
HAL Id: tel-04727070
https://theses.hal.science/tel-04727070v1

Submitted on 9 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constrained Pseudorandom Functions : New
Constructions and Connections with Secure

Computation
Mahshid Riahinia

To cite this version:
Mahshid Riahinia. Constrained Pseudorandom Functions : New Constructions and Connections with
Secure Computation. Cryptography and Security [cs.CR]. Ecole normale supérieure de lyon - ENS
LYON, 2024. English. �NNT : 2024ENSL0022�. �tel-04727070�

https://theses.hal.science/tel-04727070v1
https://hal.archives-ouvertes.fr

THÈSE
en vue de l’obtention du grade de Docteur, délivré par

l’École Normale Supérieure de Lyon

École Doctorale N◦ 512
École Doctorale en Informatique et Mathématiques de Lyon

Discipline : Informatique

Soutenue publiquement le 08/07/2024, par
Mahshid RIAHINIA

Constrained Pseudorandom Functions:
New Constructions

and
Connections with Secure Computation

Fonctions Pseudo-Aléatoires Contraintes:
Nouvelles Constructions et Liens avec Le Calcul Sécurisé

Devant le jury composé de :
Pointcheval David, Directeur de recherche, ENS Rapporteur
Vergnaud Damien, Professeur des universités, Sorbonne Université Rapporteur
Canard Sébastien, Professeur, Télécom Paris Examinateur
Kohl Lisa, Personnalité scienti�que, CWI Examinatrice
Passelègue Alain, Chercheur, ENS de Lyon Examinateur
Ràfols Carla, Professeur, Universitat Pompeu Fabra Examinatrice
Villard Gilles, Directeur de recherche, CNRS et ENS de Lyon Directeur de thèse

iii

To Pouria, who taught me that it is okay to spend more than 5 minutes on a problem!

Abstract

Pseudorandom functions (PRFs) were introduced in 1986 by Goldreich, Goldwasser, and
Micali as e�cient means of generating randomness and serve as essential tools in cryptog-
raphy. These functions use a master secret key to map di�erent inputs to pseudorandom
outputs. Constrained pseudorandom functions (CPRFs), introduced in 2013, extend PRFs
by additionally allowing the delegation of constrained keys that enable the evaluation
of the function only on speci�c subsets of inputs. Notably, given a constrained key
that evaluates the function on a subset of inputs, the output of a CPRF should remain
pseudorandom on inputs outside of this subset. In this thesis, we establish links between
CPRFs and two other cryptographic tools which were introduced in the context of secure
computation:

1. We show how CPRFs can be constructed from Homomorphic secret sharing (HSS)
protocols. Homomorphic secret sharing protocols allow distributed computations
over shares of a secret. We start by identifying two extensions of HSS protocols
and show how they can be transformed into CPRFs generating constrained keys for
subset of inputs that can be expressed via inner-product and NC1 predicates. Next,
we observe that HSS protocols that already exist in the literature can be adapted to
these new extensions. This leads to the discovery of �ve new CPRF constructions
based on various standard hardness assumptions.

2. We show how CPRFs can be used to construct pseudorandom correlation functions
(PCFs) for oblivious transfer (OT) correlations. PCFs for OT correlations enable
two parties to generate OT-correlated pairs that can be used in fast secure com-
putation protocols. Next, we instantiate our transformation by applying a slight
modi�cation to the well-known PRF construction of Naor and Reingold. We �nally
present a method for the non-interactive generation of evaluation keys for the
latter instantiation which results in an e�cient public-key PCF for OT correlations
from standard assumptions.

v

Résumé

Les fonctions pseudo-aléatoires (Pseudorandom Functions, alias PRFs) ont été introduites
en 1986, par Goldreich, Goldwasser et Micali, comme moyen e�cace de générer de
l’aléa et servent depuis d’outils essentiels en cryptographie. Ces fonctions utilisent une
clé secrète principale pour faire correspondre di�érentes entrées à des sorties pseudo-
aléatoires. Les fonctions pseudo-aléatoires contraintes (Constrained Pseudorandom Func-
tions, alias CPRFs), introduites en 2013, étendent les PRFs en autorisant la délégation
des clés contraintes qui permettent l’évaluation de la fonction uniquement sur des sous-
ensembles spéci�ques d’entrées. Notamment, même avec cette évaluation partielle, la
sortie d’une CPRF devrait rester pseudo-aléatoire sur les entrées en dehors de ces sous-
ensembles. Dans cette thèse, nous établissons des liens entre les CPRFs et deux autres
outils cryptographiques qui ont été introduits dans le contexte du calcul sécurisé :

1. Nous montrons comment les CPRFs peuvent être construites à partir de protocoles
de partage de secrets homomorphes (Homomorphic Secret Sharing, alias HSS). Les
protocoles de partage de secrets homomorphes permettent des calculs distribués sur
des parties d’un secret. Nous commençons par identi�er deux nouvelles versions
des protocoles HSS et montrons comment elles peuvent être transformées en CPRFs
générant des clés contraintes pour des sous-ensembles d’entrées qui peuvent être
exprimés via des prédicats de produit scalaire ou de NC1. Ensuite, nous observons
que les constructions de protocoles HSS qui existent déjà dans la littérature peuvent
être adaptées à ces nouvelles extensions. Cela conduit à la découverte de cinq
nouvelles constructions CPRF basées sur diverses hypothèses de sécurité standards.

2. Nous montrons comment les CPRFs peuvent être utilisées pour construire des
fonctions de corrélation pseudo-aléatoires (Pseudorandom Correlation Functions,
alias PCFs) pour les corrélations de transfert inconscient (Oblivious Transfer, alias
OT). Les PCFs pour les corrélations OT permettent à deux parties de générer
des paires corrélées OT qui peuvent être utilisées dans des protocoles de calcul
sécurisés rapides. Ensuite, nous détaillons l’instanciation de notre transformation
en appliquant une légère modi�cation à la construction PRF bien connue de Naor
et Reingold. En�n, nous présentons une méthode de génération non-interactive de
clés d’évaluation pour cette dernière instanciation, qui permet d’obtenir un PCF à
clé publique e�cace pour les corrélations OT à partir d’hypothèses standards.

vii

Contents

Contents ix

1 Introduction 1

2 Preliminaries 13
2.1 Basic Cryptographic Tools . 13

2.1.1 Notation . 13
2.1.2 Idealized Security Models . 14
2.1.3 Hardness Assumptions . 14
2.1.4 Basic Protocols . 17
2.1.5 Constructions . 18

2.2 Constrained Pseudorandom Functions . 21
2.2.1 Pseudorandom Functions . 21
2.2.2 Constrained Pseudorandom Functions 22

2.3 Homomorphic Secret Sharing . 24
2.3.1 RMS Programs . 24

2.4 Pseudorandom Correlation Functions . 25
2.4.1 Reverse-Sampleable Correlations 25
2.4.2 Pseudorandom Correlation Functions 25

3 Constrained PRFs from Homomorphic Secret Sharing 31
3.1 Chapter Overview . 31

3.1.1 General Strategy . 32
3.1.2 CPRF from HSS with Simulatable Memory Shares 33
3.1.3 Handling more Constraints via Staged HSS 35

3.2 Homomorphic Secret Sharing and Extensions 36
3.2.1 HSS following the RMS Template 38
3.2.2 Extended Evaluation and Simulatable Memory Values 40
3.2.3 Staged Homomorphic Secret Sharing 42

3.3 Constrained Pseudorandom Functions . 46
3.3.1 CPRF for Inner-Product from HSS 46
3.3.2 CPRF for NC1 from HSS . 50

4 Public-KeyPseudorandomCorrelation Functions fromConstrainedPRFs 55
4.1 Chapter Overview . 55

4.1.1 Naor-Reingold PRF⇒ Pseudorandomly Constrained PRF 56

ix

x CONTENTS

4.1.2 Pseudorandomly Constrained PRF⇒ PCF for OT 58
4.1.3 Public-Key PCF for OT from Constrained Naor-Reingold 60

4.2 Constraining the Naor-Reingold PRF . 62
4.2.1 Inner Product Membership CPRF from Naor-Reingold 62
4.2.2 Compressing the keys . 65
4.2.3 On IPM Predicates . 67

4.3 PCF for OT from Pseudorandomly Constrained PRFs 73
4.3.1 A Generic Transformation . 73
4.3.2 Instantiations . 76

4.4 Public-Key PCF for OT from Naor-Reingold 77
4.4.1 Public-Key PCF: Formal De�nition 77
4.4.2 A Public-Key PCF via Bellare-Micali Non-Interactive OT 79
4.4.3 A Better Construction from Paillier-ElGamal 80
4.4.4 Reducing The Public Keys Size to O(n2/3) 87

Conclusion and Open Problems 91

List of publications 95

Bibliography 97

1
Chapter 1

Introduction

Many situations in our daily life necessitate a degree of privacy. Privacy, typically used
as an umbrella term, captures a wide range of requirements that in essence involve the
desire to hide certain information while maintaining the ability to use them for practical
purposes. For instance when using a messaging application, we want our intended
recipient to be able to recover our message (functionality) while ensuring that no one
else has the ability of doing so (privacy). Cryptography addresses this goal by providing
frameworks that mathematically model privacy across di�erent contexts. Consequently,
cryptographic protocols emerge as sets of algorithms designed to guarantee speci�c
notion of privacy while providing certain functionality within given scenarios.
The most basic cryptographic protocols address scenarios where privacy can be provided
through encryption and authentication. Examples of such protocols include secret-key and
public-key encryption, message authentication codes, digital signatures, key exchange
protocols, pseudorandom functions, and one-way functions. These protocols form the
backbone of cryptography. They have numerous applications in real-life scenarios and
serve as a basis for developing more advanced protocols.
As the �eld of cryptography expanded and our foundational tools became more devel-
oped, more advanced protocols emerged that required more than simple encryption and
authentication. These protocols call for more involved security notions and more re�ned
functionalities. Examples of such protocols include functional encryption, homomorphic
encryption, homomorphic secret sharing protocols, and multi-party computation. These
protocols tackle more complex scenarios and can be considered as being more tuned to
address real-world use cases.
As the need for privacy arises across various scenarios in our world, many di�erent pro-
tocols are de�ned in cryptography, each uniquely tailored for a speci�c task. As a result,
zooming out, the landscape of cryptographic protocols contains innumerable abstractions,
each with unique technical details, with very few connections identi�ed among them.
An impactful direction of research is therefore zooming in on these protocols and diving
into their details in order to uncover their subtle relations, even though the connection
might not be immediately apparent. In particular, it yields signi�cant results to focus
on protocols that are promising to imply multiple other ones. Identifying such relations
not only leads to a deep understanding of the protocols but, more importantly, reveals
opportunities for new designs. For instance, if protocol A can serve as a building block for
protocol B, any new and improved construction of protocol A implies a correspondingly

1

1

1. Introduction

enhanced construction for protocol B. In this thesis, we zoom in on a protocol that, while
simple in de�nition, has impressive theoretical and practical implications: constrained
pseudorandom functions.
Constrained pseudorandom functions can be viewed as advanced protocols that enable
the generation of randomness. In the following section, we begin with a brief overview
of randomness generation protocols, and then introduce constrained pseudorandom
functions.

Randomness Generation Protocols

The problem of generating random numbers is a well-known question in computer
science and plays a fundamental role in cryptography. Recall that the primary objective
of cryptography is to provide solutions to hide certain information. Randomness plays a
major role in achieving this goal, as it carries unpredictability. However, while �ipping a
coin in real life seems like an e�ortless task, it is quite the opposite for computers. Since
tasks on computers are performed by deterministic algorithms, it is paradoxical to expect
the numbers generated by an algorithm to be completely random, in particular, to have
no relationship to each other. As a result the concept of Pseudorandom Generators (PRGs)
was introduced by Blum and Micali [BM84]. PRGs are e�cient deterministic functions
that transform a short random string, called the seed, into a larger string that appears to
be random (hence the pre�x “pseudo”). While PRGs require an initial short randomness,
they signi�cantly facilitate the process of generating randomness; one can generate a
short amount of randomness by using physical number generators that utilize natural
sources of entropy like electrical noise in physical systems. A drawback of pseudorandom
generators is that a PRG can expand a given seed, that should be itself random, only once
to a pseudorandom string of a length that is �xed in advance.
Pseudorandom Functions (PRFs) were subsequently introduced by Goldreich, Goldwasser
and Micali [GGM86] as generalizations of PRGs. While PRGs generate pseudorandom
strings, PRFs provide pseudorandom functions. More speci�cally, a PRF is a family of
deterministic function {Fk : X → Y}k∈K with domain X and range Y , where each Fk
uses a master secret key k ∈ K to map di�erent inputs to pseudorandom outputs. More
formally, it is required for a secure PRF that any randomly selected function Fk should
look like a truly random function with the same domain and range from the point of view
of anyone with limited computational power who does not have access to the master
secret key.
Since their introduction, pseudorandom functions have found many applications in
theory and practice of cryptography. As their most basic application, PRFs can be used to
construct simple secret-key encryption (SKE) protocols. Secret-key encryption allows two
parties, that hold a common secret key, to privately communicate over a public channel.
This communication involves the sender encrypting the message using the secret key
and sending the ciphertext to the receiver, who then decrypts it using the same key to
recover the message. SKE can be constructed using PRFs as follows: a secret key in this
scheme consists of a random master secret key k of a PRF F . To encrypt a message m,
one adds the output of a PRF Fk on a random string r to the message m and outputs a
ciphertext (r,m ⊕ Fk(r)). Decryption proceeds by using the secret key k to compute
Fk(r), and removing this value from the second part of the ciphertext to recover m. Such
a ciphertext hides the underlying message m from any third party that does not have
access to the secret key k. This is because m is masked by the value Fk(r) which looks

2

1

random, and therefore cannot be guessed or removed without knowing k.
From a more theoretical perspective, seminal works of [GGM86], [GL89], and [HILL99]
showed the equivalency of PRFs and PRGs to one-way functions (OWFs). One-way
functions are e�ciently-computable functions that are hard to invert and count as
fundamental tools in cryptography. The equivalency of PRFs to one-way functions in
particular implies that PRFs are necessary and su�cient for all private-key cryptography.
Note that PRFs contribute not only to the security of protocols, but also to their e�ciency.
More precisely, instead of storing a large number of random elements, one can store only
a short master secret key of a PRF and generate randomness, on the �y, by evaluating
the PRF on di�erent inputs. Interestingly, another form of randomness, called correlated
randomness, which consists of pairs of random elements that jointly belong to a certain
distribution, has remarkable e�ects on the e�ciency of protocols. Particuarly, correlated
randomness contributes to decreasing the communication in secure computation protocols,
where two or more parties aim to evaluate a function over their private inputs without
revealing more information than what can be derived from the output value. The seminal
work of Beaver [Bea92] showed that, in such scenarios, if the parties have access to
triples of additive shares of some random elements a, b, c such that c = ab, they can
evaluate any function while communicating only 2 �eld elements per multiplication
gate.1 Several studies show that, in general, protocol performance improves signi�cantly
when the parties have access to correlated randomness [DPSZ12, NNOB12, FKOS15,
LPSY15, WRK17, HSS20]. The notion of pseudorandom correlation functions (PCFs) was
subsequently introduced by Boyle, Couteau, Gilboa, Ishai, Kohl and Scholl [BCG+20] as
e�cient means of generating correlated randomness on demand. PCFs allow two parties,
that have two short correlated keys, to locally map di�erent inputs to pseudorandom
correlated strings. We discuss further the notion of PCFs later in this section.

Constrained PRFs. Over a decade ago, a new variant of PRFs was introduced concur-
rently in [BW13, KPTZ13, BGI14] under the name constrained pseudorandom functions
(CPRFs). Constrained PRFs are PRFs that additionally allow the owner of a master secret
key to delegate partial keys for di�erent subsets of inputs. These partial keys can be used
to locally evaluate the function on these subsets while the output of the function still
appears random on inputs outside of these subsets. More formally, a CPRF is a family of
pseudorandom functions {Fk : X → Y}k∈K, where having access to a master secret key
k ∈ K, one can generate a constrained key ckS for a (possibly superpolynomially-large)
subset S ⊂ X . Given a constrained key ckS , one can locally compute the value of Fk(x)
on all inputs x ∈ X i� x ∈ S. More importantly, given a constrained key ckS but not the
master secret key k, the restriction of Fk on inputs x /∈ S should still be a pseudorandom
function.
The simplest variants of constrained PRFs are called puncturable PRFs (PPRFs). These
pseudorandom functions allow the generation of keys that enable evaluating the PRF
on all inputs except for one, referred to as the punctured point. The works of [BW13,
KPTZ13, BGI14] showed that the tree-based PRF construction of [GGM86] yields a simple
puncturable PRF. We brie�y recall this construction. Let G be a pseudorandom generator
that maps λ-bit inputs to 2λ-bit strings, and for any k ∈ {0, 1}λ, let G0(k) and G1(k) be
respectively the �rst and second half of the stringG(k). The GGM pseudorandom function
is de�ned as {Fk : {0, 1}n → {0, 1}λ}k∈{0,1}λ , where Fk(x) = Gxn(Gxn−1(· · · (Gx1(k))))

1Such triples are called Beaver triples.

3

1

1. Introduction

for any bit-string x = x1 · · ·xn ∈ {0, 1}n. This construction essentially de�nes a binary
tree, as illustrated in Figure 1.1 for 3-bit inputs, where the root corresponds to a randomly-
selected PRF key k, and each internal node can be computed by applying the PRG G
to its parent. Finally, each leaf represents the PRF output when evaluated on the label
associated with that leaf. In Figure 1.1, we have Fk(x) = kx. Regarding the security, if
G outputs a pseudorandom string when evaluated on a random seed, we can start by
marking the root that contains a random key, and repeatedly replace the two children of
a marked node by random strings and mark them. Repeating this process n times until
reaching the leaves proves that the outputs of this PRF look random.
This construction admits a straightforward method for generating a punctured key that
can evaluate the function on all inputs but one. Such a punctured key simply blocks
the path from the root to the punctured leaf, and includes the values of some nodes
that are enough for computing all other leaves of the tree. For instance, for the 3-bit-
input construction shown in Figure 1.1, a punctured key that evaluates the PRF on
all inputs except for x = 011 simply consists of the values of the nodes k010, k00 and
k1. Given the values of these nodes, one can compute the value of any leaf except for
x = 011, by recursively applying G on the given nodes. It can be shown that in general,
when considering n-bit inputs, a punctured key consists of values of n nodes. It is also
interesting to note that a punctured key in this construction reveals the punctured point.
For instance, in our example, given the nodes k010, k00 and k1, it is easy to determine that
the punctured point is x = 011.

k

k0

k00

k000 k001

k01

k010 k011

k1

k10

k100 k101

k11

k110 k111

G0(k) G1(k)

G0(k0) G1(k1)

...

Figure 1.1 – Tree-based puncturable PRF construction of GGM for 3-bit inputs

A commonly considered variant of constrained PRFs in the literature is known as circuit
PRFs. Put simply, these are constrained PRFs where a constrained key is associated with
a circuit. For instance a constrained key ckC for a predicate C : X → {0, 1} (called
the constraint) enables the evaluation of the PRF on all inputs x ∈ X i� C(x) = 0.
Throughout this thesis, we mainly discuss this variant.
The simple feature of partial key generation that CPRFs additionally provide compared
to PRFs makes constrained PRFs considerably powerful tools with applications beyond
standard PRFs. In particular, while PRFs can be used to construct basic private-key
encryption schemes, in which a secret key can recover the plaintext in its entirety, CPRFs
o�er private-key encryption with more �ne-grained decryption. More speci�cally, CPRFs
can be straightforwardly used to construct secret-key attribute-based encryption (ABE)
schemes, where a secret-key is associated with a policy and can decrypt a message
associated with an attribute i� the policy of the key is satis�ed by the attribute of the
message. For instance, using an ABE scheme, one can tag their encrypted data with dates,
and generate decryption keys that allows a user to recover the data within speci�c date
ranges. Secret-key ABE can be constructed from PRFs as follows: a secret key consists

4

1

of a random master secret key k of a CPRF F . When encrypting a message m with an
attribute a, one can output a ciphertext (a, b = m ⊕ Fk(a)). Such a ciphertext hides
the message m as long as the key k remains secret. To decrypt, anyone that holds a
constrained key ckC for a policy C such that C(a) = 0, can compute Fk(a), remove this
value from the ciphertext and recover m. Note that given a constrained key ckC′ for a
policy C ′ such that C ′(a) 6= 0, (and not the master secret key k), the value Fk(a) remains
pseudorandom, and therefore such a ciphertext still hides the underlying message m
since it is masked by Fk(a).
In the following, we provide a selection of non-exhaustive examples highlighting other
applications of CPRFs.
Boneh and Waters [BW13] showed that CPRFs can be used to build broadcast encryption
as well as identity-based and policy-based non-interactive key distribution mechanisms.
Sahai and Waters [SW14] showed that puncturable PRFs can serve as the main ingredient
in many applications of indistinguishability obfusecation (iO) such as deniable encryp-
tion, chosen-ciphertext-secure public-key encryption, non-interactive zero-knowledge
proofs, and more. Canetti and Chen [CC17] showed that constraint-hiding CPRFs imply
powerful tools in cryptography. Constraint-hiding CPRFs generate constrained keys
that reveal no information about the constraints.1 In particular, the work of Canetti
and Chen [CC17] shows that such CPRFs imply function-hiding secret-key functional
encryption. The same work also demonstrates that constraint-hiding CPRFs capable
of generating multiple constrained keys, also known as multi-key or collusion-resistant
CPRFs, imply indistinguishability obfusecation (iO). Tsabary [Tsa19] showed how con-
strained PRFs can be used to transform a selectively-secure attribute-based encryption
to an adaptively-secure one.
Due to their various powerful applications, CPRFs have captured the attention of many
cryptographers, leading to many e�orts aimed at constructing CPRFs that support ex-
pressive constraints. These works try to improve state-of-the-art CPRFs in directions
that, in essence, can be categorized as follows:

• Family of circuits: Perhaps the �rst question that arises in constructing CPRFs
is whether we can have constrained PRFs that support expressive families of
constraints. Interesting families of constraints that we focus on in this thesis are
NC1 (the class of logarithmic-depth polynomial-sized circuits), P/poly (the class
of polynomial-sized circuits), and inner-product predicates. For inner-product
predicates, a constrained key ckz can evaluate on any input x i� 〈x, z〉 = 0. It is
worth to note that while constraint-hiding CPRFs for these classes of constraints are
known from the learning with errors (LWE) assumption ([BTVW17, CC17, CVW18,
PS18]), other families of standard assumption have so far failed to construct such
CPRFs.

• Constraint-Hiding: The notion of constraint-hiding CPRFs was �rst introduced
by [BLW17] and indicates whether a constrained PRF generates constrained keys
that hide the underlying constraints. While seemingly simple, adapting existing
constructions to satisfy this property presents non-trivial challenges, even for
basic constraints such as puncturing. For instance, the well-known tree-based
PRF construction of [GGM86] is inherently a puncturable PRF. However, in this

1Constraint-hiding CPRFs are also known as private CPRFs.

5

1

1. Introduction

construction, given a constrained-key, one can e�ciently recover the punctured
point. This notion of privacy regarding constrained keys contributes in various
applications of CPRFs such as searchable encryption, watermarking PRFs, function-
hiding functional encryption, iO, etc., and therefore many works are directed
towards achieving this property. To this date, lattice-based constructions [BTVW17,
CC17, CVW18, PS18, DKN+20] have shown to be more successful in this direction.

• Security (Adaptive vs. Selective): The most general security notions de�ned for
CPRFs, e.g., that of [BW13], require that given a constrained key ckC and oracle
access to the evaluation of a CPRF, an adversary should not be able to distinguish the
output of the CPRF on any unqueried input x, satisfying C(x) = 1, from random.
This notion, called adaptive security, does not impose any restriction on the order
of constrained key and evaluation queries. Achieving adaptive security proves to
be quite challenging within the standard model and without using strong tools
such as iO, particularly for expressive constraints.1 For instance, for inner-product
predicates, the only known construction of adaptive CPRFs in the standard model
is proposed by [DKN+20] from the learning with errors (LWE) assumption. On the
contrary, selective security, restricts the adversary to submit the constrained key
query before having access to the evaluation oracle. This relaxed notion of security
still captures the security needs across di�erent applications, and various methods,
(e.g., complexity leveraging, using a random oracle or correlated-input secure hash
functions, etc.) have been proposed to push it towards adaptive security.

• Collusion Resistance: In the original security de�nition of CPRFs, e.g., in [BW13],
an adversary is allowed to ask for multiple constrained keys for di�erent constraints.
However, it appears to be exceptionally di�cult to construct CPRFs that allow
for generation of multiple (even 2) constrained keys without compromising their
security. To this day, the only known constructions that admit this property, called
collusion resistance, leverage iO [BZ14, BLW17, HKKW19, DKN+20]. We recall
that, due to the work of Canetti and Chen [CC17], constraint-hiding CPRFs that
can generate two constrained keys imply iO.

In Table 1.1, we summarize known CPRFs and their properties for constraints that can
be expressed as P/poly, NC1, or inner-product predicates.

1We refer to standard model as the security model where no idealized assumption (e.g., access to a
random oracle or common reference string, restricting adversary’s access to group representations, etc.) is
considered.

6

1

Setting Constraint Work Adaptive Hiding Multi-Key Comment

Lattice-Based

P/poly
[BV15] 7 7 7

LWE?

[BTVW17]
7 3 7

[PS18]

NC1 [CC17]
7 3 7

[CVW18]
Inner-Product [DKN+20] 3 3 7

Group-Based NC1 [AMN+18] 7 7 7 DDHI‡

Other Tools
P/poly

[BZ14] 7 7 3 (poly) iO
[BLW17] 7 3 3 (poly) iO

[HKKW19] 3 7 3 (poly) iO + ROM§

[DKN+20] 3 7 3 O(1) iO + LWE?

NC1 [AMN+19] 3 7 7 iO + SDA¶

? LWE: Learning with Error Assumption
‡ DDHI: Decisional Di�e-Hellman Inversion Assumption
§ ROM: Random Oracle Model
¶ SDA: Subgroup Decision Assumption

Table 1.1 – State-of-the-art CPRFs for P/poly, NC1 and inner-product predicates

Our Contributions

In this thesis, we discover connections between constrained PRFs and two other
advanced cryptographic tools: (1) homomorphic secret sharing (HSS) protocols, and
(2) pseudorandom correlation functions (PCFs). We propose a simple strategy for con-
structing CPRFs for rich families of constraints using HSS protocols, resulting in several
instantiations of CPRFs from various assumptions. Furthermore, we show how CPRFs
can be leveraged to construct PCFs for oblivious transfer correlations. We instantiate
a public-key PCF, using our transformation, by applying a simple modi�cation to the
well-known PRF construction of Naor-Reingold [NR97].

Homomorphic secret sharing protocols and pseudorandom correlation functions were
introduced within the context of secure computation. Secure computation is an active
branch of cryptography that aims at providing e�cient solutions for scenarios where n
parties want to jointly evaluate a function f on their private inputs x1, . . . , xn without
revealing any information about these inputs other than what might be implied from
f(x1, . . . , xn). An extensive line of research in secure computation concerns reducing the
cost of communication between parties, and in particular, achieving communication that
is smaller than the size of the circuit. A generic approach for solving this problem is by
using Fully-Homomorphic Encryption (FHE), proposed by [Gen09]. FHE is an encryption
protocol that allows computation over encrypted data. In particular, to securely compute
a function f , Alice and Bob, holding respective inputs x and y, can leverage FHE as
follows: Alice �rst sends an FHE encryption of x to Bob. Next, Bob homomorphically

7

1

1. Introduction

evaluates f(·, y) over the ciphertext received from Alice to get an encryption of f(x, y).
Bob sends back this ciphertext to Alice. Finally, Alice decrypts f(x, y) and publishes the
result. Homomorphic secret sharing and pseudorandom correlation functions can be
considered as two alternative, more-tailored, approaches to this problem.
In the following, we provide a brief introduction of these tools, followed by our results
regarding each of them.

Homomorphic Secret Sharing & Constrained PRFs

Homomorphic secret sharing protocols, introduced by [BGI16], allow distributed com-
putations over shares of a secret. More precisely, a 2-party HSS protocol for a class of
programs P works as follows: a user, holding a secret s, can “split” s and generate two
shares I0, I1 that individually hide s.1 Each share is then sent to a server. Given Ib and
a program P ∈ P , server b can run an evaluation algorithm over the given share and
generate an output yb, where b ∈ {0, 1}. Importantly, these two output shares should
form additive shares of P (s), i.e., y0−y1 = P (s). Homomorphic secret sharing gives rise
to an alternative solution for secure computation with communication cost independent
of the circuit size. Alice and Bob, with private inputs x and y, can use HSS as follows
to compute f(x, y): They �rst locally compute shares of their private inputs and send
one part of these shares over a public channel to each other. Note that since shares of
x and y are independent of f , the communication cost is una�ected by the circuit size.
Next, They each locally compute shares of f(x, y) by homomorphically evluating either
f(x, ·) (Bob) or f(·, y) (Alice) over the received shares. It is then enough for Alice and
Bob to combine their shares and recover the value of f(x, y). HSS protocols have found
applications in secure computation with silent preprocessing [BCG+17, OSY21].2

Our Results. In this thesis, we show a new and surprising application of homomorphic
secret sharing protocols towards constructing constrained PRFs. More precisely, we
show how HSS schemes can be used to construct CPRFs for inner-product and NC1

predicates. This transformation in particular leads to instantiations from (separate)
di�erent assumptions thanks to recent developments in HSS [RS21, OSY21, ADOS22].
Our results are obtained through the following steps:

1. Introducing “Programmable” extensions of HSS
In a �rst step, we identify two natural extensions of homomorphic secret sharing
that can be leveraged to build constrained PRFs. We term these extensions homo-
morphic secret sharing with simulatable memory values and staged homomorphic
secret sharing. At a high level, both notions capture the ability to perform some
limited form of programming of HSS shares, i.e., to construct one of the two HSS
shares of a secret x before knowing x.
Importantly, we observe that most HSS constructions from the literature already
satisfy the de�nition of these extensions. Thus, these extensions already exist from
various assumptions.

1These shares are not required to be additive shares of the secret; instead, they represent some encoding
of s.

2This model is explained in the paragraph discussing pseudorandom correlation functions

8

1

2. Transformations from “Programmable” HSS to CPRFs
In this step, we discover two transformations that link our HSS extensions to con-
strained PRFs. Speci�cally, we show how an HSS scheme with simulatable memory
values can be transformed into a CPRF that admits inner-product predicates. And,
we show how a staged-HSS scheme can be used to construct a CPRF supporting
the class of NC1 predicates.

Plugging in existing constructions of our HSS extensions to these transformations leads
to the following statement:

Theorem 1.1 (informal). Assuming any of the following assumptions:

• the Decisional Composite Residuosity (DCR) assumption,

• the hardness of the Joye-Libert encryption scheme,

• the Decisional Di�e-Hellman (DDH) and Decisional Cross Group Di�e-Hellman
(DXDH) assumptions over class groups,

• the Hard Subgroup Membership assumption over class groups,

• the Learning with Errors (LWE) assumption with super-polynomial modulus-to-noise
ratio,

there exist (1-key, selectively secure) constraint-hiding CPRFs for inner product, and (1-key,
selectively secure) CPRFs for NC1.

Our results signi�cantly expand the set of assumptions known to imply CPRFs for
rich classes of constraints. In particular, our CPRF for NC1 from DCR yields the �rst
construction of a CPRF for a rich class of constraints from a well-established standard
assumption beyond LWE-based constructions.
The technical overview of these results is provided in Section 3.1.

Pseudorandom Correlation Functions & Constrained PRFs

Pseudorandom correlation functions were introduced in the context of a popular paradigm
in secure computation, called the preprocessing model. This approach builds on the
impact of correlated randomness on the e�ciency of protocols. More speci�cally, in
the preprocessing model, a secure computation protocol is split into two phases: (1) a
preprocessing phase that is run ahead of time and independently of the inputs and the
circuit. In this phase, Alice and Bob engage in a process to generate long, correlated
random strings. (2) An online phase, where Alice and Bob use the correlated randomness
generated in the previous phase in order to run a fast protocol.
A correlated random pair consists of two values that independently look random and
that are correlated to each other as speci�ed by a joint distribution. For instance, a useful
form of correlation, called oblivious transfer (OT) consists of pairs (y0, y1) of the form
y0 = (r0, r1), where r0, r1

$← {0, 1}m are two random strings, and y1 = (b, rb), where
b $← {0, 1} is a random bit. The seminal work of [GMW87], known as the GMW protocol,
showed that if two parties have access to O(n) instances of random OT-correlated pairs,
they can compute any circuit of size n while communicating as little as only four bits
per AND gate.

9

1

1. Introduction

Pseudorandom correlation generators (PCGs) [BCG+19] and pseudorandom correlation
functions (PCFs) [BCG+20] were introduced as means of silently generating correlated
pseudorandom strings in the preprocessing phase. More precisely, using a pseudorandom
correlation generator, two parties receive two short correlated seeds, which they can
expand locally, and only once, in order to generate long correlated strings that look like
a random sample from the target correlation. Pseudorandom correlation functions can
be viewed as generalizations of PCFs (similar to how PRFs generalize PRGs), where two
parties, having two short correlated keys, called evaluation keys, can locally map multiple
common inputs to pseudorandom correlated strings.
A PCF is said to be public-key if it allows non-interactive generation of the evaluation
keys. This additional feature contributes to the usability of secure computation, especially
over large-scale networks, where each pair of nodes might at some point want to run
a fast secure computation; using a public-key PCF they don’t require any prior setup
for generating correlated pairs, and can therefore spontaneously engage in a secure
computation.

Our Results. In this thesis we show how CPRFs can be used to construct PCFs for
oblivious transfer correlations. In particular, we show how we can obtain e�cient public-
key PCFs for oblivious transfer correlations from a modi�ed version of the Naor-Reingold
PRF [NR97] that we call Constrained Naor-Reingold. Our results are obtained through the
following steps:

1. Naor-Reingold PRF⇒ Pseudorandomly Constrained PRF
In the �rst step, we show that applying a slight modi�cation to the Naor-Reingold
PRF yields a constrained PRF for the class of inner-product membership (IPM)
predicates. An IPM predicate C is associated with a vector z and a set S and
satis�es C(x) = 0 i� 〈x, z〉 ∈ S.
We observe that the class of IPM predicates captures interesting predicates including
puncturing, and, more importantly for our work, some weak PRF candidates from
the literature. A weak PRF is an e�cient function whose outputs look random on
random inputs (contrary to PRFs that are required to look random on arbitrary
inputs). This observation results in obtaining a construction of constrained PRFs
that admit weak PRFs as constraints. We refer to these CPRFs as pseudorandomly
constrained PRFs.

2. Pseudorandomly Constrained PRFs⇒ PCFs for OT Correlations
In this step, we show that PCFs for OT correlations can be constructed from pseu-
dorandomly constrained PRFs through a simple transformation. We also prove
that the resulting PCFs satisfy the notion of precomputability which captures the
setting where one of the two parties can locally generate a PCF evaluation key and
precompute its outputs even before knowing the identity of the other party.
Combining this transformation with the previous step yields a PCF for OT correla-
tions from the Naor-Reingold PRF.

3. Public-Key PCF for OT from Constrained Naor-Reingold
Finally, we show that the construction of PCF for OT correlations, obtained in the
previous step, can be modi�ed to allow non-interactive generation of evaluation
keys. This results in a very e�cient public-key PCF construction from standard
hardness assumptions.

10

1

The technical overview of these results is provided in Section 4.1.

Related Publications

The content of this thesis is based on the following two publications.

[CMPR23] Geo�roy Couteau, Pierre Meyer, Alain Passelègue, and Mahshid Riahinia.
Constrained pseudorandom functions from homomorphic secret sharing. In
EUROCRYPT 2023.

[BCM+24] Dung Bui, Geo�roy Couteau, Pierre Meyer, Alain Passelègue, and Mahshid
Riahinia. Public-key silent ot and more from constrained Naor-Reingold. To
appear in EUROCRYPT 2024.

Other Results

In addition to the contributions described earlier, two other results were obtained during
the �rst year of my doctoral studies. These results concern the following topics. We
brie�y introduce the scope of each work and explain our contributions.

Non-Committing Encryption. Non-committing encryption (NCE), introduced by
[CFGN96], is an encryption tool initially aimed at o�ering security against adaptive adver-
saries in multi-party computation (MPC) protocols. In the adaptive setting, an adversary
can corrupt parties’ internal states at any time during the execution of the protocol.
This on-the-�y corruption allows the adversary to adapt its strategy, in particular, to the
messages exchanged between parties. Simply put, an NCE scheme allows one to generate
a “dummy” ciphertext that can be later opened to an arbitrary message. Therefore, using
NCE in MPC protocols allows us to fool adaptive adversaries by revealing corrupted
parties’ internal states as arbitrary messages while maintaining their consistency with
public transcript of the protocol.

We present new constructions of NCE with constant ciphertext rate (separately) from
the learning with errors (LWE), the decisional Di�e-Hellman (DDH), or the subgroup
decision (SD) assumptions.

Our work follows the approach proposed by [BBD+20], where the authors introduce a
bridge primitive, called packed encryption with partial equivocality (PEPE), that implies
NCE with only a constant factor loss in the ciphertext rate. We improve the state-of-the-art
NCE by proposing three new constructions of rate-1 PEPE: (1) from LWE with ponlynomial
modulus, (2) from DDH, and (3) from SD assumption. Our SD-based construction requires
a trusted setup in order to generate the composite order group (common reference string
model). However, we observe that the trusted setup requirement appears to arise in any
PEPE construction based on the hardness of factoring as long as no individidual party
should learn the factorization.

[LPR22b] Benoît Libert, Alain Passelègue, and Mahshid Riahinia. New and improved
constructions for partially equivocable public key encryption. In SCN 2022.

11

1

1. Introduction

PointProofs. PointProofs is an e�cient vector commitment (VC) scheme introduced
by [GRWZ20]. Vector commitments allow a user to commit to a vector of messages, all at
once, by generating a short commitment. Later, the commitment can be succinctly opened
on arbitrary positions, without revealing any information about other unopened coordi-
nates. Vector commitments allow reducing both storage (by storing a single commitment
instead of a vector of commitments) and bandwidth (thanks to the ability of succinctly
opening individual positions) in practical applications. PointProofs were introduced as
vector commitments that additionally allow non-interactive proof aggregations. In other
words, in PointProofs, one can aggregate proofs (of the same committed vector or across
di�erent commitments) into a single proof. This property makes PointProofs specially
useful for distributed applications, such as blockchain propagation.

We provide a new security analysis of PointProofs, which relies on the Generalized
Forking Lemma [BCJ08] and Local Forking Lemma [BDL19]. Using these tools, we prove
that PointProofs is binding in the random oracle model, under the n-Di�e-Hellman
exponent (n-DHE) assumption.

The binding property of a VC requires that no e�cient adversary can generate a com-
mitment that can be opened to two di�erent values at the same position. The original
proof of [GRWZ20] shows that PointProofs are binding in the algebraic group model
(AGM) as well as random oracle model under the weak n-bilinar Di�e-Hellman exponent
(n-wBDHE) assumption. Algebraic group model is an idealized security model, where an
adversary that outputs a group element z is required to also output a vector of exponents
(a1, . . . , an) such that z = ∏n

i=1 L
ai
i , for known group elements L1, . . . , Ln. In our work,

we get rid of AGM, and prove the binding property of PointProofs under the n-DHE
assumption (which is implied by the n-wBDHE assumption), only in the random oracle
model.

[LPR22a] Benoît Libert, Alain Passelègue, and Mahshid Riahinia. PointProofs, revisited.
In ASIACRYPT 2022.

12

2

Chapter 2

Preliminaries

Contents
2.1 Basic Cryptographic Tools . 13

2.1.1 Notation . 13
2.1.2 Idealized Security Models . 14
2.1.3 Hardness Assumptions . 14
2.1.4 Basic Protocols . 17
2.1.5 Constructions . 18

2.2 Constrained Pseudorandom Functions 21

2.2.1 Pseudorandom Functions . 21
2.2.2 Constrained Pseudorandom Functions 22

2.3 Homomorphic Secret Sharing . 24

2.3.1 RMS Programs . 24
2.4 Pseudorandom Correlation Functions 25

2.4.1 Reverse-Sampleable Correlations 25
2.4.2 Pseudorandom Correlation Functions 25

2.1 Basic Cryptographic Tools

2.1.1 Notation
In this thesis we use the following notations that are for the most part consistent with
established terminology in the cryptography literature.

- Security Parameter: We use λ to denote the security parameter.
- Sets: For a natural integer n ∈ N, the set {1, . . . , n} is denoted by [n].
- Vectors: We mostly use bold lowercase letters (e.g., r) to denote vectors. For a vector
r = (r1, . . . , rn), the vector (gr1 , grn) is sometimes denoted by gr.
- Algorithms: We write poly(λ) to denote an arbitrary polynomial function in λ. We
denote by negl(λ) a negligible function in λ, which is a function that is asymptotically

13

2

2. Preliminaries

smaller than the inverse of any polynomial function. PPT stands for probabilistic
polynomial-time.
- Sampling: For a �nite set S, we write x $← S to denote that x is sampled uniformly
at random from S. For an algorithm A, we denote by y ← A(x) the output y after
running A on input x.
- Indistinguishablity: We say that two distributionsD = {Dλ}λ∈N and E = {Eλ}λ∈N
de�ned over a set X = {Xλ}λ∈N are

- computationally indistinguishable if for any λ ∈ N and any PPT algorithm
A, it holds that∣∣∣Pr

[
A(1λ, x) = 1

∣∣∣x← Dλ]− Pr
[
A(1λ, x) = 1

∣∣∣x← Eλ]∣∣∣ ≤ negl(λ),

in which case we write D ≈c E .

- statistically indistinguishable if for any λ ∈ N and any unbounded adversary
it holds that∣∣∣Pr

[
A(1λ, x) = 1

∣∣∣x← Dλ]− Pr
[
A(1λ, x) = 1

∣∣∣x← Eλ]∣∣∣ ≤ negl(λ),

in which case we write D ≈s E .
We can equivalently de�ne the statistical indistinguishability by stating that the
statistical distance between Dλ and Eλ is a negligible function of λ:

∆(Dλ, Eλ) = 1
2
∑
a∈Xλ
|Pr Dλ(a)− Pr Eλ(a)| ≤ negl(λ)

-Terminology: In this thesis, we use the term e�cient interchangeably with polynomial-
time. For example, when we refer to “an e�cient algorithm”, we mean “an algorithm
that terminates within polynomial time”, and when we say “the two distributions
cannot be distinguished e�ciently”, we imply that “the two distributions cannot be
distinguished within polynomial time with more than negligible probability”.

2.1.2 Idealized Security Models
Random Oracle Model
The random oracle model (ROM) is an abstract idealized model for analyzing security
of cryptographic protocols. In this model, a protocol is proved to be secure under the
assumption that all parties that are involved in the security game of the protocol, have
oracle access to a global truly random function, called the random oracle. When these
protocols are implemented in practice, the random oracle is replaced by a suitable hash
function.

2.1.3 Hardness Assumptions
In this thesis we base the security of protocols on di�erent cryptographic assumptions.
This method is commonly used in cryptography to prove that the security of a given
protocol is maintained as long as a certain mathematical problem (referred to as hard-
ness assumption) cannot be solved in polynomial time. In this section, we go over the
assumptions used in this thesis and brie�y discuss their validity.

14

2

2.1. Basic Cryptographic Tools

Decisional Composite Residuosity assumption

This assumption is de�ned over the multiplicative group Z∗N2 , where N = pq for prime
number p and q. The group Z∗N2 can be written as a product of two subgroups, i.e., Z∗N2

∼=
H×NRN , where H = {(1+N)i : i ∈ [N]} is of orderN , and NRN = {xN : x ∈ Z∗N2} is
the subgroup of N -th residues that has order φ(N). The decisional composite residuosity
assumption states that a random element of Z∗N2 cannot be distinguished from a random
element of NRN in polynomial time.
More precisely, let SampleModulus be a polynomial-time algorithm that on input the
security parameter λ, outputs (N, p, q), where N = pq for λ-bit primes p and q. The
decision composite residuosity problem is as follows:

De�nition 2.1 (Decisional Composite Residuosity (DCR) assumption, [Pai99]). Let λ be
a security parameter. We say that the Decision Composite Residuosity (DCR) problem is
hard relative to SampleModulus if

(N, x) ≈c (N, xN),

where (N, p, q) $← SampleModulus(1λ), x $← Z∗N2 , and xN is computed modulo N2.
The DCR assumption is the assumption that there exists an algorithm SampleModulus
relative to which the DCR problem is hard.

Decisional Di�e-Hellman Assumption and Variants

The Di�e-Hellman problem and its variants are built upon the discrete-logarithm problem.
The discrete-logarithm problem is said to be hard over a cyclic group G = 〈g〉 of order
p, if given a random element h $← G, there exist no algorithm running in polynomial
time that can output x ∈ Zp such that h = gx. The decisional Di�e-Hellman assumption
states that given two random element gx and gy, an element of the form gxy cannot be
e�ciently distinguished from a random element gz , where z $← Zp.
More precisely, let GenPar be a polynomial-time algorithm that on input the security
parameter λ, outputs (G, g, p), where G is a cyclic group of prime order p generated by
g.

De�nition 2.2 (Decisional Di�e-Hellman (DDH) Assumption, [DH76]). Let λ be a
security parameter. We say that the decisional Di�e-Hellman (DDH) problem is hard
relative to GenPar if

(G, p, g, ga, gb, gab) ≈c (G, p, g, ga, gb, gc),

where (G, g, p) $← GenPar(1λ) and (a, b, c) $← Zp.
The DDH assumption is the assumption that there exists an algorithm GenPar relative to
which the DDH problem is hard.

Random Self-Reducibility of DDH. An important property of the DDH problem,
proved by [NR97] is its random self-reducibility. In general, a problem is said to be random
self-reducible if solving any instane of the problem can be e�ciently reduced to solving
a random instance of the problem. The decisional Di�e-Hellman problem is random

15

2

2. Preliminaries

self-reducible since given an instance (G, p, g, A = ga, B = gb, C = gc), one can sample
random elements x, y, z $← Zp and generate a random instance

(G, p, g, A′ = Azgx, B′ = Bgy, C ′ = CzAzyBxgxy).

Note that we have

A′ = gaz+x, B′ = gb+y, C ′ = gcz+azy+bx+xy.

Firstly, since x and y are random elements ofZp, az+x and b+y are also random. Secondly,
when c = ab, we have that C ′ = g(az+x)·(b+y). Otherwise, C ′ = g(az+x)·(b+y)+z(c−ab),
where the exponent is uniformly random since z is a random element of Zp. Therefore,
the transformed instance is uniformly random and can be used to solve the original given
instance.

Power-DDH Assumption
The security of the constructions presented in Chapter 4 are based on an assumption
we term Sparse Power-DDH. This assumption can be viewed as a generalization of the
Power-DDH assumption used in prior works such as [CNs07, AHI11]. In the following
we �rst recall the power-DDH assumption, and then we introduce the sparse power-DDH
assumption.

De�nition 2.3 (Power-DDH Assumption, [CNs07, AHI11]). Let λ be a security parameter.
We say that the power-DDH problem is hard relative to GenPar if for any polynomially-
bounded ` ∈ N, it holds that(

G, p, g, gr, gr2
, . . . , gr

`−1
, gr

`
)
≈c

(
G, p, g, gr, gr2

, . . . , gr
`−1
, gt
)
,

where (G, g, p) $← GenPar(1λ), and r, t $← Z∗p.
The power-DDH assumption is the assumption that there exists an algorithm GenPar
relative to which the power-DDH problem is hard.

De�nition 2.4 (Sparse Power-DDH Assumption). Let λ be a security parameter. We say
that the sparse power-DDH problem is hard relative to GenPar if for any polynomially-
bounded ` ∈ N and S ⊂ [`], it holds that

(
G, p, g, (grs)s∈S, (gr

s)s∈[`]\S
)
≈c

(
G, p, g, (grs)s∈S, (gts)s∈[`]\S

)
,

where (G, g, p) $← GenPar(1λ), and r $← Z∗p, and ts $← Z∗p for all s ∈ [`] \ S.
The sparse power-DDH assumption is the assumption that there exists an algorithm
GenPar relative to which the power-DDH problem is hard.

The sparse power-DDH assumption is a static falsi�able assumption. It generalizes in
a natural way the power-DDH assumption and is easily proven to hold in the generic
group model since all exponents are distinct univariate monomials (e.g., using [BBG05,
Corollary A.3] and observing that it is a special case of the uber-assumption family).

16

2

2.1. Basic Cryptographic Tools

2.1.4 Basic Protocols
Public-Key Encryption

Public-key encryption is an important tool in cryptography that allows two parties to
privately communicate to each other without having agreed on any secrets in advance.
The idea of public-key encryption was proposed by Di�e and Hellman [DH76].

De�nition 2.5 (Public-Key Encryption (PKE)). Let λ ∈ N be a security parameter. A
public-key encryption scheme with message spaceM consists of the following three
polynomial-time algorithms:

• KeyGen(1λ) → (pk, sk): A probabilistic algorithm that on input the security pa-
rameter λ outputs a pair of public-key and secret-key (pk, sk).

• Enc(pk,m) → ct: A probabilistic algorithm that on input a public key pk and a
message m outputs a ciphertext ct.

• Dec(sk, ct) → m: A deterministic algorithm that on input a secret key sk and a
ciphertext ct outputs a message m.

We require a public-key encryption scheme to satisfy the following two properties:

• Correctness. For any security parameter λ ∈ N, and any message m ∈ M, we
have:

Pr
[
Dec(sk,Enc(pk,m)) = m : (pk, sk)← KeyGen(1λ)

]
≥ 1− negl(λ).

• Security against Chosen-Plaintext Attacks (CPA-Security). For any PPT ad-
versary A, we have:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr


b′ = b :

(pk, sk)← KeyGen(1λ)
(m0,m1)← A(pk)
b $← {0, 1}
ctb ← Enc(pk,mb)
b′ ← A(ctb)


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ) .

In this thesis, we use the term semantically-secure interchangeably with CPA-secure.
Semantic security is another notion of security for public-key encryption schemes which
roughly requires that any information that can be e�ciently computed from a ciphertext,
can be e�ciently computed only given the length of the underlying message. Semantic
security is the most natural security de�nition for PKE schemes and can be viewed as
a computational-complexity analogue of Shannon’s perfect secrecy. Goldwasser and
Micali [GM84] showed that CPA security is equivalent to semantic security.

Commitment Schemes

Commitment schemes are tools that, in essence, mathematically simulate a sealed enve-
lope; using a commitment scheme, one can generate a commitment to a message that
reveals no information about the message (similarly to how a sealed envelope hides its
content), and later on, this commitment can be opened only to the committed message
(similarly to how the content of a sealed envelope cannot be changed).

17

2

2. Preliminaries

De�nition 2.6 (Commitment Scheme). Let λ be a security parameter. A commitment
scheme with message spaceM consists of the following four polynomial-time algorithms:

• Setup(1λ)→ pp: A probabilistic algorithm that on input the security parameter λ
outputs public parameters pp.

• Com(pp,m) → (com, aux): A probabilistic algorithm that on input the public
parameters pp and a messagem outputs a commitment com together with auxiliary
information aux.

• Open(pp, com, aux)→ π: A probabilistic algorithm that on input public parameters
pp, a commitment com, and auxiliary information aux, outputs a proof π.

• Verify(pp, com, π,m) → b ∈ {0, 1}: A deterministic algorithm that on input
public parameters pp, a commitment com, a proof π, and a message m outputs a
bit b ∈ {0, 1}.

We require a commitment scheme to satisfy the following properties:

• Correctness of Openings. For all λ ∈ N, and any message m ∈M, we have:

Pr

Verify(pp, com, π,m) = 1:
pp← Setup(1λ)
(com, aux)← Com(pp,m)
π ← Open(pp, com, aux)

 ≥ 1− negl(λ).

• Hiding. For any PPT adversary A and λ ∈ N, we have:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr


b′ = b :

pp← Setup(1λ)
(m0,m1)← A(pp)
b $← {0, 1}
(com, aux)← Com(pp,mb)
b′ ← A(comb)


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ) .

• Binding. For any PPT adversary A and λ ∈ N, the probability that A, on input
pp← Setup(1λ), outputs a tuple (com,m,m′, π, π′), such that

Verify(pp, com, π,m) = Verify(pp, com, π′,m′) = 1 ∧ m 6= m′,

is negligible in λ.

2.1.5 Constructions

In this section we recall the description of the cryptographic schemes from the literature
that are used in this thesis.

18

2

2.1. Basic Cryptographic Tools

KDM-Secure Paillier Cryptosystem

Key-dependent message (KDM) security, is a notion of security for public-key encryption
schemes that captures scenarios where an adversary has access to encryptions of messages
that are functions of the secret key. In the following we recall the KDM-secure Paillier
cryptosystem presented by Brakerski and Goldwasser in [BG10] which is introduced
as a KDM-secure version of the Paillier encryption scheme [Pai99]. The security of
the scheme follows from the DCR assumption. The scheme is parameterized by ` ∈
N (polynomial in λ), and consists of three algorithms (BG.KeyGen,BG.Enc,BG.Dec)
de�ned as in Construction 2.1. We skip the proof of the KDM security of Construction 2.1
and refer to [BG10].

Construction 2.1: KDM-Secure Paillier Cryptosystem, [BG10]

• BG.KeyGen(1λ):

1. Sample (N, p, q)← SampleModulus(1λ).

2. Sample g = (g0, . . . , g`−1) $← NR`
N .

3. Sample d = (d(0), . . . , d(`−1)) $← {0, 1}`.

4. Compute ĝ =
`−1∏
i=0

gd
(i)
i (mod N2).

5. Output pk = (N,g, ĝ) and sk = d.

• BG.Enc(pk, x):

1. Sample r $← ZN .

2. Compute and output ct = (gr0, . . . , gr`−1, ĝ
r · (1 +N)x).

• BG.Dec(sk, ct)

1. Parse ct = (c0, . . . , c`−1, ĉ).

2. Compute c̄ = (
`−1∏
i=0

c−d
(i)

i) · ĉ (mod N2).

3. Compute and output x = (c̄− 1)/N .

Paillier-ElGamal Cryptosystem

The Paillier-ElGamal encryption scheme [CS02, DGS03, BCP03] is de�ned by three
algorithms (PaillierEG.KeyGen,PaillierEG.Enc,PaillierEG.Dec), and in essence, describes
the ElGamal encryption scheme over the multiplicative group Z?N2 , where N = pq. This
scheme is outlined in Construction 2.2. Assuming the DCR assumption (De�nition 2.1),
the Paillier-ElGamal cryptosystem is semantically secure. Observe that Paillier-ElGamal
is a special case of the KDM-secure Paillier cryptosystem of [BG10], where ` = 1.

19

2

2. Preliminaries

Construction 2.2: Paillier-ElGamal Cryptosystem, [CS02, DGS03, BCP03]

• PaillierEG.KeyGen(1λ):

1. Sample g′ $← ZN2 , and let g = (g′)2N (mod N2) .

2. Sample d $← ZN2 .

3. Output pk = (g, gd mod N2), sk = d.

• PaillierEG.Enc(pk, x):

1. Sample r $← ZN , and output ct = (gr, pkr · (1 +N)x).

• PaillierEG.Dec(sk, ct = (ct0, ct1)):

1. Set ct′ ← ct1 · (ct0)−d (mod N2) .

2. Output x = ct′−1
N

.

Pedersen Commitment Scheme

Let p and q be prime numbers such that q|p−1. The Pedersen commitment scheme [Ped92]
is de�ned over the subgroup of quadratic residues of p, QRp = {x2 | x ∈ Zp}. This scheme
consists of four algorithms (Pedersen.Setup,Pedersen.Com,Pedersen.Open,
Pedersen.Verify) described in Construction 2.3. Pedersen commitments are perfectly
hiding, and computationally binding assuming the hardness of the discrete logarithm
problem over Zp.

Construction 2.3: Pedersen Commitment Scheme, [Ped92]

• Pedersen.Setup(1λ):

1. Sample a generator g of QRp.

2. Sample a $← Zq, and set h := ga (mod p).

3. Output pp = (g, h, p, q)

• Pedersen.Com(pp,m ∈ Zq):

1. Sample r $← Zq.

2. Output com = gr · hm (mod p), and aux = (m, r).

• Pedersen.Open(pp, com, aux):

1. Parse aux = (m, r) and output π = (m, r).

• Pedersen.Verify(pp, com, π = (m, r)):

1. Output 1 if com = gr · hm.

20

2

2.2. Constrained Pseudorandom Functions

2.2 Constrained Pseudorandom Functions

2.2.1 Pseudorandom Functions

De�nition 2.7 ((Weak) Pseudorandom Function (wPRF, PRF), [GGM84a, NR95]). Let
λ ∈ N be a security parameter. A (weak) pseudorandom function with domain X =
{Xλ}λ∈N, key space K = {Kλ}λ∈N, and range Y = {Yλ}λ∈N, consists of the following
two polynomial-time algorithms:

• KeyGen(1λ)→ msk: A probabilistic algorithm that on input the security parameter
λ, outputs a master secret key msk ∈ K.

• Eval(msk, x)→ y: A deterministic algorithm that on input the master secret key
msk, and an input value x ∈ X , outputs a value y ∈ Y .

We say that the pair (KeyGen,Eval) is a

- pseudorandom function (PRF) if for any PPT adversary A, it holds that

∣∣∣Pr
[
AEval(msk,·)(1λ) = 1

∣∣∣msk $← KeyGen(1λ)
]
− Pr

[
ARF (·)(1λ) = 1

∣∣∣RF $← F
]∣∣∣ = negl(λ),

where F is the set of all functions with domain X and range Y .

- weak pseudorandom function (wPRF) if for any PPT adversary A and any
polynomially bounded number Q ∈ N, it holds that

((xi,Eval(msk, xi))i∈[Q]

)
:

msk $← KeyGen(1λ)
∀i ∈ [Q] : xi $← X

 ≈c
((xi, yi)i∈[Q]

)
:

∀i ∈ [Q] :
xi

$← X , yi $← Y

 .

De�nition 2.7 captures the PRF security notion that is referred to as the Real-or-Random
security. In De�nition 2.8, we recall the Find-and-Guess security of a pseudorandom
function which is equivalent to the Real-or-Random security up to a multiplicative gap of
O(Q) between the advantage functions, where Q is the number of evaluation queries.

De�nition 2.8 (Find-then-Guess Security). Let λ be a security parameter. A function
F : K ×X → Y is called a secure pseudorandom function if it is e�ciently computable
and the advantage of any PPT adversary A in the following game is negligible:

- Setup. The challenger chooses a random key k $← K and a random bit b $← {0, 1},
and initializes a set S = ∅.

- Pre-Challenge Evaluation Queries. A adaptively sends arbitrary inputs x ∈ X
to the challenger. The challenger computes and returns Fk(x) toA. It also updates
S ← S ∪ {x}.

21

2

2. Preliminaries

- Challenge Phase. A sends an input x∗ ∈ X as its challenge query to the chal-
lenger with the restriction that x∗ /∈ S. If b = 0, then the challenger computes
y∗ ← Fk(x∗). If b = 1, then the challenger samples a random element y∗ $← Y . It
then returns y∗ to A.

- Post-Challenge Evaluation Queries. A continues sending arbitrary inputs x ∈
X to the challenger with the restriction that x 6= x∗, and receives Fk(x).

- Guess. A outputs a bit b′ ∈ {0, 1}.

Awins if b′ = b. We de�ne the advantage ofA in winning the game as |2 · Pr[A wins]− 1|,
where the probability is over the internal coins of A and the challenger.

Remark 2.1 (Pseudorandom Predicate). We use the term pseudorandom predicate to refer
to a pseudorandom function whose output range is limited to binary values, i.e., Y = {0, 1}.

2.2.2 Constrained Pseudorandom Functions

De�nition 2.9 (Constrained Pseudorandom Functions). Let λ be a security parameter.
A Constrained Pseudorandom Function (CPRF) with domain X = {Xλ}λ∈N, key space
K = {Kλ}λ∈N, and range Y = {Yλ}λ∈N, that supports a class of circuits C = {Cλ}λ∈N,
where each Cλ ∈ Cλ has domain Xλ and range {0, 1}, consists of the following four
polynomial-time algorithms:1

• KeyGen(1λ)→ (pp,msk): The master key generation algorithm is a probabilistic
algorithm that on input the security parameter λ, outputs a public parameter pp
and a master secret key msk ∈ K.

• Eval(pp,msk, x)→ y: The evaluation algorithm is a deterministic algorithm that
on input the public parameter pp, the master secret key msk, and an input x ∈ X ,
outputs a value y ∈ Y .

• Constrain(msk, C) → ckC : The constrained key generation algorithm is a prob-
abilistic algorithm that on input the master secret key msk, and a circuit C ∈ C,
outputs a constrained key ckC .

• CEval(pp, ckC , x) → y: The constrained evaluation algorithm is a deterministic
algorithm that on input the public parameter pp, a constrained key ckC , and an
input x ∈ X , outputs a value y ∈ Y .

Correctness. For any security parameter λ, any constrain C ∈ C, and any input x ∈ X
such that C(x) = 0, we have:

Pr
Eval(pp,msk, x) 6= CEval(pp, ckC , x) :

(msk, pp)← KeyGen(1λ)
ckC ← Constrain(msk, C)

 ≤ negl(λ).

1-Key Selective Security. We say that a CPRF is 1-key selectively secure if the advantage
of any PPT adversary A in the following game is negligible:

1In this thesis, we drop the subscript λ when it is clear from context.

22

2

2.2. Constrained Pseudorandom Functions

- Setup: The challenger runs (pp,msk) ← KeyGen(1λ), initializes a set Seval = ∅,
and chooses a random bit b $← {0, 1}. It then sends pp to A.

- Selective Choice of Constraint: The adversary chooses a (single) circuit C ∈ C
and sends it to the challenger.

- ConstrainedKeyGeneration: The challenger computes ckC ← Constrain(msk, C)
and returns the constrained key ckC to A.

- Pre-Challenge Evaluation Queries: A can adaptively send arbitrary input val-
ues x ∈ X to the challenger. The challenger computes y ← Eval(pp,msk, x) and
returns y to A. It also updates Seval ← Seval ∪ {x}.

- Challenge Phase: A sends an input x∗ ∈ X as its challenge query to the chal-
lenger with the restriction that x∗ /∈ Seval and C(x∗) 6= 0. If it holds that b = 0,
then the challenger computes y∗ ← Eval(pp,msk, x∗). Otherwise, if b = 1, the
challenger samples a random value y∗ $← Y . Finally, the challenger returns y∗ to
A.

- Post-Challenge Evaluation Queries: A continues the queries as before, with
the restriction that it cannot query x∗ as an evaluation query.

- Guess: A outputs a bit b′ ∈ {0, 1}.

1-Key Selective Constraint-Hiding. We say that a CPRF is selectively 1-key constraint-
hiding if the advantage of any PPT adversary A in the following game is negligible:

- Setup: The challenger runs (pp,msk)← KeyGen(1λ), and chooses a random bit
b $← {0, 1}. It then sends pp to A.

- Selective Choice of Constraint: The adversary chooses a (single) pair of circuits
(C0, C1) ∈ C and sends the pair to the challenger.

- ConstrainedKeyGeneration: The challenger computes ckb ← Constrain(msk, Cb),
and returns ckb to A.

- Evaluation Queries: A can query the evaluation algorithm on arbitrary inputs
x ∈ X , with the restriction that C0(x) = C1(x). On such inputs, the challenger
computes and returns y ← Eval(pp,msk, x) to A.

- Guess: A outputs a bit b′ ∈ {0, 1}.

In both of the games described above, A wins if b′ = b. We also de�ne the advantage of
A in winning a game as |2 · Pr[A wins]− 1|, where the probability is over the internal
coins of A and the challenger.

No-Evaluation Security. 1-key selective no-evaluation security (resp. 1-key selective
no-evaluation constraint-hiding) is de�ned similarly with the extra restriction that the
adversary cannot issue any pre-challenge or post-challenge query (resp. any evaluation
query).

23

2

2. Preliminaries

2.3 Homomorphic Secret Sharing
We start by recalling the standard de�nition of homomorphic secret sharing, as well as
of Restricted Multiplication Straight-line (RMS) programs which is the common model
of computation in the context of HSS.

De�nition 2.10 (Homomorphic Secret Sharing). Denote by λ a security parameter. A Ho-
momorphic Secret Sharing (HSS) scheme for a class of programs P which is de�ned over
a ringR and has input space I ⊆ R consists of three PPT algorithms (Setup, Input,Eval)
such that:

• Setup(1λ) → (pk, (ek0, ek1)): On input the security parameter λ, the setup algo-
rithm outputs a public key pk and a pair of evaluation keys (ek0, ek1).

• Input(pk, x)→ (I0, I1): On input the public key pk and an input x ∈ I , the input
algorithm outputs a pair of input information (I0, I1).

• Eval(σ, ekσ, Iσ = (I(1)
σ , . . . , I(ρ)

σ), P) → yσ: On input a party index σ ∈ {0, 1}, an
evaluation key ekσ , a vector of ρ input values (I(1)

σ , . . . , I(ρ)
σ), and a program P ∈ P ,

the evaluation algorithm outputs the party σ’s corresponding share of the output
yσ.

We require an HSS scheme to satisfy the following two properties:

• Correctness. For any security parameter λ ∈ N, and any program P ∈ P with
input space I ⊆ R, we have:

Pr
[
y0 − y1 = P (x(1), . . . , x(ρ))

]
≥ 1− negl(λ) ,

where the probability is taken over (pk, (ek0, ek1)) ← Setup(1λ),
(I(i)0 , I

(i)
1) ← Input(pk, x(i)) for i ∈ [ρ], and yσ ← Eval(σ, ekσ, (I(1)

σ , . . . , I(ρ)
σ), P),

for σ ∈ {0, 1}.

• Security. For any PPT adversaries A,A′, and any bit σ ∈ {0, 1} the following
value should be negligible in λ:∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr

b
′ = b :

(x0, x1, state)← A(1λ)
(pk, (ek0, ek1))← Setup(1λ)
b $← {0, 1}
(I0, I1)← Input(xb)
b′ ← A′ (state, pk, ekσ, Iσ)

−
1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣
2.3.1 RMS Programs
We now recall the de�nition of Restricted Multiplication Straight-line (RMS) programs.
RMS programs form a class of programs which encompasses branching programs of
polynomial-size and therefore NC1 circuits. In an RMS program, the multiplication is
restricted to happen between an input value and an intermediate value of the computation
(so-called “memory” value).

De�nition 2.11 (RMS Programs). An RMS program with magnitude bound B is de�ned
as a sequence of the instructions as follows:

24

2

2.4. Pseudorandom Correlation Functions

- ConvertInput(Ix)→ Mx: Loads an input x into memory.

- Add(Mx,My)→ Mx+y: Adds two memory values.

- Mul(Ix,My)→ Mx·y: Multiplies an input value and a memory value to produce a
memory value of their product.

- Output(Mx, n)→ x mod n: Outputs a memory value w.r.t. a modulus n < B.

2.4 Pseudorandom Correlation Functions

2.4.1 Reverse-Sampleable Correlations

De�nition 2.12 (Reverse-Sampleable Correlation). Let 1 ≤ `0(λ), `1(λ) ≤ poly(λ) be
output-length functions. Let Y be a probabilistic algorithm that, on input 1λ, returns a
pair of outputs (y0, y1) ∈ {0, 1}`0(λ) × {0, 1}`1(λ), de�ning a correlation on the outputs.
We say that Y de�nes a reverse-sampleable correlation if there exists a probabilistic
polynomial time algorithm RSample which takes as input 1λ, σ ∈ {0, 1}, and yσ ∈
{0, 1}`σ(λ), and outputs y`1−σ(λ)

1−λ , such that for all σ ∈ {0, 1} the following distributions
are statistically close:

{(y0, y1) : (y0, y1) $← Y(1λ)}, and
{(y0, y1) : (y′0, y′1) $← Y(1λ), yσ ← y′σ, y1−σ ← RSample(1λ, σ, yσ)} .

De�nition 2.13 (OT Correlation). A (1-out-of-2, bit) OT correlation can be de�ned as
being sampled as a pair ((r0, r1), (b, rb)), where r0, r1, b

$← {0, 1}.

Remark 2.2 (OT Correlation is Reverse-Sampleable). A (1-out-of-2, bit) OT correlation
is reverse-sampleable. Indeed, observe that the reverse-sampling can be performed as follows.
RSample(1λ, σ, yσ) : If σ = 0, parse yσ as yσ = (r0, r1), sample b $← {0, 1}, and output
(b, rb); otherwise (i.e. if σ = 1) parse yσ as yσ = (b, r), sample r′ $← {0, 1}, and output
((1− b) · r + b · r′, b · r + (1− b) · r′).

2.4.2 Pseudorandom Correlation Functions
We recall the de�nition of pseudorandom correlation functions for reverse-sampleable
correlations. We consider two di�erent security levels of PCFs: weak PCFs (wPCF) and
strong PCFs (sPCF). Analogously to weak PRFs, weak PCFs guarantee security given
access only to evaluations on uniformly random and independent inputs, while strong
PCFs guarantee security for arbitrary chosen inputs. Note that contrary to PRFs, weak
PCFs are the notion that is commonly considered in the literature.

2.4.2.1 Weak Pseudorandom Correlation Functions (wPCF).

We start by de�ning the notion of a weak pseudorandom correlation functions.

De�nition 2.14 ((Weak) Pseudorandom Correlation Function (wPCF), [BCG+20, Def-
inition 4.3]). Let Y be a reverse-sampleable correlation with output length functions
`0(λ), `1(λ) and let λ ≤ n(λ) ≤ poly(λ) be an input length function. Let RSample be a
reverse sampling algorithm of Y . Let (wPCF.Gen,wPCF.Eval) be a pair of algorithms
with the following syntax:

25

2

2. Preliminaries

• wPCF.Gen(1λ) is a probabilistic polynomial time algorithm that on input 1λ, out-
puts a pair of keys (k0, k1); we assume that λ can be inferred from the keys.

• wPCF.Eval(σ, kσ, x) is a deterministic polynomial time algorithm that on input
σ ∈ {0, 1}, key kσ and input value x ∈ {0, 1}n(λ), outputs a value yσ ∈ {0, 1}`σ(λ).

We say that (wPCF.Gen,wPCF.Eval) is a pseudorandom correlation function (PCF) for
Y , if the following conditions hold:

• (Weakly) pseudorandom Y-correlated outputs. For every non-uniform adver-
sary A of size B(λ), it holds that for all λ ∈ N,

|Pr[Expw-pr
A,N,0(λ) = 1]− Pr[Expw-pr

A,N,1(λ) = 1]| ≤ ε(λ)

where Expw-pr
A,N,b (b ∈ {0, 1}) is de�ned as in Figure 2.1. In particular, the adversary

is given access to N(λ) samples.

Experiment (Weakly) Pseudorandom Correlated Outputs

Exppr
A,N,0(λ) :

(k0, k1)← PCF.Gen(1λ)

For i = 1, . . . , N(λ) :

x(i) $← {0, 1}n(λ)

(y(i)
0 , y

(i)
1)←↩ Y(1λ)

b← A(1λ, (x(i), y
(i)
0 , y

(i)
1)i∈[N(λ)])

Output b

Exppr
A,N,1(λ) :

(k0, k1)← PCF.Gen(1λ)

For i = 1, . . . , N(λ) :

x(i) $← {0, 1}n(λ)

y
(i)
0

$← wPCF.Eval(0, k0, x
(i))

y
(i)
1

$← wPCF.Eval(1, k1, x
(i))

b← A(1λ, (x(i), y
(i)
0 , y

(i)
1)i∈[N(λ)])

Output b

Figure 2.1 – (Weakly) Pseudorandom Y-correlated outputs of a (w)PCF

• Security. For every σ ∈ {0, 1} and every non-uniform adversaryA of sizeB(λ), it holds
that for all λ ∈ N,

|Pr[Expw-sec
A,N,σ,0(λ) = 1]− Pr[Expw-sec

A,N,σ,1(λ) = 1]| ≤ ε(λ)

where Expw-sec
A,N,σ,b (b ∈ {0, 1}) is de�ned as in Figure 2.2. In particular, the adversary is

given access to N(λ) samples (or simply N if there is no ambiguity).

26

2

2.4. Pseudorandom Correlation Functions

Experiment (Weak) PCF Security

Expw-sec
A,N,σ,0(λ) :

(k0, k1)← PCF.Gen(1λ)

For i = 1, . . . , N(λ) :

x(i) $← {0, 1}n(λ)

y(i)
σ ← wPCF.Eval(σ, kσ, x(i))
y

(i)
1−σ ← RSample(1λ, σ, y(i)

σ)

b← A(1λ, σ, kσ, (x(i), y
(i)
1−σ)i∈[N(λ)])

Output b

Expw-sec
A,N,σ,1(λ) :

(k0, k1)← PCF.Gen(1λ)

For i = 1, . . . , N(λ) :

x(i) $← {0, 1}n(λ)

y
(i)
1−σ ← wPCF.Eval(1− σ, k1−σ, x

(i))

b← A(1λ, σ, kσ, (x(i), y
(i)
1−σ)i∈[N(λ)])

Output b

Figure 2.2 – Security of a wPCF

2.4.2.2 Strong Pseudorandom Correlation Functions.

A strong PCF is syntactically de�ned in the same way as a weak PCF, but it instead
satis�es stronger notions of pseudorandom Y-correlated outputs and PCF security. For
simplicity, we only provide these modi�ed properties.

We say that (sPCF.Gen, sPCF.Eval) is an (N,B, ε)-secure strong pseudorandom correla-
tion function (sPCF) for Y , if the following conditions hold:

• Strongly pseudorandom Y-correlated outputs. For every non-uniform adver-
sary A of size B(λ) asking at most N(λ) queries to the oracle Ob(·) (as de�ned in
Figure 2.3), it holds that for all λ ∈ N,

|Pr[Exps-pr
A,0(λ) = 1]− Pr[Exps-pr

A,1(λ) = 1]| ≤ ε(λ)

where Exps-pr
A,b (b ∈ {0, 1}) is de�ned as in Figure 2.3.

• Strong Security. For every σ ∈ {0, 1} and every non-uniform adversaryA of size
B(λ) asking at most N(λ) queries to the oracle Ob(·) (as de�ned in Figure 2.4), it
holds that for all λ ∈ N,

|Pr[Exps-sec
A,0,σ(λ) = 1]− Pr[Exps-sec

A,1,σ(λ) = 1]| ≤ ε(λ)

where Exps-sec
A,σ is de�ned as in Figure 2.4. We recall that RSample is the algorithm

for reverse sampling Y as in De�nition 2.12.

27

2

2. Preliminaries

Experiment Strongly Pseudorandom Correlated Outputs

Exps-pr
A,b(λ) :

(k0, k1)← PCF.Gen(1λ)
Q ← ∅

b $← AOb(·)(1λ)
Output b

O0(x) :

If (x, y0, y1) ∈ Q:

Output (y0, y1)

Else:

(y0, y1) $← Y(1λ)
Q ← Q∪ {(x, y0, y1)}
Output (y0, y1)

O1(x) :

For σ ∈ {0, 1}:

yσ ← sPCF.Eval(1λ, σ, kσ, x)

Output (y0, y1)

Figure 2.3 – Strongly Pseudorandom Y-correlated outputs of a sPCF

Experiment Strong PCF Security

Exps-sec
A,b,σ(λ) :

(k0, k1)← PCF.Gen(1λ)
Q ← ∅

b $← AOb(·)(1λ, σ, kσ)
Output b

O0(x) :

y1−σ ← sPCF.Eval(1− σ, k1−σ, x)

Output y1−σ

O1(x) :

yσ ← sPCF.Eval(σ, kσ, x)

y1−σ ← RSample(1λ, σ, yσ)

Return y1−σ

Figure 2.4 – Security of a strong PCF.

28

2

2.4. Pseudorandom Correlation Functions

Next, we de�ne the precomputability property of a PCF. At a high level, a PCF is precom-
putable if the �rst party’s key can be generated �rst, and the second key can be derived
from the �rst.

De�nition 2.15 (Precomputable Pseudorandom Correlation Function, [CMPR23]).
Let Y be a reverse-sampleable correlation with output lengths `0(λ), `1(λ) and let
λ ≤ n(λ) ≤ poly(λ) be its input length. We say that a pseudorandom correlation
function (PCF.Gen,PCF.Eval) is precomputable if the description of PCF.Gen contains
the descriptions of two algorithms (PCF.Gen0,PCF.Gen1) such that

• PCF.Gen0(1λ): On input the security parameter λ, returns a key k0 and auxiliary
output aux.

• PCF.Gen1(1λ, aux): On input the security parameter λ and an auxiliary input aux,
outputs a key k1.

We also require the following property to hold:
Precomputability. For any security parameter λ ∈ N, the two following distributions
are computationally indistinguishable:

{
(k0, k1) : (k0, k1)← PCF.Gen(1λ)

} c≈

(k0, k1) :
(k0, aux)← PCF.Gen0(1λ)
k1 ← PCF.Gen1(1λ, aux)

 .

29

2

3

Chapter 3

Constrained Pseudorandom
Functions from Homomorphic Secret

Sharing

Contents
3.1 Chapter Overview . 31

3.1.1 General Strategy . 32
3.1.2 CPRF from HSS with Simulatable Memory Shares 33
3.1.3 Handling more Constraints via Staged HSS 35

3.2 Homomorphic Secret Sharing and Extensions 36

3.2.1 HSS following the RMS Template 38
3.2.2 Extended Evaluation and Simulatable Memory Values 40
3.2.3 Staged Homomorphic Secret Sharing 42

3.3 Constrained Pseudorandom Functions 46

3.3.1 CPRF for Inner-Product from HSS 46
3.3.2 CPRF for NC1 from HSS . 50

The content of this section is based on the results presented in [CMPR23].

3.1 Chapter Overview
In this chapter, we draw connections between constrained pseudorandom functions and
(2-party) homomorphic secret sharing (HSS) protocols.1 More precisely, we show how we
can construct CPRFs for the class of inner-product predicates as well as for the class of NC1

predicates from HSS. This transformation in particular leads to multiple instantiations
from di�erent assumptions thanks to the recent developments in HSS [RS21, OSY21,
ADOS22].
Brie�y recalling our discussion in the introduction, the results of this chapter are obtained
via two steps: (1) we �rst extend HSS properties, and introduce two new extensions of

1For the sake of simplicity, in this thesis, we denote a two-party HSS protocol as HSS protocol.

31

3

3. Constrained PRFs from Homomorphic Secret Sharing

homomorphic secret sharing that can be leveraged to build constrained PRFs, that we
call homomorphic secret sharing with simulatable memory shares and staged homomorphic
secret sharing. We observe that these extensions already exist from multiple assumption,
as most HSS constructions from the literature already satisfy their de�nitions. Next,
(2) we transform our HSS extensions to CPRFs. In particular, we show how our HSS
extensions can be used to construct constrained PRFs for inner-product and NC1 predi-
cates. Combining these transformations with already-existing constructions of our HSS
extensions leads to constructions of CPRFs for inner-product and NC1 predicates from
various assumptions.

Revisiting Applications of HSS to Secure Computation. Homomorphic secret
sharing schemes have found notable applications for low-communication secure compu-
tation [BGI16], and secure computation with silent preprocessing [BCG+17, OSY21]. We
revisit these applications in light of the properties of (already-existing) HSS extensions.
This is done by my coauthors in our paper [CMPR23]. In short, (1) we show that
staged HSS can be used to build a silent preprocessing 2-party protocol where one of
the parties can entirely run the heavy o�ine computation before she even knows the
identity of the other party. We call this model secure computation with precomputable
silent preprocessing. This model is especially well-suited to a client-server setting,
where a weak client wants to start the bulk of the computation a long time in advance,
whereas the powerful server can run the heavy computation after its interaction
with the client. Moreover, (2) using staged HSS, we obtain the �rst non-FHE-based
constructions of one-sided statistically secure protocols with sublinear communication.
More precisely, we obtain secure computation for any log log-depth circuits on inputs
x, y with optimal communication, where x remains statistically hidden, provided that
|x| < |y|/poly(λ), via a black-box use of staged HSS. We also achieve secure computation
of any layered arithmetic circuit C of size s over a su�ciently large ring Zn, with
sublinear communication O(s/ log log s) and one-sided statistical security, assuming
the Paillier encryption scheme is circular-secure. The latter construction is non-black
box and exploits the speci�c structure of a concrete Paillier-based staged HSS scheme
from [OSY21]. We refer to our paper [CMPR23] for a comprehensive description of these
results.

In the following, we �rst state the core idea underlying our transformations from HSS
protocols to CPRFs. Although this idea turns out to be partly incorrect, it serves as the
basis of our subsequent �ndings. We then show how we can �x this idea by imposing
more requirements (tailored to our transitions to CPRFs) on the underlying HSS schemes,
thereby introducing new HSS extensions.

3.1.1 General Strategy

Let us �rst explain a (partly wrong but insightful) strategy for constructing CPRFs from
HSS. Let F denote a pseudorandom function with keyspace K and domain X , and
let C : X 7→ {0, 1} be a class of constraints. Consider an HSS scheme
HSS = (Setup, Input,Eval) for a class of programs P that contains all functions of
the form Px : (k, C) 7→ C(x) · Fk(x), for all x ∈ X . Now consider the following
construction:

32

3

3.1. Chapter Overview

• KeyGen(1λ, C) : Sample a PRF key K $← K. Run (pk, ek0, ek1) ← Setup(1λ),
(Ik0, Ik1) ← Input(pk, k), and (IC0 , IC1) ← Input(pk, C). Finally, set pp := pk, and
msk := (ek0, ek1, Ik0, Ik1, IC0 , IC1).

• Constrain(msk, C) : Parse msk = (ek0, ek1, Ik0, Ik1, IC0 , IC1) and output the constrained
key ckC := (ek1, Ik1, IC1).

• Eval(pp,msk, x) : Run y0 ← Eval(0, ek0, Ik0, IC0 , Px) and output y0.

• CEval(pp, ckC , x) : Run y1 ← Eval(1, ek1, Ik1, IC1 , Px) and output y1.

By the correctness of HSS, for any input x, we have y0 − y1 = C(x) · Fk(x). Therefore,
if C(x) = 0, y0 = y1 meaning that the CEval algorithm outputs the same value as the
evaluation algorithm using msk. Also, if C(x) = 1, y0 = y1 + Fk(x), and therefore y0
looks random even given y1 and ckC . This is because y0 is masked with Fk(x) which is a
pseudorandom value as k remains hidden, given Ik1 , due to the security of HSS.
The problem with the above construction is that the master secret key depends on the
constraintC while it should be independent of it.1 A way around this issue would be to use
an HSS scheme with programmable input shares, i.e., a scheme where IC0 can be generated
before knowing C , and the second share IC1 can be constructed afterwards from IC0 and
C , when the constraint is chosen. Towards achieving some level of programmability of
input shares, in this work, we identify weak properties which su�ce to instantiate the
above template, and show that they are satis�ed by most known HSS constructions.

3.1.2 CPRF from HSS with Simulatable Memory Shares

As a start, we propose a �rst simple solution to circumvent the lack of programmability.
This �rst property already allows to handle simple forms of constraints such as inner-
product, and follows from the common design of HSS constructions. We start by providing
a high-level description of HSS schemes, which applies to essentially all known HSS
constructions (beside FHE-based constructions).
Known constructions of HSS schemes rely on additively homomorphic public-key en-
cryption schemes with some form of linear decryption. The public key of the HSS scheme
is the public key pk of the underlying encryption scheme, and evaluation keys ek0, ek1 are
additive shares of the underlying secret key s. An HSS scheme uses two types of data: (1)
Input shares (I0, I1) which are generated by running Input(pk, x) on some input x and
consist in an encryption of (x, x · s), and (2) Memory shares (M0,M1) which are typi-
cally additive shares of (x, x · s) over Z. Two types of operations are handled: Additions
of memory shares (simply add the shares as (x, x · s) + (y, y · s) = (x+ y, (x+ y) · s)),
and a restricted form of Multiplication. Speci�cally, multiplication can only be per-
formed between an input share of some value x and a memory share of some value y, and
returns a memory share of their product x · y. Typically, multiplication uses the memory
share (y, y · s) to “linearly multiply-and-decrypt” the encryption of (x, x · s), getting
some encoding of (xy, xy · s). Then, the encoding is converted into a valid memory
share using a speci�c procedure, which depends on the concrete scheme and is often a
form of distributed discrete logarithm. We provide more details about multiplication later.
Note that one can transform any input share into a memory share of the same value by

1If the key could depend on C , one could just generate two independent PRF keys k0, k1 and de�ne the
evaluation as FkC(x)(x). Revealing k0 then allows to compute the evaluation on any x such that C(x) = 0
and reveals nothing about the key k1 used when C(x) = 1.

33

3

3. Constrained PRFs from Homomorphic Secret Sharing

multiplying it with a memory share of 1. At the end of a computation, each party recovers
a memory value consisting in an additive share of (z, z · s), and therefore a share of the
result z by dropping the second part. One can evaluate any polynomial-size program
following the above restrictions, which precisely corresponds to restricted multiplication
straight-line (RMS) programs, and encompasses branching programs, NC1, and more.

HSS with simulatable memory shares. Our starting point is the result of two obser-
vations. First, we observe that any HSS following the above structure does in fact allow
for a limited form of programming regarding memory values. Indeed, while input shares
include a homomorphic encryption of the input (which cannot be generated without
knowing the input), memory shares are simply additive shares. Thus, we can always
simulate a memory share of one party before knowing the value to share, by generating
a �rst random share u. The other share is later set to x− u when the actual value x to
share is known.
Second, we remark that two parties sharing input shares of some values (x1, . . . , xn) as
well as memory shares of a value z can compute memory shares of z · P (x1, . . . , xn) for
any RMS program P . The trick is to evaluate all the operations of P “with z in front”, i.e.
by maintaining as an invariant that any memory share for any value y that should be
used in the computation is replaced by a memory share for the value z · y. This invariant
being preserved by the two RMS operations (addition and multiplication), it is su�cient
to guarantee that every memory value satis�es it when created. This is simply done by
transforming an input x into a memory value by multiplying it with the memory share
of z in order to get a memory share for z · x rather than for x.

CPRF for Linear Constraints. Combining these two observations leads to construc-
tions of constrained PRFs for linear constraints (and in particular for inner-product).
Looking back to the construction aforementioned, we just would like to be able to gener-
ate IC0 , the share ofC used for evaluation with the master secret key, without knowing the
constraint C in advance. We do it by replacing IC0 by a simulated memory share M0 of the
(yet unknown) constraint C . The constrained key for C is then computed from M0 and C
to generate the appropriate memory share M1 (i.e. setting M1 such that M0 + M1 = C).
While this prevents the need for knowing the constraint ahead of time, this comes with a
price: we now get a memory share of C rather than an input share, which reduces the set
of functions one can evaluate. Still, thanks to our second observation, having a memory
share of C and an input share of k allows to compute shares of C · P (k) for any RMS
program P . Moreover, given memory shares of multiple Ci’s, one can then compute any
linear combination of shares Ci · P (k), by summing the latter additive shares. Notably,
this allows computing shares of 〈C, x〉 · Fk(x) as long as the function k 7→ Fk(x) is an
RMS program (assuming F is in NC1 is su�cient for that purpose).
We just constructed constrained pseudorandom functions for inner-product from any
assumption that su�ces to construct an HSS scheme for RMS programs satisfying the
above conditions. For example, using the recent HSS scheme of [OSY21] yields a CPRF
for inner products over Z (or any integer ring) under the DCR assumption (which also
implies PRFs in NC1). The construction extends immediately to any constant-degree
polynomial constraints (by memory-sharing all the coe�cients of C). It achieves 1-key
selective security, as well as constraint privacy. To the best of our knowledge, this is the
�rst construction of (1-key, selective, private) CPRF for inner products that does not rely
on LWE.
Security analysis proceeds through a sequence of hybrid games. Recall that the ad-
versary is given a constrained key ckC of its choice, and access to an evaluation or-

34

3

3.1. Chapter Overview

acle Eval(pp,msk, ·). We �rst modify the evaluation oracle to return C(x) · FK(x) +
CEval(pp, kC , x) on query x. By correctness of the HSS, the adversary’s view remains
identical to its view in the previous game though the game no longer relies in msk (and
in particular now only relies on the evaluation key ek1 from ckC). This let us replace the
input share I1 of k in ckC by an input share of a dummy value, thanks to HSS security.
Then, the adversary does no longer have any information about k except in the eval-
uations, and we can use PRF security to replace evaluations of FK(·) by truly random
values, therefore proving pseudorandomness. Constraint privacy is proven in a similar
fashion.

3.1.3 Handling more Constraints via Staged HSS

While the above already o�ers enough �exibility to evaluate linear functions (and exten-
sions thereof, such as low-degree polynomials), we still cannot handle general compu-
tations like NC1 circuits. To overcome this limitation, we show by a deeper analysis of
known HSS schemes that most of them also achieve some speci�c, limited form of pro-
grammability, which turns out to be su�cient to construct CPRFs for all RMS programs
(hence in particular for NC1).
Concretely, for a vector u = (u1, . . . , u`), our core observation is that it is possible to
share u between parties P0 and P1 with two alternate sharing algorithms (Input0, Input1)
such that: (1) P0’s share of u, obtained from Input0, is independent of u (and can be
generated without u), (2) P0 and P1 can use speci�c Eval0,Eval1 evaluation algorithms to
produce memory shares of P (u) for any RMS program P , provided that P1 knows u in the
clear. We call staged-HSS an HSS scheme satisfying the latter properties, as it intuitively
allows to split share generation and evaluation in 2 stages: a �rst input-independent stage,
corresponding to P0’s view, and a second input-dependent stage corresponding to P1’s
view.
At �rst sight, staged-HSS might not seem particularly useful: if P1 knows u in the clear,
then P1 can already compute P (u) for any RMS program P . The key observation is
that P0 and P1 get memory shares of P (u), and not just P (u). This memory share can
then be combined with the prior observations to let P0, P1 compute additive shares of
P (u) ·Q(v), for any other RMS program P,Q, given input shares of v. Setting u to be
the description of the constraint C , P to be a universal circuit (with input x hardwired)
which on input C returns C(x), v to be a PRF key k, and Q to be the RMS program
(with x hardwired) which on input k returns Fk(x), parties P0 and P1 can then compute
shares of C(x) ·Fk(x), with shares of P0 being independent of C . We can then instantiate
our simple aforementioned strategy for constructing CPRFs while circumventing the
need for C during KeyGen. As a result, we obtain (1-key selective) CPRFs for RMS
programs (and therefore for NC1) from any staged-HSS, i.e. from a wide variety of
assumptions (including DCR [OSY21, RS21], class groups assumptions, or variants of
QR [ADOS22, CLT22], and more.). The security analysis is similar to our construction
for inner-product, though this new construction is no longer constraint-hiding, since the
CEval algorithm now relies on knowing C (i.e. u above) in clear.
It remains to explain why known HSS schemes are also staged-HSS schemes. To illustrate
this, we use the simple ElGamal-based HSS scheme from [BGI16].1 We assume basic
knowledge of ElGamal encryption in what follows. This scheme follows the general

1This scheme does not yield CPRFs as it does not achieve statistical correctness, but staged-HSS is
easily illustrated with it.

35

3

3. Constrained PRFs from Homomorphic Secret Sharing

structure detailed above by instantiating the additively homomorphic encryption scheme
with ElGamal encryption. That is, an input share for x is an ElGamal encryption of the
pair (x, x · s)1, i.e. a tuple (c0, c

′
0, c1, c

′
1) = (gr0 , hr0 · gx, gr1 , hr1 · gx·s) with s ∈ Zp being

the secret key, h = gs being the public key, and r0, r1
$← Zp encryption randomness.2

Multiplication between an input share (c0, c
′
0, c1, c

′
1) of x and a memory share (ασ, βσ) of

y (which is just an additive share of (y, y ·s) over Zp owned by party Pσ) is done as follows.
First, party Pσ computes gσ ← (c′0)ασ/cβσ0 . Observe that g0 · g1 = (c′0)α0+α1/cβ0+β1

0 =
(gsr · gx)y/(gr)sy = gxy. Hence, parties get multiplicative shares g0, g1 of gxy. Doing
the same with c1, c

′
1 allows to get multiplicative shares of gxy·s. Then, an operation

termed distributed discrete logarithm allows to transform these multiplicative shares of
(gxy, gxy·s) into additive shares of (xy, xy · s), i.e. memory shares for the value xy, as
desired. Despite being at the core of HSS constructions, the details of the distributed
discrete logarithm procedure do not matter here. The only important observation is
that the ci = gri components of input shares are independent of the input x; only the c′i
components actually depend on x. Furthermore, in the multiplication above, the only
place where c′i is involved is in the computation of gσ ← (c′i)ασ/c

βσ
i . Now, assume that

one of the parties, say, P1, already knows y in the clear: in this case, one can simply
de�ne α1 ← y and α0 ← 0, which form valid additive shares of y. But now, P0 does no
longer need to know c′i components either, since we now have g0 = 1/(ci)β0 .

3.2 Homomorphic Secret Sharing and Extensions
The core notion underlying our constructions is homomorphic secret sharing (HSS),
introduced by Boyle et al. in [BGI16]. In this section, we propose several extensions of
HSS, and in particular de�ne some special properties that play an important role in our
constructions towards constrained PRFs. We further remark that these extensions are
easily instantiated using the DCR-based HSS construction from [OSY21]. We �rst recall
this instantiation.

Instantiation: HSS from DCR
Here, we recall the HSS construction of [OSY21] based on KDM-secure Paillier encryption
(Section 2.1.5). The input space of the scheme is ZN for a Blum integer N = pq.
First, we recall the following lemma due to [OSY21], where the authors introduce a
distributed discrete logarithm algorithm for a subset of Z∗N2 , where N = pq for λ-bit
primes p and q.

Lemma 3.1. There exists an algorithm DDLogN(g) for which the following holds: Let
g0, g1 ∈ Z∗N2 , such that g0 = g1(1 + N)x(mod N2). If z0 = DDLogN(g0) and z1 =
DDLogN(g1), then z0 − z1 = x(mod N).

More precisely, DDLogN(g) works as follows:

• DDLogN(g)

- Write g = h+ h′N , where h, h′ < N , using the division algorithm.
- Output z = h′h−1 mod N .

1An input share in fact consists of encryptions of x and x · si’s for each bit si of s.
2The secret key s is encrypted bit-by-bit in the actual construction.

36

3

3.2. Homomorphic Secret Sharing and Extensions

Instantiation 3.1: HSS from Paillier, [OSY21]

Requirements and notation:

- Let (BG.KeyGen,BG.Enc,BG.Dec) be the KDM-secure Paillier encryption, as
in Description 2.1.5, de�ned over Z∗N2 for a Blum integer N = pq.

- Let 2−κ be the correctness error of the scheme.
- Let P be the set of programs supported by the scheme, and Bmsg = N/2κ be

the magnitude bound of programs in P .

Algorithms:

I Setup(1λ) :

- Run (BG.pk,BG.sk) ← BG.KeyGen(1λ), and parse BG.pk = (N,g, ĝ), and
BG.sk = d = (d(0), . . . , d(`−1)).

- Sample 〈1〉0 $← [2κ], and set 〈1〉1 := 〈1〉0 − 1 mod N .

- For i ∈ [`], sample 〈d(i)〉0 $← [2κ], and set 〈d(i)〉1 := 〈d(i)〉0 − d(i) mod N .

- For i ∈ [`], compute D(i) ← BG.Enc(BG.pk, d(i)).

- Sample a PRF key kprf for a PRF F that outputs values in ZN .

- Output pk =
(
BG.pk, (D(i))i∈[`]

)
, and ekσ =

(
kprf , 〈1〉σ, (〈d(i)〉σ)i∈[`]

)
for

σ ∈ {0, 1}.

I Input(pk, x) :

- Parse pk =
(
BG.pk, (D(i) = (c(i), ĉ(i)))i∈[`]

)
, and BG.pk = (g, ĝ).

- Compute X ← BG.Enc(BG.pk, x).

- For i ∈ [`], compute X(i) ← (gr′i · (c(i))x, ĝr′i · (ĉ(i))x), where r′i
$← ZN .

- Set I = (X,X(0), . . . , X(`−1)), and output (I0 = I, I1 = I).

I Eval(σ, ekσ, (I(0), . . . , I(n)), P) :

• ConvertInput(σ, ekσ, Ix = (X,X(0), . . . , X(`−1)))

- Set M1
σ = (〈1〉σ, 〈d(0)〉σ, . . . , 〈d(`−1)〉σ) for σ ∈ {0, 1}.

- Compute Mx
σ ← Mult(σ, ekσ, Ix,M1

σ).

• Add(σ, ekσ,Mx
σ,My

σ)

- Parse Mx
σ = (〈x〉σ, (〈xd(i)〉σ)i∈[`]), and My

σ = (〈y〉σ, (〈yd(i)〉σ)i∈[`]).
- Compute 〈z〉σ = 〈x〉σ + 〈y〉σ , and 〈zd(i)〉σ = 〈xd(i)〉σ + 〈yd(i)〉σ for i ∈ [`].
- Output Mz

σ = (〈z〉σ, 〈zd(0)〉σ, . . . , 〈zd(`−1)〉σ).

37

3

3. Constrained PRFs from Homomorphic Secret Sharing

• Mult(σ, ekσ, Ix,My
σ)

- Parse Ix = (X, (X(i))i∈[`]) and My
σ = (〈y〉σ, (〈yd(i)〉σ)i∈[`]).

- Parse X = (c0, . . . , c`−1, ĉ), and X(i) = (c(i)
0 , . . . , c

(i)
`−1, ĉ

(i)) for i ∈ [`].
- Compute 〈z〉σ = DDLogN (ct′σ) (mod N) + Fkprf (id), where

ct′σ = (ĉ)〈y〉σ ·
(
`−1∏
i=0

c
−〈yd(i)〉σ
i

)
(mod N2) .

- For j ∈ [`], compute 〈zd(j)〉σ = DDLogN
(
ct′σ,j

)
(mod N) + Fkprf (id),

where
ct′σ,j = (ĉ(j))〈y〉σ ·

(
`−1∏
i=0

(c(j)
i)−〈yd(i)〉σ

)
(mod N2) .

- Output Mz
σ = (〈z〉σ, 〈zd(0)〉σ, . . . , 〈zd(`−1)〉σ).

I Output(σ, ekσ,Mz
σ, nout) :

- Parse Mz
σ = (〈z〉σ, (〈zd(i〉σ)i∈[`]), and output 〈z〉σ(mod nout).

3.2.1 HSS following the RMS Template
Similarly to [BCG+17], we �rst propose a more speci�c de�nition for HSS with additional
algorithms that are relevant in the context of RMS programs.

De�nition 3.1 (HSS Following the RMS Template). A homomorphic secret sharing
scheme HSS = (Setup, Input,MemGen,Eval) following the RMS template is an HSS
scheme as de�ned in De�nition 2.10 with an additional algorithm MemGen that generates
memory values as follows:

• MemGen(σ, ekσ, x)→ Mσ: On input a party index σ ∈ {0, 1}, an evaluation key
ekσ , and an input x ∈ I , the memory generator algorithm outputs a memory value
Mσ.

Moreover, the Eval algorithm proceeds with sub-routines following the RMS operations
ConvertInput,Add,Mul,Output as follows:

• Eval(σ, ekσ, (I(1)
σ , . . . , I(ρ)

σ), P)→ yσ: On input a party index σ ∈ {0, 1}, an evalua-
tion key ekσ , a vector of ρ input values (I(1)

σ , . . . , I(ρ)
σ), and an RMS program P , this

algorithm follows the instructions of P and processes them as follows:

• ConvertInput(σ, ekσ, Ixσ)→ Mx
σ: This algorithm simply uses the MemGen and

Mult algorithms as follows:
- Run MemGen(σ, ekσ, 1)→ M1

σ.
- Run Mult(σ, ekσ, Ixσ,M1

σ)→ Mx
σ.

• Add(σ, ekσ,Mx,My)→ Mx+y: This algorithm directly adds the given memory
values of x and y. Namely, Mx+y

σ = Mx
σ + My

σ.

38

3

3.2. Homomorphic Secret Sharing and Extensions

• Mul(σ, ekσ, Ix,My) → Mx·y: It multiplies an input value Ix and a memory
value My and outputs a memory value of x · y. The template does not impose
any non-black box requirement on this algorithm.
• Output(σ,Mx, n)→ x mod n: It uses Mx to output xσ mod n.

Correctness and security properties are de�ned as in De�nition 2.10, and we further
require the following property:
Additively Homomorphic Memory. The memory values generated in HSS should
be additively homomorphic. Meaning that for any two x, y ∈ I and any party index
σ ∈ {0, 1}, it should hold that

Mx
σ + My

σ = Mx+y
σ ,

where Mz
σ ← MemGen(σ, ekσ, z), for z ∈ {x, y}, and (pk, (ek0, ek1))← Setup(1λ).

Throughout this work, we may refer to memory values satisfying this property as “valid”
memory values.

We now show that Construction 3.1 satis�es De�nition 3.1.

Theorem 3.2. The HSS scheme of [OSY21] (Construction 3.1) follows the RMS template.

Proof. In Instantiation 3.2, we show how the MemGen algorithm of the template work in
this construction. One can see that the other algorithms of the HSS construction exactly
follow the template.
It is easy to see that the outputs of this algorithm are additively homomorphic.
This follows from the fact that for any x 6= 1 ∈ I , this algorithm uses the Input
and Eval.ConvertInput algorithms to generate the memory values. Thus, if the HSS
scheme works correctly, the generated memory values are intrinsically homomor-
phic. More speci�cally, for an input z ∈ I , the memory value Mz

σ is of the form
Mz
σ = (〈z〉σ, 〈zd(0)〉σ, . . . , 〈zd(`−1)〉σ). Furthermore, when x = 1, this algorithm out-

puts a valid share for the vector (1, d(0), . . . , d(`−1)).

Instantiation: HSS following the RMS template from DCR

Instantiation 3.2: HSS following the RMS template from Paillier

Requirements and notation: Same as in Instantiation 3.1.
Algorithms:

I Setup, Input, and Eval algorithms are the same as in Instantiation 3.1.

I MemGen(σ, ekσ, x) :

• If x = 1, do:

- Parse ekσ = (kprf , 〈1〉σ, 〈d(0)〉σ, . . . , 〈d(`−1)〉σ).
- Output M1

σ = (〈1〉σ, 〈d(0)〉σ, . . . , 〈d(`−1)〉σ).

• Else, do:

- Run (Ix0 , Ix1)← Input(pk, x).
- Run Mx

σ ← ConvertInput(σ, ekσ, Ixσ), and output Mx
σ.

39

3

3. Constrained PRFs from Homomorphic Secret Sharing

3.2.2 Extended Evaluation and Simulatable Memory Values
Any HSS following the RMS template as de�ned above satis�es the following lemma,
which states that one can evaluate share of z · P (x(1), . . . , x(ρ)) using only a memory
value of z (instead of an input value) together with the input values of the rest of variables
(x(1), . . . , x(ρ)). This lemma plays a central role in our CPRF constructions.

Lemma 3.3. Let HSS = (Setup, Input,MemGen,Eval) be an HSS scheme following the
RMS template. There exists an extended evaluation algorithm ExtEval:

• ExtEval(σ, ekσ,Mσ, (I(1)
σ , . . . , I(ρ)

σ), P) → yσ: On input a party index σ ∈ {0, 1},
an evaluation key ekσ, a single memory value Mσ, a vector of ρ input values
(I(1)
σ , . . . , I(ρ)

σ), and an RMS program P , return a value yσ such that the following
holds.

For any security parameter λ ∈ N and any RMS program P , we have:

Pr
[
y0 − y1 = z · P (x(1), . . . , x(ρ))

]
≥ 1− negl(λ) , (3.1)

where the probability is taken of the choice of (pk, (ek0, ek1)) ← Setup(1λ),
(I(i)0 , I

(i)
1) ← Input(pk, x(i)), Mσ ← MemGen(σ, ekσ, z), and yσ ← ExtEval(σ, ekσ,

Mσ, (I(1)
σ , . . . , I(ρ)

σ), P), for σ ∈ {0, 1}, i ∈ [ρ].

Proof. We design the extended evaluation algorithm using the original evaluation algo-
rithm Eval. The idea is to recursively include the memory value in the computation. First,
we de�ne the modi�ed input converting algorithm ConvertInput′(σ, ekσ, Ix,Mz) which
converts input values into a memory values as follows

- ConvertInput′(σ, ekσ, Ix,Mz)→ Mx·z:
This algorithm runs Mult(σ, ekσ, Ix,Mz)→ Mx·z and returns Mx·z .

In other words, for any input x 6= z for which an input value Ix is provided, we can
compute a memory value Mx·z that is a memory value of z · x. In this way, we make
sure that each memory value represents a memory value of a multiple of z. Regarding
this new shape of memory values, the two other algorithms Add′ which adds memory
values and Mult′ which multiplies input and memory values can be simply de�ned as the
original algorithms of Eval. Namely,

- Add′(Mx·z,My·z)→ Mz·(x+y):
This algorithm runs Add(Mx·z,My·z)→ M(x+y)·z .

- Mult′(Ix,My·z)→ Mx·y·z:
This algorithm runs Mult(Ix,My·z)→ Mx·y·z .

Finally, the output algorithm Output′(σ, ekσ,Mx·z, n) also works as the original algorithm
of Eval:

- Output′(σ, ekσ,Mx·z, n)→ (x · z) mod n:
This algorithm runs Output(σ, ekσ,Mx·z, n)→ (x · z) mod n

Conditioned on Eval satisfying the correctness property of HSS (De�nition 2.10), algo-
rithm ExtEval also works correctly and on input (σ, ekσ,Mσ, (I(1)

σ , . . . , I(ρ)
σ), P) outputs

the value z · P (x(1), . . . , x(ρ)).

40

3

3.2. Homomorphic Secret Sharing and Extensions

We now introduce an additional property termed simulatable memory values. Here, we
require that for an input x ∈ I , the memory value of one of the two parties can be
generated ahead of time and without the knowledge of x using a simulation algorithm,
while the other memory value can be generated given the pre-computed �rst memory
value and the exact value of x. This simulation should not a�ect the correctness of
ExtEval.

De�nition 3.2 (HSS with Simulatable Memory Values). Let HSS = (Setup, Input,
MemGen,Eval) be an HSS following the RMS template as per De�nition 3.1, with input
space I over the ring R. We say that HSS is simulatable with respect to its memory
values if there exist algorithms Sim0 and Sim1 such that

• Sim0(1λ)→ M0: on input the security parameter λ outputs a memory value M0.

• Sim1(M0, z, (ek0, ek1)) → M1: on input a memory value M0, an element z ∈ I ,
and two encoding keys (ek0, ek1) outputs a memory value M1.

We also require the two following properties:
Simulation Correctness. For any λ ∈ N and any z ∈ I , the correctness condition given
in Equation 3.1 holds when the memory value is simulated, i.e. when M0 ← Sim0(1λ)
and M1 ← Sim1(M0, z, (ek0, ek1)).
Simulation Security. It should be computationally hard to distinguish the two memory
values obtained via the simulation algorithms. That is, for any λ ∈ N and any z ∈ I ,
we have (z,M0) ≈c (z,M1) for any (pk, (ek0, ek1)) ← Setup(1λ), M0 ← Sim0(1λ), and
M1 ← Sim1(M, z, (ek0, ek1)).

We now show that Construction 3.1 satis�es De�nition 3.2.

Theorem 3.4. The HSS scheme of [OSY21] (Construction 3.1) generates simulatable memory
values.

Proof. Regarding De�nition 3.2, we need to show that there exist two algorithms Sim0 and
Sim1 that simulate the output of MemGen. We de�ne these algorithms in Instantiation 3.3
and prove their correctness and security in the following.
Simulation Correctness. For any z ∈ ZN , it holds that

M0 −M1 = (z, zd(0), . . . , zd(`−1)),
where M0 ← Sim0(1λ), and M1 ← Sim1(M, z, (ek0, ek1)). Therefore, the simu-
lated memory values of z are correctly formed as subtractive shares of vector
(z, zd(0), . . . , zd(`−1)). Thus, they are valid shares. This guarantees the correctness of
multiplication between this values and real input values, and �nally the correctness of
Equation 3.1 in Lemma 3.3 when Mσ is simulated.

Simulation Security. We need to prove that for any x ∈ I , it holds that
(z,M0) ≈s (z,M1),

where M1 ← Sim1(M0, z, (ek0, ek1)), and M0 ← Sim0(1λ).
Note that M1 = M0 − (z, zd(0), . . . , zd(`−1)), where each element of M0 is chosen uni-
formly from Z2κN . Also, in a �xed vector (z, zd(0), . . . , zd(`−1)), z and each zd(i) for
i ∈ [`] are elements of ZN . Therefore, the distribution of each element of M1 is within the
statistical distance 2−κ of the uniform distribution over Z2κN which is the distribution of
M0.

41

3

3. Constrained PRFs from Homomorphic Secret Sharing

Instantiation: HSS with Simulatable Memory Values from DCR

Instantiation 3.3: HSS with Simulatable Memory Values from Paillier

Requirements and notation:

- Same as in Instantiation 3.1.

Algorithms:

I Setup, Input, MemGen and Eval algorithms are the same as in Instantiation 3.2.

I Sim0(1λ) :

- Sample a random vector (t, t0, . . . , t`−1) $← Z`+1
2κ·N .

- Output M0 = (t, t0, . . . , t`−1).

I Sim1(M, z, (ek0, ek1)) :

- Parse ekσ = (〈1〉σ, 〈d(0)〉σ, . . . , 〈d(`−1)〉σ) for both σ ∈ {0, 1}.

- For i ∈ [`] reconstruct d(i) = 〈d(i)〉0 − 〈d(i)〉1 mod N .

- Compute and output M1 = M0 − (z, zd(0), . . . , zd(`−1)).

3.2.3 Staged Homomorphic Secret Sharing

Finally, we de�ne a new notion termed staged-HSS which is merely extending the idea
of HSS with simulatable memory values to the case where we require the possibility of
input values to be simulatable as well.

De�nition 3.3 (staged-HSS). Let HSS = (Setup,MemGen, Input,Eval) be an HSS
scheme following the RMS template, with input space I over the ring R. We say it
is a staged-HSS if there exist additional algorithms (Input0, Input1), and (Eval0,Eval1)
such that:

• Input0(pk)→ (I0, aux): On input a public key pk, return a value I0 and an auxiliary
output aux.

• Input1(pk, x, aux, (ek0, ek1)) → I1: On input a public key pk, an input x ∈ I , an
auxiliary input aux, and two encoding keys (ek0, ek1), return a value I1.

• Eval0(ek0, (I
(1)
0 , . . . , I(ρ)

0), P)→ M0: On input an evaluation key ek0, a vector of ρ
input values (I(1)

0 , . . . , I(ρ)
0), and a program P , return a memory value M0.

• Eval1(ek1, (I
(1)
1 , . . . , I(ρ)

1), (x(1), . . . , x(ρ)), P) → M1: On input an evaluation key
ek1, a vector of ρ input values (x(1), . . . , x(ρ)) as well as (I(1)

1 , . . . , I(ρ)
1), and a pro-

gram P , return a memory value M1.

We further require the two following properties:

42

3

3.2. Homomorphic Secret Sharing and Extensions

Correctness. We require that the outputs of Eval0 and Eval1 to be usable within the
extended evaluation algorithm ExtEval (Lemma 3.3). Formally, for any λ ∈ N and any
two RMS programs P,Q ∈ P , it should hold that

Pr[y0 − y1 = P (z(1), . . . , z(`)) ·Q(x(1), . . . , x(ρ))] ≥ 1− negl(λ) ,

where (pk, (ek0, ek1)) ← Setup(1λ), (Ix(i)
0 , Ix(i)

1) ← Input(pk, x(i)), for all i ∈ [ρ],
(Iz

(i)

0 , aux(i)) ← Input0(pk), Iz
(i)

1 ← Input1(pk, z(i), aux(i), (ek0, ek1)), for all i ∈ [`],
M0 ← Eval0(ek0, (I

z(1)

0 , . . . , Iz
(`)

0), P), M1 ← Eval1(ek1, (I
z(1)

1 , . . . , Iz
(`)

1), (z(1), . . . , z(`)), P),
and yσ ← ExtEval(σ, ekσ, (Mσ, Ix

(1)
σ , . . . , Ix(ρ)

σ), Q), for σ ∈ {0, 1}.

Security. The output of Input1 and Input should be computationally indistinguishable.
Formally, for any λ ∈ N, and any x ∈ I , the two following distributions should be
computationally indistinguishable:I1 :

(pk, (ek0, ek1))← Setup(1λ)
(I0, aux)← Input0(pk)
I1 ← Input1(pk, x, aux, (ek0, ek1))


c≈

I1 :
(pk, (ek0, ek1))← Setup(1λ),
(I0, I1)← Input(pk, x)

 .

Theorem 3.5. Assuming the hardness of DCR, the HSS scheme of [OSY21] (Construction 3.1)
is a staged HSS.

Proof. In Instantiation 3.4, we de�ne the four algorithms (Input0, Input1) and
(Eval0,Eval1) according to De�nition 3.3. We now prove that the algorithms work
correctly and satisfy the required properties.

Correctness. We show that a memory value My
σ outputted by Evalσ is in fact party σ’s

subtractive share of the vector (y, yd(0), . . . , yd(`−1)), thus it is a valid memory value.
This guarantees the correctness of ExtEval algorithm when given as input a staged
memory value and a vector of original input values.

Since the new evaluation algorithms Eval0 and Eval1 work the same as the original
evaluation algorithm Eval except for the multiplication instruction, we brie�y prove the
correctness of multiplication in the following. Let x, y ∈ I be any two arbitrary input
values. We show that

Pr [z0 − z1 = xy] ≥ 1− negl(λ),

and
Pr
[
(zd(i))0 − (zd(i))1 = xyd(i)

]
≥ 1− negl(λ),

for all i ∈ [`], where
Mz

0 =
(
z0, (zd(0))0, . . . , (zd(`−1))0

)
← Mult0(ek0, I

x

0 ,M
y
0),

Mz
1 =

(
z1, (zd(0))1, . . . , (zd(`−1))1

)
← Mult1(ek1, I

x

1 ,M
y
1, y),

(Ib0, auxb)← Input0(pk) for b ∈ {x, y},
Ib1 ← Input1(pk, b, auxb), for b ∈ {x, y},
My

0 ← ConvertInput0(ek0, I0
y),

My
1 ← ConvertInput1(ek1, I1

y
, y), and

(pk, (ek0, ek1))← Setup(1λ).

43

3

3. Constrained PRFs from Homomorphic Secret Sharing

Regarding how Mult0 and Mult1 works, it holds that zb = DDLogN(ct′b), for b ∈ {0, 1}.
Thus, by Lemma 3.1, it’s enough to prove that ct′0 · ct′1 = (1 +N)xy. We have

ct′0 · ct′1 =
`−1∏
i=0

(ci)−〈yd
(i)〉0 · (ĉ)y ·

`−1∏
i=0

(ci)−〈yd
(i)〉1

= (ĉ)y ·
∏̀
i=1

(ci)−yd
(i)

= (1 +N)xy ·
∏̀
i=1

(ci)yd
(i) ·

∏̀
i=1

(ci)−yd
(i)

= (1 +N)xy(mod N2).

The equation ct
′(j)
0 · ct

′(j)
1 = (1 +N)xyd(j) for all j ∈ [`] is proved similarly.

Security. Outputs of the Input1 algorithm are in fact in the same form as the
Input algorithm. More precisely, they are both Paillier encryptions of the vector
(x, xd(0), . . . , xd(`−1)), where d is the secret key of the encryption scheme. Therefore,
they are computationally indistinguishable.

Instantiation: Staged HSS from DCR

Instantiation 3.4: HSS with Simulatable Memory Values from Paillier

Requirements and notation: Same as in Instantiation 3.1.
Algorithms:

I Input0(pp)→ (I0, aux)

- Parse pp = (BG.pk, D(0), . . . , D(`−1)), and BG.pk = (N,g, ĝ).

- Sample r $← ZN and compute ctind = gr.

- For i ∈ [`], sample ri $← ZN , and compute ct(i)
ind = gri .

- Set I0 = (ctind, ct(0)
ind, . . . , ct(`−1)

ind).

- Set aux = (gr, ĝr, {gri}i∈[`], {ĝri}i∈[`]).

- Output (I0, aux).

I Input1(pp, x, aux, (ek0, ek1))→ I1

- Parse pp = (BG.pk, (D(i))i∈[`]), BG.pk = (N,g, ĝ), and
aux = (gr, ĝr, {gri}i∈[`], {ĝri}i∈[`]), and ekσ = (kprf , 〈d(0)〉σ, . . . , 〈d(`−1)〉σ) for
σ ∈ {0, 1}.

- Compute ct = (gr, ĝr · (1 +N)x).

- For i ∈ [`] do

– Reconstruct d(i) = 〈d(i)〉0 − 〈d(i)〉1 mod N .
– Compute ct(i) = (gri , ĝri · (1 +N)xd(i)).

- Output I1 = (ct, ct(0), . . . , ct(`−1)).

44

3

3.2. Homomorphic Secret Sharing and Extensions

I Eval0(ek0, (I
(1)
0 , . . . , I(ρ)

0), P)→ M0

• ConvertInput0(ek0, Ix) // same as in Eval

- Parse ek0 = (〈1〉0, 〈d(0)〉0, . . . , 〈d(`−1)〉0).
- Set M1

0 = (〈1〉0, 〈d(0)〉0, . . . , 〈d(`−1)〉0).
- Compute Mx

0 ← Mult0(ek0, I0,M1
0).

• Add0(ek0,Mx
0 ,M

y
0) // same as in Eval

- Parse Mx
0 = (〈x〉0, 〈xd(0)〉0, . . . , 〈xd(`−1)〉0), and

My
0 = (〈y〉0, 〈yd(0)〉0, . . . , 〈yd(`−1)〉0).

- Compute 〈z〉0 = 〈x〉0 + 〈y〉0, and 〈zd(i)〉0 = 〈xd(i)〉0 + 〈yd(i)〉0 for i ∈ [`].
- Output Mz

0 = (〈z〉0, 〈zd(0)〉0, . . . , 〈zd(`−1)〉0).

• Mult0(ek0, I
x

0 ,M
y
0) // di�erent from Eval

- Parse Ix0 = (ctind, ct(0)
ind, . . . , ct(`−1)

ind), and
My

0 = (〈y〉0, 〈yd(0)〉0, . . . , 〈yd(`−1)〉0).
- Parse ctind = (c0, . . . , c`−1), and ct(i)

ind = (c(i)
0 , . . . , c

(i)
`−1) for i ∈ [`].

- Compute 〈z〉0 = DDLogN(ct′)(mod N) + Fkprf (id), where

ct′ =
`−1∏
i=0

(ci)−〈yd
(i)〉0(mod N2).

- For j ∈ [`], compute 〈zd(j)〉0 = DDLogN(ct′j)(mod N) + Fkprf (id),
where

ct′j =
`−1∏
i=0

(c(j)
i)−〈yd(i)〉0(mod N2).

- Output Mz
0 = (〈z〉0, 〈zd(0)〉0, . . . , 〈zd(`−1)〉0).

I Eval1(ek1, (I
(1)
1 , . . . , I(ρ)

1), (x(1), . . . , x(ρ)), P)→ M1

• ConvertInput1(ek1, Ix, x) // same as in Eval

- Parse ek1 = (〈1〉1, 〈d(0)〉1, . . . , 〈d(`−1)〉1).
- Set M1

1 = (〈1〉1, 〈d(0)〉1, . . . , 〈d(`−1)〉1).
- Compute Mx

1 ← Mult1(ek1, I1,M1
1, x).

• Add1(ek1,Mx
1 ,M

y
1) // same as in Eval

- Parse Mx
1 = (〈x〉1, 〈xd(0)〉1, . . . , 〈xd(`−1)〉1), and My

1 =
(〈y〉1, 〈yd(0)〉1, . . . , 〈yd(`−1)〉1).

- Compute 〈z〉1 = 〈x〉1 + 〈y〉1, and 〈zd(i)〉1 = 〈xd(i)〉1 + 〈yd(i)〉1 for i ∈ [`].
- Output Mz

1 = (〈z〉1, 〈zd(0)〉1, . . . , 〈zd(`−1)〉1).

45

3

3. Constrained PRFs from Homomorphic Secret Sharing

• Mult1(ek0, I
x

0 ,M
y
0, y) // di�erent from Eval

- Parse Ix1 = (ct, ct(0), . . . , ct(`−1)), and
My

1 = (〈y〉1, 〈yd(0)〉1, . . . , 〈yd(`−1)〉1).
- Parse ct = (c0, . . . , c`−1, ĉ), and ct(i) = (c(i)

0 , . . . , c
(i)
`−1, ĉ

(i)) for i ∈ [`].
- Compute 〈z〉1 = DDLogN(ct′)(mod N) + Fkprf (id), where

ct′ = (ĉ)y ·
`−1∏
i=0

(ci)−〈yd
(i)〉1(mod N2).

- For j ∈ [`], compute 〈zd(j)〉1 = DDLogN(ct′j)(mod N) + Fkprf (id),
where

ct′j = (ĉ(j))y ·
`−1∏
i=0

(c(j)
i)−〈yd(i)〉1(mod N2).

- Output Mz
1 = (〈z〉1, 〈zd(0)〉1, . . . , 〈zd(`−1)〉1).

3.3 Constrained Pseudorandom Functions
We now present our two transformations from homomorphic secret sharing to con-
strained pseudorandom functions.

3.3.1 CPRF for Inner-Product from HSS

Our �rst construction is a 1-key selectively secure constrained pseudorandom function
for inner-product. The space input isRn for some ringR and n > 0, and a constraint
is de�ned by a vector z ∈ Rn. A constrained key for a vector z allows to compute
the PRF evaluation on input x ∈ Rn if and only if 〈z,x〉 = 0. Speci�cally, the class of
constraints is {Cz | z ∈ Rn} where the circuit Cz : Rn → {0, 1} is de�ned as Cz(x) = 0
if 〈z,x〉 = 0, else 1.
The intuition behind our construction is that the master secret key and the constrained
key (for a vector z) are used to compute, via HSS, a share of 〈x, z〉 · Fk(x), where k is a
PRF key encoded via the HSS scheme. Then, if 〈x, z〉 = 0, the two evaluations produce
substractive shares of 0, i.e. equal shares, while if 〈x, z〉 6= 0, the shares di�er by (a
non-zero multiple of) Fk(x). By the security of HSS, the PRF key k remains hidden to the
constrained key owner, hence the actual PRF evaluation (the value of the share computed
from the master secret key) is pseudorandom even given the value of the second share
(which can be computed from the constrained key).
Before diving into our construction, we generalize Lemma 3.3, stating that not only
one can produce shares of any evaluation of the form z · P (x) given a memory value
for z and encoding of x, but of any linear combination ∑i α

(i)z(i) · P (x) with known
coe�cients given memory values for multiple z(i)’s, i.e. for 〈z,α〉 for a known vector
α = (α(1), . . . , α(`)).

46

3

3.3. Constrained Pseudorandom Functions

Corollary 3.1. Let HSS = (Setup, Input,MemGen,Eval) be an HSS scheme following the
RMS template. There exists an extended evaluation algorithm LinExtEval:

• LinExtEval(σ, ekσ, (M(1)
σ , . . . ,M(`)

σ), (I(1)
σ , . . . , I(ρ)

σ), (α(1), . . . , α(`)), P)→ yσ:
On input a party index σ ∈ {0, 1}, an evaluation key ekσ , a vector of `memory values
M(1)
σ , . . . ,M(`)

σ , a vector of ρ input values (I(1)
σ , . . . , I(ρ)

σ), a vector of ` ring elements
α(1), . . . , α(`), and an RMS program P , this algorithm outputs a value yσ such that
the following holds.

For any security parameter λ ∈ N, any α(i) ∈ R for i ∈ [`], and any RMS program P , we
have:

Pr
[
y0 − y1 =

(∑̀
i=1

α(i) · z(i)
)
· P (x(1), . . . , x(ρ))

]
≥ 1− negl(λ) ,

where the probability is taken over the choice of (pk, (ek0, ek1)) ← Setup(1λ),
(I(i)0 , I

(i)
1) ← Input(pk, x(i)), M(j)

σ ← MemGen(σ, ekσ, z(j)), and over the shares
yσ ← LinExtEval(σ, ekσ, (M(1)

σ , . . . ,M(`)
σ), (I(1)

σ , . . . , I(ρ)
σ), (α(1), . . . , α(`)), P), with

σ ∈ {0, 1}, j ∈ [`], i ∈ [ρ].

The proof of the above statement follows from Lemma 3.3 by linearly combining the
substractive shares obtained by applying ExtEval with each memory value.
We now have all the ingredients for our �rst construction.

Construction 3.1: CPRF for IP from HSS

Requirements and notation:

- Let F : K×Rn → Y be a PRF with evaluation in NC1. For x ∈ Rn, we denote
by F•(x) : K → Y the function that maps k ∈ K to Fk(x).

- Let HSS = (Setup, Input,MemGen,Eval) be a homomorphic secret sharing
following the RMS template with simulatable memory values.

Algorithms:

I KeyGen(1λ) :

1. Run (pk, (ek0, ek1)) $← Setup(1λ).

2. Sample k $← K for F

3. Run (I0, I1)← Input(pk, k).

4. For i ∈ {1, . . . , n}, set Mi
0 ← Sim0(1λ).

5. Set msk← ((ek0, I0, (Mi
0)i∈[n]), (ek1, I1)), and output pp = pk and msk.

I Eval(pp,msk,x) :

1. Parse msk = ((ek0, I0, (Mi
0)i∈[n]), (ek1, I1)).

2. Compute y0 ← LinExtEval(0, ek0, (Mi
0)i∈[n], I0,x, F•(x)).

3. Output y0.

47

3

3. Constrained PRFs from Homomorphic Secret Sharing

I Constrain(msk, z) :

1. Parse msk as
((ek0, I0, (Mi

0)i∈[n]), (ek1, I1))

2. Parse z = (z1, . . . , zn).

3. For i ∈ {1, . . . , n}, set Mi
1 ← Sim1(Mi

0, zi, (ek0, ek1)).

4. Return ckz = (ek1, I1, (Mi
1)i∈[n]).

I CEval(pp, ckz,x) :

1. Parse ckz = (ek1, I1, (Mi
1)i∈[n]).

2. Compute y1 ← LinExtEval(1, ek1, (Mi
1)i∈[n], I1,x, F•(x)).

3. Output y1.

Theorem 3.6. Assuming F is a secure PRF with evaluation in NC1 and HSS is a secure HSS
scheme following the RMS template with simulatable memory values, then Construction 3.1
is a selective 1-key, constraint-hiding, secure CPRF for inner-product.

Proof. We now prove correctness and security of Construction 3.1, starting with correct-
ness.
Correctness. The idea of the scheme is to choose a random key k for the PRF F , and use
HSS to compute shares of 〈x, z〉 · Fk(x), respectively owned by the master key owner
and the constrained key owner. It is easy to verify that if HSS is correct (with simulated
memory values) and if 〈x, z〉, the two shares form substractive shares of 〈x, z〉·Fk(x) = 0
and therefore both evaluations match.
Pseudorandomness. Let us now prove selective security of our construction. The proof
relies on a sequence of hybrid games. Let A denote a 1-key selective adversary against
the pseudorandomness of the above construction. Selective security plays an important
role as one needs to rely on the knowledge of the constraint z to answer evaluation oracle
queries appropriately in the early stage of the proof.
HybridH0: This is the standard CPRF security game where the challenge is answered
with the real PRF evaluation.
HybridH1: In this �rst hybrid game, we only change the de�nition of the evaluation
oracle. Since we are in the selective setting, the challenger knows the constraint z before
answering any evaluation query. Therefore, it can compute the constrained key ckz from
the start. When asked for an evaluation query on input x, the challenger replies to it by
computing y1 ← CEval(pp, ckz,x) and returning y1 + 〈x, z〉 · Fk(x). The adversary’s
view remains identical to its view inH0 by correctness of HSS, therefore these two hybrid
games are perfectly indistinguishable.
HybridH2: In this second hybrid game, we simply switch the memory value sampled via
Sim1 in the constrained secret key to memory value sampled from Sim0. It is immediate
thatH1 andH2 are indistinguishable thanks to simulation security of the HSS.
HybridH3: We now remove the information about k in the constrained evaluation key

48

3

3.3. Constrained Pseudorandom Functions

as follows: instead of de�ning (I0, I1)← Input(pk, k), we set (I0, I1)← Input(pk, 0).1 A
PRF key k $← K is still sampled by the challenger, and evaluation (and challenge) queries
are still answered on input x by having the challenger computing y1 ← CEval(pp, ckz,x)
and returning y1 + 〈x, z〉 · Fk(x).
By HSS security (for σ = 1), we claim thatH2 andH3 are computationally indistinguish-
able. Suppose that an adversary A could distinguish between these two hybrids, we
construct an adversary B against HSS security as follows: B �rst samples a key k $← K
and submits message (k, 0) to its HSS challenger. It gets back (pk, ek1, I1) where I1 is
the second half of Input(k) or Input(0), depending on whether k or 0 was encoded by
the challenger. Then, B computes the constrained key ckz as in the previous game, by
sampling memory values using Sim0(1λ). It answers A’s evaluation (and challenge)
queries by computing y1 ← CEval(pp, ckz,x) and returning y1 + 〈x, z〉 · Fk(x). When
A halts with some output b′, so does B. It is clear that B simulates either H2 or H3,
depending on whether it was given an encoding of k or of 0, which results in our claim.
HybridH4: In this hybrid, the challenger replies to the challenge query by returning a
uniformly random value from Zn. Since the adversary’s view does no longer contain any
information about the PRF key k, the value of Fk(x) is computationally indistinguishable
from a random element of Y due to the security of the PRF. We also required Y to be
such that F is pseudorandom on Zn. Therefore, hybridsH3 andH4 are computationally
indistinguishable thanks to the security of the underlying PRF. Note that here that we
only rely on Find-then-Guess security for the underlying PRF (See De�nition 2.8).
The rest of the proof proceeds by reversing the sequence of hybrid games while leaving
the challenge query answered by a uniformly random value.
Constraint-Hiding. We �nally prove that our construction is also constraint-hiding.
The proof essentially follows the same line as the proof of pseudorandomness except
that one deviates atH4. Notice that inH3 already, the only place where z plays a role in
the adversary’s view is in the evaluations, since the constrained key is sampled using
Sim0 afterH2.
Now, the hybrid game H4 for the constraint-hiding proof does the following: rather
than using Find-then-Guess security and changing only the evaluation of the challenge
(which no longer exists in the constraint-hiding security game), we use standard PRF
security to replace answers to evaluation queries of the form y1 + 〈x, z〉 ·Fk(x) by values
y1 + 〈x, z〉 · f(x) where f is a truly random function (sampled lazily). This changes
evaluation at points x such that 〈x, z〉 6= 0 to uniformly random (and independent)
values, in particular these values are independent of the constraint z. One can then
switch the constraint z to z′ easily, since the pair of constraints is required to satisfy
〈x, z〉 6= 0 if and only if 〈x, z′〉 6= 0 for all evaluation queries x.
This concludes the proof of Theorem 3.6.

Remark 3.1. In the above construction, we require the PRF range Y to be such that F is
pseudorandom on Zn, for a �xed n < B, where B is the magnitude bound of the RMS
programs that the HSS scheme used in the construction supports. We need to then reduce
the outputs of the HSS evaluation algorithm modulo n by inputting n as the modulus to
algorithm Output (See De�nition 3.1). This is used in the security proof to ensure that
masking with a pseudorandom value over Y causes the output to be pseudorandom.

Combining Theorem 3.6 (CPRF for inner-product from HSS with simulatable memory
values) with Theorem 3.4 (HSS with simulatable memory values from DCR), yields the

1By 0 we mean any �xed key, e.g. 0λ if K = {0, 1}λ.

49

3

3. Constrained PRFs from Homomorphic Secret Sharing

following corollary.

Corollary 3.2 (Private CPRF for Inner-Product from DCR). There exist 1-key selectively-
secure, constraint-hiding constrained pseudorandom functions for inner-product assuming
the hardness of DCR.

3.3.2 CPRF for NC1 from HSS
We now describe CPRF for the class of NC1 constraints. We consider the representation
of an NC1 circuit C with input size n = poly(λ) and depth d = O(log n) to be a bit string
(C1, . . . , Cz) ∈ {0, 1}z , where z = poly(n) is the description size. Also, we denote the
universal circuit by U(·, ·) that on input a circuit C ∈ {0, 1}z and x = (x1, . . . , xn) ∈
{0, 1}n, outputs U(C, x) = C(x). Due to the work of Cooks and Hoover [CH85], we
know that there exists a universal circuit that correctly computes any NC1 circuit and is
itself an NC1 circuit.
The strategy for our construction is similar as for inner-product. We aim to obtain sub-
stractive shares U(C, x) ·Fk(x) via the (standard and constrained) evaluation algorithms,
where F is a pseudorandom function with evaluation in NC1, C denotes the constraint,
and U denotes the above universal circuit.
A crucial point is that the master secret key should allow to compute such a share for
any input x independently of the constraint C . Hence, we have to �nd a way to replace
the encoding of C that is given to the evaluator by oblivious values that guarantee the
correctness. In the inner-product case, where we want shares of 〈x, z〉 · Fk(x), we used
simulated memory values as the independent share of the undetermined constraint z, and
programmed the constrained key to guarantee correctness according to the constraint
vector z. However, this technique cannot be applied to the case of NC1 constraints as we
are dealing with non-linear evaluations.
The idea is again to use staged-HSS. We �rst compute a memory for U(C, x) using Eval0
and Eval1. Then, this memory value is used in the ExtEval algorithm from Lemma 3.3 to
compute a share of U(C, x) · Fk(x) additionally using an encoding of k.
The important point here, is that inputs of Eval0 can be sampled obliviously using
(I0, aux)← Input0(pk), and therefore can be sampled during Setup without the knowl-
edge of the constraint C . Yet, when computing the constrained key for C , the master key
owner can use the full knowledge of C as well as auxiliary information generated during
Setup to appropriately compute memory values for the i-th bit Ci of the description
of C , using I1 ← Input1(pk, Ci, aux, (ek0, ek1)). The correctness of staged-HSS then
guarantees the correctness of evaluations, while its security plays a role in the security
proof to remove the need for both evaluation keys when computing I1, therefore allowing
to rely on HSS security to remove the information about the underlying PRF key k.
We now detail our construction. For any x ∈ {0, 1}n, we denote by U(·, x) the circuit
that maps C ∈ {0, 1}z to U(C, x) = C(x) ∈ {0, 1}.

50

3

3.3. Constrained Pseudorandom Functions

Construction 3.2: CPRF for NC1 from HSS

Requirements and notation:

- Let F : K×{0, 1}n → Y be a pseudorandom function with evaluation in NC1,
where Y is a �nite cyclic group. For x ∈ Rn, we denote by F•(x) : K → Y
the function that maps k ∈ K to Fk(x).

- Let HSS = (Setup,MemGen, Input,Eval) be a staged homomorphic secret
sharing scheme and denote by (Input0, Input1), and (Eval0,Eval1) the addi-
tional algorithms de�ned in De�nition 3.3.

- Let ExtEval be the modi�ed evaluation algorithm as in Lemma 3.3.

Algorithms:

I KeyGen(1λ) :

- Run (pk, (ek0, ek1))← Setup(1λ).

- Choose a random key k $← K for F and compute (I0, I1)← Input(pk, k).

- For i ∈ {1, . . . , z}, compute (I(i)0 , aux(i))← Input0(pk).

- Output pp = pk, and msk = ((ek0, ek1, I0, I1), (I(1)
0 , aux(1), . . . , I(z)

0 , aux(z))).

I Eval(pp,msk, x) :

- Parse pp = pk, and msk = ((ek0, ek1, I0, I1), (I(1)
0 , aux(1), . . . , I(z)

0 , aux(z))).

- Run M0 ← Eval0(ek0, (I
(1)
0 , . . . , I(z)

0), U(·, x)). Here, I(i)0 represents the input
value of Ci for i ∈ {1, . . . , z}.

- Run y0 ← ExtEval(0, ek0,M0, I0, F•(x)). Here, M0 denotes the memory value
of U(C, x), and I0 denotes the input value of k.

- Output y0.

I Constrain(msk, C) :

- Parse msk = ((ek0, ek1, I0, I1), (I(1)
0 , aux(1), . . . , I(z)

0 , aux(z))), and
C = (C1, . . . , Cz) ∈ {0, 1}z .

- For i ∈ {1, . . . , z}, run I(i)1 ← Input1(pk, Ci, aux(i), (ek0, ek1)).

- Output ckC = (ek1, I1, (I
(1)
1 , . . . , I(z)

1), C).

I CEval(pp, ckC , x) :

- Parse ckC = (ek1, I1, (I
(1)
1 , . . . , I(z)

1), C).

- Run M1 ← Eval1(ek1, (I
(1)
1 , . . . , I(z)

1), (C(1), . . . , C(z)), U(·, x)).

- Run y1 ← ExtEval(1, ek1,M1, I1, F•(x)).

- Output y1.

51

3

3. Constrained PRFs from Homomorphic Secret Sharing

Theorem 3.7 (CPRF for NC1 from Staged HSS). Assuming F is a secure pseudorandom
function with evaluation in NC1 and HSS is a secure staged-HSS scheme, Construction 3.2
is a selective 1-key secure constrained pseudorandom function for NC1.

Proof. We now prove correctness and pseudorandomness of the construction.
Correctness. The proof of correctness is roughly the same as for Construction 3.1 and
directly follows from correctness properties of the underlying staged HSS scheme. The
output of Eval(pp,msk, x) and CEval(pp, ckC , x) on an input x form substractive shares
of U(C, x) · Fk(x) = C(x) · Fk(x). When C(x) = 0, correctness of the staged HSS
scheme guarantees that the outputs of evaluation and constrained evaluation algorithms
form substractive shares of 0, thus they are equal.
Pseudorandomness. Here again, the proof follows a similar strategy as in the case of
inner-product constraints. The goal is to remove the dependency to k the underlying
PRF key in the constrained key such that the term C(x∗) · Fk(x∗) makes the challenge
pseudorandom (since x∗ is required to satisfy C(x∗) = 1). We proceed via a sequence of
hybrid games.
HybridH0: This is the standard CPRF security game where the challenge is answered
with the real PRF evaluation.
HybridH1: In this �rst hybrid game, we only change the de�nition of the evaluation
oracle. Since we are in the selective setting, the challenger knows the constraint C before
answering any evaluation query. Therefore, it can compute the constrained key ckC from
the start. When asked for an evaluation query on input x, the challenger now replies to it
by computing y1 ← CEval(pp, ckC , x) and returning y1 + C(x) · Fk(x). The adversary’s
view remains identical to its view inH0 by the correctness of HSS, therefore these two
hybrid games are perfectly indistinguishable.
HybridH2: In this second hybrid game, instead of sampling the constrained key elements
I(i)1 as I(i)1 ← Input1(pk, Ci, aux(i), (ek0, ek1)) for i ∈ [z], we replace each of these values
by Input(pk, Ci). Computational indistinguishability between these two hybrid games
follows from the staged-security of HSS.
HybridH3: We now remove the information about k in the constrained evaluation key
as follows: instead of de�ning (I0, I1)← Input(pk, k), we set (I0, I1)← Input(pk, 0).1 The
PRF key k $← K is still sampled by the challenger, and evaluation (and challenge) queries
are still answered on input by having the challenger computing y1 ← CEval(pp, ckC , x)
and returning y1 + C(x) · Fk(x).
By HSS security (for σ = 1) and correctness of the HSS evaluation, we claim thatH2 and
H3 are computationally indistinguishable. Suppose that an adversaryA could distinguish
between these two hybrids, we construct an adversary B against HSS security as follows:
B �rst samples a key k $← K and submits message (k, 0) to its HSS challenger. It gets back
(pk, ek1, I1) where I1 is the right-hand part of Input(k) or Input(0). Then, B computes
the constrained key ckC as described inH2. It answers A’s evaluation (and challenge)
queries x by computing y1 ← CEval(pp, ckC , x) and returning y1 + C(x) · Fk(x). When
A halts with some output b′, so does B. It is clear that B simulates either H2 or H3,
depending on whether it was given an encoding of k or of 0, which results in our claim.
Hybrid H4: In this hybrid, the challenger now replies to the challenge query x∗ by
returning a uniformly random value of Y . Since the adversary’s view does no longer
contain any information about the PRF key k, then Fk(x∗) can be replaced by a random
value of Y . Also, since x∗ must satisfy C(x∗) = 1, then y1 + C(x) · Fk(x) = y1 + Fk(x),

1By 0 we mean any �xed key, e.g. 0λ if K = {0, 1}λ.

52

3

3.3. Constrained Pseudorandom Functions

which is computationally indistinguishable from a random element of Y . Therefore,
hybridsH3 andH4 are computationally indistinguishable thanks to the security of the
underlying PRF. Note that here that we only rely on Find-then-Guess security for the
underlying PRF.
The rest of the proof proceeds by reversing the sequence of hybrid games while leaving
the challenge query answered by a uniformly random value.

Remark 3.2. We note that the above construction is not constraint-hiding, since the con-
strained evaluation algorithm relies on the knowledge of the constraint.

Combining Theorem 3.7 (CPRF for NC1 from staged-HSS) with Theorem 3.5 (staged-HSS
from DCR), yields the following corollary.

Corollary 3.3 (CPRF for NC1 from DCR). Assuming the DCR assumption holds, there
exist 1-key selectively-secure constrained pseudorandom functions for NC1 constraints.

Remark 3.3 (Other Instantiations). Although not explicitly detailed in this work, our trans-
formations from HSS to CPRF works using either of the schemes from [BKS19] based on the
Learning With Errors (LWE) assumption with super-polynomial modulus, from [ADOS22]
based on the hardness of Joye-Libert encryption scheme, from [ADOS22] based on the
Decisional Di�e-Hellman (DDH) and Decisional Cross-Group Di�e-Hellman (DXDH) as-
sumptions over class groups, or from [CLT22] based on the Hard Subgroup Membership
(HSM) assumption over class groups. All of the above HSS schemes follow the same outline
as the DCR-based scheme of [OSY21] when generating input and memory values. More
precisely, input values are ciphertexts computed using a PKE scheme, and in all of the
mentioned schemes, the used encryption tool generates ciphertexts that contain a separate
part as a commitment to the encryption randomness which is independent of the underlying
plaintext. This feature makes it feasible to generalize these schemes into staged-HSS schemes
and then use it to construct CPRF for NC1 constraints. These schemes also allow simulation
of memory values which enables using the scheme to construct CPRF for inner-product
constraints. This holds since a valid memory value of these schemes is a subtractive share of
a secret vector dependent on the secret key of the used PKE, thus one share can be sampled
obliviously and the other one can be correctly computed given the secret vector.
Also, using HSS with only polynomial correctness (e.g., the DDH-based scheme of [BGI16])
still yields CPRFs for polynomial-size domain. This leads to constructions of poly-size
domain private CPRFs for inner-products and CPRFs for NC1 from DDH, and from LWE
with polynomial modulus-to-noise ratio.
However, we note that instantiating our transformation for domains larger than polynomail
from HSS schemes with polynomial correctness, leads not only to incorrect CPRFs, but to
insecure ones! This is because the security proofs of our transformations rely on the fact that
the two outputs of the underlying HSS scheme form correct subtractive shares of the program
C(x) · Fk(x) with overwhelming probability (see HybridH1 of the proofs of Theorems 3.6
and 3.7).

53

3

4

Chapter 4

Public-Key Pseudorandom
Correlation Functions

from Constrained Pseudorandom
Functions

Contents
4.1 Chapter Overview . 55

4.1.1 Naor-Reingold PRF⇒ Pseudorandomly Constrained PRF . . 56
4.1.2 Pseudorandomly Constrained PRF⇒ PCF for OT 58
4.1.3 Public-Key PCF for OT from Constrained Naor-Reingold . . 60

4.2 Constraining the Naor-Reingold PRF 62

4.2.1 Inner Product Membership CPRF from Naor-Reingold 62
4.2.2 Compressing the keys . 65
4.2.3 On IPM Predicates . 67

4.3 PCF for OT from Pseudorandomly Constrained PRFs 73

4.3.1 A Generic Transformation 73
4.3.2 Instantiations . 76

4.4 Public-Key PCF for OT from Naor-Reingold 77

4.4.1 Public-Key PCF: Formal De�nition 77
4.4.2 A Public-Key PCF via Bellare-Micali Non-Interactive OT . . 79
4.4.3 A Better Construction from Paillier-ElGamal 80
4.4.4 Reducing The Public Keys Size to O(n2/3) 87

The content of this section is based on the results presented in [BCM+24].

4.1 Chapter Overview
In this chapter, we draw connections between constrained pseudorandom functions and
pseudorandom correlation functions (PCFs). More precisely, we show how constrained

55

4

4. Public-Key PCF from Constrained PRFs

PRFs can be used together with low-complexity weak PRFs to obtain pseudorandom
correlation functions. Moreover, we show how this transformation yields e�cient public-
key PCFs, when the underlying constrained PRF is instantiated by modifying the PRF
construction of Naor and Reingold [NR97].
Brie�y recalling our discussing in the introduction chapter, the results of this chapter are
obtained via three steps: (1) we �rst show that the Naor-Reingold PRF can be transformed
into a CPRF for the class of inner-product membership (IPM) predicates. We observe that
the class of IPM predicates contains many predicates of interest, including some weak
PRF candidates. Therefore, we obtain CPRFs that admit weak PRFs as constraints, which
we refer to as pseudorandomly constrained PRFs. Next, (2) we show that pseudorandomly
constrained PRFs can be transformed into PCFs for oblivious transfer (OT) correlations.
Combining this result with the previous step, we obtain a PCF for OT from the Naor-
Reingold PRF. Finally, (3) we show that the PCF instantiation obtained in the previous step,
can be upgraded to a public-key PCF, where the PCF evaluation keys can be generated
non-interactively.
In the following, we provide a brief technical overview of each step.

4.1.1 Naor-Reingold PRF⇒ Pseudorandomly Constrained PRF
Let us �rst recall the Naor-Reingold PRF [NR97] with binary input domain X = {0, 1}n.
This construction works over a cyclic group G of prime order p.

• NR.KeyGen(1λ) : Sample g $← G and a = (a1, a2, · · · , an) $← (Z∗p)n.
Output msk := (g,a).

• NR.Eval(msk,x) : On input x = (x1, · · · , xn) ∈ {0, 1}n, output y = g

n∏
i=1

a
xi
i

.

Evaluating the Naor-Reingold PRF requires a few multiplications, followed by a single
exponentiation and it falls in the complexity class NC1. The security of this PRF follows
from the Decisional Di�e-Hellman assumption over the group G.
We �rst show how we can generate constrained keys for inner-product predicates:
Naor-Reingold Constrained PRF for Inner-Product. Let us recall the class of inner-
product constraints with space input a setR. This class is de�ned as IP = {Cz | z ∈ Rn},
where the circuit Cz : Rn → {0, 1} is de�ned as Cz(x) = 0 if 〈z,x〉 = 0, and Cz(x) = 1,
otherwise.
The following two algorithms allow generating a constrained key ckz for a vector z
which enables computing the output of the Naor-Reingold PRF on inputs x ∈ Rn if and
only if 〈z,x〉 = 0.

• NR.Constrain(msk, z) : Sample r $← Z∗p, and de�ne α = (α1, · · · , αn), where
αi = r−zi · ai for i ∈ [n]. Output ckz = (g,α).

• NR.CEval(ckz,x) : On input x = (x1, · · · , xn) ∈ {0, 1}n, output y = g

n∏
i=1

α
xi
i

.

Here, each element αi of a constrained key is obtained by randomizing each master secret
key element ai using a term r−zi . The outputs of the Eval and CEval algorithms coincide
when the blinding terms cancel out which happens exactly when it holds that 〈x, z〉 = 0
(mod ord(r)), where ord(r) is the order of r in G. For a safe prime p = 2q + 1, the order

56

4

4.1. Chapter Overview

of r is q or 2q with overwhelming probability. Therefore, when q � n, 〈x, z〉 = 0 mod q
i� 〈x, z〉 = 0 over the integers.
Regarding the security, when the adversary doesn’t have access to the evaluation oracle,
the pseudorandomness of the output of the above function on a challenge input x, where
〈x, z〉 6= 0, holds as long as gr〈x,z〉 looks random for a uniformly random r ∈ Z∗p. This
requirement is satis�ed unconditionally since the constrained key reveals no information
about r as each ai is uniformly random in Z∗p and hides r.
Extending this idea, we can generate constrained keys for inner-product membership
predicates as follows:
Naor-Reingold Constrained PRF for Inner-Product Membership. We de�ne the
class of inner-product membership predicates as IPM = {CS

z | z ∈ Rn, S ⊆ I}, for some
sets R and I , and n > 0, where CS

z : Rn × 2I → {0, 1} is de�ned as CS
z (x) = 0 i�

〈z,x〉 ∈ S.
For this class, we de�ne the Constrain and CEval algorithms as follows:

• NR.Constrain(msk, z, S) : Sample r $← Z∗p. For each s ∈ S, de�ne gs := gr
s , and let

α = (α1, · · · , αn), where αi = r−zi · ai, for i ∈ [n]. Output ck = (z, (gs)s∈S,α).

• NR.CEval(ck,x) : On input x = (x1, · · · , xn) ∈ {0, 1}n, output y = g

n∏
i=1

α
xi
i

s , where
s = 〈x, z〉.

The correctness follows from inspection and is similar to the correctness of the construc-
tion for inner-product predicates.
Regarding the security, our prior claim that the constrained key contains no information
about r no longer holds since it now contains extra elements grs for all s ∈ S, and
therefore the no-evaluation security is no longer unconditional. We show that this
construction is (no-evaluation) secure under a variant of the Di�e-Hellman assumption
which we call sparse power-DDH assumption. The sparse power-DDH assumption states
that for a subset S ⊆ [`], where ` ∈ N is polynomially-bounded, given grs for various
s ∈ S, it is infeasible to distinguish grs for s ∈ [`] \ S from uniformly random group
elements. This assumption is a static falsi�able assumption, and it can be viewed as a
natural generalization of the power-DDH assumption (which states that given gri for
i ∈ {1, . . . , n}, it is infeasible to distinguish grn+1 from random).
From no-evaluation security to full security. As discussed in [AMN+18], any no-
evaluation secure CPRF can be turned into an adaptively secure CPRF (with any number
of evaluation queries) in the random oracle model by hashing the output. Hence, proving
the no-evaluation security su�ces for our purpose.
On IPM predicates. The class of IPM predicates captures several predicates of interest.
As already explained, it contains inner-product equality. We also note that since
the range of inputs and constraints is polynomially bounded, the IPM-constrained
Naor-Reingold also admits inner-product inequality predicates. Moreover, this class
captures puncturing, which, to our knowledge, yields the �rst candidate puncturable
pseudorandom function in the complexity class NC1 (assuming that the hash function
used to re-randomize the output is in NC1).1 Since puncturable PRFs have independent

1It is not too hard to build a puncturable PRF in NC1 by following the blueprint of the GGM
PRF [GGM84b] but using a λ-ary tree instead of a binary tree and instantiating the PRG with an NC0

PRG with polynomial stretch. However, such constructions are inherently limited to superpolynomial-size
domains, while our construction can handle subexponential-size domains.

57

4

4. Public-Key PCF from Constrained PRFs

applications, for instance in the context of indistinguishability obfuscation, we expect
that this result could have other applications. Furthermore, the class of IPM predicates
capture several variants of puncturing, such as puncturing a Hamming ball.
Most importantly for our work, this class also captures several candidate weak
pseudorandom functions from the literature such as [BPR12, BIP+18, AR16]. We
refer to these weak PRFs as IPM-wPRFs. We explain the details of these IPM-wPRFs
in Section 4.2.3.3.

To draw a conclusion, the existence of IPM-wPRFs implies that the constrained Naor-
Reingold PRF for the class of IPM predicates admits certain weak PRFs as constraints. This
property, seemingly inappreciable, forms the basis of our transformation from CPRFs to
PCFs for oblivious transfer correlations. Recognizing its importance, we refer to a CPRF
that admits a (weak) pseudorandom predicate as a (weakly) pseudorandomly constrained
PRF. If a CPRF admits both a pseudorandom predicate and its complement, we call it a full-
domain pseudorandomly constrained PRF. The concept of full-domain pseudorandomly
constrained PRFs is used in the transformation explained in the following part.

4.1.2 Pseudorandomly Constrained PRF⇒ PCF for OT

Building on last part’s conclusion, here we show how to construct PCFs for OT correla-
tions from full-domain pseudorandomly constrained PRFs.
Let F = (F.KeyGen, F.Eval) be a (weak) pseudorandom predicate with key space K. For
a key k ∈ K, let Fk : x 7→ F.Eval(k, x). Also, let CPRF = (CPRF.KeyGen,CPRF.Eval,
CPRF.Constrain,CPRF.CEval) denote a full-domain pseudorandomly constrained PRF,
meaning that it supports the class F = {Fk}k∈K ∪ {1− Fk}k∈K as constraints, i.e., all
predicates “F.Eval(K, x) evaluates to b” for b ∈ {0, 1} and k ∈ K. Then, we construct a
pseudorandom correlation function for oblivious transfer correlations as follows:

• PCF.Gen(1λ):

– Sender’s key: Run CPRF.KeyGen(1λ) to sample two independent master secret
keys msk0,msk1. Set k0 = (msk0,msk1).

– Receiver’s key: Sample k $← K, and two constrained keys, ck0 that is msk0
constrained at “Fk(x) = 0”, and ck1 that is msk1 constrained at “Fk(x) = 1”. Set
k1 = (k, ck0, ck1).

• PCF.Eval(0, k0, x): On an input x, the sender evaluates the CPRF on x using both
msk0 and msk1 to obtain two pseudorandom outputs (y0, y1).

• PCF.Eval(1, k1, x): On an input x, the receiver computes b ← Fk(x), and sets
yb ← CPRF.CEval(ckb, x). It then outputs (b, yb).

In the above construction, the output pairs of the evaluation algorithm on a common
input x are OT correlated. This is because for any input x, the predicate Fk(x) = b is
satis�ed for some b ∈ {0, 1}, hence evaluating the CPRF using the constrained key ckb
yields the correct output yb by the correctness of the CPRF. Regarding the security, the
bit b looks random to the sender, by the security of the (weak) PRF F , since the key k

58

4

4.1. Chapter Overview

is hidden from the sender.1 On the other hand, the sender security holds since for each
input x, the predicate Fk(x) = 1− b is not satis�ed, thus the constrained key ck1−b fails
to compute y1−b and this element remains pseudorandom to the receiver.
Furthermore, the above PCF is precomputable, as recently de�ned in [CMPR23], as a
property that allows one of the parties to locally generate its own PCF key and compute
its correlated randomness entirely, before even knowing the identity of the other party.
In the above construction, the sender can compute all pairs (y0, y1) prior to knowing the
receiver, and it is therefore precomputable.
To conclude, plugging in our IPM-constrained Naor-Reingold to instantiate the full-
domain pseudorandomly constrained PRF in above transformation yields a PCF for OT
correlations from the sparse power-DDH assumption.

Optimizations

When we plug in our IPM-constrained Naor-Reingold construction to instantiate the
transformation presented above, several optimizations can be applied in order to reduce
the size of both sender and receiver keys. These optimizations are explained in details in
our paper [BCM+24], and here, we provide a brief overview of them.
Note that when using the Naor-Reingold CPRF in the transformation, the sender key k0
and the receiver key k1 are as follows:

k0 = (msk0 = (g,a),msk1 = (g′,a′)),

k1 = (k, ck0 = (k, (gs)s∈S,α), ck1 = (k, (g′s)s/∈S,α′)),
where a = (a1, . . . , an), gs = gr

s for s ∈ S, and α = (a1 · r−k1 , . . . , an · r−kn). Similarly,
we have a′ = (a′1, . . . , a′n), gs = gr

′s for s /∈ S, and α = (a′1 · r′
−k1 , . . . , a′n · r′

−kn).
Halving the key size. This optimization builds on the random self-reducibility property
of DDH (explained in Section 2.1). Due to this property, the two master secret keys in the
sender’s key k0 can have common elements (a1, · · · , an) provided that they use di�erent
bases g and g′. For the same reason, we can also set r = r′ without any security loss.
This reduces the sender key size by a factor two, and compresses the receiver key size as
well. Concretely, we have:

k0 = (g, g′,a = (a1, . . . , an)),

k1 = (α = (r−k1 · a1, . . . , r
−kn · an), (grs)s∈S, (g′r

s

)s/∈S)

Reusing the gs elements. We note that the set S attributed to the weak PRF used in
the transformation is public and depends only on the de�nition of the (weak) PRF used
by the receiver. In a multiparty setting where the sender wants to compute PCF keys
with multiple receivers, we can exploit this observation to de�ne the gt’s once for all,
and publish them as public parameters (or sender’s public key) to be used by all receivers.
This requires adding two additional terms (a0,j, a

′
0,j) in the sender key for each receiver

j, to re-randomize the bases g, g′. That is, the sender now computes its pseudorandom
OT messages with each receiver j as

y
(x)
0,j ← ga0,j ·

∏n

i=1 a
xi
i y

(x)
1,j ← g′

a′0,j ·
∏n

i=1 a
xi
i ,

1We note that the common PCF security notion in the literature, requires the security to hold for
random inputs. Therefore, in our transformation from CPRF to PCF for OT, it su�ces to consider a weak
PRF to generate the bit b.

59

4

4. Public-Key PCF from Constrained PRFs

Compressing the keys. When instantiating the group with a suitable elliptic curve,
the size of each element ai is 2λ bits in order to achieve λ bits of security against generic
discrete log attacks. To further reduce the key size, these elements can be generated by
applying a pseudorandom generator on a λ-bit seed. This optimization is explained in
details in Section 4.2.2 and results in having a sender key of size only λ bits as well as
reducing the receiver key size by 25%.
Exploiting the structure in the set S. This optimization builds on a special structure
of the set S that is satis�ed by some of the weak PRFs of the literature (in particular that
of [BIP+18]). We refer to this structure as S being anti-periodic. More precisely, we say
that S is m-antiperiodic when we almost have:

s /∈ S ⇐⇒ (s−m) ∈ S ,

where the almost stems from the fact that the equivalence breaks down at the extremities.
In this case, we can rewrite the constraint 〈x, z〉 /∈ S as “〈x, z〉 − m ∈ S”. We can
therefore consider only one master secret key msk for the sender by simply adding
another exponent an+1 to act as a shift. The keys therefore become:

k0 = (g, a1, · · · , an, an+1)

k1 = ck = (g, r−k1 · a1, · · · , r−kn · an, rm · an+1, (gs)s∈S′),
On an input x, the sender computes the two OT outputs as yb ← CPRF.Eval(msk,x|b)
for b ∈ {0, 1}. More precisely, we have:

yb ← g
∏n

i=1 a
xi
i ·a

b
n+1 for b ∈ {0, 1}.

Thanks to the term rm · an+1 in the receiver key, for every input x, there is only a single
b ∈ {0, 1} such that 〈x|b, z| −m〉 ∈ S, i.e. such that 〈x, z〉 − b ·m ∈ S. Compared to
the previous construction, this (almost) halves the number of group elements gt in the
receiver key, going from m ·R to (m/2) · (R + 1).
The BIPSW wPRF and the XOR-MAJ wPRF satisfy this property: the set S is m-
antiperiodic with m = 6 for BIPSW, and m = 49 for our parameter choice with
XOR-MAJ. Hence, this optimization can also be applied to these two instantiations.

We note that none of the optimizations above change the underlying security assump-
tion, and the resulting construction is secure under the same assumption as the base
construction.

4.1.3 Public-Key PCF for OT from Constrained Naor-Reingold
In this part we show that the PCF construction that is obtained from the IPM-constrained
Naor-Reingold PRF can be transformed into a public-key PCF, i.e., the evaluation keys
can be generated locally and non-interactively by each party. More precisely in a
public-key PCF, the central PCF.Gen algorithm is replaced by two algorithms that
are locally run by each party b ∈ {0, 1}: PCF.Gen(1λ, b) that outputs (skb, pkb), and
PCF.KeyDer(b, skb, pk1−b) that uses the other party’s public-key to derive an evaluation
key kb.
The evaluation keys in this construction are as follows:

k0 = (msk0 = (g,a),msk1 = (g′,a′)),

60

4

4.1. Chapter Overview

k1 = (k, ck0 = (k, (gs)s∈S,α), ck1 = (k, (g′s)s∈S,α′)),

where a = (a1, . . . , an), gs = gr
s for s ∈ S, and α = (a1 · r−k1 , . . . , an · r−kn), and

similarly for a′, (g′s)s∈S , and α.

A First Try via Bellare-Micali Non-Interactive OT: Focusing on the more correlated
elements of the two keys, we have that αi = ai · r−ki for each i ∈ [n]. These values can
be viewed as multiplicative shares over Z∗p of r−ki (up to inverting ai locally). Therefore,
assuming DDH over a suitable subgroup G′ of Z∗p, such multiplicative shares can be
directly obtained via the Bellare-Micali protocol.
We explain this construction in Section 4.4.2. Yet, this solution has two major downsides:
Firstly, we cannot set Z∗p = G′, since DDH over Z∗p can be broken by computing the
Legendre symbol. However, assuming that p = 2q + 1 is a safe prime (q is prime),
we can set G′ to be the subgroup QRp of quadratic residues modulo p, where DDH is
widely conjectured to hold for a su�ciently large p. This does not harm the security
of the CPRF but changes slightly the underlying sparse power-DDH variant. A second,
more troublesome, downside is the size of the modulus p: due to subexponential-time
algorithms for discrete logarithm over �nite �elds, p should be taken much larger than
256 bits, at the very least 1024 bits. But in turn, this implies that the group G over which
we instantiate our PCF should have order p ≥ 21024, which considerably harms e�ciency
in terms of both the key size and the computation time, and prevents us in particular to
rely on e�cient 256-bit elliptic curves. We circumvent this issue by setting p to a smaller
value, e.g., a 256-bit prime, and relying on Paillier encryption.

A More Optimized Solution via Paillier Encryption: This time we work over a
Paillier group. We �rst recall the setting. Recall that the Naor-Reingold construction
works over a group G of prime order p = 2q+1, where q is also a prime. LetN = PQ be
a Blum integer. The key generation and derivation of our public-key PCF work over the
group Z∗N2 ≈ H×NRN , where H = {(1 +N)i : i ∈ [N]}, and NRN = {xN : x ∈ Z∗N2}.
In essence, our solution is achieved through three steps:

1. First the two parties compute multiplicative shares of (1 +N)r′k, where r′ $← Zq.
More precisely, let gq be a generator of QRp, and G,H two random elements of
NR2N . The sender samples r′ $← Zq and sets r := gr

′
q (mod p). It then computes

its public key as a Paillier-ElGamal encryption of r′, i.e., pk0 = (c0 = Gt, c1 =
H t·(1+N)r′). The receiver holding a bit string k1, . . . , kn computes its public key as
Pedersen commitments of each ki over NR2N , i.e., pk1 = ((comi = Gsi ·Hki)i∈[n]),
where si $← ZN .
Knowing each other’s public keys, the sender and receiver then respectively com-
pute Ai = comt

i, and Bi = csi0 · cki1 , for i ∈ [n]. Note that for each index i it holds
that Bi = Ai · (1 +N)r′k.

2. In the second step, the two parties convert their obtained multiplicative shares
to subtractive shares modulo N using a distributed discrete log (introduced
in [OSY21]), and they immediately convert these shares modulo N to shares
modulo q using the fact that subtractive shares modulo N are with very high
probability shares over the integers when the shared value is su�ciently smaller
than the modulus.
More precisely, let DDLogN be the algorithm that on separate inputs g0 and g1
such that g0 = g1 · (1 +N)x (mod N2), outputs z0 and z1, respectively, such that

61

4

4. Public-Key PCF from Constrained PRFs

z0 − z1 = x (mod N). It is therefore enough for the sender and the receiver to
respectively run (r′ · k)0 ← DDLogN(Ai), and (r′ · k)1 ← DDLogN(Bi). Note that
these shares are over ZN . By setting q ≤ N/2λ, they also form correct shares over
the integers with probability at least 1− 1/2λ.

3. Finally the two parties convert their additive shares modulo q to multiplicative
shares over Z∗p via exponentiation.
More precisely, the sender and receiver simply compute ai ← g(r′·k)0

q (mod p),
and αi ← g(r′·k)1

q (mod p). Note that it now holds that αi = ai · r−ki , which was
our objective.

Given that the set S attributed with the IPM-wPRF is public, the sender can compute
and publish the tuples (gs)s∈S and (g′s)s∈S as a part of its public key. The receiver can
then use these tuples to complete its evaluation key.

4.2 Constraining the Naor-Reingold PRF
In this section, we �rst describe how to obtain a constrained PRF in the ROM from
the Naor-Reingold PRF for the class of inner-product membership constraints, de�ned
below. Then, we detail several optimizations and provide some simple applications for
the resulting CPRF.

4.2.1 Inner Product Membership CPRF from Naor-Reingold
We de�ne the class of inner-product membership (IPM) constraints as IPM = {CS

z | z ∈
Rn, S ⊆ I}, for some sets R and I , and n > 0, where CS

z : Rn → {0, 1} is de�ned as
CS

z (x) = 0 i� 〈z,x〉 ∈ S for an input x ∈ Rn. In the following, we �rst consider binary
inputs, i.e., R = {0, 1}, and later in the section, we explain how we can operate over
non-binary inputs, e.g., consideringR = {0, 1, . . . , p− 1} for a prime p.
In Construction 4.1, we describe our construction for constraining the Naor-Reingold
PRF for the class of inner-product membership constraints.

Construction 4.1: Naor-Reingold CPRF for IPM (Binary Inputs)

Requirements and notation:

- p is a safe prime, i.e., p = 2q + 1 for some prime q.

- The input and constraint space is {0, 1}n.

- The inner-product space is I = {0, 1, . . . , n}.

Algorithms:

I CPRF.KeyGen(1λ):

1. Run (G, g, p) $← GenPar(1λ).

2. Sample a = (a0, . . . , an) $← Zn+1
p .

3. Output msk = a and pp = (G, g, p).

I CPRF.Eval(pp,msk,x ∈ {0, 1}n):

1. Parse pp = (G, g, p) and msk = a.

2. Output y = g
a0·

n∏
i=1

a
xi
i

.

62

4

4.2. Constraining the Naor-Reingold PRF

I CPRF.Constrain(pp,msk, (z, S)):

1. Parse pp = (G, g, p), and msk = a.

2. Sample r $← Z∗p.

3. For i ∈ [n], set αi := ai · r−zi .

4. Let α = (α1, . . . , αn).

5. For s ∈ S, compute gs := ga0·rs .

6. Output ck = (α, (gs)s∈S, z).

I CPRF.CEval(pp, ck,x ∈ {0, 1}n):

1. Parse ck = (α, (gs)s∈S, z).

2. Let sx := 〈z,x〉.

3. If 〈z,x〉 ∈ S, output

y = (gsx)
n∏
i=1

α
xi
i

.

4. Otherwise, return ⊥.

We �rst show that, our construction is no-evaluation secure under the sparse power-DDH
assumption (De�nition 2.4).

Theorem 4.1 (No-Evaluation Security). Assuming the hardness of sparse power-DDH
(De�nition 2.4), Construction 4.1 is a single-key, no-evaluation secure CPRF for the class of
IPM constraints.

Proof. We now prove correctness and no-evaluation security of Construction 4.1.

Correctness. Correctness follows by inspection after replacing each αi by rziai in the
output of the CEval algorithm.

No Evaluation Pseudorandomness. Let A denote a 1-key no-evaluation adversary
against the pseudorandomness of the above construction. Consider the following se-
quence of hybrid games:
Hybrid H0: This is the standard CPRF security game where the challenge query is
answered by returning the output of the CPRF evaluation algorithm. Here the view of
the adversary is as follows:

ViewA0 = (pp, (z, S), ck(z,S),x∗, y∗),

where pp = (G, g, p), ck(z,S) = (α, (gs)s∈S, z), and y∗ = g
a0·

n∏
i=1

a
x∗
i
i

.
HybridH1: In this game, the challenger modi�es the way it computes the constrained
key. It sets the constrained key to be ck = (α, (gs)s∈S, z), where gs = ga0·rs for each
s ∈ S, same as inH0, but di�erently, for α, it samples a uniform vector α $← Znp .
Note that inH0 we have αi = r−ziai, where ai is uniformly sampled from Zp for each
i ∈ [n]. Therefore, the distribution of α is identical in both games.
HybridH2: In this game, the challenger replies to the challenge query by returning gt for
a random element t $← Z∗p. We claim that assuming the sparse power-DDH assumption
(De�nition 2.4),H2 andH1 are computationally indistinguishable. Suppose A succeeds
in distinguishing these two hybrid games. We construct an adversary B that breaks
Assumption 2.4 with respect to the set S and ` = n.

63

4

4. Public-Key PCF from Constrained PRFs

B is given the group G = 〈g〉 of order p and sets pp := (G, g, p) which it sends to
A. Then, after receiving a constraint query (z, S) from A, B asks its challenger for a
challenge distribution with respect to the set S and ` = n. It receives a tuple of the form:(

g, p, (ga·rs)s∈S, (gts)s∈[n]\S
)
,

where a, r $← Z∗p, and for each gts , where s ∈ [n] \ S, it either holds that ts = a · rs or
ts

$← Z∗p.
B then selects a random vector α $← Znp , sets the constrained key ck = (α, (ga·rs)s∈S, z),
and returns it to A.
To answer the challenge query x∗ made by A which satis�es 〈x∗, z〉 /∈ S, it selects the

gts∗ corresponding to s∗ = 〈x∗, z〉 (mod p) and outputs (gts∗)
n∏
i=1

α
x∗
i
i

.

If ts∗ = a · r〈x∗,z〉, then B simulates the view of A as in Hybrid H1, and otherwise, if
ts∗

$← Z∗p, it simulatesH2. Therefore, distinguishing these two hybrids implies breaking
Assumption 2.4 which proves our claim.
The rest of the proof proceeds by reversing the sequence of hybrid games while leaving
the challenge query answered by a uniformly random value.

While the CPRF of Construction 4.1 is no-evaluation secure, a simple attack can be
mounted as soon as 1 evaluation query is allowed, as we remark below. Fortunately,
no-evaluation secure CPRFs can be turned into standard secure CPRFs by known tech-
niques [AMN+18], e.g. in the ROM. We provide more details below.

Remark 4.1 (A single query attack). Let (z, S) be the constraint selected by the adversary.
For any input x, let us de�ne sx = 〈z,x〉 and ux = ∏n

i=1 α
xi
i , where α = (α1, . . . , αn) is

part of the constrained key obtained by the adversary. Then, remark that the output of the
CPRF on any input x can be written as

Eval(x) = ga0·rsx ·ux

where ga0·rsx is part of the constrained key if and only only sx ∈ S.
Since ux is computable for any x from the constrained key, an adversary A with access to
the evaluation oracle, can ask for the output of the CPRF on any input x such that sx /∈ S
and recover ga0·rsx by raising the evaluation to the power 1/ux. Given ga0·rsx , A can now
evaluate the CPRF on any input x′ such that sx = sx′ (mod p), and therefore break the
security by �nding any input x∗ 6= x such that sx = sx∗ (mod p).

Achieving Selective and Adaptive Security. As shown in [AMN+18], our no-
evaluation secure CPRF for IPM constraints (Construction 4.1) can be modi�ed to achieve
adaptive security using a hash function modeled as a random oracle. In order to prevent
the attack explained above, we can simply hash the output of our no-evaluation secure
CPRF. Modeling the hash function as a random oracle, the output of the evaluation
function is perfectly random as long as an adversary cannot e�ciently �nd the hash
input, i.e., as explain in our attack, cannot �nd two values x 6= x′ ∈ Znp for which it holds
that sx = sx′ /∈ S and ux = ux′ . Since each ai (therefore each αi) is a random element of
Zp, the probability that ux = ux′ for any x 6= x′ ∈ Znp is 1/p. Therefore, the probability
of �nding a collision is negligible. The proof of adaptive security proceeds in the same
way as in [AMN+18] (Section 4.3).

64

4

4.2. Constraining the Naor-Reingold PRF

Looking more closely, we can replace the random oracle by a correlation-robust hash
function and achieve selective security. Variants of correlation-robust hash have been
used in many previous works, see [IKNP03, KKRT16, AMN+18] for a small sample. As in
these works, we note that this is a simple standard-model assumption that is likely to
hold for classical hash functions such as SHA3.

Beyond Binary Inputs. We described the construction for binary inputs and con-
straints for simplicity, and to match with the original construction of Naor and Rein-
gold [NR97]. However, the construction extends to the setting where x, z ∈ [±B]n,
where B is a polynomial-size bound (the security of the original Naor-Reingold construc-
tion for general inputs of this form was shown in [ABP15] to follow from a variant of the
Di�e-Hellman assumption). We then have |〈x, z〉| ≤ n ·B2 and assuming n ·B2 � q,
the inner product is again computed over the integers.

4.2.2 Compressing the keys
We now show how to generate the elements of a master secret key in our Naor-Reingold
CPRF by evaluating pseudorandom generators on short seeds. We can thus store a shorter
master secret key and communicate a shorter constrained key (for some indices of the
constraint vector).
Due to the works of Nechaev [Nec94] and Shoup [Sho97], generic algorithms that solve
the DLog problem over Fp, for a prime p, run in √p steps. Therefore, in order to achieve
λ bits of security against such algorithms, it should hold that log(p) = 2λ. As a result,
we can choose the seeds of our PRGs (that generate the master secret key) as short as
log(p)/2 bits without any security loss.
Compressingmsk. Using a pseudorandom generator (PRG) G : {0, 1}λ → {0, 1}(n+1)·2λ,
we can generate the vector msk = (a0, a1, . . . , an) as the output of G on a random λ-bit
seed. Doing so, the size of the stored master secret key is reduced from (n+ 1) · 2λ bits
to λ bits.
Compressing ck. Recall that for a constraint vector z and a set S, a constrained key
generated in the CPRF of Construction 4.1 is of the form ck(z,S) = (α, (gs)s∈S, z), where
αi = r−ziai for all i ∈ [n]. In the case of binary inputs, for each index i ∈ [n], it holds
that αi = ai, if zi = 0, and αi = r−1 · ai, if zi = 1. In other words, for all the indices
i ∈ [n], where zi = 0, the master secret key element ai is included in the constrained key
and given to the adversary in plain.
Here, we propose an alternative way of generating the master key elements
(a1, . . . , an) ∈ Znp which results in including shorter elements in the constrained key
and thus reducing the constrained key size. The idea is to use a pseudorandom generator
(PRG) G′ : {0, 1}λ → {0, 1}2λ and to generate each ai as the image of G′ on a randomly
sampled short seed seedi $← {0, 1}λ, for all i ∈ [n]. Doing so, when generating a
constrained key for a constraint vector z, for all the indices i ∈ [n] where zi = 0, we can
include the λ-bit seedi instead of the 2λ-bit master secret key element ai, resulting in a
25% reduction of the length of the constrained key.

Combining the two above solutions for reducing the msk and ck sizes, we can �rst use
a PRG G : {0, 1}λ → {0, 1}(2+n)λ to generate a vector (a0, seed1, . . . , seedn) from a
random λ-bit seed, and afterwards, use another PRG G′ : {0, 1}λ → {0, 1}2λ to generate
ai ← G′(seedi) for all i ∈ [n].

65

4

4. Public-Key PCF from Constrained PRFs

Construction 4.2 presents the modi�ed construction with reduced key size. The steps
that are di�erent from the original construction (Construction 4.1) are marked by D.

Construction 4.2: Naor-Reingold CPRF with Compressed Keys

Requirements and notation:

- p is a safe prime, i.e., p = 2q + 1 for some prime q.

- The input and constraint space is {0, 1}n.

- The inner-product space I = {0, 1, . . . , n}.

- G : {0, 1}λ → {0, 1}(n+2)λ, and G′ : {0, 1}λ → {0, 1}2λ are PRGs.

Algorithms:

I CPRF.KeyGen(1λ):

• Run (G, g, p) $← GenPar(1λ).

D Sample seed $← {0, 1}λ.

D Output msk = seed,
and pp = (G, g, p).

I CPRF.Eval(pp,msk,x ∈ {0, 1}n):

D Parse pp = (G, g, p), and msk =
seed.

D (a0, seed1, . . . , seedn)← G(seed).

D For all i ∈ [n]:
compute ai ← G′(seedi).

• Output y = g
a0·

n∏
i=1

a
xi
i

.

I CPRF.Constrain(pp,msk, (z, S)):

D Parse pp = (G, g, p), msk = seed.

D (a0, (seedi)ni=1)← G(seed).

• Sample r $← Z∗p.

D For i ∈ [n]:

1. If zi = 0, set α̃i := seedi.
2. If zi = 1, set α̃i := r−1 ·

G′(seedi).

D Let α̃ = (α̃1, . . . , α̃n).

• For s ∈ S, set gs := ga0·rs .

D Output ck = (α̃, (gs)s∈S, z).

I CPRF.CEval(pp, ck,x ∈ {0, 1}n):

D Parse pp = (G, g, p), and
ck = (α̃, (gs)s∈S, z).

D For i ∈ [n]:

1. If zi = 0, set αi := G′(α̃i).
2. If zi = 1, set αi := α̃i.

• Let sx := 〈z,x〉.

• If 〈z,x〉 ∈ S, output y =

(gsx)
n∏
i=1

α
xi
i

.

• Otherwise, output ⊥.

66

4

4.2. Constraining the Naor-Reingold PRF

Security Analysis. We observe that computing the elements of the master secret as
outputs of a pseudorandom generator on short seeds does not a�ect the no-evaluation
security of the resulting CPRF except for imposing a negligible loss in the security
reduction. More precisely, the proof of the no-evaluation security of the CPRF with
optimized constrained key size follows from a sequence of hybrid games similar to the
proof of Theorem 4.1 with an adaptation in Hybrid H1. We break this hybrid into the
two following parts:

HybridH0
1: In this game, the challenger modi�es the way it computes some elements

of the vector α of the constrained key. To generate a constrained key, the challenger
�rst parses msk = seed and computes (a0, seed1, . . . , seedn) ← G(seed). It then sets
α̃i := seedi, for all i ∈ [n] such that zi = 0. And di�erently fromH0, it samples random
elements α̃i $← Zp, for all i ∈ [n] such that zi = 1. It then sets the constrained key to be
ck = (α̃, (gs)s∈S, z), where gs = ga0·rs , for all s ∈ S.

Note that HybridH0
1 remains computationally indistinguishable from HybridH0. This

is because the only di�erence between the two hybrids is that for all indices i ∈ [n]
where zi = 1, the element α̃i is sampled as a random element inH1, rather than being
computed as α̃i = r−1 · G′(seedi) in H0. Therefore, if a PPT adversary can distinguish
between these two hybrids, there must exist an index i such that a random element
α̃i

$← Zp is distinguished from an element of the form α̃i = r−1 · G′(seedi). Such an
adversary can be leveraged to distinguish between the outputs of the pseudorandom
generator G′ with random elements of Zp.

HybridH1
1: In this game, the challenger samples the master secret key without using the

PRG G anymore. In other words, the challenger samples a0
$← Zp, and seedi $← {0, 1}λ

for all i ∈ [n], and sets msk = (a0, seed1, . . . , seedn). As a result, when generating a
constrained key, it no longer uses G. Here again, HybridH1

1 remains indistinguishable to
H0

1 due to the security of the PRG G.
The rest of the proof is done exactly as in the proof of Theorem 4.1 with an adaptation
that the constrained key element α is now set as inH1

1.

4.2.3 On IPM Predicates
As mentioned in Section 4.1, the class of IPM predicates includes a variety of interesting
predicates. In this part we explain the details of the construction for the inner-product
equality predicate, the resulting puncturable PRF, and weak PRFs expressed as IPM
predicates.

4.2.3.1 Inner-Product Equality

Inner-product equality (IPE) predicates are special cases of IPM predicates where the
inner-product predicates are attributed with singleton sets. More speci�cally, for a vector
z ∈ Rn, and a singleton set S = {s}, the constraint circuit CS

z = 0 i� 〈z,x〉 = s. In the
following we use the notation Cs

z for singleton sets S = {s}.

Construction. The CPRF construction supporting the IPE constraints is the same as
Construction 4.1, with 2 small di�erences in the Constrain and CEval algorithms:

• Constrain(pp,msk, (z, s)):

67

4

4. Public-Key PCF from Constrained PRFs

- Parse pp = (G, g, p), msk = a = (a0, · · · , an), and z = (z1, . . . , zn).
- Sample r $← Z∗p.
- For i ∈ [n], set αi := r−ziai. Let α = (α1, . . . , αn).
- Compute gs := ga0·rs .
- Set and output ck := (α, gs). \\ z is not included in ck

• CEval(pp, ck,x = (x1, . . . , xn)):

- Parse pp = (G, g, p) and ck = (α, gs).

- Compute and output y = (gs)
n∏
i=1

α
xi
i

. \\ The output is computed in this way for
all inputs.

Security. The 1-key no-evaluation security of the scheme is also implied by the sparse
power-DDH assumption (Assumption 2.4). Note that the attack explained in Remark 4.1
also breaks the security of the above construction in case of access to the evaluation
oracle. Also, the same techniques explained in Section 4.2.1 can be used to achieve
selective and adaptive security.

Constraint Hiding. Unlike for the IPM class, when considering inner-product equality,
our CPRF construction is constraint-hiding. In other words, for a selective choice of
constraints (Cs0

z0 , C
s1
z1) and a random bit b $← {0, 1}, an adversary A on input ckb ←

Constrain(pp,msk, (zb, sb)), cannot guess the bit b better than with probability 1/2. We
brie�y go over the proof of constraint-hiding property using a sequence of hybrid games:
HybridH0: This is the original constraint hiding security game where the bit b is set to
be 0.
HybridH1: In this game the challenger sets the vectorα in the constrained key ck0 to be
a random vector from (Z∗p)n. This modi�cation keeps the distribution of the constrained
key statistically unchanged while removing the information of the constraint vector z0
from the constrained key ck0.
HybridH2: Here the challenger chooses a random element t $← Z∗p and a random vector
α $← (Z∗p)n and returns ck0 = (gt,α). Note that α perfectly hides the randomness
r, and therefore gr

s0 looks random. Therefore, this hybrid is indistinguishable
from Hybrid H1. In this hybrid the constrained key ck is completely independent of
the constraint pair (z0, s0), and thus the probability ofA guessing the bit b correctly is 1/2.

The rest of the proof proceeds by reversing the sequence of hybrid games but this time
setting the bit b to be 1.

Remark 4.2 (No evaluation oracle access in the constraint-hiding game). Similarly
to Remark 4.1, the constraint-hiding property does not hold if the adversaryA is given access
to the evaluation oracle. Let (Cs0

z0 , C
s1
z1) be the two constraints selected by the adversary,

and let b be the bit chosen by the challenger. When given access to the evaluation oracle,
A can perform an attack as follows to determine the bit b: It �rst samples x 6= x′ such
that 〈z0,x〉 = 〈z0,x′〉 (mod p) and 〈z1,x〉 6= 〈z1,x′〉 (mod p). Then it queries the
evaluation oracle on x and receives y = ga0·r−sx ·ux , where sx = 〈zb,x〉. It then queries the

68

4

4.2. Constraining the Naor-Reingold PRF

evaluation oracle on x′ and receives y′ = ga0·r−sx′ ·ux′ , where sx′ = 〈zb,x′〉. Computing
ux = ∏n

i=1 α
xi
i and ux′ = ∏n

i=1 α
x′i
i locally using ckb, A computes (y)u−1

x and (y′)u
−1
x′ and

checks if they are equal. If the two elements are equal, then b = 0. Otherwise, b = 1.
We note that using a hash function modeled as a random oracle also boosts the constraint-
hiding game to allow evaluation queries. This is similar to what we explained in Section 4.2.1.

4.2.3.2 Application: A Puncturable PRF in NC1

A puncturable PRF is a pseudorandom function that allows the generation of a
constrained key ck which enables one to evaluate the output of the PRF on all inputs
but one. The well-known construction of [GGM84a] from one-way functions o�ers a
puncturable PRF that is computable by a linear-depth circuit in the size of the input.
Noticing that the IPM class contains puncturing constraints (for certain parameters), our
CPRF construction (Construction 4.1) which is essentially constrained Naor-Reingold
PRF and can be evaluated by a log-depth circuit, o�ers a puncturable PRF in NC1.

Construction. For this construction, we consider the input space to be {−1, 1}n.
Suppose that we want to puncture the Naor-Reingold PRF on an input x∗ ∈ {−1, 1}n. In
what follows, we show that this can be done using the Naor-Reingold CPRF construction
(Construction 4.1) that supports the class of IPM constraints. Note that for a vector
x∗ ∈ {−1, 1}n and any vector x ∈ {−1, 1}n, the inner-product 〈x,x∗〉 = n i� x = x∗.
Also, all possible values of the inner-product between vectors in {−1, 1}n lie in the
set I = {−n,−n + 2,−n + 4, . . . , n − 2, n}. Therefore, setting the constraint set
S = I \ {n}, a CPRF supporting inner-product membership constraints for the set S,
can be viewed as a puncturable PRF for any vector x∗ ∈ {−1, 1}n. Parameters of the
IPM constraints for this application is presented in Figure 4.1.

Naor-Reingold Puncturable PRF

Setting the parameters of IPM = {CS
z | z ∈ Rn, S ⊂ I}:

• Input and constraint vectors space: R = {−1, 1}n.

• Inner-product space: I = {−n,−n+ 2,−n+ 4, . . . , n− 2, n}.

• Inner-product constraint set: S = I \ {n}.

Figure 4.1 – Parameters of IPM for puncturing constraints.

Security. The 1-key selective no-evaluation security of the scheme is implied by the
sparse power-DDH assumption. Importantly, we note that in the case of puncturing
constraints, the 1-key selective no-evaluation security becomes equivalent to the standard
selective security notion where an adversary is allowed to query the evaluation oracle.
This is because the challenge query can only be issued on the punctured point x∗.
Therefore, in the selective setting, the challenger can compute the constrained key ckx∗

in the beginning of the security game, and consequently, can answer evaluation queries
for inputs x 6= x∗ by computing and returning the output of CEval(pp, ckx∗ ,x) to the
adversary. In the following, we brie�y go over the security proof:

69

4

4. Public-Key PCF from Constrained PRFs

Hybrid H0: This is the 1-key selective CPRF security game where the evaluation and
challenge queries are answered by returning the output of the CPRF evaluation algorithm
on the queried inputs. The view of the adversary in this game is as follows:

ViewA0 = (pp, {xi, yi}i∈[Q], ck,x∗, y∗),

where pp = (G, g, p), ck = (α, (gs)s∈S), and y = g
a0·

n∏
i=1

axi
for all (x, y) ∈

{(xi, yi)i∈[Q], (x∗, y∗)}.
HybridH1: In this game, we change how the evaluation oracle queries are answered. As
we consider the selective setting, the challenger knows the punctured point x∗ from the
beginning. It can therefore compute the constrained key ck from the start, and answer
an evaluation query on any input x 6= x∗ by computing y ← CEval(pp, ck,x). The view
of the adversary remains identical to its view inH0 by the correctness of the CPRF.
HybridH2: In this game, the challenger sets the vector α in the constrained key ck to
be a random vector from Z∗p. HybridsH1 andH2 remain statistically indistinguishable.
Hybrid H3: In this hybrid, the challenger replies to the challenge query by returning
gt for a random element t $← Z∗p. Assuming the sparse power-DDH assumption (Def-
inition 2.4), hybrids H2 and H3 are computationally indistinguishable. Let A be an
adversary that distinguishesH2 andH3. In what follows, we construct an adversary B
that breaks Assumption 2.4 with respect to the set S ′ = {0, 2, 4, . . . , 2n− 2} and ` = 2n.
Knowing the group G = 〈g〉 of order p, B sets pp := (G, g, p) and sends it to A.
Then, after receiving a punctured point x∗ from A, adversary B asks the assumption
oracle for a challenge distribution with respect to the set S ′ = {0, 2, 4, . . . , 2n− 2} and
` = 2n and receives a tuple of the following form:(

g, p, (gs)s∈S′ , (gs)s∈[2n]\S′
)
,

where for all s ∈ S ′ it holds that gs = ga·r
s for some a, r $← Z∗p, and for all s ∈ [2n] \ S ′

it either holds that gs = ga·r
s or gs = gts for some ts $← Z∗p.

B then selects a random vector α $← Znp and sets the constrained key ck =
(α, (ga·rs)s∈S′ , z). Note that with overwhelming probability, a can be written as a =
r−n · β, for a random element β ∈ Z∗p. Therefore we can rewrite ga·rs = gβ·r

s−n for all
s ∈ S ′. As a result, the tuple (ga·rs)s∈S′ for the set S ′ = {0, 2, 4, . . . , 2n− 2} simulates
(gβ·rs)s∈S , where S = {−n,−n+ 2, . . . , n− 4, n− 2}.
Finally, to answer the challenge query on the punctured input x∗ which satis�es

〈x∗,x∗〉 = n, B selects the g2n and outputs y∗ = (g2n)
n∏
i=1

α
x∗
i
i

. If A can distinguish
between hybridsH3 andH2, the adversary B can successfully break the sparse power-
DDH assumption with respect to set S ′ and ` = 2n.

4.2.3.3 Weak PRFs as IPM Predicates

Here, we show that the class of IPM predicates captures several weak PRF can-
didates from the literature. This observation initiates a ground for Section 4.3.1
where we show how a CPRF that admits a weak PRF as constraint can be used to con-
struct a pseudorandom correlation function (PCF) for oblivious transfer (OT) correlations.

70

4

4.2. Constraining the Naor-Reingold PRF

We �rst propose a de�nition for Inner-Product Membership (IPM) Pseudorandom Func-
tions (PRFs), denoted as IPM-(w)PRFs. In short, we characterize these functions as
(weak) PRFs whose evaluation corresponds to an Inner-Product Membership predicate
on functions of the master secret key and inputs, with respect to a publicly de�ned set.

De�nition 4.1 (Inner-Product Membership (weak) PRF, IPM-(w)PRF). Let λ be a secu-
rity parameter and let `(·) : N→ N denote a length function. An Inner-Product Member-
ship (weak) Pseudorandom Function (IPM-(w)PRF) is a (weak) pseudorandom function
F = (KeyGen,Eval) with domain X = {Xλ}λ∈N, key space K = {Kλ}λ∈N, and range
Y = {0, 1} (per De�nition 2.7) for which there exist

- A collection S = {Sλ}λ∈N of polynomial-size subsets, and

- Two collections of functions f = {fλ : Xλ → Z`(λ)
β }λ∈N and g = {gλ : Kλ →

Z`(λ)
β }λ∈N, where β is a polynomial-size bound,

such that for any λ ∈ N, the following holds:

Eval(msk, x) =

0 if 〈f(x), g(msk)〉 ∈ S
1 otherwise.

,

where msk ← KeyGen(1λ). We denote an IPM weak pseudorandom function as
IPM-wPRF and an IPM pseudorandom function as IPM-PRF.

Candidate IPM-wPRFs

Here, we provide a brief overview of existing weak pseudorandom functions that satisfy
our de�nition of IPM-wPRFs (as detailed in De�nition 4.1). A more detailed discussion
about these weak PRFs is provided in our paper [BCM+24].

I From the Learning with Rounding (LWR) Assumption

The Learning with Error (LWE) assumption, introduced by Regev [Reg05] is a well
studied hardness assumption roughly stating that “noisy” inner-products of a secret
vector of integers with public random vectors cannot be e�ciently distinguished from
random values. This assumption has received many attentions from cryptographers, in
particular because for certain settings of parameters, this assumption follows from the
hardness of solving some standard problems over lattices in the worst-case by quantum
computers. Therefore, the protocols that are constructed based on this assumption, are
considered to be secure even in the presence of quantum computers, and are called
post-quantum secure.
The Learning with Rounding (LWR) assumption, introduced in [BPR12], can be viewed
as a deterministic version of LWE where the “noise” is introduced deterministically by
rounding the result of the inner-product. More precisely, the LWR assumption states
that for two moduli q′ � q, a random matrixA $← Zm×nq , and a random vector s $← Znq ,
the structured pair (A, bA · seq′) is computationally indistinguishable from (A,u),
where u is a random vector of Zmq′ , and bxeq′ denotes rounding x · q′

q
to the nearest

integer modulo q′. In [BPR12], the authors showed that LWR can be reduced to the LWE
assumption for certain parameters. In particular, their reduction required the modulus
q to be superpolynomial. Later in [AKPW13], a re�ned reduction from LWR to LWE

71

4

4. Public-Key PCF from Constrained PRFs

was proposed that captured more general settings of parameter, in particular, for a
polynomial modulus q.

Now we show the two following LWR(-style) weak PRF candidates from the literature
can be expressed as inner-product membership weak PRFs.

• wPRF of [BPR12]: This candidate is simply de�ned as F (msk,x) = b〈msk,x〉eq′ ,
where msk,x ∈ Znq . As mentioned above, this candidate is proved to be a weak
PRF under the LWR assumption, for a polynomial modulus q. While the proof
does not extend to the case of q′ = 2, there are no known attacks and the LWR
assumption is believed to reduce to the LWE assumption in this regime. In this
case, if we set

- S = {s ∈ Zn·q2 : b(s mod q)e2 = 0}, and
- fλ and gλ as identity functions over Znq ,

then we can express this candidate as an IPM-wPRF. Here |S| ≈ n · q2/2, and for
standard choices of the modulus q can be quite large.

• wPRF of [BIP+18]: This candidate is de�ned as F (msk,x) = b〈msk,x〉 (mod 6)e,
where msk,x ∈ {0, 1}n, and the rounding function is de�ned as bse = 0 if
(s mod 6) ∈ {0, 1, 2}, and bse = 1 if (s mod 6) ∈ {3, 4, 5}. This weak PRF can
also be expressed as an IPM-wPRF, where

- S = {s ∈ Zn+1 : ∃k ≤ n/6, i ∈ {0, 1, 2} s.t. s = 6k + i}, and
- fλ and gλ as identity functions over Znq . Analysis of [CCKK21] and [JMN23]

suggest a key length of n = 770 for this candidate. In this case, the size of
the set S, which is n/2, is as low as |S| = 385.

I From Goldreich’s One-Way Function.

A one-way function (OWF) is de�ned as a function that can be e�ciently computed on
inputs, but is hard to invert given its output of a random input. Goldreich’s one-way
function [Gol00] is de�ned as the evaluation of a �xed low-arity predicate on �xed
random small subsets of the input bits (i.e., f(x) = (P (x[S1]), · · · , P (x[Sm]), where P is
a predicate and S1, · · · , Sn are �xed random subsets, also x[Si] denotes the substring of
the bits of x indexed by Si). Later works suggested that for a suitable choice of the predi-
cate P , this function can be conjectured to be a pseudorandom generator when m > |x|.
In [AR16], Applebaum and Raykov showed how Goldreich’s random local functions can
also yield plausible candidate wPRFs for suitable choices of P , when |Si| = Ω(log n) for
i ∈ [m]. We denote this candidate wPRF as Goldreich-Applebaum-Raykov(GAR) wPRF.

More precisely, GAR wPRF is de�ned as F (msk,x) = P (msk[Sx]), where msk ∈ {0, 1}n,
and x ∈ {0, 1}log2 (n), and P : {0, 1}n × {0, 1}log2 (n) → {0, 1}. Also the set
Sx = {j1, . . . , jk} is the set of k = Ω(log(n)) indices where each index is an element
of [n], de�ned by parsing x as a k-tuple of distinct strings ĵ1, · · · , ĵk ∈ {0, 1}log(n), and
computing each ji as the integer representation of ĵi. This weak PRF can be expressed as
an IPM-wPRF, up to the preprocessing of the input x as follows:

- S = {s ∈ [2k] : P (s) = 0}, and

72

4

4.3. PCF for OT from Pseudorandomly Constrained PRFs

- fλ is de�ned as a function mapping x ∈ {0, 1}log2 (n) to a vector of length n with
0 everywhere, except at positions ji, where it has the entry 2i−1, for i = 1, . . . , k.
Also, gλ is the identity function over {0, 1}n.

Note that with this encoding, we have

〈f(x), g(msk)〉 =
k∑
i=1

mskji · 2i−1,

which is exactly the integer whose binary representation encodes msk[Sx]. For a k-ary
predicate P , we have |S| = O(2k), therefore when setting k = O(log(n)), we have a set
of size O(n).

4.3 PCF for OT from Pseudorandomly Constrained
PRFs

In this section, we provide a generic transformation from constrained PRFs to PCFs for
OT correlations. We then show how it can be instantiated using the Naor-Reingold
constrained PRF proposed in Section 4.2, which yields a concretely e�cient construction.

4.3.1 A Generic Transformation
This transformation builds upon the following idea: a constrained pseudorandom
function that supports a weak/strong PRF and its complement as constraint circuits
can be used to build a PCF for OT correlations. We refer to such constrained PRFs
as Full-Domain Pseudorandomly Constrained PRFs. These CPRFs are a special case of
pseudorandomly constrained PRFs that admit a weak/strong PRF (but not necessarily its
complement) as constraints.

We �rst formally de�ne a pseudorandomly constrained PRF, and show how it can be
transformed to a PCF for OT correlations. In the next section, we show that a CPRF
for inner-product membership predicates is a full-domain pseudorandomly constrained
PRF. This observation yields to as e�cient instantiation of our paradigm from the Naor-
Reingold constrained PRF proposed in Section 4.2.

De�nition 4.2 (Pseudorandomly Constrained PRF). A weakly/strongly pseudorandomly
constrained PRF (PR-CPRF) is a constrained pseudorandom function (per De�nition 2.9)
that supports a family of weak/strong pseudorandom predicates as constraints. If a
constrained pseudorandom function admits a family of weak/strong pseudorandom
predicates {F (k, ·) : k ∈ Kλ} and their complement {1− F (k, ·) : k ∈ Kλ}, we refer
to it as a full-domain pseudorandomly constrained PRF.

We now describe a transformation from full-domain pseudorandomly constrained PRFs
to PCFs for 1-out-of-2 random OT correlations.1

1PCFs for 1-out-of-2 random OT correlations is the commonly considered notion of “PCF for OT
correlations”.

73

4

4. Public-Key PCF from Constrained PRFs

Construction 4.3: PCF for OT Correlations

Requirements and notation:

- F : Kλ×Xλ → {0, 1} is a weak/strong PRF; we denote F : Kλ×Xλ → {0, 1}
the function de�ned by F (k, x) := 1− F (k, x) .

- CPRF = (KeyGen,Eval,Constrain,CEval) is a constrained PRF supporting as
constraints {F (k, ·) : k ∈ Kλ} ∪ {F (k, ·) : k ∈ Kλ}.

Algorithms:

I PCF.Gen0(1λ):

1. Run (pp0,msk0) $← KeyGen(1λ).

2. Run (pp1,msk1) $← KeyGen(1λ).

3. Set and output k0 ← (msk0,msk1).
// pp0, pp1 ∈ k0, implicitly.

I PCF.Gen1(1λ, k0):

1. Sample k $← Kλ.

2. Parse k0 = (msk0,msk1).

3. ck0 ← Constrain(msk0, F (k, ·)).
// For inputs x such that F (k, x) = 0.

4. ck1 ← Constrain(msk1, F (k, ·)).
// For inputs x such that F (k, x) = 1.

5. Set and output k1 ← (ck0, ck1, k).
// pp0, pp1 ∈ k1, implicitly.

I PCF.Eval(1λ, σ, kσ, x):

1. If σ = 0:

a) Parse k0 = (msk0,msk1).
b) Set r0 ← Eval(pp0,msk0, x).
c) Set r1 ← Eval(pp1,msk1, x).
d) Set and output y0 ← (r0, r1).

2. If σ = 1:

a) Parse k1 = (ck0, ck1, k).
b) Compute b := F (k, x).
c) Compute r ← CEval(ppb, ckb, x).
d) Set and output y1 ← (b, r).

Theorem 4.2. Construction 4.3 is a secure weak/strong precomputable PCF for OT correla-
tions.

Proof. Firstly, Construction 4.3 explicitly provides two key generation algorithms
PCF.Gen0 and PCF.Gen1, the precomputability property is evident and follows from
de�nition. We proceed to prove the correctness of correlation between the outputs and
the security of the scheme.
Weakly Pseudorandom OT-Correlated Outputs. Consider the following sequence
of hybrid games:
Hybrid H0: This is the real-world experiment Expw-pr

A,N,1(λ), where the view of an
adversary consists of (1λ, (x(i), y

(i)
0 , y

(i)
1)i∈[N(λ)]), where each tuple (x(i), y

(i)
0 , y

(i)
1) is

generated by running the PCF evaluation algorithms of both parties on x(i) for i ∈ [N(λ)].

HybridH1: In this game, we compute each y(i)
1 , for all i ∈ [N], as follows:

1. Parse k1 = (ck0, ck1, k)

74

4

4.3. PCF for OT from Pseudorandomly Constrained PRFs

2. Compute b(i) ← F (k, x(i))

3. Parse y(i)
0 = (r(i)

0 , r
(i)
1), and set r(i) ← r

(i)
b(i) .

4. Set and output y(i)
1 ← (b(i), r(i)).

HybridH1 di�ers from HybridH0 only in the way we generate the second component
of each y(i)

1 ; either it is an output of CPRF.CEval (in Hybrid H0) or it is an output of
CPRF.Eval (in Hybrid H1). These two hybrids are therefore indistinguishable by the
correctness of the CPRF.

HybridH2: In this game, we replace b(i) := F (k, x(i)) by random bits b(i) $← {0, 1} for
all i ∈ [N]. This hybrid is indistinguishable from Hybrid H1 due to the weak/strong
security of the PRF F .

Hybrid H3: In this game, for each input x(i), we compute y(i)
0 = (r(i)

0 , r
(i)
1) $← Y × Y ,

where Y is the output range of CPRF.
This hybrid is indistinguishable from HybridH2 due to the pseudorandomness of CPRF
on all inputs when an adversary doesn’t have access to neither the master secret key nor
a constrained key.

Note that hybridH3 has the same distribution as the ideal experiment Expw-pr
A,N,0(λ). This

concludes the proof of pseudorandom OT-correlated outputs of the construction.

Weak PCF Security. Recall that for OT correlations (with message space Y), RSample
is de�ned as follows.
RSample(1λ, σ, yσ) :

• If σ = 0:

– Parse y0 = (r0, r1).
– Sample b $← {0, 1}.
– Set and output y1 = (b, rb).

• If σ = 1:

– Parse y1 as y1 = (b, rb).
– Sample r1−b

$← Y .
– Set and output y0 = (r0, r1)

• For σ = 0: The only di�erence between Expw-sec
A,N,σ=0,0(λ) and Expw-sec

A,N,σ=0,1(λ) is
whether the second component of each (y(i)

1 , for all i ∈ [N], is sampled uniformly
at random or is the an output of a (weak) PRF. Since the (weak) PRF key is hid-
den from the view of the adversary in both experiments, these two games are
indistinguishable by security of the (weak) PRF F .

• For σ = 1: The only di�erence between the two experiments is for each i ∈ [N],
each bit b(i), and each output y(i)

0 = (r(i)
0 , r

(i)
1), whether r(i)

1−b(i) is sampled uniformly
at random from Y , or is it computed as the output of the CPRF evaluation, i.e.,
r

(i)
1−b(i) ← CPRF.Eval(pp1−b(i) ,msk1−b(i) , x(i)).

The indistinguishability between these two cases follows from the security of
CPRF; For any index i ∈ [N], input x(i), and bit b(i) ← F (k, x(i)), the constrained
key ck1−b(i) fails in evaluating the output of the master secret key on x(i), and an
adversary holding ck1−b(i) cannot distinguish the output from a random element
of the range. Therefore x(i) is an unauthorized input for ck1−b(i) , and the two
experiments remain indistinguishable.

75

4

4. Public-Key PCF from Constrained PRFs

This concludes the proof of security of our PCF construction for OT correlations, against
both parties.

Remark 4.3. We note that the fact that CPRFs for a class containing a PRF yield a PCF is
not entirely new; for example, a similar observation was brie�y mentioned in [BGMM20].
However, the few known constructions of su�ciently expressive CPRFs [BV15, AMN+18,
CMPR23] are too expensive, and using them within the above transformation yields PCFs
that are much less �exible than generic constructions based on homomorphic secret sharing
or threshold FHE (that are not restricted to the OT correlation), and much less e�cient than
state-of-the-art PCFs [BCG+20, BCG+22]. Our key contribution is identifying that a simple
tweak to the Naor-Reingold PRF [NR97] yields an e�cient pseudorandomly constrained PRF
as we explained in Section 4.2.

4.3.2 Instantiations

In this section we show how the transformation from full-domain pseudorandomly
constrained PRFs to PCFs for OT correlations can be e�ciently instantiated. The core
observation that makes the instantiation possible is that a constrained pseudorandom
function for the class of inner-product membership predicates is a full-domain pseudo-
randomly constrained PRF.

Lemma 4.3 (IPM-CPRFs are full-domain PR-CPRFs). If CPRF, described by four al-
gorithms (KeyGen,Eval,Constrain,CEval), is a constrained pseudorandom function sup-
porting the class of IPM predicates, then it is a full-domain pseudorandomly constrained
PRF.

Proof. The proof consists of the following steps:

1. There exist weak PRFs that can be expressed as IPM predicates, which we refer to
as IPM-wPRFs.
→Constructions of IPM-wPRFs were named and discussed in Section 4.2.3.3 which include
the LWR-based weak PRFs of [BIP+18] and [BPR12], and Goldreich-Applebaum-Raykov
wPRF.

2. The complement of an IPM-wPRF is itself an IPM-wPRF.
→ Let F be an IPM-wPRF with domain X = {Xλ}λ∈N, key space K = {Kλ}λ∈N,
and range Y = {0, 1}. Let S = {Sλ}λ∈N be the collection of subsets and f = {fλ :
Xλ → Z`(λ)

β }, and g = {gλ : Xλ → Z`(λ)
β } be the functions that, together with F ,

satisfy De�nition 4.1.
Let F denote the complement of the function F , i.e., for any λ ∈ N and all x ∈ Xλ, it
holds that F (kλ, x) = 1 − F (kλ, x). If we set Sλ = {0, . . . , β2 · `(λ)} \ Sλ, then F can
be expressed as an IPM-wPRF parametrized with Sλ and f, g.

We now have all the ingredients to state the following theorem:

Theorem 4.4 (PCF for OT from Constrained Naor-Reingold). Assuming the hardness of
the sparse power-DDH assumption, and the existence of an IPM-wPRF, there exists a PCF
for OT correlations in the random oracle model.

76

4

4.4. Public-Key PCF for OT from Naor-Reingold

4.4 Public-Key PCF for OT from Naor-Reingold

4.4.1 Public-Key PCF: Formal De�nition
Here, we introduce and formalize the notion of public-key pseudorandom correlation
function (PK-PCF). The main property of a public-key PCF is the non-interactive
generation of evaluation keys. More precisely, in a PK-PCF, the generation of evaluation
keys is done in two separate steps: a secret/public key generation PCF.Gen, and an
evaluation key derivation PCF.KeyDer. Let σ ∈ {0, 1} denote the index of a party in a
PK-PCF protocol. In the �rst step, each party locally runs PCF.Gen(σ) to generate a
key pair (skσ, pkσ), and then broadcasts the public key pkσ. In the second step, each
party uses the secret key skσ and the public key of the other party pk1−σ and runs
the PCF.KeyDer algorithm in order to derive a PCF evaluation key kσ. After this step,
similarly to an interactive PCF, parties can use their keys kσ and run the evaluation
algorithm PCF.Eval(σ, kσ, x) to compute a correlated output yσ on an input x.

In the following, we state the formal de�nition and security requirements of a weak
PK-PCF.

De�nition 4.3 (Public-Key Pseudorandom Correlation Function (PK-PCF)). Let Y be a
reverse-sampleable correlation with output length functions `0(λ), `1(λ) and let n(λ) be
an input length function. A Public-Key Pseudorandom Correlation Function consists of
the following four polynomial-time algorithms:

• PCF.Setup(1λ): A probabilistic algorithm that on input the security parameter λ,
outputs public parameters pp. For simplicity, we assume that all other algorithms
have access to pp.

• PCF.Gen(σ): A probabilistic algorithm that on input σ ∈ {0, 1}, outputs a pair of
secret key and public key (skσ, pkσ).

• PCF.KeyDer(σ, skσ, pk1−σ): A deterministic algorithm that on input σ ∈ {0, 1}, a
secret key skσ and a public key pk1−σ, outputs an evaluation key kσ.

• PCF.Eval(σ, kσ, x): A deterministic algorithm that on input σ ∈ {0, 1}, a key kσ
and input value x ∈ {0, 1}n(λ), outputs yσ ∈ {0, 1}`σ(λ).

We say that (PCF.Setup,PCF.Gen,PCF.KeyDer,PCF.Eval) is a public-key pseudoran-
dom correlation function (PK-PCF) for Y , if the following conditions hold:

Pseudorandom Y-correlated outputs. For any security parameter λ ∈ N, and any
non-uniform adversary A of size B(λ):∣∣∣Pr[Exppr

A,N,0(λ) = 1]− Pr[Exppr
A,N,1(λ) = 1]

∣∣∣ ≤ negl(λ),

where Exppr
A,N,b for each b ∈ {0, 1} is de�ned as in Figure 4.2.

Security. For σ ∈ {0, 1} and any non-uniform adversary A of size B(λ):

|Pr[Expsec
A,N,σ,0(λ) = 1]− Pr[Expsec

A,N,σ,1(λ) = 1]| ≤ negl(λ),

where Expsec
A,N,σ,b for each b ∈ {0, 1} is de�ned as in Figure 4.3. We recall that RSample

is the algorithm for reverse sampling the correlation Y .

77

4

4. Public-Key PCF from Constrained PRFs

Experiment Pseudorandom Y-Correlated Outputs

Exppr
A,N,0(λ) :

pp← PCF.Setup(1λ)

For σ = 0, 1:

(skσ, pkσ)← PCF.Gen(σ)

For i = 1, . . . , N(λ) :

x(i) $← {0, 1}n(λ)

(y(i)
0 , y

(i)
1)←↩ Y(1λ)

b← A(1λ, pk0, pk1, (x(i), y
(i)
0 , y

(i)
1)i∈[N(λ)])

Output b

Exppr
A,N,1(λ) :

pp← PCF.Setup(1λ)

For σ = 0, 1:

(skσ, pkσ)← PCF.Gen(1λ, pp, σ)

For σ = 0, 1:

kσ ← PCF.KeyDer(σ, skσ, pk1−σ)

For i = 1, . . . , N(λ) :

x(i) $← {0, 1}n(λ)

y
(i)
0 ← PCF.Eval(0, k0, x

(i))
y

(i)
1 ← PCF.Eval(1, k1, x

(i))

b← A(1λ, pk0, pk1, (x(i), y
(i)
0 , y

(i)
1)i∈[N(λ)])

Output b

Figure 4.2 – Pseudorandom Y-correlated outputs of a PK-PCF

Experiment PCF Security

Expsec
A,N,σ,0(λ) :

pp← PCF.Setup(1λ)

For σ̂ = 0, 1: (skσ̂, pkσ̂)← PCF.Gen(σ̂)

k1−σ ← PCF.KeyDer(1− σ, sk1−σ, pkσ)

For i = 1, . . . , N(λ) :

x(i) $← {0, 1}n(λ)

y
(i)
1−σ ← PCF.Eval(1− σ, k1−σ, x

(i))

Let T = (x(i), y
(i)
1−σ)i∈[N(λ)]

b← A(1λ, pk0, pk1, σ, skσ, T)

Output b

Expsec
A,N,σ,1(λ) :

pp← PCF.Setup(1λ)

For σ̂ = 0, 1: (skσ̂, pkσ̂)← PCF.Gen(σ̂)

kσ ← PCF.KeyDer(σ, skσ, pk1−σ)

For i = 1, . . . , N(λ) :

x(i) $← {0, 1}n(λ)

y(i)
σ ← PCF.Eval(σ, kσ, x(i))
y

(i)
1−σ ← RSample(1λ, σ, y(i)

σ)

Let T = (x(i), y
(i)
1−σ)i∈[N(λ)]

b← A(1λ, pk0, pk1, σ, skσ, T)

Output b

Figure 4.3 – Security of a PK-PCF.

78

4

4.4. Public-Key PCF for OT from Naor-Reingold

4.4.2 A Public-Key PCF via Bellare-Micali Non-Interactive OT
In Section 4.3, we provided transformations from constrained PRFs supporting (w)PRF
constraints and their complements to PCFs for OT correlations. More speci�cally, Con-
struction 4.3 presents a simple instance of this transformation where in order to generate
the PCF keys, two calls to the underlying CPRF are made. In this section, we discuss
how to generate the resulting PCF keys of this transformation non-interactively when
plugging in our Naor-Reingold CPRF.
Let F : K × X → {0, 1} be an IPM-wPRF associated with an IPM set S and predicate
functions f, g (See De�nition 4.1). Plugging in our Naor-Reingold CPRF construction
(Construction 4.1) in the PCF transformation, the resulting PCF keys are:

k0 = ((pp0,msk0), (pp1,msk1)), k1 = ((pp0, ck0), (pp1, ck1), g(k̂)),
where mskb ← CPRF.KeyGen(1λ), and ckb ← CPRF.Constrain(mskb, Cb), where
C0(x) = Fk̂(x), and C1(x) = 1− Fk̂(x) for a random key k̂ $← K, and b ∈ {0, 1}.

We now take a closer look at the correlation between a master secret key and a
constrained key in Naor-Reingold CPRF. When working over a group G = 〈g〉 of prime
order p, a master secret key is of the form msk = (a0, a1, . . . , an) $← Zn+1

p ,
and a constrained key for an IPM constraint (k, S) is ck = (α, (gs)s∈S, k),
where αi = ai · r−ki for all i ∈ [n], and gs = ga0·rs for all s ∈ S.
Here, k = g(k̂), where k̂ is the key of the wPRF F .

In order to generate the PCF keys non-interactively, we need to derive a valid pair of
msk and ck non-interactively. Given that the set S attributed with the IPM-wPRF is
public, party 0 can sample a random element a0

$← Zp and compute and publish the
tuple (gs)s∈S . Party 1 can then use this tuple as a part of its PCF key.
The more correlated elements of msk and ck are the vectors (a1, . . . , an) ∈ msk and
(α1, . . . , αn) ∈ ck that satisfy the equation αi = ai · r−g(k)i for all i ∈ [n]. Note that the
wPRF key k is only known to party 1 and the secret elements (a1, . . . , an) and r are only
known to party 0. In what follows, we discuss how to generate two pairs (a, r) and (α, b)
such that α = a · rb, where α, a, r ∈ Zp and b ∈ {0, 1}. We can then extend the solution
to generate all the elements of the two vectors a and α.

Bellare-Micali non-interactive OT [BM90] provides a simple but costly solution by using
ElGamal encryption and Pedersen commitment to generate two such correlated pairs
(a, r) and (α, b), for a bit b ∈ {0, 1} and elements a, r, α ∈ QRp, where QRp denotes the
subgroup of quadratic residues modulo p. Let p and q be two prime numbers such that
p = 2q + 1. The public elements g, h are randomly sampled from QRp and DLogg(h) is
unknown to both parties. This protocol proceeds as follows.

pp = (p, g, h)
Party 0 Party 1

r $← QRp
t $← Zq

pk0 = (gt, ht · r) b $← {0, 1}
s $← Zqpk1 = gs · hb

Compute a← (gs · hb)t (mod p) Compute α← (ht · r)b(gt)s (mod p)

Output (a, r) Output (α, b)

79

4

4. Public-Key PCF from Constrained PRFs

Note that in this protocol, the element r should be a quadratic residue modulo p. Therefore,
using this protocol for setting up a public key generation for our PCF protocol from the
Naor-Reingold CPRF implies assuming the hardness of the sparse power-DDH problem
for a quadratic residue r ∈ QRp. This variant is implied by the sparse power-DDH
assumption. However, for the security of this non-interactive protocol we have to assume
the hardness of DDH problem over QRp which imposes choosing a large-enough prime
p due to subexponential-time attacks on DDH over �nite �elds. This makes the resulting
public-key PCF ine�cient in terms of both the size of public-key and evaluation keys
and computation time.
In the next section, we propose an alternative e�cient way of setting up the public keys.

4.4.3 A Better Construction from Paillier-ElGamal
In this section, we present an e�cient public-key PCF construction where in order
to derive a pair of OT-correlated evaluation keys, we perform the non-interactive OT
protocol of Bellare-Micali [BM90] over a Paillier group. This is in essence the Non-
interactive VOLE protocol of [OSY21], followed by additional steps in order to derive the
correlated keys over Z∗p.
Let N = PQ be a Blum integer, meaning that P and Q are prime numbers of the form
P = 2P ′ + 1 and Q = 2Q′ + 1 for λ-bit prime numbers P ′ and Q′. The key generation
and derivation of our public-key PCF work over the group Z∗N2 ≈ H × NRN , where
H = {(1 +N)i : i ∈ [N]} is of order N , and NRN = {xN : x ∈ Z∗N2} is of order ϕ(N).
We �rst recall the following lemma due to [OSY21], where they introduce a distributed
discrete logarithm algorithm for a subset of Z∗N2 .

Lemma 4.5 ([OSY21]). There exists an algorithm DDLogN(g) for which the following
holds: Let g0, g1 ∈ Z∗N2 , such that g0 = g1(1 + N)x(mod N2). If z0 = DDLogN(g0) and
z1 = DDLogN(g1), then z0 − z1 = x(mod N). More precisely, DDLogN(g) works as
follows:

• DDLogN(g)

- Write g = h+ h′N , where h, h′ < N , using the division algorithm.

- Output z = h′h−1 (mod N).

Construction idea: Let gq be a generator of QRp, andG,H two random elements of NR2N .
Party 0 samples r′ $← Zq and sets r := gr

′
q (mod p). It then computes its public key as

a Paillier-ElGamal encryption of r′, i.e., pk0 = (Gt, H t · (1 + N)r′). Party 1 holding a
bit k ∈ {0, 1} computes its public key as a Pedersen commitment of k over NR2N , i.e.,
pk1 = Gs ·Hk. Following the same computations as in the Bellare-Micali non-interactive
OT protocol, at the end of the protocol, the two parties derive two pairs (A, r) and (B, k),
where B = A · (1 + N)r′·k. In other words, the parties derive multiplicative shares
of (1 + N)r′·k. We now use the DDLogN algorithm of Lemma 4.5 to locally convert
these multiplicative shares to subtractive shares. More precisely, Party 0 and Party 1
respectively compute â ← DDLogN(A) and α̂ ← DDLogN(B), where â − α̂ = r′ · k
(mod N). Note that we can furthermore view these elements as the shares of r′ · k over
the integers, if it holds that r′ · k � N . Therefore, setting q < N/2λ, it is now possible
for Party 0 and Party 1 to respectively compute a = gâq and α = gα̂q such that α = a · r−k
(mod p).
Recall that the goal of the protocol is to derive a pair of Naor-Reingold master secret key

80

4

4.4. Public-Key PCF for OT from Naor-Reingold

and constrained key for a constraint vector k ∈ {0, 1}n that is a wPRF key. We need to
therefore derive n such correlated elements. To do so, it is enough for Party 1 to publish
n Pedersen commitments to each bit of its wPRF key k. The details of the construction
are presented in Construction 4.4.

Construction 4.4: PK-PCF for OT Correlations from sparse power-DDH and DCR

Requirements and notation:

- Let F : K × X → {0, 1} be an IPM-wPRF with respect to an IPM set S and
predicate functions f, g (See De�nition 4.1).

- Let p be a safe prime, i.e., p = 2q + 1 for a prime q, and N = PQ for primes
P and Q.

- Let DDLogN be distributed discrete logarithm algorithm as in Lemma 4.5.

- Let H be a hash function modeled as a random oracle.

Algorithms:

I PCF.Setup(1λ):

1. (G, g, p) $← GenPar(1λ).

2. Sample a generator gq of QRp.

3. Sample G′ $← ZN2 , and set G← (G′)2N (mod N2).

4. Sample d $← ZN2 , and set H ← Gd (mod N2).

5. Output pp = (G, p, gq, (G,H), F).

I PCF.Gen0(1λ):

1. Sample h, h′ $← G.

2. Sample r′ $← Zq,
and set r := gr

′
q (mod p).

3. For s ∈ S, compute and set
hs := hr

s , and h′s := (h′)r
s

.

4. Sample t $← ZN and compute
(c0, c1) = (Gt, H t · (1 +N)r′).
// Paillier-ElGamal encryption of r′.

5. Set sk0 = (h, h′, r, t), and
pk0 =

{
(c0, c1), (hs)s∈S , (h′s)s∈S

}
.

6. Output (sk0, pk0).

I PCF.Gen1(1λ):

1. Sample k̂ $← K.

2. Compute k← g(k̂).

3. For i ∈ [n]:

a) parse k = (k1, . . . , kn).
b) sample si $← ZN .
c) set comi = Gsi ·Hki (mod N2).

// Pedersen commitments of ki.

4. Set sk1 = (k, (si)i∈[n]).

5. Set pk1 = (com1, · · · , comn).

6. Output (sk1, pk1).

81

4

4. Public-Key PCF from Constrained PRFs

I PCF.KeyDer(0, sk0, pk1):

1. Parse sk0 = (h, h′, r, t), and
pk1 = (com1, · · · , comn).

2. For i ∈ [n]:

a) compute Ai = comt
i (mod N2).

//Ai = Gsi·t ·Hki·t (mod N2) .

b) compute âi ← DDLogN(Ai).
//âi = (r′ · ki)0 .

c) set ai := gâiq (mod p).
//ai = g

(r′·ki)0
q .

3. Set a = (a1, · · · , an).

4. Output k0 = (h, h′, a).

I PCF.KeyDer(1, sk1, pk0):

1. Parse sk1 = (k, (si)i∈[n]), and
pk0 =

{
(c0, c1), (hs, h′s)s∈S

}
.

2. For i ∈ [n]:

a) computeBi = csi0 · cki1 (mod N2).
//Bi = Ai · (1 +N)r′·ki .

b) compute α̂i = DDLogN(Bi).
//α̂i = (r′ · ki)1 .

c) set αi := gα̂iq (mod p).
//αi = g

(r′·ki)1
q .

3. Set α = (α1, . . . , αn).

4. Output k1 = (α, (hs)s∈S, (h′s)s∈S, k).

I PCF.Eval(1λ, 0, k0, x̂):

1. Parse k0 = (h, h′, a).

2. Compute x← f(x̂).

3. Compute r0 = h

n∏
i=1

a
xi
i

.

4. Compute r1 = h′

n∏
i=1

a
xi
i

.

5. Output y0 ← (H(r0),H(r1)).

I PCF.Eval(1λ, 1, k1, x̂):

1. Parse k1 = (α, (hs, h′s)s∈S, k).

2. Compute x← f(x̂).

3. Let s = 〈x, k〉, and b = 1S(s).

4. If b = 0, compute r• = (hs)
n∏
i=1

α
xi
i

.

5. If b = 1, compute r• = (h′s)
n∏
i=1

α
xi
i

.

6. Output y1 ← (b,H(r•)).

Security Analysis
We �rst state the following lemma. The proof follows from inspection. We refer the
reader to the construction idea explained in Section 4.4.3 for more details.

Lemma 4.6 (Correlated Evaluation Keys). Let PCF.Gen and PCF.KeyDer be the algo-
rithms described in Construction 4.4. And let (skσ, pkσ) ← PCF.Gen(σ), and kσ ←
PCF.KeyDer(σ, skσ, pk1−σ) for σ ∈ {0, 1}. It holds that k0 = (h, h′,a), k1 =
(α, (hs)s∈S, (h′s)s∈S, k), where for an element r ∈ Z∗p:

- hs = hr
s and h′s = (h′)r

s

for all s ∈ S, and

- a = (a1, . . . , an) and α = (α1, . . . , αn) such that αi = ai · r−k (mod p) for all
i ∈ [n].

We also state the following remark regarding the randomness space of operations over
NR2N in our construction:

82

4

4.4. Public-Key PCF for OT from Naor-Reingold

Remark 4.4. The key generation and derivation phases of our PK-PCF protocol contain
operations over the subgroup NR2N that is of order P ′Q′. However, since the two parties
should perform their computations obliviously to the factorization of N , they sample their
required randomness for computing commitments and encryptions fromZN instead ofZP ′Q′ .
This does not change the distribution of the resulting elements over NR2N , since

∆({r (mod P ′Q′) : r $← ZN},U(ZP ′Q′))

=N (mod P ′Q′)
N

= 2P ′ + 2Q′ + 1
4P ′Q′ + 2P ′ + 2Q′ + 1 ≤

1
2λ ,

where ∆(D1,D2) denotes the statistical distance between the distributions D1 and D2.

We now prove the security of our PK-PCF construction.

Theorem 4.7 (PCF Security). Assuming the hardness of sparse power-DDH (De�nition 2.4)
and DCR (De�nition 2.1), Construction 4.4 is a secure public-key pseudorandom correlation
function for OT correlations.

Proof. We prove that our construction satis�es the properties of a PK-PCF.
Pseudorandom OT-Correlated Outputs. We consider the following sequence of hy-
brid games:
Hybrid H0: This is the game Exppr

A,N,1(λ), where the view of an adversary consists of
(1λ, pk0, pk1, (x(i), y

(i)
0 , y

(i)
1)i∈[N(λ)]), where each pair (y(i)

0 , y
(i)
1) is generated by running

the PCF evaluation algorithms of both parties on x(i) for i ∈ [N(λ)].
HybridH1: The goal of this hybrid is showing that the public-keys do not reveal any
information. We break this hybrid into following sub-hybrids:

- Hybrid H1
1: In this hybrid, after running (skσ, pkσ) ← PCF.Gen(1λ, pp, σ), for

σ ∈ {0, 1}, we do the following instead of running the key derivation algorithm:

– Parse sk0 = (h, h′, r, t), pk0 = {(c0, c1), (hs)s∈S, (h′s)s∈S}, and
sk1 = (k, (si)i∈[n]), pk1 = (com1, . . . , comn).

– Sample a = (a1, . . . , an) $← (Z∗p)n.
– For i ∈ [n], compute αi = ai · r−ki , and set α = (α1, . . . , αn).
– Set k0 = (h, h′,a), and k1 = (α, (hs)s∈S, (h′s)s∈S, k).

Hybrid H1
1 is indistinguishable from Hybrid H0 due to the correctness of the key

derivation algorithm (see Lemma 4.6).

- Hybrid H2
1: In this hybrid, we run (sk1, pk1) ← PCF.Gen(1λ, pp, 1). Alternatively,

we replace (sk0, pk0)← PCF.Gen(1λ, pp, 0) by the following:

– Sample h, h′ $← G.
– Sample r′ $← Zq, and set r := gr

′
q (mod p).

– For s ∈ S, compute and set hs := hr
s , and h′s := (h′)r

s

.
– Sample t $← ZN and compute (c0, c1) = (Gt, H t · (1 +N)0).
// Instead of encrypting r′.

– Set and output sk0 = (h, h′, r, t), and pk0 =
{

(c0, c1), (hs)s∈S , (h′s)s∈S
}

.

83

4

4. Public-Key PCF from Constrained PRFs

We do the remaining of the experiment as in HybridH1
1. HybridH2

1 remains computa-
tionally indistinguishable toH1

1 due to the CPA security of Paillier-ElGamal encryption
scheme under the DCR assumption.

- Hybrid H3
1: In this hybrid, we do exactly as in H2

1 for all the steps, except for
(sk1, pk1)← PCF.Gen(1λ, pp, 1) which is replaced by the following:

– Sample k̂ $← K and compute k← g(k̂).
– For i ∈ [n]:

- parse k = (k1, . . . , kn).
- sample si $← ZN , and compute comi = Gsi ·H0 (mod N2).
// Instead of committing to ki.

– Set and output sk1 = (k, (si)i∈[n]), and pk1 = (com1, · · · , comn).

HybridH3
1 is perfectly indistinguishable fromH2

1 due to the perfectly-hiding property
of Pedersen commitments.

Combining all the above arguments, HybridH1 is indistinguishable fromH0. Note that
in HybridH1 the key generation and derivation algorithms are no more used, and the
view of the adversary contains simulated public keys pk0 and pk1 that are independent
of any secrets.
HybridH2: This is the same as HybridH1 except that in this hybrid, instead of running
yσ ← PCF.Eval(σ, kσ, x(i)), for σ ∈ {0, 1}, we run (y(i)

0 , y
(i)
1) $← OT(1λ). We claim

that Hybrids H2 and H1 are computationally indistinguishable. Since the two public
keys are simulated in Hybrid H1, this hybrid is in essence the experiment Exppr

A,N,1(λ)
of the secret-key PCF construction that is obtained by plugging in our Naor-Reingold
IPM-CPRF into the transformation presented in Construction 4.3. Consequently, since the
Naor-Reingold CPRF is a secure constrained PRF (see Theorem 4.1), the PCF construction
generates pseudorandom OT-correlated outputs (see Theorem 4.2). Therefore Hybrids
H2 andH1 are indistinguishable.
HybridH3: This is the same as HybridH2 except that here, we undo the changes from
hybridsH3

1 andH2
1, and replace them with

(skσ, pkσ)← PCF.Gen(1λ, pp, σ), for σ ∈ {0, 1} .

This hybrid remains indistinguishable to HybridH2 due to the same arguments explained
in hybridsH2

1 andH3
1. Note that the two evaluation keys are not used inH2 anymore,

and therefore, it does not change the view of the adversary that we do not generate them
in this hybrid.

Note that hybridH3 has the same distribution as Exppr
A,N,0(λ). This concludes the proof

of pseudorandom OT-correlated output of the construction.

Security. We prove the security for each σ ∈ {0, 1}.

• For σ = 0, consider the following sequence of hybrid games:
HybridH0: This is the game Expsec

A,N,σ=0,0(λ), where the view of party 0, considered
as the adversary, consists of

(1λ, pk0, pk1, sk0, (x(i), y
(i)
0 , y

(i)
1)i∈[N(λ)]),

84

4

4.4. Public-Key PCF for OT from Naor-Reingold

where y(i)
1 ← PCF.Eval(1, k1, x

(i)) for all i ∈ [N(λ)].
HybridH1: This is the same as hybridH0, but here, we remove the steps

(sk1, pk1)← PCF.Gen1(1λ), and k1 ← PCF.KeyDer(1, sk1, pk0),

and generate pk1 and k1 as follows:

– Let (sk0, pk0)← PCF.Gen0(1λ).
– Parse sk0 = (h, h′, r, t), and pk0 = {(c0, c1), (hrs)s∈S, ((h′)r

s)s∈S}.
// To generate pk1:

– For i ∈ [n]:
1. Sample si $← ZN .
2. Compute comi = Gsi ·H0.

– Output pk1 = (com1, . . . , comn).
// To generate k1:

– Run k0 ← PCF.KeyDer(0, sk0, pk1).
– Parse k0 = (h, h′,a).
– Sample k̂ $← K, and compute k = g(k̂).
– For i ∈ [n], compute and set αi = ai · r−ki (mod p).
– Let α = (α1, . . . , αn).
– Set k1 = (α, (hs)s∈S, (h′s)s∈S, k).

Note that they key k1 is of the same form as inH0 due to the correctness of the key
derivation algorithm (see Lemma 4.6). Also, here, di�erently from Hybrid H0, the
public key pk1 contains commitments that are independent from the evaluation key k1.
This public key retains the same distribution as inH0, since the Pedersen commitment
scheme is perfectly hiding. Therefore, Hybrid H1 remains indistinguishable from
HybridH0.
Hybrid H2: This is the same as Hybrid H1 except that here, we compute the key
k0 ← PCF.KeyDer(0, sk0, pk1), and then for each i ∈ [N(λ)], we replace the step
y

(i)
1 ← PCF.Eval(1, k1, x

(i)) in Expsec
A,N,σ=0,0(λ) with

y
(i)
0 ← PCF.Eval(0, k0, x

(i)), and y
(i)
1 ← RSample(1λ, 0, y(i)

0).

Note that in HybridH1, the public key pk1 was simulated and therefore, this hybrid
is in essence the experiment Expsec

A,N,σ=0,0(λ) of a secret-key PCF that is constructed
from the Naor-Reingold CPRF. Regarding the security of the Naor-Reingold CPRF
(Theorem 4.1) and the CPRF-to-PCF transformation (Theorem 4.2), hybridsH2 and
H1 are indistinguishable.
HybridH3: This is the same as hybridH2 except that here, we undo the changes that
we made in hybridH1 and bring back the algorithm (sk1, pk1)← PCF.Gen(1λ, pp, 1).
The evaluation key k1 is not used in hybridH2 anymore, and therefore, removing it
does not change the view of party 0. This hybrid remains indistinguishable to hybrid
H2 for the same arguments explained in hybridH1.
Note that HybridH3 has the same distribution as Expsec

A,N,σ=0,1(λ). This concludes the
proof of security of our PK-PCF construction against party 0.

85

4

4. Public-Key PCF from Constrained PRFs

• For σ = 1, consider the following sequence of hybrid games:
HybridH0: This is the game Expsec

A,N,σ=1,0(λ).
HybridH1: This is the same as hybridH0, but here, we remove the steps

(sk0, pk0)← PCF.Gen0(1λ), and k0 ← PCF.KeyDer(0, sk0, pk1),
and generate pk0 and k0 as explained in the following.

– Let (sk1, pk1)← PCF.Gen1(1λ).
– Parse sk1 = (k, (si)i∈[n]), and pk1 = (com1, . . . , comn).
// To generate pk0:

– Sample h, h′ $← G.
– Sample r $← Z∗p.
– For s ∈ S, compute and set hs := hr

s and h′s := (h′)rs .
– Compute (c0, c1) = (Gt, H t · (1 +N)0), where t $← ZN .
– Set pk0 = ((c0, c1), (hs)s∈S, (h′s)s∈S).
// To generate k0:

– Run k1 ← PCF.KeyDer(1, sk1, pk0).
– Parse k1 = (α, (hs)s∈S, (h′s)s∈S, k).
– For i ∈ [n], compute and set ai = αi · rki (mod p).
– Let a = (a1, . . . , an), and set k0 = (h, h′,a).

Note that they key k0 is of the same form as inH0 due to the correctness of the key
derivation algorithm (see Lemma 4.6). Also, here, di�erently from Hybrid H0, the
public key pk0 contains ciphertexts that are independent from the evaluation key
k0. This public key retains the same distribution as inH0, since the Paillier-ElGamal
encryption scheme is CPA-secure. As a result, HybridH1 remains indistinguishable
from HybridH0.
Hybrid H2: This is the same as Hybrid H1 except that here, we compute the key
k1 ← PCF.KeyDer(0, sk1, pk0), and then replace each y(i)

0 ← PCF.Eval(0, k0, x
(i)) in

Expsec
A,N,σ=1,0(λ) with

y
(i)
1 ← PCF.Eval(1, k1, x

(i)), and y
(i)
0 ← RSample(1λ, 1, y(i)

1).
Similarly to the security proof for σ = 0, hybrid H1 is in essence the experiment
Expsec

A,N,σ=1,0(λ) of a secret-key PCF that is constructed from the Naor-Reingold CPRF.
Regarding the security of the Naor-Reingold CPRF (Theorem 4.1) and the CPRF-to-PCF
transformation (Theorem 4.2), hybridsH2 andH1 are indistinguishable.
HybridH3: This is the same as hybridH2 except that here, we undo the changes that
we made in hybridH1 and bring back the algorithms

(sk0, pk0)← PCF.Gen0(1λ), and (sk1, pk1)← PCF.Gen1(1λ).
The evaluation key k0 is not used in hybridH2 anymore, and therefore, removing it
does not change the view of the adversary (party 1). This hybrid remains indistin-
guishable to hybridH2 for the same arguments explained in hybridH1.
Note that hybridH3 has the same distribution as Expsec

A,N,σ=1,1(λ). This concludes the
proof of security of our PK-PCF construction against party 1.

86

4

4.4. Public-Key PCF for OT from Naor-Reingold

4.4.4 Reducing The Public Keys Size to O(n2/3)

In the public-key PCF of Construction 4.4, the public keys are of the form

pk0 =
{

(c0, c1), (hs)s∈S , (h
′
s)s∈S

}
, and pk1 = (com1, · · · , comn),

where (c0, c1) is a Paillier-ElGamal ciphertext and (com1, · · · , comn) are n Pedersen
commitments over NR2N . Regarding the key sizes, pk0 contains 2 elements of NR2N ,
while pk1 contains n such elements. In this section we aim to �nd a better balance for the
size of pk0 and pk1. The key observation is that pk1 that includes a list of Pedersen com-
mitments can be easily made compact using generalized Pedersen commitments which
allow committing to n di�erent values by generating a single commitment. However,
this must be done while maintaining the correct correlation of derived PCF keys for both
parties. In the following, we explain how we achieve the correctness by including more
Paillier-ElGamal ciphertexts in pk0 while reducing the total size of the public keys. Let
0 < m ≤ n be a block size. The idea is the following:

• Let G,H1, . . . , Hm be random elements of NR2N .

• Party 1 divides the wPRF key k into consecutive subvectors k1, . . . , kδ, each of
lengthm. It then commits to each subvector ku by generating generalized Pedersen
commitments comu = Gsu ·

m∏
j=1

Hk
(j)
u
j , for all u ∈ [δ].

• Party 0 generates m2 Paillier-ElGamal encryptions of r′ with randomness reuse as
follows:

(c0
1, c

1
1, . . . , c

m
1) = (Gt1 , H t1

1 · (1 +N)r′ , H t1
2 , . . . , H

t1
m)

(c0
2, c

1
2, . . . , c

m
2) = (Gt2 , H t2

1 , H
t2
2 · (1 +N)r′ , . . . , H t2

m)
...

(c0
m, c

1
m, . . . , c

m
m) = (Gtm , H tm

1 , H tm
2 , . . . , H tm

m · (1 +N)r′).

• Party 0 publishes the m2 ciphertexts (c0
i , c

j
i)i,j∈[m] as a part of pk0 and party 1

publishes the n/m generalized commitments com1, . . . , comδ as a part of pk1.

By inspection, one can see that for each u ∈ [δ] and each v ∈ [m], it holds that

comtv
u · (1 +N)r′·k

(v)
u = (c0

v)su ·
m∏
j=1

(cjv)k
(j)
u .

Therefore, the two parties can �rst derive multiplicative shares of (1 +N)r′·k
(v)
u , and as

before, after applying the DDLog algorithm over their shares and mapping the result
in G, they can compute their PCF keys. Doing as explained above yields publishing
m2 + 2m+ n/m elements (including G,H1, . . . , Hm elements of the public parameters),
where n denotes the length of the wPRF key k. Minimizing with respect to m results in
O(n2/3) elements. The resulting optimized public-key PCF is detailed in Construction 4.5.

87

4

4. Public-Key PCF from Constrained PRFs

Construction 4.5: PK-PCF for OT Correlations from sparse power-DDH and DCR
(with compressed public keys)

Requirements and notation:

• Let F : K × X → {0, 1} be an IPM-wPRF with respect to an IPM set S and
predicate functions f, g (See De�nition 4.1).

• Let p be a safe prime, i.e., p = 2q + 1 for a prime q, and N = PQ for primes
P and Q.

• Let DDLogN be the distributed discrete logarithm algorithm as in Lemma 4.5.

• Let H be a hash function modeled as a random oracle.

Algorithms:

I PCF.Setup(1λ):

1. (G, g, p) $← GenPar(1λ).

2. Sample a generator gq of QRp.

3. Sample G′ $← ZN2 , and set G← (G′)2N (mod N2).

4. For i ∈ [m], sample di $← ZN2 , and set Hi ← Gdi (mod N2).

5. Output pp = (G, p, gq, (G,H1, . . . , Hm), F).

I PCF.Gen0(1λ):

1. Sample h, h′ $← G.

2. Sample r′ $← Zq, and r := gr
′
q

(mod p).

3. For i ∈ [m] do:

a) Sample ti $← ZN .
b) Compute ci = (c0

i , c
1
i , . . . , c

m
i),

where c0
i = Gti ,

and cii = H ti
i · (1 +N)r′ ,

and cji = H ti
j for all j 6= i ∈ [m].

// m2 Paillier-ElGamal encryptions of r′.

4. For s ∈ S, set hs := hr
s , and h′s :=

(h′)r
s

.

5. Set sk0 = (h, h′, r, (ti)i∈[m]).

6. Set pk0 =
{

(c0
i , (c

j
i))i,j∈[m], (hs)s∈S , (h′s)s∈S

}
.

7. Output (sk0, pk0).

I PCF.Gen1(1λ):

1. Sample k̂ $← K.

2. Compute k← g(k̂).

3. Partition k into δ subvectors
k1, k2, . . . , kδ of length m.

4. For u ∈ [δ]:

a) Parse ku = (k(1)
u , . . . , k(m)

u).

b) Compute comu = Gsu ·
m∏
j=1

Hk
(j)
u
j ,

where su $← ZN .

// Generalized Pedersen commitment of
ku.

5. Set sk1 = ((ku)u∈[δ], (su)u∈[δ]).

6. Set pk1 = (com1, . . . , comδ).

7. Output (sk1, pk1).

88

4

4.4. Public-Key PCF for OT from Naor-Reingold

I PCF.KeyDer(σ, skσ, pk1−σ):

1. If σ = 0:

a) Parse sk0 = (h, h′, r, (ti)i∈[m]).
b) Parse pk1 = (com1, · · · , comδ).
c) For u ∈ [δ], and v ∈ [m]:

set Ai = (comu)tv , where
i = m(u− 1) + v.
//Ai = Gtv ·su ·

m∏
j=1

Hk
(j)
u ·tv
j .

d) For i ∈ [n]:
i. compute âi ← DDLogN(Ai).

ii. set ai := gâiq .
e) Set a = (a1, · · · , an).
f) Set and output k0 = (h, h′, a).

2. If σ = 1:

a) Parse sk1 = ((ku)u∈[δ], (su)u∈[δ]),
and
pk0 =

{
(c0
i , (c

j
i))i,j∈[m], (hs)s∈S , (h′s)s∈S

}
.

b) For u ∈ [δ], and v ∈ [m]:
set Bi = (c0

v)su ·
m∏
j=1

(cjv)k
(j)
u , where

i = m(u− 1) + v.
//Bi = Gtv ·su ·

m∏
j=1

Hk
(j)
u ·tv
j · (1 +N)r′·k

(v)
u .

c) For i ∈ [n]:
i. compute α̂i ← DDLogN(Bi).

ii. set αi = gα̂iq (mod p).
d) Set α = (α1, . . . , αn).
e) Output k1 = (α, (hs)s∈S, (h′s)s∈S, k).

I PCF.Eval(1λ, σ, kσ, x̂ = (x̂1, . . . , x̂n)):

1. If σ = 0:

a) Parse k0 = (h, h′, a).

b) Let x = (x1, . . . , xn)← f(x̂).

c) Compute r0 = h

n∏
i=1

a
xi
i

.

d) Compute r1 = h′

n∏
i=1

a
xi
i

.

e) Output y0 ← (H(r0),H(r1)).

2. If σ = 1:

a) Parse k1 = (α, (hs)s∈S, (h′s)s∈S, k).
b) Let x = (x1, . . . , xn)← f(x̂).
c) Let s = 〈x, k〉, and b = 1S(s).

d) If b = 0, compute r• = (hs)
n∏
i=1

α
xi
i

.

e) If b = 1, compute r• = (h′s)
n∏
i=1

α
xi
i

.
f) Set and output y1 ← (b,H(r•)).

The security analysis of this construction is similar to that of the public-key PCF presented
in Construction 4.4 (See the proof of Theorem 4.7), where we now leverage the perfectly-
hiding property of generalized Pedersen commitments and semantic security of Paillier-
ElGamal ciphertexts with randomness reuse over NR2N .

89

4

Conclusion and Open Problems

In this thesis we demonstrate connections between constrained PRFs and two protocols
that were introduced in the context of secure computation: homomorphic secret sharing
and pseudorandom correlation functions.

In Chapter 3, we provided transformations from two HSS extensions to constrained
PRFs. More speci�cally, we showed (1) how HSS with simulatable memory values implies
constrained PRFs that support inner-product predicates, and (2) how staged-HSS can be
used to construct CPRFs for NC1 predicates. These transformations immediately imply
new CPRF constructions from various assumptions, and initiate new directions for future
constructions of CPRFs.
It seems to us that these transformations could yield CPRFs for broader classes of con-
straints. More precisely, consider a family of circuits for which there exists a polynomial-
size representation where, given this representation of a circuit in this family and an input,
one can evaluate the output by doing only addition and multiplication with constants
(where the input is considered a constant). When using HSS to generate constrained
keys for such constraints, it su�ces to generate “fake” memory values (additive shares)
for a given circuit and include them in a constrained key. Given memory values of the
circuit representation, one can linearly compute (additive shares of) the output of the
circuit on di�erent inputs. As a result, HSS with memory values su�ces for constructing
CPRFs for such families of constraints.
Contrary to HSS with simulatable memory values, staged-HSS protocols yield CPRFs
that admit families of circuits which do not have a polynomial-size linear representation
in the sense that is explained above. Such families could potentially include P/poly
circuits. Although this observation does not yield new instantiations of CPRFs for classes
larger than NC1, 1 it can be still viewed as a new path to constructing CPRFs for broader
classes of constraints.

We �nd many interesting problems left to be solved regarding CPRFs and their connec-
tions with HSS protocols. We start by revisiting the long-standing problem of achieving
collusion-resistant constrained PRFs for expressive families of constraints in the standard
model.

Question 1. Can we construct collusion-resistant constrained PRFs from HSS protocols?
Alternatively stated, what are the speci�c properties that, if satis�ed by an HSS protocol,
imply collusion-resistant CPRFs?

1since we do not have (staged-)HSS protocols for classes larger than NC1.

91

4. Public-Key PCF from Constrained PRFs

A question that can be considered as a counterpart to Question 1, is “What can be
achieved, in the context of constrained PRFs, from multi-party HSS protocols?”. Notably, a
primary observation is that this does not inherently lead to multi-key CPRFs. Exploring
this connection is left to future works.

Another interesting question, as raised in [BW13, BGI14], concerns the feasibility of
delegations in constrained PRFs. Using a delegatable CPRF, a party holding a constrained
key that allows evaluating the PRF on a subset S, can locally generate sub-constrained
keys for subsets of S.1 This property can be viewed as a relaxation of collusion resistance
property. To this day, known constructions of delegatable CPRFs use strong tools such
as indistinguishability obfuscation (iO) [DDM17, AMN+19, DKN+20]. In this regard, we
propose the following question.

Question 2. Can we construct delegatable constrained PRFs from HSS protocols?

In Chapter 4, we showed how constrained PRFs that admit (weak) PRFs as constraints
can be used to construct pseudorandom correlation functions for OT correlations. We also
showed how to instantiate this transformation by slightly changing the Naor-Reingold
PRF into a constrained PRF for inner-product membership predicates. We note that our
construction of constrained PRF for inner-product membership predicates is inherently
delegatable in the sense that given a constrained key ck(z,S) that evaluates the PRF on
all inputs x such that 〈x, z〉 ∈ S, one can locally generate and output a constrained key
ck(z,S′) for S ′ ⊂ S. A primary question regarding this result is the following:

Question 3. Can we build (public-key) PCFs for other correlations from CPRFs?

In the same chapter, we showed how our PCF for OT construction, when instantiated
from the Naor-Reingold IPM-CPRF, can allow for non-interactive generation of
evaluation keys, resulting in an e�cient public-key PCF construction for OT correlations.

The security proof of our (public-key) pseudorandom correlation function for OT correla-
tions relies on the sparse power-DDH assumption. This assumption reduces to solving the
discrete logarithm problem. The discrete logarithm problem was shown by Shor [Sho94]
to be solvable in polynomial time using quantum computations. Therefore, the security
proof of our PCF construction holds as long as an adversary does not have access to
quantum computers. Therefore, an interesting question is the following:

Question 4. Can we build post-quantum-secure PCFs for OT or other correlations from
CPRFs?

For the case of OT correlations, this question can be rephrased to whether we could
have constrained PRFs for inner-product membership predicates from post-quantum
assumptions.
We observe that the weak PCF security, the notion commonly considered in the literature,
is de�ned with respect to random inputs. As a result, when constructing PCFs for OT
correlations from CPRFs using our transformation, the security of the resulting PCF
boils down to the security of the underlying CPRF on random inputs. Thus, for this
transformation, a weak CPRF su�ces.

1Delegatable constrained PRFs were also introduced under the name hierarchical functional PRFs
in [BGI14].

92

4.4. Public-Key PCF for OT from Naor-Reingold

Another interesting question left to future work is the following:

Question 5. Can we build constrained PRFs from PCFs?

Finally, we revisit the question of achieving adaptive security for CPRFs supporting
expressive families of constraints in the standard model, which was not realized in
this thesis. Recently, in [DKN+20], the authors showed possibility of achieving this
level of security in the standard model for inner-product predicates using admissible
hash functions [BB04] and borrowing lattice techniques from [LST18]. Also, the work
of [Yan23] proposed a new direction for achieving adaptive security for puncturing
predicates, using explainable hash functions. It remains an interesting direction to consider
applying their techniques to more generalized settings.

Question 6. Can we have adaptively-secure constrained PRFs for NC1 or P/poly in the
standard model without relying on iO?

93

List of Publications

[BCM+24] Dung Bui, Geo�roy Couteau, Pierre Meyer, Alain Passelègue, and Mahshid
Riahinia. Public-key silent ot and more from constrained Naor-Reingold. To
appear in EUROCRYPT 2024.
Available at eprint.iacr.org/2024/178.

[CMPR23] Geo�roy Couteau, Pierre Meyer, Alain Passelègue, and Mahshid Riahinia.
Constrained pseudorandom functions from homomorphic secret sharing. In
EUROCRYPT 2023.
Available at eprint.iacr.org/2023/387
doi:10.1007/978-3-031-30620-4_7.

[LPR22a] Benoît Libert, Alain Passelègue, and Mahshid Riahinia. PointProofs, revis-
ited. In ASIACRYPT 2022.
Available at hal.science/hal-03903981/�le/asiacrypt2022-�nal314.pdf
doi:10.1007/978-3-031-22972-5_8.

[LPR22b] Benoît Libert, Alain Passelègue, and Mahshid Riahinia. New and improved
constructions for partially equivocable public key encryption. In SCN 2022.
Available at eprint.iacr.org/2022/1733
doi:10.1007/978-3-031-14791-3_9.

95

https://eprint.iacr.org/2024/178
https://eprint.iacr.org/2023/387
https://doi.org/10.1007/978-3-031-30620-4_7
https://hal.science/hal-03903981/file/asiacrypt2022-final314.pdf
https://doi.org/10.1007/978-3-031-22972-5_8
https://eprint.iacr.org/2022/1733
https://doi.org/10.1007/978-3-031-14791-3_9

Bibliography

[ABP15] Michel Abdalla, Fabrice Benhamouda, and Alain Passelègue. An algebraic
framework for pseudorandom functions and applications to related-key secu-
rity. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015,
Part I, volume 9215 of LNCS, pages 388–409. Springer, Heidelberg, August
2015. Citations: § 65

[ADOS22] Damiano Abram, Ivan Damgård, Claudio Orlandi, and Peter Scholl. An
algebraic framework for silent preprocessing with trustless setup and active
security. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022,
Part IV, volume 13510 of LNCS, pages 421–452. Springer, Heidelberg, August
2022. Citations: § 8, 31, 35, and 53

[AHI11] Benny Applebaum, Danny Harnik, and Yuval Ishai. Semantic security under
related-key attacks and applications. In Bernard Chazelle, editor, Innovations
in Computer Science - ICS 2011, Tsinghua University, Beijing, China, January
7-9, 2011. Proceedings, pages 45–60. Tsinghua University Press, 2011. Citations:
§ 16

[AKPW13] Joël Alwen, Stephan Krenn, Krzysztof Pietrzak, and Daniel Wichs. Learning
with rounding, revisited - new reduction, properties and applications. In
Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of
LNCS, pages 57–74. Springer, Heidelberg, August 2013. Citations: § 71

[AMN+18] Nuttapong Attrapadung, Takahiro Matsuda, Ryo Nishimaki, Shota Yamada,
and Takashi Yamakawa. Constrained PRFs for NC1 in traditional groups.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II,
volume 10992 of LNCS, pages 543–574. Springer, Heidelberg, August 2018.
Citations: § 7, 57, 64, 65, and 76

[AMN+19] Nuttapong Attrapadung, Takahiro Matsuda, Ryo Nishimaki, Shota Yamada,
and Takashi Yamakawa. Adaptively single-key secure constrained PRFs for
NC1. In Dongdai Lin and Kazue Sako, editors, PKC 2019, Part II, volume
11443 of LNCS, pages 223–253. Springer, Heidelberg, April 2019. Citations:
§ 7 and 92

[AR16] Benny Applebaum and Pavel Raykov. Fast pseudorandom functions based
on expander graphs. In Martin Hirt and Adam D. Smith, editors, TCC 2016-

97

Bibliography

B, Part I, volume 9985 of LNCS, pages 27–56. Springer, Heidelberg, Octo-
ber / November 2016. Citations: § 58 and 72

[BB04] Dan Boneh and Xavier Boyen. Secure identity based encryption without
random oracles. In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of
LNCS, pages 443–459. Springer, Heidelberg, August 2004. Citations: § 93

[BBD+20] Zvika Brakerski, Pedro Branco, Nico Döttling, Sanjam Garg, and Giulio Mala-
volta. Constant ciphertext-rate non-committing encryption from standard
assumptions. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part I,
volume 12550 of LNCS, pages 58–87. Springer, Heidelberg, November 2020.
Citations: § 11

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based
encryption with constant size ciphertext. In Ronald Cramer, editor, EURO-
CRYPT 2005, volume 3494 of LNCS, pages 440–456. Springer, Heidelberg,
May 2005. Citations: § 16

[BCG+17] Elette Boyle, Geo�roy Couteau, Niv Gilboa, Yuval Ishai, and Michele Orrù.
Homomorphic secret sharing: Optimizations and applications. In Bhavani M.
Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM
CCS 2017, pages 2105–2122. ACM Press, October / November 2017. Citations:
§ 8, 32, and 38

[BCG+19] Elette Boyle, Geo�roy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. E�cient pseudorandom correlation generators: Silent OT
extension and more. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part III, volume 11694 of LNCS, pages 489–518. Springer,
Heidelberg, August 2019. Citations: § 10

[BCG+20] Elette Boyle, Geo�roy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter
Scholl. Correlated pseudorandom functions from variable-density LPN. In
61st FOCS, pages 1069–1080. IEEE Computer Society Press, November 2020.
Citations: § 3, 10, 25, and 76

[BCG+22] Elette Boyle, Geo�roy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Nico-
las Resch, and Peter Scholl. Correlated pseudorandomness from expand-
accumulate codes. In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part II, volume 13508 of LNCS, pages 603–633. Springer, Hei-
delberg, August 2022. Citations: § 76

[BCJ08] Ali Bagherzandi, Jung Hee Cheon, and Stanislaw Jarecki. Multisignatures
secure under the discrete logarithm assumption and a generalized forking
lemma. In Peng Ning, Paul F. Syverson, and Somesh Jha, editors, ACM CCS
2008, pages 449–458. ACM Press, October 2008. Citations: § 12

[BCM+24] Dung Bui, Geo�roy Couteau, Pierre Meyer, Alain Passelègue, and Mahshid
Riahinia. Public-key silent ot and more from constrained naor-reingold, to
appear in EUROCRYPT 2024. Citations: § 11, 55, 59, 71, and 95

[BCP03] Emmanuel Bresson, Dario Catalano, and David Pointcheval. A simple public-
key cryptosystem with a double trapdoor decryption mechanism and its

98

Bibliography

applications. In Chi-Sung Laih, editor, ASIACRYPT 2003, volume 2894 of
LNCS, pages 37–54. Springer, Heidelberg, November / December 2003. Cita-
tions: § 19 and 20

[BDL19] Mihir Bellare, Wei Dai, and Lucy Li. The local forking lemma and its appli-
cation to deterministic encryption. In Steven D. Galbraith and Shiho Moriai,
editors, ASIACRYPT 2019, Part III, volume 11923 of LNCS, pages 607–636.
Springer, Heidelberg, December 2019. Citations: § 12

[Bea92] Donald Beaver. E�cient multiparty protocols using circuit randomization.
In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 420–432.
Springer, Heidelberg, August 1992. Citations: § 3

[BG10] Zvika Brakerski and Sha� Goldwasser. Circular and leakage resilient public-
key encryption under subgroup indistinguishability - (or: Quadratic residu-
osity strikes back). In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS,
pages 1–20. Springer, Heidelberg, August 2010. Citations: § 19

[BGI14] Elette Boyle, Sha� Goldwasser, and Ioana Ivan. Functional signatures and
pseudorandom functions. In Hugo Krawczyk, editor, PKC 2014, volume 8383
of LNCS, pages 501–519. Springer, Heidelberg, March 2014. Citations: § 3
and 92

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size barrier for
secure computation under DDH. In Matthew Robshaw and Jonathan Katz,
editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 509–539. Springer,
Heidelberg, August 2016. Citations: § 8, 32, 35, 36, and 53

[BGMM20] James Bartusek, Sanjam Garg, Daniel Masny, and Pratyay Mukherjee.
Reusable two-round MPC from DDH. In Rafael Pass and Krzysztof Pietrzak,
editors, TCC 2020, Part II, volume 12551 of LNCS, pages 320–348. Springer,
Heidelberg, November 2020. Citations: § 76

[BIP+18] Dan Boneh, Yuval Ishai, Alain Passelègue, Amit Sahai, and David J. Wu.
Exploring crypto dark matter: New simple PRF candidates and their applica-
tions. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part II,
volume 11240 of LNCS, pages 699–729. Springer, Heidelberg, November 2018.
Citations: § 58, 60, 72, and 76

[BKS19] Elette Boyle, Lisa Kohl, and Peter Scholl. Homomorphic secret sharing
from lattices without FHE. In Yuval Ishai and Vincent Rijmen, editors,
EUROCRYPT 2019, Part II, volume 11477 of LNCS, pages 3–33. Springer,
Heidelberg, May 2019. Citations: § 53

[BLW17] Dan Boneh, Kevin Lewi, and David J. Wu. Constraining pseudorandom
functions privately. In Serge Fehr, editor, PKC 2017, Part II, volume 10175
of LNCS, pages 494–524. Springer, Heidelberg, March 2017. Citations: § 5, 6,
and 7

[BM84] Manuel Blum and Silvio Micali. How to generate cryptographically strong
sequences of pseudo-random bits. SIAM J. Comput., 13(4):850–864, 1984.
Citations: § 2

99

Bibliography

[BM90] Mihir Bellare and Silvio Micali. Non-interactive oblivious transfer and
applications. In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS,
pages 547–557. Springer, Heidelberg, August 1990. Citations: § 79 and 80

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions
and lattices. In David Pointcheval and Thomas Johansson, editors, EURO-
CRYPT 2012, volume 7237 of LNCS, pages 719–737. Springer, Heidelberg,
April 2012. Citations: § 58, 71, 72, and 76

[BTVW17] Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck Wee.
Private constrained PRFs (and more) from LWE. In Yael Kalai and Leonid
Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS, pages 264–302.
Springer, Heidelberg, November 2017. Citations: § 5, 6, and 7

[BV15] Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic
PRFs from standard lattice assumptions - or: How to secretly embed a circuit
in your PRF. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015,
Part II, volume 9015 of LNCS, pages 1–30. Springer, Heidelberg, March 2015.
Citations: § 7 and 76

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and
their applications. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013,
Part II, volume 8270 of LNCS, pages 280–300. Springer, Heidelberg, December
2013. Citations: § 3, 5, 6, and 92

[BZ14] Dan Boneh and Mark Zhandry. Multiparty key exchange, e�cient traitor
tracing, and more from indistinguishability obfuscation. In Juan A. Garay
and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS,
pages 480–499. Springer, Heidelberg, August 2014. Citations: § 6 and 7

[CC17] Ran Canetti and Yilei Chen. Constraint-hiding constrained PRFs for NC1

from LWE. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EU-
ROCRYPT 2017, Part I, volume 10210 of LNCS, pages 446–476. Springer,
Heidelberg, April / May 2017. Citations: § 5, 6, and 7

[CCKK21] Jung Hee Cheon, Wonhee Cho, Jeong Han Kim, and Jiseung Kim. Adventures
in crypto dark matter: Attacks and �xes for weak pseudorandom functions.
In Juan Garay, editor, PKC 2021, Part II, volume 12711 of LNCS, pages 739–760.
Springer, Heidelberg, May 2021. Citations: § 72

[CFGN96] Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively secure
multi-party computation. In 28th ACM STOC, pages 639–648. ACM Press,
May 1996. Citations: § 11

[CH85] Stephen A. Cook and H. James Hoover. A depth-universal circuit. SIAM J.
Comput., 14(4):833–839, 1985. Citations: § 50

[CLT22] Guilhem Castagnos, Fabien Laguillaumie, and Ida Tucker. Threshold linearly
homomorphic encryption on z/2kz. Cryptology ePrint Archive, 2022. Citations:
§ 35 and 53

100

Bibliography

[CMPR23] Geo�roy Couteau, Pierre Meyer, Alain Passelègue, and Mahshid Riahinia.
Constrained pseudorandom functions from homomorphic secret sharing. In
Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part III, volume
14006 of LNCS, pages 194–224. Springer, Heidelberg, April 2023. Citations:
§ 11, 29, 31, 32, 59, 76, and 95

[CNs07] Jan Camenisch, Gregory Neven, and abhi shelat. Simulatable adaptive
oblivious transfer. In Moni Naor, editor, EUROCRYPT 2007, volume 4515 of
LNCS, pages 573–590. Springer, Heidelberg, May 2007. Citations: § 16

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm
for adaptive chosen ciphertext secure public-key encryption. In Lars R.
Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 45–64.
Springer, Heidelberg, April / May 2002. Citations: § 19 and 20

[CVW18] Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. GGH15 beyond
permutation branching programs: Proofs, attacks, and candidates. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume
10992 of LNCS, pages 577–607. Springer, Heidelberg, August 2018. Citations:
§ 5, 6, and 7

[DDM17] Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay. Constrained pseudo-
random functions for unconstrained inputs revisited: Achieving veri�ability
and key delegation. In Serge Fehr, editor, PKC 2017, Part II, volume 10175 of
LNCS, pages 463–493. Springer, Heidelberg, March 2017. Citations: § 92

[DGS03] Ivan Damgård, Jens Groth, and Gorm Salomonsen. The Theory and Imple-
mentation of an Electronic Voting System, pages 77–99. Springer US, Boston,
MA, 2003. Citations: § 19 and 20

[DH76] Whit�eld Di�e and Martin Hellman. New directions in cryptography. IEEE
Trans. Inf. Theory, 22(6):644–654, 1976. Citations: § 15 and 17

[DKN+20] Alex Davidson, Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and
Takashi Yamakawa. Adaptively secure constrained pseudorandom functions
in the standard model. In Daniele Micciancio and Thomas Ristenpart, edi-
tors, CRYPTO 2020, Part I, volume 12170 of LNCS, pages 559–589. Springer,
Heidelberg, August 2020. Citations: § 6, 7, 92, and 93

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In Reihaneh Safavi-
Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages
643–662. Springer, Heidelberg, August 2012. Citations: § 3

[FKOS15] Tore Kasper Frederiksen, Marcel Keller, Emmanuela Orsini, and Peter Scholl.
A uni�ed approach to MPC with preprocessing using OT. In Tetsu Iwata
and Jung Hee Cheon, editors, ASIACRYPT 2015, Part I, volume 9452 of LNCS,
pages 711–735. Springer, Heidelberg, November / December 2015. Citations:
§ 3

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael
Mitzenmacher, editor, 41st ACM STOC, pages 169–178. ACM Press, May / June
2009. Citations: § 7

101

Bibliography

[GGM84a] Oded Goldreich, Sha� Goldwasser, and Silvio Micali. How to construct
random functions (extended abstract). In 25th FOCS, pages 464–479. IEEE
Computer Society Press, October 1984. Citations: § 21 and 69

[GGM84b] Oded Goldreich, Sha� Goldwasser, and Silvio Micali. On the cryptographic
applications of random functions. In G. R. Blakley and David Chaum, edi-
tors, CRYPTO’84, volume 196 of LNCS, pages 276–288. Springer, Heidelberg,
August 1984. Citations: § 57

[GGM86] Oded Goldreich, Sha� Goldwasser, and Silvio Micali. How to construct
random functions. 33(4), 1986. Citations: § 2, 3, and 5

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way
functions. In 21st ACM STOC, pages 25–32. ACM Press, May 1989. Citations:
§ 3

[GM84] Sha� Goldwasser and Silvio Micali. Probabilistic encryption. Journal of
Computer and System Sciences, 28(2):270–299, 1984. Citations: § 17

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
Alfred Aho, editor, 19th ACM STOC, pages 218–229. ACM Press, May 1987.
Citations: § 9

[Gol00] Oded Goldreich. Candidate one-way functions based on expander graphs.
Cryptology ePrint Archive, Report 2000/063, 2000. https://eprint.iacr.

org/2000/063. Citations: § 72

[GRWZ20] Sergey Gorbunov, Leonid Reyzin, Hoeteck Wee, and Zhenfei Zhang. Point-
proofs: Aggregating proofs for multiple vector commitments. In Jay Ligatti,
Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020,
pages 2007–2023. ACM Press, November 2020. Citations: § 12

[HILL99] Johan HÅstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A
pseudorandom generator from any one-way function. SIAM Journal on
Computing, 28(4):1364–1396, 1999. Citations: § 3

[HKKW19] Dennis Hofheinz, Akshay Kamath, Venkata Koppula, and Brent Waters.
Adaptively secure constrained pseudorandom functions. In Ian Goldberg
and Tyler Moore, editors, FC 2019, volume 11598 of LNCS, pages 357–376.
Springer, Heidelberg, February 2019. Citations: § 6 and 7

[HSS20] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost constant
round MPC combining BMR and oblivious transfer. Journal of Cryptology,
33(4):1732–1786, October 2020. Citations: § 3

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious
transfers e�ciently. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of
LNCS, pages 145–161. Springer, Heidelberg, August 2003. Citations: § 65

[JMN23] Thomas Johansson, Willi Meier, and Vu Nguyen. Di�erential cryptanalysis
of mod-2/mod-3 constructions of binary weak prfs. In 2023 IEEE International
Symposium on Information Theory (ISIT), pages 477–482. IEEE, 2023. Citations:
§ 72

102

https://eprint.iacr.org/2000/063
https://eprint.iacr.org/2000/063

Bibliography

[KKRT16] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. E�cient
batched oblivious PRF with applications to private set intersection. In
Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, editors, ACM CCS 2016, pages 818–829. ACM Press,
October 2016. Citations: § 65

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas
Zacharias. Delegatable pseudorandom functions and applications. In Ahmad-
Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages
669–684. ACM Press, November 2013. Citations: § 3

[LPR22a] Benoît Libert, Alain Passelègue, and Mahshid Riahinia. PointProofs, revisited.
In Shweta Agrawal and Dongdai Lin, editors, ASIACRYPT 2022, Part IV,
volume 13794 of LNCS, pages 220–246. Springer, Heidelberg, December 2022.
Citations: § 12 and 95

[LPR22b] Benoît Libert, Alain Passelègue, and Mahshid Riahinia. New and improved
constructions for partially equivocable public key encryption, SCN 2022.
Citations: § 11 and 95

[LPSY15] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. E�cient
constant round multi-party computation combining BMR and SPDZ. In
Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II,
volume 9216 of LNCS, pages 319–338. Springer, Heidelberg, August 2015.
Citations: § 3

[LST18] Benoît Libert, Damien Stehlé, and Radu Titiu. Adaptively secure distributed
PRFs from LWE. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018,
Part II, volume 11240 of LNCS, pages 391–421. Springer, Heidelberg, Novem-
ber 2018. Citations: § 93

[Nec94] V. I. Nechaev. Complexity of a determinate algorithm for the discrete loga-
rithm. Mathematical Notes, 55(2):165–172, 1994. Citations: § 65

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai She-
shank Burra. A new approach to practical active-secure two-party compu-
tation. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 681–700. Springer, Heidelberg, August 2012.
Citations: § 3

[NR95] Moni Naor and Omer Reingold. Synthesizers and their application to the
parallel construction of pseudo-random functions. In 36th FOCS, pages
170–181. IEEE Computer Society Press, October 1995. Citations: § 21

[NR97] Moni Naor and Omer Reingold. Number-theoretic constructions of e�cient
pseudo-random functions. In 38th FOCS, pages 458–467. IEEE Computer
Society Press, October 1997. Citations: § 7, 10, 15, 56, 65, and 76

[OSY21] Claudio Orlandi, Peter Scholl, and Sophia Yakoubov. The rise of paillier:
Homomorphic secret sharing and public-key silent OT. In Anne Canteaut
and François-Xavier Standaert, editors, EUROCRYPT 2021, Part I, volume
12696 of LNCS, pages 678–708. Springer, Heidelberg, October 2021. Citations:
§ 8, 31, 32, 34, 35, 36, 37, 39, 41, 43, 53, 61, and 80

103

Bibliography

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residu-
osity classes. In Jacques Stern, editor, EUROCRYPT’99, volume 1592 of LNCS,
pages 223–238. Springer, Heidelberg, May 1999. Citations: § 15 and 19

[Ped92] Torben P. Pedersen. Non-interactive and information-theoretic secure veri-
�able secret sharing. In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of
LNCS, pages 129–140. Springer, Heidelberg, August 1992. Citations: § 20

[PS18] Chris Peikert and Sina Shiehian. Privately constraining and programming
PRFs, the LWE way. In Michel Abdalla and Ricardo Dahab, editors, PKC 2018,
Part II, volume 10770 of LNCS, pages 675–701. Springer, Heidelberg, March
2018. Citations: § 5, 6, and 7

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM
STOC, pages 84–93. ACM Press, May 2005. Citations: § 71

[RS21] Lawrence Roy and Jaspal Singh. Large message homomorphic secret shar-
ing from DCR and applications. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part III, volume 12827 of LNCS, pages 687–717, Virtual Event,
August 2021. Springer, Heidelberg. Citations: § 8, 31, and 35

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. In 35th FOCS, pages 124–134. IEEE Computer Society Press,
November 1994. Citations: § 92

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In
Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266.
Springer, Heidelberg, May 1997. Citations: § 65

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
deniable encryption, and more. In David B. Shmoys, editor, 46th ACM STOC,
pages 475–484. ACM Press, May / June 2014. Citations: § 5

[Tsa19] Rotem Tsabary. Fully secure attribute-based encryption for t-CNF from
LWE. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part I, volume 11692 of LNCS, pages 62–85. Springer, Heidelberg, August
2019. Citations: § 5

[WRK17] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure
multiparty computation. In Bhavani M. Thuraisingham, David Evans, Tal
Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 39–56. ACM Press,
October / November 2017. Citations: § 3

[Yan23] Rupeng Yang. Privately puncturing PRFs from lattices: Adaptive security and
collusion resistant pseudorandomness. In Carmit Hazay and Martijn Stam,
editors, EUROCRYPT 2023, Part III, volume 14006 of LNCS, pages 163–193.
Springer, Heidelberg, April 2023. Citations: § 93

104

	Contents
	Introduction
	Preliminaries
	Basic Cryptographic Tools
	Notation
	Idealized Security Models
	Hardness Assumptions
	Basic Protocols
	Constructions

	Constrained Pseudorandom Functions
	Pseudorandom Functions
	Constrained Pseudorandom Functions

	Homomorphic Secret Sharing
	RMS Programs

	Pseudorandom Correlation Functions
	Reverse-Sampleable Correlations
	Pseudorandom Correlation Functions

	Constrained PRFs from Homomorphic Secret Sharing
	Chapter Overview
	General Strategy
	CPRF from HSS with Simulatable Memory Shares
	Handling more Constraints via Staged HSS

	Homomorphic Secret Sharing and Extensions
	HSS following the RMS Template
	Extended Evaluation and Simulatable Memory Values
	Staged Homomorphic Secret Sharing

	Constrained Pseudorandom Functions
	CPRF for Inner-Product from HSS
	CPRF for NC1 from HSS

	Public-Key Pseudorandom Correlation Functions from Constrained PRFs
	Chapter Overview
	Naor-Reingold PRF Pseudorandomly Constrained PRF
	Pseudorandomly Constrained PRF PCF for OT
	Public-Key PCF for OT from Constrained Naor-Reingold

	Constraining the Naor-Reingold PRF
	Inner Product Membership CPRF from Naor-Reingold
	Compressing the keys
	On IPM Predicates

	PCF for OT from Pseudorandomly Constrained PRFs
	A Generic Transformation
	Instantiations

	Public-Key PCF for OT from Naor-Reingold
	Public-Key PCF: Formal Definition
	A Public-Key PCF via Bellare-Micali Non-Interactive OT
	A Better Construction from Paillier-ElGamal
	Reducing The Public Keys Size to O(n2/3)

	Conclusion and Open Problems
	List of publications
	Bibliography

