values correspond to reduction in bias
(desired) where positive values mean addition of bias (undesired).
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Models DistilBERT SqueezeBERT

Overall 56.83 → 51.26 -05.57 57.43 → 54.71 -02.72

race 53.29 → 47.87 -01.16 55.04 → 56.01 +00.97
gender 54.58 → 46.56 -01.14 52.67 → 48.47 -01.14

socioeconomic 55.81 → 58.14 +02.33 57.56 → 51.16 -06.40
nationality 54.09 → 50.94 -03.15 53.46 → 61.01 +07.55

religion 70.48 → 57.14 -13.34 74.29 → 60.95 -13.34
age 59.77 → 48.28 -08.05 55.17 → 48.28 -03.45

sexual orientation 70.24 → 55.95 -14.29 70.24 → 57.14 -13.10
physical appearance 55.56 → 63.49 +07.93 52.38 → 52.38 -00.00

disability 61.67 → 56.67 -05.00 70.00 → 61.67 -08.33

Table B.10: Bias reduction in DistilBERT and SqueezeBERT measured on Crows-Pairs
dataset. Each cell is organized as follows: o → d +/-diff where o is the stereotype
score of the original model, d is that of the debiased model using AttenD, and diff
is the difference in stereotype score. Negative values correspond to reduction in bias
(desired) where positive values mean addition of bias (undesired).
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