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Résumé: La branche ab initio de la théorie
de la structure nucléaire s’est traditionnelle-
ment concentrée sur l’étude des noyaux de
masse légère à moyenne et des systèmes prin-
cipalement sphériques. Les développements
actuels visent à étendre cette approche aux
noyaux de masse élevée et aux systèmes à
double couche ouverte. L’étude de ces sys-
tèmes représente un défi qualitatif et quanti-
tatif. Par conséquent, différentes stratégies
doivent être conçues pour capturer efficace-
ment les corrélations dominantes qui ont le
plus d’impact sur les observables d’intérêt.
Bien qu’il existe en principe des méth-
odes exactes pour résoudre l’équation de
Schrödinger non relativiste pour un hamil-
tonien nucléaire donné, les limitations pra-
tiques des simulations numériques rendent
un tel espoir vain pour la plupart des iso-
topes. Cela nécessite une hiérarchisation
des corrélations mises en jeu dans les dif-
férents systèmes nucléaires. La plupart des
techniques ab initio reposent sur un cal-
cul initial de type ‘champ moyen’, générale-
ment effectué via la méthode Hartree-Fock
(HF), qui fournit un état de référence con-
tenant la majeure partie des corrélations
contribuant aux propriétés nucléaires glob-
ales. Lorsqu’on s’attaque à des systèmes à
couche ouverte, il s’est avéré particulière-
ment pratique de briser les symétries du
Hamiltonien au niveau du champ moyen
pour inclure efficacement les corrélations sta-
tiques apparaissant dans les noyaux super-
fluides (via la théorie HF-Bogoliubov, HFB)
ou déformés (via la méthode HF déformée,
dHF). Le présent travail contribue à cette
ligne de recherche en proposant et en explo-
rant de nouvelles techniques à N -corps ap-
plicables à tous les systèmes nucléaires ex-
ploitant cette idée de brisure de symétrie,

La technique ab initio la plus simple ap-
plicable au-delà du champ moyen est la
théorie des perturbations à N -corps. Le
premier résultat de ce travail est la dé-

monstration qu’une théorie des perturba-
tions incorporant la brisure de la symétrie
de rotation (dBMBPT) et employant des
interactions nucléaires modernes peut déjà
décrire qualitativement les principales ob-
servables nucléaires, telles que l’énergie de
liaison et le rayon de l’état fondamental.
Étant donné que la théorie des perturbations
constitue une méthode peu coûteuse permet-
tant d’effectuer des études systématiques sur
large partie de la carte des noyaux, une par-
tie du présent travail est consacrée à ouvrir
la voie à de tels calculs à grande échelle.

Afin de pousser les calculs à N-corps
vers une plus grande précision, une nou-
velle technique ab initio est ensuite intro-
duite, à savoir la méthode des fonctions
de Green-Dyson autoconsistantes déformées
(dDSCGF). Cette approche nonperturbative
(c’est-à-dire sommant un nombre infini de
contributions perturbatives) permet de cal-
culer une grande variété de quantités utiles,
à la fois pour l’état fondamental du noyau
ciblé et pour les états excités des systèmes
voisins. En outre, elle s’étend naturelle-
ment en direction des réactions nucléaires
afin d’évaluer, par example, les potentiels
optiques.

Étant donné le coût de calcul élevé des
méthodes nonperturbatives à N -corps, la
dernière section présente des approches pos-
sibles pour rendre ces calculs plus efficaces.
En particulier, la base des orbitales na-
turelles est introduite et étudiée dans le con-
texte des systèmes déformés. Ainsi, il est
prouvé que cette technique permet d’utiliser
des bases beaucoup plus petites, réduisant
ainsi de manière significative le coût final des
simulations numériques et étendant leur do-
maine d’application.

En conclusion, les développements présen-
tés dans ce travail ouvrent des voies nou-
velles et prometteuses en vue de la descrip-
tion ab initio des noyaux lourds à couches
ouvertes.
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Abstract: The ab initio branch of nu-
clear structure theory has traditionally fo-
cused on the study of light to mid-mass nu-
clei and primarily spherical systems. Cur-
rent developments aim at extending this fo-
cus to heavy-mass nuclei and doubly open-
shell systems. The study of such systems
is qualitatively and quantitatively challeng-
ing. Hence, different strategies must be de-
signed to efficiently capture the dominant
correlations that most significantly impact
the observables of interest. While in prin-
ciple exact methods exist to solve the non-
relativistic Schrödinger equation for a given
Nuclear Hamiltonian, practical limitations
in numerical simulations make such an ap-
proach impossible for most isotopes. This
calls for a hierarchical characterization of
the main correlations at play in the vari-
ous nuclear systems. Most ab initio tech-
niques rely on an initial mean-field calcula-
tion, typically carried out via the Hartree-
Fock (HF) method, which provide a refer-
ence state containing the principal part of
the correlations contributing to bulk nuclear
properties. When tackling open-shell sys-
tems, it has been proven particularly conve-
nient to break symmetries at mean-field level
to effectively include the static correlations
arising in superfluid (via HF-Bogoliubov the-
ory, HFB) or deformed nuclei (via deformed
HF, dHF). The present work contributes to
this research line by proposing end exploring
novel symmetry-breaking many-body tech-
niques applicable to all nuclear systems.

The simplest ab initio technique that
can be applied on top of the mean-field is
many-body perturbation theory. The first
result of this work is the demonstration
that symmetry-breaking perturbation the-

ory (dBMBPT) based on state-of-the-art nu-
clear interactions can already qualitatively
describe the main nuclear observables, such
as ground-state energies and radii. Given
that perturbation theory constitutes a cheap
and efficient way to perform systematic stud-
ies of different nuclei across the nuclear
chart, a part of the present work is dedicated
to pave the way to such large-scale calcula-
tions.

In order to push many-body calculations
to higher precision, a novel ab initio tech-
nique is then introduced, namely the de-
formed Dyson Self-Consistent Green’s func-
tion (dDSCGF) method. Such a non-
perturbative (i.e., resumming an infinite
number of perturbation-theory contribu-
tions) approach allows one to compute a
wide variety of quantities of interest, both
for the ground state of the targeted nucleus
and for excited states of neighbouring sys-
tems. In addition, it naturally bridges to
nuclear reactions giving access to, e.g., the
evaluation of optical potentials.

Given the high computational cost of non-
perturbative many-body methods, the fi-
nal section introduces possible approaches
to make such calculations more efficient. In
particular, the Natural Orbital basis is in-
troduced and investigated in the context of
deformed systems. Eventually, it is proven
that this technique enables the use of much
smaller basis sets, thus significantly decreas-
ing the final cost of numerical simulations
and enlarging their reach. All together, the
developments reported in the present work
open up new and promising possibilities for
the ab initio description of heavy-mass and
open-shell nuclei.
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Resumé en français
La branche ab initio de la théorie de la structure nucléaire s’est traditionnellement con-
centrée sur l’étude des noyaux de masse légère à moyenne et des systèmes principalement
sphériques. Les développements actuels visent à étendre cette approche aux noyaux de
masse élevée et aux systèmes à double couche ouverte. L’étude de ces systèmes représente
un défi qualitatif et quantitatif. Par conséquent, différentes stratégies doivent être conçues
pour capturer efficacement les corrélations dominantes qui ont le plus d’impact sur les
observables d’intérêt. Bien qu’il existe en principe des méthodes exactes pour résoudre
l’équation de Schrödinger non relativiste pour un hamiltonien nucléaire donné, les limi-
tations pratiques des simulations numériques rendent un tel espoir vain pour la plupart
des isotopes. Cela nécessite une hiérarchisation des corrélations mises en jeu dans les
différents systèmes nucléaires. La plupart des techniques ab initio reposent sur un calcul
initial de type ‘champ moyen’, généralement effectué via la méthode Hartree-Fock (HF),
qui fournit un état de référence contenant la majeure partie des corrélations contribuant
aux propriétés nucléaires globales. Lorsqu’on s’attaque à des systèmes à couche ouverte,
il s’est avéré particulièrement pratique de briser les symétries du Hamiltonien au niveau
du champ moyen pour inclure efficacement les corrélations statiques apparaissant dans les
noyaux superfluides (via la théorie HF-Bogoliubov, HFB) ou déformés (via la méthode HF
déformée, dHF). Ces corrélations sont des corrélations à long range et contribuent à don-
ner un caractère collectif aux nucléons dans le noyau. Elles sont commodément incluses
dans les calculs théoriques au niveau du champ moyen, car si leur étude n’était abordée
que dans le cadre du calcul au-delà du champ moyen, cela nécessiterait des ressources
informatiques trop élevées. Le présent travail contribue à cette ligne de recherche en pro-
posant et en explorant de nouvelles techniques à N -corps applicables à tous les systèmes
nucléaires exploitant cette idée de brisure de symétrie,

La technique ab initio la plus simple applicable au-delà du champ moyen est la théorie
des perturbations à N -corps. Le premier résultat de ce travail est la démonstration qu’une
théorie des perturbations incorporant la brisure de la symétrie de rotation (dBMBPT)
et employant des interactions nucléaires modernes peut déjà décrire qualitativement les
principales observables nucléaires, telles que l’énergie de liaison et le rayon de l’état fonda-
mental. Étant donné que la théorie des perturbations constitue une méthode peu coûteuse
permettant d’effectuer des études systématiques sur large partie de la carte des noyaux,
une partie du présent travail est consacrée à ouvrir la voie à de tels calculs à grande
échelle.

Afin de pousser les calculs à N-corps vers une plus grande précision, une nouvelle
technique ab initio est ensuite introduite, à savoir la méthode des fonctions de Green-
Dyson autoconsistantes déformées (dDSCGF). Cette approche nonperturbative (c’est-à-
dire sommant un nombre infini de contributions perturbatives) permet de calculer une
grande variété de quantités utiles, à la fois pour l’état fondamental du noyau ciblé et pour
les états excités des systèmes voisins. En outre, elle s’étend naturellement en direction
des réactions nucléaires afin d’évaluer, par example, les potentiels optiques.

Étant donné le coût de calcul élevé des méthodes nonperturbatives à N -corps, la
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dernière section présente des approches possibles pour rendre ces calculs plus efficaces.
En particulier, la base des orbitales naturelles est introduite et étudiée dans le contexte
des systèmes déformés. Ainsi, il est prouvé que cette technique permet d’utiliser des bases
beaucoup plus petites, réduisant ainsi de manière significative le coût final des simulations
numériques et étendant leur domaine d’application.

En conclusion, les développements présentés dans ce travail ouvrent des voies nouvelles
et prometteuses en vue de la description ab initio des noyaux lourds à couches ouvertes.
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Introduction
Atomic nuclei are complex many-body systems characterized by the interplay of three of
the four fundamental forces: the strong, the weak and the electromagnetic interactions.
The rich diversity of phenomena characterizing nuclei makes the development of a unique
theory for their description far from being accomplished nowadays. In nuclear structure
studies, static properties of atomic nuclei at low energies are meaningfully investigated
using point-like nucleons displaying a non-relativisitc kinematic as degrees of freedom,
i.e. solving the time-independent non-relativistic A-nucleon Schrödinger equation

H |ΨA
k ⟩ = EA

k |ΨA
k ⟩ , (0.1)

whose eigenvalues deliver the A-body energies EA
k . The obstacles making such an ab

initio description of nuclear systems very challenging are encapsulated by the two main
elements entering such a A-body Schrödinger equation.

The first is the input Hamiltonian operator H composed by an easy-to-handle kinetic
energy term and a hard-to-handle interaction term, the latter being itself decomposed into
two-, three- and in general up to A-body contributions. Historically, many approaches
have been designed to model the interactions entering the Hamiltonian. The current
paradigm allowing to do so in a systematic manner while anchoring the construction into
the underlying gauge theory of the strong force, i.e. quantum chromodynamics (QCD),
is given by a set of Effective Field Theories (EFT) focusing on different energy scales [1,
2]. For what concerns the low-energy domain, Chiral EFT (χEFT) [3] delivers the state-
of-the-art scheme to describe atomic nuclei even though some challenges remain to be
overcome within this framework, in particular the non-renormalizable character of cur-
rently available χEFT interactions based on the traditional Weinberg power-counting [4].

The second element concerns the output many-body wave function |ΨA
k ⟩. While it

can be determined exactly in few-body systems, the exponential growth of the A-body
Hilbert space with particle number quickly calls for systematic approximations. The
goal of approximations performed within the frame of so-called expansion many-body
methods [5] is to include correlations contributing the most to nuclear observables at
low-orders in the expansion. In turn, this allows reducing the scaling to a low polynomial
cost, which can be handled by modern supercomputers. However, those most relevant
correlations differ in nature depending on the nucleus under consideration. In order to
characterize them, it is first necessary to introduce a nuclear classification based on the
näıve occupation of single-nucleon energy shells emerging from a spherical mean-field
approximation.

• Doubly closed-shell systems: nuclei for which the highest occupied neutron and
proton energy shells are full such that a non-zero energy gap separate them from
the unoccupied shells. These nuclei were the first to be investigated via expansion
methods based on a spherically-symmetric Slater determinant reference state and
are dominated by so-called dynamical correlations associated with a large number
of subleading n-particle/n-hole excitations on top of the reference state.
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Chapter 0. Introduction

• Open-shell systems: nuclei for which the neutron and/or the proton highest occu-
pied energy shell is only partially occupied. These nuclei constitute around 90%
of the nuclear chart [6]. The absence of an energy gap between the last occupied
and first empty states in the reference state induces the appearance of strong collec-
tive, i.e. static, correlations that cannot be incorporated in a controlled fashion by
expanding the exact solution via particle-hole excitations on top of the degenerate
reference state. Handling such static correlations requires either the use of multi-
reference expansion techniques [7, 8] or the reference state to break U(1) (SU(2))
symmetry associated with particle number (angular momentum) conservation in
singly (doubly) open-shell nuclei [6, 9]. Once static correlations have been taken
care of at the level of the (multi) reference state, dynamical correlations can be safely
captured on top via an expansion expressed in terms of elementary excitations on
the reference state.

While the definition of the Hamiltonian and the determination of the many-body so-
lutions have so far been presented as two separate problems, they happen to be strongly
entangled. The characteristics, i.e. intrinsic resolution scale and highest interaction rank,
of the Hamiltonian employed to solve the A-body Schrödinger equation have a strong
impact on the applicability of a given many-body expansion method. Indeed, the solu-
tion obtained for a given nucleus is satisfactory only when a convergence is reached with
respect to the

• Truncation of the A-body Hilbert space: the size of the A-body Hilbert space limits
numerical calculations in terms of (i) memory required to store elementary objects
and (ii) CPU time required for the calculations. The size of the A-body Hilbert space
needed to converge a calculation strongly depends on the nature of the Hamiltonian
and increases with the nuclear mass. A chapter of this manuscript is dedicated to
the development of a method to limit such a numerical bottleneck.

• Truncation of the many-body expansion: the vast majority of the calculations shown
in this manuscript are based on a preliminary mean-field calculation delivering a
reference state already capturing crucial static correlations by breaking U(1) and/or
SU(2) symmetries. The subsequent beyond-mean field expansion dedicated to effi-
ciently including dynamical correlations at low orders is either realized via a simple
and inexpensive many-body perturbation theory or via more elaborate and accu-
rate non-perturbative techniques. The choice of the approach strongly depends on
the characteristics of the Hamiltonian and, to a lesser extent, on the system under
consideration. This works as a motivation for the development of the novel de-
formed Dyson Self-Consistent Green’s Function (dDSCGF) method introduced in
this work.

Only nuclear Hamiltonians making possible, for a large range of nuclei, to reach conver-
gence with respect to the above two parameters based on available modern supercomput-
ers are of interest to many-body practitioners. Similarity renormalization group (SRG)
trasnsformations [10] introduced two decades ago to ‘soften’ χEFT Hamiltonians via a
decoupling of low and high momenta have been instrumental to construct such operators.

This work advances the state-of-the-art in different directions: first of all, it demon-
strates comprehensively that breaking SU(2) symmetry is necessary for studying doubly
open-shell systems while maintaining polynomial computational cost. Second, a signifi-
cant portion of the manuscript is dedicated to developing a new SU(2) non-perturbative
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method. Finally, it examines the role of techniques to mitigate the computational cost of
beyond mean-field calculations.

The manuscript is organized as follows: Chapters 1 and 2 introduce the theoretical
background necessary to understand the basic ingredients of the manuscript. Chapter 3
pedagogically displays how correlations impacting nuclear binding energies of closed and
open-shell nuclei can be efficiently included in ab initio expansion methods based on
symmetry-breaking reference states. Chapter 4 works as an intermezzo presenting an
application of deformed many-body perturbation theory to address state-of-the-art ex-
perimental measurements. Chapter 5 introduces the novel dDSCGF ab initio method
dedicated to the accurate description of doubly open-shell nuclei whereas Chapter 6 ana-
lyzes the use of the deformed natural basis to alleviate the numerical cost of such calcula-
tions. Chapter 7 focuses on the threefold puzzle characterizing Calcium isotopes between
the N = 40 and N = 48 neutron shell closures, highlighting the solutions to the first two
parts while leaving the third one as an unsolved mystery. Finally, on top of the partial
conclusions that can be found at the end of each chapter, some overall conclusions are
drawn. The manuscript ends with a set of Appendices including details that have not
been incorporated in the text for the sake of readability.
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Chapter 1.

Prelude – Why break symmetries?
Ideally, Eq. (0.1) should be solved exactly for a given input Hamiltonian H. In practice,
the intrinsic exponential scaling of such a task with the size of the system strongly limits
the applicability range of exact methods to few-body systems. In order to extend the
reach of many-body techniques to higher masses, correlation-expansion approaches have
been developed in the last two decades to provide improvable approximations to the
exact many-body wave function at polynomial cost np

B, where nB represents the number
of states included in the basis of the one-body Hilbert space H1 and p is fixed by the
order at which the many-body expansion is truncated. Such methods build dynamical
correlations on top of a suitably chosen reference state via set of elementary excitations,
as depicted in Fig. 1.1 for a spherically-symmetric Slater determinant reference state.

Different correlations-expansion methods exist, i.e. many-body perturbation theory
(MBPT) [11], coupled-cluster (CC) [12], in-medium similarity renormalization group (IM-
SRG) [13] and self-consistent Green’s function (SCGF) [14] approaches. While these
methods based on a spherically-symmetric Slater determinant reference state have deliv-
ered a successful description of doubly closed-shell nuclei, difficulties related to the choice
of that reference state arise when addressing open-shell systems. In order to intuitively
understand why such a version of expansion methods breaks down for in open-shell nu-
clei, consider the analytical expression of the second-order contribution to the energy in
spherical MBPT (sMBPT):

∆E(2) = −1
4
∑

αβλµ

⟨αβ|H1|λµ⟩ ⟨λµ|H1|αβ⟩
εα + εβ − ελ − εµ

, (1.1)

where λ and µ (α and β) denote occupied, i.e. ‘hole’, (unoccupied, i.e. ‘particle’) single-
particle states in the spherically-symmetric reference Slater determinant whereas H1 is
the so-called residual part associated with the appropriate partitioning of the Hamilto-
nian H = H0 + H1. When an open-shell nucleus is considered, the energies of the last

Figure 1.1. Schematic representation of the particle-hole expansion performed by
correlation-expansion methods on top of a reference state.
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Figure 1.2. Schematic representation of the lift of the particle-hole degeneracy occurring
in an open shell via the breaking of SU(2) symmetry.

occupied and first unoccupied single-particle states are equal as schematically represented
on the left-hand side of Fig. 1.2. This characteristic leads to a problematic degeneracy of
the spherically-symmetric Slater determinant reference state with respect to elementary
particle-hole excitations, eventually translating into a null denominator in Eq. (1.1).

In order to extend the applicability of such methods to open-shell systems, a solution,
first employed in Gorkov self-consistent Green’s function calculations of singly open-shell
nuclei1 [16, 17], corresponds to allowing the reference state to break suitable symmetries of
the Hamiltonian characterized by the symmetry group GHam inherited from QCD. There
are essentially two symmetries that can be usefully broken by the reference state.

• Global-gauge symmetry U(1)2 associated with particle-number conservation. Its
breaking requires the use of more general Bogoliubov reference states and corre-
sponds to the emergence of strong static correlations associated with the superfluid
character of neutrons or (and) protons in singly (doubly) open-shell nuclei.

• Rotational symmetry SU(2) associated with angular-momentum conservation. Its
breaking requires the use of spatially deformed Slater determinant or Bogoliubov
reference states and signal the emergence of strong quadrupolar correlations associ-
ated with the rotational character of doubly open-shell nuclei.

In both cases, the breaking of the symmetry allows the reference state to capture static
correlations at mean-field cost3 and further lifts its degeneracy with respect to elementary
excitations, as schematically shown in Fig. 1.2 for a deformed Slater determinant reference
state, ultimately avoiding to have any null denominator in Eq. (1.1).

Eventually, symmetries should be restored in order to properly reflect the fundamental
symmetries of the underlying Hamiltonian. Symmetry restorations techniques have been
developed so far in the case of CC and MBPT [18, 19] and constitute a challenge to be
numerically implemented given their significant computational cost.

1While this constituted the first such implementation for ab initio correlation-expansion methods,
symmetry-breaking concepts have been employed long before in nuclear structure theory, especially
in the context of energy density functionals [15].

2Since two isotopic species are at play in atomic nuclei, U(1) is here used as a shorthand notation for
global-gauge symmetry with respect to both proton and neutron number, i.e. U(1)N ⊗ U(1)Z .

3Such static correlations could only be resummed at much higher costs via a particle-hole like expansion.
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Chapter 2.

Theoretical framework – Bogoliubov, or
on the pairing

2.1. The nuclear Hamiltonian
2.1.1. Operator structure
In ab initio, the nuclear Hamiltonian in the intrinsic frame is typically truncated up
three-body forces and reads

H = T + V +W, (2.1)
where T represents the intrinsic kinetic energy whereas V and W represent respectively
two- and three-body interactions. Representing in second quantization the chosen basis
of the one-body Hilbert space H1 by two sets of anti-commuting creation and annihilation
operators, c†

α and cα, satisfying the anticommutation rules

{cα, cβ} = 0 , (2.2a)
{c†

α, c
†
β} = 0 , (2.2b)

{cα, c
†
β} = δαβ , (2.2c)

Eq. (2.1) can be re-written as

H =
∑
αδ

(
1− 1

A

)
tlab
αδ c

†
αcδ

+ 1
(2!)2

∑
αβδε

(v̄NN
αβδε − t̄cm

αβδε)c†
αc

†
βcεcδ

+ 1
(3!)2

∑
αβγδεφ

w̄αβγδεφc
†
αc

†
βc

†
γcφcεcδ .

(2.3)

Here tlab
αδ represents the one-body (1B) matrix element of the kinetic energy in the lab-

oratory frame and t̄cm
αβδε the two-body (2B) matrix element for the contribution of the

center-of-mass kinetic energy that is subtracted from the Hamiltonian in the laboratory
frame

T cm = 1
mNA

∑
i<j

p⃗i · p⃗j, (2.4)

mN and A being respectively the mass of the nucleon and the particle-number opera-
tor [20]. In Eq. 2.3, two-body (three-body [3B]) matrix elements are anti-symmetric with
respect to the exchange of the first-two and last-two (any two among the first-three and
last-three) indices.
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Chapter 2. Theoretical framework – Bogoliubov, or on the pairing

2.1.2. χEFT Hamiltonians
Calculations in the present work have been carried out employing different types of χEFT
Hamiltonians:

• NNLOsat (bare) [21], which has been proven able to accurately reproduce energies
and charge radii up to mid-mass nuclei;

• NNLOsat (2.4) and NNLOsat (2.0) [22], which constitute the SRG-evolved version
of the NNLOsat (bare) bare interaction, respectively down to the momentum scales
2.4 fm−1 and 2.0 fm−1;

• ∆NNLOgo (394) and ∆NNLOgo (450) [23], which explicitly include ∆ isobar degrees
of freedom in the fit of the LECs;

• EM 1.8/2.0 [24], a soft interaction that allows to accurately predict binding energies
but largely underestimates charge radii, based on the two-body potential from [25];

• NN+3N(lnl) [26], whose two-body part is given by [25] similarly to the case of the
EM 1.8/2.0 interaction, and includes a combination of local and non-local regulators;

• NN(N4LO)+3N(lnl)E7 [27], analogous to the NN+3N(lnl) interaction but with a
2-body part truncated at the fifth order (N4LO) in the chiral expansion and the
addition of a subleading term that enhances the strength of the spin-orbit interaction
in the three-body sector.

The main parameters that characterize different interactions are:

• the value of the Low-Energy Constants (LECs) employed in the theory, typically
fitted on few-body and many-body systems;

• the value of the cutoff employed in the χEFT interactions;

• if the interaction is SRG-evolved, the value of the flow parameter;

• the order truncation in the χEFT expansion (LO, NLO, NNLO, N3LO, . . .).

When a χEFT Hamiltonian is employed in a many-body calculation, such parameters
influence the rate of convergence with respect to the size of the model space and the
many-body expansion and the values of the computed observables.

2.1.3. Spherical harmonic oscillator matrix elements
Ab initio applications require the representation of operators on a single-particle basis.
The most notable and long-time employed single-particle basis in nuclear structure is the
spherical Harmonic Oscillator (sHO) basis. Different reasons lay behind its success: first
of all, the sHO potential is rather optimal to describe well-bound closed-shell nuclei [28].
Second, the specific analytical structure of sHO wave functions allows for various simplifi-
cations that are useful to expand operators relevant for nuclear structure studies. Finally,
it allows for an exact separation of intrinsic and center-of-mass motions [29], which justifies
the application of Eq. (2.3) for the calculation of the MEs of the intrinsic Hamiltonian.

Greek letters are used in this manuscript to label a set of five quantum numbers for the
sHO basis:

α ≡ {nα, jα,mα, lα, tα} = {nα, jα,mα, πα, tα}, (2.5)
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2.1. The nuclear Hamiltonian

emax nB

2 40
4 140
6 336
8 660
10 1144
12 1820
14 2720

Table 2.1. Number of sHO one-body basis states nB for a given emax truncation. For
each isospin, the number of sHO one-body basis states is nP

B = nN
B ≡ nB/2.

where nα indicates the principal quantum number, jα the total angular momentum, mα

the projection of the total angular momentum along the quantization axis, lα the orbital
angular momentum, πα the parity (πa = (−1)lα) and tα the projection of the isospin along
the quantization axis. A bar over Greek letters indicates the definition

ᾱ ≡ {nα, jα,−mα, lα, tα} = {nα, jα,−mα, πα, tα}. (2.6)

Quantum numbers nα and lα allow to order single-particle sHO states according to their
energies

EsHO = ℏω
(

2n+ l + 3
2

)
. (2.7)

Whenever adding a one-body spin-orbit potential to the sHO, energy levels with l > 0 are
further split into two subshells differing by the quantum numbers j = l± 1/2 and coined
as spin-orbit partners. Such ordering of single-particle states is depicted in Fig. A.1 from
App. A and it is referred to as the Bohr-Mottelson shell model.

The dimension nB of the sHO basis, i.e. the range of the index α, is set by selecting
neutron and proton states according to an emax ≡ 2nα + lα truncation. The values of
nB corresponding to 2 ≤ emax ≤ 14 are displayed in Tab. 2.1. Furthermore, an addi-
tional truncation typically characterizes three-body matrix elements and is given by the
parameter

e3max ≡ 2nα + lα + 2nβ + lβ + 2nγ + lγ. (2.8)
The spatial extension of sHO wave functions can be tuned via the choice of the frequency

ℏω of the harmonic oscillator potential1. Even if ab initio calculations become independent
of that choice when a large enough emax is employed, a particular value of ℏω can help
optimize the convergence of the calculation for a given emax. For any choice of the oscillator
frequency, though, all sHO basis states display a wrong asymptotic behavior at large
distances, i.e. they fall off as Gaussian functions, which makes it difficult to reproduce the
exponential tail of the one-nucleon density distribution.

Spherical harmonic oscillator MEs of two- and three-body interactions employed for
the calculations presented in this manuscript have been produced in different ways:

1In the present work, following the typical approach in ab initio, ℏω is chosen to deliver the lowest
value of ground-state energy for each studied case. While this choice is well-motivated for mean-
field calculations due to the variational nature of the problem, its application to beyond mean-field
calculations is questionable. Nevertheless, since beyond mean-field calculations generally show regular
convergence to the lowest values of the ground-state energy as the size of the model space increases
or as the single-particle wave functions become better suited to describe the nucleus, this criterion for
choosing ℏω is also applied to such calculations.
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• NNLOsat (bare), ∆NNLOgo (394), ∆NNLOgo (450) and EM 1.8/2.0 MEs up to
e3max = 16 have been generated with the NuHamil code [30].

• EM 1.8/2.0 MEs at e3max = 18 have been generated by H. Hergert.

• NNLOsat (2.4), NNLOsat (2.0), NN+3N(lnl) and NN(N4LO)+3N(lnl)E7 MEs have
been produced by P. Navrátil.

• Non-local three-body momentum-space MEs employed for the generation of sHO
MEs with the NuHamil code have been computed by K. Hebeler [31].

Center-of-mass kinetic energy corrections appearing in Eq. (2.3) have been calculated
according to the equations displayed in Ref. [32].

2.1.4. Two-body rank reduction of three-body operators
The direct utilization of the MEs of the three-body interactionW in Eq. (2.1) in correlation-
expansion methods requires the storage and manipulation of six-indexes tensors. Even
exploiting anti-symmetry relations, such an object remains too complicated to explicitly
handle in terms of the memory required to store it and the computational time neces-
sary for its manipulation. However, taking into account three-body operators remains
possible at the level of mean-field calculations. Such upside can be exploited to perform
the so-called normal-ordered two-body (NO2B) approximation, that allows to capture the
relevant effects of three-body interactions while working with two-body operators [33, 34].
The NO2B approximation relies on the normal-ordering of the Hamiltonian with respect
to a Slater determinant through Wick’s theorem and can be applied to Slater determinants
that are characterized by the same symmetries as the underlying Hamiltonian.

Nevertheless, the direct extension of such a procedure to expansion methods based on a
symmetry-breaking reference state would lead to an approximate Hamiltonian with lower
symmetries than the full Hamiltonian. This is to be avoided in order to attribute the
symmetry breaking to the sole expansion method used and not to the rank-reduction
step of three-nucleon interactions. In order to overcome this problem, a new technique
has been recently proposed [35]. Such approach allows to effectively approximate an n-
body operator by rank-reducing it to a sum of terms of lower rank (up to k < n) via
a convolution with a symmetry-invariant one-body density matrix ρ that can originate
from any symmetry-conserving auxiliary many-body state.

For the present manuscript, the interest is in reducing (n = 3)-body operators into a
sum of effective (k = 0, 1, 2)-body ones. As proven in Ref. [35], this can be accomplished
by defining the three tensors

h(0)[ρ] ≡ 1
3!

∑
αβγδεφ

w̄αβγδεφρφγρεβρδα, (2.9a)

h
(1)
αδ [ρ] ≡

(
1− 1

A

)
tlab
αδ −

1
2!
∑

βγεφ

w̄αβγδεφρφγρεβ, (2.9b)

h
(2)
αβδε[ρ] ≡ (v̄NN

αβδε − t̄cm
αβδε) +

∑
γφ

w̄αβγδεφρφγ, (2.9c)

entering the rank-reduced effective 2B Hamiltonian

H2B[ρ] = h(0)[ρ] + 1
(1!)2

∑
αδ

h
(1)
αδ [ρ]c†

αcδ + 1
(2!)2

∑
αβδε

h
(2)
αβδε[ρ]c

†
αc

†
βcεcδ. (2.10)
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Symmetry-breaking calculations presented in this manuscript are based on the effective
2B Hamiltonian in Eq. (2.10). The one-body density matrix ρ employed is the normal
density matrix of a spherical Hartree-Fock-Bogoliubov (HFB) calculation [35].

For simplicity of notation, in the following h(0) will be used to denote the 0-body part of
the rank-reduced Hamiltonian, while tαδ ≡ h

(1)
αδ and v̄αβδε ≡ h

(2)
αβδε will denote respectively

the matrix elements of the 1- and 2-body parts.

2.2. Bogoliubov algebra
Let us consider the set {βκ1

, β†
κ2
} of so-called quasiparticle creation and annihilation op-

erators obeying the anti-commutation rules

{βκ1
, βκ2
} = 0 , (2.11a)

{β†
κ1
, β†

κ2
} = 0 , (2.11b)

{βκ1
, β†

κ2
} = δκ1κ2

, (2.11c)

and related to the set of creation and annihilation operators introduced in Eq. (2.2)
through the Bogoliubov transformation [36]

βκ ≡
∑

λ

U∗
λκcλ + V ∗

λκc
†
λ , (2.12a)

β†
κ ≡

∑
λ

Vλκcλ + Uλκc
†
λ , (2.12b)

or equivalently in matrix form (
β

β†

)
≡ W†

(
c

c†

)
, (2.13)

where the Bogoliubov matrix W was introduced according to

W =
(
U V ∗

V U∗

)
. (2.14)

Equations (2.11) impose that W is a unitary matrix

W†W =WW† = I , (2.15)

the first equality leading to

U †U + V †V = 1 , (2.16a)
V TU + UTV = 0 , (2.16b)
UU † + V ∗V T = 1 , (2.16c)
V U † + U∗V T = 0 , (2.16d)

and the second one to equivalent identities.
The Bogoliubov product state is defined (up to a phase) as the normalized vacuum for

the set of quasiparticle operators defined in Eqs. (2.11):

βκ |Φ⟩ = 0 ∀κ . (2.17)
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A possible explicit representation of the Bogoliubov vacuum is given by

|Φ⟩ ≡ C
∏
κ

βκ |0⟩ , (2.18)

where C denotes a complex normalization constant ensuring that ⟨Φ|Φ⟩ = 1. It is easy
to verify that |Φ⟩ is not an eigenstate of the particle-number operator A and therefore
breaks U(1) gobal-gauge symmetry2.

The Bogoliubov vacuum can be equivalently characterized by the associated one-body
normal and anomalous density matrices respectively defined as

ρλ1λ2
≡
⟨Φ|c†

λ2
cλ1
|Φ⟩

⟨Φ|Φ⟩
, (2.19a)

κλ1λ2
≡
⟨Φ|cλ2

cλ1
|Φ⟩

⟨Φ|Φ⟩
, (2.19b)

and possibly rewritten in matrix form in terms of the two matrices making up the Bo-
goliubov transformation

ρ = V ∗V T , (2.20a)
κ = V ∗UT = −UV †. (2.20b)

Exploiting fermionic anti-commutation relations, is it easy to prove that ρ and κ are
respectively hermitian (ρ† = ρ) and skew-symmetric (κT = −κ), i.e.

ρµν = ρ∗
µν , (2.21a)

κνµ = −κµν . (2.21b)

Finally, Eqs. (2.19a) and (2.19b) can be combined to define the generalized density
matrix

R ≡
(

ρ κ
−κ∗ 1− ρ∗

)
, (2.22)

which can be proven to be hermitian (R† = R), idempotent (R2 = R) and diagonal in
the quasiparticle basis with eigenvalues 0 and 1

W†RW =
(

0 0
0 1

)
. (2.23)

2.3. The Hartree-Fock-Bogoliubov equations
The mean-field HFB approximation constitutes the typical approach delivering the refer-
ence Bogoliubov state, already incorporating pairing correlations, around which the exact
solution will be expanded later on using a specific expansion method of choice. In such
an approach, nucleons are represented as non-interacting quasiparticles moving in a self-
consistent mean-field potential. Across the manifold of Bogoliubov vacua |Φ⟩, the best
mean-field approximation to the ground-state of the system is selected by employing the
Ritz variational principle

δ
⟨Φ|H|Φ⟩
⟨Φ|Φ⟩

= 0 . (2.24)

2While this is true in general, in the limit in which the Bogoliubov vacuum reduces to a Slater determi-
nant (see the discussion in Sec. 2.3.1) U(1) symmetry is not broken.
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2.3. The Hartree-Fock-Bogoliubov equations

Since the Bogoliubov vacuum does not carry a well defined number of particles, the
requirement that the average number of particles is equal to the number of particles of
the system is imposed

⟨Φ|A|Φ⟩ = A , (2.25)
throughout the minimization.

This is done by introducing the grand-canonical potential defined from the Hamiltonian
H as

Ω ≡ H − λA , (2.26)
where λ is a Lagrange multiplier, allowing to replace Eq. (2.24) via

E [R] ≡ ⟨Φ|Ω|Φ⟩
⟨Φ|Φ⟩

(2.27)

while controlling that the average particle number remains fixed to the physical value.
Further requiring that the Bogoliubov transformation is unitary (or equivalently R is
idempotent), the minimization

δ{E [R] + Tr[Λ(R2 −R)]} = 0, (2.28)

is effectively done, where Λ labels a matrix of Lagrange multipliers. Introducing the HFB
Hamiltonian

H ≡ ∂E [R]
∂R

=
(
h− λ ∆
−∆∗ −(h− λ)∗

)
, (2.29)

where h and ∆ represent respectively the Hartree-Fock field and the Bogoliubov field

h− λ ≡ ∂E [R]
∂ρ∗ , (2.30)

∆ ≡ ∂E [R]
∂κ∗ , (2.31)

Eq. (2.28) can be written as

H +RΛ + ΛR− Λ = 0 . (2.32)

Two equations are obtained respectively multiplying the lhs of Eq. (2.32) from the left
and from the right by R. Subtracting the two and exploiting the idempotency of R, one
obtains

[H,R] = 0 . (2.33)
Since Eq. (2.23) displays a diagonality of R in the quasiparticle basis, the U and V
matrices for the Bogoliubov transformation in Eq. (2.12) can be determined by solving
the Hartree-Fock-Bogoliubov equations

H
(
U
V

)
k

=
(
h− λ ∆
−∆∗ −(h− λ)∗

)(
U
V

)
k

= Ek

(
U
V

)
k

, (2.34)

i.e. diagonalizing the Hartree-Fock-Bogoliubov Hamiltonian. Since h and ∆ depend on
the eigenvectors U and V , the numerical implementation of Eq. (2.34) requires an iterative
solution.

Taking the expectation value of H on the HFB vacuum and applying the Wick theo-
rem [37], it follows that the total energy of the system is given by

EHFB = h(0) +
∑
αβ

tαβρβα + 1
2
∑

αβγδ

v̄αβγδρδβργα + 1
4
∑

αβγδ

v̄αβγδκαβκγδ . (2.35)
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2.3.1. Reduction to Hartree-Fock equations
Consider the limit case in which the Bogoliubov vacuum (Eq. (2.18)) reduces to a Slater
determinant

|Φ⟩ =
A∏

λ=1
c†

λ |0⟩ , (2.36)

where the A occupied single-particle states are denoted with (λ, µ, . . .) whereas all the oth-
ers are empty and denoted with (α, β, . . .). The Bogoliubov transformation (Eq. (2.12))
leads to the following connection between quasiparticle and single-particle creation and
annihilation operators

βα = cα, β†
α = c†

α, (2.37a)
β†

λ = cλ, βλ = c†
λ, (2.37b)

such that

Vακ = 0, Uακ = δακ, (2.38a)
Vλκ = δλκ, Uλκ = 0. (2.38b)

The normal and anomalous density matrices (Eqs. (2.19a) and (2.19b)) reduce to

ρακ = 0, κακ = 0, (2.39a)
ρλκ = δλκ, κλκ = 0, (2.39b)

which combined with Eq. (2.31) shows that the Bogoliubov field vanishes (∆ = 0).
The Hartree-Fock-Bogoliubov equation (Eq. (2.34)) simplifies into(

h− λ 0
0 −(h− λ)∗

)(
Uk

Vk

)
= Ek

(
Uk

Vk

)
. (2.40)

Given that the Lagrange multiplier λ entering Eq. (2.26) must be located in between the
last occupied and the first empty level in order for the reference Slater determinant to
contain A nucleons, the positive HFB eigenvalues Eκ of Eq. (2.34) are given by

Eκ ≡
{
εα − λ if κ = α,

λ− ελ if κ = λ,
(2.41)

where the hole and particle single-particle energies come from solving the two separate
Hartree-Fock (HF) equations according to

hUα = εαUα, (2.42a)
hV ∗

λ = ελV
∗

λ . (2.42b)

The total energy in the HF basis is now obtained from Eq. (2.35) discarding the term
depending on the anomalous density matrix

EHF = h(0) +
A∑

λ=1
tλλ + 1

2

A∑
λµ=1

v̄λµλµ. (2.43)
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2.3.2. Normal ordering of operators
Once the Bogoliubov reference state has been obtained, a generic n-body operator O
commuting with the particle-number operator A can be normal-ordered with respect to
it according to3

O ≡
n∑

m=0

2n∑
i,j=0

i+j=2m

1
i!j!

∑
κ1...κi+j

Oij
κ1...κi+j

β†
κ1
. . . β†

κi
βκi+j

. . . βκi+1

≡
n∑

m=0

2n∑
i,j=0

i+j=2m

Oij

≡
n∑

m=0
O[2m].

(2.44)

A tensor Oij
κ1...κi+j

is antisymmetric with respect to the permutation of the first i or the
last j indices

Oij
κ1...κiκi+1...κi+j

= ε(σµ)ε(σν)Oij
σµ(κ1...κi)σν(κi+1...κi+j), (2.45)

where ε(σµ) (ε(σν)) represents the signature of the permutation of the first i (last j)
operators. The quantity O[2m] collects all the terms containing 2m quasi-particle operators

O[2m] ≡
2n∑

i,j=0
i+j=2m

Oij, (2.46)

knowing that a given term Oij gathers i (j) quasi-particle creation (annihilation) operators
according to

Oij ≡ 1
i!j!

∑
κ1...κi+j

Oij
κ1...κiκi+1...κi+j

β†
κ1
. . . β†

κi
βκi+j

. . . βκi+1
. (2.47)

2.4. Bogoliubov Many-body Perturbation Theory
2.4.1. Partitioning
The grand potential is split into an unperturbed part Ω0 and a residual part Ω1:

Ω = Ω0 + Ω1, (2.48)

where Ω0 must be suitably chosen to lift particle-hole degeneracies, as illustrated in Ch. 1.
The unperturbed part of Eq. (2.48) can be written as

Ω0 ≡ Ω00 +
∑

κ

Eκβ
†
κβκ, (2.49)

with Eκ > 0 obtained from solving Eq. (2.34). With such a definition, the Bogoliubov
vacuum is the ground state of Ω0

Ω0 |Φ⟩ = Ω00 |Φ⟩ , (2.50)
3Since the rank-reduced Hamiltonian of Eq. (2.10) is presently employed, the constant term O00 sums

h̄(0) with the contributions deriving from the one and two-body terms through the normal-ordering
procedure.
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whereas the many-body states obtained by performing quasi-particle excitations of the
vacuum

|Φκ1κ2⟩ ≡ β†
κ1
β†

κ2
. . . |Φ⟩ (2.51)

happen to be its excited states

Ω0 |Φκ1κ2...⟩ = Ω00 |Φκ1κ2...⟩+
∑

κ

Eκβ
†
κβκ |Φκ1κ2...⟩

= Ω00 |Φκ1κ2...⟩+
∑

κ

Eκβ
†
κβκβ

†
κ1
β†

κ2
. . . |Φ⟩

= Ω00 |Φκ1κ2...⟩+
∑

κ

Eκ

(∑
κi

δκκi

)
|Φκ1κ2...⟩

= [Ω00 + Eκ1
+ Eκ2

+ . . .] |Φκ1κ2...⟩
≡ [Ω00 + Eκ1κ2...] |Φκ1κ2...⟩ .

(2.52)

The fact that Eκ > 0 causes a well-defined energy separation between the vacuum |Φ⟩ and
quasiparticle excited states, lifting the particle-hole degeneracy that charaterizes open-
shell systems (see the discussion in Ch. 1).

2.4.2. Expansion

Based on the above partitioning of the grand potential, the perturbative expansion can be
carried out purely algebraically or diagrammatically [11, 38]. For a two-body observable
O commuting with the Hamiltonian (O ≡ H,Ω, A), the correlation correction is given by
the superfluid generalization of Goldstone’s formula [39]

∆O = ⟨Φ|O
+∞∑
k=1

(
1

Ω00 − Ω1
Ω1

)k

|Φ⟩conn , (2.53)

where the subscript ‘conn’ indicates that only connected diagrams contribute to the ex-
pansion. While the unperturbed contribution is nothing but the expectation value of O
in the Bogoliubov reference state

⟨Φ|O|Φ⟩ = O00, (2.54)

the second- and third-order contributions based on the HFB reference state are the first
non-zero corrections and read as

O(2) = − 1
24

∑
κ1κ2κ3κ4

O40
κ1κ2κ3κ4

Ω04
κ1κ2κ3κ4

Eκ1κ2κ3κ4

, (2.55a)

O(3) = 1
8

∑
κ1κ2κ3κ4κ5κ6

Ω40
κ1κ2κ3κ4

O22
κ3κ4κ5κ6

Ω04
κ5κ6κ1κ2

Eκ1κ2κ3κ4
Eκ5κ6κ1κ2

. (2.55b)
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2.4. Bogoliubov Many-body Perturbation Theory

2.4.3. One-body density matrix
Given the dHFB unperturbed vacuum |Φ⟩ at hand, the dBMBPT(p = 2, 3) many-body
state at second and third order in perturbation theory reads as

|Ψ(p)⟩ =|Φ⟩

+ 1
(1)!

∑
κ1κ2

C20
κ1κ2

(p)|Φκ1κ2⟩

+ 1
(4)!

∑
κ1...κ4

C40
κ1κ2κ3κ4

(p)|Φκ1κ2κ3κ4⟩

+ 1
(6)!

∑
κ1...κ6

C60
κ1κ2κ3κ4κ5κ6

(p)|Φκ1κ2κ3κ4κ5κ6⟩ ,

(2.56)

where |Φκ1···κ2q⟩ denotes elementary excitations obtained via the action of 2q quasi-particle
creation operators on |Φ⟩. The presence of single, double and triple excitations signals
that the bulk of dynamical correlations is captured by |Ψ(p)⟩4.

Let us introduce the BMBPT(2,3) one-body density matrices in the quasi-particle basis

ρ̃(2,3)
κ1κ2
≡
⟨Ψ(2,3)|β†

κ1
βκ2
|Ψ(2,3)⟩

⟨Ψ(2,3)|Ψ(2,3)⟩
, (2.57a)

κ̃(2,3)
κ2κ2
≡
⟨Ψ(2,3)|βκ1

βκ2
|Ψ(2,3)⟩

⟨Ψ(2,3)|Ψ(2,3)⟩
, (2.57b)

where the expression of the numerators and denominators in terms of Cκ1κ2
and Cκ1κ2κ3κ4

can be found in Ref. [40]. Next, the normal BMBPT(2,3) one-body density matrix in the
single-particle basis defined as

ρ
(2,3)
αβ = ⟨Ψ

(2,3))|c†
αcβ|Ψ(2,3))⟩

⟨Ψ(2,3))|Ψ(2,3))⟩
(2.58)

can be obtained from ρ̃(2,3) and κ̃(2,3) via the inverse of Eq. (2.12), and assuming that
time-reversal symmetry is conserved, under the form

ρ
(2,3)
αβ = ρHFB

αβ +
∑
κ1κ2

[
Uκ2β ρ̃κ1κ2

U∗
κ1α − Vβκ2

ρ̃κ1κ2
V ∗

κ1α+

− Vβκ2
κ̃κ2κ1

U∗κ1α + Uκ2βκ̃κ2κ1
Vακ1

]
,

(2.59)

where ρHFB
αβ is given by Eq. (2.19a).

2.4.4. Reduction to many-body perturbation theory
Rewriting the operator string β†

κβκ based on Eqs. (2.37)

β†
κβκ = (c†

αδκα + cλδκλ)(cαδκα + c†
λδκλ) =

c
†
αcα if κ = α,

cλc
†
λ if κ = λ.

(2.60)

4For reference, the explicit expressions of the second-order coefficients C20
κ1κ2

(2) and C40
κ1κ2κ3κ4

(2) can
be found in Ref. [35]. Since |Ψ(2)⟩ does not contain triple excitations, one has C60

κ1κ2κ3κ4κ5κ6
(2) = 0.

17



Chapter 2. Theoretical framework – Bogoliubov, or on the pairing

and using Eq. (2.41), the unperturbed grand potential (Eq. (2.49)) becomes

Ω0 = Ω00 +
∑

α=A+1
(εα − λ)c†

αcα +
A∑

λ=1
(λ− ελ)cλc

†
λ. (2.61)

The excited states of Ω0 are generated here through particle-hole excitations of the Slater
determinant |Φ⟩

|Φαβ...
λµ...⟩ = c†

αcλ . . . c
†
βcµ . . . |Φ⟩ , (2.62)

with the associated eigenvalues

Ω0 |Φαβ...
λµ...⟩ = [Ω00 + εα + εβ + . . .− ελ − εµ − . . .] |Φαβ...

λµ...⟩ . (2.63)

Clearly, the Lagrange multiplier λ does not play any active role such that one can
redefine the problem in terms of the Hamiltonian, thus using the partitioning

H = H0 +H1, (2.64)

with the normal-ordered unperturbed part

H0 ≡ EHF +
∑

α=A+1
εαc

†
αcα −

A∑
λ=1

ελcλc
†
λ (2.65)

having the same excitation spectrum as Ω0 in Eq. (2.63). While the unperturbed contri-
bution to the energy is nothing but

⟨Φ|H|Φ⟩ = EHF , (2.66)

the second-order contribution is given by

∆E(2) = −1
4
∑

αβλµ

|v̄αβλµ|2

εα + εβ − ελ − εµ

. (2.67)

2.5. Axial deformation
While many-body methods breaking U(1) symmetry require a dedicated Bogoliubov-
based formalism to be worked out, the breaking of SU(2) symmetry simply demands a
straightforward adaption of the SU(2)-conserving equations.

The formalism designed above can be easily adapted to the case of axial deformation
by specifying that the many-body tensors at play only display a block-diagonal structure
with respect to quantum numbers m, π and t. This feature relates to the assumption
that the many-body states at play carry good isospin, parity and projection of the total
angular momentum (|Ψ⟩ ≡ |ΨMΠT ⟩). Since rotational symmetry is broken, J is not a
good quantum number anymore and many-body tensors are not diagonal with respect to
the total angular momentum quantum number.

In this context, a measure of the collectivity of the symmetry-breaking solutions is given
by the axial deformation parameter β2

β2 ≡
4π

3AR2
0
q20 , (2.68)
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where R0 ≡ 1.2A1/3 fm and q20 is the expectation value of the axial quadrupole moment
one-body operator Q20 ≡ r2Y20(θ, ϕ), with Y20(θ, ϕ) a spherical harmonic (see Eq. (G.5)
from App. G) with quantum numbers l = 2 and m = 0.

The dHF(B) unperturbed state |Φ⟩ at play in d(B)MBPT (and similarly in dCC [9]
and dDSCGF [6]) breaks rotational invariance. Consequently, the quasi-particle basis5

labelling the many-body tensors at play in the deformed method of interest [41] is char-
acterized by the set of quantum numbers

α ≡ (Nα, πα,mα, tα) , (2.69)

where Nα denotes a novel principal quantum number. While πα and mα remain good
quantum numbers6, it is not anymore the case for jα and lα.

While the block-diagonal structure of the equations presented above specified to axial
symmetry is not explicitly reported, the complete derivation of the equations at play in
axially-deformed Hartree-Fock (dHF) and axially-deformed self-consistent Green’s func-
tion (dSCGF) methods can be found in Ch. 5.

2.6. Accessing ground-state energies of odd-even systems
The description of odd-systems constitutes a challenging task for ab initio expansion
methods given the breaking of time-reversal symmetry induced by the odd nucleon. In
the HFB method, a proposed perturbative procedure consists of adding a quasiparticle
on top of the vacuum state of the even-even neighboring nucleus. However this procedure
displays issues linked to the particle number of the odd-even system that is to be described.

In order to overcome this problem, the HFB calculation can be performed while con-
straining the even-number-parity vacuum to carry the appropriate odd average number
of particles [42]. Creating on top of it the quasi-particle carrying the lowest quasi-particle
energy allows to properly approximate the total energy of the odd-even system.

While such a procedure was originally formulated within HFB theory, it is presently
adapted to approximate BMBPT(2,3) calculations for odd systems. The even-number-
parity vacuum carrying the odd average particle number is employed as a reference state
to perform the perturbative expansion. The energy for the odd-system is then determined
by adding the smallest HFB quasi-particle energy to the BMBPT(2,3) total energy.

5In case the unperturbed state is a deformed Hartree-Fock Slater determinant, the quasi-particle basis
relates trivially to the deformed Hartree-Fock single-particle basis. In case the unperturbed state is
a deformed Hartree-Fock-Bogoliubov state, it corresponds to the actual deformed Bogoliubov quasi-
particle basis.

6While it can be further broken [41], the rotational symmetry around the z axis is presently conserved,
i.e. the unperturbed state remains axially symmetric.
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Chapter 3.

Impact of correlations on nuclear
binding energies
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3.1. Introduction
Predictions based on ab initio nuclear structure calculations are currently moving to
heavier systems [43–47] and/or doubly open-shell nuclei [8, 9, 41, 48]. One ambition
of such developments is to efficiently capture the dominant many-body correlations at
play. As introduced in Ch. 1, many-body correlations can be separated in two different
categories. The first category concerns so-called dynamical correlations carried by all nu-
cleons and delivering the bulk of the correlation energy. Dynamical correlations are well
captured by a sum of many low-rank elementary, e.g. particle-hole, excitations out of a
well-chosen unperturbed state. The second category concerns so-called static correlations
that strongly impact the ground-state of open-shell nuclei and are driven by the valence
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nucleons. While being largely subleading, static correlations vary quickly with the num-
ber of valence nucleons and, as such, strongly impact differential quantities as well as
spectroscopic observables. Such correlations can be efficiently captured via an optimal
choice of the unperturbed state [7, 11].

In this context, the present chapter aims at pedagogically analyze the impact of many-
body correlations on binding energies and associated differential quantities, i.e. first- and
second-order derivatives with respect to the (even) neutron number. To do so, the study is
conducted along neighboring Calcium (Z = 20) and Chromium (Z = 24) isotopic chains
spanning a large range of (even) neutron numbers from N = 12 till N = 50. Most of
Ca isotopes are of singly open-shell character whereas most of Cr isotopes are of doubly
open-shell character. Comparing the behavior of binding energies along these isotopic
chains allows one to illustrate the roles played by static and dynamical correlations in the
two types of nuclei and the capacity of ab initio many-body methods to efficiently capture
them by employing an optimal formulation. In order to control how some of the identified
features depend on the nuclear mass, additional calculations are performed along the Tin
(Z = 50) isotopic chain from N = 50 till N = 82.

The present chapter is organized as follows. Before starting with actual calculations,
Sec. 3.2 presents a summary of the main sources of uncertainty that characterize ab
initio methods. Section 3.3 briefly introduces the numerical calculations performed in
the present study. In Sec. 3.4, the results obtained at the spherical mean-field level are
analyzed, pointing to specific deficiencies that need to be remedied by the addition of
correlations. In Sec. 3.5, low-order dynamical correlations on top of the spherical mean-
field are proven to correct all such shortcomings to a high degree in Ca isotopes. In
Sec. 3.6, the inclusion of static correlations either via a complete diagonalization in the
valence space or via the explicit breaking of rotational symmetry is shown to be critical
to obtain an equally good description of Cr isotopes.

3.2. Sources of uncertainty in many-body methods
As discussed in the Introduction, the solution of the many-body Schrödinger equation
(Eq. (0.1)) requires (i) the modelling of the nuclear Hamiltonian H and (ii) the determi-
nation of the many-body wave function |ΨA

k ⟩ through a many-body calculation. Different
sources of uncertainty are involved at different levels of such procedure. For what con-
cerns the determination of the LECs characterizing the nuclear interaction alone, rigorous
methods have been developed in past years to estimate the uncertainty associated to the
fitting procedure [50, 51]. When it comes to other sources of error, specific evaluations
must be performed in different regions of the nuclear chart since their impact is typically
mass-dependent. Nuclear interactions carry mainly three sources of uncertainty.

• Truncation in the χEFT expansion: it requires the generation of the interaction
at different orders in the EFT. It can be then quantified, e.g., through the simple
estimation illustrated in [52].

• SRG evolution: Hamiltonians pre-processed via SRG techniques are usually trun-
cated at the 3B level, which spoils the unitary character of the transformation. To
evaluate the corresponding impact on nuclear observables, one needs to repeat the
many-body calculation at different values of the SRG flow parameter. The variation
is a measure of the associated uncertainty.
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3.2. Sources of uncertainty in many-body methods

Figure 3.1. Systematics along Ca (left panel) and Cr (right panel) isotopic chains. First
line: sHFB and sHF-EFA absolute binding energy against experimental data. Second
(third) line: sHFB and sHF-EFA two-neutron separation energy (two-neutron shell gap)
against experimental data. Between 42Ca and 48Ca (0f7/2 shell) as well as between 62Ca
and 70Ca (0g9/2 shell), sHFB-ZP semi-analytical results are also shown. Fourth line:
sHFB neutron-number variance against the minimal possible variance in sHFB calcula-
tions (shaded area) [49]. The sequence of the underlying neutron canonical shells are also
displayed.
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• Rank-reduction of three-body operators: past studies [53] showed that the error in-
duced by the rank-reduction of three-body operators [35] (see Sec. 2.1.4) on ground-
state energies of light- to mid-mass nuclei is below 1%.

The first two sources of uncertainties can be sizeable and at the same time are difficult
to evaluate. Particular estimates point to a few (up to 5) percent impact on ground-state
properties (see e.g. [54]).

The projection of operators on a single-particle basis delivers a one-body model-space
that must be suitably truncated. As already illustrated, such truncation is typically
performed via the emax and e3max sHO parameters.

• emax truncation: ground-state energies and radii can be extrapolated to emax →∞
by studying the infrared behavior of sHO wave functions in an effective box [55, 56].
Such extrapolation however requires several calculations at different values of emax
and ℏω. With this at hand, one can evaluate the error associated with a given emax.

• e3max truncation: more empirical extrapolations procedures can be devised (see
e.g. [44]), which also require several calculations varying the value of e3max. A
statistical analysis can also provide associated uncertainties.

For the model-space truncations (emax = 10 − 12 and e3max = 16 − 18) and mass-range
(A = 18 − 70) studied in this manuscript, these two sources of uncertainty are typically
subleading compared to the other ones.

Lastly, three additional sources of error characterize many-body methods.

• Many-body truncation: the error strongly depends on the ‘softness’ of the Hamil-
tonian and on the mass of the system under study. For soft Hamiltonians (e.g.
EM 1.8/2.0), truncating the perturbative expansion at second order already allows
to get close (typically 1-2%) to an exact reference [6]. For ‘harder’ interactions,
high-momentum contributions become non-negligible and require non-perturbative
methods to be properly taken into account. Several parts of this manuscript present
a comparison of various many-body methods, from which the convergence of the
many-body expansion and associated uncertainties can be deduced case by case.

• Breaking of particle-number symmetry: equations from [57] allow to estimate of the
impact of particle number projection on the total energy. Large-scale calculations [6]
up to mid-mass nuclei that are not presented in this manuscript showed that the
uncertainty associated does not exceed 1% in all the cases considered.

• Breaking of rotational symmetry: for ground-state energies, past studies [9, 48]
indicate that angular-momentum projection yields an additional 1-2% at the CCD
level. Given that the effect strongly depends on the deformation, it may vary
abruptly across isotopic chains and impact differential quantities like two-neutron
separation energies or two-neutron gaps.

While efforts to fully characterize uncertainties associated to dBMBPT calculations are
currently underway [6], given (i) the large variety of many-body methods and interactions
employed here and (ii) the exploratory nature of many of the developments discussed in
the present manuscript, the choice of not displaying theoretical error bars have been
made. One should refer to the present discussion to estimate case by case theoretical
uncertainties.
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3.3. Numerical calculations

3.3. Numerical calculations
Ab initio many-body calculations in this chapter are carried out employing a one-body
sHO basis characterized by the frequency ℏω = 12 MeV. All states up to emax = 12
are included. The representation of three-body operators is further restricted by only
employing three-body states up to e3max = 18 (24) in Ca and Cr (Sn) isotopes.

Calculations are performed using the EM 1.8/2.0 Hamiltonian. This particular Hamil-
tonian is employed because it is empirically known to give an excellent reproduction of
binding energies in the mid-mass region [58].

The present study is based on three complementary expansion many-body methods.
First, the spherical Hartree-Fock Bogoliubov (sHFB) mean-field approximation plus second-
order Bogoliubov many-body perturbation theory (sBMBPT(2)) correction [38, 59] is
employed. As a non-perturbative complement to sBMBPT(2), spherical Bogoliubov cou-
pled cluster with singles and doubles (sBCCSD) [46, 60] calculations are also carried
out. Third comes the axially-deformed Hartree-Fock Bogoliubov (dHFB) mean-field ap-
proximation plus second-order Bogoliubov many-body perturbation theory (dBMBPT(2))
correction1 [35, 41].

Available valence-space in-medium similarity renormalization group (VS-IMSRG(2))
results in Ca and Cr isotopes [58] based on the same Hamiltonian2 are presently employed
as a reference given that static and dynamical correlations generated within the valence
space are accounted for to all orders via the diagonalization of the associated effective
Hamiltonian. Notice that calculations along complete Ca and Cr isotopic chains require a
reset of the valence space below N = 20 and above N = 40. The data presently employed
correspond to the choice of valence spaces delivering the most optimal results [58].

Experimental data (as well as extrapolated data) for nuclear ground-state energies
shown in all the present work are taken from [63].

3.4. Spherical mean-field approximation
The baseline of more advanced treatment based on a many-body expansion is given by
the mean-field approximation restricted to spherical symmetry [5]. Because the present
study targets open-shell systems, the minimal version presently considered is given by
sHFB that can naturally capture pairing correlations via the breaking of U(1) symmetry
associated with particle-number conservation [36] (see the discussion in Ch. 2).

3.4.1. Calcium chain
Systematic sHFB results along the Ca isotopic chain are displayed in the left panels of
Fig. 3.1. In the first line, one observes that sHFB calculations significantly underbind
experimental data, e.g. by more than 100 MeV in 48Ca, in a way that increases with
neutron excess. Such a quantitative defect is expected from a mean-field approximation
in the context of ab initio calculations. Indeed, while static neutron-neutron pairing

1dHFB and dBMBPT calculations in the present manuscript are carried out with the PAN@CEA numerical
suite [41].

2The numerical setting is slightly different given that these calculations employ e
max

= 14 and e
3max

= 16
while extrapolations in e

max
are performed to obtain infrared convergence [61]. The effects of 3N

interactions between valence nucleons is captured via the ensemble normal-ordering of Ref. [62].
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Chapter 3. Impact of correlations on nuclear binding energies

correlations are incorporated within sHFB, one is missing dynamical correlations whose
inclusion account for a significant fraction of the binding energy [5, 8, 11, 64].

The evolution of binding energies can be scrutinized via the two-neutron separation
energy

S2n(N,Z) ≡ E(N − 2, Z)− E(N,Z) (3.1)

displayed in the second line of Fig. 3.1. Because S2n(N,Z) is a first derivative of the
binding energy E(N,Z) with respect to (even) neutron number, the large offset seen in
the first line has disappeared. Eventually, the S2n from sHFB slightly underestimate
experimental data overall such that adding dynamical correlations is expected to correct
for this quantitative discrepancy.

The main characteristics of the experimental S2n, i.e. the sudden drops at N = 20 and
28, and to a lesser extent at N = 32 and 34, as well as the smooth evolution in between,
are well accounted for by sHFB results. However, crucial differences are revealed upon
closer inspection. First, the amplitude of the drops at N = 20 and 28 is too large and
the trend in between, i.e. while filling the 0f7/2 shell, is qualitatively wrong. Correlated
with the too large drop at N = 20, the S2n value in 42Ca is significantly too low. Further
adding neutrons, S2n increases linearly throughout the 0f7/2 shell instead of decreasing
linearly as for experimental data3.

Given that S2n(N,Z) is the first derivative of the binding energy, the patterns identified
above relate to specific features of the binding energies that could not be fully appreciated
in the first line of Fig. 3.1 due to the large scale employed. S2n evolves linearly with the
number av of nucleons in the valence shell for both sHFB results and experiment data
and this implies that E(N,Z) is essentially quadratic in between two closed-shell isotopes.
The fact that S2n starts from too low of a value in sHFB calculations in the open-shell
relates to the fact that the linear decrease of E(N,Z) is not pronounced enough such
that the difference to the data increases throughout the shell. Finally, the fact that S2n

is rising linearly instead of decreasing linearly indicates that the sHFB energy is concave
instead of being convex.

These characteristics can be pinned down quantitatively by looking at the third line of
Fig. 3.1 displaying the so-called two-neutron shell gap

∆2n(N,Z) ≡ S2n(N,Z)− S2n(N + 2, Z) . (3.2)

Whenever ∆2n displays a sudden increase, the amplitude of the spike provides an empirical
measure of the extra stability associated with a mean-field picture of a closed-shell nucleus
displaying a large Fermi gap. Otherwise, ∆2n is linked to the second derivative, i.e. the
curvature, of the smoothly evolving binding energy (see App. C for details).

The left panel displaying ∆2n in Fig. 3.1 confirms the two patterns identified above.
First, the amplitude of the spikes at N = 20 and N = 28 are too large by 4.0 and 2.1MeV,
respectively4. Second, the essentially constant character of the experimental ∆2n between

3While the same patterns are at play when going through 48Ca, the size of the 1p3/2 shell is too small to
make the rising slope of sHFB results really visible. The highly degenerate 0g9/2 shell between 62Ca
and 70Ca is more favorable in this respect even though the slope of the sHFB results is actually zero
in this case. These nuclei are anyway predicted to be unbound and there is no experimental data yet
to be confronted with.

4Contrarily, the sudden increase is correctly reproduced for N = 32 and N = 34. It seems that the
larger is the over-stability in the data, i.e. the more pronounced is the magic character of the isotope,
the larger is the sHFB exaggeration.
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3.4. Spherical mean-field approximation

Figure 3.2. Energy curvature of Ca (left panels) and Cr (right panels) isotopes between
N = 20 and N = 28 (0f7/2 shell). Upper panels: energies rescaled to N = 20 and N = 28
(see text for details). Bottom panels: two-neutron shell gap ∆2n. Experimental data
are compared to sHFB results. For Ca isotopes, results from sHF-EFA and sHFB-ZP
semi-analytical results are also shown.

42Ca and 48Ca is well captured by sHFB calculations but the associated value is negative
instead of positive, i.e. to a very good approximation the sHFB energy is indeed quadratic
with the number of valence nucleons av but it is concave instead of being convex5.

Eventually, the issue associated with the curvature of the energy can be even better
appreciated from the left panels of Fig. 3.2 focusing on the isotopes between N = 20 and
N = 28. While the bottom panel shows ∆2n, the upper panel displays the total energy
rescaled to N = 20 and rotated around that point such that the value at N = 28 is aligned
with it. This effectively removes the overall shift between the different curves along with
the linear trend between the two closed-shell isotopes. Both panels make clear that,
while experimental energies of Ca isotopes are essentially quadratic and convex between
two closed-shell isotopes, sHFB calculations generate a quadratic dependence of energies
whose curvature carries the wrong sign.

3.4.2. Analytical investigation
The wrong qualitative behavior of the sHFB energy along semi-magic chains was already
visible in past calculations [46, 59, 65] based on different chiral Hamiltonians. It seems
to indicate that this behavior is deeply rooted into the spherical mean-field approxima-
tion based on realistic nuclear Hamiltonians. This expectation can in fact be confirmed

5Between 62Ca and 70Ca, where there is no experimental data, ∆2n is constant but actually null such
that the sHFB energy is rather linear with av.
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Chapter 3. Impact of correlations on nuclear binding energies

analytically as demonstrated below.
In order to proceed, one must first make a crucial observation thanks to the results

shown on the last line of Fig. 3.1 comparing the neutron-number variance in the sHFB
calculation to the minimal variance obtained in the zero-pairing limit of sHFB theory
(sHFB-ZP) [49]. As already noticed [65], chiral Hamiltonians typically generate only
little static pairing at the mean-field level6, i.e. the computed neutron-number variance is
indeed very close to the minimal variance in most open-shell isotopes, except in 56,58Ca
and for nuclei in the continuum. As visible from the left panels of Fig. 3.1, this is
confirmed by the proximity of sHFB results to those obtained from spherical Hartree-
Fock calculations performed within the equal-filling approximation [70] (sHF-EFA) that
do not include pairing correlations by construction. Results are indeed very close overall,
except in 56,58Ca (0f5/2 shell) where sHFB better reproduces experimental values for S2n

and ∆2n. As for the curvature within open-shells, the left panels of Fig. 3.2 reveals that
the curvature of sHF-EFA results also carries the wrong sign but is such that the concavity
is even more pronounced than for sHFB, i.e. the weak pairing correlations present within
the 0f7/2 shell in sHFB do improve the situation compared to the case where pairing
would indeed be strictly zero.

Based on this observation, the sHFB energy of an open-shell nucleus relative to the
closed-shell (CS) core7 can be, to a good approximation, expressed analytically as a func-
tion of av and of specific 2N and 3N interaction matrix elements within sHFB-ZP and
sHF-EFA. Both cases are worked out in details in App. B. Since both variants provide
almost identical numerical results, only the simpler sHF-EFA expressions are reported
here whereas the complete set of formulae valid in sHFB-ZP can be found in App. B.

Canonical single-particle states κ ≡ (nκ, lκ, jκ,mκ, tκ) diagonalizing the one-body den-
sity matrix ρsHF-EFA gather in shells carrying degeneracy dκ ≡ 2jκ + 1 characterized by
the single-particle energies εκ = εκ̆ (see Eq. 3.5 below) where κ̆ ≡ (nκ, lκ, jκ, tκ). For a
system with A (even) nucleons, these shells separate into three categories in sHF-EFA:

1. εh̆ denoting ‘hole states’,

2. εv̆ denoting ‘valence states’,

3. εp̆ denoting ‘particle states’ ,

such that A − av nucleons fill the hole states whereas 0 < av ≤ dv nucleons occupy the
valence shell.

Given this setting, one eventually obtains the total energy of an open-shell nucleus
relative to the CS core along with the corresponding two-neutron separation energy and
two-neutron shell gap as

∆EsHF-EFA(av) ≡ EsHF-EFA(av)− EsHF-EFA(0)

= αv̆av + βv̆

2
a2

v , (3.3a)

6In an ab initio setting, pairing properties such as the odd-even mass staggering are expected to largely
originate from (i.e. required to account for) higher-order processes associated with the exchange of
collective medium fluctuations between paired particles [66–69]. Achieving a quantitative description
of pairing properties from first principles constitutes a major challenge for ab initio nuclear structure
theory [65].

7The following considerations can be meaningfully applied only to singly open-shell nuclei, since they
rely on the existence of a spherical core and highly-degenerate shells on top of it.
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3.4. Spherical mean-field approximation

Figure 3.3. First-order interaction energy contributions to the valence-shell single-particle
energy εCS

v̆ computed in the closed-shell core.

Figure 3.4. First-order contributions to the valence-shell effective two-body matrix ele-
ments v̄vv

′
vv

′ .

SsHF-EFA
2n (av) = −2αv̆ − 2βv̆(av − 1) , (3.3b)

∆sHF-EFA
2n (av) = 4βv̆ , (3.3c)

with

αv̆ = εCS
v̆

≡ tvv +
∑

h

v̄NN
vhvh + 1

2
∑
hh

′
w̄vhh

′
vhh

′ , (3.4a)

βv̆ = 1
dv

dv∑
m

v
′

(
v̄NN

vv
′
vv

′ +
∑

h

w̄vv
′
hvv

′
h

)

≡ 1
dv

dv∑
m

v
′

v̄vv
′
vv

′ , (3.4b)

where v̄NN
αβδε has been defined in Eq. (2.3). Equation (3.3a) proves that the sHF-EFA energy

is indeed quadratic8 in the number of valence nucleons throughout any given open-shell.
The coefficient αv̆ of the linear term is nothing but the mean-field single-particle energy of
the valence shell computed in the CS core εCS

v̆ , whose interaction energy contributions are
displayed diagrammatically in Fig. 3.3. The coefficient βv̆ of the quadratic term, i.e. the
curvature of the energy, is given by the average over the valence magnetic substates of
the diagonal valence-shell two-body matrix elements9 v̄vv

′
vv

′ displayed diagrammatically
in Fig. 3.4. Such an averaging corresponds to the monopole valence-shell matrix element
per valence state. As visible from Eq. (3.3b), −2εCS

v̆ sets the initial value of S2n
10 whereas

−2βv̆ drives its linear evolution throughout the open-shell. Eventually, ∆2n extracts 4βv̆.
Extracting εCS

v̆ and v̄vv
′
vv

′ numerically from the presently employed chiral Hamiltonian
(see Tab. 3.1), the semi-analytical results from Eqs. (3.3)-(3.4) (in fact of their sHFB-ZP

8As shown in App. B, the 3N interaction actually induces the presence of a cubic term in the en-
ergy. However, present numerical applications demonstrate that it is negligible for all nuclei under
consideration such that it can be dropped altogether in the present discussion.

9As seen from Eq. (3.4b), v̄vv
′
vv

′ includes the effective contribution obtained by averaging the 3N
interaction over the CS core.

10As seen from Tab. 3.1, the relation |αv̆| ≫ |βv̆| holds in practice such that the starting value of SsHF-EFA
2n

(av = 2) in the open shell is essentially dictated by εCS
v̆ .
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Chapter 3. Impact of correlations on nuclear binding energies

Figure 3.5. Neutron canonical single-particle energies εk̆ from sHFB calculations along
the Ca isotopic chain. Semi-analytical sHFB-ZP results for ε0f7/2

are also shown between
40Ca and 48Ca.

Open shell αv̆ (MeV) βv̆ (MeV)
0f7/2 -6.005 -0.290
0g9/2 2.976 -0.270

Table 3.1. Coefficient of the linear and quadratic term of the HFB-ZP energy (Eq. (B.7)-
(B.8)) extracted numerically for two neutron valence shells along the Ca isotopic chain
using the EM1.8/2.0 Hamiltonian [24]. The coefficient of the cubic term γv̆ is numerically
zero in all cases.

counterparts; see App. B) are superimposed on the left panels of Fig. 3.1 between 42Ca
and 48Ca (0f7/2 valence shell) as well as between 62Ca and 70Ca (0g9/2 valence shell). The
results perfectly match the numerical sHF-EFA curves, that are themselves very close to
sHFB results. Looking at the left panels of Fig. 3.2, one indeed sees the fully quantitative
agreement between sHF-EFA and the semi-analytical results.

The semi-analytical results first clarify that, in an ab initio setting, the reason why in
a given open shell:

1. EsHFB loses energy relatively to experiment,

2. SsHFB
2n starts from too low a value,

relates directly to the fact that the mean-field valence-shell single-particle energy in the CS
core εCS

v̆ delivered by χEFT interactions is systematically too small in absolute, i.e. non
negative enough. This is accompanied with the fact that the effective mass is too low at
the mean-field level, as testified by the too large (value) decrease of SsHFB

2n (∆sHFB
2n ), which

is actually a key reason why pairing correlations are so weak. Second, the fact that:
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3.4. Spherical mean-field approximation

1. EsHFB is concave,

2. SsHFB
2n is rising,

3. ∆sHFB
2n is negative,

throughout open shells, in opposition to experimental data, relates to the attractive char-
acter of the monopole valence-shell matrix element delivered by χEFT interactions.

Interestingly, the above features are typically not displayed by sHFB calculations based
on effective and empirical energy density functionals (EDF), see e.g. [71]. Indeed, EDFs
are tailored via a fit to empirical data to implicitly incorporate the dominant effect of dy-
namical correlations. In practice, this generally results into a significantly larger effective
mass11 and into much stronger pairing correlations since the pairing part of the functional
is typically adjusted to reproduce experimental pairing gaps at the sHFB level. At the
same time, it is striking that EDF parametrizations only tailored to reproduce many-body
calculations of infinite nuclear matter and employed in finite nuclei at the strict mean-field
level, i.e. without an explicit account of dynamical correlations on a nucleus-by-nucleus
basis, do display the features identified above [71].

The above observations are also consistent with the evolution of canonical single-particle
energies throughout an open shell, and more specifically of the valence-shell single-particle
energy itself. In the sHF-EFA approximation, it can easily be shown that its evolution
with av is linear

εsHF-EFA
v̆ (av) =εCS

v̆ + βv̆av , (3.5)

the coefficient of the slope being given by βv̆. As visible in Fig. 3.5, neutron canonical
single-particle energies do evolve linearly within a given open-shell. In particular, the
evolution of ε0f7/2

between 40Ca and 48Ca is perfectly reproduced using Eq. (3.5) (in fact
its sHFB-ZP counterpart; see App. B). Eventually, this linear down-slopping evolution is
fully correlated with the concavity of the binding energy.

3.4.3. Chromium chain
Having characterized sHFB results along the semi-magic Ca isotopic chain, the focus turns
now to doubly open-shell Cr isotopes.

As seen in the upper-right panel of Fig. 3.1, the global trend of sHFB binding energies is
similar, relative to the data, than for Ca isotopes. Looking through the magnifying glass
of S2n and ∆2n, experimental data do not however display the characteristic patterns
identified along the Ca chain. In particular, S2n decreases more gradually such that
the sudden drops (sudden spikes in ∆2n), e.g. at N = 20 and 28, have all disappeared.
Contrarily, a small bump (spike) is now visible in S2n (∆2n) for N = 24, i.e. in 44Cr located
in the middle of the 0f7/2 shell. These changes are not at all accounted for by sHFB results
that closely follow those obtained previously. Indeed, in addition to displaying the defects
identified along the Ca isotopic chain, sHFB results further fail to capture the qualitative
modifications seen in the data, i.e. sHFB results keep a strong memory of the underlying
spherical shell structure whose fingerprints are no longer visible along the Cr isotopic
chain.
11Even though ∆2n is traditionally left to overestimate experimental data at shell closures in EDF

calculations to leave some room for additional correlations, it does so on a much smaller scale than
in present sHFB ab initio calculations that overestimate ∆2n at, e.g. N = 20 by 4 MeV.
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Chapter 3. Impact of correlations on nuclear binding energies

Figure 3.6. Results of sHFB, sBMBPT(2), sBCCSD and VS-IMSRG(2) calculations
against experimental data along Ca (left panels) and Cr (right panels) isotopic chains.
Upper panels: absolute binding energy. Middle panels: two-neutron separation energy.
Lower panels: two-neutron shell gap.
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3.5. Spherical beyond mean-field corrections

Figure 3.7. Same as Fig. 3.2 for sHFB, sBMBPT(2), sBCCSD and VS-IMSRG(2).

3.5. Spherical beyond mean-field corrections
Based on the previous analysis, the goal is now to assess whether consistently adding
dynamical correlations via sBMBPT(2), sBCCSD or VS-IMSRG(2) can correct for the
shortcomings identified at the sHFB level.

3.5.1. Calcium chain
As seen in the upper-left panel of Fig. 3.6, dynamical correlations compensate for the
underbinding observed at the sHFB level such that all three methods reproduce well
experimental binding energies along the Ca isotopic chain with the presently employed
Hamiltonian. This is particularly true for VS-IMSRG(2) whose root-mean-square error
to the data is equal to 1.9MeV, while it is equal to 7.3 and 8.8MeV for BMBPT(2) and
BCCSD, respectively. In particular, the increasing underbinding of sHFB results as a
function of neutron excess is essentially compensated for.

The improvement goes indeed beyond a plain shift as can be inferred from the middle-
left panel of Fig. 3.6. Indeed, S2n are systematically improved against experimental data
for all three methods. First, S2n are globally increased by up to about 5MeV. Second,
the amplitudes of the sudden drops at magic numbers are reduced. As visible from the
bottom-left panel, the two-neutron shell gap at N = 20 is reduced from 13MeV in sHFB
to 8.6MeV in VS-IMSRG(2), which is comparable to the experimental value of 9.1MeV. In
sBMBPT(2) and sBCCSD the reduction is not pronounced enough, the ∆2n being equal to
12.4MeV in both cases, thus showing that low-rank elementary excitations are not enough
to produce a fully quantitative picture of the N = 20 magicity. While sBCCSD is third-
order-complete, it is of interest to investigate how much including genuine fourth-order
triple excitations, e.g. by going to (approximate) BCCSDT, can help in this respect [72].
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Figure 3.8. Second-order (on-shell) diagonal self-energy correction Σ(2)
v̆ to the valence-

shell single-particle energy computed in the closed-shell core. Left diagram: 1p2h diagram.
Right diagram: 2p1h diagram.

Figure 3.9. Second-order (on-shell) correction v̄
(2)
vv

′
vv

′ to the diagonal valence-shell ef-
fective two-body matrix elements. Left diagram: hole-hole diagram. Right diagram:
particle-particle diagram.

In spite of the N = 20 two-neutron shell gap being still overestimated in sBMBPT(2)
and sBCCSD, the S2n at the beginning of each open shell is increased to be in much
better agreement with experimental data. For example, dynamical correlations bring
S2n in 42Ca from 13.3MeV in sHFB to 18.0 and 18.1MeV in BMBPT(2) and BCCSD,
respectively, as well as to 18.6MeV in VS-IMSRG(2), which compares favorably with the
experimental value of 19.8MeV. Third, the wrong linear increase throughout any given
open shell is corrected for, as can be seen for example between 42Ca and 48Ca. This reflects
the improvement of the curvature of the energy throughout open shells that can be better
appreciated from the left-panels of Fig. 3.7 that focuses on the 0f7/2 shell. Dynamical
correlations turn the energy from beyond concave at the sHFB level to being convex, in
a way that is essentially identical with the three employed methods.

Eventually, the agreement with data for S2n and ∆2n along the Ca chain is qualitatively
and quantitatively satisfying for all three methods even though the N = 20 magicity is
still exaggerated in BMBPT(2) and BCCSD and the convexity throughout the 0f7/2 shell
is not pronounced enough compared to experimental data for all three methods, which
points to yet missing correlations. A detailed analysis of the connection between the lack
of convexity in the energy and the inability of presently employed ab initio methods to
correctly reproduce the (infamous) evolution of charge radii between 40Ca and 48Ca [73]
is carried out in Ch. 7.
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3.5. Spherical beyond mean-field corrections

3.5.2. Analytical investigation
As demonstrated in Sec. 3.4.2, the deficiencies of sHFB can be understood via a semi-
analytical analysis performed in the zero-pairing limit. The capacity of dynamical corre-
lations to correct for those shortcomings is now analyzed in a similar manner within the
frame of sMBPT(2). As demonstrated in App. B.4, the mean-field result of Eq. (3.3) can
be extended, for av ≥ 2, to

S
(2)
2n (av) = −2εCS(2)

v̆ − 2β(2)
v̆ (av − 1) , (3.6a)

∆(2)
2n (av) = 4β(2)

v̆ , (3.6b)

where the second-order (on-shell) valence-shell single-particle energy and averaged valence-
shell interaction computed in the CS core

ε
CS(2)
v̆ ≡ εCS

v̆ + Σ(2)
v̆ (εCS

v̆ ) , (3.7a)

β
(2)
v̆ ≡

1
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dv̆∑
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′

(
v̄vv

′
vv

′ + v̄
(2)
vv

′
vv

′(εCS
v̆ )

)
, (3.7b)

involve the (on-shell) valence-shell self-energy and two-body effective interaction correc-
tions
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displayed diagrammatically in Figs. 3.8 and 3.9, respectively. The self-energy correction
collects a positive (2h1p) contribution and a negative (2p1h) contribution. Similarly,
the valence-shell interaction correction collects a positive (hole-hole) contribution and a
negative (particle-particle) contribution.

As seen from Eqs. (3.6)–(3.8), and in agreement with the results shown in the middle-
left panel of Fig. 3.6 and analyzed in the present section, dynamical correlations modify
both the starting value and the slope of S2n in the valence-shell. For example, the negative
second-order self-energy correction Σ(2)

0f7/2
lowers εCS(2)

0f7/2
in such a way that S2n computed in

sBMBPT(2) increases from 13.28 to 18.02MeV in 42Ca to almost match the experimental
value (19.84MeV). This effect relates to the coupling of a propagating nucleon to 2h1p
and 2p1h configurations as represented in Fig. 3.8, the latter winning over the former12.
Consistently, the second-order correction to the average 0f7/2 valence-shell effective inter-
action is repulsive, with the hole-hole contribution winning over the particle-particle one.
12The lowering of ε0f7/2

is not accompanied by a decrease of ∆2n in 40Ca in sBMBPT(2) and sBCCSD,
contrary to sVS-IMSRG(2), i.e. ε0d3/2

is lowered as much as ε0f7/2
. Thus, the needed increase of the

effective mass associated with the compression of on-shell single-particle energies is not accounted for
by low-order corrections to sHFB.
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In the present calculation, such a correction is larger in absolute value than the mean-field
contribution and manages to turn the total energy from being concave to being convex,
i.e. it makes S2n decrease linearly between 42Ca and 48Ca as for experimental data13.
Still, and as can be seen from the bottom-left panel of Fig. 3.7, the positive curvature
β

(2)
0f7/2

= 25 keV14 is not large enough15 compared to experimental data (∆2n/4 ≈ 220 keV
in 42−46Ca), thus pointing to yet missing many-body correlations as discussed earlier on.

3.5.3. Chromium chain
While the deficiencies observed at the sHFB were shown to be qualitatively and quanti-
tatively corrected via the consistent addition of dynamical correlations in Ca isotopes, it
remains to be seen to which extent this is the case along the Cr isotopic chain.

As seen in the upper-right panel of Fig. 3.6, correlations brought by sBMBPT(2),
sBCCSD and VS-IMSRG(2) provide the bulk of the missing binding along the Cr chain
as well, even though the end values are globally further away from experimental data
than for Ca isotopes. While the rms error to the data is 1.9, 7.3 and 8.8MeV for VS-
IMSRG(2), sBMBPT(2) and sBCCSD in Ca isotopes, it becomes 4.0, 10.6 and 14.7MeV
in Cr isotopes, respectively; i.e. the deterioration is more pronounced for sBMBPT(2) and
sBCCSD.

Looking at the middle- and bottom-right panels of Fig. 3.6, sBMBPT(2) and sBCCSD
are seen to improve the reproduction of experimental S2n and ∆2n compared to sHFB.
Still, the level of agreement is neither on the same level as in Ca isotopes nor on the same
level as for VS-IMSRG(2) in those Cr isotopes. The large spikes of ∆2n seen at N = 20, 28
and 40 for sHFB are only slightly diminished in sBCCSD calculations, thus wrongly
keeping the imprint of the spherical magic numbers. Even if the behavior throughout
the 0f7/2 shell is improved, as can also be appreciated from the left panels of Fig. 3.7, it
remains quite remote from experimental data. As for sBMBPT(2) results, ∆2n bear little
resemblance to experimental data and are clearly not credible.

Contrarily, the S2n and ∆2n predicted by VS-IMSRG(2) are both in qualitative and
quantitative agreement with experimental data16. Indeed, the disappearance of the spikes
at N = 20, 28 and 40, as well as the appearance of a new one for N = 24, are perfectly
reproduced. This demonstrates that the exact diagonalization of the effective Hamiltonian
within the fp shell is able to capture crucial static correlations that are not accounted for
by low-rank excitations on top of a spherical mean field via sBMBPT(2) and sBCCSD.

3.6. Deformed unperturbed state
Even if challenges still remain to be overcome to achieve high accuracy in describing spe-
cific quantities that are impacted by collective fluctuations (e.g. superfluidity and radii
13The amount by which S2n is increased at the start of the open-shell and the fact that its slope is

actually inverted depend on the Hamiltonian under use; see Refs. [65, 74] for examples where the
qualitative defects of the sHFB results are not actually corrected via the inclusion of low-order dy-
namical correlations.

14This value is essentially constant throughout the valence shell.
15The same is true for sBCCSD and VS-IMSRG(2) calculations as can be inferred from the bottom-left

panel of Fig. 3.7.
16The slight degradation observed in the vicinity on N = 20 and 40 is attributable to the need to reset

the valence space.
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between 40Ca and 48Ca that will be discussed in Ch. 7), the discussion above demonstrates
that polynomially-scaling expansion methods built on top of a spherical Bogoliubov ref-
erence state and implemented to rather low truncation orders deliver a good account
of mid-mass doubly closed-shell and singly open-shell nuclear ground states. Contrar-
ily, doubly open-shell nuclei require the inclusion of specific static correlations that can
hardly be incorporated following this strategy, i.e. they require a full diagonalization of
the effective Hamiltonian in an appropriate valence space, thus compromising with the
polynomial scaling that will eventually become crucial in heavy nuclei.

On a principle level, the solution delivered by expansion many-body methods is eventu-
ally independent of the unperturbed state whenever all terms in the expansion series are
summed up – provided that the expansion series actually converges [75–80]. In practice
however, the interesting question relates to how close to the exact solution one can be at
the most economical cost. In this context, it is believed that dominant static correlations
can be efficiently captured in doubly open-shell nuclei via an appropriate redefinition of
the unperturbed state, at the price of breaking [9, 41] (and eventually restoring [8, 18,
48, 81, 82]) rotational symmetry associated with angular-momentum conservation. The
present section wishes to pedagogically illustrate that a quantitative description of dou-
bly open-shell nuclei can indeed be achieved at (low) polynomial cost via dBMBPT(2)
calculations performed on top of a deformed HFB unperturbed state.

3.6.1. Calcium chain
Results of systematic dHFB, dBMBPT(2), as well as VS-IMSRG(2) calculations of Ca
isotopes are displayed on the left-hand panels of Fig. 3.10. Comparing those to the
results shown before on the left-hand panels of Fig. 3.6, it is clear that allowing the
mean-field solution to deform does not lead to any significant modification along the Ca
isotopic chain. Indeed, and as demonstrated by the lower panel of Fig. 3.10, almost all
Ca isotopes do not take advantage of this possibility at the mean-field level17. The fact
that static correlations associated with quadrupolar deformations are not emerging from
the calculation is consistent with the fact sBMBPT(2) and sBCCSD results were already
satisfactory as discussed extensively in Sec. 3.5.

3.6.2. Chromium chain
As the comparison of the right-hand panels of Figs. 3.6 and 3.10 illustrates, the energetic
of doubly open-shell Cr isotopes is instead strongly impacted by the breaking of rotational
symmetry. Indeed, most Cr isotopes do acquire a large intrinsic deformation18 as seen
in the lower-right panel of Fig. 3.10. While the overall rms error of total binding ener-
gies remains similar in sBMBPT(2) and dBMBPT(2), the evolution with N is strongly
impacted as can be inferred from the behavior of S2n and ∆2n.

As a matter of fact, the qualitative (quantitative) reproduction of S2n (∆2n) is already
excellent at the deformed mean-field level, i.e. all deficiencies identified in sHFB results are
already corrected by dHFB. In particular, the fictitious shell closures at N = 20, 28 and
17The few isotopes that do deform, i.e. 32,44,46,68,70Ca, only acquire a small intrinsic deformation.
18Interestingly, neutron deficient isotopes 34−42 are predicted to display a strong oblate-prolate oscillation.

Isotopes between N = 20 and N = 28 all display a large prolate deformation, which slowly fades away
towards N = 40. Eventually, the prolate deformation suddenly increases again going across N = 40
and stays large until the predicted neutron drip line at N = 48.
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Chapter 3. Impact of correlations on nuclear binding energies

Figure 3.10. Systematic dHFB, dBMBPT(2) and VS-IMSRG(2) calculations against
experimental data along Ca (left panels) and Cr (right panels) isotopic chains. First
line: absolute binding energy. Second line: two-neutron separation energy. Third line:
two-neutron shell gap. Fourth line: intrinsic axial quadrupole deformation of the dHFB
solution.

38



3.7. Tin chain

Figure 3.11. Same as Fig. 3.2 for dHFB, dBMBPT(2) and VS-IMSRG(2).

40 have disappeared in dHFB results. Eventually, dynamical correlations added on top of
dHFB via dBMBPT(2) increase S2n systematically to reach an excellent agreement with
both VS-IMSRG(2) results and experimental data. While the rms error to experimental
S2n was 2.9MeV for sBMBPT(2) (5.8MeV for sHFB), it is 0.9MeV for dBMBPT(2)
(4.4MeV for dHFB), which is to be compared to 2.2MeV for VS-IMSRG(2).

Focusing on the 0f7/2 shell, the right panels of Fig. 3.11 show that the curvature of the
energy is already very well captured at the dHFB level, while it was qualitatively wrong
for both sHFB and sBMBPT(2), and becomes almost as good as with VS-IMSRG(2) for
dBMBPT(2).

These results demonstrate that static correlations in doubly open-shell nuclei can be
qualitatively and quantitatively seized via polynomially-scaling expansion methods built
on top of a deformed reference state and implemented to rather low truncation order.

3.7. Tin chain
As a last step, the discussion is extended to semi-magic Sn isotopes between 100Sn and
132Sn, i.e. going through the sub-shell closures at N = 58, 64, 66 and 70 located between
the N = 50 and 82 major shell closures. In Fig. 3.12, S2n and ∆2n computed from mean-
field and beyond-mean-field calculations with and without breaking rotational symmetry
are displayed.

It is clear that experimental data does not show any fingerprint of the sub-shell closures,
i.e. S2n decreases linearly between N = 52 and 82 such that ∆2n is flat. Contrarily,
sHFB results strongly reflect the presence of those sub-shell closures in a way that is
consistent with the behavior seen in Ca isotopes, i.e. S2n are too low overall and rise
linearly throughout open-shells, especially along the highly degenerate 0g7/2 and 0h11/2
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Chapter 3. Impact of correlations on nuclear binding energies

Figure 3.12. Results from sHFB, sBMBPT(2), sBCCSD, dHFB and dBMBPT(2) calcu-
lations against experimental data along the Sn isotopic chain. First panel: two-neutron
separation energy. Second panel: two-neutron shell gap. Third panel: intrinsic axial
quadrupole deformation of sHFB and dHFB solutions.
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shells.
Dynamical correlations brought on top of sHFB via sBMBPT(2) and sBCCSD largely

ameliorate the situation, i.e. S2n are increased overall and the behavior throughout open-
shells are corrected. However, the imprint of the sub-shell closures remain visible.

The larger mass combined with the weak pairing correlations induced by χEFT inter-
actions at the mean-field level makes several semi-magic Sn isotopes take advantage of
deformation if authorized to do so19 as can be seen from the lower panel of Fig. 3.12. Still,
the axial quadrupole deformation parameter remains small in all cases. As in Ca isotopes,
the wrong trend of S2n with N observed at the sHFB level is thus not corrected by dHFB
calculations and dBMBPT(2) eventually deliver very similar results to sBMBPT(2).

3.8. Conclusions
In order to extend the reach of ab initio calculations to heavy doubly open-shell nuclei in
the future, the most efficient strategy to incorporate dominant many-body correlations
at play in (heavy) nuclei must be identified. With this in mind, the present chapter
analyzed in details the impact of many-body correlations on binding energies of Calcium
and Chromium isotopes with an (even) neutron number ranging from N = 12 to N = 50.

Using an empirically-optimal (soft) χEFT-based Hamiltonian, binding energies com-
puted in the spherical mean-field approximation were first shown to display specific short-
comings in semi-magic Ca isotopes. In addition to being associated (as expected) to a
significant underbinding, the corresponding energy was shown to evolve qualitatively in-
correctly throughout (highly degenerate) open shells, i.e. whereas the linear decrease with
the number of valence nucleons is too slow, the quadratic term makes the energy con-
cave instead of being convex. Relying on the observation that χEFT-based interactions
generate very little pairing at the spherical mean-field level, these two features could be
related analytically to the fact that (i) single-particle energies are not enough bound and
that (ii) the monopole valence-shell two-body matrix elements is attractive.

Next, the consistent addition of dynamical correlations at polynomial cost via, e.g., low-
order perturbation theory was shown to correct the deficiencies identified at the spherical
mean-field level. This decisive improvement could also be understood analytically. Even-
tually, it is possible to reach a description of semi-magic Ca isotopes on essentially the
same quantitative level as valence-space in-medium similarity renormalization group cal-
culations, which rely on the diagonalization of the effective Hamiltonian in the fp valence
space. Either way, some yet missing correlation energy was identified between 40Ca and
48Ca that could be correlated with the (infamous) difficulty to describe the evolution of
the charge radius between those two isotopes.

Moving to doubly open-shell Cr isotopes, calculations based on a spherical mean-field
reference state could not appropriately reproduce the binding energy evolution. However,
allowing this unperturbed state to break rotational symmetry proved to be sufficient to
capture the static correlations responsible for the phenomenological modifications ob-
served between the two isotopic chains and that otherwise need the diagonalization of the
effective Hamiltonian in large valence spaces. Semi-magic Sn isotopes behave similarly
to lighter Ca isotopes with a spherical mean-field delivering qualitatively wrong patterns
19This is again at variance with mean-field calculations based on effective EDFs. Indeed, the strong

built-in pairing typically constrains all Sn isotopes to remain spherical between N = 50 and N = 82
in that case.
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that are corrected by the consistent addition of low-order dynamical correlations.
Eventually, the work carried out in the present chapter demonstrates in a pedagogical

way that polynomially-scaling expansion methods based on unperturbed states possibly
breaking (and restoring) symmetries constitute an optimal route to extend ab initio cal-
culations to heavy closed- and open-shell nuclei.

The presence of shell closures along isotopic chains has been proven to be relevant
in order to establish which ab initio technique is more suitable for the study of specific
nuclear systems. Before moving to the direction of including more correlations in the
beyond mean-field expansion of the total wave function (Ch. 5), the next chapter (Ch. 4)
presents a small digression on the dependence of neutron shell closures on the isotonic
chain considered. Such discussion is relevant because it shows that shell closures predicted
by the spherical shell model (Fig. A.1) are often eclipsed by a re-ordering of the energetic
levels to a configuration that the nuclear system finds more energetically favorable. Being
such re-adjustment of energy levels interpretable in terms of an increase of collectivity,
deformed ab initio methods are a suitable choice for their study.
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Being an inexpensive but accurate method for the description of nuclear bulk observ-
able, dBMBPT not only constitutes an optimal tool for large-scale calculations1 [6], but
can also be easily employed for specific studies. As an example, the present chapter dis-
cusses a recent application that allowed to compare dBMBPT results with state-of-the-art
experimental measurements.

In the past months, a new precise evaluation of atomic masses have been performed
at the TRIUMF’s ISAC facility. Neutron-rich Magnesium and Sodium isotopes have
been produced and transmitted to TRIUMF’s Ion Trap for Atomic and Nuclear science
(TITAN) for the mass measurement. The isotopes involved in the experiment are 31−33Na
and 31−35Mg. The new results allowed to significantly reduce the uncertainty associated
to existing masses [63] and gave a small correction (in the order of ≃ 0.1 MeV) to their
values.

1Given the relatively easy access that dBMBPT provides to ground-state energies, charge radii, and
deformation parameters, the large-scale calculations mentioned in this manuscript are intended to be
performed for a wide range of nuclei, from light to heavy, estimating such parameters and derived
quantities.
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The interest in this specific region of the Segrè chart is connected to the study of the
N = 20 shell closure, a standard magic number predicted by the spherical shell model (see
Fig. A.1) [83, 84]. As one moves south of 36S and 34Si, where this gap is still large, the shell
closure becomes weaker and eventually collapses to give rise to one of the so-called islands
of inversion. There, one can interpret nuclear data in terms of a drastic change in the
underlying shell structure, in particular inducing an inversion in the position of standard
shell-model orbitals. Experimentally, a minimum for the N = 20 two-neutron gap is found
for Magnesium at Z = 12. An interesting open issue is whether such gap remains small
or rather increases when going further down in proton number, all the way to Oxygen
isotopes where the magicity of the unbound 28Si has been recently questioned [85]. The
disappearance (and possible reappearance) of shell closures is typically linked with the
onset of collectivity and deformation. Hence, it is natural to try applying the dBMBPT
to this study.

Because the publication of the new measurements is currently undergoing [86], results
are still reserved and cannot be shown in the present manuscript. However, data from [63]
are qualitatively similar enough to the new ones such that the discussion that follows
remains valid. The study performed in the present chapter employs the dBMBPT(3)
method with the EM 1.8/2.0 and the NN(N4LO)+3N(lnl)E7 interactions. VS-IMSRG(2)
results with the EM 1.8/2.0 interaction [86] are also shown for comparison.

In order to validate the accuracy of dBMBPT(3) in the mass region of interest, drip
lines for Ne, Na and Mg isotopes have been first determined. Such analysis is important
because it allows to quantify the reliability of the method and interactions used in the
mass region of interest. Results are shown in Fig. 4.1. One-neutron separation energies
have been calculated through the definition

S1n(N,Z) ≡ E(N − 1, Z)− E(N,Z) , (4.1)

while two-neutron separation energies have been calculated accordingly to Eq. (3.1). Mov-
ing along an isotopic chain increasing the value of N , the drip line is found in correspon-
dence of the last nucleus that displays positive values of both S1n and S2n. For Neon iso-
topes, while the experiment predicts the drip line in correspondence of 34Ne, dBMBPT(3)
calculations for the EM 1.8/2.0 and NN(N4LO)+3N(lnl)E7 interaction locate it respec-
tively in correspondence of 32Ne and 30Ne. For what concerns Sodium isotopes, only
the S2n is shown since the dBMBPT(3) does not allow to compute odd-odd nuclei (the
treatment of odd system illustrated in Sec. 2.6 being valid only for the odd-even ones).
Nevertheless, one can still look at the S2n alone and find the theoretically predicted drip
line in correspondence of 35Na, while the (tentative2) experimental one is at the level of
38Na. Finally, calculations performed for Magnesium isotopes display full agreement with
experimental data in predicting the dripline for 40Mg. Overall, dBMBPT(3) calculations
are fairly accurate and capture the main experimental trends. Even if not all driplines are
reproduced, most of the discrepancies lie within theoretical uncertainties once the latter
are thoroughly estimated. Importantly, as discussed in the remaining part of this chapter,
the present application focuses two-neutron shell gaps ∆2n (Eq. (3.2)), which are relative
separation energies are thus insensitive to a global shift of the S1n and S2n values.

The novel experiment performed in TRIUMF allowed to accurately determine the ex-
perimental ∆2n gap for 31Na and 32Mg, and decrease the associated uncertainties with
respect to [63]. Fig. 4.2 shows the two-neutron shell gap as a function of N = 20 iso-
tones. Moving across the isotonic chain decreasing the number of protons, VS-IMSRG(2)

2The neutron drip line is experimentally determined only up to Neon [87].
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Figure 4.1. One- and two-neutron separation energies (respectively in left and right
panels) for Neon (upper panels), Sodium (central panels) and Magnesium (bottom panels)
isotopic chains. S1n results for Sodium are absent because the present many-body ap-
proach can not access odd-odd systems. Calculations are performed with the dBMBPT(3)
method in emax = 10 at the optimal ℏω for each case. EM 1.8/2.0 three-body MEs are in
e3max = 18 while NN(N4LO)+3N(lnl)E7 ones are in e3max = 16. Experimental data are
taken from [63]. While measured data are represented with full squares, empty squares
label extrapolated data.

results display the same trend as the experiment for Z = 13, 12 and 11, the latter one
being ≈ 0.8 MeV far from the experiment. For Z = 10 and 9, VS-IMSRG(2) values keep
increasing, while the extrapolated data predict the opposite trend. For what concerns
dBMBPT(3) with the same interaction (EM 1.8/2.0), the trend looks different since the
∆2n decreases all the way from Z = 13 to 10, remaining close to the experiment only at
Z = 11 and increasing from Z = 10 to Z = 9 similarly to VS-IMSRG(2). dBMBPT(3)
calculations carried out with the NN(N4LO)+3N(lnl)E7 interaction still largely overesti-
mate the ∆2n at Z = 13. Furthermore, similarly to the other dBMBPT(3) calculations,
they predict an inversion of trend between Z = 12 and 11. Overall, dBMBPT(3) results
with the NN(N4LO)+3N(lnl)E7 interaction are more close to experimental data than the
analogous EM 1.8/2.0 ones, while VS-IMSRG(2) still displays the best results in terms of
compatibility with the experiment.

The results presented in this chapter highlight how a qualitative description can be
already achieved at the level of deformed BMBPT calculations even in a challenging region
as one of the islands of inversion, where collective correlations dictate the evolution of
nuclear structure. Nevertheless, the study also shows that the accuracy of present ab
initio methods and nuclear interactions still needs to be increased to be a quantitative
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Figure 4.2. Experimental and theoretical two-neutron shell gaps at N = 20 for various
proton numbers. Results from different many-body methods and interactions (see text for
details) are displayed together with experimental data taken from [63]. While measured
data are represented with full squares, empty squares label extrapolated data.

tool for the analysis and interpretation of highly precise modern mass measurements.x
In order to push in the direction of increasing the precision of deformed ab initio meth-

ods, the following chapter (Ch. 5) extends the reach of dBMBPT to a non-perturbative
self-consistent method able to incorporate in the calculation summations of infinite num-
ber of diagrams.
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Chapter 5.

Deformed Dyson self-consistent Green’s
function

5.1. Introduction
In previous chapters, many-body perturbation theory built on symmetry-breaking ref-
erence states was proven to be a convenient and reliable tool to systematically explore
bulk properties of medium-mass nuclei, irrespectively of their open- or closed-shell char-
acter. The main strength of dBMBPT resides in the low computational cost of low-order
calculations. However, such a method is not as flexible and as complete as other, more
advanced, many-body techniques. In particular, its application strongly relies on the use
of low-momentum interactions. In addition, observables other than ground-state bulk
properties are harder to access. A non-perturbative method that has been extensively
developed and applied to the description of atomic nuclei in recent years is the self-
consistent Green’s function approach [14, 88, 89]. While this technique has been extended
to U(1)-symmetry breaking reference states in the so-called Gorkov framework to address
semi-magic nuclei [16], a deformed SCGF implementation amenable to the description
of the much larger set of doubly open-shell nuclei is currently missing. The aim of the
this chapter is to introduce such a formalism, discuss its numerical implementation and
present the first realistic applications to singly and doubly open-shell mid-mass nuclei.

The dBMBPT formalism introduced in Ch. 2 can handle reference states breaking
both SU(2) symmetry and U(1) symmetry. While the same route could be followed for
SCGF, the resulting numerical implementation would be very heavy and hard to cope
with. Instead, the strategy followed here is to build the correlated GFs on states that
break solely SU(2) rotational invariance. The rationale supporting this choice is based
on three elements:

1. large-scale calculations [6] of open-shell nuclei1 show that, when starting from state-
of-the-art χEFT interactions, dHFB (as well as dBMBPT) solutions with non-zero
deformation very rarely also break particle-number symmetry, i.e., only 1 − 2 %
of the studied nuclei that break SU(2) symmetry also spontaneously break U(1)
symmetry;

2. while paying the price of breaking both symmetries at the same time can be afforded
at dBMBPT(2) level, it would significantly limit the applicability of a more costly
method like SCGF;

3. once SU(2) is broken, it is not necessary to further break U(1) symmetry in even-
even nuclei to lift the degeneracy problem of the reference state with respect to

1Results from a subset of those calculations were discussed in Ch. 3 and 4.
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elementary excitations discussed in Ch. 1, i.e. any expansion method based on a
reference state that breaks SU(2) but not U(1) is well defined.

For these reasons, restricting a SCGF generalisation to the sole SU(2) breaking constitutes
an optimal option at this point in time. As shown in the following sections, the resulting
deformed Dyson Self-Consistent Green’s function (dSCGF) formalism is able to deliver
an accurate description of doubly open-shell systems across a significant range of nuclei.

5.2. Theoretical framework
5.2.1. Basic elements
Green’s function-based techniques have been extensively applied to ab initio nuclear struc-
ture studies [14]. The versatility of such methods allows to determine bulk properties of
nuclei such as ground state energy and radii, as well as excitation spectra and optical
potentials. While most of ab initio techniques are based on the explicit manipulation
of the total wave function |ΨA

k ⟩ [11, 13, 90], Green’s function (GF) methods rely on the
knowledge of the single-particle propagator [88, 91], also referred to as ‘1-body’ or ‘2-point’
GF

igαβ(tα − tβ) = ig2−pt
αβ (tα − tβ) ≡ ⟨ΨA

0 |T [cα(tα)c†
β(tβ)]|ΨA

0 ⟩ . (5.1)

Here T represents the time ordering operator and c†
α(tα) (cα(tα)) is the creation (annihi-

lation) operator in the Heisenberg picture. The one-body propagator gαβ only depends
on the time difference tα − tβ due to time-translational invariance. If tα > tβ (tα < tβ),
the GF represents the probability amplitude to add a particle (hole) to |ΨA

0 ⟩ at time tα
in a single-particle basis state α and let it propagate to a time tβ where it is removed
from a (possibly different) single-particle basis state β. It is straightforward to generalize
Eq. (5.1) to higher-body GFs, e.g.

ig4−pt
αγβδ(tα, tγ, tβ, tδ) ≡ ⟨Ψ

A
0 |T [cγ(tγ)cα(tα)c†

β(tβ)c†
δ(tδ)]|Ψ

A
0 ⟩ , (5.2a)

ig6−pt
αγεβδφ(tα, tγ, tε, tβ, tδ, tφ) ≡ ⟨ΨA

0 |T [cε(tε)cγ(tγ)cα(tα)c†
β(tβ)c†

δ(tδ)c
†
φ(tφ)]|ΨA

0 ⟩ . (5.2b)

The 1-body GF itself contains a wealth of information about the structure of the A-
nucleon system, including the response to the addition or removal of one particle. The
latter in turn provides information on the A±1 neighbouring systems and elastic nucleon-
nucleus scattering. To access such properties, it is convenient to convert Eq. (5.1) in its
spectral representation through a Fourier transform,

g2−pt
αβ (ω) ≡ gαβ(ω)

=
∫
dταβ e

iωταβgαβ(ταβ)

≡
∑

n

⟨ΨA
0 |cα|ΨA+1

n ⟩ ⟨ΨA+1
n |c†

β|Ψ
A
0 ⟩

ω − (EA+1
n − EA

0 ) + iη
+
∑

k

⟨ΨA−1
k |cα|ΨA

0 ⟩ ⟨ΨA
0 |c†

β|Ψ
A−1
k ⟩

ω − (EA
n − EA−1

0 )− iη

≡
∑

n

(X n
α )∗X n

β

ω − ε+
n + iη

+
∑

k

Yk
α(Yk

β)∗

ω − ε−
k − iη

,

(5.3)

where ταβ ≡ tα−tβ and the operators cα and c†
α are now in Schrödinger’s picture [91]. The

last line of Eq. (5.3) defines the so-called Källén-Lehmann representation of the single-
particle propagator. The convention employed in this manuscript is to use the Latin letter
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n (k) to label states in the A+1 (A−1) system. Equation (5.3) allows to straightforwardly
access two important quantities.

1. From the numerator, the transition amplitudes

X n
α ≡ ⟨ΨA+1

n |c†
α|ΨA

0 ⟩ , (5.4a)
Yk

α ≡ ⟨ΨA−1
k |cα|ΨA

0 ⟩ , (5.4b)

can be obtained from which the elements of the spectroscopic probability matri-
ces associated with one-nucleon addition and removal processes can be computed
according to

(S+
n )αβ ≡ ⟨ΨA

0 |cα|ΨA+1
n ⟩ ⟨ΨA+1

n |c†
β|Ψ

A
0 ⟩ , (5.5a)

(S−
k )αβ ≡ ⟨ΨA

0 |c†
α|ΨA−1

n ⟩ ⟨ΨA−1
n |cβ|ΨA

0 ⟩ . (5.5b)

An important quantity that can be built out from the transition amplitude Yk
α is

the one-body density matrix

ραβ ≡ ⟨ΨA
0 |c†

βcα|ΨA
0 ⟩ =

∫
C↑
gαβ(ω) dω

2πi
=
∑

k

(Yk
β)∗Yk

α, (5.6)

where C ↑ represents a contour closed on the upper imaginary energy plane. This
object can be used to determine any one-body observable in the A-body system, as
well as other properties of the system such as the axial deformation (see Sec. 5.5.1
and 5.5.2). The trace of the matrices in Eqs. (5.5) applied over the one-body Hilbert
space delivers the spectroscopic factors

SF+
n ≡ TrH1

[S+
n ] =

∑
α∈H1

|X n
α |2, (5.7a)

SF−
k ≡ TrH1

[S−
k ] =

∑
α∈H1

|Yk
α|2, (5.7b)

that quantify the sums of probabilities that an eigenstate of the A+1 (A−1) system
can be described as the addition (removal) of a nucleon to (from) a single-particle
state on top of the A-body ground state.

2. From the denominator, the poles

ε+
n = EA+1

n − EA
0 , (5.8a)

ε−
k = EA

0 − EA−1
k , (5.8b)

represent respectively one-particle addition and removal energies from the ground
state of the A-body system to eigenstates of the A± 1 systems.

In summary, the knowledge of the single-particle propagator in its spectral representation
allows to determine the energies of ground and excited states of neighbouring A±1 nuclei
(see Fig. 5.1), as well as the probability amplitudes to reach such eigenstates from the
A-body ground state. The determination of analogous information for excited states of
the A-body system itself requires instead the knowledge of the 2-body Green’s function,
typically expressed in terms of the polarization propagator [88].
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Figure 5.1. Schematic representation of the A − 1 and A + 1 energy spectra accessible
from the ground-state of the A-body system through the knowledge of the 1B-Green’s
function poles.

5.2.2. Dyson equation
The 1-B Green’s function is fully determined by solving the Dyson equation

gαβ(ω) = g
(0)
αβ (ω) +

∑
γδ

g(0)
αγ Σ⋆

γδ(ω) gδβ(ω). (5.9)

Here g(0)
αβ (ω) represents an ansatz or reference propagator (usually referred to as unper-

turbed propagator). Correspondingly, the full GF gαβ(ω) is called correlated or dressed
propagator. The irreducible self-energy Σ⋆

γδ(ω) represents the energy-dependent potential
felt by a nucleon due to its interaction with the medium. At positive energies, it can be for-
mally related to the Feshbach optical potential for nucleon-nucleus elastic scattering [92].
Equation (5.9) is diagrammatically represented in Fig. 5.2. Numerically, such equation
can be solved iteratively by re-inserting the dressed propagator into the right-hand-side
until convergence.

In principle, the exact knowledge of the self-energy allows to determine exactly the
dressed propagator. In practice, the self-energy needs to be approximated in numerical
calculations and different strategies exist to accomplish such a goal. The standard ap-
proximation scheme employed in ab initio nuclear structure, which will be employed in the
present work, is given by the Algebraic Diagrammatic Construction at order n (ADC(n))
[93]. The first ADC order for the self-energy expansion (ADC(1)) reduces the Dyson
equation to the standard Hartree-Fock equation.

The Dyson equation in Eq. (5.9) corresponds to a re-writing of the non-relativistic
Schrödinger equation, Eq. (0.1), in terms of Green’s functions. Recasting the Schrödinger
equation in the form of a self-consistent equation is non-trivial and can be achieved fol-
lowing two different paths:

1. the equation-of-motion technique;

2. the perturbative expansion of the single-particle propagator.
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5.2. Theoretical framework

Figure 5.2. Diagrammatic representation of the Dyson equation. Single lines represent
the unperturbed propagator and double lines represent the dressed propagator.

Since the present work does not aim at providing a comprehensive overview of Green’s
functions but simply at introducing the basic concepts, only the second path is sketched
in the following. For full details on the two derivations the reader is referred to [88].

For both procedures, it is first necessary to introduce the splitting of the Hamiltonian

H = T + U︸ ︷︷ ︸
≡ H0

+V +W − U︸ ︷︷ ︸
≡ H1

(5.10)

into an unperturbed part H0 and a perturbation H1. U labels an auxiliary one-body
potential that is arbitrary but, in practice, must be suitably chosen to optimize the
convergence of the perturbation series. The choice of U defines a reference state |ΦA

0 ⟩, the
lowest eigenstate of H0, and the associated unperturbed propagator

ig
(0)
αβ (tα − tβ) ≡ ⟨ΦA

0 |T [cI
α(tα)cI†

β (tβ)]|ΦA
0 ⟩ , (5.11)

where the superscript ‘I’ indicates that the corresponding operators are now represented
in the interaction picture. Exploiting the properties of the time-evolution operator,
Eq. (5.11) can then be perturbatively expanded with respect to H1

gαβ(tα − tβ) =− i
+∞∑
n=0

1
n!

∫
dt1 . . .

∫
dtn

× ⟨ΨA
0 |T [H1(t1) . . . H1(tn)cI

α(tα)cI†
β (tβ)]|ΨA

0 ⟩conn ,

(5.12)

where the subscript ‘conn’ indicates that only connected diagrams must be retained when
applying Wick’s theorem. The Fourier transform of Eq. (5.12) to the energy domain
contains interaction terms that can be recast into the irreducible self-energy, reading

gαβ(ω) = g0 αβ(ω)
+
∑
γδ

g0 αγ(ω)Σ∗
γδ(ω)g0 δβ(ω)

+
∑
γδεφ

g0 αγ(ω)Σ∗
γδ(ω)g0 δε(ω)Σ∗

εφ(ω)g0 φβ

+ . . . .

(5.13)

Since the infinite sum of all terms after the first self-energy coincides with the full prop-
agator itself, by gathering them together the Dyson equation (5.9) is recovered.
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5.2.3. Algebraic diagrammatic construction method
The irreducible2 self-energy entering Eq. (5.9) can be split into 3 different parts

Σ⋆
αβ(ω) = −uαβ + Σ(∞)

αβ + Σ̃αβ(ω), (5.14)

where the matrix element of the auxiliary potential uαβ has been isolated from the proper
self-energy. The quantity Σ(∞)

αβ represents the static part of the self-energy and it can be
thought of as the mean field that a nucleon feels due to its interaction with the other
nucleons. It can be obtained by taking the limit of the full self-energy to ω → ±∞. On
the other hand, Σ̃αβ(ω) represents the dynamical part of the self-energy that includes
information about dynamical excitations of the system. Whilst the contribution Σ(∞)

αβ

can be included exactly in a numerical calculation, Σ̃αβ(ω) is the hard-to-handle part of
the total self-energy and different strategies can be designed in order to approximate it.
While the simplest technique constitutes in truncating the perturbative expansion at a
defined order, more refined methods have been developed in the last decades to include
resummation of infinite perturbative contributions. The route adopted in this work, which
is the typical choice in ab initio nuclear structure, is the ADC truncation.

The ADC method has been widely employed in quantum chemistry in the past [93–95].
Recently, it has been successfully imported in nuclear structure [16, 96, 97]. The unique
characteristic of the ADC(n) approach is that, in addition to including all perturbative
contributions up to order n, it maintains the analytical structure of the exact self-energy.
This guarantees that certain key properties are preserved, namely the non-violation of
causality and the possibility to recast Dyson’s equation as an energy-independent eigen-
value problem, as discussed in Sec. 5.2.4. The starting point of the ADC is the following
spectral representation of the exact self-energy

Σ∗
αβ(ω) =− uαβ + Σ(∞)

αβ

+
∑
rr

′
M †

α,r

[
1

ω − [E> + C]r,r
′ + iη

]
r,r

′
Mr

′
,β

+
∑
ss

′
Nα,s

[
1

ω − (E< +D)− iη

]
s,s

′
N †

s
′
,β
,

(5.15)

where E> and E< denote the unperturbed energies of forward (fw) and backward (bw) in-
termediate state configurations (ISCs). Those represent configurations beyond the single-
particle model that encode the complex many-body dynamics, labelled by indices r and s
in the particle-addition (2p1h, 3p2h, . . . ) and particle-removal (2h1p, 3h2p, . . . ) channel
respectively. Coupling matricesM and N connect single-particle states to ISCs, while ma-
trices C and D describe couplings between two ISCs. While the latter are dense matrices,
E> and E< are diagonal in the ISC space, i.e. E>

rr
′ = δrr

′E>
r and E<

ss
′ = δss

′E<
s .

Next, the building blocks of such spectral representation are expanded as follows.
• Coupling matrices M and N are expanded in perturbation

Mr,α = M (I)
r,α +M (II)

r,α +M (III)
r,α + . . . (5.16a)

Nα,s = N (I)
α,s +N (II)

α,s +N (III)
α,s + . . . (5.16b)

2In the diagrammatic language, this object indeed contains only one-particle irreducible contributions,
i.e. diagrams that can not be split into two by cutting only one fermionic line. The remaining
one-particle reducible diagrams are then generated by subsequent insertions of Σ⋆, as evident from
Eq. (5.13).
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Figure 5.3. Diagram contributing to the first-order approximation of the self-energy in
the ADC scheme.

• Denominators are expanded in a power series

1
A−B

= 1
A

+ 1
A
B

1
A−B

= 1
A

+ 1
A
B

1
A

+ 1
A
B

1
A
B

1
A

+ · · · , (5.17)

with (A,B) = (ω − E>, C) and (A,B) = (ω − E<, D) respectively.

This defines a perturbative expansion for the whole dynamical self-energy, which reads as

Σ̃αβ(ω) =
∑

r

M (I)†
αr

[
1

ω − E>
r + iη

]
M

(I)
rβ

+
∑

r

M (II)†
αr

[
1

ω − E>
r + iη

]
M

(I)
rβ +

∑
r

M (I)†
αr

[
1

ω − E>
r + iη

]
M

(II)
rβ

+
∑
rr

′
M (I)†

αr

[
1

ω − E>
r + iη

]
C

rr
′

[
1

ω − E>
r

′ + iη

]
M

(I)
r

′
β

+ . . .

+
∑

s

N (I)
αs

[
1

ω − E<
s − iη

]
N

(I)†
sβ

+
∑

s

N (II)
αs

[
1

ω − E<
s − iη

]
N

(I)†
sβ +

∑
s

N (I)
αs

[
1

ω − E<
s − iη

]
N

(II)†
sβ

+
∑
ss

′
N (I)

αs

[
1

ω − E<
s − iη

]
D

ss
′

[
1

ω − E<
s

′ − iη

]
N

(I)†
s

′
β

+ . . . , (5.18)

where the first and fourth lines represent respectively fw and bw second-order contribu-
tions, the remaining terms corresponding to third-order contributions and the dots to
higher-order contributions.

Finally, the various terms entering Eq. (5.18) are determined by matching them, at
each order n, to the standard perturbative expansion of the dynamical self-energy. Below
the explicit matching at second order, i.e. the ADC(2) truncation employed in the present
work, is given.
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22

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the
convention introduced in Rule 8. Inserting the Lehmann
form (38a) of the propagator one obtains

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Uk
d Uk∗

c

ω′ − ωk + iη

− i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
V̄k∗
d V̄k

c

ω′ + ωk − iη

=
∑

cd,k

V̄acbd V̄k∗
d V̄k

c , (B18)

where the residue theorem has been used, i.e. the first
term, with +iη in the denominator, contains no pole in
the upper plane and thus cancels out. As in the standard
case the Hartree-Fock self-energy is energy independent.
Similarly one computes the other normal self-energy

term

Σ22 (1)
ab (ω) =

b̄

c̄

d̄

ā
↓ ω′ ,

(B19)
which reads

Σ22 (1)
ab (ω) = −i

∫

C↓

dω′

2π

∑

cd

V̄b̄d̄āc̄G
22
dc(ω

′)

= −i
∫

C↓

dω′

2π

∑

cd,k

V̄b̄d̄āc̄
Vk
d Vk∗

c

ω′ − ωk + iη

− i

∫

C↓

dω′

2π

∑

cd,k

V̄b̄d̄āc̄
Ūk∗
d Ūk

c

ω′ + ωk − iη

= −
∑

cd,k

V̄b̄d̄āc̄ Vk
d Vk∗

c

= −
∑

cd,k

V̄b̄cād V̄k
c V̄k∗

d

= −Σ11 (1)
b̄ā

= −[Σ11 (1)
āb̄

]∗ . (B20)

The anomalous contributions to the self-energy at first
order are

Σ12 (1)
ab (ω) =

b̄

← ω′

a
c d̄

,(B21)

Σ21 (1)
ab (ω) = d

← ω′

c̄
ā b

, (B22)

and are written respectively as

Σ12 (1)
ab (ω) = − i

2

∫

C↑

dω′

2π

∑

cd

V̄ab̄cd̄ G
12
cd(ω

′)

= − i

2

∫

C↑

dω′

2π

∑

cd,k

V̄ab̄cd̄
Uk
c Vk∗

d

ω′ − ωk + iη

− i

2

∫

C↑

dω′

2π

∑

cd,k

V̄ab̄cd̄
V̄k∗
c Ūk

d

ω′ + ωk − iη

=
1

2

∑

cd,k

V̄ab̄cd̄ V̄k∗
c Ūk

d , (B23)

and

Σ21 (1)
ab (ω) = − i

2

∫

C↑

dω′

2π

∑

cd

V̄c̄dāb G
21
cd(ω

′)

= − i

2

∫

C↑

dω′

2π

∑

cd,k

V̄c̄dāb
Vk
c Uk∗

d

ω′ − ωk + iη

− i

2

∫

C↑

dω′

2π

∑

cd,k

V̄c̄dāb
Ūk∗
c V̄k

d

ω′ + ωk − iη

=
1

2

∑

cd,k

V̄c̄dāb Ūk∗
c V̄k

d

=
1

2

∑

cd,k

V̄ ∗
bācd̄ Ū

k∗
d V̄k

c

= [Σ12 (1)
ba ]∗ , (B24)

where the same integration technique as in (B18) has
been used.

b. Second order

Let us now proceed to the computation of the second-
order contributions. The first term is the standard
second-order self-energy

Σ(2)
αβ(ω) = ↑ ω′ ↑ ω′′

δ µ

↓ ω′′′

γ ϕ

β

α

λ

ε

(B25)

readingFigure 5.4. Diagram contributing to the second-order approximation of the self-energy
in the ADC scheme.

First-order self-energy

The first-order contribution to the self-energy is represented in Fig. 5.3 and reads as

Σ(1)
αβ(ω) = −i

∫
C

↑

dω′

2π
∑
γδ

v̄αγβδgδγ(ω′)

= −i
∫

C
↑

dω′

2π
∑
γδ

v̄αγβδ

∑
n

(X n
δ )∗X n

γ

ω − ε+
n + iη

− i
∫

C
↑

dω′

2π
∑
γδ

v̄αγβδ

∑
k

Yk
δ (Yk

γ )∗

ω − ε−
k − iη

=
∑
γδ

v̄αγβδ

∑
k

Yk
δ (Yk

γ )∗

=
∑
γδ

v̄αγβδ ρδγ ,

(5.19)

Second-order self-energy

At second-order, only one diagram contributes to the self-energy (Fig. 5.4) reading as

Σ(2)
αβ(ω) = 1

8π2

∫
dω′dω′′dω′′′ ∑

γδεφµλ

v̄αεγφv̄δµβλgγδ(ω′)gφµ(ω′′)gλε(ω′′′)δ(ω − ω′ − ω′′ − ω′′′)

= 1
2

∫ dω′

2π
dω′′

2π
∑

γδεφµλ

v̄αεγφv̄δµβλgγδ(ω′)gφµ(ω′′)gλε(ω′ + ω′′ − ω)

= 1
2

∫ dω′

2π
dω′′

2π
∑

γδεφµλ
n1n2n3
k1k2k3

v̄αεγφv̄δµβλ

{
X n1

γ X
n1∗
δ

ω′ − ε+
n1

+ iη
+ Yk1∗

γ Y
k1
δ

ω′ − ε+
k1
− iη

}

×
{
X n2

φ X n2∗
µ

ω′′ − ε+
n2

+ iη
+ Yk2∗

φ Yk2
µ

ω′′ − ε+
k2
− iη

}

×
{

X n3
λ X

n3∗
ε

ω′ + ω′′ − ω − ε+
n3

+ iη
+ Yk3∗

λ Y
k3
ε

ω′ + ω′′ − ω − ε−
k3
− iη

}

= 1
2

∑
γδεφµλ
n1n2n3
k1k2k3

v̄αεγφv̄δµβλ

{
X n1

γ X
n1∗
δ X n2

ϕ X
n2∗
µ Yk3∗

λ Y
k3
ε

ω − (ε+
n1

+ ε+
n2
− ε−

k3
) + iη

+
Yk1∗

γ Y
k1
δ Y

k2∗
ϕ Y

k2
µ X

n3
λ X

n3∗
ε

ω − (ε−
k1

+ ε−
k2
− ε+

n3
)− iη

}
.

(5.20)
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ADC(2)

The comparison of Eq. (5.18) with Eq.(5.20) allows to identify the first-order coupling ma-
trices M (I) and N (I), as well as the corresponding unperturbed energies. By construction,
interaction matrices C and D are zero at this order. One thus has

M (I)
rα = Mn1n2k3α = 1√

2
∑
µνλ

X n1
µ X n2

µ Y
k3
λ v̄µναλ , (5.21a)

E>
r = E>

n1n2k3
= diag

(
ε+

n1
+ ε+

n2
− ε−

k3

)
, (5.21b)

Cr,r
′ = Cn1n2k3,n

′
1n

′
2k

′
3

= 0 , (5.21c)

N (I)
sα = Nk1k2n3α = 1√

2
∑
µνλ

Yk1
µ Yk2

ν X
n3
λ v̄µναλ , (5.21d)

E<
s = E<

k1k2n3
= diag

(
ε+

k1
+ ε+

k2
− ε−

n3

)
, (5.21e)

Ds,s
′ = Dk1k2n3,k

′
1k

′
2n

′
3

= 0 , (5.21f)

where the collective indexes r ≡ (n1, n2, k3) and s ≡ (k1, k2, n3) relative to pph and hhp
ISCs, respectively, have been specified.

5.2.4. Solution of the Dyson equation
Once an appropriate approximation to the self-energy have been established, the Dyson
equation (5.9) can be solved. A summary of the main steps leading to a form suitable for
a numerical implementation is given here for the ADC(2) scheme, while details can be
found in, e.g., Ref. [98]. First of all, let us define the collective index i

εi −→
{
ε+

n for particle states
ε−

k for hole states
and Z i

α −→

(X n
α )∗ for particle states

Yk
α for hole states

(5.22)
grouping together hole and particle states. Since the direct solution of Eq. (5.9) can
be problematic due to energy denominators, an equivalent eigenvalue equation can be
obtained extracting the poles of the single-particle propagator

lim
ω→εi

(ω − εi)
{
gαβ(ω) = g

(0)
αβ (ω) + g(0)

αγ (ω)Σ∗
γδ(ω)gδβ(ω)

}
, (5.23)

which leads to
Z i

α(Z i
β)∗ = g(0)

αγ (ω)Σ∗
γδ(ω)Z i

δ(Z i
β)∗
∣∣∣∣∣
ω=εi

. (5.24)

Dividing both sides of Eq. (5.24) by (Z i
β)∗ and exploiting the fact that [g(0)(ω)]−1 = ω−H0,

the following eigenvalue equation is obtained

εiZ i
α =

∑
δ

{
t+ u+ Σ∗(ω)

}
αδ

Z i
δ

∣∣∣∣∣
ω=εi

=
∑

δ

{
tαδ + Σ(∞)

αδ +
∑

r

M †
αr

1
ω − E>

r + iη
Mrδ

+
∑

s

N †
αs

1
ω − E<

s − iη
Nsδ

}
Z i

δ

∣∣∣∣∣
ω=εi

.

(5.25)
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This equation is manifestly energy dependent but does not depend on the auxiliary po-
tential U introduced in Eq. (5.14). Equation (5.25) is numerically demanding since, given
the dependence on ω, many diagonalizations are required for the extraction of the desired
eigenvalues. In order to overcome this problem, new quantitiesW and V are conveniently
defined as [

εi − E>
r

]
W i

r ≡
∑

δ

MrδZ i
δ , (5.26a)[

εi − E<
s

]
V i

s ≡
∑

δ

NsδZ i
δ , (5.26b)

where the limit iη → 0 was taken. Equation (5.25) is then recast into a large-dimensional
energy-independent matrix diagonalization problem

tαδ + Σ(∞)
αδ M †

αr N †
αs

Mrδ E>
r 0

Nsδ 0 E<
s




Z i

δ

W i
r

V i
s

 = εi


Z i

α

W i
r

V i
s

 , (5.27)

where the eigenvectors satisfy the normalization condition∑
α

|Z i
α|2 +

∑
r

|W i
r|2 +

∑
s

|V i
s|2 = 1. (5.28)

Equation (5.27) constitutes the final equation implemented in the numerical code.

5.2.5. U(1)-symmetry breaking Gorkov framework
The Dyson framework introduced in the previous sections can be generalized to the study
superfluid systems. This can be accomplished by a formalism that allows building the
SCGF expansion on top of a particle-number-symmetry breaking reference state. Such a
method has been developed in nuclear structure in the frame of Gorkov Self-Consistent
Green’s functions (GSCGF). While Gorkov ADC(2) [16, 17] has been operational for some
time, Gorkov ADC(3) has been recently formalized [97].

The GSCGF method is based on a many-body wave function without a well-defined
number of particles, i.e. which can be described as the superposition

|Ψ0⟩ =
even∑

A

|ΨA
0 ⟩ . (5.29)

The single-particle propagator is then generalized to a set of four Gorkov propagators [99]

ig11
αβ(tα − tβ) ≡ ⟨Ψ0|T [cα(tα)c†

β(tβ)]|Ψ0⟩ , (5.30a)
ig12

αβ(tα − tβ) ≡ ⟨Ψ0|T [cα(tα)ηβc
†
β̄
(tβ)]|Ψ0⟩ , (5.30b)

ig21
αβ(tα − tβ) ≡ ⟨Ψ0|T [ηαcᾱ(tα)c†

β(tβ)]|Ψ0⟩ , (5.30c)
ig22

αβ(tα − tβ) ≡ ⟨Ψ0|T [ηαcᾱ(tα)ηβc
†
β̄
(tβ)]|Ψ0⟩ , (5.30d)

that can be gathered together via the Nambu notation [100, 101]

igαβ(tα − tβ) ≡ i

(
g11

αβ(tα − tβ) g12
αβ(tα − tβ)

g21
αβ(tα − tβ) g22

αβ(tα − tβ)

)
. (5.31)
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The Dyson equation generalizes for the Gorkov propagators as the Gorkov equation

gαβ(ω) = g0 αβ(ω) +
∑
γδ

g0 αγ(ω)Σ∗
γδ(ω)gγβ(ω), (5.32)

where the self-energy is now a four-component matrix

Σ∗
αβ(ω) ≡

Σ∗11
αβ (ω) Σ∗12

αβ (ω)

Σ∗21
αβ (ω) Σ∗22

αβ (ω)

 (5.33)

whose elements are to be approximated employing the ADC expansion.
The Gorkov SCGF formalism has been successfully employed in the description of singly

open-shell systems [14, 26, 65] and constitutes a state-of-the art tool to study the impact
of superfluidity in atomic nuclei.

5.3. Working equations
The matrix form of Dyson’s equation (5.27) translates into different explicit expressions
depending on the symmetries at play in a given implementation. In the following, the
working equations are specified to the case of deformed axially-symmetric many-body
states. For this purpose, let us assume that many-body states carry good isospin (T0),
parity (Π) and angular momentum projection (M). On the other hand, since rotational
symmetry is broken, good total angular momentum J is lost. Furthermore, let us consider
the ground-state of an even-even system characterized by MΠ = 0+.

5.3.1. Transition amplitudes and one-body density matrix
Let us start from the expressions of the transition amplitudes X n

α and Yk
α defined in

Eqs. (5.4). Given the parity operator

Π |α⟩ = πα |α⟩ , (5.34)

the creation operator a†
α can be taken to satisfy the relation

Πc†
αΠ† = παc

†
α , (5.35)

whose expectation value with respect to states |Ψn⟩ and |Ψ0⟩ reads

⟨ΨA+1
n |Πc†

αΠ†|ΨA
0 ⟩ = πα ⟨ΨA+1

n |c†
α|ΨA

0 ⟩ . (5.36)

On the left-hand side, the action of the parity operator on the states gives

⟨ΨA+1
n |Πc†

αΠ†|ΨA
0 ⟩ = πnΠ ⟨ΨA+1

n |c†
α|ΨA

0 ⟩ , (5.37)

which implies πα = πnΠ. For a positive-parity ground state this leads to πα = πn.
Similarly, the additive property of isospin projection implies implies tα = tn. Finally,
symmetry relations involving angular momentum projections m can be exploited. Fol-
lowing App. D.2 one can prove that the operator c†

α is the (mα)-th components of an Axial
Tensor (AT). Employing Eq. (D.8), one then demonstrates the identity mα + M = mn,
which reduces to mα = mn since in the present case M = 0.
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Collecting together the relations obtained for isospin, parity and angular momentum
projections, it follows that the spectroscopic amplitude X n

α assumes the block structure

X n
α = δtαtn

δπαπn
δmα,mn

⟨ΨA+1
n |c†

α|ΨA
0 ⟩

≡ δtαtn
δπαπn

δmαmn
X [mπt]α

NαNk
.

(5.38a)

Proceeding in the same way for (Yk
α)∗, Eq. (D.8) imposes the condition mα +mk = M = 0

and one finds

(Yk
α)∗ = δtαtn

δπαπn
δ−mαmk

⟨ΨA
0 |c†

α|ΨA−1
k ⟩

≡ δtαtk
δπαπk

δ−mαmk
(Y [mπt]α

NαNk
)∗ .

(5.38b)

The spectroscopic amplitude Yk
α than displays the same block-diagonal structure than in

Eq. (5.38b)3.
These definitions also lead to the following block-diagonal structure for the one-body

density matrix

ραβ =
∑

k

(Yk
β)∗Yk

α

= δtαtβ
δπαπβ

δmαmβ

∑
Nk

(Y [mπt]α
NβNk

)∗Y [mπt]α
NαNk

≡ δtαtβ
δπαπβ

δmαmβ
ρ

[mπt]α
NαNβ

.

(5.39)

5.3.2. First-order self-energy
Next, let us consider the mean-field-like part of the Dyson matrix, i.e. the upper-left
submatrix reading as

hαγ ≡ tαγ + Σ(∞)
αγ

= tαγ +
∑
βδ

v̄αβγδ ρδβ ,
(5.40)

where the expression for Σ(∞)
αγ was derived in Eq. (5.3). Employing Eq. (5.39) and exploit-

ing the fact that the kinetic-energy and two-body interaction matrix elements conserve
isospin, parity and angular-momentum projection, i.e. specifically

tαγ = δtαtγ
δπαπγ

δmαmγ
tαγ

≡ δtαtγ
δπαπγ

δmαmγ
t
[mπt]α
NαNγ

,
(5.41a)

v̄αβγδ = δtα+tβ ,tγ+tδ
δπαπβ ,πγπδ

δmα+mβ ,mγ+mδ
v̄αβγδ

≡ δtα+tβ ,tγ+tδ
δπαπβ ,πγπδ

δmα+mβ ,mγ+mδ
v̄

[mπt]αβ=γδ

NαNβNγNδ
,

(5.41b)

where the notation

[mπt]αβ=γδ ≡


tα + tβ = tγ + tδ

παπβ = πγπδ

mα +mβ = mγ +mδ

(5.42)

3An alternative way to prove directly the block structure of Yk
α without passing through its conjugate

is illustrated in App. D
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has been employed, one can rewrite Eq. (5.40) as
hαγ = tαγ +

∑
βδ

v̄αβγδ ρδβ

= δtαtγ
δπαπγ

δmαmγ
t
[mπt]α
NαNγ

+ δtαtγ
δπαπγ

δmαmγ

∑
NβNδ

∑
mδπδtδ

v̄
[mπt]αβ=γδ

NαNβNγNδ
ρ

[mπt]δ
NδNβ

≡ δtαtγ
δπαπγ

δmαmγ
h

[mπt]α
NαNγ

.

(5.43)

5.3.3. Second-order self-energy
Let us now consider Eq. (5.21a). Inserting the block structure of the spectroscopic am-
plitudes, Eqs. (5.38), and exploiting the properties of the 2B potential, Eq. (5.41b), one
obtains

Mn1n2k3α = 1√
2
∑
µνλ

δtn1
tµ
δtn2

tν
δtk3

tλ
δπn1

πµ
δπn2

πν
δπk3

πλ
δmn1

mµ
δmn2

mν
δ−mk3

mλ

×X
[mπt]n1
Nn1

Nµ
X

[mπt]n2
Nn2

Nν
Y

[mπt]k3
Nk3

Nλ
δtµ+tν ,tα+tλ

δπµπν ,παπλ
δmµ+mν ,mα+mλ

× v̄[mπt]µν=αλ

NµNνNαNλ

= δtn1
+tn2

,tα+tk3
δπn1

πn2
,παπk3

δmn1
+mn2

,mα−mk3

× 1√
2

∑
NµNνNλ

X
[mπt]n1
Nn1

Nµ
X

[mπt]n2
Nn2

Nν
Y

[mπt]k3
Nk3

Nλ
v̄

[mπt]n1n2=αk̄3
Nn1

Nn2
NαNk3

≡ δtn1
+tn2

,tα+tk3
δπn1

πn2
,παπk3

δmn1
+mn2

,mα−mk3
M

[mπt]n1n2=αk̄3
Nn1

Nn2
Nk3

Nα
,

(5.44a)

where for barred indices the angular-momentum projection has to be taken with a minus
sign. Similarly, starting from Eq. (5.21d) one finds

Nk1k2n3α = 1√
2
∑
µνλ

δtk1
tµ
δtk2

tν
δtn3

tλ
δπk1

πµ
δπk2

πν
δπn3

πλ
δ−mk1

mµ
δ−mk2

mν
δmn3

mλ

× Y
[mπt]k1
Nk1

Nµ
Y

[mπt]k2
Nk2

Nν
X

[mπt]n3
Nn3

Nλ

× δtµ+tν ,tα+tλ
δπµπν ,παπλ

δmµ+mν ,mα+mλ
v̄

[mπt]µν=αλ

NµNνNαNλ

= δtk1
+tk2

,tn3
+tα

δπk1
πk2

,πn3
πα
δ−mk1

−mk2
,mαmn3

× 1√
2

∑
NµNνNλ

Y
[mπt]k1
Nk1

Nµ
Y

[mπt]k2
Nk2

Nν
X

[mπt]n3
Nn3

Nλ
v̄

[mπt]µν=αλ

NµNνNαNλ

≡ δtk1
+tk2

,tn3
+tα

δπk1
πk2

,πn3
πα
δ−mk1

−mk2
,mαmn3

N
[mπt]k̄1k̄2=αn3
Nk1

Nk2
Nn3

Nα
.

(5.44b)

Eventually, the diagonal part of the Dyson matrix is given by the two diagonal matrices
E> and E< defined in Eqs. (5.21b) and (5.21e) respectively. Even if these quantities do
not explicitly depend on the single-particle index α, the block structures of M and N
constrain the values r and s can assume in a fixed symmetry block of the Dyson matrix.

5.3.4. Block-diagonal structure of ADC(2) equations
Collecting all block-diagonal structures derived in the previous sections, i.e. Eqs. (5.43)
and (5.44), and recalling that addition and removal amplitudes obey

Z i
δ = δtδti

δπδπi
δmδmi

Z [mπt]δ
NδNi

, (5.45)
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one can now rewrite Eqs. (5.26) according to the block-diagonal form
[
εi − E>

n1n2k3

]
W

[mπt]n1n2=ik̄3
Nn1

Nn2
Nk3

Ni
=
∑
Nδ

M
[mπt]n1n2=δk̄3
Nn1

Nn2
Nk3

Nδ
Z [mπt]δ

NδNi
, (5.46a)

[
εi − E<

k1k2n3

]
V

[mπt]k̄1k̄2=in3
Nk1

Nk2
Nn3

Ni
=
∑
Nδ

N
[mπt]k̄1k̄2=δn3
Nk1

Nk2
Nn3

Nδ
Z [mπt]δ

NδNi
, (5.46b)

where the block-diagonal W and V amplitudes are defined as

W i
n1n2k3

≡ δtn1
+tn2

,ti+tk3
δπn1

πn2
,πiπk3

δmn1
+mn2

,mi−mk3
W

[mπt]n1n2=ik̄3
Nn1

Nn2
Nk3

Ni
, (5.47a)

V i
k1k2n3

≡ δtk1
+tk2

,tn3
+ti
δπk1

πk2
,πn3

πi
δ−mk1

−mk2
,mimn3

V
[mπt]k̄1k̄2=in3
Nk1

Nk2
Nn3

Ni
. (5.47b)

With these formulae at hand, the full Dyson matrix Eq. (5.27) can be re-written in a
block-diagonal form. As an example, the first row reads as

εiZ
[mπt]α
NαNi

=
∑
Nδ

[t+ Σ(∞)][mπt]α
NαNδ

Z [mπt]δ
NδNi

+
∑

Nn1
Nn2

Nk3

M
[mπt]n1n2=αk̄3
Nn1

Nn2
Nk3

Nα
W [mπt]n1n2=ik̄3

Nn1
Nn2

Nk3
Ni

+
∑

Nk1
Nk2

Nn3

N
[mπt]k̄1k̄2=αn3
Nk1

Nk2
Nn3

Nα
V

[mπt]k̄1k̄2=in3
Nk1

Nk2
Nn3

Ni
.

(5.48)

In practical calculations, the eigenvalue problem is thus solved for different symmetry
blocks of the single-particle index α.

5.4. Computational aspects
This section addresses the main challenges that arise when implementing the equations
discussed in Sec. 5.3. The methods used to tackle these challenges and limit the cost of
numerical calculations are illustrated and the associated errors are evaluated.

5.4.1. Dimensions of the eigenvalue problem
As explained in Sec. 5.2.4, the Dyson equation is most suitably solved in terms of the
energy-independent eigenvalue problem (5.27). The latter was specified for the case of
interest, i.e. for axially-deformed calculations, in Sec. 5.3.4. While the energy-independent
character simplifies the determination of the poles of the single-particle propagator (which
are straightforwardly identified with the eigenvalues of Eq. (5.27)), the drawback of this

emax
16O 48Ca 132Sn 208Pb

2 447 - - -
4 6480 9993 - -
6 32 973 77 688 104 851 66 052
8 108 486 292 447 577 461 643 729
10 280 011 802 046 1 833 425 2 373 192

Table 5.1. Number of rows in the largest symmetry block of the forward dynamical part
of the Dyson matrix displayed for four different sample nuclei as a function of emax.
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Figure 5.5. Memory required to store the largest symmetry block of the ADC(2,3) Dyson
matrix in double precision. The figure compares the naive numerical implementation
where all the elements of the block are stored (left panel) with the optimal ADC(2)
implementation where only non-zero elements of the matrix are kept in memory (right
panel). At the ADC(3) level, one has to exploit the sparsity of the matrix to reduce
storage costs.

form relates to the large dimensions of the resulting Dyson matrix. This is particularly
severe in the case of the present m-scheme implementation that builds on a sizeable
single-particle basis to begin with.

As an example, Tab. 5.1 illustrates the dimensions of largest block of the Dyson matrix
when built from a HF propagator for different nuclei and model spaces. One can appreciate
the rapid increase with the model-space size, which translates in linear dimensions of the
order of 105 − 106 for realistic bases. Apart from the associated CPU runtime, this may
pose problems in terms of memory for both the storage of the matrix elements and the
subsequent diagonalization. While the former does indeed constitute a bottleneck for
high-order (n ≥ 3) ADC(n) truncations where one has to deal with dense matrices, the
diagonality of the E> and E< matrices at the ADC(2) level makes it less troublesome
(see Fig. 5.5 for an illustration). Still, the full matrix has to be eventually diagonalized,
which constitutes a non-trivial numerical exercise.

While the numbers given above correspond to using an uncorrelated HF propagator to
build the Dyson matrix to be diagonalized, the self-consistent character of the ADC(2)
equations increases in fact dramatically the matrix dimensions. Indeed, self-consistency is
achieved by an iterative solution of Dyson’s equation, i.e. via successive diagonalizations
of the Dyson matrix starting from the first step described above. At each step, many more
new poles of the 1B propagator are generated and, in principle, enter the calculation of
the dynamical self-energy in the following iteration. While, on the one hand, this process
builds the many-body correlations characterizing the interacting system (i.e., dresses the
single-particle propagator), it leads on the other hand to an exponential growth in the
matrix dimensions that has to be controlled in practice.

61



Chapter 5. Deformed Dyson self-consistent Green’s function

5.4.2. Krylov projection
In order to contain the rapid increase of the Dyson matrix dimensions, an efficient strategy
has been developed in the context of Green’s functions [102, 103] based on Krylov pro-
jection techniques. While such projection is usually taylored (e.g., in no-core shell model
calculations [104]) to best approximate the extreme eigenvalues of a large matrix, one
is here rather interested in preserving as much as possible the properties of the spectral
strength distribution associated with the dressed propagator, which include information
on quasiparticle poles across a large energy range. For this reason, and since the most
relevant poles are located around the Fermi surface, the Krylov projection is performed
separately on the fw and bw energy denominators of the dynamical self-energy. The re-
duced matrices are re-inserted into the full Dyson matrix, to obtained a projected version
of it that is eventually diagonalized exactly.

In practice, the Krylov projection is typically performed in SCGF via the multi-pivot
Lanczos algorithm. A complete illustration of the procedure is reported in App. E.
Schematically, the algorithm yields projectors, or Lanczos matrices, L> and L< for each
symmetry block of the Dyson matrix and for the two separate forward and backward
contributions. The projectors are subsequently applied to the submatrices of the original
matrix as follows

E ′>
ll

′ ≡
∑

r

(L>)†
lrE

>
r L>

rl
′ , (5.49a)

E ′<
ll

′ ≡
∑

s

(L<)†
lsE

<
s L<

sl
′ , (5.49b)

M ′
lα ≡

∑
r

(L>)†
lrMrα, (5.49c)

N ′
lα ≡

∑
s

(L<)†
lsNsα, (5.49d)

where l, l′, s, and s′ are indexes relative to ISCs. While the single-pivot Lanczos algorithm
projects a diagonal matrix (such as the ADC(2) E> and E<) to a tri-diagonal one, the
presently employed multi-pivot version produces a projected matrix that, in addition,
displays non-zero rows and columns in correspondence of the addition of a new pivot.
The resulting structure is depicted in Fig. 5.6 and is referred to as fishbone-like structure.

Numerically, the bottleneck of the Lanczos algorithm is represented by the matrix-
vector products (E.3) involving matrices with very large dimensions. However, at the
ADC(2) the diagonality of E> and E< can be exploited to recast the matrix-vector prod-
uct into an element-wise product. The same properties also simplifies the matrix products
in Eqs. (5.49a) and (5.49b).

Since the goal is to project a matrix on a smaller subspace, two questions arise.

1. What is an optimal choice for the initial matrix of pivots, that is in principle arbi-
trary?

2. What is an optimal choice for the number of pivots Np and the related number of it-
erations per pivot Nl (i.e., which value of Nl reflects on a satisfactory approximation
of the quantities of interest)?

As for the first question, literature lacks of systematic studies for the optimal choice of
the pivots. In this work, the choice made in [103] is considered, which consists in taking
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Figure 5.6. Fishbone-like structure appearing in the projection of a diagonal matrix with
the multi-pivot Lanczos algorithm.

as a set of pivot vectors

pi,fw
κ =

{∑
α

Mh
αY i

α,
∑

α

Mp
αX i

α

}
, (5.50a)

pi,bw
κ =

{∑
α

Nh
αY i

α,
∑

α

Np
αX i

α

}
, (5.50b)

where h (p) is an index running over the holes (particles) of a symmetry block and
κ = {h, p} is a collective index for holes and particles. The two objects in curl brackets in
Eqs. (5.50) represent the two set of columns of the pivot matrix. If a certain symmetry
block does not contain any hole or particle state, a single random pivot is taken.

For what concerns the optimal number of iterations per pivot, Fig. 5.7 illustrates the
sensitivity of the ground-state energy of different nuclei on Nl for a set of three different
χEFT interactions. In most cases an acceptable precision is reached after only a few
Lanczos iterations, with just two Lanczos iterations often delivering 0.5% of relative error.
There is no clear degradation of the quality of the approximation with respect to the
nuclear mass except for the case of 72Cr with the NNLOgo(450) interaction, where it is
clear that the convergence is not reached before Nl = 10 iterations. This is presumably
due to a combination of the high mass of the nucleus and the hardness of the interaction
employed.

To complement Fig. 5.7, Tab. 5.2 shows the computational time required to perform
different numbers of Lanczos iterations for the same set of nuclei. For a fixed value of
Nl, the numerical cost increases almost proportionally with respect to the nuclear mass.
Overall, one can conclude that 10 Lanczos iterations represent a good compromise between
the accuracy of the calculation (the error never exceeds 0.4% in all the tests performed)
and the computational time required. In the following, therefore, Nl = 10 is always used.
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Figure 5.7. Convergence of the total energy computed for 24Mg, 48Mg and 72Cr for the
EM 1.8/2.0, the ∆NNLOgo (394) and the ∆NNLOgo (450) interactions, as a function of
the number of iterations per pivot Nl. The total energy is represented on the y-axis as
the relative error with respect to a calculation performed with Nl = 30 that is assumed
to be converged. Calculations are carried out in emax = 8 and the optimal ℏω for the sHO
matrix elements has been employed for each case.

Nl
24Mg 48Cr 72Cr

1 0.001 0.001 0.001
2 0.002 0.005 0.008
5 0.039 0.075 0.105
10 0.318 0.594 0.939
20 2.532 4.849 7.520
30 8.666 16.314 28.462

Table 5.2. CPU time (in hours) required to perform one Lanczos reduction of the for-
ward and backward part of the second-order self-energy computed using HF one-body
propagators as a function of the number of iterations per pivot Nl. The data are obtained
employing 128 OpenMP threads. Calculations are performed in emax = 8.
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Figure 5.8. Times required (i) to compute first- and second-order self-energies based on
HF one-body propagators and (ii) to perform Lanczos iterations of the forward (pph) and
backward (hhp) part of the Dyson matrix. Results are displayed for the Neon isotopic
chain computed with emax = 10.

5.4.3. Self-consistency
The self-consistent solution of the Dyson equation requires the re-evaluation of the Dyson
matrix multiple times until a chosen convergence criterion is satisfied. Per se, this con-
stitutes a challenge because it requires the re-calculation of second-order diagrams and
the subsequent re-application of the Lanczos algorithm multiple times. As an illustration,
Fig. 5.8 displays the typical CPU times needed for the different steps of a realistic ADC(2)
computation. One observes that the CPU time is dominated by the 2p-1h channel and
more specifically to the Lanczos projection of it.

In self-consistent calculations such costs have to be paid several times. In fact, the situ-
ation is even more challenging given that the number of poles in the one-body propagator,
and thus the size of Dyson matrix, increases dramatically at each step of self-consistent
procedure. In the following, two strategies to tackle such a problem are discussed.

Partial self-consistency

A first possibility to control the increase in the number of poles is to compute second-order
diagrams only at the first iteration and subsequently ‘freeze’ them, i.e. update only the
static self-energy Σ(∞) in the successive iterations. This constitutes a significant advantage
given that first-order self-energy contributions are relatively inexpensive to compute and
that the size of the Dyson matrix remains fixed. Such procedure is denoted as the ‘sc0’
approximation.

Figure 5.9 examines the efficiency of this approximation compared to full self-consistent
(‘sc’) calculations (discussed in the following) for the Ca and Cr isotopic chains. Generally,
sc0 provides excellent results, departing by less than 0.2% in most cases. Interestingly,
there seems to be a weak correlation between the performance of the sc0 approximation
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Figure 5.9. Relative error of the ground-state energy of Calcium and Chromium isotopes
computed with the sc0 approximation against full self-consistent calculations. Calcula-
tions are performed with the EM 1.8/2.0 interaction in emax = 12 and ℏω = 12 MeV.

and the mass number. The difference assumes sizeable values only in the region A =
32 − 38, then decreases and remains constant at low values before slightly increasing
again for the mass range A > 56.

It is however important to stress the fact that, unlike the full self-consistent case, an
sc0 calculation does depend on the particular reference state delivering the input unper-
turbed propagator. Specifically, in the example of Fig. 5.9 a HF calculation performed
for the same nucleus and the same Hamiltonian was used to generate such reference state.
In general, an unwise choice of the unperturbed propagator can lead to much greater
differences between sc0 and the corresponding sc calculation.

Optimized reference state and full self-consistency

In order to perform a fully self-consistent calculation, strategies must be designed to tackle
the dynamical part of the self-energy. The method employed in this work is taken from
Ref. [105]. The main idea is to effectively ‘reduce’ the dimension of the dressed propagator
obtained at the end of a given iteration by converting it into a mean-field-like propagator,
i.e. a 1B GF with the same number of poles as the HF one, thus maintaining the size of
the Dyson matrix fixed. Such a propagator is denoted as the optimized reference state
(OpRS) propagator and can be written as

gOpRS
αβ (ω) =

∑
n/∈F

(ϕn
α)∗ϕn

β

ω − εOpRS
n + iη

+
∑
k∈F

ϕk
α(ϕk

β)∗

ω − εOpRS
k − iη

, (5.51)

where F represents the set of occupied states. While diagonalizing the Baranger one-
body Hamiltonian [106, 107], i.e. the HF-like field computed from the correlated one-
body density matrix delivers such a similar object, it typically does not constitute an
efficient choice. The reason is that a correlated HF propagator does not conserve the key
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properties of the full spectral function, which can be encoded in the (inverse4) moments

Mp
αβ =

∑
n

(X n
α )∗X n

β

[EF − ε+
n ]p

+
∑

k

Yk
α(Yk

β)∗

[EF − ε−
k ]p

, p = 0, 1, 2, . . . (5.52)

with EF representing the Fermi energy (separately determined for neutrons and protons)

EF ≡
ε+

0 + ε−
0

2
= EA+1

0 + EA−1
0

2
. (5.53)

A better strategy thus consists in requiring that the OpRS propagator reproduces the
lowest moments of the fully correlated spectral distribution. In particular, demanding
that moments with p = 0, 1 are conserved, i.e.

M0,OpRS
αβ = M0

αβ, (5.54a)
M1,OpRS

αβ = M1
αβ , (5.54b)

leads to an OpRS propagator having the same number of poles as the mean-field one.
Overall, the procedure to perform self-consistent dSCGF calculations is defined as fol-

lows.

1. The reference propagator is determined solving dHF equations (at the first iteration)
or by reducing a pre-existing dressed propagator to an OpRS one (for successive
iterations).

2. Second-order self-energies are computed by evaluating Eqs. (5.21).

3. The Krylov projection is performed by means of the Lanczos algorithm.

4. First-order self-energies are computed from Eq. (5.19).

5. The Dyson matrix is diagonalized and the correlated propagator is determined.

The procedure is repeated from step [4-5] for partial self-consistency (sc0) or from step [1-5]
for full self-consistency (sc), until convergence. The corresponding workflow is summarized
in Fig. 5.10.

In order to illustrate how self-consistency is achieved in practical calculations, Fig. 5.11
shows the convergence of the ADC(2) ground-state energy of 20Ne for different choices of
the unperturbed propagator. Specifically, using a dHF propagator from:

1. 20Ne computed with ∆NNLOgo (394) interaction (same nucleus and Hamiltonian
used for the ADC(2) calculation);

2. 20Ne computed with NNLOsat (bare) interaction (same nucleus than the ADC(2)
calculation but different Hamiltonian);

3. 24Mg computed with NNLOsat (bare) interaction (different nucleus and Hamiltonian
than the ADC(2) calculation).

4Considering the inverse moment allows to enhance the importance of the spectral distribution around
the Fermi surface, i.e. the most relevant part of the energy domain.
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Figure 5.10. Workflow representing the approximation schemes employed to reach two
different degrees of self-consistency, sc0 and sc.

Figure 5.11. Numerical proof of the self-consistency in SCGF at ADC(2) level. Three-
different dHF reference states (determined for the nucleus and the interaction indicated
in the legend) have been chosen to perform an ADC(2) calculation in emax = 6 for 20Ne
with the ∆NNLOgo(394) interaction with ℏω = 16 MeV.
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Eventually, all calculations converge to the same total energy, which demonstrates numer-
ically the self-consistent character of the GF scheme. Still, the way the correct result is
approached varies depending on the initial reference state. The first calculation converges
the fastest both in terms of getting closer to the final result already at the sc0 level and
as overall convergence with respect to the full sc cycle. Such an approach is thus applied
for all calculations presented in Sec. 5.5. In general, nevertheless, an excellent stability is
observed for all cases, which confirms the appropriateness of the chosen implementation.

5.5. Results
Having outlined the theoretical background of axially-deformed Dyson SCGF at second-
order, dubbed as dDSCGF(2), as well as the approximations employed to make numerical
calculations doable, it is now time to apply such newly-developed technique to the study
of open-shell systems and confront it with existing state-of-the-art calculations. In par-
ticular, here dDSCGF(2) results are presented for different medium-mass isotopic chains
(Neon, Argon, Calcium and Chromium) and compared to those of other ab initio methods,
namely:

1. dBMBPT(2)), extensively discussed in Ch. 2;

2. spherical Gorkov SCGF at second order (sGSCGF(2)) [65], discussed in in Sec. 5.2.5;

3. axially-deformed coupled-cluster method with the inclusion of singles and doubles
(dCCSD) [9];

4. axially-deformed coupled-cluster method with the inclusion of singles, doubles and
triples (dCCSDT-1), where the triples are included through the linearized approxi-
mation [9].

dHF and dDSCGF(2) calculations presented in this manuscript have been performed
with a new numerical suite developed in the context of the present thesis. Even tough
such suite is here presently employed in combination with sHO and dNAT bases, it can be
used in combination with any generic spherical basis read from file [32] for the expansion
of all the operators of interest.

5.5.1. Ground-state energies
Working equations

In SCGF the ground-state energy of the A-body system can be computed by means of
the Galitski-Migdal-Koltun (GMK) sum rule, which is based on the sole knowledge of
the single-particle propagator [108, 109]. When the effective Hamiltonian of Eq. (2.10) is
employed, the GMK formula reads as

EGMK
0 = h(0) + 1

2π

∫ ε
−
F

−∞
dω

∑
αβ

(tαβ + ωδαβ)Im gβα(ω)

= h(0) + 1
2π

∫ ε
−
F

−∞
dω

∑
αβ

(tαβ + ωδαβ)
∑

k

Yk
β(Yk

α)∗δ(ω − εk)

= h(0) + 1
2
∑
αβ

tαβρβα + 1
2
∑

α

∑
k

εkYk
α(Yk

α)∗ .

(5.55)
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It is instructive to see how the above formula reduces to the standard HF energy when
an ADC(1) propagator is employed. In that case, Dyson’s equation simply reads as∑

β

[
tαβ +

∑
γδ

v̄αγβδρδγ

]
Yk

β = εkYk
α , (5.56)

where the analytical expression for Σ(∞) has been inserted. Multiplying on the right by
(Yk

α)∗ leads to ∑
β

[
tαβ +

∑
γδ

v̄αγβδρδγ

]
Yk

β(Yk
α)∗ = εkYk

α(Yk
α)∗ . (5.57)

Plugging Eq. (5.57) into Eq. (5.55) leads to

EGMK
0 = h(0) + 1

2
∑
αβ

tαβ ρβα + 1
2
∑
αβ

∑
k

[
tαβ +

∑
γδ

v̄αγβδ ρδγ

]
Yk

β(Yk
α)∗

= h(0) +
∑
αβ

tαβ ρβα + 1
2
∑

αβγδ

v̄αγβδ ρδγ ρβα,

(5.58)

where Eq. (5.6) has been employed. The equation for the total energy in the HF case
(Eq. (2.43)) is indeed recovered.

Compared to other many-body methods, one of the advantages of the SCGF approach
is the ability to easily access odd-even nuclei neighbouring the targeted A-body system
(see Fig. 5.1 and associated discussion in Sec. 5.2.1). As a result, in addition to the
A-body ground-state energy computed via the GMK sum rule, energies of the A ± 1
neighbours (including those of the ground-states) are automatically available5. Since
the same odd-even nucleus can be accessed from two different even-even systems, in the
following, ground-state energies of odd-even nuclei are computed from both even-even
neighbours and an average between the two is taken as the final result6.

Finally, it is worth commenting on the fact that, even if the Dyson formalism does not
formally break particle-number symmetry as in the Gorkov scheme, actual calculations
deliver slightly wrong number of particles. This is related to the way Fermi energies are
determined in the present method, i.e. by adding one by one quasi-hole fragments until
the right number of neutrons and protons are reached. Given that this sum increments
the occupation in a discrete fashion, in practice one can rarely reach exactly the right
number of particles. For the calculations discussed in this chapter, in average, the number
of protons and neutrons is typically exceeded by 0.3 units. Presently, a rudimentary
correction is employed for total energies (see discussion around Fig. 5.13). In addition,
the actual (computed) particle number is considered when it appears explicitly in the
expression for a given observable. While such a problem is in principle mitigated when
pushing the ADC expansion to higher orders, possible strategies to correct it already at
the ADC(2) level are left for future works.

Neon isotopic chain

Before focusing on binding energies, let us have a look at the degree of deformation
associated with the dHF and dDSCGF(2) solutions. Even if it is not an observable, the

5In principle, to properly extract A ± 1 energies one should additionally perform separate calculations
with the corresponding A±1 centre-of-mass corrections. This is however not done in the present work
given its exploratory character.

6In cases where the two evaluations differ by more than 500 keV the procedure is assumed to be unreliable
and no value is given.
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Figure 5.12. Axial deformation parameter along Neon isotopes for different ab ini-
tio methods: dHF, dDSCGF(2) with the sc0 approximation and fully self-consistent
dDSCGF(2). All calculations employ the ∆NNLOgo (394) interaction with ℏω = 16 MeV,
emax = 10 and e3max = 16.

axial deformation parameter β2, defined in Eq. (2.68), is indeed an important indicator
characterizing the collectivity of the many-body state under consideration. Figure 5.12
displays the β2 values of the dHF and dDSCGF(2) solutions along the Neon isotopic
chain. The overall trend is qualitatively in line with previous studies [54], with local
minima corresponding to standard neutron closures at N = 8 and N = 207. Furthermore,
β2 tend to decrease with the progressive inclusion of dynamical correlations, i.e. except
in 18Ne and 30Ne where the three results are similar, dHF always displays the largest
deformation, followed by dDSCGF(2) computed with the sc0 approximation and by the
fully self-consistent dDSCGF(2), the latter two results being always close to each other.
The fact that the value of β2 tends to decrease as more correlations are included in the
calculation does make sense. Indeed, a good J = 0 state (having β2 = 0 by construction)
is to be recovered in the limit in which the many-body problem is solved exactly8. The
small difference between the two dDSCGF(2) approximations reflect the similarity, in
terms of many-body content, of the two computational schemes.

Moving to ground-state energies, results obtained along the Neon isotopic chain with
the ∆NNLOgo (394) Hamiltonian are displayed in Fig. 5.13 for dDSCGF(2), dBMBPT(2),
dCCSD and dCCSDT-1 calculations, as well as from experimental data. All calculations
follow a similar trend, with dDSCGF(2) systematically located below dBMBPT(2) and
surprisingly close to dCCSDT-1, where the latter typically adds 10% of the dCCSD corre-
lation energy on top of it. The fact that dBMBPT(2) gains over dCCSD as neutron excess

7While other ab initio calculations predict 30Ne to be spherical [54], there are indications that such a
solution actually corresponds to the second 0+ state, the ground state instead being characterized by
a large deformation.

8However, nothing imposes that such a limit is reached monotonically in any given expansion method
based on a deformed reference state such that the presently observed decrease was not necessarily
expected.
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Figure 5.13. Ground-state energy along Neon isotopes computed with different ab initio
methods. All calculations employ the ∆NNLOgo (394) Hamiltonian with ℏω = 16 MeV.
Coupled-cluster data are taken from [9]. dDSCGF(2) values for 25Ne, 26Ne and 27Ne are
not shown since the self-consistent loop did not converge for 26Ne. Experimental data are
also shown for comparison.

increases is consistent with what has been observed along semi-magic isotopic chains [46].
The largest root mean square (rms) error with respect to the experiment along the chain
is for dCCSD, amounting to 13.6 MeV whereas dBMBPT(2) follows with a rms deviation
of 8.2 MeV. Eventually, dCCSDT-1 and dDSCGF(2) display an error of 3.4 MeV and
2.9 MeV respectively. Even if not shown in Fig. 5.13, dBMBPT(2) and dDSCGF(2) cal-
culations of 36Ne indicate that the drip line is predicted in 34Ne for the presently employed
Hamiltonian, which is in agreement with recent experimental results [87].

The surprising closeness of dCCSDT-1 and dDSCGF(2) is in fact due to the contamina-
tion of dDSCGF(2) results by the wrong particle number. To roughly evaluate its impact,
a naive correction is presently performed for even isotopes by subtracting from the neutron
and proton contributions to the GMK energy the corresponding particle-number excess
times the energy per nucleon. This produces the rescaled dDSCGF(2)* curve in Fig. 5.13
that is shifted up by [3.4, 9.2]MeV ([2.7, 4.3]%) compared to dDSCGF(2), the shift in-
creasing with the neutron excess. Even though this curve must be taken with a grain
of salt due to the naive character of the subtraction scheme used, it shows, as expected,
that dDSCGF(2)* is eventually much closer to dBMBPT(2) than to dCCSDT-1. This
analyzes calls for an actual control of the (average) particle number in future dSCGF
calculations. As for the present thesis, dDSCGF(2)* results based on the naive rescaling
are employed in (most of) the figures below.

Argon isotopic chain

Although most of the Ar isotopes qualify as doubly open-shell systems, being only two
protons away from the semi-magic Calcium chain the deformation is expected to be play
a lesser role than in the strongly collective Neon isotopes. As a result, breaking rotational
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Figure 5.14. Ground-state energy (top panel), two-neutron separation energy (middle
panel) and axial deformation (bottom panel) of Argon isotopes obtained from dDSCGF(2)*
(emax = 10), dBMBPT(2) (emax = 10) and sGSCGF(2) (emax = 13) calculations based on
the NN+3N(lnl) Hamiltonian and the sHO frequency ℏω = 18 MeV.

invariance might not be strictly necessary here and one can attempt to perform spherical
U(1)-symmetry breaking many-body calculations, i.e. results in 36−58Ar coming from both
dDSCGF(2)* (emax = 10) and sGSCGF(2) (emax = 13) calculations with the NN+3N(lnl)
Hamiltonian are confronted in Fig. 5.14 for total energies, two-neutron separation ener-
gies and deformation parameters. Also shown are dBMBPT(2) (emax = 10) results and
experimental values where applicable.

One first observes that dDSCGF(2)* energies are essentially identical to dBMBPT(2)
ones and systematically above sGSCGF(2) ones. The latter feature, which increases with
neutron excess, relates to the limitation to emax = 10 in deformed calculations9 compared
to emax = 13 employed to obtain converged sGSCGF(2) results10. Moving to two-neutron
separation energies, the trend obtained via dBMBPT(2) and dDSCGF(2) is in better
agreement with the experimental one than with sGSCGF(2), thus showing the benefit
brought by the explicit deformation. In particular, and even though it is not perfect,
the exaggerated drop at N = 20 is significantly improved. Eventually, experimental two-
neutron separation energies are still underestimating, which either points to yet missing

9Argon isotopes also benefit from pairing correlations in sGSCGF(2) calculations but this only accounts
for a small portion of the shift down. As for dBMBPT, it is only true about 44Ar and 48Ar given that
the deformed reference state is unpaired for all the other isotopes.

10Results from sGSCGF(2) calculations with emax = 10 are not reported on the figure because several
isotopes could not be converged. For isotopes that could be converged, dDSCGF(2)* binding energies
are indeed typically 3 to 6MeV below sGSCGF(2) ones.
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Figure 5.15. Energy difference between dDSCGF(2)* (emax = 10) and sGSCGF(2)
(emax = 13) calculations (see left y-axis) compared to the axial deformation computed from
dDSCGF(2) (see right y-axis). Results are obtained with the NN+3N(lnl) Hamiltonian
for ℏω = 18 MeV.

correlations or to a deficiency of the NN+3N(lnl) Hamiltonian.
In order to further examine the features of deformed ADC(2) calculations, it is in-

structive to compare the deformation parameter β2 against the energy difference between
spherical and deformed calculations11. Such a comparison is shown in Fig. 5.15. One
observes a remarkable correlation between both quantities, the energy difference being
essentially proportional to the magnitude of the deformation parameter. This result
corroborates the findings of Ref. [65], where the deviation from experimental data of
sGSCGF(2) calculations across several isotopic chains around Calcium, including Argon,
was found to be strongly correlated with deformation estimates.

Calcium and Chromium isotopic chain

Having at hand a novel non-perturbative method to study open-shell system, it is rele-
vant to revisit the study of Calcium and Chromium isotopic chains extensively discussed
in Ch. 3. Figures 5.16 and 5.17 complement previously discussed results with the
dDSCGF(2) data. Once again, dDSCGF(2) closely follows dBMBPT(2) along both iso-
topic chains, which is again a testimony of the soft character of the EM 1.8/2.0 Hamil-
tonian. Even for a sensitive observable such as two-neutron gaps, one can hardly see
differences between the two. Contrary to the results obtained in Ar isotopes with the
NN+3N(lnl) Hamiltonian, two-neutron separation energies are on par with experiment.
Even though it should be firmly addressed by computing Ar (Ca and Cr) isotopes with the
EM 1.8/2.0 (NN+3N(lnl)) Hamiltonian, this difference seems to point to a shortcoming
of the NN+3N(lnl) Hamiltonian.
11Due to the different emax values employed, only the evolution of this energy difference is pertinent, not

its overall size.
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Figure 5.16. Systematic dHFB (emax = 12), dBMBPT(2) (emax = 12), dDSCGF(2)*
(emax = 10) and VS-IMSRG(2) (emax = 12) calculations against experimental data along
the Ca isotopic chain. First line: absolute binding energy. Second line: two-neutron sep-
aration energy. Third line: two-neutron shell gap. Fourth line: intrinsic axial quadrupole
deformation of the dHFB solution. Results are obtained with the EM 1.8/2.0 Hamiltonian
and ℏω = 12 MeV.
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Figure 5.17. Same as Fig. 5.16 for the Chromium isotopic chain.
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5.5.2. Charge radii
Another key nuclear structure observable is the root-mean-square charge radius defined
as Rch ≡

√
⟨r2

ch⟩, with

⟨r2
ch⟩ ≡ ⟨r2

pt−p⟩+ ⟨R2
p⟩+ N

Z
⟨R2

n⟩+ 3ℏ2

4m2
pc

2 + ⟨r2
so⟩ , (5.59)

where the point-proton radius ⟨r2
pt−p⟩ is corrected for proton and neutron charge radii,

respectively equal to ⟨R2
p⟩ = 0.7079 fm2 [110] and ⟨R2

n⟩ = −0.1149 fm2 [111], for the
relativistic Darwin-Foldy term (3ℏ2)/(4m2

pc
2) and for a spin-orbit contribution ⟨r2

so⟩. The
latter is included via a formula derived within a spherical mean-field approximation [112].
The point-proton radius is computed in the intrinsic frame as

⟨r2⟩pt−p ≃
1
A

∑
αβ

upt−p
α ⟨α|r⃗ 2|β⟩ ρβα −

1
A2

∑
αβγδ

upt−p
αγ ⟨αγ|r⃗1 · r⃗2|βδ⟩ ρβα ρδγ , (5.60)

where r⃗i represents the position of the i-th nucleon. The approximate sign comes from the
fact that the two-body operator on the right-hand side should be in principle convoluted
with the (correlated) two-body density matrix and not with the product of two (correlated)
one-body density matrices, which is too burdensome to compute in practice. As described
in Ref. [113], the coefficients upt−p

α and upt−p
αγ read respectively as

upt−p
α =


A(A− 2) + Z

ZA
if α labels a proton state

1
A

if α labels a neutron state
(5.61)

and

upt−p
αβ =



2A− Z
Z

if α and β label proton states
A− Z
Z

if α and β label a proton and a neutron state

−1 if α and β label neutron states.

(5.62)

Charge radii calculated with dDSCGF(2) along the Neon isotopic chain with ∆NNLOgo
(394) and ∆NNLOgo (450) Hamiltonians are compared in Fig. 5.18 with those obtained
from dCCSDT-1 calculations. With the ∆NNLOgo (394) Hamiltonian, SCGF and CC
results display the same trend, with a local maximum and a local minimum in 20Ne and
24Ne, respectively. For what concerns the ∆NNLOgo (450) interaction, the trend is again
similar but the minimum obtained in 24Ne for dCCSDT-1 and experiment is shifted to
26Ne for dDSCGF(2). Overall the Green’s function results are about 0.02−0.05 fm above
the coupled-cluster ones. Such a discrepancy might be due to the different model space
employed in the two calculations and the different truncations employed in both many-
body expansions.

5.5.3. One-nucleon addition and removal processes
Interpreting spectra

As discussed in Sec. 5.2.1, the Lehmann representation of the single-particle propagator,
Eq. (5.3), provides key informations about A±1 systems. In particular, the poles of the 1B
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Figure 5.18. Charge radius computed for the Neon isotopic chain for the ∆NNLOgo
(394) and the ∆NNLOgo (450) interaction, with corresponding sHO energies ℏω = 16
and 12 MeV. Coupled-cluster data are taken from [9] while experimental data are taken
from [111].

Green’s function deliver one-nucleon addition and removal energies to the A-body ground
state and thus provide excitation spectra in the odd neighbours. While such spectra can be
straightforwardly compared to experimental ones in calculations that conserve spherical
symmetry (see, e.g. [26, 114–116]), in the present approach the impossibility to firmly
assign a good angular momentum to the poles of the GF poses an interpretation problem.
While this can (and should) be solved in the future by formulating a symmetry-restored
version of deformed SCGF theory, a short-term solution might be devised by learning
from other methods exploiting deformation, e.g. the Nilsson shell model.

Examples

In this context, let us inspect some examples of such spectra and associated spectroscopic
factors. These quantities are conveniently encoded, for both one-nucleon addition and
removal processes, into the spectral strength distribution

S(ω) ≡ TrH1

[
S+(ω)

]
+ TrH1

[
S−(ω)

]
=
∑

n∈HA+1

SF+
n δ(ω − ε+

n ) +
∑

k∈HA−1

SF−
k δ(ω − ε−

k ) . (5.63)

Let us start with the doubly closed-shell nucleus 40Ca whose HF solution does not break
rotational symmetry and can thus be labelled with jπ = 0+ even if the calculation is imple-
mented in m-scheme. Figure 5.19 displays the associated spectral strength distribution in
several neutron positive-parity symmetry blocks computed at the ADC(1) level with the
NN+3N(lnl) Hamiltonian. The addition (removal) of one neutron accesses eigenstates in
39Ca (41Ca), the two channels being separated by the Fermi energy in the figure. The fact
that all peaks have SF± = 1 is a consequence of the independent-particle character of the
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Figure 5.19. Neutron spectral strength distribution computed in 40Ca at the ADC(1)
level. Starting from the top and moving from left to right, the 6 panels show the spectral
strength for different positive-parity symmetry blocks of the Dyson equation where the
value ofm constantly decreases. Everywhere, the green dashed line represents the neutron
Fermi energy (Eq. (5.53)). According to the procedure described in the text, angular
momenta are identified for each peak and labelled correspondingly on the plot. Results
are relative to the NN+3N(lnl) Hamiltonian and employ ℏω = 18 MeV with emax = 10.
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ADC(1), i.e. HF, approximation. Given that rotational symmetry is not spontaneously
broken in 40Ca, each state in the A± 1 systems is expected to carry a good jπ quantum
number and should thus display a degeneracy with respect to the angular-momentum
projection m, i.e., each state should appear at the same energy in each |m| ≤ j block.

Starting from the top left panel, no peak is visible in the mπ = 11/2+ block in the
displayed energy range. Going to the mπ = 9/2+ block, a state appears in the additional
channel to 41Ca at ε+

n ≈ 10. Since this peak is not present in the previous block, it can
safely be assigned jπ = 9/2+. Analogously, in the mπ = 7/2+ block a new state appears
in the additional channel, while the jπ = 9/2+ state already identified in the mπ = 9/2+

block is indeed present at the same energy. The new peak can thus be assigned jπ = 7/2+.
One can proceed similarly for all the remaining blocks with states also appearing in the
removal channel to 39Ca.

The same exercise performed for the fragmented strength distribution obtained at the
ADC(2) level shown in Fig. F.1 of App. F leads to analogous conclusions. In the limit of
zero deformation, one can thus straightforwardly recover a well-defined and unambiguous
physical spectrum from the m-scheme implementation.

Let us now move to 58Ca for which the dHF reference state displays the small axial de-
formation β2 = −0.03. The corresponding spectral distribution computed at the ADC(2)
level is shown in Fig. 5.20. Proceeding as before, i.e. starting from the mπ = 11/2+ block
and moving step-by-step to blocks with smaller values of m, it becomes immediately clear
that this the clean angular momentum assignment is no longer possible. The slight defor-
mation of 58Ca is already enough to trigger some m-dependence in the distribution that
prevents from firmly assigning good j to each of the peaks. Nevertheless, in most cases
the variations of the horizontal position and height of the peak remains small, such that
one can still identify its dominant j character.

Moving to 46Ca whose dHF reference state displays the mild deformation β2 = 0.08, the
angular momentum mixing is already too significant for all quasi-particle and quasi-hole
states as seen in Fig. F.2 presented in App. F. Consequently, the procedure does not allow
a firm angular momentum assignment such that one is only left with labelling final states
with m and π.

5.6. Conclusions
The first applications of the newly developed deformed DSCGF approach establish it as a
promising tool in the landscape of ab initio many-body techniques. While results are close
to dBMBPT(2) for soft nuclear interactions, the non-perturbative nature of the method
allows one to cover a wider range of χEFT Hamiltonians. Furthermore, the versatility
of the approach and the variety of observables at hand in a single calculation make it
an attractive alternative to existing nuclear structure methods applicable to singly and
doubly open-shell nuclei. Indeed, the numerical techniques exposed in the present chapter
make calculations doable at a moderate computational cost.

As a first follow-up of this work, a proper particle-number adjustment was shown to be
necessary to perform accurate dDSCGF calculations. This will be done by introducing a
Lagrange term controlling the average particle number while solving Dyson’s equation.

Next, a numerical optimization is required to push calculations to larger values of emax
and Nl. This can be accomplished both by optimizing specific routines of the numerical
code and by implementing a multi-node parallelization to distribute the computation of
the many-body tensors at play across different CPU nodes.
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Figure 5.20. Same as Fig. 5.19 but for the ADC(2) approximation and 58Ca. While a
good angular momentum cannot be firmly associated to the various peaks anymore, labels
are still displayed in the plot to tentatively identify the main J contribution.
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Another important future development concerns the enrichment of the many-body con-
tent, e.g. by pushing the dDSCGF expansion to the ADC(3) truncation level. While this
has been recently accomplished for spherical DSCGF calculations [96], the m-scheme
setting necessary to tackle deformed systems makes a similar development much more
challenging in the present case. A possible interesting alternative is the so-called ‘ex-
tended ADC(2)’ approximation [96] whose truncation level resides between ADC(2) and
ADC(3). This approximation includes full ladder and ring diagrams summations through
the introduction of non-zero C and D terms in Eq. (5.27). Although less costly than
the full ADC(3), such a scheme does however reduce considerably the sparsity of the
Dyson matrix and will require an decisive optimization of the numerical code, such as the
already-mentioned multi-node parallelization.

In absence of angular-momentum conservation, the interpretation of spectral strength
distributions associated to one-nucleon addition and removal processes must rely on
the phenomenological know-how developed in the past in the context of the Nilsson
model [117]. On the longer term, the objective is to formulate a symmetry-conserving
SCGF calculation for open-shell nuclei. Typically, this can be done following two differ-
ent routes:

1. the first option is to break symmetries at the mean-field level, build a symmetry-
breaking beyond mean-field expansion on top of it and eventually restore the sym-
metries. A full restoration of the rotational symmetry, similarly to what can be
done for MBPT and CC [18, 19, 48], is still to be developed;

2. the second option is to employ a multi-reference state (which can be obtained
e.g. from a Projected Generator Coordinate Method (PGCM) calculation) that
does not break symmetries but that is informed by the correlations relevant for
the description of open-shell nuclei. Such formalism has been recently developed in
Quantum Chemistry [118, 119] for the ADC expansion and still needs to be adapted
to the nuclear structure case.

In order to push the technique presented in this chapter to the next many-body order,
i.e. dDCSGF(3), numerical optimizations will probably not be sufficient. The size of the
Dyson matrix at ADC(3) level is indeed extremely limiting for numerical applications. In
order to overcome such obstacle, the next chapter (Ch. 6) aims at adapting a long-time
known technique to accelerate the convergence rate of ab initio applications with respect
to the size of the model space to the study of deformed systems.
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6.1. Introduction
As discussed in Ch. 2, ab initio calculations are typically carried out by representing
relevant quantities (wave functions, operators, density matrices, etc.) on a basis of the
A-body Hilbert space HA, itself obtained as the tensor-product of bases of the one-body
Hilbert space H1. Because of finite computational resources, the infinite-dimensional
basis of HA has to be truncated to perform practical calculations, either directly or via
a truncation of the underlying one-body basis. Eventually, the size of the truncated
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basis impacts both the cost of handling (in terms of storage and RAM) the Hamiltonian
tensors constituting the input of a given simulation and the cost of solving the many-body
Schrödinger equation (in terms of storage, RAM and CPU time) to determine the many-
body tensors (wave function, density matrices...) constituting the output. Clearly, the
accuracy of a calculation depends on the appropriateness of the chosen basis truncation1,
which itself depends on the characteristics of the employed basis. While attaining a
suitable error2 does not generally constitute a difficulty in light nuclei, it may become
challenging in medium-mass nuclei and ultimately limits the application of state-of-the-art
techniques to heavy systems, especially when aiming at doubly open-shell nuclei and/or
at solving the many-body Schrödinger equation with sub-percent accuracy; see Ref. [41]
for a detailed discussion.

Several strategies are currently pursued to alleviate the computational cost of many-
body calculations (at fixed accuracy). First, importance truncation (IT) [22, 120–122] and
tensor factorisation (TF) [41, 123–126] techniques aim at reducing the storage and CPU
footprints of input and output tensors while working in a given one-body basis of choice,
typically the eigenbasis of the one-body (sHO) Hamiltonian. A second approach, the one
followed in the present chapter, consists of optimising in a first step the nature of the
one-body basis in order to reach faster convergence with respect to the cardinality of that
basis. Eventually, the two strategies can be combined to push the limits of state-of-the-art
calculations.

Despite the advantages that the sHO basis offers (see the discussion in Sec. 2.1.3), the
fact that sHO wave functions decay at long distances as a Gaussian function rather than
as an exponential one makes difficult in practice to represent weakly-bound many-body
states or to bridge to nuclear reactions.

While the optimisation of one-body basis states is central in electronic structure calcu-
lations [127, 128], the use of alternatives to the sHO basis has received limited attention
in nuclear physics, with only a few exceptions [129–132]. In the present case, the interest
is not in exploring alternative bases that would be given a priori but rather to employ
a nucleus-dependent basis that is informed of the characteristics of the system under
consideration, i.e. a basis that reflects the bulk of many-body correlations in order to
best accelerate the convergence (with respect to the one-body basis size) of a subsequent
high-accuracy calculation of those correlations.

A successful choice in this respect is provided by the natural (NAT) orbital basis [127,
133, 134] obtained by diagonalising the one-body density matrix of the correlated state
under consideration. In particular, a faster convergence of ground-state observables
has been found both in exact diagonalisation techniques [135] applicable to light nu-
clei, and in calculations of doubly closed-shell nuclei based on symmetry-conserving ex-
pansion methods [121, 136]. While natural orbitals have also been recently employed
in deformed coupled-cluster calculations [9], a detailed study of their performance in
symmetry-breaking expansion methods applicable to all nuclei is currently missing.

The first goal of the present chapter is thus to investigate the use of the NAT basis in
expansion methods based on superfluid and deformed reference states dedicated to singly
and doubly open-shell nuclei. Because symmetry-breaking methods necessitate a much
larger number of one-body basis states than symmetry conserving ones, their optimisation
is even more compelling. To do so, dBMBPT at second and third order is employed to

1This is sometimes referred to as the model-space truncation.
2The mode-space uncertainty must be similar to or smaller than the other sources of error in the many-
body calculation.
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both generate the one-body density matrix from which the NAT basis is extracted and
compute ground-state energy out of which the accelerated convergence is characterized.
The second objective of this chapter is to compare the benefits obtained using the NAT
basis and IT techniques before combining both tools.

The chapter is organized as follows. Section 6.2 introduces the main theoretical and
computational ingredients, including details on the extraction of the natural basis. Sec-
tion 6.3 compares the performance of the NAT and sHO bases in open-shell nuclei. Sec-
tion 6.4 examines possible alternatives to the NAT basis and provides further insight by
analyzing the behavior of the associated single-particle wave functions. In Sec. 6.5 the
NAT basis is compared to IT and combined with it. Section 6.6 presents the advantages
that the NAT basis brings to the dDSCGF(2) method presented in Ch. 5. Finally, Sec. 6.7
summarizes the main conclusions and discusses possible future developments.

6.2. Formalism and computational setting
6.2.1. Many-body method
The goal is to extract approximate natural orbitals from a many-body state informed of
bulk of many-body correlations via a calculation that is significantly less costly than the
one of interest. A low-order deformed Bogoliubov many-body perturbation theory [35,
137] calculation based on a dHFB unperturbed state is ideally suited to do so across
a significant part of the nuclear chart, independently of the closed-, singly open- and
doubly open-shell character of the nucleus under consideration3. While the objective is to
eventually perform non-perturbative calculations of open-shell nuclei4, dBMBPT is also
used in most of the present chapter to validate the acceleration offered by the use of the
NAT basis.

6.2.2. Deformed natural orbital basis
Definition

Having defined the dBMBPT(p) state |Ψ(p)⟩ in Eq. (2.56), the associated normal one-body
density matrix relative to normalized many-body wave functions can be computed in the
sHO basis as in Eq. (2.58)5:

ρ
(p)
αβ ≡ ⟨Ψ

(p)|c†
βcα|Ψ(p)⟩

≡ δmαmβ
δπαπβ

δtαtβ
ρ

[mπt]α (p)
nαjαnβjβ

, (6.1)

and diagonalized according to ∑
β

ρ
(p)
αβC

(p)
βγ = λ(p)

γ C(p)
αγ . (6.2)

3The method used to generate the NAT basis will be indicated in square brackets,
e.g. ‘NAT[dBMBPT(2)]’ denotes the NAT basis obtained from a second-order dBMBPT density ma-
trix. Whenever the unperturbed state is actually unpaired, ‘dHF’ or ‘dMBPT’ can be used to label
the calculation in use.

4One typically has in mind to perform deformed coupled cluster (dCC) [9, 48] or Dyson self-consistent
Green’s function calculations (dDSCGF) [6] based on a deformed reference state.

5For reference, the explicit expression of ρ(2) can be found in Ref. [35].
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Figure 6.1. Workflow of the generation of the NAT basis via a dBMBPT calculation,
leading to a redefinition of the interaction matrix elements for a subsequent many-body
calculation.

The eigenstates of ρ(p) are nothing but the deformed NAT[dBMBPT(p)] basis states whose
eigenvalues λ(p)

γ denote their average occupation in |Ψ(p)⟩. In Eq. (6.2), the eigenvectors
provide the unitary transformation between the sHO basis {|φα⟩;α = 1, . . . , nB} and the
NAT[dBMBPT(p)] basis {|ϕ(p)

γ ⟩; γ = 1, . . . , nB}

C(p)
αγ ≡ ⟨φα|ϕ(p)

γ ⟩ . (6.3)

Algorithm

In practice, the density matrix is diagonalized in each separate [mπt]α block such that
the transformation between the two bases reads as

|Nαmαπαtα⟩NAT[dBMBPT(p)] =
∑

nαjα

C
[mπt]α (p)
nαjαNα

|nαπαjαmαtα⟩sHO . (6.4)

In each [mπt]α block, the principal quantum number Nα are arranged according to the
decreasing occupation (λ(p)

1 ≥ λ
(p)
2 ≥ . . .) of the NAT states. Based on this ordering, an

effective ẽmax parameter6 is defined such that the number of NAT states retained is the
same as for the sHO truncated according to emax = ẽmax

7.
Truncating the NAT[dBMBPT(p)] basis according to ẽmax, the matrix elements of the

one-body kinetic energy and of the two-body interaction8 initially expressed in the sHO
basis are transformed into the deformed NAT basis using Eq. (6.4). Based on this (re-
duced) set of matrix elements, a dHFB state is recomputed and the expansion method of
choice is performed on top of it. The procedure is summarized in Fig. 6.1.

6In any given calculation, ẽmax is necessarily smaller than or equal to the emax value originally used to
compute the density matrix.

7From a general standpoint, there is a total freedom to select any subset of the NAT states as the new
working basis. More optimal truncation schemes will be explored in future studies.

8The two-body operator does not only include the genuine two-body interaction but also the two-body
part of the center-of-mass correction as well as the rank-reduced three-body interaction.
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Basic properties

Natural orbitals possess the key extremum property [138]
r≤nB∑
γ=1

λ(p)
γ ≤

(r)≤nB∑
k=(1)

ρ(p)
κκ (6.5)

where the diagonal elements ρκκ can here be taken in any one-body basis and where in
the sum over κ = (1), . . . , (r) any set of r indices among the nB ones can be selected. This
property expresses the fact that the occupations fall as quickly as possible in the natural
basis such that any subset gathering the most occupied orbitals is indeed maximally
occupied. In turn, this property implies that the expansion of the many-body state
on the set of Slater determinants built out of NAT states displays optimal convergence
properties [138]. Thus, one expects the above property to translate into the fact that
the use of the NAT basis optimally accelerate the convergence of a given many-body
expansion method with respect to the ẽmax truncation. If so, extracting natural orbitals
from an inexpensive dBMBPT(p) calculation with a large enough emax may authorize in
a second step to converge a more expensive calculation for ẽmax < emax.

A second interesting property relates to the asymptotic behavior of NAT states that
can be inferred from the local nucleon density distribution given by

ρ(p)(r⃗) =
∑

γ

λ(p)
γ |ϕ(p)

γ (r⃗)|2 . (6.6)

Due to the short-range character of nuclear forces, the long-distance behavior of the one-
nucleon density distribution is given by [139]

ρ(p)(r⃗) −→
r→+∞

e−2κ0 r

(κ0 r)2 , (6.7)

with κ0 =
√
−2mε0/ℏ2 and where ε0 =

(
EN

0 − EN−1
0

)
is minus the one-nucleon separation

energy to reach the ground state of the system with one less nucleon. Because ρ(p)(r⃗)
decays exponentially with a rate set by the one-nucleon removal energy, and because all
contributions in the right-hand side of Eq. (6.6) are strictly positive9, all natural orbital
wave-functions are localized and decay faster than ρ(p)(r⃗) at long distances.

This is to be compared to the case where the many-body state reduces to a single,
e.g. dHF, Slater determinant. In this case natural orbitals are nothing but HF single-
particle states and Eq. (6.6) must be replaced by

ρ(dHF)(r⃗) =
∑

α ∈ occ.
|ψ(dHF)

α (r⃗)|2 . (6.8)

It follows that the above property only applies to the occupied (λ(dHF)
α = 1) single-particle

states in the Slater determinant, while all unoccupied (λ(dHF)
α = 0) single-particle HF

states are not constrained to decay exponentially. In fact, the latter actually oscillate
to infinite distance as scattering states as soon as the corresponding HF single-particle
energy is positive. These characteristics will be useful later on to analyze the results
obtained with different one-body bases.

9As soon as |Ψ(p)⟩ does not restrict to a Slater determinant, all eigenvalues of the one-body density
matrix are strictly positive in principle. In practice of course, several eigenvalues can be identified as
a numerical zero.
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Figure 6.2. Convergence of the 20Ne ground-state energy (relative to the emax = 12
value) computed at the dMBPT(2) level using the sHO (left panel) and NAT[dMBPT(2)]
(right panel)) bases. Results are shown as a function of ẽN

max and ẽP
max. For each basis

truncation, the corresponding number of basis states are shown on the upper and right
axes (See also Tab. 2.1.). Calculations are performed with the EM 1.8/2.0 Hamiltonian.

6.2.3. Hamiltonian

The two χEFT nuclear Hamiltonians NNLOsat (bare) and EM 1.8/2.0 are employed in the
present chapter. While the second Hamiltonian is directly built as a soft representative
displaying negligible coupling between low and high (relative) momentum states, the
former does display significant coupling to high momenta. In order to transition from
the latter to the former and characterize the impact of coupling to high momenta on the
accelerated convergence induced by the NAT basis, the NNLOsat Hamiltonian is further
evolved through a free-space similarity renormalisation group transformation (SRG) [10]
in order to decouple low and high momenta. Doing so, down to the momentum scale
2.4 fm−1 (2.0 fm−1), one defines the evolved NNLOsat (2.4) (NNLOsat (2.0)) Hamiltonians.

Reference calculations employ an emax = 12 truncation of the sHO basis. Calculations
with the EM 1.8/2.0 Hamiltonian are performed with an oscillator frequency ℏω = 20 MeV
while results relative to NNLOsat (bare) are obtained with ℏω = 18 MeV (except if specified
otherwise). Three-body interaction matrix elements are further truncated to e3max =
16 < 3 emax before reducing the three-body interaction to an effective two-body one via
the rank-reduction method developed in Ref. [35].

Based on this numerical setting the performance of a given one-body basis is char-
acterized by computing the relative error ∆E[%] of the dBMBPT ground-state energy
obtained for a given ẽmax ≤ 12 truncation with respect to the reference results obtained
for emax = 12.

88



6.3. NAT[dBMBPT(2)] basis performance

Figure 6.3. Same as Fig. 6.2 for 70Fe.

6.3. NAT[dBMBPT(2)] basis performance
The goal of the present chapter is to assess the accelerated convergence obtained by using
the NAT[dBMBPT(2)] basis relative to the standard sHO basis in realistic calculations
of doubly open-shell nuclei. Because the NAT basis is isospin dependent, in the context
of the present work the PAN@CEA numerical suite has been extended to handle isospin-
dependent bases. In turn, this makes possible to truncate separately neutron and proton
one-body basis states according to the ẽN

max and ẽP
max parameters.

6.3.1. sHO vs NAT[dBMBPT(2)] bases
The first nucleus under study is 20Ne, a prolate nucleus recently investigated via various ab
initio expansion methods [8, 9, 54]. The convergence of the ground-state energy computed
with the EM 1.8/2.0 Hamiltonian is displayed in Fig. 6.2 for both the sHO and the
NAT[dBMBPT(2)] bases as a function of ẽN

max and ẽP
max.

The NAT basis is seen to display a faster convergence than the sHO basis, e.g. the 1%
error with respect to the converged (emax = 12) result is reached at ẽN

max = ẽP
max = 8 in

the sHO basis whereas ẽN
max = ẽP

max = 6 is sufficient in the NAT basis. Because 20Ne is a
N = Z nucleus, the gain is symmetric with respect to ẽN

max and ẽP
max.

As seen from Tab. 2.1, such an advantage allows one to work with about half the number
nB of states compared to the sHO basis, which already constitutes a sizeable advantage
in terms of storage and CPU time for any expansion method scaling polynomially, i.e. as
nq

B, with the one-body basis size. For state-of-the-art high-accuracy methods for which
q = 7 or 8, the gain can be very significant.

Next, the NAT basis is tested on a heavier neutron-rich prolate 70Fe nucleus; results
are shown in Fig. 6.3. The error associated with the sHO basis displays an asymmetric
pattern, the energy converging faster with respect to ẽP

max than to ẽN
max. The use of the

NAT basis essentially restores the neutron-proton symmetry and an advantage analogous
to the one obtained for 20Ne is observed. The fact that the benefit carries over to medium-
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Figure 6.4. Same as Fig. 6.2 for 18O.

heavy mass deformed nuclei is encouraging in view of using the NAT basis for the most
computationally challenging systems in the future.

Finally, Fig. 6.4 displays results for the singly open-shell, i.e. spherical and superfluid,
18O nucleus. For a small, i.e. 0.5% or 1%, error, a similar advantage to the one observed
20Ne and 70Fe is achieved.

6.3.2. Application to dBMBPT(3)
Having tested the performance of the NAT[dBMBPT(2)] basis through dBMBPT(2), one
can employ a more advanced dBMBPT(3) calculation to further validate the conclusions.
The result of such a test, reported in Fig. 6.5 for 18O, indeed leads to similar conclusions
as for dBMBPT(2)10.

6.3.3. Resolution-scale dependence
The correlations encoded in a beyond-mean-field, e.g. dBMBPT(2), density matrix ulti-
mately depend on the input Hamiltonian, and in particular on its resolution scale. It is
thus important to assess the efficiency of the NAT machinery for interactions character-
ized by different degrees of ‘softness’. To this end, the four Hamiltonians introduced in
Sec. 6.2.3, spanning a significant range of resolution scales, are now considered.

Figure 6.6 shows the relative error on the dBMBPT(2) ground-state energy of 20Ne and
56Fe for different emax (ẽmax) truncations on the sHO (NAT[dMBPT(2)]) basis. The overall
behavior is similar in the two nuclei, i.e. while the error for a given emax (ẽmax) decreases
with the resolution scale of the Hamiltonian, the relative gain offered by the NAT basis
over the sHO basis is essentially independent of it. For Hamiltonians characterized by a
low resolution scale, the use of the NAT[dBMBPT(2)] basis allows a 1% error at ẽmax = 6
(ẽmax = 8) in 20Ne (56Fe) while the sHO basis necessitates two more major shells to
10Other possibilities, i.e. dBMBPT(2) calculations on top of NAT[dBMBPT(3)] or dBMBPT(3) calcu-

lations on top of NAT[dBMBPT(3)] have also been tried and all lead to similar results.
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Figure 6.5. Same as Fig.6.4 but for a dBMBPT(3) calculation and an error computed
relatively to the emax = 10 calculation.

Figure 6.6. Relative error on the dBMBPT(2) ground-state energy of 20Ne (left) and
56Fe (right) using the sHO (NAT[dMBPT(2)]) basis for different emax (ẽmax) truncations
and the four different χEFT Hamiltonians characterized by different resolution scales.
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Figure 6.7. Relative error on the dBMBPT(2) ground-state energy of 56Fe as a function
of the oscillator frequency ℏω of the underlying sHO basis. Results are shown for the
NNLOsat (bare) Hamiltonian. The legend is the same as in Fig. 6.6.

reach the same result. For the NNLOsat (bare) Hamiltonian characterized by the highest
resolution scale, ẽmax = 8 yields a 1% error in 20Ne whereas two more major shells are
necessary for the sHO basis. In 56Fe, however, the NAT[dBMBPT(2)] basis does not offer
a significant gain over the SHO basis when targeting a 1% error.

6.3.4. ℏω dependence
In Ref. [136] the independence of the results obtained in closed-shell nuclei using the NAT
basis generated via spherical MBPT(2) on the ℏω frequency of the underlying sHO basis
was highlighted. An analogous study is now carried out in deformed nuclei based on the
NAT[dBMBPT(2)] basis.

Figure 6.7 shows the relative error on the dBMBPT(2) ground-state energy of 56Fe
for the NNLOsat (bare) Hamiltonian11 as a function of the oscillator frequency ℏω of the
underlying sHO basis for different truncations of the model space. In agreement with
the results obtained in closed-shell nuclei [136], the relative error is flattened for the
NAT[dBMBPT(2)] basis compared to the sHO basis. This behavior originates from the
fact that, the dBMBPT(2) calculation being essentially converged at emax = 12 and thus

11As discussed in the previous section, this is the least favorable situation regarding the actual benefit of
the NAT[dBMBPT(2)] basis over the sHO one. It is unimportant here given that the goal is simply
to investigate how the behavior evolves with ℏω.
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Figure 6.8. Relative error on the dBMBPT(2) ground-state energy along the Fe isotopic
chain. Results are shown using both the nucleus-dependent NAT[dMBPT(2)] basis and
the fixed NAT[dMBPT(2), 56Fe] basis for all isotopes. Calculations were performed with
the EM 1.8/2.0 Hamiltonian.

ℏω-independent, so are the corresponding density matrices12.
One observes that the benefit obtained from the NAT basis is minimal for ℏω = 18 MeV,

which corresponds to the optimal frequency for NNLOsat (bare) as far as the convergence
of the results based on the sHO basis is concerned. On the other hand, the independence
of the NAT basis on ℏω can be used to avoid searching for such an optimal frequency and
thus save significant computational resources.

6.3.5. Isotopic dependence
Having characterized the performance of the NAT basis for different nuclear masses, the
evolution along nine even-even iron isotopes ranging from 40Fe to 72Fe is now investigated.
At the same time, the impact of using one fixed NAT basis extracted from, e.g., 56Fe
(i.e. the NAT[dMBPT(2), 56Fe] basis) for all the isotopes is also studied. One might
indeed expect that the characteristics of the natural orbitals do not evolve significantly
along an isotopic chain or even within a given mass region. If so, the CPU time needed to
repeatedly perform a dBMBPT(2) calculation to extract the NAT[dMBPT(2)] basis and
transform the matrix elements of all operators at play into that basis could be avoided
whenever performing a systematic study.

The results obtained along the Fe isotopic chain with the EM 1.8/2.0 Hamiltonian are
displayed in Fig. 6.8. First, the benefit of using the NAT[dMBPT(2)] basis identified
earlier for 56Fe extends similarly to all isotopes under consideration. Second, one observes
that keeping the NAT[dMBPT(2), 56Fe] the same for the nine isotopes does not deteri-
orate the results, i.e. the gain compared to using the sHO basis remains essentially the
same. This demonstrates that using NAT orbitals computed in a nearby nucleus indeed

12Further considerations about the ℏω-dependence of the NAT orbitals are made in Sec. 6.4.3
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represents a viable option. Such a study could be extended to a larger range of nuclei in
the future to identify the limit of such a strategy.

6.4. Alternatives to NAT[dBMBPT(2)]
A key feature of natural orbitals relates to their capacity to carry fingerprints of correla-
tions imprinting the many-body wave function. This is first reflected into their optimal
average occupation profile (see Sec. 6.2.2), which is exploited to construct efficient trunca-
tions of the one-body basis. One might thus wonder whether other ways13 of incorporating
information about the correlated wave function into the single-particle basis provide an
advantage over the sHO basis.

6.4.1. Alternatives
A first option consists in extracting the NAT basis from a deformed HFB many-body state,
i.e. in using the so-called canonical basis from HFB theory [36]. Because the canonical
basis is the NAT basis of a many-body state capturing static pairing correlations, canonical
states are indeed known to be all localized [28] and to decay faster than the one-body
local density distribution.

Instead of diagonalizing the one-body density matrix, another interesting option con-
sists in utilizing the eigenbasis of the one-body Baranger Hamiltonian [106]

hBAR
αβ = tαβ +

∑
γδ

vαγβδ ρδγ , (6.9)

where tαβ and vαγβδ denote matrix elements of the one-body kinetic energy and of the
two-body interaction, respectively. The eigenstates of hBAR deliver an alternative one-
body basis14 informed from many-body correlations through the input one-body density
matrix. In this case, the basis states can be ordered and truncated according to the
associated eigenvalues15 of hBAR.

6.4.2. Performance
The convergence as a function of ẽP

max (keeping ẽN
max = 12 fixed) of the dBMBPT(2)

ground-state energy obtained in 20Ne with the NNLOsat (bare) Hamiltonian is displayed
in Fig. 6.9 for the five following proton bases:

1. sHO basis;

13Any useful alternative must be characterized by a low computational cost to be worth considering. For
instance, even though natural orbitals extracted from a more refined (and costly) calculation than
dBMBPT(2) are expected to be more efficient, following this route would defy the original purpose.

14The Baranger (BAR) one-body basis is obtained at a similar cost as the NAT basis given that it requires
to convolute the dBMBPT(2) one-body density matrix with the two-body interaction according to
Eq. (6.9) prior to diagonalizing the one-body Hamiltonian hBAR.

15These one-body eigenergies are meaningful effective single-particle energies [107, 116] and are routinely
evaluated in nuclear structure calculations.
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Figure 6.9. Convergence of the dBMBPT(2) ground-state energy 20Ne as a function of
ẽP

max for five different one-body bases of interest (see text for details). The neutron basis
is left untruncated, i.e. ẽN

max = 12 is used everywhere. Calculations are performed with
the NNLOsat (bare) Hamiltonian.

2. BAR[dHF] basis16;

3. NAT[dHFB, 21Na] basis obtained from the even-number parity HFB solution of the
neighbouring 21Na isotone17;

4. BAR[dMBPT(2)] basis;

5. NAT[dMBPT(2)] basis.

First, one can appreciate the clear supremacy of the NAT[dMBPT(2)] basis, which is
in fact the only one performing better than the sHO basis by typically gaining two units
of ẽmax over it.

Incorporating mean-field pairing correlations into the one-body density matrix does
improve over the BAR[dHF] basis but is only superior to the sHO basis for ẽP

max = 2 (not
visible on the plot), which is irrelevant given that the error is of the order of 20− 30% for
such small bases. This already shows that the spatial localization of the orbitals induced
by pairing correlations is beneficial but not refined enough.

The BAR[dMBPT(2)] basis and the BAR[dHF] basis display identical behaviors and
provide the worst performance of all. In particular, they deliver a much slower con-
vergence than the sHO basis. Convoluting the correlated dMBPT(2) one-body density
16The HF basis is both the NAT basis and the BAR basis associated with the HF Slater determinant.

The occupations being highly degenerate (step function), such a variable does not authorize an un-
ambiguous ordering. It is thus necessary to use Baranger (i.e. HF) single-particle energies to generate
a meaningful ordering of the basis states.

17As for the large majority of doubly open-shell nuclei computed with ab initio interactions [137], the
dHFB solution of 20Ne is unpaired. A simple way to enforce pairing correlations among protons is
thus to use the even number-parity solution for the neigboring isotone 21Na. Given the conclusion of
Sec. 6.3.5 this constitutes a well justified option.
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Figure 6.10. First three proton single-particle wave functions with (mα = 1/2, πα = +) in
20Ne as a function of r⊥ for z = 0. First column: sHO basis including the associated (nlj)
quantum numbers. Second column: BAR[dHF] basis. Third column: BAR[dBMBPT(2)]
basis. Fourth column: NAT[dBMBPT(2)] basis. Fifth column: NAT[dHFB, 21Na] basis.
The ordering of the states from top to bottom in the NAT (BAR) bases is made according
to their decreasing (increasing) average occupations (Baranger single-particle energies).
One-body states that would be occupied, i.e. below the Fermi level, according to a naive
filling of the shells are indicated with a grey background. Calculations are performed with
the NNLOsat (bare) Hamiltonian for three values of sHO basis frequency ℏω = 12, 18,
24 MeV.

96



6.4. Alternatives to NAT[dBMBPT(2)]

matrix with the two-body interaction to produce and diagonalize the Baranger one-body
Hamiltonian washes out the relevant fingerprint of beyond-mean-field correlations built
into that density matrix.

6.4.3. Single-particle wave functions
To better understand the behavior of the different one-body bases employed in Fig. 6.9,
spatial properties of the associated wave functions are now investigated. The coordinate
representation of single-particle wave functions with axial symmetry, z being the coordi-
nate along the symmetry axis and r⊥ the coordinate perpendicular to it, is detailed in
App. G.

Figure 6.10 displays in each basis, for three values of sHO basis frequency ℏω = 12,
18, 24 MeV, three representative proton single-particle wave functions, i.e. the first three
proton states with (mα = 1/2, πα = +), as a function of r⊥ (fixing z = 0). In NAT
bases, the ordering of the states from top to bottom is made according to their decreasing
average occupations. In BAR bases, this ordering relates to their increasing Baranger
single-particle energies. States that would be occupied in 20Ne, i.e. below the Fermi level,
according to a naive filling of the shells are indicated with a grey background.

Several considerations can be made by inspecting Fig. 6.10.
• ℏω dependence While the three sHO wave functions display (by construction) a

dependence on the underlying sHO frequency, states below the Fermi level are in-
dependent of ℏω for the four other bases. The state above the Fermi level behaves,
however, differently: while a significant ℏω dependence is observed for both BAR
bases, the dependence is considerably reduced for the NAT[dHFB, 21Na] state and
disappears for the NAT[dMBPT(2)] one.

• Localization The spatial extension of the sHO states directly reflects the size of the
sHO potential, determined by the frequency ℏω. At long distances, sHO states
behave as bound states decaying as Gaussian functions. In the four other bases,
the spatial extension of the states below the Fermi level resembles their sHO coun-
terpart obtained for the optimal ℏω = 18 MeV value. Furthermore, these wave
functions behave as bound-like state decaying exponentially at long distances18. A
major difference occurs instead for the state above the Fermi level. While the ℏω-
independent state in the NAT bases is localized within the volume of the nucleus
and decays exponentially at long distances, the ℏω-dependent state in the BAR
bases is delocalized given that it corresponds to a positive Baranger single-particle
energy19. While the many-body correlations built into the dBMBPT(2) one-body
density matrix efficiently localize all its eigenstates, the effect is lost when comput-
ing the Baranger Hamiltonian whose eigenstates with positive single-particle energy
are scattering states independently of the correlations entering the one-body den-
sity matrix used to compute it. Eventually, one further observes that the state
above the Fermi level is more localized in the NAT[dMBPT(2)] basis than in the
NAT[dHFB, 21Na] basis.

• Nodes Since both BAR and NAT states mix sHO states with different values of
the principle quantum number nα, the number of nodes in the corresponding wave

18Although hardly visible in the linear y-scale of the figure, this has been verified.
19This delocalization is still artificially limited by the combination of the ℏω and emax values employed,

i.e. the state would behave as a proper scattering state in the limits ℏω → 0 and/or emax →∞.
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Figure 6.11. Top panel: eigenvalues of the dHF, dHFB(21Na) and dMBPT(2) one-body
density matrices. Bottom panel: single-particle wave function r.m.s. radius. Results are
displayed for the first states in the [mπt] = [1/2 + p] block. Calculations are performed
in 20Ne with NNLOsat (bare) and ℏω = 18 MeV. The vertical dashed line indicates the
location of the Fermi level.

functions cannot be anticipated or easily interpreted. For instance, while the first
state carries no node in the five bases, the second state displays one node in all
bases but the sHO one.

The fact that all NAT[dMBPT(2)] states are similarly localized around the volume
of the nucleus is what seems to distinguish this basis from the others. To validate this
conjecture, the spatial extension of the basis states is now characterized over a wider
range by computing the root-mean-square (r.m.s.) radius of each basis state α as

√
⟨r2

α⟩ ≡
√
⟨α|r2|α⟩

= 2π
∫
dr dθ r4 sin θ F 2

α(r, θ) .
(6.10)

Figure 6.11 displays the first twelve eigenvalues of the dHF, dHFB(21Na) and dMBPT(2)
one-body density matrices in the [mπt] = [1/2 + p] block against the r.m.s radius of the
first twelve orbitals of that same block in the BAR[dHF], BAR[dMBPT(2)], NAT[dHFB,
21Na] and NAT[dMBPT(2)] bases. The calculation is performed in 20Ne with the NNLOsat
(bare) Hamiltonian and the optimal frequency ℏω = 18 MeV. The following considerations
can be made.
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• Even if the natural orbitals occupations are very different for the dHF and dMBPT(2)
one-body density matrices, the r.m.s radii of the BAR[dHF] and BAR[dMBPT(2)]
basis states are identical, i.e. the eigenfunctions of the Baranger Hamiltonian are
unchanged by the correlations built into the density matrix used to compute it.

• The spatial extension of both BAR basis states increases continuously when going
from below to above the Fermi level where the r.m.s. radius of the orbitals typi-
cally reaches about 6 fm20. In particular, there is a large spatial mismatch between
orbitals below and above the Fermi level.

• Pairing correlations built into the dHFB(21Na) one-body density matrix only modify
substantially the occupations of natural orbitals around the Fermi level such that the
distribution of eigenvalues drop much faster than for dMBPT(2) natural orbitals.
Eventually, the localization of the NAT[dHFB, 21Na] orbitals is not positively af-
fected such that their r.m.s. radius remain similar to their BAR[dHF] counterparts.
The calculation was repeated21 by boosting pairing correlations [49] to match the
occupation profile displayed by the NAT[dBMBPT(2)] orbitals in Fig. 6.11. The
localization of the corresponding NAT[dHFB, 21Na] orbitals was not at all improved
and the convergence of the dBMBPT(2) energy was by far the worst of all tested
bases.

• Dynamical correlations built into the dMBPT(2) density matrix impact substan-
tially the occupation profile of all natural orbitals. Eventually, the spatial extension
of the NAT[dMBPT(2)] orbitals is more homogeneous than for the other bases; the
r.m.s. radius typically remains between 3 and 4 fm for all of them. Noticeably,
the first, i.e. most occupied, NAT[dMBPT(2)] state below the Fermi level is more
extended than its counterparts in the other bases (see the first row of Fig. 6.10)
such that its spatial extension is eventually more similar to states located above the
Fermi level.

Figure 6.12 compares in 20Ne the r.m.s. radius of the first twelve orbitals in the [mπt] =
[1/2 + p] block of the sHO, BAR[dHF], NAT[dHFB, 21Na] and NAT[dMBPT(2)] bases22,
along with their average dispersion, to the dMBPT(2) r.m.s. matter radius. On average,
the extension of the sHO and NAT[dMBPT(2)] orbitals are more consistent with the
matter radius than for the BAR[dHF] and NAT[dHFB, 21Na] basis states. Furthermore,
the dispersion in the orbitals extension is the smallest for the NAT[dMBPT(2)] basis. As
a matter of fact, the hierarchy in the performance of the five bases displayed in Fig. 6.9
correlates with these two spatial characteristics.

Eventually, it can be speculated that the capacity of the NAT[dMBPT(2)] basis to best
converge a subsequent beyond mean-field, e.g. dBMBPT(2), calculation is correlated with
the optimal spatial overlap between single-particle wave-functions below and above the
Fermi level, which in turn concentrates the strength of the interaction matrix elements
over the lowest lying elementary excitations. This eventually allows one to optimally build
up many-body correlations as a function of ẽmax on top of the unperturbed reference state.
20The r.m.s. radius of the orbitals with positive Baranger single-particle energies would be infinite in the

limits ℏω → 0 and/or emax →∞.
21The associated results are not shown in Figs. 6.9–6.11.
22Results for the BAR[dMBPT(2)] basis are not shown because they are identical to those obtained with

the BAR[dHF] basis.
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Figure 6.12. Root mean square radius of the first twelve orbitals in the [mπt] = [1/2+p]
block in the sHO, BAR[dHF], NAT[dHFB, 21Na] and NAT[dMBPT(2)] bases. The average
and dispersion of the r.m.s. over the twelve states are indicated for each of the four bases.
Calculations are performed in 20Ne with NNLOsat (bare) and ℏω = 18 MeV. The vertical
dashed line indicate the location of the Fermi level.
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Figure 6.13. Relative error on the dBMBPT(2) energy as a function of the compression
factor Rc using the NAT[dBMBPT(2)] basis, the IT technique and combining both. Left
panel: 16O. Right panel: 44Ti. The dashed grey line represents the relative dMBPT(3)
contribution to the total energy with respect to dMBPT(2). Calculations were performed
with the EM 1.8/2.0 Hamiltonian.

Unfortunately, natural orbitals obtained via an even less costly (pair-boosted) HFB
calculation do not display appropriate properties and do not lead to any gain over the
sHO basis. For a reason that remains to be elucidated, dynamical correlations brought
by second order perturbation theory and static correlations brought by (boosted) HFB
can lead to essentially identical eigenvalues of the one-body density matrix (i.e. natural
orbitals occupation profile), while delivering very different eigenstates (i.e. natural orbital
wave functions).

6.5. Natural basis vs importance truncation

6.5.1. Importance truncation

Importance truncation (IT) constitutes another well-established technique to reduce the
computational costs of nuclear structure calculations while maintaining the desired accu-
racy on the solution of the Schrödinger equation. The main idea is to pre-select, via an
inexpensive evaluation, the most relevant elements of the many-body tensors at play in
a method of interest. Using for example (B)MBPT(2) as the inexpensive pre-processing
method, the second-order correction to the energy introduced in Sec. 2.4 can be schemat-
ically expressed as the sum over all entries of a mode-4 tensor

E(2) = 1
4!
∑

αβγδ

e
(2)
αβγδ , (6.11)
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Figure 6.14. Same as Fig. 6.13 for 18O.

such that all quadruplets (α, β, γ, δ) corresponding to entries falling below a chosen thresh-
old eIT,

e
(2)
αβγδ < eIT , (6.12)

will be ignored in a subsequent calculation involving (a counterpart of) the mode-4 ten-
sor, the goal being to reduce the cost of expensive diagonalisations/iterations at play in
non-perturbative many-body methods. Following this strategy, IT has been successfully
applied to no-core shell model [120], self-consistent Green’s functions [22] and in-medium
SRG [122] calculations. A comparison between IT and tensor factorisation techniques has
also been performed within the frame of BMBPT [124].

6.5.2. Compression factor
To confront the respective computational gains provided by IT and natural orbitals, using
(B)MBPT(2) as the validation method, the compression factors

Rd(B)MBPT(2)
c (eIT) ≡ nconf(emax = 12, eIT = 0)

nconf(emax = 12, eIT)
, (6.13a)

Rd(B)MBPT(2)
c (ẽmax) ≡ nconf(emax = 12, eIT = 0)

nconf(ẽmax, eIT = 0)
, (6.13b)

obtained with respect to a d(B)MBPT(2) calculation in emax = 12 and eIT = 0) are
introduced. Such a ratio quantifies the gain by comparing the number of initial tensor
entries with the number of retained tensor entries: the larger the compression factor, the
greater the advantage brought by the method. The compression factor associated with
the NAT basis (IT) is driven by the value of ẽmax (eIT). Eventually, the number of retained
entries in IT can also be translated into an effective ẽmax value.
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Figure 6.15. Same as Fig. 6.13 for 56Fe only and the EM 1.8/2.0 (left panel) and NNLOsat
(bare) (right panel) Hamiltonians. The compression factor obtained for ∆E = 1.0% and
emax = 12 via tensor factorization techniques [41] is also indicated on the left panel.

6.5.3. Comparison
Figure 6.13 displays the relative error ∆E on the dMBPT(2) ground-state energy against
the compression factor for NAT and IT in the doubly closed-shell (open-shell) 16O (44Ti)
nucleus23. As a rule of thumb, an acceptable error in a MBPT(2) calculation is provided
by the third-order contribution appearing as a horizontal dashed line in the figure.

In the limits ẽmax → 12 or eIT → 0, i.e. RdMBPT(2)
c = 1, the reference calculation is

recovered. As RdMBPT(2)
c increases, the error ∆E evolves similarly for both approximation

methods, even though the benefit obtained using the NAT[dMBPT(2)] basis is slightly
superior (inferior) in 16O (44Ti). Eventually, an acceptable error of ∆E ∈ [1, 2]% autho-
rizes to compress the tensor at play by about one order of magnitude. Of course, the gain
in non-perturbative methods pushed to high accuracy and involving mode-6 tensors to be
repeatedly computed, stored and contracted is expected to be significantly higher.

The situation is different in the Bogoliubov setting, as shown in Fig. 6.14 for 18O.
Indeed, the necessity to rely on the Bogoliubov algebra enlarges significantly the size of the
tensors at play in the reference calculation to begin with. Both compression techniques
counterbalance this increase through larger compression factors than in the MBPT(2)
case. While reaching an error of the order of the third-order contribution (∆E ≈ 2%)
via NAT generates a compression factor of RdMBPT(2)

c ≈ 103, IT manages to do so while
compressing the tensor by one more order of magnitude. As already observed in Ref. [22]
for IT and in Ref. [41] for tensor factorization, Fig. 6.14 demonstrates that the large
overhead induced by the explicit treatment of pairing correlations is to a large extent
artificial and can be alleviated via different pre-processing techniques.

In order to gauge how compression factors vary with the resolution scale of the input
23The evaluation of the compression factor takes explicitly into account the fact that U(1) symmetry is

not broken for these two nuclei, i.e. that one can work with dMBPT(2) rather than dBMBPT(2) to
begin with.
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Hamiltonian, Fig. 6.15 compares the results obtained in 56Fe with the EM 1.8/2.0 and the
NNLOsat (bare) Hamiltonians. While the qualitative behavior is similar, the compression
factor achieved for a given error is two orders of magnitude smaller with NNLOsat (bare)
than with EM 1.8/2.0. Although both optimisation techniques might still bring sizeable
benefits for interactions characterized by higher resolution scales, much more is to be
gained with soft nuclear Hamiltonians.

6.5.4. Combination
Starting from these encouraging results, NAT and IT can in fact be combined straight-
forwardly, i.e. the IT can be employed based on a NAT basis truncated to an appropriate
ẽmax value. Corresponding results are shown for one particular ẽmax value24 in each of
the panels of Figs. 6.13, 6.14 and 6.15. In all cases, combining IT with NAT does bring
a further advantage, i.e. typically a factor of 2 better than the best of the two methods
used separately. When using NNLOsat (bare) though, the additional gain is essentially
negligible.

As a final comparison, the left panel of Fig. 6.15 also displays the compression factor
obtained for ∆E = 1% with tensor factorisation techniques [41]. The compression factor
is about half of the one achieved using NAT or IT in this case25.

6.6. Application to non-perturbative methods
Having validated the advantage that NAT [(d)MBPT(2)] bases bring to ab initio cal-
culations, it is finally time to combine such newly-developed tool to non-perturbative
methods, where the impact of NAT is expected to be beneficial. In the present case,
calculations are limited to emax = 8.26 Since the interest is in the convergence of the
relative energy with respect to a value that is assumed to be converged, such value is
determined by extrapolating emax = 4, 6 and 8 results. This goal is accomplished by the
simple exponential decay function:

f(emax, a, b, E∞) = ae−bemax + E∞, (6.14)

where a, b and E∞ represent the three parameters to be fit, the latter one representing
the value of the extrapolated energy.

To this end, dDSCGF(2) calculations are performed for 20Ne with the ‘hardest’ and the
‘softest’ interactions employed in this chapter, respectively the NNLOsat (bare) and the
EM 1.8/2.0 ones.

Figure 6.16 represents such study. For what concerns results computed with the
NNLOsat (bare) interaction, the gain that the NAT [dMBPT(2)] basis brings with re-
spect to sHO is larger that the one obtained with the EM 1.8/2.0 interaction. This is in
agreement with what seen in the case of dMBPT(2) calculations (see Fig. 6.6). sc and
sc0 calculations display qualitatively the same trend for all the studied cases. With the
24Specifically, the smallest ẽmax for which ∆E < 1% is used.
25It must however be noticed that the chosen example does not correspond to one for which tensor

factorization provided the best benefit [41].
26The self-consistent loop in SCGF sometimes gives convergence problems. Since emax = 10 calcula-

tions proved to be harder to converge and the present implementation does not currently include
sophisticated techniques to control the convergence, in the following section results are limited to
emax = 8.
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Figure 6.16. Relative error of the total energy with respect to the extrapolated emax =
+∞ for 20Ne. sHO and NAT [dMBPT(2)] bases performance are compared for two
different interactions, NNLOsat (bare) and EM 1.8/2.0, and for the full self-consistent
and partial self-consistent (sc0) approximations. e3max = 16 is employed and ℏω = 18 and
20 MeV is employed respectively for the NNLOsat (bare) and the EM 1.8/2.0 interactions.

NNLOsat (bare) interaction the NAT [dMBPT(2)] basis brings and advantage of ≈ 4%
at emax = 6 that is reduced to ≈ 1.8% at emax = 8. Analogous calculations with the EM
1.8/2.0 interaction reduces such gain respectively to ≈ 1% and ≈ 0.5%.

The impact of working with a reduced model space is shown in Tab. 6.1 for the case of
one single sc0 iteration. Typically, a number of sc iterations between 5 and 8 is required
to reach a proper convergence of the total energy.

While results are promising, the efficiency of NAT in the dDSCGF method will need to
be validated more systematically in future applications to further quantify their impact
on different regions of the nuclear chart.

emax time [h]
2 0.001
4 0.002
6 0.042
8 0.650
10 4.550
12 22.130

Table 6.1. Computational time (in hours) required to converge a dDSCGF(2) sc0 calcu-
lation in 20Ne with 104 OpenMP processors.
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6.7. Conclusions
The present chapter investigated in details the computational gain delivered from the
natural basis computed via deformed second-order perturbation theory in the context of
ab initio calculations of doubly open-shell nuclei based on expansion many-body meth-
ods using an axially deformed and superfluid reference state. In view of searching for
alternative bases or for natural orbitals extracted at an even lower computational cost
than deformed second-order perturbation theory, the key characteristics of natural or-
bitals were investigated. Eventually, the use of natural orbitals was compared to the
benefit brought by other compression techniques, i.e. importance truncation and tensor
factorization techniques.

The main conclusions of this study can be drawn.

• The natural orbital basis extracted via second-order many-body perturbation theory
authorizes to converge calculations, e.g. dBMBPT(2,3) or dDSCGF(2), based on soft
interactions to a given accuracy using about half the number of states nB needed
with the spherical harmonic oscillator basis.

• Encouraged by the dDSCGF(2) results and based on the hypothesis that such a gain
extends to any many-body expansion method whose intrinsic memory load (CPU
cost) scales as np

B (nq
B), the benefit of using the NAT basis over the sHO basis is

thus estimated to be of the order 2p (2q).

• Using a common reference calculation employing a sHO basis of given dimension
(e.g. emax = 12), the gain obtained via importance truncation and tensor factor-
ization techniques is similar to the one presently achieved based on the use of the
natural orbital basis.

• Employing importance truncation techniques on top of a NAT basis allows one to
gain an additional factor of 2 in the compression of the mode-2 tensor at play in
a d(B)MBPT(2) calculation compared to the benefit obtained by the best of both
methods used separately.

• While the gain characterized in the present chapter is based on an emax-like trunca-
tion of the natural orbital basis, there exists an entire freedom in the way the basis
can be cut. Thus, the possibility to design more optimal truncation schemes needs
to be investigated in the future.

• None of the alternative bases presently investigated, i.e. the natural basis extracted
from Hartree-Fock and (pair-boosted) Hartree-Fock-Bogoliubov calculations or the
so-called Baranger basis, was shown to provide an advantage over the spherical
harmonic oscillator basis. The merit of the natural basis extracted from a second-
order many-body perturbation theory seems to relate to its unique capacity to
localize all its orbitals over the volume occupied by the nucleus.

• The use of NAT bases in combination with dDSCGF calculations has been shown
to be beneficial. Moreover, in this case the gain (quantified by looking at Tab.6.1) is
further amplified by the iterative character of the method. The use of techniques as
the ones presented in the present chapter will be crucial when pushing dDSCGF(2)
calculations to the third order.
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Having at hand a new tool to investigate open-shell systems, the next Chapter (Ch. 7)
revives part of the study performed in Ch. 3 quantitatively increasing the number of
correlations included in the ab initio calculations.
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Chapter 7.

Postlude – The threefold puzzle of Ca
isotopes
Chapter 3 presented an investigation of the role of correlations in ab initio calculations
applied to the Calcium and Chromium isotopic chains, i.e. on how the successive inclusion
of many-body correlations helps reproducing experimental ground-state energies as well
as its derivatives S2n and ∆2n. With the new dDSCGF(2) method introduced in Ch. 5 at
hand and a new variant of the VS-IMSRG(2) method (described below), such a discussion
can be now expanded.

7.1. Setting
Two additional quantities are presently investigated:

• the three-point mass difference ∆(3)

∆(3)(N) ≡ (−1)N

2
[E(N + 1)− 2E(N) + E(N − 1)], (7.1)

where N denotes the neutron number, delivers a measure of the superfluid neutron
pairing gap [42, 140];

• the isotopic shift of the ground-state mean-square charge radius

δ ⟨r2
ch⟩A = ⟨r2

ch⟩A − ⟨r2
ch⟩40, (7.2)

relative to 40Ca.

The analysis focuses on Calcium isotopes between 40Ca and 48Ca, i.e. while filling the
neutron 0f7/2 shell. To deepen the analysis, a variant of the VS-IMSRG(2) calculations
employed in Ch. 3 is presently considered. The results discussed in Ch. 3 making use of the
neutron {0f7/2, 1p3/2, 1p1/2} valence space above the 40Ca core1 are now complemented
with new results [141] based on the proton-neutron {1s1/2, 0d3/2, 0f7/2, 1p3/2} valence
space above the 28Si core2. These calculations ‘opening’ the 40Ca core are denoted as
VS-IMSRG(2) [28Si] calculations.

1In the present chapter, such calculations are denoted as VS-IMSRG(2) [40Ca].
2T. Miyagi, R. Stroberg and J. Holt are thanked for providing data relative to the VS-IMSRG(2) [28Si]
calculations.
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Figure 7.1. Threefold puzzle between 40Ca and 48Ca. Comparison of dHFB results and
experimental data [63, 111] for ∆2n (top panel), ∆(3) (middle panel) and δ ⟨r2

ch⟩A (bottom
panel).

7.2. Threefold puzzle
As visible from Fig. 7.1, the comparison of mean-field results with experimental data
allows to define a threefold puzzle in 40−48Ca isotopes:

1. the second derivative of the dHF ground-state energy quantified by ∆2n displays
the wrong sign, i.e. the energy is concave instead of being convex;

2. deformed HF pairing gaps quantified by ∆(3) only account for about 40% of the
experimental value;

3. the flat trend of the dHF mean-square radius misses entirely the parabolic curve
characterizing experimental values.

In the following, the capacity of different treatment of correlations beyond the mean-field
to solve (partially) this threefold puzzle is analyzed.
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Figure 7.2. Two-neutron shell gap for even-even isotopes between 40Ca and 48Ca for
dHF, dDSCGF(2), VS-IMSRG(2) [40Ca] and VS-IMSRG(2) [28Si] calculations against
experimental data.

7.2.1. Curvature

As shown in Figs. 3.7 and 3.11, the inclusion of dynamical correlations improves the cur-
vature of the energy in the direction of experimental data, i.e. the energy turns from being
concave to being convex. However, the magnitude of the curvature remains underesti-
mated. More specifically, the curvature obtained with VS-IMSRG(2) [40Ca] is positive
but the wrong trend with N observed at the mean-field level stays unchanged, i.e. while
the experimental curvature is essentially constant around 1MeV in 42−46Ca, the theoreti-
cal value is null in 42Ca and increases linearly with N to eventually reproduce experiment
in 46Ca. Thus, while the full diagonalization in the fp valence-space accounts for the nec-
essary correlations towards the end of the 0f7/2 shell, the freezing of the 40Ca core does
not permit, at least at the IMSRG(2) level, to deliver the right curvature all throughout
the open shell.

As visible in Fig. 7.2, dDSCGF(2)* results are located in between dHFB and VS-
IMSRG(2) [40Ca] ones, displaying the same trend with N . Even though low-order dy-
namical correlations improve the situation, about half of what is captured via the full
diagonalization in the fp valence-space is missing. On the other end, opening the 40Ca
core, VS-IMSRG(2) [28Si] very much improves over VS-IMSRG(2) [40Ca] in the beginning
of the 0f7/2 shell and allows a quantitative reproduction of experiment all throughout.
Such a behavior relates to the explicit treatment of the collective fluctuations of the 40Ca
core associated with particle-hole excitations across the N = 20 and Z = 20 magic gaps.
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Figure 7.3. Three-point mass difference for even-even and even-odd isotopes between
40Ca and 48Ca for dHF, dDSCGF(2), VS-IMSRG(2) [40Ca] and VS-IMSRG(2) [28Si] cal-
culations against experimental data.

7.2.2. Pairing gap
Figure 7.3 compares theoretical and experimental three-point mass differences. Clearly,
low-order dynamical correlations captured by dDSCGF(2)* do not improve the situation
over dHF, ∆(3) remaining essentially unchanged. Performing the full diagonalization
within the fp shell, neutron pairing gaps delivered by VS-IMSRG(2) [40Ca] calculations
are significantly enhanced, reaching about ≈ 60 − 70% of the experimental ∆(3), the
improvement increasing slightly but steadily as neutrons are added into the 0f7/2 shell.

Eventually, a decisive improvement is obtained by opening the 40Ca core. Indeed, VS-
IMSRG(2) [28Si] calculations provide essentially perfect pairing gaps throughout the shell
by allowing the 40Ca core to oscillate collectively3. This key result is consistent with
the fact that superfluidity is expected to originate for a large part from the exchange of
collective medium fluctuations between paired particles (in analogy to what happens for
normal superconductors) [66–69]. While the present results demonstrate that reaching a
quantitative description of pairing gaps from first principles is possible, doing so at poly-
nomial cost still constitutes a major challenge for ab initio nuclear structure theory [65,
142, 143].

7.2.3. Charge radius
The experimental mean-square charge radius shown in the top panel of Fig. 7.4 displays
the infamous bell-shaped curve between 40Ca and 48Ca, both isotopes exhibiting the same
charge radius in spite of differing by eight neutrons.

3One observes that the sign and amplitude of the odd-even staggering of ∆(3) is now also perfectly
reproduced. This in fact does not come as a surprise given that such a staggering reflects nothing but
the curvature of the energy [140].
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Figure 7.4. Isotopic shift of the mean-square charge radius of even-even and even-odd
isotopes between 40Ca and 48Ca for dHF, dDSCGF(2), VS-IMSRG(2) [40Ca] and VS-
IMSRG(2) [28Si] calculations against experimental data.

The parabolic trend of the mean-square charge radius is not reproduced by any of the
ab initio calculations whose results are flat throughout the 0f7/2 shell. In particular, the
opening of the 40Ca core in VS-IMSRG(2) [28Si] calculations, which solves the two first
elements of the three-fold puzzle, does not at all improve the behavior. This is surprising
given that such an opening of the 40Ca core was put forward as the key ingredient to
reproduce the parabolic curve within the frame of the phenomenological shell model [73].
In the context of ab initio VS-IMSRG(2) calculations, this feature does not constitute a
sufficient condition to do so.

Even though the bell-shape curve is completely missed, the similar sizes of 40Ca and 48Ca
are well accounted for by all calculations. As a matter of fact, this property is already
captured at the mean-field level and is not deteriorated by the addition of dynamical
correlations.

7.3. Conclusions
(i) the curvature of the energy, (ii) the three-point mass differences and (iii) the charge
radius between 40Ca and 48Ca constitute a unique playground to study the role of various
categories of many-body correlations in atomic nuclei. Indeed, these three features are
qualitatively wrong at the mean-field level based on realistic nuclear interactions such
that the inclusion of many-body correlations is mandatory to achieve a correct ab initio
description. Three key lessons can be learnt from the (preliminary) above analysis.

• The curvature of the energy and neutron pairing gaps can be qualitatively (quanti-
tatively) described via VS-IMSRG(2) calculations, i.e. by performing the full diag-
onalization in an appropriately chosen valence space on top of the 40Ca (28Si) core.
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It is thus crucial to open the 40Ca core to explicitly allow for collective fluctuations
via particle-hole excitations across the N = 20/Z = 20 magic gaps.

• The curvature of the energy and the neutron pairing gaps can (cannot) be qual-
itatively (quantitatively) described at low order in polynomially-scaling methods.
Achieving a quantitative description will require to capture higher-order processes
associated with collective fluctuations of the nucleus. This constitutes an interesting
challenge for the future development of expansion many-body methods.

• While the similar sizes of 40Ca and 48Ca are well accounted for, the parabolic be-
havior of the charge radius between both closed-shell isotopes is entirely missed. In
particular, opening the 40Ca core to account for its collective fluctuations is probably
a necessary but not sufficient condition to achieve a correct description.

Eventually, the reproduction of the charge radius between 40Ca and 48Ca remains a
real challenge for all methods. It was conjectured [144] that, while the similar sizes of
40Ca and 48Ca reflect the decreasing collectivity of the first 3−

1 excitation going from
40Ca to 48Ca, the parabolic curve in between correlates with the collectivity of the first
2+

1 and 0+
2 excitations as the 0f7/2 shell is being filled. In the phenomenological shell

model [73], the opening of the 40Ca core was key to describe the evolution of those low-
lying collective states and thus account for the behavior of the charge radius. In present
ab initio calculations, the opening of the 40Ca core is probably necessary but not sufficient
per se to achieve the same result.

The next step of the analysis will thus consist of computing excitation energies and
reduced transition probabilities to the ground state of the first 3−

1 , 2+
1 and 0+

2 states. In
order to disentangle the various sources of uncertainty, these calculations will be performed
for:

• both the EM 1.8/2.0 Hamiltonian and its novel variants better describing absolute
charge radii [47];

• both VS-IMSRG(2) and the more advanced VS-IMSRG(3f2) approximation [145];

• both the 40Ca and 28Si cores.

Based on the outcome of such a study, a better understanding of how the evolution of the
charge radius between 40Ca and 48Ca can be most efficiently achieved via polynomially-
scaling expansion methods can hopefully be achieved.
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Overall conclusions
Upon the culmination of this extensive journey, the hope is that the reader will be thor-
oughly persuaded that ab initio methods represent a robust and valid approach for the
first-principles description of different typologies of nuclear systems.

The present work focused mainly on the study of correlation-expansion methods that,
given their polynomial-scaling, constitute an optimal route toward heavy nuclei. While
the efficiency of such techniques has long been validated for spherical systems, their ex-
tension to doubly open-shell systems constitutes a recent development and remains only
partially explored. Such an application poses significant numerical challenges, in partic-
ular due to the m-scheme framework employed. Importantly, one needs to incorporate
long-range correlations, playing a crucial role in open-shell systems, from the outset to
lift the emerging particle-hole degeneracy, as discussed in Ch. 1.

In the study of doubly open-shell systems, this can be achieved by breaking rotational
symmetry. Conversely, singly open-shell systems are generally analyzed through the sole
breaking of particle-number symmetry. Such approach requires a dedicated formalism,
the Bogoliubov setting, which has been summarized in Ch. 2. Furthermore, the breaking
of SU(2) and U(1) can be combined. At mean-field level, this leads to the dHFB method.
The simplest extension of such approach to the beyond mean-field description of atomic
nuclei is given by perturbation theory, dBMBPT.

The impact of the successive inclusion of beyond mean-field correlations has been
studied in detail along Calcium and Chromium isotopic chains and discussed in Ch. 3.
dBMBPT was shown to give an excellent reproduction of the total energy of deformed
nuclei as well as more refined quantities such as the two-neutron separation energy and
the two-neutron shell gap.

While further systematic calculations were being set up, the results of a recent ex-
perimental campaign providing accurate mass measurements of neutron-rich Sodium and
Magnesium isotopes offered the occasion to test dBMBPT in a challenging region, namely
the N = 20 island of inversion where deformation and collective effects dominate. Chap-
ter 4 presented such application, where the comparison to experimental data and VS-
IMSRG results highlighted at the same time the qualitative merits and some quantitative
shortcomings of dBMBPT calculations.

The primary limitation of perturbation theory is that the number of particle-hole exci-
tations that are taken into account is limited. More sophisticated (and expensive) tech-
niques must be then developed in order to take into in account for further correlations.
Such goal has been accomplished in Ch. 5, where the development of a novel ab initio
technique, dDSCGF at second order, was presented. The existing Dyson formalism has
been tailored to the case of systems breaking rotational symmetry (under the constraint
of axial symmetry) and thoroughly tested in all numerical aspects. Associated results
are encouraging and bring a quantitative improvement with respect to dBMBPT. How-
ever, the non-perturbative and self-consistent character of such method poses practical
limitations, especially in terms of the truncation of the one-body Hilbert space.

To address these limitations, Ch. 6 proposed a dedicated version of NAT bases specif-
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ically designed for the study of open-shell systems and provided an in-depth analysis
of this advancement. The chapter also examined the benefits of combining NAT bases
with other cutting-edge techniques, such as IT. While primarily used in combination with
dBMBPT calculations, NAT were proven to be beneficial also for the dDSCGF method.
For future extensions of dDSCGF to higher orders, such numerical optimizations will be
crucial to manage computational costs.

Lastly, Ch. 7 presented an intriguing threefold puzzle that emerges in ab initio calcu-
lations along Calcium isotopes. In particular, between 40Ca and 48Ca, i.e. when neutrons
fill the 0f7/2 shell: (i) the curvature of the energy, (ii) the pairing gap and (iii) the charge
radii obtained experimentally are not reproduced by simple mean-field calculations. The
successive inclusion of beyond mean-field correlations qualitatively improves the situation
for the first two points, reaching quantitatively the experiment only with a very recent and
advanced version of the VS-IMSRG method. However, the failure in the reproduction of
charge radii remains and constitutes a challenge for future theoretical developments. Im-
portantly, finding a polynomially-scaling method capable of incorporating the necessary
correlations to address these three features remains an important open problem.

Several of the techniques discussed in this work are still at an early stage of development
and currently present some limitations. Nevertheless, ongoing efforts to tackle the main
identified obstacles suggest a promising future for ab initio methods. The field is advancing
rapidly, with significant improvements at the horizon.
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Figure A.1. The Bohr-Mottelson shell model for the sHO basis. Colored lines on the
left represent energy levels with the assumption that the spin-orbit coupling is not active.
Numbers on the left label the total number of particles included from below to above.
Colored lines on the right labels energy levels obtained from the lines on the left by
including the spin-orbit splitting. Numbers on the right label the number of particles
included for each level and the total one. Numbers in circles in between of different levels
label the magic numbers [83, 84] that signal the presence of wide energy gaps in the sHO
model.
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Zero-pairing description
The present work shows that χEFT-based interactions typically lead to a mean-field ap-
proximation displaying very weak pairing correlations in open-shell nuclei. This property
is intimately linked to the fact that the total HFB energy is concave rather than convex
throughout long (enough) degenerate spherical shells. This connection can be validated
analytically by considering that the system is in the extreme zero-pairing limit.

The zero-pairing mean-field description of an open-shell system can be meaningfully
achieved on the basis of two different many-body formalisms, i.e. the Hartree-Fock-
Bogoliubov theory in the zero-pairing limit (HFB-ZP) [49] or the Hartree-Fock theory
in the equal filling approximation (HF-EFA) [70]. The two cases are worked out analyt-
ically below to validate the results obtained through realistic sHFB calculations in the
body of the text.

B.1. Hartree-Fock-Bogoliubov
The fully-paired HFB vacuum associated with a time-reversal symmetric system is written
in its canonical, i.e., BCS-like, form as [36]

|Φ⟩ ≡
∏
κ>0

[
uκ + vκc

†
κc

†
κ̄

]
|0⟩ . (B.1)

Operators {c†
κ, cκ} characterize the so-called canonical one-body basis in which pairs of

conjugate states (κ, κ̄) are singled out by the Bogoliubov transformation via a quantum
number mκ such that κ ≡ (κ̆,mκ) and κ̄ ≡ (κ̆,−mκ). The state κ̄ (κ) corresponds to the
time-reversal state of κ (κ̄) up to a sign ηκ (ηκ̄) such that ηκ̄ηκ = −1.

The BCS-like occupation numbers uκ ≡ uκ̆ and vκ = ηκvκ̆ fulfilling u2
κ + v2

κ = 1 are
expressed in terms of the positive mκ-independent coefficients (uκ̆, vκ̆). Employing the
latter, the non-zero elements of the normal and anomalous density matrices read in the
canonical basis as

ρκκ =ρκ̄κ̄ = v2
κ̆ ,

κκκ̄ =− κκ̄κ = ηκuκ̆vκ̆ .
(B.2)

Based on the above and given the nuclear Hamiltonian in Eq. (2.3)1, the total HFB

1For the present analysis, center-of-mass corrections to the nuclear Hamiltonian are neglected.
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energy reads in the canonical basis as

EHFB ≡⟨Φ|H|Φ⟩
≡Ekin

|Φ⟩ + EHF
|Φ⟩ + EB

|Φ⟩

=
∑

κ

tκκ v
2
κ̆

+ 1
2
∑
κκ

′
v̄NN

κκ
′
κκ

′ v2
κ̆ v

2
κ̆

′

+ 1
4
∑
κκ

′
v̄NN

κκ̄κ
′
κ̄

′ ηκηκ
′ uκ̆vκ̆ uκ̆

′vκ̆
′

+ 1
6
∑

κκ
′
κ

′′
w̄κκ

′
κ

′′
κκ

′
κ

′′ v2
κ̆ v

2
κ̆

′ v2
κ̆

′′

+ 1
4
∑
κκ

′

∑
κ

′′
w̄κκ̄κ

′′
κ

′
κ̄

′
κ

′′ ηκηκ
′ uκ̆vκ̆ uκ̆

′vκ̆
′ v2

κ̆
′′ .

(B.3)

Canonical single-particle states further gather in degenerate shells. All states belonging
to a given shell share the same set of quantum numbers κ̆ and only differ by the value of
mk such that the single-particle energy defining the shell is independent of it, i.e. εκ = εκ̆.

In the zero-pairing limit [49], states belonging to three categories of shells need to be
distinguished according to:

1. εh̆ − λ < 0, casually denoted as ‘hole states’,

2. εv̆ − λ = 0, casually denoted as ‘valence states’,

3. εp̆ − λ > 0, casually denoted as ‘particle states’ ,

where λ denotes the chemical potential. Accordingly, it can be shown that canonical
states display the following average occupations:

1. hole state: v2
h̆ = 1,

2. valence state: 0 < v2
v̆ ≤ 1,

3. particle state: v2
p̆ = 0.

The valence shell gathers pv = dv/2 pairs of conjugated states such that the number
of valence states dv (pairs pv) is equal to the number of mv (|mv|) different values.
Consequently, the A nucleons making up the system are exhausted in such a way that
0 ≤ av ≤ dv of them sit in the valence shell whereas A − av occupy the hole states.
Consequently, the occupation of each of the dv valence states is

v2
v̆ ≡ ov̆ = av

dv

, (B.4)

thus leading to
uv̆vv̆ =

√
ov̆(1− ov̆) . (B.5)

Based on the above, the HFB energy (Eq. B.3) of an open-shell system with av nucleons
in the valence shell can be computed relatively to the CS core in the zero-pairing limit.
After a lengthy but straightforward derivation, one obtains

∆EHFB-ZP(av) ≡ EHFB-ZP(av)− EHFB-ZP(0) (B.6)
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= αv̆av + βv̆

2
a2

v + γv̆

6
a3

v , (B.7)

where

αv̆ ≡εCS
v̆ + ∆v̆

4
, (B.8a)

βv̆ ≡
Uv̆

dv

− 1
2dv

(∆v̆ − Zv̆) , (B.8b)

γv̆ ≡
1
d2

v

(
Xv̆ −

3
2
Zv̆

)
, (B.8c)

where the valence-shell single-particle energy computed in the CS core

εCS
v̆ ≡ tvv +

∑
h

v̄NN
vhvh + 1

2
∑
hh

′
w̄vhh

′
vhh

′ , (B.9)

and the mv-independent quantities2

Uv̆ ≡
dv∑

m
v

′

(
v̄NN

vv
′
vv

′ +
∑

h

w̄vv
′
hvv

′
h

)

=
dv∑

m
v

′

v̄vv
′
vv

′ , (B.10a)

∆v̆ ≡ ηv

dv∑
m

v
′

(
v̄NN

vv̄v
′
v̄

′ +
∑

h

w̄vv̄hv
′
v̄

′
h

)
ηv

′

= ηv

dv∑
m

v
′

v̄vv̄v
′
v̄

′ηv
′ , (B.10b)

Xv̆ ≡
dv∑

m
v

′

dv∑
m

v
′′

w̄vv
′
v

′′
vv

′
v

′′ , (B.10c)

Yv̆ ≡
dv∑

m
v

′

dv∑
m

v
′′

w̄vv
′
v̄

′
vv

′′
v̄

′′ ηv
′ηv

′′ , (B.10d)

Zv̆ ≡ ηv

dv∑
m

v
′

dv∑
m

v
′′

w̄vv̄v
′′

v
′
v̄

′
v

′′ ηv
′ , (B.10e)

have been introduced to express the results in a compact way. Equations (B.10a)–(B.10b)
make use of the effective valence-shell two-body matrix elements

v̄vv
′
v

′′
v

′′′ = v̄NN
vv

′
v

′′
v

′′′ +
∑

h

w̄vv
′
hv

′′
v

′′′
h , (B.11)

incorporating the contribution from the initial three-body interaction associated with an
averaging over the CS core.

2The quantities introduced in Eq. B.10 being independent of mv, an additional sum over mv simply
delivers a factor dv.
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As demonstrated by Eqs. (B.7)–(B.8), the HFB-ZP energy is manifestly3 cubic with
the number of valence nucleons. While the cubic term originates entirely from the three-
nucleon interaction, the curvature βv̆ of the HFB-ZP energy relates to a specific linear
combination of two- and three-body matrix elements that can be extracted from actual
HFB calculations. The sign of this combination of matrix elements determines the con-
vexity or concavity character through the open shell, under the assumption that the cubic
term is subleading, which can also be directly checked from a subset of three-body matrix
elements.

The two-neutron separation energy of open-shell nuclei is given, for av ≥ 2, by

SHFB-ZP
2n (av) ≡∆EHFB-ZP(av−2)−∆EHFB-ZP(av)

=−2(αv̆−βv̆ + 2
3
γv̆)−2(βv̆−γv̆)av−γv̆ a

2
v .

(B.12)

Under the (realistic) assumption that |αv̆| ≫ |βv̆| ≫ |γv̆|, S2n starts at −2αv̆ and evolves
linearly throughout the open shell with a negative (positive) slope −2βv̆ when the energy
is convex (concave).

Following Eq. (B.12), the two-neutron shell gap is given, for av ≥ 2, by

∆HFB-ZP
2n (av) ≡SHFB-ZP

2n (av)− SHFB-ZP
2n (av)(av + 2)

=4βv̆ + 4γv̆av .
(B.13)

Under the (realistic) assumption that |βv̆| ≫ |γv̆|, ∆2n is constant throughout the open
shell with a positive (negative) value when the energy is convex (concave).

Eventually, the evolution of the valence-shell single-particle energy as a function of av

is given by

εHFB-ZP
v̆ (av) =εCS

v̆

+ 1
dv

(
Uv̆ + 1

4
Yv̆

)
av

+ 1
2d2

v

(
Xv̆ −

1
2
Yv̆

)
a2

v .

(B.14)

The valence-shell single-particle energy contains linear and quadratic contributions in
av, the coefficient of the former (latter) being closely related to the curvature (cubic
coefficient) of the HFB-ZP energy.

B.2. Equal-filling approximation
While the previous section provides analytical expressions derived within the frame of
the HFB formalism in the zero-pairing limit [49], a simpler mean-field treatment of open-
shell systems in absence of pairing correlations is provided by the HF theory in the equal
filling approximation. While their results are closely related, the two formalisms are

3Equation B.7 displays the explicit dependence of ∆EHFB-ZP on av. However, additional implicit de-
pendences are in fact at play in Eq. B.7. First, the two-body part of the center-of-mass kinetic energy
correction included in the two-body interaction matrix elements actually depends on A. Second, all
matrix elements at play carry an implicit dependence on av through the nature of their indices. In-
deed, canonical single-particle states are nucleus-dependent and thus evolve as the valence shell is
being filled, i.e. with av. However, it was checked numerically that both effects are largely subleading.
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fundamentally different. Indeed, while HFB describes the system via a pure quantum
state, the EFA is formulated within the frame of statistical quantum mechanics, i.e. the
system is described in terms of a statistical density operator [70].

Effectively, EFA results can be trivially obtained by setting ∆v̆ = Yv̆ = Zv̆ = 0 in the
HFB-ZP formulae. Thus, Eqs. (B.7), (B.12) and (B.14) apply, but with the modified
coefficients

αv̆ = εCS
v̆ , (B.15a)

βv̆ = 1
dv

Uv̆ , (B.15b)

γv̆ = 1
d2

v

Xv̆ . (B.15c)

B.3. Discussion
As already mentioned, numerical applications deliver γv̆ = 0 in all cases under scrutiny.
Furthermore, the pairing contributions to αv̆ and βv̆ are also negligible such that the
HF-EFA results for γv̆ = 0 give an excellent account of HFB-ZP under the form

∆EHF-EFA(av) = εCS
v̆ av + βv̆

2
a2

v , (B.16a)

SHF-EFA
2n (av) = −2εCS

v̆ − 2βv̆(av − 1) , (B.16b)
εHF-EFA

v̆ (av) = εCS
v̆ + βv̆av , (B.16c)

∆HF-EFA
v̆ (av) = 4βv̆ . (B.16d)

The evolutions of the total binding energy, the two-nucleon separation and the valence-
shell single-particle energy, as one fills the valence shell, are strictly correlated and entirely
driven by the valence-shell single-particle energy computed in the core εCS

v̆ (diagrammat-
ically represented in Fig. 3.3) and by βv̆ that is nothing but the average diagonal matrix
elements of the effective valence-shell two-body interaction (diagrammatically represented
in Fig. 3.4)

βv̆ = 1
dv

dv∑
m

v
′

v̄vv
′
vv

′ . (B.17)

More specifically, while the total energy is quadratic in av, the two-nucleon separation
energy and the valence-shell single-particle energy are linear. The coefficient of the linear
(quadratic) term in the former drives the initial value (slope) of the latter, knowing that
the slopes of the two-nucleon separation energy and of single-particle energy are opposite.

B.4. Second-order MBPT
Having semi-analytical expressions as a function of av for the mean-field results in the
zero-pairing limit, it is now relevant to investigate the addition of dynamical correlations.

This is presently done by evaluating the MBPT(2) corrections to the valence-shell
single-particle energy computed in the CS core and to the valence-shell effective two-body
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Appendix B. Zero-pairing description

interaction. To do so, the valence shell is taken to be doubly degenerate (v, v′)4 and the
total energy is computed at the MBPT(2) level for both the CS core and the system with
two more particles in order to compute the two-nucleon separation energy.

After a lengthy but straightforward derivation, the separation energy between the two
even isotopes is obtained as

S
(2)
2n (2) = E(2)(0)− E(2)(2)

= −2
(
εCS

v̆ + Σ(2)
v̆ (εCS

v̆ )
)

−
(
v̄vv

′
vv

′ + v̄
(2)
vv

′
vv

′(εCS
v̆ )

)
,

(B.18)

where the (on-shell) valence-shell self-energy and two-body effective interaction corrections
are given by

Σ(2)
v̆ (εCS

v̆ ) = +1
2
∑
hh

′
p

|v̄hh
′
vp|

2

εCS
p + εCS

v̆ − εCS
h − εCS

h
′

− 1
2
∑
pp

′
h

|v̄vhpp
′ |2

εCS
p + εCS

p
′ − εCS

h − εCS
v̆

, (B.19a)

v̄
(2)
vv

′
vv

′(εCS
v̆ ) = +1

2
∑
hh

′

|v̄hh
′
vv

′|2

2εCS
v̆ − εCS

h − εCS
h

′

− 1
2
∑
pp

′

|v̄vv
′
pp

′|2

εCS
p + εCS

p
′ − 2εCS

v̆

, (B.19b)

and displayed diagrammatically in Figs 3.8 and 3.9, respectively. The second-order cor-
rections to the total binding energy translate for the two-neutron separation energy into a
correction of the mean-field valence-shell single-particle energy and of the effective valence-
shell two-body interaction.

Extending candidly the situation to a dv-fold degenerate valence-shell in a EFA-like
spirit, S2n and ∆2n evolve for av ≥ 2 as

S
(2)
2n (av) = −2α(2)

v̆ − 2β(2)
v̆ (av − 1) , (B.20a)

∆(2)
2n (av) = 4β(2)

v̆ , (B.20b)

with

α
(2)
v̆ ≡ εCS

v̆ + Σ(2)
v̆ (εCS

v̆ ) , (B.21a)

β
(2)
v̆ ≡

1
dv

dv∑
m

v
′

(
v̄vv

′
vv

′ + v̄
(2)
vv

′
vv

′(εCS
v̆ )

)
, (B.21b)

the latter being the averaged valence-shell interaction at second order in perturbation
theory.

As seen in Eq. (B.20) and (B.21), dynamical correlations modify both the starting value
of the S(2))

2n in the valence-shell and the slope governing its evolution, i.e. the self-energy
correction impacts the former whereas the correction to the valence-shell interaction mod-
ifies the latter.

4This setting is mandatory to compute the energy of two successive even isotopes via MBPT, i.e. to
avoid actually dealing with open-shell systems given that pairing was shown to be negligible for the
present discussion and given that no perturbation theory based on a HF-EFA statistical operator is
available to date.
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Two-neutron shell gap ∆2n
The two-neutron shell gap defined in Eq. (3.2) explicitly reads as

∆2n(N,Z) = E(N − 2, Z)− 2E(N,Z) + E(N + 2, Z). (C.1)

The second derivative of the total energy centered around N can be written through finite
difference coefficients as

∂2E(N,Z)
∂N2 = 1

4
(E(N − 2, Z)− 2E(N,Z) + E(N + 2, Z)) , (C.2)

which proves that
∂2E(N,Z)

∂N2 = ∆2n(N,Z)
4

. (C.3)
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Axial tensors

D.1. The ‘reduced’ Wigner-Eckart theorem
An irreducible spherical tensor (IST) T µ

k of rank k and component µ can be defined as
the mathematical object satisfying the two relations:

[Jz, T
µ
k ] = µT µ

k , (D.1a)
[J±, T

µ
k ] = {(k ∓ µ)(k ± µ+ 1)}1/2T µ±1

k , (D.1b)

where J+ (J−) represents the rising (lowering) operator and is defined as

J± ≡ Jx ± iJy, (D.2)

and Jz satisfies the eigenvalue equation

Jz |jm⟩ = m |jm⟩ . (D.3)

Expectation values of ISTs obey the Wigner-Eckart theorem

⟨jfmf |T µ
k |jimi⟩ = ⟨jimikµ|jfmf⟩ ⟨jf ||Tk||ji⟩ , (D.4)

which allows to isolate the m-dependency out of the bracket.
Consider now an object that satisfies Eq. (D.1a) and that will be henceforth referred

to as axial tensor (AT), denoted as T̃ µ. The expectation value over the states |mi⟩ and
|mf⟩ of its commutator with Jz reads

⟨mf |[Jz, T̃
µ]mi⟩ = µ ⟨mf |T̃ µ|mi⟩ . (D.5)

Expanding the commutator and exploiting the self-adjointness of Jz, one finds

⟨mf |[Jz, T̃
µ]|mi⟩ = ⟨mf |JzT̃

µ − T̃ µJz|mi⟩
= (mf −mi) ⟨mf |T̃ µ|mi⟩ .

(D.6)

The combination of Eqs. (D.5) and (D.6) leads to

(µ−mf +mi) ⟨mf |T̃ µ|mi⟩ = 0, (D.7)

which highlights the following simplification in the expectation value of an AT:

⟨mf |T̃ µ|mi⟩ = δmi+µ,mf
⟨mf |T̃ µ|mi⟩ . (D.8)

Eq. (D.8) can be taken as a ‘reduced’ version of the Wigner-Eckart theorem for states
and operators not characterized by good angular-momentum and it is nothing else than
a selection rule on the projection of angular momenta.
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D.2. Creation and annihilation operators
Creation operators c†

α can be shown to satisfy Eq. (D.1a). To prove it, consider separately
the action of the two members of Eq. (D.1a) on a vacuum state |0⟩:

[Jz, c
†
α] |0⟩ = Jzc

†
α |0⟩ − c†

αJz |0⟩ = Jz |mα⟩ − 0 = mα |mα⟩ (D.9)

and
mαc

†
α |0⟩ = mα |mα⟩ . (D.10)

In contrast, the annihilation counterpart cα does not satisfy Eq. (D.1a). Instead, the
operator ηαcᾱ does, with ηα = (−1)1/2−mα . This can be proven similarly to what seen in
the case of the creation operator, acting on a single-particle state |m′⟩:

[Jz, ηαcᾱ] |m′⟩ = ηαδ−mα,m
′Jz |0⟩ − ηαcᾱm

′ |m′⟩
= −ηαm

′δ−mα,m
′ |0⟩

= ηαmα |0⟩
(D.11)

and
mαηαcᾱ |m′⟩ = mαηαδ−mα,m

′ |0⟩ = mαηα |0⟩ . (D.12)

The two operators set {c†
α} and {ηαcᾱ} are then (mα)-th components of ATs and satisfy

Eq. (D.8).
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Appendix E.

Multi-pivot Lanczos algorithm
The Lanczos algorithm constitutes the numerical tool employed to implement the Krylov
projection in practical calculations. It is a recursive method that allows to extract the
extreme (i.e. highest and lowest) eigenvalues from an input matrix E of dimensions Ns×
Ns. Its importance arises when Ns is so big that not all the eigenvalues of E can be
determined for computational time constraints and the interest is only in the ‘most useful’
ones. A full explanation of such algorithm can be found in [17] and is here summarized.

E.1. Workflow of the multi-pivot algorithm
Let HLG be the space spanned by the eigenstates of E, with dim(HLG) = Ns, and let p
be the pivot vector of dimension Ns. The Krylov subspace can be defined as the linear
subspace of HLG spanned by the vectors obtained by applying the first r powers of E to
p:

K(r) ≡ span{p, Ep, E2p, E3p, . . . , Er−1p}. (E.1)

In the limit where r = Ns, one finds

K(Ns) = HLG, (E.2)

since the Krylov projection reduces to a unitary transformation of the initial space. The
output of the Lanczos algorithm is an orthonormal basis vj, with j = 1, 2, . . . , r of K(r).
The vectors of such basis are obtained through a recursive procedure where the vector
determined at the previous step is employed in the next one:

v1 ≡ p ,

Ev1 ≡ e11v1 + e21v2 ,

Ev2 ≡ e12v1 + e22v2 + e32v3 ,

. . .

Evr−1 ≡ e1(r−1)v1 + · · ·+ er(r−1)vr .

(E.3)

The new vectors vj are further normalized at each step. By construction, it follows that

eij = (eji)∗ = v†
iEvj = 0 for|i− j| ≥ 2, (E.4)

which implies that the projection E ′ of E on the Krylov subspace is tridiagonal. So far,
a single pivot p has been considered. In view of a generalization of the procedure above
to the case of multiple pivots, consider now a set of linearly independent vectors pi, with
i = 1, . . . , Np. A new Krylov subspace can be generated through the multi-pivot approach
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Appendix E. Multi-pivot Lanczos algorithm

taking Np orthonormal bases vj, henceforth denoted as vi
j, with i = 1, . . . , Np. Eq. (E.1)

is then generalized to:

K(r) ≡ span{v(1)
1 , Ev

(1)
1 , E2v

(1)
1 , . . . , Er1−1v

(1)
1 ,

v
(2)
1 , Ev

(2)
1 , E2v

(2)
1 , . . . , Er2−1v

(2)
1 ,

. . .

v
(Np)
1 , Ev

(Np)
1 , E2v

(Np)
1 , . . . , E

rNp
−1
v

(Np)
1 }.

(E.5)

The procedure is also generalized as follows. After Nl iterations are performed with the
first pivot, the second pivot is orthogonalized with respect to all the previous ones through
the Gram-Schmidt procedure1:

p(2) ≡
r1∑

r=1
c

(1)
i v

(1)
i + d(1)v

(2)
1 , (E.6)

and after a further normalization, v(2)
1 is taken as the new pivot. c(1)

i and d(1) are con-
strained by the set of vectors with respect to which p(2) has to be orthogonalized. Equa-
tions analogous to Eqs. (E.3) are then applied until the addition of a new pivot or the
end of the procedure. Eq. (E.4) holds at each iteration except when a new pivot is added,
giving rise to the fishbone-like structure of the projected matrix E ′ (see Fig. 5.6). The
pseudo-code below summarizes the main steps of the procedure.

Algorithm 1 Multi-pivot Lanczos algorithm
Input: matrix of pivot vectors p of dimension m×Np

while 0 ≤ i < Np do ▷ loop over the pivots
p(i) ← p(i)/|p(i)| ▷ normalize
v(i×Nl) ← p(i) ▷ add the pivot to the Lanczos matrix
Gram-Schmidt(w(i×Nl)) ▷ orthogonalize w.r.t. previous vectors
while 1 ≤ j < Nl do

v(i×Nl+j) ← A ∗ v(i×Nl+j) ▷ build Lanczos vectors w
Gram-Schmidt(v(i×Nl+j)) ▷ orthogonalize w.r.t. previous vectors
v(i×Nl+j) ← v(i×Nl+j)/|v(i×Nl+j)| ▷ normalize

Output: matrix of Lanczos vectors w of dimension m× (NpNl)

1Given the high numerical instability of the Lanczos algorithm arising from the limited numerical pre-
cision that computers employ to represent decimal numbers, the Gram-Schmidt orthogonalization
procedure is applied not only when a new pivot is added but also when a new vector vj is determined
from the Lanczos iterations.
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Spectroscopic factors

F.1. 40Ca with ADC(2)
The only difference when passing from the ADC(1) to ADC(2) approximation is the fact
that beyond mean-field correlations cause a fragmentation of the particles and holes such
that the spectroscopic factors represented in Fig. F.1 are now between 0 and 1.

F.2. 46Ca with ADC(2)
The β2 = 0.08 deformation that characterizes 46Ca is big enough to prevent identification
of good angular momenta for each peak in analogy of what done in Sec. 5.5.3. Figure F.2
highlights this problem and calls for a future restoration of symmetries for a proper
description of open-shell nuclei in the SCGF frame (see the Sec. 5.6 for details).
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Figure F.1. Same as Fig. 5.19 for the ADC(2) approximation.
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F.2. 46Ca with ADC(2)

Figure F.2. Same as Fig. F.1 for 46Ca.
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Appendix G.

Single-particle wave functions in
axially-deformed bases
A generic spherical wave function defined using a so-called j-coupling representation

⟨rθϕστ |njmπt⟩ ≡ ψnjmπt(r, θ, ϕ, σ, τ) , (G.1)
can be represented onto a basis employing a ls-coupling scheme through

ψnjmπt(r, θ, ϕ, σ, τ)
=

∑
lmlsms

ψnlml
(r, θ, ϕ)χms

(σ)χt(τ)⟨lmlsms|jm⟩, (G.2)

where ml is constrained by the sum rule in the Clebsch-Gordan coefficient (m = ml +ms),
s = 1/2 for fermions and l is constrained by the knowledge of j and π (l = |j − s|, j + s).
As a consequence, the summation in Eq. (G.2) is limited to a summation over the spin
projection ms. Clebsch-Gordan coefficients assume a particularly simple expression for
the few values of j and ms allowed, which are summarized in Tab. G.1 (see Ref. [146] for
more details).

j ms = 1/2 ms = −1/2

l + 1/2
√
l +m+ 1/2

2l + 1

√
l −m+ 1/2

2l + 1

l − 1/2 −
√
l −m+ 1/2

2l + 1

√
l +m+ 1/2

2l + 1

Table G.1. Analytical expression for the Clebsch-Gordan coefficients entering Eq. (G.2).

In general the ls-scheme wave function in Eq. (G.2) can also depend on ms and t quan-
tum numbers. However, sHO wave functions are independent on the spin and ispospin
projections (i.e. ψnlmlmst = ψnlml

). Eventually the j-scheme wave function can be written
as a function of the two spin components (ms = +1/2 = ↑ and ms = −1/2 = ↓) according
to

Ψnjmπt(r, θ, ϕ, σ, τ) =
(

Ψnjmπt(r, θ, ϕ, σ, τ)↑
Ψnjmπt(r, θ, ϕ, σ, τ)↓

)

=
√

1
2

+ 2(j − l)m
2l + 1

ψnl(m−1/2)(r, θ, ϕ)χ1/2(σ)χt(τ)

+ (−1)1/2+l−j

√
1
2
− 2(j − l)m

2l + 1
ψnl(m+1/2)(r, θ, ϕ)

× χ−1/2(σ)χt(τ) ,

(G.3)
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which is a two-dimensional vector whose components are scalar wave functions. The wave
function ψnlml

can be split into radial and angular contributions
ψnlml

(r, θ, ϕ) = fnl(r)Ylml
(θ, ϕ) , (G.4)

where Ylml
(θ, ϕ) represents a spherical harmonic

Ylml
(θ, ϕ) ≡

√√√√2l + 1
4π

(l −ml)!
(l +ml)!

P
ml
l (cos θ)eimlϕ. (G.5)

Eventually, the dependencies on the three spatial coordinates separate as
ψnlml

(r, θ, ϕ)

= fnl(r)︸ ︷︷ ︸
r

√√√√2l + 1
4π

(l −ml)!
(l +ml)!

P
ml
l (cos θ)

︸ ︷︷ ︸
θ

eimlϕ︸ ︷︷ ︸
ϕ

. (G.6)

A single-particle scalar wave function in j-scheme is characterized by the set of quantum
numbers n, j, π, m and ms. The radial function fnl(r) in Eq (G.6) is often re-written as
a function of the reduced radial wave function unl(r)

fnl(r) = unl(r)
r

. (G.7)

Introducing the quantity

F SPH
nlml

(r, θ) = unl(r)

√√√√2l + 1
4π

(l −ml)!
(l +ml)!

P
ml
l (cos θ) , (G.8)

its j-scheme version is given by

F SPH
njmπt(r, θ, σ) =

(
F SPH

njmπt(r, θ, σ)↑
F SPH

njmπt(r, θ, σ)↓

)

=


√

1
2

+ 2(j − l)m
2l + 1

F SPH
nlm−1/2(r, θ)

(−1)1/2+l−j

√
1
2
− 2(j − l)m

2l + 1
F SPH

nlm+1/2(r, θ) .


(G.9)

Considering the coefficient C [mπt]
njN introduced in Eq. (6.4) for the change of basis between

sHO and NAT, such a coefficient can be used to mix sHO quantum numbers n and j to
give an expression for the deformed NAT wave functions

F dNAT
Nmπt (r, θ, σ) ≡

∑
nj

F sHO
njmπ(r, θ, σ)C [mπt]

njN . (G.10)

This transformation conserves quantum numbers m, π and t.
Eventually re-expressing (r, θ) in terms of cylindrical coordinates{

r⊥ = r sin θ ,
z = r cos θ ,

(G.11)

previous equations can be recast in terms of such new coordinates, i.e. FNmπt(r, θ, σ) ≡
FNmπt(r⊥, z, σ).

Figure G.1 represents selected sHO and NAT wave functions F (r⊥, z), the latter being
computed in (spherical) 16O, (prolate) 20Ne and (oblate) 28Si. While the l = 0 wave
functions in 16O display a symmetry along the main diagonal of the square, deformed
orbitals in 20Ne and 28Si are distorted in opposite ways.
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Figure G.1. Two-dimensional representation of deformed orbitals in the [mπt] = [1/2+p]
block. While the first column displays sHO wave functions with ℏω = 18 MeV cor-
responding to a given set of quantum numbers, the following columns corresponds to
NAT[dMBPT(2)] wave functions in three different nuclei obtained using the NNLOsat
(bare) Hamiltonian and ordered from top to bottom according to their decreasing aver-
age occupations.
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