
HAL Id: tel-04727665
https://theses.hal.science/tel-04727665v1

Submitted on 9 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generative Markov models for sequential bayesian
classification

Katherine Tania Morales Quinga

To cite this version:
Katherine Tania Morales Quinga. Generative Markov models for sequential bayesian classification.
Mathematics [math]. Institut Polytechnique de Paris, 2024. English. �NNT : 2024IPPAS019�. �tel-
04727665�

https://theses.hal.science/tel-04727665v1
https://hal.archives-ouvertes.fr


000

N
N

T
:2

02
4I

P
PA

S
01

9

Generative Markov models for
sequential Bayesian classification
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Introduction générale

Contexte

Cette thèse vise à modéliser des données séquentielles à travers l’utilisation de
modèles probabilistes à variables latentes et paramétrés par des architectures
de type réseaux de neurones profonds. Notre objectif est de développer des
modèles dynamiques capables de capturer des dynamiques temporelles com-
plexes inhérentes aux données séquentielles tout en étant applicables dans des
domaines variés tels que la classification, la prédiction et la génération de don-
nées pour n’importe quel type de données séquentielles.

Notre approche se concentre sur plusieurs problématiques liés à la modéli-
sation de ce type de données, chacune étant détaillé dans un chapitre de ce
manuscrit. Dans un premier temps, nous balayons les principes fondamentaux
de l’apprentissage profond et de l’estimation bayésienne. Par la suite, nous
nous focalisations sur la modélisation de données séquentielles par des modèles
de Markov cachés qui constitueront le socle commun des modèles génératifs
développés par la suite. Plus précisément, notre travail s’intéresse au prob-
lème de la classification (bayésienne) séquentielle de séries temporelles dans
différents contextes : supervisé (les données observées sont étiquetées) ; semi-
supervisé (les données sont partiellement étiquetées) ; et enfin non supervisés
(aucune étiquette n’est disponible). Pour cela, la combinaison de réseaux de
neurones profonds avec des modèles probabilistes markoviens vise à améliorer
le pouvoir génératif des modélisations plus classiques mais pose de nombreux
défis du point de vue de l’inférence bayésienne : estimation d’un grand nombre
de paramètres, estimation de lois à postériori et interprétabilité de certaines
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2 INTRODUCTION

variables cachées (les labels). En plus de proposer une solution pour chacun
de ces problèmes, nous nous intéressons également à des approches novatrices
pour relever des défis spécifiques en imagerie médicale posés par le Groupe
Européen de Recherche sur les Prothèses Appliquées à la Chirurgie Vasculaire
(GEPROMED).

Plan

Notre manuscrit est organisé en 5 chapitres.
Le chapitre 1 consiste en une introduction technique dans lequel nous dis-

cutons du principe de l’apprentissage profond et de l’estimation bayésienne.
Nous y introduisons également des modèles Markoviens pour le traitement des
données temporelles.

Le chapitre 2 propose s’intéresse aux chaînes de Markov génératives, en se
concentrant spécifiquement sur les chaînes de Markov couples (PMCs). Nous
montrons que ce modèle propose un cadre unificateur pour les modèles de
Markov cachés ainsi que les récentes architectures de type « réseaux de neu-
rones récurrents stochastiques ». Nous proposons une paramétrisation de ces
modèles basée sur des réseaux de neurones profonds et nous détaillons des
méthodes d’estimation paramétriques basées sur l’adaptation de l’inférence
variationnelle au cas séquentiel. Nous mettons en évidence le pouvoir génératif
de ces nouveaux modèles, tant d’un point de vue expérimental que théorique.

Le chapitre 3 vise à utiliser les modèles précédemment développés pour le
problème de la classification séquentielle de données. Dans la mesure où le
cas supervisé ne présente pas de difficultés supplémentaires par rapport aux
techniques mises en place dans le Chapitre 2, nous nous intéressons au cas où
les étiquettes/labels associés aux données ne sont que partiellement accessibles.
Cette contrainte nous amène à revoir les méthodes d’inférence variationnelle
précédemment discutées et à étendre nos modèles de manière à pouvoir prendre
en compte deux types de variables cachées : les variables latentes du modèles
et les labels non accessibles que l’on cherche à retrouver. Pour cela, nous
faisons appel aux modèles de Markov triplet. Notre approche est validée par
des simulations numériques portant sur le problème de segmentation d’images
binaires en contexte semi-supervisé.

Le chapitre 4 étend le problème au cas non supervisé. L’application di-
recte des méthodes précédentes peut conduire à l’apprentissage de modèles
probabilistes dans lesquels la variable étiquette/label n’est pas interprétable
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physiquement (ex : classe blanc/noir associée à un pixel en niveau de gris),
en particulier dans des modèles reposant sur un grand nombre de paramètres.
Pour résoudre ce problème, nous proposons des méthodes d’estimation ad-hoc
visant à prendre en compte cette contrainte d’interprétabilité. Pour ce faire,
nous commençons avec des modèles de Markov couple visant à modéliser le
couple observation/label, puis nous réintroduisons dans un second temps une
troisième variable latente continue visant à complexifier la loi du couple précé-
dent. Les apports de nos modèles couple/triplet, paramétrisés par des architec-
tures profondes, ainsi que de nos algorithmes d’estimation paramétrique sont
évalués sur différentes tâches telles que la segmentation d’images biomédicales
ou la reconnaissance d’activités humaines.

Enfin, le chapitre 5 donne quelques perspectives sur les outils dévelop-
pés précédemment pour des problématiques relatives aux données manipulées
par le GEPROMED. Nous y décrivons quelques problématiques liées aux im-
ages médicales acquises dans un cadre préopératoire, présentons des résultats
préliminaires et proposons une feuille de route pour s’attaquer aux différents
défis restant.

Finalement, le manuscrit s’achève par un résumé des résultats ainsi qu’une
discussion sur les orientations futures pour l’exploration et l’application des
résultats obtenus.





General introduction

Context

This thesis explores and models sequential data through the application of var-
ious probabilistic models with latent variables, complemented by deep neural
networks. The motivation for this research is the development of dynamic
models that adeptly capture the complex temporal dynamics inherent in se-
quential data. Designed to be versatile and adaptable, these models aim to be
applicable across domains including classification, prediction, and data gener-
ation, and adaptable to diverse data types. The research focuses on several
key areas, each detailed in its respective chapter. Initially, the fundamental
principles of deep learning, and Bayesian estimation are introduced. Sequen-
tial data modeling is then explored, emphasizing the Markov chain models,
which set the stage for the generative models discussed in subsequent chapters.
In particular, the research delves into the sequential Bayesian classification of
data in supervised, semi-supervised, and unsupervised contexts. The integra-
tion of deep neural networks with well-established probabilistic models is a key
strategic aspect of this research, leveraging the strengths of both approaches
to address complex sequential data problems more effectively. This integration
leverages the capabilities of deep neural networks to capture complex nonlin-
ear relationships, significantly improving the applicability and performance of
the models.

In addition to our contributions, this thesis also proposes novel approaches
to address specific challenges posed by the Groupe Européen de Recherche
sur les Prothèses Appliquées à la Chirurgie Vasculaire (GEPROMED). These
proposed solutions reflect the practical and possible impactful application of
this research, demonstrating its potential contribution to the field of vascular
surgery.
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6 INTRODUCTION

Neural networks

Neural Networks (NNs) are foundational in machine learning, used for tasks
like classification, regression, and clustering. Their strength lies in represen-
tation learning, the ability to discern a data representation that simplifies
model building. Structurally, NNs are composed of layers of (artificial) neu-
rons, where each neuron generates an output that is a non-linear function of
a linear combination of its inputs. This architectural feature allows NNs to
model complex and non-linear relationships within data. The power of NNs
is fundamentally based on universal approximation theorems (Cybenko, 1989;
Hornik, 1991; Pinkus, 1999; Lu et al., 2017; Liang & Srikant, 2016), which
affirms its ability to approximate any continuous multivariable function. This
theoretical basis is fundamental to their versatility and adaptability in a vari-
ety of problem domains.

Deep Neural Networks (DNNs), characterized by their multiple hidden
layers, further extend this capability. Unlike traditional NNs, DNNs have a
significantly larger number of layers, which allows them to learn more complex
data representations. DNNs are particularly well suited for understanding
intricate data patterns, which has led to state-of-the-art performance in areas
like speech recognition (Deng et al., 2013; Chan et al., 2016; Abdel-Hamid
et al., 2013; Nassif et al., 2019), image classification (Huang, 2023), image
recognition (Fu et al., 2017; Traore et al., 2018; Zheng et al., 2017), and natural
language processing (Li, 2018; Collobert & Weston, 2008; Goldberg, 2017).
Their depth, that is, the number of hidden layers, enables deeper learning of
data features at various levels of abstraction, making (deep) NNs particularly
well suited for our context, sequential data modeling.

Generative models

Generative models are designed to capture the underlying distribution of data,
allowing them to generate new data points similar to those observed. These
models are fundamental in fields such as image and speech recognition and
natural language processing, where it is essential to understand and reproduce
the complexity of natural data. The range of generative models spans from
classical probabilistic models to the more recent deep generative models.

Classical generative models, such as Gaussian Mixture Models (GMMs)
and Hidden Markov Chain (HMC) models, have been fundamental in statis-
tical modeling, providing a solid foundation for understanding data distribu-
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tions and dependencies (Harshvardhan et al., 2020). On the other hand, deep
generative models, such as Generative Adversarial Networks (GANs) (Good-
fellow et al., 2020), and Variational AutoEncoder (VAE) (Kingma & Welling,
2014), represent a more recent paradigm that integrates the power of deep
learning. Both classical and deep generative models continue to evolve, driven
by advancements in computational power and algorithmic innovations, further
expanding their applications and capabilities in various domains.

VAE and Variational Inference

VAEs integrate probabilistic approaches with neural networks, allowing for the
generation of complex data structures with variability and flexibility. They use
latent variables to model complex, high-dimensional data structures in a way
that classical models cannot efficiently capture. These models are charac-
terized by their parametric nature, where parameters are usually determined
by Maximum Likelihood (ML) estimation. However, in VAEs, these parame-
ters are often derived from deep neural networks, which adds a layer of com-
plexity to the learning process. Given the complexity of VAEs, the likelihood
function of these models is often intractable. This difficulty makes direct
likelihood maximization impractical or even impossible. To address this prob-
lem, Variational Inference (VI) (Jaakkola & Jordan, 2000; Blei et al., 2017)
is employed. VI offers a powerful approach to approximate the intractable
likelihood, allowing VAEs to be trained and used efficiently in a variety of
applications (An & Cho, 2015; Pu et al., 2016; Xu et al., 2017; Chira et al.,
2022).

Despite their ability to capture complex data patterns, VAEs often take
a fundamentally static perspective. They typically process each data point
independently, without considering the temporal or sequential dynamics char-
acteristic of many real-world datasets. This limitation is especially evident
in contexts involving time series, video, or text, where the inherent sequence
aspect of the data is crucial.
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Probabilistic models

Popular probabilistic models such as HMC (Rabiner, 1989), Pairwise Markov
Chain (PMC) (Pieczynski, 2003; Derrode & Pieczynski, 2004), and Triplet
Markov Chain (TMC) (Pieczynski, 2002; Pieczynski & Desbouvries, 2005)
models, are capable of capturing temporal dependencies and latent factors
in sequential data. Each of these models provides a fundamental framework
for processing sequential data, offering unique advantages and posing distinct
challenges.

HMC models are widely used to model sequences with both hidden and
observed variables. The applications of HMC models are diverse, including
natural language processing for tasks such as part-of-speech labeling; com-
puter vision for image segmentation; bioinformatics for genetic sequence anal-
ysis (Rabiner, 1989; Gales et al., 2008; Yoon, 2009; Li et al., 2021a; Kupiec,
1992; Paul et al., 2015), etc. PMCs and TMCs extend the fundamental prin-
ciples of HMCs. They aim to relax some underlying assumptions of HMCs by
extending the direct dependencies between random variables or by incorpo-
rating an additional third latent process. The assumptions inherent in each
of these models are fundamental. Not only do they shape the structure of
the model, but they also define the nature of the relationships between vari-
ables, thus simplifying the inference and learning processes. The adaptability
of these models to different types of data and their ability to capture complex
dependencies make them particularly well suited for sequential data modeling.

The parameter estimation is usually performed by maximizing the likeli-
hood function with respect to the parameters. However, when dealing with
sequential data, the likelihood function can be intractable. Depending on the
model structure, this estimator can be approximated by VI methods (Jaakkola
& Jordan, 2000; Blei et al., 2017) or by the Expectation-Maximization (EM)
algorithm (Dempster et al., 1977).

Sequential Bayesian classification

Classification is a fundamental task in machine learning, and Bayesian clas-
sification is a widely adopted approach to this challenge. In this approach,
the main goal is to estimate the posterior distribution of classes (labels) given
the observations. This task takes on additional complexity in the context of
sequential data, where the observations are a sequence of random variables,
and each observation is associated with a corresponding label. The estimation
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of these labels from the observations depends on the posterior distribution,
which is usually unknown and can be estimated using a parametric model.
This model selection process involves choosing a suitable generative model
and a learning algorithm to estimate the model parameters. Markov chain
models, such as HMC, PMC and TMC models, are particularly suitable for
modeling sequential data with both hidden and observed variables.

In the context of sequential classification, the learning process is influenced
by the availability of labels associated with the observations. In supervised
scenarios, where labels are fully observed, learning involves estimating model
parameters using both observations and labels. While in semi-supervised con-
texts, where only a subset of labels is available, the challenge is to estimate
the parameters from the observations and this partial set of labels. Finally, in
unsupervised learning, no observed labels are available, then parameter esti-
mation must be performed from the observations alone. Each of these learning
contexts presents unique challenges and requires specialized methodologies to
address them effectively.

Colaboration with the GEPROMED

GEPROMED1 is a non-profit organization founded in 1993. The organization
emerged from the collaborative vision of Pr. Nabil Chakfé, a vascular surgeon
in Strasbourg, France, and Pr. Bernard Durand, an expert in the mechanics
of flexible materials. Their primary goal was to investigate and understand
the complications associated with vascular prostheses, particularly focusing on
the phenomena of tearing and rupture observed post-implantation in patients.
GEPROMED is dedicated to promoting specialized learning methods, and
continuous quality improvement and ensuring patient safety in the field of
vascular surgery. A key area of focus for the organization is the advancement of
image processing techniques in vascular surgery. Previous research (Gangloff,
2020) has shown that deep learning methods, and probabilistic models are
very promising for addressing these challenges. For example, on medical image
segmentation tasks, probabilistic and deep learning methods have been shown
good performance.

Medical image segmentation, a critical task in this field, involves identi-
fying regions of interest within images. These identified regions are crucial
for diagnosis, treatment planning and guidance of surgical procedures. The
overall goal is to develop automated approaches that can be broadly applied

1https://gepromed.com/en/aboutUs



10 INTRODUCTION

to various types of medical images, thereby improving the efficiency of diag-
nostics, and medical interventions.

Contributions

This thesis aims at proposing innovative methodologies that bridge the gap
between classical probabilistic models based on Markov Chains and deep neu-
ral networks, specifically adapted to sequential data modeling. The results
obtained have been presented at different national and international confer-
ences and published in peer-reviewed journals. Our contributions are detailed
in the following sections and are based on the following publications:

• Morales & Petetin (2021): Variational Bayesian inference for pairwise
Markov models, In 2021 IEEE Statistical Signal Processing Workshop
(SSP) (pp. 251-255). IEEE.

• Gangloff, Morales, & Petetin (2021): A general parametrization frame-
work for pairwise Markov models: An application to unsupervised image
segmentation, In 2021 IEEE 31st International Workshop on Machine
Learning for Signal Processing (MLSP) (pp. 1-6), IEEE.

• Morales & Petetin (2022): Pairwise Markov Chains as Generative Mod-
els, Colloque GRETSI 2022, (pp. 649–652).

• Gangloff, Morales, & Petetin (2022): Chaînes de Markov cachées à bruit
généralisé, Colloque GRETSI 2022, (pp. 17–20).

• Gangloff, Morales, & Petetin (2023): Deep parameterizations of pairwise
and triplet Markov models for unsupervised classification of sequential
data, Computational Statistics & Data Analysis, 180, 107663.

• Morales & Petetin (2023): A Probabilistic Semi-Supervised Approach
with Triplet Markov Chains, In 2023 IEEE 33rd International Workshop
on Machine Learning for Signal Processing (MLSP) (pp. 1-6). IEEE

This thesis also includes preliminary but promising results in the area of
low-resolution medical image segmentation. This area of research, while still
a work in progress, demonstrates the potential of our methodologies to make
significant advances in medical image analysis. Initial results are encouraging
and lay the groundwork for further exploration and refinement. These efforts
are currently continuing with the goal of culminating in a future publication.
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Outline

This thesis is structured to introduce and explore methodologies in sequential
data modeling, particularly through deep learning and Bayesian estimation
techniques. It provides a comprehensive examination of both theoretical and
practical aspects of generative models and their applications in supervised,
semi-supervised and unsupervised classification tasks.

The thesis comprises five chapters. Chapter 1 offers a technical intro-
duction, discussing the principles of deep learning, Bayesian estimation, and
sequential data modeling with Markov chains. This chapter sets the founda-
tion by covering topics such as maximum likelihood estimation with VI, and
posterior distribution estimation.

Chapter 2 delves into Generative Markov Chains, specifically focusing on
PMCs as a unified model. It details parameter estimation methods, includ-
ing general parametrization and VI for PMCs, and presents experiments and
results that highlight the generative power of these models.

Chapter 3 extends the discussion to Generalized Hidden Markov Models for
semi-supervised classification. It introduces the problem of semi-supervised es-
timation in TMCs, explores ELBO for semi-supervised learning, and describes
the learning process. The chapter also includes experiments comparing deep
TMCs with existing models, and semi-supervised binary image segmentation.

Chapter 4 addresses Markov Chains for unsupervised classification, detail-
ing Bayesian inference for PMCs and deep PMCs for unsupervised classifica-
tion. It further explores TMCs for unsupervised classification, including VI,
and deep TMCs. This chapter also presents simulations and experiments on
real datasets, such as unsupervised segmentation of biomedical images and
clustering for human activity recognition.

Chapter 5 shows a workflow adapted to data provided by the GEPROMED
group, and future perspectives that can merge the models presented in the first
chapters. Finally, the thesis concludes with a summary of findings, a discussion
on the implications of the research, and future directions for exploration and
application.
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1.1. Deep learning

1.1.1 Fundamental principle

DNNs have significantly gained popularity in recent years due to their remark-
able performance in various tasks such as speech recognition (Deng et al., 2013;
Chan et al., 2016; Abdel-Hamid et al., 2013), image recognition (Fu et al., 2017;
Traore et al., 2018; Zheng et al., 2017), natural language processing (Collobert
& Weston, 2008; Goldberg, 2017). Mathematically, a DNN is a parameterized
vector-valued function fθ(x), x ∈ Rdx , constructed through the sequential and
alternating composition of linear and non-linear functions. If vector x′ repre-
sents the input to a specific hidden layer, the scalar output of a neuron is com-
puted as σ(wx′ +b), where wx′ is the dot product of a vector of weights w and
x′. Here b represents the bias, and σ(·) is the (non-linear) activation function.
Common activation functions include sigmoid (sigm(x) = 1

1+e−x ), hyperbolic
tangent (tanh(x) = ex−e−x

ex+e−x ), and Rectified Linear Unit (ReLU=max(0, x)).
The set of parameters θ of a DNN, which includes all weights and biases,

enables these networks to act as universal approximators, theoretically capa-
ble of approximating any vector-valued function f(x) under some assumptions
(Cybenko, 1989; Hornik, 1991; Pinkus, 1999; Lu et al., 2017; Liang & Srikant,
2016). The estimation of θ relies on the observation that the gradient of fθ
w.r.t. θ can be exactly computed with the backpropagation algorithm, a foun-
dational technique for learning in neural networks, as described by Rumelhart
et al. (1985); Hecht-Nielsen (1992). This efficiency is because the algorithm
takes advantage of the chain rule of computation to decompose the global gra-
dient computation into a series of simpler local gradient computations along
the layers of the network. For example, in a classification problem of an
observation x, the function fθ(x) aims at approximating the conditional prob-
ability P (Y = y | x) for all y in the set Ω = {ω1, . . . , ωC}, where C is the
number of classes. Provided that we have access to a labeled training dataset
D = {(xi, yi)}ni=1, it is possible to minimize a loss function L(D), e.g. the
cross-entropy loss, with a gradient descent approach (Ruder, 2016).

1.1.2 Deep neural networks architectures for sequential data

While classic DNNs have demonstrated significant versatility and power in
various domains, their conventional architectures may not be optimal for pro-
cessing sequential data, such as time series, audio signals, or textual content.
Different types of neural networks have been developed to address this issue,
such as Recurrent Neural Network (RNN) (Fausett, 1994; Medsker & Jain,
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2001; Mikolov et al., 2015). RNNs are architected to process sequential infor-
mation, where dependencies exist across temporal intervals. This capability is
achieved by incorporating recurrent connections within the network, allowing
information to be retained across time steps. The design allows an RNN to
not only process the current input, but also to use the context provided by
previously received inputs. For instance, when predicting the next word in a
sentence, the RNN considers the sequence of words that preceded it to make
a more accurate prediction.

In contrast to classic DNNs, the parameters θ in an RNN are shared across
different time steps, rather than learning a separate set of parameters for each
moment in time. This sharing reduces the model’s complexity and enables
the RNN to generalize across sequences of different lengths. At each time step
t, the hidden state ht ∈ Rdh of the RNN is updated based on the current
input xt and the previous hidden state ht−1. The RNN’s output ot at time
t is computed based on the hidden state ht. This model can be expressed as
follows:

ht = fθ(ht−1, xt), for all t ∈ N, (1.1)
ot = gθ(ht), for all t ∈ N. (1.2)

Here fθ and gθ are parameterized activation functions, e.g. neural networks.
Figure 1.1 illustrates the graphical representation of an RNN. This architec-
tural design enables the RNN to effectively handle data where current decisions
depend on past information, such as time series data, speech, or text.

ht ht+1ht−1

ot ot+1ot−1

xt xt+1xt−1

Figure 1.1: Graphical representation of a Recurrent Neural Network. The re-
current connections between the nodes highlight the network’s ability to pro-
cess sequences of data by maintaining a ‘memory’ of previous inputs through
the hidden states.
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Remark 1.1.1. The output ot of an RNN has a dual predictive capability. For
instance, in a stock market analysis application, it could predict the label yt
categorizing market trends or forecast future stock prices xt+1. This versatility
makes RNNs a tool of choice for various predictive modeling tasks.

Despite their advantages, RNNs are not without challenges. They are
particularly prone to issues of vanishing and exploding gradients, especially
when dealing with longer sequences. To overcome these problems, architec-
tures such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit
(GRU) have been developed. LSTMs and GRUs incorporate mechanisms that
regulate the flow of information, allowing the network to retain or forget in-
formation selectively. This capability significantly improves their performance
on tasks involving long sequences or where the temporal gap between relevant
information is large. While these networks are beyond the scope of this thesis,
interested readers can refer to Sherstinsky (2020); Hochreiter & Schmidhuber
(1997); Chung et al. (2014) for more details.

1.2. Bayesian estimation

In the context of deep learning, we have seen how common DNNs, including
RNNs, can be used to approximate functions for various tasks. While these
models are powerful, they often do not directly account for the uncertainty
inherent in real-world data. Bayesian estimation extends the predictive power
by incorporating a probabilistic framework capable of capturing not just the
observed data but also the underlying latent structures, such as the intrinsic
features of an image that are not immediately observable.

In Bayesian Estimation, we deal with the observed random variable (r.v.)
x ∈ Rdx and the latent (unobserved or hidden) r.v. z ∈ Rdz , each playing
a distinct role in the modeling process. Throughout this thesis, we do not
distinguish between random variables and their realizations. Our interest,
which will be explained in more detail later, lies in calculating the posterior
distribution

p(z|x) = p(z, x)
p(x) ,

which offers insights into the latent variables given the observed data. How-
ever, the direct computation of p(x, z) is often impractical, whether due to
the high-dimensional nature of the data, which leads to computational com-
plexity, or the unknown distributional characteristics. Thus, we can start
by parameterizing the joint distribution p(x, z) with a set of parameters θ,
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leading to the model pθ(x, z). Once a class of distributions pθ has been cho-
sen, the objective is to estimate the parameter θ from a realization x in
an unsupervised way, that is to say without observing z. A common ap-
proach for parameter estimation is the Maximum-Likelihood (ML) estimator,
θ̂ML = arg maxθ pθ(x) = arg maxθ

∫
pθ(z, x)dz, due to its statistical proper-

ties (Huber, 1967; White, 1982). However, the ML estimator may not be
tractable since pθ(x) is not necessarily known in a closed form. According to
the structure of pθ(z, x), the ML estimator can be approximated with a gra-
dient ascent method on the likelihood function, the EM algorithm (Dempster
et al., 1977) or a Variational Inference algorithm (Jaakkola & Jordan, 2000;
Blei et al., 2017).

In summary, Bayesian estimation offers a probabilistic approach to model-
ing by considering both observed and latent variables. This method provides
a comprehensive framework for understanding the underlying uncertainties
in data. In practice, computing the posterior distribution pθ(z|x) directly is
often infeasible due to high-dimensional data or unknown distribution charac-
teristics. VI provides a robust alternative by approximating the true posterior
with a simpler, and parameterized distribution This approach is discussed in
the following subsection.

1.2.1 Approximated Maximum Likelihood estimation with Vari-
ational Inference

Given independent and identically distributed observations {xi}Mi=1, a direct
computation of arg maxθ pθ(x) becomes impractical except in simpler cases,
such as when pθ(x) is directly available (e.g. when z is discrete or in linear
and Gaussian scenarios). VI offers a flexible and scalable alternative for more
complex models where such straightforward calculations are not feasible. VI
is introduced as a method for approximate inference in models where the
computation of the posterior distribution is complex or intractable. Unlike
Maximum Likelihood estimation, which focuses on finding parameter values
that maximize the likelihood of the observed data, VI approaches the prob-
lem by approximating the true posterior distribution pθ(z|x) with a simpler,
parameterized distribution qϕ(z|x) (see e.g. Blei et al. (2017) for a detailed
introduction).

This method is the cornerstone of the Bayesian inference algorithms we
propose in this thesis, for our (highly) parameterized models. Let us consider
the general problem of computing or approximating a posterior distribution
pθ(z|x) ∝ pθ(z, x) known up to a constant when x is observed and z is latent.
VI relies on a parameterized distribution qϕ(z|x) that is optimized to fit the
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posterior distribution p(z|x) by minimizing the Kullback-Leibler Divergence
(KLD) between qϕ(z|x) and pθ(z|x), i.e.

DKL(qϕ, pθ) =
∫
qϕ(z|x) log

(
qϕ(z|x)
pθ(z|x)

)
dz ≥ 0,

=
∫
qϕ(z|x) log

(
qϕ(z|x)
pθ(z, x)

)
dz + log (pθ(x)) (1.3)

w.r.t. θ. The choice of the variational distribution qϕ(z|x) is critical, as the
first term on the right-hand side of the above equation must be computable or
easily approximated, and subsequently optimized with respect to ϕ. A popu-
lar choice of variational distribution is the mean-field approximation (Bishop
& Nasrabadi, 2006) where the variational components of z = (z1, . . . , zdz )
are independent given x and one set of parameters ϕi is associated to each
component zi, i.e. qϕ(z|x) = ∏dx

i=1 qϕi
(zi|x) and ϕ = (ϕ1, . . . , ϕdz ).

This approach also provides a parameter estimation method when some
parameters of the original model pθ are unknown. Indeed, we deduce from (1.3)
that

log pθ(x) ≥ −
∫
qϕ(z|x) log

(
qϕ(z|x)
pθ(z, x)

)
dz = Q(θ, ϕ), (1.4)

where equality holds when qϕ(z|x) = pθ(z|x).
Computing the so-called Evidence Lower Bound (ELBO) Q(θ, ϕ) and next

maximizing it w.r.t. (θ, ϕ) leads to a maximization of a lower bound of the
log-likelihood log pθ(x). The resulting variational EM algorithm (Tzikas et al.,
2008) is an alternative to the EM algorithm (Dempster et al., 1977) when the
original posterior pθ(z|x) is not available. Our objective is to maximize the
ELBO Q(θ, ϕ) as defined in Equation (1.4), w.r.t. the parameters (θ, ϕ).

To address scenarios whereThe, we employ Monte Carlo estimators, which
provide a practical solution for obtaining unbiased gradient estimates using
statistical sampling techniques. For continuous latent variables, we use the
reparameterization trick (Kingma & Welling, 2014), which facilitates obtaining
an unbiased estimator for the gradient of the ELBO. When z is discrete, we
use the Gumbel-Softmax (G-S) trick (Maddison et al., 2017; Jang et al., 2017).
These techniques are detailed below

Continuous latent variables: The idea of the reparameterization trick is
to rewrite the random variable z as a deterministic differentiable function of
a random variable ϵ, that is independent of ϕ (Kingma & Welling, 2014). In
other words, we want to rewrite the random variable z as

z = g(ϵ, ϕ, x), (1.5)



1.2. BAYESIAN ESTIMATION 19

where ϵ is independent of ϕ and x. The expectations w.r.t qϕ(z|x) can be then
rewritten as

Eqϕ(z|x)(f(z)) = Ep(ϵ)(g(ϵ, ϕ, x)),

and the gradients of the previous expectation w.r.t ϕ,

∇ϕEqϕ(z|x)(f(z)) = ∇ϕEp(ϵ)f(g(ϵ, ϕ, x)),

can be now estimated with a Monte Carlo estimator. We now obtain unbiased
estimates of the gradient of the ELBO w.r.t ϕ and θ. The reparameterization
trick is illustrated in Figure 1.2 for the case of continuous latent variables.

z

f

∼ qϕ(z|x)

xϕ

(a) Original form.

x

z

ϕ

f

ϵ

= g(ϵ, ϕ, x)

∼ p(ϵ)

∇zf

∇ϕf

Backprop.

(b) Reparameterized form.

Figure 1.2: Illustration of the reparameterization trick. In the original form,
we cannot compute the gradient of f w.r.t ϕ. While in the reparameterized
form, gradient of f w.r.t ϕ is easily computed. Diamonds indicate no stochas-
ticity, while blue circles highlight its presence. Figure based on (Kingma &
Welling, 2014).

Example 1.2.1. We present the Variational AutoEncoder model with a con-
tinuous latent variable, where the joint distribution pθ(x, z) is factorized into
the prior distribution pθ(z) and the conditional distribution pθ(x|z), also called
the probabilistic decoder. Here, the set of parameters θ could be the output of
(deep) neural networks, which are estimated from a dataset with the assump-
tion that the data points are i.i.d. . The variational distribution (probabilistic
encoder) qϕ(z|x) is a multivariate Gaussian distribution with diagonal covari-
ance matrix,

qϕ(z|x) = N (µϕ(x),diag(σϕ(x))),
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where µϕ(x) and σϕ(x) are the outputs of neural networks. Next, a sample
z(m) is drawn from qϕ(z|x) with the reparameterization trick,

z(m) = µϕ(x) + σϕ(x)⊙ ϵ(m) for all m = 1, . . . ,M ,

where ϵ(m) is a sample from the standard Gaussian distribution and ⊙ denotes
the element-wise product.

The ELBO (1.4) is then approximated with the Monte Carlo estimator,

Q(θ, ϕ) ≈ − 1
M

M∑
m=1

log qϕ(z(m)|x)
pθ(x|z(m))pθ(z(m))

.

After this, the parameters (θ, ϕ) are estimated by maximizing the previous
expression w.r.t (θ, ϕ) with a gradient ascent algorithm. Figure 1.3 illustrates
the VAE model.

σ

µ

Probabilistic Encoder
qϕ(z|x)x

ϵ ∼ N (0, 1)

z = µ + ϵ · σ

z

Probabilistic Decoder
pθ(x|z) x′

Input Reconstructed

NN NN

input

Figure 1.3: Illustration of a Gaussian-Variational AutoEncoder model.

Discrete latent variables: Let πc denote the probability of the class c,
with the condition that ∑C

c=1 πc = 1. The Gumbel-Max trick (Gumbel,
1948; Maddison et al., 2014) facilitates sampling from this distribution by
adding i.i.d. Gumbel (noise) samples to the log-probabilities log πc. The class
corresponding to the highest resulting value is then selected as the sample,
i.e. k = arg maxc=1,...,C

(
log πc + Gc

)
. Although the Gumbel-Max trick facil-

itates sampling, it does not inherently allow for gradient-based optimization
because the argmax operation is not differentiable. To address this limitation,
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the Gumbel-Softmax trick (Maddison et al., 2017; Jang et al., 2017) is used,
which introduces a differentiable approximation to the categorical distribution.
The G-S trick involves the softmax function, a continuous and differentiable
approximation of the arg max operation. It begins by expressing the latent
vector z as a one-hot vector, i.e. z ∈ {0, 1}C , where C is the number of classes.
This generates a C-dimensional vector zG−S within the range [0, 1]C , defined
as

zG−S
c = exp((log πc +Gc)/τ)∑C

j exp((log πj +Gj)/τ)
, for all c = 1, . . . , C,

where τ is the temperature parameter, and Gc is a Gumbel sample drawn from
Gumbel(0, 1). As the softmax temperature τ approaches 0, samples from the
G-S distribution become one-hot and the G-S distribution becomes identical
to the categorical distribution (more details in Maddison et al. (2017)). The
Gumbel-Max and Gumbel-Softmax tricks are illustrated in Figure 1.4 with
C = 3.

G1log π1
log π2
log π3

G2
G3

∼ Gumbel(0, 1)

log πc +Gc, ∀c = 1, 2, 3

softmax argmax

C = 3

τ

Figure 1.4: Illustration of the Gumbel-Max and Gumbel-Softmax tricks
with C = 3. The blue circle represents the Gumbel samples drawn from
Gumbel(0, 1). The result of the Gumbel-Max trick is the index c of the max-
imum value and the result of the Gumbel-Softmax trick is a C-dimensional
vector zG−S with values in [0, 1]C , which is a continuous, differentiable ap-
proximation of the arg max.
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Remark 1.2.1. In machine learning models that require discrete decision-
making it is crucial to maintain consistency between the training and evalua-
tion phases. The Straight Through Gumbel-Softmax (Maddison et al., 2017)
technique addresses this issue by using the G-S distribution for sampling dur-
ing the forward step, followed immediately by an argmax operation to dis-
cretize the output into one-shot vectors. This ensures that the behavior of
the model during training matches its evaluation. In the backward step, the
original smooth probabilities from the G-S distribution are used to compute
gradients, thus maintaining differentiability and allowing efficient backpropa-
gation. This technique bridges the gap between the need for discrete outputs
and the advantages of gradient-based optimization.

1.2.2 Posterior distribution

In Bayesian Estimation, a fundamental objective is to compute the posterior
distribution p(z|x), which provides insights into the hidden or latent variable
z given the observed data x. However, as established earlier, direct compu-
tation of this posterior is often infeasible due to the unknown or complex
nature of the joint distribution p(z, x). To address this, we can use approx-
imation techniques such as variational distributions (Blei et al., 2017) and
normalized importance sampling (Doucet et al., 2001a). As we previously
discussed, the variational approach is a powerful tool for approximating the
posterior distribution pθ(z|x), which involves defining a simpler, and param-
eterized variational distribution qϕ(z|x). This distribution, often a tractable
distribution such as a Gaussian, is allows for efficient approximation and com-
putation. The variational distribution depends on a set of parameters ϕ that
can be optimized by maximizing the ELBO Q(θ, ϕ) in Equation (1.4) since
the maximization is w.r.t (θ, ϕ).

On the other hand, the normalized importance sampling technique in-
volves selecting a proposal distribution that is easier to sample from, calcu-
lating weights for these samples based on the ratio of the posterior to the
proposal distribution, and then normalizing these weights to ensure they sum
to one, thus transforming them into proper probabilities. We can use the vari-
ational distribution as the proposal distribution because we generally choose
a variational distribution from which we can sample efficiently due to the
optimization of the ELBO. Both the variational distribution and normalized
importance sampling offer robust solutions for approximating the posterior
distribution in scenarios where direct computation is challenging. By leverag-
ing these methods, we can gain valuable insights into the latent structures of
complex models, enhancing our understanding and predictive capabilities in
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various applications of Bayesian Estimation.

1.2.3 Discussion

This discussion synthesizes the concepts introduced in previous sections, high-
lighting the relationship between Deep Learning and Bayesian Estimation
methodologies and their applications in significant areas like Generative Mod-
eling and Unsupervised Bayesian Estimation/Classification.

Generative models: These models are mainly concerned with modeling
the data distribution pθ(x) or sampling new data points according to this
distribution. The ability of generative models to learn complex distributions
and generate new data is one of their main advantages. The connection with
Bayesian estimation becomes evident when we consider that pθ(x) can be
expressed by the joint distribution and the posterior distribution as pθ(x) =
pθ(x,z)
pθ(z|x) . Here, the latent variables z play a crucial role in generative models
and are often used to capture the underlying structure of the data.

On the other hand, a popular generative model is the Variational AutoEn-
coder, which combines the principles of deep learning and Bayesian estimation
to generate new data samples (see Example 1.2.1). VAEs consist of two key
components, an encoder and a decoder. The encoder, a neural network, maps
the input data x to a latent representation z, effectively approximating the
posterior pθ(z|x). Next, the decoder, another neural network, reconstructs the
data x from the latent representation z, approximating pθ(x|z). The integra-
tion of VAE into the broader context of deep learning highlights the compat-
ibility and complementarity of these frameworks. VAE provides a bridge the
representational capabilities of neural networks, and the probabilistic model-
ing capabilities of Bayesian methods. This combination allows the creation of
powerful generative models that not only generate plausible and diverse data
samples, but also provide information about the underlying data distribution
and the latent structures present in it.

Unsupervised Bayesian classification: In the context of unsupervised
learning, Bayesian estimation methods are adapted to provide insightful solu-
tions. Here, the latent variable z can be redefined by a variable of interest y
(z ← y). This adaptation enables the application of Bayesian inference tech-
niques to estimate y from the observed data x, leading to the computation of
the posterior distribution pθ(y|x). This approach overcomes the limitations of
point estimation. Instead of providing a single estimate of y, it provides ac-
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cess to the entire posterior distribution of y. This comprehensive perspective
is especially valuable in unsupervised scenarios where direct observations of y
are not available. However, the performance of this approach depends on the
formulation of the model pθ(y, x). It is crucial that this model not only cap-
tures the relationship between x and y, but also facilitates the interpretability
of y in an unsupervised context. We can also consider a model pθ(y, x, z),
where the latent variable z is introduced to capture the relationship between
x and y. This additional latent variable z can help in capturing more complex,
underlying relationships within the data that might not be directly observable
from x alone.

1.3. Sequential data modeling

We now consider sequential data, building on the foundations presented in
the previous sections. Sequential data present unique challenges, particularly
when it comes to modeling temporal dependencies and extracting meaningful
patterns over time. This discussion leads us to focus on probabilistic mod-
els specifically designed for sequential data, such as Hidden Markov Mod-
els (HMMs) and their extensions. We denote a sequence of observations as
x0:T = (x0, x1, . . . , xT ), where T is the length of the sequence. Similarly, we
use z0:T = (z0, z1, . . . , zT ) to denote a sequence of latent variables.

1.3.1 Hidden Markov chains

HMCs are a class of probabilistic models where the latent process is a Markov
chain, and the observations are conditionally independent given the latent
process and xt depends only on zt. The joint distribution of the sequence of
observations and latent variables is given by

pθ(z0:T , x0:T ) HMC= pθ(z0)
T∏
t=1

pθ(zt|zt−1)︸ ︷︷ ︸
pθ(z0:T )

T∏
t=0

pθ(xt|zt)︸ ︷︷ ︸
pθ(x0:T |z0:T )

, for all T ∈ N. (1.6)

When the parameters of the HMC are unknown, they can be estimated
from a set of observations that we have at our disposal. The Maximum Like-
lihood (ML) approach for estimating the parameters of the HMC has been
widely theoretically studied in Douc et al. (2004); Douc & Moulines (2012).
However, the distribution of the observations pθ(x0:T ) is intractable in gen-
eral. Therefore, the ML approach is not applicable. The distribution pθ(x0:T )
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can be approximated with Sequential Monte Carlo (SMC) methods (Doucet
et al., 2001b; Chopin et al., 2020). Nonetheless, the SMC methods are compu-
tationally expensive and differentiable approximations to use gradient-based
optimization methods could be a problem. This is due to the resampling
steps of such algorithms (Kantas et al., 2015). The EM algorithm (Dempster
et al., 1977) is also an alternative approach for estimating the parameters of
the HMC (1.6) (see Algorithm 9). When the parameters of the HMC are esti-
mated, the predictive distribution pθ(xT+1|x0:T ) can be sequentially computed
or approximated. SMC methods can be used to approximate this distribution.

1.3.2 Pairwise Markov chains

In HMCs, the latent process is Markovian, i.e. the latent variable zt depends
only on zt−1. It can be relevant to consider latent variables that depend on
more than one previous latent variable. It is also valid for the observations xt,
which can depend on more than one previous latent variable. For example, in
the case of time series, the observations xt can depend on the previous obser-
vation xt−1 and the latent variable zt−1. We introduce the Pairwise Markov
Chain (PMC) (Pieczynski, 2003; Derrode & Pieczynski, 2004; Le Cam et al.,
2008) model that relax the Markovianity assumption of the HMC. PMCs gen-
eralize the HMC by considering the joint process of {zt, xt}t∈N as a Markov
chain. The joint distribution of the sequence of observations and latent vari-
ables is given by

pθ(z0:T , x0:T ) PMC= pθ(z0, x0)
T∏
t=1

pθ(zt, xt|zt−1, xt−1), for all T ∈ N. (1.7)

The use of such models has been proposed in past contributions, in simpler
contexts where the sequence z0:T ← y0:T represents a series of labels for the
sequence of observations x0:T . It has been shown that when the PMC model
is stationary, it is possible to propose an unsupervised estimation method to
estimate jointly θ and yt from x0:T provided that the distribution of the ob-
servation given the hidden states is restricted to a set of classical distributions
such as the Gaussian one (Gorynin et al., 2018). Several questions then arise:
how can we use the structure of PMCs as generative models for modeling
pθ(x0:T )? Can these models be adapted to unsupervised classification scenar-
ios where pθ(y0:T , x0:T ) is parameterized by deep neural networks? In next
chapters we will focus on these questions.
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1.3.3 Sequential generative models for Bayesian classification

We can introduce an additional level of complexity with Triplet Markov Chains
(TMCs) (Pieczynski, 2002; Pieczynski & Desbouvries, 2005) for classification
tasks. TMCs provide a refined framework in which we can model not only the
sequence of observations x0:T and their associated labels y0:T , but also incor-
porate an auxiliary sequence z0:T , enriching the relationships within the data.
TMC have been mainly used with a discrete auxiliary sequence z0:T (Gorynin
et al., 2018; Lanchantin et al., 2008; Pieczynski, 2007). In this thesis, we will
focus on the case where the sequence z0:T is continuous. Thus, we consider
the joint distribution pθ(y0:T , x0:T , z0:T ), for all T ∈ N, given by

pθ(y0:T , z0:T , x0:T ) TMC= pθ(y0, z0, x0)
T∏
t=1

pθ(yt, zt, xt|yt−1, zt−1, xt−1). (1.8)

In a supervised context, the sequence of labels y0:T is known, the TMC
can be seen as a PMC with an augmented representation of latent variables,
i.e. xt ← (yt, zt), for all t ∈ N. However, the TMC model becomes more
interesting when the sequence {yt}t∈N corresponds to an unobserved physi-
cal process of interest, and {zt}t∈N is treated as a separate, distinct process.
However, the TMC model can be used for semi-supervised and unsupervised
classification tasks, where the labels y0:T are unobserved or partially observed.
In an unsupervised learning (Lanchantin & Pieczynski, 2004), we have to esti-
mate the parameters of the model which takes into account the interpretability
of y0:T and also the different roles of y0:T and z0:T . While in a semi-supervised
context, the labels y0:T are partially observed, and we look for estimating the
missing labels associated to each sequence. In both semi-supervised and un-
supervised context, TMCs combined with DNN can provide a more refined
approach to Bayesian classification, which is one of the main objectives of this
thesis.

1.3.4 Organization of the thesis

In this thesis, we address several fundamental questions that arise from the
concepts and models presented. These questions guide the research and struc-
ture of the thesis, ensuring a comprehensive exploration of the topics. The
key questions include:

• How can we build powerful generative models from PMC models (1.7),
and what guarantees do we have on their modeling power?
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• In sequential Bayesian classification, when only a subset of labels is ob-
served, how can we estimate the unobserved labels from the observations
and the observed labels using a general TMC model (1.8)? Does the su-
pervised case coincide with the previous question?

• How can PMC and TMC models be applied to unsupervised classification
tasks, and what are the challenges of ensuring interpretability of hidden
random variables in unsupervised classification?

• Can these models be adapted to different scenarios where the distribu-
tions (1.7) and (1.8) are parameterized by deep neural networks?

• What adaptations to the VI algorithm are necessary for general param-
eter estimation of these models?

• What are the challenges in AI for vascular surgery that could be ad-
dressed with the techniques presented in this thesis (applied perspec-
tive)?

To systematically address these questions, the thesis is structured to first
introduce the fundamental principles and challenges of deep learning, followed
by a detailed exploration of Bayesian estimation and its application in under-
standing complex data structures. Later sections focus on models for sequen-
tial data such as the PMC and TMC models, underscoring their theoretical
foundations and practical implications

Chapter 2 introduces the PMC model as a generative model that can
model complex dependencies between observations and latent variables. We
discuss how it can serve as a general model from which different models such
as the HMC and the RNN, among others, can be derived as specific cases.
Additionally, we present a general parameterization of the PMC model, which
includes deep parameterization (DNNs). In the second part, we develop an
adapted VI algorithm for general parameter estimation of this model. We
also explore the linear and stationary Gaussian PMC model for a theoretical
analysis of its generative power.

Chapter 3 is dedicated to the semi-supervised learning problem. We pro-
pose a probabilistic approach to deal with sequential Bayesian classification
when only a subset of labels is observed. The goal is to estimate the unob-
served labels from the observations and the observed labels using a general
TMC model (which includes a deep parameterization). We introduce a new
adaptation of VI, enabling us to estimate the parameters of the model and the
unobserved labels.



28 CHAPTER 1. TECHNICAL INTRODUCTION

Chapter 4 focuses on the unsupervised classification task. We propose
PMC and TMC models for estimating unobserved labels associated with a
sequence of observations. For each introduced model, an original unsuper-
vised Bayesian estimation method is proposed. In particular, it considers the
interpretability of the hidden random variables in terms of classification.

Finally, chapter 5 presents a workflow adapted to the data provided by
the GEPFROMED group, and future perspectives that integrate the classical
neural network models with a probabilistic approach. We also discuss the
potential of the proposed models for the segmentation of medical data.
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2.1. Introduction

This chapter introduces the PMC as a general generative model that can be
used to model complex dependencies between the observations and the latent
variables. First, we recall the PMC model (Pieczynski, 2003), and introduce
how it can be used as a general model for generative modeling, from which the
HMC (Rabiner, 1989), the RNN (Medsker & Jain, 2001), and the Generative
Unified Model (GUM) (Salaün et al., 2019) can be derived as particular cases.
Moreover, we present a general parameterization of the PMC model, which
includes a deep parameterization (DNNs). In the second part, we develop
an adapted VI algorithm (Jaakkola & Jordan, 2000; Blei et al., 2017) for a
general parameter estimation of this model, which can be applied to any PMC
model, linear or not, Gaussian or not. We provide some experimental results,
demonstrate PMC as a generative model, and see how it compares to other
popular models that use latent variables and DNNs. To conclude, we focus on
a particular instance of the PMC model, the linear, and stationary Gaussian
PMC, for a theoretical analysis of the generative power of the PMC model.
This analysis is based on the expressivity of the PMC, i.e. the distribution of
the observations generated by the model.

2.2. The pairwise Markov chain as a unified model

We recall the notation introduced in Chapter 1, x0:T = (x0, . . . , xT ), xt ∈ Rdx ,
and z0:T = (z0, . . . , zT ), zt ∈ Rdz which are two sequences of observed and
latent random variables (r.v.), respectively, of length T + 1. This chapter
focuses on the case where the latent variables are not interpretable as the
labels of the observations. In other words, our interest is a generative model,
where the latent variables are just an intermediate step to create a complex
distribution of the observations. For that, we recall the joint distribution of
the observed and latent variables in the PMC model (1.7), which is given by

pθ(z0:T , x0:T ) = pθ(z0, x0)
T∏
t=1

pθ(zt, xt|zt−1, xt−1), for all T ∈ N.

From a modeling point of view, the choice of the transition distribution
pθ(zt, xt|zt−1, xt−1) is a thorny problem. The transition distribution can be
factorized in different ways. The choice of the factorization depends on the
specific problem and the underlying assumptions about the dependencies be-
tween variables. In practice, we need to choose a transition distribution that
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has an impact on the relevance of the model pθ(x0:T ) and is able to fit the
data. To that end, we consider the following factorization for the transition
distribution:

pθ(zt, xt|zt−1, xt−1) = pθ(zt|zt−1, xt−1)pθ(xt|zt−1:t, xt−1). (2.1)

The joint distribution of (x0:T , z0:T ) reads

pθ(z0:T , x0:T ) = pθ(z0, x0)
T∏
t=1

pθ(zt|zt−1, xt−1)pθ(xt|zt−1:t, xt−1), for all T ∈N.

(2.2)
This factorization assumes that the observation xt depends on the previous
latent variables zt−1 and zt, and not only on the current latent variable zt
and the previous observation xt−1. While the distribution of latent variable
zt is determined by the previous observation xt−1 and the previous latent
variable zt−1. The choice of this factorization is motivated by the fact that
some popular generative models based on latent variables can be derived from
it, such as the HMC, the RNN and the GUM (Salaün et al., 2019).

Our objective is to cast the HMC, RNN and GUM generative models into
a more general one, the PMC. To this end, we recall the HMC (1.6) where the
joint distribution of the observed and latent variables reads

pθ(x0:T , z0:T ) HMC= pθ(z0, x0)
T∏
t=1

pθ(zt|zt−1)pθ(xt|zt), for all T ∈ N.

Here (xt, zt) becomes conditionally independent of xt−1 given zt−1, and xt, in
addition, does not depend on zt−1. Similarly, the GUM is a particular case of
the PMC defined as follows

pθ(x0:T , z0:T ) GUM= pθ(z0, x0)
T∏
t=1

pθ(zt|zt−1, xt−1)pθ(xt|zt), for all T ∈ N,

where xt becomes conditionally independent of (xt−1, zt−1). In the case of pre-
dicting future observations with RNNs, a probabilistic approach seems more
appropriate when we want to quantify the uncertainty associated with our pre-
diction. To do this, we simply replace gθ by a parametric distribution pθ and
ot by xt+1 in Equation (1.2). In addition, we use the transformation zt ← ht−1
in equations (1.1)-(1.2) to obtain the following model:

pθ(x0:T ) RNN= pθ(x0)
T∏
t=1

pθ(xt|zt), for all T ∈ N,

pθ(zt|zt−1, xt−1) RNN= δfθ(zt−1,xt−1)(zt), z0
RNN= 0, pθ(x0|z0) RNN= pθ(x0).
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Contrary to the HMC and the GUM, the RNN follows a different approach.
In the RNN, the latent variable zt is deterministically determined, given the
previous observation xt−1 and the previous latent variable zt−1. With a slight
abuse of notation, pθ(zt|zt−1, xt−1) coincides with the Dirac measure and is
not a probability density function. The expression of zt relies on an activation
function fθ. Similar to the HMC and the GUM, in the RNN xt depends on
zt given the past. We can see a common underlying framework that captures
the joint probability distributions of the observed and latent variables in these
models. The graphical structures of the models are summarized in Figure 2.1.

zt zt+1zt−1

xt xt+1xt−1

(a) HMC

zt zt+1zt−1

xt xt+1xt−1

(b) RNN

zt zt+1zt−1

xt xt+1xt−1

(c) GUM

zt zt+1zt−1

xt xt+1xt−1

(d) PMC

Figure 2.1: Conditional dependencies of the HMC, RNN, GUM, and PMC. In
the RNN, the hidden states zt are shown as diamonds to stress that they are
no source of stochasticity. The HMC, RNN, and GUM are particular cases of
the PMC.

Remark 2.2.1. Salaün et al. (2019) have proposed the GUM as a unified
framework to compare the expressivity of generative models based on latent
variables. The GUM can be seen as a stochastic version of the RNN which
includes popular generative models such as the Variational RNN (Chung et al.,
2015) and the Stochastic RNN (Fraccaro et al., 2016) as particular cases, with
a latent variable zt ← (ht, zt).
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2.3. Parameter estimation for general PMCs

In this section, we propose a VI approach to estimate the parameters θ of
general PMC models. This new approach can be applied to any sequence
x0:T of varying length T and does not require the knowledge of the latent
variables z0:T . In addition, it is suitable for high dimensional models (Blei
et al., 2017). First, we introduce a general parameterization of the PMC
model which includes a deep parameterization (via DNNs). Next, we adapt
the (static) VI framework described in Subsection 1.2.1 for the sequential case
with PMCs.

2.3.1 General parameterization of PMCs

We propose a general parameterization of the PMC model that can be applied
to any PMC. Without loss of generality, we consider the transition distri-
bution pθ(zt, xt|zt−1, xt−1) given in (2.1). A general parameterization allows
us to consider different any (conditional) distributions pθ(zt|zt−1, xt−1) and
pθ(xt|zt−1:t, xt−1), e.g. Gaussian distributions. Thus, for fixed distributions,
the parameters are learned based on functions of the conditional variables.
This parameterization extends beyond linear functions and also includes the
application of deep neural networks due to the universal approximation prop-
erty (see Section 1.1).

Let ψzθ(zt−1, xt−1) and ψxθ (zt−1:t, xt−1) be two vector-valued functions of
(zt−1, xt−1) and of (zt−1:t, xt−1), respectively, that are assumed to be differen-
tiable w.r.t. θ. Let also η(z;w) and ζ(x;w′) be probability density functions
(pdf) on Rdz and Rdx , respectively, whose parameters are given by the vectors
w and w′, respectively. η and ζ are assumed to be differentiable w.r.t. w and
w′, respectively. Then, we parameterize the conditional distributions in (2.2)
as

pθ(zt|zt−1, xt−1) = η(zt; ψzθ(zt−1, xt−1)), (2.3)
pθ(xt|zt−1:t, xt−1) = ζ(xt; ψxθ (zt−1:t, xt−1)). (2.4)

In other words, ψzθ (resp. ψxθ ) describes the parameters of the (conditional)
distribution η (resp. ζ).

Example 2.3.1. As an illustration, we consider η as a multivariate Gaussian
distribution. ψzθ is the vector which contains the mean and the covariance
matrix of η. In this case, pθ(zt|zt−1, xt−1) reads

pθ(zt|zt−1, xt−1) = N (zt;µzθ, σzθ) , where [µzθ, σzθ ] = ψzθ(zt−1, xt−1),
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It shows how the mean and covariance matrix of this Gaussian distribution
are derived from the values given by the function ψzθ , which is assumed to be
differentiable w.r.t. θ.

Deep pairwise Markov chain - A particular case of the general param-
eterization of the PMC model is the Deep Pairwise Markov Chain (DPMC),
where the parameterization of the transition distribution pθ(zt, xt|zt−1, xt−1)
presented in (2.3) and (2.4) is given by DNNs. Since DNNs can theoretically
approximate any function which satisfies reasonable assumptions (see Sec-
tion 1.1.2), our objective is to use them to approximate any parameterization
of η and ζ of the distributions pθ(zt|zt−1, xt−1) and pθ(xt|zt−1:t, xt−1), respec-
tively. In other words, ψzθ and ψxθ are the outputs of two Deep Neural Network
(DNN). For example, with (zt−1, xt−1) and (zt−1:t, xt−1) as inputs, respectively
in (2.3) and (2.4). The set of parameters θ now consists of the parameters of
these DNN (weights and biases). In this case, their gradients are computable
from the backpropagation algorithm (Rumelhart et al., 1985; Hecht-Nielsen,
1992) since ψzθ and ψxθ are differentiable w.r.t. θ (see Section 1.1.1).

Example 2.3.2. We recall the previous example 2.3.1, where η is a Gaussian
distribution, In this case, the mean µzθ and the covariance matrix diag(σzθ) are
the output of a neural network as illustrated in Figure 2.2. For example, µzθ
and σzθ can be the output of a linear layer.

pθ(zt|zt−1, xt−1) = N (zt;µzθ, diag(σzθ)) , where [µzθ, σzθ ] = ψzθ(zt−1, xt−1).

zt−1

xt−1

µp
z,t

σp
z,t

θ

Figure 2.2: Illustration of a deep parameterization of the distribu-
tion pθ(zt|zt−1, xt−1), where the parameters µzθ and σzθ of the Gaussian dis-
tribution are the output of a DNN.
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2.3.2 Variational Inference for PMCs

For PMCs, we can extend the ELBO given in (1.4) , which was formulated
for static models to the sequential case. We now define x ← x0:T , and
z ← z0:T . Then the following inequality holds for any variational distribu-
tion qϕ(z0:T |x0:T ),

log(pθ(x0:T )) ≥ −
∫
qϕ(z0:T |x0:T ) log

(
qϕ(z0:T |x0:T )
pθ(x0:T , z0:T )

)
dz0:T = Qgen(θ, ϕ),

(2.5)

where qϕ depends on a set of parameters ϕ. In our sequential case, we choose
the following variational distribution

qϕ(z0:T |x0:T ) =qϕ(z0|x0:T )
T∏
t=1

qϕ(zt|z0:t−1, x0:T ). (2.6)

This general factorization, that is based on transitions qϕ(zt|z0:t−1, x0:T ), cap-
tures the temporal dependencies inherent in sequential data. This form in-
volves a choice of a variational distribution qϕ(zt|z0:t−1, x0:T ), and the param-
eters that govern this distribution remain constant across time. The varia-
tional distribution qϕ should respect the differentiability and computational
tractability constraints. For efficient optimization, qϕ(zt|z0:t−1, x0:T ) should
be differentiable w.r.t. ϕ and should be chosen in a way that Qgen(θ, ϕ) is
computable or can be approximated (see Subsection 1.2.1). Thus, the factor-
ization of pθ(z0:T , x0:T ) and qϕ(z0:T |x0:T ) given by (2.2) and (2.6), respectively,
allows us to rewrite the ELBO (2.5) as follows

Qgen(θ, ϕ) =L1(θ, ϕ) + L2(θ, ϕ) (2.7)

where

L1(θ, ϕ) = Eqϕ(z0|x0:T )(log pθ(x0|z0))

+
T∑
t=1

Eqϕ(zt|z0:t−1,x0:T )(log pθ(xt|zt−1:t, xt−1)), (2.8)

L2(θ, ϕ) =−DKL(qϕ(z0|x0:T )||pθ(z0))

−
T∑
t=1

DKL(qϕ(zt|z0:t−1, x0:T )||pθ(zt|zt−1, xt−1)). (2.9)

Qgen(θ, ϕ) involves the sum of two terms. The first term L1(θ, ϕ) represents
a reconstruction term which measures the ability to reconstruct observations



36 CHAPTER 2. GENERATIVE HIDDEN MARKOV MODELS

according to the conditional likelihood pθ from the latent variables distributed
according to qϕ. The second term L2(θ, ϕ) involves a KLD term between the
variational qϕ and the conditional prior pθ distributions, which encourages
qϕ to be close to pθ (Kingma & Welling, 2014). It remains to compute and
optimize the ELBO (2.7) w.r.t. (θ, ϕ) in order to estimate the parameters of
the PMC model. On one hand, the term L2(θ, ϕ) (2.9) involves the KLD
between qϕ and pθ.

Algorithm 1 General parameter estimation for generative PMCs
Input: x0:T , the data; ϱ, the learning rate; M the number of samples
Output: (θ∗, ϕ∗), sets of estimated parameters

1: Initialize the parameters θ0 and ϕ0

2: j ← 0
3: while convergence is not attained do
4: Sample z(m)

0 ∼ qϕj (z0|x0:T ), for all 1 ≤ m ≤M
5: Sample z(m)

t ∼ qϕj (zt|z(m)
0:t−1, x0:T ), for all 1 ≤ m ≤M , for all 1 ≤ t ≤ T

6: Evaluate the loss Q̂gen(θj , ϕj) from (2.7), (2.9), and (2.12).
7: Compute the derivative of the loss function ∇(θ,ϕ)Q̂gen(θ, ϕ).
8: Update the parameters with gradient ascent(

θ(j+1)

ϕ(j+1)

)
=
(
θj

ϕj

)
+ ϱ∇(θ,ϕ)Q̂gen(θ, ϕ)

∣∣∣
(θj ,ϕj)

(2.10)

9: j ← j + 1
10: end while
11: θ∗ ← θj

12: ϕ∗ ← ϕj

On the other hand, the term L1(θ, ϕ) (2.8) coincides with expectations
w.r.t. qϕ and can be approximated by Monte Carlo estimation. For this, we
use the reparameterization trick presented in Subsection 1.2.1, which can be
extended to the sequential case by considering Equation (1.5) for each time
step t, as follows:

z
(m)
0:T =g(ϕ, ϵ(m)

0:T ), for m ∈ [1 : M ]. (2.11)

Thus, L1(θ, ϕ) (2.8) can be approximated by

L̂1(θ, ϕ) = 1
M

M∑
m=1

log pθ(x0|z(m)
0 ) + 1

M

M∑
m=1

T∑
t=1

log pθ(xt|z(m)
t−1:t, xt−1), (2.12)
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where z(m)
t is a differentiable function of ϕ that is sampled from qϕ(zt|z0:t−1, x0:T ),

for m ∈ [1 : M ] and t ∈ [0 : T ]. Algorithm 1 summarizes the general esti-
mation algorithm for general PMCs. Here, we learn the generative model by
maximizing the ELBO Qgen with respect to their parameters θ and ϕ.

2.4. Experiments and results

In this section, we first introduce a particular instance of the PMC model which
combines the deep PMC model (see Section 2.3.1) and the stochastic RNN
model (SRNN) (Bayer & Osendorfer, 2014; Chung et al., 2015). From this
instance, we derive different generative models for sequential data with specific
dependencies between latent and observed variables. Finally, we compare their
performance with the stochastic RNN model on two datasets.

2.4.1 Model description

SRNN architectures are specific instances of the PMCs, which have demon-
strated good experimental results (Bayer & Osendorfer, 2014; Chung et al.,
2015), making it natural to compare them with their PMC extension. We
introduce a model that combines the DPMC, and the SRNN models. This
generative (deep) PMC model consists of a latent process in an augmented
dimension, zt ← (ht, zt), the transition distribution now reads

pθ(ht, zt, xt|ht−1, zt−1, xt−1) = pθ(ht|ht−1, zt−1, xt−1)pθ(zt|ht−1:t, zt−1, xt−1)×
pθ(xt|ht−1:t, zt−1:t, xt−1). (2.13)

Remark 2.4.1. Note that the previous equation is nothing more than a par-
ticular case of the TMC model with transition (2.13). However, we consider it
as a particular instance of the PMC model since ht and zt, f←or all t ∈ [0 : T ],
are considered as latent variables with no physical interpretation.

On the other hand, the variational distribution qϕ defined in (2.6) is fac-
torized as follows

qϕ(zt, ht|z0:t−1, h0:t−1, x0:T ) = qϕ(zt|z0:t−1, h0:t, x0:T )qϕ(ht|z0:t−1, h0:t−1, x0:T ).

We consider the general parameterization presented in Subsection 2.2.
However, we now have an additional distribution because of the new vari-
able ht. Let λ be a distribution on ht parameterized by a differentiable
(w.r.t. θ) and vector valued function denoted as ψhθ and which can depend
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on (ht−1, zt−1, xt−1). We recall that ψzθ and ψxθ are defined in (2.3) and (2.4),
respectively. Thus, the parameterized transition (2.13) reads

pθ(ht|ht−1, zt−1, xt−1) = λ
(
ht;ψhθ (ht−1, zt−1, xt−1)

)
,

pθ(zt|ht−1:t, zt−1, xt−1) = η (zt;ψzθ(ht−1:t, zt−1, xt−1)) ,
pθ(xt|ht−1:t, zt−1:t, xt−1) = ζ (xt;ψxθ (ht−1:t, zt−1:t, xt−1)) .

In the context of SRNN architectures, the variable ht represents a deter-
ministic summary of the past until time t − 1, i.e. ht = ψhθ (ht−1, zt−1, xt−1).
While zt corresponds to a noisy version of ht (it is why we have split the la-
tent process in two). Note that since h0:T is deterministic given (z0:T , x0:T ),
its posterior distribution becomes trivial, and thus there is no need to con-
sider a variational distribution for it. The variational distribution qϕ is then
parameterized as

qϕ(zt|z0:t−1, h0:t, x0:T ) = qϕ(zt|ht, xt) = τ(zt;ψzϕ(ht, xt)), (2.14)

where τ(z;ψzϕ) is a probability density function on Rdz whose parameters are
given by ψzϕ, which is differentiable w.r.t. ϕ. Following this reasoning and with
a slight abuse of notation (where λ coincides with the Dirac measure), we can
incorporate several degrees of generalization of the classical RNN and of the
SRNN of Chung et al. (2015). The different deep PMC models we consider are
defined in Table 2.1 and are based on the specific dependencies of the involved
random variables. Note that ψxθ , ψhθ , ψzθ and ψzϕ are now neural networks.

2.4.2 Results

Model configuration - In our experiments, the observed random variables
are discrete, and each xt takes values in a binary space {0, 1}dx . As a conse-
quence, the distribution ζ coincides with the Bernoulli distribution, and the
output of ψxθ with its parameter. For λ, we choose the Gaussian distribution
and the output of ψzθ corresponds to the mean and to the diagonal covariance
matrix of the Gaussian distribution, which is summarized as follows

ht = ψhθ ( · ),
pθ(zt| · ) = N (zt;µzθ, diag(σzθ)) , where [µzθ, σzθ ] = ψzθ( · ),
pθ(xt| · ) = Ber (xt; ρxθ ) , where ρxθ = ψxθ ( · ).

Here the notation ( · ) is used to avoid presenting a specific dependence be-
tween variables. These dependencies are specified for each model and are pre-
sented in Table 2.1. The variational distribution qϕ given in (2.14) is chosen
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Parameterized function
Models ψh

θ ψz
θ ψx

θ

RNN (ht−1, xt−1) × ht

SRNN (ht−1, zt−1, xt−1) ht (ht, zt)
PMC-I (ht−1, zt−1, xt−1) ht (ht, zt, xt−1)
PMC-II (ht−1, zt−1, xt−1) ht (ht−1:t, zt, xt−1)
PMC-III (ht−1, zt−1, xt−1) ht (ht−1:t, zt−1:t, xt−1)
PMC-IV (ht−1, zt−1, xt−1) (ht, xt−1) (ht−1:t, zt, xt−1)

Table 2.1: Configuration of the dependencies for different deep generative
PMCs. In each model, the sequence of latent variables {ht}t∈N is treated as a
deterministic variable given the observations. As a result, η coincides with the
Dirac measure. The distribution λ is typically chosen to be Gaussian, while
ζ depends on the nature of the observations. Remember that in a classical
RNN, {zt}t∈N is not considered.

as Gaussian, which satisfies

qϕ(zt|ht, xt) = N (zt;µqz, diag(σqz)) , where [µqz, σqz ] = ψzϕ(ht, xt).

The functions ψxθ , ψzθ , ψhθ and ψzϕ are implemented as neural networks consist-
ing of two hidden layers. The rectified linear unit (ReLu) activation function is
used for the hidden layers, and the outputs of the neural networks are adapted
according to their role. For example, the output of ψxθ is a layer of dx sigmoid
functions due to the nature of the observations (binary values). Additionally,
the number of hidden units of each neural network coincides with the dimen-
sion dz of zt and is different for each model and data set, which is specified in
the next part.

Training - Each model was trained with stochastic gradient descent on the
negative evidence lower bound using the Adam optimizer (Kingma & Ba, 2015)
with a learning rate of 0.001. The number of epochs was set to 100 for both
data sets. The number of hidden units of the neural networks (dz) can be fixed
for all the models, or can be chosen by considering the number of parameters
of the models to be compared (i.e. the number of parameters are the same or
close to).

Evaluation - The performance of the models is evaluated in terms of the
approximated ELBO and log-likelihood of the observations on the test data
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Model
MNIST data set Music data sets

Config. 1 Config. 2 Config. 2
dz dh dz dh dz dh

RNN 3 100 3 162 300 562
SRNN 3 100 3 100 300 300
PMC-I 3 100 3 95 300 294
PMC-II 3 100 3 79 300 278
PMC-III 3 100 3 78 300 260
PMC-IV 3 100 3 74 300 272

Table 2.2: Dimensions of latent variables for each Deep PMC. ψhθ , ψzθ , ψxθ and
ψzϕ are implemented as neural networks with two hidden layers. The number
of neurons on each layer coincide with dh.

set; we use a particle filter with the estimated variational distribution as im-
portance distribution and N = 100 particles.

Image generation - The MNIST dataset (LeCun, 1998) contains 60000
(resp. 10000) train (resp. test) 28 × 28 binary images. In this case, an
observation xt consists of a column of the image and its dimensionality is
dx = 28. The length of each sequence is T + 1 = 28. For this data set, we
consider two configurations for the training of the models and are summarized
in Table 2.2. Config. 1 corresponds to the configuration in which the number
of hidden units of the neural networks is fixed dh = 100 for all the models.
In Config.2, the number of hidden units of the neural networks is chosen by
considering the number of parameters of the models to be compared. We set
dh = 162 , dh = 100, dh = 95, dh = 79, dh = 78 and dh = 74 for the RNN,
SRNN, the PMC-I, the PMC-II, the PMC-III, and the PMC-IV, respectively.
We also set dz = 3 for each model and both configurations.

Table 2.3 presents the averaged ELBO and the averaged approximated
log-likelihood on the test set assigned by our models. The results with the
Config.1 (resp. Config. 2) show that PMC-IV (resp. PMC-II) has the higher
averaged ELBO and averaged approximated log-likelihood compared to other
models. This indicates that the performance of the PMCs is better than of
SRNN and RNN models. An example of images generated from the estimated
pθ(x0:t) of the PMC-II is shown in Figure 2.3.
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Model MNIST, config. 1 MNIST, config. 2
ELBO approx. LL ELBO approx. LL

RNN -65,976 -65,976 -65,700 -65,700
SRNN -67,248 -64,760 -67,222 -64,762
PMC-I -66,544 -64,076 -67,322 -64,698
PMC-II -66,784 -64,201 -66,815 -64,255
PMC-III -66,518 -63,876 -67,513 -64,876
PMC-IV -66,150 -63,603 -67,648 -64,924

Table 2.3: Averaged ELBO and approximated log-likelihood (approx. LL) of
the observations on the test set with two different configurations. For the
RNN, the ELBO coincides with the (exact) log-likelihood.

Figure 2.3: Examples of generated images from estimated pθ(x0:t) for the
MNIST data set with the PMC-II model.



42 CHAPTER 2. GENERATIVE HIDDEN MARKOV MODELS

Polyphonic music generation - We also consider the polyphonic music
data sets (Bengio et al., 2013), where three polyphonic music data sets are
available, the classical piano music (Piano), the folk tunes (Nottingham) and
the four-part chorales by J.S. Bach (JSB). The input consists of 88 binary
visible units that span the whole range of piano from A0 to C8 (i.e. xt ∈
{0, 1}88). In this case, we consider the Config. 2 for the training of the models
(see Table 2.2) since it is a fairer comparison between the models.

We set dz = 300 for each model, and dh = 562, dh = 300, dh = 294,
dh = 278, dh = 260 and dh = 272 for the RNN, the SRNN, the PMC-I, the
PMC-II, the PMC-III and the PMC-IV respectively. Table 2.4 presents the
results of the averaged ELBO and the averaged approximated log-likelihood
where the PMC-II (resp. PMC-IV) has the best performance compared to
other models on the Piano (resp. Nottingham and JSB) data set.

Model Polyphonic music data sets
Piano Nottingham JSB

RNN -10,52 -23,89 -10,77
SRNN -9,4011 -13,2982 -10,2739
PMC-I -9,3077 -11,3856 -10,3126
PMC-II -8,8265 -14,8485 -10,2409
PMC-III -9,2285 -13,3900 -10,1103
PMC-IV -9,4134 -10,6323 -9,2372

Table 2.4: Approximated likelihoods on the polyphonic music data sets. For
the RNN, the exact log-likelihood is computed.

2.5. Generative power of PMCs

In this section, our objective is to analyze the previous models from a the-
oretical point of view. We consider a linear and stationary Gaussian PMC,
with dx = 1. In a stationary Gaussian process, the statistical properties, like
the mean and covariance of the observations, do not change over time. This
stationarity implies that the covariance between two observations depends
only on the time difference k between them. This analysis is then based on
the associated covariance function rk = Cov(xt, xt+k), for all k ∈ N, which
characterize the distribution pθ(x0:T ) induced by each model.
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2.5.1 Linear and stationary Gaussian PMCs

Linear PMC - We consider the case where ψzθ and ψxθ in equations (2.3)-
(2.4) are vectorial linear functions. We have the following linear parameteri-
zation of the PMC

pθ(z0, x0) = ς
(
(z0, x0); [0; Σ0 ]

)
, (2.15)

pθ(zt|zt−1, xt−1) = η(zt; [azt−1 + cxt−1;α]), (2.16)
pθ(xt|zt−1:t, xt−1) = ζ(xt; [bzt + ezt−1 + fxt−1;β]), (2.17)

where the notation [· ; ·] considers the first and second order of the initial
distribution pθ(z0, x0), of pθ(xt|zt−1:t, xt−1), and of pθ(zt|zt−1, xt−1). The di-
mensions of the parameters a, b, c, e and f are dz × dz, 1× dz, dz × 1, 1× dz,
1× 1, respectively. The covariance matrix α is a square matrix and β ≥ 0. In
the initial distribution pθ(z0, x0), 0 is a (dz+1) zero vector and Σ0 is a (dz+1)
square covariance matrix given by

Σ0 =
[
η γ̃⊺

γ̃ r0

]
.

The dimensions of η and γ̃ are dz×dz and 1×dz, respectively; and r0 is scalar.
Thus, the set of parameters now is θ = (a, b, c, e, f, α, β, η, γ̃, r0).

Gaussian PMC - We now consider ς, η and ζ as Gaussian distributions
so the distribution pθ(x0:T ) is a multivariate Gaussian distribution due to the
linear structure of the model. However, it is important to note that this
assumption does not result in any loss of generality; we employ it here for
the sake of clarity. The covariance function rk associated to pθ(x0:T ) can be
deduced from the covariance matrix Σt associated to the distribution pθ(zt, xt).
First, an equivalent representation of (2.15) -(2.17) is obtained by considering
the first and second order moments of the pair (zt, xt) given (zt−1, xt−1). Since
this distribution involves the product of two Gaussian distributions, one being
linear in the other and with results on conditional Gaussian distributions, we
obtain:

E
([
zt, xt

]⊺
|zt−1, xt−1

)
= M

[
zt−1
xt−1

]
,

Var
([
zt, xt

]⊺
|zt−1, xt−1

)
= Σt|t−1,

where
M =

[
a c

ba+ e bc+ f

]
, Σt|t−1 =

[
α αb⊺

bα β + bαb⊺

]
. (2.18)
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The covariance of the pair (zt, xt) is given by Σ0 × (Mk)⊺, which can be
easily deduced from the previous representation. We also obtain the following
expression for the covariance matrix associated to the distribution pθ(zt, xt)
Σt,

Σt = MΣt−1M
⊺ + Σt|t−1, (2.19)

which is an immediate consequence of the Lemma A.0.1 in Appendix A.

Stationary PMC - In order to assure the stationarity of {xt}t∈N, we con-
sider directly that the process {zt, xt}t∈N is stationary. Consequently, Σ0 and
Σt (2.19) should satisfy the following equivalence

Σ0 = MΣ0M
⊺ + Σt|t−1. (2.20)

This matrix equation describes a set of constraints on the parameters of the
PMC model, which ensures the stationarity of the distributions pθ(zt, xt) and
pθ(xt).

2.5.2 Theoretical analysis of PMCs

We are interested in the modeling power of the PMC. For that, we characterize
the covariance function of the distribution pθ(x0:T ) induced by the PMC, and
compare it with the one of the GUM presented in Salaün et al. (2019). We
focus on the case where the latent and observed variables are both scalar
(dz = 1 and dx = 1). The scalar case is interesting because it allows for a
direct deduction of the covariance function derived from the PMC.

For clarity, we set r0 = 1, which means pθ(xt) = N (xt; 0; 1), for all t ∈ N.
We also parameterize γ̃ = γη, then the set of parameters is now given by
θ = (a, b, c, e, f, α, β, η, γ). We start by presenting the covariance function of
the GUM, where the matrix M is diagonalizable. By plugging in e = f = 0,
and γ = b, the covariance function of the GUM is given by

rk
GUM= Ak−1B, for all k ∈ N∗, (2.21)

where A = a+ cb, B = aηb2 + bc(β + ηb2), and Var(xt) = β + ηb2 = 1, for all
t ∈ N. The stationarity constraints are simplified to two constraints:

β = 1− b2η,
α =

(
1− a2 − 2abc

)
η − c2,

In addition to the settings of the GUM, the covariance functions associated to
a linear and stationary Gaussian HMC and RNN are also derived.
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• HMC - with c = 0 and rk = akηb2.

• RNN - the transition between (zt−1, xt−1) and zt is deterministic then
α = 0. Moreover, z0 = 0 and x0 is independent of z0. Since Var(xt) =
b2β+ η = 1, the constraint η = c2 should also be satisfied to ensure that
Var(xt) = r0 = 1 for all t ∈ N.

In order to extend this study for PMCs, we assume thatM is diagonalizable
in the PMC, i.e. M = PDP−1 with

P =
[−a+bc+f+K

2(ab+e)
a−bc−f+K

2(ab+e)
1 1

]
,

D =
[

1
2(a+ bc+ f −K) 0

0 1
2(a+ bc+ f +K)

]
,

P−1 =
[
−ab+e

K
a−bc−f+K

2K
ab+e
K

−a+bc+f+K
2K

]
,

where
K =

√
(a+ bc+ f)2 − 4(af − ce).

Note that the condition (a + bc + f)2 − 4(af − ce) ≥ 0 is satisfied since
M is diagonalizable. As a result, we can deduce rk for the PMC, which is
summarized in the following proposition.
Proposition 2.5.1. Let a linear and stationary (scalar) Gaussian PMC be
defined by the transition and the conditional covariance matrices M and Σt|t−1
in (2.18) and the initial covariance matrix

Σ0 =
[
η γη
γη 1

]
.

If M is diagonalizable, the covariance function of {xt}t∈N reads

rk = A
k(B + 1

2)− Ck(B − 1
2), (2.22)

where

A = a+ bc+ f −K
2 ,

B = a− bc− f − 2γη(ab+ e)
2K ,

C = a+ bc+ f +K

2 ,

K =
√

(a+ bc+ f)2 − 4(af − ce)
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and where the following stationarity constraints are satisfied:

bη + (ae+ afγ + ceγ) + fc = γη,
(1− a2 − 2acγ)η − c2 ≥ 0,

1− b2η − 2bη(γ − b)− eη(e+ 2fγ)− f2 ≥ 0.

Proof. The proof relies on the assumption that M is diagonalizable, which en-
ables us to derive an explicit expression for the covariances of the pair (zt, xt).
Then rk can directly be deduced from this expression that reads

Σ0 × (Mk)⊺ = Cov(
[
zt, xt

]⊺
,
[
zt+k, xt+k

]⊺
)

=
[

Cov(zt, zt+k) Cov(zt, xt+k)
Cov(xt, zt+k) Cov(xt, xt+k)Cov(xt, xt+k)Cov(xt, xt+k)

]
.

On the other hand, the stationarity constraints are given by (2.20). We set
r0 = 1 and γ̃ = γη, so the following stationary relation holds[

η γη
γη 1

]
=
[
α bα
bα β + b2α.

]
+
[

a c
ab+ e bc+ f

] [
η γη
γη 1

] [
a ab+ e
c bc+ f

]
.

Since the covariance matrix is symmetric and the diagonal elements are pos-
itive because they are variances, the set of 3 constraints are deduced directly
from the previous relation.

Remark 2.5.1. The stationarity of the distribution pθ(x0:T ) implies that
its associated variance-covariance matrix Σx

T is a Toeplitz matrix (i.e. the
coefficients on each diagonal are equal) fully determined by its first row given
by the covariance sequence [r0, r1, . . . , rT ], where rk is given by (2.22), for all
k ∈ N∗. Thus, Σx

T reads as, for all T ∈ N∗,

Σx
T =



1 r1 r2 r3 . . . rT

r1 1 r1 r2 . . .
...

r2 r1 1 r1
. . . ...

r3 r2 r1 1 . . . ...
... . . . . . . . . . . . . ...
rT . . . r3 r2 r1 1


.
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Proposition 2.5.1 shows that the PMC generalizes the form of the covari-
ance matrices of the GUM, HMC and RNN by introducing the parameters e
and f . However, it remains challenging to determine whether any covariance
series in the form (2.22) can be generated by a PMC because identifying A,
B and C, in order to ensure that (2.22) represents a valid covariance series,
is a complex problem. Nonetheless, we can exhibit some particular covariance
functions that can be generated by a (particular) PMC but not by a GUM,
HMC or RNN as shown in the next proposition.

Proposition 2.5.2. Let Ã and B̃ be two scalars, r0 = 1 and

rk =
{

Ãk if k is even,
Ãk−1B̃ otherwise. (2.23)

Then {rk}k∈N is a covariance function if and only if

−1 ≤ Ã ≤ 1 and − Ã2 + 1
2 ≤ B̃ ≤ Ã2 + 1

2 , (2.24)

and can be realized by a linear and stationary Gaussian PMC.

Proof. The proof relies on the Carathéodory-Toeplitz theorem (Akhiezer, 1965)
since Σx

T is defined by a Toeplitz matrix with first row

[1, B̃, Ã2, Ã2B̃, Ã4, · · · ].

We analyze the series expansion of the covariance function to establish the
necessary conditions for the positive semi-definiteness of Σx

T . This theorem
allows us to determine the values of Ã and of B̃ in (2.23) such that Σx

T is a
valid covariance matrix.

We deduce the constraints −1 ≤ Ã ≤ 1, − Ã2+1
2 ≤ B̃ ≤ Ã2+1

2 . Next, setting
γ = b, and f either as 0 or −a − bc (two particular cases of the PMC), we
show that (2.22) coincides with (2.23), with{

Ã =
√
ce and B̃ = b(c(1− b2η) + eη) if f = 0,

Ã =
√
e2η + a2(1− b2η) and B̃ = beη − a(1− b2η) if f = −a− bc.

Finally, for any (Ã, B̃) satisfying (2.24), we show that it is possible to find a
set of parameters (a, b, c, e, η, α, β) which satisfies the previous system and the
stationarity constraints (2.20) for both cases f = 0 and f = −a − bc. For a
detailed step-by-step proof, please refer to the Appendix B.
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Proposition 2.5.2 shows that it is possible to produce a covariance function

rk = Ak−1B(k),

with a switching B(k) satisfying B(k) = A if k is even and B(k) = B, other-
wise. The constraints on A and B with this switching are −1 ≤ A ≤ 1 and
−A2+1

2 ≤ B ≤ A2+1
2 since B(k) is as expression of A and B.

This result can be compared with that of the GUM in the scalar case (Salaün
et al., 2019), that can produce any covariance function given by (2.21), rk =
Ak−1B, with the constraints −1 ≤ A ≤ 1 and A−1

2 ≤ B ≤ A+1
2 . In other

words, this proposition shows that the linear and stationary Gaussian PMC
can model some Gaussian distributions which cannot be modeled by the pre-
vious linear and stationary Gaussian GUM.

2.6. Conclusions

This chapter was devoted to the development, study, comparison and applica-
tion of a general generative model for sequential data based on the PMC model.
Our approach combined the advantages of the HMM, RNN and GUM models
and encapsulated them in a single framework. A new parameter estimation
method based on the variational inference framework was also presented for
the general PMC model, which is computationally efficient and easy to imple-
ment. Moreover, we presented a particular instance of the variational PMC
model, combining the PMC model and deep parameterizations. This model
has been compared with the RNN and SRNN models on the MNIST and poly-
phonic music data sets. The results show that the performance of the deep
PMCs is better than of SRNN and RNN models. We have also shown that
the linear and stationary Gaussian PMC can model some Gaussian distribu-
tions which cannot be modeled by the previous linear and stationary Gaussian
HMC, RNN and GUM.
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3.1. Introduction

In this chapter, we want to extend the study we have done in the previous
chapters to the case where we have labels associated with each observation.
Let us recall the sequence of random variables x0:T = (x0, . . . , xT ) and the
sequence of labels y0:T = (y0, . . . , yT ) associated to the previous sequence
x0:T , where xt ∈ Rdx , and yt ∈ Ω = {ω1, . . . , ωC}, with C the number of
classes. We also consider a sequence of latent variables z0:T = (z0, . . . , zT ),
where zt ∈ Rdz .

The objective associated to Bayesian classification consists in computing,
for all t, the posterior distributions p(yt|x0:T ). The difficulty of the prob-
lem depends on the availability of the labels associated with the observations.
When the labels are observed, the problem is referred to as supervised learn-
ing. Chapter 2 was dedicated to a general generative model based on PMCs,
which can be used for supervised learning. This adaptation involves taking
as observed variable the pair of observations and labels xt ← (xt, yt), and
applying the adapted variational Algorithm 1 discussed in the chapter (see
Appendix C for more details). However, in many real-world applications, it
is expensive or impossible to obtain labels for the entire sequence x0:T due
to various reasons, such as the high cost of labeling, the lack of expertise, or
the lack of time, etc. The labels can be partially observed or not observed at
all, which leads to the semi-supervised and unsupervised learning problems,
respectively. Two main challenges arise in this context:

• How to effectively design generative models that not only generate ob-
servations xt, but also generate labels yt?

• How to perform effective Bayesian inference under these conditions?

This chapter is devoted to the semi-supervised learning problem, and the
unsupervised learning problem will be addressed in the next chapter. Here,
the objective is to estimate the unobserved labels from the observations and
the observed labels. To that end, the TMC model is considered (see Subsec-
tion 1.3.3) in which we can model not only the sequence of observations x0:T ,
and their associated labels y0:T , but also incorporate an auxiliary sequence
z0:T , which can provide additional information about the relationship between
the observations and the labels. We propose a new adaptation of the VI al-
gorithm presented in the previous chapter, which enables us to estimate the
parameters of a general TMC model, and the unobserved labels. This general
semi-supervised learning algorithm enables us to derive a variety of (deep) gen-
erative models which have been applied to sequential Bayesian classification
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problems. Finally, we consider the problem of image segmentation, where the
observations x0:T represent a noisy grayscale image while y0:T represent the
original black and white image. The goal is to recover the original image from
a noisy version of it. We show that our approach outperforms the state-of-
the-art semi-supervised learning algorithms such as the Variational Sequential
Labeler (VSL) (Chen et al., 2018), and the Semi-supervised Variational Re-
current Neural Network (SVRNN) (Butepage et al., 2019).

3.2. Semi-supervised estimation in general TMC

3.2.1 General parameterization of the TMC

We recall the TMC model given in Equation (1.8):

pθ(z0:T , y0:T , x0:T ) = pθ(z0, y0, x0)
T∏
t=1

pθ(vt|vt−1),

where the triplet vt = (zt, yt, xt). Here, it is possible to have different factor-
izations of the transition distribution pθ(vt|vt−1).

Example 3.2.1. The following factorizations are the possible choices for the
transition distribution pθ(vt|vt−1):

pθ(vt|vt−1) = pθ(xt|vt−1)pθ(yt|xt, vt−1)pθ(zt|xt, yt, vt−1),
pθ(vt|vt−1) = pθ(xt|yt, vt−1)pθ(yt|vt−1)pθ(zt|xt, zt, vt−1),
pθ(vt|vt−1) = pθ(xt|xt, yt, vt−1)pθ(yt|zt, vt−1)pθ(zt|vt−1).

In the first example, xt depends on the triplet vt−1, the label yt depends on
the observation xt and the triplet vt−1, and the latent variable zt depends on
the observation xt, the label yt and the triplet vt−1.

The choice of the factorization of the transition distribution depends on
the specific application and the underlying model. Thus, we use a general
notation for the associated conditional distributions pθ(xt| · ), pθ(zt| · ) and
pθ(yt| · ) in order to avoid presenting a specific dependence between variables.

In Chapter 2, we have introduced the probability density functions on Rdx ,
Rdz , as ζ, and η, respectively (Equations (2.3), and (2.4)). They are introduced
to describe a general parameterization of the PMC model. As we extend these
ideas to the TMC model in this chapter, we continue to use the functions to
parameterize the transition distribution in the TMC model. We also define ϑ
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as a probability distribution on Ω, which is used to parameterize the transition
distribution for the labels and is differentiable w.r.t. their parameters. The
general parameterized model is described by:

pθ(vt|vt−1) = pθ(xt| · ) pθ(zt| · ) pθ(yt| · ), (3.1)
pθ(zt| · ) = η(zt; ψzθ( · )), (3.2)
pθ(yt| · ) = ϑ(yt; ψyθ ( · )), (3.3)
pθ(xt| · ) = ζ(xt; ψxθ ( · )), (3.4)

where ψyθ , ψxθ and ψzθ are vector-valued functions that are assumed to be
differentiable w.r.t. θ.

Example 3.2.2. For the sake of clarity, let us explore a specific application
of the TMC model where the labels yt are binary (Ω = {ω1, ω2}). The obser-
vations satisfy xt ∈ R, and zt ∈ R, for all t. This setup is particularly useful
in image processing tasks such as noise reduction and classification, where
yt represents a pixel’s classification (e.g. object vs. background), xt is the
observed noisy pixel value, and zt models the latent variables that influence
the observation’s noise characteristics. Thus, we can extend the TMC model
proposed in (Pieczynski & Desbouvries, 2005), by incorporating a continuous
latent variable zt. In particular, the model can be described as

ψyθ (yt−1, xt−1, zt) = sigm(ayt−1xt−1 + byt−1zt + cyt−1),
ψxθ (xt) =

[
dyt , σyt

]
,

ψzθ(xt−1, yt−1) =
[
eyt−1xt−1, σ

′
yt−1

]
,

ϑ(yt; ρ) = Ber (yt; ρ) ,
ζ(xt; s = [µ, σ]) = N (xt;µ, σ2),

η(zt; s′ = [µ′, σ′]) = N
(
zt;µ′, σ′2

)
,

where sigm(v) = 1/(1 + exp(−v)) ∈ [0, 1] is the sigmoid function. Note that,
for example, the notation dyt means that the parameter d depends on the label
yt, i.e. pθ(xt|yt = ωj) = N (xt; dωj , σ

x
ωj

). The set of parameters is then given
by:

θ =
(
aωi , bωi , cωi , dωj , σωj , eωi , σ

′
ωi
|(ωi, ωj) ∈ Ω2).

This parameterization can be easily extended to the multi-class cases with
C > 2 by replacing ψyθ by a vector of the softmax function, and ϑ(yt; ρ) by the
categorical distribution described by the C components of a vector ρ.
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Remark 3.2.1. The parameterization of the TMC model is very general and
can be used to derive a variety of models. Similarly to the PMC model, the
functions ψyθ , ψxθ and ψzθ can also be parameterized by deep neural networks,
where the parameters θ encompass the weights and biases of the neural net-
works. We will refer to this model as the Deep Triplet Markov Chain (DTMC)
model.

3.2.2 A brief description of the semi-supervised problem

In many practical scenarios, obtaining complete label information for all data
points is often infeasible. Consequently, we frequently encounter situations
where only a subset of the labels is observed. This incomplete labeling poses
significant challenges for effective model training and inference. To clarify our
approach, we decompose the sequence of labels y0:T into observed and hidden
components:

y0:T = (y O
T , y H

T ),

where y O
T = {yt}t∈O (resp. y H

T = {yt}t∈H) is the set of observed (resp.
hidden) labels. Here, O (resp. H) denotes the set of time indices where labels
are observed (resp. hidden). We assume that O ∩ H = ∅ and O ∪ H =
{0, . . . , T}. For example, if T = 5, and labels are observed at time steps
0, 1, 2, then O = {0, 1, 2} and H = {3, 4, 5}. Thus, our observed data is
(x0:5, y0, y1, y2), and the hidden labels are (y3, y4, y5).

Here, our goal is to estimate the parameters θ of the TMC model from
(x0:T , y

O
T ), and compute the posterior distribution of the hidden labels yt, for

all t ∈ H. The likelihood of the observed data (x0:T , y
O
T ) reads

pθ(x0:T , y
O
T ) =

∑
ys, s∈H

∫
pθ(z0:T , y0:T , x0:T )dz0:T , (3.5)

and the posterior distributions, for all t ∈ H, are defined as

p(yt|x0:T , y
O
T ) =

∑
ys, s∈H\{t}

∫
p(z0:T , y0:T , x0:T )dz0:T∑

ys, s∈H
∫
p(z0:T , y0:T , x0:T )dz0:T

. (3.6)

Equations (3.5) and (3.6) involve integrals w.r.t. the latent variables. Con-
sequently, they are not exactly computable in general. To that end, we have
proposed a VI approach presented in Chapters 1 and 2. However, the algo-
rithms cannot be applied directly to this case since partial observations of the
sequence y0:T result in hidden labels. As consequence, the variational distribu-
tion has to be adapted to the case where the observed variables are (x0:T , y

O
T )
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and the latent variables are (z0:T , y
H
T ). We deal with both discrete and con-

tinuous latent variables, which is a challenging problem since the variational
distribution has to be factorized in order to be tractable, and has to be inde-
pendent of the time step t in order to have a general model able to be applied
to different contexts.

3.3. Semi-supervised Variational Inference for TMCs

In this section, we explore the semi-supervised variational inference method
applied to general TMCs. We start by the ELBO, and the formulation of
the variational distribution. Finally, we propose an algorithm to estimate the
parameters of the TMC model in the semi-supervised context.

3.3.1 ELBO for semi-supervised learning

We consider the variational distribution qϕ(z0:T , y
H
T |x0:T , y

O
T ). The ELBO of

the log-likelihood (3.5) reads

Qsemi(θ, ϕ)=−
∑
ys,
s∈H

∫
qϕ(z0:T , y

H
T |x0:T , y

O
T ) log

(
qϕ(z0:T , y

H
T |x0:T , y

O
T )

pθ(z0:T , y0:T , x0:T )

)
dz0:T .

(3.7)
Let us now discuss on the computation of (3.7). First, it is worthwhile to
remark that it does not depend on the choice of the generative model. Any
parameterized TMC model (3.1)-(3.3) can be used since pθ(z0:T , x0:T , y0:T ) is
defined by the transition distribution pθ(vt|vt−1) and the initial distribution
pθ(v0). Thus, its computation only depends on the choice of the variational
distribution qϕ(z0:T , y

H
T |x0:T , y

O
T ), which can be factorized in two different

ways.
The first factorization is given by

qϕ(z0:T , y
H
T |x0:T , y

O
T ) =q0

ϕ ×
T∏
t=1

qϕ(zt|z0:t−1, y0:t−1, x0:T , y
O
t+1:T )×

T∏
t≥1
t∈H

qϕ(yt|y0:t−1, z0:t, x0:T , y
O
t+1:T ), (3.8)

where y0:t−1 = (yH
0:t−1, y

O
0:t−1), and

q0
ϕ =

{
q(z0|x0:T , y

O
T ) if t = 0 ∈ O,

qϕ(z0|x0:T , y
O
T )qϕ(y0|z0, x0:T , y

O
T ) otherwise.
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While the second one coincides with

qϕ(z0:T , y
H
T |x0:T , y

O
T ) =q0

ϕ ×
T∏
t=1

qϕ(zt|z0:t−1, y0:t, x0:T , y
O
t+1:T )×

T∏
t≥1
t∈H

qϕ(yt|y0:t−1, z0:t−1, x0:T , y
O
t+1:T ), (3.9)

and

q0
ϕ =

{
q(z0|x0:T , y

O
T ) if t = 0 ∈ O,

qϕ(z0|y0, x0:T , y
O
T )qϕ(y0|x0:T , y

O
T ) otherwise.

Once the variational distribution is chosen, and the generative model is
fixed (i.e. the factorization of the transition distribution is fixed ), the ELBO
Qsemi(θ, ϕ) in (3.7) can be rewritten as

Qsemi(θ, ϕ) = LO(θ, ϕ) + LH(θ, ϕ), (3.10)

where

LO(θ, ϕ) =
∑
t∈O

[
Eqϕ(zt|·)(log p(xt| · ) + log p(yt| · ))−DKL(qϕ(zt| · )||pθ(zt| · ))

]
,

(3.11)

LH(θ, ϕ) =
∑
t∈H

[
Eqϕ(zt,yt|·) log p(xt| · )−DKL(qϕ(zt| · )||pθ(zt| · ))

−DKL(qϕ(yt| · )||pθ(yt| · ))
]
. (3.12)

LO and LH can be seen as the ELBOs associated to the observed and
hidden labels, respectively.

3.3.2 Learning semi-supervised TMCs

Now, it remains to compute the ELBO Qsemi(θ, ϕ) (3.10), , which is not
tractable in general. Moreover, we also deal with both discrete and continuous
latent variables. We now present how to easily approximate the ELBO in this
case.

Continuous latent variables: The ELBO Qsemi(θ, ϕ) involves computa-
tion of the expectation according to the variational distribution, qϕ(zt| · ),
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which is often intractable. We thus propose to use a Monte-Carlo approxi-
mation based on the reparameterization trick for continuous latent variables
(see Section 1.2.1) similar to the one used in the PMC model. This technique
allows us to sample from the variational distribution qϕ(zt| · ). By sampling
in this way, we obtain M differentiable samples z(m)

0:T . The M samples z(m)
0:T are

used to approximate the expectations. After this, an optimization algorithm
can be used to estimate the parameters (See example 1.2.1).

Discrete latent variables: A static semi-supervised model with discrete
latent variables has been proposed in (Kingma et al., 2014) and solves this
problem by marginalizing out y over all the labels. However, this approach
is not tractable when numerous labels are involved. In Chapter 1, we have
presented the use of discrete variables in a VI framework (see Subsection 1.2.1)
The Straight-Through Gumbel-Softmax estimator provides a way to relax dis-
crete variables, making them differentiable and amenable to gradient-based
optimization. In addition, the expectation with respect to the variational dis-
tribution qϕ(yt| · ) is evaluated with a single relaxed sample (Andriyash et al.,
2018; Jang et al., 2017).

In summary, this approach combines the (classical) reparameterization
trick for continuous latent variables and the G-S trick for discrete latent
variables, in order to obtain differentiable samples from the variational dis-
tributions qϕ(zt| · ) and qϕ(yt| · ), respectively. These samples are used to
approximate the ELBO (3.10), making it computationally feasible for opti-
mization. In addition, the DKL terms in (3.11) and (3.12) can be computed
analytically since the variational distribution is assumed to be tractable. Al-
gorithm 2 summarizes the proposed approach, where we represent the hidden
labels as a stochastic vector, and the observed labels as a one-hot vector. In
the case of S-T Gumbel-Softmax, in the forward pass, line 6 is followed by an
argmax operation to discretize the samples (see Remark 1.2.1).

Estimation of yt, for all t ∈ H: Once we have an estimate ϕ∗ of ϕ of the
model with Algorithm 2, we can approximate the hidden labels yH

0:T , for all
t ∈ H. This can be done by using either the variational approximation qϕ∗(yt |
·) or an importance sampling approach with weighting. In the variational
approximation method, we sample from the variational distribution qϕ(yt | ·),
for all t ∈ H, and obtain a complete sequence of labels ŷ0:T . Alternatively,
using the importance sampling approach, we would sample from the proposal
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Algorithm 2 General parameter estimation for TMCs in semi-supervised
classification context
Input: (x0:T , y

O
T ), the data where yt is one-hot encoded, for all t ∈ O; ϱ, the

learning rate; M the number of samples, τ the temperature parameter
Output: (θ∗, ϕ∗), sets of estimated parameters

1: Initialize the parameters θ0 and ϕ0

2: j ← 0
3: while convergence is not attained do
4: Sample z(m)

0 ∼ qϕj (z0| · ), for all 1 ≤ m ≤M .
5: Sample z(m)

t ∼ qϕj (zt|z(m)
0:· , . . . ), for all 1 ≤ m ≤M , for all 1 ≤ t ≤ T .

6: Sample yG−S
t ∼ qϕj (yt|yG−M

0:· , . . . ), using the Gumbel-Softmax trick,
for all t ∈ H, with temperature τ .

7: Evaluate the (approximated) loss Q̂semi(θj , ϕj) with the samples z(m)
0:T

and yt
G−S , for all t ∈ H.

8: Compute the derivative of the loss function ∇(θ,ϕ)Q̂semi(θ, ϕ) with the
samples z(m)

0:T and yt
G−S , for all t ∈ H.

9: Update the parameters with gradient ascent(
θ(j+1)

ϕ(j+1)

)
=
(
θj

ϕj

)
+ ϱ∇(θ,ϕ)Q̂semi(θ, ϕ)

∣∣∣
(θj ,ϕj)

(3.13)

10: j ← j + 1
11: end while
12: θ∗ ← θj

13: ϕ∗ ← ϕj
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distribution and weight the samples to obtain an approximation of the hidden
labels. This method can provide a more accurate estimation, especially when
the variational approximation is not sufficiently close to the true posterior.

3.4. Experiments

In this section, we present the practical applications and effectiveness of the
TMC model in a semi-supervised learning framework. We start by comparing
our deep TMC models with existing probabilistic and deep learning models
to highlight their advantages in terms of flexibility. Next, we detail binary
data generation experiments that will be used for model comparison. Finally,
we discuss the implementation of the semi-supervised classification task and
present the results obtained with each model variant.

3.4.1 DTMC vs existing models

We have presented a general framework for semi-supervised learning with
TMCs. It depends on the choice of the generative model, which is described
by the transition distribution pθ(vt|vt−1). It has an impact on the performance
of the model for a specific task (classification, prediction, detection, or gener-
ation). The choice of the variational distribution qϕ(z0:T , y

H
T |x0:T , y

O
T ) is also

crucial since it has an impact on the computational complexity of the model.
Different models can be obtained by choosing different factorizations of the
variational distribution. A general factorization is given by

qϕ(zt| · ) = τ(zt;ψzϕ( · )),
qϕ(yt| · ) = ς(yt;ψyϕ( · )), for t ∈ H,

where ς(yt; ·) (resp. τ(zt; ·) ) is a probability distribution on Ω (resp. prob-
ability density function on Rdz ). ψyϕ and ψzϕ are assumed to be differentiable
functions w.r.t. ϕ (remember that (·) denotes a non-specified dependence
between the variables of the model). In the Deep TMC model, the set of
parameters (θ, ϕ) of the generating and the variational distributions can be
described by deep neural networks.

Now, we present two popular models in the literature, which have been
proposed for semi-supervised classification tasks. First, we present a variation
of the Variational Sequential Labeler (Chen et al., 2018) model based on our
general model; and then we present the Semi-supervised Variational Recurrent
Neural Network model proposed by Butepage et al. (2019). Both models are
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considered as particular cases of the proposed framework and will be used in
the experimental section to compare the performance of the proposed model.

On one hand, the VSL is a semi-supervised learning model for sequential
data which has originally been proposed for the sequence labeling tasks in
natural language processing, that is based on conditional VAEs (Pagnoni et al.,
2018). We propose a variation of this model by considering a modified version
where the context depends on the previous observation xt−1 and the current
latent variable zt (more details are given in the Appendix D). We refer to
it as the modified Variational Sequential Labeler (mVSL) and the associated
generative model is given by

pθ(vt|vt−1) mVSL= pθ(xt|zt)pθ(yt|zt)pθ(zt|xt−1, zt−1).

While the associated variational distribution satisfies factorization (3.8) with

qϕ(zt|zt−1, yt−1, x0:T , y
O
t+1:T ) = qϕ(zt|x0:T ), (3.14)

qϕ(yt|yt−1, zt, x0:T , y
O
t+1:T ) = pθ(yt|zt), for all t ∈ H. (3.15)

In this case, the ELBO (3.10) reduces to

Qsemi(θ, ϕ) mVSL=
∑
t∈O

Eqϕ(zt|x0:T ) (log pθ(yt|zt)) +

T∑
t=0

[
Eqϕ(zt|x0:T ) log pθ(xt|zt)

−DKL(qϕ(zt|x0:T )||pθ(zt|xt−1, zt−1))
]
,

where x−1 = z−1 = ∅.
On the other hand, the generative model used in the SVRNN model is a

particular case of the TMC model where the latent variable zt consists of the
pair zt = (z′

t, ht). The associated transition distribution reads:

pθ(vt|vt−1) SVRNN= pθ(yt|vt−1)pθ(zt|yt, vt−1)pθ(xt|yt, zt, vt−1),

where

pθ(yt|vt−1) = pθ(yt|ht−1),
pθ(zt|yt, vt−1) = δfθ(z′

t,yt,xt,ht−1)(ht)× pθ(z′
t|yt, ht−1),

pθ(xt|yt, zt, vt−1) = pθ(xt|yt, z′
t, ht−1),
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and where fθ is a deterministic, i.e. the variable z′
t is a stochastic latent variable

and ht is deterministically given by ht = fθ(z′
t, xt, yt, ht−1), where fθ is a

function parameterized by a RNN, for example. The variational distribution
qϕ(z0:T , y

H
T | x0:T , y

O
T ) satisfies the factorization (3.9) with

q(z′
t|zt−1, yt, x0:T , y

O
t+1:T ) = qϕ(z′

t|xt, yt, ht−1),
q(yt|yt−1, z

′
t−1, x0:T , y

O
t+1:T ) = qϕ(yt|xt, ht−1).

The ELBO of the SVRNN model is given by

Qsemi(θ, ϕ) SVRNN= LO(θ, ϕ) + LH(θ, ϕ) + JO(θ, ϕ),

where

LO(θ, φ) =
∑
t∈O

Eqϕ(z′
t|xt,yt,ht−1) log pθ(xt|yt, z′

t, ht−1) + log(pθ(yt|ht−1))

−DKL(qϕ(z′
t|xt, yt, ht−1)||p(z′

t|yt, ht−1)), (3.16)
LH(θ, φ) =

∑
t∈H

Eqϕ(z′
t,yt|xt,ht−1) log pθ(xt|yt, z′

t, ht−1)

−DKL(qϕ(z′
t|xt, yt, ht−1))

−DKL(qϕ(yt|xt, ht−1)||pθ(yt|ht−1)), (3.17)
JO(θ, ϕ) =

∑
t∈O

Ep̃(yt,xt) log(pθ(yt|ht−1)qϕ(yt|xt, ht−1)), (3.18)

where p̃(yt, xt), for t ∈ O, denotes the empirical distribution of the data. Their
final ELBO does not coincide with (3.10). The reason why is that they derive it
from the static case (Jang et al., 2017) and add a penalization term JO(θ, ϕ)
that encourages pθ(yt|ht−1) and qϕ(yt|xt, ht−1) to be close to the empirical
distribution of the data. Since ht is deterministic given (z′

t, xt, yt, ht−1), its
posterior distribution becomes trivial, and thus there is no need to consider a
variational distribution for it.

3.4.2 Binary data generation

We used the Binary Shape Database 1. and focused on both cattle-type and
camel-type images. To transform these images into a 1-D signal ( x0:T ),
we used a Hilbert-Peano filling curve (Sagan, 2012). To evaluate the models
presented in Section 3.4.1, we introduced non-linear blurring to highlight their

1http://vision.lems.brown.edu/content/available-software-and-databases

http://vision.lems.brown.edu/content/available-software-and-databases
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ability to learn and correct for signal corruption. More precisely, we generated
an artificial noise for the cattle-type by generating xt according to

xt|yt, xt−1 ∼ N
(

sin(ayt + xt−1);σ2
)
, (3.19)

where aω1 = 0 , aω2 = 0.4 and σ2 = 0.25. We now consider the camel-
type image which is corrupted with a stationary multiplicative noise (non-
elementary noise) given by

xt|yt, zt ∼ N
(
ayt ; b2

yt

)
∗ zt, (3.20)

where zt ∼ N (0, 1), aω1 = 0, aω2 = 0.5 and bω1 = bω2 = 0.2.
The generated images are presented in Figure 3.1(a) and Figure 3.2(a),

respectively. Additionally, we randomly selected pixels yt ∈ y O
T , with a per-

centage of the pixels being labeled, and the rest considered unobserved or
hidden (e.g. Figure 3.1(c) and Figure 3.2(c)).

3.4.3 Semi-supervised binary image segmentation

Our goal is to recover the segmentation of a binary image (Ω = {ω1, ω2})
from the noisy observations x0:T when a partial segmentation y O

T is available.
In particular, ϑ(yt; ·) (resp. ς(yt; ·)) is set as a Bernoulli distribution with
parameters ρpy (resp. ρqy). As for the distribution ζ(xt; ·) (resp. η(zt; ·) and
τ(zt; ·)), we set it as a Gaussian distribution with parameters [µxθ ,diag(σxθ )]
(resp. [µzθ,diag(σzθ)] and [µqz, diag(σqz)]), where diag(.) denotes the diagonal
matrix deduced from the values of σ·,t.

In our simulations, we consider three particular cases of this deep TMC
model which read as follows:

pθ(vt|vt−1) TMC−I= pθ(yt|yt−1)pθ(zt|zt−1)pθ(xt|yt, zt), (3.21)

pθ(vt|vt−1) TMC−II= pθ(yt|yt−1, xt−1)pθ(zt|zt−1)pθ(xt|yt, zt), (3.22)

pθ(vt|vt−1) TMC−III= pθ(yt|yt−1, xt−1)pθ(zt|zt−1)pθ(xt|yt, zt, xt−1). (3.23)

The TMC-I (3.21) model assumes a Markovian distribution for the labels and
the latent variables aim at learning the distribution of the noise given the
label and the latent variable. In the TMC-II (3.22), and TMC-III (3.23)
models the Markovianity assumption for the labels is relaxed. The TMC-III
model also considers the previous observation xt−1 as an additional input to
the distribution of the observation xt.
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In order to capture temporal dependencies in the input data and to have an
efficient computation of the variational distribution for the DTMC models, we
use a deterministic function to generate h̃t which takes as input (xt, yt, zt, h̃t−1).
After this, the variational distribution qϕ(z0:T , y

H
T | x0:T , y

O
T ) satisfies the fac-

torization (3.9) with qϕ(zt|xt, yt, h̃t−1) and qϕ(yt|xt, h̃t−1). In the TMC-I case,
the parameters are given by:

[µxθ , σxθ ] = ψxθ (yt, zt),
[µzθ, σzθ ] = ψzθ(zt−1),
ρpy = ψyθ (yt−1),
[µqz, σqz ] = ψzϕ(xt, yt, h̃t−1),
ρqy = ψyϕ(xt, h̃t−1).

In the TMC-II and TMC-III cases, the parameters are given in the same way,
except that ψxθ and ψyϕ take xt−1 as an additional input.

3.4.4 Results

Each model was trained using stochastic gradient descent to optimize the
negative associated ELBO, with the Adam optimizer Kingma & Ba (2015).
The neural networks ψ(·)

(·) were designed with two hidden layers using rectified
linear units and appropriate outputs, such as linear, softplus, and sigmoid. To
ensure a fair comparison, we matched the total number of parameters of all
models to be approximately equal. As a result, the number of hidden units
for each hidden layer differs for each model. In fact, the SVRNN, TMC-I,
TMC-II, TMC-III, and VLS models have 14, 25, 25, 24, and 30 hidden units,
respectively. We used an RNN cell to generate h̃t (resp. ht) for the DTMC
(resp. SVRNN) models. In the VLS model, we used the parameterization
approach for qϕ(zt|x0:T ) presented in Chen et al. (2018), which involves using
an RNN cell and with a regularization term equal to 0, 1. We also added a
penalization term used in the SVRNN to the ELBO of the TMC-I, TMC-II,
and TMC-III models that was presented in Section 3.4.1.

The performance of the models is evaluated in terms of the error rate (ER)
of the reconstruction of the unobserved pixels, which are estimated by using
the variational approximation approach. Table 3.1 presents the average of the
error rates obtained for reconstructing unobserved pixels on all the name-type
images. The notation name % is used to indicate the specific image set and the
percentage of unobserved labels in the image. As shown in the table, the deep
TMC models consistently outperform the VSL and the SVRNN, achieving a
lower average error rate for each image set.
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Model Data sets and % of unlabeled pixels
Cattle 40% Cattle 60% Cammel 60%

VSL 20,59% 22,38% 18,82%
SVRNN 14,92% 20,12% 16,80%
DTMC-I 3,50% 6,44% 4,50%
DTMC-II 2,95% 5,53% 4,25%
DTMC-III 3,21% 6,09% 4,59%

Table 3.1: Average error rates of the reconstruction of the unobserved pixels
on different sets of images with different percentages of unobserved pixels.

Moreover, our algorithm achieves superior performance for both noises.
Figure 3.1 (resp. Figure 3.2) displays the performance of our proposed algo-
rithms compared to the VSL and the SVRNN on a cattle-type (resp. camel-
type) image with 60% (resp. 60%) of unobserved labels. In particular, we
observe that in the VSL model, the error is mainly due to the misclassification
of the black pixels (Figure 3.1(d) and Figure 3.2(d)). While for the SVRNN,
the error results from the misclassification of the two classes (Figure 3.1(e)
and Figure 3.2(e)).

(a) x0:T (b) x0:T (c) H - 40% (d) VLS

(e) SVRNN (f) d-TMC-I (g) d-TMC-II (h) d-TMC-III

Figure 3.1: Semi-supervised image segmentation with d-TMC models with
40% of unlabeled pixels.
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(a) x0:T (b) x0:T (c) H - 60% (d) VLS

(e) SVRNN (f) d-TMC-I (g) d-TMC-II (h) d-TMC-III

Figure 3.2: Semi-supervised image segmentation with d-TMC models with
60% of unlabeled pixels.

3.5. Conclusions

In this chapter, we presented a semi-supervised latent variable generative
model. By exploring the TMC model, we have illustrated the feasibility of
creating a diverse set of generative models based on the VI. This approach is
particularly advantageous when dealing with data sets in which only a subset of
the observations are labeled. The model we propose is capable of learning and
representing a wide range of data features. It can effectively handle discrete
labels and continuous feature observations over time, providing capabilities to
classify, predict labels, and generate new feature sequences. This versatility
makes the model particularly suitable for complex temporal data scenarios.
The results of our experiments support the effectiveness of our approach in
achieving good performance in the task of binary image segmentation.
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4.1. Introduction

In the previous Chapters 2 and 3, we have introduced the PMC and TMC
models as frameworks for generative models, supervised and semi-supervised
classification. In this chapter, we consider the problem of unsupervised clas-
sification where only the sequence of observations x0:T is observed, and that
we want to estimate the sequence of hidden labels y0:T . We recall that the
estimation of yt from x0:T , for all t, 0 ≤ t ≤ T , relies on the unknown posterior
distribution p(yt|x0:T ),

pθ(yt|x0:T ) =
∑
y0:t−1,yt+1:T pθ(x0:T , y0:T )∑

y0:T pθ(x0:T , y0:T ) ,

which can be derived from the distribution pθ(y0:T , x0:T ) or pθ(z0:T , y0:T , x0:T )
since pθ(y0:T , x0:T ) =

∫
pθ(z0:T , y0:T , x0:T )dz0:T . Thus, we continue to consider

the PMC and TMC models, where their associated conditional distributions
can be parameterized by universal approximators (DNNs) under the constraint
that y0:T is an interpretable hidden process. As we will see, this particular
constraint requires us to review previous techniques to include the learning of
an interpretable label.

This chapter is organized in three parts. First, we give up the latent vari-
able zt and consider a PMC model (4.1) without any latent variable. We
directly parameterize the joint distribution pθ(y0:T , x0:T ) of a PMC. We con-
tinue considering a DNN parameterization and an ad hoc procedure based on
a pretraining of DNNs which aims at transforming a simple and interpretable
model such as (1.6) into a complex probabilistic architecture while keeping
this interpretability constraint. We show that it is possible to adapt exist-
ing Bayesian inference algorithms to our models and the VI framework is not
necessary in the PMC case.

Next, we reintroduce the continuous latent variables z0:T , and propose a
modified VI framework to estimate the parameters of the model which takes
into account the interpretability of y0:T and also the different roles of y0:T
and z0:T . We also propose a Sequential Monte Carlo algorithm (Doucet &
Johansen, 2009) based on the previous variational framework to obtain the
final estimates of yt. For each model, we perform simulations to evaluate to
what extent our generalized models lead to a better estimation of the hidden
states yt. Most of the simulations on synthetic and real data are run in the
context of unsupervised image segmentation (as in Chapter 3).
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4.2. PMCs for unsupervised classification

In this section, we do not consider the latent variable zt in order to build a
solution on a model without latent variables, which is already challenging due
to the absence of the labels yt associated to the observations xt. We adapt the
PMC model discussed in Chapter 2 to the unsupervised classification problem,
where the pair (zt, xt) is replaced by (yt, xt), where yt is a discrete r.v. This
modification addresses the need for interpretable models.

The PMC model reads

pθ(y0:T , x0:T ) = pθ(y0)
T∏
t=1

pθ(yt, xt|yt−1, xt−1), (4.1)

where the factorization of the transition distribution is given by

pθ(yt, xt|yt−1, xt−1) = pθ(yt|yt−1, xt−1)pθ(xt|yt−1:t, xt−1). (4.2)

We also define the Semi Pairwise Markov Chain (SPMC), a particular
instance of the PMC model, where the observation xt does not depend on
yt−1, given (yt, xt−1), i.e.

pθ(yt, xt|yt−1, xt−1) = pθ(yt|yt−1, xt−1)pθ(xt|yt, xt−1). (4.3)

This model is particularly interesting in the context of unsupervised classifica-
tion, where the interpretability problem may be easier. Figure 4.1 illustrates
the graphical representation of the PMC model and its particular instances
that we consider in this section, i.e. the SPMC, and the HMC models.

ytyt−1

xtxt−1

(a) HMC

xtxt−1

ytyt−1

xtxt−1

(b) SPMC

ytyt−1

xtxt−1

(c) PMC

Figure 4.1: Graphical representations of the HMC, SPMC, and PMC models.

We revisit the general parameterization of the PMC model introduced in
Chapter 2 to adapt it to the unsupervised classification problem. We param-
eterize the conditional distributions in (4.2) as

pθ(yt|yt−1, xt−1) = ϑ(yt;ψyθ (yt−1, xt−1)), (4.4)
pθ(xt|yt−1:t, xt−1) = ζ(xt;ψxθ (yt−1:t, xt−1)). (4.5)
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Example 4.2.1. Let us show that this general parameterization includes the
classical HMC with independent Gaussian noise (HMC-IN). Let us assume
that Ω = {ω1, ω2} and xt ∈ R. In this case, the HMC-IN model can be
described as

ψyθ (yt−1, xt−1, zt) = sigm(byt−1), (4.6)
ψxθ (yt) =

[
dyt , σyt

]
, (4.7)

ϑ(yt; ρ) = Ber (yt; ρ) , (4.8)
ζ(xt; s = [µ, σ]) = N (xt;µ, σ2), (4.9)

Indeed, (4.6)- (4.7) only depend on yt−1 and on yt, respectively. Thus, we
have pθ(yt = ω1|yt−1 = ωi) = sigm(bωi) and pθ(xt|yt = ωj) = N (xt; dωj ;σ2

ωj
).

Finally, the set of parameters is given by θ = (bωi , dωj , σωj |(ωi, ωj) ∈ Ω × Ω).
As a further illustrative example in the binary case, it is possible to start from
this particular parameterization of HMCs to derive a linear and Gaussian PMC
model in which we introduce dependencies on xt−1 and yt−1. In this case, ϑ
and ζ are unchanged but ψyθ and ψxθ now read as

ψyθ (yt−1, xt−1) = sigm
(
ayt−1xt−1 + byt−1

)
, (4.10)

ψxθ (yt−1:t, xt−1) =
[
cyt−1,ytxt−1 + dyt−1,yt ; σyt,yt−1

]
. (4.11)

The set of parameters is now given by θ = (aωi , bωi , cωj ,ωi , dωj ,ωi , σωj ,ωi |(ωj , ωi) ∈
Ω2). As we will see later, these models play a critical role in the construction
of parameterization based on DNNs. Indeed, despite their simple form, they
generally provide an interpretable classification.

We now show that under this framework it is possible to derive an unsu-
pervised estimation algorithm which approximates the ML estimate of θ, no
matter the choice of the parameterization ψyθ and ψxθ . In particular, we use a
direct ML approach rather than an EM one (see Remark 4.2.1) and introduce a
pretraining approach for deep parameterizations. This pretraining approach is
a novel contribution that will be detailed in the next sections. Once θ has been
estimated, we resort to the classical estimation of the posterior distributions
pθ(yt|x0:T ).

4.2.1 Bayesian inference for PMCs

Estimation of θ

Since the hidden variable yt is discrete, the likelihood pθ(x0:T ) can be computed
exactly. This accessibility is a key point in the estimation of θ. Here, the
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VI method is not necessary to approximate the likelihood (equivalently, the
optimal variational distribution is available). Given the differentiability of the
functions ψyθ , ψxθ , ϑ, and ζ, we can propose a gradient ascent method on the
likelihood pθ(x0:T ) to approximate the ML estimate of θ. This gradient ascent
method is based on the sequential computation of αθ,t(yt) = pθ(yt, x0:t), for
all t, 0 ≤ t ≤ T , from which we deduce the likelihood

pθ(x0:T ) =
∑
yT

αθ,T (yT ). (4.12)

Based on the Markovian property of (4.1) and on the general parameterization
(4.4)-(4.5), the coefficients αθ,T (yT ) can be computed recursively from (Pieczyn-
ski, 2003) as

αθ,t(yt) =
∑
yt−1

αθ,t−1(yt−1)ϑ(yt;ψyθ (yt−1, xt−1))ζ(xt;ψxθ (yt−1:t, xt−1)). (4.13)

Consequently, the gradient of the likelihood pθ(x0:T ) (or equivalently that of
the log-likelihood) w.r.t. θ can be deduced from that of αθ,t, which is itself se-
quentially computable by using the decomposition (4.13) because p(yt, x0:t) =∑
yt−1 p(yt−1:t, x0:t) = ∑

yt−1 p(yt−1:t, x0:t−1)p(yt, xt | yt−1, xt−1) This sequen-
tial structure has the advantage that numerical auto-differentiation methods
can be used to compute such gradients in practice (Paszke et al., 2019). The
estimation of θ can thus be deduced from an iterative gradient ascent method
based on a learning rate ϵ and, for example, on the update

θ(j+1) = θ(j) + ϵ∇θ log pθ(x0:T )
∣∣∣
θ=θ(j)

. (4.14)

The unsupervised estimation of θ is summarized in Algorithm 3. The gradients
can be computed automatically through auto-differentiation tools, e.g. JAX
by Bradbury et al. (2018).

Remark 4.2.1. Generally, the parameter estimation procedure for a proba-
bilistic model with hidden r.v. is based on the EM algorithm (Dempster et al.,
1977) (see Algorithm 9 in Appendix A). It relies on the computation of

Q(θ, θ(j)) = Ep
θ(j) (y0:T |x0:T )

(
log pθ(y0:T , x0:T )

)
followed by the maximization of Q(θ, θ(j)) w.r.t. θ. However, for general pa-
rameterizations (4.4)-(4.5), the maximization step cannot be computed ana-
lytically. In this case, it is possible to use a gradient-EM approach to replace
the maximization step, but it is then strictly equivalent and computationally
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more demanding than computing the gradient of the log-likelihood (Xu &
Jordan, 1996; Balakrishnan et al., 2017) as we propose in (4.14). Finally, for
particular parameterizations for which the maximization step is computable,
the comparison between these two approaches is an open question and is out
of scope of this thesis.

Algorithm 3 Unsupervised estimation of θ in general PMC models.
Input: A realization x0:T , a set of estimated parameters θ∗

Output: θ∗, a set of estimated parameters
1: j = 0
2: while convergence of log pθ(j)(x0:T ) is not attained do
3: Compute logαθ(j),t(yt) and ∇θ logαθ(j),t(yt)

∣∣∣
θ=θ(j)

, for all yt ∈ Ω, for
all 0 ≤ t ≤ T , with (4.13)

4: Compute log pθ(j)(x0:T ) and ∇θ log pθ(j)(x0:T )
∣∣∣
θ=θ(j)

, with (4.12)

5: Set θ(j+1) = θ(j) + ϵ∇θ log pθ(x0:T )
∣∣∣
θ=θ(j)

6: j ← j + 1
7: end while
8: θ∗ ← θ(j)

Estimation of yt

Once we have obtained an estimate θ∗ of θ, it remains to compute pθ∗(yt|x0:T ),
for all t. Since we deal with particular PMCs, it can be done by following the
steps of Pieczynski (2003), i.e. by using the Markovian property of (4.1) and
by introducing the backward coefficients βθ∗,t(yt) = pθ∗(xt+1:T |yt, xt), for all
t, with βθ∗,T (yT ) = 1. These coefficients can be computed sequentially from

βθ∗,t−1(yt−1) =
∑
yt

βθ∗,t(yt)ϑ(yt;ψyθ∗(yt−1, xt−1))ζ(xt;ψxθ∗(yt−1:t, xt−1)).

(4.15)
Thus, we deduce

pθ∗(yt−1:t|x0:T ) ∝ αθ∗,t−1(yt−1)× βθ∗,t(yt)× ϑ(yt;ψyθ∗(yt−1, xt−1))×
ζ(xt;ψxθ∗(yt−1:t, xt−1)), (4.16)

pθ∗(yt|x0:T ) =
∑
yt−1

pθ∗(yt−1:t|x0:T ). (4.17)

The computation of the MAP estimate of yt is summarized in Algorithm 4.
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Algorithm 4 Unsupervised estimation of yt in general PMC models.
Input: A realization x0:T , a set of estimated parameters θ∗

Output: ŷ0:T , the estimated hidden r.v.
1: Compute αθ∗,t(yt), for all yt ∈ Ω, for all 0 ≤ t ≤ T , with (4.13)
2: Compute βθ∗,t(yt), for all yt ∈ Ω, for all 0 ≤ t ≤ T , with (4.15)
3: Compute pθ∗(yt−1:t|x0:T ), for all yt−1:t ∈ Ω × Ω, for all 0 ≤ t ≤ T , with

(4.16)
4: Compute ŷt = arg max pθ∗(yt|x0:T ), for all 0 ≤ t ≤ T , with (4.17)

4.2.2 Deep PMCs for unsupervised classification

We consider the particular parameterization ψyθ and ψxθ of the distributions
ϑ and ζ, respectively, where ψyθ and ψxθ are the outputs of two DNNs with
(yt−1, xt−1) and (yt−1:t, xt−1) as inputs, respectively (as in Section 2.3.1). Note
that a unique DNN is used for ψyθ (resp. ψxθ ) overtime.

Since ψyθ and ψxθ are differentiable w.r.t. θ and their gradients are com-
putable from the backpropagation algorithm (Rumelhart et al., 1986), Algo-
rithm 3 can be directly applied to estimate θ. However, due to the large
number of parameters of these architectures, some problems tend to appear
in practice. In particular, a random initialization of θ can lead to convergence
issues for the optimization of log pθ(x0:T ). More importantly, the final r.v.
yt learned by such a model may no longer be interpretable, i.e. it is not en-
sured that yt coincides with the original class associated to xt. In other words,
a direct application of Algorithm 3 tends to return a final model which gives
poorer results than the simple models described in Section 4.2 in terms of clas-
sification, as it considers yt as a latent variable rather than an interpretable
label.

We propose a two-step solution based on a constrained output layer and
on a pretraining which aims at initializing properly θ. This solution relies on
a simple model such as the linear and Gaussian PMC described in Section
4.2 where the linear functions ψyθ and ψxθ in (4.10)-(4.11) can be seen as the
output layer of an elementary DNN with no hidden layer. Rather than directly
training the DNN associated to ψyθ and ψxθ , we first estimate the linear PMC
model (4.10)-(4.11) with Algorithm 3 before adding intermediate layers. These
layers are next pretrained from the classification obtained with the elementary
model, and are finally finely trained with our ML approach.
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Constrained output layer

The main idea of our constrained training step is to make coincide a subset of
θ with the parameters of an elementary linear (equivalently a non-deep) PMC
model (4.10)-(4.11) which is assumed to provide an interpretable classifica-
tion. In other words, we first estimate an elementary linear PMC model with
Algorithm 3, and we denote the set of associated parameters θfr, in the sense
that these parameters are next frozen and will not be further updated. We
next consider this linear layer as the output layer of a DNN where the other
parameters are denoted θufr, which are unfrozen in the sense that they have
not been estimated yet.

yt−1

xt−1

yt−1xt−1

l11 l21

∑
κ

γ1

γ2
γ3

θufr θfr

l12

l1n

l22

l2n

l31

l32

l33

Figure 4.2: DNN architecture with constrained output layer for ψyθ with two
hidden layers. Σ = ψyθ (yt−1, xt−1, yt−1xt−1) = sigm(γ1l

3
1 + γ2l

3
2 + γ3l

3
3 + κ),

where the last layer parameters {γ1, γ2, γ3, κ} are frozen to γ1 = bω2−bω1 , γ2 =
aω2 − aω1 , γ3 = aω1 and κ = bω1 .
The parameters θfr are related to the output layer which computes the func-
tion ψyθ of the linear PMC model (4.10). Due to the one-hot encoding of the
discrete r.v. yt−1 (yt−1 = ω1 ↔ yt−1 = 0 and yt−1 = ω2 ↔ yt−1 = 1), this
parameterization is equivalent to that of (4.10) up to the given correspon-
dence between θfr = (γ1, γ2, γ3, κ) and (aω1 , aω2 , bω1 , bω2). When the number
of classes C increases, the size of the first and last layer increases due to the
one-hot encoding of yt−1. Linear activation functions are used in the last
hidden layer in red.
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Figure 4.2 describes an example of a constrained DNN architecture for the
function ψyθ when Ω = {ω1, ω2} and Rdx = R, without loss of generality.

Pretraining by backpropagation

It remains to estimate the parameters θufr of the intermediate hidden layers.
The idea is to initialize them in a such way that the initial DPMC coincides
with the elementary one; in other words, and due to the previous step, the
output of the newly added hidden layers aims at coinciding with the identity
function after the pretraining. After initializing randomly θufr, our pretraining
step aims at minimizing cost functions Cψy

θ
and Cψx

θ
which involve the pre-

classification ŷpre
0:T . Typically, the cost function Cψy

θ
is the averaged overtime

cross-entropy between the output of the DNN ψyθ and ŷpre
t and Cψx

θ
is the mean

square error between the output of ψxθ and the parameters of the elementary
linear models associated to ŷpre

t−1:t (see Equation (4.11)). The minimization
of these cost functions w.r.t. θufr is done with the backpropagation algorithm.
Finally, once θufr has been properly initialized, it is fine-tuned with Algorithm 3
which approximates the ML estimate of θ. Algorithm 5 summarizes the two
estimation steps specific to the DNN parameterization.

Remark 4.2.2. In order to estimate the parameters of our deep PMC, we
have used a reverse approach w.r.t. the pretraining approaches proposed at the
beginning of 2010s to help supervised learning in DNN (Erhan et al., 2010). In-
deed, due to the large number of parameters in these architectures, (Mohamed
et al., 2012; Glorot & Bengio, 2010; Hinton et al., 2012) have suggested to first
pretrain in an unsupervised way a DNN from a generative probabilistic model
which shares common parameters with the original DNN (e.g. a Deep Belief
Network). The backpropagation algorithm for supervised estimation is next
initialized with the (approximated) ML estimate of this probabilistic model.
Here, we have started to pretrain our architecture in a supervised way with a
pre-classification and next embedded it in our original probabilistic model in
which we compute an approximation of the ML estimate.

4.2.3 Simulations

We illustrate the performance of our models with the same binary image seg-
mentation problem as in Chapter 3. In order to highlight our unsupervised
approach, we consider the cattle-type images of the Binary Shape Database.
The images are transformed into a 1-D signal x0:T with a Hilbert-Peano fill-
ing curve (Sagan, 2012). They are blurred with a noise which exhibits non-
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Algorithm 5 A general estimation algorithm for deep parameterization of
PMC models.
Input: x0:T , the observation
Output: ˆy0:T , the final classification

Linear model: initialization of the output layer of ψyθ and ψxθ (§
4.2.2)

1: Initialize randomly θ(0)
fr

2: Estimate θ∗
fr using Algorithm 3 with θ

(0)
fr

3: Estimate ŷpre
0:T using Algorithm 4 with θ∗

fr
Pretraining of θufr (§ 4.2.2)

4: Compute θ∗
ufr using Algorithm 3 with θ(0) = (θ∗

fr, θ
(0)
ufr) (θ∗

fr is not updated)
5: Compute ŷ0:T using Algorithm 4 with θ∗ = (θ∗

fr, θ
∗
ufr)

Complete deep model: fine-tuning
6: Compute θ∗

ufr using Algorithm 3 with θ(0) = (θ∗
fr, θ

(0)
ufr) (θ∗

fr is not updated)
7: Compute ŷ0:T using Algorithm 4 with θ∗ = (θ∗

fr, θ
∗
ufr)

linearities to highlight the ability of the generalized PMC models to learn such
a signal corruption generating xt according to (3.19), with aω1 = 0, σ2 = 0.25
and aω2 is a varying parameter (see Subsection 3.4.2).

We next focus on two kinds of parameterizations of distributions ϑ and ζ
which coincide with (4.8)-(4.9). Each parameterization is applied to the SPMC
and PMC models (see Figure 4.1). First, we consider a linear parameterization
(SPMC and PMC) based on (4.8)-(4.11). The second parameterization is a
deep one (DSPMC and DPMC) and relies on one (unfrozen) hidden layer with
100 neurons and the ReLU activation function. For this architecture, we apply
the training constraints discussed in Paragraph 4.2.2.

In Figure 4.3a, we display the averaged error rates for each model over all
the selected images as a function of aω2 . Figure 4.3b displays the results of the
classifications for a particular image of the database. As it can be observed,
although the same Gaussian distribution ζ is used both models, the general
PMC framework that we introduced leads to a great improvement of the el-
ementary HMC model. Next, the deep parameterized models (DPMC and
DSPMC) are the most accurate models and are able to capture the complex-
ity by improving the results of their non-deep counterpart. More importantly,
note that the gain obtained with our DPMC and DSPMC models does not
require any further modeling effort in the sense that they are a particular
parameterization in our general framework.
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(a) Error rate from the unsupervised segmentations with a noise described by (3.19).
Results are averaged on all the cattle-type images from the database.
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17.6% 13.3% 13.5% 4.2% 5.8%

(b) Selected classifications for aω2 = 0.4 (signaled by the red vertical line in Fig-
ure 4.3a). Error rates appear below the images.

Figure 4.3: Unsupervised image segmentation with PMC models. Figure 4.3a
displays averaged results while Figure 4.3b describes a particular classification.

4.3. TMCs for unsupervised classification

In this section, we extend the integration of a third latent process into our
PMC model. This third continuous latent process z0:T can be used to im-
plicitly estimate the nature of the distributions ϑ and ζ of our PMC or to
model and learn the continuous non-stationarity of the process (y0:T , x0:T )
since pθ(y0:T , x0:T ) =

∫
pθ(z0:T )pθ(y0:T , x0:T |z0:T )dz0:T . However, this integra-

tion poses computational challenges because a direct computation of the inte-
grals w.r.t. zt in (4.13) and (4.15) is intractable. Consequently, the likelihood
and posterior distributions, pθ(x0:T ) and pθ(yt|x0:T ) are no longer exactly com-
putable in general. Here, we derive a new estimation algorithm based on VI
(see Section 1.2.1), where the ELBO is a particular case of the semi-supervised
case presented in Chapter 3. Moreover, a part of the variational distribution qϕ
can be computed explicitly, which allows adjustments to be made in the model
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learning phase. We also propose a modified version of the ELBO, which im-
proves the interpretability of the labels by distinguishing them from the latent
variables.

4.3.1 Variational Inference for general TMCs

In Chapter 3, we have introduced a VI framework for the case where the labels
are partially observed. In this section, we consider the unsupervised case where
all the labels are unobserved. Thus, the ELBO is simpler than in the semi-
supervised case (3.7), and a part of the optimal variational distribution can
be computed exactly (Proposition 4.3.1).

Let us recall the notation vt = (yt, zt, xt) for the triplet. The TMC (1.8)
can be seen as a PMC (4.4)-(4.5) in augmented dimension, i.e. a PMC where
(z0:T , y0:T ) plays the role of the hidden process. If z0:T were a discrete pro-
cess, it would be possible to apply directly the Bayesian inference framework
developed in Section 4.2.1. However, the continuous nature of zt involves
intractable integrals to compute sequentially the equivalent of (4.13), and
therefore pθ(x0:T ). To overcome this issue, we introduce a variational distri-
bution qϕ(z0:T , y0:T |x0:T ), and deduce the ELBO of the TMC model for the
unsupervised case:

log pθ(x0:T ) ≥
∑
y0:T

∫
qϕ(z0:T , y0:T |x0:T ) log

(
pθ(z0:T , y0:T , x0:T )
qϕ(z0:T , y0:T |x0:T )

)
dz0:T

= Qunsup(θ, ϕ).

In the context of TMCs with a discrete and continuous latent process,
Proposition 4.3.1 exploits the observation that

pθ(y0:T |z0:T , x0:T ) = pθ(yT |z0:T , x0:T )
T∏
t=1

pθ(yt−1|yt, z0:T , x0:T ) (4.18)

is computable (see Appendix E) and shows that it is optimal (in the sense of
the value of the ELBO) to restrict the choice of qϕ(z0:T , y0:T |x0:T ) to that of
qϕ(z0:T |x0:T ).

Proposition 4.3.1. Let us denote Qunsup(θ, ϕ) and Qopt
unsup(θ, ϕ), the ELBOs

associated to the variational distributions

qϕ(z0:T , y0:T |x0:T ) = qϕ(z0:T |x0:T )qϕ(y0:T |z0:T , x0:T )
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and
qopt
ϕ (z0:T , y0:T |x0:T ) = qϕ(z0:T |x0:T )pθ(y0:T |z0:T , x0:T ),

respectively.
Then, for any (θ, ϕ), we have

log pθ(x0:T ) ≥ Qopt
unsup(θ, ϕ) ≥ Qunsup(θ, ϕ), (4.19)

where

Qopt
unsup(θ, ϕ) = Qopt

0 (θ, ϕ) +
T∑
t=1

Qopt
t−1,t(θ, ϕ) +Qopt

0:T (θ, ϕ), (4.20)

and where

Qopt
0 (θ, ϕ) =

∫ ∑
y0

qϕ(z0:T |x0:T )pθ(y0|z0:T , x0:T ) log pθ(v0)dz0:T , (4.21)

Qopt
t−1,t(θ, ϕ) =

∫ ∑
yt−1:t

qϕ(z0:T |x0:T )pθ(yt−1:t|z0:T , x0:T )×

log
(

pθ(vt|vt−1)
pθ(yt−1|yt, z0:T , x0:T )qϕ(z0:T |x0:T )

)
dz0:T , (4.22)

Qopt
0:T (θ, ϕ) = −

∫ ∑
yT

qϕ(z0:T |x0:T )pθ(yT |z0:T , x0:T ) log pθ(yT |z0:T , xt)dz0:T .

(4.23)

A proof of Proposition 4.3.1 is given in Appendix E. The practical com-
putation of these integrals will be described later with the modified objective
function.

4.3.2 Estimation algorithm for TMCs

Following the approach that we have developed for PMC models, we extend
our parameterization framework to the distributions of TMC models. As
a direct extension of Section 4.2, functions ψyθ and ψxθ can now depend on
zt−1:t. We present a particular parameterization of TMCs models derived
from the general one introduced in Section 3.2.1. The transition distribution
is factorized as follows:

pθ(vt|vt−1) = pθ(zt|vt−1)pθ(yt|zt, vt−1)pθ(xt|yt, zt, vt−1). (4.24)
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Thus, the parameterization of the TMC model given by Equations (3.1)-(3.3)
is now given by

pθ(zt|vt−1) = η (zt;ψzθ(vt−1)) , (4.25)
pθ(yt|zt, vt−1) = ϑ

(
yt;ψyθ (zt, vt−1)

)
, (4.26)

pθ(xt|yt, zt, vt−1) = ζ (xt;ψxθ (yt, zt, vt−1)) . (4.27)

Remark 4.3.1. If ψzθ does not depend on vt−1, and if ψyθ and ψxθ are inde-
pendent of zt−1:t, the distribution pθ(y0:T , x0:T ) coincides with that of a PMC
built from (4.4)- (4.5).

Joint estimation of θ and ϕ

Classical variational inference algorithms aim at maximizing the ELBO (4.20)
when the objective is to estimate the parameters of a generative model, i.e. a
model in which we do not focus on the interpretability of the hidden r.v. but
rather on the modeling power of the distribution pθ(x0:T ). Consequently, in our
case, a direct maximization of (4.20) does not guarantee the interpretability
of the r.v. y0:T . The problem is all the more critical that our hidden process
is split into an interpretable one, y0:T , and an auxiliary one, z0:T . To that
end, we propose an adaptation and an interpretation to the sequential case of
two techniques introduced in the machine learning community (Higgins et al.,
2017; Kingma et al., 2014). The first one relies on a reinterpretation of the
ELBO (4.20) as the sum of a reconstruction and a KLD terms; this last one
is next penalized. The second technique consists in adding a penalizing term
to the resulting ELBO which aims at strengthening the distinct role of y0:T
and of z0:T and exploiting the result of previous classifications obtained with
an available model.

The β-ELBO

We first start with an alternative decomposition of the ELBO (4.20).

Corollary 1. Let us factorize

pθ(z0:T , y0:T , x0:T ) = pθ(z0:T , y0:T |x0:T )p̃θ(x0:T |z0:T , y0:T )
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with

p̃θ(x0:T |z0:T , y0:T ) = pθ(x0|y0, z0)
T∏
t=1

ζ (xt;ψxθ (yt, zt, vt−1)) , (4.28)

pθ(z0:T , y0:T |x0:T ) = pθ(y0, z0)
T∏
t=1

η (zt;ψzθ(vt−1))ϑ
(
yt;ψyθ (zt, vt−1)

)
. (4.29)

Then
Qopt

unsup(θ, ϕ) = L1(θ, ϕ) + L2(θ, ϕ), (4.30)

where

L1(θ, ϕ) = Eqopt
ϕ

(z0:T ,y0:T |x0:T ) (log p̃θ(x0:T |z0:T , y0:T )) , (4.31)

L2(θ, ϕ) = −DKL
(
qopt
ϕ (z0:T , y0:T |x0:T )||pθ(z0:T , y0:T |x0:T )

)
. (4.32)

This decomposition can be seen as a generalization to the sequential case
of the decomposition proposed for the β-VAE in (Higgins et al., 2017). Indeed,
Qopt

unsup involves the sum of (i) a reconstruction term L1 between qopt
ϕ and p̃θ

which measures the ability to reconstruct observations x0:T according to the
conditional likelihood p̃θ from the latent r.v. (z0:T , y0:T ) distributed according
to qopt

ϕ ; (ii) a KLD term L2 between the variational distribution and the con-
ditional prior pθ. However, contrary to the static case, our decomposition in-
volves p̃θ(x0:T |z0:T , y0:T ) and pθ(z0:T , y0:T |x0:T ) rather than pθ(x0:T |z0:T , y0:T )
and pθ(z0:T , y0:T ), respectively. Indeed, except if T = 0, the latter two distri-
butions are no longer computable, which makes the classical ELBO decompo-
sition impractical.

The idea underlying our β-ELBO is to penalize the KLD term L2(θ, ϕ).
To understand why, let us detail the expression of L1(θ, ϕ) and of L2(θ, ϕ).
First, using (4.28) and (4.27), L1(θ, ϕ) reads

L1(θ, ϕ) =Eqopt
ϕ

(y0,z0|x0:T ) (log pθ(xt|y0, z0)) +
T∑
t=1

Eqopt
ϕ

(yt,zt|yt−1,z0:t−1,x0:T ) (log pθ(xt|yt, zt, vt−1)) . (4.33)

Following this decomposition, it can be seen that at each time step t, the
maximization of (4.33) encourages the model to interpret the latent r.v. (yt, zt)
as those which explain the best the observation xt given the past. On the other
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hand, using (4.29) and (4.25)-(4.26), the maximization of

L2(θ, ϕ) = −DKL
(
qopt
ϕ (y0, z0|x0:T )||pθ(z0, y0)

)
−

T∑
t=1

DKL
(
qopt
ϕ (yt, zt|yt−1, z0:t−1, x0:T )||pθ(yt, zt|vt−1)

)
(4.34)

tends to push the posterior variational distribution at each time step to be
close to the conditional prior distribution pθ(yt, zt|vt−1). As in (Higgins et al.,
2017), we penalize L2(θ, ϕ) via the introduction of a scalar β1. Since a part of
the latent r.v. has to be interpretable, and that the interpretability of hidden
r.v. is not conditioned by the observations, the interest of this term is to force
the posterior distribution qopt

ϕ to take into account the prior term at each time
step. In other words, this penalization term aims at limiting the impact of the
observations on the interpretability of the hidden r.v., particularly in problems
where xt is a very noisy version of yt.

Cross-entropy penalization

We finally complete our objective function to guide the estimation process into
distinguishing the role of y0:T and of z0:T in order to obtain better interpretable
estimations of yt. We assume that we have at our disposal a pre-classification
ypre

0:T . Next, introduce the KLD between the empirical distribution deduced
from this pre-classification, pemp(y0:T ) = δypre

0:T
(y0:T ), and the marginal varia-

tional distribution

qϕ(y0:T |x0:T ) =
∫
qopt
ϕ (z0:T , y0:T |x0:T )dz0:T ,

which aims itself at approximating the true posterior distribution pθ(y0:T |x0:T ).
Thus, the objective is to push the variational distribution qϕ to take into
account the interpretable labels obtained from an already interpretable pre-
classification through the negative cross-entropy

L3(θ, ϕ) = Epemp(y0:T ) (log qϕ(y0:T |x0:T )) = log qϕ(ypre
0:T |x0:T ), (4.35)

see for example (Kingma et al., 2014; Klys et al., 2018; Kumar et al., 2021).
This additional term is next penalized by a scalar β2 which controls the prox-
imity of the pre-classification with the variational posterior distribution.

Finally, we obtain a new objective function

L(θ, ϕ) = L1(θ, ϕ) + β1L2(θ, ϕ) + β2L3(θ, ϕ), (4.36)
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where L1(θ, ϕ), L2(θ, ϕ) and L3(θ, ϕ) are defined in (4.31), (4.32) and (4.35),
respectively. If we set β1 = 1 and β2 = 0, then L(θ, ϕ) coincides with the
ELBO Qopt

unsup(θ, ϕ) in (4.30).

Monte Carlo approximation

It remains to compute and optimize (4.36) in practice. L1(θ, ϕ) and L2(θ, ϕ)
coincide with mathematical expectations according to qopt

ϕ (z0:T , y0:T |x0:T ) =
qϕ(z0:T |x0:T )pθ(y0:T |z0:T , x0:T ). Using expressions (4.33)-(4.34), expectations
according to pθ(y0:T |x0:T , z0:T ) are exactly computable. Thus, L1(θ, ϕ) and
L2(θ, ϕ) rely on the approximate computation of expectations according to
qϕ(z0:T |x0:T ). It can be also noted that

qϕ(y0:T |x0:T ) = Eqϕ(z0:T |x0:T )(pθ(y0:T |z0:T , x0:T )),

then L3(θ, ϕ) also relies on an expectation according to same distribution
qϕ(z0:T |x0:T ) as L1(θ, ϕ) and L2(θ, ϕ). Consequently, Monte Carlo estimates
based on i.i.d. samples z(m)

0:T ∼ qϕ(z0:T |x0:T ) are estimates of L1(θ, ϕ), L2(θ, ϕ)
and L3(θ, ϕ). The choice of the variational distribution is given by the fol-
lowing factorization qϕ(z0:T |x0:T ) = qϕ(z0|x0:T )∏T

t=1 qϕ(zt|z0:t−1, x0:T ). Next,
qϕ(zt|z0:t−1, x0:T ) is chosen such that it is possible to use the reparameteriza-
tion trick to have a final sample z(m)

0:T , which as a differentiable function of ϕ.
(see Subsection 1.2.1). Finally, we obtain the following estimate of L(θ, ϕ) in
(4.36) given by

L̂(θ, ϕ) = L̂1(θ, ϕ) + L̂2(θ, ϕ) + L̂3(θ, ϕ), (4.37)

where

L̂1(θ, ϕ) = 1
N

M∑
m=1

E
pθ(y0:T |z(m)

0:T ,x0:T )

(
log p̃θ(x0:T |z0:T , y

(m)
0:T )

)
, (4.38)

L̂2(θ, ϕ) = 1
N

M∑
m=1

E
pθ(y0:T |z(m)

0:T ,x0:T )

(
log

(
pθ(z0:T , y

(m)
0:T |x0:T )

pθ(y0:T |z(m)
0:T , x0:T )qϕ(z(m)

0:T |x0:T )

))
,

(4.39)

L̂3(θ, ϕ) = log
(

1
N

M∑
m=1

pθ(hpre
0:T |z

(m)
0:T , x0:T )

T∏
t=1

pθ(ypre
t−1|y

pre
t , z

(m)
0:T , x0:T )

)
,

(4.40)

where the remaining expectations are computed from (4.18) and from (4.28)-
(4.29) and where samples z(m)

0:T satisfy the reparameterization concept. The
complete estimation algorithm is described in Algorithm 6.
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Algorithm 6 Parameter estimation in general TMCs.
Input: x0:T , the data; ϵ, the learning rate; M the number of samples
Output: (θ∗, ϕ∗), sets of estimated parameters

1: Initialize the parameters θ0 and ϕ0

2: j ← 0
3: while convergence is not attained do
4: Sample z(m)

0 ∼ qϕj (z0|x0:T ), for all 1 ≤ m ≤M
5: Sample z(m)

t ∼ qϕj (zt|z(m)
0:t−1, x0:T ), for all 1 ≤ m ≤M , for all 1 ≤ t ≤ T

6: Compute pθ(yt−1|yt, z(m)
0:T , x0:T ), for all yt−1:t ∈ Ω× Ω, for all 1 ≤ m ≤

M , for all 1 ≤ t ≤ T
7: Evaluate the loss L̂(θj , ϕj) from (4.37)-(4.40)
8: Compute the derivative of the loss function ∇(θ,ϕ)L̂(θ, ϕ) from (4.37)-

(4.40)
9: Update the parameters with gradient ascent(

θ(j+1)

ϕ(j+1)

)
=
(
θj

ϕj

)
+ ϵ∇(θ,ϕ)L̂(θ, ϕ)

∣∣∣
(θj ,ϕj)

(4.41)

10: j ← j + 1
11: end while
12: θ∗ ← θj

13: ϕ∗ ← ϕj
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Estimation of yt

Once we have obtained an estimate θ∗ of θ, we focus on the computation of
pθ∗(yt|x0:T ),

pθ∗(yt|x0:T ) =
∫
z0:T

pθ∗(yt|z0:T , x0:T )pθ∗(z0:T |x0:T )dz0:T , (4.42)

where pθ∗(yt|z0:T , x0:T ) is computable from a direct extension of (4.13) and
(4.15)-(4.17) (see the proof of Proposition 4.3.1). Since (4.42) is intractable,
we propose an MC estimate p̂θ(yt|x0:T ) deduced from the sequential impor-
tance resampling mechanism (Doucet et al., 2001b) and based on the obser-
vation that pθ∗(z0:T |x0:T ) ∝ pθ∗(x0:T , z0:T ) is known up to a constant. Indeed,
pθ∗(x0:T , z0:T ) can also be computed from a direct extension of (4.12)-(4.13).
We thus introduce the estimated variational distribution

qϕ∗(z0:T |x0:T ) = qϕ∗(z0|x0:T )
T∏
t=1

qϕ∗(zt|z0:t−1, x0:T )

as importance distribution due to its proximity with pθ(z0:T |x0:T ). Finally,
rewriting (4.42) as

pθ∗(yt|x0:T ) =
Eqϕ∗ (z0:T |x0:T )

(
pθ∗ (yt|z0:T ,x0:T )pθ∗ (z0:T ,x0:T )

qϕ∗ (z0:T |x0:T )

)
Eqϕ∗ (z0:T |x0:T )

(
pθ∗ (x0:T )

qϕ∗ (z0:T |x0:T )

) , (4.43)

we compute the sequential MC sampler (Doucet & Johansen, 2009) presented
in Algorithm 7 consisting of the sequential application of three elementary
steps (sampling, weighting and resampling). Note that any improvement of
this sequential MC algorithm can be used (Fearnhead et al., 2010).

4.3.3 Deep TMCs for unsupervised classification

Let us now focus on Deep TMCs for unsupervised classification. We adapt
the two-step procedure described in Section 4.2.2. The main difference with
Section 4.2.2 is that the input of our DNN can now depend on the latent
r.v. zt; in addition, due to the VI framework that we have proposed in the
previous section, we also consider that the conditional variational distribution
qϕ(zt|z0:t−1, x0:T ) at the core of our estimation algorithm is parameterized by
a DNN.



84 CHAPTER 4. DEEP MCs FOR UNSUPERVISED CLASSIFICATION

Algorithm 7 A Sequential Monte Carlo algorithm for Bayesian classification
in general TMC.
Input: x0:T , the observation; a set of parameters (θ∗, ϕ∗); M , the number of

samples
Output: ŷ0:T the final classification

1: Sample z(m)
0 ∼ qϕ∗(z0|x0:T ),

2: Compute w(m)
0 = pθ∗ (z(m)

0 ,x0)
qϕ∗ (z0|x0:T ) W

(m)
0 = w

(m)
0 /

∑M
m=1w

(m)
0 , for all 1 ≤ m ≤

M
3: for t← 1 to T do
4: Sample z(m)

t ∼ qϕ∗(z0:t|z0:t−1, x0:T ), for all 1 ≤ m ≤M
5: Compute

w
(m)
t = w

(m)
t−1

pθ∗(z(m)
t , x0:t)

pθ∗(z(m)
0:t−1, xt−1)qϕ∗(z(m)

t |z(m)
0:t−1, x0:T )

, for all1 ≤ m ≤M

6: Compute W (m)
t = w

(m)
t /

∑M
m=1w

(m)
t , for all 1 ≤ m ≤M

7: if Resampling then
8: Sample l(m) ∼ p(l = j) = W

(j)
t , for all 1 ≤ m ≤M

9: Set z(m)
0:t = z

(l(m))
0:t and W

(m)
t = 1/M for all 1 ≤ m ≤M

10: end if
11: end for
12: Compute pθ∗(yt−1:t|z(m)

0:T , x0:T ), for all yt−1:t ∈ Ω × Ω, for all 1 ≤ t ≤ T ,
using the extension of (4.16)

13: Compute p̂θ∗(yt|x0:T ) = ∑M
m=1W

(m)
t pθ∗(yt|z(m)

0:T , x0:T ), for all yt ∈ Ω, for
all 1 ≤ t ≤ T

14: ŷt = arg max p̂θ∗(yt|x0:T ), for all 1 ≤ t ≤ T
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Constrained ouput layer

The first step is a direct adaptation of Section 4.2.2 and relies on the pre-
liminary estimation of a non-deep TMC model. More precisely, Algorithm 7
is applied to estimate the parameter of a linear TMC model (i.e. a TMC
which is a direct extension of (4.10)-(4.11) or equivalently a deep TMC model
with no hidden layer). Note that since z0:T does not need to be interpretable,
qϕ(zt|z0:t−1, x0:T ) are already parameterized by a DNN in the linear TMC mod-
els. Next, the DNNs, which parameterize ψzθ , ψ

y
θ and ψxθ , are built according

to the same scheme of Figure 4.2, except that the input and the hidden layer
before the output also consists of zt−1 or of zt−1:t. We thus obtain a set of
frozen and unfrozen parameters.

Pretraining of the unfrozen parameters

The next step consists in pretraining the unfrozen parameters of the inter-
mediate hidden layers in order to mimic the estimated linear TMC. We use
the same approach as the one developed in Section 4.2.2 which relies on a
pre-classification ŷpre

0:T , but we now take into account the fact that zt is not
observed. Since the objective of the r.v. zt is to encode the corresponding
observation xt through the DNN related to qϕ, we first sample z0:T according
to the previously estimated variational distribution qϕ(z0:T |x0:T ); we next use
the components zt−1:t or zt as inputs of the DNNs ψzθ , ψ

y
θ and ψxθ . Finally, as

in Paragraph 4.2.2, we apply the backpropagation algorithm in order to min-
imize an adapted cost function w.r.t. θufr which depends on ŷpre

0:T . Figure 4.4

yt−1

zt−1:t

xt−1

∑
ψy
θ

θfr(θufr,

layers

)

layers

(ϕ)

qϕ
r.t.

x0:T

zt−1

Figure 4.4: Graphical and condensed representation of the parameterization
of ψyθ in the DTMC models. r.t. stands for reparameterization trick. The
dashed arrows represent the fact that some variables are copied. For clarity,
we do not represent the block ψyθ which is similar to Figure 4.2, up to the
introduction of zt−1:t.
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summarizes our pretraining procedure for function ψyθ and the final estimation
procedure is described in Algorithm 8.

Algorithm 8 A general estimation algorithm for deep parameterizations of
TMC models
Input: x0:T , the observation; qϕ a class of variational distribution
Output: ŷ0:T the final classification

Initialization of the output layer of ψzθ , ψ
y
θ and ψxθ

1: Estimate (θ∗
fr, ϕ̃) and ŷpre

0:T with Algorithm 6-7, using the related non-deep
TMC model
Pretraining of θufr

2: θ(0)
ufr ← Backprop(ŷpre

0:T , x0:T , θ
∗
fr, ϕ̃, Cψz

θ
, Cfθ

, Cgθ
)

Fine-tuning of the complete model
3: Compute (θ∗

ufr, ϕ
∗) with Lines 2-13 of Algorithm 6

4: Compute ŷ0:T with Algorithm 7

4.3.4 Simulations

We continue to illustrate the performance of our models with the same binary
image segmentation problem as Section 4.2.3. We focus our experiments on
the relevance of the latent process z0:T . To that end, we focus on a particular
TMC model in which the role of the latent process z0:T is to complexify the
conditional distribution ζ of the noise but not ϑ. We first present the particular
model and next the results. β1 and β2 are tuned manually by taking into
account the characteristics of the studied models.

The minimal TMCs

In order to highlight the role of z0:T w.r.t. the other characteristics of our
models, we introduce the Minimal TMC (MTMC) model which exhibits a
reduced number of direct dependencies. In this model, z0:T is an independent
process and given z0:T , (y0:T , x0:T ) is a HMC where only the observations
depend on zt; in other words, ψzθ in (4.25) does not depend on vt−1, ψyθ in
(4.26) only depends on (yt−1) and ψxθ in (4.27) only depends on (zt, yt). The
joint distribution of v0:T can be rewritten as

pθ(v0:T ) =
T∏
t=0

η(zt;ψzθ)︸ ︷︷ ︸
pθ(z0:T )

pθ(y0)
T∏
t=1

ϑ(yt;ψyθ (yt−1))︸ ︷︷ ︸
pθ(y0:T |z0:T )=pθ(y0:T )

T∏
t=0

ζ(xt;ψxθ (zt, yt)),︸ ︷︷ ︸
pθ(x0:T |z0:T ,y0:T )

(4.44)
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With this model, the latent process z0:T affects the conditional distribution of
the observations.

We next consider three instances of MTMCs. The first one is the con-
tinuous linear MTMC in which zt ∈ R are distributed according to standard
normal distribution (so η is the Gaussian distribution and ψzθ = [0; 1]), ψyθ ,
ψxθ , ϑ and ζ coincide with our first illustrative example in Section 4.2, see
(4.6)-(4.7), up to the dependency in zt. We also consider a deep version of the
MTMC (DMTMC) in which ψxθ is parameterized by a DNN (with one hid-
den layer of 100 neurons and ReLU activation function). For both continuous
versions of the MTMC, we use the variational distribution

qϕ(z0:T |x0:T ) =
T∏
t=1

qϕ(zt|zt−1, xt) =
T∏
t=1
N (zt; νϕ(zt−1, xt)). (4.45)

where νϕ(zt−1, xt) is parameterized by a DNN with one hidden layer of 100
neurons and a ReLU activation function.

The motivation underlying this choice of variational distribution is that
z0:T is an independent process and that xt only depends on (yt, zt) given the
past; consequently, it is reasonable to assume that the posterior distribution of
zt only depends on zt−1 and xt. In addition, more complex variational distri-
butions tend to be more difficult to estimate. And indeed, it has been observed
that the choice of the variational distribution does not impact the results in
the case of Scenario (4.44), see Appendix E. Finally, we also consider a discrete
version of the MTMC (di-MTMC) in which zt ∈ {ν1, ν2} is discrete (Gorynin
et al., 2018; Li et al., 2019; Chen & Jiang, 2020). For this model, Algorithm 3
and 4 can be directly applied in the augmented space {ω1, ω2} × {υ1, υ2}.

Experiments and results

We now consider two scenarios in which binary images are corrupted with non
elementary noises. In the first scenario, the hidden images y0:T are the camel-
type images of the Binary Shape Database and are corrupted with the station-
ary multiplicative noise given in (3.20) in Section 3.4.2, where zt ∼ N (0, 1),
aω1 = 0, aω2 is a varying parameter and bω1 = bω2 = 0.2. Figure 4.5a displays
the results for the setting β1 = 5, β2 = 1 in our variational approach. Scalar β1
can be interpreted as enforcing the standardized Gaussian prior on the learnt
latent variables, which is seemingly favorable on this example because of the
way z0:T is generated. β2 is also needed and seems to guide the optimization
so that the estimated ŷ0:T corresponds to the desired segmentation.
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(a) Error rate from the unsupervised segmentations of Scenario (3.19). Results are
averaged on all the camel-type images from the database.

y0:T x0:T HMC-IN di-MTMC MTMC D-MTMC

7.6% 6.9% 3.6% 2.8%

(b) Selected illustrations for aω2 = 0.5 (signaled by the red vertical line on Fig. 4.5a).
Error rates appear below the images.

Figure 4.5: Unsupervised image segmentation with General Triplet Markov
Chains (Scenario (3.19)).

A particular classification is also displayed in Figure 4.5b. As we see, our
MTMC models improve the performance (up to a 7%-point improvement)
of the HMC-IN. This comparison illustrates the interest of the third latent
process z0:T . A slight advantage goes to the models with continuous z0:T
(MTMC and DMTMC) over the di-MTMC which still performs better than
the HMC-IN model. Note that in the case where we optimize directly the
ELBO (i.e. β1 = 1 and β2 = 0), it has been observed that the classification
obtained is not interpretable. This observation validates experimentally our
strategy to adapt the objective function.

In the second scenario, the hidden images y0:T are the dog-type images of
the Binary Shape Database. They are corrupted by a non-stationary general
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noise, 
xt|yt ∼ N

(
ayt ;σ2

)
, if k ∈

{
1, . . . ,

⌊
T

2

⌋}
,

xt|yt ∼ ayt + E (ϑ) , if k ∈
{⌊

T

2

⌋
+ 1, . . . ,K

}
,

(4.46)

where E(ϑ) is the exponential probability distribution of parameter ϑ, aω1 =
0, aω2 is a varying parameter, σ = 0.2 and ϑ = 1.4. The main difficulty of
this scenario is that the images are corrupted by two different noises with a
relatively low level for both areas and have to be fitted in a unique model.
For this scenario, we set β1 = 0.1 and β2 = 0. A small value of β1 can be
interpreted as a way to better fit the observations. Indeed, more flexibility
seems to be needed to learn such a complex non-stationary noise.
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(a) Error rate from the unsupervised segmentations of Scenario (4.46). Results are
averaged on all the dog-type images from the database.

y0:T x0:T HMC-IN di-MTMC MTMC D-MTMC

13.7% 13.7% 13.1% 10.9%

(b) Selected illustrations for aω2 = 2.2 (signaled by the red vertical line on Fig. 4.6a).
Error rates appear below the images.

Figure 4.6: Unsupervised image segmentation with General Triplet Markov
Chains (Scenario (4.46)).
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The reason why β2 is set to 0 is that the pre-classification obtained with
the HMC-IN is poor and should not be used to learn the parameters in the
MTMC. It has been observed that other values deteriorate the final classifica-
tion obtained with MTMC models. The results are displayed in Figure 4.6a
and Figure 4.6b displays a particular classification. It is clear that the TMC
models with a continuous auxiliary latent r.v. (MTMC and DMTMC) offer
a greater flexibility and are able to learn this complex multi-stationary noise.
On the other hand the average classification provided by the di-MTMC or the
HMC-IN models are irrelevant as soon as aω2 < 2. This experiment illustrates
the interest of a continuous auxiliary latent r.v. over discrete auxiliary latent
r.v.; the latter being the only option that has been considered in the literature
so far (Gorynin et al., 2018; Li et al., 2019; Chen & Jiang, 2020). These exper-
iments show the interesting capabilities of the generalized models to provide
results in presence of very general noises. Coupled to the deep parameteriza-
tion, a continuous third latent process enables our models to bypass the need
of an explicit expression of the conditional distribution of the noise.

Remark 4.3.2. We also propose an alternative use of the latent process,
where our objective is to characterize explicitly the relationship between the
pair (yt, xt) and the past observations xt−1 when z0:T is deterministic given the
observations. Thus, a closed-form expression of pθ(yt, xt|yt−1, xt−1) is avail-
able contrary to the general TMC introduced before. A direct advantage of
the resulting TMC model is that it can be interpreted as the combination of
a PMC model (4.1) with an RNN (Rumelhart et al., 1986; Mikolov et al.,
2015), and that the distributions of interest can be computed exactly, without
any approximation. This model is called a Partially Pairwise Markov Chain
(PPMC), which is detailed in the Appendix E.

4.4. Experiments on real datasets

We finally experiment our models on two real datasets. The first one is devoted
to a medical images. The main challenge of this kind of data is that the noise
associated to such images is unknown and non-usual; that is why we introduce
our TMCs to measure the impact of the third latent process. The next dataset
is related to human activity recognition. For this problem, the dependencies
between the r.v. (the class and the observed r.v.) are critical; that is why we
focus on the impact of our PMCs.
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4.4.1 Unsupervised segmentation of biomedical images

We first illustrate the potential of the generalized TMC models on real biomed-
ical data. The task consists in the segmentation of micro-computed tomog-
raphy X-ray scans of human arteries containing a metallic stent biomaterial1.
These images are reminiscent of the synthetic experiment of Scenario (4.46):
some regions exhibit a particular type of correlated noise (because of the beam
hardening artifacts caused by the interactions between X-rays and the metallic
stent) and some regions do not. However, the noise is unknown and has not
been simulated contrary to Scenario (4.46).

Table 4.1 and Figure 4.7 summarize the experiment. It can be seen that
the classical models (HMC-IN and di-MTMC) are unable to handle the non-
stationarity of the noise. The di-MTMC model even fail to provide any im-
provement over the HMC-IN model. On the other hand, major improvements
can be seen when using the TMC models with a continuous auxiliary process,
suggesting that the latter model offers more flexibility and that our parameter
estimation algorithm enables to take advantage of it. These results on real-
world data corroborates the results found in the synthetic experiment given
in Section 4.3.4. Note that, in this case, we set β1 = 5, β2 = 1 and used the
HMC-IN classification as a pre-segmentation. The network configurations are
the same as in Section 4.3.4.

4.4.2 Unsupervised clustering for human activity recognition

We now illustrate the performances of classical PMC models, deep PMC mod-
els and deep PPMC models on a real clustering task linked with human
activity recognition. We use the Human Activity and Postural Transition
(HAPT) dataset described in (Reyes-Ortiz et al., 2016)2. It consists of three-
dimensional time series that we wish to cluster into two classes: movement and
no movement. To solve this task, the models we used are the same as those
introduced before, namely ψyθ , ψxθ , ϑ and ζ coincide with our first illustrative
example in Section 4.2 ((4.6)-(4.7)). In the case of the deep parameterizations,
ψyθ and ψxθ have one (unfrozen) hidden layer with 100 neurons and the ReLU
activation function. Moreover, in the case of the deep PPMC models, ψzθ is
composed of two independent standard RNNs with ReLU activation function,
i.e. zt = [z1

t , z
2
t ] = [ψzθ1(z1

t−1, xt−1), ψzθ2(z2
t−1, xt−1)], with 10 hidden neurons.

The results are given in Table 4.2 for models sharing the same configura-
1Data provided by Dr. Salomé Kuntz (GEPROMED, Strasbourg, France)
2http://archive.ics.uci.edu/ml/datasets/smartphone-based+recognition+of+

human+activities+and+postural+transitions

http://archive.ics.uci.edu/ml/datasets/smartphone-based+recognition+of+human+activities+and+postural+transitions
http://archive.ics.uci.edu/ml/datasets/smartphone-based+recognition+of+human+activities+and+postural+transitions
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Slice HMC-IN di-MTMC MTMC DMTMC
Average 8.6 8.6 7.6 6.56.56.5

Table 4.1: Averaged error rates (%) in unsupervised image segmentation with
all the generalized TMCs assessed on ten micro-computed tomography slices.
The detailed scores are given in Appendix E.

Data HMC-IN SPMC DSPMC DPSPMC PMC DPMC DPPMC
Average 25.2 21.3 16.8 16.716.716.7 17.1 16.8 16.8

Table 4.2: Averaged error rates (%) in the binary clustering of the first twenty
raw entries of the HAPT dataset (Reyes-Ortiz et al., 2016). The detailed
scores are given in Appendix E.

tions with the models in Section 4.2.3 and E. First of all, the modelization
using the pairwise models seems very relevant in this application since we no-
tice up to a 9%-point improvement over the HMC-IN model. In the case of the
SPMCs, we clearly see the advantage of using deep parameterizations over the
shallow models. The advantage of the deep parameterization is less significant
in the PMC case. The contributions of the DPSPMC and DPPMC models
are also less significant. The absence of gains in error rate when using the
most complex models might be related to the limited length of the training
sequences in this application (sequences of length between 15000 and 20000).

y0:T x0:T HMC-IN di-
MTMC

MTMC D-MTMC

10.9% 10.9% 8.7% 6.5%

Figure 4.7: Illustration of the unsupervised segmentation of slice B, as reported
in Table 4.1. The D-MTMC appears to better fit the non-stationary noise,
offering a 4%-point improvement in the error rate. The stent components ap-
pearing in red are segmented beforehand with a thresholding technique and
are considered as image borders during the segmentation using the probabilis-
tic models.
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4.5. Conclusions

In this chapter, we have proposed a general framework for PMC and TMC
models which fully exploits the modeling power offered by such models for
unsupervised signal processing. Contrary to previous work on TMCs with a
discrete hidden data, we have introduced a continuous latent process. For
these models, we have derived Bayesian inference algorithms for estimating
their parameters and the associated hidden r.v. and we have emphasized the
case where the parameterization relies on DNNs. Our algorithms rely on an
objective function deduced from the variational Bayesian inference but which
has been modified to include the interpretability of the discrete hidden r.v.

This contribution enables us to propose an efficient answer to three re-
current questions linked with the practical applications of complex probabilis-
tic graphical models for sequential data: which probability distributions to
choose, how to parameterize them, and how to estimate their parameters in
an unsupervised way. For several applications, it has indeed been shown that
our global procedure leads to new models that consistently perform better
than the classical ones. Importantly, the ability of these models to tackle
more complex noises comes without no additional effort from the signal pro-
cessing point of view. Our experiments also suggest that it is possible to model
complex noises by using the universal approximating properties of DNNs and
by training them in an unsupervised way with the new algorithms that we
propose.

On the other hand, while being invisible to a potential practitioner, these
new capabilities permitted by the embedded DNNs and by the third auxil-
iary latent process come at the price of a more complex training procedure.
The latter is indeed cast in the context of variational inference with inherent
difficulties regarding the approximation of the lower bound, the choice of the
variational distribution or the choice of the penalizing coefficients. However,
since variational inference is a very popular research topic, it could inspire
many improvements for future works with the Generalized Hidden Markov
Models framework.
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5.1. Context and motivation

Cardiovascular diseases (CVDs) represent a leading global cause of mortality,
as highlighted by data from the World Health Organization1. CVDs include
a wide range of conditions that affect the heart and blood vessels. Among
these, atherosclerosis is the most common cause of CVDs, which is character-
ized by the build-up of plaque inside the arteries. This atheromatous plaque is
made up of fat, cholesterol, calcium, and other substances found in the blood-
stream. Over time, this plaque hardens, leading to the obstruction of the
arteries and can cause serious health problems (Insull Jr, 2009). For example,
it can limit the flow of oxygen-rich blood to the organs and other parts of the
body (Rafieian-Kopaei et al., 2014). Figure 5.1 shows an example of a normal
artery (A) and an artery with atherosclerosis (B) 2.

Figure 5.1: Peripheral arterial disease results from narrowing or blockage of
the arteries of the legs.

In this context, the GEPROMED (European Research Group on Prosthe-
ses Applied to Vascular Surgery) has been established to develop new bioma-

1https://www.who.int/
2http://vascularsurgeon.ie/peripheral-arterial-disease-pad/
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terials and surgical techniques for vascular surgery. The group has access to
a database of medical images, which they have made available to us for the
purpose of developing new methods for medical images processing in vascu-
lar surgery. The images in this database are Computed Tomography (CT)
or micro-Computed Tomography (micro CT) images of the femoro-popliteal
arterial segment (SAFP) of different patients. The SAFP is one of the longest
arteries in the human body, subject to diverse mechanical forces (e.g. torsion,
flexion, and extension) due to the movement of the lower limbs.

Atherosclerosis disease comprises 3 categories of plaque: calcified (calcium)
(≈ 70%), fibrous (≈ 20%), and lipid (≈ 10%) (Kuntz et al., 2021). To treat
these, some endovascular techniques have been developed, such as angioplasty
and stenting. There is no non-invasive method (imaging) that can accurately
differentiate lesions along the SAFP. The analysis is usually based on the
preoperative CT scan (low resolution images), but there are high-resolution
scanners that allow a quasi-histological analysis of the tissue. In other words,
we have a micro CT scanner ex vivo 3, and then correlate the images with the
histology4. Gangloff (2020) has already proposed a method to segment micro
CT images of the SAFP. However, a major limitation of this method is that it
is not possible to directly segment the CT images of the SAFP, which are of
low resolution. This problem is the motivation for the work presented in this
chapter.

5.2. Data and preprocessing

5.2.1 Data availability

A protocol was developed to obtain the data for this study, which is described
in (Kuntz et al., 2021) and is detailed in Appendix F. Figure 5.2 shows the
available data. We have the histologic slices 5.2a, the (2D) micro CT im-
ages 5.2b, and their corresponding ground truth 5.2c. The ground truth is
composed of 6 classes, which are described in Figure 5.3. These annotations
are only available for some slices of the 3D scan as shown in Figure 5.4. Here,
the red rectangles represent all the 2D slices of the 3D micro CT image. How-
ever, the combined information (depicted as light gray and purple rectangles)
is not uniformly distributed across these slices; it is only present in certain
slices without following a specific pattern. Figure 5.5 shows the correlation

3The term ex vivo refers to experimentation performed on tissue samples outside the
living organism.

4Histology is considered as a gold or criterion standard for the diagnosis of many diseases.
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(a) Three histologic slices.

(b) Three microCT images correlated with their histologic truth.

(c) Three expert annotated microCT images obtained.

Figure 5.2: Illustration of part of the available data for the study. Figure
taken from (Gangloff, 2020).

Figure 5.3: Notation of the classes of the ground truth 5.2c. Figure taken
from (Gangloff, 2020).

between the CT scanner and the micro CT scanner, that is predominantly
available in segments of the artery where specific lesions, particularly calcifi-
cations, are present.
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Figure 5.4: Illustration of the available pair of information: 2D micro CT
image (light gray rectangle) and its corresponding ground truth (purple rect-
angle). The pairs of information are only available for some slices of the 3D
micro CT image. The red rectangles represent all the 2D slices of the 3D micro
CT image. Figure based on (Kuntz et al., 2021)

The aim of this study is to assess the technical feasibility of histological
segmentation using the SAFP algorithm based on the preoperative CT scan.
The results of this study will provide initial data to assess the value of a sub-
sequent, larger-scale study to validate the diagnostic capabilities of automated
segmentation. As far as we know, there is no non-invasive method (imaging)
that can accurately differentiate lesions along the SAFP. Characterization of
AOMI plaques will enable a patient-centred treatment strategy to be devised,
based on the type of plaque in the lesion. Automated segmentation will be
a tool that will make it possible to dispense with histopathological analysis
and detect the type of plaque on the preoperative CT scan. The expected
long-term benefits for other patients are very significant. They can be offered
individualized treatment depending on the nature of their lesions by adapting
the medical device. Previous work has shown that it is possible to segment
the micro CT images of the SAFP. However, a segmentation of the CT images
is also necessary, since the micro CT images are not available for all patients.
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Figure 5.5: Illustration of the available correlation between CT scanner [B, B1,
B2] and micro CT scanner [C, C1, C2] using standard references after Step 6.
They represent different types of calcifications in SAFP plaques. Figure based
on (Kuntz et al., 2021).

In this chapter, the objective is to perform image segmentation on CT images
of the SAFP. Our particular focus lies on the most common type of plaques,
the calcifications (sheet and nodular), which is a first step to segment other
types of plaques in the future.

5.2.2 Challenges

While we have achieved success in segmenting micro CT images, a notable lim-
itation remains: the segmentation of CT images. Extending our segmentation
to CT images is a challenging task for several reasons. First, the low reso-
lution of CT images introduces additional complexity into the segmentation
process, in contrast to the higher-resolution micro CT images that Gangloff
(2020) has been working with. As depicted in Figure 5.5, the discrepancy in
image quality between the CT scanner (B1 and B2) and the micro CT scan-
ner (C1 and C2) is evident. Moreover, the limited availability of data poses a
significant challenge. While we possess both 3D micro CT images and their
corresponding 3D CT images, establishing a clear and precise correspondence
between the two sequences of images is far from straightforward. These im-
ages are not perfectly aligned, and their correspondence is not as simple as
a ‘mirror’ image. Furthermore, the availability of annotations for only some
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slices of the micro CT image is a notable limitation when it comes to training
a segmentation algorithm for the CT images.

5.2.3 Pre-processing of the CT and micro CT images

We have developed a workflow to segment the calcifications in the CT images
depicted in Figure 5.6. First, we select the region of interest within the images,
which corresponds to the artery segment containing the calcifications. The se-
lection process in the micro CT images is guided by annotations and employs
a box detection algorithm. In contrast, the selection process in the CT images
utilizes a centerline algorithm, that is provided by an expert. Normalization
of the images is carried out to facilitate the subsequent super resolution, and
segmentation processes.

Low resolution
CT scans

High resolution
micro CT scans

High resolution

annotated microCT scans

Resolution

algoritthm

Segmentation

algoritthm

(Supervised)

Super resolution
CT scans

Algorithm

on SR CT scans

Final Segmented
SR-CT scans

Image

pre-processing

SR image post-

processing

Super

1

2 3 4
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Figure 5.6: Our workflow for segmenting sheet and nodular calcifications in
CT images of the SAFP is structured into five steps. First, we perform pre-
processing of the CT and micro CT images, followed by a super resolution
algorithm on the CT images, post-processing of the SR-CT images, supervised
segmentation, and segmentation on the SR-CT images.
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Moreover, the original size of the CT images containing calcifications is
often small (5 × 5 to 12 × 12 pixels). Thus, we apply a Super Resolution
(SR) algorithm to increase the image resolution to facilitate the segmenta-
tion process. In our case, a primary concern is the preservation of details in
the CT images. Focusing on methods that enhance resolution without los-
ing crucial information is key. Different SR techniques have been suggested,
encompassing optimization methods and deep learning approaches. The lat-
ter have emerged as the most promising, with exponential growth (Li et al.,
2021b). We have considered the LapSRN algorithm proposed by Lai et al.
(2017), which utilizes a Laplacian pyramid framework. This algorithm has
been selected for its ability to accurately reconstruct high-frequency details
and reduce visual artifacts, which are crucial for medical images, especially
CT scans. We also studied SR algorithms via VAEs, from a point of view of
the applicability to medical images, we won’t be able to use those algorithms
(more details in Appendix F). This choice may not be definitive, and we will
continue to explore other SR algorithms in the future.

Low resolution
CT scan

High resolution
micro CT scan

Super Resolution
algoritthm

‘Super’ resolution
CT scan

CT and micro CT
correspondence

Figure 5.7: Example of a CT image of the SAFP and its corresponding micro
CT image. In addition, the corresponding Super Resolution CT image after
applying the LapSRN algorithm with a factor of up-scaling of 8.
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Figure 5.7 shows an example of a SR-CT image obtained with the LapSRN
algorithm. The original CT image is of size 12 × 12 pixels and the SR-CT
image is of size 96 × 96 pixels, which is a factor of up-scaling of 8. After
applying the SR algorithm, a post-processing phase is undertaken to eliminate
any noise introduced by the SR algorithm. This involves an analysis of the
SR-CT images in comparison to the micro CT images, enabling a medical
interpretation of the results. The analysis entails a histogram comparison
and a visual inspection of the images to determine the quality of the SR-CT
images.

Figure 5.8 shows an example of a sequence of CT images where the calci-
fications are present. These new sequences of SR-CT images will be used for
the segmentation of the calcifications in the next steps.

Figure 5.8: Example of a sequence of CT and SR-CT images. From left
to right, the pairs of images (CT, SR-CT). The CT images correspond to a
sequence of 2D slices of a 3D CT image, where the calcifications are present.
The corresponding Super Resolution CT images are obtained with the LapSRN
algorithm with a factor of up-scaling of 8.
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5.3. Medical image segmentation

Semantic segmentation is a well-studied problem in the field of computer vi-
sion. The objective is to assign a label to each pixel of an image. In the
context of medical imaging, this task is particularly challenging due to the
complexity of the images and the limited availability of annotated data. In
this section, we present the segmentation of the calcifications in the CT images
of the SAFP. This segmentation is performed in two steps. First, we perform a
supervised segmentation using the pre-processed micro CT (HR images), and
their corresponding ground truth data. Once a final segmentation model is
obtained, we perform a segmentation on the SR-CT images. Our results are
based on the U-Net model (Ronneberger et al., 2015), and the Probabilistic
U-Net (Kohl et al., 2018).

The U-Net architecture is a type of convolutional neural network (CNN)
that was specifically designed for biomedical image segmentation tasks pro-
posed by Ronneberger et al. (2015). The U-Net architecture is a fully convolu-
tional network that consists of a contracting path (encoder) and an expansive
path (decoder), which gives it the U-shape. The contracting path follows the
typical architecture of a convolutional network (Figure 5.9). This architecture
has been remarkably successful due to its efficiency in learning from a limited
number of samples while accurately segmenting images. The U-Net and its
(non-stochastic) variants have been used in a variety of medical image segmen-
tation tasks such as the bone segmentation (Caron et al., 2023; Ganeshaaraj
et al., 2022), and the pancreas segmentation (Sriram et al., 2020).

The Probabilistic U-Net was introduced by Kohl et al. (2018), and designed
to address the inherent ambiguities in real-world vision problems, especially
in medical imaging. With ambiguous problems, there is no single correct
answer. For example, the same image can be segmented in different ways
by different experts, leading to different possible segmentations. The overlap
between structures in the image can also lead to ambiguities. The Proba-
bilistic U-Net incorporates a Conditional Variational AutoEncoder (CVAE)
into the U-Net architecture (more details in Appendix F). The latent space is
a low-dimensional space where the segmentation variants are represented as
probability distributions. A sample from the latent space is drawn and then
injected into the U-Net to produce the corresponding segmentation map. This
model is trained using a variational inference approach (see Subsection 1.2.1),
which allows the model to learn the distribution of segmentations in the latent
space.
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Figure 5.9: U-net architecture (example for 32×32 pixels in the lowest resolu-
tion). Each blue box corresponds to a multichannel feature map. The number
of channels is denoted on top of the box. The x-y-size is provided at the lower
left edge of the box. White boxes represent copied feature maps. The arrows
denote the different operations. Figure taken from (Ronneberger et al., 2015)

5.3.1 Results

We aim to specifically segment calcifications in SR-CT images, which show ar-
eas of calcification in the artery. The segmentation algorithms are trained on
a dataset which contains micro CT images, and their corresponding ground
truth data representing the calcification zones. We present the results ob-
tained with both, the U-Net, and Probabilistic U-Net models. We evaluate
their effectiveness by calculating the Dice score (F.1) on the test set. This
score provides an assessment of each model’s performance in accurately seg-
menting, and classifying each class within CT images, crucial for informed
doctor analysis

Three class segmentation: Table 5.1 summarizes the Dice score on the
test set for the segmentation of the micro CT images. Three classes are con-
sidered: background (Ba), nodular calcifications (NC), and sheet calcifications
(SC). In terms of the Dice score, the Probabilistic U-Net model outperforms
the U-Net model for the calcifications classes. Once the segmentation model
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is obtained, we perform a segmentation on the SR-CT images.

Model Dice score on the test set
Ba NC SC

U-Net 0,7688 0,6032 0,5967
Probabilistic U-Net 0,7178 0,6214 0,6141

Table 5.1: Dice score on the test set for the U-Net and Probabilistic U-Net
models. Three classes are considered: background (Ba), nodular calcifications
(NC), and sheet calcifications (SC).

Figure 5.10 shows an example of segmentation of the micro CT image and
its corresponding SR-CT image with the U-Net and Probabilistic U-Net mod-
els. We can see that both models are able to segment the calcifications in the
SR-CT images, however, this analysis is not possible with all the sequence of
SR-CT images. The results need to be analyzed carefully by a medical expert.

U-Net Probabilistic U-Net

micro CT

SR CT

Input Segmentation Ground Truth

Figure 5.10: Example of a segmentation of the micro CT (first row) and its
corresponding SR-CT images (second row) with the U-Net and Probabilistic
U-Net models.
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Four class segmentation: Initially, our segmentation model for CT im-
ages was designed to differentiate among three classes (background, nodular
and sheet calcifications). However, we observed that calcifications were not
consistently present across the entire sequence of CT images. This led us to
introduce an additional class into our model: the soft tissue (ST) class, that
encompasses both the arterial wall and the surrounding tissue, making its seg-
mentation vital for an accurate doctor’s interpretation of the results. Table 5.2
shows the Dice scores obtained on the test set, now configured to identify four
classes.

Model Dice score on the test set
Ba ST NC SC

U-Net 0,6027 0,6363 0,5807 0,6016
Probabilistic U-Net 0,6256 0,6439 0,5817 0,6751

Table 5.2: Dice score on the test set for the U-Net and Probabilistic U-Net
models, with four classes: background (Ba), soft tissue (ST), nodular calcifi-
cations (NC), and sheet calcifications (SC).

Figure 5.11 presents some slices of the SR-CT images and their correspond-
ing segmentation with Probabilistic U-Net models, with three and four classes.
When we examine these results with the doctors, it becomes apparent that
four-class segmentation offers greater interpretability compared to three-class
segmentation.

5.4. Remaining challenges

We have made significant progress in the segmentation of sheet and nodular
calcifications in CT images of the SAFP. However, several challenges remain
to be addressed. First, the super-resolution algorithm itself does not take into
account the sequential nature of the images, as it is applied independently to
each slice. This can lead to inconsistencies across the image sequence. To
address this problem, we have explored a post-processing technique for SR-
CT images that aims to improve the consistency of results across the image
sequence prior to segmentation.

On the other hand, segmentation with the U-Net, and Probabilistic U-Net
models present the limitation related to their static nature. That is, when
applied to SR-CT images, the segmentation performed by these models treats
each slice independently, without taking into account the sequential context
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3 classesCT SR CT

Segmentation

4 classes

Figure 5.11: CT slides, their corresponding SR-CT images, and their corre-
sponding 3 class and 4 class segmentations of SR-CT images.

that the images are part of a 3D image. This led to inconsistent segmentation
results, with different results between two consecutive slices. To address this
problem, we adapted the input of each model to include not only the target
slice, but also the anterior and posterior slices, creating a “sliding window”
effect. This modification is intended to incorporate some degree of sequential
context into the segmentation process. In the future, we plan to explore other
approaches to overcome these challenges, with the goal of developing more
sophisticated models that can more accurately reflect the sequential and dy-
namic nature of the medical data, e.g. a sequential probabilistic U-Net model,
a sequential SR VAE.
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5.5. Conclusions

In this chapter, we have described a structured workflow for the segmentation
of sheet and nodular calcifications in the CT images of the SAFP. This work-
flow encompasses five steps: pre-processing of the CT and micro CT images,
application of the SR algorithm on the CT images, followed by post-processing
of the SR-CT images, and finally the segmentation on the SR-CT images. First
significant results from our research include those obtained using the LapSRN
algorithm for the SR task, and the U-Net and Probabilistic U-Net models for
segmentation. In particular, the Probabilistic U-Net model demonstrated su-
perior performance to the U-Net model in segmenting the calcification classes.
In addition, we observed that segmentation into four classes produces more
detailed results, allowing a clearer distinction between calcifications and soft
tissue, which is vital for a proper doctor’s interpretation.





Conclusions and Perspectives

Throughout this thesis, our research has integrated traditional probabilistic
models with modern deep learning techniques to address various challenges in
machine learning. We have focused on generative sequential modeling, super-
vised, semi-supervised, unsupervised Bayesian classification, and a collabora-
tion with the GEPROMED project to address the segmentation of medical
images.

First, we introduced a novel generative model based on Pairwise Markov
Chains, which effectively combines the strengths of Hidden Markov Models,
Recurrent Neural Networks, and the Stochastic RNNs. This model consid-
ers observed and latent variables as well as the interactions between them,
providing a more comprehensive representation of sequential data. We devel-
oped a new parameter estimation method leveraging the variational inference
framework, which is both computationally efficient and straightforward to im-
plement. The integration of deep parameterizations within this PMC model
demonstrated superior performance on different datasets compared to tradi-
tional RNN and Stochastic RNN models. We also highlighted the linear and
stationary Gaussian PMC’s ability to model complex Gaussian distributions
more effectively than previous models, by using the covariance function.

Moreover, if we consider the latent variables as discrete, i.e. the labels asso-
ciated with each the observations, we demonstrated the potential of the PMC
for supervised, and unsupervised classification tasks. In a supervised setting,
our first variational framework can be easily adapted. In an unsupervised
setting, we can use the PMC with traditional Bayesian parameter estimation
methods, since the likelihood is tractable, i.e. VI is not necessary. However,
the use of this Bayesian framework with neural networks in an unsupervised
context is difficult due to the interpretation of the latent variables as discrete
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labels. Thus, we proposed an alternative approach to address this issue by
using a constrained output layer and a pretraining step to initialize the neural
network.

Next, we extended our generative model to Triplet Markov Chains that
incorporate an additional (continuous or discrete) process to model the in-
teractions between the observed features and their corresponding labels. We
illustrated the feasibility of creating diverse generative models based on varia-
tional inference, which is particularly advantageous for datasets with partially
labeled observations or missing labels. We proposed a new adapted parameter
estimation methods for the TMC model, that combines the variational in-
ference framework, which is both computationally efficient, and interpretable
in the context of sequential data classification. Each context, semi-supervised
and unsupervised classification, has its own challenges, and we proposed differ-
ent techniques to address them. For the semi-supervised context, we proposed
a relaxation of the discrete variables using the Gumbel-Softmax trick, and for
the unsupervised classification, we proposed a constrained output layer and
pre-classification.

In addition, our collaboration with the GEPROMED project allowed us
to know the challenges of medical image analysis. We proposed an adapted
workflow to address the segmentation of medical images, which is a helpful
tool for clinicians. We also applied classic super-resolution and segmentation
techniques to medical images, which are essential for improving the inter-
pretability of medical images. However, the results are not always satisfactory
or adapted to the available data. We applied a probabilistic segmentation
model that incorporates the variational framework with conditional VAEs.

In conclusion, the integration of traditional probabilistic models with mod-
ern deep learning techniques has shown promising results in various applica-
tions. The proposed models have demonstrated superior performance com-
pared to traditional models, and the variational inference framework has proven
to be a powerful tool for parameter estimation. Future work should continue
to explore the integration of deep neural networks with other probabilistic
models to develop more robust and efficient generative models. Research into
various neural architectures (e.g. U-net), and training paradigms could further
improve model performance and broaden their applicability. While this the-
sis primarily focused on medical imaging, the proposed methods and models
have potential applications in other fields such as natural language processing,
bioinformatics, and finance. Future research could explore these domains to
validate the versatility and robustness of our models.
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Moreover, the application of these models to medical image analysis should
be further explored to improve the interpretability of medical images and en-
hance the workflow of clinicians. For example, the integration of the TMCs
with the U-NET architecture could provide a more comprehensive represen-
tation of the sequential data, where the labels become the segmented images,
and the observed features are the medical images.

In practice, semi-supervised classification tasks are challenging due to the
discrete nature of the latent variables. The relaxation of the discrete variables
using the Gumbel-Softmax trick provides a workaround, but it introduces a
trade-off between the optimization of discrete variables and the quality of the
approximation. Researchers continue to explore ways to improve the opti-
mization of models with discrete variables, making them more tractable and
effective for a wider range of applications. In the unsupervised case, we also
noted that the DNN pretraining and the interpretability constraint require an
available pre-classification. A future line of research involving self-supervised
learning might prove itself as an efficient way to relax this requirement.

Finally, the stochastic realization theory can be also used to describe the
covariance series which can be produced by linear and stationary PMCs, simi-
lar to the one used in the context of the GUM. The main difficulty is that they
do not admit a state-space model representation due to the new dependencies
introduced by the pairwise interactions, which makes the analysis more com-
plex. The trick is to interpret the PMC as a particular HMC in augmented
dimension. However, the theoretical analysis of the covariance series produced
by general linear and stationary PMCs remains an open question.
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APPENDIX A
Additional material

Algorithm 9 Expectation Maximization (Dempster et al., 1977)
Input: x, the observations.
Output: θ̂ the set of estimated parameters.

1: Initialize the parameters θ0

2: j ← 0
3: while convergence is not attained do

E-step:
4: Define Q(θ|θj) by

Q(θ|θj) = Ep(y|x,θj) [log p(x, y|θ)] . (A.1)

M-step:
5: Estimate the new set of parameters

θj+1 ← arg max xθQ(θ|θj) (A.2)

6: j ← j + 1
7: end while
8: θ̂ ← θj
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Lemma A.0.1. (Rao, 1973)
Let x ∈ Rp, y ∈ Rq, F ∈ Rp×q, d ∈ Rp, m ∈ Rq, Σ1 and Σ2 be p× p and q× q

positive definite matrices, respectively. Then the following equality holds∫
y∈Rq

N (x; Fy + d,Σ1)N (y; m,Σ2)dy = N (x; Fm+ d,Σ1 + FΣ2F
T ).

Conditional Variational Autoencoder

Let x, y, and z be the input image, the corresponding ground truth, and
the latent representation, respectively. The CVAE is an extension of VAE
(see Example 1.2.1) to conditional tasks such as image segmentation. Each
component of the model is conditioned on some observed image x.
The ELBO objective function for the CVAE is defined as follows:

QCVAE(x, y) = Eqϕ(z|x,y) [log pθ(y|x, z)]−KL (qϕ(z|x, y)||p(z|x)) .



APPENDIX B
Generative Pairwise Markov Models

B.1. Proof of Theorem 2.5.2

Let’s recall that in the stationary case, the function from N to R that associates
rk to any k is a covariance function (or a covariance sequence) if and only if, for
any T ≥ 0, the Toeplitz matrix with the first row [r0, r1, . . . , rT ] is a covariance
matrix, i.e. it is positive semi-definite. This set of constraints thus restricts the
set of possible sequences, and we aim to characterize this set. {r0, r1, r2, ...} is
a covariance function if and only if r0 ≥ 0, and if

C(z) = r0 + 2
+∞∑
k=1

rkz
k

is a function of the Carathéodory class, i.e. C(z) has a positive real part for z
in the open unit disk (Carathéodory-Toeplitz theorem (Akhiezer, 1965))

Thus, we look for values of Ã and B̃ such that the covariance matrix Σx
T

with first row [1, B̃, Ã2, Ã2B̃, Ã4, Ã4B̃, . . . ] satisfies:

∀T ∈ N∗, Σx
T ≥ 0 ⇐⇒ ∀z ∈ {u ∈ C; |u| < 1},ℜ

(
1+2(B̃z+Ã2z2)

∞∑
τ=0

(Ã2z2)τ
)
≥ 0,
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which is derived from:

C(z) =1 + 2(B̃z + Ã2z2 + Ã2B̃z3 + Ã4z4 + Ã4B̃z5 + . . . )
=1 + 2

[
B̃z((Ã2z2)0 + (Ã2z2)1 + (Ã2z2)2 + (Ã2z2)3 + . . . )

+ Ã2z2((Ã2z2)0 + (Ã2z2)1 + (Ã2z2)2 + (Ã2z2)3 + . . . )
]

=1 + 2(B̃z + Ã2z2)
∞∑
τ=0

(Ã2z2)τ

The positive real part condition is equivalent to:

ℜ
(
1 + 2(B̃z + Ã2z2)

∞∑
τ=0

(Ã2z2)τ
)
≥ 0

(i)⇐⇒ ℜ
(
1 + 2 B̃z + Ã2z2

1− Ã2z2

)
≥ 0

⇐⇒ ℜ
(1 + 2B̃z + Ã2z2

1− Ã2z2

)
≥ 0

(ii)⇐⇒ ℜ
(1 + 2B̃reiθ + Ã2r2e2iθ

1− Ã2r2e2iθ

)
≥ 0

⇐⇒ ℜ
((1 + 2B̃reiθ + Ã2r2e2iθ)(1− Ã2r2e−2iθ)

|1− Ã2r2e2iθ|2
)
≥ 0

⇐⇒ ℜ
(
(1 + 2B̃reiθ + Ã2r2e2iθ)(1− Ã2r2e−2iθ)

)
≥ 0

⇐⇒ 1 + 2B̃r cos(θ)− 2Ã2B̃r3 cos(−θ)− Ã4r4 ≥ 0
(iii)⇐⇒ 1 + 2B̃r cos(θ)− 2Ã2B̃r3 cos(θ)− Ã4r4 ≥ 0
⇐⇒ 1 + 2B̃r cos(θ)(1− Ã2r2)− Ã4r4 ≥ 0,

where we used the following arguments:

(i) |Ã2z2| < 1 since Ã ∈ [−1, 1] and |z| < 1.

(ii) Writing z = reiθ, for all r ∈ [0, 1) and θ ∈ [−π, π].

(iii) Cosine is an even function.

Thus, we need to analyze the expression:

1 + 2B̃r cos(θ)(1− Ã2r2)− Ã4r4 ≥ 0, (B.1)

and we can distinguish four cases:
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1. Case Ã = 0: Let us first consider the case where Ã = 0. In this case,
(B.1) simplifies to:

1 + 2B̃r cos(θ) ≥ 1− 2|B̃| ≥ 0,

which implies |B̃| ≤ 1
2 .

2. Case B̃ = 0: We then have the condition |Ã| ≤ 1, which is true.

3. Case B̃ > 0:

1 + 2B̃r cos(θ)(1− Ã2r2)− Ã4r4

≥ 1− 2B̃(1− Ã2)− Ã4.

Note that 1− Ã2r2 ≥ 0 and Ã4r4 ≥ 0. Therefore,

1 + 2B̃r cos(θ)(1− Ã2r2)− Ã4r4 ≥ 0

⇐⇒ B̃ ≤ Ã2 + 1
2 .

4. Case B̃ < 0:

1 + 2B̃r cos(θ)(1− Ã2r2)− Ã4r4

≥ 1 + 2B̃(1− Ã2)− Ã4.

Note that 1− Ã2r2 ≥ 0 and Ã4r4 ≥ 0. Therefore,

1 + 2B̃r cos(θ)(1− Ã2r2)− Ã4r4 ≥ 0

⇐⇒ B̃ ≥ −Ã
2 + 1
2 .

Then {rk}k∈N is a covariance function if and only if

−1 ≤ Ã ≤ 1 and − Ã2 + 1
2 ≤ B̃ ≤ Ã2 + 1

2 .

Now, the objective is to determine if any such probability distribution
function can be modeled by some PMC model. For this, we study the inverse
mapping of:
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ϕ : θ 7→
(
Ã = Ã(θ), B̃ = B̃(θ)

)
, (B.2)

where θ represents the set of parameters of the model.
We set γ = b, and f either as 0 or −a − bc (two particular cases of the

PMC), that coincide with (2.23). The following expressions for Ã and B̃ are
obtained:{

Ã =
√
ce and B̃ = b(c(1− b2η) + eη) if f = 0,

Ã =
√
e2η + a2(1− b2η) and B̃ = beη − a(1− b2η) if f = −a− bc.

First, the case f = 0, γ = b implies that a = −bc, so the set of parameters
is b, c, e, η since a, f , and γ are functions of these parameters. Thus, ϕ can be
written as:

ϕ : (b, c, e, η) 7→
(
Ã =

√
ce, B̃ = b(c(1− b2η) + eη)

)
. (B.3)

The domain (Ã, B̃) has been characterized to obtain a covariance matrix,
i.e. Ã ∈ [−1, 1] and − Ã2+1

2 ≤ B̃ ≤ Ã2+1
2 , which defines a surface S. We obtain

an inverse mapping ϕ−1 of Equation (B.3), showing that for some (Ã, B̃) ∈ S,
there exists at least one PMC which yields an observation probability distri-
bution. For simplicity, we do not show the detailed inverse mappings and their
calculations here, as they are lengthy and complex. The important result is
that such a mapping exists and is consistent with the conditions stated above.

Next, the case f = −a − bc, γ = b implies c = eη − abη. The set of
parameters is then a, b, e, η, and ϕ can be written as:

ϕ : (a, b, e, η) 7→
(
Ã =

√
e2η + a2(1− b2η), B̃ = beη − a(1− b2η)

)
. (B.4)

Similarly, we can obtain the inverse mapping ϕ−1 of Equation (B.4), showing
that for some (Ã, B̃) ∈ S, there exists at least one PMC which yields an
observation probability distribution.
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Supervised Bayesian classification

PMCs can be adapted for the supervised classification task by considering an
observed variable in an augmented dimension xt ← (xt, yt). We add a discrete
variable yt label associated to xt, for all t ∈ N. The parameter estimation is
realized by maximizing the ELBO with respect to θ and ϕ where the general
ELBO in (2.5) is still valid and reads as

Qsup(θ, ϕ) =−
∫

log
(
qϕ(z0|x0:T , y0:T )
p(x0, y0, z0)

)
qϕ(z0|x0:T , y0:T )dz0:T

−
T∑
t=1

∫
log
(

qϕ(zt|z0:t−1, x0:T , y0:T )
pθ(zt, xt, yt|zt−1, xt−1, yt−1)

)
qϕ(z0:T |x0:T , y0:T )dz0:T .

The transition distribution pθ((xt, yt), zt|(xt−1, yt−1), zt−1) can be factorized
in two terms as shown in (2.1). Without loss of generality, we can consider
the following factorization,

pθ(zt, xt, yt|zt−1, xt−1, yt−1) =pθ(xt, yt|zt−1:t, xt−1, yt−1)pθ(zt|zt−1, xt−1, yt−1)
=pθ(xt|zt−1:t, xt−1, yt−1)pθ(yt|zt−1:t, xt−1:t, yt−1)×
pθ(zt|zt−1, xt−1, yt−1), (C.1)

which is nothing more than a TMC with transition (C.1). The ELBO now
reads

Qsup(θ, ϕ) =L1(θ, ϕ) + L2(θ, ϕ) (C.2)
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with

L1(θ, ϕ) = Eqϕ(z0|x0:T ,y0:T ) log pθ(x0|z0) + Eqϕ(z0|x0:T ,y0:T ) log pθ(y0|z0, x0)

+
T∑
t=1

Eqϕ(zt|z0:t−1,x0:T ,y0:T ) log pθ(xt|zt−1:t, xt−1, yt−1)

+
T∑
t=1

Eqϕ(zt|z0:t−1,x0:T ,y0:T ) log pθ(yt|zt−1:t, xt−1:t, yt−1),

L2(θ, ϕ) =−DKL(qϕ(z0|x0:T , y0:T )||pθ(z0))

−
T∑
t=1

DKL(qϕ(zt|z0:t−1, x0:T , y0:T )||pθ(zt|zt−1, xt−1, yt−1)).

The training procedure of the PMC model presented in Algorithm 1, can
be adapted for the supervised classification task. The only distinction with
the previous algorithm is the set of parameters θ, which now includes the pa-
rameters of the conditional distribution of the labels pθ(yt|zt−1:t, xt−1:t, yt−1).



APPENDIX D
Semi-supervised Bayesian

classification

The VSL (Chen et al., 2018) is based on conditional VAEs (Pagnoni et al.,
2018), where at each time step t, the observation xt is generated according its
associated context ut, which consists of the observations other than xt. The
lower bound of the log-likelihood at each time step t is given by

log pθ(xt|ut) ≤ Eqϕ(zt|x0:T ) [log pθ(xt|zt, ut)pθ(zt|ut)pθ(yt|zt, ut)] , for all t ∈ O.
log pθ(xt|ut) ≤ Eqϕ(zt,yt|x0:T ) [log pθ(xt|zt, ut)pθ(zt|ut)pθ(yt|zt, ut)] , for all t ∈ H.

The VSL model simplifies some dependencies by assuming that pθ(yt|zt, ut) =
pθ(yt|zt) and pθ(xt|zt, ut) = pθ(xt|zt). While the associated variational distri-
bution is given by

qϕ(z0:T , y
H
T |x0:T , y

O
T ) =

T∏
t=0

qϕ(zt|x0:T )
∏
t∈H

qϕ(yt|zt),

which satisfies the factorization (3.8) with

qϕ(zt|zt−1, yt−1, x0:T , y
O
t+1:T ) = qϕ(zt|x0:T ),

qϕ(yt|yt−1, zt, x0:T , y
O
t+1:T ) = pθ(yt|zt), for all t ∈ H.

Our proposed variation of this model considers ut = (xt−1, zt), i.e. we as-
sume the context ut depends on the previous observation xt−1 and the current
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latent variable zt. The associated ELBO (3.10) for the VSL model is given by

Qsemi(θ, ϕ) mVSL=
∑
t∈O

Eqϕ(zt|x0:T ) (log pθ(yt|zt)) +

T∑
t=0

[
Eqϕ(zt|x0:T ) log pθ(xt|zt)−DKL(qϕ(zt|x0:T )||pθ(zt|xt−1, zt−1))

]
.

It consists of two terms and that the previous assumptions enable us to inter-
pret it as an expectation according to qϕ(z0:T |x0:T ). Thus, it is not necessary
to sample discrete variables according to the G-S trick. Moreover, a regular-
ization term β can be introduced in the second part of the ELBO in order to
encourage good performance on labeled data while leveraging the context of
the noisy observations during reconstruction. While this model simplifies the
inference, it should be noted that in the generative process, the observation xt
is conditionally independent of its associated label and may not be adapted
to some applications.



APPENDIX E
Unsupervised Bayesian classification

E.1. Partially Pairwise Markov Chains

In this section, we propose a particular class of TMC which aims at extending
the PMC model proposed in Section 4.2. The main motivation underlying this
particular model is to introduce an explicit dependency on the past observa-
tions xt−1 of the pair (yt, xt), for all t. This dependency is introduced through
the continuous latent process z0:T and enables us to build an explicit joint
distribution pθ(y0:T , x0:T ) which does not satisfy the Markovian property of
the PMC (4.1). The main difference with Section 4.3 is that z0:T is now a con-
ditional deterministic latent process. The resulting model is called a Partially
Pairwise Markov Chain (PPMC). As we will see, this particular construction
enables us to use directly the Bayesian inference framework developed in Sec-
tion 4.2. Finally, since PMCs appears as particular TMCs, the pretraining of
deep parameterized PPMCs is a direct adaptation of Section 4.3.3.

E.1.1 Deterministic TMCs

Let us focus on a particular case of the TMC (4.24)-(4.27). From now on, we
consider that the conditional distribution η coincides with the Dirac distribu-
tion δ, and that function ψzθ only depends on (zt−1, xt−1). Thus, zt becomes
deterministic given (zt−1, xt−1),

zt = ψzθ(zt−1, xt−1). (E.1)

Each variable zt can be interpreted as a summary of all the past observations
xt−1. Consequently, it is easy to see that (4.26) and (4.27) now coincide with
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pθ(yt|yt−1, xt−1) and pθ(xt|yt−1:t, xt−1), respectively, and marginalizing (1.8)
w.r.t. z0:T gives the explicit distribution of (y0:T , x0:T ),

pθ(y0:T , x0:T ) = pθ(y0, x0)
T∏
t=1

ϑ(yt;ψyθ (zt− 1 : t, yt−1, xt−1))︸ ︷︷ ︸
pθ(yt|yt−1,xt−1)

×

ζ(xt;ψxθ (zt− 1 : t, yt−1:t, xt−1))︸ ︷︷ ︸
p(xt|yt−1:t,xt−1)

, (E.2)

where zt satisfies (E.1). It can noted that (y0:T , x0:T ) is no longer Markovian.
Remark that this property is also satisfied by the general TMC (1.8). However,
pθ(y0:T , x0:T ) is now available in a closed-form expression and the relationship
between the pair (yt, xt) and the past observations is fully characterized by
the function ψzθ .

This kind of parameterization has an advantage in terms of Bayesian in-
ference. Since zt is a deterministic function of (zt−1, xt−1) (and so of xt−1,
by induction), the conditional posterior distribution pθ(zt|zt−1, x0:T ) reduces
to δψz

θ
(zt−1,xt−1). Consequently, Algorithm 3 and Algorithm 4 can be directly

applied to estimate θ and yt, for all t, by introducing the dependency in zt−1:t
in functions ψyθ and ψxθ of Section 4.2.1. An alternative point of view is that
when zt is deterministic, Algorithm 6 can be seen as a particular instance
of Algorithm 3 in which we have set qϕ(z0:T |x0:T ) = pθ(z0:T |x0:T ), β1 = 1
and β2 = 0. Indeed, for this particular setting the objective function (4.37)
coincides with the ELBO but also with the log-likelihood pθ(x0:T ).

E.1.2 Deep PPMCs

As previous models, we consider the case where PPMCs (E.2) are parame-
terized with DNN. Such models will be referred to as Deep Partially Pairwise
Markov Chain (DPPMC). In the particular case of PPMCs, ψzθ can be seen
as a RNN, i.e. a neural network which admits the output of the network at
previous time t− 1 as input at time t (Hochreiter & Schmidhuber, 1997). It is
thus possible to directly combine our models with powerful RNN architectures
such as Long Short Term Memory (LSTM) RNNs or Gated Recurrent Unit
(GRU) RNNs which have been developed to introduce emphasize sequential
dependencies. Note that the gradient of ψzθ w.r.t. θ can also be computed with
a version of the backpropagation algorithm adapted to RNNs (Hochreiter &
Schmidhuber, 1997; Chung et al., 2014).

The pretraining of this deep architecture is direct. The constrained output
layer step is an application of Paragraph 4.3.3 with qϕ(z0:T |x0:T ) = pθ(z0:T |x0:T ),
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β1 = 1 and β2 = 0; so it can be seen as the step described for PMCs in Para-
graph 4.2.2 up to the additional input zt−1:t.

The second step of our pretraining procedure of Paragraph 4.3.3 can also be
simplified. Since in this particular case we have implicitly computed the opti-
mal conditional variational distribution qopt

ϕ (zt|z0:t−1, x0:T ) = δψz
θ

(zt−1,xt−1)(zt),
the reparameterized sample zt−1:t of Figure 4.4 is now deterministic and co-
incides directly with the output of ψzθ , as shown in Figure E.1. Note that
the parameters of ψzθ are unfrozen. The training process is summarized in
Algorithm 10.

yt−1

zt−1:t

∑
ψy
θ

θfr(θufr,

layers

)
layersψz

θ r.t.

xt−1

zt−1

Figure E.1: Graphical and condensed representation of the parameterization
of ψyθ in the DPPMC model. The dashed arrows represent the fact that some
variables are copied.

Algorithm 10 A general estimation algorithm for deep parameterizations of
PPMC models.
Input: x0:T , the observation
Output: ˆy0:T , the final classification

Initialization of the output layer of ψyθ and ψxθ
1: Estimate θ∗

fr and ŷpre
0:T with Lines (1)-(3) of Algorithm 5

Pretraining of θufr
2: θ(0)

ufr ← Backprop(ŷpre
0:T , x0:T , θ

∗
fr, Cfθ

, Cgθ
)

Fine-tuning of the complete model
3: Update all the models parameters (except θfr) with Algorithm 3
4: Compute ŷ0:T with Algorithm 4

E.1.3 Simulations

We start again with the same experiments as those in Section 4.2.3, but
we use an alternative noise which aims at introducing longer dependencies on
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the observations. We now set

xt|yt, xt−2:t−1 ∼ N
(

sin(ayt + 0.2(xt−1 + xt−2));σ2
)
. (E.3)

where aω1 = 0, σ2 = 0.25 and aω2 is a varying parameter. We compare the
deep models of Section 4.2 (DSMPC and DPMC) with their natural extensions
developed in this section (DPSPMC and DPPMC).

Figure E.2a illustrates the results involving the models we have just intro-
duced. For ψzθ we use two independent standard RNNs with ReLU activation
function, i.e. zt = [z1

t , z
2
t ] = [ψzθ1(z1

t−1, xt−1), ψzθ2(z2
t−1, xt−1)]; ψyθ (resp. ψxθ )

depends on z1
t−1:t (resp. z2

t−1:t). In this setting, we found that the models
worked the best when the dimensions of z1

t and of z2
t is 5. We can see that

the more general parameterizations embedded in DPSPMC and DPPMC lead
to an improvement of the DPMC models; each DPPMC model leading to a
better accuracy than its DPMC counterpart. The ability to model long term
dependencies proves to be important to better solve the correlated noise. This
experiment illustrates a way to take advantage of a deterministic auxiliary
process: by strengthening the sequential dependencies between the hidden
random variables.
E.2. Additional material

E.2.1 Proof of Proposition 4.3.1

The ELBO

Q(θ, ϕ) =
∑
y0:T

∫
qϕ(y0:T , z0:T |x0:T ) log

(
pθ(y0:T , z0:T , x0:T )
qϕ(y0:T , z0:T |x0:T )

)
dz0:T (E.4)

can be decomposed as

Q(θ, ϕ) =
∫ 1︷ ︸︸ ︷[∑

y0:T

qϕ(y0:T |z0:T , x0:T )
]
qϕ(z0:T |x0:T ) log

(
pθ(z0:T , x0:T )
qϕ(z0:T |x0:T )

)
dz0:T

−
∫
qϕ(z0:T |x0:T )DKL (qϕ(y0:T |z0:T , x0:T )||pθ(y0:T |z0:T , x0:T )) dz0:T ,

(E.5)

≤
∫
qϕ(z0:T |x0:T ) log

(
pθ(z0:T , x0:T )
qϕ(z0:T |x0:T )

)
dz0:T = Qopt(θ, ϕ). (E.6)
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(a) Error rate from the unsupervised segmentations of Scenario (E.3). Results are
averaged on all the cattle-type images from the database.

y0:T x0:T D-SPMC D-PMC D-PSPMC D-PPMC

22.1% 28.0% 19.0% 19.5%

(b) Selected illustrations for aω2 = 0.21 (signaled by the red vertical line on Fig-
ure E.2a). Error rates appear below the images.

Figure E.2: Unsupervised image segmentation with Partially Pairwise Markov
Chains.
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We have Q(θ, ϕ) = Qopt(θ, ϕ) when the KLD term in (E.5) is null, i.e. when
qϕ(y0:T |z0:T , x0:T ) = pθ(y0:T |z0:T , x0:T ). It remains to compute Qopt(θ, ϕ).
Starting again from (E.4) where we set

qϕ(y0:T , z0:T |x0:T ) = qϕ(y0:T |x0:T )pθ(y0:T |z0:T , x0:T ),

the Markovian structure of pθ(y0:T , z0:T , x0:T ) and the additive property of the
logarithm function give the decomposition (4.21)-(4.23).

Note that the computation of Qopt(θ, ϕ) via (4.21)-(4.23) relies on the
distribution pθ(yt−1:t|z0:T , x0:T ). It can be computed from a direct extension
of the intermediate quantities αθ,k and βθ,k which are now defined as αθ,k(yt) =
pθ(yt, z0:t, x0:t) and βθ,k(yt) = pθ(zt+1:K , xt+1:K |yt, zt, xt). Their computation
is similar to (4.13) and (4.15), except that they now involve the transition
p(yt, zt, xt|yt−1, zt−1, xt−1) rather than p(yt, xt|yt−1, xt−1).

E.2.2 Detailed error rates for experiments 4.4.1 and 4.4.2

This section provides the full results of the real world experiments de-
scribed in Section 4.4. Table E.1 provides a comprehensive comparison of the
error rates achieved by different generalized Triplet Markov Chains in the con-
text of unsupervised image segmentation. The table presents detailed error
rates for ten micro-computed tomography slices, evaluated across four models:
HMC-IN, di-MTMC, MTMC, and DMTMC.
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Slice HMC-IN di-MTMC MTMC DMTMC
A 8.5 8.5 6.5 5.4
B 10.9 10.9 8.7 6.5
C 6.9 7.0 6.0 5.2
D 10.0 10.1 8.3 6.1
E 6.5 6.3 6.2 5.4
F 11.5 11.5 10.8 9.3
G 4.6 4.6 3.9 3.7
H 8.6 8.6 8.5 7.7
I 11.5 11.5 10.1 9.2
J 7.2 7.2 6.9 6.5

Average 8.6 8.6 7.6 6.56.56.5

Table E.1: Detailed error rates (%) in unsupervised image segmentation with
all the generalized TMCs assessed on ten micro-computed tomography slices.
See Section 4.4.1.

E.2.3 Additional experiments

In this section, we provide additional experiments. The first one consists
in introducing experiments in the case where the number of classes is C >
2. In the second one, we study experimentally the impact of the variational
distribution for the TMC model of Scenario (4.46).
Multi-class extension

In this section, we illustrate an extension of our models when C > 2. For
C > 2, Eq. (4.6) becomes a vector of softmax function,

fθ(yt−1, xt−1) =
[

ebω1,yt−1∑C
j=1 e

bωj ,yt−1
, · · · , ebωC ,yt−1∑C

j=1 e
bωj ,yt−1

]
, (E.7)

while the distribution λ(yt, fθ(yt−1, xt−1)) coincides with the Categorical dis-
tribution whose parameters are described by fθ(yt−1, xt−1), i.e.

pθ(yt = ωi|yt−1, xt−1) HMC= pθ(yt = ωi|yt−1) = ebωi,yt−1∑C
j=1 e

bωj ,yt−1
. (E.8)
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Data HMC-IN SPMC DSPMC DPSPMC PMC DPMC DPPMC
acc_exp01_user01 15.0 29.0 20.9 17.8 20.9 19.9 20.1

acc_exp02_user01 16.0 20.3 13.3 12.4 13.1 18.2 14.6

acc_exp03_user02 25.7 16.1 11.7 9.8 11.7 5.6 12.7

acc_exp04_user02 24.3 15.2 10.9 11.5 10.9 5.6 11.7

acc_exp05_user03 21.1 28.8 23.2 15.3 22.4 22.7 23.4

acc_exp06_user03 26.3 15.6 12.9 11.0 12.3 19.9 14.2

acc_exp07_user04 23.3 19.2 14.4 13.4 23.3 21.9 14.6

acc_exp08_user04 26.3 17.1 13.1 12.3 12.9 10.4 12.9

acc_exp09_user05 24.3 19.0 14.9 12.3 14.7 12.3 15.5

acc_exp10_user05 25.8 48.3 24.5 25.4 24.3 27.6 24.3

acc_exp11_user06 27.7 15.1 12.7 10.9 12.7 12.6 11.9

acc_exp12_user06 36.9 43.5 42.8 43.2 42.8 42.1 41.5

acc_exp13_user07 26.1 18.2 14.6 16.5 14.4 13.9 13.9

acc_exp14_user07 26.0 18.5 14.5 21.9 14.4 18.9 13.6

acc_exp15_user08 22.2 16.7 12.9 9.0 12.8 10.0 13.0

acc_exp16_user08 26.2 19.4 16.5 14.7 16.5 15.8 14.3

acc_exp17_user09 25.6 17.0 13.1 17.9 12.9 14.0 11.0

acc_exp18_user09 24.8 13.8 10.9 11.3 10.8 8.1 12.3

acc_exp19_user10 26.1 13.3 10.4 21.4 10.3 8.0 15.2

acc_exp20_user10 34.9 22.1 27.2 26.8 27.1 29.1 25.9

Average 25.2 21.3 16.8 16.716.716.7 17.1 16.8 16.8

Table E.2: Detailed Error rates (%) in the binary clustering of the first twenty
raw entries of the HAPT dataset (Reyes-Ortiz et al., 2016).
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Figure E.3 displays an extension of Scenario (3.19) to the multi-class case.
One can note that the relative performances of the models remain similar to
those established in the article.

y0:T x0:T HMC-IN SPMC DSPMC

C = 3

C = 3

C = 5

Figure E.3: Multi-class segmentations with the HMC-IN, SPMC and DSPMC
models. The noisy image is simulated according to Eq. (3.19) from the paper
with aω1 = 0, aω2 = 1 and aω3 = 2 for the top row, aω1 = 0, aω2 = 0.5 and
aω3 = 1 for the middle row and aω1 = 0, aω2 = 0.75, aω3 = 1.5, aω4 = 2.25 and
aω5 = 3 for the bottom row. Note that the segmentation can be affected by
label switching, which is another different problem out of scope of the article.

Influence of the variational distribution

In this section, we performed new simulations in the case of the non-stationary
noise experiment (Scenario (4.46)) with 3 different variational distributions for
the DMTMC model, namely:

q1
ϕ(z0:T |x0:T ) =

T∏
t=1
N (zt; νϕ(xt)),

q2
ϕ(z0:T |x0:T ) =

T∏
t=1
N (zt; νϕ(zt−1, xt)),

and

q3
ϕ(z0:T |x0:T ) =

T∏
t=1
N (zt; νϕ(zk−2, zt−1, xt)).
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Figure E.4: Error rate from the unsupervised segmentations of Scenario (4.46).
Results are averaged on all the dog-type images from the database.

Figure E.4 summarizes this additional experiment.
It can be observed that the choice of the variational distribution does not

lead to significant changes in the results as compared to, for example, the
Mean-Field variational distribution with fully independent random variables.
However, adding more dependencies led to worse results probably because of
the complexity of the noise to estimate.
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Medical image segmentation

F.1. Protocol and Database Construction

We describe the protocol and the database construction as follows.

• Patients and explant recovery:

1. Patients scheduled for transfemoral amputation in the vascular surgery
department are informed of the procedure and asked not to object
during the pre-operative consultation scheduled for the day before
the operation.

2. Management of the patient in accordance with current practice,
with an injected preoperative CT scan.

3. During routine transfemoral amputation surgery: recovery of the
sample (portion of the amputation including the damaged artery)
to be analysed after rinsing the artery lumen.

4. Recovery of the explant with macroscopic analysis at GEPROMED
and storage on their premises. The subjects’ participation in the
research ends after the surgery.

• GEPROMED: Ex-vivo microscanner imaging at GEPROMED.

1. The microCT 3D images of the arteries are acquired at the CVPath
Institute, Inc. (Gaithersburg, MD, USA).

2. Histology are performed on the specimens as described in Torii et al.
(2019).
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3. Co-registration are subsequently performed manually between the
microCT images and the histologic slices obtained during the steps
described above. The result of this step consists in pairs of data:
the micro CT 2D image with its histologic ground truth.

4. An expert annotate the micro CT images using the histologic ground
truths in the GIMP software7. They are 6 classes:

– soft tissue (ST): soft tissue, formaldehyde, thrombus, fibrous
plaque.

– fatty tissue (FT): fatty tissue, lipid pool.
– sheet calcification (SC).
– nodular calcification (NC).
– specimen holder (SH).
– background (Ba)

5. Collection and analysis of dicom data (CT images): Centerline in-
formation is available for the CT images. The centerline is given
by an expert and is used to select the interest region of the images,
since the lesion represents a small area of the artery, i.e. of the CT
image.

6. Correlation between CT scanner and micro CT scanner using stan-
dard references (collaterals, branches and specific lesions).

F.2. Previous Work

Gangloff (2020) has proposed different methods to segment the micro CT
images of the SAFP. They used pairs of micro CT images histologically an-
notated micro-CT images, which constituted the training set. In other words,
they mainly used the pairs of information obtained until Step 4 of the protocol
described above. The additional information obtained after that step, which is
related to the correlation between the CT scanner and the micro CT scanner,
were not exploited from a segmentation point of view. The authors have used
a CNN based on the U-Net architecture (Ronneberger et al., 2015) to segment
the micro CT images into 6 classes. We describe this technique with more
details in Subsection 5.3. The number of classes was selected based on the
histopathologists’ advice. Notice that their work is a 2D supervised segmen-
tation, since the pairs (micro CT image, ground truth) are only available for
some slices of the 3D micro CT image.

The measure of performance is the Dice score, which is a measure of the
similarity between two sets of data. In the context of image segmentation,
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for example, the Dice score can be used to evaluate the similarity between a
predicted segmentation mask and the ground truth segmentation mask. The
Dice score is defined as follows:

Dice score = 2|A ∩B|
|A|+ |B| , (F.1)

where A and B are the two sets of data. This score is a number between 0
and 1, where 0 indicates no similarity and 1 indicates perfect similarity.
F.3. Super resolution

F.3.1 Super resolution via VAEs

Super-resolution (SR) techniques, while sharing a common objective of en-
hancing image resolution, employ a variety of methods to achieve this goal.
Super-resolution VAEs architectures have been proposed by (Gatopoulos et al.,
2020), which requires a dataset of high-resolution images and their correspond-
ing low-resolution images. On the one hand, an unsupervised real image de-

Figure F.1: Stochastic dependencies of the proposed model. Our approach
takes advantage of a compressed representation y of the data in the variational
part, that is then utilized in the super-resolution in the generative part. Figure
taken from (Gatopoulos et al., 2020)

noising and Super-Resolution approach via Variational AutoEncoder (dSR-
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VAE) was proposed by (Liu et al., 2020). The architecture of the proposed
model is shown in Figure F.2.

Figure F.2: Complete structure of the proposed dSRVAE model. It includes
Denoising AutoEnocder (DAE) and Super-Resolution SubNetwork (SRSN).
The discriminator is attached for photo-realistic SR generation. Figure taken
from (Liu et al., 2020)

SR models based on VAEs are a branch of image processing focused on gen-
erating high-resolution images from low-resolution ones (Appati et al., 2023;
Liu et al., 2020; Gatopoulos et al., 2020; Hyun & Heo, 2020). These models
have gained popularity due to their effectiveness in modeling high-resolution
images, traditionally dominated by autoregressive models (Li & Orchard, 2001;
Joshi et al., 2005), and GANs (Chira et al., 2022). Images generated by VAEs
present, in general, blurry details, which is a limitation of these models.

Applicability to medical images: Since the LR-CT images we have are
small (5× 5 to 12× 12) pixels and the details are important for the segmenta-
tion, the factor of up-scaling is important. In addition, the images are noisy,
which is a common problem in medical images. The SR algorithms based on
VAEs presented above are promising, however, they are not suitable for our
problem due to the up-scaling factor, and the noise in the images. The SR
algorithm based on VAEs presented in (Gatopoulos et al., 2020) proposes a
factor of up-scaling of 2, which is not enough for our problem. Moreover, the
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input for training is an HR (micro CT) center line of the artery, which is not
yet available. From a point of view of the applicability to medical images, we
won’t be able to use this algorithm. Although, it is a promising algorithm
for future researches in this field which can be related to the work we have
presented in previous chapters.

F.3.2 Laplacian pyramid SR network

The Laplacian Pyramid Super-Resolution Network (LapSRN), presented in
(Lai et al., 2017), is a method for single-image super-resolution using CNNs.
It progressively reconstructs the sub-band residuals of high-resolution (HR)
images without requiring bicubic interpolation, which reduces computational
complexity. Figure F.3 shows the LapSRN architecture where we can see
the different layers of the network. LapSRN directly extracts feature maps
from low-resolution images and progressively predicts sub-band residuals in a
coarse-to-fine manner using transposed convolutional layers for upsampling.
It is trained end-to-end with deep supervision using a robust Charbonnier
loss function, which improves accuracy and reduces visual artifacts. LapSRN
stands out for its fast processing speed, accuracy, and ability to generate multi-
scale predictions in one feed-forward pass, making it suitable for resource-
aware applications.
Remark F.3.1. The Charbonnier loss function is a variant of the L1 loss
function, commonly used in image processing and computer vision tasks, par-
ticularly for regression problems like image super-resolution. This loss function
is defined as follows:

LCharbonnier(x) =
√

(ypred − ytrue)2 + ϵ2

where ypred is the predicted value, ytrue is the ground truth value, and ϵ is a
small constant which ensures numerical stability and prevent division by zero.
The inclusion of the ϵ term allows the Charbonnier loss to be less sensitive to
outliers than the L2 loss, while being smoother and less abrupt than the L1
loss, which can be beneficial in training neural networks for tasks like image
super-resolution.

Lai et al. (2017) have compared LapSRN with other classic SR algorithms
such as Super Resolution Convolutional Neural Network (SRCNN) (Dong
et al., 2015), Fast Super Resolution Convolutional Neural Network (FSR-
CNN) (Dong et al., 2016), Very Deep Convolutional Neural Network (VDSR) (Kim
et al., 2016), and some other state-of-the-art SR algorithms. They have shown
that LapSRN outperforms these algorithms in terms of accuracy and visual
quality.
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Figure F.3: Red arrows indicate convolutional layers. Blue arrows indicate
transposed convolutions (upsampling). Green arrows denote element-wise ad-
dition operators, and the orange arrow indicates recurrent layers. Figure taken
from (Lai et al., 2017)

F.4. Probabilistic U-Net architecture

The central component of the Probabilistic U-Net is the latent space, which
is the key to modeling the ambiguity of the segmentation problem. The latent
space is a low-dimensional space where the segmentation variants are repre-
sented as probability distributions. A sample from the latent space is drawn
and then injected into the U-Net to produce the corresponding segmentation
map S, defined as follows:

S(x, z) = fcomb(fU−Net(x), z).

Here, fU−Net is the U-Net architecture and fcomb is the function that combines
the information obtained from the latent space and the output of the U-Net.

Figure F.4, (a) represents the sampling process, where a sample is drawn
from the prior distribution p(z|x). Next, the segmentation map S is obtained.
Figure F.4(b) represents the training process, where the model is trained with
the standard training procedure for conditional VAEs. The ELBO objective
function for the Probabilistic U-Net reads

QP-U-Net(x, y) = Eqϕ(z|x,y) [log pθ(y|S(x, z))]− β KLD (qϕ(z|x, y)||p(z|x)) ,
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where β is a hyperparameter that controls the trade-off between the recon-
struction loss and the KLD term (Higgins et al., 2017). The reconstruction loss
is the cross-entropy between the segmentation map S and the ground truth y.
The KLD term is the Kullback-Leibler divergence between the approximate
posterior qϕ(z|x, y) and the prior p(z|x).

Figure F.4: The Probabilistic U-Net. (a) Sampling process. The heatmap
represents the probability distribution in the low-dimensional latent space. (b)
Training process illustrated for one training example. Figure taken from (Kohl
et al., 2018).
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Titre : Modèles de Markov génératifs pour la classification séquentielle bayésienne

Mots clés : apprentissage approfondi, modèles probabilistes, données séquentielles, chaines de Markov

Résumé : Cette thèse vise à modéliser des données
séquentielles à travers l’utilisation de modèles pro-
babilistes à variables latentes et paramétrés par
des architectures de type réseaux de neurones
profonds. Notre objectif est de développer des
modèles dynamiques capables de capturer des dy-
namiques temporelles complexes inhérentes aux
données séquentielles tout en étant applicables dans
des domaines variés tels que la classification, la
prédiction et la génération de données pour n’importe
quel type de données séquentielles.
Notre approche se concentre sur plusieurs
problématiques liés à la modélisation de ce type
de données, chacune étant détaillé dans un cha-
pitre de ce manuscrit. Dans un premier temps, nous
balayons les principes fondamentaux de l’appren-
tissage profond et de l’estimation bayésienne. Par
la suite, nous nous focalisations sur la modélisation
de données séquentielles par des modèles de Mar-
kov cachés qui constitueront le socle commun des
modèles génératifs développés par la suite. Plus

précisément, notre travail s’intéresse au problème de
la classification (bayésienne) séquentielle de séries
temporelles dans différents contextes : supervisé
(les données observées sont étiquetées) ; semi-
supervisé (les données sont partiellement étiquetées)
; et enfin non supervisés (aucune étiquette n’est dis-
ponible). Pour cela, la combinaison de réseaux de
neurones profonds avec des modèles probabilistes
markoviens vise à améliorer le pouvoir génératif des
modélisations plus classiques mais pose de nom-
breux défis du point de vue de l’inférence bayésienne
: estimation d’un grand nombre de paramètres, esti-
mation de lois à postériori et interprétabilité de cer-
taines variables cachées (les labels). En plus de pro-
poser une solution pour chacun de ces problèmes,
nous nous intéressons également à des approches
novatrices pour relever des défis spécifiques en ima-
gerie médicale posés par le Groupe Européen de
Recherche sur les Prothèses Appliquées à la Chirur-
gie Vasculaire (GEPROMED).

Title : Generative Markov models for sequential Bayesian classification

Keywords : deep learning, probabilistic models, sequential data, Markov chains

Abstract : This thesis explores and models sequen-
tial data through the application of various proba-
bilistic models with latent variables, complemented
by deep neural networks. The motivation for this re-
search is the development of dynamic models that
adeptly capture the complex temporal dynamics in-
herent in sequential data. Designed to be versatile
and adaptable, these models aim to be applicable
across domains including classification, prediction,
and data generation, and adaptable to diverse data
types. The research focuses on several key areas,
each detailed in its respective chapter. Initially, the
fundamental principles of deep learning, and Baye-
sian estimation are introduced. Sequential data mo-
deling is then explored, emphasizing the Markov chain
models, which set the stage for the generative models
discussed in subsequent chapters. In particular, the
research delves into the sequential Bayesian classi-

fication of data in supervised, semi-supervised, and
unsupervised contexts. The integration of deep neu-
ral networks with well-established probabilistic models
is a key strategic aspect of this research, leveraging
the strengths of both approaches to address com-
plex sequential data problems more effectively. This
integration leverages the capabilities of deep neu-
ral networks to capture complex nonlinear relation-
ships, significantly improving the applicability and per-
formance of the models.
In addition to our contributions, this thesis also pro-
poses novel approaches to address specific chal-
lenges posed by the Groupe Européen de Recherche
sur les Prothèses Appliquées à la Chirurgie Vascu-
laire (GEPROMED). These proposed solutions reflect
the practical and possible impactful application of this
research, demonstrating its potential contribution to
the field of vascular surgery.
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