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CHAPTER

1

SUMMARY OF THE THESIS

A Résumé en Français

LES Théories des Cordes sont nos meilleurs candidats dans la persepective d’unification de
toutes les interactions de la Nature : électromagnétisme, interaction faible, interaction forte et

gravité. Cette dernière est naturellement encodée dans toutes les Théories des Cordes, qui sont ex-
emptes de divergences dans l’ultraviolet. C’est cette dernière caractéristique qui font des Théories
des Cordes de potentiels candidats pour une théorie de gravitation quantique, et constitue une
des raisons pour laquelle les Théories des Cordes sont largement étudiées.

Une caractéristique générale des Théories des Cordes est le nombre de dimensions de l’espace-
temps recquis. Ce nombre est soit 26, soit 10. Cela nécessite un approfondissement de l’étude des
Théories des Cordes, puisque l’Univers dans lequel nous vivons est a priori un espace-temps à 4
dimensions. L’une des façons d’aborder ce problème est de recourir à ce que l’on appelle les com-
pactifications de Kaluza-Klein. Il s’agit d’un processus par lequel certaines dimensions de l’espace
total sont rendues compactes et petites. L’objectif de ce procédé est qu’à notre échelle macro-
scopique et aux niveaux d’énergie accessibles au quotidien, les effets de ces dimensions "sup-
plémentaires" soient suffisamment faibles pour que nous puissions les ignorer. Les Théories des
Cordes étant des théories très complexes, avec de nombreux degrés de liberté, une façon d’étudier
les procédures de compactification consiste à se restreindre à l’analyse des Supergravités. Ces
dernières sont obtenues, entre autre, comme une limite à basse énergie des Théories des Cordes et
constitutent l’objet principal d’étude de cette thèse. Dans ces théories, des symétries supplémen-
taires apparaissent lors des compactifications, appelées dualités, ce qui nous permet de reformuler
les Supergravités en des "Théories des Champs Exceptionnelles", rendant ces dualités manifestes.

Les Supergravités sont d’autant plus intéressantes qu’elles jouent un rôle clef dans le contexte
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CHAPTER 1. SUMMARY OF THE THESIS

de la correspondance AdS/CFT, qui est un autre type de dualité établissant l’équivalence entre
une théorie de la gravité, ici une Supergravité définie sur un espace d’Anti-de-Sitter (AdS), et une
Théorie Quantique des Champs, ici une Théorie Conforme des Champs vivant à la frontière de
l’espace-temps AdS.

Dans la première partie de la thèse, nous ferons des commentaires généraux et les utiliserons
pour introduire divers concepts nécessaires tout au long du manuscrit. Cela va d’une brève intro-
duction aux Théories des Cordes et aux Supergravités à des éléments plus spécifiques tels qu’une
introduction aux concepts de supersymétrie et aux réductions de Kaluza-Klein. Nous profiterons
également de l’introduction pour faire un rappel sur les Théories des Champs Exceptionnelles.
Enfin, nous introduirons la notion d’Holographie, trouvant une réalisation concrète dans la corre-
spondance AdS/CFT.

Dans la deuxième partie de la thèse, nous montrerons comment utiliser les techniques de la
Théorie des Champs Exceptionnelle pour calculer les spectres des solutions de la Supergravité à
11 dimensions sur AdS4 × Σ7, avec Σ7 un espace interne compact à 7 dimensions dont la topolo-
gie est celle de la sept-sphère. Nous commencerons par introduire les techniques pour la spec-
troscopie de Kaluza-Klein par un calcul direct, qui utilisent la théorie des groupes pour la diag-
onalisation des opérateurs internes. Dans un second temps nous introduiront les techniques de
la Théorie des Champs Exceptionnelle pour les espaces dit parallélisables de Leibniz. Nous mon-
trerons par la suite comment ces dernières techniques peuvent être étendues aux espaces avec la
condition moins contraignante dite de parallélisabilité Généralisée. Nous illustrerons cette nou-
velle approche dans le cas de la solution AdS4× S7

squashed de la Supergravité à 11 dimension, pour
laquelle nous donnons le spectre de masse dans sa totalité. Nous montrerons ensuite une réalisa-
tion concrète de la correspondance AdS4/CFT3, en calculant la solution solitonique des équations
de Supergravité interpolant entre la sphère ronde et la sphère déformée. Cette solution est duale
à un flux de renormalisation du côté de la Théorie des Champs Conformes de la correspondance.

Enfin, dans la dernière partie de la thèse, nous nous intéresserons aux couplages à n-points
dans les Supergravités. Dans une première partie, nous montrerons comment calculer les cou-
plages cubiques pour des champs spécifiques sur un espace AdS5 × S5 de la Supergravité IIB à 10
dimensions via un calcul direct. Après avoir discuté des résultats obtenus grâce à ces techniques,
nous montrerons comment nous pouvons utiliser les techniques de la Théorie des Champs Excep-
tionnelle pour calculer efficacement ces couplages. Ces calculs nous permettrons aussi de révéler
des structures de la Théorie des Champs Exceptionnels dans les couplages à n-points en Super-
gravité.

B English Summary

STRING Theories are our most promising candidates in the goal of unifying all interactions in
nature: electromagnetism, weak interaction, strong interaction, and gravity. The latter is nat-

urally encapsulated in all String Theories, which are ultraviolet-free from divergences. A general
feature of String Theories is the number of spacetime dimensions required. This number is either
26 or 10. In any case, this requires some further modifications of the theories since the world we
are living in is a priori a 4-dimensional spacetime space. One way to tackle this problem is via
so-called Kaluza-Klein compactifications. The latter is a process in which some of the dimensions
of the total space are made compact and small. The idea is that at our macroscopic scale and daily
energy level, the effects of those "extra" dimensions are sufficiently small so we can ignore them.
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B. ENGLISH SUMMARY

Because String Theories are very complex theories, with a lot of degrees of freedom, one way to
study compactification procedures is by restricting the analysis to Supergravities, which can be
obtained in a certain regime of String Theories.

Supergravities are the main focus of this thesis. In those theories, additional symmetries show
up in dimensional compactifications, either called T- or U-duality, which allow us to reformulate
Supergravities into so-called Exceptional Field Theories, making those dualities explicit. Let us
finally remark that Supergravities are particularly important in the context of the AdS/CFT corre-
spondence, which is another type of duality stating the equivalence between a theory of gravity,
here a Supergravity defined on an Anti-de-Sitter (AdS) background, and a Quantum Field Theory,
here a Conformal Field Theory living on the boundary of the AdS previous spacetime.

In the first part of the thesis, we will make general comments and use it to introduce various
concepts needed throughout the thesis. This goes from a brief introduction of String Theories and
Supergravities to more specific features such as an introduction to the concepts of supersymmetry
and Kaluza-Klein reductions. We will also use the introduction to make a reminder about Ex-
ceptional Field Theories. Finally, we will introduce the notion of Holography with its concrete
realization via the AdS/CFT correspondence.

In the second part of the thesis, we will show how to use Exceptional Field Theory tech-
niques to compute spectra of solutions of 11-dimensional Supergravity on AdS4 × Σ7, with Σ7

a 7-dimensional compact internal space whose topology is that of the seven-sphere. After re-
viewing the state-of-the-art techniques for Kaluza-Klein spectroscopy, including direct calcula-
tions supplemented by diagonalization of internal operators via group theory techniques, as well
as Exceptional Field Theory techniques for Leibniz parallelizable spaces, we will show how the
latter can be extended to spaces with the less constraining condition of Generalized parallelizabil-
ity. We will illustrate how this technology works in the case of AdS4 × S7

squashed solution of 11-
dimensional Supergravity, for which we give a complete answer for the spectrum. We will then
show a concrete realization of the AdS4/CFT3 correspondence, by computing the domain-wall
solution of the Supergravity equations interpolating between the round and the squashed seven-
sphere, which is dual to a Renormalization Group flow on the Conformal Field Theory side. This
demonstrates that not only Exceptional Field Theory techniques can be used to compute spectra
around Supergravities with AdS background, but it also allows us to compute quadratic couplings
of Kaluza-Klein fluctuations around a domain-wall solution of Supergravity.

Finally, in the last section of the thesis, we will be interested in n-point couplings in Super-
gravities. In a first part, we will show how to compute cubic couplings for specific fields on AdS5

background of IIB 10-dimensional Supergravity via a brute force calculation. After discussing the
achievements made using these techniques, we will show how we can use Exceptional Field The-
ory techniques to efficiently compute these couplings. Not only will this prove more efficient, but
it will also allow us to write the same couplings in a more compact form, to derive formulas that
apply to any vacua that are Leibniz parallelizable, and also to reveal Exceptional Field Theory
structures that prove long-standing conjectures. We will illustrate the power of these techniques
on the example of AdS5 background of IIB 10-dimensional Supergravity.
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CHAPTER 1. SUMMARY OF THE THESIS

Foreword
This thesis represents the final accomplishment of my doctoral research, completed under the
supervision of Henning Samtleben at the Laboratoire de physique at ENS de Lyon. It is based
on the articles that I co-authored with Henning and our colleagues Emanuel Malek (Humboldt
University Berlin), and Michele Galli (Humboldt University Berlin) which are detailed below.

[DB1] B. Duboeuf, E. Malek, and H. Samtleben, “Kaluza-Klein spectrometry beyond consistent
truncations: The squashed S7,” JHEP, vol. 04, p. 062, 2023. DOI: 10.1007/JHEP04(2023)
062. arXiv: 2212.01135 [hep-th].

[DB2] B. Duboeuf, M. Galli, E. Malek, and H. Samtleben, “Holographic RG flow from the squashed
to the round S7,” Phys. Rev. D, vol. 108, no. 8, p. 086 002, 2023. DOI: 10.1103/PhysRevD.
108.086002. arXiv: 2306.11789 [hep-th].

[DB3] B. Duboeuf, E. Malek, and H. Samtleben, “Cubic and higher-order supergravity couplings
for ads vacua using exceptional field theory,” Nov. 2023. arXiv: 2311.00742 [hep-th].
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CHAPTER 2. INTRODUCTION

A General Introduction

GENERAL Relativity is currently the best theory of gravity we possess. It was formulated in
1915 by Albert Einstein [1]. In contrast to Isaac Newton’s theory of gravity [2], which de-

scribes the gravitational force, General Relativity is a relativistic theory of space and time, effec-
tively amalgamating both into what is known as spacetime. General Relativity provides a frame-
work in which spacetime becomes a dynamic entity that can bend, curve, and oscillate, interacting
with the matter it contains. This implies, for example, that Earth does not revolve around the Sun
due to a force binding them together, but rather because the spacetime in which Earth evolves is
curved due to the presence of the Sun. Consequently, Earth follows a straight path, albeit within
curved geometry as illustrated in Figure 2.1 . Since its inception, General Relativity has led to sev-
eral observations that Newton’s theory of gravity could not predict: the bending of light around
massive objects, first observed by Arthur Eddington in 1919 [3]; the advance in the perihelion
of Mercury [4, 5]; the prediction of gravitational waves [6], small perturbations of spacetime it-
self that were successfully observed for the first time in 2016 [7]; and its extensive application
in cosmology, where it predicts the expansion of the Universe [8, 9], as first observed by Edwin
Hubble [10] and nowadays in [11]. Among all the predictions of General Relativity, one of pecu-
liar importance for theoretical physicists is the existence of Black Holes (BH) [12]. These objects,
predicted by General Relativity, are very dense objects, that bend so much spacetime that even
light cannot escape their gravitational field, hence the name black hole. This region of spacetime
is delimited by a so-called event horizon, behind which is hidden a "singularity", where General
Relativity breaks down. BH are typically very massive objects, ranging in mass from the order of
solar masses to billions of solar masses for supermassive BHs in our Universe. Note however that
the mass of BHs can a priori be abitrarly small, and some theoretical models proposes primordial
"light" BHs [13] as a candidate for dark matter. These objects fascinate physicists because they are
predicted by General Relativity, yet the theory fails to properly explain them: physical quantities
tend to infinity when approaching the inner core of the BHs, the singularity. Therefore, BH serve
as a laboratory for fundamental physicists who test how new theories behave around BHs. De-
spite the difficulty in observing these objects due to their nature, many observations support their
existence: the detection of gravitational waves [7] illustrated in Figure 2.3 and thought to be pro-
duced by the merger of two BH, observations of stars at the center of our galaxy orbiting a small
but very massive object thought to be a supermassive BH [14], and more recently, the imaging of
the accretion disk of the same BH at the center of our galaxy [15], as well as another supermassive
BH called M87* [16], see Figure 2.2 .

Unlike gravity, which is important at large scales, Quantum Mechanics (QM) plays a crucial
role at the microscopic scale. It was developed in the 1920s by several physicists, including Erwin
Schrödinger, Wolfgang Pauli, Werner Heisenberg, Paul Dirac, Louis de Broglie, Niels Bohr, Max
Planck, Marie Curie, Albert Einstein, Paul Langevin, and many others. Quantum mechanics of-
fers a peculiar paradigm. Firstly, the results of experiments are inherently probabilistic: repeating
the same procedure with the same initial conditions in the same environment will yield differ-
ent outcomes. Quantum mechanics is intrinsically probabilistic. Measurements conducted by an
observer cannot yield determined outcomes; instead, the realization of the measurement follows
probabilistic laws. QM also asserts the equivalence between wave and particle behavior, known as
the wave-particle duality [17]. This is illustrated in Figure 2.4 . Moreover, QM measurements have
intrinsic uncertainity, stemming from the probabilistic nature of QM, which states, for example,

10



A. GENERAL INTRODUCTION

Figure 2.1: Schematics representation of General Relativity, with massive objects deforming space-
time.

that both the speed and the position of a particle cannot be simultaneously measured with arbi-
trary precision. In other words, attempting to measure the position of a particle governed by QM
with very high precision will introduce significant indetermination in its velocity. This principle
is encapsulated in the Heisenberg Indeterminacy Principle [18]:

σxσp ≥
h̄
2

(2.1)

with σx representing the uncertainty in position and σp denoting the uncertainty in momentum.
Another peculiar aspect of quantum mechanics is its intimate relationship with "observers." In
quantum mechanics, an observer can be a person, a machine, or a measurement instrument cou-
pled to the quantum system. It looks like laws of Nature kind of became subjective to this observer.
Finally, QM leads to the quantization of physical quantities, hence its name. For instance, it pre-
dicts the quantization of the energy levels of hydrogen atoms, which matches the observations
to a high degree [19, 20]. Despite its strange nature, quantum mechanics has led to numerous
achievements and predictions, verified to a very high degree of accuracy.

In a sense, quantum physics is not merely a theory; it is more akin to a set of principles that
one must apply to extend a given theory to the microscopic world. Using this "recipe," Quantum
Field Theory (QFT) has been developed. QFT describes the behavior of relativistic particles: their
motion, how they interact with one another, how they can be created or annihilated, and so forth.
Its development led to the construction of the Standard Model (SM), which unifies three out of
the four fundamental interactions of nature: electromagnetism, the weak force, and the strong
force [21–27]. The success of the Standard Model relies heavily on the successful quantization of
classical field theory.

Can we then apply the same methods to quantize General Relativity? First of all, let us clarify
why we want to do so. We could have two different theories, General Relativity and the Standard
Model (SM), both operating at vastly different scales, and live with it. It would be perfectly fine.
However, there are at least two scenarios where a so-called theory of Quantum Gravity theory
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CHAPTER 2. INTRODUCTION

Figure 2.2: Pictures of M87* and Sagittarius A* taken by the Event Horizon Telescope collaboration
[15, 16].

is needed. Firstly, to describe BH. They are characterized by the so-called singularity in General
Relativity, which is hidden behind the event horizon. Therefore, we have an object operating at
a microscopic scale involving strong gravitational interactions, hence the necessity of Quantum
Gravity. The second scenario is in cosmology. The Universe is currently expanding, and if we
rewind the expansion, it turns into contraction. According to the best-admitted model for the
Universe, known as the Friedmann-Lemaître-Robertson-Walker (FLRW) model [8, 9, 28, 29], the
Universe at its origin was small and compact, thus again highlighting the need for Quantum
Gravity.

The quest for a quantum theory of gravity has spanned almost a century. Attempting to apply
conventional quantum mechanics methods to General Relativity, such as canonical quantization,
leads to unphysical results: physical quantities become infinite as they run with energy scale. This
indicates that General Relativity is not renormalizable, or in other words that it diverges in the
ultraviolet (high-energy) regime. Despite extensive efforts, the question of finding candidates for
a theory of quantum gravity remains an open problem. Consequently, there are several promising
candidates, with String Theory being one of the most prominent, and the focus of this thesis.
Originally developed to explain strong interactions [30], String Theory postulates the existence
of extended objects, strings. These strings can vibrate, oscillate, and interact, and String Theory
provides a framework for studying their dynamics [31–34]. It is worth noting that when we refer
to String Theory, it is more accurate to say String Theories, as there are five inequivalent theories.
It was later realized that String Theorie could potentially serve as viable theories of quantum
gravity and as theories to describe elementary particles and their interactions. This is known as
the first String Theory revolution [35]. The second string revolution occurred latter when it has
been realized that all String Theories could be realized as different limits of a single 11d theory,
known as M-theory. We will come back to this last point later.

General Relativity naturally emerges from String Theories [36], whose ultraviolet behavior is
free from divergences [31, 32], which is one of the reasons why String Theories are widely studied.
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A. GENERAL INTRODUCTION

Figure 2.3: LIGO measurement of the gravitational waves of GW150914 at the Livingston (right)
and Hanford (left) detectors [7], compared with the theoretical predicted values.

The focus of this thesis is on the low-energy limit of String Theories, called Supergravities.
These theories of gravity incorporate an additional ingredient compared to General Relativity: su-
persymmetry. Supersymmetry relates bosonic degrees of freedom (such as photons) with fermionic
degrees of freedom (such as electrons). While Supergravities may not directly serve as candi-
dates for unifying all fundamental interactions [37], they play a crucial role in the advancement
of fundamental physics. They can be utilized to study String Theories within certain regimes and
are particularly significant in compactification procedures. Since String Theories operates in 10-
dimensional spaces, it is necessary to eliminate the extra dimensions. This is achieved through
a process known as compactification, firstly proposed by Kaluza and Klein [38, 39]. 1. Super-

1Other possibilities such as brane world scenario, where the Universe is a brane inside a larger space, are possible to
explain the existence of extra dimensions [40]. Brane are extended objects, which for example appear naturally in the

Figure 2.4: Experiment emphasizing the duality wave/particle of electrons, where an interference
pattern is obtained in a two slits experiments with repeated electrons going through the setup
(source : Wikipedia).
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gravities are instrumental in the study of String Theories compactifications because much can be
inferred about the compactifications by examining the Supergravity regime.

The final point we wish to discuss is a remarkably peculiar observation that has emerged in the
quest for Quantum Gravity: the holographic principle. It appears that Quantum Gravity theories
possess a holographic nature, wherein there exists a correspondence between a Quantum Gravity
theory and a Quantum Field Theory (QFT) with no gravity. A concrete realization of this holo-
graphic correspondence was first conjectured in [41], taking the form of the so-called AdS/CFT
correspondence: a theory of gravity defined on an Anti-de-Sitter (AdS) spacetime is equivalent
to a Conformal Field Theory (CFT) existing on the boundary of the gravitational theory. Anti-
de-Sitter spacetimes are spaces with negative constant curvature, while a CFT is a scale-invariant
Quantum Field Theory. These conjectures have been extensively studied in the literature to date,
leading to significant advancements in the development of fundamental physics.

The main focus of this thesis are Kaluza-Klein compactifications and the possible low-dimensional
theories that can be obtained, not from the full String Theories, but from reductions of their low-
energy limit, Supergravities. In the remainder of the introduction, we will review some of the
main concepts that we will need throughout the text, such as the basics of String Theories, Super-
gravities, Kaluza-Klein reduction, and also the main tool of this work, Exceptional Field Theory.

B String theories and Supergravities

B.1 String Theories

THE aim of this section is to provide an overview of String Theories (ST) and to derive their
massless sector. This gives a formulation of the so-called Supergravities, viewed as low en-

ergy limits of String Theories. String Theories are currently our most promising candidates for a
consistent theory of quantum gravity. They postulate the existence of extended elementary con-
stituents for matter, strings, which replace the point particles of Quantum Field Theory (QFT). The
free action of a point particle in flat spacetime is simply described by the line element.

S = −mc
∫ τf

τi

dτ
√
−ηµνẊµẊν, (2.2)

where c denotes the speed of light, Xµ the position of the particle in the targe-space, i.e. in space-
time, and d represents the number of dimensions. Henceforth, we set c = 1. ηµν is the Minkowski
metric with mostly plus sign. Therefore, in the absence of any interaction, a point particle that
minimizes this action will trace a straight line while propagating, as this path is the shortest dis-
tance between two points. This principle can be generalized to extended objects, leading to what
is called the Nambu-Goto action.

SNG = −Tp

∫
Σp+1

dσp+1
√
−det(γαβ) (2.3)

where γαβ = ηµν∂αXµ∂βXν, with α, β = 0, 1, . . . , p and µ, ν = 0, . . . , d− 1, represents the induced
metric of what is called the world-volume, into the target space. What is called the world-volume
here, is the volume that is swept by the extended object in the target space, i.e. spacetime. See
Figure 2.5 for an illustration in the case of a string. For the case p = 0, the Nambu-Gotto action

context of String Theory or Supergravity.
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B. STRING THEORIES AND SUPERGRAVITIES

reduces to the action of a point-like particle. For p = 1, this action describes the world-sheet swept
by the extended object in an d dimensional space: a line for a point-like particle, a surface for a
string, and so forth. In the case of a string, Tp in (2.3) serves as the analogue of mass for the point-
like particle and is called the string tension. It is related to the string length ℓs by Tp = 1

2πℓ2
s

and to

the quantity known as the Regge slope α′ by Tp = 1
2πα′ . The latter parameter plays the role of the

string energy scale. It encodes the energy level at which "stringy" effects begin to manifest. In the
Nambu-Gotto action, Xµ are the embedding coordinates of the extended object in the target space
which is d dimensional. The Nambu-Goto action is not entirely satisfactory due to its inclusion of

Figure 2.5: World sheet swipped by a string.

a square root, which complicates quantization. It can be replaced by another action, known as the
Polyakov action

SPol = −
Tp

2

∫
dσp+1

√
−hhαβ∂αXµ(σα)∂βXν(σα)ηµν + Λp

∫
dσp+1

√
−h , (2.4)

where the auxiliary field hαβ has been introduced and is symmetric. It has the interpretation of
a metric on the brane world-sheet, and on-shell, it is equal to the induced metric. The factor Λp

is choosen such that the equations of motion from the the Nambu-Goto and the Polyakov actions
are equivalent on-shell. The Polyakov action is therefore more commonly used for quantizing the
theory.

We now specialize to the case of p = 1, i.e., for a string. Objects with p larger than one, known
as p-branes, enter String Theories as non-perturbative objects. We will denote the two remaining
coordinates of the string world-sheet as σ and τ. The Polyakov action describes a bosonic string,
and we will restrict our analysis to the so-called bosonic String Theory as most of the important
features arise from it. We will briefly mention fermionic string theories, which we will refer to as
Superstring Theories.

The symmetries of the bosonic string action are:
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• "Global" Poincaré invariance:
X
′µ(σ) = Λµ

νXν + cµ , Λ ∈ O(1, d− 1), cµ ∈ Rd

σ′α = σα .
(2.5)

• Local diffeomorphism on the string world-sheet:

σα → σ′α ,

hαβ = h′γδ

∂σ′γ

∂σ′α
∂σδ

∂σβ
,

X′µ(σ′) = Xµ(σ) .

(2.6)

• Weyl invariance:


h′αβ = eϕ(σ)hαβ ,

σ′α = σα .

X′µ(σ) = Xµ(σ) .

(2.7)

By making use of those symmetries, and noting that h has three independent components, we
can fix the gauge to be, at least locally hαβ = ηαβ. The equations of motion for the embedding
coordinates Xµ in this gauge are

□Xµ ≡ ∂+∂−Xµ = 0 , (2.8)

where we introduced light-cone coordinates σ+ = σ + τ and σ− = σ − τ, in which the induced
metric h = η takes the form

η =

(
0 − 1

2
− 1

2 0

)
. (2.9)

Those equations of motion are supplemented with two Virasoro constraints
T++ ≡ ∂+Xµ∂+Xµ = 0 ,

T−− ≡ ∂−Xµ∂−Xµ = 0 ,
(2.10)

with T the energy-momentum tensor, which can be obtained by varying the action with respect to
h. Those equations of motions are easily solved by what are called left and right movers

Xµ(σ) = Xµ
L(σ+) + Xµ

R(σ−) . (2.11)

If we now ask to have a closed string (but this can be straightforwardly generalized to an opened
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string), i.e. a string with periodical boundary conditions Xµ(σ + 2π) = Xµ(σ) we can write
Xµ

R(σ−) =
1
2

xµ
R +

1
2
ℓ2

s pµ
Rσ− +

i
2
ℓs ∑

n ̸=0

1
n

α
µ
ne−2iπσ− ,

Xµ
L(σ+) =

1
2

xµ
L +

1
2
ℓ2

s pµ
Lσ+ +

i
2
ℓs ∑

n ̸=0

1
n

α̃
µ
ne−2iπσ+

.
(2.12)

In these formulas, α
µ
n and α̃

µ
n are the Fourier modes of the left and right movers, and will act as

ladder operators in the quantum theory, similar to those used in the quantum harmonic oscillator.
In (2.12), xµ

L/R designated the position of the string center of mass in the d-dimensional space,
pµ

L/R the momentum of the string, and the rests describes the oscillations that propagate along the
string, similarly to the fundamental and harmonic modes on a string musical instrument.

Canonical quatization can be used here, and a physical string state |φ⟩ will be described in the
quantum theory by a set of creation operators for right and left movers, a zero mode, as well as a
momentum k characterizing the motion and velocity in the world volume

|φ⟩ = (a†
n1
)µ1 . . . (a†

nN
)µN (ã†

m1
)ν1 . . . (ã†

mÑ
)νÑ |0, k⟩ (2.13)

such that
P2|φ⟩ = k2|φ⟩ (2.14)

with P the momentum operator, N the number of right movers, Ñ the number of left movers, and
((a†

n)
µ, (an)µ) = ( 1√

n α
µ
n , 1√

n α
µ
−n) for n ∈ N∗ (similarly for āµ

n). One could follow a similar reason-
ing for open strings, where fixing the boundary conditions becomes necessary, such as Neumann
(fixed derivative at the endpoints) or Dirichlet (fixed string endpoints). However, we will not
delve into the details of these calculations here. We will now highlight the main features that arise
from the quantization procedure.

The first and perhaps most important constraint is that, to preserve Weyl invariance at the
quantum level, the quantized bosonic string must exist in d = 26 dimensions. If one extends the
string to be fermionic, additional constraints come into play, and the quantized string must live
in d = 10. This feature prompted physicists to seek ways to eliminate the extra dimensions. One
of the main ideas is to compactify six out of ten dimensions: factorize the total manifold into a 4d
external space that describes the Universe and a compact 6d manifold with a characteristic length
much smaller than that of the external space. This approach effectively eliminates six dimensions.
6d compact spaces that fulfill the appropriate constraints are called Calabi-Yau manifolds [42], see
Figure 2.6.

Another constraint that comes into play is what is called the level-matching formula, imposed
at the quantum level by the Virasoro constraints (2.10), which states that the number N of right-
moving modes and left-moving modes Ñ must be equal. This condition essentially ensures the
existence of stationary waves propagating along the string. The on-shell mass formula is then
given for a physical state |φ⟩ by

M2|φ⟩ = 4
α′
(N − 1)|φ⟩ . (2.15)

We can have a look a the first few levels of the spectrum and look for massless modes. We intro-
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Figure 2.6: Example of a 2d slice of a Calabi-Yau manifold (source: Wikipedia).

duce light-cone coordinates in the target space

X± =
1√
2
(X0 ± Xd−1) , Xi = Xi , i ∈ J1, . . . , d− 2K . (2.16)

By utilizing the Virasoro constraint (2.10), one can show that the physical oscillations of the string
are the transverse oscillations, i.e. the oscillations that are excited by the (αi

n, α̃i
n). The spectrum

takes the following form for the first few levels:

• N = 0 : this leads to a negative mass. This is a tachyonic mode, which seems to imply that
String Theories are not good physical theories. However, when delving into calculations of
Superstring Theories, tachyonic modes disappear from the spectum.

• N = 1 : this will constitute part of the "massless" sector of String Theories and we have

χij(a†)i(ã†)j|0, k⟩. (2.17)

Fields described by χij decompose into irreducible representations of SO(d− 2). Therefore
the χij tensor can be decomposed into the irreducible representations

➜ χii → ϕ a singlet, called the dilaton scalar.

➜ χ[ij] → Bij which is a two-form, called Kalb-Ramond form.

➜ χ((ij)) → gij which is a symmetric traceless tensor. This will play the role of the graviton
field.

These fields, even though derived in the context of the bosonic String Theories, persist in the
case of Superstring Theories. Our aim with this analysis is to demonstrate that, as these are the
massless modes of String Theories, these fields are part of the field content of all low-energy limits
of String Theories, which are Supergravities.
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Before including fermionic strings, let us do a few general remarks on String Theories. Strings
can interact with one another. Those processes are similar to what happens in a quantum field
theory, and the strength of the coupling in the case of String Theories is governed by a coupling
constant gs. If the strings are weakly coupled, i.e. when gs is small, then we can use similar
techniques as the one used in QFT to compute scattering amplitudes. The main difference here, is
that the "lines" within Feynman diagram will be replaced by tubes as in Figure 2.7. Within a String

Figure 2.7: Lines in Feynman diagrams (left) are replaced by tubes on the String Theories scattering
amplitude diagrams.

Theory diagram, holes may be present in the surface swipped by the string as shown in Figure
2.8 . For example a sphere does not have any hole, but the donut, the torus, has one hole. This is
what controls the pertubative expansion. Therefore, the loop expansion is replaced by a genus (the
number of hole in the surface) expansion, introducing gs factors for each hole. Note that knowing
the number of holes is enough to characterize the surface, because of the 2d conformal invariance
of the string world-sheet. So the equivalent of the tree level is the diagram of the sphere in String

Figure 2.8: Examples of String Theory diagrams, each has a different genus [43].

Theories, the 1-loop level is the diagram of the torus and so on. Note also that in String Theories,
one diagram usually encodes a number of Feynman diagrams, because there is only on surface
with a hole, but several loop diagrams, see Figure 2.9.

To proceed in our exploration of the massless bosonic modes of String Theories, we would need
to delve into Superstring Theory. However, we will not perform any calculations and proceed
directly to the results. In Superstring Theories, there exists two different sectors that can combine
to constitute fields: the Ramond (R) and the Neveu-Schwarz (NS) sector. The field content of the
NS-NS sector aligns precisely with what we just described, featuring a dilaton, a Kalb-Ramond
two-form, and a graviton. It is worth noting that because the graviton is present in every String
Theory, each of them serves as a candidate for a theory of quantum gravity. Furthermore, the field
equations for this graviton at low energy correspond exactly to the Einstein field equations. Hence,
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Figure 2.9: One String Theories diagram encodes the three channels (s,t,u) of the Feynman dia-
grams, at tree level [43]

String Theories encapsulate General Relativity and therefore represent promising candidates to
extend it, as claimed before.

The R-NS sector provides us with fermionic fields, which we will not discuss in details. Finally,
the last sector is the R-R sector, which is a sector of bispinors : one from the left sector and the other
from the right sector. In this case, we have several options, primarily whether we desire a chiral
theory or not. By introducing a chirality projector Γ11 = Γ0 . . . Γ9, where Γ’s are the 10-dimensional
gamma matrices. The chirality projection for a bispinor H, constituted from a Ramond left spinor
and a Ramond right spinor takes the form

Γ11H = ±H . (2.18)

The chiral theory is denoted as IIB String Theory for which one would take the minus sign in (2.18),
while the non-chiral version is known as IIA String Theory for which one would take the plus sign
in (2.18). The "II" designation signifies that for these theories, there are two supersymmetries. We
will delve deeper into supersymmetries in the next section. There are other String Theories that
exist with only one supersymmetry. The two so-called Heterotic String Theories, and Type I String
Theory. The latter corresponds in fact to truncation to either IIA or IIB theory.

Depending on whether we are within IIA or IIB Superstring Theory, the R-R field content
changes. For IIA Superstring Theory, there are additional potential one-form and potential three-
form fields. For IIB Superstring Theory, there are additional 0-form potential, 2-form potential,
and 4 potential fields which field strength is self-dual. Note that all those p-forms come with their
dual partners. The massless bosonic sector of type II Superstring Theory is summarized in Table
2.1.

Before closing this section, note that all String Theories are nowadays thought to be connected
via dimensional reduction or duality to a theory that unifies all String Theories: M-Theory. The
latter is a theory living in 11d, for which we do not yet have an explicit formulation, but its low-
energy limit is 11d Supergravity. The connections between String Theories and M-theory are sum-
marized in Figure 2.10.
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Figure 2.10: Duality transformations relating string theories all toghether and M-Theory [44]. T-
duality transforms the radius R → ℓ2

s /R with R the radius of the compactified circle the length
of the compactified interval I1. S-duality, on the other hand, inverts the dimensionless string
coupling constant gs → 1/gs (analog to electric-magnetic duality, or strong-weak coupling duality
in four-dimensional gauge theories).

Bosonic sectors

Sector Type II A Type II B

NS-NS ϕ , B(2) , gij ϕ , B(2) , gij

R-R C(1) , C(3) C(0) , C(2) , C(4)

Table 2.1: Sum up of the bosonic field content of Type II A and B Supersting Theories, Bij is the
Kalb-Ramond 2-form, gij the graviton, et C(n) are n-forms.

B.2 Supersymmetry

We continue this introduction by providing a brief overview of a very important concept in theo-
retical physics: Supersymmetry. When the Standard Model of particle physics was established in
its final form, theoretical physicists began exploring ways to extend it. In particular, Coleman and
Mandula [45] investigated the extent to which the Poincaré group could be enlarged before the
scattering amplitudes became trivial. Their result takes the form of a theorem that is summarized
in the Table below.
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Coleman and Mandula therorem (1967)

Let G be a connected symmetry group of the S-matrix, that encodes the scat-
tering amplitudes, such that

• G contains a subgroup that is locally isomorphic to P(3, 1), the Poincaré
group.

• For given m > 0 there exists only a finite number of one-particle states
with mass less than m.

• Elastic scattering amplitudes are analytic functions of the Mandelstam
variables in some neighbourhood of the physical region.

• The S-matrix is non-trivial, i.e. generically two one-particle momentum
eigenstates scatter (except at isolated values of the Mandelstam vari-
ables).

• The generators of G in momentum space have distributions for their
kernels.

Then G is locally isomorphic to the direct product of a compact Lie group Int
and the Poincaré group

G ≃ P(3, 1)⊗ Int (2.19)

Similarly, the Lie algebra g of G is the direct sum of the compact Lie algera int
of Int and the Poincaré algebra

g ≃ p(3, 1)⊕ int (2.20)

Stated in this manner, the key-content of the theorem is that from a Poincaré algebra point of
view, all ’internal’ generators are forced to be scalars. There are however a number of loopholes,
which we note in passing that String Theories realize all of them.

Loopholes in Coleman-Mandula theorem

1. We could work in d = 1 + 1 where the theorem does not hold.

2. Non local theories with extended objects do not enter the scope of the
theorem.

3. Conformal Symmetry can be added in the case of a massless theory.

4. The generators are assumed to obey a Lie bracket, i.e. form a bosonic
algebra. If one considers fermionic generators, then the Coleman-
Mandula theorem does not hold.

This latter point is our focus in this section. It supposes the existence of generators of a symmetry,
which are not commuting but anti-commuting. This is characteristic of fermionic symmetry, that
exchanges bosonic and femionic degrees of freedom. If we call them Q, then we schematically
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have in the theory
|F⟩ = Q|B⟩ (2.21)

where |F⟩ is a fermionic degree of freedom and |B⟩ is a bosonic degree of freedom. Therefore, in
a supersymmetric theory, couplings among fermions and bosons are not independent anymore,
and the generators Q increase or decrease the helicity by 1/2. As a consequence, the matter will
be organized into so-called supermultiplets of fields with different helicities.

Depending on the number of supersymmetric generators and the dimension of the theory,
the content of supermultiplets will vary. For a comprehensive review of supersymmetry and the
structure of multiplets in various dimensions, see [46, 47].

Let us give a very simple example of a supersymmetric theory. Consider the Lagrangian

L =
1
2

ẋ2 − 1
2

x2 + iψ̄ψ̇− 1
2
(ψ̄ψ− ψψ̄) , (2.22)

which describes the Supersymmetric Harmonic Oscillator, where x describes the usual bosonic
harmonic oscillator and ψ is a fermionic oscillators, i.e. with anti-commutation relations. Let
ϵ and ϵ̄ be two fermionic variation parameters. Then this Lagrangian is invariant up to a total
derivative according to

δϵx = ϵψ̄ , δϵ̄x = ϵ̄ψ ,
δϵψ = iϵẋ + ϵx , δϵ̄ψ = 0 ,
δϵψ̄ = 0 , δϵ̄ψ̄ = −iϵ̄ẋ + ϵ̄x .

(2.23)

Using Noether’s theorem, we can now compute the conserved charges which will be the super-
symmetric generators, and we obtain{

Qϵ = (ẋ− ix)ψ̄ ,
Qϵ̄ = −(ẋ− ix)ψ .

(2.24)

Using this supersymmetry, we can now describe the full spectrum in term only of the bosonic
degrees of freedom. Let us define the momentum associated to x

p =
∂L

∂ẋ
= ẋ . (2.25)

We can now introduce ladder operators for bosons and fermions

a =
x + ip√

2
, a† =

x− ip√
2

, f = ψ , f † = ψ̄ (2.26)

which verify the (anti)-commutation relations

[a, a†] = 1 , { f , f †} = 1 , { f , f } = { f †, f †} = 0 (2.27)

Using those variables we can show that the Hamiltonian of the system can be written as

H = a†a + f † f . (2.28)
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We can also re-express the supercharges as

Qϵ ∝ Q = a† f , Qϵ̄ ∝ Q† = a f † . (2.29)

The algebra satisfied by the Qs is

{Q, Q†} = H , {Q, Q} = {Q†, Q†} = 0 . (2.30)

The Hilbert space is now described by the product of two Fock spaces H = HB ⊗ HF whose
states are |nB, nF⟩ = 1√

nB ! (a†)nB( f †)nF |0, 0⟩, with here nF = 0 or 1 because of the anticommutation

relations of f † (2.27). In this description |nB, 0⟩ is a boson and |nB, 1⟩ is a fermion. By acting with
Q and Q† on an arbitrary state |nB, nF⟩ we can relate bosonic and fermionic states

Q|nB, nF⟩ = a† f |nB, nF⟩ =
√

nB + 1δnF ,1|nB + 1, nF − 1⟩ , (2.31)

Q†|nB, nF⟩ = a f †|nB, nF⟩ =
√

nBδnF ,0|nB − 1, nF + 1⟩ . (2.32)

Hence we have the relation between fermionic and bosonic states

|nB, 0⟩
Q
←−−−−→

Q†
|nB − 1, 1⟩ . (2.33)

We can summarise the most important points of this model in a few comments. Firstly, the system
has a non-degenerate (bosonic) ground state |0, 0⟩. Secondly, all the excited states come in pairs,
one of which is a boson and the other is a fermion. We can see this from (2.33) by applying the
Hamiltonian operator on both state

H |nB, nF⟩ = (nB + nF)|nB, nF⟩ (2.34)

H |nB − 1, nF + 1⟩ = (nB + nF)|nB − 1, nF + 1⟩ (2.35)

which therefore have the same energy. Finally, the supercharges Q and Q† map into each other
bosonic and fermionic degrees of freedom which have the same energy. They form a supermulti-
plet {

|nB, nF⟩, |nB − 1, nF + 1⟩
}
(nB+nF)

. (2.36)

chacterized by a single quantum number : the energy. From the Lagrangian perspective, those su-
percharges stem supersymmetry (2.21), which also mixes fermionic on bosonic degrees of freedom
and vice versa.

In the case of a QFT, the story is similar. Supercharges will come in pairs QI
α and Q̄I

α, I = 1, . . . ,N ,
with N the number of supersymmetries, and α being indices of the spinor representation of the
Poincaré group. One supercharge increasing helicity by 1/2 and the other lowering it by 1/2. N is
the number of supersymmetry. The Poincaré algebra is going to be supplemented by a graduated
algebra similar to (2.30), i.e. with commuting and anticommuting relations, and the fields are be
organized into supermultiplets.

The number of supersymmetries in a theory cannot be an arbitrary large number. If we re-
strict ourselves to theory with helicity lesser or equal to 2 in 4d, then the maximum number of
supersymmetries is N = 8 (it takes 8 iterations to go from 2 to −2 by steps of 1/2). Then we
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have 8× 2× 2 = 32 maximum number of components of supercharges. The first 2 is coming from
α = 1, 2 and the second because there are Q and Q̄. If one starts from a theory in d dimensions and
count the number of supercharges, one finds that 11d is the maximal dimension with N = 1 in
order to have at most 32 supercharges, and with the minimal number of supersymmetry N = 1.
After dimensional reduction to 4d this would give N = 8. This explains why Supergravities have
been constructed up to 11d.

Note that in 4d with N = 8 supersymmetries, we are forced to introduce a spin 3/2 field.
We can wonder what is the appropriate theory to describe this new field. The story is similar to
what happens with spin 1 fields, which can be consistently described by gauge theories. The latter
amounts to promote a rigid symmetry to a local symmetry, and the spin 1 field plays the role of
the connection, and make sure that the different quantities in the theory transform convariantly
under the local symmetry. For example, the derivative is promoted to a covariant derivative

∂µ −→ Dµ = ∂µ − gAµ (2.37)

with Aµ the spin 1 field and g will play the role of the coupling constant in the gauge theory. A
simlilar process happens for the spin 3/2 field. The appropriate theories to describe it are Super-
gravities, in which global supersymmetries are promoted to local supersymmetries, and the spin
3/2 fields, also called gravitini fields will play the role of the connection for this local symmetry.
The study of Supergravities in the subject of the next section.

B.3 Supergravities

As explained in the previous paragraph, Supergravities are the appropriate theories to study spin
3/2 fields, by promoting the rigid supersymmtry into a local one. It turns out that when doing so,
we are forced to introduce a spin 2 field, which corresponds to introducing gravity in the theory.
We will not delve into the construction of Supergravities, for which the reader can refer to [48, 49].
We will rather highlight the main features of Supergravities that we will need through the thesis.

In the section on String Theories 2.B.1 , we claimed that the low-energy limits of String Theories
give rise to Supergravities. It can indeed be shown that in d = 10, one can construct two inequiv-
alent Supergravities with N = 2, which correspond to the massless sectors of IIA and IIB String
Theories. Moreover, it can be demonstrated that there is a unique way to construct a Supergravity
in d = 11 with N = 1 [50].

Supergravities can be constructed in dimensions with 2 ≥ d ≥ 11, but all ungauged max-
imal Supergravities, can be obtained from 11d and 10d IIB Supergravities, except for some 6-
dimensional Supergravities. Note that 10d IIA Supergravity can be obtained from 11d Supergrav-
ity by compactifying on S1 [51–53]. However IIB Supergravity is peculiar in that sense : it cannot
be obtained from dimensional reduction of 11d Supergravity.

We will use the remainder of this section to recap the field content and dynamics of 11d and
type IIB Supergravities. We will not provide a detailed construction of Supergravities, for which
we refer to [48, 49]. We give further details on basics of Supergravity compactification and gauging
procedure in section 2.C.2 .
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a 11d N = 1 Supergravity

11d Supergravity is an N = 1 theory, in which all fields are regrouped in a single supermultiplet
[54, 55]. This theory is thought to be the low energy limit of M-theory [56]. The 11d Supergravity
theory consists of

{
GMN , ΨM, CMNP

}
, (2.38)

with GMN the 11d metric, ΨM the gravitino field and CMNP a three-form potential. Its Lagrangian
is

L11d = ER− 1
2

Eψ̄KΓKMN D(ω)MΨN −
E
48

FM1 M2 M3 M4 FM1 M2 M3 M4

+
1

1442 ϵM1 ...M11 CM1 M2 M3 FM4 M5 M6 M7 FM8 M9 M10 M11

+
1

192
E
(

Ψ̄PΓKLMNPQΨQ + 12Ψ̄KΓLMΨN
)

FKLMN ,

(2.39)

with M, N, . . . = 1, . . . , 11, E the determinant of the vielbein, R the 11d Ricci scalar, FKLMN = 4∂[KCLMN],
Γ with multiple indices products of antisymmetric Γ matrices of so(1, 10), D(ω) the covariant
derivative involving the spin connection ω, and ϵ the Levi-Civita symbol. The symmetries of this
Lagrangian can be found in [55].

This theory can be compactified to maximal Supergravities in lower dimensions via a so-called
Freund-Rubin compactification procedure (2.C.4) on AdS7 × S4 ans AdS4 × S7. This process gives
an ansatz to find a solution of 11 dimensional equations of motion descending from (2.39), which
describes a background around which one can study the compactification of 11d to 4d or 7d. For
the 4d case, this process leads to a theory whose massless gravity supermultiplet aligns with max-
imal N = 8 4d Supergravity [57], on top of which Kaluza-Klein towers are added up. The whole
spectrum is organised into representations of the Osp(4|8) group. We will further develop this
compactification scenario in section 3.B.2 where we give the full spectrum. This extension of d = 4
Einstein gravity stands out notably for its exceptional degree of symmetry and the finiteness ex-
hibited by its higher loop amplitudes [58–62].

b 10d N = 2 IIB Supergravity

IIB Supergravity is a 10d theory with N = 2, first constructed in [63–65] and whose field content
is {

GMN , ϕα, CMN
α, CMNPQ

}
, (2.40)

with GMN the 10d metric, ϕα a doublet of SL(2, R) of scalar fields with α = 1, 2, CMN
α a doublet

of 2-forms and CMNPQ a self-dual 4-form potential. The SL(2, R) symmetry under which scalars
and 2-forms are doublets is the same. There are several formulations of type IIB Supergravity. In
this formulation, the self-duality equation of the 5-form field strength must be imposed separetely

FM1 ...M5 =
1
5!

ϵM1 M2 M3 M4 M5 N1 N2 N3 N4 N5 FN1 N2 N3 N4 N5 (2.41)
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LIIB = ER +
1
4

E∂Mmαβ∂Mmαβ − 1
12

FM1 M2 M3
αFM1 M2 M3 βmαβ

− 1
30

EFM1 M2 M3 M4 M5 FM1 M2 M3 M4 M5

− 1
864

ϵαβϵM1 ...M10 CM1 M2 M3 M4 FM5 M6 M7
αFM8 M9 M10

β

+ fermions ,

(2.42)

with E the square root of the determinant of the metric; R the 10d Ricci scalar, mαβ is a 2× 2 matrix
in SL(2, R)/SO(2) that is parametrized by the two scalars, and the F are the various field strengths
of the gauge potentials. Again we refer to [55] for further details on the symmetries.

This IIB Supergravity can be reduced to maximal Supergravity in 5d via a compactification
on AdS5 × S5. The massless graviton supermultiplet aligns with maximal 5d Supergravity with
gauge group SO(6). On top of this supermultiplet, there is an infinite number of massive 1/2 BPS
multiplets. The spectrum of the full compactified theory is given in Table 2.5 .

C Kaluza-Klein reductions

SOON after Einstein formulated his theory of gravity, it was proposed by the mathematician
Theodor Kaluza [39] and later the physicist Oscar Klein [38] to add extra dimensions in an

attempt to unify gravity with the electromagnetism force. After all, unifying theories is a funda-
mental principle for physicists : from Maxwell that unified electric and magnetic effects [66], to
Einstein that unified space and time [1], unification has always been a guiding principle in theo-
retical physics. Latter with the emergence of String Theories in 10d and Supergravities in up to
11d as candidate for a theory of Quantum Gravity, it became a necessity to find a way to reduce
this number of dimensions. There has been since a novel interest in ideas of Kaluza and Klein.

The basic idea is quite straightforward : take the total manifold M on which the higher-
dimensional theory is defined and factorize it into an external and internal compact part. Then
make the radius or characteristic length of the internal part much smaller than the one of the exter-
nal part. The extra dimensions will effectively disappear from the theory, but with still effects on
the lower dimensional theory. Let us illustrate this with the toy model of a scalar field ϕ living in
d+ 1 dimensions. We will call {xi} the d first dimensions, time included, and y the last coordinate.
This scalar field obey the free Klein-Gordon equation, and if it is massless we have

□ϕ(x⃗, y) = 0 . (2.43)

We now want to compactify one dimension, and therefore we are not left with many choices for
the internal manifold and will compactify on S1. Therefore the y coordinate becomes periodic, and
we can Fourier expand the y dependance of the field ϕ

ϕ(x⃗, y) = ∑
n∈N

ϕn(x⃗)exp(2iπny/L) , (2.44)

with L the radius of the circle. The d’Alembertian operator will split into two parts □ → □x + ∂2
y
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Figure 2.11: Schematics representation of the Kaluza-Klein reduction of a scalar field on S1 with
different modes which trajectories wrap the cylinder. The blue curve would represent the path of
the 0 mode ; the orange and green curve would represent the path of two non zero modes of the
Kaluza-Klein tower with increasing wrapping number. The higher in the tower the mode is, the
mode it wraps around the cylinder.

and the Klein-Gordon equation (2.43) reduces to

∑
n∈N

(
□xϕn(x⃗)− (2πn)2

L2 ϕn(x⃗)
)

e2iπny/L = 0 . (2.45)

There are already a number of things we can say from this very simple model, that will be resur-
gent of all compactifications. First of all, we see the emergence of a infinite amount of modes
from what used to be a single field. All those modes constitute what we will call a Kaluza-Klein
tower and is a distinguished feature that arises in all Kaluza-Klein reductions. In this example,
they describe to what extent the trajectories of free massless fields wrap around the circle while
propagating in the d+ 1 spacetime, as illustrated in Figure 2.11 . If a mode with a large n is excited,
this means from the d+ 1-dimensional theory that the trajectory of scalar fields winds a lot around
the circle. What we also see is that those modes, from the d-dimensional point of view, acquire
a non zero mass, and this mass becomes bigger as the circle gets smaller. Therefore, if the circle
shrinks sufficiently enough compared to a characteristic size of the external space, than we have
an effective theory in d dimensions that is just again a free scalar field, corresponding to the zero
mode in the expansion (2.44). All the masses of the other modes are too big and the corresponding
fields cannot be excited at low energy.

C.1 Pure higher dimensional gravity

We already saw quite interesting features in the toy model of the d + 1 dimensional scalar field.
Let us now study another theory in d + 1 dimensions and compactify it : Einstein gravity.

The only field we have is the d + 1-dimensional metric GMN , which depends on x⃗, the external
coordinates, and y, the only internal coordinate. As before, we represent the total manifold as
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the product of an external manifold and a circle S1. However, this time we have a field with spin
s > 0, and therefore we have to consider its index structure. How do we handle it? The answer is
as follow: we will decompose the metric into different components, which will give rise to fields
with different spins in the lower-dimensional theory

ds2 = Gµνdxµdxν + 2Gµydxµdy + Gyydy2 ≡ e2αϕgµνdxµdxν + e2βϕ(dy + Aµdxµ)2 . (2.46)

with α and β a priori free parameters. However, we will fix β = −(d− 2)α in order to have a stan-
dard Einstein-Hilbert term in the d-dimensional theory, and α−2 = 2(d− 1)(d− 2) so the kinetic
term we will obtain for ϕ is canonically normalized. Here µ, ν indices are the d-dimensional space-
time indices. We observe that the (d + 1)-dimensional metric appears to give rise to a scalar field,
a vector, and a d-dimensional metric. We use the term "appears" because we do not yet know how
these objects transform under diffeomorphisms, nor if they satisfy the appropriate equations of
motion. So, we substitute (2.46) into the (d + 1)-dimensional Einstein-Hilbert Lagrangian. Then,
we conduct an analysis similar to the one we conducted for the scalar fields in the previous section:
we expand fields into harmonics of the internal space and split internal and external coordinates.
Here, we take a step further: in the previous example, we observed that non-zero modes, i.e.,
modes that retained a dependence on the internal coordinate, would acquire a mass. In this exam-
ple, since we are interested in the low-energy limit, we discard all massive modes and only retain
the zero modes of the Kaluza-Klein towers. This is equivalent to retaining only the x⃗ dependence
of the fields in (2.46), i.e.

∂yΦ = 0 , (2.47)

for any field Φ in the theory. By doing this, we can integrate out the y part of the Lagrangian and
determine the d-dimensional effective theory we obtain. The result is as follows

Sd+1 =
∫

dxd
∫

dyRd+1 −→ Sd =
∫

dxd
(

Rd −
1
4

e2α(d−1)ϕFµνFµν − 1
2

∂µϕ∂µϕ
)

. (2.48)

where we have set L = 1. The effective theory we obtain consists of d-dimensional Einstein grav-
ity, a Maxwell theory with field strength Fµν, and a scalar field. This is a remarkable result: starting
from a (d + 1)-dimensional theory, we can (almost) unify gravitational and electromagnetic inter-
actions in such a simple manner. From a d-dimensional perspective, the Maxwell theory describes
a photon. However, from the (d + 1)-dimensional viewpoint, the vector field represents the ge-
ometry of the internal circle. Therefore, a photon can be seen as a sort of gravitational waves
propagating along the internal space. Additionally, the scalar field, known as a dilaton, describes
the overall volume of the internal circle

vol(S1) = eβϕ . (2.49)

The larger ϕ is, the larger the radius of the circle becomes.

From this simple example, we can make several comments. Firstly, we can implement gauge
interactions in the lower-dimensional theory from a geometrical standpoint. Depending on the
internal space, if we start with more internal coordinates, providing more room, we could im-
plement different gauge theories in the lower-dimensional theory. The isometries of the internal
space correspond to the gauge group of the lower-dimensional theory. In our example, the isome-
tries of the circle are given by U(1), leading to U(1) gauge theory, which corresponds to Maxwell’s
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theory of electromagnetism.
Secondly, we can see that ϕ controls the volume of the internal space. It can be seen from (2.46).

Because the coordinate y on S1 is periodical, y+ L ≃ y, then the prefactor of dy2 is the radius of the
circle, i.e. e2βϕ. As ϕ is a dynamical field, then we cannot simply make the internal space as small
as we desire by hand, as we would like to achieve for a satisfactory compactification. Is there a
dynamical way to make the internal space small and realize what is called scale separation? This is
actually a non-trivial question, one of the many addressed by the so-called "Swampland program"
[67–69].

Despite the simplicity and the elegance of the previous result, this model is unsatisfactory for a
number of reasons. First of all, we see the emergence of a scalar field. This is a little unsatisfactory
in the sense that in the SM there exists only one massive scalar field : the Higgs boson. Here there
is also a single scalar fields, but when if instead of compactifying on a circle S1, we compactified
on an n torus Tn, we would have obtained more scalars fields describing internal geometry. The
emergence of a number of scalar fields in dimensional compactifications is a feature that shows
up all the time, and one has to deal with it. We cannot just throw away them and set them to zero,
because this leads to inconsistencies as we will see later. A second point is the fact that here, none
of the massless fields, i.e. the fields that consitute the d-dimensioncal Lagrangian in (2.48), are
charged under the U(1) gauge theory. This again is a common feature of toroidal compactifica-
tions. This can however be overcome using a gauging procedure. Note that if we decided to keep
extra massive modes, then the latter would have been charged under the U(1) gauge symmetry.
However, as we saw before, ϕ not only controls the internal volume, but is also the coupling con-
stant of Electromagnetism as we can see from the Lagrangian. Therefore in that case, we would
need to find a way to stabilize it. One way to do it would be to add a potential for the scalar fields
so they are stuck in a minimum of the potential. This can be done using only classical ingredients,
such as fluxes, as we will see in the example of the Freund-Rubin compactification in section 2.C.4 .

The last thing we want to emphasise in this model is about symmetry. From the (d + 1)-
dimensional perspective, the symmetries are the diffeomorphisms with parameter ξM(x⃗, y). These
diffeomorphisms will split in the low dimensional theory to ξM(x⃗, y) → {ξµ(x⃗, y), ξ5(x⃗, y)}. By
dropping the y-dependence here as we did for all the fields, we end up with d-dimensional diffeo-
morphisms generated by ξµ(x⃗) and U(1) gauge symmetry as expected generated by ξ5(x⃗). Note
however that there is an additional global symmetry, because in order to preserve the Kaluza-Klein
ansatz (2.47), we can still keep a y linear dependence in ξ5 such that

ξ5(x⃗, y) = ξ5(x⃗) + cy , (2.50)

with c a constant parameter. One can show that this symmetry leaves the equations of motion in-
variant. Therefore, there is an additional R = GL(1) global symmetry. If instead of compactifying
from d + 1 to d dimensions, we would have gone from d + n to d with a compactification on a
torus Tn, the previous equation becomes

ξm(xµ, ym) = ξm(xµ) + Λm
nyn , (2.51)

whose last part induces an apparent GL(n) symmetry. Note however that the trace Λm
m induces

a non-trivial transformation on the graviton field, which is not a symmetry of the Lagrangian.
Therefore (2.51) only induces an SL(n) symmetry, for n ≥ 2. Note that there the story is slightly
different in 3d and 2d where this SL(n) symmetry is enhanced [70, 71]. We will come back on this
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point in the next paragraph. Finally, that there is an additional symmetry entering the analysis:
the trombone symmetry. This symmetry for a theory in D dimensions rescales the Lagrangian as

δL = (D− 2)ϑL , (2.52)

with ϑ the parameter inducing the trombone symmetry. Combining the trombone symmetry of
the higher-dimensional gravity theory and the trace part of (2.51), we can construct an additional
GL(1) symmetry, and with the previous SL(n), this makes a GL(n) symmetry.

C.2 Supergravity toroidal compactifications

In this section, we highlight the results of toroidal compactifications of type IIB 10d and 11d Su-
pergravities, respectively to 5d and 4d. When compactifying Supergravities on tori, the resulting
theory contains a number of scalar fields and gauge fields, as illustrated in the previous section
with the compactification of pure gravity. Here, we will encounter a richer structure and more
fields due to the presence of extra form fields in both theories.

Starting from 10 or 11-dimensional Supergravities, we proceed similarly to what we did in
the case of Einstein gravity, and compactify on a torus Tn. We then use the Kaluza-Klein ansatz
(2.47) and discard all internal dependance. The resulting low-dimensional theories will be called
ungauged Supergravities because, similar to the case of Einstein gravity compactification, none
of the fields will be charged under the gauge fields. Moreover, the gauge fields we obtain in the
low-dimensional theories will all be gauge fields of a U(1)n theory. This setup closely resembles
the case of pure gravity compactification. The difference lies mainly in the global symmetry and
matter content. In the case of the pure gravity, the compactification on Tn led to a global GL(n)
symmetry. However, in the case Supergravities, this symmetry is enhanced. If we are dealing
with maximal Supergravities, this gives a group of the exceptional family. Let us illustrate how
this goes.

Because of the presence of matter fields, extra symmetries, known has hidden symmetries,
enter the lower-dimensional theory [57, 72, 73]. For example, we saw the presence of p-forms in
10d and 11d Supergravities. The gauge symmetries of those p-form will add global symmetries
to the lower-dimensional symmetry in a similar fashion than (2.51). For example, if the theory of
interest comprises a 2-form potential Bµν, the latter transform under diffeomorphisms generated
the vector ξµ, plus gauge transformation generated by the vector λµ

δBµν = ξρ∂ρBµν + ∂µξρBρν + ∂νξρBµρ + 2∂(µλν) . (2.53)

Then one truncates the y dependance of λ which at the end enlarges the total symmetry group.
One can show that the GL(n) group is enhanced, in general, to an O(n, n) group upon duallizing
low dimensional fields. The latter is the universal symmetry arising from compactifications of
Supergravities on tori. In some cases, this symmetry can be enhanced. For example, half-maximal
Supergravities coupled to m vector multiplets, gives rise to O(n, n + m). In the case of maximal
Supergravity, this O(n, n) group is further enhanced to an En(n) group for 11d Supergravity and
En+1(n+1) for Type IIB Supergravity (2.2). Double Field Theory [74–82] and Exceptional Field
Theory [83–88] are the framework that make those duality manifest in the higher dimensional
theories, before compactification.

As seen in the previous section, the GL(n) global symmetry arises from higher-dimensional
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Figure 2.12: Decomposition of sl(d − 1) under sl(d − 2) × gl(1). The subscripts denote the R+

charges which establish the vertical grading. At level 0 one finds the algebra of sl(d− 2)× gl(1)
while level 1 and -1 contain an sl(d− 2) vector and a dual vector, respectively [70].

diffeomorphisms. Therefore, only a part of the exceptional symmetry is explained by those dif-
feomorphisms. In particular, part of the "extra" symmetries that enhance the GL(n) family to En

become manifest only after dualization of some of the lower-dimensional fields. Hence, these ad-
ditional symmetries are often referred to as "hidden" symmetries. We illustrate this mechanism
with the example of Einstein gravity compactified from d + 1 dimensions to 3 dimensions on a
torus. From the previous discussion, we expect to have an GL(d + 1 − 3) = GL(d − 2) global
symmetry group. However, in 3d on can dualize the vector fields to scalars by

ρ(2+2/(d−2))eMmnFmµν = ϵµνρ∂ρ φn , (2.54)

with m, n, . . . = 1, . . . , d − 2, M an unimodular matrix which encodes the scalars of the lower-
dimensional theory, which parametrizes the coset R× SL(d − 2)/SO(d − 2), ρ the dilaton field,
e the determinant of the vielbein, Fm

µν = 2∂[µ Am
ν]

and ϵ the Levi-Civita tensor. The equations of
motions for the vector fields dual to the scalars φn are

∂µ(ρ
(1+2/(d−2))eMmnFmµν) = 0 . (2.55)

We see from (2.54) that the scalars φn are defined up to a global shifts φn → φn + θn . Therefore
we see that when formulating the theory with scalars and metric only, upon dualizing the vectors,
that there are additional symmetries entering the theory and the global symmetry group we obtain
is GL(d− 2)⋉Rd−2. However, this symmetry is actually enhanced and the total symmetry group
is SL(d − 1). The branching of SL(d − 1) into SL(d − 2) × GL(1) is represented in Figure 2.12 .
The generators denoted as (d− 2)−1 are the "hidden" generators enhancing the symmetry, often
referred as generating "hidden" symmetries. They act on the dilaton scalar ϕ, the φn scalars and
the scalars parametrizing the coset SL(d− 2)/SO(d− 2) non-linearly. At the end, all the scalars
can be arranged into the coset SL(d − 1)/SO(d − 1). The reader can refer to [70, 89] for further
details.

In the case of Supergravities, a similar mechanism is at work, with additional matter fields,
higher rank forms, to dualize. These enhanced symmetries, the exceptional symmetries, organize
the field content. In the case of type IIB and 11d Supergravities compactified to 5d, the 42 scalar
fields of the theory are organized into a scalar manifold given by the coset E6(6)/USp(8). Similarly,
for compactification to 4d, where the 70 scalar fields reside on the scalar manifold E7(7)/SU(8)
[57]. The vector fields reside in the fundamental representation of the exceptional group. The
decompostion of the exceptional algebra according to the appropriate sl algebra (before symmetry
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Exceptional group serie

d G K

9 GL(2) SO(2)

8 SL(2)× SL(3) SO(2)× SO(3)

7 SL(5) SO(5)

6 SO(5, 5) SO(5)× SO(5)

5 E6(6) USp(8)

4 E7(7) SU(8)

3 E8(8) SO(16)

2 E9(9) K(E9(9))

Table 2.2: Exceptional family showing up as global symmetry of the equations of motion in
toroidal compactifications of Supergravities [90].

enhancement) is shown in Figure 2.13 [55].

C.3 Gauging procedure

The resulting theories obtained via toroidal compactificaitons in the previous sections, are un-
gauged low-dimensional theories, which can be gauged. This procedure is akin to what is done
in usual gauge theories: select some of the vectors available and couple the matter fields to the
gauge fields. However, the number of possibilities for gauging is not infinite; the maximal num-
ber of gauge fields is fixed, and the gauge group G0 must be a subgroup of the global symmetry
group. Furthermore, the consistency of the procedure imposes several constraints.

We briefly summarize the important features of the gauging procedure via the embedding
tensor formalism. For more details on the embedding tensor formalism in Supergravity, we refer
to [90]. This formalism is used to construct gauged Supergravities starting from ungauged ones,
where the gauge couplings are controlled by an object called the embedding tensor. In a standard
gauge theory, we introduce the covariant derivatives

∂µ1→ Dµ1 = ∂µ1− gAµ
ITR

I , (2.56)

where TR
I are the generators of the gauge group in the appropriate representation. In the case of

Supergravities, the vector fields are organized by some representations of the global symmetry
group. Hence the number of vector fields is fixed. When gauging the theory, the total number of
vector fields available may be higher than the number of gauge fields required to couple to a given
gauge group G0. To determine which fields among the available ones are needed for the coupling,
one can introduce the embedding tensor, which selects the vector fields as needed

∂µ1→ Dµ1 = ∂µ1− gAµ
MXM , (2.57)
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Figure 2.13: On the left, the branching of e6 into sl(6). On the right, the branching of e7 into sl(7).
The subscript again denote the charge under gl(1). The 1+2 and 7+2 generators are shift symme-
tries coming from dualization of higher rank forms. The 1+2 and 7+2 are the shift symmetries
of the scalars as explained in the text. The generators with negative charges are the "accidental"
symmetries responsible for the enhancement to the exceptional group, which are dual to the shift
symmetries [70].

with
XM = ΘM

αTα . (2.58)

with g the coupling constant, Tα ∈ G, where G is the total rigid symmetry group of the Super-
gravity, and XM ∈ G0 the generators of the gauge group G0 ⊂ G. Strictly speaking the embedding
tensor is the Θ tensor, but by abuse of language we will also denote XMN

P = ΘM
αTα,N

P as the
embedding tensor. The ΘM

αTα,N
P in the previous formula are the generators of the generators

of the group G expressed in the fundamental representation. This embedding tensor is subject to
two constraints : one quadratic constraint that ensures the closure of the algebra

[
XM, XN

]
= −XMN

PXP , (2.59)

which can be derived by demanding that the embedding tensor itself is invariant under the action
of the gauge group. Explicitely, this leads to a quadratic constraints in Θ

0 = δPΘM
α = ΘP

βTβM
NΘN

α + ΘP
β fβγ

αΘM
γ , (2.60)

where fβγ
α are structure constants of the global symmetry group. By contracting the previous

condition with generators T one recovers (2.59). There is an additional constraint, linear in Θ, that
is recquired by supersymmetry. The embedding tensor Θ lives in the product of a fundamental
representation of G and its adjoint. In general, this leads to a reducible representation, and the lin-
ear constraint project the latter to a particular representation in the decomposition of the product,
which schematically gives

Fundamental⊗Adjoint = R1 ⊕ . . .Rn (2.61)

The linear constraints select a subset of {Ri} on which the embedding tensor lives.
Let us now come back to the compactification of IIB and 11d Supergravities. We can compactify

type IIB Supergravity on a torus to five dimensions. The resulting theory has total geometry
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M = R1,4 × T5, and it contains 42 scalar fields described by the coset space E6(6)/USp(8) and
27 vector fields describing U(1) gauge theories. This is a maximal theory, in the sense that there
are N = 8 supersymmetries. For 11d Supergravity, a similar procedure but compactifying on T7,
leads to a theory living on R1,3× T7 with 70 scalar fields living on E7(7)/SU(8) and 56 vector fields
describing again an abelian gauge theory. Here again the theory is maximal with N = 8. Via the
gauging procedure, we can enhance G0 ⊂ En(n) to gauge group of the theory. By doing so, we can
obtain the maximalN = 8 d = 5 Supergravity with gauge group SO(6) from IIB Supergravity, and
the maximal N = 8 d = 4 Supergravity with gauge group SO(8) from 11d Supergravity [91, 92].
The results for ungauged compactification and gauging procedures are schematically represented
in Figure 2.14 . From the higher dimensional theory, this corresponds to deforming the geometry
of the internal space. However, we cannot deform freely the internal space. As soon as we deform
it, or as soon as we gauge the theory, a potential appears for the scalar fields. So can we wonder
what are the allowed internal spaces, or at least can we find some compactifications which internal
space are not tori? If so, are there other dimensional reductions leading to maximally symmetric
theories? This is the object of the next section.

C.4 Spontaneous compactifications and Freud-Rubin ansatz

Suppose we have a (d + n)-dimensional theory living onMd+n that we would like to compactify
to a d-dimensional one. We split the set of full coordinates into two sets: internal coordinates ym

with m ∈ {1, . . . , n}, and external coordinates xµ with µ ∈ {1, . . . , d}. We are interested in finding
a solution of our theory whereMd+n factors as a direct product of an internalMn and an external
Md

Md+n =Md ×Mn . (2.62)

We will also require thatMd is a maximally symmetric space with Lorentz signature (−+ · · ·+).
This means that this space should be invariant under SO(1, d − 1) if it is flat Minkowski, or
SO(1, d) if it has constant positive curvature (de Sitter), or SO(2, d − 1) if it has negative con-
stant curvate (Anti de Sitter), see Figure 2.15 . We will further assume that our theory contains a
"magnetic" (n− 1)-form potential C(n−1) whose field strength we will denote F(n). This procedure
we are about to demonstrate, naturally shows up in the context of Supergravity compactifications
where numerous p-form are presents. Suppose that the Lagrangian takes the form, where we
ignore the fermionic fields:

∫ √
gd+n

(
Rd+n −

1
2

1
n!

FM1 ...Mn FM1 ...Mn

)
(2.63)

where here M, N, . . . are indices running from 1 to d + n. The Einstein equations of motion read

RMN = − n− 1
2(d + n + 2)

1
n!

F2gMN +
1

2(n− 1)!
FMM1 ...Mn−1 FN

M1 ...Mn−1 (2.64)

Now because of our assumptions, the total metric factorizes as

ds2
d+n = ds2

d + ds2
n = gµνdxµdxν + ρḡmndxmdxn , (2.65)

where gµν is a metric onMd and ḡmn a metric onMn. The ρ factor is a scalar field that controls
the volume on Mn such that

∫
Mn

√
ḡ = 1. In 1980, Freund and Rubin proposed an ansatz for
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Figure 2.14: Schematics illustration of compactifications of Supergravities and gauging procedure.
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Figure 2.15: Example of 2d Anti de Sitter space, embbeded in R3 (left). Its topology is R×S1. 2d
AdS spaces can also be represented by Poincaré disks (right).

the form F(n), that leads to a solution of the equations of motion, around which we can study the
compactification of the theory. This is the following

F(n) = Qϵ(n) , (2.66)

with Q an a priori free parameter and ϵ the volume form of the external space. The Q parameter
represents the amount of flux that is filling the internal manifold and one can show that it is in fact
quantized. Injecting this ansatz in the Einstein equations leads to the following result for the Ricci
tensor 

Rµν = − n− 1
2(d + n− 2)

Q2

ρn gµν ,

Rmn =
d− 1

2(d + n− 2)
Q2

ρn ḡmn ,

Rmµ = 0 ,

(2.67)

and for the energy-momentum tensor
F2

µν = Q2(n− 1)!gµν ,

F2
mn = 0 ,

F2
mµ = 0 ,

(2.68)

with F2
MN = FMM1 ...Mn−1 FM1 ...Mn−1

N . Several comments should be made at this point. Using the
Freund-Rubin (FR) ansatz, we observe that there is no flux pointing toward the external dimen-
sions, but only internal fluxes. These internal fluxes counteract the gravitational force, which
tends to shrink the internal space due to gravitational collapse. The internal fluxes resist contrac-
tion, akin to how one experiences a repulsive force when attempting to bring magnetic field lines
closer together. It is this competition between these two forces that leads to equilibrium.

From (2.67) we see that both the internal and external spaces are Einstein spaces. For the
external space, due to the negative sign, we observe negative curvature. Since we have already
required this space to be maximally symmetric, we can conclude that the external space is AdS.
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Finally, the internal space has positive curvature. Therefore, the total space is

Md+n = AdSd × Σn , (2.69)

where Σn is a positively curved space, for example a sphere. With the example of 11d Supergrav-
ity, this leads to the background solution AdS4 × S7 if we require the internal space to also be
maximally symmetric.

Finally here again, similarly to what we observed for the compactification of pure gravity, we
see the emergence of characteristic features that are resurgents of dimensional reductions. Param-
eters of the low dimensional theory are not free, but rather fixed by equations of motion or are
linked to other parameters. This is the case for example for internal and external curvatures which
must have opposite signs, but also the volume of the internal space ρ. If we take a step back,
and promote ρ to a scalar field, we can build an effective Lagrangian for ρ in d dimensions. The
Lagrangian takes the form

Ld =
∫ √

gd

(
Rd +

1
2

∂µρ∂µρ−V(ρ)
)

, (2.70)

with Rd the scalar curvature of the d dimensional space. The potential V(ρ) controls the dynamics
of the field ρ. To find a solution, one must minimize it such that ∂V = 0 at ρ = ρ∗. Then V(ρ∗) acts
as an effective cosmological constant. The higher dimensional origin of this potential is two fold:
one part is coming from the higher dimensional scalar curvature

Rd+n = Rd + ρ−1Rn + . . . , (2.71)

with ellipses containing derivatives of ρ. The second part of the potential is coming from the F2

term. The total potential is

V(ρ) = −ρaRn + ρb Q2

2
, (2.72)

with
a = −1 +

dγ + n
2

, b = −n +
dγ + n

2
,

and γ = −n/(d− 2). The different coefficients are fixed when going from the higher dimensional
Lagrangian to the lower-dimensional Lagragian, by doing a Weyl rescaling to get the Einstein
frame for the effective action, as well as canonical normalization for the kinetic term of the ρ field.
Around the vacuum, the effective theory we get is

Sd =
∫

dxd√−gd

(
Rd − ρ

∗− dn
2(d−2) V(ρ∗)

)
. (2.73)

This means that the volume of the internal space, which also controls the couplings of the scalar
fields to the geometry, is not free, but rather fixed by the equations of motion. This raises questions
like, what are the effective theories we can build from such a process? This again is related to the
Swampland program.

Before closing this section, we note that it is possible to redo the same analysis, in the case of
an "electric" flux. In that case, the form is taken to be F(d) = Qϵ(d). This leads to a solution on an
AdSd × Sn vacuum, with this time an "electric" flux pointing in the non-compact directions. One
can go from one picture to another by taking F(n) = ⋆F(d).
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Finally we note that in the case of Type IIB Supergravity compactified to 5d, that one needs to
include both a magnetic flux filling the internal space and an external electric flux pointing in the
non-compact directions. This is because the five-form is self dual

F(5) = ⋆F(5) . (2.74)

In particular this leads to the AdS5 × S5 compactification of type IIB Supergravity.

D Exceptional Field Theory : a Review

IN the preceding sections, we have reviewed Supergravities in d = 11 and d = 10, as well as
their compactifications to maximal Supergravities in d = 4 and d = 5. We highlighted there

was a global symmetry arising from compactification. Based on this observation, we can rephrase
the 11d and type IIB Supergravities into what is called Exceptional Field Theories. The latter
renders manifest the En(n) global symmetry group before compactification. This reformulation of
higher-dimensional Supergravities in terms of low dimensional objects will prove very useful in
compactifications.

In this section, we will not review how to construct ExFT for which we refer to [83–88, 93–96].
Those are based on the idea of a generalized geometry that was first developped in [97, 98]. In this
section, we will rather recap what are the main features of E6(6) and E7(7)-ExFT which are suited
for 5d and 4d reductions respectively [99].

E6(6)-ExFT and E7(7)-ExFT are the duality covariant formulations of the 11d Supergravity and
IIB Supergravity. The bosonic field content of E6(6)-ExFT is

{
gµν, MMN , Aµ

M, Bµν M

}
, µ, ν = 0, . . . , 4 , M = 1, . . . 27 , (2.75)

whereas the bosonic field content of E7(7)-ExFT is{
gµν, MMN , Aµ

M, Bµν α, Bµν M

}
, µ, ν = 0, . . . , 3 , M = 1, . . . , 56 , (2.76)

with gµν the 5d (E6(6)) or 4d (E7(7)) external metric, MMN the so-called generalized metric parametriz-
ing the E6(6)/USp(8) or E7(7)/SU(8) coset spaces for scalar fields, Aµ

M are vectors labelleb by a
fundamental index of the appropriate exceptional group. In both cases, Bµν M are 2-forms which
are labeled by the index M living in the anti-fundamental representation of En(n). Note the pres-
ence of the extra Bµν α in the case of E7(7) living in the adjoint representation of E7(7). The E6(6)
and for E7(7) bosonic Lagragian looks like

LE6(6)
=
√
|g|
(

R̂ +
1

4αn
gµνDµM MN DνMMN −

1
4

MMNF µνMFµν
N +

√
|g|−1Ltop −V(g, M )

)
.

(2.77)
with αn depending on the theory. The E7(7) Lagrangian is actually a pseudo-Lagrangian and has
to be supplemented by the twisted self-duality equation

Fµν
M = −1

2

√
|g| εµνρσ ΩMNMNK F ρσ K , (2.78)
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for the non-abelian vector field strengths, which are defined by

Fµν
M ≡ 2 ∂[µAν]

M − 2A[µ
K∂KAν]

M − 1
2

(
24 (Tα)

MK(Tα)NL −ΩMKΩNL

)
A[µ

N ∂KAν]
L

− 12 (Tα)MN∂NBµν α −
1
2

ΩMNBµν N .
(2.79)

where Tα are the E7(7) generators and ΩMK denotes the symplectic invariant tensor. It statisfies

ΩMKΩNK = δN
M . (2.80)

For E6(6) the Lagragian leads to the full set of equations of motion and the non-abelian field-
strengths in (2.77) are defined

Fµν
N = 2 ∂[µAν]

N − 2 A[µ
K∂KAν]

N + 10 dNKRdPLR A[µ
P ∂KAν]

L + 10 dNKL ∂KBµν L , (2.81)

In both theories, extra coordinates are added in order to make the theory covariant under the
En(n) group, and the full set of coordinates is now

{xµ,YM}. (2.82)

The xµ coordinates are the coordinates on the external space, while YM are the internal coor-
diantes. In the case of E6(6) the total number of coordinates is 5 + 27 whereas for E7(7) it is 4 + 56.
The internal ym coordinates are embedded into the larger set of coordinates YM. The derivatives
with respect to this enlarge set of coordinates is denoted by ∂M. Not that not all those internal
coordinates have a good physical interpretation, and one needs to project out the non-physical
ones. To do so, one uses the so-called section constraints. For the case of E6(6), it takes the form

dKMN ∂MΦ1∂NΦ2 = 0 , (2.83)

in term of the two fully symmetric invariant d-symbols of E6(6) and for any couple of fields
{Φ1, Φ2}. For E7(7), the section constraints take the form

ΩMK (Tα)K
N ∂MΦ1∂NΦ2 = 0 = ΩMN∂MΦ1∂NΦ2 , α = 1, . . . 133 , (2.84)

where (Tα)M
N are the 133 generators of E7(7). Note that in the remaining of the thesis, we will use

the same notation for the generators of E6(6). On top of this constraint, the two-forms Bµν M are
further constraints in the case of E7(7)

0 = ΩMK (Tα)K
N Bµν M ∂NΦ = ΩMK (Tα)K

N Bµν MBρσ N , α = 1, . . . 133 . (2.85)

Gauge invariance of the ExFT actions is ensured by (2.83), (2.84) and (2.85).

Those Lagrangians are invariants under internal generalized diffeomorphisms whose action
takes the form for a vector VM

δVM = LΛVM ≡ ΛK∂KVM − αnPM
N

K
L∂KΛLVN + λ∂PΛPVM , (2.86)

with λ a density weight depending on the field and PM
N

K
L the projector on the adjoint repre-
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sentations, α6 = 6 and α7 = 12. The projectors can be expressed for E6(6) in term of the two fully
symmetric invariant d-symbols

PM
N

K
L ≡ Tα̂N

MTα̂
L

K =
1

18
δM

N δK
L +

1
6

δK
NδM

L −
5
3

dNLRdMKR , (2.87)

with again TαN
M the generators of E6(6) in the fundamental 27 representation and α = 1, . . . , 78

an adjoint index. For E7(7) this projector can be expressed as

PK
M

L
N =

1
24

δK
MδL

N +
1

12
δL

MδK
N + (Tα)MN(T

α)KL − 1
24

ΩMNΩKL . (2.88)

For the scalar matrix, the action of generalized diffeomorphisms becomes to

LΛMMN = ΛK∂KMMN + 2αn∂LΛKPK
L

P
(MMN)P , (2.89)

The covariant derivative is accordingly defined as

DµMMN = (∂µ −LAµ
)MMN . (2.90)

We note in passing that all the factors of the lagrangians are fixed by those internal generalized
diffeomorphims. There is no room left for anything else.

The Einstein-Hilbert term is constructed from the modified Ricci scalar R̂, constructed from the
external metric gµν in the standard way upon covariantising derivatives under internal diffeomor-
phisms

∂µgνρ → ∂µgνρ −Aµ
M∂Mgνρ − gνρ∂MAµ

M . (2.91)

with a Stückelberg-type coupling to the two-form tensors Bµν N . Finally the topological term Ltop

is defined via its derivative for E6(6)

dLtop ∝ dMNK F M ∧F N ∧F K − 40 dMNKHM ∧ ∂NHK , (2.92)

in terms of the field strengths Fµν
M and Hµνρ M = 3 D[µBνρ] M + . . . , with the ellipses denoting

Chern-Simons type couplings whose explicit form will not be relevant here. Similarly for E7(7)

dLtop ∝ 24 (Tα)M
NF M ∧ ∂NHα + F M ∧HM , (2.93)

with similar definition for Hα. Finally, the potential term V(g, M ) in (2.77) is built from bilinears
in internal derivatives. It takes the universal form for both theories

V(g, M ) = − 1
4αn

M MN∂MM KL ∂NMKL +
1
2
M MN∂MM KL∂LMNK

− 1
2

g−1∂Mg ∂NM MN − 1
4
M MN g−1∂Mg g−1∂N g− 1

4
M MN∂Mgµν∂N gµν .

(2.94)

Gauge invariance of the action (2.77) requires the so-called section constraint, expressed as a con-
dition bilinear in internal derivatives

Let us further discuss the section constraints (2.83) and (2.84). Both can be solved in two differ-
ent ways, allowing to recover 11d Supergravity and IIB Supergravity. In order to find the former,
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one has to break

E6(6) ⊃ SL(6)× SL(2) ⊃ SL(6)×GL(1)11 , (2.95)

27 −→ (6, 2) + (15, 1) −→ 6+1 + 15′0 + 6−1 ,

E7(7) ⊃ SL(7)×R , (2.96)

56 −→ 7+3 + 21′+1 + 21−1 + 7′−3 ,

and restrict the coordinate dependence of all fields to 6+1 coordinates in the case of E6(6) and
to 7+3 in the case of E7(7). Upon this choice, the Lagrangians of ExFT become equivalent to full
eleven-dimensional Supergravity. In a similar way, type IIB Supergravity is recovered by breaking

E6(6) ⊃ SL(5)× SL(2)×GL(1)IIB , (2.97)

27 −→ (5, 1)+4 + (5′, 2)+1 + (10, 1)−2 + (1, 2)−5 ,

E7(7) ⊃ SL(6)× SL(2)×R , (2.98)

56 −→ (6, 1)+2 + (6′, 2)+1 + (20, 1)0 + (6, 2)−1 + (6′, 1)−2 ,

and restrict internal coordinate dependence to (5, 1)+4 for E6(6) and to (6, 1)+2 for E7(7).
The explicit map of the ExFT fields (2.75) into the fields of ten- and eleven-dimensional Su-

pergravity has been worked out in [83, 100]. Here, we just note that the internal part gmn of the
higher-dimensional metric can be straightforwardly identified within the components of the ma-
trix M MN according to

M MN ∂M ⊗ ∂N =

{
(det g)−1/3 gmn ∂m ⊗ ∂n , E6(6) ,
(det g)−1/2 gmn ∂m ⊗ ∂n , E7(7) ,

(2.99)

where indices m, n label the derivatives along the physical coordinates embedded into the ∂M

according to (2.95) (2.96) (2.97) and (2.98).

E Holography and AdS/CFT correspondence

AS we have seen through various examples throughout the introduction, unifying interactions
or concepts has proven to be a powerful tool in theoretical physics. We observed how

Kaluza-Klein reductions unified geometry and gauge theories, and how dualities related seem-
ingly distinct theories, such as String Theories in 10d and their low-dimensional reductions. Now,
we introduce another powerful unification concept that has emerged in the last 30 years: holog-
raphy. Holography asserts the equivalence between a gravitational theory and a Quantum Field
Theory without gravity. This duality is best understood in the context of what is now known as
the AdS/CFT correspondence: a String Theory living on an AdS background is entirely equivalent
to a Conformal Field Theory (CFT) residing on the flat Minkowski boundary of the AdS space, see
Figure 2.16 . This is profoundly intriguing and counterintuitive at first glance, as String Theories
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Figure 2.16: Schematic representation of the AdS3/CFT2 correspondence [101]. A gravity theory
on the AdS (blue) background described by a cylinder and a Poincaré disk, is equivalent to a
Conformal Field Theory defined on the boundary (orange) of the AdS spacetime.

are promising candidates for Quantum Gravity, yet this correspondence links them to a theory
devoid of gravity altogether. This in particular means that the number of degrees of freedom for
those gravity theories do not scale with the dimension of the bulk spaceM, but rather with the
dimension of its boundary ∂M.

A CFT is a QFT which Lorentz invariance is supplemented with conformal invariance. It can
be formulated with the metric, for which we have

ds2 = gµνdxµdxν → ds′2 = Λ(x)gµνdxµdxν (2.100)

with Λ conformal factor. For Λ(x) = 1, the group generated by the transformation (2.100) is
nothing but the Poincaré group. Geometrically, conformal symmetries are the symmetries that
preserve not the norm of a vector xµ but the angles between two vectors, see Figure 2.17.

The first appearance of the AdS/CFT correspondence [41] was in the context of type IIB String
Theory. It states the equivalence of the latter with N = 4 Super-Yang Mills (SYM) theory in
(3 + 1)-dimensions, and gauge group SU(N) and is formulated in Table 2.3 . In this strongest
form, the AdS/CFT correspondence states the complete equivalence between IIB String Theory
on AdS5 × S5 background with N = 4 SYM theory with gauge group SU(N), which is indeed
conformaly invariant.

This conjecture is very interesting and brings some new insights on Quantum Gravity; how-
ever, this version is usually very difficult to study in practice. It can indeed be very dauting and
difficult to conduct explicit calculations in String Theories or Supersymmetric Yang-Mills theories
with arbitrary parameters. With this noted, we can refine the conjecture and specialize it. If we
introduce the ’t Hooft coupling λ = g2

YM N, we can explore various limits of the AdS/CFT corre-
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→

Figure 2.17: Example of a conformal dimensions in 2d Euclidian space.

AdS5/CFT4 correspondence

II B Superstring Theory with string length ℓs =
√

α′ on AdS5 × S5 with radius L and
N units of F(5) on S5

⇔

N = 4 Super Yang-Mills theory with gauge group SU(N) and Yang-Mills coupling
gYM

where we have the following map between the different free parameters

g2
YM = 2πgs , 2g2

YM N =
L4

α′2
(2.101)

Table 2.3: Statement of the AdS/CFT correspondence [102], and how the different parameters of
the two theories are related to one another.

spondence. If we consider the limit in which the String Theory is weakly coupled, i.e., gs ≪ 1,
then we recover the classical limit of String Theory. Additionally, if we keep L/

√
α′ constant, or

equivalently keep the ’t Hooft coupling constant, this implies taking a large N limit. This limit is
known as the ’t Hooft limit and corresponds to the planar limit of the gauge theory, where we can
realize a 1/N expansion. Therefore, we conclude that the 1/N expansion on the gauge theory side
corresponds to a genus expansion in gs on the String Theory side, with 1/N ∝ gs and fixed λ.

If we further take the limit where λ → +∞ on the field theory side, this corresponds on the
String Theory side to

√
α′/L → 0. In this regime, stringy effects disappear, and one recovers

the rigid limit of String Theories: Supergravities. In that sense, the AdS/CFT correspondence
is sometimes referred to as a strong/weak duality: the gauge theory is strongly coupled with
λ→ +∞, whereas the Supergravity is weakly coupled on an AdS5× S5 background. The different
regimes of the duality are summarized in Table 2.4 .
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The different forms of the AdS5/CFT4 correspondence

N = 4 SYM Theory IIB ST on AdS5 × S5

Strongest form any N, λ Quantum ST with gs ̸= 0, α′/L2 ̸= 0
Intermediate form N → ∞, any fixed λ Classical ST with gs → 0, α′/L2 ̸= 0
Weak form N → ∞, λ→ ∞ Classical SUGRA with gs → 0, α′/L2 → 0

Table 2.4: The different regimes of the AdS/CFT conjecture with the different limits for the various
parameters [102].

Despite being originally a conjecture formulated between a 5d gravity theory and a 4d confor-
mal theory, it is thought to hold for any dimensions 1 ≥ d ≥ 6, and takes the form AdSd+1/CFTd.
There are examples in the litterature of realization of this conjecture, or at least tests of the conjec-
ture in other dimensions [103–105], and also in 5d with another internal space than S5 [106].

The first step to check the AdS/CFT correspondence, is to make sure the symmetries agree on
both sides. The symmetry of N = 4 SYM with SU(N) gauge group is made of several parts. First
the field theory is conformal which in 4d gives an SO(4, 2) group. Furthermore the theory pre-
serves N = 4 supersymmetries, which means that there are 4 supercharges QI

α with I = 1, . . . , 4
and α = 1, . . . , 4 the spinorial index in 4d. Those supercharges are supplemented by supercon-
formal generators SI

α due to the presence of the conformal symmetry. Altogether this form an
SU(2, 2|4) symmetry group. On the AdS side, type IIB Superstring Theory on AdS5 × S5 is made
of the following symmetries. First the theory is invariant under SO(4, 2), the isometries of AdS5,
and SO(6), the isometries of S5. The theory preserves N = 8 supersymmetries. Combining this
with the isometries, it can be shown that the total theory in invariant under SU(2, 2|4)

Let us further check the ideas of the AdS/CFT correspondence for the weakest form of the
conjecture. On the AdS side, we have IIB Supergravity on AdS5 × S5. The field content consist of
supermutiplets organized by a N = 8 supersymmetry. The fields sit in representation SU(2, 2|4),
and in particular are organized according to the isometry group of S5, SO(6). The full field content
of the theory is summarized in Table 2.5 . On the CFT side, the elementary bosonic fields are a vec-
tor field Aµ and scalars ϕi, with i = 1, . . . , 6 labeling the representation of the SU(4)R R-symmetry.
The latter corresponds to the rotation of the supercharges QI , I = 1, . . . , 4. For the AdS/CFT cor-
respondence, the operators which are involved in the dictionary are composite operators. In the
case of the weakest form of the conjecture, those are the so-called 1/2-BPS or chiral primary oper-
ators O∆(x). For SU(N) N = 4 SYM in 4d, those operators belong to the representation [0, ∆, 0] of
SU(4). They can be expressed in terms of the elementary fields

O∆(x) = C∆
i1 ...i∆ Tr(ϕi1(x) . . . ϕi∆(x)) (2.102)

with Cℓ
i1 ...iℓ

a totally symmetric tensor. Upon identifying ∆ = ℓ, the fields dual to those operators
are the fluctuations sℓ on the Supergravity side that sit in the [ℓ, 0, 0], as they belong to the same
representation of SO(6) upon identification of SO(6) ≃ SU(4).

Let us now have a look at the dynamics of those fields. It can be shown that the low dimen-
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∆
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2
)

ℓ+
7
2

[ℓ, 10](0
1
2
) + [ℓ− 1, 12](0

1
2
) + [ℓ, 01](

1
2

0) + [ℓ− 1, 21](
1
2

0) + [ℓ, 01](
1
2

1) + [ℓ, 10](1
1
2
)

ℓ+ 4 2·[ℓ, 00](0 0) + [ℓ− 2, 22](0 0) + [ℓ− 1, 02](0 1) + [ℓ− 1, 20](1 0) + 2·[ℓ− 1, 11](
1
2

1
2
) + [ℓ, 00](1 1)

ℓ+
9
2

[ℓ− 1, 10](0
1
2
) + [ℓ− 2, 12](0

1
2
) + [ℓ− 1, 01](

1
2

0) + [ℓ− 2, 21](
1
2

0) + [ℓ− 1, 01](
1
2

1) + [ℓ− 1, 10](1
1
2
)

ℓ+ 5 [ℓ− 2, 02](0 0) + [ℓ− 2, 20](0 0) + [ℓ− 1, 00](0 1) + [ℓ− 1, 00](1 0) + [ℓ− 2, 11](
1
2

1
2
)

ℓ+
11
2

[ℓ− 2, 10](0
1
2
) + [ℓ− 2, 01](

1
2

0)

ℓ+ 6 [ℓ− 2, 00](0 0)

Table 2.5: 1
2 -BPS supermultiplets B[ℓ,0,0] of SU(2, 2|4) in SO(6)× SO(4) notation [k1, k2, k3](j1, j2)

with Dynkin labels ki, and (j1, j2) denoting the spins of SO(4) ∼ SU(2)× SU(2). ∆ is the conformal
dimension associated to the field on the CFT side of the correspondence.

sional Lagrangian for the sℓ fields is [107–109]

S(s) =
4N2

(2π)5

∫
d5x
√

gext ∑
I

32ℓ(ℓ− 1)(ℓ+ 2)
ℓ+ 1

(
− 1

2
∇µsI∇µsI − 1

2
ℓ(ℓ− 4)(sI)2

)
(2.103)

from which we can read off the mass by reintroducing the radius of AdS

m2L2 = ℓ(ℓ− 4) = ∆(∆− 4). (2.104)

The sum on the I harmonic index labelling the [ℓ, 0, 0] representation here means

∑
I

sIsI = ∑
i1,...,iℓ

s((i1 ...iℓ)) . (2.105)

This gives a one-to-one correspondence between the conformal dimension ∆ of the composite
operator O∆ and the mass of scalar fields sℓ. In general, this relation, and the identification ∆ = ℓ

we have made above, follows from a boudary analysis on AdS [110]. Here the boundary analysis
matches the results from IIB Supergravity and N = 4 SYM.

This kind of relation between the conformal dimension on the CFT side and the masses on
the AdS side, can be extended to fields with any spin, and to any dimension. For example, the
massless graviton field is mapped to energy-momentum tensor, and massless vectors to currents
of the R-symmetry. The relations between conformal dimensions and masses is summed up in
Table 2.6.

The correspondence between the operators and the fields can be made more precise. The cor-
respondence states that the asymptotic value of the bulk field plays the role of a source for the
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Masses to conformal dimensions relations

Type of fields Relation between m and ∆

scalars and massive spin 2 m2L2 = ∆(∆− d)
massless spin 2 m2L2 = 0 , ∆ = d

p-form m2L2 = (∆− p)(∆ + p− d)
spin 1/2 and 3/2 |m|L = ∆− d/2

rankssymmetric traceless tensor m2L2 = (∆ + s− 2)(∆− s + 2− d)

Table 2.6: Dictionary between conformal dimensions and masses for various fields in the context
of AdSd+1/CFTd correspondence [102].

operator on the boundary CFT. This can be phrased in term of the generating functionals of both
side. Let ϕ(0) be the boundary value of an AdS field ϕ and S the action on the CFT. Then, the mod-
ified action with a source term for the dual operator O of ϕ can be used to compute the connected
Green’s functions of the operator O through

Z[ϕ(0)] =

〈
exp

( ∫
dxdϕ(0)(x)O(x)

)〉
CFT

, (2.106)

with x the coordinates on the CFT. On the AdS side, the action for ϕ(z, x), Ssugra[ϕ], can be derived
via Kaluza-Klein procedure. For example, for sℓ on AdS5× S5 for IIB Supergravity, at the quadratic
order it take the form (2.103).

The AdS/CFT conjecture states that the Ssugra[ϕ] is precisly the generating functional for con-
nected Green’s functions of the composite operator O

W[ϕ(0)] = Ssugra[ϕ]
∣∣∣

lim
z→0

ϕ(z,x)z∆−d=ϕ(0)(x)
, (2.107)

with z denoting the extra AdS coordinate and where we took the metric for the AdS space

ds2 =
L2

z2 (dz2 + ηµνdxµdxν) , (2.108)

hence the boundary limit is indeed z → 0. The z∆−d in (2.107) takes care of the asymptotical be-
havior of the field ϕ. Using (2.106) and (2.107), we can compute the n-point functions of composite
operators Oi by taking functional derivatives of the generating functional W with respect to the
sources ϕi

(0)

〈
O1(x1) . . .On(xn)

〉
CFT

= − δnW
δϕ1

(0)(x1) . . . δϕn
(0)(xn)

∣∣∣∣∣
ϕi
(0)=0

. (2.109)

In principle, this allows us to compute any n-point functions on the CFT side of operators, if we can
identify the dual field. However, there are divergences due to the asymptotic behavior. In order
to take care of them, we need to regularize the theory through a procedure called holographic
renormalization [111–113].
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In the example of the AdS/CFT correspondence between IIB Supergravity on AdS5 × S5 and
N = 4 SYM, the number of symmetries on both side is high. We can ask if the correspondence
holds in less symmetrical setups. For example, N = 4 SYM can be deformed by relevant or
marginal operators, that trigger an Renormalisation Group (RG) flow. In general those deforma-
tions break part of the symmetry, and the relevant deformations break the conformal symmetry.
These RG flows interpolate between an ultraviolet (UV) fixed point, and an infrared (IR) fixed
point. A question that the AdS/CFT correspondence tries to address, is what is the equivalent of
these RG flows on the gravity side. In general, the RG flow is dual to a domain-wall solution of
the gravity equations, and the RG flow is said to be holographic. The domain-wall interpolates
between two stationary points of the gravity potential. In that case, the correspondence between
n-point functions and couplings (2.109) is thought to hold at every step along the flow. In (3.F) we
compute the domain wall dual to an RG flow in the case of AdS4/CFT3.

Let us for the moment forget about Superstring Theory on AdS5× S5 andN = 4 SYM, to focus
on the simpler example of a scalar field ϕ living in d + 1 dimensions. We will use it to show how
the asymptotic analysis works. We assume that the asymptotic value of the field ϕ sources an
operator O on the CFT living on the boundary of the AdS space. Consider the action

S =
1
2

∫
dzddx

√
−g(gmn∂mϕ∂nϕ + m2ϕ2) , (2.110)

with m, n, . . . = 0, . . . , d. The equation of motion for the action (2.110) are reduced to the Klein-
Gordon equation

(□AdS −m2)ϕ = 0 . (2.111)

We enforce the metric to be AdS and express it in the so-called Poincaré coordinates

ds2 = gmndxmdxn =
L2

z2

(
dz2 + ηµνdxµdxν

)
, (2.112)

with µ, ν, . . . = 0, . . . , d− 1, for which the AdS boundary is located at z −→ 0. Within this set of
coordinates, the Klein-Gordon equation explicitely becomes

1
L2

(
z2□Minkϕ(z, x⃗) + z2∂2

zϕ(z, x⃗) + (1− d)z∂zϕ(z, x⃗)
)
= 0 . (2.113)

We can look for solutions of this equations which are plane-waves in the xµ coordinates such that
ϕ(z, x⃗) = eipµxµ ϕp(z). By looking at the asymptotic value of the field around z −→ 0, we see that
there are two inequivalent solutions to (2.113)

ϕp(z) ≃ zδ+ , ϕp(z) ≃ zδ− (2.114)

with δ± the two roots of δ(δ− d) = m2L2. It remains to identify δ with the conformal dimension
∆ of the operator O. To do so, one could compute the two-points function of the latter. From the
conformal symmetry, we know that the two-points function should be proportional to

⟨O(x)O(y)⟩ ∝ |x− y|−2∆ . (2.115)

After some computations, for which we refer to [110], it can be shown that the two point functions
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for O comes with the form (2.115), with ∆ = δ. This explicitely demonstrates that

∆(∆− d) = m2L2 . (2.116)
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F Content of the Thesis

WE are now done with the general introduction. The rest of this thesis is organized as fol-
lows. In the next Chapter, we will study how masses emerge in a compactification process.

The first section will serve as a warm-up where we will explore more ideas of Kaluza-Klein com-
pactifications and in particular how we can obtain spectra in the low-dimensional theory through
brute force calculation and making use of the power of group theory. In the second section, we
will introduce recently developed techniques that make use of Exceptional Field Theories. Those
techniques allow to access entire Kaluza-Klein mass spectra around backgrounds with low sym-
metry remaining. We will then extend these techniques to a broader range of vacua, which we will
refer to as beyond consistent truncation. The two following sections of the third Chapter will be
used to illustrate these techniques: we will compute the spectra of the squashed seven-sphere S7

for 11-dimensional Supergravity and then find a domain-wall solution interpolating between the
round and squashed S7 of 11-dimensional Supergravity.

Chapter 4 will extend the study to n-point functions. Once again, the first section of this chapter
will review how cubic and quartic couplings have been obtained in the literature so far through
brute force calculations. Despite their considerable success, these techniques suffer from severe
limitations. In the subsequent section, we will explore how ExFT techniques can be employed to
access these couplings, similar to our approach in Chapter 3 for spectra. We will demonstrate the
capabilities of ExFT technology in revealing underlying structures and how it provides a natural
framework for computing couplings. Subsequently, we will focus on E6(6)-ExFT, which is special-
ized for reductions to 5 dimensions. We will compute 3-point couplings in this theory and utilize
the following section to apply these results to the AdS5 × S5 background of IIB 10-dimensional
Supergravity.
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A Introduction

COMPACTIFICATIONS are ubiquitous in String Theories and their low-energy limit, 10-dimensional
Supergravities, as well as in 11-dimensional Supergravity. Compactification is a process

wherein the total manifold is factored into an external and an internal manifold, the latter of which
is required to be compact. The original motivation is, by sufficiently shrinking the characteristic
radius of the internal manifold, to make the internal space unobservable in daily observations.
One of the hallmarks of the compactification is the appearance of infinitely many massive fields in
the lower-dimensional theory. These fields are organised into so-called Kaluza-Klein (KK) towers:
zero modes sit at the bottom of a tower and other fields are organized on top of them. From the
lower-dimensional perspective, these KK towers encode the information about the geometry and
fluxes of the compactification. The Kaluza-Klein modes, i.e. the fields constituting the towers,
also play an important role in applications. For example, for non-supersymmetric backgrounds,
their masses, denoted Kaluza-Klein masses, determine their perturbative stability. Moreover, in
AdS vacua, the Kaluza-Klein masses encode the anomalous conformal dimensions of single-trace
operators in the holographically dual CFTs, as in Table 2.6.

Despite their importance, computing the Kaluza-Klein masses is a formidable challenge for
most String/Supergravity compactifications. Until recently, the full tower of Kaluza-Klein masses
could only be computed in few examples, for coset spaces with large isometry group [114]. Beyond
this, there were some techniques to access subsets of the Kaluza-Klein towers. For example, if
the compactification admits a consistent truncation to a lower-dimensional Supergravity theory,
then the Kaluza-Klein masses of the (finitely many) fields kept in the truncation can be computed
in the lower dimensional theory. However, for generic compactifications, a systematic method,
althought not always easy to implement and solve, was accessible only for spin-2 towers. [115].

A new method for computing all the Kaluza-Klein masses for a large class of String compacti-
fications was presented in [99, 116]. This method uses the formalism of Exceptional Field Theory
(ExFT), a reformulation of 10 and 11-dimensional Supergravities that unifies the gravitational and
flux degrees of freedom, and as a result makes manifest an exceptional symmetry group [117]. Us-
ing ExFT, [99, 116] showed how to compute the full Kaluza-Klein spectrum of any vacuum that can
be uplifted from a consistent truncation to maximal gauged Supergravity. Unlike the traditional
Kaluza-Klein technology, which requires solutions of the eigenvalue spectrum of various internal
Laplace operators acting on tensorial harmonics, together with a diagonalisation of the coupled
system of higher-dimensional fluctuations, the ExFT method is exclusively based on the tower
of scalar harmonics on the internal manifold. The relevant internal vector and tensor harmonics
are implicitly taken care of by combining the scalar harmonics with the twist matrix encoding the
underlying consistent truncation. Furthermore, to a large extent, the diagonalisation problem has
already been resolved by the covariant formulation of ExFT. As a result, the lower dimensional
mass spectrum can be computed separately KK level by KK level.

These techniques, for the first time, have given access fo the full Kaluza-Klein spectrum for
compactifications with few or no remaining (super-)symmetries [99, 116, 118–130] and led to many
interesting insights. For supersymmetric AdS vacua, the protected part of the Kaluza-Klein spec-
trum can be matched with the superconformal index of the CFT, as was done for the Pilch-Warner
AdS5 vacuum in [122] and for the SU(3)×U(1)-invariant AdS4 vacuum in N = 8 SUGRA in [99,
131]. Moreover, the Kaluza-Klein spectrum can be used to determine compactness of the confor-
mal manifold, which may not be visible in the consistent truncation [126, 127], see also [132]. For
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non-supersymmetric vacua that are perturbatively stable within the consistent truncation, [118]
showed that instabilities can be nonetheless triggered from higher Kaluza-Klein modes. Finally,
the Kaluza-Klein spectroscopy can also be used to prove the existence of perturbatively stable
non-supersymmetric AdS vacua in 10-dimensional Supergravity [120, 126].

Despite these successes, one drawback of the method of [99, 116] is that it only applies to
vacua that can be uplifted from N = 8 Supergravity via a consistent truncation. This means
that these vacua arise by deforming round spheres/hyperboloids by the scalar fields that live in
the lower-dimensional N = 8 supermultiplet. Yet there are many interesting vacua that arise
from deformations by scalar fields that are not part of the N = 8 truncation, such as AdS vacua
obtained by TsT deformations [133–135] or the AdS4 × S7

squashed vacua with N = 1 and N = 0
supersymmetry [136, 137]. The difficulties in computing spectra for the latter have been overcome
in [DB1].

In this chapter, we will go throught different techniques to compute KK spetra. After a short
warm up with a toy model, we will compute the entire spectrum in the old fashion on AdS4×S7

round.
This can be done by a brute force calculation within d = 11 Supergravity, using the power of group
theory. We will then introduce the ExFT technology for spectroscopy and give a flavor on how it
works. Then we compute spectra beyond consistent truncation of the maximal theory. To this end,
we will present the original results from [DB1], which will start in 3.D . As a illustration of those
techniques, we will compute the full Kaluza-Klein spectra of 11d Supergravity on AdS4×S7

squashed.
In the latter theory, only N = 1 supersymmetry is preserved and the isometry group of the inter-
nal manifold is reduced to USp(4) × SU(2) ⊂ SO(8). This small amount of symmetry explains
why the answer for the spectrum was incomplete so far. We will also give the spectrum of the
cousin theory with N = 0 related by changing the sign of the flux, a procedure often referred as
skew-whiffing. Following this analysis, we will establish the domain-wall solution interpolating
between the AdS4 × S7

round and AdS4 × S7
squashed solutions of 11d Supergravity in 3.F , firstly pre-

sented in [DB2]. According to the AdS/CFT correpondence, this domain wall solution is dual to
an holographic Renormalization Group (RG) flow between two CFTs. This will allow us to extend
the previous results and compute quadratic couplings around the domain wall solution dual to
information on 2-point correlation functions along the flow. Stated differently, this example illus-
trates that not only can we compute spectra around solutions with few symmetries, but it allows
us to calculate quadratic couplings for spaces which are no longer AdS solutions of the equations
of motion.

B Warm up

B.1 Toy model

AS previously mentioned, the exploration of the mass spectrum is an almost unavoidable task
when including extra dimensions that are compactified. In higher-dimensional theories,

each field is responsible for generating an infinite tower of massive states in the lower-dimensional
theory. We illustrated this with the simple example of a scalar field on R1,d× S1. From this exam-
ple, obtaining the masses seems to be a simple problem. We just had to Fourier expand the field
and obtaining the modes and masses was almost given for free as n2/L2. However, as soon as
the set up becomes more complicated, the calculations get more involved and obtaining the full
Kaluza-Klein spectrum becomes a very tedious task. Consider, for example a more complicated
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scenario where, instead of compactifying only one dimension from d + 1 to d dimensions, we be-
gin with a d + n dimensional theory and compactify n dimensions. In such a scenario for a scalar
field ϕ with mass m, the equation of motion reverts to the usual Klein-Gordon equation in d + n
dimensions

□ϕ−m2ϕ = 0 . (3.1)

We now decompose the Laplacian into an internal operator and an external one. This decomposi-
tion is feasible when the total manifold can be expressed as the direct product of an internal part
and an external part, denoted asMd+n =Md ×Mn. We then have

□xϕ +□intϕ−m2ϕ = 0 , (3.2)

where □x denotes the Laplacian on Md and □int the Laplacian on Mn. If we want to find the
d-dimensional mass of the field, we see that we must find eigenvalues and eigenvectors of the
operator □int. If we have a basis of functions diagonalising the internal Laplacian, with states that
can be labelled by Σ, then we can expand the scalar field on such a basis ϕ(x, y) = ∑ ϕΣ(x)YΣ(y)
and obtain

∑
Σ

(
□xϕΣ(x)−m2

ΣϕΣ(x)−m2ϕΣ(x)
)
YΣ(y) = 0 , (3.3)

where m2
Σ are nothing but eigenvalues of associated the the eigenstate YΣ of □int. We can now read

off the new masses of the sets of fields in the lower dimensional theory. YΣ is here playing the role
of the (exp (2iπny/L)) for S1. Here again we see the emergence of an infinite number of states,
as in our simple S1 example. What further complicates the analysis is the necessity to be able to
effectively diagonalize the Laplacian operator on the internal manifold. In the case of S1, this was
feasible because we know a basis of functions on the circle : Fourier modes. If, instead of S1, we
consider the round S2, we could employ spherical harmonics for this purpose, just like we do when
analyzing the hydrogen atom energy state. In fact, for any round sphere, it is possible to identify
a set of basis functions and diagonalize the internal Laplacian. This is due to the large isometry
group of the spheres, which can be expressed as the coset space SO(n+1)

SO(n) . Then [114] prescribes a
method to derive the harmonics. However, if the number of isometries is low, obtaining a basis
of functions that diagonalizes the internal Laplacian can prove exceedingly challenging or even
unknown. This example demonstrates the limitations of the brute force calculation when the
symmetry of the theory diminishes. Additional complexity may arise in the presence of coupled
equations of motion. In such cases, identifying the appropriate basis of fields to diagonalize the
set of equations of motion may require field redefinitions. Even with a small number of fields, this
process can be intricate.

B.2 Example of spectrum : the round S7

In the introduction, we presented the idea of a Freund-Rubin compactification that can be used
in the presence of extra form fields. Using an appropriate ansatz, a solution to the equations
of motion can be found, where gravitational and matter effects compete. This led to a solution,
where the total manifold was expressed as the product of an external AdS manifold and an internal
manifold with positive curvature. In this section, we will use this technique on 11d Supergravity
and study it on AdS4× S7 background to illustrate the state of the art until recently for computing
KK masses around a given background. This spectrum was first derived in [138–140]
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We can use the Freund-Rubin ansatz to compactify 11-dimensional Supergravity down to
d = 4, as it incorporates a three-form potential. As it is imposed by (2.67), the internal space must
have positive curvature. We will further demand it is maximally symmetric hence we end up with
the round S7, which possesses the highest number of isometries among all possible 7-dimensional
candidates [141]. We will therefore study 11d Supergravity on AdS4 × S7 background. Equations
of motion for 11d Supergravity are

RMN −
1
2

gMN R =
1
3

FMPQRFN
PQR − 1

24
gMN FPQRSFPQRS , (3.4)

∇MFMNPQ = − 1
576

ϵM1 ...M8 NPQFM1 ...M4 FM4 ...M8 . (3.5)

The solution in this case is similar to (2.66) and (2.67), except that here we are working in what
we called the "electric" framework in section 2.C.4, where the form fills in the external space. The
4-form is then given by {

Fµνρσ = Qϵµνρσ ,
Fmnpq = 0 ,

(3.6)

where µ, ν, . . . = 0, 1, 2, 3 are external indices, m, n, . . . = 1, . . . , 7 are internal indices, Q is an
integer number controlling the flux, and

Rµν = −Q2

3
g̊µν ≡ −

6
L2

AdS
g̊µν ,

Rab =
Q2

6
g̊mn ≡

3
L2

S7

g̊mn ,

Rmµ = 0 ,

(3.7)

for the Ricci tensor. Here we defined the AdS radius LAdS and the sphere radius LS7 . Upon using
the equations of motion, we can show that LAdS and LS7 are the same, and we define a mass scale
m = 1/LAdS which is related to Q via Q = 3m.

The full compactified theory comprises a massless N = 8 supermultiplet coupled with an
infinite tower of massive N = 8 supermultiplets. This is not obvious from the starting point,
but at the end of the journey to obtain the spectrum, one can notice that fields are organised into
N = 8 supermultiplets. We note in passing that the theory described by only massless N = 8
supermutiplet corresponds to the maximal d = 4 Supergravity with SO(8) gauge group, described
in [91]. By combining the internal SO(8) gauge symmetry, N = 8 supersymmetry, and the
SO(3, 2) isometries of the AdS background, we can conclude that the total symmetry of the theory
is OSp(4|8). Consequently, the massless and massive sectors of the theory will fit into irreducible
representations of OSp(4|8). The algebra and representation theory of OSp(4|8) can be found, for
example, in [141].

We can now start to study the mass spectrum of the theory. To process in the calculations, we
add fluctuations on top of the background solution given by the Freund-Rubin compactification
(3.6) and (3.7). The latter comprises a background metric G̊MN describing AdS4 × S7 and a non
vanishing three-form potential C̊MNP for which only the external part is non-vanshing. The anal-
ysis we will now present is similar to the S1 example. We will be able in our case to extract the full
spectrum thanks to powerful group theorical arguments. The fluctuation Ansatz is
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Spin SO(8) rep Dynkin Label

2 1 [0,0,0,0]
3/2 8s [0,0,0,1]

1 28 [0,1,0,0]
1/2 56s [1,0,1,0]
0+ 35v [2,0,0,0]
0− 35c [0,0,2,0]

Table 3.1: Massless gravity supermultiplet of 11-dimensional Supergravity compactifed on
AdS4 × S7, which aligns with the field content of N = 8 4d Supergravity. The scalar fields liv-
ing in the 35v will be denoted 0+ and the ones living in 35c will be denoted 0−.


GMN(x, y) = G̊MN(x, y) + hMN(x, y) ,

CMNP(x, y) = C̊MNP(x, y) + cMNP(x, y) ,

ΨM(x, y) = 0 + ψM(x, y) .

(3.8)

where ΨM(x, y) is the gravitini of 11d Supergravity, and we splitted the full 11d coordinates into
{xµ, ym} with xµ external coordinates of the AdS space and ym internal ones of the compact space
S7. In order to get the lower dimensional fields from the 11d ones, we need to split the fields as we
did for d + 1 Einstein gravity in the introduction. This gives for the metric

ds2 = (gµν(x, y) + . . . )dxµdxν + (Aµ
mΦmn(x) + . . . )dxµdxn + Φmn(x, y)dxmdxn . (3.9)

for the 11d metric, giving rise to a 4d external metric gµν, a number of vector fields Aµ
m and

scalar fields encoded in Φmn, which is the internal part of the 11d metric. The split (3.9) recquires
a little bit more explanation. The ellipses denote terms that are non linear, and which would not
contribute the linearized equations of motion. The metric in dxµdxν term comprises the external
AdS background, as well as fluctuations, whereas the internal part of the metric Φmn(x) in the
dxµdxn term is only the background metric, as fluctuations of the metric would contribute to
quadratic order because of the vector fields. Finally in the dxmdxn term, the metric Φmn(x, y)
appearing comprises the background and the fluctuations. We can process similarly for the 3-
form that will give rises to vector fields and scalar fields. Note that the lower dimensional forms
can be dualised to vectors or scalars.

Once the split to obtain low dimensional fields is done, we can continue to find the masses for
KK fluctuations in (3.8). We expand the fields in harmonics of the internal space. For the scalar
fields we will denote those harmoics Y I1 , for vector fields Ym

I8 , for two-forms Ymn
I28 and so forth

... All of the harmonics are eigenfunctions of the appropriate internal operator, which eigenvalues
will give the mass of the fields. Those eigenfunctions are functions of the internal coordinates. As
a example, the harmonic of the scalar fields on the round S7 will be polynomials of the embedding
internal coordinates Yi

(Y1 , Y2 , Y3 , Y4 , Y5 , Y7 , Y8) = (y1 , y2 , y3 , y4 , y5 , y6 , y7 ,
√

1− yiyi) , (3.10)
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Spin Dynkin Label

2 [n,0,0,0]
3/2 [n,0,0,1]+[n-1,0,1,0]

1 [n,1,0,0]+[n-1,0,1,1]+[n-2,1,0,0]
1/2 [n+1,0,1,0]+[n-1,1,1,0]+[n-2,1,0,1]+[n-2,0,0,1]
0+ [n+2,0,0,0]+[n-2,2,0,0]+[n-2,0,0,0]
0− [n,0,2,0]+[n-2,0,0,2]

Table 3.2: Field content of 11-dimensional Supergravity compactified on AdS4 × S7. Here the 0+

scalars are the Kaluza-Klein towers on top of the 0+ scalars in Table 3.1, and similarly for 0−.

with yi the coordinates on the sphere. The harmonics transform in irreducible representations of
the isometry group SO(8) of the round S7. More precisely, as the round sphere S7 can be written as
SO(8)
SO(7) , [114] tells us that I1 runs over all representationR of SO(8) that decomposes asR → 1+ . . .
under branching to SO(7). For the scalar fields, this exactly give the [n, 0, 0, 0] representations,
n ∈ N. Therefore, scalar harmonics live in the [n, 0, 0, 0] representations of SO(8). In terms of
embedding coordinates Yi, this [n, 0, 0, 0] denotes the polynomial Y i1 ...in = Y((i1 . . . Yin)). The ((. . . ))
stands for symmetric and traceless. In other words, the order n harmonic functions for the scalar
are polynomials in the embedding coordinates. Similar arguments can be used in order to find
tensorial harmonics on the round sphere. For example, the vector harmonics are representations
Rv of SO(8) that decomposes asRv → vector + . . . .

Using these harmonics, we can now factor the dependance in the internal coordinates for the
various fields 

hµν(x, y) = hµν,I1(x)Y I1 ,

hµm(x, y) = hµ,I8(x)Ym
I8 ,

hmn(x, y) = hI35(x)Ymn
I35 ,

cµνρ(x, y) = cµνρ,I1(x)Y I1 ,

cµνm(x, y) = cµν,I8(x)Ym
I8 ,

cµmn(x, y) = cµ,I28(x)Ymn
I28 ,

cmnp(x, y) = cI56(x)Ymnp
I56 .

(3.11)

where the sum over harmonics has been made implicit. One then injects those expansions into the
equations of motion (3.4) and (3.5), linearize them, and obtain a number of equations, for which
the internal operators need to be diagonalized. Schematically, the result for a field Φ looks like

DextΦ +DintΦ = 0 , (3.12)

whereDext is the appropriate external Laplacian operator for the given field (□ if it is a scalar field
for example as we had in (3.2)) and Dint in the operator to diagonalise on the internal space. Let
us illustrate this with the example of hTT

µν , being the traceless and transverse graviton. We define
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the mass matrix M on an AdS background for spin 2 fieds as follow

∆Lhµν + 2∇(µ∇ρhν)ρ −∇(µ∇ν)h
ρ

ρ + 24m2hµν + M2hµν = 0 . (3.13)

The equation of motion for the fluctuations of the external part of the metric is descending from
(3.4) upon splitting internal and external indices. This yields to the equation for the graviton

∆Lhµν + 2∇(µ∇ρhν)ρ −∇µ∇νhρ
ρ + 2∇(µ∇mhν)m

=
2
3

mg̊µνϵρστλ fρστλ + 24m2 g̊µνhρ
ρ − 24m2hµν ,

(3.14)

with fMNPQ = 4∂[McNPQ], and ∆L the Lichnerowicz operator defined by

∆LhMN = −□hMN + RMNPQhPQ + 2R(M
PhN)P , (3.15)

with RMNPQ the 11d Riemann tensor. The equation (3.14) gives an explicit expression for the mass
operator M. Note that at the linear level in the equations of motion, we can compute this operator
with the background metric G̊. We now use the following decomposition

hµν = hTT
µν +∇(µVν) + (∇µ∇ν +

1
4

g̊µν∆4d)ϕ +
1
4

g̊µνhµ
µ , (3.16)

with g̊µν the AdS4 background metric, Vµ a transverse vector and ϕ a scalar field. ∆ is the Hodge-
de-Rham operator for a scalar fields, which reduces to the 4d d’Alembartian operator

∆4d = −□. (3.17)

After injecting (3.8) and (3.11) in (3.4), the field equations for hTT,II
µν are

(∆4dhTT,II
µν )Y I1 + hTT,II

µν (∆7dY I1) + 24m2hTT,II
µν Y I1 = 0 , (3.18)

with ∆k is this time the d’Alembertian operator for scalar fields in k dimensions. In order to obtain
the mass for the hTT,II

µν field, it remains to simplify (∆7dY I1). We follow the prescription of [114],
and write for S7 = SO(8)/SO(7)

∇mY Ik
tensor ∝ em

aTaY Ik
tensor , (3.19)

with YΣ
tensor a tensorial harmonic,∇m the covariant derivative on S7, Ta generators of SO(8) which

are not in SO(7) and em
a the vielbein on S7. We can write the previous expression because S7 is a

symmetric space on which SO(8) acts transitively, and because Y Ik
tensor are in irreducible represen-

tation of SO(8). By squaring the expression and fixing the normalization we obtain

−□Y Ik = m2(CSO(8) − CSO(7))Y Ik , (3.20)

with CSO(n) the quadratic Casimir operator of SO(n), and the normalisation factor m2 can be fixed

through an example. It is now straighforward to extract the mass for the fields hTT,II
µν . The Casimir
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operators for SO(8) and SO(7) for the representation [n, 0, 0, 0] are given by

CSO(8) = n(n + 6) + 1 , (3.21)

CSO(7) = 1 . (3.22)

We can now read off the mass for hTT,II
µν from (3.18). According to the definition of the mass matrix

for spin 2 field (3.13)

M(hTT,II
µν Y I1) =

(
(n + 3)2 − 9

)
. (3.23)

Very similar calculations would give the masses for vectors and scalars, as well as fermionic
fields, involving Hodge-de Rham operators for higher rank form, but also the Lichnerowicz oper-
ator ∆L and fermionic operators [141].

By this direct calculation, it is a priori not clear whether or not the fields will rearrange into
supermultiplets. However, once the derivation of the mass spectrum is done, it can be realized
that fields indeed fit into N = 8 supermultiplets. The summary of the mass spectrum for the
round S7 is given in 3.3 and one can refer to [138–141] for further details.

∆ Mass2

n + 2
2

[n + 2, 0, 0, 0](∆, 0) (n− 1)2 − 3
n + 3

2
[n + 1, 0, 1, 0](∆,

1
2
) n2

n + 4
2

[n, 0, 2, 0](∆, 0) + [n, 1, 0, 0](∆, 1) (n + 1)2 − 3 | (n + 1)2 − 1
n + 5

2
[n− 1, 1, 1, 0](∆,

1
2
) + [n, 0, 0, 1](∆,

3
2
) (n + 2)2 | n2

n + 6
2

[n, 0, 0, 0](∆, 2) + [n− 1, 0, 1, 1](∆, 1) + [n− 2, 2, 0, 0](∆, 0) (n + 3)2 − 9 | (n + 3)2 − 1 | (n + 3)2 − 3
n + 7

2
[n− 2, 1, 0, 1](∆,

1
2
) + [n− 1, 0, 1, 0](∆,

3
2
) (n + 6)2 | (n + 4)2

n + 8
2

[n− 2, 2, 0, 0](∆, 0) + [n− 2, 1, 0, 0](∆, 1) (n + 5)2 − 3 | (n + 5)2 − 1
n + 9

2
[n− 2, 0, 0, 1](∆,

1
2
) (n + 6)2

n + 10
2

[n− 2, 0, 0, 0](∆, 0) (n + 7)2 − 3

Table 3.3: 1
2 -BPS supermultiplets B[n,0,0,0] of OSp(4|8) in a notation [k1, k2, k3, k4](∆, j) where

[k1, k2, k3, k4] denotes the Dinkyn label of SO(8) and (∆, j) the representations of isometry group
of AdS4 of SO(2, 3) for which ∆ is the energy and j the total angular momentum.

C Kaluza-Klein spectroscopy using Exceptional Field Theory

IN the previous section, we presented the traditional way to extract spectrum in KK reductions,
with the example of AdS4 × S7

round in 11d Supergravity, and how we can extract the whole
spectrum by direct calculation and diagonalization of internal operators. However, this method
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fails at computing spectrum if the lower dimensional theories with lower symmetry. The problem
of finding eigenvalues of internal operators is still well-defined, but extracting eigenvalues and
identifying the origin of low dimensional fields can be more involved. For example, there exist
another solution to Einstein equation in 11d Supergravity Freund-Rubin compactifications to 4d
leading to another vacuum, where the internal space is now a squashed sphere. This will be the
object of study of section 3.D . Despite a number of discoveries, the standard method did not give
a complete answer since the 1980’s at computing the whole spectrum of the theory, because the
number of isometries and supersymmetries is lower on this background.

In order to overcome this problem, one can use Exceptional Field Theory. Before presenting
those techniques, we want to first present a tool that will be very useful in the next sections :
consistent truncations.

C.1 Consistent truncations

Let us consider the following simple Lagrangian of two real scalar fields

L =
1
2

∂µϕ1∂µϕ1 +
1
2

∂µϕ2∂µϕ2 −
1
2

m2
1ϕ2

1 −
1
2

m2
2ϕ2

2 + λ112ϕ2
1ϕ2 . (3.24)

We can easily derive the equations of motion for the fields
□ϕ1 + m2

1 ϕ1 = 2λ112 ϕ1 ϕ2 ,

□ϕ2 + m2
2 ϕ2 = λ112 ϕ2

1 .
(3.25)

We observe the following. If we put ϕ1 to zero, then the first equation is trivially satisfied and the
second equation reduces to the free massive Klein-Gordon equation for the field ϕ2. Therefore it
is consistent to put ϕ1 to zero, i.e. we can consistently solve the system of equations when doing
so. Let us now put ϕ2 = 0. If we do this, then the first equation is the free massive Klein-Gordon
equation for ϕ1, but the second equation becomes algebraic in ϕ1 and implies that ϕ1 should be
zero. In that sense, it is not consistent to put ϕ2 to zero and then solve the dynamical system for
ϕ1. Therefore we say that the conditions ϕ2 → 0 is not a consistent truncation of the system (3.25),
but ϕ1 → 0 is.

Consistent truncations are really a matter of couplings : certains couplings in the theory must
vanish to have a consistent truncation, otherwise, the non truncated fields will excite the truncated
ones. In the previous example, because of the λ112 couplings, the field ϕ2 plays the role of a source
for the field ϕ1, and therefore ϕ2 cannot be set to zero. More precisly, the couplings that make a
truncation failing at being consistent, are couplings which are linear in the truncated fields.

Let us do a final remark. Consistent truncations are deeply related to symmetries. In the above
example, we have a discrete symmetry of the Lagrangian

ϕ1 → −ϕ1 , ϕ2 → ϕ2 . (3.26)

The presence of this symmetry ensures the consistency of the truncation ϕ1 → 0, i.e. to the trunca-
tion that keep fields which are invariant under (3.26). This is a general argument: if one keeps only
the fields that are invariant under a given symmetry, then this will give a consistent truncation.
This comes from the fact that singlets under a given symmetry, cannont source non singlets. We
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will encounter a lot of similar arguments in the rest of the thesis, for which symmetry arguments
are formulated in terms of G-structures [142].

A more sophisticated example is d + 1-dimensional Einstein gravity on R1,d−1×S1 that we
already encountered in section (2.C.1). We saw before that the metric gives rise to a vector field
and a scalar field. However, back in 1919 at the time the theory was constructed, the usual way
of proceeding was to simply discard the scalar field from the theory. However the equation of
motion descending from the Lagrangian (2.48) for the scalar field is

□ϕ ∝ FµνFµν. (3.27)

Therefore, discarding the scalar field is not consistent is this example because it leads to an alge-
braic equation for the vector field.

This is the first example we give of a truncation in dimensional reduction, but will encounter
many more, because dimensional reductions and consistent truncations are intimately related.
This is true because when truncating fields, the remaining set of fields effectively describe a lower
dimensional theory. This is why we will often talk about consistent truncations to a lower dimen-
sional theory. For example, in the example of Einstein gravity in d + 1 dimensions, reducing on
S1 and keeping only massless modes is consistent. This amounts to discard any dependence on
the internal coordinates, as in (2.47). In that case, the remaining fields after truncation describre a
d-dimensional theory, hence the name consistent truncation to a lower-dimensional theory.

Note that we could remove fields and then ignore some of the equations of motion in dimen-
sional reductions. The main issue is that one loses the higher dimensional interpretation of the
equations if it is done in a non consistent way, as described above with the example of Einstein
gravity. A solution found in a non-consistent truncation, is not a solution anymore of the higher
dimensional equations. This is the key point about consistent truncations and what make them
of tremendous importance when doing Kaluza-Klein reduction. By turning around the argument,
we can use consistent truncations to find solutions of the higher dimensional theory. Directly in
higher dimensional theory, this can be a very hard task because of the number of fields, of the non-
linearities, ... However, by restricting to a subsector of fields, it may be easier to find a solution of
the set of coupled, non-linear equations of motion. Therefore, consistent truncations can be used
as a toolmaker to build solutions of higher dimensional theories. This is very useful in the context
of Supergravities, where we often start from 10d or 11d Supergravities.

We actually already saw a more sophisticated example of a consistent truncation in this the-
sis. The truncation to massless spin 2 multiplet of 11d Supergravity on AdS4 × S7 is a consistent
truncation of the full theory, which corresponds to d = 4 N = 8 Supergravity with SO(8) gauge
symmetry. The consistency of the truncation can be proven using G-structures arguments. This
is a systematic way to construct consistent truncation in a given theory, that I will use later in
this work. For now the reader can refer to [142]. Another way of proving the consistency of the
truncation would be to show that a number of couplings are equal to zero, namely the couplings
involving at least a massless mode and a single massive mode, as we saw in (3.25). We will provide
such a proof latter in section 4.E.1 .

Let us do a final remark on consistent truncations. They are not to be confused with effective
theories. In the latter, we integrate out massive fields, because the energy scale at which we work
is lower than the energy scale at which the mode is excited. But this is very different to consistent
truncation, where we rigorously set fields to zero. The discarded modes may have a mass scale
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comparable to some modes we keep. Consistent truncations are really a tool, at least in this thesis,
in order to build solutions, and compute couplings in the compactified theory.

C.2 Exceptional field theory techniques

The goal of this section is now to present the tools of Exceptional Field Theory for Kaluza-Klein
spectroscopy. This was first developed in [99, 116].

In the introduction, we presented the basics of ExFT, and in the previous section, we introduced
the concept of consistent truncations. We will now combine these two tools to demonstrate how
they can be used for spectroscopy. Schematically, this will proceed as follows: employing ExFT
and what is referred to as Generalized Scherk-Schwarz reduction, we will identify a consistent
truncation of the higher-dimensional Supergravity, which will define the background solution.
This process is akin to what was undertaken to discover the AdS4 × S7 solution of 11d Supergrav-
ity, where the consistent truncation coincides with the massless sector of the theory. Subsequently,
we will introduce fluctuations around this background and calculate the linearized equations of
motion. This will yield a set of operators that will need to be diagonalized, from which we can
extract the spectrum of the entire theory. While this may appear similar to previous approaches, it
is now framed within the language of ExFT. What sets this setup apart? What are the advantages
of employing ExFT for this purpose? Instead of providing an immediate answer, we aim to elu-
cidate this throughout this section, with clarity emerging by its conclusion. For the remainder of
this work, the focus will be on E6(6)-ExFT and E7(7)-ExFT that have been reviewed in (2.D).

The first task is to address how to efficiently implement consistent truncations within the
framework of ExFT. This is accomplished through Generalized Scherk-Schwarz (GSS) reduction.
The ansatz for ExFT fields is as follows:

gµν(x, y) = ρ−2(y) gµν(x) ,

Aµ
M(x, y) = ρ−1(y) (U−1)M

M(y) Aµ
M(x) ,

MMN(x, y) = UM
M(y)UN

N(y) MMN(x) .

(3.28)

Here U ∈ Ed(d) is the twist matrix and ρ is a scale factor, which factorises the dependance on inter-
nal and external coordinates. This ansatz bears similarity to Scherk-Schwarz (SS) reduction on a
group manifold [143]. One of the main differences is that for standard SS reduction, what is called
the twist matrix U takes its value in GL(n), whereas here it takes its value in En(n). Otherwise, the
two ansätze work in a similar way and lead to similar consistency conditions, as we will see. We
also introduce UM

M ≡ ρ−1(U−1)M
M ∈ (Ed(d) ×R+) and also often refer to it as the twist matrix.

Let us try make a comment on the different indices here. The fields with curly letters on the left
hand side and the M, N, . . . indices are fields of the full theory. The fields on the right hand side,
with straigh letters and M, N, . . . indices do not carry any y-dependance. Those are the fields of
the lower dimensional theory. For example for MMN(x), Aµ

M(x), and gµν(x) describe the fields
of the maxinalN = 8 theory in 4d. Furthermore, objects with underlined indices designate objects
of the low-dimensional theory. For example, writing XMN

P does not have any meaning, since X
is intrepreted as the embedding tensor of the low dimensional theory, therefor we will only deal
with XMN

P.
The consistency of the ansatz (3.28) is now encoded in a set of differential equations on the
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twist matrix U that takes the form[
ΓMN

P
]
Rn

= −γnXMN
P , ΓMN

M = (1− d) ρ−1∂Nρ (3.29)

where Γ is the current algebra

ΓMN
P ≡ (U−1)N

L∂MUL
P , ∂M ≡ ρ−1(U−1)M

N∂N . (3.30)

Here, γn and n depend on the theory. If d is the dimension of the resulting lower-dimensional
theory, then n = 11 − d. Hence we have for d = 5 the E6(6) group and for d = 4 the E7(7)
group. We also have γ6 = 1

5 for E6(6) and γ7 = 1
7 for E7(7) ExFT. The notation [. . . ]Rn denotes the

projection onto theRn irreducible representation within the tensor product of a fundamental and
an adjoint representation (2.61), as we explained in section (2.C.2)

E6(6) : ΘM
α ; 27⊗ 78 = 27⊕ 351⊕ 1728. (3.31)

E7(7) : ΘM
α ; 56⊗ 133 = 56⊕ 912⊕ 6480. (3.32)

For E6(6), we haveR6 = 351, and for E7(7), we haveR7 = 912. The X tensor is of tremendous im-
portance in this setup. This corresponds to the intrinsic torsion of the lower-dimensional theory
and therefore will play the role of the embedding tensor of the theory. This means that it con-
trols the gauge couplings of the lower-dimensional theory as we already saw in (2.C.2). The most
crucial aspect, which may seem trivial, is that the embedding tensor is constant with respect to
internal coordinates. Naturally, this is the case because in lower-dimensional Supergravity, there
is no notion of internal coordinates, so it must be constant. However, when we compute the em-
bedding tensor in ExFT via (3.29), it is not guaranteed a priori that the obtained embedding tensor
will be constant with respect to y’s. Being constant ensures the consistency of the truncation and
allows us to identify the X tensor from ExFT as the embedding tensor of the lower-dimensional
Supergravity.

The twist matrix U plays a central role in ExFT spectroscopy. As it defines a generalized viel-
bein for the generalized metric on the background

MMN = ∆MN = UM
MUN

NδMN . (3.33)

U encodes both internal geometry and internal p-form field strengths, as it can be seen from (2.99)

M MN ∂M ⊗ ∂N = (det g)−1/2 gmn ∂m ⊗ ∂n . (3.34)

where we see that the generalized metric, hence U, encodes the internal geometry. Moreover,
the U twist matrix is globally well defined in a consistent truncation, therefore defining an every-
where non vanishing set of vector fields on the lower dimensional theory, and thus the background
is called generalised parallelisable. The condition of generelised parallelisabilty and consistency
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of the truncation (3.29) and (3.30) can be rephrased as

LUMUN = XMN
PUP (3.35)

where L are generalised diffeomorphims that have been defined previously in (2.86), and XMN
P

now play the role of structure constants of what is now called generalized Leibniz parallelisable
space. The condition of generalized parallelisability, where X is not necessarly constant, but there
still exist globally well defined twist matrix U, is weaker than the condition of generalized Leibniz
parallelisability, where X must define a Leibniz algebra (and therefore must be constant). We will
see later how the algebra must be deformed in the case of generalised parallelisability only.

So far, our discussion has centered on the twist matrix UM
M, i.e. on the background geometry

and fluxes around which we define our consistent truncation. However, the consistent truncation
ansatz (3.28) shows that any internal space contained by the truncation is generalized Leibniz par-
allelizable. To demonstrate this, let us introduce a vielbein for the lower-dimensional Supergravity
scalar matrix MMN , namely

MMN(x) = VM
A(x)VN

B(x)δAB . (3.36)

Now we can define a generalised frame field for every internal space obtained by the consistent
truncation by dressing the twist matrix U with a vielbein V as

UM
A(x, y) = UM

M(y)VM
A(x) . (3.37)

Therefore the generalised metric takes the form

MMN(x, y) = UM
A(x, y)UN

B(x, y)δAB = UM
M(y)UN

N(y)MMN(x) . (3.38)

Futhermore, thank to the internal vielbein V , we can now define the embedding tensor at every
point of the space, by dressing the one defined in (3.35). We obtain

LUA
UB = XAB

CUC , (3.39)

with
XAB

C = (V −1)A
M(V −1)B

NVP
CXMN

P . (3.40)

Doing this allows us to deform the maximally symmetric background to any background that
can be described by a consistent truncation. To illustrate this more clearly, let us provide an exam-
ple. Let us consider the compactification of 11-dimensional Supergravity. The maximally symmet-
ric point gives rise to d = 4 N = 8 Supergravity with SO(8) gauge symmetry. This corresponds
to 11-dimensional Supergravity on AdS4 × S7, as encountered before, and the appropriate ExFT
to study this background is E7(7)-ExFT. The background solution on AdS4 × S7 is described by
a consistent truncation of the full theory. We can however find a "further" consistent truncation
living in the maximally symmetric theory, which would be on its own right a consistent truncation
of the full theory. To do so, we choose a subgroup of E7(7), determine the singlet scalars of this
subgroup within the N = 8 theory, and use those singlets to construct a generalized vielbein U.
These singlets will create a consistent truncation because of the singlets argument we have made
before.

Let us illustrate this with an example. Let us consider an SO(7) subgroup of the SO(8) isometry
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of the round sphere on AdS4 × S7, which is itself a subgroup of E7(7). Because of the triality
property of SO(8) (there are three inequivalent 8-dimensional representations), there are three
ways to embbed SO(7) within SO(8). If we consider the following branching

8v −→
SO(7)

1 + 7 , (3.41)

where 8v is the fundamental representation of SO(8), [1, 0, 0, 0] in terms of the Dynkin labels, then
there is going to be in total one singlet withinN = 8 Supergravity and therefore keeping this single
field is a consistent truncation ofN = 8. The resulting theory containsN = 0 supersymmety. This
is known is the litterature as the SO(7)+ solution [144]. There is another inequivalent solution
which is known as SO(7)− in which

8c −→
SO(7)

1 + 7 , (3.42)

where the c stand for cospinor. In terms of the Dynkin labels this is the [0, 0, 1, 0] representation.
Here again there are no residual supersymmetries. In order to describe this solution whitin the
ExFT language, we need to deform the generalized vielbein as

U(x, y)M
A = Ů(x)M

B exp
(

ϕ(x)TSO(7)+/−

)
B

A , (3.43)

with Ů the twist matrix on the maximally symmetric point and TSO(7)+/− the generator which is
a singlet either under SO(7)− or SO(7)+ within SO(8). Using this vielbein, we can now describe
both vacua and study the spectrum of the different fields around those deformed background.

Now we can describe background solutions within consistent truncations, we can add fluctu-
ations on top of these background solutions. The generalized metric for this background is:

MMN(x, y) = UM
M(y)UN

N(y)MMN(x) = UM
A(x, y)UN

B(x, y)δAB , (3.44)

and the metric g̊µν describes the external geometry. The fluctuations for the latter will simply be
parametrised by

gµν(x, y) = ρ−2(y)(g̊µν(x) + hµν(x, y)). (3.45)

For the vector fields we can parametrize the fluctuations as

Aµ
M(x, y) = ρ−1(U−1)A

M(y) Aµ
A(x, y). (3.46)

In this equation, the background fields are hidden in the U twist matrix, and Aµ
A(x, y) desig-

nates the fluctuation of the vector fields. Finally, it remains to parametrize the fluctuations for the
scalar fields. Since the vielbein V parametrizes the coset space Ed(d)/Kd(d), with Kd(d) the maximal
compact subgroup of Ed(d), it can be expressed as

VM
A(x, y) = exp(ϕα(x, y)Tα)M

A ≈ δM
A + ϕα(x, y)Tα,M

A + . . . (3.47)

where ϕα are the fluctuations and T are the generators of ed(d) ⊖ kd(d), then α is a non-compact
index. This leads for the scalar metric to

MMN(x, y) = δMN + 2ϕα(x, y)TαM
PδPN + . . . (3.48)
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Notice that since α is a non compact index, we have

TαM
PδPN = TαN

PδPM . (3.49)

Let us now explain how to expand fields into harmonics and how to deal with it within the lan-
guage of ExFT. We expand each fluctuation hµν(x, y), Aµ,A (x, y), and ϕα(x, y) in terms of a com-
plete basis of functions of the internal manifold. At this stage, we notice a very important feature
of this machinery: we only need a basis of functions for the scalar fields on the internal manifold
because all the tensorial internal structure has already taken care of by the ExFT. Another crucial
feature of this technology, is that the topology of the internal space is the same for any defor-
mation. This is true because we are dealing with continuous deformations of the internal space.
Since the topology of the compactification to the lower-dimensional Supergravity is the same for
any solution we can reach, we can choose a harmonic basis YΣ of any internal space. In particular,
we can choose this basis of functions to form representations of the largest possible group Gmax,
which corresponds the maximally symmetric lower dimensional Supergravity. For E7(7) ExFT,
this maximally symmetric theory is d = 4 N = 8 gauged Supergravity with SO(8) gauge group,
leading to Gmax = SO(8) and the compactification on AdS4 × S7; for E6(6) ExFT, this maximally
symmetric point is d = 5 N = 8 with gauge group SO(6), leading to Gmax = SO(6) and the com-
pactification on AdS5 × S5. Note however that this basis of functions do not need to be defined
on a point which satisfies the equations of motion. We can choose the internal space on which we
define YΣ to be any configuration of the scalar fields, even if the latters do not correspond to an
extrema of the scalar potential.

We can then choose YΣ to be representations of the maximally symmetric group. This is also
around the maximally symmetric point that we typically define the consistent truncation (3.28),
that is constructed using U . Therefore, we have

LUMY
Σ = UM

M∂MYΣ ≡ −TM
Σ

ΩYΩ . (3.50)

Because the twist matrices generate the Lie algebra of Gmax, the T matrices are generators of Gmax

in the representation Σ. It can be shown that [99]

[
TM, TN

]
= X[MN]

PTP . (3.51)

Those generators of Gmax acting on harmonics YΣ, are defined around the maximally symmetric
where the consistent truncation is defined. However we saw before how to deform ExFT objects
to take them from the maximally symmetric point, to a deformation of it. This is done by dressing
the objects with the vielbein VM

A. In particular, with the set of globally well defined twist matrix
(3.37), we can obtain the generators of the deformed background by the action of a generalized
diffeomorphism on the harmonics of the maximally symmetric point

LUA
YΣ = −TA

Σ
ΩYΩ , (3.52)

where
TA

Σ
Ω = VA

MTM
Σ

Ω , (3.53)

are the dressed generators of Gmax. Their commutator is now given by[
TA, TB

]
= X[AB]

CTC . (3.54)
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Using all the ingredients we have introduced so far, we can write the fluctuation ansatz

gµν(x, y) = ρ−2(y)
(

g̊µν(x) + ∑
Σ
YΣ hµν

Σ(x)
)

,

Aµ
M(x, y) = ρ−1(y) (U−1)A

M(y)∑
Σ
YΣ(y) Aµ

A,Σ(x) ,

MMN(x, y) = UM
A(y)UN

B(y)
(

δAB + δAC Tα,B
C ∑

Σ
YΣ(y) ϕα,Σ(x)

)
.

(3.55)

We now have everything in hand to compute masses. What we remains to be done is to inject this
ansatz into the field equations derived from (2.77) for E6(6)-ExFT and E7(7)-ExFT, then to linearize
these equations of motion and finally extract the mass operators.

Before closing this section, let us introduce a piece of notation. Say we have a generalized
metric constructed as described above, which provides us a background solution of the equations
of motion

MMN = UM
MUN

NVM
AVN

A (3.56)

where VM
AVN

A = VM
AVN

BδAB. This is the convention we will consistently employ from now
on. Whenever two indices are identical and in the same position, this means that a δ is contracting
the two indices.

C.3 Mass matrices

We illustrate the previous method by applying it to E6(6)-ExFT in this section. E6(6)-ExFT can apply
to vacua of 5-dimensional maximal gauged Supergravity as we discussed in section 2.D , however,
the structure for other dimensions is very similar as we already explained in the previous section.
Further details can be found in [99].

By plugging in the Kaluza-Klein fluctuation Ansatz (3.55) into the linearised equations of mo-
tion of E6(6) ExFT, we can easily compute the mass matrices for any vacuum of the 5-dimensional
consistent truncation. These mass matrices will be expressed in terms of the embedding tensor
dressed by the scalar coset representative (3.40) as well as the action of the dressed generalised
frame on the scalar harmonics (3.52)

XAB
C =

(
V −1

)
A

M
(
V −1

)
B

N VP
C XMN

P , LUA
YΣ = −TA Σ

Ω YΩ . (3.57)

a Level diagonalisation

Before computing the mass matrices explicitly, we can already observe a dramatic simplification
in this approach compared to the standard one. With the ExFT fluctuation Ansatz (3.55), the mass
matrices will be expressed in terms of the embedding tensor and the matrices TA,Σ

Ω. Crucially,
the only object acting on harmonics are TM Σ

Ω matrices, which appear in their dressed form as

TA Σ
Ω =

(
V −1

)
A

MTM Σ
Ω . (3.58)

The TM Σ
Ω form representations of the round S5 isometries, and therefore do not mix different

levels of scalar harmonics. Similarly, the dressed TA Σ
Ω matrices will also not mix different S5 KK

levels. This means that the KK levels of the round S5 are preserved for any other vacuum of the
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consistent truncation. As a result, it becomes efficient to organise the KK spectrum of any vacuum
of the consistent truncation in terms of the KK levels defined by the round S5, something that is
miraculous from the perspective of the remnant symmetry group of the vacuum. This fact dras-
tically simplifies the computation of the KK spectrum compared to the traditional Supergravity
approach, and is just one of the reasons why the ExFT approach is so powerful when studying
vacua with small remnant symmetry groups. However, even more intriguingly, the same mech-
anism will give rise to a strong identities among cubic and higher couplings, as we will see in
section 4.C.2.

b Spin-2 mass matrix

The equations of motion for the spin-2 fields read

YΣ□xhµν
Σ = hµν

Ω
(

Mspin−2

)
Ω

ΣYΣ + . . . (3.59)

The spin-2 mass matrix is simply given by(
Mspin−2

)
Σ

Ω = −TA Σ
Λ TA Λ

Ω , (3.60)

the repeated downstairs A index convention refers to summation by δ, e.g. for two tensors in the
27,

VA WA = VA WB δAB . (3.61)

The ellipses in (3.59) denotes couplings between spin-1 and spin-2 fields, and is responsible for
the Higgs mechanism. However those term do not affect the spin-2 masses. They will play a role
when we would like to identify what are the physical modes in the theory, in other words to gauge
fix the unphysical fluctuations. The minimal couplings (2.91) gives rise to couplings of the form

πA∂(µ Aν)
A , πA = TA (3.62)

hence πA controls the spin-2 Higgs mechanism.

c Vector & tensor mass matrix

The fields equations of motion obtained by varying the Lagrangian w.r.t. vector fields are of Yang-
Mills type

∇ν(MMNF νµN) = (J
µ

EH)M + (J
µ

scal)M + (J
µ

top)M (3.63)

where the currents on the r.h.s. denote the contributions from the Einstein-Hilbert (EH) term, the
scalar kinetic term, and the topological term, respectively. The contributions from the topological
term are in gereral of higher order in fluctuations and therefore dropped, and the EH contribution
only gives rise to the Higgs mechanism. Therefore it does not contribute to the physical result.
Upon linearizing and using the truncation ansatz (3.28), the equations of motion for the vector
fields reduces to

□x Aµ AΣ =
(

Mspin−1

)
A Σ

B Ω Aµ BΩ (3.64)
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The vector mass matrix is given by(
Mspin−1

)
A Σ

B Ω =
1

12
ΠA α

Σ
Λ Πα

B
Λ

Ω , (3.65)

with
Πα

A
Σ

Ω = −2
(

XA
α δΣ

Ω − 6 Tα
A

B TB
Σ

Ω

)
, (3.66)

and its adjoint
ΠA α

Σ
Ω = Πα A Ω

Σ = −2
(

XAα δΣ
Ω + 6 TαA

B TB
Σ

Ω

)
. (3.67)

Here, we defined the non-compact projection of the embedding tensor in its adjoint indices

XA
α = XAB

C Tα
C

B . (3.68)

On the other hand, the tensor mass matrix is(
Mtensor

)
A Σ

B Ω =
1√
10

(
−ZABδΩ

Σ + 10 dABC TC Σ
Ω
)

, (3.69)

where we used the antisymmetric combination of the intrinsic torsion given by

ZAB = 2 dCDA XCD
B = −ZBA . (3.70)

These two expressions can be combined to find the following interesting structure arising.(
Mspin−1

)
A Σ

B Ω +
(

M2
tensor

)
A Σ

B Ω = M0 A
B δΩ

Σ + 2 N CA
BTC Σ

Ω + δAB

(
Mspin−2

)
Σ

Ω

− 5
3

πA Σ
ΛπB Λ

Ω ,
(3.71)

where

M0 A
B =

1
3

XA
α XBα +

1
10

ZAC ZBC ,

NCA
B = NC

α̂ Tα̂ A
B =

(
XC

α̂ + 3XDE
C Tα̂

D
E
)

Tα̂ A
B ,

(3.72)

are the 5-dimensional gauged Supergravity contribution and the tensor NC
α̂ which mixes the

level-0 and higher-level contributions. The Tα̂ A
B are the compact generators with α̂ labelling the

36 of USp(8) and raised/lowered with the Cartan-Killing metric κα̂β̂. Moreover, πA Σ
Ω = TA Σ

Ω

corresponds to the coupling between vectors and spin-2 and thus πA Σ
ΛπB Λ

Ω only acts on the
spin-1 Goldstones eaten by the massive spin-2 states. We see that the T 2 terms act on physical
modes exactly like the spin-2 mass operator (3.60)

Mspin−2 = −TATA . (3.73)

69



CHAPTER 3. KALUZA-KLEIN SPECTROMETRY USING EXFT

d Scalar mass matrix

The variation of the potential (2.94) with respect to the scalar fluctuations ϕα = ϕα,ΣYΣ gives us
the scalar equations of motion and obtain

□xϕα =
(

Mspin−0

)
α

βϕβ + . . . , (3.74)

The scalar mass matrix is given by(
Mspin−0

)
α Σ

β Ω =
[

XAE
FXBF

E Tα
βA

B

+
1
5

(
XAE

FXBE
F + XEA

FXEB
F + XEF

AXEF
B
)

Tα
βA

B

+
2
5

(
XAC

EXBD
E − XAE

CXBE
D − XEA

CXEB
D
)

Tα
A

B TβC
D
]
δΣ

Ω

+ 2
(

Tα
A

BXAβ −TβA
BXA

α
)

TB
Σ

Ω − 2
[
Tα, Tβ

]
A

B XCB
A TC

Σ
Ω

− δα
β TA

Σ
ΛTA

Λ
Ω + 12 Tα

βA
B TA

Σ
ΛTB

Λ
Ω ,

(3.75)

where we introduced the notation for products of generators

TαβA
B = TαA

C TβC
B . (3.76)

We can simplify this by adding terms which only act on Goldstone modes. We can easily imple-
ment this via the Π tensor of (3.66). The mass for spin-1 boson in KK reduction indeed arise by a
standard Higgs mechanism. If we consider the covariant derivative of the scalar fields, we have

Dµ(ϕ
αΣtαM

NYΣ) = ∂µϕαΣYΣtαM
N −LAµ

(ϕαΣtαM
NYΣ)− tαM

NΠα
AAµ

A (3.77)

Therefore we see that Πα
A controls what are the spin-0 that couple to spin-1 fields via the Higgs

mechanism. Therefore, adding a term like Πα
A

Λ
ΣΠA

β
Λ

Ω in the scalar mass matrix will only act
on Goldstone modes, which are not physical. We find(

Mspin−0

)
α Σ

β Ω +
1
12

Πα
A

Λ
ΣΠA

β
Λ

Ω = M0
α

β δΣ
Ω + 2 NA

α
βTA

Σ
Ω + δα

β

(
Mspin−2

)
Σ

Ω . (3.78)

Here

M0
α

β = XAE
FXBF

E Tα
βA

B +
1
2

XAE
FXBE

F Tα
βA

B

+ XAC
EXBD

E(Tα)A
B (Tβ)C

D +
1
3

XA
α XAβ ,

NA
α

β = NA
α̂ Tα̂

α
β ,

(3.79)

where NA
α̂ is the object from (3.72) that controls the mixing between levels 0 and higher levels.

C.4 AdS5 × S5 spectrum

To conclude this section, we apply the ExFT-techniques to AdS5× S5 spectrum and give the results
in terms of quadratic Casimir operators of SO(6) and U(1). This can be done straightforwardly
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using (3.60), (3.71) and (3.79). The field content of IIB Supergravity on AdS5 × S5 in recalled in
(2.5).

Let us note the explicit form of the embedding tensor at this vacuum

XAB
C →

{
Xab,cd

e f = 2
√

2δ
[e
[aδb][cδ

f ]
d]

Xab
cu

dv = −
√

2δc
[aδb]dδu

v
, (3.80)

where we decompose E6(6) → SL(6)×SL(2), such that the 27→ (15, 1)⊕
(
6, 2
)
, with a, b, . . . = 1, . . . , 6

and we use u, v = 1, 2 for the SL(2) doublet. The action of the T matrix on the harmonics is given
by

Tab,c
d =
√

2δc[aδd
b] , (3.81)

on fundamental harmonics Y a, and naturally extended on the higher harmonics, with T au
Σ

Λ = 0.

We can now immediately compute the spin-2 mass spectrum. From (3.81), we see that

TA Σ
Ω =

√
2 tA Σ

Ω , (3.82)

where tA Σ
Ω are the canonically normalised SO(6) generators acting on the scalar harmonics.

Thus,
Mspin−2 = −TATA = 2 CSO(6) = ℓ(ℓ+ 4) , (3.83)

where CSO(6) is the SO(6) Casimir
CSO(6) = −tA tA (3.84)

and we expressed the spectrum in terms of the level, ℓ, of the spin-2 fluctuation. On the other hand,
the level-0 mass operators for vector/tensors, M0 A

B, and for the scalars, M0
α

β, can be evaluated
explicitly and is, in both cases, given by

M0 = 8− 2 CSO(6) − 8 CU(1) , (3.85)

where CU(1) denotes the Casimir of the compact U(1) ⊂ SL(2)S that remains of the IIB S-duality.

Finally, the tensor that controls the mixing between level-0 and higher-levels, NAB
C in (3.79),

is given by
NAB

C = −XAB
C . (3.86)

In fact, this relation holds for any embedding tensor that lives in the 36 of USp(8), such as for the
AdS5 × S5 vacuum. From the algebra of the T -matrices (3.54) and using (3.86), we see that the
N-tensor is given in terms of the canonically normalised SO(6) generators by

NAB
C =
√

2 tAB
C . (3.87)

Putting the level-0 result for (3.85) together with the relation (3.87), this now allows us to eval-
uate the vector-tensor (3.71) and scalar mass matrices (3.78). For this, we need to disinguish the
action of SO(6) generators on level-0 fields and the scalar harmonics, which we denote by t0 and
th, respectively. Thus, we obtain for the mass matrix M, corresponding to Mvec−tensor or Mspin−0,

71



CHAPTER 3. KALUZA-KLEIN SPECTROMETRY USING EXFT

the following

M = M0 + 2 NATA −TATA

= 8 + 2 t0
A t0

A − 8 CU(1) + 4 t0
A th

A −TATA

= 8 + 2
(

t0
A + th

A

) (
t0

A + th
A

)
− 8 CU(1) − 2 TATA

= 8− 2 CSO(6) − 8 CU(1) + 2 ℓ (ℓ+ 4) ,

(3.88)

where in going to the second line we replaced CSO(6) in M0 by (3.84), in going to the third line,

we completed the square, and, in going to the final line, we recognised
(

t0
A + th

A

)
as the SO(6)

generator acting on the tensor product of the level-0 fields and scalar harmonics, corresponding
to our field basis.

Let us thus summarise our results for the AdS5 × S5 spectrum. We have shown that the mass
matrices at S5 level ℓ are given by

Mspin−2 = −2 CSO(6) + 2 ℓ(ℓ+ 4) ,

Mvec−tensor = 8− 2 CSO(6) − 8 CU(1) + 2 ℓ(ℓ+ 4) ,

Mspin−0 = 8− 2 CSO(6) − 8 CU(1) + 2 ℓ(ℓ+ 4) ,

(3.89)

for a field in a representation [n, p, q]SO(6) ⊗ [j]U(1). The Casimir operators are given by

CSO(6)[n, p, q] =
1
8

(
4n2 + 3p2 + 3q(4 + q) + 2p(6 + q) + 4n(4 + p + q)

)
,

CU(1)[j] = j2 ,
(3.90)

are the SO(6) and U(1) Casimirs. Note that our expression (3.89) in terms of the SO(6) and U(1)
Casimirs only appears once we write the fields as a tensor product of the 5-dimensional gauged
Supergravity fields with scalar harmonics. The compact expressions (3.89) are already a signal
that this new field basis we are using is very efficient in computing KK spectra. As we will see in
4.C, this field basis also simplifies the computation and the results of n-point couplings.

D Kaluza-Klein spectroscopy beyond consistent truncation

WE presented how we can use ExFT in order to compute efficiently the full spectrum of a
Kaluza-Klein reduction to a lower dimensional theory in the previous section. This proved

very powerful in getting the spectrum of backgrounds with few symmetry. We will now present
how we managed to extent those techniques, to what we claim is beyond standard consistent
truncations. Let us explain this naming. All background described in the previous section are
deformations of the maximally symmetric point, defined in a consistent truncation. What we
mean by consistent truncation in that case, is to select a subset of the field content of the maximally
symmetric point, which is itself a consistent truncation of the full theory with all the fields from
KK towers, and restrict the lower dimensional theory field content to the selected modes. Another
way of saying it, is that the consistent truncations are restricted to truncations of the zero modes
of the KK towers of the full theory. In the case of 11d Supergravity, this means for example that
consistent truncations are living insideN = 8 d = 4 maximal Supergravity. What about consistent
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truncations including modes from higher KK levels? For example, what if I can make a consistent
truncation with a mode from level 1 of a KK tower. Can I describe this in the previous language?
Will this describe a valid lower dimensional theory? A priori, this is hill defined as it leads for
example to a non constant embedding tensor. This can be seen straightforwardly because the
vielbein V will schematically look like

V (x, y) = exp
(

ϕi
KKTKK(x)Y i

)
V̊ (x). (3.91)

with ϕi
KK a mode coming from a non zero KK level, Y i and TKK the corresponding harmonics and

generators, and V̊ the vielbein defined by the zero modes. We see that this new internal vielbein
V (x, y) is now y dependant, hence does the embedding tensor on the lower dimensional theory
(3.40)

XAB
C(x, y) = (V −1)A

M(x, y)(V −1)B
N(x, y)VP

C(x, y)XMN
P(x) (3.92)

However as we will show in this section, there is a way to make sense of it, and to include
modes from higher level of the KK towers. This is in that sense we mean beyond consistent trun-
cation: this is not a standard consistent truncation of the maximally symmetric theory, but a con-
sistent truncation of the full theory to a lower dimensional one. Extending the techniques of [99,
116] would lead to interesting insights, because many interesting vacua arise from deformations
by scalar fields that are not part of the N = 8 truncation, such as the AdS4× squashed S7 vacua
with N = 1 and N = 0 supersymmetry [136, 137], or AdS vacua obtained by TsT deformations
[133–135].

This section is organized as follow : first we will present what changes compared to the stan-
dard method of ExFT, namely in the fluctuation ansatz. Then we will talk about quadratic con-
straints. We need to make sense of the non constant embedding tensor we found. Finally we will
compute the new mass operators in the ExFT language. From now on in this section, we will focus
only on E7(7)-ExFT.

D.1 Fluctuation Ansatz

While [99, 116] showed how to obtain the full Kaluza-Klein spectrum around any vacuum of max-
imal gauged Supergravity that arises from a consistent truncation, here we will go further and
treat more general deformations of vacua of N = 8 Supergravity that take us outside the consis-
tent truncation as explained in the previous paragraph. Any background within the consistent
truncation to N = 8 gauged Supergravity is generalised Leibniz parallelisable, which consists of
the following two conditions:

• Generalised parallelisable: The generalised tangent bundle is trivial, i.e. there is a globally well-
defined generalised frame. Put differently, we can define the globally well-defined E7(7)
objects {

UM
A = UM

MVM
A, ρ

}
, (3.93)

where UM
A is the E7(7)-valued twist matrix, and ρ is the nowhere-vanishing scalar density

of weight −1/2. Crucially, generalised parallelisability is a topological condition.

• Leibniz: For a generalised parallelisable space to be generalised Leibniz parallelisable re-
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quires UM
A and ρ to additionally satisfy the differential condition

LUA
UB

M = XAB
C UC

M , for UA
M = ρ−1 (U−1)A

M , (3.94)

where the so-called intrinsic torsion XAB
C must be constant. In this case, there exists a con-

sistent truncation to maximal d = 4 Supergravity, with the reduction ansatz for the higher-
dimensional fields encoded by the twist matrix U and scalar density ρ [145, 146]. The con-
stant intrinsic torsion defines the embedding tensor of the maximal gauged Supergravity
arising from the consistent truncation.

Let us now consider a general deformation of a background of N = 8 Supergravity, which is
not triggered by the 70 scalar fields of the N = 8 Supergravity. Thus, the deformed background
will no longer be part of the consistent truncation. Nonetheless, because we are considering a
continuous deformation and generalised parallelisability is a topological condition, our deformed
background is still generalised parallelisable. That is, our background admits a globally well-
defined twist matrix UM

A and scalar density ρ. However, if we compute the analogue of (2.59),
we find

LUA
UB

M = XAB
C(y)UC

M , (3.95)

where the intrinsic torsion, XAB
C(y), is no longer constant. Rather, the dependence of the intrinsic

torsion, XAB
C(y), on the internal coordinates is the obstruction to the deformation being part

of the consistent truncation. Nonetheless, we can still employ the same ideas as in [99, 116] to
compute the full KK spectrum. In the previous case with constant intrinsic torsion, the d = 4
mass matrices can be given as algebraic expressions in terms of the intrinsic torsion tensor. In the
more general case (3.95) the d = 4 mass operators are most conveniently expressed in terms of
differential operators

∂A = UA
M∂M , (3.96)

in the internal space. While the expression of the lower dimensional mass operator in terms of
differential operators on the internal manifold is of course at the heart of any Kaluza-Klein analy-
sis, the E7(7) covariant formulation (2.77) together with an appropriate fluctuation ansatz reduces
the analysis to a differential problem involving exclusively the tower of scalar harmonics. As a
result, the computation of the full Kaluza-Klein spectrum can be done in analogy to the spin-2
sector and leads to universal covariant expressions for all d = 4 mass operators, which can be
straightforwardly diagonalized in the concrete examples.

The non-constant intrinsic torsion (3.95) now generically gives rise to level-mixing, i.e. mass
eigenstates of the deformed background will come from mixing states amongst different KK levels
of the undeformed background. By contrast, when the deformation is caused by the 70 scalars of
the consistent truncation, the deformed KK mass eigenstates will be linear combinations of states
of the same KK level of the undeformed background [99, 116].

Just as in previous sections, because our vacuum is generalised parallelisable, we can expand
any tensor fluctuations in terms of the generalised frame UM

A and ρ. Thus, we can write any
deformation of a generalised parallelisable space as in (3.45)(3.46)(3.48)

74



D. KALUZA-KLEIN SPECTROSCOPY BEYOND CONSISTENT TRUNCATION


gµν(x, y) = ρ−2(y)

(
g̊µν(x) + hµν(x, y)

)
,

Aµ
M(x, y) = ρ−1(y) (U−1)A

M(y) Aµ
A(x, y) ,

MMN(x, y) = UM
A(y)UN

B(y)MAB(x, y) ,

(3.97)

where g̊µν is a given d = 4 background metric and hµν(x, y), Aµ
A(x, y) and MAB(x, y) are now

scalars on the internal space, whose y-dependence we can further expand in a complete basis of
scalar functions, YΣ(y). Moreover, if we are interested in linearised deformations, we can rewrite
(3.97) to linear order in fluctuation similarly to (3.55)

gµν(x, y) = ρ−2(y)
(

g̊µν(x) + ∑
Σ
YΣ hµν

Σ(x)
)

,

Aµ
M(x, y) = ρ−1(y) (U−1)A

M(y)∑
Σ
YΣ(y) Aµ

A,Σ(x) ,

MMN(x, y) = UM
A(y)UN

B(y)
(

δAB + δAC Tα,B
C ∑

Σ
YΣ(y) ϕαΣ(x)

) (3.98)

where the Tα,A
B are the non-compact generators of e7(7), such that δAC Tα,B

C = δBC Tα,A
C as we

previously encountered in (3.47). Finally, we are ignoring the two-forms since these do not con-
tribute to the linearised equations of motion. In the following, we will omit the explicit summation
symbol over the harmonics Σ.

Since A, B are really SU(8) indices, we have two invariants with which we can contract: the
E7(7) symplectic invariant ΩAB and the SU(8) invariant δAB. In order to keep track which tensor
is involved in an index contraction in SU(8) language, we will use the following conventions.
All E7(7) indices, including the flattened A, B, are raised and lowered using the E7(7) symplectic
invariant ΩAB in the conventions of (2.80). Thus,

VA WA = VA WB ΩBA . (3.99)

On the other hand, we will suppress the effect of raising/lowering indices with δAB, i.e. they will
simply be written in the same position. For example, repeated flattened A, B indices at the same
position are contracted with δAB, as we already encountered in 3.61, i.e.

VA VA = VA VB δAB . (3.100)

In particular, with these conventions, the non-compact generators Tα,A
B satisfy

Tα,A
B = Tα,B

A . (3.101)

The benefit of the Kaluza-Klein Ansatz (3.55) is that the linearised equations of motion of ExFT
obtained from the pseudo-action (2.77), (2.78) drastically simplify. As a result, we can read off the
Kaluza-Klein mass operators, which are determined by the intrinsic torsion XAB

C(y) from (3.95),
and flattened derivative (3.96).

Before we compute the mass operators, let us comment on the applicability of the technique
developed here. Allowing for a y-dependent X-matrix in (3.95) looks like it may apply to any
background of 10-/11-dimensional Supergravity, since any such background can be described by

75



CHAPTER 3. KALUZA-KLEIN SPECTROMETRY USING EXFT

a generalised vielbein, akin to (3.93). However, for a generic background, the generalised vielbein
will not be globally well-defined, but only up to SU(8) transformations. This is a problem, since
the intrinsic torsion defined in (3.95) is not invariant under such SU(8) transformations.1 More-
over, the fluctuations in (3.55) would not be globally well-defined and instead require not just
scalar harmonics but also tensor harmonics in various E7(7) representations. As a result, the setup
here does not readily apply for general backgrounds, but only for those which are generalised
parallelisable, i.e. with a globally well-defined twist matrix. Such generalised parallelisable back-
grounds include deformations of backgrounds that can be uplifted from maximal gauged Super-
gravity, even when the deformation does not correspond to one of the 70 scalar fields of theN = 8
gauged Supergravity. We will discuss concrete examples below.

D.2 Quadratic constraints

By plugging the fluctuation Ansatz (3.55) into the linearised equations of motion, we will obtain
the mass operators for the full Kaluza-Klein tower. Since the equations of motion are quadratic
and involve the generalised Lie derivative, our fluctuation Ansatz (3.55) implies that the mass
operators will involve X2, ∂X, X∂ and ∂2 terms. This is just like in [99, 116] (where the action of
∂ on harmonics was explicitly parametrised by a representation matrix T ), with the important
difference that we now also obtain ∂X terms, since the intrinsic torsion is no longer constant.

However, the quadratic terms in X and ∂X are not all independent. Rather, some of them are
linked by quadratic constraints, generalising the quadratic constraints of gauged Supergravity,
governing constant X. Just as in that case, the quadratic constraints are a consequence of the
section condition (2.85) and thus of closure of the algebra of generalised Lie derivatives, i.e.[

LUA
, LUB

]
= LJUA , UBK , (3.102)

where we defined the shorthand
JUA, UBK = LUA

UB . (3.103)

Applying (3.102) to ρ−2 give the following relation

∂CXAB
C = ∂[AϑB] + XAB

C ϑC , (3.104)

where
ϑA = ρ2LUA

ρ−2 =
1
28

XAB
B , (3.105)

is the analogue of the trombone tensor of N = 8 gauged Supergravity. Most interesting vacua
have ϑA = 0, which will be what we restrict ourselves to in the following. Thus, XAB

C satisfies
the quadratic constraint

∂CXAB
C = 0 . (3.106)

On the other hand, applying (3.102) to UA
M gives the quadratic constraint

XAC
E XBE

D − XBC
E XAE

D + XAB
E XEC

D = −2 ∂[AXB]C
D + 12 PF

E
C

D ∂EXAB
F . (3.107)

1Put differently, the intrinsic torsion (3.95) is defined with respect the generalised identity structure given by the gen-
eralised parallelisation of the well-defined UA

M . For more general backgrounds, we can define an intrinsic torsion with
respect to the G-structure of the background, but this will have a different algebraic structure than XAB

C .
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For constant X, with the r.h.s. vanishing, this reproduces the quadratic constraints of gauged Su-
pergravity (2.59) [147]. By tracing (3.107), we recover (3.106) as well as the relation

XAC
D XBD

C − 2 XCA
D XDB

C = 0 . (3.108)

Finally, the section condition (2.85) also implies a quadratic relation linking the flat derivatives
∂A and XAB

C. This can be deduced from the closure of the generalised Lie derivative (3.102) when
acting on scalar functions f (y). Then, we have

2 ∂[A∂B] − XAB
C ∂C = 0 . (3.109)

We will use these relations throughout the following sections in deriving the mass operators.

D.3 Mass operators

We are now ready to plug the fluctuation Ansatz (3.55) into the linearised equations of motions
resulting from (2.77) and (2.78) to obtain the mass operators. The computation closely follows the
one presented in [99, 116] with additional contributions arising from internal derivatives acting
on the intrinsic torsion which is no longer constant.

a Spin-2

We begin with the linearised equations of motion for the spin-2 fields. The mass terms come from
the final two terms of the potential (2.94), i.e.

Lmass,g =
1
4

√
|g|
(
M MN∂Mgµν∂N gµν +M MN g−2∂Mg∂N g

)
. (3.110)

Upon computing the resulting linearised equations of motion and inserting the spin-2 fluctuation
Ansatz (3.55), we obtain (upon gauge fixing in the external space)

YΣ □xhµν Σ = hµν Σ

(
Mspin−2

)
YΣ + . . . , (3.111)

with □x the 4-dimensional Laplace operator and the mass operator
(

Mspin−2

)
given by

(
Mspin−2

)
= −∂A∂A , (3.112)

acting on scalar harmonics YΣ. The ellipses . . . in (3.111) refer again to couplings to vector and
scalar modes, which accounts for the spin-2 Higgs mechanism and do not affect the spin-2 masses.
As we explained above in (3.60), the πA (3.62) matrix will control the spin-2 Higgs mechanism.
Note that because we came back to operators, and not matrices anymore, we have here

πA = ∂A . (3.113)

b Spin-1

The vector masses arise from the standard Higgs mechanism and thus from the couplings between
vectors and scalar fields in the scalar kinetic of (2.77). Thus, let us consider the linearised covariant
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derivatives of the scalar fields, similarly to what we did in (3.77)

DµMMN = UM
A UN

B
[
Tα,A

B ∂µϕα,Σ YΣ −
(
Aµ • ϕ

)
A

B −Tα,A
B Πα

C

(
Aµ

C
)]

, (3.114)

where we defined (
Aµ • ϕ

)
A

B ≡ Tα,C
D ϕα,Σ UA

(M UB
N) LAµ

(
UM

C UN
D YΣ

)
,

ΠI
A

(
Aµ

A
)
≡ 2 Tα

C
B UC

M LAµ
UM

B

= −2
(

XA
α − 12 Tα

A
B ∂B

)
Aµ

A ,

XA
α ≡ XAB

C Tα,B
C ,

(3.115)

and Aµ
A = Aµ

AΣ YΣ. Coset indices α, β are raised and lowered with the non-compact part of the
Cartan-Killing form. From (3.114), (3.115), we obtain the operator

ΠI
A = −2

(
XA

I − 12 Tα
A

B ∂B

)
, (3.116)

which will be responsible for the vector masses. To express the mass operator, we will also need
the adjoint operator, ΠA

I , of (3.116), defined as∫
dYϕα Πα

A

(
Aµ

A
)
=
∫

dY ΠA
α (ϕα) Aµ

A , (3.117)

where ϕα = jα ΣYΣ. Evaluating (3.117) explicitly, we get

ΠA,α = −2
(

XAα + 12Pα,A
B ∂B

)
. (3.118)

From the linearised equation of motion following from (2.77), upon usual gauge fixing in the
external space

□x Aµ
A =

(
Mspin−1

)
A

B Aµ
B + . . . , (3.119)

we find the mass operator given by the self-adjoint combination(
Mspin−1

)
A

B =
1

24
ΠA,α Πα

B . (3.120)

Using (3.116) and (3.118), the mass operator takes the explicit form(
Mspin−1

)
A

B =
1
6

XA
α XBα + 2 Tα,A

C ∂CXB
α + 4 Tα,[A

CXB]
α ∂C − 24 Tα,A

C Tα
B

D ∂C ∂D . (3.121)

The mass operator (3.121) contains not only the physical spin-1 fields, but also the Goldstone vec-
tors for the massive gravitons, as well as massless magnetic duals to all these. Thus, in evaluating
the mass spectrum from (3.121), care must be taken to remove all these unphysical modes, e.g. by
proper gauge fixing in the internal space.

However, we can further simplify the structure of the mass operator (3.121) by shifting the
masses assigned to these unphysical modes. In particular, consider the magnetic dual of the mass
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operator (3.121) given by(
M̂spin−1

)
A

B ≡ ΩAC ΩBD
(

Mspin−1

)
C

D

=
1
6

XB
α XAα + 2 Tα

AC ∂CXBα + 4 Tα
C[AXB]α ∂C − 24 Tα

AC Tα,BD ∂C ∂D ,
(3.122)

which carries the same eigenvalues as (3.121) while satisfying the orthogonality condition(
Mspin−1

)
A

B

(
M̂spin−1

)
B

C = 0 . (3.123)

Using (3.122) and (3.113), we can then deduce the relation(
Mspin−1

)
A

B +
(

M̂spin−1

)
A

B =
(

M
(0)
spin−1

)
A

B +
(

NA
B

C −NB
A

C
)

∂C + ∂CNA
B

C + δA
B

(
Mspin−2

)
+ 2

(
ΠAΠB + ΠAΠB

)
, (3.124)

with (
M

(0)
spin−1

)
A

B =
1
6

(
XAα XB

α + XB
α XAα

)
,

NA
B

C = 2
(

Tα,A
C XB

α + Tα
AC XB,α

)
.

(3.125)

The second line in (3.124) acts only on the unphysical Goldstone fields, and can thus be ignored
when computing the masses of the propagating degrees of freedom. Moreover, relations (3.122)
and (3.123) imply that the first line of (3.124) carries as eigenvalues all the masses of the physical
vector fields with an (unphysical) multiplicity of two, which has to be divided out. Equation
(3.124) turns out to be very useful for the concrete computations as in particular the quadratic

action on the scalar harmonics is exactly given by the spin-2 mass operator
(

Mspin−2

)
(3.112).

c Spin-0

The scalar masses arise from the scalar potential (2.94) in the action (2.77). Let us first rewrite the
equations of motion coming from the scalar potential (2.94) in terms of the intrinsic torsion. We
find that a vacuum must satisfy the equation

0 =

[
2 ∂CXCA

B − XAC
DXBD

C − 1
7

(
XAC

DXBC
D + XCA

DXCB
D − XCD

AXCD
B
)]

Tα,A
B . (3.126)

When the intrinsic torsion XAB
C is constant, this precisely matches the variation of the N = 8

gauged Supergravity potential.

Similar to the computation presented in [99, 116], we can plug in the fluctuation Ansatz (3.55)
and compute the variation of the potential (2.94) with respect to the scalar fluctuations ϕα = ϕα,ΣYΣ

to obtain the equation of motions

□xϕα =
(

Mspin−0

)
α

βϕβ + . . . , (3.127)
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where we can obtain the explicit form of the mass operator as(
Mspin−0

)
α

β = XAE
FXBF

E (TαTβ)A
B

+
1
7

(
XAE

FXBE
F + XEA

FXEB
F + XEF

AXEF
B
)
(TαTβ)A

B

+
2
7

(
XAC

EXBD
E − XAE

CXBE
D − XEA

CXEB
D
)
(Tα)A

B (Tβ)C
D

− 2 (Tβ)C
D ∂CXD

α −
[
Tα, Tβ

]
A

B ∂CXCB
A

+ 2
(
(Tα)A

BXAβ − (Tβ)A
BXA

α
)

∂B − 2
[
Tα, Tβ

]
A

B XCB
A ∂C

− δα
β ∂A∂A + 24 (TαTβ)A

B ∂B∂A .

(3.128)

Note the similarities of this mass operator with (3.75). This is expected: by back setting X to a
y-constant tensor and substituting ∂A with TA, one can recover (3.75). It is straightforward to
verify that (3.128) is self-adjoint and thus has real eigenvalues. Once again, this operator yields
mass eigenvalues not just for the physical scalars but also for the Goldstone scalars that are eaten
by the massive spin-1 and spin-2 fields. Since we are not interested in these unphysical fields, and
can gauge fix them away, we are free to shift their mass eigenvalues in a way that simplifies the
structure of (3.128). Thanks to the Higgs mechanism, the operators (3.116), (3.118) provide us with
projection matrices onto the Goldstone scalars, which we can therefore use to add to (3.121) terms
of the form Πα

A ΠA
β which only affect the eigenvalues of the non-physical Goldstone modes.

This allows us to rewrite (3.128) as(
Mspin−0

)
α

β =
(

M
(0)
spin−0

)
α

β +
(

Nα
β

C −Nβ
αC
)

∂C + ∂CNα
β

C + δα
β

(
Mspin−2

)
− 1

24
Πα

A ΠA
β ,

(3.129)

which is easily verified to be self-adjoint. The operators in (3.129) consist of(
M

(0)
spin−0

)
α

β = XAE
FXBF

E (TαTβ)A
B

+
1
7

(
XAE

FXBE
F + XEA

FXEB
F + XEF

AXEF
B
)
(TαTβ)A

B

+
2
7

(
XAC

EXBD
E − XAE

CXBE
D − XEA

CXEB
D
)
(Tα)A

B (Tβ)C
D

+
1
6

XA
α XA,β ,

(3.130)

which is quadratic in the intrinsic torsion XAB
C and does not act on the scalar harmonics, and the

combination

Nα
β

C = −2XA
αTβ,C

A − 2XAβTα
C

A − [Tα, Tβ]A
B
(

XCB
A +

7
2

XAB
C
)

, (3.131)

which multiplies a linear differential operator on the scalar harmonics. Just as in the vector mass
matrix (3.124), the quadratic differential operator on the scalar harmonics in (3.129) is simply given
by the graviton mass operator (3.112). For the case of constant intrinsic torsion, the formula (3.129)
consistently reduces to the expression derived in [120].
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E The squashed S7 : the spectrum

AS an application of the presented methods, we will now apply the mass formulas to compute
the Kaluza-Klein spectrum of the squashed S7 in 11-dimensional Supergravity. The sphere

S7 admits two Einstein metrics: the round metric with SO(8) isometry, and the "squashed metric"
which only preserves USp(4)× SU(2) ⊂ SO(8) isometry. These give rise to two supersymmetric
Freund-Rubin AdS4 × S7 vacua of 11-dimensional Supergravity: the N = 8 vacuum, when the
S7 is round and an N = 1 vacuum for the squashed S7 [136]. For the squashed S7, the isometry
group USp(4)× SU(2) is embedded into SO(8) such that

8v → (4, 2) , 8s → (4, 2) , 8c → (5, 1)⊕ (1, 3) , (3.132)

often also referred to as the left-squashed S7.2 Note that there are two other embeddings of
USp(4)× SU(2) ⊂ SO(8), related to (3.132) by triality. The embedding

8s → (5, 1)⊕ (1, 3) , (3.133)

gives rise to the right-squashed S7, with the same metric as (3.132), but different sign of flux,
yielding a non-supersymmetric AdS4 vacuum [137]. Finally, the embedding

8v → (5, 1)⊕ (1, 3) , (3.134)

does not give rise to an Einstein space, and hence no AdS4 vacuum. Here we will mostly focus on
the supersymmetric, left-squashed AdS4 × S7 vacuum (3.132), but the results also allow to fully
determine the non-supersymmetric spectrum on the right-squashed S7.

E.1 The squashed S7 in ExFT

The round S7 has already been extensively studied in the ExFT framework. It is a generalised
Leibniz parallelisable background, whose twist matrix U consists of an SL(8) ⊂ E7(7) matrix [145,
146]. As a Freund-Rubin solution, the generalised vielbein of the S7 solution lives on the coset
space

SL(8)
SO(8)

⊂
E7(7)

SU(8)
, (3.135)

which contains precisely the right degrees of freedom to capture a 7-dimensional internal met-
ric and 6-form potential. Explicitly, a general Freund-Rubin solution is described a generalised
vielbein of the form

UFR = exp[−6 α ω̊ ζnTn]

(
ω̊3/4 0

0 ω̊−1/4 e̊m
i

)
∈ SL(8) , (3.136)

where e̊m
i is the vielbein on the internal seven-dimensional space, ω̊ ≡ det e̊m

i, and ζn is a vector
field with ∇̊nζn = 1 . The Tn are the generators which extend gl(7) to sl(8), and α is a constant re-
lated to the seven-form flux of the solution. In our conventions, the round S7 solution corresponds
to a sphere of radius 1, and α = 1 . Upon embedding SL(8) ↪→ E7(7), the generalised vielbein is

2Here, we use standard triality conventions, in which theN = 8 gravitinos transform in the 8s and the round S7 sphere
harmonics in symmetric tensor products of the 8v.
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related to the generalised metric of (2.77) as M = UUT . The twist matrix describing the consistent
truncation around the S7 background is explicitly given by [145, 146]

Ům
a(Y) =

(
ω̊3/4 (Y a − 6 α ζn∂nY a)

ω̊−1/4 ∂mY a

) ∣∣∣∣∣
α=1

∈ SL(8) , m = {0, m} , a = {1, . . . , 8} , (3.137)

in terms of the fundamental sphere harmonics Y aY a = 1. It differs from (3.136) by an SO(8)
rotation from the right, such that consistently ŮŮT = M = UUT . The scale factor ρ is given by
ρ = ω̊−1/2 . This twist matrix satisfies (3.94) with constant intrinsic torsion.

We will now give a similar ExFT description of the squashed S7. First of all, since the topology
is the same as the round S7, the squashed S7 is also a generalised parallelisable background, i.e.
it can be described by a globally defined E7(7) twist matrix. Moreover, since the squashed S7 is a
Freund-Rubin vacuum, by the argument above, the twist matrix should again be an SL(8) ⊂ E7(7)
element. Finally, the twist matrix must be a continuous deformation of the one corresponding to
the round S7, and the deformation must preserve USp(4)× SU(2), see (3.132).

Let us thus consider the decomposition E7(7) → SL(5)× SL(3)×R+, such that the isometry of
the squashed S7 is embedded as the compact subgroup USp(4)× SU(2) ⊂ SL(5)× SL(3). Under
this decomposition, the E7(7) adjoint representation branches as follows

+3 (5, 1) [0, 1, 0]

+2 (5, 3) [0, 1, 2]

+1 (10, 3) [2, 0, 2]

0 (1, 1)⊕ sl(5)⊕ sl(3) [0, 0, 0]⊕ [2, 0, 0]⊕ [0, 2, 0]⊕ [0, 0, 2]⊕ [0, 0, 4] (3.138)

−1 (10, 3) [2, 0, 2]

−2 (5, 3) [0, 1, 2]

−3 (5, 1) [0, 1, 0]

where the vertical axis labels the R+ charge of the representations. The last column col-
lects the USp(4) × SU(2) representation content described by their Dynkin labels. To construct
USp(4)× SU(2)-invariant deformations, we consider linear combinations of the E7(7) generators
which depend on the S7 coordinates

c(y)α Tα = ∑
Σ

cα,Σ YΣ Tα , (3.139)

with the scalar harmonics YΣ on the round S7. These harmonics combine into the tower of repre-
sentations

∑
n
[n, 0, 0, 0]SO(8) →∑

n,q
[n− 2q, q, n− 2q]USp(4)×SU(2) , (3.140)

under SO(8) and USp(4)×SU(2), respectively. Combining this expansion with the decomposition
(3.138) shows four USp(4) × SU(2) invariant combinations in (3.139): one at KK level n = 0,
coming from the [0, 0, 0] generator, two at KK level n = 2, coming from the noncompact generators
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in the [2, 0, 2] and [0, 1, 0], and one at KK level four from the generator in the [0, 2, 0]. Closer
inspection shows that only the generators in the [2, 0, 2] and [0, 1, 0] belong to the sl(8) subalgebra
of (3.135) corresponding to Freund-Rubin configurations.3 We can thus construct a two-parameter
family of SL(8) twist matrices, interpolating between the round S7 and the squashed S7. We choose
to parametrise them as

U(α, η) = Ů(α) eη T(5,1)(Y) , (3.141)

with Ů(α) from (3.137), however with free flux parameter α, and η an extra parameter associated
with the generator T(5,1)(Y), which denotes the USp(4) × SU(2) invariant contraction of non-
compact generators in the [0, 1, 0] in (3.138) with the round S7 harmonics. Apart from the twist
matrix for the round sphere U(1, 0), the intrinsic torsion (3.95) associated to (3.141) depends on the
S7 coordinates. The field equations of D = 11 Supergravity for this background can be expressed
in terms of the intrinsic torsion as (3.126) and turn out to be identically satisfied for the values

{η = 0 , α = ±1} ,
{

η = −1
2

log 5 , α = ±3
5

}
. (3.142)

It is straightforward to verify that the internal seven-dimensional metric obtained from (3.141)
is an Einstein metric precisely for these values of the parameters. The first solution in (3.142)
describes the round sphere and its skew-whiffed counterpart, obtained by flipping the sign of the
seven-form flux. The second solution in (3.142) describes the left- and right-squashed spheres.
With the Killing vector fields on the round sphere given by Kab

m = 2Y[a∂mYb] (where the vector
index on the r.h.s. is raised with the round S7 metric), the above generalised vielbein induces the
following explicit metric

gmn
(η) =

1
2
Kab

mKab
n +

1
8
(e−2η − 1) Γab

ij Γcd
ij Kab

mKcd
n , (3.143)

on the squashed sphere. Here, the Γab are the SO(8) Γ matrices, with spinor indices i, j running
over the range {1, 2, 3}, in accordance with the breaking (3.132).

E.2 The Kaluza-Klein spectrum on the left-squashed sphere

We can now use the methods outlined in section 3.D to compute the full Kaluza-Klein spectrum
of the squashed S7. Since the squashed S7 can also be described as the coset space

USp(4)× SU(2)
SU(2)× SU(2)

, (3.144)

the KK spectrum can also, in principle, be computed using group theory techniques [114]. How-
ever, because the squashed S7 is not a symmetric space, the resulting procedure is still rather intri-
cate, although many partial results have been collected over the years [141, 148–152]. In particular,
while the set of potential mass eigenvalues of all different bosonic KK towers has been analysed
to some extent (and is complete as we shall show), the traditional Kaluza-Klein computational
scheme struggles to assign the eigenvalues with possible multiplicities to the correct eigenstates.

Here, we will determine the full KK spectrum on both, left- and right-squashed S7 by evaluat-

3It is important to note that this Freund-Rubin sl(8) does not fully contain the sl(5)⊕ sl(3) subgroup appearing at zero
charge in (3.138).
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ing the ExFT mass formulas. This straightforwardly provides not only the mass eigenvalues but
also the corresponding eigenstates and multiplicities. In order to diagonalise the differential oper-
ators (3.112), (3.121), (3.128), we evaluate them on general polynomials in the fundamental round
harmonics Y a. In contrast to previous ExFT computations based on [99, 116], the y-dependence
of the intrinsic torsion computed from (3.141), thus of the coefficients in the mass operators, in-
duces a level mixing for the mass eigenstates. I.e. the action of the mass operators on a given
polynomial of harmonics does not preserve the order of the polynomial. However, the symmetry
group USp(4)× SU(2) is still large enough to keep the problem manageable. In particular, the fact
that the tower of harmonics (3.140) does not carry any non-trivial multiplicities implies that any
given representation appears only a finite number of times in the full KK spectrum. In order to
determine its mass eigenvalues, it is thus sufficient to evaluate the corresponding mass operator
on a sufficiently large polynomial of harmonics after projection onto the relevant representation.
The computation can be further reduced by further projecting the polynomial onto highest weight
states of USp(4)× SU(2). Concretely, we have pushed the computation up to Kaluza-Klein level
n = 8 which together with the underlying supersymmetry is sufficient to extract the generic struc-
ture.

In the following, we summarise our results as well as details allowing us to match the results
of [141, 148–152]. We start with the left-squashed sphere, for which the states organise into long
N = 1 supermultiplets. A generic long multiplet L[J, ∆] is identified by the (space-time) spin J
and the conformal dimension ∆ of its superconformal primary. The conformal dimension of the
primary is bounded by ∆ > J + 1. The long multiplets with fields of spin no higher than 2 consist
of the following Supergravity fields:

L[ 3
2 , ∆] : ψµ

Q−→ gµν ⊕ Aµ
Q−→ ψµ ,

L[1, ∆] : Aµ
Q−→ ψµ ⊕ λ

Q−→ Aµ ,

L[ 1
2 , ∆] : λ

Q−→ Aµ ⊕ ϕ
Q−→ λ ,

L[0, ∆] : ϕ
Q−→ λ

Q−→ ϕ ,

(3.145)

where gµν denotes a spin-2 field, ψµ denotes a spin-3/2 field, Aµ denotes a spin-1 field, λ denotes
a spin-1/2 field and ϕ a scalar. In addition, the spectrum contains short multiplets A1[J] with
∆ = 1 + J, which carry the gauge fields. These are

A1[
3
2 ] : ψµ

Q−→ gµν ,

A1[
1
2 ] : λ

Q−→ Aµ .
(3.146)

The entire masse spectrum organises into a sum of long multiplets⊕
L[J, ∆]⊗ [p, q, r] , (3.147)
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in the different USp(4) × SU(2) representations [p, q, r]. Each such multiplet comes with a cer-
tain multiplicity. Remarkably, we find that the conformal dimensions of all these multiplets are
captured by the universal formula

∆J,s = 1 +
5
3

s +
1
3

√
(3J + 2s2)2 + 5 C3 , (3.148)

in terms of the spin J and the combination

C3 = Cp,q + 3 Cr , (3.149)

of the USp(4) and the SU(2) Casimir operators

Cp,q =
1
2

(
p2 + 2 q2 + 4 p + 6 q + 2 p q

)
, Cr =

1
4

r(r + 2) . (3.150)

The parameter s ∈ 1
2 Z in (3.148) is an additional label that organises the spectrum and counts the

multiplicities. To present the spectrum in compact form, we use the following notation

L[J]⊗{s1, s2, . . . , sp} ≡
p⊕

i=1

L[J, ∆J,si ] , (3.151)

with conformal dimensions ∆J,s given by (3.148). Remarkably, for all but a handful of small repre-
sentations, s in fact appears like the R+ ⊂ SL(2) charge of a full SL(2) representation. Accordingly,
we use the notation

L[J]⊗[S] ≡ L[J]⊗{−S,−S + 1, . . . , S} . (3.152)

Let us take as an example the states in a [k, q, k] of USp(4)× SU(2) for generic values of k, q (i.e.
k > 1, q > 1). The KK spectrum exhibits one spin-2 state, 9 vectors and 16 scalar fields in this
representation. They turn out to fall into 13 N = 1 supermultiplets which in the notation (3.152)
take the form

[k, q, k]k>1,q>1 : L[ 3
2 ]⊗[0] ⊕ L[1]⊗[ 1

2 ] ⊕ L[ 1
2 ]⊗[

1
2 ⊗

1
2 ] ⊕ L[0]⊗[ 1

2 ⊗ 1] . (3.153)

Similarly, the supermultiplets in the other generic towers of USp(4)× SU(2) representations can
be summarised as

[k, q, k + 2]k>0,q>1 & [k + 2, q, k]k>0,q>0 : L[0]⊗[ 1
2 ] ⊕ L[1]⊗[ 1

2 ] ⊕ L[ 1
2 ]⊗[

1
2 ⊗

1
2 ] ,

[k, q, k + 4]q>1 & [k + 4, q, k] : L[ 1
2 ]⊗[0] ⊕ L[0]⊗[ 1

2 ] .
(3.154)

Translating the conformal dimensions into Supergravity masses, we find that all mass eigenvalues
fit into the list of potential eigenvalues identified in [141, 148–152]. Seemingly missing eigenvalues
on that list are explained by non-trivial multiplicities arising in the expansion of (3.153), (3.154).
For vector fields, and sufficiently large values of k and q, the masses found in (3.153), (3.154) span
the entire list of [149, 151]. For scalar fields, the masses realised in the KK spectrum (3.153), (3.154)
fix all potential sign ambiguities in the general analysis. For small values of k and q, the general
structure of the spectrum degenerates, as spelled out in (3.155), such that only a subset of the
potential mass eigenvalues are realised.
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Before comparing the above method to the traditional one, we summarise the N = 1 super-
multiplets in the Kaluza-Klein spectrum on the left-squashed S7 which appear in USp(4)× SU(2)
representations with small Dynkin labels, such that some of the generic structures (3.153), (3.154)
degenerate. In particular, in some of these representation, the values of the label s do no longer
combine into full SL(2) representations, such that in these cases we revert to the notation of (3.151).
The full list of these supermultiplets is given by

[1, q, 1]q>1 : L[ 3
2 ]⊗[0] ⊕ L[1]⊗[ 1

2 ] ⊕ L[ 1
2 ]⊗[1] ⊕ L[0]⊗[ 3

2 ] ,

[0, q, 0]q>1 : L[ 3
2 ]⊗[0] ⊕ L[0]⊗[ 3

2 ] ,

[k, 1, k]k>1 : L[ 3
2 ]⊗[0] ⊕ L[1]⊗[ 1

2 ] ⊕ L[ 1
2 ]⊗[

1
2 ⊗

1
2 ] ⊕ L[0]⊗[ 3

2 ] ⊕ L[0]⊗{+ 1
2} ,

[k, 0, k]k>1 : L[ 3
2 ]⊗[0] ⊕ L[1]⊗{− 1

2} ⊕ L[ 1
2 ]⊗{0,+1} ⊕ L[0]⊗[ 3

2 ] ,

[1, 1, 1] : L[ 3
2 ]⊗[0] ⊕ L[1]⊗[ 1

2 ] ⊕ L[ 1
2 ]⊗[1] ⊕ L[0]⊗{− 3

2 ,+ 1
2 ,+ 3

2} ,

[1, 0, 1] : L[ 3
2 ]⊗[0] ⊕ L[1]⊗{− 1

2} ⊕ L[ 1
2 ]⊗{+1} ⊕ L[0]⊗{− 3

2 ,+ 3
2} ,

[0, 1, 0] : L[ 3
2 ]⊗[0] ⊕ L[0]⊗{− 3

2 ,+ 1
2 ,+ 3

2} ,

[0, 0, 0] : L[0]⊗{− 1
2 , 3

2} ⊕ A1[
3
2 ] ,

[k, 1, k + 2]k>0 : L[1]⊗[ 1
2 ] ⊕ L[ 1

2 ]⊗[1] ⊕ L[0]⊗[ 1
2 ] ,

[k, 0, k + 2]k>0 : L[1]⊗{+ 1
2} ⊕ L[ 1

2 ]⊗{−1, 0} , (3.155)

[0, q, 2]q>1 : L[1]⊗[ 1
2 ] ⊕ L[ 1

2 ]⊗[1] ,

[0, 1, 2] : L[1]⊗[ 1
2 ] ⊕ L[ 1

2 ]⊗{−1,+1} ,

[0, 0, 2] : L[1]⊗{+ 1
2} ⊕ A1[

1
2 ] ,

[k + 2, 0, k]k>0 : L[1]⊗[ 1
2 ] ⊕ L[ 1

2 ]⊗[1] ⊕ L[0]⊗{+ 1
2} ,

[2, q, 0]q>0 : L[1]⊗[ 1
2 ] ⊕ L[ 1

2 ]⊗[1] ,

[2, 0, 0] : L[1]⊗[ 1
2 ] ⊕ L[ 1

2 ]⊗{+1} ⊕ A1[
1
2 ] ,

[k, 1, k + 4] : L[ 1
2 ]⊗[0] ⊕ L[0]⊗{− 1

2} ,

[k, 0, k + 4] : L[0]⊗{− 1
2} .

Note that for the L[0]⊗{− 1
2}⊗ [0, 0, 0] multiplet, our formula (3.148) yields the value ∆ = 1

3 , which
lies below the unitary bound. This arises because KK spectroscopy strictly computes the mass
eigenvalues in the AdS bulk, whereas their translation into conformal dimensions via ∆(∆− 3) = m2L2

allows for two solutions. For this multiplet, the other choice of solution of ∆ gives the correct con-
formal dimension.4

This completes the full Kaluza-Klein spectrum.
It is instructive to compare the above results for the KK spectrum on the squashed spheres

to the results obtained in the traditional computational scheme [141, 148–152]. In that approach,
the eigenvalue spectra of the different internal Laplacian operators on the squashed sphere are
determined by the coset space techniques based on the representation (3.144) of the internal space.
These spectra are then combined with the universal formulas for mass operators appearing in
Freund-Rubin compactifications [141]. While extensive knowledge of the Laplacian eigenvalue
spectra has been accumulated in [141, 148–152], the assignment of these eigenvalues and their
multiplicities to specific mass eigenstates appears less straightforward in that approach.

4We thank Joel Karlsson for drawing our attention to this.
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Let us consider as an example the KK states in the [k, q, k] representation (for generic values
k > 1, q > 1) for the N = 1 left-squashed sphere. From (3.153), we find the multiplet structure

[k, q, k]k>1,q>1 : L[ 3
2 ]⊗[0] ⊕ L[ 3

2 ]⊗[
1
2 ] ⊕ L[ 1

2 ]⊗[
1
2 ⊗

1
2 ] ⊕ L[0]⊗[ 1

2 ⊗ 1] . (3.156)

Formula (3.148) yields the conformal dimensions of all fields. We may translate them into Super-
gravity masses by the standard D = 4 formulas

spin-0, 2 : ∆(∆− 3) = m2 ℓ2 ,

spin-1 : (∆− 1)(∆− 2) = m2 ℓ2 .
(3.157)

In our conventions, and with the twist matrix from (3.141) the AdS length ℓ for the squashed S7 is
given by ℓ2 = 5

72 . Evaluating the field content of the various supermultiplets in (3.156), we obtain
the following masses for the different spin-2 and spin-1 modes

∆ m2 L[J] #

gµν
3
2
+

1
6

√
81 + 20 C3 8 C3 L[

3
2
] 1

Aµ
3
2
+

1
6

√
81 + 20 C3 8 C3 +

144
5

L[
3
2
] 1

1
6
+

1
6

√
49 + 20 C3 8 C3 +

208
5
− 32

5

√
49 + 20 C3 L[1]⊗{− 1

2} 1

7
6
+

1
6

√
49 + 20 C3 8 C3 +

88
5
− 8

5

√
49 + 20 C3 L[1]⊗{− 1

2} 1

11
6

+
1
6

√
49 + 20 C3 8 C3 +

88
5

+
8
5

√
49 + 20 C3 L[1]⊗{+ 1

2} 1

17
6

+
1
6

√
49 + 20 C3 8 C3 +

208
5

+
32
5

√
49 + 20 C3 L[1]⊗{+ 1

2} 1

−1
6
+

1
6

√
49 + 20 C3 8 C3 +

280
5
− 40

5

√
49 + 20 C3 L[

1
2
]⊗{−1} 1

3
2
+

1
6

√
9 + 20 C3 8 C3 L[

1
2
]⊗{0} 2

19
6

+
1
6

√
49 + 20 C3 8 C3 +

280
5

+
40
5

√
49 + 20 C3 L[

1
2
]⊗{+1} 1

(3.158)

where we also list their multiplicities and the supermultiplets to which they belong. Comparing
to the previous results, we find that all the mass eigenvalues exhibited in (3.158) fit into and fully
span the list identified in [149, 151, 152] (up to an overall normalisation factor in the definition of
mass). On the other hand, the seemingly missing eigenvalue (of the operator ∆2 in the notation of
[151]) is precisely taken care of by the non-trivial multiplicity in the penultimate line of (3.158).

Similarly, we may extract the scalar masses from (3.156) as
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∆ m2 L[J] #

ϕ −1
6
+

1
6

√
49 + 20 C3 8 C3 +

136
5
− 8
√

49 + 20 C3 L[
1
2
]⊗{−1} 1

3
2
+

1
6

√
9 + 20 C3 8 C3 −

144
5

L[
1
2
]⊗{0} 2

19
6

+
1
6

√
49 + 20 C3 8 C3 +

136
5

+ 8
√

49 + 20 C3 L[
1
2
]⊗{+1} 1

−3
2
+

1
6

√
81 + 20 C 8 C3 +

648
5
− 72

5

√
81 + 20C3 L[0]⊗{− 3

2} 1

−1
2
+

1
6

√
81 + 20 C 8 C3 +

288
5
− 48

5

√
81 + 20 C3 L[0]⊗{− 3

2} 1

1
6
+

1
6

√
1 + 20 C 8 C3 −

32
5
− 32

5

√
1 + 20 C3 L[0]⊗{− 1

2} 2

7
6
+

1
6

√
1 + 20 C 8 C3 −

152
5
− 8

5

√
1 + 20C3 L[0]⊗{− 1

2} 2

11
6

+
1
6

√
1 + 20 C 8 C3 −

152
5

+
8
5

√
1 + 20C3 L[0]⊗{+ 1

2} 2

17
6

+
1
6

√
1 + 20 C 8 C3 −

32
5

+
32
5

√
1 + 20 C3 L[0]⊗{+ 1

2} 2

7
2
+

1
6

√
81 + 20 C 8 C3 +

288
5

+
48
5

√
81 + 20 C3 L[0]⊗{+ 3

2} 1

9
2
+

1
6

√
81 + 20 C 8 C3 +

648
5

+
72
5

√
81 + 20C3 L[0]⊗{+ 3

2} 1

(3.159)

Again, all these eigenvalues fit into the list of eigenvalues identified in [141, 148, 151] (up to an
overall normalisation factor and shift in the definition of scalar mass). Just as before, the seemingly
missing eigenvalues (of the operators ∆3, ∆L in the notation of [151]) are precisely taken care of
by the non-trivial multiplicities in the last column of (3.159). In that same notation of [151], the
eigenvalues of ∆3 pick a definite sign, fixing all the potential ambiguities.

Similar, one can extract the masses of all fields in the other representation towers (3.154), as
well as in the lower representations (3.155). In the latter, the general pattern of (3.158), (3.159),
degenerates and only some of the potential eigenvalues are realised, the explicit values follow
from the multiplet structure together with (3.148).

E.3 The Kaluza-Klein spectrum on the right-squashed sphere

The right-squashed sphere is obtained by flipping the sign of the seven-form flux of the solu-
tion. The precise relation between the spectra on the left-squashed sphere and its “skew-whiffed”
right-squashed counterpart can be inferred from the general results of [137, 141]. Combining this
with the explicit form of the left-squashed spectrum (3.153), (3.154), we may describe the pas-
sage from the left-squashed to the right-squashed spectrum multiplet by multiplet (of course the
right-squashed sphere breaks all supersymmetries, such that the resulting structure is no longer a
supermultiplet). In the following, we give the bosonic part of the spectrum for the right-squashed
sphere.

For all multiplets we find the following picture. First of all, the bosonic masses in all spin-2
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multiplets as well as in vector multiplets, i.e. L[ 3
2 ] and L[1] multiplets, remain unchanged. For the

bosonic states of the L[ 1
2 ] multiplets, the transition works as follows

L[ 1
2 ]⊗{−1} :

{
vector : ∆RS = ∆LS ,

scalar : ∆RS = ∆LS + 2|s|+ 1 ,

L[ 1
2 ]⊗{1} :

{
vector : ∆RS = ∆LS ,

scalar : ∆RS = ∆LS − 2|s| − 1 ,

(3.160)

while the bosonic states of L[ 1
2 ]⊗{0} remain unchanged. This is illustrated in Fig. 3.1.

L[ 1
2 ]⊗{−1} L[ 1

2 ]⊗{1}

LS RS LS RS

{
Aµ, ϕ

}
Aµ

ϕ

{
Aµ, ϕ

}
ϕ

Aµ

+3

-3
•

•

• • •

•

Figure 3.1: Shift patterns of the conformal dimensions of the bosonic states within L[ 1
2 ], as we go

from the left- to the right-squashed S7.

Between the left and right squashing, the scalar is shifted by±3 in the direction of sign(−s) . As
a result, in the case of the right squashing, the scalar and vector states which used to have the same
conformal dimension are now separated by ±3 in the right-squashed sphere, again depending on
the sign of s.

The L[0] multiplets behave similarly. First, there is always a scalar state, whose conformal
dimension is unchanged between the left and the right squashing. The other scalar state gets
shifted by ±3 depending on the sign of s. In order to identify which of the states gets shifted,
one notes that for the right squashing, the difference in the conformal dimension between bosonic
states is no longer 1 but changes to 2|s|+ 1 as for the L[ 1

2 ] multiplets. This can be summed up as
in Fig. 3.2.

Again, the conformal dimensions of half of the states are shifted by ±3 between the right and
left squashing, such that the conformal dimensions of the bosonic states from the same multiplet
now differ by an s dependent shift.

The shift patterns for all the multiplets and fields are summed up in the Figures 3.3, 3.4, 3.5
and 3.6.
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L[0]⊗{− 3
2} L[0]⊗{− 1

2} L[0]⊗{ 1
2} L[0]⊗{ 3

2}

LS RS

ϕ1

ϕ2

ϕ1

ϕ2

LS RS

ϕ1

ϕ2

ϕ1

ϕ2

LS RS

ϕ1

ϕ2

ϕ1

ϕ2

LS RS

ϕ1

ϕ2

ϕ1

ϕ2

+3 +4

+3 +2

-3 -2

-3 -4

•
• •

•

•

•
•

•

•
•

•
•

•

•
•

•
• •

•

•

Figure 3.2: Shift patterns of the conformal dimensions of the bosonic states within L[0], as we go
from the left- to the right-squashed S7.

L[ 3
2 ]⊗{0}

LS RS

−3

+3

{gµν, Aµ}
ψ1,µ

ψ2,µ

{gµν, Aµ}

ψ1,µ

ψ2,µ

•
•
•

•

•

•

Figure 3.3: Shift patterns of the conformal dimensions within L[ 3
2 ], as we go from the left- to the

right-squashed S7. Here, gµν is a graviton, Aµ a vector and ψµ a gravitino.
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LS RS

L[1]⊗{− 1
2}

Aµ

Aµ

{ψµ, λ}
Aµ

Aµ

λ

ψµ

+2

+4

•
•
•

•

••

•

•

L[1]⊗{ 1
2}

LS RS

Aµ

Aµ

{ψµ, λ}
Aµ

Aµ

λ

ψµ

-2

-4

•

•
•

•

•

•

•

Figure 3.4: Shift patterns of the conformal dimensions of the states within L[1], as we go from the
left- to the right-squashed S7. Here, Aµ are vectors, ψµ is a gravitino, and λ a fermion with spin 1

2 .
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Figure 3.5: Shift patterns of the conformal dimensions of the states within L[ 1
2 ], as we go from the

left- to the right-squashed S7. Here, Aµ is a vector, λ are fermions with spin 1
2 and ϕ is a scalar

field.
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2 and ϕ are scalar fields.
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E.4 Rational conformal dimensions and marginal deformations

Since the AdS4 vacuum only preserves N = 1 supersymmetry, all multiplets are unprotected, i.e.
they are either long or sit at the unitarity bound where they can recombine into long multiplets.
Still, we observe infinitely many rational conformal dimensions in the KK spectrum. In particular,
these arise from the following towers (in the notation of (3.151))

L[0]⊗{− 1
2 , 1

2} ⊗ [k, 1, k]k>1 :

{
∆ = 10+5k

6 ,

∆ = 20+5k
6 ,

L[1]⊗{− 1
2} ⊗ [k, 0, k]k>1 : ∆ =

8 + 5k
6

,

L[ 1
2 ]⊗{1} ⊗ [k, 0, k]k>1 : ∆ =

23 + 5k
6

,

L[1]⊗{ 1
2} ⊗ [k, 0, k + 2] : ∆ =

24 + 5k
6

,

L[ 1
2 ]⊗{−1} ⊗ [k, 0, k + 2] : ∆ =

9 + 5k
6

,

L[0]⊗{ 1
2} ⊗ [k + 2, 0, k] : ∆ =

22 + 5k
6

,

L[0]⊗{− 1
2} ⊗ [k, 1, k + 4] : ∆ =

22 + 5k
6

,

L[0]⊗{− 1
2} ⊗ [k, 0, k + 4] : ∆ =

20 + 5k
6

,

(3.161)

whose conformal dimensions are manifestly rational. More generally, we can study rational solu-
tions of (3.148). In order for the conformal dimension to be rational, this requires√

A + 70k + 25k2 + 60q + 20kq + 20q2 ∈ N , (3.162)

with A ∈ {1, 9, 49, 81}. In other words, we need to solve the following order two diophantine
equation5

A + 70k + 25k2 + 60q + 20kq + 20q2 − N2 = 0 . (3.163)

In order to get a feeling on general rational solutions of (3.162), we numerically plot integer so-
lutions of (3.162) in the (k, q) plane. The results are shown in Fig. 3.7. We can see for the val-
ues A = 1 and A = 49 lines emerging from the graph, whereas there are no such lines on the
graph A = 9 (and similarly for A = 81). As a consequence, we look for solutions of the form
q = ak + b, (a, b) ∈ Q2. Plugging this into (3.162) we find an order two polynomial in k, whose
discriminant ∆ must vanish. As ∆ is a function of a and b, we can solve the equation ∆ = 0 for a.
In order to have a ∈ Q we must find b such that

√
−(A− 65)(A + 20b(3 + b)) ∈ Q. For A = 81,

the number in the square root is always a negative number, which explains why we do not see any
line in the A = 81 plot. For A = 1 and A = 49, the first factor (A− 65) gives an exact square num-
ber and we must find b such that

√
A + 20b(3 + b) ∈ Q. The problem finally reduces to finding b

5Similar structures have been revealed by Gubser [153] in the KK spectrum on type IIB Supergravity on AdS5 × T1,1,
see also [154].
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such that A + 60b + 20b2 = y2, y ∈ Q, and substituting x = b− 3
2 , we must solve

A− 45 + 20x2 − y2 = 0 . (3.164)

This is a Pell equation, whose integers solutions can be found using Mathematica. However, we
are not only interested in integer solutions, but also in rational solutions of this equation. We must
solve y2 − 20 x2 = A− 45. In order to find solutions, we first solve what we will call the homoge-
neous Pell equation y2−D x2 = 1. It can be shown that rational solutions of the homogeneous Pell
equation can be written as (x, y) = ( t2+1

t2−1 , 2t
t2−1 ), t ∈ Q, t2 ̸= D. Solutions to the original Pell equa-

tion can eventually be found using a particular solution, and multiplying it by the homogeneous
solutions. Indeed, let (x0, y0) be a particular solution and (x, y) a solution to the homogeneous Pell
equation, then A− 45 = (y2

0 − Dx2
0)(y

2 − Dx2) = (x0x ± y0y)2 − D(x0y± y0x)2, allowing us to
generate families of solutions of the Pell equation. This method works as long as D is not a square
number. We also want to emphasise that this may not be all solutions of the Pell equation, as a
different particular solution may lead to a different family of solutions. We illustrate our findings
with the orange lines in Fig. 3.7 for the case A = 1 and A = 49.

Figure 3.7: In the first row of figures, the blue points give integer solutions to (3.162) for the special
values A = 1, 9, 49. In the second row, we superpose these plots with orange lines corresponding
to analytical solutions to the Pell equation (3.164) as discussed in the text.

Particularly interesting are the multiplets with marginal deformations. For the N = 1 left-
squashed sphere these are

L[0]⊗{− 3
2} ⊗ [0, 3, 0] , L[0]⊗{− 3

2} ⊗ [2, 1, 2] . (3.165)
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These are D-terms and preserve the N = 1 supersymmetry. We note that one of the mass-
less scalars preserves the USp(4) × SU(2) symmetry, while the second one breaks USp(4) to
SU(2)× SU(2) and preserves SU(2). For the right-squashed sphere, all massless scalars in (3.165)
turn massive. However, massive scalars from the following multiplets of the left-squashed sphere

L[ 1
2 ]⊗{1} ⊗ [2, 1, 0] , L[ 1

2 ]⊗{1} ⊗ [2, 0, 2] , (3.166)

become massless for the right-squashed sphere by the pattern displayed in Figure 3.5 above.
It would be very interesting to study whether any of these massless scalars for the left-/right-
squashed sphere can be integrated up to finite moduli.

F The squashed S7 : holographic RG flow

EXFTspectroscopy techniques have been applied in the previous section in order to get the full
mass spectrum on the left and right squashed spheres. We will now construct and analyze

the domain wall solution in 11d Supergravity connecting the N = 1, AdS4 × S7
squashed vacuum to

the N = 8, AdS4 × S7
round vacuum. This domain wall describes the holographic renormalization

group flow from an Sp(2) × Sp(1) symmetric UV fixed point to the SO(8) symmetric IR fixed
point. It breaks all supersymmetries which are (partially) restored at its endpoints.

F.1 Squashed sphere, S7 and domain wall in D = 11 Supergravity

We first briefly review the round and the squashed S7 vacua in d = 11 Supergravity language and
construct the interpolating domain wall solution. Both S7 backgrounds are Freund-Rubin solu-
tions of d = 11 Supergravity, preserving N = 8 and N = 1 supersymmetry, respectively [136].
The general ansatz for the d = 11 metric with an internal space S7 preserving Sp(2)× Sp(1) isome-
tries can be put into the form [155]

ds2 = e−7u ds2
(4) +

1
4

e2u

(
e3v
(

dµ2 +
1
4

sin2µ ∑
i

ω2
i

)
+

1
4

e4v ∑
i
(νi + cos µ ωi)

2

)
, (3.167)

with S7 size parameter u and squashing parameter v that are taken as scalar functions over the
four-dimensional space-time, and i = 1, 2, 3. The one forms ωi = σi − Σi, νi = σi + Σi, satisfy

dσi = −
1
2

εijk σj ∧ σk , dΣi = −
1
2

εijk Σj ∧ Σk . (3.168)

The 4-form flux for these solutions is of the form

Fµνρσ = Q e−21u εµνρσ , (3.169)

with conserved charge Q. The ansatz (3.167), (3.169) is, in fact, a consistent truncation of d = 11
Supergravity as shown in [155]. More precisely, plugging (3.167), (3.169), into the d = 11 field
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equations leads to field equations that are obtained from the d = 4 Lagrangian

|g|−1/2 L0
(4) = R(4) −

63
2

∂µu ∂µu− 21 ∂µv ∂µv−Vpot ,

Vpot = −6 e−9u+4v − 48 e−9u−3v + 12 e−9u−10v + 2 Q2 e−21u .
(3.170)

The parameter Q may be absorbed into a shift of u together with a rescaling of the d = 4 metric
gµν. In the following, we set Q = 3 .

Extremisation of the potential Vpot from (3.170) yields two critical points corresponding to
AdS4 × S7 solutions of d = 11 Supergravity, with the round and the squashed sphere located
at

round S7 : u = 0 , v = 0 , ℓround = 1
2 , Vpot = −24 ,

squashed S7 : u = u0 ≡ 5
42 ln 5− 1

6 ln 3 , v = v0 ≡ 1
7 ln 5 , ℓsquashed = 55/4

2·37/4 , Vpot = −20.0775 ,

(3.171)

and the respective AdS lengths given by ℓ =
√
− 6

Vpot
. With the standard ansatz for an interpolat-

ing domain wall solution

u = u(r) , v = v(r) , ds2
(4) = dr2 + e2A(r) ηij dxidxj , i, j = 1, 2, 3 , (3.172)

variation of (3.170) yields the equations

u′′ + 3 A′u′ = −6 e−21u − 12
7

e−9u−10v +
48
7

e−9u−3v +
6
7

e−9u+4v ,

v′′ + 3 A′v′ = −20
7

e−9u−10v +
24
7

e−9u−3v − 4
7

e−9u+4v ,

3 (A′)2 − 63
4

(u′)2 − 21
2

(v′)2 = −9 e−21u − 6 e−9u−10v + 24 e−9u−3v + 3 e−9u+4v .

(3.173)

The existence of a domain wall solution to these equations, interpolating between the two vacua
(3.171), was discussed in [156], and later questioned in [157]. Its holographic interpretation was
further elaborated in [158]. The domain wall represents a holographic renormalisation group flow
from an N = 1 superconformal UV fix point (dual to the squashed S7, located a r → +∞) to
an N = 8, SO(8) symmetric IR fix point (dual to the round S7, located a r → 0). Note that the
flow equations (3.173) are invariant under a shift of r, which allows us to set the origin at r = 0.
Moreover, the discussion on which point is the UV and which is the IR can be decided by looking
at the values of the potential in (3.171). As the round sphere is below the squashed one, this makes
the former the UV point of the flow. Futhermore, it can be shown [156] it is stable under squashing,
hence the name of UV fix point.

Unlike most explicitly known domain wall solutions, there is no description of the flow equa-
tions connecting (3.171) in terms of first order differential equations and a superpotential. More
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precisely, [157] noted that the potential (3.170) can be written in terms of a superpotential W as

Vpot =
16
63

(∂uW)2 +
8

21
(∂vW)2 − 12 W2 ,

W = − 3√
8

e−9u/2
(

e2v + 2 e−5v − e−6u
)

.
(3.174)

However only the squashed S7 represents a critical point of this superpotential. With hindsight,
this is a manifestation of the fact that the Lagrangian (3.170) lives within an N = 1 four-scalar
truncation of d = 11 Supergravity [159], in which the round sphere appears as an N = 0 vacuum,
since all the N = 8 massless gravitinos around this vacuum are truncated out.6 Accordingly, the
round S7 does not correspond to a critical point of the associated superpotential (3.174).

Figure 3.8: The domain wall (blue line) in the scalar potential of (3.170). The green and the red
dots represent the round and the squashed sphere (3.171), respectively.

The interpolating domain wall solution can be found numerically, by solving equations (3.173)
and fine-tuning the initial conditions. To this end, it is instructive to first study the general asymp-
totic behaviour of the scalar fields. As usual, this is correlated with the conformal dimensions of
the associated dual operators, given by

Ou : ∆UV = 6 = ∆IR ,

Ov : ∆UV = 5
3 , ∆IR = 4 ,

(3.175)

for the scalar fields. Introducing the radial coordinate

ρ = e−2r/ℓsquashed , (3.176)

and expanding the flow equations (3.173) near the UV boundary ρ = 0, we find the following

6In the notation of [159], all this is on the k < 0 branch.
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asymptotic expansions of its general regular solution

u(ρ) = 1
6 ln 55/7

3 + ρ
8
6 Ω1,8 + ρ

9
6 Ω1,9 + ρ

10
6 Ω1,10 + · · ·+ ρ18/3 Ω1,18 + . . . ,

v(ρ) = 1
7 ln 5 + ρ

4
6 Ω2,4 + ρ

5
6 Ω2,5 + ρ

8
6 Ω2,8 + ρ

9
6 Ω2,9 + ρ

10
6 Ω2,10 + . . . ,

2A(ρ) = − log ρ + A8 ρ
8
6 + A9 ρ

9
6 + A10 ρ

10
6 + . . . .

(3.177)

Equations (3.173) fix all coefficients Ωi,j in the above expressions, except Ω2,4, Ω2,5, and Ω1,18
which source the others. Explicitly, we find that the coefficients of the lowest powers are given by

Ω1,8 = − 6
17 Ω2

2,4 , Ω1,9 = − 20
27 Ω2,4 Ω2,5 ,

Ω2,8 = − 15
4 Ω2

2,4 , Ω2,9 = − 9
2 Ω2,4 Ω2,5 ,

A8 = − 21
4 Ω2

2,4 , A9 = − 280
27 Ω2,4 Ω2,5 .

(3.178)

In (3.177), we have imposed regularity at ρ = 0, which sets to zero a potential ρ−
3
2 term in the u

expansion, allowed by equations (3.173). The general solution of (3.173), regular at ρ = 0, thus
carries three independent constants. It furthermore admits the scaling symmetry ρ → λρ, which
can be used to set Ω2,4 = −1 . For the interpolating solution, the remaining two coefficients are
then fixed by further demanding regularity at the other end of the flow ρ→ ∞.

Figure 3.9: Numerical solutions for the two scalar fields, as well as the derivative A′. The horizon-
tal green dashed line represent the asymptotic values of the various fields. The UV boundary is
located at r → ∞, the IR boundary is at r → −∞.
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Imposing regularity at both ends of the flow, we have solved equations (3.173) numerically,
and plot the result in Figures 3.8, 3.9 . As expected, the solution is of kink type for the scalar fields
u, v, as well as for the derivative ∂r A . In particular, with Ω2,4 = −1, we find for the coefficient
Ω2,5 the approximate numerical value

Ω2,5 ≈ −1.4 . (3.179)

In Figure 3.10, we plot the asymptotics of the scalar fields, which confirms the UV expansion
(3.177), and in particular the fact that the leading coefficient Ω2,4 is non-vanishing. This is the
expected power-law behaviour

v(ρ)− v0 ∝ ρ
3−∆

2 , (3.180)

consistent with the interpretation that the holographic dual of this domain wall solution is an oper-
ator deformation (rather than a vev) of the UV CFT [113, 160], by a relevant operator of conformal
dimension ∆UV = 5

3 .

− ℓsquashed
2 log(u − u0)

− ℓsquashed
2 log(v − v0)

ℓround
2 log v

ℓround
2 log u

− ℓsquashed
2 log(u − u0)

− ℓsquashed
2 log(v − v0)

ℓround
2 log v

ℓround
2 log u

Figure 3.10: Asymptotic behavior of the numerical solution. In the UV (r → ∞), the green dashed
line have respectively a slope of 4

3 for u and 2
3 for v. This matches the asymptotic expansion (3.177).

In the IR (r → −∞), the green dashed line have respectively a slope of 1 for u and 1
2 for v. This

matches the asymptotic expansion (3.181).

Similarly, one can work out the asymptotic behaviour in the IR. With the new radial variable
ρ̃ = e2r/ℓround , the expansion of a general solution of (3.173), regular at the IR boundary ρ̃ = 0, is
given by

u(ρ̃) = ω1,2 ρ̃ + ω1,3 ρ̃3/2 + ψ1,3 ρ̃3/2 log ρ + ω1,4 ρ̃2 + . . . ,

v(ρ̃) = ω2,1 ρ̃1/2 + ω2,2 ρ̃ + ω2,3 ρ̃3/2 + ω2,4 ρ̃2 + ψ2,4 ρ̃2 log ρ + . . . ,

2A(ρ̃) = log ρ̃ + Ã2 ρ̃ + Ã3 ρ̃3/2 + Ã4 ρ̃2 + . . . ,

(3.181)

in accordance with the IR conformal dimensions (3.175). Here, imposing regularity at ρ̃ = 0 has
set to zero two of the free coefficients of the general solution of (3.173). All other coefficients in the
expansion (3.181) are then determined in terms of the remaining two free coefficients ω1,3, ω2,1,
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e.g.

ω1,2 = 3
2 ω2

2,1 , ψ1,3 = 11 ω3
2,1 , ω1,4 = − 15525

56 ω4
2,1 ,

ω2,2 = − 11
2 ω2

2,1 , ω2,3 = 5261
168 ω3

2,1 , ω2,4 = − 3
2 ω2,1ω1,3 − 10583

56 ω4
2,1 , ψ2,4 = − 33

2 ω4
2,1 ,

Ã2 = − 21
4 ω2

2,1 , Ã3 = 154
3 ω3

2,1 , Ã4 = − 27081
64 ω4

2,1 .
(3.182)

Again, the leading terms are confirmed by the plots of the numerical solution in Figure 3.10 .
Regularity at the UV end of the flow finally fixes ω1,3 as a function of ω2,1. From the above
numerical domain wall solution, we find the approximate value

ω1,3

(ω2,1)
3 ≈ −239 , (3.183)

for the combination invariant under the scaling symmetry ρ̃→ λρ̃ .

F.2 Generalised parallelisation of the domain wall in ExFT

a Background and domain wall in ExFT

In this section, we will identify the AdS4 × S7
squashed background and the domain wall (3.167)

within ExFT, i.e. within the duality-covariant formulation of d = 11 Supergravity. This allows us
to construct consistent truncations around this vacuum, just as we did in section 3.E.1, as well as
to compute the quadratic couplings of Kaluza-Klein fluctuations around the domain wall back-
ground in section 3.F.3 . All a lot of things that are going to be said in this section are similar to
what is in section 3.E.1 .

The generalized vielbein is defined here as

U ≡ exp
[

Aklmnpq tklmnpq
(+4)

]
exp

[
Akmn tkmn

(+2)

]
UGL(7) , (3.184)

i.e. as a coset representative of E7(7)/SU(8) in a particular triangular gauge. Here, UGL(7) ∈ GL(7) ⊂ E7(7)
is the internal block of the 11D vielbein (up to some power of its determinant), while Akmn and
Aklmnpq denote the internal components of the d = 11 three-form and six-form, respectively, with
k, l, m = 1, . . . , 7. The t(+n) refer to the E7(7) generators of positive grading in the algebra decom-
position

e7(7) −→ 7′−4 ⊕ 35−2 ⊕ gl(7)0 ⊕ 35′+2 ⊕ 7+4 . (3.185)

All generators in (3.184) are evaluated in the fundamental 56 representation of E7(7). For a Freund-
Rubin background (i.e. a solution with Akmn = 0), the parametrization (3.184) only involves gener-
ators within the sl(8) subalgebra of e7(7) and the associated generalized vielbein can be represented
as an 8× 8 matrix. This twist matrix is the one given in (3.136)

UFR ∈ SL(8)
/

SO(8) . (3.186)
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For the round S7 with 7-form flux, we can rewrite (3.136) as

US7 = exp
[
−6 tlmnpqr

(+4) ζkω̊klmnpqr

] (ω̊3/4 0
0 ω̊−1/4 e̊m

i

)
∈ SL(8) , (3.187)

where e̊m
i is the S7 vielbein, ω̊klmnpqr is the associated volume form, ω̊ ≡ det e̊m

i, ζk is a vector
field with ∇̊kζk = 1 and t(+4) is evaluated in (3.187) in the 8 representation of SL(8).

b The squashed S7 family in ExFT

The consistent truncation
U(x, y) = Ů(y)V (x) , (3.188)

to the lowest KK multiplet contains the round S7 vacuum (corresponding to V (x) = I) but no
other solution of the family of squashed backgrounds (3.167). Rather, these squashings correspond
to excitations of scalars from higher KK levels. Specifically, the squashing (3.167) preserves an
Sp(2)× Sp(1) subgroup of isometries, which is embedded into the SO(8) isometry group of the
round S7 such that the fundamental representations decompose as

SO(8) −→ Sp(2)× Sp(1) ,

[1, 0, 0, 0]→ [1, 0, 1] , [0, 0, 1, 0]→ [0, 1, 0]⊕ [0, 0, 2] , [0, 0, 0, 1]→ [1, 0, 1] .
(3.189)

A scan of the scalar spectrum in (3.155) shows that the spectrum contains four scalar fields that
are singlet under Sp(2)× Sp(1), sitting at KK levels 0, 2, and 4, respectively, descending from the
SO(8) representations

ℓ = 0 : [0, 0, 2, 0]2 ,

ℓ = 2 : [0, 0, 0, 0]6 ⊕ [0, 2, 0, 0]4 ,

ℓ = 4 : [2, 0, 0, 2]6 .

(3.190)

The squashed background (3.167) requires a non-vanishing contribution from the [0, 2, 0, 0] at level
ℓ = 2 [141] and, thus, lives beyond the consistent truncation (3.188). This has been referred as the
space invader scenario in [141], which is a reflexion of the level mixing we already mentionned.
Another manifestation of this effect can be seen within the gravitini sector of the theory. Looking
at singlets gravitini in the spectrum of S7

squashed gives only one singlet at level ℓ = 1, responsible
for the N = 1 supersymmetry on the left-squashed sphere, and no singlets at level ℓ = 0

[0, 0, 0, 1] −→
Sp(2)×Sp(1)

1× [1, 0, 1] ,

[0, 0, 0, 1]⊗ [1, 0, 0, 0] = 1× [1, 0, 0, 1] + 1× [0, 0, 1, 0] −→
Sp(2)×Sp(1)

1× [0, 0, 0] + . . . .

(3.191)
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This is the reason for the non-supersymmetric flow : none of the original supersymmetries are
preserved and all original massless gravitini become massive on the squashed sphere and along
the flow ; one gravitini from a higher level becomes massless. This is illustrated in Figure 3.11.

Figure 3.11: Schematic representation of the space invader scenario for the first two levels of the
gravitini. All massless fields in the [0, 0, 0, 1] representation on S7

round become massive on S7
squashed,

and one massive field in [1, 0, 0, 1] at ℓ = 1 on S7
round becomes massless on S7

squashed.

The embedding of the scalar KK fluctuations according

U(x, y) = Ů(y)(1 + 2TαΦα(x, y)) = Ů(y)(1 + 2Tα ∑
Σ

ϕαΣ(x)YΣ(y)) (3.192)

allows us to explicitly construct different alternative truncations to other subsets of fields which in
particular allow to embed the solution (3.167). E.g. the truncation of the full KK spectrum keeping
all singlets under Sp(2)× Sp(1) defines a consistent truncation by the standard symmetry argu-
ment: by simple representation reasoning, singlet fields can never define non-vanishing sources
for non-singlet fields, it is thus consistent to truncate out all the non-singlet fields. This truncation
retains one field from the KK tower of gravitino fields, and thus corresponds to a d = 4, N = 1
theory [159], further discussed in [161]. In the scalar sector, the truncation to Sp(2)× Sp(1) sin-
glets only keeps the four scalar fields (3.190) and can be described in closed form by integrating
the corresponding fluctuations (3.192) to

U(x, y) = Ů(y) exp
[

∑
singlets

ϕi(x) sα,Σ
i TαYΣ(y)

]
. (3.193)

The index i here labels the four Sp(2)× Sp(1) singlets found in the tensor product of the 70 non-
compact generators of E7(7) and the scalar harmonics, thereby defining the constant tensor sα,Σ

i .
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The group theoretical structure underlying this truncation can be made more transparent by rep-
resenting the seven sphere as a coset space [162]

S7 =
G
H

=
Sp(2)× Sp(1)0

Sp(1)L × Sp(1)D
, (3.194)

where the different Sp(1) factors are embedded as

Sp(2) ⊃ Sp(1)L × Sp(1)R , Sp(1)D =
(
Sp(1)0 × Sp(1)R

)
diag , (3.195)

and for clarity we have added a ‘0’ subscript to the Sp(1) subgroup of (3.189). The seven sphere
(3.194) can be represented by an (Sp(2)× Sp(1))-valued coset representative S(y), such that the
infinitesimal action of the Sp(2)× Sp(1) isometry group on the coordinates is realized as

δΛS(y) = ΛS(y)− S(y)hΛ(y) , Λ ∈ sp(2)⊕ sp(1)0 , hΛ(y) ∈ sp(1)L ⊕ sp(1)D . (3.196)

The consistent truncation (3.193) can then be given in more compact form as

U(x, y) = Ů(y) S(y)W(x) S−1(y) , (3.197)

with the (Sp(2)× Sp(1)) coset representative S(y) and an E7(7) matrix W(x) defined to live in the
commutant of the denominator group H = Sp(1)L × Sp(1)D in E7(7), i.e.

W(x) h = h W(x) ∀ h ∈ sp(1)L ⊕ sp(1)D . (3.198)

Indeed, (3.196) and (3.198) imply that the factor S(y)W(x) S−1(y) in (3.197) is invariant under
the action of (Sp(2) × Sp(1)) up to a compact gauge transformation acting from the right. The
representation (3.197) of the consistent truncation immediately reveals the geometry of its scalar
target space, given by the commutant of H = Sp(1)L × Sp(1)D in E7(7)/SU(8) as

Mscalar =
SL(2)
SO(2)

× SL(2)
SO(2)

, (3.199)

a Kähler manifold parametrized by the four scalar fields from (3.190). Let me show what this
implies for us in this example. 7

The d = 4 theory can be obtained by plugging the ansatz (3.197) into the ExFT Lagrangian of
[84]. For the bosonic sector, parametrizing the matrix W by four scalar fields {u, v, c, χ}, this gives

7The same reasoning shows that the analogous construction based on the coset representation S7 = Sp(2)
/

Sp(1)L of the
seven sphere, yields an N = 4 consistent truncation to the Sp(2) singlets with scalar target space given by the commutant
of the denominator group Sp(1)L in E7(7)/SU(8):

Mscalar =
SL(2)
SO(2)

× SO(6, 3)
SO(6)× SO(3)

, (3.200)

as explicitly found in [159].
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rise to the four-scalar Lagrangian

|g|−1/2 L(4) = R(4) −
63
2

∂µu ∂µu− 21 ∂µv ∂µv− 3 e−6u−2v∂µc ∂µc− 1
2

e−6u+12v ∂µχ ∂µχ−Vpot ,

Vpot = −6 e−9u+4v − 48 e−9u−3v + 12 e−9u−10v − 72 e−15u−12v c2

− 12 e−15u+2v (c + χ)2 − 18 e−21u (1 + c2 + 2 c χ
)2 .

(3.201)

It is straightforward to verify that the intersection of the scalar target space (3.199) with the SL(8)
of (3.186) capturing the Freund-Rubin solutions corresponds to a further consistent truncation to
two scalar fields which precisely reproduces the result (3.170) of [155]. The N = 1 consistent
truncation to four scalars (3.201) has already been found in [159]. What is new in the present
construction is its explicit embedding (3.197) via a twist matrix in ExFT which allows us to apply
the universal mass formulas such as (3.129) to any background within this truncation. With the
frame given by

U = Ů S W S−1 , (3.202)

a general background will satisfy (3.94), but, in general, with y-dependent intrinsic torsion XAB
C(y).8

Thus, it is no longer generalised Leibniz parallelisable, but still generalised parallelisable. As a
consequence the mass formulae (3.129) still apply. This has been used in [DB1] in order to derive
the full Kaluza-Klein spectrum around theN = 1, AdS4 × S7

squashed vacuum. In the following, we
will extend this analysis to also derive quadratic couplings around the domain wall background
(3.167), or any other background of the consistent truncation.

F.3 Couplings around the domain wall background

We can efficiently describe the linearised fluctuations around the round S7 using its generalised
Leibniz parallelisation in ExFT. Similarly, using the generalised parallelisation of the family of
squashed S7’s of section 3.F.2.b, we obtain a simple expression of the linearised fluctuations around
the family of squashed S7 that describe the flow of section 3.F.1 . While this was used in section 3.E
([DB1]) to obtain the full Kaluza-Klein spectrum of the squashed S7, here we will further extend
the computation to obtain the quadratic couplings of the higher Kaluza-Klein modes around the
domain wall solution. These couplings encode all the information about the holographic 2-point
functions along the dual RG flow.

In computing the quadratic couplings, we have to choose a field basis for the Kaluza-Klein
fluctuations, or choice of “frame”. Two natural choices are to multiply the generalised viel-
bein of the 2-scalar truncation, U(x, y) of (3.197), from the right or left, leading to different ki-
netic terms for the scalars u, v and the Kaluza-Klein fluctuations. The kinetic term of ExFT is
given by Dµ MMN Dµ MMN with M = V V T , which can be expressed in terms of the current
Jµ(V )M

N = (V −1DµV )M
N as

Dµ MMN Dµ MMN = −2
(

Tr Jµ JT
µ + Tr Jµ Jµ

)
. (3.203)

Let us denote the Kaluza-Klein fluctuations by the matrix δ = exp[Tα ∑Σ ϕα,Σ(x)YΣ(y)]. Then, it

8Because of the scalar fields in W(x), the intrinsic torsion will also depend on x, but this is standard already in gauged
Supergravity. In particular, it does not interfere with the generalised (Leibniz) parallelisability.
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is easy to see that Jµ becomes

Jµ(V δ) = δ−1 Jµ(V )δ + Jµ(δ) ,

Jµ(δV ) = V −1 Jµ(δ)V + Jµ(V ) ,
(3.204)

depending on whether we multiply the generalised V with the Kaluza-Klein fluctuations from
the left or the right. We clearly see that multiplying V from the left leaves the kinetic term for
the background, i.e. the kinetic term of the scalars u, v, invariant, but introduces u, v factors into
the kinetic term of the Kaluza-Klein fluctuations. On the other hand, using V δ, we find that the
Kaluza-Klein fluctuations enter the kinetic terms of u, v and hence introduce corrections to the
kinetic terms of (3.201). In order to simply retain the normalisation (3.201), we will choose to
define our Kaluza-Klein fluctuations as multiplying the truncation V from the left. Note that this
differs from the conventions of the Kaluza-Klein spectrometry [99, 116, DB1], used in (3.192). The
quadratic couplings around the domain wall solutions are then straightforwardly obtained by
evaluating the action of the mass operator (3.129) in this basis.

Since the consistent truncation (and thus domain wall) preserves Sp(2)×Sp(1), different Sp(2)×Sp(1)
representations will not mix along the flow. Therefore, we can restrict our attention to any fixed
Sp(2) × Sp(1) representation to compute their quadratic couplings. As an illustration of our
method, we will evaluate the mass operator (3.129) on the scalars fields in the [0, 0, 0], the [0, 1, 2]
and [0, 2, 4] representations, which at the squashed S7 sit in the long multiplets (3.155) as follows

L[ 1
2 , ∆] : λ

Q−→ Aµ ⊕ ϕ
Q−→ λ ,

L[0, ∆] : ϕ
Q−→ λ

Q−→ ϕ .
(3.205)

a [0, 0, 0] sector

As a warm up, let us compute the quadratic couplings in the sector of scalar fields singlet under
Sp(2)× Sp(1), forming the bosonic sector of theN = 1 truncation of [159, 161]. This sector carries
four scalar field fluctuations whose basis we label as φi. The computation is straightforward:
we first compute the intrinsic torsion from (3.202), where W is evaluated on the domain wall
solution. Next we build the associated mass operator (3.129) and evaluate its action on the scalar
fluctuations in this sector. The final result for the quadratic fluctuations in this sector takes the
form

L[0,0,0] = −
1
2
(
∂µ φ1∂µ φ1 + ∂µ φ2∂µ φ2

)
− 1

2
e−6u−2v ∂µ φ3∂µ φ3 −

1
2

e−6u+12v ∂µ φ4∂µ φ4

−
(

54 e−21u + 16 e−9u−10v − 36 e−9u−3v − 2 e−9u+4v
)

φ2
1 − 12 e−15u+2v φ2

4

+ 2
√

6
(

9 e−21u − 4 e−9u−10v − e−9u+4v
)

φ1 φ2 − 3
(

3 e−21u + 2 e−9u−10v − e−9u+4v
)

φ2
2

− 2
(

3 e−21u + 6 e−15u−12v + e−15u+2v
)

φ2
3 − 4

√
6
(

3 e−21u + e2v−15u
)

φ3 φ4 , (3.206)

where u and v denote the domain wall solution constructed in section 3.F.1 above. One verifies that
at the endpoints of the flow, the Lagrangian (3.206) reproduces the masses of the scalar fields for
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the squashed and the round S7. In fact, since all four scalar singlets lie within theN = 1 truncation
(3.199), we could have arrived at this result directly by linearising the potential (3.201). It is a good
consistency check of our method, that the results indeed agree. In contrast, the scalar fluctuations
at higher KK levels do not lie within a consistent truncation and the respective couplings can only
be obtained by the mass operator (3.129), as we shall discuss in the following. We finally note that
in order to study the complete set of fluctuation equations in this singlet sector, one also has to
take into account the fluctuations of the metric around the AdS4 background.

b [0, 1, 2] sector

Let us now extend the computation to scalar modes that do not lie within the consistent truncation.
As an example, we choose the sector in the [0, 1, 2] representation of Sp(2) × Sp(1). This is the
representation of the vector fields that become massless on the round S7. As a consequence, the
associated scalar Goldstone modes on the squashed sphere become physical scalars on the round
sphere. There are in total eight scalar fluctuations ϕi transforming in the [0, 1, 2] representation.
Repeating the above computation in this sector leads to the Lagrangian

L[0,1,2] = −
1
2

e−7v (∂µϕ1∂µϕ1 + ∂µϕ2∂µϕ2
)
− 1

2
e−6u−9v ∂µϕ3∂µϕ3 −

1
2

e−6u−2v ∂µϕ4∂µϕ4

− 1
2

e−6u+5v (∂µϕ5∂µϕ5 + ∂µϕ6∂µϕ6
)
− 1

2
e−12u−4v ∂µϕ7∂µϕ7 −

1
2

e−12u+3v ∂µϕ8∂µϕ8

−
(

10 e−9u−10v − 2 e−9u−3v
)

ϕ2
1 − 4 e−15u−5v ϕ2

345 − 4
√

2
(

e−15u−5v + 3e−21u
)

ϕ6ϕ345

−
(

6 e−15u−5v + 4 e−15u+2v + 4 e−15u+9v + 6 e−21u
)

ϕ2
6 , (3.207)

with ϕ345 = ϕ3 + ϕ4 + ϕ5. The result shows that the potential only depends on three out of the
eight ϕi’s. Therefore, the remaining five fluctuations are Goldstone modes along the flow. It is
interesting to compare this with the squashed sphere endpoint. From equations (3.154) and (3.205)
we see that at the squashed S7 vacuum there are only two physical scalars in the [0, 1, 2] in the
spectrum. Indeed, plugging in the values of u and v for the squashed S7 (3.171), we see that ϕ1

additionally drops out of the potential at the squashed S7 endpoint, thus reproducing the expected
number of Goldstone scalars. Moreover, the potential (3.207) reproduces the masses of the scalar
fields at the squashed and round S7 points.

c [0, 2, 4] sector

As a last example, we study the six scalars ψi in the [0, 2, 4] representation. Their quadratic cou-
plings are obtained by the analogous computation and read

L[0,2,4] = −
1
2

e−7v ∂µψ1∂µψ1 −
1
2

e−6u−2v (∂µψ3∂µψ3 + ∂µψ4∂µψ4
)
− 1

2
(
∂µψ5∂µψ5 + ∂µψ6∂µψ6

)
− 1

2
e−6u+5v ∂µψ2∂µψ2 − 6 e−9u

(
3 e−10v + e−3v

)
ψ2

1 − 8 e−9u−10v
(√

5 ψ5 −
√

3 ψ6

)
ψ1

− 4 e−9u
(

e−10v + 5 e−3v + e4v
)

ψ2
5 − 4 e−9u

(
e−10v − e−3v + 3 e4v

)
ψ2

6

−
(

6 e−15u−5v + 8 e−15u+2v + 12 e−21u
)

ψ̃2
3 −

(
10 e−15u−5v + 8 e−15u+2v − 12 e−21u

)
ψ̃2

4

+ 4
√

15 e−15u−5v ψ̃3ψ̃4 , (3.208)
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where ψ̃3 = ψ3 − 1
2

√
3 ψ2, ψ̃4 = ψ4 − 1

2

√
5 ψ2 . The potential only depends on five out of the six

scalars. Therefore, one scalar field will be a Goldstone mode along the entire flow. Finally, as a
consistency check, the potential (3.208) again reproduces the masses at both of the endpoints.

d Comments

We have shown how the mass operator (3.129) allows to determine the quadratic couplings of
scalar fluctuations around the domain wall background constructed in section 3.F.1 . We have
restricted to spelling out three examples, but the method of course extends to all higher KK levels.
The resulting couplings (3.206), (3.207), (3.208), carry the full information for the computation
of the holographic 2-point functions along the dual RG flow. The corresponding computation
requires a careful setup of the holographic renormalisation procedure along the lines of [113, 163,
164], and will be interesting to take on in the future.

G Conclusion

TRHOUGHOUT this chapter, we have reviewed the state-of-the-art techniques for computing
spectra in a Kaluza-Klein scenario. We began by conducting direct calculations of spectra,

leveraging the power of group theory. This technique have been to a large extend used in the
passed to access vacua with a lot of symmetry. We illustrated this method by computing the
Kaluza-Klein spectrum around AdS4 × S7

round. Despite the success of this method, it encountered
challenges in computing spectra around vacua with lower symmetry. For instance, the complete
spectrum around AdS4 × S7

squashed, both for N = 1 and N = 0, remained incomplete.
In recent years, new techniques utilizing ExFT have been developed to compute spectra in sce-

narios with lower symmetry. This approach has proven to be highly effective and has successfully
been applied to a wide range of vacua across various dimensions as we showed in section (3.C).
We then used those techniques to give the full spectrum of IIB Supergravity on AdS5 × S5 back-
ground in the language of ExFT. However, these techniques heavily rely on having a consistent
truncation living in the maximally symmetric theory. This has posed a limiting factor for ExFT
techniques despite significant advancements.

In section (3.D), we showed how to compute the full Kaluza-Klein spectrum of Supergravity
compactifications which are not part of a consistent truncation, but are still generalised parallelis-
able. Examples of such vacua are deformations of compactifications within N = 8 Supergravity
by scalar fields which are not part of the N = 8 truncations. This includes the Supergravity duals
of RG flows ofN = 4 SYM orN = 8 ABJM triggered by single-trace operators. Thus, our formal-
ism can be used to compute the Kaluza-Klein spectrum for the end-point of such flows or even
along such flows.

As an application of the method, we computed the full spectrum of the AdS4×S7
squashed so-

lution of 11-dimensional Supergravity. This preserves only N = 1 supersymmetry (or N = 0
in the case of the right-squashed S7), and thus has no protected operators. This background is a
coset space, so that traditional techniques [114] can in principle be used. However, because the
squashed S7 is not a symmetric space, this is still rather difficult and had not been completed until
now, despite however many explicit results [141, 148–151]. Using our technology, we were able
to compute the full Kaluza-Klein spectrum, which is captured by the remarkably simple formula
(3.148), which depends only on the USp(4)× SU(2) representation of the multiplet, the spin of the
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superconformal primary and the charge under an additional R+ factor. Intriguingly, for all but
the smallest representations, this R+ charge appears to descend from representations of a bonus
SL(2), whose origin is mysterious.

The method we described here opens up the possibility of computing the Kaluza-Klein spec-
trum of many more interesting string compactifications which do not reside in a N = 8 consis-
tent truncation. This includes TsT transformations of vacua in N = 8 Supergravity, such as the
marginal deformations of AdS5 × S5, AdS4 × S7 or N = 1 AdS4 vacua of IIB string theory [135].
Our method might also apply to the cubic deformation of AdS5×S5, which has recently been de-
scribed implicitly in generalised geometry [165]. It would be interesting to see if this implicit
description may still be sufficient to apply our method here.

Finally, it would be interesting to better understand our results from a CFT perspective. It is
remarkable that the spectrum of the squashed S7, which only preserves N = 1 supersymmetry
and thus has no protected multiplets, displays such a simple structure. A particularly interesting
questions is the origin of the additional s charge (and its enhancement to a bonus SL(2) group)
which appears to organise the spectrum. Perhaps computing the spectrum along the RG flow from
the round S7 to the squashed one may shed some light into this.

Then in section (3.F) we revisited the problem of constructing a domain wall solution interpo-
lating between the N = 1 AdS4 × S7

squashed and N = 8 AdS4 × S7
round vacua of 11-dimensional

Supergravity. There is no supersymmetric domain wall preserving the Sp(2) × Sp(1) ⊂ SO(8)
isometry of the squashed S7, as can, for example, be seen by noting that the N = 8 gravitini of
the round S7 are not Sp(2)× Sp(1) singlets. Instead, we construct an explicit non-supersymmetric
flow by using a consistent truncation to 4-dimensional N = 1 Supergravity [159, 166] and solv-
ing the second-order flow equations numerically. Interestingly, within this N = 1 truncation, the
N = 8 round S7 appears non-supersymmetric, since its massless gravitini reside amongst the
higher KK modes.

Using the techniques developed in previous sections and [99, 116, DB1], we were able to com-
pute the quadratic couplings of KK fluctuations around the domain-wall solution (or any other
solution of the 2-dimensional truncation). This relied on the fact that the family of squashed S7

still admits a trivialisation of the generalized tangent bundle [DB1], allowing us to construct a
globally well-defined generalised frame V(x, y). However, the intrinsic torsion XMN

P(y) of this
generalised frame is not constant, reflecting the fact that the squashed S7 only admits consistent
truncations to N = 4 or N = 1 but not N = 8. We presented the quadratic couplings of some
low-lying KK scalars, but the same method can be applied to any other KK tower. This encodes
the information needed to extract all the holographic two-point functions along the flow.

This work opens up several natural directions for future investigations. One would be to un-
derstand the analytic structure underlying the quadratic couplings of section 3.F.3, similar to the
group-theoretic formula that appear in the KK spectra of vacua with sufficient isometries, e.g. [99,
120]. For this it would be useful to extend our computation of the quadratic couplings to other KK
towers. Another interesting question would be to push the calculations of section 3.F.3 to cubic
order, giving access to 3-point functions along the RG flow on the field theory side. These results
yield the relevant input for the holographic renormalisation procedure [113, 163, 164], that would
allow us to precisely obtain the field theory correlators along the flow.

Finally, our results here, together with [DB1], provide the first extension of the ExFT formal-
ism of Kaluza-Klein spectroscopy [99, 116] beyond generalised parallelisable spaces, i.e. vacua of
maximally supersymmetric consistent truncations. While the family of squashed S7’s still admits a
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generalised parallelisation, there is no longer anN = 8 consistent truncation that the solutions be-
long to. Hence our method here provides a first window into how to generalise the Kaluza-Klein
spectroscopy to more general truncations that break some supersymmetry.

All of these questions will allow us to address the ultimate question: how does having a con-
sistent truncation affect the structure of correlation functions in the holographic dual? We leave
these exciting research endeavours for the future.
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A Introduction

SO far, our discussions have only focused on Kaluza-Klein spectroscopy. This has strong rel-
evance in the AdS/CFT correspondence because masses obtained through KK spectroscopy

are related to conformal dimensions of operators in the dual CFT, see Table 2.6 . However, the
AdS/CFT correspondence states the equivalence between n-point couplings on the Supergrav-
ity side and correlators on the dual CFT not only for n = 2 but for all values of n (2.109). For
example, in the maximally symmetric AdS4 × S7 and AdS5 × S5 vacua of M-theory and String
Theory, couplings between Kaluza-Klein modes naturally arise in the compactification procedure.
These couplings are conjectured to encode the information about correlators of the ABJM 3d the-
ory and 4d N = 4 SYM [104], respectively. Therefore, using the AdS/CFT correspondence, we
can probe the dual CFT by computing objects on the Supergravity side. This guiding principle
hase been used and some cubic and quartic couplings have been computed on the Supergravity
side to access 3-point and 4-point correlators of local operators on the CFT side [108, 109, 111,
167–169]. However, these results are only for specific fields, and no general results are known
for n-point couplings, even for highly symmetric vacua. There are indeed 20-year-old conjectures
[170, 171] about the vanishing of extremal and near-extremal n-point couplings for the maximally
supersymmetric AdS5 × S5, AdS4 × S7, and AdS7 × S4 vacua of string and M-theory, whose proof
appears inaccessible from the Supergravity side. Furthermore, as we have already seen in (3.B.2),
computing masses for Kaluza-Klein modes was already a daunting task and often impossible
for backgrounds with few symmetries. Consequently, obtaining higher-order couplings by direct
calculation is even more complex. Even if difficult, this is doable and we will first review the tech-
niques used in calculations that have been done so far to compute the couplings in Supergravity.

The use of different variables has often led to new insights in physics, for example elucidating
new structures or simplifying computations. Similarly here, the reorganisation of fields to make
exceptional symmetries manifest in Supergravity section 2.D , has proven powerful in computing
Kaluza-Klein spectra around any vacuum that belongs to a maximally supersymmetric consistent
truncation of 10-/11-dimensional Supergravity and beyond, as shown in section 3.C and in sec-
tion 3.D. With this progress in computing the Kaluza-Klein mass spectrum, a natural question is
whether the ExFT formalism can help in computing n-point couplings of the Kaluza-Klein modes,
where even less is known.

In this chapter, we show how to extend the ExFT techniques to compute higher-order cou-
plings. This is done follwing [DB3]. We will show that the ExFT field basis (2.77) leads to a
streamlined computation for n-point couplings, simplifying the laborious computations arising
using traditional Supergravity techniques. These traditional approaches typically involve gauge
fixing, and field redefinitions that invoke new higher-derivative terms and generally lack much
structure. By contrast, in ExFT, we expand the two-derivative action (2.77) using a fluctuation
ansatz which can immediately be used for any vacuum of a consistent truncation of a maximally
supersymmetric consistent truncation. Not only is the computation simplified, ExFT also reveals a
universal structure underlying the n-point couplings, which for any vacuum of a maximally super-
symmetric consistent truncations are controlled by the same n-point invariant of scalar harmonics
of the maximally symmetric point. In particular, this implies that infinitely many couplings vanish
for any vacuum of the consistent truncation, even when allowed by group theory. For the max-
imally supersymmetric AdS5 × S5, AdS4 × S7 and AdS7 × S4 vacua, this allows us to prove the
conjectured vanishing of extremal and near-extremal n-point bulk couplings [170, 171]. Moreover,

112



B. CUBIC COUPLINGS IN SUPERGRAVITY : BRUTE FORCE

focusing on 3-point functions in E6(6) ExFT, we will obtain universal formulae that can be used
to easily compute the cubic couplings all Kaluza-Klein modes for any vacuum of a 5-dimensional
maximally supersymmetric consistent truncation.

This chapter is organized as follows. We start by first reviewing the old way of computing
cubic and quartic couplings in Supergravity. In section 4.C, we will start presenting the original
results of [DB3]. We extend the ExFT analysis to n-point couplings, where we show that they are
controlled by certain invariants of n scalar harmonics of the maximally symmetric points of the
truncations. We show how this causes infinitely many n-point couplings to vanish, despite being
allowed by the symmetry group of the vacua. In section 4.D, we specialise to cubic couplings
and work out the explicit universal formulae which are valid for any vacuum that belongs to a
5-dimensional N = 8 consistent truncation for several fields of the E6(6) ExFT. Finally in section
4.E, we apply our results to the N = 8 AdS5 × S5 vacuum of IIB string theory and prove the con-
jecture that extremal and near-extremal n-point couplings vanish. Moreover, we use our universal
formulae to compute cubic couplings for AdS5 × S5, comparing those that were already known
with the literature and presenting some new results.

B Cubic couplings in Supergravity : brute force

THE AdS/CFT correspondence postulates the equivalence between String/M theory on AdS
spacetime multiplied by a compact manifold and a conformal field theory known as the dual

CFT. An example of this conjecture is the proposed equivalence between Type IIB string theory
on AdS5 × S5 and d = 4 N = 4 supersymmetric Yang-Mills theory, or between M-theory on
AdS4 × S7 and the 3d ABJM theory. This correspondence is holographic, meaning the CFT lives
on the boundary of the AdS space in String Theory. The operators of the CFT are mapped to on-
shell bulk fields, whose asymptotic values interact with the CFT’s operators, effectively acting as
sources for the local operators of the CFT. Consequently, the partition function of String Theory
with fixed asymptotic values is identified with the partition function on the CFT side. This equiv-
alence enables us to establish a link between n-point couplings on the gravity side and correlators
on the dual CFT, where the sources are the boundary values of bulk fields. In the context of the
large N limit on the SYM side, where N is the N appearing in the gauge group SU(N) of the
gauge theory, the conjecture is refined: as the ’t Hooft coupling λ = gYM2N ≫ 1, String Theory is
replaced by its low-energy limit, Supergravity.

In the rest of this chapter, we will mainly focus on Type IIB Supergravity on AdS5 × S5 for
which the spectrum and field content is given in section 3.C.4 . We now work out some cubic
couplings for this theory by brute force calculation. This is done following [108, 109].

The approach to obtaining couplings shares similarities with what we have done in the calcu-
lation of mass spectra in section 3.B.2 . Initially, one seeks a solution to the equations of motion,
which establishes the background, here AdS5 × S5. Subsequently, fluctuations are introduced on
top of these background fields, and these fluctuations are expanded into harmonics of the internal
space. The computation involves to expand equations of motion to quadratic order. The effective-
ness of this procedure also relies on gauge fixing. The process starts with the equations of motion
which read for type IIB

RMN =
1
3!

FMM1 M2 M3 M4 FN
M1 M2 M3 M4 , (4.1)
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FM1 ...M5 =
1
5!

ϵM1 M2 M3 M4 M5 N1 N2 N3 N4 N5 FN1 N2 N3 N4 N5 , (4.2)

with M, N, · · · ∈ J0, 9K, RMN the 10d Ricci tensor, and F the five-form field strength, defined as

FM1 M2 M3 M4 M5 = 5∂[M1
CM2 M3 M4 M5]

, (4.3)

The equation of motion for the 4-form potential is a self-duality equation (4.2) for the field strength.
The background solution leading to AdS5 × S5 geometry is

g̊MNdxMdxN = 1
x2

0
(dx2

0 + ηµ̄ν̄dxµ̄dxν̄) + dΩ2
5 ,

Rµνρσ = m2(−g̊µρ g̊νσ + g̊µσ g̊νρ) ; Rµν = −4m2 g̊µν ,

Rmnpq = m2(g̊mp g̊nq − g̊mq g̊nq) ; Rmn = m24g̊mn ,

F̊µνρσλ = mϵµνρσλ ; F̊mnpqr = mϵmnpqr

(4.4)

with ηµ̄ν̄ the 4d Minkowski metric and dΩ2
5 the metric of S5. The convention for the indices in

the same as in section 3.B.2 with m, n, . . . = 1, . . . , 5 for internal indices and µ, ν, · · · = 1, . . . 5 for
external indices. m is here an overall factor which fixes the mass scale for the compactification,
and its inverse is the radius of both S5 and AdS5. In the following we set m = 1. Note that
this ansatz is the Freund-Rubin ansatz we already described earlier and used to find spontaneous
compactification of 11d Supergravity, and that we announced at the end of section 2.C.4 . The
existence of such solution was first discovered in [64] and further developped in [172].

The next step is to add fluctuations on top of this background. This gives

gMN(x, y) = g̊MN(x, y) + hMN(x, y) (4.5)

which we further decompose as
hmn = h((mn)) +

h2

5
g̊mn ; g̊mnh((mn)) = 0 ,

hµν = h′µν −
h2

3
g̊µν ; h′µν = h′((µν)) +

h′

5
g̊µν ; g̊µνh((µν)) = 0 .

(4.6)

and non trivial mixed factors hmµ. Finally, for the field strength, the fluctuations can be parame-
terized

F = F̊ + δF ; δF = 5∇[McNPQR] . (4.7)

At this stage we could expand the fluctuations in harmonics. Let us first impose the de Donder
gauge conditions

∇mhmn = 0 ; ∇mhmµ = 0 ; ∇mcmabc = 0 (4.8)

The most general expansions in harmonics is now given by
h′µν(x, y) = ∑

I1

h′I1
µν(x)Y I1 , hmn(x, y) = ∑

I14

hI14
µ (x)Y I14

mn ,

hµm(x, y) = ∑
I5

hI5
µ (x)Y I5

m , h2(x, y) = ∑
I1

hI1
2 (x, y)Y I1 ,

(4.9)
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for the metric part, and for the 4-form potential



cµνρσ(x, y) = ∑
I1

bI1
µνρσ(x)Y I1 ,

cµνρm(x, y) = ∑
I5

bI5
µνρ(x)Y I5

m ,

cµνmn(x, y) = ∑
I10

bI10
µν (x)Y I10

[mn] ,

cµmnp(x, y) = ∑
I5

bI5
µ (x)ϵmnp

qr∇qY I5
r ,

cµmnp(x, y) = ∑
I5

bI5(x)ϵmnpq
q∇rY I5 .

(4.10)

Here, we once again observe the emergence of tensorial harmonics, which are eigenfunctions of
the Hodge-de Rham operators for p-forms. Given that the internal space is S5, which can be rep-
resented by SO(6)

SO(5) , we can employ similar reasoning as before to identify harmonics. Specifically,

the scalar harmonics Y I1 will be completely traceless representations [k, 0, 0] of SO(6), akin to the
representations [k, 0, 0, 0] of SO(8) for S7. Decomposing the Einstein equations (4.1) and the self-
duality equations (4.2) will yield the 5-dimensional equations of motion. Linearizing the latter
equations will result in mass operators that need to be diagonalized, similar to the process de-
scribed in (3.B.2). This methodology was initially undertaken in [107], where the spectrum of IIB
Supergravity on AdS5 × S5 was derived. We provide the ExFT answer for the spectrum in section
3.C.4 . We now extend this techniques to compute the cubic couplings by going one order higher
in the fluctuations. While this procedure can be applied to scalars, vectors, and gravitons, our
focus here will be solely on scalars. This will be enough to sketch the main ideas. The field equa-
tions of interest for us that we obtain from (4.1) and (4.2), by injecting (4.9) and (4.10) and after
linearization are

(1
2

h
′ I1 − 8

15
hI1

2

)
∇(m∇n)Y I1 = 0(

∇µh
′µνI1 −∇ν

(
h
′ I1 − 8

15
hI1

2 + 8bI
)
− 8

4!
ϵνµ1µ2µ3µ4 bI1

µ1µ2µ3µ4

)
∇mY I1 = 0(

bI1
µ1µ2µ3µ4 + ϵµ1µ2µ3µ4µ5∇µ5 bI1

)
∇mY I1 = 0 .

(4.11)

We now do the following field redefenition
sI1 =

1
20(k + 2)

(hI1
2 − 10(k + 4)bI1)

tI1 =
1

20(k + 2)
(hI1

2 + 10kbI1).
(4.12)

With the definitions (4.12) and fields equations (4.11), sI1 and tI1 , which we will denote sI and tI

from now on, obey at linear level
∇µ∇µsI = k(k− 4)sI

∇µ∇µtI = (k + 4)(k + 8)tI .
(4.13)
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where ∇m∇mY I = −k(k + 4)Y I as been used. This allows to identify sI as being the chiral pri-
mary of the gravity multiplet and tI to be a descendent, see Table 2.5 , where sI are the scalars in
[k + 2, 0, 0](0, 0) representations and tI the scalars in the [k− 2, 0, 0](0, 0) representations. It is now
straighforward to find an action that leads to those equations, which reads

S(s) =
4N2

(2π)5

∫
d5x
√

gext ∑
I

32k(k− 1)(k + 2)
k + 1

(
− 1

2
∇µsI∇µsI − 1

2
k(k− 4)(sI)2

)
,

S(t) =
4N2

(2π)5

∫
d5x
√

gext ∑
I

32(k + 2)(k + 4)(k + 5)
k + 3

(
− 1

2
∇µtI∇µtI − 1

2
(k + 4)(k + 8)(tI)2

)
.

(4.14)
The normalization of this action can be fixed by comparing it with the full action of IIB Supergrav-
ity. We will skip this as it is only a technical details and the reader can refer to [108, 109].

To get the 3-point functions of the chiral primary sI we need to go one step further in the
expansion. In particular, we must find the quadratic corrections of (4.11) which implies to compute
RMN and FMPQRSFN

PQRS to next order in s. One can carry out this calculations, and after some
calculations one finds [173]

Rmn =
1
2
(Y +

1
10

Zℓ
ℓ)gmn +

1
4

Z(mn),

Y ≡V1V2∇ℓ(s1∇ℓs2) + U1V2∇µ(s1∇µs2) + W1V2∇µ(∇(µ∇ν)s1∇νs2),

Zmn ≡(3V1V2 + 5U1U2)(∇ms1∇ns2 + 2s1∇m∇ns2),

+ W1W2(∇m∇(µ∇ν)s1∇n∇(µ∇ν)s2 + 2∇(µ∇ν)s1∇m∇n∇(µ∇ν)s2)

4
4!

FmPQRSFn
PQRS =4gmn{X1X2(∇ℓ∇ℓs1∇k∇ks2 +∇µ∇ℓs1∇µ∇ℓs2)

− 8V1X2s1∇ℓ∇ℓs2 + 10V1V2s1s2} − 8X1X2∇m∇µs1∇µ∇µs2.

(4.15)

with
Vk =

5
3

Uk = 2k , Wk =
4

k + 1
, Xk = 1 , (4.16)

and si is a shortand for sIi Yi1 . Note that the i here is not the same anymore than the one in (4.9) for
example. Here it is just a label for the s field, whereas in (4.9) it denoted a particular representation
in which the harmonic tensor lies in. This leads for sI to the following corrected equations of
motion

(∇µ∇µ −m2
I1
)sI1 = ∑

I2,I3

{
DI1 I2 I3 sI2 sI3 + EI1 I2 I3∇µsI2∇µsI3 + FI1 I2 I3∇

(µ∇ν)sI2∇(µ∇ν)s
I3
}

(4.17)

with the functions D, E and F that can be found in [108] and are functions of U and V. At this stage,
we observe an important characteristic: through this direct calculation, we find that the couplings
involve derivatives of the fields. They can be eliminated through nonlinear field redefinition

sI1 = s′I1 + ∑
I2,I3

{
JI1 I2 I3 s′I2 s′I3 + LI1 I2 I3∇

µs′I2∇µs′I3
}

(4.18)
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with s′I the "old" fields and sI the new ones, J and L are given by

LI1 I2 I3 =
1
2

FI1 I2 I3 , JI1 I2 I3 =
1
2

EI1 I2 I3 +
1
4

FI1 I2 I3(m
2
I1
−m2

I2
−m2

I3
+ 8). (4.19)

With this, (4.17) now becomes

(∇µ∇µ − k(k− 4))sI1 = ∑
I2,I3

λI1 I2 I3 sI2 sI3 , (4.20)

GI1 I2 I3 = Normalisation× λI1 I2 I3

= a(k1, k2, k3)
128σ̃{( 1

2 σ̃)2 − 1}{( 1
2 σ̃)2 − 4}α1α2α3

(k1 + 1)(k2 + 1)(k3 + 1)
C I1 I2 I3

(4.21)

where σ̃ = k1 + k2 + k3, αi =
1
2 σ̃− ki; C I1 I2 I3 and a(k1, k2, k3) are the unique SO(6) invariant that can

be formed with those three representations and a normalisation, defined in (4.83). We introduced
GI1 I2 I3 because this is the quantity appearing in the Lagrangian. The normalisation in (4.21) is the
normalisation coming from the kinetic term of (4.14), so we can write

S(s) =
4N2

(2π)5

∫
d5x
√
−gext

[
∑

I

32k(k− 1)(k + 2)
k + 1

(
− 1

2
(∇µsI)2 − 1

2
k(k− 4)(sI)2

)
+ ∑

I1,I2,I3

1
3
GI1 I2 I3 sI1 sI2 sI3

] (4.22)

This provides the final answer for cubic couplings of s’s.
Let us note a number of important elements :

• This method has been successfully used to compute a number a cubic couplings in IIB Su-
pergravity on AdS5 × S5. On top of cubic couplings for sI , cubic couplings involving other
scalars, descendant of chiral primaries, but also vectors and graviton have been computed.

• Those results have been of tremendous importance in the AdS/CFT correspondance. Boot-
strapping methods have been developped [174] and one-loop corrections have been calcu-
lated [175–177] as well as two-loop [178]. Furthermore, gluon scattering in AdS backgrounds
has become feasible. A comprehensive examination of holographic correlators across a wide
range of SCFTs with non-maximal superconformal symmetry has been presented in [179].

• In a great effort, similar techniques have been used to carry out 4-point functions of scalars
in IIB AdS5 × S5 [168].

• This procedure has been conducted for other theories, such as d = 6, N = (2, 0) Super-
gravity on AdS3 × S3 [180] but also for 11d Supergravity on AdS4 × S7 and AdS7 × S4 [181–
183].

Despite the immense success of these techniques, it is important to note some limitations.
Firstly, the procedures involved are laborious. One must utilize various types of tensorial har-
monics, numerous field redefinitions are performed in order to diagonalize the mass operators
. . . The final field redefinition performed is nonlinear and aims at eliminating derivatives acting
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on scalar fields. These field redefinitions suggest that from the outset, the setup for studying the
couplings may not be appropriate, necessitating several changes of basis to ultimately arrive at
the correct set of fields. Additionally, aside from the a(k1, k2, k3) numerical factor and the C I1 I2 I3

invariant tensor in (4.21), the factors appear random, and no organizing principle seems to emerge.
In the remainder of this chapter, we aim to demonstrate how ExFT techniques can address

these questions. They provide a framework in which it appears more natural to study couplings
without the need for field redefinitions and offer robust and enriching structures that enable the
identification of important organizing principles.

C Exceptional Field Theory n-point couplings

C.1 Fluctuation Ansatz

CUBIC and higher-order, couplings of the lower dimensional Supergravity can be accessed us-
ing similar techniques as the ones used for Kaluza-Klein spectroscopy, reviewed above. To

obtain these n-point couplings, we need to extend the fluctuation ansatz of (3.55) by expanding
it to higher order. The key change comes from the scalar fluctuation Ansatz, which around any
vacuum of the consistent truncation, can be written as an exponential

MMN(x, y) = VM
A(x, y)VN

B(x, y) δAB ,

with VM
A(x, y) = UM

B(y)
(

exp
(

1
2 Tα ∑

Σ
YΣ(y)ϕα Σ(x)

))
B

A ,
(4.23)

since the generalised metric can be written in terms of the coset representative of
E6(6)

USp(8) as dis-
cussed above (4.23). For example, in order to identify the cubic couplings from the equations of
motion, we need its expansion to quadratic order in the fluctuations, given by

MMN(x, y) = UM
A(y)UN

B(y)
(

δAB + TαA
B ∑

Σ
YΣ(y) ϕα Σ(x)

+
1
2

TαβA
B ∑

Σ, Ω
YΣ(y)YΩ(y) ϕα Σ(x) ϕβ Ω(x) + . . .

)
,

(4.24)

where we used the notation for products of generators

TαβA
B = TαA

C TβC
B , (4.25)

that we will similarly use for higher products in the following. We recall from (3.55) that we have
chosen a gauge such that the sum over generators in the exponential (4.23) and the expansion
(4.24) only runs over the non-compact generators Tα, α = 1, . . . , 42, of E6(6).

Plugging the Ansatz (3.55), (4.23) into the equations of motion or the Lagrangian then gives
access to the n-point couplings.

C.2 Structure of n-point couplings

In section 3.C.3.a, we observed that the only action on harmoncis in the mass matrices comes from
the TA Σ

Λ matrices. Since these do not mix different KK levels, we immediately concluded that
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the mass eigenstates do not mix different KK levels (defined with respect to the round S5) either,
even though the remnant symmetry group of the vacuum might allow mixing.

We can apply the same reasoning to n-point couplings using any ExFT, not just that based on
E6(6), to find a powerful structure which implies that many couplings vanish, even though they
might be allowed by the symmetry group of the vacuum being studied. This is because also in
the n-point couplings, the fluctuation Ansatz (3.55), (4.23) implies that the only derivatives of the
scalar harmonics will come from the terms

LUA
YΣ = −TA Σ

Ω YΩ , (4.26)

and thus will simply give rise to the dressed TA Σ
Ω matrices. All other derivatives will necessarily

act on a twist matrix and give rise to the (dressed) embedding tensor

XAB
C = (V −1)A

M (V −1)B
N VP

C XMN
P . (4.27)

Therefore, we see that the only action on the scalar harmonics comes from the dressed TA Σ
Ω

matrices, which do not mix different KK levels, with the level notion defined with respect to the
SO(6) isometries of the round S5.

We can, therefore, see that the n-point couplings will schematically appear in the action as

G(ΦA1Σ1 , . . . , ΦAnΣn) ∼
∫

dω ΦA1Σ1 ΦA2Σ2 . . . ΦAnΣn
(

λA1A2 ...An ,Σ1Σ2 ...Σn
∆1∆2 ...∆n

)
Y∆1Y∆2 . . .Y∆n ,

(4.28)
where ΦAiΣi , i = 1, . . . , n denotes some generic KK excitation in a representationAi of USp(8) and
some representation of the 5-dimensional Lorentz group that we supressed and dω represents the
volume form of S5, while the n-point coupling is encoded in λA1A2 ...An Σ1Σ2 ...Σn

∆1∆2 ...∆n . In (4.28),
the only internal dependence is now carried by the KK harmonics Y∆1Y∆2 . . .Y∆n , whose integral
gives the n-point invariant

c∆1∆2 ...∆n =
∫

dω Y∆1Y∆2 . . .Y∆n . (4.29)

Since we can use the same scalar harmonics for any vacuum of the consistent truncation, cΣ1 ...Σn is
the same object for any vacuum. For example, for all vacua within the SO(6) gauged Supergravity
obtained by a consistent truncation on S5, the cubic cΣ∆Γ is the unique cubic SO(6)-invariant, up
to normalisation.

Thus, the n-point couplings take the form

G(ΦA1Σ1 , . . . , ΦAnΣn) ∼ ΦA1Σ1 ΦA2Σ2 . . . ΦAnΣn c∆1∆2 ...∆n

(
λA1A2 ...An ,Σ1Σ2 ...Σn

∆1∆2 ...∆n
)

. (4.30)

Crucially, because λA1A2 ...An ,Σ1Σ2 ...Σn
∆1∆2 ...∆n does not mix different KK levels, i.e. the Σi are the

same KK levels as ∆i, i = 1, . . . , n, this implies that c∆1∆2 ...∆n will vanish when cΣ1Σ2 ...Σn vanishes.
We immediately conclude that if the scalar harmonics of the n fields ΦAiΣi , i = 1, . . . n, do not yield
a non-vanishing n-point invariant cΣ1Σ2 ...Σn , then their n-point couplings will vanish. Importantly,
this vanishing of n-point couplings is controlled by scalar harmonics of the round sphere but holds
for all vacua of the consistent truncation. This, therefore, implies that infinitely many n-point cou-
plings vanish for vacua whose remnant symmetry group would have allowed such couplings. In
fact, as we will show in section 4.E.1, even for the round spheres, e.g. the maximally supersym-
metric AdS5 × S5, AdS4 × S7 and AdS7 × S4 vacua, our results imply that more couplings vanish
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than would be expected from the isometries of the round sphere. Instead, our results show that
extremal and non-extremal n-point couplings vanish, which was conjectured in [170, 171].

We see that having a consistent truncation not only implies that all the n-point couplings van-
ish between any n− 1 modes of the truncation and a mode that is not part of the truncation. In
addition, the consistent truncation leaves a remnant for all higher KK levels, whose n-point cou-
plings vanish if the KK levels, inherited from the round sphere, do not give a non-vanishing n-fold
invariant. This result hold for all consistent truncations to maximal gauged Supergravity, not just
those in five dimensions.

D Cubic couplings from E6(6) ExFT

D.1 Scalar cubic couplings

WE are now ready to explore the cubic couplings in detail using E6(6) ExFT and focusing on
vacua that can be uplifted from 5-dimensional maximal gauged Supergravity. The cubic

couplings of three scalar fields are obtained from the potential, expanding the scalar matrix M

(4.23) in the potential. As we discussed in section 4.C.2, the couplings will be quadratic in the
dressed embedding tensor XAB

C and the dressed TAΣ
Ω matrix. Thus, schematically, the cubic

result is given by

G(ϕαΣ, ϕβ∆, ϕγΓ) ∝ ϕαΣϕβ∆ϕγΓ (XXαβγΣ∆Γ + XTαβγΣ∆Γ +TTαβγΣ∆Γ
)

, (4.31)

where XX, XT and TT refer to terms that are quadratic in X, linear in X and T and quadratic
in T , respectively. The XX part of the result is simply the coupling between the scalars from
level 0 of the KK towers, and therefore can be obtained using 5-dimensional gauged Supergravity
without any ExFT analysis. However, for the couplings involving higher KK levels, we need the
XT and T T terms and thus the ExFT couplings.

While the naive cubic couplings come from plugging the fluctuation Ansatz (4.23) into the
ExFT potential, our fluctuation Ansatz still includes unphysical Goldstone modes. Since we are
not interested in these unphysical couplings, we can change the couplings involving Goldstone
fields in an effort to simplify the cubic coupling formulae. The Goldstones modes are encoded in
the Π matrix that was introduced earlier in (3.66)

Dµϕ = ∂µϕ + ΠAµ + quadratic . . . , (4.32)

and describes how the Goldstone scalars couple to massive vector fields. Adding corrections
projected with the Π matrix to the cubic couplings will not change the physical couplings, so that
we can harmlessly simplify the expressions using such terms.

We choose to add terms involving the Π matrices in such a way as to simplify the TT terms as
much as possible, analogously to what we did when simplifying the mass matrices in 3.C.3 . The
resulting TT term in (4.31) is then given by

TTαβγΣ∆Γ = TB Σ
ΛTA Λ

Ωc∆ΩΓ

(
6TγαβB

A − 1
2

TγB
Aκαβ

)
, (4.33)

120



D. CUBIC COUPLINGS FROM E6(6) EXFT

and the XT part given by

XTαβγΣ∆Γ =
1
6
TB Σ

ΛcΓ∆Λ

[
XAC

D
(
−6 T[αγ]D

CTβB
A − 6 TαD

CTβγB
A
)

− XBA
C
(

6 TβαγC
A +

1
8

κγβTαC
A
)]

.

(4.34)

Note that because (4.33) and (4.34) are contracted with three scalars in (4.31), the r.h.s. of (4.33)
and (4.34) should be viewed as symmetrised in the exchange of the pairs αΣ, β∆, and γΓ.

The XX part of the couplings in (4.31), which of the three parts is the longest and corresponds
to the 5-dimensional gauged Supergravity result, reads

XXαβγΣ∆Γ = cΣ∆Γ

[
XAB

C XDC
B
(

1
6

TβγαA
D +

1
6

κγαTβA
D
)

+ XAB
C XDE

F
(

3
8

δBE TαA
D TβγF

C +
37
72

δAD TαB
E TβγF

C

+
19
24

δCF TβB
E TαγA

D +
97
72

δAD TαF
C TβγE

B − 23
18

δAD δBE TβγαC
F
)]

.

(4.35)

Once again, because this term is multiplied by three scalars in (4.31), the r.h.s. of (4.35) should be
symmetrised in the exchange of αΣ, β∆, and γΓ.

Further simplification for embedding tensors in the 36 of USp(8)

We can significantly simplify the previous results by introducing additional assumptions. Recall
that the embedding tensor of 5-dimensional maximal gauged Supergravity transforms in the 351
representation of E6(6). When breaking E6(6) to its maximal compact subgroup USp(8), the 351
decomposes into 315⊕ 36. We are interested in exploring the implications of the embedding tensor
being solely in the 36. This arises, for instance, for the maximally supersymmetric AdS5 × S5

vacuum.

Let us start by examining the XT terms in (4.34). As we emphasised above, the multiplication
of (4.34) by three scalars in (4.31) implies that the r.h.s. of (4.34) should be symmetrised when
exchanging the index pairs αΣ, β∆, and γΓ. However, the contraction of T with a c-symbol in
(4.34) imposes a hook symmetry on the harmonic indices, since the c-symbol is invariant under
the action of T . As a result, the adjoint indices α, β, γ must also appear in the hook symmetric
fashion. Therefore, stripping the T term from (4.34), the remaining tensor ΞBαβγ must exhibit a
hook symmetry on the adjoint indices and, since it must be some USp(8)-invariant combination
of the dressed embedding tensor X, it must reside in the 36. Given these requirements, we find
that only one term remains in all of 4.34. By conducting a similar analysis on the XX-like terms in
(4.35), we arrive at a single remaining term. After calculating the relative coefficients, we obtain
the general formula for the cubic couplings of scalars for vacua where the embedding tensor is in
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the 36

G(ϕαΣ, ϕβ∆, ϕγΓ) ∝ ϕαΣϕβ∆ϕγΓ

[
− 1

6
cΣ∆ΓXAB

CXDC
B TβγαA

D

− TB Σ
ΛcΛ∆ΓXAC

D T[αγ]D
CTβB

A

+TB Σ
ΛTA Λ

ΩcΩ∆Γ

(
6 TγαβB

A − 1
2

TγB
Aκαβ

)]
.

(4.36)

D.2 Couplings involving spin-1

In this section, we will give the cubic couplings involving at least one vector field.

We begin with the cubic couplings between one vector and two scalar fields. These come from
the scalar kinetic term in the Lagrangian, which is given by

Lkin, scalar =
1

24
√
−ggµνDµMMNDνM

MN , (4.37)

where Dµ = ∂µ − LAµ
is the 5-dimensional derivative covariantised with respect to the ExFT

generalised diffeomorphisms. Since we are interested in vector-scalar-scalar couplings, we will
take gµν = g̊µν to be the background metric of AdS5 spacetime. By plugging in the fluctuation
Ansatz (3.55), (4.23) into (4.37), we find

G(A, ϕ, ∂ϕ) ∝ Aµ
AΣ
[
2 cΩΛΣXAB

C ∂µϕαΩ ϕβΛ Tγ̂
αβ Tγ̂C

B + 2 c∆ΛΣ ϕβΩ ∂µϕα∆ TA Ω
Λ καβ

− 12 cΛΩ∆ ∂µϕαΛ ϕβ∆ TB Σ
Ω Tγ̂

βα Tγ̂A
B
]

,
(4.38)

where T are the generators of E6, with α, β, . . . labelling the non-compact and α̂, β̂, γ̂ labelling the
compact indices of E6(6), i.e. respectively the 42 and 36 of USp(8) and we suppressed the indices
on A, ϕ and ∂ϕ on the l.h.s. for simplicity.

We now turn to couplings involving a vector field as well as 2-forms. They can be obtained by
inspecting the field equations for the field strength F , which is defined as

Fµν
M = 2∂[µAν]

M − 2A[µ
K∂KAν]

M + 10 dPLK dMNKA[µ
P∂NAν]

L + 10 dMNK∂NBµνK . (4.39)

The corresponding field equations are

D ⋆FM ∝ dMNK FN ∧ FK , (4.40)

given in differential form notation. Here ⋆ is the 5-dimensional Hodge dual, ∧ is the 5-dimensional
wedge operator andD is the ExFT covariantised 5-dimensional derivative operator, which in (4.40)
acts as an exterior derivative on FM on the l.h.s.
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Plugging in the fluctuation Ansatz (3.55) in the action, we find

G(A, B, B) ∝ Aµ
AΣ BνρB∆ BστCΓ ϵµνρστ

(
dADE dCFE dDBQTF

Γ
ΛTQ

∆
Ω cΣ

ΩΛ

− 1
10

dADE dCQE dGHDTQ
Γ

ΛXGH
B cΣ

∆Λ

− 1
10

dAED dBFD dEGHTF
∆

ΛXGH
C cΣ

ΛΓ

+
1

100
dADE dFQD dGHEXFQ

BXGH
C cΣ

Γ∆
)

.

(4.41)

Finally we work out the couplings of three vectors. There are couplings of type AA∂A, which
come from the kinetic term

Lkin, vec = −
1
4
√
−gMMNFµν MFµν

N , (4.42)

and are given by

G(A, A, ∂A) ∝ AµAΣ AνBΩ∂[µ Aν]
CΛ
(

2 cΣΛ∆TA Ω
∆δBC + 10 cΣ∆ΛdABDdFCDTF Ω

∆ + cΣΩΛX[AB]
C
)

.
(4.43)

On the other hand, there are A∂A∂A couplings that come from the topological term. Because
both derivatives act along the external 5-dimensional space, these couplings have the very simple
structure

G(A, ∂A, ∂A) ∝ ϵµνρσλ Aµ
AΣ ∂ν Aρ

BΛ ∂σ Aλ
C∆ dABC cΣΛ∆ . (4.44)

D.3 Couplings between spin-2 and scalars

Here we give the couplings between the fluctuations of the metric, which we will denote by h, and
two scalars. From the structure of the indices, there is only one term that one can write for these
couplings

G(h, ∂ϕ, ∂ϕ) ∝
1
6

καβ ∂µϕαΣ ∂νϕβ∆ hµνΛ cΣ∆Λ . (4.45)

It can be checked that this is what is indeed obtained by expanding the scalar kinetic term from
the Lagrangian (4.37).

E Example : AdS5×S5

IN this section, we use the previously introduced formalism in order to compute couplings on the
background AdS5× S5. This background preserves maximal supersymmetry, i.e. states fall into

supermultiplets of SU(2, 2|4) and transform in representations [n, p, q] of the SO(6) R-symmetry
group. Table 2.5 recapitulates the structure of the 1

2 -BPS supermultiplets B[ℓ,0,0] into which the
Supergravity spectrum decomposes.

As has been discussed above, our fluctuation ansatz (3.55) introduces a different way of la-
belling the Kaluza-Klein states by a couple of SO(6) indices, ΦAΣ , of which the first index refers
to the field content of the N = 8 Supergravity multiplet while the second index runs over the
scalar harmonics on S5. The latter are defined as polynomials in the fundamental harmonics Y a,
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a = 1, . . . , 6, (satisfying Y aY a = 1) as

Y I = Y a1...aℓ = Y ((a1 ...Y aℓ)) ≡ Y (a1 ...Y aℓ) − traces , (4.46)

and transform in the symmetric vector representations [ℓ, 0, 0].

All fields ΦAΣ with the second index in a given SO(6) representation [ℓ, 0, 0] combine into the
1
2 -BPS supermultiplet B[ℓ,0,0]. For example, for the scalar fluctuations, the index α on ϕαΣ counts
the 42 scalars of N = 8 Supergravity. Under SO(6) these decompose according to

42→ 1+2 ⊕ 1−2 ⊕ 10+1 ⊕ 10−1 ⊕ 200 , (4.47)

where subscripts refer to the different SO(2) charges. Accordingly, the fluctuations ϕαΣ carry
representations

20⊗ [ℓ, 0, 0] = [ℓ+2, 0, 0]⊕ [ℓ, 0, 0]⊕ [ℓ−2, 0, 0]⊕ [ℓ, 1, 1]⊕ [ℓ−2, 1, 1]⊕ [ℓ−2, 2, 2] ,(
10⊕ 10

)
⊗ [ℓ, 0, 0] = [ℓ, 0, 2]⊕ [ℓ, 2, 0]⊕ 2 · [ℓ−1, 1, 1]⊕ [ℓ−2, 2, 0]⊕ [ℓ−2, 0, 2] ,

(1⊕ 1)⊗ [ℓ, 0, 0] = 2 · [ℓ, 0, 0] , (4.48)

where SO(2) charges are easily restored. Comparing to Table 2.5, not all of these representations
correspond to physical scalar fields in the supermultiplet B[ℓ,0,0], rather the representations given
in blue and green in (4.48) appear as Goldstone modes for the massive spin-1 and spin-2 fields,
respectively.

E.1 Near extremal scalar n-point couplings

Let us consider the n-point couplings of scalar fields transforming in fully symmetric traceless
vector representations of type [k, 0, 0]. Explicitly, we label such representations by an index I

[k, 0, 0] : RI = R((i1 ...ik)) , and define |I| ≡ k , (4.49)

where i1, . . . ik label the fundamental vector representation of SO(6), and ((. . . )) denotes traceless
symmetrisation. We denote the corresponding fields in (4.48) as1

sI : [ℓ+2, 0, 0] , tI : [ℓ−2, 0, 0] , ϕI
± : 2 · [ℓ, 0, 0] . (4.50)

In particular, the sI are the chiral primaries of the supermultiplet, while the ϕI
± carry non-trivial

SO(2) charge.

We have seen in section 4.C.2 that the parametrisation of scalar fluctuations as ϕαΣ together
with the structure of the ExFT action allows to deduce strong constraints on the existence of pos-
sible couplings. Let us first illustrate this for the chiral primaries sI . Consider an n-point coupling
between this fields, that we shall denote as

G(sI1 , sI2 , . . . , sIn) . (4.51)

1For sI and tI this corresponds to the notation introduced in [108, 109]. In contrast, the ϕI of [109] correspond to the
(green) spin-2 Goldstone modes in (4.48), whereas the ϕI

± in (4.50) denote physical scalars.
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SO(6) representation theory immediately poses the condition

|Ii| ≤ ∑
j ̸=i
|Ij| ∀i , (4.52)

necessary for a non-vanishing coupling (4.51), more precisely for the appearance of a singlet in the
tensor product

⊗
jRIj . However, due to the fact that the fields sI appear as

sI ∈ ϕab,Σ , |I| = |Σ|+ 2 , (4.53)

in the ExFT action, the general structure of couplings (4.30) shows that a non-vanishing coupling
(4.51) in fact requires the stronger constraint

|Σi| ≤ ∑
j ̸=i
|Σj| ∀i ⇐⇒ |Ii|+ 2 (n− 2) ≤ ∑

j ̸=i
|Ij| ∀i . (4.54)

Put differently, we can conclude that(
∑
j ̸=i
|Ij|
)
− |Ii| ≤ 2n− 5 =⇒ G(sI1 , sI2 , . . . , sIn) = 0 , (4.55)

thus the vanishing of extremal and near-extremal couplings. This precisely corresponds to the
conjecture first stated in [170], based on the lowest order explicit results [108, 109, 168], and found
necessary to match the factored structure of the near-extremal correlation functions in weakly-
coupled N = 4 SYM via AdS/CFT. On the SYM side the analogous statement for single particle
operators was shown in [175]. The above reasoning gives a proof of this conjecture for arbitrary
n-point couplings.

The conjecture (4.55) has been reviewed in [171] and been put into the context of consistent
truncations. As discussed above, the truncation of the full Kaluza-Klein spectrum on AdS5× S5 to
theN = 8 Supergravity multiplet B[2,0,0] is consistent. Another way of stating this property is that
the Supergravity fields do not source the (truncated) higher Kaluza-Klein states, or equivalently,
the absence of couplings linear in higher Kaluza-Klein fields, i.e.

I1 > 2 and |Ii≥2| = 2 =⇒ G(sI1 , sI2 , . . . , sIn) = 0 , (4.56)

given that sI , |I| = 2, is the chiral primary of the Supergravity multiplet. With hindsight, this is
nothing but a very particular case of the general structure (4.55). In turn, the ExFT structure of the
action together with the above construction shows how the existence of a consistent truncation
in fact implies the absence of numerous potential couplings, far beyond the lowest Supergravity
multiplet.

In [171], the conjecture on vanishing near-extremal couplings has further been generalised
to the compactifications of eleven-dimensional Supergravity on AdS4 × S7 and AdS7 × S4. In
the ExFT framework, similar to the computations presented here, such couplings can be derived
within E7(7) and SL(5) ExFT [84, 95], respectively. While the technical details differ, the structure
of the chiral primaries is still of the form (4.53), now with respect to the R-symmetry SO(8) and
SO(5), respectively. The same general pattern thus applies and the conjecture (4.55) is proven also
in these cases for arbitrary n-point couplings.

In order to demonstrate the power of the framework, we may straightforwardly generalise the
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argument to other scalar fields, proving the vanishing of several other near extremal couplings.
Let us consider couplings of the form

G(sI1 , . . . , sIm , tJ1 , . . . , tJn) , (4.57)

between scalars of type sI and tJ , both appearing in fully symmetric traceless vector representa-
tions. As above, SO(6) group theory requires that

|Ii| ≤ ∑
j ̸=i
|Ij|+ ∑

ℓ

|Jℓ| ∀i ,

|Jk| ≤∑
j
|Ij|+ ∑

ℓ ̸=k
|Jℓ| ∀k , (4.58)

in order to allow for a non-vanishing coupling (4.58). Again, from the general structure of cou-
plings (4.30), together with the embedding of fields as

sI ∈ ϕab,Σ , |I| = |Σ|+ 2 , tJ ∈ ϕab,Σ , |J| = |Σ| − 2 , (4.59)

into the fluctuation ansatz, we may by reasoning similar to the above obtain the far stronger state-
ments(

∑
j ̸=i
|Ij|+ ∑

ℓ

|Jℓ|
)
− |Ii| ≤ 2 (m− n− 3) =⇒ G(sI1 , . . . , sIm , tJ1 , . . . , tJn) = 0 ,

(
∑

j
|Ij|+ ∑

ℓ ̸=k
|Jℓ|
)
− |Jk| ≤ 2 (m− n + 1) =⇒ G(sI1 , . . . , sIm , tJ1 , . . . , tJn) = 0 , (4.60)

which imply the vanishing of many near-extremal couplings whose presence would be compatible
with SO(6) symmetry (4.58). It is straightforward to generalise this pattern to n-point couplings
which further include the fields ϕI

± from (4.50). Similarly, one may derive conditions for vanish-
ing couplings involving the fields in other SO(6) representations within the multiplet B[ℓ,0,0] of
Table 2.5.

E.2 Harmonics

Let us do an intermediate section to introduce notations that we will need later in the thesis. We
collect our conventions and some formulae for the harmonics. We will explain our conventions
for S5, but it can be generalised to any coset space G/H [114].

Starting from the fundamental sphere harmonics Y a, a = 1, . . . , 6 with Y aY a = 1, we define
the higher scalar harmonics by

Y I ≡ Y a1...an ≡ Y ((a1 ...Y an)) = Y (a1 ...Y an) − traces , |I| ≡ n , (4.61)

with total weight 1 on the r.h.s.. These harmonics transform in the symmetric vector representation
[n, 0, 0] of SO(6). We denote the integral over products of harmonics as∫

S5
dω Y i1 ...Y inY j1 ...Y jn = An mn δ(i1i2 · · · δjn−1 jn) , (4.62)
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where

An =
π3

2n−1(n + 2)!
, (4.63)

and

mn =
1
n!

(
2n
2

)
· · ·
(

2
2

)
=

(2n)!
2nn!

, (4.64)

counts the number of possibilities to distribute the indices over the δ’s. For the integral over a
product of harmonics Y IY J with |I| = |J| = n, we then find∫

S5
dω Y IY J = An

(
δ
(a1
b1
· · · δan)

bn

)
n!− traces ,

=
π3

2n−1(n + 1)(n + 2)
δ
((a1
b1
· · · δan))

bn
≡ z(n) δI J ,

(4.65)

with

z(n) =
π3 n!

2n−1(n + 2)!
. (4.66)

Similarly, the triple product of harmonics Y Ii with Ii = ni, i = 1, 2, 3, is found to be∫
S5

dω Y I1Y I2Y I3 = a(n1, n2, n3) C I1 I2 I3 , (4.67)

with

a(n1, n2, n3) =
n1!n2!n3!

( 1
2 σ + 2)! 2

1
2 σ−1

π3

α1!α2!α3!
, (4.68)

where σ = n1 + n2 + n3, αi = 1
2 σ − ni, and C I1 I2 I3 is the (up to normalisation) unique SO(6)

invariant structure in the tensor product of the three representations, explicitly given by

Ca1 ...ian1 ,b1 ...bn2 ,c1 ...cn3 = δa1b1 . . . δaα3 bα3 δaα3+1c1 . . . δan1 cα2 δbα3+1cα2+1 . . . δbn2 cn3 , (4.69)

where the indices in the same colour on the r.h.s. are understood to be projected onto the totally
symmetric traceless part, such that the total weight is one. SO(6) group theory implies that a
non-vanishing C I1 I2 I3 requires the triangle inequality

αi ≥ 0 , (4.70)

which has been stated in equivalent form in (4.52). This is illustrated in Figure 4.1 .

We now also define the vector harmonics Y I
m. We never explicitely used them in our calcula-

tions, but this will allow us to introduce t(k1, k2, k3) and T123 that appeared in (4.107) and (4.106).
Vector harmonics are defined in terms of the embedding coordinates {Y a} such that

Y I
m = CI

m;a1 ...ak
Y a1 . . .Y ak (4.71)

where CI
m;a1 ...ak

is a completely symmetric and traceless tensor in a1, . . . , ak, and its symmetric part
vanishes. The vector harmonics satisfy the orthogonality condition∫

S5
Y I

mY
J
n = z(n)δI Jδmn (4.72)
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Figure 4.1: Illustration of the triangle inequality. A green line means that the two indices are on the
same δ. For example the first scheme corresponds to δa1b1 δa2b2 δa3c2 δa4c3 δa5c4 δa3c1 . In the first line, the
C tensor exist because the αis are in N. Note that the αis count the number of connections between
the different sets of indices. For example, in the first line α1 = 1 is the number of connections
between the second and third sets, i.e. between the bis and the cis, α2 = 3 is the number of
connections between the first and third sets, and α3 = 2 is the number of connections between the
first and second sets. In the second line, the C tensor does not exist because at least one of the αis
is negative (in that case α1). We see here that one leg is too long and there is always going to be at
least one index left alone is that case. In the last line, we see that all αis are positives, but they are
not integers. In that case, one index is left alone, and the C tensor does not exist.

with z defined in (4.66). On top of this orthogonality condition, the vector harmonics satisfy∫
S5
∇mY I1Y I2Y I3

m = t(k1, k2, k3) (4.73)

with

t(k1, k2, k3) =
π3

k3 + 1
1

( 1
2 (σ + 3))!2

1
2 (σ−3)

k1!k2!k3!
(α1 − 1

2 )!(α2 − 1
2 )!(α3 − 1

2 )!
T123 (4.74)
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The T123 tensor carries the index structure of the previous integral. Explicitely we have

T123 = CI1
ma1 ...aα2−1/2b1 ...bα3−1/2

CI2
b1 ...bα3−1/2c1 ...α1+1/2

CI3
m;c1 ...cα1+1/2a1 ...aα2−1/2

CI1
a1 ...aα2+1/2b1 ...bα3−1/2

CI2
b1 ...bα3−1/2c1 ...α1−1/2mCI3

m;c1 ...cα1−1/2a1 ...aα2+1/2 .
(4.75)

Upon contraction with fields, we will recover the definition on C I1 I2 I3 that we will introduce latter
in (4.106).

E.3 Cubic scalar couplings

Having shown that the general structure of our ansatz and the ExFT action impose the vanishing of
numerous couplings, we will now use the explicit formulas (4.36) obtained for the cubic couplings
in order to compute explicit expressions for some of the non-vanishing cubic couplings. Before
evaluating these equations, let us consider the expansion of the kinetic term for the scalar fields.

1
24
MKL∂µMLMMMN∂µMNK −→

1
24

∂µϕαΣ∂µϕβΛ δαβ YΣYΛ +O(ϕ4) . (4.76)

We note that in our basis of fluctuations, the expansion of this term does not give rise to cubic
terms of type ϕ∂µϕ∂µϕ. This is because in our parametrisation of fluctuations, the kinetic term
respects USp(8) invariance in the first index of the ϕαΣ, and there is no USp(8) invariant cubic
tensor dαβγ that could define such a term.

Let us further note that for the fields sI from (4.50), the expansion of the kinetic term (4.76) sim-
ply yields a normalisation constant proportional to z(n) defined in (4.65), (4.66), with ℓ = |I| − 2.
Comparing this to the normalisation used in [108, 109] for the same fields (c.f. equations (3.15),
(3.23) in [108], with k = |I|)

AI ∝
k(k− 1)(k + 2)

k + 1
z(k) ∝

k2(k− 1)2

(k + 1)2 z(ℓ) , (4.77)

where we are ignoring overall constants that are independent of k and where we have used the
relation

z(ℓ) = z(k− 2) = 4 z(k)
(k + 1)(k + 2)

k(k− 1)
. (4.78)

From (4.77) we see that our fields sI are related to the fields of [108, 109] by rescaling

sI −→ s̃I ≡ k + 1
k(k− 1)

sI , (4.79)

where for clarity we denote by s̃I for the fields of [108, 109]. Such rescaling factors will become
relevant when comparing the results for the cubic couplings.

Let us now turn to evaluating the general formula (4.36) for AdS5 × S5. Recall that (4.36)
is the reduction of the general formulae (4.31), (4.33), (4.34), (4.35), to the class of vacua whose
associated embedding tensor lives in the 36 of USp(8), which is the case for the round S5. While
this formula reduces the contributions of general cubic scalar couplings to four terms, it turns
out that depending on the type of scalar fields not even all terms may contribute to the result.
The towers of scalar fields have been listed in (4.48), organised according to the representation of
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the first index α on ϕα,Σ. In turn, for a given Kaluza-Klein fluctuation the representation of the
associated α the can be inferred from its SO(2) charge. Cubic couplings only exist among states
whose SO(2) charges qi add up to zero, and we find that for the different possible combinations
only the following terms from (4.36) give non-vanishing contributions

⟨q1, q2, q3⟩ XX XT (T T )1 (T T )2

⟨0, 0, 0⟩ ✓ ✓ ✓ ✓

⟨0,+1,−1⟩ − ✓ ✓ ✓

⟨0,+2,−2⟩ − − − ✓

⟨±1,±1,∓2⟩ − − ✓ −

(4.80)

Here, XX, XT , (T T )1, and (T T )2 denote the four terms in (4.36). For example, if the charges
of scalars in a cubic coupling

G
(

ϕαΣ
1 , ϕ

β∆
2 , ϕ

γΓ
3

)
, (4.81)

are 0, +1, and −1, the associated representations in α, β, γ are 20, 10 and 10, respectively. The
existence of a non-vanishing first term in XX in (4.36) would require the existence of an SO(6) in-
variant tensor in the tensor product of these three representations, which does not exist. Similarly,
one deduces the absence of several terms for other charges.

As a concrete example, let us compute the cubic coupling among three chiral primary fields

G(sI1 , sI2 , sI3) , (4.82)

with sI from (4.50). According to (4.80), all terms in (4.36) are present. First of all, the structure of
(4.36) shows that the final result will be proportional to the structure constants defined in (4.29)

cΣ1Σ2Σ3 =
∫

S5
dω YΣ1YΣ2YΣ3 = a(ℓ1, ℓ2, ℓ3) CΣ1Σ2Σ3 , ℓi ≡ |Σi| = |Ii| − 2 , (4.83)

with the objects on the r.h.s. explicitly defined in (4.68), (4.69). Let us develop the explicit calcula-
tions here for (4.36). The XX-like terms are straightforward to compute. They are independent of
the length of the chains ni and we can directly compute them with the explicit form of the X-tensor

XAB
C −→

 Xab,cd
e f = 2

√
2δ

[e
[aδb][cδ

f ]
e] ,

Xab
cα dβ = −2

√
2δc

[aδb]dδ
β
α ,

(4.84)

with a, b, . . . SO(6) indices and α, β, . . . SO(2) indices. The more involved terms in this calculation,
are the terms with at least one T . They require to compute the action of generators of length ℓi’s
acting on the [ℓ, 0, 0] representations. Let us explain how we deal with it. First of all, the underlined
capital indices A, B, . . . on the T s are reduced to SO(6)× SO(2)

TAΣ
Ω −→

{
T[ab]Σ

Ω ,
T aα

Σ
Ω .

(4.85)
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The generators TA in the [n, 0, 0] representation of SO(6) can be written

TA,Σ
Ω = ℓT[ab],a1 ...aℓ

b1 ...bℓ = ℓT[ab],((a1
((b1 δa2

b2 . . . δaℓ))
bℓ)) ≡ ℓT[ab],A

B ≡ ℓT[ab],a1
b1 δA1

B1 , (4.86)

with TA,a
b =

{
T[ab],c

d =
√

2δc[aδb]
d ,

T aα
c

d = 0 .
(4.87)

Let us explain the notations in (4.86). The A, B, . . . are now used for the symmetric traceless
representations of the same lower cases letters, i.e.

A −→ ((a1 . . . aℓ)) ,

B −→ ((b1 . . . bℓ)) .
(4.88)

hence, A, B, . . . have replaced Σ, Ω, . . . indices. Those new A, B, . . . indices are completely different
to A, B, . . . indices. Finally when those indices are dressed with the subscripts i, j, . . . it means that
that lower case index with subscripts i, j, . . . has been extracted from the whole set

Ai −→ ((a1 . . . ai−1ai+1 . . . aℓ)) ,

Bi −→ ((b1 . . . bi−1bi+1 . . . bℓ)) .
(4.89)

Then the δ with a capital A, B, . . . index represent all the δs with according lower case letters

δA
B ≡ δ((a1

((b1 . . . δaℓ))
bℓ)) . (4.90)

The final point we have to explain is how to express the C-symbol in these notations. This tensor
reduces to a serie of δ as explained and illustrated in (4.1). We will therefore note it

CΣΩ∆ −→ CABC = δb1
a1 . . . δ

bα3
aα3

δc1
bα3+1

. . . δ
cα1
bℓ2

δ
cα1+1
aα3+1 . . . δ

cℓ3
aℓ1
≡ δĀB̄δB̄C̄δC̄Ā , (4.91)

with ℓ1 = |A|, ℓ2 = |B|, ℓ3 = |C|, α1 = 1
2 (ℓ2 + ℓ3 − ℓ1), similarly for α2 and α3 and with indices in

the same color are understood to be symmetric and traceless. We are now ready to explain how
we can compute the action of a T on the C-symbol. The action of a T on the C-symbol with those
notations can be written

TAΣ
ΩCΩ∆Γ −→ T[ab]A

BCBCD = ℓ1T[ab]aj
bj δAj

BjCBCD

= δ[a|aj

(
α3δ|b]bj

δD̄j B̄j
δD̄C̄δB̄C̄ + α2δ|b]cj

δD̄B̄δD̄C̄δB̄jC̄j

)
,

(4.92)

with this time ℓ1 = |A| = |B|, ℓ2 = |C|, ℓ3 = |D|. Note that there is still an antisymmetry in a, b in-
dices in the previous identity. Because we are computing the couplings involving three sI scalars,
we know that the result should be proportional to C I1 I2 I3 . Therefore the result is automatically
projected onto the symmetric and traceless representations [ℓi + 2, 0, 0], which is the reason why
we do not need to compute any trace term in (4.92) contracted with the scalar fields. On top of
this, even if the index structure for the two terms in (4.92) looks different, there is only one index
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structure that one can obtain for the coupling G(sI1 , sI2 , sI3), which schematically looks like

ϕabAϕcdBϕe f Cδacδbeδd f CABC −→ (4.93)

This picture is just a way of expressing how the indices are contracted together with the C-symbol.
Explicitely here this means that ϕ’s are contracted with δaeδbcδd f as well as properly symmetrized
with the indices of C. (4.93) is the only way we can contract the indices, up to symmetrization.
We will see later examples where this is not the case anymore. We can now reduce the (TT )-like
term in (4.36) on the S5 and find

TB Σ
ΛTA Λ

ΩcΩ∆Γ

(
6 TγαβB

A − 1
2 TγB

Aκαβ

)
y

− 12TabΣ
ΩTbcΛ

ΣcΩ∆Γϕad∆ϕdeΛϕecΓ − 12TabΣ
ΩTcdΛ

ΣcΩ∆Γϕae∆ϕbcΓϕedΛ

− 12TabΣ
ΩTcdΛ

ΣcΩ∆ΓϕaeΛϕbc∆ϕedΓ + 12TabΣ
ΩTcdΛ

ΣcΩ∆ΓϕacΛϕbe∆ϕedΓ

+ 6TabΣ
ΩTbcΛ

ΣcΩ∆Γϕac∆ϕde
ΛϕdeΓ .

(4.94)

We can now illustrate how to explicitely calculate this for the couplings of three chiral primaries.
We will show how this works with the first term in (4.94)

−12Tab,Σ
ΩTbc,Λ

ΣcΩ∆Γϕad∆ϕdeΛϕecΓ −→ − 12a(ℓ1, ℓ2, ℓ3)TabD
ATbcE

DCABCϕadBϕdeEϕceC

= − 12a(ℓ1, ℓ2, ℓ3)Tab,E
DTac,D

ACABCϕbdBϕceEϕdeC ,
(4.95)

with |E| = |D| = |A| = ℓ1, |B| = ℓ2 and |C| = ℓ3. By using (4.92) twice and making the
antisymmetry in a, b and a, c explicit we find

−12Tab,E
DTac,D

ACABCϕbdBϕceEϕdeC =

−3ϕbdBϕceEϕdeC
(
(−δbei

δabi
δaej δcbj

+ δbei
δabi

δabj
δccj)α3(α3 − 1)δĒij B̄ij

δD̄C̄δB̄C̄

(δaei δbci
δaejδcbj

− δbei
δaci δaej δcbj

)α3α2δĒj B̄j
δĒiC̄i

δB̄C̄

(−δbei
δabi

δaej δccj + δbei
δabi

δcej δacj)α2α3δĒi B̄i
δĒjC̄j

δB̄C̄

(δaei δbci
δaej δcbj

− δbei
δaci δccj δaej)α2(α2 − 1)δĒijC̄ij

δĒB̄δB̄C̄

)
.

(4.96)

All terms in color are equal to zero, because of the tracelessness property of the [ℓi + 2, 0, 0] rep-
resentations. Explicitely, the terms in blue, upon supressing the a index, give either δbibj

or δeiej

which are traces and therefore projected out by the contractions with ϕbdBϕceEϕdeC. The red term
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is also equal to zero, because of δcej . Since it is contracted with ϕceE = sceE = sI , this term gives a
trace in a [ℓ+ 2, 0, 0] representation and can be discarded. By collecting all the remaining terms,
and symmetrizing in αi’s, this term gives

−12Tab,E
DTac,D

ACABCϕbdBϕceEϕdeC = 3σ(σ− 1)δbdδdcδe f CABCϕbdBϕceEϕd f C , (4.97)

with σ = ℓ1 + ℓ2 + ℓ3. By calculating all terms in (4.94) this way as well as (XT ) and (XX)-like
terms in (4.36), we find the final result for G(sI1 , sI2 , sI3)

G(sI1 , sI2 , sI3) = a(ℓ1, ℓ2, ℓ3)
(σ

2
+ 2
)(σ

2
+ 1
)
CΣ1Σ2Σ3 δacδbeδd f ϕ((ab,Σ1))ϕ((cd,Σ2))ϕ((e f ,Σ3)) ,

= a(ℓ1, ℓ2, ℓ3)
(σ

2
+ 2
)(σ

2
+ 1
)
C I1 I2 I3 sI1 sI2 sI3 ,

(4.98)

with σ = ℓ1 + ℓ2 + ℓ3, and the symbols CΣ1Σ2Σ3 , C I1 I2 I3 defined in (4.83) for different representa-
tions, [ℓ, 0, 0] and [ℓ+ 2, 0, 0], respectively.

In order to compare this rather compact result to the explicit expressions obtained in [108, 109],
we first note the relation

a(ℓ1, ℓ2, ℓ3) = a(k1, k2, k3)
α1 α2 α3

8 k1k2k3(k1 − 1)(k2 − 1)(k3 − 1)
σ̃

2

( σ̃

2
+ 1
)( σ̃

2
+ 2
)

, (4.99)

for ki = |Ii| = ℓi + 2, with moreover σ̃ ≡ k1 + k2 + k3 = σ + 6, and αi ≡ 1
2 σ̃− ki. Further taking

into account the rescaling (4.79), the cubic coupling (4.98) takes the form

G(sI1 , sI2 , sI3) =
σ̃ α1 α2 α3 a(k1, k2, k3)

16 (k1 + 1)(k2 + 1)(k3 + 1)

((
1
2 σ̃
)2
− 1
)((

1
2 σ̃
)2
− 4
)
C I1 I2 I3 s̃I1 s̃I2 s̃I3 , (4.100)

and this indeed is the result obtained in [108, 109]. The non-trivial zeros in this explicit expression
(for any αi = 0) precisely illustrate the theorem (4.55) which in the ExFT formulation follows from
purely structural arguments.

E.4 Couplings involving spin-1 fields

Let us work out a few other examples involving the spin-1 fields. Similar to (4.47), (4.48), the
spin-1 fields are parametrised as Aµ

A,Σ with the USp(8) index A decomposing as

27→ 6+1 ⊕ 150 ⊕ 6−1 , (4.101)

under SO(6)× SO(2). Accordingly, the fluctuations Aµ
AΣ carry representations

15⊗ [ℓ, 0, 0] = [ℓ, 1, 1]⊕ [ℓ, 0, 0]⊕ [ℓ−1, 0, 2]⊕ [ℓ−1, 2, 0]⊕ [ℓ−2, 1, 1] ,

(6⊕ 6)⊗ [ℓ, 0, 0] = 2 · [ℓ+1, 0, 0]⊕ 2 · [ℓ−1, 0, 0]⊕ 2 · [ℓ−1, 1, 1] , (4.102)

where similarly to (4.48) we have denoted in blue and green the Goldstone modes for massive ten-
sors and spin-2 modes, respectively. Following [109] we denote the vector fields in the [ℓ, 1, 1] and
the [ℓ−2, 1, 1], as aµ

I and cµ
I , respectively. We use the index I to label the ‘hook’ representations
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[k, 1, 1] with |I| ≡ k + 1. Explicitly, focusing on the aµ
I , this corresponds to an embedding

Aµ
ab,Σ =

1
2

(
aµ

a,((bΣ)) − aµ
b,((aΣ))

)
≡ aµ

I , |I| = |Σ|+ 1 . (4.103)

Here, Aµ
ab,Σ is part of the general vector fluctuations in the basis of (3.55), with the index A de-

composed according to (4.103) and the [ℓ, 1, 1] fluctuation living in the 15 part, as can be seen from
(4.102). aµ

a,a1 ...aℓ+1 denotes the part of the fluctuation in the [ℓ, 1, 1], i.e. it is symmetric traceless in
((a1 . . . aℓ)) with a(a,a1 ...aℓ+1) = 0.

We can now evaluate the above results for cubic vector couplings on the AdS5 × S5 back-
ground. Let us develop the explicit calculations for couplings of the form G(∂sI1 , sI2 , aI3) for sI in
(4.53) and aI in (4.103). Reducing (4.38) to AdS5 × S5 gives

Aµ
AΣ
[
2 cΩΛΣXAB

C ∂µϕαΩ ϕβΛ Tγ̂
αβ Tγ̂C

B + 2 c∆ΛΣ ϕβΩ ∂µϕα∆ TA Ω
Λ καβ

− 12 cΛΩ∆ ∂µϕαΛ ϕβ∆ TB Σ
Ω Tγ̂

βα Tγ̂A
B
]

y
− 24
√

2Aµ
abΣ∂µϕcaΩϕbcΛcΣΩΛ + 12Aµ

abΣTab
ΩΛ∂µϕcd∆ϕcdΩcΣΛ∆

+ 12Aµ
abΣTcb

ΣΩ∂µϕcdΛϕad∆cΩΛ∆ − 12Aµ
abΣTca

ΣΩ∂µϕcdΛϕbd∆cΩΛ∆

− 12Aµ
abΣTcb

ΣΩ∂µϕdaΛϕcd∆cΩΛ∆ + 12Aµ
abΣTca

ΣΩ∂µϕdbΛϕcd∆cΩΛ∆ .

(4.104)

We can now inject (4.103) and use similar techniques that we used for G(sI1 , sI2 , sI3) to compute
the action of T on C. For the second term in the previous expression, we therefore obtain

12Aµ
abΣTab

ΩΛ∂µϕcd∆ϕcdΩcΣΛ∆ −→ 12Aµ
abDTab

AC∂µϕcdBϕcdCcABD =

3aµ
a,bD∂µϕcdBϕcdC

(
α2(δaci δbdi

− δbci
δadi

)δDiCi δBDδBC + α3(δaci δbbi
− δbci

δabi
)δCDδBDδBiCi

)
−3aµ

b,aD∂µϕcdBϕcdC
(

α2δbdi
δaci − δbdi

δaci )δCi Di δBDδBC + α3(δaci δbbi
− δbci

δabi
)δCDδBDδBiCi

)
,

(4.105)

with the terms in red equal to zero again because of the tracelessness property of the [ℓ+ 2, 0, 0]
representation. Note however that this time, the index structures arising from the action of T on
C is not unique anymore. The different possibilites are listed in Figure 4.2 where we used same
schemes as in (4.93), but this time we had to make a disctinction between the three fields. Those
are the only three structure we obtain. By carefully working out the calculations, one finds that all
the terms coming with the first structure cancel with one another, and the last two structures come
with exactly the same numerical factor, up to a sign. This is exactly what is needed to reproduce
the strucure of T123 in (4.75). The final result we found for this coupling is

G(∂sI1 , sI2 , aI3) ∝ a(ℓ1, ℓ2, ℓ3) (σ + 4)
(

δeaδ f bδgc − δebδ f aδgc

)
CΣ1Σ2Σ3 ∂µϕ((agΣ1))ϕ((bcΣ2)) Aµ

e,(( f Σ3))

≡ a(ℓ1, ℓ2, ℓ3) (σ + 4) C I1 I2 I3 ∂µsI1 sI2 aµ
I3 ,

ℓi ≡ |Σi| , σ = ℓ1 + ℓ2 + ℓ3 , (4.106)
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Figure 4.2: Schematic representation of the different index structure arising in the calculation of
G(∂sI1 , sI2 , aI3) = G(∂sabΣ, scdΩ, ae, f ∆). The set of black points represent the indices of the vector
ae, f ∆, with the blue dot the extra index e which is not symmetrized and traceless, the red points
stand for the indices of scdΩ and the orange points stand for the indices of ∂µsabΣ.

where |Σi| = |Ii| − 2, for i = 1, 2, and |Σ3| = |I3| − 1. Here, the tensor C I1 I2 I3 is defined by the
above equation as the (up to normalisation) unique invariant structure in this tensor product. It
corresponds to what has been called T123 in (4.75), and the combination of the last two schemes in
(4.2) with a minus sign.

In order to compare the full coupling (4.106) to the results of [109], we need the relation

a(ℓ1, ℓ2, ℓ3) =
(k3 + 1)(α3 − 1

2 )(σ̃ + 3)(σ̃ + 1)
k1k2k3(k1 − 1)(k2 − 1)

t(k1, k2, k3) ,

k1 ≡ |I1| = ℓ1 + 2 , k2 ≡ |I2| = ℓ2 + 2 , k3 ≡ |I3| = ℓ3 + 1 ,

σ̃ ≡ k1 + k2 + k3 = σ + 5 , α3 ≡ 1
2 σ̃− k3 , (4.107)

to the t(k1, k2, k3) defined in (4.73). Furthermore, in order to match the normalisation of vector
fields, we note that our kinetic term

MMN Fµν
MFµνN −→ Fµν

AΣFµνAΛ YΣYΛ ∝
ℓ+ 2
ℓ+ 1

fµν
a,((bΣ)) f µνa,((bΛ)) YΣYΛ , (4.108)
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where the field strengths fµν are defined in analogy to (4.103). Comparing this to the normalisation
of the kinetic term of [109] (whose fields we denote by ãµ

I , f̃µν
I), we find

ℓ+ 2
ℓ+ 1

z(n) fµν
I f µν I =

k + 1
k + 2

z(k) f̃µν
I f̃ µν I , k = ℓ+ 1 , (4.109)

with z from (4.66). This yields the relation

ãµ
I =

ℓ+ 3
ℓ+ 1

aµ
I . (4.110)

Putting everything together, we can rewrite the result (4.106) as

G(∂sI1 , sI2 , aI3) ∝
(k3 + 1)(α3 − 1

2 )(σ̃ + 3)(σ̃ + 1)(σ̃− 1)
(k1 + 1)(k2 + 1)(k3 + 2)

t(k1, k2, k3) C I1 I2 I3 ∂µ s̃I1 s̃I2 ãµ
I3 . (4.111)

Indeed, this is the form in which this coupling has been found in [109].

Finally, we can turn to couplings involving three vectors from (4.43) and restrict our analysis
again to the vector fields (4.103). Reducing to SO(6)× SO(2) gives

AµAΣ AνBΩ∂[µ Aν]
CΛ
(

2 cΣΛ∆TA Ω
∆δBC + 10 cΣ∆ΛdABDdFCDTF Ω

∆ + cΣΩΛX[AB]
C
)

y
AµabΣ AνcdΩTab

Ω∆∂µ Aν
cdΛcΣ∆Λ

−AµabΣ AνcdΩTcd
Σ∆∂µ Aν

abΛcΩ∆Λ

+2
√

2AµabΣ AνbcΩ∂µ Aν
acΛcΣΩΛ .

(4.112)

We can now inject (4.103) in this expression and conduct the calculations. Using the same tricks
as before, we can compute those term and the action of T on C. However, by a direct calculation,
the index structure for the term with a T and the term without T are not the same. For the first
we have something that is proportional to

T -like terms −→ aµ
di ,bi Aaν

c,dB∂µaνc,dCCABi Di , (4.113)

whereas for the second we have something that is proportional to

X-like terms −→ aµ
a,bAaν

b,cD∂µaνa,cCCADC . (4.114)

This is schematically illustrated in Figure 4.3 . In order to match the two structures, we have to
do the following transformations : first use the antisymmetry in the external µ ↔ ν indices, and
then notice that because of the representation the aµ’s are sitting in [ℓ, 1, 1], we have the following
identity

aµ
([ab],a1 ...an) = 0⇒ aa,(ba1 ...an)

µ + ab,(aa1 ...an)
µ = 0 . (4.115)

Using both symmetries, we can show that the two appaerently distinguished structures are actu-
ally the same. This is illustrated in Figure 4.4 eii. Collecting the different factors, we find that the
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Figure 4.3: Schemes of the two different index structures arising for couplings G(aI1 , aI2 , ∂aI3).
The first one is for the X-like terms and the second for the T -like term. The dotted red line in the
second picture means that a δ from C has been cut in two and the indices have been redistributed
elsewhere.

final result is

G(aI1 , aI2 , ∂aI3) ∝ a(ℓ1, ℓ2, ℓ3)(σ + 6) δaeδbcδd f CΣ1Σ2Σ3 aµ
a,((bΣ1))aν

c,((dΣ2))∂[µaν]
e,(( f Σ3)) ,

ℓi ≡ |Σi| = |Ii| − 1 , σ = ℓ1 + ℓ2 + ℓ3 . (4.116)

The index contraction on the r.h.s. of this equation defines an SO(6) invariant tensor C I1 I2 I3 , how-
ever unlike (4.83) there is not a unique invariant structure appearing in this tensor product, i.e. the
particular contraction in the coupling (4.116) by itself carries non-trivial information.

E.5 Couplings involving spin-2 fields

As a final example, let us compute the coupling between a spin-2 field and two scalar fields, which
again we take to be the chiral primaries sI . It is straightforward to evaluate (4.45) for this case as

G(∂sI1 , ∂sI2 , hI3) ∝ a(ℓ1, ℓ2, ℓ3) ∂µϕ((ab,Σ1))∂νϕ((ab,Σ2))hµνΣ3 CΣ1Σ2Σ3

= a(ℓ1, ℓ2, ℓ3) ∂µsI1 ∂νsI2 hµν I3 C I1 I2 I3 ,

ℓi = |Σi| , (4.117)

where |Σi| = |Ii| − 2 for i = 1, 2, and |Σ3| = |I3|. In order to compare this result to the literature,
we apply the rescaling (4.79) as well as the relation

a(ℓ1, ℓ2, ℓ3) = a(k1 − 2, k2 − 2, k3) = a(k1, k2, k3)
(σ̃ + 4)(σ̃ + 2)

k1(k1 − 1)k2(k2 − 1)
, (4.118)
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Figure 4.4: Schematic procedure to identify the two apparently disctincts index structures of Fig-
ure 4.3 arising in the calculation of G(aI1 , aI2 , ∂aI3) couplings. The last equality holds because the
small dots represent a single index that symmetric with all the indices represented in the big dots
of the same color.
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for k1 = ℓ1 + 2, k2 = ℓ2 + 2 and k3 = ℓ3. With this, the result (4.117) turns into

G(∂sI1 , ∂sI2 , hI3) =
(σ̃ + 4)(σ̃ + 2)(α3 − 1)α3

(k1 + 1)(k2 + 1)
a(k1, k2, k3) ∂ν s̃I1 ∂µ s̃I2 hµνI3 C I1 I2 I3 ,

ki = |Ii| , σ̃ = k1 + k2 + k3 , α3 = 1
2 σ̃− k3 , (4.119)

which reproduces the result in the form found in [109].
Let us make a final remark about the calculations of couplings we showed in this thesis. For

all the couplings, we had at some point to compute the action of a T on the C symbol. This
was possible and not too lengthy because all the fields we considered were sitting in traceless
representations. However, as soon as there is a trace part, as for example if we were to compute
couplings with a tI ∈ [n− 2, 0, 0] from (4.59), this would imply to compute extra terms involving
at least a trace and the complexity of the calculations increases, because the number of terms
to compute does. Note however that there is a way out, that we did not use in the thesis. All
couplings in the ExFT language are of the form

(XX + XT +T T )× ”ExFT− Structure”×Φ1Φ2Φ3 (4.120)

or
(X +T )× ”ExFT− Structure”×Φ1Φ2Φ3 (4.121)

with Φi any fields. The "ExFT-Structure" is common for all couplings in the same class of couplings.
For example all cubic scalars couplings of the form G(ϕ, ϕ, ϕ) are of the form (4.33) (4.34) (4.35).
The difference between the couplings involving diffferent scalar fields is made by the exact form
the (XX + XT +T T ) takes for each individual couplings. However, this (XX + XT +T T ) is
nothing more than a quadratic polynomials in the ni, the length of the chain in the ExFT side

(XX + XT +T T ) −→
2

∑
k=0

3

∑
i=1

aink
i (4.122)

The maximal order is fixed by the maximum number of T involved. Therefore, if one wants
to know all the couplings G(sI1 , sI2 , tI3), on would need to explicitely evaluate (4.36) on a finite
number of non trivial examples to fix the coefficients in the polynomial. By non trivial, we mean
on examples that are allowed by the SO(6) group (for example this amounts to have αi ∈ N

for three scalar fields). Using this argument, we can access a much larger set of couplings on
AdS5 × S5, as long as we found the ExFT structure.

F Conclusion

Within this chapter, we revisited and extended the main approaches for computing cubic and
higher order couplings within compactified Supergravities. In section (4.B), we showed the basic
ideas and first derivations of cubic couplings by brut force calculation conducted in the 2000’s.
This approach has been applied to a few vacua, and we illustrated the calculation with the deriva-
tion of a cubic coupling for IIB Supergravity on AdS5 × S5. Despite many successes of those
techniques, they suffer an number of limitations, from which we can cite the lack of structure in
results and the lengthyness of the calculations.
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In sections (4.C) and (4.D), we showed how ExFT allows us to efficiently compute n-point
couplings of KK modes around vacua of maximal gauged Supergravities that arise as consistent
truncations of 10/11-dimensional Supergravity. These couplings are particularly interesting for
AdS vacua, where they allow us to holographically compute correlators of single-trace operators
of dual strongly-coupled CFTs. We showed that these n-point couplings inherit an ExFT structure,
being controlled by an invariant cΣ1 ...Σn =

∫
dω YΣ1 . . .YΣn that comes from integrating n scalar

harmonics and which is the same for any vacuum of the consistent truncation. This structure
implies that infinitely many couplings vanish in Supergravity, even though may be allowed by the
symmetry group of the vacuum. This can be seen as a generalisation of the property of consistent
truncation to higher KK levels. As we showed in section 4.E.1 , this structure even provides new
results for the N = 8 AdS5 × S5 vacuum, where it allows us to prove the previously conjectured
vanishing of near-extremal couplings [170, 171], as well as other vanishing n-point functions. For
vacua that preserve fewer isometries, such as the N = 2 SU(2) ×U(1)-invariant AdS5 vacuum
of 5-d maximal SO(6) Supergravity [106], this structure is likely to lead to even more couplings
vanishing.

In addition to investigating the structure of n-point couplings, we used ExFT to derive univer-
sal formulae that can be used to compute the cubic couplings of any vacuum of a consistent trun-
cation to 5-dimensional maximal gauged Supergravity. These couplings are controlled by at most
specific quadratic combinations of the 5-dimensional embedding tensor and the action of Killing
vectors on scalar harmonics, T , and can be evaluated for any vacuum of the consistent truncation
by appropriately dressing the embedding tensor and T -matrices by the coset representative of the
vacuum. We used this to compute cubic scalar, scalar-scalar-vector, scalar-scalar-spin-2 and cubic
vector couplings, the first three of which match against the known literature while the last is a new
coupling. Here another benefit of our approach becomes apparent: not only can the expressions
be evaluated for any vacuum of the consistent truncation, but even for the round S5 our field basis,
consisting of tensor products of the 5-dimensional Supergravity fields with the scalar harmonics,
yields much more compact expressions for the couplings than the known results in the literature.

Our work opens up several avenues for further investigation. Since our method does not
make any assumption about (super-)symmetries, our results can be used for vacua which preserve
no isometries or are even non-supersymmetric. It would thus be interesting to investigate the
consequence of the universal structure of n-point couplings and to explicitly compute the cubic
couplings for less supersymmetric vacua, such as the N = 2 SU(2) × U(1) AdS5 vacuum [106,
184] dual to the Leigh-Strassler CFT [185]. Together with the recently-computed KK spectrum
[122], this would effectively solve the single-trace sector of the Leigh-Strassler CFT at large N and
coupling.

Another direction would be to compute the universal cubic formulae using ExFT for other di-
mensions. For example, there are consistent truncations to several 4-dimensional gauged Super-
gravities with interesting AdS vacua [145, 146, 186–191], whose cubic couplings could be explored
using E7(7) ExFT. Yet another possibilty to extend this work, would be to push the techniques
presented here to work beyond vacua of consistent truncations to maximal Supergravity, for ex-
ample as was achieved for KK spectroscopy in the second chapter and in [DB1, DB2]. It would be
interesting to see how the vanishing of couplings, as in (4.55), translates into those vacua which
possess level mixing.

More generally, our work has uncovered a lot of structure in the n-point couplings for vacua
that live in consistent truncations to maximal gauged Supergravity. What does this surprising
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structure imply for dual CFTs? One would expect that the vanishing cubic couplings imply special
OPE relations for the dual CFT. Can our results serves as useful input for the conformal bootstrap
program or does the simplified basis and new structure arising from ExFT help with computing 4-
point AdS correlators like in [192, 193]? And, how much, if any, of this structure survives beyond
the large-’t Hooft coupling and large-N limits?
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