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Titre : Explorer les limites à distance infinie dans les espaces des modules en théorie des cordes 

Mots clés : Théorie des cordes, Paysage des cordes, Dualités, Compactifications, Gravité quantique 

Résumé : Le paysage de la théorie des cordes est 
vaste et, à bien des égards, encore inexploré. 
Néanmoins, après compactification, il a été observé 
que des caractéristiques communes apparaissent, qui 
sont indépendantes de la compactification elle-
même, et qui sont supposées être intrinsèquement 
liées aux effets de gravité quantique. Dans cette 
optique, le « Swampland program » vise à 
comprendre les conditions auxquelles une théorie 
effective des champs doit obéir afin d'être complétée 
de manière cohérente par la gravité quantique, pour 
laquelle la théorie des cordes est, à l'heure actuelle, 
le cadre le plus satisfaisant. Ces contraintes sont 
actuellement exprimées sous la forme d'une série de 
conjectures qui, à une énergie donnée, divisent 
l'espace des théories effectives en « Landscape » (à 
savoir, celles qui proviennent de la gravité quantique) 
et « Swampland » (celles qui, bien que cohérentes en 
tant que théories quantiques des champs, par 
exemple sans anomalie, ne peuvent pas être 
couplées de manière cohérente à la gravité 
quantique). Une caractéristique typique des 
compactifications de cordes est la présence de 
modules, des champs scalaires sans masse avec un 
potentiel plat dont le terme cinétique dans l'action 
de la supergravité joue le rôle d'une métrique dans 
l’espace paramétré par ces modules. Dans ce 
contexte, l'une des conjectures les plus largement 
acceptées, la « Distance Conjecture », stipule qu'en 
se déplaçant à une distance infinie dans l'espace des 
modules d'une théorie de la gravité quantique, une 
tour    infinie   d'états  deviennent  légers   de   façon  

exponentielle en la distance géodésique. Dans 
cette thèse, nous nous sommes concentrés sur 
certains aspects de cette conjecture dans des 
contextes spécifiques de la théorie des cordes. Tout 
d'abord, nous avons étudié comment ces états 
infiniment nombreux étendent les algèbres de 
symétrie dans les limites de décompactification des 
cordes hétérotiques et CHL sur des tores à d 
dimensions, qui correspondent à des théories de 
jauge de rang 16+d et 8+d, respectivement. Dans 
les deux cas, en utilisant la théorie sur la surface de 
la corde, nous avons montré qu'en allant à l’infini 
dans k≤d directions, les algèbres qui émergent 
sont la version affine de celles de la théorie de 
dimension supérieure 10-d+k vers laquelle nous 
décompactifions. De plus, nous montrons que la 
décompactification de la théorie CHL en théorie 
hétérotique, qui s'accompagne d'une 
augmentation du rang de la symétrie de jauge, est 
associée à la présence d'une version tordue de 
l'algèbre affine. Enfin, nous montrons que dans le 
cadre simple des espaces de modules symétriques 
(tels que ceux des compactifications toroïdales de 
la théorie M et de la théorie des cordes), il existe un 
lien naturel entre la géométrie de l'espace de 
modules et le spectre des cordes. Nous 
paramétrons la frontière de ces espaces de 
modules et caractérisons le comportement des 
géodésiques à l'infini, et en supposant un réseau 
d'états ainsi qu'en utilisant la complétude du 
spectre, nous prouvons la « Distance Conjecture » 
dans ces configurations. 

 

 

 

 



 

 

 

Title : Exploring infinite distance limits in string moduli spaces 

Keywords : String theory, String landscape, Dualities, Compactifications, Quantum gravity 

Abstract : The string landscape is vast, and to many 
extents still unexplored. Nevertheless, in string 
compactifications it has been observed that common 
features appear, which are independent of the 
compactification itself, and that are believed to be 
deeply related to the quantum gravitational nature of 
the theory. Along these lines, the Swampland program 
aims to understand from a bottom-up perspective the 
conditions that an effective field theory should obey in 
order to be consistently UV completed to quantum 
gravity, for which string theory is, as of now, the most 
satisfactory framework. These constraints are currently 
expressed as a series of conjectures, which at a given 
energy divide the space of effective field theories into 
Landscape (namely, the ones that come from quantum 
gravity) and Swampland (the ones that despite being 
consistent as quantum field theories e.g. anomaly free, 
cannot be consistently coupled to quantum gravity). A 
typical feature of string compactifications is the 
presence of moduli, massless scalar fields with flat 
potential whose kinetic term in the supergravity action 
plays the role of a metric in a space parametrized by 
the moduli themselves, the so-called moduli space. 
Related to this, one of the most widely accepted 
conjectures, the Distance Conjecture, states that 
moving an infinite distance in the moduli space of a 
theory of quantum gravity,  an infinite tower of  states  

becomes exponentially light in the geodesic 
distance. In this thesis, we focused on some aspects 
of this conjecture in specific string theory settings. 
Firstly, we studied how these infinitely many states 
enhance the symmetry algebras in 
decompactification limits of Heterotic and CHL 
strings on d-dimensional tori, which correspond to 
gauge theories of rank 16+d and 8+d, respectively. 
In both cases, using the worldsheet theory we 
showed that taking k≤d radii to infinity, the algebras 
that emerge are the affine version of the ones in the 
higher 10-d+k dimensional theory we are 
decompactifying to. Moreover, we show that the 
decompactification of the CHL theory to the 
Heterotic one, which is accompanied by rank 
enhancement of the gauge symmetry, is associated 
with the presence of a twisted version of the affine 
algebra. Finally, we show that in the simple setting of 
symmetric moduli spaces (such as those of toroidal 
M- and string theory compactifications), there is a 
natural connection between the geometry of the 
moduli space and the string spectrum. We 
parametrize the boundary of these moduli spaces 
and characterize the behaviour of the geodesics at 
infinity, and assuming a lattice of states as well as 
using completeness of the spectrum we prove the 
Distance Conjecture in these setups. 
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Summary

In this thesis, we focus on some aspects related to the Distance Conjecture and the presence

of infinite massless towers in the context of the Swampland Program.

First, we analyse the boundaries of the moduli spaces of the heterotic string compactified on

T d. We compute the current algebras on the string worldsheet as we approach all the infinite

distance limits that correspond to (possibly partial) decompactification limits in some dual

frame. When decompactifying k directions of the T d, we find that the infinite towers of states

becoming light enhance the algebra arising at a given point in the moduli space of the T d−k

compactification to its k-loop version from the lower dimensional point of view. The central

extensions are given by the k KK vectors, and in the case of semi-simple gauge groups, they

make all the factors affine at the same time. In the E8×E8 heterotic theory on S1 we also prove

that these towers of modes satisfy the Lattice Weak Gravity and Repulsive Force Conjectures.

Moreover, we make particular emphasis on d = 2 and its F-theory duals. For T 2 compactific-

ations, we reproduce all the affine algebras that arise in the F-theory dual, and show all the

towers explicitly, including some that are not manifest in their F-theory counterparts. Further-

more, we construct the affine SO(32) algebra arising in the full decompactification limit, both

in the heterotic and in the F-theory sides, showing that not only affine algebras of exceptional

type arise in the latter.

We then consider an orbifold constructed from the 9 dimensional E8 × E8 heterotic theory on

S1, namely the CHL string, and analyse a space-time algebra of BPS states that emerges in the

infinite distance limit as the theory decompactifies, focusing especially on the full decompac-

tification limit to 10 dimensions. In particular, we show that decompactifications of the cycle

related to the orbifold lead to twisted versions of affine algebra. Moreover, through the kind of

affine algebras that can be found at the boundary of the CHL moduli space, we can clearly see

that the 9 dimensional theory can only decompactify to the 10 dimensional E8 × E8 heterotic

theory, while the 8 dimensional one can decompactify also to the 10 dimensional Spin(32)/Z2.

Finally, we find geodesics and characterize the infinite distance boundary in symmetric moduli

spaces (of the coset form G/K), like the ones that appear in compactifications with maximal

or half maximal supersymmetry, respectively of the kind Ed(d)/K and O(d, d′)/(O(d)×O(d′)),

quotiented out by the discrete U- or T-duality group. The infinite distance points are charac-

terised by rational parabolic subgroups of G: due to the quotient by the discrete group, the

infinite distance points are reached only by a (measure zero) set of very particular geodesics,

while most of them have an ergodic motion, reaching only finite distance points. Assuming

completeness of the spectrum, we show that there always is a tower of states becoming mass-

less exponentially in the geodesic distance, thus proving the Swampland Distance Conjecture

in those setups.
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X CONTENTS



Part I

Preliminaries

1





Chapter 1

Introduction

One of the most compelling aspects of physics, and a cornerstone of its development as a sci-

ence, is the quest for unification – finding the most fundamental laws of nature to describe

in a single framework the broadest possible range of phenomena over different scales. Over

the past few decades, this has become a more and more advanced theoretical – and technical

– effort aimed at formulating a “theory of everything” that could explain all we know about

nature and more. Despite seeming then something far from what we can commonly experience

about the world, and somehow mainly of philosophical interest, this is actually deeply rooted

in observations of nature. Indeed, the first big step towards unification came from Newton’s

realisation that the force governing the fall of an apple and the motion of celestial bodies is

described by the same gravitational law. Another such example is given by electromagnetism,

introduced after electricity and magnetism were understood to be just two different manifest-

ations of a single underlying electromagnetic field, as described by Maxwell’s laws.

This synthesis paved the way for a fundamental step towards the unification process, culmin-

ated with the birth of the Standard Model (SM) of particle physics. In the second half of the

last century, they discovered what are the constituents of nature at the energy scales that we

can now probe more and more precisely at LHC, and they characterised the interactions among

the various particles, which are electromagnetism, weak and strong forces, and gravity.

Leaving gravity aside for the moment, our ability to make very precise predictions that can

be tested experimentally was due to the development of Quantum Field Theory (QFT) [4–6],

which allows to describe Quantum Mechanical (QM) systems in a Special Relativistic fashion.

It is in this language that it became evident that all the known forces could be described

based on the concept of symmetries using the same mathematical framework, the one of gauge

theories. With this insight, it was understood that electromagnetism and the weak force are

just two different low-energy manifestations of the so-called “electroweak force”, and despite

not having experimental evidence for an additional unification with the strong force at higher

energy scales, one can use the tools of QFT to make different proposals for this even more

“fundamental” possible interaction.

Regardless of the huge success of QFT and the SM in accounting for collider physics, for

which gravitational effects are irrelevant, it seems that this paradigm of unification fails at

accounting also for gravity. The current formulation of gravitational interactions is Einstein’s

General Relativity (GR) [7] (see also [8]), a semiclassical description that is very accurate at

3



4 CHAPTER 1. INTRODUCTION

our cosmological scales, but that can only be treated as an effective field theory, as it is non-

renormalisable in 4 dimensions. Despite this apparent challenge, it is natural to look for a

unique theory that reduces to GR and the SM in the appropriate regimes, and which is able to

describe all these forces at a quantum level. This would allow us to explain phenomena such

as black holes and the Big Bang, where gravitational interactions are expected to be crucial,

and strong at very short scales.

The main candidate for a framework that provides such a consistent formulation of Quantum

Gravity (QG) in addition to all the other known interactions is String Theory (ST) [9, 10],

which is based on the assumptions that, at the most fundamental level, the constituents of

nature are not point-like, but one-dimensional, i.e. strings. The fact that, being extended

objects, they are associated with a length scale, non-trivially provides gravity with a way to

cut-off UV divergences in a way that evades the problem of non-renormalisability. The strings

oscillations in space-time give rise to different states; these include particles with properties

that are similar to the ones described by the SM, such as for instance gauge bosons and matter

fields, but in addition to this, the spectrum of string theory always includes a massless spin-two

particle that has the characteristics that one would expect from the graviton, the “gauge field”

of gravity.

In its supersymmetric formulation, internal consistency of ST requires it to be formulated in

ten space-time dimensions. Despite this rigidity, there are still five possible string theories

that can be constructed in ten dimensions, which feature closed and sometimes open strings

depending on the boundary conditions we imposed on them. They are the Type I, Type IIA

and IIB, Heterotic SO(32) and Heterotic E8 × E8 String Theories. They are believed to be

deeply related to an eleven-dimensional theory, called M-theory, which at low energies reduces

to eleven-dimensional supergravity, as shown in Figure 1.1.

Even though they are different and unrelated theories in 10 dimensions, it turns out that they

are all connected (or more precisely, “dual” to one another) once we compactify them, namely

when some of their ten spatial directions are taken to be compact. This is moreover required

in order to connect ST with phenomenology, as one should account for the fact that we can

perceive only a four-dimensional space-time. In order to achieve this, six out of the ten di-

mensions need to be compactified on an internal manifold whose characteristic length scale is

below the current experimental sensitivity, so that they could not have been detected so far

and such that effectively the theory has only 4 extended “external” directions. This introduces

a huge number of possible compactification spaces which in turn give a huge number of possible

lower-dimensional effective theories, since the particle content and the interactions specifically

depend on the geometry of the compact manifold being chosen. In particular, one can consider

a larger class of vacua without restricting necessarily to four dimensions by choosing a compact

manifold with any dimension between 1 and 9.1 Due to the need for compactification, a com-

mon feature of string EFTs is the presence of moduli, namely massless scalar fields without

a potential that are not stabilised.2 From the supergravity perspective, they can be thought

of as parameters on a metric space of connected string vacua having the same energy, called

1The time-direction cannot be compactified.
2Since moduli would give rise to long-range interactions, they need to be stabilised, namely given a fixed

vacuum expectation value. This can be done within ST, for example adding fluxes, see e.g. [11]. This is outside
the scope of the thesis and will not be further considered.
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Figure 1.1: The duality web among the 10 dimensional string theories and M-theory, whose
low-energy description is the one of 11 dimensional N = 1 (maximal) supergravity.

moduli space.

The set of different Effective Field Theories (EFTs) that can be obtained through string com-

pactifications is known as “Landscape” [12], and it is very vast, with early estimations of the

order of ∼ 10500 theories. This may raise the question of whether ST has actually any predictive

power, as it seems able to describe an very large amount of low energy phenomena. In this light,

an important research direction to test the effectiveness of ST in describing phenomenology

is to try to understand the generic properties of theories coming from it, which have recently

proven to be actually quite constrained. Along these lines, the Swampland program [13] aims

at understanding the features that an effective field theory should have in order to be consist-

ently UV completed to QG, by separating the low energy theories that can (belonging to the

Landscape) from those that cannot (the so-called Swampland) through a series of conjectures.

These are proposed and tested – and sometimes proven/disproven – either from explicit string

constructions (pointing out common patterns arising in string compactifications), from heur-

istic arguments, usually coming from black hole physics, or using holography in the context of

e.g. AdS/CFT, with the goal of building a better understanding of the low-energy implications

of QG. Despite the fact that all the consistent EFTs can apparently be coupled to GR through

minimal coupling and describe gravitational theories, these must obey additional constraints

in order to be lifted to full QG.

Plan of the thesis

One of the most widely accepted claims of the Swampland Program is the universal presence of

infinite towers of states that become light when approaching the boundaries of moduli spaces.
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This feature of QG theories was originally suggested in [14] with the formulation of the Distance

Conjecture (SDC), which will be presented in more detail in the following. This thesis mainly

focuses on two aspects related to this conjecture, touching also upon some related ones, and is

structured as follows.

• In Chapter 2, we will introduce and comment on the SDC, together with other conjectures

that will be mentioned in the following and that are related as well to the presence of

infinite towers of states with specific properties, namely the Completeness Hypothesis

[15, 16], the (Lattice) Weak Gravity Conjecture (LWGC) [17–19] and the closely related

(Lattice) Replulsive Force Conjecture (LRFC) [20,21].

• Part II is related to the characterisation of those infinite distance limits that correspond

to decompactification limits in the heterotic and CHL string theories compactified on

tori, which display perturbative gauge sectors, based on the symmetries that can arise.

In particular, the heterotic string in ten dimensions can have either E8 × E8 or Spin(32)
Z2

symmetry, while the CHL string is an intrinsically nine-dimensional construction that

comes from an orbifold of the E8 × E8 theory compactified on a circle. We present

them and their toroidal compactifications in Chapter 3, in order to set the notation and

describe the phenomenon of symmetry enhancements that can occur at different points

in the interior moduli space, in order to connect it with the behaviour at its boundaries.

This will be done in Chapters 4 for the heterotic case and 5 for the CHL case; there we

focus on decompactification limits of such theories, arising in the infinite distance regions

of moduli space where some or all the radii of the torus are taken to have infinite size

(up to T-dualities), and we discuss the related symmetry enhancements that can arise.

The mathematical background on this kind of algebras, known as affine Lie algebras, is

summarised in Appendix A, while details on the computations can be found in Appendix

B. Moreover, for the specific case of the E8 × E8 heterotic string on S1, we explicitly

comment on how the tower of states fits within the LWGC, the LRFC and the SDC in

Chapter 4.2, leaving the details of the computation for Appendix C. Finally, in Chapter

4.5 we show that, for T 2 compactifications, the Heterotic results match those obtained

in the dual F-theory on K3 framework in the context of Kulikov models and K3 complex

structure degenerations [22,23], and how all the different features appear. Some additional

background and comment is given in Appendix D.

• In Part III, we focus on the SDC in the case of compactifications that have a symmetric

moduli space, such as the ones of toroidal compactifications of M- and string theory before

the action of U- or T- duality, but that actually cover a wider class. After presenting

the mathematical tools to characterise and parametrise the boundary of such spaces in

Section 6.1.2, we show how this can be used to explicitly prove the SDC in these settings.



Chapter 2

Swampland conjectures and infinite

towers

In this Chapter, we introduce the Swampland Conjectures that are relevant in the following,

without being able to present an exhaustive list1. Indeed there exist a large number of different

conjectures characterising the theories that belong to the Swampland of theories that cannot

be embedded in QG. Despite of this, actually it seems to be possible that the most general

and fundamental QG principle are in fact limited in number, as many of these conjectures are

connected among one another. This is shown for a subset of them in Figure 2.1, and sharpening

the relations among them is one of the main goals of the Swampland Program.

One of the most used arenas to connect and test these conjectures is String Theory, as a

realisation of QG, but it is important to stress that in principle they are meant to be defined

in relation to a more generic framework of QG.

Here we focus on the Swampland Distance conjecture and its relation with the completeness

conjecture [15,16], the Weak Gravity and Repulsive Force Conjectures in the asymptotic limits

of moduli spaces.

2.1 The Distance Conjecture

This conjecture can be stated as follows.

Swampland Distance Conjecture (SDC) [14]. In a gravitational theory with a moduli

space (with metric given by the kinetic terms of the scalars), starting at a point P in such

moduli space and moving towards a point Q an infinite geodesic distance away, an infinite

tower of states becomes exponentially light (in Planck units) as

Mtower(Q) ∼Mtower(P ) e
−αd(P,Q) , (2.1.1)

where d(P,Q) is the geodesic distance between the points P and Q, and α is some positive,

order-one number.

This came originally with the related conjecture that at least one point at infinite distance

from P always exists [14].

1For a broad overview on these topics, see the recent reviews [24–29].

7
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Figure 2.1: A non-complete list of Swampland conjectures and some of the connections among
them.

The classical example for this conjecture is the bosonic string compactified on S1 of radius R;

in this case, without accounting for the dilaton, the moduli space is one-dimensional and is

parametrized by the radius.

From the string spectrum, one can argue that the contribution to the mass coming from the

compact momenta reads, in string frame

M2 =
n2

R2
+
w2R2

α′2 , (2.1.2)

where n, w ∈ Z are respectively the momentum and winding numbers of the state.

As stated above, the moduli space metric can be read from the Einstein frame 25-dimensional

effective theory obtained from dimensional reduction of the 26-dimensional one

Smoduli ∼
∫
d25x

√−g 1

R2
∂µR∂

µR , (2.1.3)

which we present up to O(1) factors that depend on the number of dimensions, and will not

be relevant in the following. This means that distances in moduli space between two points,

R1 and R2, are to be computed with respect to gRR ∼ 1
R2 , namely

d(R1, R2) ∼
∫ R2

R1

1

R
dR = log

(
R2

R1

)
. (2.1.4)

There are two points at infinite distance, given by R→ 0 and R→ ∞, and in both cases there

is a tower which is exponentially massless. In the R→ ∞ limit, this is given by the momentum

tower, also called Kaluza-Klein (KK) tower

mn ∼ n

R
∼ ne−d(R1,R) , (2.1.5)
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while in the R→ 0 limit it is the winding tower that becomes exponentially masslessmw ∼ e−d.

Let us stress that the presence of winding modes is a direct consequence of the stringy nature

of the theory, as they would be absent in a pure QFT framework.

This conjecture has received a lot of interest in the community, and it has been extensively

studied and checked in several string examples [18, 30–47], and refined in several ways. For

example, the fact that α in (2.1.1) is a constant is needed in order not to spoil the exponential

behaviour in the distance. A more precise characterisation of it has been done [40, 41, 48, 49],

and it has been lower bounded precisely with the Sharpened Distance Conjecture [50] as

α ≥ 1√
d− 2

(2.1.6)

in a theory with d external dimensions. Moreover, it turned out to be possible to relate

the exponential behaviour in the moduli of the various light towers to a geometric, convex hull

formulation and to characterise precisely the polytopes that arise in string settings [51–56], also

in relation to the asymptotic behaviour of the species scale [55, 57–60], which is the natural

cutoff of QG in the presence of light species [61–65]. Another interesting direction to study the

SDC has been the holographic approach, with the help of CFT techniques [66–68].

The fact that infinite field excursions2 lead to the presence of infinitely many massless states

means that an EFT built around the vacuum characterised by R0 has a finite range of validity,

and in particular that in this specific case the boundary of the moduli space cannot be described

with a 25-dimensional effective field theory. Indeed, approaching infinite distance points one

needs a new physical description for the system, as clarified by the Emergent String conjecture

[69,70]. According to this, the nature of the towers that become exponentially massless can be

• (dual to) a KK tower. This corresponds to a decompactification limit, so that the new

description that is needed is a higher-dimensional one. In this case α =
√

d−1
d−2 in a

d-dimensional theory.

• (dual to) an emergent tensionless critical and weakly coupled string, with a tower of

oscillator modes. The new description must then be a critical string theory, namely in 26

(10) space time dimensions in the case of bosonic (supersymmetric) string. Such a tower

is characterised by an exponential rate α = 1√
d−2

, which corresponds to the lower bound

of (2.1.6).

This has been tested in several examples [57,71–75].

It then is clear that there is a strong connection between these conjectures and the notion

of duality in String Theory. In this specific example, this can be seen from the T-duality

transformation

n↔ w , R↔ 1

R
, (2.1.7)

that connects KK modes at R→ ∞ with winding modes at R→ 0.

2It has been argued that the exponential behaviour should be seen at most after a critical distance of the
order of the Planck mass [46,47].
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2.2 The Completeness Hypothesis

Completeness Hypothesis [15,16]. In a gravitational theory with a gauge symmetry, there

must exist states with all the possible gauge charges allowed by Dirac quantization.

This is not necessary in a normal QFT, because charged particles with mass above the physical

cutoff can be consistently integrated out. In the presence gravity, this statement can be un-

derstood in two different ways, namely from black hole physics and in connection with another

Swampland principle, namely the absence of global symmetries [16,76].

Starting with the first one, a particle cannot be decoupled from the theory just sending the

mass to infinity, as this would be a black hole which would be present in the full UV complete

theory. Since black holes can have any gauge charge, one expects to have a state - not neces-

sarily a fundamental particle - for each gauge charge.

As for the second argument, the absence of global symmetry, one can show that despite the fact

that gauge interactions are not inconsistent with QG, pure gauge interactions, for example the

Einstein-Maxewll theory, lead to the presence of a global higher-form symmetry (whose charged

operators are higher-dimensional objects) which is incompatible with QG. Indeed, consider the

following action

S =

∫
d4
√−g

(
M2

p,4

2
R− 1

4g2
F 2

)
, (2.2.1)

with F = dA a 2-form, invariant under A → A+ dλ. This leads to a 2-form symmetry whose

current is given by the field strength F itself, d ∗ F = 0, whose charged operators are Wilson

lines

O = exp

(
iq

∮

γ
A

)
. (2.2.2)

A way to break this 1-form symmetry is to add electrically charged matter3, such that d∗F ̸= 0

d ∗ F = ∗jelect . (2.2.3)

Despite the fact that (2.2.3) would hold also in the presence of just one charged particle, it

actually turns out that in the case of higher form symmetries, the completeness is required in

order to break all the possible discrete symmetries that would otherwise be preserved [77].

2.3 The Weak Gravity Conjecture

The Weak Gravity Conjecture (WGC) [17]4 comes in two versions, the electric and the magnetic

one, which are dual statements as follows. Consider a gravitational theory in d dimensions with

a gauge symmetry with coupling g. Then

Electric Weak Gravity Conjecture. There must be at least one charged state with charge q

and mass m such that its charge to mass ratio is greater or equal to that of a large semiclassical

extremal black hole. We will call such a particle “superextremal”.

3Another way to make the theory consistent with the no global symmetry principle is to gauge this symmetry
by coupling F with a 2-form field.

4See [78, 79] for reviews, and references therein. See also [80] for a recent proof in the bosonic string theory
from a worldsheet approach.
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Magnetic Weak Gravity Conjecture. There must be a magnetically charged magnetic

monopole with charge to mass ratio greater or equal to that of an extremal, magnetically

charged black hole.

In the case of a U(1) gauge theory, with g defined in such a way to have particles with integer

quantized charge

S =

∫
ddx

√−g
(
(Mp,d)

d−2

2
R(d) −

1

4g2
F 2 + ...

)
. (2.3.1)

then these two statements can be interpreted as follows.

• Electric WGC: there must exist a particle in the spectrum of the theory such that

m ≤
√
d− 2

d− 3
gq(Mp,d)

d−2
2 . (2.3.2)

• Magnetic WGC: from the low energy perspective, the monopole scale is associated with

the cutoff of validity of the EFT Λ, such that it is upper bounded by the gauge coupling

Λ ≲ g(Mp,d)
d−2
2 .5 (2.3.3)

In particular, the electric version of the WGC should hold because one should allow any black

hole of mass M and physical charge Q under a gauge group to discharge by decaying into

some products with masses mi and charges qi (everything expressed in Planck units), which

by energy and charge conservation should satisfy

M ≥
∑

i

mi Q =
∑

i

qi, (2.3.4)

so that
M

Q
≥
∑

imi

Q
=

∑
i
mi
qi
qi

Q
≥
(
m

q

)

min

·
∑

i qi
Q

=

(
m

q

)

min

, (2.3.5)

which is exactly the statement of the electric WGC if we consider that the biggest charge-to-

mass ratio for “physical” black holes is Q
M = 1 for an extremal black hole charged under a U(1).

The bound (2.3.2) with reversed sign of the inequality holds in the case of Reissner-Nordström

(RN) black holes charged under a 1-form gauge field. Indeed, the RN black hole solution for

d ≥ 4 is characterized by

ds2 = −f(r)dt2 + dr2

f(r)
+ r2dΩ2

d−2, f(r) = 1− 2µ

rd−3
+

q̃

r2(d−3)
(2.3.6)

in spherical coordinates, where dΩ2
d−2 is the line element of the d− 2 dimensional unit sphere.

If the black hole has mass M and U(1) charge Q, the parameters of the theory enter the black

hole solution as

µ =
8πG(d)M

(d− 2)Vd−2
, q̃ =

8πG(d)Q
2

(d− 3)(d− 2)V 2
d−2

, (2.3.7)

5This can be deduced from known example, see for instance [25].
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where G(d) is the d dimensional Newton’s constant

1

8πG(d)
= (M (d)

p )d−2 , (2.3.8)

and Vd−2 is the volume of the d− 2 dimensional unit sphere

Vd−2 =
2π

d−1
2

Γ(d−1
2 )

. (2.3.9)

This solution has two coordinate singularities

rd−3
± = µ±

√
µ2 − q̃ , (2.3.10)

r+ corresponding to the horizon, and in order to satisfy the cosmic censorship conjecture one

needs µ2 ≥ q̃, namely

M2 ≥ d− 2

d− 3
Q2(Mp,d)

d−2 , (2.3.11)

where the equality corresponds to extremal black holes. Then, the condition (2.3.2) is indeed

describing a superextremal particle.

This expression can be further generalized to the case of black hole solutions charged under

a p-form field with a massless dilaton field ϕ coupling to the gauge field as ∼ eαϕF 2 (see for

instance [18]). The WGC in dimension d then requires the existence of a (p − 1)-brane of

tension T and integer charge Q such that

8πG(d)γp,d(α)T
2 ≤ g2Q2, (2.3.12)

where the convention is that the field Fµ1...µp should have mass dimension +p and be normalized

in such a way that the charges are integers, and

γp,d(α) ≡
[
α′

2
+
p(d− p− 2)

d− 2

]−1

, (2.3.13)

with the convention γ ≡ γ1,d+1(α).

The meaning of this conjecture is precisely that gravity is not strong enough to build a stable

structure; indeed, black holes (which are intrinsically characterized by a mass greater than

their charge) are unstable.

In general, in dimensional reductions more than one U(1) factor appear. In the case of mul-

ticharged particles, it is not enough to fulfil the WGC separately for each U(1) [81], but a

stronger statement is needed. This can again be argued in terms of black hole decays. Indeed,

consider a black hole with mass M charged under U(1)N gauge symmetry with charge vector

Q⃗ = (Q1, ..., QN ) , (2.3.14)

and suppose that it decays into ni particles of kind i, each having charge q⃗i and mass mi. In

Planck units it must hold

M ≥
∑

i

nimi and Q⃗ =
∑

i

niq⃗i . (2.3.15)
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Let

σi =
nimi

M
(2.3.16)

be the fraction of the initial mass that is converted in the species i in the final state, which

for energy conservation obey
∑

i σi ≤ 1. Then the charge-to-mass vector Z⃗ of the black hole

satisfies

Z⃗ ≡ Q⃗

M
=

∑
i niq⃗i
M

=
∑

i

q⃗iσi
mi

≡
∑

i

σiz⃗i, where z⃗i ≡
q⃗i
mi

. (2.3.17)

The second hand side is a vector in a region of the space of charge-to-mass ratios z⃗ which is

delimited by the convex hull whose vertices are the z⃗i vectors of the particles in the spectrum

of the theory. Equation (2.3.17) then tells that states that are able to decay are those whose

charge-to-mass ratio vector Z⃗ lies inside such a convex hull, while the ones whose Z⃗ lies outside

the convex hull are stable. This leads to the

Convex Hull Condition (CHC). In a theory with multiple U(1) gauge symmetries, the

convex hull defined by the z⃗i of all the fundamental particles in the spectrum must contain the

black hole region.6

Semiclassically, the black hole region describing subextremal and extremal black holes is the

unit ball |Z⃗| ≤ 1, and this is the case presented in Figure 2.2. On the right, the WGC is

satisfied marginally for each single U(1), but the CHC is not, because the black hole region

(shaded) is not fully contained in the convex hull, so that the black holes with Z⃗ in the outer

region cannot decay. On the left, the CHC is satisfied, which makes it clear that, at least in

a theory with a finite number of fundamental particles, in order for them to be final states of

black hole decay their zi should be strictly larger than the extremal value. In particular, in the

case of a U(1)N gauge symmetry and the black hole region given by the unit ball, the condition

is zi >
√
N instead of zi ≥ 1, which would be valid valid for a single U(1).

2.3.1 The Lattice WGC

The WGC as stated in the previous section is not preserved under dimensional reduction for

an arbitrary value of the compactification radii [18]. Indeed, compactification on S1 of a theory

with metric gµν and B-field Bµν leads to two additional U(1) gauge symmetries in the lower

dimensional theory. The gauge fields are Zµ = gµR (known as graviphoton) and Wµ = BµR
7

and the charged particles under them are respectively the momentum and winding states; from

the lower dimensional point of view they are extremal states, which marginally satisfy the

WGC if considered seprately. As explained above, the CHC is then not satisfied, since a black

hole which is charged under both these U(1)’s cannot in general decay.

As an example, consider a D-dimensional U(1) gauge theory of the kind (2.3.1) with gauge

coupling gD with only one state (m0, qF,0) satisfying the WGC (2.3.12)

z0 ≡ gD(Mp,D)
D−2
2 γ

1
2
qF,0
m0

≥ 1 , (2.3.18)

6One speaks generically of “black hole region” because its shape depends on the couplings in the theory
-possibly with dilaton-like fields.

7R refers to the polarization along the compact direction.
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Figure 2.2: Convex hull condition in the case of U(1)2 for two different sets of only two
particles z⃗1,2 (1 in blue, 2 in red) in the spectrum.

and compactify it on a S1 of radius R, in such a way that the d = (D − 1) dimensional gauge

theory has a graviphoton U(1) symmetry, which marginally satisfies the WGC, in addition to

the U(1) coming from the dimensional reduction of the D-dimensional photon.

In the absence of axions, a generic state with mass m in the d-dimensional theory is character-

ized by

z⃗ =
1

m

(
gd(M

(d)
p )

d−2
2 γ

1
2 qF ,

qKK
R

)
≡ (zF , zKK) , (2.3.19)

where qF is the charge under the D-dimensional photon and qKK = n is the charge under the

graviphoton, given by the quantized internal momentum, and in this notation the black hole

region for such a theory is z2F + z2KK ≤ 1.

In particular, the particle (m0, q0) satisfying the WGC inD-dimensions has, in the compactified

theory, a full tower of KK modes with mass

m2 = m2
0 +

n2

R2
, (2.3.20)

and from (2.3.19) the charge-to-mass-ratio of the copy with internal momentum n is

z⃗(n) =
(m0Rz0, n)√
(m0R)2 + n2

, (2.3.21)

which lie on
z2F
z20

+ z2KK = 1, shown in Figure 2.3 (not shaded) together with the black hole

region (shaded). The states z⃗(n) (in red) discretely populate the ellipsoid, becoming more and

more dense towards (0,±1), so the convex hull they define does not in general entirely contain

the black hole region. In particular, for each value of z0 there exists one value of the radius

below which the CHC is not satisfied [18].

In order for the WGC to be robust under toroidal compactification and valid in every point

of moduli space, an infinite number of states must exist that satisfy the WGC in the higher

dimensional theory, which leads to the following strong version
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Figure 2.3: Example in which the CHC does not hold in the case of dimensional reduction
from D to d = D−1 dimensions with one U(1) for which the WGC is satisfied in D dimensions,
and the second U(1) associated to the graviphoton.

Lattice Weak Gravity Conjecture (LWGC) [18, 19]. In the presence of multiple U(1)

gauge groups, for every point q⃗ in the charge lattice Γ of a theory which can be consistently

coupled to quantum gravity there must exist a superextremal particle.

For completeness, let us mention that under compactification on orbifolds or in the presence

of Wilson lines, the LWGC proves not to hold on the whole charge lattice, but only on a finite

index sublattice. The refined statement is then the

Sublattice Weak Gravity Conjecture [19]. For a theory with charge lattice Γ there exists

a sublattice ΓWGC of finite coarseness such that for each q⃗ ∈ ΓWGC there exists a superextremal

particle of corresponding charge.

2.4 The Repulsive Force Conjecture

Related (but not equivalent) to the LWGG there is another statement, preserved under dimen-

sional reduction, known as the

Lattice Repulsive Force Conjecture (LRFC) [20]. In order for a multiple-U(1) gauge

theory with charge lattice Γ to be coupled consistently to quantum gravity, in any site q⃗ ∈ Γ

there exists a self-repulsive particle. A self-repulsive particle is characterised by a long range

repulsive force due to the gauge bosons mediation with another identical particle which is at

least as strong as the sum of the attractive ones.

Generically, in D dimensions the long range force between two particles of massesM1, M2 with

charges QF,i;1, QF,i,2 under the U(1)N gauge fields (i = 1, ..., N) and µα;1, µα,2 (α = 1, ..., n)
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under the interactions mediated by the n neutral and massless scalars, takes the form8

F12 =
kijQF,i;1QF,j;2

rD−2
− GM1M2

rD−2
− gαβµα;1µβ;2

rD−2
(2.4.1)

for kij and gαβ given by the kinetic terms of the gauge fields and of the massless scalars

respectively.

The LRFC amounts to ask that each point of the charge lattice is populated by a particle such

that F11 ≥ 0, in such a way that a bound state among such particles is not guaranteed.9

From (2.4.1) one can argue that the LRFC directly implies the LWGC only in the case of no

neutral massless scalars in the theory, but in general this is not guaranteed. Nevertheless, even

though in the general case the two theories do not imply each other, it is argued [20] that it is

very unlikely that only one of them is satisfied for a given system.

Again, a refined version of the LRFC has been proposed, which is valid under any Ricci-flat

compactification. It is the

Sublattice Repulsive Force Conjecture (SRFC) [20]. In order for a multiple-U(1) gauge

theory with charge lattice Γ to be coupled consistently with quantum gravity, there must exist

an integer n > 0 such that for any site q⃗ ∈ Γ there exists a self-repulsive particle of charge nq⃗.

In particular, in the case of an asymptotic weak coupling point in moduli space, the SRFC and

the SLWGC should become equivalent [82].

It is worth to mention that the connection that exists between the SDC and the WGC/RFC at

the infinite distance points in moduli space at which a gauge couplings goes to zero has been

studied in the literature [31,40,82], as it allows to connect the tower of light particles predicted

by the former with the charged states becoming light as the gauge coupling decreases, predicted

by the latter. In light of the magnetic version of the WGC, the fact that the cutoff of the EFT

vanishes with the gauge coupling is then naturally associated with infinitely many massless

states, predicted both by the SDC and by the LWGC/LRFC, as can be seen in explicit string

theoretic examples.

8This holds strictly speaking only in the case of vanishing cosmological constant.
9A special case is given by BPS states, which satisfy the zero-force condition and thus are by definition self

repulsive.
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Chapter 3

The heterotic and CHL String

Theories

The main goal of this Chapter is to introduce the heterotic and the CHL string theories, that

will be considered in the following for what concerns infinite distance limits in moduli space in

relation to symmetry enhancements. We will review their bosonic construction in order to set

the notation, and explain the symmetry enhancement patterns in the bulk of moduli space to

present the tools which will be used in the following discussions.

3.1 The heterotic string theory

The heterotic string theory [83–85]1 is a theory of closed strings in 10 dimensions with (N , N̄ ) =

(1, 0) supersymmetry constructed from two independent sectors:

• the right-moving sector is the one of the superstring, which propagates in 10 space-

time dimensions XM (τ̄), where M = 0, ..., 9 and τ̄ is the anti-holomorphic coordinate

on the string worldsheet. Due to supersymmetry, they come together with 10 fermionic

superpartners, ψM (τ̄).

• the left-moving one of the bosonic string, consistently defined in a 26-dimensional target

space. In the bosonic constructions, they are split like {XM (τ), XI(τ)}, where again

M = 0, ..., 9 are the holomorphic counterpart of the bosonic sector of the superstring,

and I = 1, ..., 16 are the 16 additional bosons that are compactified on a torus.

Being compact, the 16 XI(τ) have discrete momenta πI which belong to an Euclidean lattice

Γ16, generated by eIi ∈ Γ16, such that

πI = πieIi , πi ∈ Z , (3.1.1)

and the metric of Γ16 is

κij =
16∑

I=1

eIi e
I
j , (3.1.2)

1Here we follow the presentation of [86].
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where the contraction with respect to the flat metric δIJ is understood.

From the requirement of modular invariance of the partition function, the lattice Γ16 defining

the heterotic torus must be even and self dual [87], namely

π ∈ Γ16 =⇒ |π|2 ≡
∑

i,j

πiπjκij ∈ 2Z and Γ16 = Γ∗
16. (3.1.3)

There are only two 16 dimensional Euclidean lattices with these properties (3.1.3), which are

the weight lattice of Spin(32)/Z2, ΓSp(32), and the direct product of two copies of the root

lattice ΓE8 of E8, namely ΓE8 ⊕ ΓE8 , so there are two heterotic 10 dimensional strings with

associated gauge groups respectively Spin(32)/Z2 and E8 × E8.
2 At the level of the algebra,

this can be shown by determining the representation of the massless gauge bosons, as follows.

Since they belong to the NS sector of the theory, we will focus on this.

In the bosonic sector, the spectrum reads

α′m2
L = |π|2 + 2(N − 1) (3.1.4)

where N is the number of left-moving excitations, N ∈ N+, while in the right supersymmetric

NS sector3

α′m2
R;NS = 2

(
N̄ − 1

2

)
, (3.1.5)

where N̄ is the number of right-moving excitations, N̄ ∈ N + 1
2 . Tensoring the two sectors

together, the spectrum of the NS sector of the theory arranges with respect to the mass formula

α′M2
NS = α′(m2

L +m2
R;NS) = |π|2 + 2

(
N + N̄ − 3

2

)
(3.1.6)

and the Level Matching Condition (LMC) for physical NS states reads

|π|2 + 2

(
N − N̄ − 1

2

)
= 0 . (3.1.7)

In 10 dimensions, the massless states in the NS sector, which are space-time bosons, are the

following.

• π = 0, N = 1, N̄ = 1
2 :

– The gravitational sector

αM−1ψ̄
N
− 1

2

|0⟩NS −→ gMN , BMN , Φ . (3.1.8)

– The Cartan sector of the gauge group

αI−1ψ̄
M
− 1

2

|0⟩NS −→ AIM . (3.1.9)

• |πα|2 = 2, N = 0, N̄ = 1
2 : these are the gauge bosons associated with the ladder operators

2They are both 496-dimensional groups of rank 16.
3For completeness, the Ramond sector mass reads α′m2

R;R = 2N̄ .
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with roots πα of either D16 or E8 ⊕ E8, α = 1, ..., 480

ψ̄M− 1
2

|0, πα⟩NS −→ AαM , (3.1.10)

and it is not hard to see that, once the lattice Γ16 is fixed to be either ΓSp(32) or ΓE8 ⊕ΓE8 , the

spectrum arranges in representations of the corresponding groups also at the massive level, such

that indeed the theories have Spin(32)/Z2 or E8 × E8 gauge symmetry, with massless gauge

bosons (3.1.9) and (3.1.10). The bosonic part of the sigma model for the heterotic theory is

S1 =− 1

4πα′

∫
d2σ(ηρσGMN + ϵρσBMN )∂ρX

M∂σX
N

− 1

8π

∫
d2σ(ηρσ∂ρX

I∂σX
JδIJ + 2ϵρσAIM∂ρX

M∂σX
I) , (3.1.11)

where ρ, σ = 1, 2 label the worldsheet coordinates, which are taken to be dimensionless. The

first line is the universal contribution to the action in closed string theories, while the second

line the contribution of the 16 chiral bosons XI compactified on the maximal torus of the gauge

group, and in particular their coupling to a background gauge field AIM . The XI are taken to

be dimensionless, so that the gauge fields have mass dimension +1. In their coupling, one could

equivalently choose to use ηαβ instead of ϵαβ, since the difference vanishes for chiral bosons XI

(∂τ − ∂σ)X
I = 0 . (3.1.12)

Given ϵτσ = −1 and ηττ = −1

∫
d2σ(ϵαβAIM∂αX

M∂βX
I − ηαβAIM∂αX

M∂βX
I)

=

∫
d2σAIM (∂τ − ∂σ)X

I(∂τ + ∂σ)X
M = 0 . (3.1.13)

Our normalization is such that

XI(z)XJ(w) ∼ −δIJ log(z − w) , (3.1.14)

XM (z, z̄)XN (w, w̄) ∼ −G
MNα′

2
log |z − w|2 . (3.1.15)

3.1.1 S1 compactification of the heterotic String

Let us start by considering the compactification of the heterotic string on the background

R1,8×S1, and M = {µ, 9} with µ = 0, ..., 8. The circle is parameterised by the (dimensionful)

coordinate x9 ≡ y ∼ y + 2π
√
α′, with a constant background metric G99 = R2

α′ . From now on,

unless specified otherwise, we will set α′ = 1.

The boundary condition for the string is

Y (τ, σ + 2π) = Y (τ, σ) + 2πw , (3.1.16)
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where w ∈ Z is the winding number, namely the number of times the string wraps the circle.

It can be seen as a topological charge, since strings with different w’s cannot be deformed one

into the other without breaking them.

In heterotic string compactifications, there is the possibility of a non-trivial background for the

gauge fields, with constant value in the compact directions and vanishing field strength

F IMN = ∂[MA
I
N ] + f IJKA

J
MA

K
N = 0 , (3.1.17)

where f IJK are the structure constants of the gauge algebra. Setting F IMN = 0 impose a

restriction to commuting gauge fields AI , namely to the Cartan subgroup, so that generically

the symmetry is broken to U(1)16 and the background is specified by the 16 scalars AI9
4, which

are moduli of the theory together with the circle radius R. The gauge background implies the

presence of Wilson lines, defined on a closed path γ as follows

W (γ) = Pexp

(
i

∮

γ
A

)
, (3.1.18)

where P is the path ordering. If γ is non-contractible, then a constant one-form A gives a

non-trivial Wilson line, and since then the Wilson line depends only on the homotopy class of

the loop, there are as many Wilson lines (valued in U(1)16) as non-contractible loops in the

internal manifold, so one in the case at hand. This is why AI is referred to as “Wilson line”.

The solution of the equations of motion for (3.1.11) compatible with the boundary condition

(3.1.16) is

Y (τ, σ) =
1√
2
(YL(τ + σ) + YR(τ − σ)) = y0 + p9τ +wσ + oscillators , (3.1.19)

XI(τ + σ) = xI + pI(τ + σ) + oscillators , (3.1.20)

and by defining |A|2 ≡ δIJA
IAJ , the quantized canonical momenta read

π9 = p9 +AIπI −
1

2
|A|2 ≡ n ∈ Z , (3.1.21)

πI = pI −AIw ∈ Γ16 , (3.1.22)

with n the momentum number along the circle. In particular, from (3.1.19)

p9 = pL + pR , (3.1.23)

pL − pR√
2

= wR2 . (3.1.24)

4When considering the S1 compactification, for the sake of brevity we will drop the index 9, switching to the
notation AI .
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The momentum along the maximal torus, and the left/right (L/R) momenta along the circle

then are, respectively [88]

pI = πI +AIw , (3.1.25)

pL,R =
1√
2

(
n± wR2 −AIπI − w|A|2

2

)
. (3.1.26)

For any value of the moduli, the momentum vector p = (pR, pL, p
I) ≡ (pR,pL) spans an even

and self dual Lorentzian lattice with signature (1, 17) endowed with the scalar product

p · p ≡ p2
L − p2R = 2wn + |π|2 ∈ 2Z . (3.1.27)

This is the so called Narain lattice Γ(1,17), and it is unique up to O(1, 17,R) transformations.

The mass of the NS states, which depends on the value of the moduli (R, AI), is

M2 = p2
L + p2R + 2

(
N + N̄ − 3

2

)
, (3.1.28)

where the left and right oscillator numbers, respectively N and N̄ , should satisfy the LMC

p2
L − p2R + 2

(
N − N̄ − 1

2

)
= 0 , (3.1.29)

which from (3.1.27) is moduli-independent R and AI . In particular, the states that are massless

everywhere in moduli space are the N = 1, N̄ = 1
2 , pL = 0, pR = 0 states, which split according

to their nine-dimensional indices giving rise to the following spectrum.

• The gravitational sector:

αµ−1ψ̄
ν
− 1

2

|0⟩NS −→ gµν , Bµν ,Φ . (3.1.30)

• The vector bosons:

αµ−1ψ̄
9
− 1

2

|0⟩NS , α9
−1ψ̄

µ

− 1
2

|0⟩NS , αI−1ψ̄
µ

− 1
2

|0⟩NS −→ (gµ9 ∓Bµ9), Aµ
I , (3.1.31)

giving in general a U(1)17L × U(1)R symmetry.

• The scalars:

αI−1ψ̄
9
− 1

2

|0⟩NS , α9
−1ψ̄

9
− 1

2

|0⟩NS −→ AI , g99 . (3.1.32)

As we will point out in the following, by looking at the additional massless vectors, if any, at

a given point in moduli space one can find the gauge symmetry of the theory at that point.

Equivalently, the algebra can be characterised from the worldsheet analysis. Indeed, the algebra

that is realised on the worldsheet in the left-moving sector at a given point in moduli space

is determined by the set of holomorphic currents (h, h̄) = (1, 0), which is equivalent to the

massless condition for spin s = h− h̄ = 1 states.5

5Here we are considering only holomorphic currents because in heterotic toroidal compactifications only the
L sector of the gauge group can be enhanced.
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3.1.2 Toroidal compactification of the heterotic String

The R1,9−d×T d compactification of the heterotic String is just a straightforward generalization

of the S1 case presented in the previous Section, which we briefly discuss here in order to

introduce the notation. Here, M = {µ, i} with µ = 0, ...9−d and i = 10−d, ..., 9, and we write

XM = (Xµ, Y i) with Y i the compact spacetime bosons.

Let T d be associated with a lattice Λ generated by the vectors ei, i = 1, ..., d, and dual lattice

Λ̃ generated by the dual vectors e∗i. The background of the theory compactified on this space

is specified by6

• the metric on the torus Gij = eai δabe
b
j , a = 1, ..., d ,

• the internal B-field Bij and

• the Wilson lines AIi , I = 1, ..., 16 .

The heterotic states are characterized by the winding and momentum numbers associated to

the T d directions, respectively wi, ni ∈ Z, and by the heterotic momenta πI along the 16

dimensional heterotic torus. These can be arranged in a charge vector

Z = (πI , wi, ni) . (3.1.33)

Again, the vector π lies either in the root lattice of E8 × E8, or in the weight lattice of

Spin(32)/Z2. Moreover, the states have the following right (R) and left (L) internal momenta

along the T d directions,

pR,i =
1√
2
(ni − Eijw

j − π ·Ai) ,

pL,i =
1√
2
(ni + (2Gij − Eij)w

j − π ·Ai) ,
(3.1.34)

where

Eij = Gij +
1

2
Ai ·Aj +Bij , (3.1.35)

and along the heterotic torus,

pI = πI +AIiw
i . (3.1.36)

The vector p = (pR,ie
∗i
a ; pL,ie

∗i
a , p

I) = (pR,a; pL,a, p
I) ≡ (pR;pL) lies in an even and self-dual

lattice Γd,d+16 with Lorentzian signature (−d,+d+16), as seen from the expression

p2 = −p2
R + p2

L = 2niw
i + |π|2 ∈ 2Z . (3.1.37)

The mass formula and the LMC for the NS sector of the spectrum then read

M2 = p2
L + p2R + 2

(
N + N̄ − 3

2

)
,

0 = p2
L − p2R + 2

(
N − N̄ − 1

2

)
,

(3.1.38)

6One should also include the dilaton, but we are taking it to be fixed (and small).
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where N and N̄ are respectively the left and right-moving oscillator numbers. These formulas

determine the group of symmetries of the spectrum to be O(d, d+16,Z), the T-duality group.

Analogously to the S1 case, for generic values of the moduli, the massless vectors generate a

U(1)dR×U(1)16+dL gauge symmetry, and they are characterized by N = 1, N̄ = 1
2 ,pL = 0,pR =

0:

αµ−1ψ̄
i
− 1

2

|0⟩NS , αi−1ψ̄
µ

− 1
2

|0⟩NS , αI−1ψ̄
µ

− 1
2

|0⟩NS −→ (gµi ∓Bµi), Aµ
I . (3.1.39)

The internal metric, B field and Wilson lines parametrise the moduli space

O(d, d+ 16,Z)
∖ O(d, d+ 16,R)

O(d)×O(d+ 16)
. (3.1.40)

3.1.3 Moduli space and T-duality

As already mentioned, in dimension 16 the only two Euclidean integer even and self-dual lattices

are ΓSp(32) or ΓE8 ⊕ ΓE8 defined above. The charge lattice of the S1 compactification of these

two theories is the Narain lattice

Γ(1,17) ≃ Γ(1,1) ⊕ ΓSp(32) ≃ Γ(1,1) ⊕ ΓE8 ⊕ ΓE8 , (3.1.41)

where Γ(1,1) is the even, two dimensional Lorentzian lattice.

One can show [89] that (p, q) even integer self-dual Lorentzian lattices exist for p− q = 8n with

n ∈ Z, and every such lattice can be obtained from a reference one Γ0 through an O(p, q,R)

transformation, in this case O(1, 17,R). Since the heterotic spectrum (3.1.28), (3.1.29) is

invariant under separate rotations of the left and right momenta, O(17)L × O(1)R, theories

that differ by such a transformation are physically equivalent. Moreover, the theory is also

invariant under the O(1, 17,Z) T-duality, so that the global structure of the moduli space of

the theory parametrising inequivalent backgrounds (R, AI) is

O(1, 17,Z)
∖ O(1, 17,R)

O(17)×O(1)
. (3.1.42)

The uniqueness of the Narain lattice then implies that there exists an O(1, 17) transformation

interpolating between the E8×E8 theory on S1 and the Spin(32)/Z2 on S1, as in (3.1.41) [90],

namely the two theories belong to the same moduli space.

This structure, in the case of T d compactifications, allows for a O(d, d + 16,R)-covariant for-

mulation. The O(d, d+ 16) invariant metric is

η =




0 1d×d 0

1d×d 0 0

0 0 κIJ


 , (3.1.43)

where κIJ is the Killing metric of the Cartan subgroup of D16 or E8 ⊕ E8.

Defining

Cij = Bij +
1

2
AIi κIJA

J
j , (3.1.44)
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and the generalised metric associated to this compactification

H =



Gij + CliG

lkCkj +AIiAjI −GjkCki CkiG
klAlJ +AiJ

−GikCkj Gij −GikAkJ
CkjG

klAlI +AjI −GjkAkI κIJ +AkIG
klAkJ


 , (3.1.45)

the mass formula and LMC (3.1.38) can be recast in an O(d, d+16) covariant form, respectively

M2 = ZtHZ + 2

(
N + N̄ − 3

2

)
, (3.1.46)

0 = ZtηZ + 2

(
N − N̄ − 1

2

)
. (3.1.47)

T-duality O(1, 17;Z) ∋ T acts as

Z ′ = η−1TηZ , H′ = THT T (3.1.48)

and it has the following generators (see for instance [91]).

• Wilson line shifts by a vector Λ ∈ Γ16

TΛ =



1d×d −1

2ΛΛ
t Λ

0 1d×d 0

0 −Λt 116×16


 . (3.1.49)

• B-field shifts by an integer-valued antisymmetric matrix Θ, Θij ∈ Z

TΘ =



1d×d Θ 0

0 1d×d 0

0 0 116×16


 . (3.1.50)

• Lattice basis changes by M ∈ GL(d,Z)

TM =



M 0 0

0 (MT )−1 0

0 0 116×16


 . (3.1.51)

• Rotation of the Wilson lines R ∈ O(16,Z)

TM =



1d×d 0 0

0 1d×d 0

0 0 R


 . (3.1.52)

• The so-called “factorized dualities”

TDi =



1d×d −Di Di 0

Di 1d×d −Di 0

0 0 116×16


 , (3.1.53)
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where Di ∈ GL(d,Z) has all the components 0 except for a 1 in the ii component.

• Transformations of the dual Wilson lines by Γ ∈ Γ16

TΓ =



1d×d 0 0

−1
2ΓΓ

T 1d×d −ΓT

Γ 0 116×16


 . (3.1.54)

• Shifts by an integer-valued bivector βij = −βji ∈ Z

TΓ =



1d×d 0 0

β 1d×d 0

0 0 116×16


 . (3.1.55)

In particular, (3.1.53) is the generalisation of the radius inversion (2.1.7). Indeed, in the case

of S1 compactifications, its action on the generalized metric is

H′ = TDHT TD =




1
R2 − 1

2R2 |A|2 − 1
R2AJ

− 1
2R2 |A|2 R2 + |A|2 + 1

4R2 |A|4 1
2R2 |A|2AJ +AJ

− 1
R2AI

1
2R2 |A|2AI +AI κIJ + 1

R2AIAJ


 , (3.1.56)

namely it acts on the charges exchanging momentum and winding, and on the moduli as

R′ =
R

R2 + 1
2 |A|2

and A′I = − AI

R2 + 1
2 |A|2

, (3.1.57)

which reduces to R→ 1
R in the case vanishing Wilson line.

3.1.4 Symmetry enhancements in O(d, d+ 16)/(O(d)×O(d+ 16))

In this Section, let us focus on the E8 × E8 heterotic theory. The case of Spin(32)/Z2 is

analogous, by replacing ΓE8 ⊕ ΓE8 with ΓSp(32).

As we said above, in order to characterise the gauge symmetry at a particular point of the

moduli space one needs to consider the massless vectors, which correspond to the mediators

of the gauge interaction. In particular, at a generic point of the moduli space this is U(1)dR ×
U(1)d+16

L (3.1.39). Due to the moduli dependence of (3.1.38), it turns out that at fixed points

of the T-duality group there can be additional massless vectors with N = 0, N̄ = 1
2 , |pL|2 =

2, pR = 0, of the form

ψ̄µ− 1
2

|πα,wi,ni⟩NS −→ Aαµ (3.1.58)

for some particular charge vectors. These enhance the gauge group in the left sector, as classified

in [91–93].

In particular, the internal momenta p of the vectors (3.1.58) are the roots of a group Gr of

rank r ≤ d + 16, which is a product of ADE groups, whose weight lattice can be embedded

in the Narain lattice. The gauge group of the theory is then Gr × U(1)d+16−r
L × U(1)R. For

example, in the S1 case for vanishing Wilson lines all the states with N = 0, N̄ = 1
2 and
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πI ∈ ΓE8 ⊕ ΓE8 , |π|2 = 2 are massless for any value of R. In particular, the massless vectors

ψ̄µ− 1
2

|0, πα⟩NS −→ Aαµ (3.1.59)

with α = 1, ..., 480 the roots of E8×E8, together with the ones in (3.1.39) enhance the symmetry

to E8 × E8 × U(1)L × U(1)R.
7

In the case of the circle compactification, all the enhancement algebras and the point in moduli

space where they occur (up to T-dualities) are encoded in the Extended Dynkin Diagram

(EDD) of Γ(1,17) [94] (as described for instance in [95]), displayed in Figure 3.1.

1 2 3 4 5 6 0 C 0′ 6′ 5′ 4′ 3′ 2′ 1′

7

8

7′

8′

Figure 3.1: EDD of the Γ(1,17) lattice.

The labels to the nodes show how the E8×E8 lattice is embedded in Γ(1,17): the EDD is made

of two extended E8 Dynkin diagrams (adding the highest root 0 to the Dynkin diagram of each

E8) linked by a central node C. The primed indices are meant to distinguish the two copies of

E8. The nodes are described by a charge vector

Z = (n,w, πi, πi
′
) ∈ Γ(1,17) , (3.1.60)

with i = 1, ..., 8, as follows

Zi =(0, 0, αi, 08) ,

Z0 =(0,−1, α0, 08) ,

ZC =(1, 1, 08, 08) ,

Z0′ =(0,−1, 08, α0′) ,

Zi′ =(0, 0, 08, αi′) .

(3.1.61)

Here αi are the simple roots of E8 and α0 is the highest root, as explicitly shown in the Table

3.1.

The primed quantities are taken to be equal to the unprimed ones, so they amount just to an

identical copy of E8, with the same convention.

With the following definition for the imaginary root

δ = (0,−1, 08, 08) , (3.1.62)

the nodes 0 and 0’ are embedded in Γ(1,17) respectively as

(0, 0, α0, 08) + δ and (0, 0, 08, α0′) + δ . (3.1.63)

7This is the case for all R ̸= 1. If R = 1 the symmetry is enhanced to (E8 × E8 × SU(2))L × U(1)R.
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i αi
1 (1,-1,0,0,0,0,0,0)
2 (0,1,-1,0,0,0,0,0)
3 (0,0,1,-1,0,0,0,0)
4 (0,0,0,1,-1,0,0,0)
5 (0,0,0,0,1,-1,0,0)
6 (0,0,0,0,0,1,-1,0)
7 (-1,-1,0,0,0,0,0,0)
8 (12 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2)

0 (0,0,0,0,0,0,1,-1)

Table 3.1: Simple roots (i = 1, ..., 8) and highest root (i = 0) of E8.

This means that the extension of the two copies of the E8 Dynkin diagram that build the EDD

is performed with the same imaginary root.

We could have equivalently defined the charge vector as

Z = (w, n, πi, πi
′
) (3.1.64)

instead of (3.1.60), leaving (3.1.61) unchanged. In the first case, the nodes 0 and 0’ have

winding charge, in the second one momentum, and the relation (3.1.63) still holds. The two

cases are related by the T-duality transformation (3.1.53).

All the possible enhancement groups, which are of the form Gr × U(1)17−r, are obtained by

deleting n = 19 − r nodes from the EDD in such a way to obtain the Dynkin diagram of the

group Gr. The point or region in moduli space where this group arises is found by imposing that

the remaining nodes satisfy the condition pR
R = 0. Each node gives a constraint on the moduli,

that we collect in Table 3.2. As explained in [95], the co-dimension one plane in moduli space

corresponding to each node is a fixed plane under a given T-duality transformation. Points of

symmetry enhancement are therefore fixed points of T-duality, and they arise at boundaries of

a fundamental domain of moduli space.

Node Boundary of moduli space

i A
R · (αi, 08) = 0

0 A
R · (α0, 08) = R

(
1 + |A|2

2R2

)

C R
(

1
R2 − |A|2

2R2

)
= R

0’ A
R · (08, α0′) = R

(
1 + |A|2

2R2

)

i′ A
R · (08, αi′) = 0

Table 3.2: Equations defining the co-dimension one boundary planes in moduli space corres-
ponding to each node of the EDD, where the nodes 0 and 0’, given in (3.1.61) have winding
charge (i.e. Z is that of Eq. (3.1.60)).

Note that the assignment of the nodes with momentum and/or winding to a boundary in

moduli space changes if we interchange momentum and winding. For the conventions given by

(3.1.64), the nodes given in (3.1.61) correspond instead to the boundaries given in Table 3.3.

The original assignment is more convenient for analysing the region of small R, while the latter
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is more suitable for large R. The point or region in moduli space where enhancements of the

Node Boundary of moduli space

i A
R · (αi, 08) = 0

0 A
R · (α0, 08) = − 1

R

C R
(

1
R2 − |A|2

2R2

)
= R

0’ A
R · (08, α0′) = − 1

R

i′ A
R · (08, αi′) = 0

Table 3.3: Equations defining the co-dimension one boundary planes in moduli space corres-
ponding to each node of the EDD, where the nodes 0 and 0’, given in (3.1.61) have momentum
charge (i.e. Z is that of Eq. (3.1.64)).

form Gr × U(1)17−rL × U(1)R occur are found by imposing the r equations given in Table 3.2

for the remaining nodes in the EDD (or analogously one can use the conventions in Table 3.3).

If the node C is not deleted8, these arise at a radius that is fixed in terms of the norm squared

of the Wilson line, R2 = 1− |A|2
2 .

3.2 The CHL String

In this Section we recall the main features of the CHL string that we will use in the following

to characterize the current algebra arising in the decompactification limit, this time focusing

more on the worldsheet approach.

3.2.1 Orbifold construction of the CHL string

In the construction of [96], which is most suited to our analysis, the CHL theory [97] in nine

dimensions is obtained as a Z2 orbifold of the E8 × E8 heterotic string theory compactified on

S1. For our purposes it is sufficient to work with the Narain sector of the internal CFT, a

theory with central charges c = 17 and c̄ = 1, which is described as follows in the convention

α′ = 1.

Let XI(z) (I = 1, ..., 16) be the holomorphic compact chiral bosons on the heterotic torus and

X9(z, z̄) the non-chiral boson for the circle of radius R, normalized as

XI(z)XJ(w) ∼ −δIJ log(z − w) , (3.2.1)

X9(z, z̄)X9(w, w̄) ∼ − 1

2R2
log |z − w|2 . (3.2.2)

We decompose the non-chiral boson as

X9(z, z̄) =
1√
2

(
X9
L(z) +X9

R(z̄)
)
. (3.2.3)

We split the Cartan indices of the heterotic bosons between the two E8 factors as I = (i, i+8),

with i = 1, .., 8, and denote Xi
1(z) = Xi(z) and Xi

2(z) = Xi+8(z), so that the subscripts 1 and

8It is easy to see that for finite ADE groups of maximal rank (r = 17), node C cannot be deleted.
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2 signify the copy of E8. The orbifold action consists of the exchange E of the two E8 factors,

together with a half-shift S in the compact circle direction:

E : Xi
1(z) ↔ Xi

2(z) , (3.2.4)

S : X9(z, z̄) → X9(z, z̄) + π . (3.2.5)

This is a symmetry of the heterotic E8 × E8 theory on S1 in the subspace of its moduli space

Mhet =
O(1, 17;R)

O(17;R)

/
O(1, 17;Z) , (3.2.6)

characterized by a symmetric Wilson line A = (a, a).9 In 9 dimensions this is a freely acting

orbifold, whose effect is to reduce the rank of the gauge group from 17 to 9, while not breaking

any supersymmetry. The primary states in the Narain CFT are labelled by integer momentum

n and winding w along the S1 and by heterotic momenta π = (π1, π2), and the orbifold acts

on these as

ES |n,w, π1, π2⟩ = (−1)n |n,w, π2, π1⟩ . (3.2.7)

The Hilbert space of the orbifold theory has the untwisted sector and a single twisted sector.

In order to describe these spaces, it is useful to change the basis for the heterotic bosons from

{Xi
1(z), X

i
2(z)} to the symmetric and antisymmetric combinations

Xi
±(z) =

1√
2

(
Xi

1(z)±Xi
2(z)

) ES−−→ ±Xi
±(z) . (3.2.8)

The states belonging to the untwisted sector are constructed from bosons with untwisted bound-

ary conditions

Xi
±(e

2πiz) = Xi
±(z) +

1√
2
Qi± , (3.2.9)

X9(e2πiz, e2πiz̄) = X9(z, z̄) + 2πw , (3.2.10)

where Q± ∈ Γ8 are fixed vectors in the E8 root lattice, and w ∈ Z is the winding number;

in the Hilbert space of the Narain theory there are sectors labelled by each allowed choice of

{Q±,w}. The untwisted states are the heterotic states that are invariant under the orbifold,

and they have the following internal momenta P = (pi+, p
i
−, p

9
L, p

9
R) ≡ (pL, pR)

pi+ =
1√
2
(ρi + 2wai) ,

pi− =
1√
2
(πi1 − πi2) ,

p9L =
1√
2R

(n +R2w− a2w− ρ · a) ,

p9R =
1√
2R

(n−R2w− a2w− ρ · a) ,

(3.2.11)

9Here a is valued in the torus R8/Γ8, where Γ8 is the E8 lattice.
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where the momenta along the circle direction are taken in flat indices, and ρ ∈ Γ8 can be

written in terms of the heterotic momenta as ρi = πi1 + πi2.

The untwisted spectrum with NS right movers, which is the one describing space-time bosons,

is characterized by the following mass formula and level matching condition

M2 = p2
L + p2R + 2

(
N + N̄ − 3

2

)
,

0 = p2
L − p2R + 2

(
N + N̄ − 1

2

)
,

(3.2.12)

where N (N̄) ∈ N+ is the oscillator number in the left (right) moving sector.

In the sector twisted with respect to the Z2 orbifold action, closed strings have boundary

conditions which are additionally twisted with respect to the ES transformation

Xi
±(e

2πiz) = ±Xi
±(z) +

1√
2
Q′i

± , (3.2.13)

X9(e2πiz, e2πiz̄) = X9(z, z̄) + π + 2πm = X9(z, z̄) + 2πw , (3.2.14)

where Q′
± ∈ Γ8 and m ∈ Z, so that w ∈ Z+ 1

2 . Being antisymmetric under the orbifold, in the

twisted sector Xi
−(z) has half-integer mode expansion

Xi
−(z) =

1

2
√
2
Qi− +

√
1

2

∑

r∈Z+ 1
2

αi−;r

rzr
. (3.2.15)

The twisted states are characterized by the following internal momenta

pi+ =
1√
2
(ρi + 2wai) ,

pi− = 0 ,

p9L =
1√
2R

(n +R2w− a2w− ρ · a) ,

p9R =
1√
2R

(n−R2w− a2w− ρ · a) ,

(3.2.16)

and the physical states have

M2 = p2
L + p2R + 2(N + Ñ − 1) ,

0 = p2
L − p2R + 2(N − Ñ) ,

(3.2.17)

due to the different zero-point energy with respect to the untwisted sector.

Considering both sectors, the charges belong to the lattice II1,9, which is associated to the

Generalized Dynkin Diagram (GDD) E10 [98]. By defining the charge vector of each state as

Z = |n, 2w, ρ⟩ , (3.2.18)
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1 2 3 4 5 6 0 C

7

8

Figure 3.2: Generalized Dynkin Diagram of the II(1,9) lattice.

each node corresponds to, respectively

Zi = |0, 0, αi⟩ , (3.2.19)

Z0 = |−1, 0, α0⟩ , (3.2.20)

ZC = |1, 1, 0⟩ , (3.2.21)

where i = 1, ..., 8 and αi is the i-th simple root of E8, as in Table 3.1.

The central node C is associated to the twisted sector, as it has half-integer winding. The

physical momenta of the corresponding states are determined by the polarization of this lattice,

which depends on the point of the moduli space. For the CHL theory, it is given by

MCHL = O(1, 9;Z)
∖O(1, 9;R)

O(9;R)
, (3.2.22)

and it is parametrised by the radius R and Wilson line a. O(1, 9;Z) is the T-duality group, and

it corresponds to the group of automorphisms of the lattice II1,9 spanned by the charge vectors

Z of the physical states. A particularly interesting duality transformation is inherited from the

radius inversion R→ 1
R duality of the Narain CFT, which in the CHL case interchanges states

between the two sectors of the CHL orbifold. Its action on the moduli and charges is

R2 + a2 → 4

R2 + a2
,

a→ 2a

R2 + a2
,

2w ↔ n ,

ρ→ −ρ , (3.2.23)

which implies that untwisted states with even momentum are mapped to untwisted states

(w ∈ Z), while the ones with odd momentum are dual to twisted states (w ∈ Z+ 1
2).

3.2.2 Symmetry enhancements

In supersymmetric perturbative heterotic compactifications, space-time gauge bosons arise in

both the right (supersymmetric) and left moving sectors of the string. The former are universal,

namely they are present at each point in moduli space, and give a u(1)d anti-holomorphic

current algebra in the case of T d compactifications. The latter are in one-to-one correspondence

with holomorphic currents, which depend on the point of moduli space. In this analysis, we
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will be concerned with the second set.

At a generic point {R, a}, they consist of

• the untwisted current

J9(z) = i∂X9(z) , (3.2.24)

corresponding to the state generated by the left oscillator α9
−1 |0⟩,

• the 8 untwisted currents

J i+(z) = i(∂Xi
1(z) + ∂Xi

2(z)) , (3.2.25)

corresponding to the untwisted states 1√
2
(αi−1 + αi+8

−1 ) |0⟩ ,

which together build the algebra u(1)9 in the holomorphic sector of the theory. At particular

loci in the moduli space there appear additional conserved currents Jα(z) that can belong

either to the untwisted or twisted sector, corresponding to primary states |n,w, ρ⟩ with weights

h = 1, h̄ = 0. In nine dimensions, the modes of the currents {Jα(z)} include the ladder

operators associated to the roots {α} of a semisimple ADE algebra gr
10 of rank r ≤ 9 and

give the symmetry enhancement pattern

u(1)9 → (gr)2 ⊕ u(1)9−r , (3.2.26)

where the subscript 2 denotes the level of the algebra. The allowed enhancements gr are those

whose Dynkin diagram can be obtained from the GDD in Figure 3.2 by deleting one (r = 9)

ore more (r < 9) nodes. The specific point in moduli space where each enhancement occurs are

the ones for which the remaining simple roots are massless, which can be enforced by asking

that pR = 0 for their specific charge Z assignment.

As an example, let us consider the locus in moduli space given by a = 0 and generic R.

Here the theory displays the symmetry (E8)2⊕u(1).11 This is obtained by removing the nodes

0 and C from the GDD, which leaves us only with untwisted simple roots. Asking that the E8

roots be massless leads to the following constraints on the moduli

a1 = a2 = a3 = a4 = a5 = a6 = a7 = 0, a1 + a2 = 0,
8∑

i=1

ai = 0, (3.2.27)

so that a = 0, with no constraint on R. The u(1) current is in (3.2.24); the Cartan generators

of (E8)2 are given by (3.2.25), and the ladder operators are the symmetric combinations of the

(E8)1⊕ (E8)1 ones (which have positive eigenvalue under the ES action, and so are kept by the

orbifold projection):

Jα+(z) = cα(: e
iαiXi

1(z) : + : eiα
iXi

2(z) :) , α ∈ Γ8 , (3.2.28)

where cα is the cocycle factor ensuring the correct commutation properties of the currents.

Denoting by a the adjoint representation of E8, (3.2.25) and (3.2.28) together satisfy the level

10For a full classification of the possible gr in 9 dimensions (as well as the r = 10 case in 8 dimensions),
see [99].

11At R =
√
2 the u(1) factor is further enhanced to su(2).
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2 current algebra

Ja+(z1)J
b
+(z2) ∼

2δa,b

z212
+

1

z12
ifab cJ

c
+(z2) , (3.2.29)

where z12 ≡ z1 − z2, and f
ab
c are the structure constants of E8 defined relative to the normal-

ization where the roots have length squared 2. Alternatively, the current correlation functions

are determined by

⟨Ja+(z1)Jb+(z2)⟩ =
2δa,b

z212
, ⟨Ja+(z1)Jb+(z2)Jc+(z3)⟩ =

1

z12z23z13
iFabc , (3.2.30)

where Fabc = fab d2δ
c,d.

Turning this around, given the two- and three-point functions of any set of currents we can

obtain the Cartan-Killing metric Gab and the structure constants fab c of the algebra as

Gab ≡ z212⟨Ja+(z1)Jb+(z2)⟩ , (3.2.31)

ifab c ≡ iFabdGdc = z12z23z13⟨Ja+(z1)Jb+(z2)Jc+(z3)⟩Gdc . (3.2.32)
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Chapter 4

Heterotic decompactifications and

affine algebras

As we have already pointed out, one of the most interesting results on the Swampland Program

is the presence of infinite towers of states that become light at the boundaries of moduli space,

which is believed to be a universal feature of Quantum Gravity.

On the other hand, the set of massless vectors at a given point in moduli space is a signature of

the gauge symmetry group, and all massless states arrange into representations of this group.

Special points of moduli space of string theory compactifications, where symmetry enhance-

ments can occur, are then of particular interest in this context, as they also feature additional

massless states. Furthermore, an exhaustive scan of these points is also crucial for the question

of string universality and whether the string lamppost can cover all viable theories of Quantum

Gravity. This has recently been explored in the context of heterotic/heterotic orbifolds com-

pactifications and lattice methods [91–93,99–105], F-theory constructions [22,23,106,107] and

also from general supergravity and Swampland arguments [107–110]. A subset of special points

lie at infinite distances, where the tower of massless modes predicted by the SDC fits very nat-

urally with the idea of a symmetry enhancement. The following two Chapters are devoted to

the characterisation of such algebras.

The goal of this Chapter is to understand the symmetry enhancements that arise at infinite

distance points in the moduli space of the heterotic string on T d. As in the bosonic string, one

gets a tower of winding (momentum) modes that becomes massless in this limit, in the form

proposed by the SDC. The intriguing aspect in the heterotic String is that, as we will show,

a subset of this tower enhances the symmetries of the lower-dimensional theory to the affine

version of the Lie algebra of the higher dimensional theory which is reached by decompactific-

ation. Affine Lie algebras are briefly reviewed in Appendix A.

The appearance of infinite-dimensional symmetries in the circle compactification of the het-

erotic string can be anticipated from the Generalised Dynkin diagram of the Narain lattice.

This 19-node Dynkin diagram contains, for the E8×E8 heterotic string, two copies of the affine

algebra E9, where the affine nodes are charged with respect to the circle, connected by a cent-

ral node. By deleting nodes in this diagram one can obtain all the enhancement groups that

arise in the circle compactifications of the heterotic string, as well as the point or subspace in

moduli space where they arise, as explained above. This diagram tells us that an enhancement

37
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to (E9 ⊕E9)/ ∼ is possible in the decompactification limit R→ ∞, and that the affine algebra

D̂16 is obtained in the limit R→ 0 by a specific choice of Wilson line, as we will present in the

following.

We will extend this intuition to compactifications to generic dimensions, where in general there

is no Generalised Dynkin Diagram associated to the Narain lattice. For compactifications on

T 2, this appearance of loop algebras in the dual F-theory on K3 was analysed first in [111] and

recently studied in great detail in [22, 23]. Our results from the heterotic perspective match

the expectations from these results obtained in the F-theory picture.

4.1 Decompactifcation limits of the heterotic String on S1

In the limit R→ ∞, the following states become massless

(0,n, πα), n ∈ Z, πα ∈ ΓE8 × ΓE8 or ΓSp(32), |π|2 = 2 . (4.1.1)

In the T dual case R→ 0, we get an equivalent tower of states becoming massless, labelled by

the winding numbers

(0,w, πα), w ∈ Z, πα ∈ ΓE8 × ΓE8 or ΓSp(32), |π|2 = 2 (4.1.2)

Our goal now is to show that these states are actually the roots of an affine Lie algebra.

In the limit R→ ∞, and for any finite Wilson line A, the equations for all the nodes in Table

3.3, apart from the one corresponding to node C, are satisfied. The corresponding algebra from

the EDD is naively E9 ⊕ E9. Taking into account the fact that the two copies of E9 share the

same imaginary root, we will denote the corresponding algebra as (E9 ⊕ E9)/ ∼. As expected,

there is also an enhancement to (E9⊕E9)/ ∼ at R→ 0 for zero Wilson line if we use the T-dual

convention of Table 3.2, where the extended nodes 0 and 0’ (c.f. eq. (3.1.61)) have momentum

instead of winding charge.

This pattern and the actual enhanced algebra can be understood by explicitly building the

gauge vectors. For concreteness, we focus on the R → ∞ limit here, keeping in mind that the

opposite limit is related to this one by T-duality. Moreover, all finite values for the Wilson

lines AI (including AI = 0) are physically equivalent in the large R limit, since all of them

correspond to the situation A
R → 0. For this reason, we approach the enhancement point along

the path with vanishing Wilson line

(AI , R) = (0, R) , (4.1.3)

but we remark that our results, namely the structure of the algebra, are the same even turning

on a non-trivial (finite) AI , as discussed in detail in Appendix B. Note that along the path

(4.1.3) the symmetry is (E8×E8×U(1)L)×U(1)R for all finite values of R. All these massless

states are accompanied by a tower of momentum and winding states. We are interested in

particular in the tower of momentum states of the E8 × E8 vectors in (3.1.39) and (3.1.59),

given by

αI−1ψ̄
µ

− 1
2

|0, n⟩NS , ψ̄µ− 1
2

|0, n, πα⟩NS , (4.1.4)
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where we recall that α = 1, ..., 480 and µ = 0, ..., 8. These are associated to the following

asymptotically conserved left currents

Jan (z) ≡ Ja(z)einY (z) , (4.1.5)

with a = {I, α} and the finite algebra currents given by

JI(z) = i∂XI(z) , Jα(z) = cαe
iπIαX

I(z) . (4.1.6)

Here cα are the cocycle factors, that satisfy

cαcβ = ϵ(α, β) cα+β , ϵ(α, β) = ±1 (4.1.7)

when α + β is a root, and zero otherwise (and c0 ≡ 1). Let us mention that in principle

the currents (4.1.5) are not purely holomorphic, as the exponential dipendence would strictly

speaking be of the form

eipY (z,z̄) , Y (z, z̄) = Y (z) + Ȳ (z̄) . (4.1.8)

As we will explicitly see in 5.1, though, the antiholomorphic part does not contribute to the

currents correlation functions in the limit; this can be naively explained by the fact that the

Jan (z) have antiholorphic conformal dimension h̄ = n
2R2 that vanishes as R→ ∞. On the other

hand, the holomorphic conformal dimension h = 1+ n
2R2 tends to 1 as R→ ∞, so indeed they

correspond to asymptotically conserved currents.

By computing the OPEs of these currents we will prove that they define an (E9 ⊕ E9)/ ∼
algebra.

First, recall the OPEs of a set of currents associated to an ADE algebra g at level 1, with

conformal dimension (h, h̄) = (1, 0), is given by

Ja(z)Jb(w) ∼ 1

(z − w)2
Kab + i

fab c
z − w

Jc(w) , (4.1.9)

where Kab is the Cartan-Killing metric and fab c are the structure constants. In the case of a

finite algebra, eq. (4.1.9) is equivalent to the current algebra between the Laurent expansion

coefficients defined by

Jak =

∮
dz

2πi
zkJa(z) , k ∈ Z . (4.1.10)

This current algebra is thus given by

[Jaj , J
b
k] = jδabδj,−k + ifab cJ

c
j+k , (4.1.11)
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and we can read the algebra g, formed by the currents Ja(z), from the algebra of the set {Ja0 }.
The structure constants of an E9 algebra can be read off from the commutators

[H Î
n , H

Ĵ
m] = k̂ n δÎĴδn+m,0 ,

[H Î
n , E

α
m] = αÎEαn+m ,

[Eαn , E
β
m] =





Nα,βE
α+β
n+m for α+ β root,

αIHI
n+m + k̂ n δn+m,0 for α = −β ,

0 otherwise,

(4.1.12)

where Î = 1, ...8, and k̂ represents the central extension, which commutes with all the other

generators. The E8 roots α are normalized to |α|2 = 2, and Nα,β is a constant.

Let us now turn to the calculation of the OPEs of the currents in (4.1.6) (see Appendix B for

the detailed computation). For the towers of two Cartan currents we find

JIn(z)J
J
m(w) ∼ (z − w)

nm
2R2

(
δIJ

ei(n+m)Y (w)

(z − w)2
+ iδIJn

: ∂Y (w)ei(n+m)Y (w) :

z − w
+O(1)

)
, (4.1.13)

whereas the OPE of the towers of two roots takes the form

Jαn (z)J
β
m(w) ∼ (z − w)

nm
2R2 ·





ϵ(α,β)Jα+βn+m(w)

z−w +O(1) α+ β root,

:ei(n+m)Y (w):
(z−w)2 +

πIαJ
I
n+m(w)+in:∂Y (w)ei(n+m)Y (w):

z−w +O(1) α = −β ,
O(1) otherwise.

(4.1.14)

A Cartan and a root tower give

JIn(z)J
α
m(w) ∼ (z − w)

nm
2R2

(
πIαJ

α
n+m(w)

z − w
+O(1)

)
. (4.1.15)

Finally, the OPEs involving ∂Y are

JIn(z)i∂Y (w) ∼ i

2R2
n
: ∂XI(w)einY (w) :

z − w
+O(1) , (4.1.16)

Jαn (z)i∂Y (w) ∼ i

2R2
n
: eiπ

I
αX

I(w)einY (w) :

z − w
+O(1) , (4.1.17)

i∂Y (w)i∂Y (w) ∼ 1

2R2

1

(z − w)2
+O(1) . (4.1.18)

The factors (z−w)
nm
2R2 in eqs. (4.1.13)-(4.1.15) tend to 1 in the limit R→ ∞, thus recovering the

pole structure in (4.1.9), which describes an algebra of (asymptotically, in this case) conserved

currents. In this limit, all the OPEs involving the circle direction, namely (4.1.16)-(4.1.18)

vanish.
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Defining the generators as the zero modes of the asymptotically conserved currents (a = {I, α})

(Jan )0 ≡
∮

dz

2πi
Jan (z) , (4.1.19)

and using the OPEs (4.1.13)-(4.1.15), we obtain that they satisfy the following algebra (details

of the computation can be found in Appendix B)

[(JIn)0, (J
J
m)0] = inδIJδn+m,0(∂Y )0 ,

[(JIn)0, (J
α
m)0] = πIα(J

α
n+m)0 ,

[(Jαn )0, (J
β
m)0] =





ϵ(α, β)(Jα+βn+m)0 α+ β root,

πIα(J
I
n+m)0 + inδn+m,0(∂Y )0 α = −β ,

0 otherwise,

(4.1.20)

where (∂Y )0 corresponds to the zero mode of the Laurent expansion of ∂Y (z).

Recall that all the commutators involving the zero mode of the circle direction vanish in the

limit R→ ∞, as shown in (4.1.16)-(4.1.18).

With a similar analysis, the non-vanishing components of the Cartan-Killing metric are found

to be

K(JIn(z), J
J
m(w)) = δn+m,0δ

IJ , K(Jαn (z), J
β
m(w)) = δm+n,0δ

α+β,0 . (4.1.21)

These are precisely the commutators and the Cartan-Killing metric for two copies of the algebra

E9 with central extension given by

k̂ = (∂Y )0 . (4.1.22)

Since both E9 share the central extension, the total algebra is (E9 ⊕E9)/ ∼. The fact that the

two E9 share the central extension is consistent with the fact that the maximum rank of the

left-moving algebra is 17.

Notice that since we did not need to specify the roots of the algebra, the same applies to the

SO(32) case, which at the same boundary of moduli space gets enhanced to D̂16 (whose rank is

17 as well), in agreement with what one gets from the EDD with SO(32) embedding (see [92]

for details).

In fact, it is known [112] that the E9 ⊕ E9/ ∼ (or D̂16) states, together with the other BPS

states which are Lorentz scalars in the left-moving sector and in the right-movers ground state,

give rise an BPS algebra of the generalized Kac-Moody type even at finite distances in moduli

space, where generically all of them are massive. The (E9 ⊕ E9)/ ∼ (or D̂16) algebra is then

realized as a subalgebra at the boundary of the moduli space by the BPS vectors that become

massless.

Note that E10 (or E11) cannot be realized in this setting, as this should appear at infinite

distance in moduli space where clearly the equation for the node C can never be satisfied.

Another interesting point to make is that even if the EDD suggests that it is possible to find

groups of maximal enhancement in the left sector with only one copy of E9, these cannot be

realised in heterotic compactifications on the circle. This can be seen either from Table 3.3,

which says that for R → ∞ the equations for both E9 are satisfied at the same time, as well

as from the explicit construction of the algebra, where the central extension extends both E8
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factors at the same time.

Still focusing on the E8×E8 theory on S1, inside the fundamental domain of the moduli space

(that we chose to contain the point with R→ ∞), there is a second point at infinite distance,

namley R→ 0 with Wilson line A = (07, 1, 07, 1). This Wilson line breaks the E8 × E8 × U(1)

to SO(16) × SO(16) × U(1). In the limit R → 0, the massless left-moving vectors in the NS

sector have charges

Z = (πα,w,n) with





w = −2m + 2πβ · Λ ,
n = 2m + πβ · (A− 2Λ) ,

πα = 2mA+ πβ − 2(Λ · πβ)A ,
∀m ∈ Z , πβ ∈ ΓSp(32) , |πβ|2 = 0, 2 ,

(4.1.23)

where πα ∈ ΓSp(32), Λ =
((

1
2

)
8
, 08
)
is the Wilson line that in the SO(32) embedding breaks

the gauge group to SO(16)× SO(16)× U(1), and corresponding internal momenta

pR =
√
2R2(m− πα · Λ) ,

pL = −
√
2R2(m− πα · Λ) ,

pI = πIα . (4.1.24)

The asymptotically holomorphic currents associated to these states are

αI−1ψ̄
µ

− 1
2

|Z⟩NS → JIm(z) = i∂XI(z)e−i
√
2mR2Y (z) , (4.1.25)

α9
−1ψ̄

µ

− 1
2

|Z⟩NS → J9
m(z) = i∂Y (z)e−i

√
2mR2Y (z) , (4.1.26)

ψ̄µ− 1
2

|Z⟩NS → Jαm(z) = cαe
iπIαX

I(z)ei
√
2R(−m+πIαΛ

I)Y (z) , (4.1.27)

and the currents of D̂16 are obtained by introducing

Y I(z) = XI(z) +
√
2R2ΛIY (z) , (4.1.28)

which from (3.1.14) and (3.1.15) has OPE

Y I(z)Y J(w) = −(δIJ + 2ΛIΛJR2)log(z − w) → −δIJ log(z − w) = XI(z)XJ(w) . (4.1.29)

Then the currents of D̂16 are1

JIm(z) = i∂Y I(z)e−i
√
2mR2Y (z) , (4.1.30)

Jαm(z) = cαe
iπIαY

I(z)e−i
√
2mR2Y (z) . (4.1.31)

They satisfy the commutation relations (4.1.20) with n → m and πα being D16 roots. This

algebra is thus the D̂16 affine algebra.

We can also decompactify the SO(32) theory on S1 to get the (E9 ⊕E9)/ ∼ taking the R→ 0

limit and Wilson line Λ.

1Again, we write explicitly only the holomorphic part.
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4.2 Swampland conjectures approaching (E9 ⊕ E9)/ ∼

Let us now try to look at this symmetry enhancement from the point of view of the Swampland

program. As a full stringy construction, it is expected that our setup fulfils all the Swampland

Conjectures, so it is interesting to see how the relevant ones are realized in this particular ex-

ample. Moreover, it is particularly illuminating to see how constraining these conjectures are,

in the sense of understanding what aspects about the enhancement could have been anticipated

had we not known the full string construction, but some 9d EFT data instead.

On the one hand, it seems very natural to try to connect our setup to the SDC (2.1.1). Since

the points we have studied (i.e. R → 0, ∞) are both infinite distance points, it is expected

to find the corresponding towers when approaching them. In this case there is nothing unex-

pected, as these are just the winding and KK-states, respectively. Given the fact that these

towers are also charged under the other gauge groups that are present in the 9d theory, it is

interesting though to analyze how they fit in with the WGC and the (related) RFC, which we

presented in their lattice versions respectively in Sections 2.3.1 and 2.4.

In the remaining of this section, we focus on the states charged under the E8×E8 gauge bosons

(more precisely under their Cartan generators), as well as those with winding and momentum

charge. In the corresponding infinite distance limit, some subset of these gauge couplings go to

zero and we show how the states predicted by the LWGC and the LRFC become massless, as

required by the superextremality or self-repulsiveness conditions in the vanishing gauge coup-

ling limit. These states in fact correspond to the (E9 ⊕ E9)/ ∼ vectors, therefore connecting

the conjectures to the presence of the affine enhancement.

The extremality bound for black holes charged under the heterotic group in toroidal compac-

tifications was computed in [113] and takes the form

α′

4
M2 ≥ 1

2
max(p2

L, p
2
R) , (4.2.1)

so that states fulfilling the bound are subextremal. This is the relevant bound to study the

superextremal particles predicted by the WGC.

On the other hand, we are going to compute the long range interaction between probe particles

charged under these gauge groups in the Einstein frame, which are the relevant quantities for

the RFC. We use the compactified heterotic low energy action as in [114], with the following

metric ansatz

ds2 = e
4
7
Φ̃e−

2
7
σ̃gEµνdx

µdxν + e2σ̃(dy + Zµdx
µ)2, y ∼ y + 2πR , (4.2.2)

where Φ̃ and σ̃ denote the dynamical parts of the dilaton field, Φ = Φ0 + Φ̃, and the (dimen-

sionless) radion, σ = σ0 + σ̃, where we have also explicitly included a background piece for the

scalars. We recall that the physical radius of the circle in the string frame and in string units

is R = eσ0
√
α′, and it is included in the definition of the coordinate y instead of in the metric

for convenience. The tensor gEµν gives the 9 dimensional metric in the Einstein frame, and Zµ
represents the (dimensionless) graviphoton.

To compute the long range force we need the action up to quadratic order in the dynamical

fields and including the minimal coupling to the physical states in the string spectrum, which

act as semi-classical sources. We leave the details of the computation for Appendix C, but
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outline the main points here. Using the metric ansatz in (4.2.2), one needs to perform the

following field redefinition to work with conventionally normalized fields without mixed kinetic

terms (as explained in detail around eq. (C.1.21))

λ =
4√
7

(Φ
4
− σ

)
. (4.2.3)

Using this, the expression for the action up to quadratic order and including the minimally

coupled sources that describe the heterotic states reads

S =
M7

p,9

2

∫
d9x

√−g
(
R− 1

2
∂µλ∂

µλ− 1

2
∂µΦ∂

µΦ− α′

2
∂µA

I
9∂

µAI9 −
R2

4
Z̃µνZ̃

µν−

− α′

4
F̃ IµνF̃

µνI − α′2

4R2
W̃µνW̃

µν
)
−
∫
M(Φ, λ, AI9) ds− w

∫
W̃ − πI

∫
AI − n

∫
Z̃ ,

(4.2.4)

where ds is the line element along the particle world-line. The 9 dimensional Planck mass has

the following expression
M7

p,9

2
=
e−2Φ0 R

(2π)6α′4 , (4.2.5)

whereas Z̃µ is the dimensionful graviphoton (see eq. (C.1.12)), and AIµ and W̃µ ≡ Bµ9 +
α′

2 A
I
9AµI are the Cartan gauge fields, which are the only ones we are interested in to compute

the long range force. All these gauge fields are normalized to have mass dimension +1 and

in such a way that the charged states have integer charges, and Z̃µν , W̃µν and F̃ Iµν are their

respective field strengths.

The repulsive force condition (for vanishing Wilson lines) is

M2 ≤M2
p,9(32π

6)
2
7 max

{(
2|π|2e 1

2
Φ0e

√
7

14
λ0 + n2e

4
√
7

7
λ0 +w2eΦ0e−

3
√
7

7
σ0 + 2n we

1
2
Φ0e

√
7

14
λ0
)
,

(
n2e

4
√

7
7
λ0 +w2eΦ0e−

3
√
7

7
σ0 − 2n we

1
2
Φ0e

√
7

14
λ0
)}

.

(4.2.6)

Let us remark that this expression is equivalent to the extremality bound given in eq. (4.2.1),

so that all superextremal states are self-repulsive. This means that the WGC and the RFC are

equivalent in this case (as expected, see [20]), but one must keep in mind that the long range

force computation only makes sense in the perturbative regime.

The expressions of the three relevant gauge couplings as a function of the moduli and in Planck
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units are

1

g2Z
=

M5
p,9

2(32π6)
2
7

e−
4
√
7

7
λ0 , (4.2.7)

1

g2W
=

M5
p,9

2(32π6)
2
7

e
3
√
7

7
λ0e−Φ0 , (4.2.8)

1

g2A
=

M5
p,9

2(32π6)
2
7

e−
√
7

14
λ0e−

1
2
Φ0 . (4.2.9)

Thus, in the infinite distance decompactification limit eλ0 → 0 ( R√
α′ → ∞) we obtain in Planck

units

eλ0 → 0 : gZ ∼ e
2
√
7

7
λ0 → 0, gW ∼ e

−3
√
7

14
λ0 → ∞, gA ∼ e

√
7

28
λ0 → 0 . (4.2.10)

Since we are particularly interested in the states charged under the graviphoton and the het-

erotic gauge group (as these are the ones that form the E9⊕E9/ ∼ algebra), it is clear that the

large radion limit is the right one, as the relevant gauge couplings are small and the perturbat-

ive calculation under control. Let us remark also that even though the gauge theory associated

to Wµ is non-perturbative in this corner of moduli space, we do not consider states charged

under it here. We emphasize that the correspondence between the WGC and the RFC can

be made precise in this limit, so that we can then interpret the presence of the (E9 ⊕ E9)/ ∼
gauge fields in the light of these conjectures. Restricting to the aforementioned charged states,

we obtain the following superextremality/self-repulsiveness condition

M ≤M
7
2
p,9

√
|π|2g2A +

n2g2Z
2

. (4.2.11)

For finite gauge couplings, this bound allows for massive states. Moreover, since the states

that become the E9⊕E9/ ∼ vectors in the infinite distance limit are BPS states, they saturate

the inequality. In the decompactification limit, the fact that the two relevant gauge couplings

tend to zero means that the LWGC/LRFC require an infinite tower of states (one for each

point in the infinite charge lattice) to become massless. In particular, note that both the KK

replicas of the Cartans and the roots of the E8 × E8 heterotic group studied in the previous

section, which have arbitrary n and |π|2 = 0, 2 are forced to become massless. This means that

the states of the E9 ⊕ E9/ ∼ BPS algebra that we found in the limit can be understood to

become massless as a consequence of the LWGC/LRFC. Note that in general there are many

more (generically non-BPS) states that become massless in the limit according to (4.2.11),

so that only a subset of all these asymptotically massless states, namely the BPS ones, form

the E9 ⊕ E9/ ∼ algebra. Moreover, following the reasoning in [31, 40], we can argue for the

appearance of this tower also as a way to prevent the restoration of a global symmetry, which

is known to be forbidden in quantum gravity (see e.g. [25] and references therein). Since in the

limit of vanishing coupling a gauge symmetry behaves as a global one, there must be a way to

prevent this from happening at the infinite distance point, and this is indeed the case due to

the presence of the infinite lattice of states becoming light. Note that this is also in complete

agreement with the magnetic WGC if we identify the cutoff as the scale of the tower of states
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becoming light, as it would predict a cutoff (in Planck units) Λcutoff ≲ g → 0. Let us finally

mention that the limit of vanishing radius would give analogous results upon application of

T-duality, which is not directly manifest in the computations above as we are working in the

Einstein frame instead of the string frame.

4.3 Decompactifications of T d

The decompactification pattern from nine to ten dimensions of the heterotic theory on S1 can

be generalized to the decompactification of several dimensions of the theory on T d.

In the next section we show the possible decompactification patterns in the case d = 2, which

is particularly interesting in light of its dual realisation in F-theory on K3, analyzed in [22,23].

In section 4.3.2, following the intuition in 8 dimensions, we extend to generic d.

4.3.1 Decompactification limits of the heterotic string on T 2

Consider a generic background given by

Gij =

(
R2

8 R8R9 cosα

R8R9 cosα R2
9

)
, Bij =

(
0 b

−b 0

)
, AIi , i = 8, 9. (4.3.1)

where R8 and R9 are the lengths of the two dimensional vectors e1,2 generating the T 2 lattice

and α is the angle between them. In what follows we will also use the inverse metric, given by

Gij =
1

sin2 α

(
1
R2

8
− cosα
R8R9

− cosα
R8R9

1
R2

9

)
. (4.3.2)

One can distinguish two types of decompactification limits2, according to the values of R8, R9

and cosα:

• only one radius diverges: decompactification from eight to nine dimensions;

• both R8, R9 → ∞, independently of their ratio (R8
R9

→ 0, const, ∞): decompactification

from eight to ten dimensions.

The possible interesting profiles for cosα along the path taken in moduli space depend on the

type of decompactification, and they will be specified case by case.

8d→ 9d decompactification

Let us focus on the first situation, where only one radius diverges, R8 → ∞.

The massless states can only come from states with no winding in the eighth direction, w8 = 0.

2T-dual versions are considered as equivalent. For example, in the case of diagonal torus metric α = π
2
to

which we will restrict in the following, T duality acts as a shift of the Wilson lines by a vector in Γ8 × Γ8 or as
A′
i = − Ai

R2
i+

A2
i
2

, R′
i =

Ri

R2
i+

A2
i
2

, wi ↔ ni, i = 8, 9.
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The massless and the level-matching conditions reduce then to

0 =
1

sin2 α

(
1

R2
9

(p2R,9 + p2L,9)− (w9)2R2
9 cos

2 α

)
+ p2I + 2

(
N + Ñ − 3

2

)
,

0 = 2n9w
9 + |πα|2 + 2

(
N − Ñ − 1

2

)
,

(4.3.3)

where we have used the inverse metric in (4.3.2), and

pR,9 =
1√
2

(
n9 −

(
R2

9 +
1

2
A9 ·A9

)
w9 − πα ·A9

)
,

pL,9 =
1√
2

(
n9 +

(
R2

9 −
1

2
A9 ·A9

)
w9 − πα ·A9

)
,

pI = πIα +AI9w
9 .

(4.3.4)

Note that (4.3.3) with the expressions (4.3.4) for the internal momenta correspond, in the limit

cosα → 0, to the massless and the level-matching conditions of the nine-dimensional theory.

On the other hand, when cosα → c ̸= 0, which corresponds to the asymptotic behaviour

G89 → ∞, nine-dimensional Lorentz invariance is broken. We therefore restrict to cosα = 0.

Similarly, nontrivial values of the Kalb-Ramond field break Lorentz invariance, so we also

restrict to b = 0.

If we choose the moduli such that R9 and AI9 correspond to a point with gauge algebra g in the

left sector of the nine-dimensional theory, with roots of the form Zg = (πα,w
9,n9) satisfying

pL,9 = 2 and pR,9 = 0, the massless spectrum of the eight-dimensional theory will contain

the momentum tower of the nine-dimensional gauge vectors. This is given by the following

left-moving vectors together with their associated currents

• Cartan sector:

αI−1ψ̄
µ

− 1
2

|0,n8⟩NS → JIn8(z) = i∂XI(z)ein8Y
8(z) ,

α8
−1ψ̄

µ

− 1
2

|0,n8⟩NS → J8
n8(z) = i

√
2∂Y 8(z)ein8Y

8(z) ;
(4.3.5)

• root sector:

ψ̄µ− 1
2

|Zg,n8⟩NS → Jαn8(z) = cαe
ipα;IX

I(z)ein8Y
8(z) , (4.3.6)

where the first number in the kets represents the nine dimensional quantum numbers, n8 ∈ Z,
and w8 = 0 is implied. We have defined the index Î = {9, I}, the left moving X Î(z) =(√

2e99Y
9(z), XI(z)

)
, and pα;Î = (e∗99 pL,9, pI). We have also restricted to AI8 = 0, which

together with the choices cosα, b = 0 implies in particular that E89, E98 = 0; the case AI8 ̸= 0

is discussed in Appendix B.2, but in both cases the resulting BPS algebra is the same and so

we present the former for simplicity.

As derived in Appendix B.2, for R8 → ∞ the OPEs among the asymptotic currents of equations
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(4.3.5) and (4.3.6) are

J În8(z)J
Ĵ
m8

(w) ∼ δÎĴ
: ei(n8+m8)Y 8(w) :

(z − w)2
+ iδÎĴn8

: ∂Y 8(w)ei(n8+m8)Y 8(w) :

z − w
+O(1) , (4.3.7)

J În8(z)J
α
m8

(w) ∼ pÎαJ
α
n8+m8

(w)

z − w
+O(1) , (4.3.8)

Jαn8(z)J
β
m8

(w) ∼





ϵ(α,β)Jα+βn8+m8
(w)

z−w +O(1) α+ β root,

:ei(n8+m8)Y
8(w):

(z−w)2 +
pα;ÎJ

Î
n8+m8

(w)+in8:∂Y 8(w)ei(n8+m8)Y
8(w):

z−w +O(1) α = −β ,
0 otherwise.

(4.3.9)

All the OPEs involving J8
n8(z) are trivial in the limit R→ ∞.

The asymptotic algebra is obtained from the commutation relations of the zero modes of the

currents (4.3.5)-(4.3.6), defined as in (4.1.19). We find (see Appendix B.2 for the detailed

computation)

[(J În)0, (J
Ĵ
m)0] = inδÎĴδn+m,0(∂Y

8)0 ,

[(J În)0, (J
α
m)0] = pÎα(J

α
n+m)0 ,

[(Jαn )0, (J
β
m)0] =





ϵ(α, β)(Jα+βn+m)0 α+ β root,

pα;Î(J
Î
n+m)0 + inδn+m,0(∂Y

8)0 α = −β ,
0 otherwise,

(4.3.10)

which is precisely the algebra of ĝ, with central extension (∂Y 8)0. Importantly, if the algebra

g is semisimple, g = g1 ⊕ ... ⊕ gn, (4.3.10) describes the algebra ĝ = (ĝ1 ⊕ ... ⊕ ĝn)/ ∼, where

∼ means that the central extension of all the factors (including u(1)’s) is identified, namely

as (∂Y 8)0. This signifies that all the factors are made affine by the universal presence of the

momentum tower.

As an example, let us show explicitly the case of (Ê8 ⊕ Ê8 ⊕ Â1)/ ∼ in the decompactification

of the E8 × E8 theory from 8 to 9 dimensions. We start from the background

Gij =

(
R2

8 0

0 1

)
, b = 0, AI8, AI9 = 0 , (4.3.11)

and take the limit R8 → ∞. As we argued above, without loss of generality we can take AI8
to vanish. The choice G99 = 1 and AI9 = 0 is instead dictated by the fact that we want to

decompactify to a theory with gauge algebra E8⊕E8⊕A1 in 9 dimensions. The massless states

here are the momentum towers along y8 of the E8 ⊕ E8 states,

αI−1ψ̄
µ

− 1
2

|0,n8⟩NS → JIn8(z) = i∂XI(z)ein8Y
8(z) , (4.3.12)

ψ̄µ− 1
2

|ZE8⊕E8 ,n8⟩NS → Jαn8(z) = cαe
iπα;IX

I(z)ein8Y
8(z) , (4.3.13)
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where ZE8⊕E8 = (πα, 0, 0), πα are the roots of E8⊕E8, and in addition we have the corresponding

momentum towers of the A1 states

α9
−1ψ̄

µ

− 1
2

|0,n8⟩NS → J9
n8(z) = i

√
2∂Y 9(z)ein8Y

8(z), (4.3.14)

ψ̄µ− 1
2

|ZA1 ,n8⟩NS → J±
n8(z) = e±i2Y

9(z)ein8Y
8(z) , (4.3.15)

with ZA1 ≡ (π,w9, n9) = (0,±1,±1). Here (4.3.12) and (4.3.14) are associated to the Cartan

currents and (4.3.13) and (4.3.15) to the root generators. The affinization of the E8 ⊕ E8 part

of the algebra works exactly as in the decompactification from 9 to 10 dimensions presented in

Section 4, with the replacements n → n8 and Y → Y 8.

The affinisation of the A1 factor is derived from the general structure of the OPEs (B.2.11),

(B.2.15) and (B.2.16) among the affine currents (4.3.14) and (4.3.15). These give the subalgebra

[(J9
n8)0, (J

9
m8

)0] = in8δn8+m8,0(∂Y
8)0 ,

[(J9
n8)0, (J

±
m8

)0] = ±
√
2(J±

n8+m8
)0 = πA1,±(J

±
n8+m8

)0 ,

[(J±
n8)0, (J

±
m8

)0] = 0 ,

[(J±
n8)0, (J

∓
m8

)0] = πA1,±(J
±
n8+m8

)0 + in8δn8+m8,0(∂Y
8)0

(4.3.16)

among the current zero modes, which corresponds to Â1 with central extension (∂Y 8)0, the

commutators between Ê8 ⊕ Ê8 modes and Â1 ones vanishing in the limit. This is indeed a

(Ê8 ⊕ Ê8 ⊕ Â1)/ ∼ algebra for the current zero modes.

We emphasize that the Cartans corresponding to the algebra of the decompactified theory

get affinized independently of them being enhanced or not to nonabelian algebras. In fact,

the same is true for those Cartans lying in the gravity multiplet, which do not admit en-

hancements. These get affinized by the antiholomorphic counterpart (∂̄Ȳ 8)0 of the left-moving

central extension (see Appendix B.2 for details).

8d→ 10d decompactification

In this limit both R8 and R9 diverge. They can go to infinity with different speeds R8
R9

→ 0, ∞
or at the same rate, R8

R9
→ const. The first can effectively capture a decompactification by steps,

8 → 9 → 10 dimensions, while the second is always a one-step process 8 → 10 dimensions.

Again, in the limit R8, R9 → ∞, the massless spectrum is characterised by w8 = w9 = 0, with

no restriction on n8, n9.

The non-trivial contributions to the massless and level-matching conditions are then

0 = |πα|2 + 2

(
N + Ñ − 3

2

)
,

0 = |πα|2 + 2

(
N − Ñ − 1

2

)
,

(4.3.17)

regardless of the values of cosα, b, AI8 and AI9. The massless left-moving vectors are then the

momentum towers of the E8 ⊕ E8 ⊕ u(1)2 vectors or D16 ⊕ u(1)2 vectors, depending on which

theory one starts with. From the algebra point of view turning on Bij or the Wilson lines is
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equivalent to setting them to zero, as shown in Appendix B.2, so we take for simplicity Bij = 0,

AI8 = 0, AI9 = 0 and G89 = 0 in the following expressions for the currents. The two KK Cartans

are associated to (i = 8, 9)

αi−1ψ̄
µ

− 1
2

|0,n8, n9⟩NS → J in8,n9(z) = i
√
2∂Y i(z)ein8Y

8(z)ein9Y
9(z) , (4.3.18)

the E8 ⊕ E8 Cartans to

αI−1ψ̄
µ

− 1
2

|0,n8, n9⟩NS → JIn8,n9(z) = i∂XI(z)ein8Y
8(z)ein9Y

9(z) , (4.3.19)

and the E8 ⊕ E8 roots to

ψ̄µ− 1
2

|ZE8⊕E8 , n8,n9⟩NS → Jαn8,n9(z) = cαe
iπα;IX

I(z)ein8Y
8(z)ein9Y

9(z) . (4.3.20)

As shown in detail in Appendix B.2, in the decompactification limit the OPEs among these

currents are, regardless of R8
R9

,

JIn8,n9(z)J
J
m8,m9

(w) =
δIJ : ei(ni+mi)Y

i(w) :

(z − w)2
+ iδIJni

: ∂Y i(w)ei(nj+mj)Y
j(w) :

z − w
+O(1) , (4.3.21)

JIn8,n9(z)J
α
m8,m9

(w) =
πIαJ

α
n8+m8,n9+m9

(w)

z − w
+O(1) , (4.3.22)

Jαn8,n9(z)J
β
m8,m9

(w) =





ϵ(α,β)Jα+βn8+m8,n9+m9
(w)

z−w +O(1) α+ β root,

:ei(ni+mi)Y
i(w):

(z−w)2 +
πα;IJ

I
n8+m8,n9+m9

(w)+ini:∂Y
i(w)ei(nj+mj)Y

j(w):

z−w +O(1) α = −β ,
0 otherwise,

(4.3.23)

All the other OPEs are either finite or vanishing as the inverse metric components. These have

the structure of the double loop versions of the ten dimensional algebra (g = E8 ⊕ E8, D16)

with the addition of two central extensions, which can be identified from the structure of the

single pole in the OPEs and are the zero modes (∂Y i)0. The algebra of the zero modes is

[(JIn8,n9)0, (J
J
m8,m9

)0] = iδIJ(n8δn8+m8,0(∂Y
8
0,n9+m9

)0 + n9δn9+m9,0(∂Y
9
n8+m8,0)0) ,

[(JIn8,n9)0, (J
α
m8,m9

)0] = πIα(J
α
n8+m8,n9+m9

)0 ,

[(Jαn8,n9)0, (J
β
m8,m9

)0] =





ϵ(α, β)(Jα+βn8+m8,n9+m9
)0 α+ β root,

πα;I(J
I
n8+m8,n9+m9

)0+

+i(n8δn8+m8,0(∂Y
8
0,n9+m9

)0 + n9δn9+m9,0(∂Y
9
n8+m8,0

)0) α = −β ,
0 otherwise,

(4.3.24)

where

(∂Y i
nj+mj ,0)0 =

∮
dz

2πi
∂Y i(z)ei(nj+mj)Y

j(z) , i ̸= j (4.3.25)
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are the momentum modes of the two central extensions of the algebra, (∂Y 8)0 and (∂Y 9)0,

along the y9 and y8 directions, respectively. This gives the double loop version (Ê9 ⊕ Ê9)/ ∼
or
̂̂
D16, and we see that indeed the operators associated to the two torus directions are good

central extensions.

Let us notice that in the limit R8,9 → ∞ the only possible decompactification is to the ten

dimensional theory one started with, independently of their ratio. Since the toroidally compac-

tified E8×E8 and Spin(32)/Z2 theories are T-dual, it is also possible to reach the 10 dimensional

E8 × E8 heterotic theory from the eight dimensional Spin(32)/Z2 one and viceversa.3

4.3.2 Decompactification limits of the heterotic String on T d

One can easily generalize the above discussion to the decompactification of an arbitrary number

k of dimensions starting from the heterotic theory compactified on T d, k ≤ d.

We start from a fixed point in the moduli space of T d−k, specified by a given Gı̂ȷ̂, Bı̂ȷ̂ and A
I
ı̂

(̂ı = 1, .., d − k), giving an enhanced gauge algebra g. As explained in Section 4.3.1, in order

to decompactify to a Lorentz invariant vacuum of a higher dimensional toroidally compactified

heterotic theory, the T d background must be such that T d = T k × T d−k as follows

Gij =

(
Gı̄ȷ̄ 0

0 Gı̂ȷ̂

)
= ei · ej , Bij =

(
Bı̄ȷ̄ 0

0 Bı̂ȷ̂

)
, AIi = (AIı̄ , A

I
ı̂ ) (4.3.26)

with i = 1, ..., d, i = (̄ı, ı̂). Gı̄ȷ̄ is parametrised by k radii Rı̄ and
k(k−1)

2 angles. The decompac-

tification limit is realized by taking Rı̄ → ∞, and a generic finite value for AIı̄ . Again, T-dual

backgrounds can be obtained via an O(d, d+16,Z) transformation to the one described above.

The general pattern is that, under these assumptions, the 10 − d dimensional theory displays

the k-times loop version of the gauge algebra in 10− (d− k) dimensions at the point in mod-

uli space given by {gı̂ȷ̂, Bı̂ȷ̂AIı̂ }, with central extensions (∂Y ı̄)0. In the case of a semi-simple

algebra g = g1 ⊕ g2 ⊕ ...⊕ gn all the factors are made affine.

For concreteness, let us introduce the index Î = {ı̂, I}, X Î(z) = (
√
2eâı̂Y

ı̂(z), XI(z)), and call

and call pα;Î the roots of the algebra g in dimension 10−(d−k), corresponding to the 16+d−k
momenta pα;Î = (e∗ı̂â pL,̂ı, pI).

The left-moving massless states and their associated holomorphic conserved currents, related

to the Cartan and ladder generators respectively, are then

αÎ−1ψ̄
µ

− 1
2

|0⟩NS −→ J Î(z) = i∂X Î(z) ,

ψ̄µ− 1
2

|Zg⟩NS −→ Jα(z) = cαe
ipα;Î ·X

Î(z) .

(4.3.27)

and they satisfy the massless and level-matching conditions





0 = Gı̂ȷ̂(pL,̂ıpL,ȷ̂ + pR,̂ıpR,ȷ̂) + p2I + 2
(
N + Ñ − 3

2

)
,

0 = 2nı̂w
ı̂ + 2

(
N − Ñ − 1

2

)
.

(4.3.28)

3For this we can take R9 → 0 and Wilson line Λ =
((

1
2

)
8
, 08

)
and then take R8 → ∞ with any Wilson line,

or equivalently 8 ↔ 9.
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Additionally compactifying k directions as in (4.3.26), the internal momenta P of the 10 − d

dimensional theory in terms of the ones in the 10− (d− k) dimensional ones, p, are

PR,̂ı = pR,̂ı −
1√
2
Eı̂ȷ̄w

ȷ̄ ,

PL,̂ı = pL,̂ı −
1√
2
Eı̂ȷ̄w

ȷ̄ ,

P I = pI +AIȷ̄w
ȷ̄ ,

(4.3.29)

while PR/L,̄ı are independent from pR/L,̂ı.

The inverse internal metric components satisfyGı̄ȷ̄ ∼ 1
Rı̄Rȷ̄

→ 0. In order to have massless states

one should set to zero the possibly divergent term in the 10− d dimensional mass formula

Gı̄ȷ̄
(
(2gı̄k̄ − Eı̄k̄)(2gȷ̄h̄ − Eȷ̄h̄) + Eı̄h̄Eȷ̄h̄

)
wk̄wh̄ ∼ gk̄h̄w

k̄wh̄ = 0 (4.3.30)

which is achieved by requiring wı̄ = 0. The level-matching condition in 10 − d dimensions

reduces to

0 = 2nı̂w
ı̂ + |πα|2 + 2

(
N − Ñ − 1

2

)
(4.3.31)

which is exactly the same expression in 10− d+ k dimensions with the only difference that the

oscillators can be turned on also in the additional k directions. This will provide the states

related to the central extensions.

Moreover, having vanishing winding along the directions we are decompactifying in (4.3.29)

gives asymptotically in moduli space

PR,̂ı = pR,̂ı , PL,̂ı = pL,̂ı , P I = pI , (4.3.32)

so that the massless condition is

Gı̂ȷ̂ (pL,̂ıpL,ȷ̂ + pR,̂ıpR,ȷ̂) +Gı̄ȷ̄ (PL,̄ıPL,ȷ̄ + PR,̄ıPR,ȷ̄)+

+p2I + 2

(
N + Ñ − 3

2

)
= 0 .

(4.3.33)

where for wı̄ = 0

PR,̄ı =
1√
2

(
nı̄ − Eı̄ȷ̂w

ȷ̂ − πα ·Aı̄
)
,

PL,̄ı =
1√
2

(
nı̄ − Eı̄ȷ̂w

ȷ̂ − πα ·Aı̄
)
.

(4.3.34)

Since at leading order Gı̄ȷ̄ ∼ 1
Rı̄Rȷ̄

→ 0 and Gı̂ȷ̂ ∼ O(1), (4.3.33) reduces to

Gı̂ȷ̂ (pL,̂ıpL,ȷ̂ + pR,̂ıpR,ȷ̂) + p2I + 2

(
N + Ñ − 3

2

)
= 0 , (4.3.35)

and together with (4.3.31) this implies that the massless spectrum coincides with the mo-

mentum towers of the massless spectrum of the 10− (d− k) dimensional theory (4.3.28), with
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k additional left KK vectors (with related momentum towers) to the Cartans in 10 − d + k

dimensions, so that the massless vectors are

αĪ−1ψ̄
µ

− 1
2

|0, nȷ̌⟩NS −→ J Ī(z) = i∂X Ī(z)einȷ̌Y
ȷ̌(z) ,

ψ̄µ− 1
2

|Zg,na⟩NS −→ Jα(z) = cαe
ipα;IX

I(z)einȷ̌Y
ȷ̌(z) .

(4.3.36)

where Ī = (i, I) = (̄ı, Î), X Ī = (
√
2Y ı̄, X Î).

The OPEs among these states are found in Appendix B.3, where one can see that the algebra

is the k-th loop version of g (with the corresponding k central extensions).

4.4 String junctions

In the previous Sections 4.1 and 4.3 we argued that infinite distance points in the moduli space

of the perturbative heterotic theory on T d are characterised by the presence of affine BPS

algebras. In particular, the predictions in 4.3.1 for the case d = 2 can be matched to the ones

in the dual framework of F-theory on K3, worked out in [23]. The presence of affine algebras in

these limits is locally detected through the intersection patterns of string junctions supported

by stacks of 7-branes as argued already in [115,116].

In this section we give a brief overview of string junctions, their properties under monodromies

and some key concepts for the following study of affine algebras. We follow mainly [116] (see

also [117]).

The reader who is already familiar with these concepts can skip this section and go directly to

Section 4.5.

4.4.1 Basic concepts on String Junctions

The spectrum of F-theory includes (p, q)-strings, bound states of p F1 strings and q D1 strings.

7-branes also carry [p, q]-indices, which indicate the kind of (p, q)-strings that end on them. A

string junction is a web of (p, q)-strings that may join at a point4 in a way that conserves their

(p, q) charge, as shown in Figure 4.1(a). A segment of (p, q) string that starts or ends at a [p, q]

brane is called a prong, see Figure 4.1(b). Junctions may have prongs at different [p, q]-branes

and/or include strings extending away from them that carry some asymptotic (p, q) charge

away from the branes. Upon encircling a 7-brane X[p,q] (i.e. when crossing the branch cut), an

(r, s)-string gets transformed by the corresponding monodromy as (see Figure 4.2(a))

(
r

s

)
→ M[p,q]

(
r

s

)
, M[p,q] =

(
1 + pq −p2
q2 1− pq

)
= I2x2 +

(
pq −p2
q2 −pq

)
(4.4.1)

Moreover, this segment of the junction can be moved across the 7-brane to a position in which

it does not cross the corresponding branch-cut anymore. For this crossing to be consistent with

the monodromy transformation above, there should be an extra prong leaving X[p,q] and joining

the original segment of the junction (in analogy with the original Hanany-Witten effect [118]),

as shown in Figure 4.2(b). Note that the junction that is obtained after the monodromy

4This is a pictorial way of seeing the intersection of two-dimensional worldsheets
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(b)

Figure 4.1: (a) String junction from joining two strings with (p, q) and (r, s) charges at a point. (b) A (p, q)
prong. The dotted vertical line represents the branch cut of the 7-brane, which is not intersected by the string.
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Figure 4.2: The Hanany-Witten effect in terms of string junctions

transformation acts on the (r, s)-string is precisely

M[p,q]

(
r

s

)
=

(
r

s

)
+ (rq − sp)

(
p

q

)
, (4.4.2)

where the second term on the right hand side means there are rq − sp strings of (p, q) type.

This shows that both configurations are indeed equivalent. 7-brane configurations related by

a global SL(2,Z) transformation or by a relocation of branch-cuts (i.e. a reordering of the

branes) are physically equivalent [111, 119]. Moving an X[p,q] brane across the branch-cut of

X[r,s] is equivalent to (see Figure 4.3)

X[p,q]X[r,s] → X[r,s]X[p′,q′] with p′ = p− (rq − sp)r , q′ = q − (rq − sp)s (4.4.3)

In a configuration with several 7-branes, one can always choose the branch-cuts to be vertical
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Figure 4.3: Reordering of the branch-cuts. After displacing the X[p,q] brane from left to right across the
branch cut of the X[r,s] brane it becomes a X[p′,q′] brane with p′ = p+ (sp− rq)r and q′ = q + (sp− rq)s.

lines going downwards. For such a stack of branes ordered from left to right, the full monodromy

can be calculated by the product of the individual monodromies from right to left, that is

MX[p1,q1]
X[p2,q2]

...X[pn,qn]
= M[pn,qn] . . . M[p2,q2]M[p1,q1] . (4.4.4)

Moreover, in eight dimensions, the tadpole cancellation condition requires a total of 24 [p, q]

7-branes with total monodromy equal to the identity.

Any configuration of 7 branes can be decomposed into the combination of three particular 7

branes called A, B and C

A ≡ X[1,0] : MA = M[1,0] =

(
1 −1

0 1

)
,

B ≡ X[1,−1] : MB = M[1,−1] =

(
0 −1

1 2

)
,

C ≡ X[1,1] : MC = M[1,1] =

(
2 −1

1 0

)
.

(4.4.5)

Finally, let us mention that the (p, q) strings have a natural interpretation in M-theory as

M2-branes wrapping the pA+ qB cycle in the elliptic fiber, and the 1-cycle that characterizes

the string on the base. String junctions can then be understood as bound states of the cor-

responding M2-branes wrapping the relevant cycles in the fiber and the base. The intersection

patterns of the relevant 2-cycles in homology, which are crucial for the identification of gauge

groups, can be described effectively by the so called junction lattice [116], which we introduce

now.

4.4.2 The Junction Lattice

Let us introduce a charge vector for a given string junction, whose entries are the number of

prongs starting/ending on a given 7-brane (i.e. these vectors should have 24 entries in a global

eight dimensional compactification). By convention the charge is positive (negative) for a prong

with outwards (inwards) orientation with respect to a brane. That is, if we introduce a basis
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for the charge space, by denoting x⃗[p,q] the unit vector associated to a particular X[p,q] brane

in the configuration, the charge of n (p, q)-strings leaving that brane would be Q⃗ = n x⃗[p,q]. In

general, for a stack of branes ordered from left to right (with branch-cuts pointing downwards)

X[p1,q1]X[p2,q2] . . . X[pn,qn] we can characterize a string junction by the charge vector

Q⃗ =
∑

i

Qix⃗[pi,qi] , Qi ∈ Z . (4.4.6)

The lattice of all possible charges is the so-called junction lattice, and one can define a basis

of strings as the ones that correspond to the basis vectors in the charge lattice. A junction

can also carry some asymptotic (p, q) charge away from the 7-branes, and it is given by the

expression (
p

q

)

asymptotic

=
∑

i

Qi

(
pi
qi

)
. (4.4.7)

It is also possible to introduce a symmetric intersection bilinear pairing between two junctions,

(· , ·) [116,120]. This pairing captures the intersection properties of the corresponding 2-cycles

in the M-theory uplift. By defining the self-intersection of any two basis strings to be

(x⃗[pi,qi], x⃗[pi,qi]) = −1 , (4.4.8)

exploiting bilinearity and the invariance under junction transformations (c.f. Figure 4.2) one

finds that the intersection between different basis elements takes the form

(x⃗[pi,qi], x⃗[pj ,qj ]) =
1

2
(piqj − pjqi) , (4.4.9)

when the position of the brane X[pi,qi] is on the left of X[pj ,qj ].
5 For a set of branes given by

A1 . . . Ana B1 . . . Bnb C1 . . . Cnc , denoting the corresponding basis vectors by a⃗i, b⃗i and c⃗i, the

relevant pairings are

(⃗ai, a⃗j) = −δij , (⃗bi, b⃗j) = −δij , (c⃗i, c⃗j) = −δij ,
(⃗ai, b⃗j) = −1/2 , (⃗ai, c⃗j) = 1/2 , (⃗bi, c⃗j) = 1 .

(4.4.10)

Let us remark that, by construction, the charge and the pairing are invariant under the

operations of moving a junction across a 7-brane and reordering of the branes, as displayed

in figs. 4.2 and 4.3, respectively. The former operation can actually be used to define a

canonical representation for junctions, which is the one in which the junction itself does not

cross any branch cut. That is, given a general string junction, we can construct its canonical

representation by just moving any segment crossing a branch cut across the corresponding

brane by adding the extra prongs that appear due to the Hanany-Witten effect, until no

segment of the junctions crosses any branch cut. This is displayed schematically in Figure 4.4.

The latter operation, namely rearranging the branch-cuts and changing the order of the branes,

corresponds to a base change that is taken into account by the transformation properties of

5Let us remark that the pairing is defined to be symmetric, but in order to compute it for a given configuration
the ordering of the branes matters. That is, in this case one can define (x⃗[pj ,qj ], x⃗[pi,qi]) := (x⃗[pi,qi], x⃗[pj ,qj ]) =
1

2
(piqj − pjqi) .
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(a) (b)

Figure 4.4: (a) String junction in an arbityrary representation. (b) The same string junction in the canonical
representation, including the existence of new prongs after moving the original junction across the branes in
order for it not to cross any branch-cut.

the branes given in eq. (4.4.3) [117].

4.4.3 String Junctions and (Affine) Lie Algebras

So far, we have introduced the string junctions, together with their allowed invariant charges,

which form the junction lattice. This plays a crucial role in the discussion of algebras, as certain

string junctions turn out to represent the roots of the algebra (and their corresponding affine

extensions), and their pairwise intersections (given by the pairing defined above) reproduce the

negative of the Cartan matrix of the associated algebra [111,115,116,121,122].

In the following, we will restrict to junctions with no asymptotic charge, as they will suffice to

describe the root sector of the groups (and their corresponding affine or loop versions) that we

study here.6

Therefore, in order to characterize the algebra associated to a stack of 7-branes, one needs to

specify the branes and find the particular string junctions that give rise to the (simple) roots.

Example: The An Algebra

Let us introduce the simple example of the An = su(n + 1) algebra, following [116]. This

algebra is realized by a stack of (n+ 1) A branes, with monodromy

MAn+1 =

(
1 −n− 1

0 1

)
, (4.4.11)

The junctions that represent the n simple roots have charges

α⃗i = a⃗i − a⃗i+1 (4.4.12)

that is, the i-th entry is 1, the (i+1)-th entry is -1 and the rest are zero. From this charges we

can conclude that the simple roots are strings starting at one brane and ending at the next,

as displayed in Figure 4.5. Using eq. (4.4.10) one can calculate the intersection form, which

6More general junctions including asymptotic charges are necessary to describe more general weight sectors
of the corresponding groups [116].



58 CHAPTER 4. HETEROTIC DECOMPACTIFICATIONS AND AFFINE ALGEBRAS

⃗α 1 ⃗α 2 ⃗α 3 ⃗α 4 ⃗α n−2 ⃗α n−1 ⃗α n

Figure 4.5: String junctions that realize the simple roots α⃗i of the An algebra in a stack of (n+1) A-branes.
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Figure 4.6: Two loop junctions (in their non-canonical form)

yields

(α⃗i, α⃗j) =




−2 1 0 0 . . . 0 0 0 0

1 −2 1 0 . . . 0 0 0 0

0 1 −2 1 . . . 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 . . . 1 −2 1 0

0 0 0 0 . . . 0 1 −2 1

0 0 0 0 . . . 0 0 1 −2




, (4.4.13)

and indeed reproduces the negative of the Cartan Matrix for An.

Loop Junctions and Affine/Loop Algebras

Consider now a junction that takes the form of a loop around a (stack) of 7-branes, and possibly

an extra piece attached to it that may carry some asymptotic charge, as displayed in Figure

4.6(a). The monodromy transformation associated to the (stack of) 7-brane(s) acts on the

junction as it crosses the branch cut(s) such that the asymptotic charge is compatible with it.

Furthermore, one can bring the junction into its canonical representation by moving it through

the brane and taking into account the corresponding Hanany-Witten transition. In the case

displayed in Figure 4.6(a) this would correspond to a charge vector given by Q⃗ = (rq−sp)x⃗[p,q],
so the charge in that case is equivalent to the asymptotic charge under the brane surrounded
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by the loop junction. The situation becomes much richer when several different branes are

encircled by the loop, as we will see in the following. Additionally, one can consider the

simple case of a (p, q) string surrounding a X[p,q] brane, as shown in Figure 4.6(b), where the

junction carries no asymptotic charge since the monodromy acts trivially on it. More generally,

loop junctions surrounding a stack of branes and carrying no asymptotic charge can be built

whenever the full monodromy action of the stack is such that it leaves the junction invariant.

This situation will be particularly relevant in the identification of imaginary roots for the affine

algebras below.

Let us now remark a couple of particularly interesting properties of loop junctions. First, it

can be checked that loop junctions with no asymptotic charge have vanishing self-intersection,

making them the perfect candidates for a junction realization of the imaginary root associated

to the affine or loop version of an algebra. Second, recall that the roots of an algebra on a

stack of branes are also realized by string junctions with no asymptotic charge, so they always

start and end on different branes. It is straightforward to see that a loop junction surrounding

the whole configuration does not intersect any of roots, which is the other key condition that

an imaginary root must fulfil. Note that these two properties can be properly checked by

computing the intersection from the charges in the canonical representation.

We must stress here the importance of the loop junction not having an asymptotic charge, as

it is the one that has vanishing self-intersection, and it is the one that indirectly indicates what

must be added to a finite algebra in order to affinize it. As explained above, in order for a

loop junction with no asymptotic charge to be supported around a brane configuration, it must

be left invariant under the total monodromy. That is, for a given stack of branes, the only

allowed loop junctions are the ones that correspond to the eigenspaces that are left invariant

by such monodromy. In many general stacks of branes (as e.g. the ones that realize the finite

exceptional groups) this space is just empty.7 Thus, the standard procedure in this case is to

add one extra brane to the stack such that the new total monodromy allows for a loop junction

in order to realize the affine version of the previous algebra.

In general, one must also check that the imaginary root is non-trivial, meaning it has non-

zero charge in the junction lattice. This might look like a meaningless check, but it turns out

to be key in some cases. Consider for example the su(n) algebra discussed above. Its total

monodromy (4.4.11) leaves invariant the space spanned by (1, 0) strings. However, a (1, 0) loop

junction surrounding the whole configuration does not make the algebra affine because it is

actually contractible (one can just move the loop across all branes without generating any extra

junction by the Hanany-Witten effect). This can be detected by the fact that its charge vector

is Q⃗ = 0, as can be easily seen from its canonical representation. As we will see in section 4.5,

a different way to affinize such an algebra is by having some extra branes far away from their

stack such that the (1, 0) loop junction has some non-trivial charge under them in the junction

lattice. This is in contrast with the usual procedure (typically used for exceptional algebras)

where one adds some extra brane to change the total monodromy in the right way.

7To be precise, it cannot be realized by (p, q)-strings with integer charges.
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Figure 4.7: (a) Realization of the A1 algebra on a BCC stack of branes, where α⃗1 gives the simple root.

(b) Realization of the Â1 algebra by adding a X[3,1] brane to the BCC stack. The imaginary root, δ⃗(1,0) is given

by a (1, 0) string loop around the whole configuration, and the affine root (in red) is built as α⃗0 = δ⃗(1,0) − α⃗1 .

Example: The Â1 Algebra

Let us consider the case of the affinization of the A1 algebra. Apart from A2, the A1 = E1

algebra can be realized by a configuration of BCC branes. The single simple root, α⃗1, which

is also the highest root, is given by a junction with charge α⃗1 = (0, 1,−1) (under the original

BCC stack),8 as shown in Figure 4.7(a). The associated monodromy matrix is given by

MBCC =

(
−2 −7

−1 −4

)
, (4.4.14)

and it cannot support any physical loop junction around it. By adding a X[3,1] brane to the

stack, the total monodromy yields

MBCCX[3,1]
=

(
1 8

0 1

)
, (4.4.15)

which can support a (1, 0) string loop surrounding the four branes. One can easily calculate

its charge in the junction lattice by going to the canonical representation, and also build the

affine root α⃗0 = δ⃗(1,0) − α⃗1, obtaining

α⃗1 = (0, 1,−1, 0) , δ⃗(1,0) = (−1,−1,−1, 1) , α⃗0 = (−1,−2, 0, 1) . (4.4.16)

8In this simple case this is easy to see, since the requirement of absence of asymptotic charge straightforwardly
restricts the possible junctions to those with as many prongs starting in one of the C branes as ending in the
remaining C brane. For more general brane configurations these conditions give rise to a more cumbersome set
of diophantine equations, studied more systematically in [115].
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By using the pairings given in eqs. (4.4.8)-(4.4.10), the intersection matrix for the BCCX[3,1]

configuration is

(·, ·) =




−1 1 1 2

1 −1 0 −1

1 0 −1 −1

2 −1 −1 −1


 . (4.4.17)

With this pairing, it can be checked that the imaginary root is indeed orthogonal to the simple

roots, namely

(δ⃗(1,0), α⃗1) = (δ⃗(1,0), α⃗0) = 0 , (4.4.18)

and the Gramm matrix between the two simple roots α⃗0 and α⃗1 takes the form

(α⃗i, α⃗j) =

(
−2 2

2 −2

)
(4.4.19)

which is indeed the negative of the Cartan Matrix for Â1.

4.5 Heterotic/F-theory duality at infinite distance

The string junction picture can only give local information about the affinisation process. The

types of affine algebras that can actually be realised in F-theory on an elliptically fibered K3

were analysed in detail in [22,23] relying on the global information contained in the degenera-

tions of elliptically fibered K3 lying at infinite distance in the complex structure moduli space.

In turn, these can be described and classified in terms of Kulikov models and can be broadly

divided into four classes, which we introduce briefly here in relation to the heterotic theory,

referring the reader to the Appendix D for the detailed geometrical description

• Type II.a: the degenerate K3 surface has non-minimal singularities according to the

Kodaira classification. This limit is dual to the full decompactification limit to the E8×E8

heterotic theory, and realises the algebra (Ê9 ⊕ Ê9)/ ∼ as derived in 4.5.1.

• Type II.b: this is an Emergent String limit, where the associated K3 surface has singular

fibers already in codimension zero loci on the base. Since it has no counterpart in the

weakly coupled heterotic theory, we will not discuss it further.

• Type III.a: the K3 has non-minimal fibers and it corresponds to a partial decompac-

tification of the heterotic dual from eight to nine dimensions. One example is given in

4.5.2.

• Type III.b: the degenerate K3 surface has both non minimal singularites and codimension

zero singular fibers, and it corresponds to a weak coupling limit accompanied by a full

decompactification in the Type IIB string frame. It realises the decompactification to the

SO(32) dual heterotic theory in ten dimensions as shown in 4.5.3.

The states that are dual to the KK towers in the heterotic decompactification limits are partially

captured in the M-theory picture as M2 branes wrapping vanishing calibrated 2-tori in the

degenerate K3 geometry, as explained in the following paragraphs.
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It is important to remark that while in the F-theory setting one can reach all the infinite

distance points in moduli space, one can do it in a controlled way only along certain paths,

namely the ones compatible with the algebraic nature of the associated Weierstrass models.

We elaborate on this in Appendix D.3.

In this Section, we consider the brane configurations studied in [23] and examine the affine

enhancements that arise in the language of string junctions. The geometric idea is that at the

infinite distance limits, the junctions, and therefore all the states realizing the affine algebra,

become asymptotically massless. This geometric picture is studied in detail in the references

above, so we will not elaborate further here, but instead we will consider the BPS algebra that

can arise at each configuration by using their geometric results.

4.5.1 (Ê9 ⊕ Ê9)/ ∼

The Type II.a Kulikov model is related to the presence of non minimal Kodaira singularities

in the K3 degeneration. Following the general procedure, these can be resolved by a blowup

of the base that zooms in their brane content. In the F-theory setup, the basis degenerates

into two components, each of which has twelve branes. This corresponds to the so-called

stable degeneration limit, at which the geometric picture consists of two del Pezzo surfaces

intersecting at a 2-torus, which is known to be dual to the heterotic theory on the torus at

the intersection in the limit in which the torus becomes large. We know from the heterotic

computation in Section 4.3.1 that the algebra in the full decompactification limit to the ten

dimensional heterotic should be (Ê9 ⊕ Ê9)/ ∼, where the ∼ indicates that the imaginary roots

enhancing both factors are identified.

There is an E8 factor on each component, which is realized by the brane configuration A7BCC

made of ten out of the twelve branes in each basis component. This algebra gets enhanced

to E9 by adding a X[3,1] brane, in analogy to the the example in section 4.4.3. The total

monodromy of this configuration is then

MA7BCCX[3,1]
=

(
1 1

0 1

)
, (4.5.1)

which clearly allows for a δ[1,0] loop junction surrounding the whole configuration yielding the

imaginary root for the affine enhancement. Alternatively, by considering the E8 stack together

with the extra A brane which is present in the same component of the basis, one obtains the

brane configuration A8BCC. This brane configuration supports another imaginary root, given

by the loop junction δ[3,1], as can be seen from the invariant eigenspace of the corresponding

monodromy matrix

MA8BCC =

(
−2 9

−1 4

)
. (4.5.2)

By considering the whole configuration, one obtains the loop algebra Ê9, as can be seen from

the fact that the full monodromy matrix is the identity

M
Ê9

=

(
1 0

0 1

)
, (4.5.3)
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Figure 4.8: (a) Brane configuration realizing the loop algebra Ê9. The two imaginary roots, δ[1,0] and
δ[3,1], are realized by loop junctions surrounding the E8 stack and one additional brane (note they can also be
represented as two independent junctions surrounding the whole configuration). The branes are represented in

one of the basis components given by a P1. (b) Configuration realizing the algebra (Ê9 ⊕ Ê9)/ ∼, with the loop
junctions which are identified in the junction lattice represented in both base components. This corresponds to
the stable degeneration limit which is dual to the full decompactification of the E8 × E8 heterotic string.

so that both imaginary roots are present, as displayed in Figure 4.8(a). Note that both string

junctions can also be brought to a form in which they surround the whole configuration, and

one can equally choose the basis δ[1,0] and δ[0,1] for the string junctions. In the M-theory lift

these come from wrapping an M2-brane in the (1, 0) or (0, 1) cycle in the elliptic fiber, and the

one cycle wrapping the whole brane configuration in each component of the base.

Each component supports then a pair of the aforementioned imaginary roots (see Figure 4.8(b)),

but these two pairs are identified in the junction lattice. They can indeed be seen to be

homologous in the M-theory lift, as nothing special happens to any of the fibre cycles at

the intersection points. This is the reason behind the identification of the imaginary roots

producing the affinizations in both components.

In this setting the towers of states are given by the (n, 0) and (0,m) strings, which become

massless since they are allowed to shrink to the base intersection point in the blown up version,

or to the non minimal singularity from the perspective of the degenerate K3.

One interesting remark is the following. On the heterotic side, we can decompactify from 8 to

10 dimensions R8, R9 → ∞ either in one step (corresponding to the case R8
R9

= const) or in two

steps (R8
R9

→ 0, ∞) as already noticed in 4.3.1. In the F-theory picture, this Kulikov model

seems to capture only the first possibility.

4.5.2 (Ê8−n ⊕ Ê8 ⊕ Ân+1)/ ∼

Consider now the situation where in the F-theory picture both end components of the base

are dP9 surfaces (see section 3.4 in [23]), which corresponds to a Type III.a degeneration. In

particular, this includes the case where the heterotic dual realizes E8 ⊕ E8 ⊕ A1 as explicitly

shown in Section 4.3.1, whose F-theory dual is schematically displayed in Figure 4.9. The

affinization process is similar to the previous one, but with some crucial differences. First of

all, the monodromy around the exceptional factors Ê8−n in the end components (including the
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P1

δ[1,0] δ[1,0]

I1̂E8 ̂E8A1

Figure 4.9: Schematic configuration of the branes and codimension zero singularities realizing the loop
algebra (Ê8 ⊕ Ê8 ⊕ Â1)/ ∼, with the loop junction δ⃗[1,0] giving rise to the imaginary root. For the details on the
intermediate components and their corresponding Ik singularities see [23].

extra X[3,1] brane responsible for the affinization) takes the form

M
Ê8−n

=

(
1 n+ 1

0 1

)
= M−1

In+1
, (4.5.4)

so that it only leaves invariant the space of loop junctions generated by δ⃗[1,0], that is, there will

be only one tower, as oppossed to the double loop enhancement associated to the two towers

before. This can be understood in terms of a dual KK tower from decompactification from

eight to nine dimensions, instead of full decompactification to ten dimensions.

Moreover, the internal components of the base, displayed in different colours for the (Ê8 ⊕
Ê8 ⊕ Â1)/ ∼ example in Figure 4.9, have codimension zero singularities of the form Ik. Their

existence is consistent with the full monodromy composition, which gets more involved in the

presence of non-trivial codimension zero singularities. More precisely, from the general blow

up procedure [22], given two components intersecting at a point with generic fibers In and

Im, respectively, the contribution to the monodromy at the component where the generic In is

located is equivalent to the one from a codimension one singularity (located at the intersection)

with monodromy

MIm−n
= M−1

In
MIm

. (4.5.5)

Note that the contribution from the same intersection point, as seen from the component where

the codimension zero Im singularity is located, is given by the inverse monodromy, which can

indeed be consistently described by m ↔ n. For the (Ê8 ⊕ Ê8 ⊕ Â1)/ ∼ example, this is

consistent with the monodromy structure seen by each of the first three base components

(starting from the left) in Figure 4.9, namely

M
Ê8
MI1

= I2x2 , MI−1
MI1

= I2x2 , MI−1 MA1
MI−1 = I2x2 . (4.5.6)

Note that the final two components get the same contributions as the first two.

Finally, the fact that the intermediate components are mutually local is key for the affinization

of all the different components of the algebra by one unique imaginary root (given by the loop

junction), so that the full algebra is (Ê8−n ⊕ Ê8 ⊕ Ân+1)/ ∼ (for 0 ≤ n ≤ 8), with the three

imaginary roots identified.
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I10I2

D16
D0

D0

D0

Figure 4.10: Configuration associated to the
̂̂
D16, with the only loop junction one can detect in the Kulikov

model framework in red. The KK tower giving the second imaginary root cannot be realised from this analysis.

Let us clarify this point, and the reason why one unique δ[1,0] loop junction, which is invariant

under crossing the intermediate component, is now enough for the affinization of the inter-

mediate An+1 factor. Recall that the loop junction given by δ⃗[1,0] is uncharged under the

intermediate A branes, and also under the Ik singularities over generic points of the internal

components of the base. This means the junction can just be transported from one end com-

ponent to the other, crossing the An+2 branes forming the stack, as well as the components

with codimension zero singularities, without any effect. Therefore such a junction could never

give rise to an affinization of that algebra alone, as it would be trivial because it has no charge

in the junction lattice. However, the existence of the exceptional factors in the end components

gives this loop junction non-trivial charges in the junction lattice, and thus the An+1 factor

can be affinized. In other words, it is the presence of the end components, and the fact that

the loop junction has non-trivial charge under them in the charge lattice what allows for the

affinization of all factors. In this sense, this affinization is a non-local effect as the imaginary

root for all three factors, in the canonical representation, is such that the affine root for the

Ân+1 factor includes string junctions supported in the exceptional factors at the end compon-

ents. Note that this is precisely what one would expect for an affinization of the An+1 factor,

since the imaginary root must not intersect with the rest of the roots, but at the same time it

has to be non-trivial in the junction lattice.

4.5.3
̂̂
D16

The explicit realisation of this algebra, dual to the full decompactification to the SO(32)

heterotic theory in 4.3.1, is shown in Appendix D.2 together with the general features of the

corresponding Type III.b Kulikov model. We summarise here the main points. As shown

in Figure 4.10, the base splits into two P1 components, B0 and B1, both with non trivial

codimension zero singular fibers, respectively of Kodaira type I10 and I2. Additionally, there

are codimension one singular fibers: on B0 there are one D16 and one D0 singularities, while

on B1 there are two D0 ones. The affinisation of the algebra D16 can be seen from the BC

system that is approaching the A16BC stack of branes, such that the monodromy of the final
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configuration is

MA16BCBC =

(
1 −8

0 1

)
. (4.5.7)

This is consistent with the monodromy composition in the case of non-trivial codimension zero

singularities In and Im discussed around eq. (4.5.5) (see also [22]). In this case the monodromy

as seen from each of the two base components reads

MBCBCMI8
= I2x2 = MA16BCBCM

−1
I8

. (4.5.8)

The A16BCBC system then supports one loop junction, consisting of a (1, 0) string, that is

related to the imaginary root making D16 affine. From the K3 degeneration perspective which

we present in detail in Appendix D.1, the imaginary root is given by the M2 brane wrapping

the fiber of the vanishing transcendental torus of the Calabi-Yau, which in this case is only

one. Thus, apparently the Type III.b degeneration is dual to a partial decompactification limit

from eight to nine dimensions, and as such one can indeed realise the affine versions of nine

dimensional algebras that are compatible with the weak coupling limit, namely those without

E factors. Nevertheless, even though from the geometric perspective only the winding tower

is manifest, one should remember the fact that the degeneration limit is taken at fixed Kähler

moduli, so that in the type IIB string theory the volume of the T 2 is constant. This means

that the shrinking of one cycle must be accompanied by the growing of the other one, giving

a KK tower that provides the second imaginary root whose presence is geometrically obscure.

So, we expect only the algebra
̂̂
D16 to be consistently realised in this limit.



Chapter 5

CHL decompactifications and

twisted algebras

In this Chapter, we focus on a slightly more complicated case: the nine-dimensional CHL

string [97], which can be obtained as an orbifold of the E8 × E8 heterotic theory on S1, whose

effect is to reduce the rank of the gauge symmetry from 17 to 9. As was argued in [96], in

decompactifying the circle direction one recovers the Cartan generators that were projected

out by the orbifold, obtaining back the ten dimensional E8×E8 heterotic theory. Thus, to this

extent, the decompactification limit in the CHL string is the same as the one of the E8 × E8

heterotic string on S1. We show that from the nine-dimensional point of view there is an

important difference. The algebra in the heterotic theory enhances to (E9 ⊕E9)/ ∼ due to the

presence of the KK tower, where the ∼ stands for the identification of the central extensions

of the two E9 factors. In the case at hand the momentum towers arrange in a twisted version

of the affine (E9 ⊕ E9)/ ∼ , while the central extension is still identified between the two E9

factors. This is related to the enhancement of the rank of the algebra in the decompactification

limit.

5.1 Decompactification limit

In this Section, we focus on the decompactification limit of the CHL String in the duality frame

with zero Wilson line and R → ∞. Geometrically, the CHL string is obtained from the (E8 ×
E8)⋊Z2 string compactified on S1 with a holonomy for the Z2 exchange gauge symmetry along

the circle direction, and therefore it is expected that by taking the decompactification limit the

effect of the holonomy should disappear, thus giving back the ten dimensional E8×E8 heterotic

theory. In this limit, the (E8)2 ⊕ u(1) currents acquire a tower of approximately holomorphic

light operators obtained by “dressing” the currents with vertex operators constructed from the

67
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compact boson:1

J a
+n(z, z̄) = Ja+(z)e

i2nX9(z,z̄) , n ∈ Z , (5.1.1)

J 9
n (z, z̄) = J9(z)ei2nX

9(z,z̄) , n ∈ Z , (5.1.2)

where the normal ordering of the operators is understood. These operators have weights

(h, h̄) =
(
1 + n2

R2 ,
n2

R2

)
→ (1, 0), and we refer to such operators as asymptotic currents. Note

that the orbifold projection requires the momentum quantum number to be even.

Another set of asymptotic currents is constructed by dressing the antisymmetric combinations

of the (E8)1 ⊕ (E8)1 currents:

J ȧ
−r(z, z̄) = J ȧ−(z)e

i2rX9(z,z̄) , r ∈ Z+
1

2
(5.1.3)

where

Ja−(z) = Ja1 (z)− Ja2 (z) , (5.1.4)

and in (5.1.3) the momentum n = 2r surviving the projection is odd. Note that we assign

half-integer labels to the J−r currents, and we introduced a dotted index ȧ, also valued in the

adjoint of E8, to distinguish the J± asymptotic currents in what follows.2

We can now use (3.2.31) to obtain the Cartan-Killing metric and structure constants of the

algebra of the J± and J 9 currents in the limit ϵ = 1
2R2 → 0. To do so, we first note that the

two- and three-point functions of the even and odd currents are

⟨Ja+(z1)Jb−(z2)⟩ = 0 , ⟨Ja±(z1)Jb±(z2)⟩ =
2δa,b

z212
, (5.1.5)

and

⟨Ja+(z1)Jb+(z2)Jc+(z3)⟩ = ⟨Ja−(z1)Jb−(z2)Jc+(z3)⟩ =
iFabc

z12z23z13
, (5.1.6)

⟨Ja−(z1)Jb+(z2)Jc+(z3)⟩ = ⟨Ja−(z1)Jb−(z2)Jc−(z3)⟩ = 0 . (5.1.7)

These results follow since the Ja− are found to be in the adjoint representation of the (E8)2 and

are odd under the exchange symmetry. We also have the three-point function for the compact

boson (the normal ordering of the exponentials is understood)

⟨ein1X9(z1,z̄1)ein2X
9(z2,z̄2)ein3X

9(z3,z̄3)⟩ = δn1+n2+n3,0

|z12|2(h1+h2−h3)|z23|2(h2+h3−h1)|z13|2(h1+h3−h2)
,

(5.1.8)

1Note that the dressing we introduce has winding mode number w = 0, since all states with w ̸= 0 have large
conformal dimensions in the R → ∞ limit. For the same reason, the twisted sector does not contribute to light
operators, since there w ∈ Z+ 1

2
.

2The asymptotic currents are also charged with respect to the translation current J9, which leads to the
extension of the algebra generated by the J±.
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where hi =
ni
4R2 .

As far as the asymptotic current algebra is concerned, only the zero-momentum copy of the

u(1) contributes [1]; more precisely, including J 9
n with n ̸= 0 would lead to an additional pole

in the three-point functions that is inconsistent with the form of a current algebra. Thus, we

restrict to J 9
0 ≡ J 9 in what follows. Its correlation functions with insertions of J± are fixed

by the u(1) Ward identity.

Putting together these explicit correlation functions, we find that the non-trivial two-point

functions are

G̃am;bn := z212⟨J a
+m(z1, z̄1)J b

+n(z2, z̄2)⟩ = 2δa,bδm+n,0 (1 + O(ϵ log |z12|)) ,

G̃ȧr;ḃs := z212⟨J ȧ
−r(z1, z̄1)J ḃ

−s(z2, z̄2)⟩ = 2δȧ,ḃδr+s,0 (1 + O(ϵ log |z12|)) ,

G̃9,9 := z212⟨J 9
n (z1, z̄1)J 9

n (z2, z̄2)⟩ =
1

R2
= 2ϵ . (5.1.9)

As expected, all anti-holomorphic dependence disappears in the ϵ→ 0 limit.

Similarly, the non-zero three-point functions are

F̃am;bn;cp := z12z23z13⟨J a
+m(z1, z̄1)J b

+n(z2, z̄2)J c
+p(z3, z̄3)⟩ = 2fabcδm+n+p,0 (1 + O(ϵ log |zij |)) ,

F̃ ȧr;ḃs;cp := z12z23z13⟨J ȧ
−r(z1, z̄1)J ḃ

−s(z2, z̄2)J c
+p(z3, z̄3)⟩ = 2f ȧḃcδr+s+p,0 (1 + O(ϵ log |zij |)) ,

F̃am;bn;9 := z12z23z13⟨J a
+m(z1, z̄1)J b

+n(z2, z̄2)J 9(z3)⟩ = −2i
2m

R2
√
2
δa,bδm+n,0 (1 + O(ϵ log |zij |)) ,

F̃ ȧr;ḃs;9 := z12z23z13⟨J ȧ
−r(z1, z̄1)J ḃ

−s(z2, z̄2)J 9(z3)⟩ = −2i
2r

R2
√
2
δa,bδr+s,0 (1 + O(ϵ log |zij |)) .

(5.1.10)

Thus, the asymptotic currents give rise to an algebra whose non-trivial components of the

Cartan-Killing metric are

G̃am;bn = 2δa,bδm+n,0 , G̃ȧr;ḃs = 2δȧ,ḃδr+s,0 , (5.1.11)

and whose structure constants are given by

f̃am;bn
cp = fab cδ

m+n+p,0 , f̃ ȧr;ḃs cp = f ȧḃ cδ
r+s+p,0 , f̃am;bn

9 = −2im
√
2δa,bδm+n,0 ,

f̃ ȧr;ḃs 9 = −2ir
√
2δȧ,ḃδr+s,0 . (5.1.12)

Because r ∈ Z + 1
2 , they correspond to the twisted version of the algebra (E9 ⊕ E9)/ ∼ (see

for instance [123] and [124]), which we will denote as (E9 ⊕ E9)tw/ ∼. The ∼ stands for the

identification of the central extensions for the two E9, corresponding to J 9.

Comparison with heterotic decompactification: the twist

We will now compare this with the asymptotic currents in the decompactification limit of the

full heterotic theory from nine to ten dimensions. The generators of the (E9 ⊕ E9)/ ∼ in that
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case are given by

Ka
+n(z, z̄) = Ja+(z)e

inX9(z,z̄) , n ∈ Z , (5.1.13)

Kȧ
−r(z, z̄) = J ȧ−(z)e

irX9(z,z̄) , r ∈ Z , (5.1.14)

K9(z) = J9(z) . (5.1.15)

These currents have both even and odd momentum, and they are labelled by integers. In this

case, following the same procedure, one obtains

Gam;bn = 2δa,bδm+n,0 , Gȧr;ḃs = 2δȧ,ḃδr+s,0 , fam;bn
cp = fab cδ

m+n+p,0 ,

f ȧr;ḃs cp = f ȧḃ cδ
r+s+p,0 , fam;bn

9 = −im
√
2δa,bδm+n,0 , f ȧr;ḃs 9 = −ir

√
2δȧ,ḃδr+s,0 .

(5.1.16)

In the heterotic case the structure constants involving the K9(z) are smaller by a factor 2 than

in the CHL case. This can be absorbed into a rescaling of K9(z): we set K9′(z) = 2K9(z),

which leads to

G̃9′,9′ =
4

R2
= 8ϵ , (5.1.17)

so that

F̃am;bn;9′ = 2F̃am;bn;9 , (5.1.18)

and

fam;bn
9′ =

1

2
fam;bn

9 . (5.1.19)

Similarly f ȧr;ḃs 9′ =
1
2f

ȧr;ḃs
9 .

The rescaling has a simple interpretation: the CHL orbifold naturally gives us a geometry with

radius RCHL = R/2. On the other hand, the fact that in (5.1.3) r ∈ Z + 1
2 while in (5.1.14)

r ∈ Z is a structural difference: the CHL algebra is obtained through a twisting of the heterotic

one by an outer automorphism of E8 × E8, and the decompactification retains this feature as

R→ ∞. This is our key result.

While we obtained our result by setting a = 0, it can be easily generalized to the case of

generic Wilson line because in the R→ ∞ limit its contribution to the conformal dimension of

the (E9 ⊕ E9)tw/ ∼ currents vanishes: (h, h̄) =
(
1 + (n−α·a)2

4R2 , (n−α·a)
2

4R2

)
→ (1, 0) for each root

α ∈ Γ8 (see [2] for the equivalent in the full heterotic picture), so that the affine enhancement

is the same.

5.2 Decompactification limit, dual frame

In this section, we consider the T-dual decompactification limit, which according to (3.2.23)

is given by R → 0 and a = 0. We do this for several reasons. First, we want to directly

check the presence of (E9 ⊕ E9)tw/ ∼ . This is not trivial because in this limit the asymptotic



5.2. DECOMPACTIFICATION LIMIT, DUAL FRAME 71

currents arise in both sectors of the orbifold, leading to significant differences with respect to

the heterotic decompactification and its T-dual. In addition, the explicit realization that we

will obtain may be useful for understanding how twisted and untwisted currents concur to give

level two enhancements at finite distance in moduli space.

To understand the asymptotic currents in the R→ 0 limit, we will need to describe the twisted

Hilbert space in the orbifold CFT. This is most easily accomplished by first constructing the

exchange orbifold by E of the ten dimensional heterotic theory. We know that in this case we

recover an isomorphic theory [96,125].

5.2.1 The exchange orbifold in ten dimensions

Following [125], one can decompose the E8 × E8 internal holomorphic CFT with c = 16 of

the heterotic string, with energy-momentum tensor TE8×E8(z), in terms of the two commuting

factors

TE8×E8(z) = TE8,2(z) + TIsing(z) , (5.2.1)

where the E8 Kac-Moody algebra is realized at level 2 on the worldsheet by the modes of the

{Ja+(z)} and has central charge c2 = 31
2 . There are three unitary, highest weight, integrable

representations λ of the (Ê8)2 sector, labeled by the E8 irreducible representation [126,127] :

λ = 1 , h1 = 0 ,

λ = 248 , h248 =
15

16
,

λ = 3875 , h3875 =
3

2
. (5.2.2)

The familiar primary fields of the Ising CFT have conformal weights

h = 0 , h =
1

16
, h =

1

2
, (5.2.3)

corresponding respectively to the vacuum, the (holomorphic) spin field and the (holomorphic)

Majorana-Weyl fermion.

From (5.2.1), it is natural to express the partition function ZE8×E8(τ) = ZE8(τ)
2 in terms of

the characters of (Ê8)2 [125], based on the primaries described in (5.2.2):

XE8,2

1 = q−31/48
(
1 + 248q + 31 124q2 + 871 627q3 +O(q4)

)
,

XE8,2

248 = q14/48
(
248 + 34 504q + 1022 752q2 +O(q3)

)
,

XE8,2

3875 = q41/4831
(
125 + 5863q + 116 899q3 +O(q4)

)
, (5.2.4)

and of the Ising CFT ones, associated to the primaries in (5.2.3):

X I
0 = q−1/48

(
1 + q2 + q3 + 2q4 +O(q5)

)
,

X I
1/2 = q−1/48+1/2

(
1 + q + q2 + q3 +O(q4)

)
,

X I
1/16 = q2/48

(
1 + q + q2 + 2q3 +O(q4)

)
. (5.2.5)
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As usual, q denotes the modular parameter q = e2πiτ . The result of [125] is that

ZE8(τ)
2 = X I

0X
E8,2

1 + X I
1/2X

E8,2

3875 + X I
1/16X

E8,2

248 , (5.2.6)

where the first two terms are even under the permutation symmetry, while the last one is odd.3

To connect this presentation with the previous discussion, the (Ê8)2 current algebra is generated

by the Ja+, while the Ja− are in the adjoint representation and correspond to the last (E-odd)
term in (5.2.6).

To obtain the E exchange orbifold we can follow [129], which gave a general construction for the

partition function of a cyclic permutation orbifold.4 Rather than discuss the general situation,

we focus on the case with a Z2 permutation. Let C be a CFT with a modular-invariant partition

function ZC . Then the product theory has partition function

Z0(τ, τ) = ZC(τ, τ)
2 . (5.2.7)

By taking modular orbits, one arrives at the C ⊗ C/Z2 partition function:5

Zorb =
1

2
Z0(τ, τ) +

1

2
ZC(2τ, 2τ) +

1

2
ZC
(
τ
2 ,

τ
2

)
+

1

2
ZC
(
τ+1
2 , τ+1

2

)
. (5.2.8)

We cannot apply their construction verbatim to the partition function for E8 because the latter

is not modular–invariant, and instead it picks up a phase under the T transformation τ → τ+1:

ZE8(τ + 1) = e−2πi/3ZE8(τ) , ZE8(−1/τ) = ZE8(τ) . (5.2.9)

The phase factor just arises from the overall factor of q−c/24 = q−1/3 in ZE8(τ).

However, we can attempt to construct a partition function that would have the same covariance.

To do this in the most obvious fashion, write the full modular-invariant partition function:

Z0(τ, τ) = ZE8(τ)
2Z̃(τ, τ) , (5.2.10)

where the second factor satisfies

Z̃(τ + 1, τ + 1) = e4πi/3Z̃(τ, τ) , Z̃(−1/τ,−1/τ) = Z̃(τ, τ) . (5.2.11)

Taking invariant states, we obtain

Zinv(τ, τ) =
1

2

(
ZE8(τ)

2 + ZE8(2τ)
)
Z̃(τ, τ) . (5.2.12)

This is invariant under the T transformation τ → τ + 1 because ZE8(τ)
2 and ZE8(2τ) come

with the same overall factor of q−2×8/24. While the first term is also invariant under the S

transformation τ → − 1
τ , the second one is not, but by taking the modular orbit and using S

invariance and T covariance of ZE8(τ) we find a candidate for the modular-invariant partition

3This decomposition has also been recently reviewed in the context of classification of holomorphic CFTs
with c ≤ 16 [128].

4This was then generalized in, e.g. [130,131].
5See also [132] for a modern presentation and discussion of possible anomalies.
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function:

Zorb =
1

2

(
ZE8(τ)

2 + ZE8(2τ)
)
Z̃(τ, τ)

+
1

2
ZE8(

τ
2 )Z̃(τ, τ) +

1

2
ZE8(

τ+1
2 )e4πi/3Z̃(τ, τ)

= Z ′
orb(τ)Z̃(τ, τ) , (5.2.13)

where

Z ′
orb(τ) =

1

2

(
ZE8(τ)

2 + ZE8(2τ) + ZE8(
τ
2 ) + e4πi/3ZE8(

τ+1
2 )
)

(5.2.14)

= ZE8(τ)
2 .

The last equality is the non-trivial statement [125] that this orbifold is equivalent to the original

theory. This can be seen explicitly by writing each term in Z ′
orb(τ) in terms of the (Ê8)2 and

Ising characters

ZE8(τ)
2 = +X I

0X
E8,2

1 + X I
1/2X

E8,2

3875 + X I
1/16X

E8,2

248 ,

ZE8(2τ) = +X I
0X

E8,2

1 + X I
1/2X

E8,2

3875 −X I
1/16X

E8,2

248 ,

ZE8(
τ
2 ) = +X I

1/2X
E8,2

1 + X I
0X

E8,2

3875 + X I
1/16X

E8,2

248 ,

e4πi/3ZE8(
τ+1
2 ) = −X I

1/2X
E8,2

1 −X I
0X

E8,2

3875 + X I
1/16X

E8,2

248 , (5.2.15)

so that indeed the sum correctly reproduces 2ZE8(τ)
2 as expanded in (5.2.6).

The terms appearing in (5.2.14) can be interpreted in terms of a projection in the untwisted

and twisted Hilbert spaces Hut and Ht respectively as

Zut(τ) = TrHut

[
(1 + E)qL0−c/24

]
= ZE8(τ)

2 + ZE8(2τ) ,

Zt(τ) = TrHt

[
(1 + E)qL0−c/24

]
= ZE8(

τ
2 ) + e4πi/3ZE8(

τ+1
2 ) . (5.2.16)

In particular, focusing on (5.2.16), we can characterize the E-even and -odd states by expanding

the two terms separately. For our purposes, it suffices to examine the leading terms in the

expansions:

ZE8(
τ
2 ) = q−1/6

(
+1 + 248q1/2 + 4124q + 34 752q3/2 + 213 126q2 +O(q5/2)

)
,

e4πi/3ZE8(
τ+1
2 ) = q−1/6

(
−1 + 248q1/2 − 4 124q + 34 752q3/2 − 213 126q2 +O(q5/2)

)
.

(5.2.17)

Writing q−1/6 = q−2/3q1/2 , we learn that the twisted ground state is E-odd and has h = 1
2 .

We denote the corresponding twist field as Λ(z).

The additional currents can be read off directly from the Zt(τ) as coming from the h = 1

primaries in X I
1/16X

E8,2

248 of the last line in (5.2.15), 6 which are the twisted version of the Ja−(z)

6This could have equivalently been argued from the q1/3 term in (5.2.17).
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in (5.1.4). While Ja− are E-odd, we have the OPE

Ja−(z1)Λ(z2) ∼
Ka(z2)

z
1/2
12

, (5.2.18)

where the Ka(z) are the E-even primary operators associated to the X I
1/16X

E8,2

248 characters in

the twisted Hilbert space. Since Λ(z) is a singlet under (Ê8)2, the K
a(z) are in the adjoint

representation of the algebra:

Ja+(z1)K
b(z2) ∼

ifab cK
c(z2)

z12
, (5.2.19)

with fab c the E8 structure constants. The conformal and (Ê8)2 Ward identities imply that

⟨Ja+(z1)Kb(z2)K
c(z3)⟩ = ifab d⟨Kd(z2)K

c(z3)⟩
z23
z12z13

. (5.2.20)

We normalize the Ka(z) as

⟨Ka(z1)K
b(z2)⟩ =

Gab
z212

, (5.2.21)

with Gab = 2δa,b as the Cartan-Killing metric of (E8)2 (this just amounts to choosing accord-

ingly the normalization of the twist operator) and obtain

⟨Ja+(z1)Kb(z2)K
c(z3)⟩ =

iFabc

z12z23z13
, (5.2.22)

with the Fabc as in (5.1.6).

Moreover, the quantum symmetry of the orbifold, which assigns charge +1 to the untwisted

and −1 to the twisted sector, implies that

⟨Ka(z1)J
b
+(z2)J

c
+(z3)⟩ = 0 , (5.2.23)

⟨Ka(z1)K
b(z2)K

c(z3)⟩ = 0 , (5.2.24)

so that we recover the full description of the algebra (E8)1 ⊕ (E8)1 , but now we also have a

detailed understanding of the orbifold action on the currents, as well as the structure of the

twisted sector.

5.2.2 Decompactification limit in the dual R → 0 frame

Having reviewed the pure exchange orbifold E , we now combine it with the shift S on the circle,

focusing on the R → 0 limit in the absence of Wilson lines. In this case, the holomorphic

currents are dressed with winding modes, and the orbifold pairs the Ja+ with integer winding

in the untwisted sector and Ka with half-integer winding in the twisted sector. This is what

we expect by T-duality (3.2.23) applied to the asymptotic currents found in Section 5.1, with
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the correspondence being

J a
+n(z, z̄), n ∈ Z↔ Ja+(z)e

i w√
2
R2(X9

L(z)−X
9
R(z̄)) , w ∈ Z , (5.2.25)

J ȧ
−r(z, z̄), r ∈ Z+

1

2
↔ K ȧ(z)e

i w√
2
R2(X9

L(z)−X
9
R(z̄)) , w ∈ Z+

1

2
. (5.2.26)

In the R → ∞ limit, the twisting in the asymptotic current algebra can be traced back to

the different moding of the J+ and J− towers. We now see that in the T-dual frame this is a

consequence of the fact that in the two sectors the winding has either integer or half-integer

values.

5.3 8d → 10d decompactification

As it was pointed out in the previous Sections, there is only one decompactification limit of

the 9 dimensional CHL string, namely the one to the 10 dimensional E8 ×E8 heterotic theory.

On the other hand, starting from 8 dimensions it is possible to decompactify also to the 10

dimensional Spin(32)/Z2 theory. Indeed, the CHL theory further compactified on S1 is dual

to the T 2 compactification without vector structure of the Spin(32)/Z2 heterotic theory [133].

This decompactification can be seen by the affinisation of the corresponding D16 algebra as

follows.

Let us consider the S1 compactification of the CHL string to 8 dimensions. Let us denote the

S1 coordinate by y8 and the CHL cycle by y9, and a, b = 8, 9 (while the indices i, j = 1, ..., 8

label the heterotic torus directions). In this case, focusing on the locus of the heterotic moduli

space given by A = (a, a), (3.1.35) reads

Eab = Gab +Bab + aa · ab, (5.3.1)

and the internal momenta (3.1.34) and (3.1.36) in the ± basis are

pR,a =
1√
2
(na − Eabw

b − ρ · aa) ,

pL,a =
1√
2
(na + (2Gab − Eab)w

b − ρ · aa) ,

p+ =
1√
2
(ρ+ 2abw

b) ,

p− =





1√
2
(π1 − π2) untwisted sector,

0 twisted sector

(5.3.2)

ρ = π1 + π2 ∈ ΓE8 and a ∈ R8. n8, n9 and w8 ∈ Z, while w9 ∈ Z in the untwisted sector and

w9 ∈ Z+ 1
2 for twisted states.

The desired decompactification limit is obtained for

Gab =

(
1/R2 0

0 R2

)
, Bab = 0, a8 = (1, 07), a9 = 0. (5.3.3)
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for R→ ∞7.

The massless vectors turn out to belong to the NS untwisted sector, w9 = 0, and they are

characterised by n9 ≡ n ∈ Z and the ρ, n8, w
8 that must be related to the ones in (4.1.23).

The holomorphic currents are the following.

• In the Cartan sector, the states with even momentum along the CHL cycle must be

the symmetric combination of the corresponding heterotic ones, while the states with

odd momentum must involve the antisymmetric combination to survive the projection.

Defining n⃗ = (n,m), r⃗ = (r,m), and recallingXi
± from (3.2.8), the related vertex operators

are

J i+,⃗n(z, z̄) = i∂Xi
+(z)e

i
√
2m/R2(−Y 8(z)+Ȳ 8(z̄))ei2nY

9(z,z̄) ,n ∈ Z

J i−,⃗r(z, z̄) = i∂Xi
−(z)e

i
√
2m/R2(−Y 8(z)+Ȳ 8(z̄))ei2rY

9(z,z̄) , r ∈ Z+
1

2
,

C8(z) =
1

R2
∂Y 8(z) , C9(z) = ∂Y 9(z) , (5.3.4)

not considering the towers of the central extensions C8,9, which do not contribute to the

affine algebra.

• In the ladder operator sector

Jα+,⃗n(z, z̄) = cαe
ip+X+(z)(eip−X−(z) + e−ip−X−(z))ei

√
2/R2(πα,1·λ−m)(Y 8(z)−Ȳ 8(z̄))ei2nY

9(z,z̄) ,

Jα−,⃗r(z, z̄) = cαe
ip+X+(z)(eip−X−(z) − e−ip−X−(z))ei

√
2/R2(πα,1·λ−m)(Y 8(z)−Ỹ 8(z̄))ei2rY

9(z,z̄) .

(5.3.5)

Then, from the heterotic example, the currents that give the
̂̂
D16 are a redefinition of (5.3.4)

and (5.3.5). First of all, notice that (focusing on the Y 1 contribution)

ei
√

2
R2 (πα,1·λ−m)(Y 1(z)−Ȳ 1(z̄)) = ei

1
R2 p+·λ(Y 1(z)−Ȳ 1(z̄))ei

1
R2 p−·λ(Y 1(z)−Ȳ 1(z̄)) . (5.3.6)

Moreover, we can define

Y+(z) = X+(z) +
1

R2
λY 8(z)

ES−−→ Y+(z) , (5.3.7)

Y−(z) = X−(z) +
1

R2
λY 8(z)

ES−−→ −Y−(z) +
2

R2
, (5.3.8)

shown together with their transformation under the Z2 orbifold action. Their OPEs are the

same as the X± ones.

7Even though the volume of this torus is actually constant as one varies R, it still corresponds to a decom-
pactification limit in a T-dual frame. Also, in principle one could consider the two S1 radii to scale at a different
rate in R.
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The currents

Ki
+,n⃗(z, z̄) = i∂Y i

+(z)e
i
√
2m/R2(−Y 8(z)+Ȳ 8(z̄))ei2nY

9(z,z̄) , (5.3.9)

Ki
−,r⃗(z, z̄) = i∂Y i

+(z)e
i
√
2m/R2(−Y 8(z)+Ȳ 8(z̄))ei2rY

9(z,z̄) , (5.3.10)

Jα+,n⃗(z, z̄) = cαe
ip+Y+(z)(eip−Y−(z) + e−ip−Y−(z))e−i

√
2m/R2(Y 8(z)−Ȳ 8(z̄))ei2nY

9(z,z̄) ,

Jα−,r⃗(z, z̄) = cαe
ip+Y+(z)(eip−Y−(z) − e−ip−Y−(z))e−i

√
2m/R2(Y 8(z)−Ȳ 8(z̄))ei2rY

8(z,z̄) , (5.3.11)

can be shown to satisfy a
̂̂
D16 algebra with central extensions C1 and C2 in (5.3.4), signalling

a decompactification to the 10 dimensional Spin(32)/Z2.

The reason why all this works in 8 dimensions but not in 9 is that the SO(32)− E8 × E8 map

only works for integer winding, so that in the case of the 9 dimensional CHL, where the affine

algebra should be built by states with non-trivial winding as R→ 0, this does not happen.
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Part III

The Distance Conjecture in

symmetric moduli spaces
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Chapter 6

The Distance Conjecture in

symmetric moduli spaces

The aim of this Chapter is to show a proof for the SDC (2.1.1) in the case of locally sym-

metric spaces, which we will introduce in the following. Under mild conditions on their rank,

spaces with finite volume and non-positive sectional curvature are locally symmetric. The most

straightforward examples are the moduli spaces of M- and string theory toroidal compactific-

ations,1 of the form

M = Γ\G/K , (6.0.1)

(where G/K is a quotient of Lie groups of the non-compact, globally symmetric type and Γ a

discrete subgroup of G), but the proof includes a much wider class, as e.g. moduli spaces of

Kähler deformations in certain Calabi-Yau compactifications [135].2

As examples of (6.0.1), compactifying the Heterotic string on T d, the low energy theory in

10−d dimensions is half-maximal supergravity with d2 scalars from deformations of the metric

and B-field on the torus, and 16d components of the dWilson lines in the torus. These d(d+16)

degrees of freedom parameterise the coset O(d+16, d)/(O(d+16)×O(d)), and can be combined

in a generalized metric. The subsector of the moduli given by the d2 deformations of metric

and B-field, which is also a subsector of the moduli space of Type II toroidal compactifications

and the full moduli space of toroidal compactifications of bosonic string, spans a coset G/K =

O(d, d)/(O(d)×O(d)). On the other hand, compactifying M-theory on T d, or Type II theories

on T d−1 leads to maximal supergravities in 11−d dimensions with massless scalar fields coming

from deformations of the metric and gauge fields. These scalar fields parameterise the cosets

G/K = Ed(d)/Kd, where Kd is the maximal compact subgroup of Ed(d).

In string theory compactifications, there is a T-duality group (or more generally, a U-duality

group for maximal supergravities), that maps the lattice of charges of the string spectrum

to itself. For example, in the case of O(d, d) the charges are given by the momenta and

winding numbers on the torus, and the T-duality group is O(d, d,Z). It acts on the moduli by

conjugation of the generalized metric, thus identifying B ≃ B + 1, and in the case of B = 0

and a diagonal metric, Ri ≃ 1/Ri for any radius i (while for non-zero B or non-diagonal metric

it gives the standard Buscher rules [136]). Also in the case of Ed(d) the U-duality group is

1Some of the arguments given here also appear in [134].
2In this thesis we will focus on the first case.

81
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just the restriction to the rationals Ed(d)(Z), though this statement is not true in general.

For example, for the compactification of the non-supersymmetric Heterotic string, locally the

classical3 moduli space is also O(d+ 16, d)/(O(d+ 16)×O(d)), but the T-duality group is not

O(d, d + 16,Z) [104]. In mathematics terms, the T- (or U-) duality group corresponds to a

discrete arithmetic subgroup Γ of G as above.

In the rest of the Chapter, we will first introduce the definition of symmetric spaces and how

their boundaries can be characterised only through group theoretic information. With this

knowledge, we can prove the Distance Conjecture just assuming the hypothesis of completeness

of the spectrum.

6.1 Symmetric spaces: geodesics and boundaries

As just mentioned, in an attempt to prove the distance conjecture in a formal setting, we

describe geodesic motion and the various infinite distance limits on symmetric spaces.

Following mainly [137–139], in this section we introduce the definition of symmetric spaces as

smooth manifolds diffeomorphic to quotients of Lie groups. Geodesics and boundaries can be

studied from the group theory perspective systematically, and the infinite distance limits are

characterised by parabolic subgroups. We illustrate the concepts with the simplest example,

namely SL(2,R)/SO(2) (the moduli space of Type IIB supergravity in 10 dimensions, which

is diffeomorphic to the upper half plane). In this Section, we will not yet consider the discrete

quotient by Γ, which will be discussed in 6.2.

6.1.1 Globally symmetric spaces

There are several classes of globally symmetric spaces. We will be interested in particular

in symmetric spaces of non-compact type4 but with finite volume, which are the conjectured

properties of the moduli spaces arising in string theory compactifications5 [14]. These spaces

are Riemannian and have negative sectional curvature.

Formally, a manifold S is a globally (locally) symmetric space if it has an inversion symmetry S
that acts at every point x ∈ S as the identity and on the tangent space as eX → e−X for every

X ∈ TxS, which is a global (local) isometry. This in turn implies that S is geodetically complete

and homogeneous, namely its isometry group, which we will denote as G, acts transitively on

S, i.e. given two points x, y ∈ S, there exists a group element g ∈ G such that g(x) = y.

Moreover, by denoting as K ⊆ G the isotropy group that stabilizes any point o ∈ S, namely6

K = {k ∈ G | k · o = o} , (6.1.1)

it can be shown that S ∼= G · o, and that there exist a diffeomorphism7

S ∼= G/K . (6.1.2)

3Without considering quantum corrections that arise due to the dilaton potential.
4For example, the spheres are also symmetric spaces, but of compact type: Sn ∼= SO(n+ 1)/SO(n)
5S1 compactifications, having infinite volume, are an exception.
6The · denotes the G action on S.
7More generally, a symmetric space is diffeomorphic to Rn ×G/K. Here we will not consider the Rn factor,

but everything can be straightforwardly generalised if one wants to incorporate it.
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If S is non-compact, as is the case of interest here, then K is the maximal compact subgroup of

G. We denote the corresponding algebras as k and g respectively. Then the inversion symmetry

S ∈ G8 guarantees that the algebra g splits into

g = p⊕ k , (6.1.3)

which are orthogonal with respect to the Killing form K of g. This is known as Cartan decom-

position of the algebra g of G and is unique. Moreover, given this decomposition, it holds

[k, k] ⊆ k, [k, p] ⊆ p, [p, p] ⊆ k , (6.1.4)

where [k, p] ⊆ p tells us that K rotates tangent vectors on S.
In symmetric spaces of non-compact type g is non-compact, and the Killing form on it is positive

definite on p, while it is negative definite on k, and they have negative sectional curvature. The

positive definite metric tells us S is Riemannian.

The Cartan decomposition of the algebra (6.1.3) induces the so-called Cartan decomposition of

the Lie group G [137,138]

∀g ∈ G : ∃ k1, k2 ∈ K, h ∈ h : g = k1 e
h k2 ⇔ G = K ehK , (6.1.5)

where h ⊂ g is the Cartan subalgebra. More specifically, it will be useful in the following to

connect to a refinement of the above Cartan decomposition. Let Φ+ = {α ∈ Φ : α(H) > 0}
be the set of positive roots, and Φ− the set of negative roots. The positive Weyl chamber of g

is defined as

h+ = {h ∈ h : (h, α) > 0 ∀α ∈ Φ+} ⊂ h , (6.1.6)

and let us denote by h+ its closure in h. Then the Weyl groupW ⊂ K maps one Weyl chamber

to another, so that one can restrict only to the positive one

G = K eh
+
K . (6.1.7)

It is useful to also decompose the Cartan subalgebra into the subset a of mutually commuting

generators in p, and the rest

a = h ∩ p . (6.1.8)

One thus has

r ≡ rankG/K = dim a . (6.1.9)

We illustrate these definitions on the group SL(2,R)/SO(2) (and when this is too simple, with

other cosets), with S the upper half plane H2, parameterised by

H2 = {τ = τ1 + iτ2 : τ2 ≥ 0} , (6.1.10)

8More precisely, its pull back Θ to g.
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where τ can be interpreted as the complex structure of (possibly geometrically equivalent) tori,

such that its metric reads

g(τ) =
1

τ2

(
|τ |2 τ1
τ1 1

)
. (6.1.11)

Its isometry group is

G = SL(2,R) =

{(
a b

c d

)
, a, b, c, d ∈ R, ad− bc = 1

}
, (6.1.12)

acting on τ ∈ H2 as

τ → aτ + b

cτ + d
, (6.1.13)

while the isotropy group, fixing for example the point o = i, is SO(2) ∋ k(θ)

k(θ) · i =
(
cos θ − sin θ

sin θ cos θ

)
· i = i cos θ − sin θ

−i(− sin θ + i cos θ)
= i , (6.1.14)

so that H2 ∼= SL(2,R)/SO(2). The algebra sl(2,R) is generated by

h =

(
1 0

0 −1

)
, e1 =

(
0 1

1 0

)
, e2 =

(
0 −1

1 0

)
. (6.1.15)

h generates the Cartan subalgebra, namely h = spanR⟨h⟩, and e2 generates an so(2) ⊂ sl(2).

Then p = sl(2,R) ⊖ so(2) = spanR⟨h, e1⟩ is orthogonal to so(2) with respect to the Killing

form K = 1
2Tr, and moreover is isomorphic to TiH

2, the tangent space to H2 at o = i. The

Cartan decomposition of the group SL(2,R) is given by

∀ g ∈ SL(2,R) ∃ θ, ϕ ∈ [0, 2π], t ∈ R :

(
cos θ − sin θ

sin θ cos θ

)
et h

(
cosϕ − sinϕ

sinϕ cosϕ

)
. (6.1.16)

In this case, for which SL(2) splits over the reals, it turns out that a = h, but obviously

this is not the general situation. For instance, consider SO(1, 3)/SO(3), with g = so(1, 3)

and k = so(3). We choose a basis for so(1, 3) that stabilises o = diag(1,−1,−1,−1) and the

following representation of the Cartan subalgebra h = ⟨h1, h2⟩R,

h1 =




0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0


 , h2 =




0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0


 . (6.1.17)
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where h2 is also a generator in so(3) ⊂ so(1, 3). While h1 ∈ p, h2 is not in p. Hence,

a = ⟨h1⟩R ⊂ h. In this representation, the rest of the algebra is given by

b1 =




0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0


 , b2 =




0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0


 , (6.1.18)

r1 =




0 0 0 0

0 0 0 −1

0 0 0 0

0 1 0 0


 , r2 =




0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0


 . (6.1.19)

The algebra so(3) = ⟨h2, r1, r2⟩R is generated by the antisymmetric generators, while p =

⟨h1, b1, b2⟩R ∼= ToS is generated by the symmetric ones, which physically can be interpreted as

boosts.

6.1.2 Geodesics and boundaries on globally symmetric spaces

One of the reasons why we want to think of S as a quotient of Lie groups is that geodesics

on Lie group manifolds have a simple expression. In fact, for any X ∈ g and t ∈ R, etX is a

geodesic on G. More precisely, a geodesic on a symmetric space S of the form (6.1.2), passing

through the point x = g · o, is a curve

γ(t) = etX g · o . (6.1.20)

In particular, using the Cartan decomposition, to describe geodesics on the coset space one can

restrict to X ∈ p. The physical meaning is the following: choosing as initial condition the point

x ∈ S, all the geodesics through it are specified by the choice of the initial velocity X ∈ p.

The geodesic distance between any two points x1 = g1 · o and x2 = g2 · o in S is given by

d(x1, x2) = |K(X,X)|1/2 , where exp(X) · o = g−1
2 g1 · o , (6.1.21)

with K the Killing form of g.

Since these spaces are geodesically complete, we can use the geodesic flow on S to describe

its boundary ∂S, for the non-compact symmetric spaces we want to characterise. Intuitively,

since geodesics are 1-parameter subgroups of the G-action on S ∼= exp(p) [138], one expects

the boundary ∂S to correspond to the limit t → ∞ of 1-parameter subgroups g(t) generated

by p acting on o ∈ S, as is made clear by the Cartan decomposition. From this perspective,

∂S ∼= lim
t→∞

etX1 · o ∼= Sn−1 , (6.1.22)

where the subscript 1 on X ∈ p denotes a restriction to norm 1 vectors. Hence, the boundary is

isomorphic to the unit sphere in S, whose dimension we denote by n (n = dimG− dimK − 1).

Additionally, restricting to norm 1 vectors makes t an affine parameter for the geodesic. With

this intuition, one can define the boundary as the set of points at infinity.



86 CHAPTER 6. THE DISTANCE CONJECTURE IN SYMMETRIC MODULI SPACES

Definition 6.1.1. (Point at infinity) One point at the boundary of a symmetric space is defined

as an equivalence class of asymptotic geodesics. Two geodesics γ1(t) and γ2(t) are asymptotic

if and only if the distance d(γ1(t), γ2(t)) is finite for t→ +∞.

In particular, given the Cartan decomposition (6.1.7), it can be seen that one point at infinity

is characterised by the subalgebra a+1 = h+1 ∩ p and the compact subgroup K. For example,

going back to the upper half plane, from the hyperbolic metric

ds2 =
dτ21 + dτ22

τ22
, (6.1.23)

one can see that two geodesics of the kind

γ1(t) = b1 + i et , γ2(t) = b2 + i et , (6.1.24)

with b1 ̸= b2, have limt→+∞ d(γ1(t), γ2(t)) → 0, so they define the same boundary point

τ∞ = i∞. On the other hand, limt→−∞ d(γ1(t), γ2(t)) → +∞, corresponding to two distinct

boundary points τ1 = b1 and τ2 = b2. This is in agreement with the fact that

∂H2 = R ∪ {∞} ∼= S1 . (6.1.25)

Let us show this equivalently from the coset perspective. It turns out that one element of

each equivalence class (under the action of G) of asymptotic geodesics can be described by a

geodesic from the point i ∈ H2 of the form

γ0(t) = e2ti,

γ1(t) = e−2ti+ x ,
(6.1.26)

for any given x. All the other geodesics are obtained just acting with g ∈ SL(2,R) on these,

which does not modify the asymptotic behaviour. In the limit t→ ∞, γ0(t) · i goes to a single

point on the boundary, while γ1(t) · i goes to a 1-parameter family of points parametrised

by x ∈ R, which correspond respectively to the τ = i∞ and the τ ∈ R components of the

boundary of the upper half plane. They correspond respectively to the following geodesics in

SL(2,R)/SO(2)

c0(t) =

(
et 0

0 e−t

)
, (6.1.27)

c1(t) =

(
−xet e−t

−et 0

)
. (6.1.28)

In order to study later how the towers of states evolve along geodesic paths, we need to

determine how the metric on the moduli space depends on the parameter t. This metric,

usually called H, can be written in terms of a veilbein as H = EET , with E ∈ G with a right

K action.
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For the SL(2)/SO(2) example, take the metric given in (6.1.11), and evaluate it at τ = i

H
∣∣∣
τ=i

=

(
1 0

0 1

)
. (6.1.29)

The vielbeine are given by E = diag(1, 1) up to an SO(2) right action. We now act on the

vielbeine using the group elements {c0(t), c1(t)} that generate the geodesics. We find

H0(t) = c0(t)E (c0(t)E)T = e2ht =

(
e2t 0

0 e−2t

)
,

H1(t) = c1(t)E (c1(t)E)T =

(
e2tx2 + e−2t e2tx

e2tx e2t

)
,

(6.1.30)

showing again that along the geodesic c0(t), τ evolves as

τ(t) = τ1(t) + iτ2(t) : τ1(t) = 0, τ2(t) = e2t , (6.1.31)

and along geodesic c1(t), τ evolves as

τ(t) = τ1(t) + iτ2(t) : τ1(t) = x ∈ R, τ2(t) = e−2t . (6.1.32)

In the t → ∞ limit, we find τ parametrises R ∪ {∞} reproducing the geometric boundary at

infinity.

6.1.3 Boundaries and parabolic subgroups

An alternative description of the boundary of symmetric spaces is through the notion of para-

bolic subgroups of the group G. Qualitatively, one can think of a parabolic transformation as

fixing one point at infinity. For example, if we consider again the case of SL(2,R)/SO(2), we

can easily check that the elements of the form

P =

(
a b

0 a−1

)
, (6.1.33)

for a, b ∈ R, leave the point τ = i∞ fixed. These are indeed parabolic transformations for

SL(2,R), as we define in the following.

Given a semi-simple Lie algebra g of a group G, let us introduce the the subalgebras associated

to positive and negative roots, respectively

n+ =
∑

α∈Φ+

gα , n− =
∑

a∈Φ+

g−α =
∑

a∈Φ−

gα , (6.1.34)

which are two nilpotent subalgebras, whose exponentiation gives the corresponding unipotent

groups N+ = en
+
and N−. A minimal parabolic subgroup Pmin ⊂ G is defined as the subgroup

of G whose algebra pmin is the complement of the nilpotent subalgebra n− of g, i.e. pmin =
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g⊖ n− = (n−)⊥ [138]. It is a closed subgroup of G which decomposes as [137]

Pmin =MAN+ , (6.1.35)

whereA = exp(h) is the maximal Abelian (Cartan) subgroup inG, andM ⊂ K is the centraliser

of h, namely

M = {k ∈ K : k−1hk = h ∀h ∈ h} . (6.1.36)

There are also bigger parabolic subgroups P , defined generically as related to a subalgebra

L(P ) ⊂ g whose perpendicular space with respect to the Killing metric (L(P ))⊥ is a nilpotent

subalgebra.

For example, in the case of SL(2,R), we have that

h = a = ⟨h⟩R, n+ = ⟨1
2
(e1 − e2)⟩R, n− = ⟨1

2
(e1 + e2)⟩R , (6.1.37)

where n+ and n− are nilpotent, with roots (normalized as |α|2 = 1)

α+ = 1, α− = −1. (6.1.38)

The subgroup

N+ = exn
+
=

(
1 x

0 1

)
, x ∈ R (6.1.39)

is unipotent. The centraliser M of h is trivial, so the parabolic subgroup (there is a single class

here) is generated by h and n+, and given by

P = en
+
ea =

(
1 x

0 1

)(
ea 0

0 e−a

)
. (6.1.40)

In this case9 elements of P are upper triangular matrices, which fix the point τ = i∞ as

noticed around (6.1.33). In order to obtain the full boundary one should then account for the

additional SO(2) adjoint action on P , as in general parabolic subgroups come in K-conjugacy

classes [P ]K . For example, each point in the R component of the boundary of H2 is associated

to a parabolic subgroup which is obtained from the minimal one (6.1.40) by an SO(2) ∋ k(θ)

adjoint action. Indeed,

pθ = k(θ)pk(θ)−1 ∈ [p]SO(2) (6.1.41)

fixes the point τ = cot θ ∈ R. In the general case, for which one can have more than one

nilpotent subalgebra than n− (that is, when it can have non-trivial subalgebras), there are

more K-conjugacy classes of parabolic subgroups. It turns out that one possible representative

pI of each K-conjugacy class [pI ]K is specified by the choice of a set of simple roots I ⊆ Σ, and

the algebra of the parabolic subgroup, L(PI) is Killing perpendicular to

∑

α∈(Σ+−I)

g−α , (6.1.42)

9As in in SL(n,R) for any n ∈ Z.
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which is the subspace associated to the negative roots generated by Σ − I. In particular,

the choice of a set of simple roots allows to define the set of Cartan generators in a that are

orthogonal to
∑

α∈I gα as

aI = {h ∈ a : α(h) = 0 ,∀α ∈ I} , (6.1.43)

and from (6.1.22) we know that each class of asymptotic geodesics describing the boundary

can be described by restricting to Cartan generators h ∈ a with norm 1, and from (6.1.7) that

one can restrict to the closure of the positive Weyl chamber, such that the minimal description

of the boundary is contained in the set of

a+I;1 = {h ∈ a+ : α(h) = 0 ,∀α ∈ I , |h| = 1} , (6.1.44)

which corresponds to the intersection of the closure of the positive Weyl chamber with the

unit sphere in a. It turns out that minimal parabolic subgroups are associated to Imin = and

hmin ∈ a+1 , while the non-minimal case to a non-trivial set I and to Cartan generators in

∂(a+1 ).

This way of building parabolic subgroups then allows to associate one representative in the

class of asymptotic geodesics for each point at infinty. Given such a parabolic subgroup PI and

a Cartan generator hI ∈ a+I;1, one point at infinity is described by the equivalence class of

γI(t) = ethI · o , h ∈ a+I;1 . (6.1.45)

To reconstruct the full boundary, as already explained, we then have to take the orbit under

K of every point at infinity described by each (PI , hI), such that

∂S =
⊔

I

lim
t→∞

Ket hI (o) . (6.1.46)

This construction makes the structure of the boundary ∂S clear: it is a K fibration over the

base simplex which is given by the union over parabolics of a+I;1. It can be then explicitly

parametrised using the Cartan decomposition as follows. We (locally) choose coordinates on

the base simplex to be {φi}i∈[1,r−1], so that h({φi}i∈[1,r−1]) is a generator in a+I;1. We also

choose a set of angles {θn}n∈[1,dimK], representing the position in the fibre. We have that

points x ∈ ∂S correspond to pairs (k({θn}n∈[1,dimK]), h({φi}i∈[1,r−1])) representing generators

Adk({θn}n∈[1,dimK])h({φi}i∈[1,r−1]) of geodesics that reach from o to the boundary.10

Consider the example of H2 ∼= SL(2;R)/SO(2). The boundary can be easily described as a

fibration over a+1 , which in this case corresponds to h as in (6.1.15), so the simplex corresponding

to the base of the fibration is a point. The fibre is given by AdSO(2)/MH
(h) where MH , the

subgroup of SO(2) stabilizing h, is trivial. Hence, ∂S ∼= AdSO(2)(h) ∼= SO(2). Clearly, as in

(6.1.22), the unit sphere in ToH
2 is just an S1 which is diffeomorphic to SO(2).

Now consider the boundary of S ∼= SO(1, 3)/SO(3). Here, the simplex forming the base of

the fibration, given by a+1 = h1, is once again a point. Hence, ∂S ∼= AdSO(3)/MH
(h1) ∼=

SO(3)/MH . In this case, MH = Eθh2 ∼= SO(2) is an SO(2) subgroup of SO(3). Hence,

∂S ∼= SO(3)/SO(2) ∼= S2 is a 2-sphere.

10It is understood that the use of a chart with more than one patch may be necessary.
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Figure 6.1: One possible choice of fundamental domain for SL(2,Z)\SL(2,R)/SO(2).

6.2 Quotient by discrete subgroups

In this section, motivated by the string theoretic U- and T- dualities that relate different points

in the moduli spaces, we present the mathematical framework to account for the modifications

to the structure of the boundary and to the geodesics on such a space quotiented out by a

discrete group

M = Γ\G/K , (6.2.1)

where as before G and K are defined over the reals and their quotient is a symmetric space.

The fact that the structure of the boundary changes is clear for instance considering the case

of the SL(2,Z) quotient on H2, which consists in the restriction to one fundamental domain

as for example in Figure 6.1, which clearly contains only one boundary point. Moreover, only

geodesics that are associated to rational values of τ1 reach the point at infinty up to SL(2,Z)

transformations [140].

6.2.1 Discrete subgroups and how to choose them

Let G(Q) be an algebraic group defined over the rationals. Then G(Q) ⊂ GL(n,Q). An

arithmetic subgroup is a subgroup Γ ⊂ G(Q) such that Γ ⊆ GL(n,Z) ∩ G(Q). The discrete

subgroup Γ in (6.2.1) is an arithmetic group. These are defined by a set of polynomial conditions

with rational coefficients (e.g. det M=1, for SL(n,Z), or MT = M−1 for O(n,Z) etc.). To

be more concrete, one can always embed G ∈ GL(n,C), and define the arithmetic group using
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this embedding, namely

G ⊂ GL(n,R) real group,

G(Q) = G ∩GL(n,Q) rational group,

Γ = G ∩GL(n,Z) arithmetic group.

(6.2.2)

This is one way to build an arithmetic subgroup, but there is an infinite number of different

arithmetic groups in a given Lie group. By different, we mean that a pair Γ1 ⊂ G(Q) and

Γ2 ⊂ G(Q) which are isomorphic as groups defined over the rationals may not be isomorphic

as groups defined over the integers (that is, the homomorphism U between them Γ1 = UΓ2U
−1

is not in GL(n,Z)). In general, a discrete subgroup Γ1 of G is arithmetic if it is commensurate

to Γ as defined above (i.e. if Γ/(Γ ∩ Γ1) and Γ1/(Γ ∩ Γ1) are finite). One intuitive way to see

that there are actually infinitely many arithmetic subgroups is by noticing that they can be

equivalently defined as the subgroups of GL(n,Z) that preserve a given invariant J in Γ(Q).

The invariant also defines a lattice Λ generated by vectors in Zn that are orthonormal with

respect to J .

The choice of arithmetic group Γ determines the fundamental domain, a representative region

on the coset spaces G/K that contains the largest number of points in G/K such that no two

points related by Γ.11 Furthermore, it determines whether the fundamental domain is compact

or has a boundary at infinity, how many points at infinity it has12 and moreover if it has finite

or infinite volume.

From what said above, there is no canonical or natural way to choose an arithmetic subgroup Γ,

see for example Footnote 12. Nevertheless, the structure of the toroidally compactified string

theory selects naturally is the so-called Chevalley arithmetic subgroup, which comes from the

exponentiation of the algebra g in the Chevalley basis BCh, which allows to define the group

purely over the integers13 and gives a way of constructing semi-simple Lie groups G and their

arithmetic subgroups Γ, so that one can study how Γ ⊆ G(Z) fits into G and what Γ\G might

look like.

In particular, Chevalley groups are defined as groups formed by taking the exponential map of

the Chevalley basis. For example, the Chevalley group G(C) defined over C is given by etÂ for

Â ∈ BCh and t ∈ C, the Chevalley group G(Z) defined over Z is given by etÂ for Â ∈ BCh and

t ∈ Z and so on.

As defined up to now, Γ is the reflective part of the duality group. There can be other

transformations one can quotient by (that often in the literature are given for granted and not

explicitly written) given by the fact that in addition to the inner automorphisms (related to

the arithmetic group Γ), in general a group G also displays outer automorphisms, which are

related to symmetries of the Dynkin diagram of the corresponding algebra g but are not in

11From the string theory point of view, it determines the polygon on the coset space that represents the
physical moduli space of inequivalent vacua.

12For example, the fundamental domain in SL(2;Z)\SL(2;R)/SO(2;R) can have a width of 1 (horizontal
domain [−1/2, 1/2] in analogy with IIB string theory’s moduli space), or a width of 2 (horizontal domain [−1, 1]
in analogy with the heterotic theory’s moduli space). In the former case, the only one point reaches the boundary
at infinity, namely τ → i∞. In the latter case, the boundary is the union of tau → i∞ and τ → 1.

13For a more formal definition of Chevalley groups, see Appendix E.
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G(Z),

Aut(G) = In(G)⋉Out(G) . (6.2.3)

For example, in the case of O(2, 2) ∼= SL(2) × SL(2) there is a Z2 outer automorphism that

consists of the exchange of the two nodes of the Dynkin diagram in Figure 6.2.

Z2

Figure 6.2: Dynkin diagram of O(2, 2), displaying an exchange symmetry between the two
nodes.

We will provide an explicit example of this in Section 6.3.1.

6.2.2 Geodesics and boundaries in the fundamental domain

As said above, the action of Γ divides the coset space into fundamental domains, delimited

by hyperplanes of co-dimension one that are either fixed, or mapped to one another under

the action of a given element in Γ. For example, for SL(2,Z), the vertical walls that delimit

the moduli space in Figure 6.1 at τ = ±1/2 are mapped to one another by the SL(2,Z)

transformation τ → τ +1. On the other hand, outer automorphisms do not have an associated

hyperplane.

We saw that, before the quotient by Γ, all geodesics that reach the boundary are of the form

(6.1.45), and that for a fixed hI ∈ a+I;1 all of them define the same boundary point irrespectively

of N+
I , which allowed to deduce that the boundary of a symmetric space is isomorphic to the

unit sphere in p. This changes after the discrete quotient, and the way it changes depends on

the specific arithmetic subgroup.

In particular, it can be shown that the information on the boundary of a space like (6.2.1)

is fully contained in the restriction of the groups to their elements over the rationals, G(Q)

and K(Q), as the discrete quotient is not sensitive to irrational boundary points. This is a

generalisation of the known behaviour in the case of SL(2,Z) (e.g. see [140]). For definiteness,

let us choose as fundamental domain the one in Figure 6.1, containing the boundary point

τ∞ = i∞. It can be easily seen that the only points in the R component of the boundary,

τ = τ1 + iτ2 with τ2 → 0, that can be mapped to τ∞ via an SL(2,R) transformation

(
a b

c d

)
, (6.2.4)

are of the kind τ1 = −d
c ∈ Q.

This result can again be obtained studying the boundary through asymptotic geodesics, ac-

counting for the additional identifications given by the discrete quotient as follows. In order

to study the geodesics in the fundamental domain F , one can for instance start from a point

x = g · o ∈ F and evolve assigning a tangent vector X ∈ TxF , as in (6.1.20). Such a geodesic

then starts in the fundamental domain but generically ends outside, namely on the real line,

crossing the boundary of F at finite t. If we want to restrict to the quotient space, at that

point it should be mapped back to F with a G(Z) transformation, and so on. Two qualitatively
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different behaviours arise, depending on the geodesics’ properties in the covering space G/K.

For simplicity, let us take the SL(2) case specifically.

• The geodesic in the covering space crosses a finite number of fundamental regions, namely

it can be mapped with a finite amount of SL(2,Z) transformations to the straight

geodesics going to i∞. This happens when the endpoint of the geodesic has τ1 ∈ Q.

• The geodesic in the covering space crosses infinitely many fundamental regions when

its endpoint is irrational. It can not be mapped to the geodesic reaching i∞, and by

repeatedly applying SL(2,Z) transformations one can see that it has either a periodic

orbit (τ1,end can be written as a periodic continued fraction) or an ergodic one (all the

other cases).

From the group-theoretic point of view, this is reflected in the statement that points at infinity

now are associated to equivalence classes under K of rational parabolic subgroups PQ ⊂ G,

namely [PQ]K , together with an element of norm 1 in the corresponding a+PI;1 , as defined in

(6.1.44).

x ∈ ∂M ↔ (PI,Q, h ∈ a+PI;1) + K action . (6.2.5)

The boundary is then of the form [139]

∂M ∼ Γ
∖⊔

I

a+PI,Q;1
, (6.2.6)

where again I labels theK-conjugacy classes of parabolic subgroups, and the subscript 1 stands

for the unit normalization of the Cartan generators. Let us be more concrete and focus on the

example of SL(2,Z)\H2, which as already mentioned has only one point at infinity. This is

reflected in the fact that all the rational parabolic subgroups are in fact SL(2,Z)-equivalent

for example to the minimal (upper-triangular) one (6.1.33) corresponding to τ∞ = i∞. This

can indeed be restricted to the rationals

Prat =

(
a b

0 a−1

)
, a, b ∈ Q . (6.2.7)

As for the other rational parabolics in the same SO(2) conjugacy class, they are obtained by

an SO(2,Q) transformation

k(θ) =

(
cos θ − sin θ

sin θ cos θ

)
=

(
α/γ −β/γ
β/γ α/γ

)
: α, β, γ ∈ Z, α2 + β2 = γ2 , (6.2.8)

namely

Pθ;rat = k(θ)Pratk(θ)
−1 , (6.2.9)

and they correspond indeed to a rational boundary point τ = − cot θ = −α
β ∈ Q. We can see

that all these points are SL(2,Z)-equivalent to τ∞ because Prat and all the Pθ;rat belong to
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the same SL(2,Z) equivalence class, namely there exists A ∈ SL(2,Z)

A =

(
a1 a3
a2

1+a2a3
a1

)
: a1, a2, a3 ∈ Z , (6.2.10)

such that

AdA(p1) = Adk(θ)(p2) ⇔ AdA−1Adk(θ)(Prat) ⊆ Prat, (6.2.11)

for p1, p2 ∈ Prat, and in particular

β

α
=

(
1− a2a2a3 − a2 + aba1a3 + a2a3

)

a1 (aba1 + a2 − a2a2)
or a1β = αa3 , (6.2.12)

which admits a solution for a1, a2, a3 ∈ Z.
In the cases when the algebra splits over the reals (e.g. G = SL(n), O(d, d) and Ed(d)), it can

be shown that it is always the case that there is only one G(Z) equivalence class of parabolic

subgroups [141]. Going back to the fibration representation of the boundary ofG/K, this means

that, for each element kPrat;Ik
−1, k ∈ K(Q) of the fiber over the standard parabolic Prat;I , there

exist a G(Z) transformation that trivialises the k adjoint action, namely [kPrat;Ik
−1]G(Q) =

[Prat;I ]G(Q). This means that considering the discrete quotient, the boundary is isomorphic to

the simplex given by the intersection of the positive Weyl chamber with the unit sphere, the

fibre over each point being trivial under the arithmetic Chevalley subgroup.

This is not guaranteed for groups that do not split over the reals, such as G = O(d, d′) for

d ̸= d′,14 but it has been shown in general that for any symmetric space there is a finite number

of conjugacy classes of rational parabolics.15

An example: SL(n)

After having discussed explicitly SL(2) in the previous discussion in order to exemplify the

theoretical concepts, let us now present the case of SL(n,Z)\SL(n,R)/O(n), focusing first on

n = 3 (the first non-trivial example after SL(2)) in order to then generalise to n > 3. These

are the moduli spaces of Tn at fixed volume, and as we will see in the next Section 6.3, the

moduli spaces of M-theory on T d with d ≤ 4 have this structure.

Since the positive Weyl chamber of sl(3) is 2-dimensional, the boundary of the quotient space

S = SL(3,R)/SO(3) is a fibration where the base is the simplex corresponding to a closed

interval, whose interior is associated to Cartans which have non-degenerate eigenvalues, that

is

h = diag (a, b, c) , a+ b+ c = 0 , a2 + b2 + c2 = 1 , a ̸= b ̸= c , (6.2.13)

while the two extrema correspond to the two singular Cartans

h1 = diag

(
1√
2
,− 1√

2
, 0

)
and h2 = diag

(
1√
3
,
1√
3
,− 2√

3

)
, (6.2.14)

14But for example, in the case of O(1, 3) it is still the case that there is only one equivalence class.
15This is a generalization of the result of [140] for the case of O(1, 17), which we will recall in Section 6.3.3.
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namely elements at the boundary of the positive Weyl chamber that have degenerate eigenval-

ues. The fibre is given by the non-trivial SO(3) transformations on the base. Then, the extrema

of the interval turn out to be stablised by an SO(2,R) ⊂ SO(3,R). This means that the fibre

over the vertex mapped out by the SO(3,R) is isomorphic to SO(3,R)/SO(2,R) ∼= RP2. The

fibre over the open interval is instead RP3.

Moving then to M = SL(3,Z)\S, where the information is contained in the group restricted

to the rationals, we can use the lessons learnt from the SL(2;R)/SO(2;R) case to see what

SO(3;Q) should look like. Any element of SO(3;Q) can be written as a concatenation of

rotations about the three axes. We have

k(θ, ϕ, ψ) = R(θ)R(ϕ)R(ψ) , (6.2.15)

with

R(θ) =



cos θ − sin θ 0

sin θ cos θ 0

0 0 1


 , R(ϕ) =




cosϕ 0 sinϕ

0 1 0

− sinϕ 0 cosϕ


 , R(ψ) =



1 0 0

0 cosψ − sinψ

0 sinψ cosψ


 .

(6.2.16)

This implies we can think of the SO(3,Q) action decomposed into 3 SO(2,Q)’s. In the same

way as in the 2 dimensional case, we want to show that there exists a matrix A ∈ SL(3,Z)

such that

AdA−1Adk(θ,ϕ,ψ)P
0
min,1,2 ⊂ P 0

min,1,2 , (6.2.17)

where P 0
min is a reference minimal parabolic, P 0

1 is one of the non-minimal parabolics and P 0
2

is the other. Define A ∈ SL(3,Z) as a concatenation of matrices A = AθAϕAψ. Consider

AdA−1
θ
AdR(θ)P

0
min. This reduces to the 2 dimensional case where the matrices Aθ and R(θ) act

trivially on the 3rd row of any p ∈ P 0
min. Clearly, there always exists an Aθ such that

AdA−1
θ
Adk(θ,ϕ,ψ)P

0
min ⊂ P 0

min . (6.2.18)

as in the 2 dimensional case. The same logic applies for R(ϕ) and R(ψ). Hence, there exists

an A = AθAϕAψ ∈ SL(2,Z) that satisfies

AdA−1Adk(θ,ϕ,ψ)P
0
min ⊂ P 0

min . (6.2.19)

Moving to the non-minimal case, we have

p1 ∈ P 0
1 : p1 =



a b c

d e f

0 0 g


 , (6.2.20)

which, under the action of R(θ), stays in P 0
1 . Solving for

AdA−1
ϕ
AdR(ϕ)P

0
1 ⊂ P 0

1 (6.2.21)
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corresponds to requiring

AdA−1
ϕ
AdR(ϕ)

(
a c

0 g

)
(6.2.22)

is upper triangular where Aϕ and R(ϕ) have the 2nd row and 2nd column set to (0, 1, 0) and

(0, 1, 0)T and removed. This reduces to the 2 dimensional minimal case. Solving for

AdA−1
ψ
AdR(ψ)P

0
1 ⊂ P 0

1 (6.2.23)

again reduces to the 2 dimensional minimal case where the 1st row and first columns of Aψ
and R(ψ) are set to (1, 0, 0) and (1, 0, 0)T and removed. We require that

AdA−1
ψ
AdR(ψ)

(
e f

0 g

)
(6.2.24)

is upper triangular. Of course, we know this to be possible. The exact same logic applies to P 0
2 .

Hence, we have shown that there exists and A ∈ SO(3,Z) such that for any (θ, ϕ, ψ) (6.2.17)

holds, and hence there is only one SL(3,Z) conjugacy class per point on the simplex of the

boundary of S. In conclusion, the boundary at infinity of M is just a closed interval.

The examples of SL(2) and SL(3) are not unique can be extended to the quotient space

SL(n,Z)\SL(n,R)/SO(n,R) is given by simplex defined by the link over the closure of the

positive Weyl chamber of SL(n,R).

6.3 Lesson for symmetric moduli spaces from string theory

As already mentioned, the moduli spaces coming from toroidal compactifications of maximal

and half-maximal supergravity are of symmetric type. In particular, let us recall their structure

• M-theory on T d (or Type II on T d−1): Ed(d)(Z)\Ed(d)(R)/Kd as in Table 6.1.

• Heterotic theory on T d: O(d, d+ 16,Z)\O(d, d+ 16,R)/(O(d)×O(d+ 16)).

• CHL string on T d: O(d, d+ 8,Z)\O(d, d+ 8,R)/(O(d)×O(d+ 8)).

• Bosonic string on T d: O(d, d,Z)\O(d, d,R)/(O(d)×O(d)).

• Classical moduli space of the non-supersymmetric O(16)×O(16) heterotic theory on T d:

Γ(8,8)\O(d, d+ 16,R)/(O(d)×O(d+ 16)).

• Classical moduli space of the non-supersymmetric E8 heterotic string: Γ8\O(d, d +

8,R)/(O(d)×O(d+ 8)).
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d G K

2 GL(2) SO(2)

3 SL(2)× SL(3) SO(2)× SO(3)

4 SL(5) SO(5)

5 SO(5, 5) SO(5)× SO(5)

6 E6(6) USp(8)

7 E7(7) SU(8)

8 E8(8) SO(16)

Table 6.1: Cosets G/K of maximal supergravities in 11− d dimensions.

In all the cases involving orthogonal groups, there is an additional R factor accounting for the

dilaton modulus.

Except in the non-supersymmetric cases, for which the duality group is not related to G(Z)

but has a more involved structure, all the discrete quotients involve the Chevalley groups over

Z, as already mentioned.

In the following, we will explicitly show the structure of the boundary for some examples in each

class, in particular focusing on how the various supergravity degrees of freedom are embedded

in the coset, in such a way to better understand how they evolve along geodesics.

6.3.1 Toroidal compactifications of the bosonic theory

In order to most easily understand the map between physical degrees of freedom and geo-

metric data, let us first show the example of the bosonic theory, whose moduli space for T d

compactifications has the form

Mbos = O(d, d,Z)\O(d, d,R)/(O(d)×O(d)) . (6.3.1)

It turns out that given an element g ∈ O(d, d,R)/(O(d)× O(d)), the metric moduli Gmn and

the B-field moduli Bmn, with m,n = 1, ..., d are embedded in the so-called generalised metric

H = gT g as follows [142]

H =

(
G−BG−1B BG−1

−G−1B G−1

)
. (6.3.2)

In particular, Cartan generators in a are related to the radii R1, ..., Rd of the T d, while the

compact moduli (angles and B-field) are associated to the ladder operators. For simplicity, let

us focus on the case d = 2, for which

Gmn =

(
R2

1 R1R2 cos θ

R1R2 cos θ R2
2

)
, Bmn =

(
0 b

−b 0

)
. (6.3.3)
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In particular

p =
〈
H1 =




1 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 0


 , H2 =




0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 −1


 , (6.3.4)

E1 =




0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0


 , E2 =




0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0



〉
, (6.3.5)

and

k =
〈
E3 =




0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0


 , E4 =




0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0



〉
. (6.3.6)

From (6.1.45), by exponentiation the norm 1 elements of the closure of the positive Weyl

chamber, which are of the form

h = diag(λ1, λ2,−λ1,−λ2) , λ1 ≥ λ2, λ1 ≥ −λ2 , (6.3.7)

which parametrise an interval,16 and

H = eth = diag(eλ1t, eλ2t, e−λ1t, e−λ2t) . (6.3.8)

With no B field turned on, from (6.3.2) we see that the radii of the torus are R1 = etλ1 and

R2 = etλ2 where λ1 ∈ [0,
√
2/2] and λ2 ∈ [−

√
2/2,

√
2/2]. Hence, we find the following possible

classes of limits

λ1, λ2 > 0, lim
t→∞

eht, (6.3.9)

heads to boundary points corresponding to decompactification limits to 10D bosonic string

theory. For

λ1 > 0, λ2 < 0, lim
t→∞

eht, (6.3.10)

the trajectory heads to boundary points which describe the T-dual version of 10 dimensional

bosonic string theory. Finally,

λ1 > 0, λ2 = 0, lim
t→∞

eht, (6.3.11)

is a 9d partial decompactification limit.

Due to the fact that we have two T-dual descriptions (6.3.9) and (6.3.10), it seems that we did

not properly account for the quotient by T-duality. This is indeed true, as we did not account

16Since the group O(2, 2) splits over R, there is only one equivalence class of rational parabolics under the
Chevalley group over the integers, so after the discrete quotient the boundary is an interval.
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for the Z2 outer automorphism of O(2, 2), that acts as λ2 → −λ2. This reduces the range of

λ2 ∈ [0,
√
2/2], then make the case (6.3.10) redundant. Strictly speaking, then, the moduli

space one is actually considering is

M ∼= (O(2, 2,Z)× Z2)\O(2, 2;R)/(O(2;R)×O(2;R)) . (6.3.12)

6.3.2 Toroidal compactifications of M-theory

For the Ed(d) case, let us focus on two explicative cases: the one of E4(4)
∼= SL(5) and one of

the actually exceptional cases, E6(6) for simplicity.

E6(6)

The best way to understand the moduli space based on E6(R) is to once again, look at the

level of the algebra and split it into representation spaces of GL(6;R). The 78 of e6 splits as

follows

78 = 36 + 20 + 20 + 1 + 1 , (6.3.13)

e6 = gl(6)⊕ (TM ⊗ T ⋆M)⊕ Ω3(TM)⊕ Λ3(TM)⊕ Ω6(TM)⊕ Λ6(TM) . (6.3.14)

The Cartan appears in the sl(6) ⊂ gl(6). We can write these as

H1 = diag(1, 0, 0, 0, 0, 0), H2 = diag(0, 1, 0, 0, 0, 0), ..., H6 = diag(0, 0, 0, 0, 0, 1). (6.3.15)

A general element of the maximal torus in e6 looks like H =
∑6

i∈1 λiHi and lives in the

TM⊗T ⋆M part of the decomposition. We choose 6 simple roots, 5 corresponding to generators

in TM ⊗ T ⋆M and one corresponding to a generator in Ω3(TM).

eα1 =




0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



, eα2 =




0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



, eα3 =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



,

(6.3.16)

eα4 =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0



, eα5 =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0



, (eα2)ijk =

{
1 i = 1, j = 2, k = 3

0 otherwise

(6.3.17)
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The root vectors for this choice look like

α1 =
(
1 −1 0 0 0 0

)
, (6.3.18)

α2 =
(
0 1 −1 0 0 0

)
, (6.3.19)

α3 =
(
0 0 1 −1 0 0

)
, (6.3.20)

α4 =
(
0 0 0 1 −1 0

)
, (6.3.21)

α5 =
(
0 0 0 0 1 −1

)
, (6.3.22)

α6 =
(
−1 −1 −1 0 0 0

)
. (6.3.23)

A Weyl chamber can be isolated by fixing αj(H) = αj(
∑6

i∈1 λiHi) ≥ 0 for all j ∈ [1, 6]. In the

supergravity theory, eλi parameterise 6 geometric quantities, radii, on the internal space of a

compactification of M-theory to 5D. The resulting conditions of the geometric quantities are

λ1 ≥ λ2 ≥ λ3 ≥ λ4 ≥λ5 ≥ λ6, 0 ≥ λ1 + λ2 + λ3 (6.3.24)

⇔ (6.3.25)

λ6 ≤ λ5 ≤λ4 ≤ λ3 ≤ 0 ∧ (6.3.26)

λ3 ≤ λ2 < −λ3
2

∧ λ3 ≤ −λ2 − λ1 ≤ −2λ2 ∨ λ1 = λ2 = −λ3
2

∧ λ6 ≤ λ5 ≤ λ4 ≤ λ3 ≤ 0.

(6.3.27)

We define a trajectory in the moduli space to be parameterised by an affine parameter t. The

constrains above tell us that at least 4 of the radii, e−tλ3 , ..., e−tλ6 diverge at large distance t.

Then

• If λ1, λ2 < 0, the trajectory corresponds to an 11D M-theory decompactification limit.

• If λ1 > 0, λ2 < 0, this corresponds to a 10D type IIA decompactification limit.

• If λ1 > 0, λ2 = 0, the boundary point is type IIA on an S1.

• If λ1 = 0, λ2 < 0, this is M-theory on S1, or type IIA.

• If λ1 = 0, λ2 = 0, this is M-theory on a S1.

• If λ1, λ2 > 0, then this corresponds to type IIA on an S1 dual to 10D type IIB.

SL(5)

The structure of the boundary in the case of SL(5,Z)\SL(5,R)/SO(5,R) was already de-

scribed in Section 6.2.2. Here we want to show how the moduli of 11 dimensional supergravity

compactified on T 4, that are in GL(4,R) representations, are embedded into SL(5). In this

case, the generalised metric in terms of the internal metric Gij and 3-form Cijk i, j, k = 1, ..., 4
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is [142]

H =

(
G+ 1

2CG
−1G−1C −1

2CG
−1G−1

−1
2G

−1G−1C 1
2G

−1G−1

)
. (6.3.28)

By denoting the T 4 radii as Ri = e−λi , an element of the Cartan subalgebra of sl(5) can be

expressed as

h =




λ1 0 0 0 0

0 λ2 0 0 0

0 0 λ3 0 0

0 0 0 λ4 0

0 0 0 0 λ1 + λ2 + λ3 + λ4




− 2

5
(λ1 + λ2 + λ3 + λ4)1 . (6.3.29)

The positive Weyl chamber is given by

a+ = {(λ1, λ2, λ3, λ4) : λ1 > λ2 > λ3 > λ4, λ1 + λ2 + λ3 < 0} , (6.3.30)

and its closure a+ is given by replacing strict inequalities with non-strict ones.

In the case of the minimal parabolic (related to Cartan generators in the interior of the positive

Weyl chamber), there are the following possibilities

• All λi < 0: decompactification to 11 dimensional M-theory.

• λ1 > 0, λ2,3,4 < 0: decompactification to 10 dimensional Type IIA.

• λ1,2 > 0, λ3,4 < 0: decompactification to 10 dimensional Type IIB.

In the case of non-minimal parabolics, some inequalities in (6.3.30) are saturated, meaning that

some radii stay constant along the geodesic. This corresponds to partial decompactification

limits of M-theory to 8 or 9 dimensions.

6.3.3 Toroidal compactifications of the Heterotic theory

The moduli space from compactifications of the Heterotic theory on T d is built on O(d, d+16)

and, given i, j = 1, ..., d, it is parametrized by the internal metric Gij , B-field Bij and d

16-dimensional Wilson lines AIi , I = 1, ..., 16 which enter the generalised metric as

H =



G+ CG−1C +AA −G−1C CG−1A+A

−G−1C G−1 −G−1A

CG−1A+A −G−1A κIJ +AG−1A


 , (6.3.31)

with

Cij = Bij +
1

2
AiIκ

IJAjJ . (6.3.32)

Depending on the embedding, κIJ is either the E8 × E8 or the SO(32) Killing metric. This is

related to the fact that there are two self-dual lattices in 16 dimensions, distinguished by the

choice of metric with respect to which we get norm one lattice generators.

Since the moduli space is built on a group that does not split over the reals, the only contri-

bution to the boundary comes from the O(d, d) component, which is essentially related to the
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radii of the T d. Indeed, the O(16) part, related to the internal Heterotic torus, is rigid and

cannot be decompactified.

Moreover, in this case we can in principle have more than one equivalence classes of parabolic

subgroups under O(d, d+ 16,Z). This is indeed what happens, and is related to the fact that

there exist two possible decompactification limits to 10 dimensions, to the SO(32) and the

E8 × E8 Heterotic theories.

For the non-supersymmetric O(16)×O(16) heterotic theory compactified on a circle, the con-

tinuous part of the moduli space is the same, but as we pointed out before the action of Γ is

different, and there are seven points at the boundary, two corresponding to the two supersym-

metric ten-dimensional heterotic theories, and the other five to the five non-supersymmetric

theories [104].

6.4 The Swampland Distance Conjecture

What we have shown so far, is that, given any point o on a symmetric space, it is possible to

explicitly parametrise points at infinite geodesic distance from it. This allows us furthermore

to make statements about how the masses of towers of states evolve along these geodesics,

connecting to the Swampland Distance Conjecture [14] as stated in (2.1.1).

In order to do this explicitely, in addition to the coset structure of the moduli space we need

to make some further assumptions regarding the spectrum of the theory, namely completeness.

As we mentioned previously, related to the arithmetic duality group there is the notion of

lattice. That is, let V be the vector space over which G ⊂ GL(n,R) acts, and Σ ≃ Zn a

lattice in V , that is to be physically identified with the lattice of charge under the U(1)n gauge

symmetry of the perturbative states of the theory, which is left invariant by the action of Γ. For

G = O(d, d) ⊂ GL(2d) the lattice is given by the momenta and winding charges, corresponding

respectively to the diffeomorphisms and gauge symmetries of the B-field. Similarly, for G =

Ed(d), n is the the dimension of the vector representation of Ed. The gauge symmetries are

(in M-theory compactifications on d tori) the d diffemorphisms, the M2 and M5 brane charges

(and diffeomorphisms of the dual graviton for d ≥ 7).

For each [g] ∈ S = G/K, that is, for each point in moduli space, one can define a notion of

metric on V as

H = gT g . (6.4.1)

Being K compact, K ⊂ O(n) so all the elements kg, k ∈ K in the same equivalence class define

the same metric since kTk = 1. Then, given two vectors in the lattice, v, w ∈ Σ ⊂ V , the

distance between the two can be defined as

d(v, w) = vTHw , (6.4.2)

and in particular one can define the mass in the string frame of a state characterised by a

charge vector q ∈ Σ as

M2
q = qTHq . (6.4.3)

Notice that in principle we do not have to assume supersymmetry in order to make this state-

ment, despite the fact that in the specific case of toroidal compactifications the sates in the
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charge lattice are BPS. Conceptually, we are only asking for the mass of the states to be a

function defined on the moduli space and covariant under the action of the discrete subgroup.

This expression can be then connected to what we saw in Section 6.3, as it turns out that

H defined in (6.4.1) is the generalised metric H defined above for the various moduli spaces.

Then, having computed explicitly its form along the geodesics flow, which is generically of the

form

H(t) ∼ diag(eλ1t, ..., eλnt) , (6.4.4)

with t an affine parameter, we can follow the behavior of the mass associated to each charge

as t → ∞, which corresponds to an infinite distance limit in moduli spaces, provided that the

geodesic is such to reach a rational value of the compact moduli. It turns out that generically

the mass has the following form

M2(t) ∼ q21e
λ1t + q22e

λ2t + ...+ q2ne
λnt , (6.4.5)

where depending on the G−representation of the charges q, the λ’s are not in general inde-

pendent.

For all the moduli spaces, for each choice of infinite distance limit there is at least one λi < 0,

such that the corresponding tower qi satisfies the distance conjecture.

Let us show this explicitly in two examples.

SL(5)

Focusing on M-theory compactified on a T 4. The charges are in the 10 representation of SL(5),

which under GL(4) decomposes as

10 = 4+ 6 , (6.4.6)

namely a vector (corresponding to the KK charges) and a 2-form (corresponding to the brane

charges)

q =
{



q1
q2
q3
q4


 ,




0 q5 q6 q7
−q5 0 q8 q9
−q6 −q8 0 q10
−q7 −q9 −q10 0



}
. (6.4.7)

Then the contribution to the mass coming from the compact directions reads

M2
q = e−8/5t(λ1+λ2+λ3+λ4)(e2t(2λ1+λ2+λ3+λ4)q21 + e2t(λ1+2λ2+λ3+λ4)q22 + e2t(λ1+λ2+2λ3+λ4)q23

+ e2t(λ1+λ2+λ3+2λ4)q24 + 2e2t(λ1+λ2)q25 + 2e2t(λ1+λ3)q26 + 2e2t(λ1+λ4)q27 + 2e2t(λ2+λ3)q28

+ 2e2t(λ2+λ4)q29 + 2e2t(λ3+λ4)q210) , (6.4.8)

where the λ’s are related to the T 4 radii as in (6.3.29). It can be shown that for each choice

of {λ1, ..., λ4} ̸= {0, ..., 0} at least one of the exponents is negative, thus proving the Distance

Conjecture.
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SL(2) ⊂ O(2, 2)

Let us now focus on bosonic string theory compactified on a T 2 at fixed volume with metric gij ,

det g = 1 and with no B-field.17 The moduli space is isomorphic to SL(2,Z)\SL(2,R)/SO(2).

The mass spectrum is given by

M2 =M2
0 +

2

α′ (NR + ÑL − 2) : M2
0 = gij(p̃

i
Lp̃

j
L + piRp

j
R) = (W,N)Ĥ(W,N)T , (6.4.9)

where M2
0 is the contribution from the internal directions to the mass, ÑL and NR are respect-

ively the left and right moving oscillator numbers that give the 10 dimensional string spectrum,

p̃iL and piR are respectively the left and right moving internal momenta, and (W,N) is a vector

of winding and momentum charges, W = (w1, w2) and N = (n1, n2). Ĥ is the embedding of

the SL(2) H into the O(2, 2,R) generalised metric. It was shown in [143] that

Ĥ =

(
g 0

0 g−1

)
=

1

τ2




|τ |2 τ1 0 0

τ1 1 0 0

0 0 1 −τ1
0 0 −τ1 |τ |2


 . (6.4.10)

Hence, we can deduce that the flow of Ĥ along geodesics is given by

Ĥ(t) =

(
g(t) 0

0 g−1(t)

)
=

1

τ2(t)




|τ(t)|2 τ1(t) 0 0

τ1(t) 1 0 0

0 0 1 −τ1(t)
0 0 −τ1(t) |τ(t)|2


 . (6.4.11)

with Ĥ(0) = diag(g(0), g−1(0)) and g(0) = diag(1, 1) at τ(0) = i. We find

M2
0 (t) =

1

τ2(t)
(|τ(t)|2w2

1 + 2τ1(t)w1w2 + w2
2 + |τ(t)|2n21 − 2τ1(t)n1n2 + n22). (6.4.12)

Under c0(t) in (6.1.27), M2
0 (t) flows as

M2
0 (t) = (e2tw2

1 + e−2tw2
2 + e2tn21 + e−2tn22) , (6.4.13)

so that the towers w1 = n1 = 0 become massless as t→ ∞. Under c1(t) in (6.1.28), it flows as

M2
0 (t) = (e−2tw2

1 + 2xe2tw1w2 + e2tw2
2 + e−2tn21 − 2xe2tn1n2 + e2tn22) , (6.4.14)

so that the tower w2 = n2 = 0 become massless as t → ∞. In summary, we have shown that

the distance conjecture (unsurprisingly) holds in this string compactification.

At this point, one should account for the discrete quotient by the duality group, that selects

only rational geodesics as reaching the boundary of the physical moduli space. Nevertheless,

we have shown that the Distance Conjecture in principle holds also before this quotient, thus

the explicit form of the discrete quotient does not matter as long as the mass behaviour is

concerned. It only gives the structure of the boundary, for example the number and the type

17The true moduli space has twice as many degrees of freedom and is isomorphic to O(2, 2,R)/(O(2)×O(2)).
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of possible decompactification limits.

What was said up to now holds in the string frame and in string units, in which the effective

action has the form

S =
1

(2π)7α′4

∫
d10x

√−gse−2Φ(Rs + ...) , (6.4.15)

while the Distance Conjecture is a statement about the behaviour of the mass in the Einstein

frame and in Planck units

S =
Md−2
p

2

∫
ddx

√−gE(RE −Gij∂ϕ
i∂ϕj) , (6.4.16)

obtained through a Weyl rescaling of the metric.

If we want to express the mass in Planck units then we need to account for a multiplicative

factor containing the 10 dimensional dilaton and the compactification volume

M2

M2
P

(t) ∼ 1

MP (α′,Φ, V olT d(t))
(q21e

λ1t + q22e
λ2t + ...+ q2ne

λnt) . (6.4.17)

Provided that the dilaton is at weak coupling, restricting to the positive Weyl chamber guar-

antees that the torus volume diverges,18 so that also in Planck units the conjecture is satisfied.

18This is more subtle for e.g. the R → 0 limit of the heterotic string on S1. Here anyway it can be shown
that the SDC is still satisfied, as expected.
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Chapter 7

Conclusions

In the first part of this work we studied the infinite distance points of the heterotic string

compactified on d-dimensional tori corresponding to decompactification limits and their T-

dual vanishing size limit. We showed that as one approaches these limits, an affine algebra

arises.

• In the case d = 1, we find that starting from eithr the E8×E8 or SO((32) heterotic theory,

one of the two infinite distance points is characterised by the affine algebra (E9 ⊕E9)/ ∼
(the identification means that the two copies of E9 share the same central extension),

while the other one presents a D̂16. These are the only two possibilities, in agreement with

the claim that only the affine versions of the gauge groups realized in the decompactified

theory (the 10 dimensional theory in our case) should be obtained in the decompactifica-

tion limit of the lower dimensional one [23]. The limit in which they are realised depends

on whether we consider the moduli space in the E8 × E8 or SO((32) parametrisation.

Independently on this, though, the central extension that gives rise to the affinization of

these algebras is the circle direction. In fact, these heterotic BPS states which become

arbitrarily light as we approach the infinite distance points are known to be part of an

even bigger BPS algebra realized at finite distances, where BPS states are generically

massive [144].

We motivated the appearance of these affine algebras by means of the Extended Dynkin

Diagram of the Narain Lattice Γ(1,17), and also found them very explicitly by computing

the relevant OPEs and taking the infinite distance limit (e.g. R → ∞). To be precise,

by computing the OPEs of the KK modes of the Cartan and root sectors of the E8 × E8

heterotic states, we were able to isolate the simple poles in the limit and read off the

affine algebra, explicitly identifying its central extension.

We have also analyzed these results in the light of some relevant Swampland Conjectures,

namely the Weak Gravity Conjecture, the closely related Repulsive Force Conjecture, and

the Distance Conjecture. We have explicitly performed the field theory computation of

the force between two probe heterotic states in the 9 dimensional theory, and showed that

it matches the corresponding extremality bound [113] (in the regime where perturbative

computation can be trusted). The Lattice Weak Gravity/Repulsive Force Conjecture

then requires one particle in each site of the charge lattice to be superextremal/self-

repulsive, and in particular the BPS states saturate this bound. We showed explicitly
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that when the relevant infinite distance point is approached, a subset of the gauge coup-

lings becomes vanishing (this has been conjectured to be a general property of all infinite

distance limits in QG [40]), forcing the relevant states on the lattice to become massless.

In the decompactification limit, these vanishing gauge couplings are associated to the

heterotic gauge bosons (or more precisely, their Cartan subsector) and the graviphoton,

and a subset of the states charged under them (i.e. the BPS ones) are precisely the ones

that form the (E9 ⊕ E9)/ ∼ or D̂16 algebras.

• Affine algebras were also found in their dual F-theory reincarnation, at the boundaries

of “open string moduli space” [22, 23, 111]. In compactifications of F-theory on K3 one

finds other affine exceptional algebras, and thus we expect to find them in toroidal com-

pactifications of the heterotic string. We thus studied the infinite distance limits in the

moduli space of the heterotic string on T d correponding to decompactification of one or

more dimensions, generalizing the d = 1 case. In these backgrounds, which have 16 su-

percharges, the heterotic string worldsheet neatly captures all the data relevant to gauge

symmetry enhancements and in particular this makes it a suitable frame to study how

these symmetries behave at infinite distance. We have seen that in every case, the gauge

algebra is asymptotically enhanced to an affine BPS algebra with the same number of

central extensions as decompactified dimensions. This algebra is always the affine version

of an allowed gauge algebra in the (partially) decompactified theory, and the affinization

works democratically on every one of its simple factors. This includes the nonabelian

factors of type A, D and E, as well as left- and right-moving Cartans.

Restricting to the case of eight dimensions, we have studied the dual description given

by type IIB string junctions on the sphere and the corresponding F-theory on an elliptic

K3 surface. Infinite distance limits in the latter correspond to degenerations of the K3

surface and are exhaustively accounted for in Kulikov models [22]. In the case that only

one dimension decompactifies in the heterotic dual, i.e. in a Type III.a degeneration, we

have shown that the affine algebras emerge in the same way as for the heterotic string.

This is a nontrivial statement insofar as only affine algebras of exceptional type had

been considered in the string junction literature [111, 115] and constructed explicitly in

F-theory [22, 23], but we emphasise how explicitly how this works for all other kinds.

There are in turn two K3 degeneration limits corresponding to decompactification of the

heterotic string to ten dimensions. One of them, the Type II.a degeneration, produces

the double loop algebra (Ê9 ⊕ Ê9)/ ∼, in perfect agreement with the heterotic string. As

we showed, there is also a Type III.b degeneration limit in which double loop algebra
̂̂
D16 should appear. However, one of the two associated towers of light states is of KK

type and is not realized by string junctions. In fact, the III.b degeneration type admits a

priori the realization of various other algebras which we know do not correspond to ten

dimensional theories, a symptom of the same underlying problem.

Moreover, we have shown that in the heterotic setup we can explicitly describe some paths

towards the infinite distance singularities that cannot be straightforwardly described by

the one parameter Kulikov models in F-theory. These paths can be understood as a

sequential two-step decompactification from the heterotic point of view. However, after

the first step, once the effective physics becomes 9 dimensional, it may not be possible to
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describe it as an F-theoretic vacuum any more (while it can be from the heterotic angle).

• Given the simplicity with which the heterotic string allows to study the appearance of

affine algebras, it is interesting to consider other backgrounds with 16 supercharges con-

structed as asymmetric orbifolds. The simplest case is the CHL string, where ADE

algebras are realised at level 2, and in eight dimensions it exhibits algebras of type Cn.

Furthermore, in lower dimensions also those of type Bn and F4 are realised. The eight

dimensional CHL string and some of its decompactification to nine dimensions has been

studied from the point of view of string junctions in [117]. We focused on the decom-

pactification of the perturbative CHL string to ten dimensions, which is characterized by

a twisted affine algebra. Our result can be generalized to the case of eight-dimensional

compactifications with rank reduction of CHL type when one decompactifies the cycle

carrying the holonomy. Thus, it is a non-trivial prediction to be reproduced in a dual

M/F-theory description in the presence of frozen singularities on K3 in the appropriate

infinite distance limit, though the explicit realisation is still an open question. In lower

dimensions there are also other possibilities; for example, in the case of the CHL string

on S1, one could decompactify the S1 without the holonomy recovering an affine, non-

twisted algebra (from the Type II point of view, see [117]).

Another possible avenue would be to understand the algebras arising in infinite distance

limits in the case of Calabi-Yau compactifications of the heterotic theory (which in the

K3 case is dual to F-theory on elliptic Calabi-Yau threefolds, whose degenerations at

infinite distance have been recently considered in [145, 146]). However, even in the het-

erotic frame, this would require an understanding of both space-time and worldsheet

non-perturbative effects. It may be possible and instructive to generalize our methods to

special loci where the K3 is realized as an orbifold of T 4, and we hope that the lessons

learned from those examples may be useful for understanding the more general situation.

While we focused on decompactification limits that preserve the number of supercharges,

we could also consider the case of nine-dimensional non-supersymmetric heterotic string,

in which case we would expect to find both an asymptotic current algebra and super-

symmetry enhancement, at least at string tree-level. It would then be interesting to

reconsider these structures in light of the non-zero vacuum energy generated by string

loops.

In the second part of the thesis, we focused on the case of symmetric moduli spaces. These

include toroidal compactifications of M- and string theory, but the definition actually refers to

a more general class. Indeed, starting with a “non-positively curved” space M (i.e. having

non-positive sectional curvature), one can still define a notion of rank (with rank = 1, 2, 3,

. . . ). There it can be shown that if M is finite volume and of rank > 1, then M has to be a

locally symmetric space. In addition to this, string theoretic examples display also an action

of a duality group, which mathematically can be accounted for with a quotient by a discrete

subgroup.

We first presented the mathematical framework of global symmetric spaces, which are diffeo-

morphic to a quotient of Lie groups (locally symmetric spaces have globally symmetric ones

as universal covers). In particular, we focused on the properties of the class of non-compact

symmetric spaces, which clearly connects to the properties of string moduli spaces. This re-
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quirement sets constraints on the type of group quotients, which makes it possible to give a

unified description of their boundaries just in terms of group theoretic arguments. In partic-

ular, they can be studied in terms of geodesics that reach infinite distance; these are just a

measure zero class of all the possible geodesics on such manifolds, and are characterised by

rational values of the compact moduli. This can be directly connected with the SDC, which is

a statement along geodesic flows at infinite distance. These are classified by rational parabolic

subgroups and elements of the Cartan subalgebra of the structure group of the manifold, which

allows for a systematic description of the geometry at infinity of such moduli spaces. In turn,

this makes it possible to give a rigorous proof of the Distance Conjecture in these settings under

the assumption of a fully populated charge lattice [134]. Despite having focused explicitly on

cases with a high number of supercharges, in principle these methods are completely general

and do not rely at any point in the amount of supersymmetry, as long as the theory displays

a symmetric moduli space and a complete charge lattice.
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Appendix A

Affine Lie algebras

In this Appendix we briefly summarise the construction of loop and affine algebras, both in

their unwisted and twisted versions. We will follow mainly [123,124,127].

Let us consider a compact simple1 Lie group G with algebra g generated by an orthonormal

set {Ja} and characterized by structure constants fabc . The notion of orthonormality comes

from the Killing form, defined as folllows. The action of a generator X ∈ } in the adjoint

representation ad(X) is

ad(X)Y = [X,Y ], X, Y ∈ g , (A.0.1)

and from this one can define the Killing form K as

K(X,Y ) =
1

2g
Tr(adX adY ) , (A.0.2)

where g is the dual Coxeter number of g. Then by orthonormality of the basis {Ja} one means

K(Ja, Jb) = δab . (A.0.3)

Let us choose for g the Cartan-Weyl basis, with the Hermitean and orthonormalH i (i=1,...,r=rank(g))

in the maximal Abelian subalgebra of g, the Cartan subalgebra, and Eα such that

[H i, Hj ] = 0, [H i, Eα] = αiEα . (A.0.4)

α = (α1, ..., αr) is called the root associated to the step operator Eα. Let us denote by Σ the

set of roots.

Moreover, from Jacobi identities it holds

[Eα, Eβ] =





Nα,βE
α+β for α+ β ∈ Σ

2
|α|2α

iH i for α = −β ,
0 otherwise,

, (A.0.5)

1The algebra of a generic compact Lie group would just be the product of simple ones and Abelian ones.
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where from the structure of the Killing form |α|2 =
∑r

k=1 α
kαk and the normalization of Eα

is given from [Eα, E−α], and is

K(Eα, Eβ) =
2

|α|2 δ
α+β,0 . (A.0.6)

Moreover, let us define the pairing

α ·H =
r∑

i=0

αiH i . (A.0.7)

One can always choose a basis of r roots, the so-called simple roots {α(1), ..., α(r)} = Φ, such

that every other root β ∈ Σ can be written as

β =

r∑

i=1

biα(i) , (A.0.8)

where either bi ≥ 0, 1 ≤ i ≤ r (and β is called a positive root) or bi ≤ 0, 1 ≤ i ≤ r (and β is

called a negative root).

The Cartan matrix associated to g is defined as

Cij =
2α(i) · α(j)

α2
(j)

∈ Z , (A.0.9)

and it is determined by g, up to permutations of rows/columns. The information contained in

(A.0.9) is the same as the one in the Dynkin diagram, which can be built from it as follows.

To each simple root α(i) corresponds one node (white for long roots and black for short roots),

and the number of links between two nodes related to α(i) and α(j) is CijCji.

The roots are the eigenvalues of the Cartan generators are called roots in the adjoint repres-

entation. By considering an arbitrary representation, one can always find a basis {|λ⟩} for

which

H i |λ⟩ = λi |λ⟩ . (A.0.10)

The vectors λ = (λ1, ..., λr) are called weights, and it turns out that they can be also expressed

in the basis of simple roots, namely

λ =

r∑

i=1

liα(i) , (A.0.11)

where in this expansion usually the coefficients li are not integers.

Untwisted affine Lie algebras

Associated to the algebra } there is a so-called loop algebra, denoted ḡ, which is built as the

periodic map from the circle into the Lie algebra g

ḡ = g⊗C[t, t−1] , (A.0.12)
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where C[t, t−1] is the algebra of Laurent polynomials in t. Namely, one is considering the

elements X ∈ g to be Laurent polynomials in t as

X =

+∞∑

n=−∞
Xnt

n , n ∈ Z . (A.0.13)

In particular, the generators of the loop algebra are

Jan ≡ Ja ⊗ tn , (A.0.14)

and the multiplication rule is naturally inherited from the one of g

[Jan , J
b
m] = ifabcJ

c
n+m . (A.0.15)

An untwisted affine Lie algebra ĝ can be realised as a central extension of ḡ by a central element

k̂ commuting with all the Jan ’s

[Jan , k̂] = 0 , (A.0.16)

with the addition of a ‘derivation operator’ d needed to remove the degeneracy in the affine

roots, as will be explained in the following. Thus

ḡ = g⊗C[t, t−1]⊗Ck̂ ⊗Cd . (A.0.17)

with commutators

[Jan , J
b
m] = ifabc J

c
n+m + k̂nK(Ja, Jb)δn+m,0 (A.0.18)

= ifabc J
c
n+m + k̂nδabδn+m,0 , (A.0.19)

where the second equality holds in the convention (A.0.3). This central extension can be proved

to be unique.

This means that in the Cartan-Weyl basis the brakets read

[H i
n, H

j
m] = k̂nδijδn+m,0 ,

[H i
n, E

α
m] = αiEαn+m , (A.0.20)

[Eαn , E
−α
m ] =

2

|α|2
(
α ·Hn+m + k̂nδn+m,0

)
,

From (A.0.20), the set {H i
0, ...,H

r
0 , k̂} is Abelian, and also k̂ commutes with all the generators.

The roots built with this Abelian subalgebra, though, are infinitely degenerate: the eigenvalues

of ad(H i
0) and ad(k̂) on the generators Eαn are αi and 0, in such a way that the associated root

is (α1, ..., αr, 0) for all n. Hence the need to have an operator that can discriminate among

different n’s, for instance

d = t
d

dt
, (A.0.21)

such that from (A.0.14)

[d, Jan ] = nJan , (A.0.22)
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and moreover

[d, k̂] = 0 , (A.0.23)

such that the extension of the definition of the Killing form to the affine algebra is given by

K(Jan , J
b
m) = δabδn+m,0 , K(Jan , k̂) = 0 , K(k̂, k̂) = 0 ,

K(Jan , d) = 0, K(d, k̂) = 1 , K(d, d) = 0 . (A.0.24)

The Cartan subalgebra is {H i, k̂, d} and the ladder operators are Eαn for all n ∈ Z and H i
n

for n ̸= 0. The root vectors are respectively α̂ = (α, 0,n), each of which is non-degenerate,

and ĥ = (0r, 0, n) ≡ nδ (where δ = (0r, 0, 1) is called imaginary root), each of which is r-fold

degenerate.

From (A.0.24), and defining an affine weight vector λ̂ = λ, λk, λd with λ a weight vector for g,

the scalar product ·̂ is defined as

λ̂ ·̂ µ̂ = λ · µ+ λkµd + λdµk , (A.0.25)

so that |α̂|2ˆ = |α|2, |δ|2ˆ = 0 and α̂ ·̂ δ = 0, so that δ is a null vector, orthogonal to all the other

roots.

The set of simple roots of the affine algebra can be defined from the simple roots of the finite

algebra with n = 0, namely α̂(i) = (α, 0, 0) and the affine root

α̂0 = (−ψ, 0, 1) , (A.0.26)

where ψ is the highest root of g, defined as the unique root such that, for any α ∈ Σ, ψ − α is

a sum of positive roots.

The Cartan matrix for the affine algebra is then

Cij =
2α(i) · α(j)

α2
(j)

, 0 ≥ i, j ≥ r , (A.0.27)

and from it one can build the corresponding affine Dynkin diagram.

Twisted affine Lie algebras

Let us now consider the case in which the algebra g has an automorphism τ

[τ(Ja), τ(Jb)] = ifab cτ(J
c) (A.0.28)

of order N , τN = 1. Then g can be divided into eigenspaces g(m) of τ , such that

τ(T ) = e2πim/NT for T ∈ g(m) (A.0.29)

by taking appropriate linear combinations T of the generators. This defines a gradation of the

algebra

g = ⊕m∈ZNg(m) , [T(m), T(n)] ∈ g(m+n) for T(m) ∈ g(m) , T(n) ∈ g(n) . (A.0.30)
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The g(0) ⊂ g component is a Lie algebra, and it is the subalgebra of g that commutes with the

automorphism τ .

Building then an affine algebra from the basis {T a} of eigenvectors of τ leads to the affine

generators {T ar }, r ∈ Z+ r
N such that

[T am, T
b
n ] = ifab cT

c
m+n + k̂mδabδm+n,0 (A.0.31)

gives what is referred to as twisted affine algebra ĝτ . Again, one introduces a derivation d such

that

[d, T am] = mT am , [d, k̂] = 0 . (A.0.32)

It turns out that using an inner automorphism τinner of g yields a twisted algebra ĝτinner that

is isomorphic to the untwisted ĝ. Indeed, in this case there exists a g ∈ G (a Lie group with

algebra g) such that

τ(T ) = gTg−1 , (A.0.33)

and the twist coming from such a transformation can always be removed by a shift as follows.

First of all, notice that twists generated by two conjugate elements g1, g2 ∈ G lead to isomorphic

twisted algebras. This means that by conjugation we can always choose g to correspond to a

Cartan generator, namely

g = eiξ
iHi

. (A.0.34)

Then asking that τ has order N is equivalent to Nξiαi ∈ 2πZ for all the roots α of g. Moreover,

it holds

τ(H i) = H i, τ(Eα) = eiξ
iαiEα, (A.0.35)

so that ĝτ has generators

H i
m, m ∈ Z , (A.0.36)

Eαr , r ∈ Z+
ξiαi

2π
(A.0.37)

together with the central extension k̂ and the derivation d which satisfy an algebra which is

formally the same as the one of the untwisted ĝ with properly shifted indices as in (A.0.36).

Then, it is easy to show that the operators

Ki
m = H i

m +
1

2π
k̂ξiδn,0 ,

Fαm = Eαm+ξiαi/2π , (A.0.38)

d′ = d− 1

2π
ξiH i

together with k̂ satisfy the algebra ĝ.

It is important to stress though that in the two cases the physical interpretation is different,

for instance states arrange differently. In particular, being the derivations d and d′ different,

the vacuum states in some representation of ĝτ will form a representation of g0 instead of the

full g. Also the gm, m > 0, are representations of g0.
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Outer automorphisms exist when the Dynkin diagram of g displays some symmetries, such as

in the cases An with n ≥ 2, Dn wiht n ≥ 4 and E6. In all these these cases τ has order 2, and

D4 has in addition an outer automorphism of order 3, related to the S3 permutation symmetry.

Let us define the action of the outer automorphism τ on the simple roots as

τα(i) = ατ(i) , i = 1, ..., r (A.0.39)

which can be extended to g as

τ(α) · τ(H) = α ·H , (A.0.40)

τ(Eα(i)) = Eτ(α(i)) , (A.0.41)

where (A.0.41) holds for simple roots, and in general by the requirement that τ leaves the

Dynkin diagram unchanged, it holds

τ(Eα) = ϵαE
τ(α) , (A.0.42)

with ϵα = ϵ−α +±1.

Let us now restrict for simplicity to the order 2 case. Then, τ has eigenvalue +1 on g(0) and

−1 on g(1). Then, it can be easily seen that for α(i) such that τ(i) = i

α(i) ·H ∈ g(0) (A.0.43)

and if τ(i) ̸= i

1

2

(
α(i) + α(τ(i))

)
·H ∈ g(0) ,

1

2

(
α(i) − α(τ(i))

)
·H ∈ g(1) , (A.0.44)

and the Cartan subalgebra of g(0) is generated by the distinct operators of the form ξ ·H with

τ(ξ) = ξ. Moreover

[ξ ·H,Eα ± Eτ(α)] = ξ (α+ τ(α)) (Eα ± Eτ(α)) , (A.0.45)

and since

τ(Eα ± Eτ(α)) = ±ϵα(Eα ± Eτ(α)) , (A.0.46)

it follows that

• if α = τ(α), then Eα ∈ g(0,1) if ϵα = ±1,

• if α ̸= τ(α), then Eα ± Eτ(α) ∈ g(0,1).

Then, the roots of g(0) are of the form

• α with α = τ(α) and ϵα = 1, or

• 1
2 (α+ τ(α)) for α ̸= τ(α) and ϵα = 1,
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such that a set of simple roots of g(0) are β(i) = 1
2

(
α(i) + α(τ(i))

)
. In order to get a basis of

simple roots for ĝτ , one has to add the vector

β(0) = (−ϕ, 0, 1
2
) , (A.0.47)

where ϕ is the highest vector of the form 1
2α + 1

2τ(α) for α ̸= τ(α) or α for α = τ(α) and

ϵα = −1. In particular, given the imaginary root δ as above, the roots of the twisted affine

algebra are of the form

{Σ(g(0)) + Zδ} ∪ {Σ(g(1)) + (Z+ 1/2)δ} ∪ {Z/2δ} , (A.0.48)

where Σ(g(0)) is the root system of g(0) and Σ(g(1)) are the non-zero weights of g(1).
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Appendix B

Worldsheet realization of the affine

algebras

In the following, we present the affinisation of the current algebras from the worldsheet point of

view. With the normalization in (3.1.11), the non trivial OPEs between the worldsheet bosons

in the heterotic theory are

Xµ(z, z̄)Xν(w, w̄) ∼− 1

2
ηµν log |z − w|2 , (B.0.1)

Y i(z, z̄)Y j(w, w̄) ∼− Gij

2
log |z − w|2 , (B.0.2)

XI(z)XJ(w) ∼− δIJ log(z − w) , (B.0.3)

where Y i(z, z̄) = Y i(z) + Ȳ i(z̄) are the compact bosons of T d, with i = 1, ..., d, and XI(z) are

the compact chiral bosons of the heterotic torus.

B.1 Affine algebras in the heterotic string on S1

Let us show explicitly how the (E9 ⊕ E9)/ ∼ algebra is derived in the general case of finite

constant Wilson line A. The vertex operators in the 0 picture associated to each E8×E8×U(1)

(or SO(32)× U(1)) massless vector in the string spectrum are

αI−1ψ̄
µ

− 1
2

|0, n⟩NS → JI(z)

(
i
√
2∂̄Xµ(z̄) +

1√
2
κ · ψ̄(z̄)ψ̄µ(z̄)

)
eikX(z,z̄)einY (z,z̄) , (B.1.1)

ψ̄µ− 1
2

|0, n, πα⟩NS → Jα(z)

(
i
√
2∂̄Xµ(z̄) +

1√
2
κ · ψ̄(z̄)ψ̄µ(z̄)

)
eikX(z,z̄)ei(n−π

I
αA

I)Y (z,z̄) , (B.1.2)

α9
−1ψ̄

µ

− 1
2

|0⟩NS → J9(z)

(
i
√
2∂̄Xµ(z̄) +

1√
2
κ · ψ̄(z̄)ψ̄µ(z̄)

)
eikX(z,z̄)einY (z,z̄) . (B.1.3)

They depend on the right momentum κ = (kµ, pR), on the E8 × E8 (or SO(32)) currents, JI

and Jα as in (4.1.6) and on the U(1) current

J9(z) = i
√
2∂Y (z) . (B.1.4)

123
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In the limit R → ∞, in order to read the structure of the algebra in the presence of a non

vanishing Wilson line we can generalise the definitions (4.1.5) of {Jan} (a = I, α) to

JIn(z) ≡
(
JI(z)− AI√

2
J9(z)

)
einY (z) = i(∂XI(z)−AI∂y(z))einY (z) ,

Jαn (z) ≡ Jα(z)ei(n−π
I
αA

I)Y (z) = cαe
iπIα(X

I(z)−AIY (z))einY (z) ,

(B.1.5)

which are still both associated to massless states. They can still be interpreted as asymptot-

ically conserved currents, as their conformal dimension (hI = 1 + n
2R2 and hα = 1 + (n−πIαAI)

2R2

respectively) tends to 1 as R → ∞. As one can see from (B.1.5), they can be rewritten using

the field redefinition

X ′I(z) = XI(z)−AIY (z) (B.1.6)

(which makes it manifest that the effect of the Wilson line is to mix the E8 ×E8 Cartan states

with the left KK one) yielding

JIn(z) = i∂X ′I(z)einY (z) , Jαn (z) = cαe
iπIαX

′I
einY (z) , (B.1.7)

which are in the same form as the ones in the zero Wilson line case. In terms of the redefined

heterotic coordinate, the non trivial OPEs among the worldsheet fields are

X ′I(z)X ′J(w) ∼XI(z)XJ(w) +AIAJY (z)Y (w) ∼ −
(
δIJ +

AIAJ

2R2

)
log(z − w) , (B.1.8)

X ′I(z)Y (w, w̄) ∼−AIY (z)Y (w) ∼ AI

2R2
log(z − w) , (B.1.9)

as well as (B.0.1) and (B.0.2) which remain unchanged. It is clear that for R → ∞ the fields

X ′I and XI satisfy the same OPEs, and so the cases AI = 0 and constant AI ̸= 0 are equivalent

in the limit when the structure of the algebra is concerned, namely the currents (4.1.5) and

(B.1.5) satisfy the same relations. For simplicity we will restrict to the case AI = 0, described

by (4.1.5) and (4.1.6). One can compute the OPE between two of such affine currents as

follows. Taking two states in the tower of the E8 × E8 (or SO(32)) Cartan vectors

JIn(z)J
J
m(w) = − : ∂XI(z) einY (z) : : ∂XJ(w) eimY (w) :

= (z − w)
nm
2R2 : einY (z)eimY (w)

(
−∂XI(z)∂XJ(w) +

δIJ

(z − w)2

)
: ,

and expanding around z = w

JIn(z)J
J
m(w) =

= (z − w)
nm
2R2 : (1 + in∂Y (w)(z − w) + . . .) ei(n+m)Y (w)

(
−∂XI(z)∂XJ(w) +

δIJ

(z − w)2

)
:

∼ (z − w)
nm
2R2

(
δIJ

: ei(n+m)Y (w) :

(z − w)2
+ iδIJn

: ∂Y (w)ei(n+m)Y (w) :

z − w
+O(1)

)
,

(B.1.10)
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which is indeed (4.3.7). As for the OPE between two affine root currents

Jαn (z)J
β
m(w) = : cαe

iπIαX
I(z)einY (z) : : cβe

iπJβX
J (w)eimY (w) :

= cαcβ(z − w)πα·πβ+
nm
2R2 : eiπ

I
αX

I(z)einY (z)eiπ
J
βX

J (w)eimY (w) :

= cαcβ(z − w)πα·πβ+
nm
2R2 :

[
1 + iπIα∂X

I(w)(z − w) + ...)·

· (1 + in∂Y (w)(z − w) + . . .
]
ei(π

I
α+π

I
β)X

I(w)ei(n+m)Y (w) : .

(B.1.11)

The explicit result depend on the pair of roots we consider. If πα + πβ = πα+β still belongs

to the root system of E8 × E8 (or SO(32)), with the root normalization |π|2 = 2 it holds

πα · πβ = −1 and (B.1.11) reads

Jαn (z)J
β
m(w) ∼(z − w)

nm
2R2

(
ϵ(α, β)cα+β : eiπ

I
α+βX

I(w)ei(n+m)Y (w) :

z − w
+O(1)

)

=(z − w)
nm
2R2

(
ϵ(α, β)Jα+βn+m(w)

z − w
+O(1)

)
.

(B.1.12)

In the case πα = −πβ, πα · πβ = −|πα|2 = −2, (B.1.11) reads

Jαn (z)J
−α
m (w) ∼ (z − w)

nm
2R2 : ei(n+m)Y (w)

(
1

(z − w)2
+
i(πIα∂X

I(w) + n∂Y (w))

z − w
+O(1)

)
: ,

(B.1.13)

which can be rewritten as

Jαn (z)J
−α
m (w) ∼ (z−w)

nm
2R2

(
: ei(n+m)Y (w) :

(z − w)2
+
πIαJ

I
n+m(w) + in : ∂Y (w)ei(n+m)y(w) :

z − w
+O(1)

)
.

(B.1.14)

In all the other cases we do not find any integer pole for R → ∞. These results can be

summarized as

Jαn (z)J
β
m(w) ∼ (z − w)

nm
2R2 ·





ϵ(α,β)Jα+βn+m(w)

z−w +O(1) α+ β root,

:ei(n+m)Y (w):
(z−w)2 +

πIαJ
I
n+m(w)+in:∂Y (w)ei(n+m)Y (w):

z−w +O(1) α = −β ,
O(1) otherwise,

(B.1.15)

For the OPE between one current in the Cartan tower and the other in the root tower

JIn(z)J
α
m(w) = : i∂XI(z)einY (z) : : cαe

iπJαX
J (w)eimY (w) :

= icα(z − w)
nm
2R2

−iπIα : eiπ
J
αX

J (w)einY (z)eimY (w) :

z − w

∼ cα(z − w)
nm
2R2

πIα : eiπ
J
αX

J (w)ei(n+m)Y (w) :

z − w
=
πIαJ

α
n+m(w)

z − w
,

(B.1.16)
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as R→ ∞. Again, this is consistent with (4.3.8).

(4.1.16), (4.1.17) and (4.1.18) are straightforward from (B.0.2). From the OPEs between the

currents one can compute the algebra between their zero modes (4.1.19) as follows. The

commutator between two Cartan generators for R→ ∞ reads

[(JIn)0, (J
J
m)0] =

∮

C′

dz

2πi

∮

C

dw

2πi
JIn(z)J

J
m(w)−

∮

C′

dw

2πi

∮

C

dz

2πi
JIn(z)J

J
m(w) (B.1.17)

where C ′ is a contour external to C. Then one obtains

[(JIn)0, (J
J
m)0] =

∮
dw

2πi
δIJResz→w

[ : ei(n+m)Y (w) :

(z − w)2
+ in

: ∂Y (w)ei(n+m)Y (w) :

z − w

]

=

∮
dw

2πi
inδIJ∂Y (w)ei(n+m)Y (w)

=

{∮
dw
2πi inδ

IJ∂Y (w) = inδIJ(∂Y )0 for n + m = 0 ,
∮

dw
2πiδ

IJ n
n+m∂(e

i(n+m)Y (w)) = 0 for n + m ̸= 0

= inδIJδn+m,0(∂Y )0 .

(B.1.18)

The commutator for a Cartan generator and a ladder operator is

[(JIn)0, (J
α
m)0] =

∮

C′

dz

2πi

∮

C

dw

2πi
JIn(z)J

α
m(w)−

∮

C′

dw

2πi

∮

C

dz

2πi
JIn(z)J

α
m(w)

=

∮
dw

2πi
Resz→w

[πIαcα : eiπ
J
αX

J (w)ei(n+m)Y (w) :

z − w

]

=

∮
dw

2πi
πIαcα : eiπ

J
αX

J (w)ei(n+m)Y (w) :

=πIα(J
α
n+m)0 ,

(B.1.19)

and finally the commutator between two ladder operators is

[(Jαn )0, (J
β
m)0] =

∮

C′

dz

2πi

∮

C

dw

2πi
Jαn (z)J

β
m(w)−

∮

C′

dw

2πi

∮

C

dz

2πi
Jαn (z)J

β
m(w)

=

∮
dw

2πi
Resz→w





ϵ(α,β)cα+βe
i(πIα+β)XI (w)

ei(n+m)Y (w)

z−w +O(1) α+ β root,

:ei(n+m)Y (w):
(z−w)2 + :iπIα∂X

I(w)ei(n+m)Y (w)+in∂Y (w)ei(n+m)Y (w):
z−w +O(1) α = −β,

O(1) otherwise.

=





ϵ(α, β)(Jα+βn+m)0 α+ β root

πIα(J
I
n+m)0 + inδn+m,0(∂Y )0 α = −β

0 otherwise.

(B.1.20)
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B.2 Affine algebras in T 2 decompactifications

From (B.0.1)-(B.0.3), the only non-trivial OPEs among internal fields are

X Î(z)X Ĵ(w) ∼ −δÎĴ log(z − w) , (B.2.1)

the others being either finite or vanishing as 1
R2

8
.

8d → 9d decompactification limit

The vertex operators in the 0 ghost picture associated to the massless vectors (4.3.5) and (4.3.6)

in the string spectrum are

αÎ−1ψ̄
µ

− 1
2

|0,n8⟩NS → i∂X Î(z)

(
i
√
2∂̄X̄µ(z̄) +

1√
2
κ · ψ̄(z̄)ψ̄µ(z̄)

)
eikX(z,z̄)ein8Y

8(z,z̄) ,

α8
−1ψ̄

µ

− 1
2

|0,n8⟩NS → i
√
2∂Y 8(z)

(
i
√
2∂̄X̄µ(z̄) +

1√
2
κ · ψ̄(z̄)ψ̄µ(z̄)

)
eikX(z,z̄)ein8Y

8(z,z̄) ,

ψ̄µ− 1
2

|Zg,n8⟩NS → cαe
ipα;ÎX

Î(z)

(
i
√
2∂̄X̄µ(z̄) +

1√
2
κ · ψ̄(z̄)ψ̄µ(z̄)

)
eikX(z,z̄)ei(n8−E89w9−πα·A8)Y 8(z,z̄) ,

(B.2.2)

where κm = (kµ, pR,i) is the 10 dimensional right momentum.

In the decompactification limit G88 = R2
8 → ∞, the affine algebra in the presence of a non

vanishing E89 =
1
2A8 ·A9 component is realised by currents generalising the definitions (4.3.5)

and (4.3.6) of {Jan} (a = Î , α), as we will now show. Let us first redefine the internal fields as

X I(z) = XI(z)−AI8Y
8(z) (B.2.3)

and Y9(z) through the relation

G99Y9(z) = G99Y
9(z) +

1

2
E98Y

8(z) . (B.2.4)

In particular, since G99G99 = 1, (B.2.4) is equivalent to

Y9(z) = Y 9(z) +
1

2
G99E98Y

8(z) . (B.2.5)
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The leading terms in the OPEs among these redefined internal fields are equivalent to (B.0.2)-

(B.0.3)

Y9(z)Y9(w) = Y 9(z)Y 9(w) +O
(

1

R2
8

)
, (B.2.6)

Y9(z)X I(w) = O
(

1

R2
8

)
, (B.2.7)

Y9(z)Y 8(w) = O
(

1

R2
8

)
, (B.2.8)

X I(z)X J(w) = XI(z)XJ(w) +O
(

1

R2
8

)
. (B.2.9)

Finally, let us also define X Î(z) =
(√

2R9Y9(z),X I
)
. The expression for the affine currents in

the general case is then

J În8(z) ≡ i∂X I(z)ein8Y
8(z) ,

Jαn8(z) ≡ cαe
ipα;ÎX

Î(z)ein8Y
8(z) .

(B.2.10)

They are in form equal to (4.3.5) and (4.3.6) holding in the case of trivial AI8, and due to

(B.2.6)-(B.2.9) the two sets of currents have the same OPEs, so that they generate the same

algebra. The OPEs between currents associated to Cartan vectors read, up to O
(

1
R2

8

)
terms

J În8(z)J
Ĵ
m8

(w) = − : ∂X Î(z) ein8Y
8(z) : : ∂X Ĵ(w) eim8Y 8(w) :

= (z − w)
n8m8
2R2

8 : ein8Y
8(z)eim8Y 8(w)

(
−∂X Î(z)∂X Ĵ(w) +

δÎĴ

(z − w)2

)
: .

Performing an expansion around z = w

J În8(z)J
Ĵ
m8

(w) =

= (z − w)
n8m8
2R2

8 :
(
1 + in8∂Y

8(w)(z − w) + . . .
)
ei(n8+m8)Y 8(w)

(
−∂X Î(z)∂X Ĵ(w) +

δÎĴ

(z − w)2

)
:

∼ (z − w)
n8m8
2R2

8

(
δÎĴ

: ei(n8+m8)Y 8(w) :

(z − w)2
+ iδÎĴn8

: ∂Y 8(w)ei(n8+m8)Y 8(w) :

z − w
+O(1)

)
,

(B.2.11)
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which is indeed (4.3.7). As for the OPE between two affine root currents, up to O
(

1
R2

8

)
terms

Jαn8(z)J
β
m8

(w) = : cαe
ipα,ÎX

Î(z)ein8Y
8(z) : : cβe

ipβ;ĴX
Ĵ (w)eim8Y 8(w) :

= cαcβ(z − w)
pα·pβ+

n8m8
2R2

8 : eipα;ÎX
Î(z)ein8Y

8(z)eipβ;ĴX
Ĵ (w)eim8Y 8(w) :

= cαcβ(z − w)
pα·pβ+

n8m8
2R2

8 :
[
1 + ipα;Î∂X Î(w)(z − w) + . . .)·

· (1 + in8∂Y
8(w)(z − w) + . . .

]
ei(pα;Î+pβ;Î)X

I(w)ei(n8+m8)Y 8(w) : .

(B.2.12)

There are only two non trivial cases for the choice of pα and pβ. Assume that pα + pβ = pα+β
is still a root of the algebra g in 9 dimensions. Then, if the roots are normalised as |pα|2 = 2,

it holds pα · pβ = −1 and (B.2.12) reads

Jαn8(z)J
β
m8

(w) ∼(z − w)
n8m8
2R2

8


ϵ(α, β)cα+β : eipα+β;ÎX

Î(w)ei(n8+m8)Y 8(w) :

z − w
+O(1)




=(z − w)
n8m8
2R2

8

(
ϵ(α, β)Jα+βn8+m8

(w)

z − w
+O(1)

)
.

(B.2.13)

If instead pα = −pβ, then pα · pβ = −|pα|2 = −2, and so (B.2.12) gives

Jαn8(z)J
−α
m8

(w) ∼ (z − w)
n8m8
2R2

8 : ei(n8+m8)Y 8(w)


 1

(z − w)2
+
i(pα;Î∂X Î(w) + n8∂Y

8(w))

z − w
+O(1)


 : ,

∼ (z − w)
n8m8
2R2

8


 : ei(n8+m8)Y 8(w) :

(z − w)2
+
pα;ÎJ

Î
n8+m8

(w) + in8 : ∂Y
8(w)ei(n8+m8)Y 8(w) :

z − w
+O(1)


 .

(B.2.14)

All the OPEs for other choices of pα and pβ vanish since in these cases cαcβ = 0

Jαn8(z)J
β
m8

(w) ∼ (z−w)
n8m8
2R2

8 ·





ϵ(α,β)Jα+βn8+m8
(w)

z−w +O(1) α+ β root,

:ei(n8+m8)Y
8(w):

(z−w)2 +
pα;ÎJ

Î
n8+m8

(w)+in8:∂Y 8(w)ei(n8+m8)Y
8(w):

z−w +O(1) α = −β ,
0 otherwise,

(B.2.15)
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which taking the limit R8 → ∞ reduces indeed to (4.3.9).

Finally, considering one Cartan and one root current

J În8(z)J
α
m8

(w) = : i∂X Î(z)ein8Y
8(z) : : cαe

ipα;ĴX
Ĵ (w)eim8Y 8(w) :

= icα(z − w)
n8m8
2R2

8
−ipÎα : eipα;ĴX

Ĵ (w)ein8Y
8(z)eim8Y 8(w) :

z − w
+O(1)

∼ cα(z − w)
n8m8
2R2

8
pÎα : eipα;ĴX

Ĵ (w)ei(n8+m8)Y 8(w) :

z − w
+O(1) ∼ pIαJ

α
n8+m8

(w)

z − w
+O(1)

(B.2.16)

as R8 → ∞, which is (4.3.8). The symmetry algebra can be defined as the set of commutation

relations between the currents zero modes as follows. Let us start considering two Cartan

generators, in the limit G88 = R2
8 → ∞

[(J În8)0, (J
Ĵ
m8

)0] =

∮

C′

dz

2πi

∮

C

dw

2πi
J În8(z)J

Ĵ
m8

(w)−
∮

C′

dw

2πi

∮

C

dz

2πi
J În8(z)J

Ĵ
m8

(w) (B.2.17)

where C ′ is a contour external to C.

[(J În8)0, (J
Ĵ
m8

)0] =

∮
dw

2πi
δÎĴResz→w

[
: ei(n8+m8)Y 8(w) :

(z − w)2
+ in8

: ∂Y 8(w)ei(n8+m8)Y 8(w) :

z − w

]

=

∮
dw

2πi
in8δ

ÎĴ∂Y 8(w)ei(n8+m8)Y 8(w)

=

{∮
dw
2πi in8δ

ÎĴ∂y8(w) = in8δ
ÎĴ(∂Y 8)0 for n8 +m8 = 0 ,

∮
dw
2πiδ

ÎĴ n8
n8+m8

∂(ei(n8+m8)Y 8(w)) = 0 for n8 +m8 ̸= 0

= in8δ
ÎĴδn8+m8,0(∂Y

8)0 .

(B.2.18)

The commutator between a Cartan and a root generator is

[(J În8)0, (J
α
m8

)0] =

∮

C′

dz

2πi

∮

C

dw

2πi
J În8(z)J

α
m8

(w)−
∮

C′

dw

2πi

∮

C

dz

2πi
J În8(z)J

α
m8

(w)

=

∮
dw

2πi
Resz→w


p

Î
αcα : eipα;ĴX

Ĵ (w)ei(n8+m8)Y 8(w) :

z − w




=

∮
dw

2πi
pÎαcα : eipα;ĴX

Ĵ (w)ei(n8+m8)Y 8(w) :

=pÎα(J
α
n+m)0 ,

(B.2.19)
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and the commutator between two root generators is

[(Jαn8)0, (J
β
m8

)0] =

∮

C′

dz

2πi

∮

C

dw

2πi
Jαn8(z)J

β
m8

(w)−
∮

C′

dw

2πi

∮

C

dz

2πi
Jαn8(z)J

β
m8

(w)

=

∮
dw

2πi
Resz→w





ϵ(α,β)cα+βe
ip
α+β;Î

X Î (w)
ei(n8+m8)Y

8(w)

z−w +O(1) α+ β root,

:ei(n8+m8)Y
8(w):

(z−w)2 +
:ipα;Î∂X

Î(w)ei(n8+m8)Y
8(w)+in8∂Y 8(w)ei(n8+m8)Y

8(w):

z−w +O(1) α = −β,
0 otherwise.

=





ϵ(α, β)(Jα+βn8+m8
)0 α+ β root

pα;Î(J
Î
n8+m8

)0 + in8δn8+m8,0(∂Y
8)0 α = −β

0 otherwise.

(B.2.20)

Affinisation of the right moving algebra

Let us now focus on the u(1)2R right moving contribution to the algebra and its affinisation

pattern. Restricting for simplicity to the case AI8 = 0, the associated massless states as R8 → ∞
and their corresponding vertex operators in the 0 ghost picture are

αµ−1ψ̄
i
− 1

2

|0,n8⟩ → i
√
2∂Xµ

(
i
√
2∂̄Ȳ i(z̄) +

1√
2
κ · ψ̄(z̄)ψ̄i(z̄)

)
eikX(z,z̄)ein8Y

8(z,z̄) , (B.2.21)

with i = 8, 9, and they also come in massless momentum towers as the eighth direction is

decompactified. The associated antiholomorphic currents are

Ῡi
n(z̄) = Ῡi(z̄)ein8Y

8(z̄) , (B.2.22)

where

Ῡi(z̄) =

(
i
√
2∂̄Ȳ i(z̄) +

1√
2
kµψ̄

µ(z̄)ψ̄i(z̄)

)
(B.2.23)

are the currents of the finite U(1)2R. Indeed, using (B.0.2) and

ψ̄M (z̄)ψ̄N (w̄) ∼ ηMN

z̄ − w̄
, (B.2.24)
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and the fact that in the decompactification limit the T 2 metric is diagonal, Gij = 1
R2
i
δij , one

finds, up to O(1) factors

Ῡi(z̄)Ῡj(w̄) =

= −2∂̄Ȳ
i
(z̄)∂̄Ȳ j(w̄)− 2 : ∂̄Ȳ i(z̄)∂̄Ȳ j(w̄) : −1

2
kµkν(ψ̄

µ
(z̄)ψ̄ν(w̄) : ψ̄i(z̄)ψ̄j(w̄) : +

+ : ψ̄µ(z̄)ψ̄ν(w̄) : ψ̄i(z̄)ψ̄j(w̄) + ψ̄
µ
(z̄)ψ̄ν(w̄)ψ̄i(z̄)ψ̄j(w̄)+ : ψ̄µ(z̄)ψ̄i(z̄)ψ̄ν(w̄)ψ̄j(w̄) :)

=
δij

R2
i

1

(z̄ − w̄)2
− 1

2
kµkν

(
ηµν : ψ̄i(z̄)ψ̄j(w̄) :

z̄ − w̄
+ :

ψ̄µ(z̄)ψ̄ν(w̄) : δij

R2
i (z̄ − w̄)

+
ηµνδij

R2
i (z̄ − w̄)3

)

=
δij

R2
i

1

(z̄ − w̄)2
.

(B.2.25)

The term with kµkνη
µν vanish because k2 = 0, while the term in kµkνψ̄

µ(z̄)ψ̄ν(w̄) = 0 due

to symmetry arguments. The absence of the single pole means that the zero modes (Ῡi(z̄))0
commute, so that they are indeed associated to a U(1)2R symmetry. The full asymptotic currents

(B.2.22) satisfy the following OPEs

Ῡi
n8(z̄)Ῡ

j
m8

(w̄) = (z̄ − w̄)
n8m8
2R2

8 : ein8Ȳ
8(z̄)eim8Ȳ 8(w̄)·

·
[

δij

R2
i (z̄ − w̄)2

− 2i
n8δ

8j ∂̄Ȳ i(z̄)−m8δ
8i∂̄Ȳ j(w̄)

R2
8(z̄ − w̄)

− 2
n8m8δ

8iδ8j

R4
8(z̄ − w̄)2

+O(1)

]
: ,

(B.2.26)

and as R8 → ∞ the only non trivial case is

Ῡ9
n8(z̄)Ῡ

9
m8

(w̄) =
ei(n8+m8)Ȳ 8(z̄)

R2
8(z̄ − w̄)2

+
in8∂̄Ȳ

8(w̄)ei(n8+m8)Ȳ 8(z̄)

z̄ − w̄
+O(1) , (B.2.27)

all the other combinations giving only finite terms asymptotically in moduli space. In partic-

ular, eq. (B.2.27) means that the zero modes of the rescaled current Ῡ9
n8(z̄) → e99Ῡ

9
n8(z̄) obey

the OPEs of an û(1) algebra, where the central extension is given by (∂̄Ȳ 8)0.

8d → 10d decompactification limit

The vertex operators in the 0 picture associated to the massless vectors (4.3.18)-(4.3.20) for

generic finite B field and Wilson lines components are

αi−1ψ̄
µ

− 1
2

|0,n8, n9⟩NS → i
√
2∂Y i(z)

(
i
√
2∂̄X̄µ(z̄) +

1√
2
κ · ψ̄(z̄)ψ̄µ(z̄)

)
eikX(z,z̄)einjY

j(z,z̄) ,

αI−1ψ̄
µ

− 1
2

|0,n8, n9⟩NS → i∂XI(z)

(
i
√
2∂̄X̄µ(z̄) +

1√
2
κ · ψ̄(z̄)ψ̄µ(z̄)

)
eikX(z,z̄)einjY

j(z,z̄) ,

ψ̄µ− 1
2

|ZE8⊕E8 ,n8, n9⟩NS → cαe
iπα;IX

I(z)

(
i
√
2∂̄X̄µ(z̄) +

1√
2
κ · ψ̄(z̄)ψ̄µ(z̄)

)
ei(ni−πα;IA

I
i )Y

i(z,z̄) ,

(B.2.28)
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with the same conventions of B.2. Let us generalise the definition (B.2.3) to

X I(z) = XI(z)−AIi Y
i(z) . (B.2.29)

In the full decompactification limit, at first order the OPE between two such operators is

X I(z)X J(w) = XI(z)XJ(w) (B.2.30)

The relevant holomorphic currents giving the double loop algebra are

JIn8,n9(z) ≡ i∂X I(z)einiY
i(z) ,

Jαn8,n9(z) ≡ cαe
iπα;IX I(z)einiY

i(z) ,
(B.2.31)

related respectively to the Cartan and root sector. They are a generalisation of (4.3.19) and

(4.3.20), the latters holding in the case of vanishing Wilson lines along the two torus directions.

The non trivial OPEs among these currents are

JIn8,n9(z)J
J
m8,m9

(w) = − : ∂X I(z)ein8Y
8(z)ein9Y

9(z) :: ∂X J(w)eim8Y 8(w)eim9Y 9(w) :

= (z − w)
Gijnimj

2 : ei(n8+m8)Y 8(w)ei(n9+m9)Y 9(w)(1 + in8∂Y
8(w)(z − w) + . . .)·

· (1 + in9∂Y
9(w)(z − w) + . . .)

(
−∂X I(z)∂X J(w) +

δIJ

(z − w)2

)
:

= (z − w)
Gijnimj

2

(
δIJ : ei(ni+mi)Y

i(w) :

(z − w)2
+ ini

: ∂Y i(w)ei(nj+mj)Y
j(w) :

z − w
+O(1)

)

(B.2.32)

which helds the following commutator of the zero modes

[(JIn8,n9)0, (J
J
m8,m9

)0] =

∮
dw

2πi
δIJResz→w

[
: ei(ni+mi)Y

i(w) :

(z − w)2
+ ini

: ∂Y i(w)ei(nj+mj)Y
j(w) :

z − w

]

=

∮
dw

2πi
iδIJ(n8∂Y

8(w) + n9∂Y
9(w))ei(n8+m8)Y 8(w)ei(n9+m9)Y 9(w) .

(B.2.33)

This integral can be solved as follows. For any choice of ni +mi, i = 8, 9 it must hold

0 =
1

i

∮
dw

2πi
∂
(
ei(n8+m8)Y 8(w)ei(n9+m9)Y 9(w)

)

=

∮
dw

2πi
(n8 +m8)∂Y

8(w)ei(ni+mi)Y
i(w) +

∮
dw

2πi
(n9 +m9)∂Y

9(w)ei(ni+mi)Y
i(w)

=

∮
dw

2πi
(n8∂Y

8(w) + n9∂Y
9(w))ei(ni+mi)Y

i(w) +

∮
dw

2πi
(m8∂Y

8(w) + m9∂Y
9(w))ei(ni+mi)Y

i(w) ,

(B.2.34)
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where in the last line one can recognize two integrals of the type (B.2.33). Focusing on the

second line of (B.2.34) and taking into account the fact that Y 8(z) and Y 9(z) are independent,

this means that the ∂Y 8 and ∂Y 9 contributions in the sum must vanish separately. Let us

consider for concreteness
∮

dw

2πi
(n8 +m8)∂Y

8(w)ei(n8+m8)Y 8(w)ei(n9+m9)Y 9(w) = 0 . (B.2.35)

• If n8 +m8 = 0, (B.2.35) vanishes trivially, so that in this case one can have

∮
dw

2πi
∂Y 8(w)ei(n9+m9)Y 9(w) ̸= 0 , (B.2.36)

which is (∂Y 8
0,n9+m9

)0.

• If n8 +m8 ̸= 0, then it must hold

∮
dw

2πi
∂Y 8(w)ei(n8+m8)Y 8(w)ei(n9+m9)Y 9(w) = 0 . (B.2.37)

This statement is trivial for n9 + m9 = 0, when the integrand in (B.2.37) reduces to a

total derivative, but it must actually hold ∀(n9 +m9).

Summarising

∮
dw

2πi
∂Y 8(w)ei(n8+m8)Y 8(w)ei(n9+m9)Y 9(w) = δn8+m8,0(∂Y

8
0,n9+m9

)0 , (B.2.38)

and the same holds with 8 ↔ 9. Using these results in (B.2.33)

[(JIn8,n9)0, (J
J
m8,m9

)0] = iδIJ(n8δn8+m8,0(∂Y
8
0,n9+m9

)0 + n9δn9+m9,0(∂Y
9
n8+m8,0)0) . (B.2.39)

In the case of a Cartan and a root current

JIn8,n9(z)J
α
m8,m9

(w) = icα : ∂X I(z)ein8Y
8(z)ein9Y

9(z) :: eiπα;IX
I(w)eim8Y 8(w)eim9Y 9(w) :

= (z − w)
Gijnimj

2

(
cαπ

I
α

: eiπα;IX
I(w)ei(n8+m8)Y 8(w)ei(n9+m9)Y 9(w) :

z − w
+O(1)

)

= (z − w)
Gijnimj

2

(
πIαJ

α
n8+m8,n9+m9

(w)

z − w
+O(1)

)
,

(B.2.40)

which gives the following commutation relations

[(JIn8,n9)0, (J
α
m8,m9

)0] =

∮
dw

2πi
Resz→w

[
πIαJ

α
n8+m8,n9+m9

(w)

z − w

]

=

∮
dw

2πi
πIαJ

α
n8+m8,n9+m9

(w) = πIα(J
α
n8+m8,n9+m9

)0 .

(B.2.41)
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Finally, considering two root currents

Jαn8,n9(z)J
β
m8,m9

(w) = cαcβ : eiπα;IX
I(z)ein8Y

8(z)ein9Y
9(z) :: eiπβ;JX

J (w)eim8Y 8(w)eim9Y 9(w) :

= cαcβ(z − w)πα·πβ+
Gijnimj

2 : ei(πα;IX
I(z)+πβ;JXJ (w))ei(niY

i(z)+miY
i(w)) :

= cαcβ(z − w)πα·πβ+
Gijnimj

2 : (1 + iπα;J∂X J(w)(z − w) + . . .)ei(πα;I+πβ;I)X
I(w)

(1 + inj∂Y
j(w)(z − w) + . . .)ei(nk+mk)Y

k(w) : ,

(B.2.42)

which again splits in three different cases. If πα + πβ = πα+β, then

Jαn8,n9(z)J
β
m8,m9

(w) = (z − w)
Gijnimj

2

(
ϵ(α, β)cα+β : ei(πα;I+πβ;I)X

I(w)ei(nk+mk)Y
k(w) :

z − w
+O(1)

)

= (z − w)
Gijnimj

2

(
ϵ(α, β)Jα+βn8+m8,n9+m9

(w)

z − w
+O(1)

)
.

(B.2.43)

If πα = −πβ

Jαn8,n9(z)J
β
m8,m9

(w) = (z−w)
Gijnimj

2 : ei(ni+mi)Y
i(w)

(
1

(z − w)2
+
iπα;I∂X I + inj∂Y

j(w)

z − w
+O(1)

)
: .

(B.2.44)

For all the remaining πα, πβ instead, cαcβ = 0 and so to summarise

Jαn8,n9(z)J
β
m8,m9

(w) =





ϵ(α,β)Jα+βn8+m8,n9+m9
(w)

z−w +O(1) α+ β root,

:ei(ni+mi)Y
i(w):

(z−w)2 +
πα;IJ

I
n8+m8,n9+m9

(w)+ini:∂Y
i(w)ei(nj+mj)Y

j(w):

z−w +O(1) α = −β ,
0 otherwise,

(B.2.45)
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The algebra of the zero modes in this case is

[(Jαn8,n9)0, (J
β
m8,m9

)0] =

∮

C′

dz

2πi

∮

C

dw

2πi
Jαn8,n9(z)J

β
m8,m9

(w)−
∮

C′

dw

2πi

∮

C

dz

2πi
Jαn8,n9(z)J

β
m8,m9

(w)

=

∮
dw

2πi
Resz→w





ϵ(α,β)Jα+βn8+m8,n9+m9
(w)

z−w +O(1) α+ β root,

:ei(ni+mi)Y
i(w):

(z−w)2 +
:πα;IJ

I
n8+m8,n9+m9

+ini∂Y
i(w)ei(nj+mj)Y

j(w):

z−w +O(1) α = −β,
0 otherwise.

=





ϵ(α, β)(Jα+βn8+m8,n9+m9
)0 α+ β root,

πα;I(J
I
n8+m8,n9+m9

)0+

+i(n8δn8+m8,0(∂Y
8
0,n9+m9

)0 + n9δn9+m9,0(∂Y
9
n8+m8,0

)0) α = −β ,
0 otherwise,

(B.2.46)

B.3 Affine algebras in T d decompactification

Let us explicitly derive the commutation relations for the algebra in a generic decompactifica-

tion limit of the heterotic theory on T d. Since from the S1 and T 2 examples we clearly showed

how the off-diagonal blocks of metric and B field and the Wilson lines along the directions we

decompactify do not play any role in the limit, let us for simplicity set them to 0, the difference

otherwise being just a field redefinition which does not affect the OPEs. The relevant OPEs in

this case are

Xµ(z, z̄)Xν(w, w̄) ∼− 1

2
ηµν log |z − w|2 , (B.3.1)

Y i(z, z̄)Y j(w, w̄) ∼− 1

2
Gij log |z − w|2 , (B.3.2)

XI(z)XJ(w) ∼− δIJ log(z − w) , (B.3.3)

where (B.3.2) for i = ı̂ and (B.3.3) can be written in terms of the fieldsX Î(z) = (
√
2eâı̂ Y

ı̂(z), XI(z))

defined in Section 4.3.2 as

X Î(z)X Ĵ(w) ∼ −δÎĴ log(z − w) . (B.3.4)

The vertex operators associated to the massless states (4.3.36) are

αÎ−1ψ̄
µ

− 1
2

|0, nȷ̄⟩NS → i∂X Î(z)

(
i
√
2∂̄X̄µ(z̄) +

1√
2
κ · ψ̄(z̄)ψ̄µ(z̄)

)
eikX(z,z̄)einȷ̄Y

ȷ̄(z,z̄) ,

αı̄−1ψ̄
µ

− 1
2

|0, nȷ̄⟩NS → i
√
2∂Y ı̄(z)

(
i
√
2∂̄X̄µ(z̄) +

1√
2
κ · ψ̄(z̄)ψ̄µ(z̄)

)
eikX(z,z̄)einȷ̄Y

ȷ̄(z,z̄) ,

ψ̄µ− 1
2

|Zg, nȷ̄⟩NS → cαe
ipα;ÎX

Î(z)

(
i
√
2∂̄X̄µ(z̄) +

1√
2
κ · ψ̄(z̄)ψ̄µ(z̄)

)
eikX(z,z̄)einȷ̄Y

ȷ̄(z,z̄) .

(B.3.5)
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The conserved currents related to the affine algebra are

J Î{nı̄}(z) ≡ i∂X Î(z)einı̄Y
ı̄(z) , (B.3.6)

Jα{nı̄}(z) ≡ cαe
ipα;ĪX

Ī(z)einı̄Y
ı̄(z) . (B.3.7)

(B.3.8)

In the following we present their mutual OPEs, up to O
(

1
R2
ı̄

)
terms and dropping the prefactor

(z − w)
Gı̄ȷ̄nı̄mȷ̄

2 → 1 asymptotically, which is common to all of them.

J Î{nı̄}(z)J
Ĵ
{mı̄}(w) = − : ∂X Î(z) einı̄Y

ı̄(z) : : ∂X Ĵ(w) eimȷ̄Y
ȷ̄(w) :

=: einı̄Y
ı̄(z)eimȷ̄Y

ȷ̄(w)

(
−∂X Î(z)∂X Ĵ(w) +

δÎĴ

(z − w)2

)
:

=:
(
1 + inı̄∂Y

ı̄(w)(z − w) + . . .
)
ei(nȷ̄+mȷ̄)Y ȷ̄(w)

(
δÎĴ

(z − w)2
+O(1)

)
:

∼ δÎĴ
: ei(nȷ̄+mȷ̄)Y ȷ̄(w) :

(z − w)2
+ iδÎĴnı̄

: ∂Y ı̄(w)ei(nȷ̄+mȷ̄)Y ȷ̄(w) :

z − w
+O(1) .

(B.3.9)

Jα{nı̄}(z)J
β
{mȷ̄}(w) = : cαe

ipα,ÎX
Î(z)einı̄Y

ı̄(z) := : cβe
ipβ;ĴX

Ĵ (w)eimȷ̄Y
ȷ̄(w) :

= cαcβ : eipα;ÎX
Î(z)einı̄Y

ı̄(z)eipβ;ĴX
Ĵ (w)eimȷ̄Y

ȷ̄(w) :

= cαcβ :
[
1 + ipα;Î∂X

Î(w)(z − w) + . . .)·

· (1 + inı̄∂Y
ı̄(w)(z − w) + . . .

]
ei(pα;Î+pβ;Î)X

Î(w)ei(nȷ̄+mȷ̄)Y ȷ̄(w) : .

(B.3.10)

Again, one can choose pα + pβ = pα+β

Jα{nı̄}(z)J
β
{mȷ̄}(w) ∼

ϵ(α, β)cα+β : eipα+β;ÎX
Î(w)ei(nȷ̄+mȷ̄)Y ȷ̄(w) :

z − w
+O(1)

=
ϵ(α, β)Jα+β{nı̄+mı̄}(w)

z − w
+O(1) ,

(B.3.11)

or pα = −pβ

Jα{nı̄}(z)J
β
{mȷ̄}(w) ∼: ei(nȷ̄+mȷ̄)Y ȷ̄(w)


 1

(z − w)2
+
i(pα;Î∂X

Î(w) + nı̄∂Y
ı̄(w))

z − w
+O(1)


 : ,

=
: ei(nȷ̄+mȷ̄)Y ȷ̄(w) :

(z − w)2
+
pα;ÎJ

Î
{nı̄+mı̄}(w) + inı̄ : ∂Y

ı̄(w)ei(nȷ̄+mȷ̄)Y ȷ̄(w) :

z − w
+O(1) .

(B.3.12)
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All the other choices of π give vanishing vanish OPEs.

Jα{nı̄}(z)J
β
{mȷ̄}(w) ∼





ϵ(α,β)Jα+β{nȷ̄+mȷ̄}
z−w +O(1) α+ β root,

:ei(nȷ̄+mȷ̄)Y
ȷ̄(w):

(z−w)2 +
pα;ÎJ

Î
{nı̄+mı̄}

(w)+inı̄:∂Y ı̄(w)e
i(nȷ̄+mȷ̄)Y

ȷ̄(w):

z−w +O(1) α = −β ,
0 otherwise,

(B.3.13)

J Î{nı̄}(z)J
α
{mı̄}(w) = : i∂X Î(z)einı̄Y

ı̄(z) : : cαe
ipα;ĴX

Ĵ (w)eimȷ̄Y
ȷ̄(w) :

= icα
−ipÎα : eipα;JX

J (w)ei(nȷ̄+mȷ̄)Y ȷ̄(w) :

z − w
+O(1)

= cα
pÎα : eipα;ĴX

Ĵ (w)ei(nȷ̄+mȷ̄)Y ȷ̄(w) :

z − w
+O(1) =

pÎαJ
α
{nı̄+mı̄}(w)

z − w
+O(1) .

(B.3.14)

The asymptotic algebra among the currents zero modes is

[(J Î{nı̄})0, J
Ĵ
{mȷ̄})0] =

∮

C′

dz

2πi

∮

C

dw

2πi
J Î{nı̄}(z)J

Ĵ
{mȷ̄}(w)−

∮

C′

dw

2πi

∮

C

dz

2πi
J Î{nı̄}(z)J

Ĵ
{mȷ̄}(w)

(B.3.15)

where C ′ is a contour external to C.

[(J Î{nı̄})0, J
Ĵ
{mȷ̄})0] =

∮
dw

2πi
δÎĴResz→w

[
: ei(nȷ̄+mȷ̄)Y ȷ̄(w) :

(z − w)2
+ inı̄

: ∂Y ı̄(w)ei(nȷ̄+mȷ̄)Y ȷ̄(w) :

z − w

]

=

∮
dw

2πi
iδÎĴnı̄∂Y

ı̄(w)ei(nȷ̄+mȷ̄)Y ȷ̄(w) = iδÎĴnı̄δnı̄+mı̄,0(∂Y
ı̄
{nȷ̄+mȷ̄})0 ,

(B.3.16)

where a sum over ı̄, the directions we are decompactifying, is understood, and between the

second and third line we used the generalised version of (B.2.38)

∮
dw

2πi
∂Y ı̄(w)ei(nȷ̄+mȷ̄)Y ȷ̄(w) = δnı̄+mı̄,0(∂Y

ı̄
{nȷ̄+mȷ̄})0 . (B.3.17)

Analogously

[(J Î{nı̄})0, (J
α
{mȷ̄})0] =

∮
dw

2πi
Resz→w


cαp

Î
α : eipα;ĴX

Ĵ (w)ei(nȷ̄+mȷ̄)Y ȷ̄(w) :

z − w




=

∮
dw

2πi
pÎαcα : eipα;ĴX

Ĵ (w)ei(nȷ̄+mȷ̄)Y ȷ̄(w) :

=pÎα(J
α
{nȷ̄+mȷ̄})0 ,

(B.3.18)
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and

[(J Î{nı̄})0, (J
β
{mȷ̄})0] =

=

∮
dw

2πi
Resz→w





ϵ(α,β)Jα+β{nȷ̄+mȷ̄}
z−w +O(1) α+ β root,

:ei(nȷ̄+mȷ̄)Y
ȷ̄(w):

(z−w)2 +
pα;ÎJ

Î
{nı̄+mı̄}

(w)+inı̄:∂Y ı̄(w)e
i(nȷ̄+mȷ̄)Y

ȷ̄(w):

z−w +O(1) α = −β ,
0 otherwise,

=





ϵ(α, β)(Jα+β{nȷ̄+mȷ̄})0 α+ β root

pα;Î(J
Î
{nȷ̄+mȷ̄})0 + inı̄δnı̄+mı̄,0(∂Y

ı̄
{nȷ̄+mȷ̄})0 α = −β

0 otherwise.

(B.3.19)

Only as a brief comment on the affinisation of the right moving u(1)d−kR algebra, the general

pattern is that the u(1)’s associated to the directions that remain compact are made affine with

k central extensions given by the (∂̄Ȳ ı̄) that correspond to decompactified directions.
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Appendix C

Test of the RFC by dimensional

reduction

In this appendix we review the dimensional reduction of the 10d heterotic supergravity Lag-

rangian in detail, as well as the calculation of the long-range interactions between heterotic

states in the field theory language.

C.1 Dimensional reduction of the supergravity Lagrangian

We consider an S1 compactification of the heterotic string from 10 to 9 dimensions, by identi-

fying the 9th coordinate as x9 ≡ y ∼ y + 2πR. From the target spacetime point of view, the

low energy heterotic supergravity action in 10 dimensions takes the form [114]

S =
1

(2π)7α′4

∫
d10x

√
−Gse−2Φ

(
R+ 4∂MΦ∂MΦ− 1

12
HMNRHMNR−

− α′

4
F̄
MN
I F̄

I
MN

)
, (C.1.1)

Gs
MN , M,N = 0, ..., 9 is the 10 dimensional metric in the string frame with Ricci scalar R,

Φ = Φ̄ + Φ0 is the 10 dimensional dilaton and the gauge invariant field strengths are defined

as

HMNR = 3

(
∂[MBNR] − α′AI

[M∂nAR]I −
α′

3
fIJKAI

MAJ
NA

K
R

)
, (C.1.2)

FIMN =
√
α′(2∂[MAI

N ] + f IJKAJ
MAK

N ) =
√
α′F̄

I
MN , (C.1.3)

where BMN is the NSNS 2-form and AI are the heterotic vector bosons, with I = 1, ..., 496

the gauge group index (taking into account both the Cartan and the root sectors). For the

reduction, the spacetime indices are split as M = (µ, 9), with µ = 0, ..., 8 and we take the

following ansatz for the metric (in the string frame)

ds2 = Gs
MNdx

MdxN = e
4
7
Φ̄e−

2
7
σ̄gµνdx

µdxν + e2σ̄(dy + Zµdx
µ)2 . (C.1.4)
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Here gµν is the 9 dimensional metric in the Einstein frame, Zµ the (dimensionless) graviphoton,

and σ̄ is the dynamical part of the (dimensionless) radion field σ = σ̄ + σ0, where σ0 is the

background value. The physical compactification radius of the circle is therefore R = eσ̄R. We

restrict to the massless sector upon compactification and therefore assume the 10 dimensional

fields (in bold) to be independent of the coordinate y. The dimensionally reduced action in the

Einstein frame in terms of the 9 dimensional fields (not in bold) reads

S =
e−2Φ0R

(2π)6α′4

∫
d9x

√−g
(
R− 8

7
∂µσ̄∂

µσ̄ − 4

7
∂µΦ̄∂

µΦ̄ +
4

7
∂µΦ̄∂

µσ̄−

− α′

2
e−2σ̄F̄ Iµ9F̄

µI
9 − 1

4
e

16
7
σ̄e−

4
7
Φ̄ZµνZ

µν − α′

4
e−

4
7
Φ̄e

2
7
σ̄F̄ IµνF̄

µνI−

− 1

12
e

4
7
σ̄e−

8
7
Φ̄HµνρH

µνρ − 1

4
e−

12
7
σ̄e−

4
7
Φ̄Hµν9H

µν
9

)
,

(C.1.5)

where

F̄ Iµ9 = ∂µA
I
9 + f IJKA

J
µA

K
9 , (C.1.6)

F̄ Iµν = 2∂[µA
I
ν] + f IJKA

J
µA

K
ν + ZµνA

I
9 , (C.1.7)

and Zµν = ∂µZν − ∂νZµ. By defining also

Wµ = Bµ9 +
α′

2
AI9AµI , Wµν = ∂µWν − ∂νWµ , (C.1.8)

we obtain

Hµν9 =Wµν − α′(2∂[µA
I
ν] + f IJKA

J
µA

K
ν )A9I −

α′

2
Zµν(A

I
9)

2 , (C.1.9)

Hµνρ = 3

(
∂[µBνρ] − α′AI[µ∂νAρ]I − (∂[µZν)Wρ] + Z[µ(∂νWρ])−

α′

3
fIJKA

I
µA

J
νA

K
ρ

)
. (C.1.10)

In the following, we choose to work with dimension 1 gauge fields, normalized so that string

states have integer quantized charges. The momentum number is derived by looking at the

diffeomorphism symmetry of the 10 dimensional action. If one wants the charge of the n-th

KK state from the expansion

ϕ
(
xM
)
=
∑

n

ϕn(x
µ)ei

ny
R (C.1.11)

to be n ∈ Z under the redefined field Z̄µ, the dimensionfull graviphoton must be taken as

Z̄µ =
Zµ
R
. (C.1.12)

The expressions for the 9 dimensional heterotic field strength (C.1.7) is thus

F̄ Iµν = 2∂[µA
I
ν] + 2R∂[µZ̄ν]A

I
9 + f IJKA

J
µA

K
ν . (C.1.13)
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Focusing now on the Wµ redefinition and the winding charge, its expression can be derived

from the worldsheet action term [25]

S = − 1

2πα′

∫
dτdΣWµ∂τX

µ∂ΣY , (C.1.14)

where (τ, Σ) are the coordinates parameterizing the worldsheet, Σ ∈ [0, 2π), and XM (τ, Σ) are

the embedding functions into target spacetime. Since the string winds around the S1 direction

w times, one can write

Y = wΣR . (C.1.15)

The worldsheet action then yields

S = −wR
α′

∫
dτWµ∂τX

µ , (C.1.16)

which is the worldline coupling of a particle with charge

Q =
wR

α′ (C.1.17)

with the dimensionless gauge field Wµ. To get an integer charge, the dimensionful gauge field

W̄µ must be defined as

W̄µ =
WµR

α′ . (C.1.18)

With the redefinitions (C.1.12) and (C.1.18), the 9 dimensional field strengths obtained by

reducing HMNR are

Hµν9 =
α′

R
(∂µW̄ν − ∂νW̄µ)− α′(∂µA

I
ν)A

I
9 + α′(∂νA

I
µ)A

I
9 −

α′R

2
∂µZ̄ν(A

I
9)

2+

+
α′R

2
∂νZ̄µ(A

I
9)

2 − α′fIJKA
I
µA

J
νA

K
9

(C.1.19)

and

Hµνρ = 3

(
∂[µBνρ] − α′AI[µ∂νA

I
ρ] − α′((∂[µZ̄ν)W̄ρ] + Z̄[µ(∂νW̄ρ]))−

α′

3
fIJKA

I
µA

J
νA

K
ρ

)
.

(C.1.20)

Furthermore, the Cartan heterotic gauge fields AI are correctly normalized in such a way for

the charges to be πI ∈ Γ8×Γ8. Finally, in order to work with conventionally normalized scalar

fields, without cross terms in the kinetic part, we make the following field redefinition

λ =
4√
7

(
Φ

4
− σ

)
−→ λ0 =

4√
7

(
Φ0

4
− σ0

)
, λ̄ =

4√
7

(
Φ̄

4
− σ̄

)
. (C.1.21)
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Finally, the 9 dimensional action in the Einstein frame, with conventionally normalized scalars

and gauge fields such that minimally coupled sources have integer charges takes the form

S =
M7

p,9

2

∫
d9x

√−g
(
R− 1

2
∂µλ∂

µλ− 1

2
∂µΦ∂

µΦ− α′

2
e−

Φ̄
2 e

√
7
2
λ̄F̄ Iµ9F̄

µI
9 − 1

4
e−

4
√
7

7
λ̄R2ZµνZ

µν−

− α′

4
e−

1
2
Φ̄e−

√
7

14
λ̄F̄ IµνF̄

µνI − 1

12
e−

√
7
7
λ̄e−Φ̄HµνρH

µνρ − 1

4
e

3
√
7

7
λ̄e−Φ̄Hµν9H

µν
9

)
,

(C.1.22)

where the 9 dimensional Planck mass reads

M7
p,9

2
=

e−2Φ0R

(2π)6α′4 =
e
− 7

4
(Φ0+

1√
7
λ0)

(2π)6α′4 . (C.1.23)

To close this section, let us recast the mass formula for the heterotic string states in the

9 dimensional Einstein frame and in Planck units and in the absence of Wilson lines (with

R = eσ0
√
α′)

M2

M2
p,9

= (32π6)
2
7

{
e

4
√
7

7
λn2 + eΦe−

3
√
7

7
λw2 + e

1
2
Φe

√
7

14
λ

[
2

(
N + N̄ − 3

2

)
+ |π|2

]}
. (C.1.24)

We also introduce the following notation for shortness

M2 =M2
n +M2

w +M2
n +M2

π , (C.1.25)

where

M2
n = (32π6)

2
7 e

4
√
7

7
λn2M2

p,9 , (C.1.26)

M2
w = (32π6)

2
7 eΦe−

3
√
7

7
λw2M2

p,9 , (C.1.27)

M2
n = 2(32π6)

2
7 e

1
2
Φe

√
7

14
λ

(
N + N̄ − 3

2

)
M2

p,9 , (C.1.28)

M2
π = (32π6)

2
7 e

1
2
Φe

√
7

14
λ|π|2M2

p,9 . (C.1.29)

C.2 Computing the long range force

In order to test the RFC in this setting, we need to compute the long range force between

two states in the heterotic string spectrum as prescribed in e.g. [147]. The part coming from

the U(1) interactions, in the system at hand and with the conventions introduced above, is

mediated by Z̄µ, W̄µ and the Cartan vectors of E8 × E8, A
I , I = 1, ..., 16. This perturbative

computation makes sense only when the theory is weakly coupled, and we have just argued

that in the two corners of interest in moduli space actually there is at least one divergent gauge

coupling. This means that we cannot trust the full computation at all points in moduli space

if the three interactions are turned on at the same time. Nevertheless, we will perform the

computation including all gauge fields at the same time for completeness because it is valid

as an abstract calculation, but we will then limit ourselves to its application to states charged
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only under the groups whose gauge coupling is perturbative in the region of moduli space that

we want to study. Consider then a generic state, with mass given by eq.(C.1.24), minimally

coupled to gravity and to the gauge fields. The leading contribution to the force is obtained

through the linearization of action (C.1.22), which yields

S =
M7

p,9

2

∫
d9x

√−g
(
R− 1

2
∂µλ∂

µλ− 1

2
∂µΦ∂

µΦ− α′

2
∂µA

I
9∂

µAI9 −
R2

4
Z̄µνZ̄

µν−

−α
′

4
F̄ IµνF̄

µνI − α′2

4R2
W̄µνW̄

µν
)
−
∫
M(Φ, λ, AI9) ds− w

∫
W̄ − πI

∫
AI − n

∫
Z̄, (C.2.1)

where

F̄ Iµν = 2∂[µA
I
ν] . (C.2.2)

We expand the Einstein frame metric around the Minkowski background, that is

gµν = ηµν + hµν , (C.2.3)

where hµν << 1 in Planck units. We will use the trace-reversed metric perturbation

h̄µν = hµν −
1

2
ηµνh , (C.2.4)

where h ≡ ηµνhµν , and under the hypothesis of a static solution, so that ∂t is a Killing vector

defining a conserved energy. Furthermore, we work in the Lorentz gauge for all the gauge

fields and also for the trace-reversed metric perturbation: ∂µh̄
µν = 0, ∂µW̄

µν = 0, ∂µZ̄
µν = 0,

∂µF̄
µνI = 0. We now compute the perturbation on the background caused by a source particle

in the heterotic string spectrum at rest, with worldline parameterized by its proper time as

xµ(τ) = (τ, x̂i) , x̂i = const. (C.2.5)
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The linerarized equations of motion and their respective solutions thus read (where M ≡
M(Φ0, λ0, 0) and also all the derivatives of the mass are evaluated at the background)

2h̄µν(x) = − 2M

M7
p,9

δ0µ δ
0
ν δ

(8)(x̂i − xi) =⇒ h̄µν(r) =
M

3V7M7
p,9 r

6
δ0µ δ

0
ν , (C.2.6)

2λ(x) =
2

M7
p,9

∂M

∂λ
δ(8)(x̂i − xi) =⇒ λ̄(r) = − ∂λM

3V7M7
p,9 r

6
, (C.2.7)

2AI9(x) =
2

M7
p,9

1

α′
∂M

∂A9
I

δ(8)(x̂i − xi) =⇒ AI9(r) = −
∂A9

I
M

3α′ V7M7
p,9 r

6
, (C.2.8)

2Φ(x) =
2

M7
p,9

∂M

∂Φ
δ(8)(x̂i − xi) =⇒ Φ̄(r) = − ∂ΦM

3V7M7
p,9 r

6
, (C.2.9)

2AµI(x) =
2

M7
p,9

1

α′ π
I δµ0 δ

(8)(x̂i − xi) =⇒ AµI(r) = − πI

3α′ V7M7
p,9 r

6
δµ0 , (C.2.10)

2W̄µ(x) =
2

M7
p,9

R2

α′2 w δ
µ
0 δ

(8)(x̂i − xi) =⇒ W̄µ(r) = − wR2

3α′2 V7M7
p,9 r

6
δµ0 , (C.2.11)

2Z̄µ(x) =
2

M7
p,9

1

R2
n δµ0 δ

(8)(x̂i − xi) =⇒ Z̄µ(r) = − n

3R2 V7M7
p,9 r

6
δµ0 . (C.2.12)

These solutions are taken to be static (2 = ∇⃗2) and such that all the field perturbations vanish

at infinity. V7 is the volume of the 7 dimensional unit sphere, given by

V7 =
2π4

Γ(4)
, (C.2.13)

and we defined the radial coordinate r = |xi− x̂i|. The force felt by a probe particle with mass

M2 and charges (n2, w2, π
I
2) sitting a large distance r away from another particle with mass

M1 and charges (n1, w1, π
I
1), can be derived from the potential felt by the probe

V12 =

(
1− h00(r)

2

)
M2(Φ(r), λ(r), A

I
9(r)) + w W̄0(r) + πIAI0(r) + n Z̄0(r) , (C.2.14)

where from the definition (C.2.4) we have

hµν = h̄µν −
1

7
gµν h̄ =⇒ h00 =

6

7
h̄00 . (C.2.15)

By expanding the mass around the background and keeping only the leading terms in r one

gets

V12 =− h00(r)

2
M2(Φ0, σ0, 0) +

∂M2

∂Φ
(Φ0, σ0, 0)Φ̄(r) +

∂M2

∂σ
(Φ0, σ0, 0)σ̄(r)+

+
∂M2

∂AI9
(Φ0, σ0, 0)A

I
9(r)− w W̄ 0(r)− πIA0I(r)− n Z̄0(r) +O(r−12) .

(C.2.16)
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By defining Mi ≡ mi(Φ0, λ0, 0) for i = 1 and 2, and evaluating all the derivatives of the mass

at the background once again, the force takes the form

F12 = −∂V12
∂r

=
2

V7M7
p,9 r

7

{
− 3

7
M1M2 −

∂M1

∂Φ

∂M2

∂Φ
− ∂M1

∂λ

∂M2

∂λ
− 1

α′
∂M1

∂A9
I

∂M2

∂AI9
+

+
w1w2e

1
2
Φ0e

√
7

2
λ0

α′ +
πI1π

I
2

α′ +
n1n2e

− 1
2
Φ0e−

√
7

2
λ0

α′

}
,

(C.2.17)

and one can see that the scalar and gravitational forces give attractive contributions whereas

the U(1)’s give repulsive ones, as expected for particles with equal charges. Keeping the 9

dimensional Planck mass fixed, the derivatives of the mass evaluated at the background read

∂M

∂Φ
=

1

2M

[
M2
w +

1

2
M2
π

]
, (C.2.18)

∂M

∂λ
=

1

2M

[
4
√
7

7
M2

n − 3
√
7

7
M2
w +

√
7

14
(M2

n +M2
π)

]
, (C.2.19)

∂M

∂AI9
=

√
α′ MπI(Mw −Mn)

M
, (C.2.20)

so that, combining all the contributions

V7M
7
p,9 r

7 F12(r) =−M1M2 + 2Mπ,1 ·Mπ,2 + 2Mn,1 ·Mn,2 + 2Mw,1 ·Mw,2−

−
(M2

n,1 −M2
w,1)(M

2
n,2 −M2

w,2)

M1M2
−

− 2Mπ,1Mπ,2(Mn,1 −Mw,1)(Mn,2 −Mw,2)

M1M2
.

(C.2.21)

There are several interesting cases in which this force vanishes, namely

(i) For states having only momentum mass Mn ̸= 0, that is Mi = Mn,i the force takes the

form F12 ∝ −Mn,1Mn,2 −Mn,1Mn,2 + 2Mn,1Mn,2 = 0. The same holds for states having

only winding charge, mi =Mw,i.

(ii) The force between one momentum state and one winding state vanishes as well: F12 ∝
−M1,nM2,w +M1,nM2,w = 0.

(iii) Since the states we are most interested in (namely the ones that form the (E9 ⊕ E9)/ ∼
algebra) are BPS, let us consider the case of BPS heterotic states, which are characterized

by the conditions [89]

M2 =
2

α′ p
2
R

NS sector
=⇒ N̄ =

1

2
, N = 1− nw − |π|2

2
. (C.2.22)

The force between two mutually BPS states vanishes, as can be easily seen by recasting
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the expression (C.2.21) in the equivalent form (also found in [20])

V7r
7F12 = − 4

α′2M1M2

(
α′

2
M1M2 − pL,1 · pL,2

)(
α′

2
M1M2 − pR,1pR,2

)
. (C.2.23)

From the second factor, mutually BPS particles exert a vanishing force on each other.

The RFC states that for each point in the charge lattice there must exist a particle such that

the force between two identical particles is non-negative, i.e. F11 ≥ 0. From (C.2.21), the state

having N − N̄ − 3
2 = 0 is self repulsive and it is among the ones predicted by the RFC. Indeed,

in this case

V7M
7
p,9r

7M2F11(r) = (M2
π + 2MwMn)

2 > 0. (C.2.24)

Since the factor V7M
7
p,9r

7M4 > 0, this means that F11 > 0. For completeness, let us mention

that as we saw BPS particles satisfy also the repulsive condition (and by the BPS condition

the second factor cannot be negative), as well as the ones having M2 ≤ 2
α′p2

L, which given the

mass formula α′

4 M
2 = 1

2p
2
L +N − 1 means that N = 0, 1 [20].



Appendix D

Decompactification limits in

F-theory

D.1 Review of Kulikov models

From the dual F-theory point of view, decompactification limits of the heterotic theory can

be analysed geometrically by studying the complex structure degenerations of the elliptically

fibered K3, in particular the ones occurring at infinite distance in the complex structure moduli

space. In turn, these can be described and classified in terms of Kulikov models [22]. In order

to define them, let us introduce a K3 degeneration as a one-parameter family {Xu} of K3

surfaces fibered over a disk u ∈ D = {u ∈ C, |u| < 1}, such that the fiber is smooth everywhere

except at u = 0, the infinite distance limit, where it degenerates. The disk and the K3 surfaces

form a threefold X with base D and fiber Xu, and by construction it defines a Kulikov model,

which is a degeneration with the following properties:

• semi-stability: X is smooth, and the fiber X0 is a reduced variety where all components

have multiplicity one and the singularities are of normal crossing type. This is guaranteed

by the semi-stable reduction theorem.

• Ricci flatness, which can always be achieved for a semi-stable degeneration via base

changes (u→ uk) and/or birational transformations.

Since the case of interest is the one of elliptically fibered K3’s, one can describe this family

{Xu} by blowing down each member Xu and associating to the resulting surface a Weierstrass

model,

Yu : y2 = x3 + fu(s, t)xz
4 + gu(s, t)z

6 , (D.1.1)

and the corresponding family {Yu} is called Kulikov Weierstrass model. Here [x : y : z] are

homogeneous coordinates of P231 representing the fiber space and [s : t] are the homogeneous

coordinates of the base P1 of Xu. fu and gu are homogeneous polynomials in [s : t] of degree 8

and 12 respectively, giving a singular surface Y0 which can be obtained by blowing down X0.

It can be shown that Y0 is an union of several components

Y0 = ∪pi=0Y
i , (D.1.2)

149



150 APPENDIX D. DECOMPACTIFICATION LIMITS IN F-THEORY

where each Y i is a fibration over a P1 base component Bi = {ei = 0} with ei coordinates

on the base space, which arrange in a chain (each Bi intersect two other components at most

once), with possibly two kinds of degeneracies that can be read from the vanishing orders of

the discriminant

∆0 = 4f30 + 27g20 . (D.1.3)

These can be

• non-minimal singularities in the Kodaira classification, namely points on Bi with vanish-

ing orders ord(f0, g0,∆0) = (≥ 4,≥ 6,≥ 12).

• codimension zero singularities, namely singular fibers over any point of the base compon-

ent Bi of the form ∆0 = enii ∆′
0, where ∆′

0 does not allow for further factorisation in ei.

These singularities must be of Kodaira Type Ini (namely, f0 and g0 do not vanish at these

generic points) in order for them to be of normal crossing type. These singularities can

get enhanced at co-dimension one loci to give either type A, or two type D singularities.

This is in contrast to the usual smooth case where the codimension zero singularities are

of Kodaira Type I0, which can have all types of singular fibers over codimension one loci

on the base.

We will not give the details of the classification of all the possible degenerate limits, for which we

refer to [22], but just qualitatively introduce the structure of the degenerations which are dual

to decompactifications in the heterotic framework. The towers in this approach are recovered -

at least partially - from elliptic transcendental 2-cycles with asymptotically vanishing volume

on which M2 branes can be wrapped arbitrarily many times. All the statements below hold up

to base changes and birational transformations.

Partial decompactification limits to 9 dimensions

This case, called ‘Type III.a’, is dual to 4.3.1. The base of the elliptically fibered K3 degenerates

into a chain of two or more components. The intermediate components have codimension zero

fiber of Kodaira Type Ini , ni > 0 and at most codimension one singularities of type A. As for

the end components, either they are both rational elliptic surfaces, dP9, or one of them is a dP9

surface and the other one has codimension zero fiber of Type In>0 and two D-type codimension

one fibers. All these components intersect at a point, where they share a Type Im singularity.

One example is given explicitly in 4.5.2. The vanishing transcendental torus is given by fibering

the (1,0) vanishing cycle of the fiber at the intersection point over the vanishing 1-cycle of the

base, which is denoted by δ[1,0] in Figure 4.9.

Full decompactification limits to 10 dimensions

In the F-theory setting there are two possible cases in which the dual heterotic theory fully

decompactifies. The one that has been explicitly worked out in terms of the Kulikov Weierstrass

model is the one corresponding to the algebra (Ê9⊕ Ê9)/ ∼, called ‘Type II.a’ and reviewed in

Section 4.5.1, but we can also realise the qualitatively different ‘Type III.b’ limit the algebra
̂̂
D16, as we will explicitly show in the following. In the Type III.b limit the base of the

K3 surface degenerates into several components Bi, all of which have a codimension zero
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singularity of Kodaira type Ini , ni > 0. This corresponds to the weak coupling Sen’s orientifold

limit. In addition there is a non-minimal singular fiber, which is related to the presence of

an affine algebra. Like in the Type III.a case, the Kulikov model captures only one vanishing

transcendental elliptic curve, namely the fibration of the vanishing A-cycle in the fiber over

the cycle surrounding the point of intersection between two base components. This account for

only one of the towers, given in the dual M-theory by M2 branes wrapping this transcendental

torus arbitrarily many times, or alternatively to the winding modes of the weakly coupled type

IIB F1 wrapping a vanishing cycle on the T 2. Nevertheless, the Type III.b corresponds to a full

decompactification limit if one accounts for the fact that the Kähler modulus is kept constant in

the degeneration, which is possible if the size of the B-cycle goes to infinity, giving the second

tower as KK modes along it. Let us now explicitly describe the limit corresponding to the

algebra
̂̂
D16, which is dual to the decompactification to the 10 dimensional SO(32) heterotic

theory.

D.2 Realisation of double loop D16 in F-theory

Let us consider the following Weierstrass model in the patch z = 1

y2 = x3 + f(s, t)x+ g(s, t) (D.2.1)

with

f(s, t) = −1

3
s2h(s, t)2 − ds8 , (D.2.2)

g(s, t) = − 2

27
s3h(s, t)3 − 1

3
ds9h(s, t) , (D.2.3)

h(s, t) = bt3 + at2s+ s3 , (D.2.4)

a, b, d ∈ C. The discriminat is

∆(s, t) = 4f(s, t)3 + 27g(s, t)2

= −d2s18((1 + 4d)s6 + 2as4t2 + 2bs3t3 + a2s2t4 + 2abst5 + b2t6) .
(D.2.5)

There is a D16 singularity at s = 0, with vanishing orders ord(f, g,∆)|s=0 = (2, 3, 18), and 6

additional I1 singularites, which restricting to the patch s = 1 are at

t1,k± = − a

3b
+

3
√
2a2

3bk±
+

k±

3 3
√
2b
, (D.2.6)

t2,k± = − a

3b
− (1 + i

√
3)a2

3 3
√
4bk±

− (1− i
√
3)k±

6 3
√
2b

, (D.2.7)

t3,k± = − a

3b
− (1− i

√
3)a2

3 3
√
4bk±

− (1 + i
√
3)k±

6 3
√
2b

(D.2.8)
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where the two ± in t2,k±,±i are not correlated, and we have defined the following quantites

k±(a, b, d) ≡ k± =

(
−2a3 − 27b2 +

√
−4a6 + (−2a3 − 27b2 ± 54b2

√
−d)2 ± 54b2

√
−d
) 1

3

.

(D.2.9)

So, this Weierstrass model describes a compactification with algebra D16. For d = 0 one has

k+ = k−, but also ∆ vanishes identically at order 2. This limit is consistent with a Kulikov

model of Type IIb, with d = d(u) = d0u. We should then work with the redefined quantity

∆0(s, t) =
∆(s, t)

d2

∣∣∣∣
d=0

, (D.2.10)

(the subscript 0 stands for d = 0), which is regular as d→ 0, with

f(s, t)|d=0 = −1

3
s2h(s, t)2 , (D.2.11)

g(s, t)|d=0 = − 2

27
s3h(s, t)3 , (D.2.12)

∆0(s, t) = −s18h(s, t)2 . (D.2.13)

∆0 has zeros at s = 0, with vanishing orders ord(f, g,∆0)|s=0 = (2, 3, 18) and three additional

zeros of vanishing orders ord(f, g,∆0) = (2, 3, 2), which in the patch s = 1 are at

t1 = − a

3b
+

3
√
2a2

3bk0
+

k0

3 3
√
2b
, (D.2.14)

t2 = − a

3b
− (1 + i

√
3)a2

3 3
√
4bk0

− (1− i
√
3)k0

6 3
√
2b

, (D.2.15)

t3 = − a

3b
− (1− i

√
3)a2

3 3
√
4bk0

− (1 + i
√
3)k0

6 3
√
2b

, (D.2.16)

where k0 ≡ k+(a, b, 0) = k−(a, b, 0). Physically, the six 7-branes giving six I1 singularities in

(D.2.5) pair into three D0 singularities.

Additionally, one can take b→ 0, so that, introducing h0(s, t) = at2s+ s3 = s(at2 + s2)

f(s, t)b,d=0 = −1

3
s2h0(s, t)

2 , (D.2.17)

g(s, t)|b,d=0 = − 2

27
s3h0(s, t)

3 , (D.2.18)

∆0(s, t)|b=0 = −s18h0(s, t)2 . (D.2.19)

∆0(s, t)|b=0 has zeros at s = 0, with vanishing orders ord(f |b,d=0, g|b,d=0,∆0|b=0)
∣∣
s=0

= (4, 6, 20),

which is a non minimal singularity, and two zeros of vanishing orders ord(f |b,d=0, g|b,d=0,∆0|b=0) =

(2, 3, 2), which in the patch s = 1 are at

t′1,2 = ± i√
a
. (D.2.20)
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The singularity becoming non minimal can be interpreted as one of the D0 stacks coming closer

to the D16 one, the other two having a fixed position far apart from each other and from the

D16 +D0 system.

The fact that in this case ∆ vanishes at a generic point on the base at order two and there is a

non minimal singularity makes this limit consistent with a Kulikov model of Type III.b, with

b = b(u) = b0u. To resolve the non minimal singularity we should consider this Kulikov model

explicitly, namely

y2 = x3 + fu(s, t)x+ gu(s, t) (D.2.21)

with

fu(s, t) = −1

3
s2hu(s, t)

2 − d0us
8 , (D.2.22)

gu(s, t) = − 2

27
s3hu(s, t)

3 − 1

3
d0us

9hu(s, t) , (D.2.23)

hu(s, t) = b0ut
3 + at2s+ s3 , (D.2.24)

with b0, d0 ̸= 0. With this parametrisation of the vanishing coefficients it holds

∆u(s, t) = 4fu(s, t)
3 + 27gu(s, t)

2

= −d20u2s18((1 + 4d0u)s
6 + 2as4t2 + 2b0us

3t3 + a2s2t4 + 2ab0ust
5 + b20u

2t6) .

(D.2.25)

Indeed, one sees that at u = 0, s = 0 there is a non minimal singularity with

fu(s, t)|s=u→0 = −1

3
s4(h′(s, t)2 + 3d0s

5) , (D.2.26)

gu(s, t)|s=u→0 = − 1

27
s6h′(s, t)

(
2h′(s, t)2 + 9d0s

5
)
, (D.2.27)

∆(s, t)|s=u→0 = −d20s22(h′(s, t)2 + 4d0s
5) . (D.2.28)

where

hu(s, t)|s=u→0 = s(b0t
3 + at2 + s2) ≡ sh′(s, t) , (D.2.29)

so that the vanishing orders in the Kulikov model framework correspond to a non minimal

singularity in the Kodaira classification, ord(f |s=u→0, g|s=u→0,∆|s=u→0) = (4, 6, 22). On the

other hand, at u = 0, t = 0 the threefold has an I2 minimal singularity

fu(s, t)|t=u→0 = −1

3
s2 (hu(s, t)|t=u→0)

2 − d0ts
8 , (D.2.30)

gu(s, t)|t=u→0 = − 2

27
s3 (hu(s, t)|t=u→0)

3 − 1

3
d0ts

9 (hu(s, t)|t=u→0) , (D.2.31)

∆(s, t)|t=u→0 = −d20t2s18(s6 + 4d0s
6t+ 2as4t2 + a2s2t4 + 2b0s

3t4 + 2ab0st
6 + b20t

8) , (D.2.32)

with

hu(s, t)|t=u→0 = b0t
4 + at2s+ s3 , (D.2.33)
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which does not display any further factorisation of t factors.

To get rid of the non minimal singularity one performs the base blowup

s→ se1 , u→ e0e1 , (D.2.34)

accompanied by the rescalings (preserving the Calabi-Yau condition)

fe0(s, t, e1) →
fe0(s, t, e1)

e41
,

ge0(s, t, e1) →
ge0(s, t, e1)

e61
.

(D.2.35)

After these rescalings, it holds

∆e0(s, t, e1) = −d20e20e101 s18δe0(s, t, e1) (D.2.36)

where δe0(s, t, e1) cannot be further factorised, and for completeness it reads

δe0(s, t, e1) = e41s
6+4d0e0e

5
1s

6+2ae21s
4t2+2b0e0e

2
1s

3t3+a20s
2t4+2ab0e0st

5+ b20e
2
0t

6 . (D.2.37)

The blown up model has a minimal singularity for e1 = s = 0, which from (D.2.35) and (D.2.36)

can be seen to be of the type ord(fe0(s, t, e1)|s=e1→0, ge0(s, t, e1)|s=e1→0,∆e0(s, t, e1)|s=e1→0) =

(2, 3, 28), so the base cannot be further blown up.

In order to read the physical singularities, namely the ones corresponding to 7-branes, one

should define the K3 discriminant

∆′
e0(s, t, e1) =

∆e0(s, t, e1)

e20e
10
1

. (D.2.38)

(D.2.35) and (D.2.36) describe a degenerate K3 surface. The base degenerates in a chain of

two intersecting surfaces

• {e0 = 0} with generic I2 fiber. Restricting to this component we can set s = 1 since s

and e0 cannot vanish simultaneously and

f0(1, t, e1) = −1

3
(e21 + at2)2 ,

g0(1, t, e1) = − 2

27
(e21 + at2)3 ,

∆′
0(1, t, e1) = −d20(e21 + at2)2 .

(D.2.39)

In this component there are two minimal singularities with vanishing orders given by

ord(f0(1, t, e1), g0(1, t, e1),∆
′
e0(1, t, e1)) = (2, 3, 2) corresponding to two D0 singularities,

separated one from the other.
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• {e1 = 0} with generic I10 fiber. Restricting to this component we can set t = 1 and

fe0(s, 1, 0) = −1

3
s2(b0e0 + as)2 ,

ge0(s, 1, 0) = − 2

27
s3(b0e0 + as)3 ,

∆′
e0(s, 1, 0) = −d20s18(b0e0 + as)2 ,

(D.2.40)

so that in this component there is oneD16 singularity ord(fe0(s, s, 0), ge0(s, 1, 0),∆
′
e0(s, 1, 0)) =

(2, 3, 18) and one D0 singualrity as above.

The monodromy of the D16 +D0 system is

MD16/D0
=

(
1 −8

0 1

)
, (D.2.41)

so indeed it supports only one invariant (1, 0) string surrounding the brane configuration,

corresponding to only one imaginary root extending the algebra to D̂16. As already mentioned,

the second one cannot be detected in this framework.

D.3 Heterotic/F-theory duality map

Let us now examine how the F-theory and heterotic frames differ in the way they capture

the decompactification limits. More concretely, as we will show, certain decompactification

limits which can be described naturally from the point of view of the heterotic string cannot be

encoded in the framework of Kulikov Weierstrass models, as these involve functions that are

not rational. We work with an elliptic K3 surface with two generic E8 singular fibers, described

by the Weierstrass model

y = x3 + as4t4x+ t5s5(t2 + bst+ ds2) , (D.3.1)

where a, b, d ∈ C. The dual E8 × E8 heterotic string background is simply characterized by a

vanishing Wilson line, with complex structure τ and complexified Kähler modulus ρ arbitrary.

The exact relation between the geometric and heterotic moduli is then [148]

j(τ)j(ρ) = −17282
a3

27d
, (j(τ)− 1728)(j(ρ)− 1728) = 17282

b2

4d
, (D.3.2)

where j(z) is the j-invariant modular function.

Consider a decompactification limit from eight to ten dimensions with square torus and van-

ishing B-field. We can parametrize

τ = i
R8

R9
=

i

un
, ρ = iR8R9 =

i

um
, (D.3.3)

with u ∈ R and m > n > 0, so that

−τρ = R2
8 =

1

um+n
,

ρ

τ
= R2

9 =
1

um−n . (D.3.4)



156 APPENDIX D. DECOMPACTIFICATION LIMITS IN F-THEORY

It follows that as u goes to zero, R8 diverges faster than R9, describing a decompactification

from eight to ten dimensions at which the two radii grow at different asymptotic rates. We

consider other values for m and n below.

Now we ask how this decompactification with different rates is described in F-theory. From

the map (D.3.2) we get the equations

a3

d
+
b2

d
∼ j(i/un) + j(i/um)

∼ e
2π
un + e

2π
um

(D.3.5)

and
b2

a3
∼ 1− 1728

e
2π
un + e

2π
um

e
2π
un

+ 2π
um

, (D.3.6)

where we have used the expansion q(z) = e−2πiz + 744 + · · · and kept only the leading orders

as u → 0. By redefining the degeneration parameter u 7→ u′ = f(u), any of these equations

can be made algebraic. However, this cannot be done for both equations at once, and so the

parameters a, b, c cannot be expressed as rational functions of any degeneration parameter;

this makes it impossible to write down a Kulikov Weierstrass model of this kind describing the

associated decompactification limit.

If we set m = n instead, from eq. (D.3.4) we see that only R8 goes to infinity, R9 remaining

constant. In turn, equations (D.3.5) and (D.3.6) can be written as

a3

d
+
b2

d
∼ 2e

2π
un ,

b2

a3
∼ 1− 1728

2

e
2π
un

, (D.3.7)

hence reparametrizing u→ u′ = exp(2π/un) makes both equations algebraic and so, as required

for consistency, a Kulikov Weirstrass model description exists. A similar situation arises if we

set n = 0, which corresponds to the two radii diverging at the same rate. The remaining

choices for m and n come from exchanging m↔ n in the cases already studied and correspond

to T-dual frames in which one of the radii goes to zero instead. The map (D.3.2) is T-duality

invariant and so the conclusions are the same.



Appendix E

Chevalley groups

In this Appendix, we expand on concepts introduced in Section 6.2 and in particular summarize

some concepts related to Chevalley groups, in connection with the string theory realizations of

the T- and U-duality groups.

E.1 Definition

Assume G is semi-simple. Let g = gC be the complexified semi-simple Lie algebra of G, r its

rank, Φ the set of roots and Σ the set of simple roots. In the Cartan-Weyl basis, it is generated

by BCW = {Hi, Xα}i∈Σ,α∈Φ, where α are roots, Xα are nilpotent and Hi generate the maximal

torus.

The Chevalley basis BCh = {Ĥi, X̂α}i∈Σ,α∈Φ corresponds to a rescaling of the Cartan-Weyl

basis so that the eigenvalues of all elements with respect to the maximal torus are all integers.

This is effectively a rescaling of the structure constants in the Cartan-Weyl basis and is possible

due to a theorem by Chevalley [149, 150]. It is unique up to automorphisms of g and signs of

X̂α. The algebra satisfies

[Ĥα, Ĥβ] = 0 α, β ∈ Σ ,

[Ĥα, X̂β] = AαβX̂β α ∈ Σ, β ∈ Φ ,

[X̂α, X̂−α] = Ĥα α ∈ Σ ,

[X̂α, X̂β] = BαβX̂α+β if α+ β ∈ Φ ,

[X̂α, X̂β] = 0 if α+ β /∈ Φ .

(E.1.1)

Notice that Aαβ = 2(α, β)/(α, α) ∈ Z, and by construction they are the components of the

Cartan matrix. The structure constants Bαβ are complex numbers in the Cartan-Weyl basis,

but are integers in the Chevalley basis. The reason for doing this is that the algebra can now

be fully defined over the integers. We call gZ the Z-module generated by BCh, gZ = ⟨BCh⟩Z,
the Z-form of the Lie algebra. We find g = gZ ⊗Z C.

Clearly, Bαβ ∈ Z implies α ∈ Zr for all α ∈ Φ. This defines the Z-form of the root space and

generates an integer lattice.

We can now define Chevalley groups. First, we note that for all X̂α ∈ BCh, (adX̂α)
n = 0 for

157
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some n ∈ N. We can define a unipotent automorphism of g,

xadα (t) = exp(tXα) =
∞∑

n=0

(t adXα)
n/n! , (E.1.2)

which terminates at finite n = n̄. If t ∈ Z, xadα (t) maps gZ to itself, so that one can define the

elementary adjoint Chevalley group of type Φ as the group of automorphisms of the Chevalley

algebra gZ

Ead(Φ,Z) = ⟨xα(t) : α ∈ Φ, t ∈ Z⟩ ⊂ GL(Z) = Aut(gZ) , (E.1.3)

and is a linear algebraic group. Notice that it depends crucially on the existence of an admissible

Z-form of the adjoint representation1. The automorphism group of the associated group G is

a semidirect product of inner and outer automorphisms

Aut(G) = In(G)⋉Out(G) , (E.1.5)

where In(G) ∼= ad(G) and Out(G) is finite and contains the symmetries induced by the Dynkin

diagram [149,150].

E.2 Lattices and Arithmetic Groups

Finite g-modules (modules with a g action on them) contain Z-lattices. Indeed, let V be such

a module and ρ a representation of gZ on V , there exists a Z-lattice Λ ⊂ V which is invariant

under the group generated by

xα : Z→ GL(V ) ∀ α ∈ Φ . (E.2.1)

It is the direct sum of the weight components, or eigenspaces of definite weight and isomorphic

to VZ. The Z-lattice is called an admissible Z-form of the module V . Let W(ρ) be the set of

weights of the g action on V . A basis

(vλ : λ ∈ W(ρ))

is called the admissible basis of the lattice VZ and contains all the weight vectors.

In the case V = Q and for G(Q) algebraic group defined over the rationals, the group generated

by (E.2.1) is an arithmetic subgroup of G(Q). It is in fact the Chevalley arithmetic subgroup

over Z, G(Z), which, in many cases, turns out to be precisely the discrete U- or T-duality

groups defining string theory moduli spaces. In the case where G is a simple Lie group, it also

corresponds to the Coxeter groups of the root system of G.

1The construction of such a group is not unique to the adjoint representation. Indeed, if there exists an
admissible Z-form of a representation ρ on a finite dimensional vector space V , then one can define the Chevalley
group over a ring R as the group generated by the set of homomorphisms

xα : R → GL(V ) : ∀α ∈ Φ . (E.1.4)



Appendix F

Introduction en français

Synthèse

Dans cette thèse, dans le cadre du programme ≪ Swampland ≫, nous nous concentrons sur

certains aspects liés à la ≪ Distance Conjecture ≫ et à la présence de tours infinies d’états

légers à une distance infinie dans l’espace des modules.

Tout d’abord, nous analysons les frontières des espaces de modules de compactifications de

la corde hétérotique sur des tores à d dimensions. Nous calculons les algèbres de courant

de symétrie sur la surface d’univers de la corde à mesure que nous approchons de toutes les

limites de distance infinie qui correspondent à des limites de décompactification (éventuellement

partielle) dans un certain cadre dual. Lors de la décompactification de k directions du T d, nous

constatons que les tours infinies d’états devenant légers augmentent l’algèbre apparaissant en

un point donné de l’espace de modules de la compactification T d−k à sa version à k-fois affine

du point de vue de la dimension inférieure. Les extensions centrales sont données par les

k vecteurs de Kaluza-Klein, et dans le cas de groupes de jauge semi-simples, elles rendent

tous les facteurs affines en même temps. Dans la théorie hétérotique E8 × E8 sur S1, nous

prouvons également que ces tours de modes satisfont la ≪ Weak Gravity Conjecture ≫ et la

≪ Repulsive Force Conjecture ≫. De plus, nous mettons un accent particulier sur d = 2 et ses

duals en théorie F. Pour les compactifications sur T 2, nous reproduisons toutes les algèbres

affines qui apparaissent dans le dual en théorie F et montrons explicitement toutes les tours,

y compris certaines qui ne sont pas manifestes dans leurs homologues en théorie F. En outre,

nous construisons l’algèbre affine SO(32) apparaissant dans la limite de décompactification

totale, à la fois dans le cadre hétérotique et dans le cadre de la théorie F, montrant que des

algèbres affines de type exceptionnel apparaissent dans cette dernière.

Nous considérons ensuite un orbifold construit à partir de la théorie hétérotique E8 × E8 en 9

dimensions sur S1, à savoir la corde CHL, et analysons l’algèbre espace-temps des états BPS

qui émerge dans la limite de distance infinie à mesure que la théorie se décompactifie, en nous

concentrant particulièrement sur la limite de décompactification totale vers 10 dimensions. En

particulier, nous montrons que les décompactifications du cycle lié à l’orbifold conduisent à

des versions tordues de l’algèbre affine. De plus, par le type d’algèbres affines qui peuvent

être trouvées à la frontière de l’espace des modules CHL, nous pouvons clairement voir que la

théorie en 9 dimensions ne peut se décompactifier qu’en la théorie hétérotique E8 × E8 en 10

dimensions, tandis que celle en 8 dimensions peut également se décompactifier en la théorie en

159
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10 dimensions Spin(32)/Z2.

Enfin, nous trouvons des géodésiques et caractérisons la frontière de distance infinie dans les

espaces de modules symétriques (de type quotient G/K), comme ceux qui apparaissent dans

les compactifications avec supersymétrie maximale ou semi-maximale, respectivement du type

Ed(d)/K et O(d, d′)/(O(d) × O(d′)), quotients par le groupe discret de U- ou T-dualité. Les

points de distance infinie sont caractérisés par des sous-groupes paraboliques rationnels de G:

en raison du quotient par le groupe discret, les points de distance infinie ne sont atteints que par

un ensemble (de mesure nulle) de géodésiques très particulières, tandis que la plupart d’entre

elles ont un mouvement ergodique, n’atteignant que des points de distance finie. En supposant

la complétude du spectre, nous montrons qu’il y a toujours une tour d’états devenant légers

de manière exponentielle en la distance géodésique, prouvant ainsi la ≪ Distance Conjecture

≫ dans ces configurations.

Introduction

L’un des aspects les plus convaincants de la physique, et une pierre angulaire de son développement

en tant que science, est la quête d’unification – trouver les lois les plus fondamentales de la

nature pour décrire, dans un cadre unique, la gamme la plus large possible de phénomènes à

différentes échelles. Au cours des dernières décennies, cela est devenu un effort théorique – et

technique – de plus en plus avancé, visant à formuler une “théorie du tout” qui pourrait expli-

quer tout ce que nous savons sur la nature et plus encore. Bien que cela puisse sembler éloigné

de ce que nous pouvons généralement expérimenter du monde, et en quelque sorte d’un intérêt

principalement philosophique, c’est en réalité profondément ancré dans les observations de la

nature. En effet, le premier grand pas vers l’unification est venu de la réalisation de Newton

que la force gouvernant la chute d’une pomme et le mouvement des corps célestes est décrite

par la même loi gravitationnelle. Un autre exemple similaire est donné par l’électromagnétisme,

introduit après que l’électricité et le magnétisme aient été reconnus comme étant simplement

deux manifestations différentes d’un seul champ électromagnétique sous-jacent, tel que décrit

par les lois de Maxwell.

Cette synthèse a ouvert la voie à une étape fondamentale vers le processus d’unification, qui

a culminé avec la naissance du Modèle Standard (MS) de la physique des particules. Dans la

seconde moitié du siècle dernier, ils ont découvert quels sont les constituants de la nature aux

échelles d’énergie que nous pouvons sonder au LHC, et ils ont caractérisé les interactions entre

les différentes particules, qui sont l’électromagnétisme, les forces faible et forte, et la gravité.

En laissant de côté la gravité pour le moment, notre capacité à faire des prédictions très précises

qui peuvent être testées expérimentalement est due au développement de la Théorie Quantique

des Champs (TQC) [4–6], qui permet de décrire les systèmes de Mécanique Quantique (MQ)

dans un cadre relativiste spécial. C’est dans ce langage qu’il est devenu évident que toutes

les forces connues pouvaient être décrites en se basant sur le concept de symétries en utilis-

ant le même cadre mathématique, celui des théories de jauge. Avec cette perspective, il a

été compris que l’électromagnétisme et la force faible ne sont que deux manifestations à basse

énergie de la soi-disant “force électrofaible”, et bien qu’il n’y ait pas de preuve expérimentale

d’une unification supplémentaire de la force forte à des échelles d’énergie plus élevées, on peut

utiliser les outils de la TQC pour faire différentes propositions pour cette interaction encore
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plus “fondamentale” possible.

En dépit du succès énorme de la TQC et du MS pour rendre compte de la physique des colli-

sionneurs, pour laquelle les effets gravitationnels sont insignifiants, il semble que ce paradigme

d’unification échoue à intégrer également la gravité. La formulation actuelle des interactions

gravitationnelles est la Relativité Générale (RG) d’Einstein [7] (voir aussi [8]), une descrip-

tion semi-classique qui est très précise à nos échelles cosmologiques, mais qui ne peut pas être

étendue au-delà du domaine de la théorie des champs classiques car elle est non-renormalisable

en 4 dimensions, et donc elle ne peut pas être quantifiée de manière cohérente. Malgré ce défi

apparent, il est naturel de chercher une théorie unique qui se réduise à la RG et au MS dans les

régimes appropriés, et qui soit capable de décrire toutes ces forces au niveau quantique. Cela

nous permettrait d’expliquer des phénomènes tels que les trous noirs et le Big Bang, où les

interactions gravitationnelles sont censées être cruciales, et fortes à des échelles très courtes.

Le principal candidat pour un cadre qui offre une formulation cohérente de la Gravité Quantique

(GQ) en plus de toutes les autres interactions connues est la Théorie des Cordes (TC) [9, 10],

qui repose sur l’hypothèse qu’au niveau le plus fondamental, les constituants de la nature ne

sont pas ponctuels, mais unidimensionnels, c’est-à-dire des cordes. Le fait que, étant des objets

étendus, elles sont associées à une échelle de longueur non-triviale donne à la gravité un moyen

de couper les divergences UV d’une manière qui évite le problème de la non-renormalisabilité.

Les oscillations des cordes dans l’espace-temps donnent naissance à différents états ; ceux-ci in-

cluent des particules aux propriétés similaires à celles décrites par le MS, telles que par exemple

les bosons de jauge et les champs de matière, mais en plus de cela, le spectre de la théorie des

cordes inclut toujours une particule de spin deux sans masse qui possède les caractéristiques

que l’on attendrait du graviton, le “champ de jauge” de la gravité.

Dans sa formulation supersymétrique, la cohérence interne de la TC exige qu’elle soit formulée

en dix dimensions spatio-temporelles. Malgré cette rigidité, il existe encore cinq théories de

cordes possibles qui peuvent être construites en 10 dimensions, présentant des cordes fermées

et parfois ouvertes selon les conditions aux limites que nous leur imposons. Il s’agit des théories

des Cordes de Type I, Type IIA et IIB, Hétérotique SO(32) et Hétérotique E8×E8. Elles sont

censées être profondément reliées à une théorie à onze dimensions, appelée M-théorie, qui à

basse énergie se réduit à la supergravité en onze dimensions, comme le montre la Figure F.1.

Bien qu’il s’agisse de théories différentes et non liées en 10 dimensions, il s’avère qu’elles sont

toutes connectées (ou plus précisément, “duales” les unes aux autres) une fois que l’on com-

pacte la théorie, c’est-à-dire lorsque certaines des dix directions spatiales sont compactifiées.

Cela est par ailleurs nécessaire pour relier la TC à la phénoménologie, car il faut tenir compte

du fait que nous ne percevons qu’un espace-temps à quatre dimensions. Pour y parvenir, six

des dix dimensions doivent être compactifiées sur une variété interne dont l’échelle de longueur

caractéristique est inférieure à la sensibilité expérimentale actuelle, de sorte qu’elles n’auraient

pas pu être détectées jusqu’à présent, de telle sorte qu’effectivement la théorie n’a que 4 dir-

ections “externes” étendues. Cela introduit un grand nombre d’espaces de compactification

possibles qui, à leur tour, donnent un grand nombre de théories effectives à basse énergie

possibles, puisque le contenu en particules et les interactions dépendent spécifiquement de la

géométrie de la variété compacte choisie. En particulier, on peut considérer une classe plus

large de vides sans se limiter nécessairement à quatre dimensions en choisissant une variété
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Figure F.1: La dualité entre les théories des cordes à 10 dimensions et la théorie M, dont la
description à basse énergie est celle de la supergravité N = 1 (maximale) à 11 dimensions.

compacte avec n’importe quelle dimension comprise entre 1 et 9.1 En raison de la nécessité de

compactification, une caractéristique commune des EFTs de cordes est la présence de moduli,

c’est-à-dire des champs scalaires sans masse sans potentiel qui ne sont pas stabilisés.2 Du point

de vue de la supergravité, on peut les considérer comme des paramètres sur un espace métrique

de vides de cordes connectés ayant la même énergie, appelé espace des moduli.

L’ensemble des différentes théories de champs effectifs (EFTs) qui peuvent être obtenues par

compactifications de cordes est connu sous le nom de “Paysage” [12], et il est très vaste, avec

des estimations initiales de l’ordre de ∼ 10500 théories. Cela peut soulever la question de sa-

voir si la TC a réellement un pouvoir prédictif, car elle semble capable de décrire une très

grande quantité de phénomènes à basse énergie. Dans cette optique, une direction de recher-

che importante pour tester l’efficacité de la TC dans la description de la phénoménologie est

d’essayer de comprendre les propriétés génériques des théories qui en découlent, qui se sont

récemment avérées être en réalité assez contraintes. Dans cette veine, le programme Swamp-

land [13] vise à comprendre les caractéristiques qu’une théorie de champs effective doit posséder

pour être cohérente avec une complétion UV en gravité quantique, en séparant les théories à

basse énergie qui le peuvent (appartenant au Paysage) de celles qui ne le peuvent pas (le

soi-disant Swampland) par une série de conjectures. Celles-ci sont proposées et testées – et

parfois prouvées/réfutées – soit à partir de constructions explicites de cordes (en mettant en

évidence des motifs communs apparaissant dans les compactifications de cordes), soit à partir

1La direction temporelle ne peut pas être compactifiée.
2Étant donné que les moduli donneraient lieu à des interactions à longue portée, ils doivent être stabilisés,

c’est-à-dire qu’ils doivent avoir une valeur d’attente au vide fixe, ce qui peut être fait dans la TC, par exemple
en ajoutant des flux, voir par exemple [11]. Cela dépasse le cadre de cette thèse et ne sera pas abordé davantage.
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d’arguments heuristiques, venant généralement de la physique des trous noirs, ou en utilisant

l’holographie dans le contexte, par exemple, de AdS/CFT, dans le but de mieux comprendre

les implications à basse énergie de la gravité quantique. Malgré le fait que toutes les EFTs

cohérentes puissent apparemment être couplées à la RG par couplage minimal et décrire des

théories gravitationnelles, celles-ci doivent obéir à des contraintes supplémentaires pour être

étendues à une gravité quantique complète.

Plan de la thèse

L’une des affirmations les plus largement acceptées du programme Swampland est la présence

universelle de tours infinies d’états qui deviennent légers en s’approchant des frontières des

espaces de moduli. Cette caractéristique des théories de gravité quantique (QG) a été ini-

tialement suggérée dans [14] avec la formulation de la Distance Conjecture (SDC), qui sera

présentée plus en détail par la suite. Cette thèse se concentre principalement sur deux aspects

liés à cette conjecture, en abordant également certaines autres conjectures connexes, et est

structurée comme suit.

• Dans le Chapitre 2, nous introduirons et commenterons la SDC, ainsi que d’autres conjec-

tures qui seront mentionnées par la suite et qui sont également liées à la présence de tours

infinies d’états avec des propriétés spécifiques, à savoir l’Hypothèse de Complétude [15,16],

la Conjecture de la Gravité Faible (sur un Réseau) (LWGC) [17–19] et la Conjecture de

la Force Répulsive (sur un Réseau) (LRFC) [20,21], qui y est étroitement liée.

• La Partie II est liée à la caractérisation de ces limites de distance infinie qui correspond-

ent à des limites de décompactification dans les théories de cordes hétérotiques et CHL

compactifiées sur des tores, qui présentent des secteurs de jauge perturbatifs, en se basant

sur les symétries qui peuvent apparâıtre.

En particulier, la corde hétérotique en dix dimensions peut avoir soit la symétrie E8 ×
E8, soit

Spin(32)
Z2

, tandis que la corde CHL est une construction intrinsèquement neuf-

dimensionnelle issue d’un orbifold de la théorie E8 ×E8 compactifiée sur un cercle. Nous

les présentons et leurs compactifications toröıdales dans le Chapitre 3, afin de définir les

notations et de décrire le phénomène d’améliorations de symétrie qui peut se produire

à différents points à l’intérieur de l’espace de moduli, afin de le relier au comportement

à ses frontières. Cela sera fait dans le Chapitre 4 pour le cas hétérotique et dans le

Chapitre 5 pour le cas CHL ; nous nous concentrons sur les limites de décompactification

de ces théories, qui apparaissent dans les régions de distance infinie de l’espace de moduli

où certains ou tous les rayons du tore sont pris pour avoir une taille infinie (jusqu’aux

dualités T), et nous discutons des améliorations de symétrie liées qui peuvent survenir.

Le contexte mathématique sur ce type d’algèbres, connues sous le nom d’algèbres de Lie

affines, est résumé dans l’Annexe A, tandis que les détails des calculs peuvent être trouvés

dans l’Annexe B. De plus, pour le cas spécifique de la corde hétérotique E8 ×E8 sur S1,

nous commentons explicitement sur la façon dont la tour d’états s’inscrit dans le cadre de

la LWGC, de la LRFC et de la SDC dans le Chapitre 4.2, en laissant les détails du calcul

pour l’Annexe C. Enfin, dans le Chapitre 4.5, nous montrons que pour les compactifica-

tions sur T 2, les résultats hétérotiques correspondent à ceux obtenus dans le cadre dual

de la théorie F sur K3 dans le contexte des modèles de Kulikov et des dégénérescences
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de la structure complexe K3 [22, 23], et comment toutes les différentes caractéristiques

apparaissent. Quelques éléments de contexte supplémentaires sont donnés dans l’Annexe

D.

• Dans la Partie III, nous nous concentrons sur la SDC dans le cas des compactifications

qui ont un espace de moduli globalement symétrique, comme ceux des compactifications

toröıdales de la théorie M et de la théorie des cordes avant l’action de la dualité U

ou T, mais qui couvrent en réalité une classe plus large. Après avoir présenté les outils

mathématiques pour caractériser et paramétrer la frontière de tels espaces dans la Section

6.1.2, nous montrons comment cela peut être utilisé pour prouver explicitement la SDC

dans ces contextes.
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