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Résumé: La réglementation requiert des établissements
bancaires d’étre en mesure de conduire des analyses de
scénarios de tests de résistance (stress tests) réguliers
de leurs expositions, en particulier face aux chambres
de compensation (CCPs) auxquels ils sont largement ex-
posés, en appliquant des chocs de marchés pour capturer
le risque de marché et des chocs économiques pouvant
conduire a 1’état de faillite, dit aussi de défaut, divers
acteurs financiers afin de refléter les risques de crédit et
de contrepartie. Un des roles principaux des CCPs est
d’assurer par leur interposition entre acteurs financiers la
réduction du risque de contrepartie associé aux pertes po-
tentiels des engagements contractuels non respectés dus
a la faillite d’une ou plusieurs des parties engagées. Elles
facilitent également les divers flux financiers des activ-
ités de trading méme en cas de défaut d’un ou plusieurs
de leurs membres en re-basculant certaines des posi-
tions de ces membres et en allouant toute perte qui pour-
rait se matérialiser suite a ces défauts aux membres sur-
vivants . Pour développer une vision juste des risques
et disposer d’outils performants de pilotage du capital,
il apparait essentiel d’étre en mesure d’appréhender de
maniere exhaustive les pertes et besoins de liquidités
occasionnés par ces divers chocs dans ces réseaux fi-
nanciers ainsi que d’avoir une compréhension précise des
mécanismes sous-jacents. Ce projet de theése aborde dif-
férentes questions de modélisation permettant de refléter
ces besoins, qui sont au cceur de la gestion des risques
d’une banque dans les environnements actuels de trad-

ing centralisé. Nous commengons d’abord par définir
un dispositif de modele statique a une période reflétant
les positions hétérogenes et possibilité de défauts joints
de multiples acteurs financiers, qu’ils soient membres
de CCPs ou autres participants financiers, pour identi-
fier les différents cofts, dits de XVA, générés par les
activités de clearing et bilatérales avec des formules ex-
plicites pour ces cofits. Divers cas d’usage de ce dis-
positif sont illustrés avec des exemples d’exercices de
stress test sur des réseaux financiers depuis le point de
vue d’un membre ou de novation de portefeuille de mem-
bres en défaut sur des CCPs avec les autres membres sur-
vivants. Des modeles de distributions a queues épaisses
pour générer les pertes sur les portefeuilles et les dé-
fauts sont privilégiés avec I’application de techniques
de Monte Carlo en trés grande dimension accompag-
née des quantifications d’incertitudes numériques. Nous
développons aussi I’aspect novation de portefeuille de
membres en défauts et les transferts de cofits XVA asso-
ciés. Ces novations peuvent s’exécuter soit sur les places
de marchés (exchanges), soit par les CCP elles-mémes
qui désignent les repreneurs optimaux ou qui mettent aux
encheres les positions des membres défaillants avec des
expressions d’équilibres économiques. Les défauts de
membres sur plusieurs CCPs en commun amenent par
ailleurs a la mise en équation et la résolution de prob-
lemes d’optimisation multidimensionnelle du transfert
des risques abordées dans ces travaux.
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Abstract: Finance regulators require banking institu-
tions to be able to conduct regular scenario analyses to
assess their resistance to various shocks (stress tests) of
their exposures, in particular towards clearing houses
(CCPs) to which they are largely exposed, by apply-
ing market shocks to capture market risk and economic
shocks leading some financial players to bankruptcy,
known as default state, to reflect both credit and coun-
terparty risks. By interposing itself between financial
actors, one of the main purposes of CCPs are to limit
counterparty risk due to contractual payment failures due
to one or several defaults among engaged parties. They
also facilitate the various financial flows of the trading
activities even in the event of default of one or more of
their members by re-arranging certain positions and al-
locating any loss that could materialize following these
defaults to the surviving members. To develop a relevant
view of risks and ensure effective capital steering tools, it
is essential for banks to have the capacity to comprehen-
sively understand the losses and liquidity needs caused
by these various shocks within these financial networks
as well as to have an understanding of the underlying
mechanisms. This thesis project aims at tackling mod-
elling issues to answer those different needs that are at
the heart of risk management practices for banks un-

der clearing environments. We begin by defining a one-
period static model for reflecting the market heteroge-
neous positions and possible joint defaults of multiple fi-
nancial players, being members of CCPs and other finan-
cial participants, to identify the different costs, known as
XVAs, generated by both clearing and bilateral activi-
ties, with explicit formulas for these costs. Various use
cases of this modelling framework are illustrated with
stress test exercises examples on financial networks from
a member’s point of view or innovation of portfolio of
CCP defaulted members with other surviving members.
Fat-tailed distributions are favoured to generate portfo-
lio losses and defaults with the application of very large-
dimension Monte Carlo methods along with numerical
uncertainty quantifications. We also expand on the nova-
tion aspects of portfolios of defaulted members and the
associated XVA costs transfers. These innovations can
be carried out either on the marketplaces (exchanges)
or by the CCPs themselves by identifying the optimal
buyers or by conducting auctions of defaulted positions
with dedicated economic equilibrium problems. Failures
of members on several CCPs in common also lead to
the formulation and resolution of multidimensional op-
timization problems of risk transfer that are introduced
in this thesis.
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Introduction (en francais)

Suite a la crise des subprimes, dont les racines remontent a la bulle immobiliere américaine des années
2000 qui entraina la faillite de Lehman Brothers en septembre 2008, une crise de liquidité et de solv-
abilité d’établissements financiers, mais aussi de pays de la zone euro, a touché I’ensemble du secteur
financier jusqu’a la fin de I’année 2010. Des répercussions se sont ensuivies durant les années 2011 et
2012 via la crise de la dette européenne avec les difficultés de paiement de la Grece sur ses endettements,
la nationalisation de plusieurs banques en Irlande (Anglo Irish Bank en 2009, Educational Building So-
ciety limited and Irish Nationwide Building Society en 2010, et Irish Life and Permanent en 2011, voir
( , Table A.3)) et des plans de sauvetage a grands renforts d’apports de liquid-
ité via des préts facilités de I’Union Européenne pour le Portugal, I’Espagne et Chypre (€77 mds, €41
mds et €7.3 mds respectivement, d’apport de liquidités provenant de fonds de I’'UE et de I"IMF, voir
( , Table 1)). En réponse, les organismes internationaux de nor-
malisation, comme le comité Balois (Basel Committee on Banking Supervision [BCBS]) et le comité de
paiements et infrastructures des marchés financiers (Committee on Payments and Market Infrastructures
[CPMI]) ont établi, des 2008, des instructions a destination des établissements bancaires afin de garantir
une meilleure robustesse du systeme financier. Ces instructions visent a limiter les risques de contagion
de défauts d’acteurs, principalement bancaires, dans le réseau financier, tant concernant le manque de
liquidité des établissements financiers que 1’impact des niveaux en capital ou fonds propres requis a
ces établissements. Les Etats-Unis adoptérent en 2010 I’acte Dodd-Frank (Dodd-Frank Wall Street Re-
form and Consumer Protection Act, ( )) alors que I’Union Européenne
adopta en 2012 la régulation sur I’infrastructure du marché européen avec le texte EMIR (European
Market Infrastructure Regulation,
( )). S’ensuivit la mise a jour des textes Balois, garants des accords internationaux régissant le ratio
de solvabilité des établissements financiers. Une composante importante de cet arsenal réglementaire
consiste a conduire annuellement des exercices de résistance (dit aussi de stress test) par les autorités des
institutions bancaires telles que I’ Autorité Bancaire Européenne [EBA] et la Réserve Fédérale des Etats-
Unis [FED]. Le rdle prospectif de ces exercices permet de relever des premiers signaux de faiblesses
des structures comptables des banques reconnues comme contributrices majeures du risque systémique

financier.
Les exercices de stress test, dont les principes sont détaillés dans ( ) et
( ), ont pour base un ensemble de projections averses de facteurs économiques (PIB, infla-

tion, taux de change, taux d’intéréts, indices boursiers, etc.) sous des hypotheses de conditions défavor-
ables des marchés financiers, généralement sur un horizon de trois ans pour ce qui est des exercices pure-
ment financiers, et allant jusqu’a 50 ans lorsque ces exercices concernent I’impact des changements cli-
matiques sur le systeme financier. Ces trajectoires prospectives de facteurs économiques sont alors injec-
tées dans les probabilités de défaut (par exemple en exploitant des régressions linéaires des historiques



de ces probabilités, ou de leurs variables latentes, sur ces facteurs économiques) a divers horizons de
temps futurs ainsi que dans les actifs composant les portefeuilles (on parle également d’expositions) des
contreparties auxquelles sont exposées les banques. Les probabilités de défaut et montants d’expositions
peuvent étre ainsi projetés sur la base de cette ré-interprétation des variables macro-économiques pour
en déduire I’impact sur leurs actifs pondérés a risque (en anglais risk weighted assets [RWA]) et sur les
montants en capital a réserver que ce soit les fonds propres dans le cadre des instructions réglementaires
Capital Requirements Regulation [CRR] ou les provisions de crédit dans le cadre des normes compt-
ables International Financial Reporting Standards [IFRS]. Un établissement bancaire exposé a divers
types de contreparties (entreprises, autres banques, fonds de pensions, etc.) aura une tache d’autant plus
complexe pour réaliser ces exercices de stress test que son portefeuille de clients sera diversifié. Par
ailleurs, si 1’objectif de la réglementation est bien de pouvoir limiter les risques systémiques et de con-
tagion d’évenements économiques et financiers défavorables, ces exercices doivent pouvoir capturer et
identifier les signaux de faiblesse de ces risques. Cela suppose en particulier, pour I’institution bancaire
qui conduit I’exercice, d’intégrer les diverses interactions entre les acteurs financiers et économiques
constituant le réseau du systeme financier. Ces demandes sont notamment exprimées dans I’article 302
du texte réglementaire ( ) (mis a
jour dans ( )):

Les établissements évaluent, par une analyse de scénario et des tests de résistance appro-
priés, si le niveau des fonds propres détenus au regard des expositions a une CCP, y com-
pris les expositions de crédit potentielles futures ou éventuelles, les expositions découlant
de contributions a un fonds de défaillance et, lorsque 1’établissement agit en qualité de
membre compensateur, les expositions découlant de dispositions contractuelles [...] et en
proportion des risques inhérents a ces expositions.

Par ailleurs, les recommandations faites dans le paragraphe 105 du texte
( ) en termes de conduite d’exercice de stress test pour I’activité de clearing stipulent:

Les établissements devraient veiller a ce que les tests de résistance relatifs au risque de
crédit a I’échelle de 1’établissement couvrent toutes leurs positions dans leur portefeuille
bancaire et de négociation, y compris les positions de couverture et les expositions sur les
chambres centrales de compensation [CCP].

Le réseau du systeme financier a profondément été modifié ces dix dernieres années avec le rdle de
plus en plus prépondérant attribué aux chambres centrales de compensation (dont 1’abréviation est CCP
et que I’on nomme plus communément chambre de compensation, clearinghouse en anglais), sous
I’impulsion du G20. En septembre 2009 ( , ), le G20 impose la prise en charge
systématique des contrats dérivés de gré-a-gré (en anglais over-the-counter [OTC]) lorsque ceux-ci peu-
vent étre normalisés (dit aussi standardisés) par I’intermédiaire des CCPs entre deux acteurs financiers,
alors reconnus comme membres “‘compensateurs” ou “cleareurs” (en anglais clearing members) des
CPPs agissant comme leurs intermédiaires. Autrement dit, les flux financiers d’un contrat dérivé entre
deux contreparties transitent de maniére intermédiaire par une CCP, cette derniere devenant acheteuse
de toute contrepartie vendeuse et vendeuse de toute contrepartie acheteuse de ce contrat. Les CCPs ont
aussi pour role de garantir la continuité des versements de ces flux méme en cas de défaut de I'une des
parties. Ceux-ci sont garantis via la collection de collatéraux aupres des deux parties pour lesquelles
les CCPs sont un intermédiaire, similaire aux principes appliqués par les bourses financieres. Ainsi les
contrats dérivés sont négociés entre deux parties sur les bourses sous-tendues aux CCPs sur lesquelles
les parties sont ensuite re-dirigées pour mettre en ceuvres les flux financiers de ces contrats. Les contrats
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traités par les CCPs pour le compte des divers acteurs financiers sont dits clearés. Lorsqu’un étab-
lissement est exposé a diverses contreparties sur les marchés de produits dérivés, qui pour une grande
partie des contrats ont pu étre standardisés, cette exposition est indirecte puisque la CCP en est une
intermédiaire. Tous les produits dérivés ne peuvent étre standardisés puisque nombre d’entre eux sont
spécifiquement définis aux seuls besoins des clients désireux de se prémunir contre certaines fluctua-
tions du marché ou simplement a des fins spéculatives. Des lors, la structure des marchés financiers s’est
métamorphosée d’une structure d’accords bilatéraux opérés entre deux acteurs du réseau financier, en
une structure plus complexe. Cette nouvelle structure se compose de dizaines de CCPs concentrant des
montants gigantesques de collatéraux, quelques milliers d’acteurs financiers disposant pour la plupart
d’un niveau conséquent de capital et faisant face a ces CCPs en leur fournissant ces collatéraux collectés
aupres d’acteurs plus réduits financierement et ne pouvant accéder directement aux services d’une CCP.
Bien que simpliste et schématique avec une seule CCP représentée, la Figure 1 illustre le passage de re-
lations, c’est-a-dire de positions financieres, uniquement bilatérales entre six acteurs financiers (schéma
de gauche) a des relations uniquement gérées par une seule CCP comme unique intermédiaire entre ces
six acteurs (graphe du milieu) et une représentation plus en ligne avec la pratique industrielle consistant
en un mélange de relations bilatérales et passant par la CCP (graphe de droite).
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Figure 1: Illustration d’un marché de flux financiers, collatéraux compris, avec des liens uniquement
bilatéraux (a gauche) comparé & un marché de flux financiers centralisés via une CCP (au centre). A
droite, illustration d’un marché de flux financiers en partie centralisés (liens solides) et contenant des
flux financiers bilatéraux entre les membres (liens en pointillés) de la CCP. Source: ( ,
Figures 3.2 et 3.5, pages 28 et 32).
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Ces montants de collatéraux sont d’ailleurs observables via des rapports trimestriels publiés par
la majorité des CCPs et se chiffrent pour les CCPs les plus larges en centaines de milliards d’Euros
(il s’agit des documents ou fichiers de quantitative disclosure). Par ailleurs, les positions provenant
des produits dérivés encore OTC ne transitent pas par les CCPs qui ne peuvent les gérer et continuent
de mailler le réseau financier de liens bilatéraux. Concernant la concentration de collatéraux, bien
que ceux-ci permettent une certaine garantie de la continuité des opérations pour les CCPs et leurs
membres suite a la défaillance potentielle d’un des leurs, ils soumettent les plus petits acteurs du réseau,
non membres de ces CCPs, a des besoins de liquidité importants. Néanmoins le nombre d’événements
de défaut d’'un membre sur une CCP lors des quinze dernieres années est de moins d’une dizaine.
Il est alors reconnu que le risque de contrepartie, c’est-a-dire le risque qu’un acteur financier fasse
défaut et ne puisse pas respecter ses engagements financiers contractuels envers sa contrepartie devant se
tourner vers d’autres acteurs pour remplacer ces engagements avec des cofits additionnels, était un risque



majeur du réseau financier lorsque celui-ci était constitué principalement de liens financiers bilatéraux.
Ce risque de contrepartie s’est transformé, avec I’'importance croissante des CCPs, en un risque de
liquidité, qui consiste pour un acteur financier au risque de ne pas pouvoir respecter un ou plusieurs de
ses engagements financiers, y compris de fournir des collatéraux supplémentaires soit par manque de
moyen pour les assurer ou par une accessibilité réduite et onéreuse pour certains de ces collatéraux. Un
tel évenement d’insuffisance de liquidité, et donc de défaillance, a une probabilité de développement
bien plus faible étant donné les collatéraux postés par les membres des CCPs pour garantir jusqu’a un
certain niveau de confiance les flux financiers. Cette probabilité est bien plus faible comparée a celle
générée par le risque de contrepartie. Cependant, si les collatéraux venaient a étre insuffisants — ce
qui ne se produirait alors que dans un cas plus extréme qu’un ou plusieurs défaut(s) de contrepartie(s)
plus isolé(s) dans le cadre plus simples d’échanges financiers bilatéraux —, les besoins de liquidité
seraient bien plus significatifs pour de multiples membres, dont une partie ne sauraient pouvoir les
combler. Un effet de contagion est alors possible, les défauts des membres, et potentiellement de leurs
clients, peuvent par conséquent dans ce scénario plus rare mais plus extréme se propager rapidement et
créer un événement systémique d’une intensité dévastatrice pour I’ensemble du réseau. Pour illustrer
la complexité du réseau financier dans son ensemble, une analyse des liens entre les membres, leurs
clients pour lesquels ils operent, et les CCPs, est souvent privilégiée car elle facilite une certaine lecture
du réseau mais la simplifie en omettant les diverses connections entre les membres des CCPs ou entre
les membres et d’autres acteurs financiers de ce réseau non-membre d’une CCP comme dans Rosati and
Vacirca (2019, Figure 2), reprise dans la Figure 2.
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Figure 2: Réseaux financiers indiquant I’existence de positions Marked-to-Market (lignes solides) entre
deux acteurs financiers (points foncés pour la zone Euro, clairs pour la zone non-Euro) comprenant 30
CCPs (points rouges et oranges), leurs membres (190 points bleus foncés et clairs) et les clients non-
membres passant par ces membres (points verts foncés et clairs). Le réseau de droite indique uniquement
les positions Marked-to-Market entre les CCPs et leurs membres sans les clients qui sont par contre
inclus dans le graphe de gauche. Les cercles bleus intérieurs représentent les clearing members exposés
aux plus grands nombres de CCPs. Source: Rosati and Vacirca (2019, Figure 2).



En pratique, il est également possible de générer de tels réseaux de maniere réguliere sur la base
des analyses annuelles conduites concernant la qualité de crédit des CCPs ou I’analyste de crédit, en
charge de la notation interne de la qualité de crédit d’une telle institution collecte 1I’ensemble des noms
de ses clearing members. En croisant ces informations sur diverses CCPs, il est par exemple possible de
produire un réseau comme le montre la Figure 3. On peut y observer les relations qu’ont les membres
avec une ou plusieurs CCPs mais les relations entre les membres eux-mémes, dans le cadre d’une activité
bilatérale de gré-a-gré, ne sont pas indiquées pour ne pas surcharger la figure.

Figure 3: Réseau financier de 1’activité de clearing en Europe avec 16 CCPs en rouge et leurs membres
respectifs en bleu (1059 membres au total), dont 112 membres ont des accords sur plusieurs CCPs et
concentrés au centre du réseau, sur la base de données a fin juin 2021.

Une représentation plus réaliste mais plus complexe a illustrer consiste a montrer les liens a la fois
bilatéraux de portefeuilles pris sur les marchés de gré-a-gré et de 1’activité de clearing comme Fiedor,
Lapschies, and Orszdghova (2017, Figure 3), voir la Figure 4, mais qui se concentrent, étant donné la
lourdeur des données a traiter, sur le marché des produits de dérivés de taux (qu’ils soient clearés ou de
gré-a-gré).
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Figure 4: Relations entre les contreparties pour I’activité de clearing des produits dérivés de taux au 31
Déc. 2016. La taille des nceuds est relative au nombre de liens (degré). Les liens entre les CCPs et leurs
membres sont en vert et ceux entre les membres et leurs clients pour lesquels ils opeérent sont en rouge.
Source: Fiedor, Lapschies, and Orszaghova (2017, Figure 3))

Problématique générale : Les instructions réglementaires ont pris en compte ces récentes transfor-
mations du réseau financier et de ses risques en recommandant leur représentation et quantification
adéquates pour les exercices de stress test. C’est également un point d’attention privilégié par le comité
exécutif des institutions bancaires. Il demande des exercices introspectifs et prospectifs de la solidité
de leur établissement financier via divers exercices réglementaires d’évaluations du bon fonctionnement
de leurs opérations et de la garantie de leur continuité suite a des événements averses sur le systeme
financier. Les cadres d’exercices réglementaires d’analyses Internal Capital Adequacy Assessment Pro-
cess [ICAAP] et Internal Liquidity Adequacy Assessment Process [ILAAP], composantes du cadre ré-
glementaire Supervisory Review and Evaluation Process [SREP], sont élaborés a ces fins. IIs requiérent
I’analyse de la solidité financiere des établissements financiers suite a diverses chocs économiques hy-
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pothétiques (qu’ils soient de nature politique, économique et/ou climatique). Il convient alors de pouvoir
élaborer des outils pouvant capturer ces mécaniques du réseau financier et de ses risques, quantification a
I’appui, avec pour cible des approches et implémentation extensibles a large échelles du réseau financier
mais en puissance et temps de calcul limités.

Cette these propose diverses contributions sur 4 axes de développement, liés les uns aux autres, pour
apporter des réponses a cette problématique:

* une modélisation des diverses mécanismes et risques des marchés financiers sur les activités de
clearing et bilatérales OTC avec la prise en compte de ses différents types d’acteurs et colits qui
en découlent, permettant divers exercices de gestion des risques;

* une analyse théorique et numérique de I’adéquation de cette modélisation reposant sur les pro-
priétés de super-modularité de fonctions multi-dimensionnelles et de vecteurs aléatoires;

* 1’exposition d’une approche basée sur le concept d’équilibre de Radner pour capturer le risque de
liquidation au travers d’impact sur les prix de marché comprenant une mise en adéquation avec
les diverses types d’acteurs et d’activités de clearing et bilatérales OTC des deux axes précédents;

* la mise en application de résolution algorithmique approchée de 1’allocation optimale des porte-
feuilles d’un membre en défaut sur plusieurs CCPs, abordé dans le premier axe de maniere naive
et coliteuse en temps de calcul.

Nous détaillons ci-apres ces axes faisant 1’objet, pour chacun d’entre eux, d’un chapitre dans ce
manuscrit.



§1 Risques des produits dérivés traduits en coiits dans un modele
de réseau a une période

Dans une premiere partie, nous proposons une description exhaustive des principaux mécanismes de
fonctionnement du réseau financier sur 1’activité des dérivés financiers, y compris les cofits qui en dé-
coulent, en prenant en compte a la fois les liens bilatéraux et ceux constitués par I’activité des CCPs.
L’utilisation de modeles elliptiques permet de proposer diverses applications comme un ré-arrangement
du réseau financier (que 1’on peut également qualifier de déformation ou encore de restructuration de
ce réseau) suite a un défaut d’un des acteurs financiers, membre d’une CCP, suivi de la reprise de son
portefeuille 2 moindre coflit par les autres membres de cette méme CCP. Une autre application essentielle
permettant de répondre aux exigences réglementaires consiste a la mise en place d’exercices de stress
test prospectifs. Par ailleurs, des comportements, bien qu’intuitifs, de monotonie des métriques de cofits
et de risques, sont observés numériquement avec ces modeles et amenent a valider théoriquement la
pertinence de I’utilisation de tels modeles.

Contributions du Chapitre I : nous reprenons ( ) dans
lequel

* nous décrivons les différents types d’acteurs et les flux financiers les concernant, permettant de
maintenir leur positions dans le cas ou des défauts de leurs contreparties se produisent, ainsi que
les cofits de financement nécessaires prenant en compte leur propre risque de défaut (Lemme L.1,
Lemme 1.2);

* nous exprimons ces divers types de cofits en combinant les cofits de 1’activité de clearing (
, ) et bilatérale OTC ( s
) dans un cadre statique et prenant en compte la multitude de CCPs auxquelles s’exposent
un acteur financier majeur comme une large banque (Théoréme 1.4 et Proposition L.5);

* nous illustrons numériquement diverses applications possibles comme des exercices de stress
test, exploratoires ou inverses (reverse stress test) et des reprises idéalisées de portefeuilles de
membres en défaut.

Un acteur majeur du réseau financier tel qu’une banque systémique détient des expositions a la fois
face a des CCPs et face a des contreparties bilatérales pour les produits ne pouvant étre standardisés. Il
subit par conséquent des cofits et des besoins en liquidité sur ses états financiers dus a leur détention. Ces
colts sont alors a transférer a ses clients, ces derniers étant a ’origine de la détention de ces produits
financiers afin de répondre a leurs besoins économiques. Quant aux besoins de liquidité, tels que du
collatéral en devise ou titres suffisamment liquides que ce soit dans des conditions de marchés averses
ou non, ils se traduisent par la nécessité pour I’acteur financier les supportant de se tourner vers les
marchés et autres acteurs financiers dédiés afin de disposer de cette liquidité, moyennant également des
colts correspondants. Par ailleurs, I’interconnexion des membres au travers des CCPs se retrouve par la
pluralité des acces d’'un membre a plusieurs CCPs, chacune couvrant un certain type de produits de son
portefeuille.

L’analyse de ces mécanismes d’activités de clearing et bilatérales et de leurs diverses formulations
remontent aux travaux de ( ) et ( ) pour la partie bi-
latérale OTC, (2012), (2014), (2015), (2018), (2019),

( )et ( ) pour la partie clearing et CCP. Celle-
ci est conduite au niveau de chaque contrat comprenant leurs cofits en temps continu dans ( ).
Elle peut étre mise en place numériquement a condition de disposer d’une grande capacité de calcul,



puisque les grands acteurs financiers comme les banques systémiques détiennent plusieurs dizaines de
millions de ces transactions dans leurs portefeuilles.

Dans ( ), nous proposons de reprendre ces mécanismes
au travers d’un modele a une période inspiré de la version a temps continu de
( ) pour la partie clearing et similaire a 1’approche dans

( , Section 3) dans le cas bilatérale OTC. Nous y proposons aussi une alternative aux variations

aléatoires de valeur d’un portefeuille modélisées avec une seule variable aléatoire, au lieu de toutes
les variables dont pourraient dépendre des milliers de contrats de ce portefeuille. Le réseau d’acteurs
financiers et d’expositions financieres, méme s’il peut contenir plusieurs milliers de nceuds, est ainsi
numériquement tractable (pour des approches similaires voir par exemple ( ) ol les varia-
tions aléatoires de valeur de portefeuilles sont supposées suivre des lois de Pareto,

( ) utilisant des lois elliptiques et ( ) pour une
approche par contrat avec des applications numériques sur un réseau constitué de 4 CCPs et de leurs
membres).

Cette adaptation permet aussi d’illustrer numériquement, via des modeles elliptiques pour les vari-
able de variations de portefeuilles et latentes de défaut, des exercices réglementaires de stress test et le
portage de position d’'un membre en défaut d’une CCP vers 1’'un de ses membres survivants générant le
moindre cofit. cette derniere application s’apparente a une mise aux encheéres idéale qui se résout avec un
repreneur permettant d’obtenir ce colit moindre pour I’ensemble des membres survivants. Une approche
stress test pour un réseau de CCPs et leur membres, limitée a quelques scénarios macro-économiques
averses, mais sans prise en compte des cofits de contrepartie, de financement des collatéraux ou de cap-
ital, est présentée dans ( ) et repris par ( ). Un
cadre plus complet est détaillé dans ( ) sans se focaliser sur un
type d’activité particulier (clearing ou bilatérale OTC). Quant a 1’analyse du portage des portefeuilles en
défaut, il permet d’appréhender les restructurations possibles du réseau financier suite a un ou plusieurs
défauts dans le systeme financier.

Notons J;, J., Jp les indicateurs de survie au temps 1 respectivement des membres ¢ des CCPs, des
clients indexés par ¢ du membre de référence O pour lesquels il opere un service de clearing et de ses
contreparties bilatérales OTC indexées par b. Une CCP indexée ccp détient face a ses membres des
expositions, comprenant les appels de marges journaliers, notées Y,"”, i € I avec I I’ensemble des
membres des CCPs. Les positions de couvertures face aux CCPs sont identifiées spécifiquement par
YECP. Cette distinction sera particulierement utile dans le Chapitre III pour établir les découvertes de
prix sur les marchés et est illustré dans la Figure 5.



contracts
clearés

Figure 5: Flux contractuels entre les participants de marchés. Les fleches bleues représentent des en-
gagements de positions clearées par les membres au nom de leurs clients, les fleches oranges sont des
engagement bilatéraux et leur positions symétriques face a la CCP en tant que couverture (dits aussi de
proprietary trading).

Une CCP applique une cascade (waterfall) de couches de protection MS? = TMS? 4+ IM; " +
DF;“” pour chacun de ses membres i € I (voir le principe 6 dans ’ensemble des principes émis et
recommandés par ( )). Les marges initiales (initial margins,
[IM]) sont calculées séparément entre les positions clearées (dit de compte client) et les positions de
couverture (dit de compte house), et notées respectivement IM;? et mffp. Le membre 0 recoit de ses
clients clearés et de ses contreparties bilatérales les flux Y P et Y}, respectivement avec comme marges
initiales correspondantes IMS?? et IM,. Pour les expositions bilatérales OTC, le membre 0 peut poster
des marges initiales IM,, pour chacune de ses contreparties b. La plupart des CCPs requiérent également
un fonds de garantie (ou fonds de défaut, en anglais default fund DF) noté DF;“" pour chaque membre
tsur la CCP ccp. Nous ignorons une couche additionnelle de capital propre aux CCPs (le skin-in-the-
game) étant donné son faible montant par rapport aux autres couches de protections ( , ,
Section 8.4.5).

La formulation de la perte C, que le membre de référence indexé O supporte, constitue le point de
départ des divers cofits de la détention de ses portefeuilles et s’écrit (Proposition L5 et équations I.(15)
et 1.(16))

C = Z (1—J.) (chcp _ IMECP)JF Jrz e LE°P + Z(l —Jy) (Y — IM},)+ 7
N —_—— NI

cep,c b

perte face au client c clearé par O €€P perte sur la ccp allouée a O perte face au client b

€))
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avec

Lo = 3 (1= J)((VP — M) 4 (V7 - TNt —DF{)

i

2

position client sur la ccp ~ position house sur la ccp
Les formulations (1) et (2) découlent des principes suivants:

1. Une contrepartie en défaut envers une autre et ayant des dettes au-dela des collatéraux postés, les
rembourse a hauteur de ce qu’elle a posté en collatéral et non au-dela. Si cette dette est en-deca
du collatéral, I’ensemble des dettes est remboursé sans qu’aucune perte ne se matérialise pour
I’autre contrepartie.

2. Les flux entrants et sortants de toute CCP s’annulent, de méme que pour tout membre faisant
face a une CCP. Un membre est ainsi considéré comme étant parfaitement couvert sur ses risques
de marchés émanant de ses propres positions que ce soit pour 1’activité de clearing ou I’activité
bilatérale OTC.

La plupart des membres étant des larges banques, celles-ci ont effectivement une activité de marché
relativement bien couverte, comme en atteste leurs besoins en fonds propres analysés dans
( ) (estimés comme une fraction des actifs pondérés reportés dans ce rapport).
Les cofits de détention des divers types de positions du membre 0, sont valorisés sous une probabil-
ité notée P*, d’opérateur d’espérance E*, et avec pour numéraire un actif de taux sans risque permettant
de simplifier les équations de valorisation de tous les flux financiers et des comptes de collatéraux.
La probabilité P* est un mixte de mesures physique et risque-neutre, que I’on qualifiera a ce titre
de mesure “finassurance”, construit de la maniére suivante: étant donnée une mesure de probabilité
physique définissant complétement le modele reflété par la o-algebre A et équivalente & une mesure
risque-neutre sur la o-algeébre B ne reflétant que ’incertitude de marché et contenue dans A, P* est
égale a la mesure risque-neutre sur 3 et a la mesure physique conditionnellement a 3. Ces deux con-
ditions caractérisent uniquement P* ( s , Proposition 4.1). Cette construction remonte
a ( ) et ( ). La probabilité de défaut correspondante d’un
membre ¢ est notée v; = P*(J; = 0). Pour simplifier, Jy est noté simplement J, et o simplement ~y.
Concernant le financement des expositions pour le membre 0, et donc ses besoins de liquidité, les
termes IM““? et Zbe B IM,, constituent des montants de collatéraux 4 emprunter et poster soit 2 la CCP,
soit a ses contreparties bilatérales. Le membre O recoit en échange un taux de rémunération que I’on
considere en-dega de son taux de financement pris comme sa probabilité de défaut +y si bien que le cofit
de financement se base sur un taux dilué ¥ < « (le membre O se finance au taux ~y et se fait rémunérer
au taux v — 7). De plus, le membre O transfert ses colits de risque de contrepartie et de financement
de marges agrégés, résumé par le terme CA, a ses clients. CA est I’acronyme de contra-asset et joue
le r6le d’un passif dans le bilan du membre 0 comptable venant contrebalancer la valeur des dérivés
détenus comme actifs. Ses actionnaires doivent alors supporter la perte potentielle ¢ := C + F — CA
pour laquelle un niveau de capital EC est calculé comme une mesure de risque de cette perte ou la
mesure est par exemple une expected shortfall ESg sous la probabilité P* conditionnée a la survie de 0,
notée Q°. Cette mesure de risque correspond, dans le cas ol elle est appliquée 2 une variable aléatoire
de distribution continue, a la moyenne des pertes sous Q° au-dela d’un certain seuil Q0 (¢) pour un
intervalle de confiance o € (1/2,1) également sous Q°, soit EC = ES°(.J¢) = E° [¢]¢ > Q%(¢)].
avec Q¥ (£ > Q5(¢)) = 1 — . Elle devient la mesure a considérer pour le standard réglementaire
des mesures du risque de marché ( s ). Le comité exécutif de
ce membre, doit assurer un dividende, a hauteur d’un taux dénoté h, sur le capital a risque de ses
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actionnaires, soit (EC — KVA)T ot KVA représente le colit en capital également chargé au client en
plus de CA. On fait alors I’hypothese qu’a temps 0, les montants de ces cofits collectés par le membre 0
sont déposés sur ses comptes de réserve en capital et de capital a risque et peuvent €tre utilisés pour ses
besoins de financement de marges de variations. Ainsi les dépenses dues aux financements des diverses
marges peuvent s’écrire comme le flux (Proposition L.5 équation (17))

f:y(va—CA—max(Ec,KVA))++§ZMCCP+%ZN}), 3)
b ccp b
ou Vy représente la différence entre le collatéral dii par le membre O a la contrepartie b et celui collecté
aupres de cette méme contrepartie. CA se décompose en divers termes reflétant les coits de crédit et de
financement de marge de la forme CA = CCVA +BCVA + CMVA + BMVA + FVA, ou les différents
termes sont définis dans la Table 1.

‘ XVA ‘ Expression ‘ Nom complet et description ‘
E* [JL(EC — KVA)T + (1 — J)KVA],

KVA where EC — ES ( JC+F-C A)) capital valuation adjustment
dit valuation adjustment
E* 1— Jy)(Yp — IMy)* 4 (1 — J)BCVA cre J
BOVA 7 Xb:( S (Vo o) "+ ( J)BCV. pour les expositions bilatérales
» ep pe dit valuation adjustment pour
EX [ (1 = Jo) (VP — IMeP) cPLeP 4 (1 — J)CCVA ere ! P
COVA { ;pc( (e ST %}; " +( ) les expositions d’activités de clearing
,, o | 72 N B ' margin valuation adjustment
BMVA EX 7y ; IM, + (1 = J)BMVA pour les expositions bilatérales
. . ~(TNCeP . TP cep B ' margin valuation adjustment pour
CMVA E {J gp PY(IM +IM™ 4+ DF ) + (1 J)CMVA les expositions d’activités de clearing
+
FVA E* ny(z Y, — CA — max(EC, KVA)) +(1-J)FVA funding valuation adjustment
L b J

Table 1: Définitions des cofits XVA (avec C, F et L°P donnés respectivement par (1), (2) et
(3)).

On remarque que ces colits de risque de contrepartie, de financement de marges et de capital
s’écrivent comme solution d’équation de type point fixe sous la probabilité “finassurance” et sont bien
définis lorsqu’ils sont réécrits sous la probabilité de survie QV. Nous pouvons alors obtenir des formules
explicites de ces différents cofits, que nous listons dans la Table 2 (Théoreme 1.4 et Proposition L.5).

12



XVA Formule explicite
CCVA E Y (1= J) (VP —IMEP) T 4y ppLeer
cep,c ccp
CMVA 3> owmeer
ccp
BCVA B Y (1= )Y — IM,) T
L b
BMVA 5 Z M,
b
EC ES(J(C — CVA))
+
FVA | —— [ 37%, — (CCVA + CMVA + BCVA + BMVA) — EC
1+~ -
h
KVA — B
v [

Table 2: Formules explicites des cofits XVA sous probabilité Q° (avec C et £L°P donnés par

(1) et (2)).

Nous proposons plusieurs exemples numériques, sur la base de modele elliptique avec des distri-
butions de Student ayant un degré de liberté de 3 pour générer des distributions a queues épaisses con-
cernant les variations aléatoires de portefeuilles (revenant a supposer 1’existence des moments d’ordre
1 et 2 seulement, comme cela peut étre observé en pratique sur certains portefeuilles), afin de souligner
I’application possible du cadre des métriques XVA pour des exercices de stress test, exploratoires ou
inverses (reverse stress test). L'un d’eux concerne la mise en défaut par deux CCPs du gestionnaire
d’actifs Ronin Capital suite a la pandémie de Covid 19, en mars 2020. Un autre exemple met en avant
I’identification d’un ré-agencement optimal qu’une CCP pourrait opérer suite au défaut de 1’un de ses
membres avec la reprise du portefeuille en défaut, et des positions symétriques correspondantes de ses
clients, par un membre survivant, résultant aux moindres cofits pour I’ensemble de tous les membres
survivants. Pour chaque métrique non-analytique XVA (comme les CVA et KVA) et quantiles (pris
comme scénario d’exploration de stress test pour un intervalle de confiance donné), nous effectuons des
simulations via la technique de Monte Carlo avec des intervalles de confiance non-paramétriques, basés
pour ce qui est des quantiles estimés sur ( , Appendix G) qui utilise la distribution
binomiale des statistiques d’ordres de variables aléatoires uniformes indépendantes.
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§2 Monotonie des métriques de provisions de crédit et de capital
économique

Etant donné le cadre elliptique considéré pour les variables aléatoires suivant des distributions de Stu-
dent dans les tests numériques mentionnés dans le §1 et le Chapitre I, on observe que les mesures
d’espérance et d’expected shortfall sont croissantes par rapport aux parametres de corrélation. On peut
alors se demander si ¢’est une propriété du cadre de modélisation consistant a I’application de mesures
de risque convexes a des fonctions de variables aléatoires suivant des distributions elliptiques. Il s’avere
que les distributions elliptiques appartiennent aux variables aléatoires obéissant a des propriétés dites
de super-modularité et que les fonctions de pertes que nous utilisons pour les activités bilatérales et
de clearing possedent également la propriété fonctionnelle de méme nom. En appliquant des mesures
convexes a ces fonctions de vecteurs super-modulaires, on peut obtenir la monotonie de ces mesures en
fonction des coefficients de covariance et donc de corrélation. Ces mesures sont par ailleurs appliquées
du point de vue d’un acteur financier de référence, typiquement une banque systémique, également
membre d’une CCP, sujette aux activités bilatérales OTC et de clearing, et que nous indexerons par 0.

Contributions du Chapitre II : Dans ( ), qui constitue ce chapitre,

* nous démontrons et illustrons le comportement monotone de mesures de risque convexes pour
des variables aléatoires multidimensionnelles ayant la propriété de super-modularité (Théoreme
I1.12);

* nous appliquons ces résultats a des modeles elliptiques pour les facteurs régissant les mouvements
des portefeuilles et les variables latentes de défaut, soulignant ainsi la monotonie des mesures de
risque comme les opérateurs d’espérance et d’expected shortfall [ES] par rapport aux coeffi-
cients de corrélation entre ces facteurs (Proposition II.13, Proposition I1.14, Proposition 11.16,
Corollary I1.17), et que nous illustrons numériquement;

* nous étendons également les résultats de ( ) concernant la monotonie
des valorisations de tranches equity et senior des dérivés de titres garantis par des créances (en
anglais collateralized debt obligations [CDO]) avec des modeles a variables latentes de défaut
(Proposition IL.7 et Corollary I1.8).

Une fonction super-modulaire est une fonction f : R — R qui, pour tout x € R", tout ¢ > 0,
tout 0 > 0 et toute paire d’indices ¢ < j dans 1 .. n, vérifie

flry,..,xi+e. x5 +0,. . ,xn) — flon,. . xi+e, 5,00, 2,) 2 @

flen, ooz + 0,00, xn) — f@1, o, Ty Ty X))
Les variables aléatoires que nous considérons par la suite dans cette section sont supposées ap-
partenir & un sous-espace linéaire fermé X de L'(Q), défini a partir d’un espace probabilisé (£2, A, Q),
avec [E I’opérateur d’espérance correspondant, et considéré sans atomes, c’est-a-dire que pour tout

w € Q, Q{w}) = 0. Ces hypothéses permettent que les résultats de ( );
( ) ( ); ( ); ( ) puis-
sent s’appliquer sans particulierement contraindre le cadre de modélisation.
Un vecteur aléatoire X = (X7, ..., X,,) est plus petit que le vecteur aléatoire Y = (V1,...,Vm)

pour I’ordre super-modulaire, que 1’on écrit aussi X <, Y, si 'inégalit¢ E(f(X)) < E(f(Y)) est
vérifiée pour toutes les fonctions super-modulaires f : R™ — R telles que les espérances écrites
existent.
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On définit aussi ’ordre stop-loss de la maniere suivante: X précede ), tous deux dans X, pour
Iordre stop-loss, écrit X <y Y, si E[X — A]* < E[Y — A]* est vraie pour toute constante A > 0,
ce qui équivaut ( , , Theorem 2.2 b)) a ce que E(f(X)) < E(f(Y)) soit vraie
pour toute fonction croissante convexe f : R — R et telle que les espérances écrites existent (c’est
en particulier le cas pour f = id). Cet ordre permet d’obtenir le résultat énoncé dans

( , Theorem 4.4) concernant la monotonie d’une mesure de risque p définie sur un espace
probabilisé sans atomes, soit [X <g V] = p(X) < p (V).

La définition de mesure de risque que nous employons relache I’hypothese d’équivariance par trans-
lation couramment utilisée dans la théorie des mesures de risque (voir par exemple ( , Intro-
duction (A3))). Elle comprend alors les 4 propriétés suivantes: (i) la mesure de risque p est dite propre
VX € X, p(X) > —oo, et domp = {X € X;p(X) < +oo} # 2); (ii) p est invariante pour les
variables aléatoires de méme loi (X 4 V= pX)=p), X,V e X), (iii) p est monotone (X <
Y=p(X)<p(),X,YeX) et(iv) pestconvexe (p (AX + (1 = N)Y) < Ap(X) + (1 = Np (V).
YA € (0,1), X,Y € X). Les mesures de risque que nous employons dans ( )
sont celles d’espérance et d’expected shortfall comme définie par ( , Definition
2.6) a partir de la probabilité Q. Ces deux mesures obéissant bien aux 4 propriétés précédemment citées
sur I’espace L' (Q).

L’argument de départ pour obtenir nos résultats de monotonie des mesures de risque en fonction de
I’ ordre super-modulaire repose sur le Lemme II.1 que nous rappelons ci-dessous:

Lemma .1. Si X <, Y dans X avec X, Y a valeurs dans R™, alors, pour toute fonction croissante
super-modulaire f : R™ — R, ona f(X) <g f(Y).

Ce lemme découle directement de ( , Theorem 3.9.3 f), page 113) qui stipule
que si f : R™ — R est croissante et super-modulaire et ¢ : R — R est croissante et convexe, alors
¢o f:R™ — R est également super-modulaire. Par conséquent, d’apres ( ,
Theorem 4.4), si p : X — R est propre, monotone, convexe, et invariante pour les variables aléatoires de
méme loi et si f : R™ — R est croissante super-modulaire, alors X <,,,, Y = p (f(X)) < p (f(X)).

Par ailleurs le résultat ( , Theorem 3.9.3 f), page 113) permet de compléter
les résultats de ( ) concernant les propriétés de monotonie des valorisations
de tranches equity et senior de CDO dans des modeles a variables latentes de défaut. Il suffit pour
cela d’observer que les flux financiers correspondant de ces tranches s’écrivent comme des fonctions
croissantes convexes composées avec des fonctions croissantes super-modulaires des variables latentes
de défauts des obligataires sous-jacents. Nous illustrons numériquement ce résultat dans I.§3.A.

Concernant la monotonie des mesures de risque telles que nous les avons introduites auparavant
appliquées a des fonctions de pertes des activités bilatérales OTC et de clearing, nous considérons la
forme des fonctions de pertes sur une période de temps [0, 7] comme Y .| fi(X1,...,X,)g:(Y;) avec
n un nombre donné de débiteurs (membres, contreparties OTC ou client clearé). Les temps de défaut
7; de ces débiteurs sont indexés par ¢ € 1...n et sont modélisés par une variable latente X; dépassant
une certain niveau B;, typiquement X; représente le niveau des passifs qui peut excéder la somme des
niveaux d’actifs et de capital du débiteur ¢, notée B;. La variable g;();) représente une perte positive
étant donné le défaut du débiteur 7. Les fonctions f; sont positives et croissantes par rapport a chacun
de ses arguments et possédent la propriété de super-modularité (lorsque n > 1, le cas n = 1 se traitant
directement sans difficulté particuliere). Les fonctions g; sont également positives et croissantes.

On établit alors (Proposition IL11) que (1, ..., ZTn, Y1, -, Yn) > Dorey fi(@1, ... 2n)gi(yi) est
une fonction croissante super-modulaire sur R?”. Par exemple, on démontre dans la Proposition I1.16
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que les fonctions de la forme

1
Lioomy % (v —mi) " €Ry

n
f

R2n9(wlv"'vxn,ylv"'vyn)HZ n (5)

i=1

BT DY T
J=1
sont croissantes super-modulaires avec By,..., B, € R, p1,...,8, € R,. Ces formes de fonction
de pertes se retrouvent dans les activités de clearing face aux CCPs comme présentées dans les §1
et Chapitre I. Les formes de fonction de pertes pour les expositions bilatérales OTC, ou des clients
clearés, sont plus simples et s’expriment comme » , 1¢s, >, (¥ — myp)T ol la somme est prise sur
toutes les contreparties et clients clearés b auxquelles la banque de référence est exposée, et auquel cas
la forme de la fonction de perte est f;(x)gs(ys) pour une contrepartie b. Ainsi, d’apres le Lemme .1, si

(Xl X Vs V) <o (XL, XL V0., Y'Y, on obtient
n
Zfi(Xla-“v gz yz >sl Zfl Xh’X’r/L)gl(yz/) (6)

( , Théoreme 4.4) permet de conclure que p (37—, fi(X1, ..., Xn)gi (Vi) <
p (Z;nzl fz(Xll7 EE X’I’/L)gl(yl/))
Pour X = (Xo, X1, &) = (Xoy Xiveo o, X, Vi, Vo) et X/ = (X, XL, XL) =
(Xo, X1,..., XL, Y] ....Y]) (avec n > 0) de telle sorte que X <, X’, nous définissons les fonc-
tions de pertes comme

L=Y fiXy,....Xn)g(Y;) et L' = Zfl X, XD)ai(Y)), )
i=1

avec les fonctions f; croissantes super-modulaires et les fonctions g; croissantes. Rappelons, comme
cela est précisé dans les §1 et Chapitre I, que les mesures de risque sont prises sous la probabilité de
survie de I’acteur financier de référence, notée ici Q, équivalente A une probabilité de départ, par exem-
ple Q = P* la mesure de probabilité finassurance introduite au §1. Plus précisemment, on peut écrire
QY(:) = Q*(-, Xo < Bp)/(1—+) oty est la probabilité de défaut sous Q* sur la période du modele sta-
tique des §1 et Chapitre I pour cet acteur financier de référence. Par conséquent, cela exige que L, L’ €
X0 = LY(QV) alors que I’ordre super-modulaire est initialement pris sous Q*. Néanmoins, le défaut de
cet acteur 0 est généré par la variable latente X si bien que I’on peut récrire Q°(-) = E* [h(Xo)]l{.}] ,
avec h(-) = 1..p,/(1 — 7). Nous privilégions, afin de reproduire la pratique, les vecteurs aléatoires
super-modulaires X, X’ sous Q* dont les données sont observables sous cette probabilité. Ils sont par
ailleurs supposés avoir la méme composante Xy et vérifiés [Xi.n|Xo] <sm [Xi.n|Xo] ¢’est-a-dire
I’ordre super-modulaire sur les composantes autre que la composante 0 conditionnellement a celle-ci
(que I’on écrit également E* [ f (X1.,) |Xo] < E* [ (XY.,,) |Xo] pour toute fonction super-modulaire
f : R™ — R). Cette hypothése permet de démontrer alors que pour h définissant le changement de

N

mesure de Q* 2 Q°, on obtient X;.,,, <gpmo X, ot <0 est 1’ordre super-modulaire sous QU.

Pour illustrer numériquement ces résultats, on considere la famille des vecteurs aléatoires de dis-
tribution elliptique sous Q* de méme générateur caractéristique, méme moyenne, méme premiére
composante Xy, méme variance pour toutes les composantes, mais dont les covariances I‘;{ =
Cov*(X;, &), I‘g, Cov* (&}, Xf) (avec Cov* I’opérateur de covariance sous Q*) non-diagonales
vérifient I‘” < I‘;é, pouri # j € 1 m (et T% = 'Y, pour i € 1..m concernant les variances). Ces
vecteurs sont alors super-modulaires conditionnellement a Aj. L’égalité des premieres composantes
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de X et X’ impose par ailleurs que ry, = I‘gg, pour tout 7 € 0..m et traduit le fait de garder
le méme point de vue de ’acteur de référence au travers duquel les mesures de risque sont consid-
érées. Sous ces hypotheéses, on a Xy, <gm+ XJ.,, 0l <gm= est ordre super-modulaire sous Q*
( , , Corollary 2.3). Tl en résulte que [X 1.1, |X0] <smx [X].m|Xo] (Proposition
IL.5) puis que X1, <gmo X}.,, (Lemma IL.6). On peut ainsi appliquer notre Lemme .1 avec f de
la forme (5) (mais également pour toute fonction super-modulaire croissante de forme plus générale
S fi(Xa, .., X)) g:(Vi)) pour des vecteurs elliptiques super-modulaires sous Q* gardant cette pro-
priété de super-modularité sous QU afin d’obtenir une relation d’ordre stop loss du type (6).

En se donnant sous Q° une mesure de risque comme définie précédemment, on obtient la monotonie
d’une telle mesure en fonction des coefficients de covariance des vecteurs super-modulaires (et donc des
parametres de corrélation pour ceux s’exprimant comme un facteur positif du coefficient de covariances
correspondant). L’espérance et I’expected shortfall vérifient les hypotheses de mesures de risque sur
LY(QY). Par ailleurs 1’espérance est associée a la métrique comptable de current expected credit loss
utilisée pour les calculs de provisions de crédit (donc de CVA) et I’expected shortfall a une métrique de
gestion des risques d’un niveau de capital économique (donc de KVA).
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§3 Equilibre de Radner et application a la gestion de défauts d’une
CCP

L’aspect d’impact sur les prix de la gestion d’un ou plusieurs défaut(s) par les CCPs est couvert dans
un troisieme chapitre basé sur ( ), exemples numériques a
I’appui, en exploitant I’analyse convexe et les équilibres de Radner qui constituent un cas particulier des
équilibres de Nash. Cet effet d’impact sur les prix concerne les positions propriétaires de membres en
défaut sur des CCPs qui n’est pas couvert dans les applications du Chapitre I traitant de la résolution
du défaut de membres ayant des positions clients. Ce troisieme chapitre vise donc a traiter des positions
propriétaires de ces membres non concernés par la ré-assignation de positions clients d’un membre
en défaut vers un membre survivant. Ces résolutions de membres en défaut par les CCPs et de leurs
positions propriétaires sont envisagées avec différentes stratégies que peut implémenter une CCP pour
gérer un défaut d’un de ses membres, comme prescrit par les recommandations des institutions Bank
for International Settlements [BIS] et International Organization of Securities Commissions [IOSCO] a
savoir la couverture puis la mise aux encheres des portefeuilles du membre en défaut, ou sa liquidation
sur un marché financier ( R s ). Ces organismes recomman-
dent explicitement aux CCPs d’analyser les impacts de telles stratégies sur les prix des portefeuilles et
marchés correspondants.

Contributions du Chapitre III :

* nous exprimons les pertes qu’un participant d’un ou plusieurs marchés peut subir sur ses dif-
férents types de portefeuilles qu’il détient suite aux fluctuations de leurs prix, modélisées sur une
seule période de temps;

* nous formulons I’'impact de défauts sur les prix des titres échangés sur les marchés en procédant
a une résolution d’équilibres de Radner dans un réseau sans défaut et sur ce méme réseau en
considérant des reprises de portefeuilles suite aux défauts;

¢ nous démontrons 1’existence (Théoréme IIL.2) et 1’unicité sous certaines conditions de tels
équilibres (Théoreme II1.3), adaptant des résultats de ( )
a un cadre statique a une période de temps mais pour des variables aléatoires de pertes non-
bornées, que nous illustrons de plusieurs exemples couvrant diverses stratégies possibles qu’une
CCP peut opérer dans le cas du défaut d’un ou plusieurs de ses membres;

* nous reprenons les formulations de ces impacts de prix dans les expressions de cofits de crédit,
capital et financement abordés dans le Chapitre I et illustrons numériquement ces applications.

Les principaux risques auxquels sont exposés les acteurs du réseau financier, et pour lesquels les
régulateurs requierent aupres des institutions bancaires des montants de fonds propres suffisants avec
un niveau de probabilité de 99.9% ( , ), se résument en 4
types de risque ( , ): marché, contrepartie, crédit et opérationnel. Le risque
de liquidité, 1i€ a la nécessité pour un acteur bancaire d’honorer ses engagements de paiement en devises
ou en titres, peut susciter indirectement des besoins supplémentaires en capital. Divers indicateurs
permettent de tester la solvabilité d’un acteur bancaire concernant ses engagements contractuels de
paiements et de remboursements. Par exemple, le ratio de couverture de liquidité, en anglais liquidity
coverage ratio [LCR], est défini comme le ratio du montant d’actifs liquides de trés haute qualité divisé
par le montant des flux venant a étre débités dans les 30 prochains jours ( , , Chapitres
3 et 8). De mauvaises performances de ces indicateurs pour une institution financiere peuvent signaler
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des perturbations de ses flux opérationnels et mener a des actions défavorables des régulateurs comme
des surcharges en capital.

Lorsqu’un acteur financier exposé a une CCP vient a faire défaut, son portefeuille, négocié sur un
marché financier doit étre géré par la CCP, liée a ce marché. Par exemple, le Groupe EUREX dispose
de ses services de marchés pour la négociation des termes des contrats et de ses propres services de
clearing une fois négociés. La CCP peut soit totalement ou partiellement couvrir le portefeuille du
membre en défaut puis le mettre aux encheres aupres des membres survivants, avec éventuellement
d’autres acteurs invités, soit le liquider sur les marchés financiers en le vendant a perte ou en 1’achetant
au-dela de son prix selon que la CCP ait respectivement initialement acheté ou vendu ce portefeuille
( , , ). Ces choix de résolution peuvent générer des pertes
sur ce portefeuille, qui seront supportées au-dela du collatéral du membre en défaut par les membres
survivants: la CCP ne saurait ni avoir une position agrégée non nulle sur I’ensemble de ses membres
survivants ni supporter un cofit dii a des pertes du membre en défaut (hormis une partie infime de son
capital dénommée le skin-in-the-game).

Afin de compléter la quantification du risque de crédit couvert dans le Chapitre I au travers des
cotts XVA dans un cadre statique a une période, nous proposons de capturer I’impact de la couverture,
de la liquidation totale, ou d’une combinaison des deux, d’un portefeuille d’un ou plusieurs mem-
bres en défaut d’une CCP. L'utilisation d’équilibre de Radner reposant sur les concepts d’équilibres
économiques compétitifs Walrassiens avec incertitude apparait naturelle dans ce contexte ( , ,

). Un équilibre de Radner est défini par une quantité prédéterminée de chaque titre du marché, né-
gocié a un certain prix unitaire minimisant une métrique d’utilité ou de risque appliquée aux variables
aléatoires des flux financiers futurs de chacun des participants a ce marché.

C’est un cas particulier des équilibres de Nash ot une contrainte de clearing, en plus des titres
communs traités sur le marché, relie I’ensemble des participants et leurs actions de minimisation de leur
métrique de risque respective. On montre qu’un tel équilibre de Radner existe et peut se calculer en
supposant des flux financiers de distributions elliptiques.

Pour un marché financier donné E, constitué de m > 1 titres, on considere que chacun de ses
participants ¢ supporte une perte de marché sur une période de temps [0, 7] ol T' représente la maturité
de I’ensemble des contrats négociés. Chaque perte est exprimée comme

T
R + 4 (-P). ®
—_——
flux aléatoire exogene a E/ couverture

Le flux R; € R est promis a maturité 7" au participant i, et est potentiellement corrélé aux titres de
marché de valeur aléatoires P € R™ a maturité pour une quantité ¢; € R™, de prix p € R™ au temps
0. Les notations q; € R™,i € E et p € R™ sont réservées pour les solutions de 1’Equilibre de Radner
sur E. Les variables aléatoires R; et P définies sur un espace probabilisé (€2, A, P) appartiennent &
un sous espace vectoriel X de LI(Q), contenant les constantes. On note E, Var et Cov les opérateurs
d’espérance, de variance et de covariance respectivement sous la probabilité P.

Les portefeuilles d’un membre a représentés par les quantités a I’équilibre q,, face a une CCP trai-
tant pour un marché F, peuvent contenir a la fois des positions de couverture (dites aussi de proprietary
trading, enregistrées dans le compte propriétaire du membre, connu sous le terme house en anglais) et
des positions de clearing du membre de la CCP (enregistrées dans le compte client du membre). Les
couvertures sont vis-a-vis de ’ensemble des positions R, = > ., R (ol Iacteur financier o est en
dehors du marché traité par la CCP) prises sur des marchés OTC et non traités par les CCPs. Les po-
sitions de clearing sont back-to-back, c’est-a-dire résulte en deux flux ’un étant I’opposé de 1’autre, et
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notées qi. Elles sont I’effet du role intermédiaire de la CCP entre un acteur financier b n’accédant pas a
la CCP, par choix ou par contraintes dues a des ressources insuffisantes pour prétendre a un acces direct
ala CCP, et le membre a, pour s’aligner aux demandes réglementaires ( , ).

Notons £ = AU B, avec AN B = @, Al’ensemble des participants a ayant directement acces aux
services de la CCP pour le marché représenté par ses participants F et B I’ensemble des participants b
non membre de la CCP devant recourir aux participants de A pour y accéder indirectement. ¢, définit
une position de proprietary trading du membre a et ¢;' la position d’un de ses clients noté b pour lequel
a exerce le rdle de membre de clearing. La position g; ne fait alors que transiter de b vers a puis de a
vers la CCP. Ainsi, méme si la position totale de a envers la CCP est q, + Zbe B 44, comme a détient
— > pen @y Vis-a-vis de ses clients dont il est le membre de clearing, les positions de a et b impliquées
dans la résolution de I’équilibre de Radner sur £ sont respectivement q, et ¢, = Zae 445

Pour ce qui est du cas pré-défaut, la perte de marché a 1’équilibre supportée par un membre ¢ € A
sur le marché E s’exprime

~Rq+4q, (" = P)=-Y_ R{+q,(p”-P)
0€0

et celle d’un participant b, non membre de la CCP traitant des positions prises sur E s’écrit

T

~Ry+q) (P —P)=-Ry+ (Y ai | (p”-P).
acA

Il n’est pas nécessaire de connaitre les termes (g ),c 4 mais seulement qp.

Lorsqu’une CCP choisit de couvrir le portefeuille du membre en défaut, elle devient un participant
du marché sur lequel la couverture est prise. Alternativement elle peut choisir de liquider cette position
sur le marché ou elle opere ou sur un autre marché et ne fait pas partie des participants du marché ot
la position est liquidée. Une combinaison de ces deux stratégies de couverture et de liquidation sur un
méme marché ou des marchés différents est possible. Pour chaque marché E avant un évenement de
défaut, dit pré-défaut, dont les titres ont pour prix initiaux a I’équilibre p et considérés au temps 0—,
on note E’ et on qualifie de post-défaut ce méme marché aprés 1’avénement d’un ou plusieurs défauts
instantanés d a la date 0. La composition en quantité et prix de titres de £’ dépendent de la procédure
de résolution considérée par la CCP avec des nouveaux prix des titres p’ considéré au temps 0.

Pour tout membre ¢ sur un marché post-défaut £’ dont I’ensemble des participants pré-défaut est
E, sa part incrémentale de positions reprises Aq; se décompose en une part Aq! due 2 la liquidation
des positions qﬁi des membres en défaut, et une part Aq/ due a la couverture par la CCP des positions
qg avec qq = qfi + qZ, qld = Zie B Aqﬁ et qfi‘ = Zie B Aq?. La quantité a I’équilibre post-défaut
de i est notée q; = q; + Aq; avec q; = 0 si ¢ est un nouveau participant, initialement non participant
de E. La liquidation se fait sur la base des prix pré-défaut et contractuels p alors que I’intervention de
la CCP sur le marché pour couvrir une partie du portefeuille du membre en défaut génere des nouveaux
prix p’. La perte de marché post-défaut pour ¢ € E’ s’écrit alors (voir IIL.§3.B)

—Ri+(q)" (P -P) + (@ +Ad) (p* -p"), ©9)

perte de marché au prix post-défault =:LC; (liquidation cost)

out LC représente le coiit de la liquidation des portefeuilles de membres en défaut. Il peut s’interpréter
comme des paiements d’appel de marge, comme pour les marchés de contrats futures, pour transiter
d’un marché pré-défaut basé sur des prix p a un marché post-défaut basé sur des prix p’. Ces appels
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de marges, payés par tout participant survivant ¢ € E, ne s’appliquent que sur les contrats basés sur les
anciens prix, y compris ceux qui sont liquidées par la CCP.

Afin de résoudre les équilibres de Radner, pré comme post-défaut, la minimisation du risque de tout
participant 7 € E se traduit par une minimisation d’une mesure convexe et homogene positive de risque
p; appliquée a sa perte de marché. Cette minimisation se fait d’abord en considérant qu’aucun défaut
ne s’est produit, puis suite a la réalisation d’un ou plusieurs défaut(s), pour établir les prix et positions
a I’équilibre avant et apres un éveénement de défaut. Le cofit du marché qui en résulte, noté MC;, pour
le participant ¢ € E’ est défini comme la différence de cette mesure de risque du participant 7 entre le
marché ayant subit un événement de défaut et le marché avant tout évenement de défaut, tous deux pris
al’équilibre:

MC; = LC; + pi( = Ri + (a;) " (p'" = P)) — pi( = Ri + (a;) " (p” — P)) .

=:Ap;

Le cofit de liquidation global est LCp = ), 5 LC; et son coit de marché global est MCp =
Zz’e  MC;, redistribué sur I’ensemble des membres de la CCP. Si la CCP choisit d’implémenter une
telle stratégie de liquidation et couverture d’une partie du portefeuille d’un de ses membres en défaut
sur plusieurs marchés, les cofits de marché et de liquidation sont agrégés sur 1’ensemble de ces marchés:
MC = ) 5 MCg. Ce coit représente ainsi le prix des transferts de fonds (FTP pour funds transfer
price) puisqu’il reflete le cofit de transférer des positions en défaut a des participants survivants et/ou
nouveaux du marché.

La condition de clearing, pour un marché E n’ayant pas subi de défaut, s’écrit ), q; = 0,
q; € R™, correspondant a une quantité de zéro pour tout titre du marché considéré. Pour chaque
participant ¢, on considere une mesure de risque p; : X — R, distribution invariante, monotone, convexe,
équivariante par translation (p;(L + m) = p;(L) + m pour tout L € X et m € R, dit aussi cash-
équivariante) et normalisée (p;(0) = 0), conduisant, pour p donné, a une condition d’optimalité

pi(=R; +4q; (p—P)) < pi(—R; + ¢/ (p— P)), ¢; € R™. (10)

Un équilibre de Radner sur un marché représenté par son ensemble de participants E consiste en
une paire {(q;);cg, p} vérifiant la condition de clearing pour ce qui est des quantités et les conditions
d’optimalité de tout participant 7 € E. La résolution d’un équilibre de Radner repose sur les propriétés
des mesures convexes p; employées par chacun des participants ¢. Celles-ci doivent étre convexes,
monotones (pour Ly, Ly € X, L1 < Ly = p;(L1) < p;(L2)), équivalentes par translation, invariantes
pour des variables aléatoires de méme loi (pour L 4 Lo, pi(L1) = pi(L2)), normalisées (p;(0) = 0)
et sensible au larges pertes (limy_, o, p;(AL) = oo pour tout L € X tel que P[L > 0] > 0). Par cash-
équivariance, on réécrit la condition d’ optimalité pour tout participant i € E comme p;(—R; —q, P) +
q; p < pi(—Ri—¢q; P)+¢q p, ¢ € R™. Posant ;(q;) = p;(—R; —¢q; P), on définit I'inf-convolution
des mesures de risque des participants comme

r(q) =inf{zri(qi); Zqz:q} q€R™. (1)

i€l i€l

Un équilibre de Radner peut s’exprimer de maniere équivalente avec les trois caractéristiques suivantes
basées sur I'inf-convolution (11) (Lemme IIL1): (i) —p € 9r(0), (i) (0) = >, pri(q:), et (iii)
> icpqi = 0. Le Lemme IIL1 combiné a I’hypothése de sensibilité aux larges pertes des mesures
de risque p; garantit ’existence d’un équilibre de Radner (Théoreme IIL.2). L’unicité des prix peut
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étre obtenue si les mesures de risque p; exprimées comme des fonctions des quantités détenues par
tout participant ¢ sont différentiables au vecteur de leur position d’équilibre respective q; (la sous-
différentielle Or;(q;) au point q; est le singleton gradient Vr;(q;) évalué en ce méme vecteur) alors
que 'unicité des positions d’équilibre est elle garantie si ces mémes fonctions sont différentiables et
strictement convexes (Théoréme II1.3). Dans le cas de mesures de risque entropiques ou d’expected
shortfall avec (P, R;) pris comme des vecteurs de distributions elliptiques, il est possible d’obtenir
une formule analytique unique pour les positions et les quantités a 1’équilibre (voir Proposition II1.4,
Proposition IILS et Remark IILS).

Au cofit de marché doit s’ajouter les cofits du crédit qui capture le risque de contrepartie au sens
large, y compris ceux induits par les financements et besoins en capital pour constituer la totalité du FTP.
Ils reposent sur I’exposition indirect de chaque membre de la CCP vis-a-vis de tous les autres membres
de cette méme CCP et sur les cofits de financement pour maintenir une position face a la CCP. Si la
position d’un membre change, suite au ré-arrangement de ses positions en réponse a une stratégie de
gestion de défaut par la CCP, les autres membres de cette CCP vont étre impactés aux termes de leurs
colits XVA comme détaillé dans ( ). Pour des fluctuations de
portefeuilles supposées gaussiennes, et pour une CCP donnée avant un événement de défaut, I’équation
(1) s’écrit pour le membre 0 sur le marché pré-défaut £ = AU B,

Co = Cit 4+ P +C§, avec
T +
A _ A _ " B B N
& g 20 (Z Qb> (P -P)—IM} | +
acA beB (12)
o\t
(al (0F — P) ~1}) _DFﬂ ,
+

W= e «qg)T(pE —P)- IMS) etCy =) (1~ Jo)(Rg —IM§)™.

beB =

w§' (nul si 0 ¢ A) est le coefficient d’allocation de perte assujetti au membre 0 par la CCP du marché,
IMf, Nf, et DFf sont les marges initiales et contributions au fonds de défaut comme détaillés dans
le Chapitre I (résumés dans les équations (1) et (2)). R est le flux exogene au marché E et recu du
participant O de ses contreparties bilatérale o sur les marchés OTC, avec une marge initiale correspon-
dante IM{ (qui peut étre nulle pour certains engagements de ce type). Aprés un événement de défaut,
une formulation similaire s’applique en mettant 2 jour les quantités wyp', IM;‘, mj, DF;4 et IMS dans
(12).

On peut alors calculer les colits XVA avant et apres la gestion par la CCP d’un événement de défaut,
complétant ainsi les cofit de marché en utilisant leurs formules explicites (Table 2 extraite des Théoreme
1.4 et Proposition 1.5). L’ensemble des cofits supportés par les membres survivants s’exprime comme

FTP =LC+ ) Y Api+» (XVA; - XVA;) +AC, (13)
E' i€E’ i#d AX"VAi

market cost (MC) credit cost (CC)

avec, pour chaque participant survivant i, XVA; = CVA;+FVA; +MVA,; +KVA;, XVA! ces montants
XVA calculés apres la gestion du défaut menée par la CCP et AC le cofit d{i 4 la mise aux enchéres par
les CCPs des portefeuilles de membres ayant fait défaut et incluant leur couverture. Ce coit est un autre
colit incrémental en XVA, correspondant au prix de transfert (Fund Transfer Price [FTP]) détaillé dans
II1.§7 (qui n’inclut que des cofits de crédit), c’est-a-dire I’'impact sur les cofits XVA de la mise aux
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encheres de ces portefeuilles de membres en défaut comprenant les instruments de couverture utilisés
par les CCPs.
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§4 Algorithmes de recuit simulé pour D’identification de ré-
arrangements optimaux de réseaux financiers suite a un défaut
de clearing member

Dans cette quatrieme partie, nous envisageons des scénarios plus catastrophiques ou le défaut d’un
membre ne se produit pas seulement sur une seule CCP mais sur une multitude d’entre elles. Les
illustrations numériques du premier chapitre emploient une approche directe en testant toutes les reprises
possibles du portefeuille du membre en défaut sur une unique CCP, ce qui n’est pas possible dans le
cas de plusieurs portefeuilles dii au probleme combinatoire de tous les scénarios de reprises possibles.
Un tel scénario de défaut sur plusieurs CCPs aurait pu réellement se produire au début de 1’année
2023 avec les difficultés de la banque Credit Suisse, un acteur majeur sur une trentaine de CCPs, si
la Banque Nationale Suisse n’était pas intervenue en lui octroyant un apport de liquidité de 1’ordre
de €170 mds (CHF 168 mds, voir ( )). Un exemple plus réduit, mais bien réel, avec un
défaut sur deux CCPs s’est produit aux Etats-Unis avec le gestionnaire d’actifs Ronin Capital et est
illustré dans le premier chapitre. En ce qui concerne un réseau de quelques dizaines de CCPs (environ
50 CCPs majeures dans le monde) et centaines de membres (300 a 400), le nombre de combinaisons
étant de I’ordre de 10'3%, méme pour des réseaux de petites tailles (comme dix CCPs et 200 membres), il
semble ubuesque d’envisager une quelconque exploration de 1’espace de ces combinaisons. Le recourt a
des techniques d’optimisation stochastique s’impose donc naturellement. Nous illustrons 1’application
d’algorithmes de recuit simulé discret sur un probleme de reprises impliquant quelques CCPs et les
comportements numériques attendus pour ce type de technique.

Contributions du Chapitre IV :

* nous décrivons le probleme de ré-allocation de portefeuilles d’un membre en défaut sur plusieurs
CCPs vis-a-vis de leurs membres survivants; nous le formulons comme solution d’un probléme
combinatoire de minimisation sur un espace fini d’une fonction non-linéaire et non-convexe de
variables aléatoires approximée par des techniques de Monte Carlo; ces variables représentent
les flux contractuels futurs de ces portefeuilles et des variables latentes de défaut pour chacun des
membres;

* nous résumons les résultats principaux de convergence et de contrdle d’erreurs des algorithmes
de recuit simulé discret sur des espaces finis en les mettant dans le contexte de notre probleme;
pour un nombre donné d’itérations, nous en déduisons des résultats de contrdles d’erreurs entre
la valeur de la fonction approximée de 1’état retourné par 1’algorithme et la valeur minimum de
la fonction sans approximation (Théoréme IV.7, Corollaire IV.8);

* nous obtenons également un contréle de la probabilité d’erreur entre la combinaison proposée
par la version approximative de 1’algorithme et la vrai solution du probléme non-approximé
(Proposition IV.9); ces résultats sont obtenus en utilisant des inégalités de concentration ré-
sultant des erreurs d’approximation et des erreurs connues des algorithmes de recuit simulé;

* nous spécifions I’application du recuit simulé pour un échantillon permettant d’approximer le
vrai probleme, avec une phase d’exploration spécifique a la structure financiere découlant des
CCPs et de leur membres en soulignant le caractere de distribution des pertes de type a queues
lourdes que nous pouvons confirmer sur la base de tests statistiques;

* nous illustrons numériquement le bon fonctionnement de I’ algorithme sur un ensemble de 4 CCPs
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et 11 membres, dont I’un mis en défaut; la performance de 1’algorithme ainsi défini surpasse sig-
nificativement I’approche naive de suggestions aléatoires successives sans remise de repreneurs.

Le Chapitre I aborde I’identification d’un ensemble de repreneurs a moindre cofit XVA de porte-
feuilles, sans subdivision, suite au défaut d’un membre d’une ou plusieurs CCPs en parcourant toutes les
reprises possibles, reflétant ainsi une mise-aux-encheres idéalisée ou chaque participant propose un prix
permettant d’aboutir a la reprise minimisant les cofits XVAs sur 1’ensemble du réseau financier. Cette
stratégie devient vite tres lourde numériquement dans le cas d’un défaut sur plusieurs CCPs avec un
nombre considérable de combinaisons de repreneurs. Par ailleurs, bien que les cofits concernés soient
de différents types a savoir de crédit (CVA, BCVA et CCVA), de financement (FVA, MVA, BMVA et
CMVA) et de capital (KVA), nous considérons une minimisation des seuls cofits de capital. Ce type de
colt est en effet prépondérant parmi les autres, comme illustré dans la Section I.§5.

L’application d’algorithmes de recuit simulé discret ( , , ;

) ] ) ; ) ; , ; ; ) pour
des problémes impliquant un grand nombre de combinaisons en finance est surtout connu comme une
des techniques de la boite a outils de résolution des problemes d’optimisation de portefeuilles ( ,

; , ). Les dernieres avancées sur I’utilisation d’ordinateurs quantiques ont
permis des adaptations de ce type d’algorithmes pour ce genre de probleme ( , ). Bien
qu’il soit possible d’appliquer ces algorithmes pour capturer des scénarios averses menant une institu-
tion bancaire a 1’état de défaut ( , ), son application pour identifier une restructuration
possible du réseau financier au travers d’une ré-allocation des portefeuilles dans ce réseau semble nou-
velle.

Pour tout participant £ = 0, ..., L, on note (Ygl, . ,YEK ) ’ensemble des variables aléatoires d’un
sous-espace vectoriel X C L'(£2), avec (2, F,P) un espace probabilisé, olt Y}* traduit les flux futurs
sur un horizon de temps 7" de son portefeuille face ala CCP k, pour k= 1,... . K. Pour/ =1,...,L
et une combinaison de repreneurs i = (iy,...,ix) € Z = {1,..., L}, la variable (Y D, Yo)f
traduit la mise a jour du portefeuille du participant ¢ suite a la reprise du portefeuille du membre 0,
considéré en défaut, par le repreneur i, sur la CCP k. Pour M € N*, on note R}/ la mesure approxima-
tive de capital du participant £ d’une mesure R, sur I’ensemble de ses portefeuilles détenus sur les K
CCPs. Cette mesure est appliquée a une fonction de perte g, qui dépend d’un échantillon de taille M de
I’ensemble des variables de variations de portefeuilles aprés reprise par les repreneurs i = (iq,...,ix),
soit ((Y@iyo)} (Y, YE (Y@iYO)lL,...,(Y@iYO)f> — Y @, Yo. On peut
alors écrire pour une combinaison de repreneurs i donnée la fonction (I’Hamiltonien) de cofit a min-
imiser comme somme des mesures de risque approximatives sur I’ensemble des participants (1, ..., L)
appliquées aux variables aléatoires apres reprise :

Hy: T—R
Y R [0 (YD, V).
(=1

On cherche ainsi arg min;ec7 Hj (1), sur la base d’un échantillon de taille M des variables aléatoires de

(14)

portefeuilles que 1’on considere communs pour chaque valeur H (i) a calculer ( ,
). Ce probléme approxime le vrai probléme qui s’écrit de maniere similaire a (14) en remplacant
les mesures approximée Réw par leur version non-approximée Ry, { = 1,..., L.
Etant donnée la forme de 1’Hamiltonien H,; a4 minimiser en fonction de i, ou il est difficile
d’identifier une quelconque structure linéaire ou convexe par rapport aux combinaisons i € Z et qui
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posseéde de nombreux minima locaux (voir notamment I’exemple dans la Section IV.§4.E), I’ utilisation
d’un algorithme de recuit simulé parait justifié puisqu’il permet, sous certaines conditions et pour de
telles fonctions, une convergence vers une distribution attribuant toute sa masse au minimum de cet
Hamiltonien. Cette méme distribution, lorsqu’elle est exprimée en fonction d’un parametre de contrdle
convergeant vers 0, s’écrit comme la limite d’une distribution de type Boltzmann-Gibbs qui attribue au
minimum de la fonction a minimiser la plus grande probabilité, dépendant de ce parametre de contrdle.

Pour un nombre fixe d’itérations N, qui indique le budget donné pour 1’exécution de 1’algorithme,
et pour € > 0, on obtient des bornes d’erreurs, similaires a des inégalités de concentration (

, ) mais avec une composante d’erreur due a I’erreur algorithmique (dans notre cas, celle
du recuit simulé, voir ( ) et ( )), entre la valeur de I’Hamiltonien
approximatif appliquée a la combinaison obtenue en faisant tourner I’algorithme de recuit simulé et celle
non-approximée appliquée a la combinaison optimale du probleme non-approximé (Théoréme IV.7).
En notant i* € arg minjez H (i) =: Z°P? et I}, la solution renvoyée par 1’algorithme aprés N itérations
pour un échantillon de taille M, on peut ainsi écrire:

P (VM| H (1) - H(")

> E) < Bl(|I|)€aMaN)7

avec By (|Z|,e, M, N) une certaine borne déterministe convergeant vers 0 pour e, M, N — oo et |Z| =
L¥ . De maniére similaire, il est possible d’obtenir une borne de la probabilité d’erreur de d’estimation
(Corollaire IV.8):

P (VM|H (1Y) - H(")

>s) < By(|Zl,¢, M, N),

avec By(|Z|,e, M, N) une autre borne déterministe convergeant vers 0 pour €, M — oo.
On peut en déduire des probabilités d’erreur que 1’algorithme ne renvoie pas la bonne solution par
rapport a celle du probleme approximé, et également par rapport a celle du probléme non-approximé:

P (I ¢ I30') < B3(M,N) and P (I}] ¢ Z°") < By(M,N,Hs — H)

avec I := argminser Hy (i), H = minjez ). Ho la deuxieme plus petite valeur des {H (i) }iez.
B3(M, N) et By(M,N,Hs — H) des bornes déterministes convergeant vers 0 pour M, N — cc.

Ces bornes d’erreurs peuvent étre précisées dans divers cas notamment pour des variables aléatoires
de distribution a queues épaisses ( s ; s ) comme les fonctions de
pertes g (Y @i Yo) ,¢=1,..., L que nous retrouvons dans notre probleme. Cette caractéristique
peut étre testée pour diverses classes de distributions dont un cadre générique est décrit dans (

, ). Elle est en particulier vérifiée pour les fonctions de pertes de notre problémes qui mon-
trent des queues de distribution de Pareto. Nous pouvons alors préciser les bornes d’erreurs lorsque
les mesures de risque sont des espérances, des quantiles ou de type expected shortfall ( , ;

, ; s R ). Dans le cas d’une expected shortfall sans connaitre la
valeur exacte du quantile correspondant, une estimation basée sur un quantile de plusieurs moyennes
peut permettre d’assurer la consistance et une certaine robustesse de 1’estimateur (

, ; , )-

Afin de permettre une bonne performance de 1’algorithme, la phase d’exploration doit capturer la
structure des positions et du réseau financier constitué des CCPs et de leurs membres. Nous proposons
une matrice stochastique couvrant partiellement cette exigence mais qui ne retient pas la combinai-
son de 1’étape précédente de la chaine de Markov correspondante. Bien que les résultats numériques,
dans le cas de 4 CCPs et 11 membres dont un en défaut, montrent des performances significative-
ment meilleures qu’une exploration et exploitation naives de combinaisons de repreneurs sans remises
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(Section IV.§4.E), une amélioration devrait étre envisagée ou 1’état précédent influe sur la matrice
stochastique de la phase d’exploration. Par ailleurs, le seul choix du cofit de capital comme critere de
minimisation peut souligner un comportement irrationnel de la part des membres survivants, qui ne de-
vraient pas considérer comme seul critere ce coiit de capital mais d’autres contraintes économiques, et
ce qui peut étre une limite de 1’application d’un tel algorithme.
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Introduction

Following the subprime crisis, whose roots date back to the American real estate bubble in the 2000s
leading to the bankruptcy of Lehman Brothers in September 2008, a crisis of liquidity and solvency
of financial institutions, but also of countries in the Euro zone, affected the entire financial sector un-
til the end of 2010. Repercussions followed during 2011 and 2012 via the European debt crisis with
Greece’s difficulties in paying its debts, the nationalization of several banks in Ireland (Anglo Irish
Bank in 2009, Educational Building Society limited and Irish Nationwide Building Society in 2010,
and Irish Life and Permanent in 2011, see ( , Table A.3)) and rescue plans
with significant liquidity funding via facilitated loans from the European Union for Portugal, Spain and
Cyprus (€77 billion, €41 billion and €7.3 billion respectively, with liquidity funds from EU and IMF
funds, see ( , Table 1)). As a response, international standard-
ization bodies, such as the Basel Committee on Banking Supervision [BCBS] and the Committee on
Payments and Market Infrastructures [CPMI] established, in 2008, instructions to banking establish-
ments in order to guarantee better robustness of the financial system. These instructions aim to limit
the risks of contagion of defaults of players, mainly banks, in the financial network, both regarding the
lack of liquidity of financial establishments and the impact on capital or equity levels required by these
establishments. The United States adopted the Dodd-Frank Wall Street Reform and Consumer Protec-
tion Act (( , )) in 2010, while the European Union adopted regulations
of European Market Infrastructure Regulation (

, ). This was followed by the updates of the Basel texts that guarantee international
agreements governing the solvency ratios of financial institutions. An important component of this regu-
latory tool box consists in conducting annually stress exercises (also called stress tests) by the authorities
of banking institutions such as the European Banking Authority [EBA] and the United States Federal
Reserve [FED]. The prospective role of these exercises makes it possible to identify the first signals of
weaknesses in the accounting structures of banks recognized as major contributors to systemic financial
risk.

The stress test exercises, the principles of which are detailed in ( ) and

( ), are based on a set of adverse projections of economic drivers (GDP, inflation, exchange

rates, interest rates, stock indices, etc.) under the assumptions of non-favorable financial market condi-
tions, generally over a three-year time horizon for purely financial exercises, and up to 50 years when
these exercises relate to the impact of climate change on the financial system. These economic drivers
prospective trajectories are then injected into the default probabilities (for example by using linear re-
gressions of these probabilities time series, or of their latent variables, onto the economic drivers time
series) at various future time horizons. The economic drivers can also be linked to the assets compos-
ing the portfolios (also referred to as exposures) of the counterparties to which the banks are exposed.
Default probabilities and exposure amounts can thus be projected on the basis of this re-interpretation
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of macroeconomic variables to deduce the impact on the counterparties risk weighted assets [RWA] and
on their capital amounts to be reserved, whether equity capital within the framework of the Capital Re-
quirements Regulation [CRR] instructions or credit provisions within the framework of the International
Financial Reporting Standards [IFRS]. A bank institution exposed to various types of counterparties
(companies, other banks, pension funds, etc.) will have an even more complex task in carrying out these
stress test exercises due to the diversity of positions within its portfolio. Furthermore, if the objective
of the regulation is to be able to limit systemic and contagion risks from non-favorable economic and
financial events, these exercises must be able to capture and identify the signals of weaknesses due to
these risks. This implies in particular, for the banking institution which conducts the exercise, to in-
clude the various interactions between the financial and economic actors constituting the network of
the financial system. These requests are expressed in particular in article 302 of the regulatory text
( ) (updated in

(2019)):

Institutions shall assess, through appropriate scenario analysis and stress testing, whether
the level of own funds held against exposures to a CCP, including potential future credit
exposures, exposures from default fund contributions and, where the institution is acting
as a clearing member, exposures resulting from contractual arrangements [...] adequately
relates to the inherent risks of those exposures.

Furthermore, the recommendations in paragraph 105 from ( ) for con-
ducting stress test exercises regarding clearing activities stipulate:

Institutions should ensure that their institution-wide credit risk stress tests cover all their
positions in their banking and trading book, including hedging positions and central clear-
ing house exposures.

The network of the financial system has been profoundly transformed over the last ten years with the
increasingly dominant role assigned to central clearinghouse counterparties [CCP], under the incentive
of the G20. In September 2009 ( , ), the G20 imposed systematic settlement
for over-the-counter [OTC] derivative contracts when they can be standardized through CCPs between
two financial players, then recognized as “clearing members” of the CPPs acting as their intermediaries.
In other words, the financial flows of a derivative contract between two counterparties pass through an
intermediary CCP, the latter becoming the buyer of any selling counterparty and the seller of any buying
counterparty of this contract. The CCPs also have the role of guaranteeing the continuity of payments of
the contract cash flows even in the event of default by one of the counterparties. They are guaranteed via
the collection of collaterals (aka margin calls) from the two parties for which the CCPs act as interme-
diary, similar to the principles applied by financial exchanges. Derivative contracts are thus negotiated
between two counterparties on the exchanges underlying the CCPs to which the counterparties are redi-
rected to settle the financial contracts cash flows. The contracts settled by the CCPs on behalf of the
various financial players are said to be cleared. When an institution is exposed to various counterparties
on derivatives markets, which for a large part of the contracts have been standardized, this exposure is
indirect since the CCP is an intermediary. Not all derivative products can be standardized since many of
them are specifically designed for the sole needs of clients wishing to protect themselves against certain
market fluctuations or simply for speculative purposes. Hence, the structure of financial markets has
transformed itself from a structure of bilateral agreements operated between two players in the financial
network, into a more complex structure. The latter is made up of tens of CCPs concentrating gigantic
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amounts of collaterals collected, a few thousands of financial players most of whom having a signif-
icant level of capital to face those CCPs providing them with these collaterals collected from smaller
players, financially reduced and unable to directly access the services of a CCP. Although simplistic
and schematic with only one CCP represented, the Figure 6 illustrates the change of relationships, i.e.
financial positions, from only bilateral ones between six financial actors (left diagram) to financial re-
lationships managed by a single CCP as the sole intermediary between these six actors (middle graph)
and a representation more in line with industrial practice consisting of a mixture of bilateral financial
cash flows and intermediated ones through the CCP (right graph).
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Figure 6: Illustration of a market of financial flows, including collateral, with only bilateral links (left)
compared to a market of centralized financial flows through a single CCP (in the center). On the right,
illustration of a partly centralized financial flows market (solid links) and containing also bilateral fi-
nancial flows between members (dotted links) of the CCP. Source: ( , Figures 3.2 and 3.5,
pages 28 and 32).

These amounts of collateral can also be observed via quarterly reports published by most of the
CCPs and, for the largest CCPs, amount to hundreds of billions of Euros (these are the quantitative
disclosure files). Moreover, positions still originating from certain OTC derivatives products do not
settle through the CCPs which cannot manage them and continue to mesh the financial network of
bilateral links. Regarding the concentration of collaterals, although these allow a certain guarantee
of financial operations continuity for the CCPs and their members following the default of one of the
clearing member, they pressure the smallest actors in the network, not members of these CCPs, with
significant liquidity needs. However, the number of clearing member default events on a CCP over
the last fifteen years is less than ten. It is then recognized that counterparty risk, that is to say the
risk that a financial actor defaults and cannot respect its contractual financial commitments towards its
counterparties, the latter having to turn to other actors to replace these commitments with additional
costs, was a major risk of the financial network when it was made up mainly of bilateral financial
links. This counterparty risk has transformed, with the growing importance of CCPs, into a liquidity
risk, which consists for a financial actor of the risk of not being able to respect one or more of its
financial commitments, including providing collateral additional calls either due to lack of means to
ensure them or due to reduced and expensive accessibility for some of these collaterals. Such an event
of insufficient liquidity, and therefore failure, has a much lower probability of development given the
collaterals posted by the members of the CCPs to guarantee financial flows up to a certain confidence
level. This probability is much lower compared to that generated by counterparty risk. However, if the
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collateral were to be insufficient — which would then only occur in a more extreme case than one or
more defaults of more isolated counterpart(s) in the simpler framework of bilateral financial exchanges
—, the liquidity needs would be much more significant for multiple members, some of whom not being
able to meet them. A contagion effect is then possible, the defaults of members, and potentially of their
clients, can therefore in this rarer but more extreme scenario spread quickly and create a systemic event
of devastating intensity for the entire financial network. To illustrate the complexity of the financial
network as a whole, an analysis of the links between the members, their clients for whom they operate,
and the CCPs, is often favored because it facilitates a certain reading of the network yet simplifies it
by omitting the various connections between the members of the CCPs or between the members and
other network financial actors that are not members of a CCP as in Rosati and Vacirca (2019, Figure 2),
included in the Figure 7.
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Figure 7: Financial networks indicating the existence of Marked-to-Market positions (solid lines) be-
tween two financial actors (dark blue dots for the Euro zone, light blue dots for the non-Euro zone)
including 30 CCPs (red and orange dots), their members (190 dark and light blue dots) and non-member
clients exposed to these members (dark and light green dots). The network on the right only indicates
the Marked-to-Market positions between the CCPs and their members without the clients that are on the
other hand included in the graph on the left. The inner blue circles represent clearing members exposed
to the highest numbers of CCPs. Source: Rosati and Vacirca (2019, Figure 2).

In practice, it is also possible to generate such networks on a regular basis using annual analyzes
carried out on the credit quality of CCPs where the credit analyst, in charge of the internal rating of
analysing the credit quality of a such a CCP institution, collects all the names of its clearing members.
By crossing this information on various CCPs, it is for instance possible to produce a network as shown
in Figure 8. We can observe the relationships that the members have with one or more CCPs but the
relationships between the members themselves, within the framework of a bilateral OTC activity, are

not indicated so as not to overload the figure.
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Figure 8: Financial network of the clearing activity in Europe with 16 CCPs in red and their respective
members in blue (1059 members in total), of which 112 members have memberships on several CCPs
and concentrated at the center of the network, based on data at the end of June 2021.

A more realistic yet more complex representation of the financial network consists in showing both
bilateral links of portfolios taken on OTC markets and clearing activity links such as Fiedor, Lapschies,
and Orszaghova (2017, Figure 3), see the Figure 9, but which concentrate, given the complexity of the
data to be processed, on the market for interest rate derivatives products (whether cleared or OTC).
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Figure 9: Relationships between counterparties for the clearing activity of interest rate derivatives prod-
ucts as of Dec. 31 2016. Node size is relative to the number of links (degree). The links between CCPs
and their members are in green and those between the members and their clients for whom they operate
are in red. Source: Fiedor, Lapschies, and Orszaghova (2017, Figure 3))

General problem: The regulatory instructions have taken into account the recent transformations of
the financial network and its risks by recommending their adequate representation and quantification
for stress test exercises. These transformations also constitute a key point of attention for the executive
committee of financial institutions. It requires introspective and prospective exercises of the financial
institutions solidity by means of various regulatory exercises to evaluate the adequate processing of their
operations and the guarantee of their continuity following adverse events experienced by the financial
system. The regulatory exercise frameworks comprised of the Internal Capital Adequacy Assessment
Process [ICAAP] and Internal Liquidity Adequacy Assessment Process [ILAAP], both components of
the regulatory framework Supervisory Review and Evaluation Process [SREP], are developed for these
purposes. They require the analysis of the financial solidity of financial institutions following various
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hypothetical economic shocks (whether political, economic and/or climate-related in nature). It is thus
critical to develop tools that can capture these financial network mechanisms and its risks, with the
support of numerical quantification, having targeted approaches and implementation that can be scalable
to a larger and more complete financial network, yet with limited computing power and time.

This thesis offers various contributions on 4 development axis, linked to each other, to provide
answers to the general problem:

* a modeling of the various mechanisms and risks of the financial markets for both clearing and
bilateral OTC activities with the consideration of the related different actor types and resulting
costs, allowing various risk management exercises;

* atheoretical and numerical analysis of the adequacy of this modeling based on the supermodular
properties of multi-dimensional functions and random vectors;

* the presentation of an approach based on the concept of Radner’s equilibrium to capture the
liquidation risk through impact on market prices including the various types of actors as well as
both clearing and bilateral OTC activities from the two previous axes;

* the application of an approximate algorithmic resolution for identifying the optimal allocation of
the portfolios of a defaulting member on several CCPs, resolved in a naive and computationally
expensive manner in the first axis.

We detail these axes below, each being the subject of a chapter in this thesis manuscript.
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§5 Derivatives’ risks as costs in a one-period network model

In this first part, we present an exhaustive description of the main operating mechanisms of the financial
network about the financial derivatives activity, including the resulting costs, taking into account both
bilateral and CCPs clearing activity links. The use of elliptical models makes it possible to propose
various applications such as a re-arrangement of the financial network (which can also be described as
a deformation or a restructuring of this network) following a default by one of the financial actors that
is also a CCP clearing member, and with its portfolios takeover at a lower cost by the other members
of that same CCP. Another essential application to meet regulatory requirements is the implementation
of prospective stress test exercises. Furthermore, although intuitive, monotonicity properties of cost and
risk metrics are observed numerically with these models and lead to theoretically validate the relevance
of the use of such models.

Contributions in Chapter I: based on ( ),

* we describe the different types of actors and their financial flows, allowing them to maintain
their positions in the event their counterparties default, as well as the necessary financing costs
accounting for their own default risk ( Lemma 1.1, Lemma L. 2);

* we formulate these various types of costs by combining the costs of clearing activity (
, ) and bilateral OTC ( , ) in
a static one-period framework and with multiple CCPs to which a major financial player such as
a large bank is exposed (Theorem 1.4 and Proposition L.5);

» we illustrate numerically various possible applications such as exploratory stress test or reverse
stress test exercises and idealized auctions of defaulting members portfolios.

A major player in the financial network such as a systemic bank holds exposures both to CCPs and
to bilateral counterparties for products that cannot be standardized. It therefore incurs costs and liquidity
needs on its financial statements whilst holding these positions. The costs are then to be transferred to its
clients, the latter being at the origin of holding these financial products in order to meet their economic
needs. As for liquidity needs, such as collateral in currency or sufficiently liquid securities whether
under adverse market conditions or not, they result in the need for the financial actor bearing those to
turn to the markets and other actors dedicated financial institutions in order to have this liquidity, also
subject to corresponding costs. Moreover, the interconnection of members through CCPs is reflected in
the plurality of accesses of a member to several CCPs, where each covers a certain type of product in its
portfolio.

The analysis of these mechanisms for both clearing and bilateral activities and their various formula-
tions goes back to the work of ( ) and ( ) for the bilateral
OTC part, (2012), 014), 015), (2018), (2019),

( ) and ( ) for the clearing and CCP part. This is
carried out at the level of each contract including their costs in continuous time in ( ). It can
be implemented numerically provided that large computing capacity is available, since large financial
players such as systemic banks hold several tens of millions of these transactions in their portfolios.

In ( ), we propose to use the description of these mech-
anisms through a one-period model taken from the continuous-time version in
( ) for the clearing part and similar to the approach in

( , Section 3) for the bilateral OTC part. We also propose an alternative to portfolio modeling
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where a single random variable describes its future random variations, instead of all the variables thou-
sands of contracts in its portfolio could depend on. The network consisting of financial actors and
financial exposures, even if it can contain several thousand nodes, is thus numerically tractable (for

similar approaches see for example ( ) where portfolio random variations are supposed to
follow Pareto laws, ( ) using elliptical distribution and
( ) for a contract approach with numerical applications on a network made up

of 4 CCPs and their members).

This adaptation also makes it possible to illustrate numerically, via elliptical models for portfolio
variation and latent default variables, regulatory stress test exercises and the porting of a defaulting
member positions on a CCP to one of its surviving members generating the least cost. This last ap-
plication is similar to an ideal auction which is resolved with a buyer making it possible to obtain this
lower cost for all the surviving members. A stress test approach for a network of CCPs and their mem-
bers, limited to a few adverse macroeconomic scenarios, but without including counterparty, financing

of collateral or capital costs, is presented in ( ) and re-
visited by ( ). A more complete framework is detailed in
( ) without focusing on a particular type of activity (clearing or bilateral OTC). As for the analysis

of the porting of defaulted portfolios, it makes it possible to understand the possible restructuring of the
financial network following one or more defaults in the financial system.

Let J;, J., J, denote the survival indicators at time 1 of the members ¢ of the CCPs, the clients
indexed by c of the reference member 0 for which it operates a clearing service and of its bilateral
counterparties indexed by b respectively. A CCP indexed ccp holds exposures to its members, including
daily margin calls, denoted Y;°?, ¢ € I with I all members of the CCPs. Hedge positions towards the
CCPs are specifically identified by 7:61). This distinction will be particularly useful in Chapter III for
establishing price discoveries in markets and is illustrated in Figure 10.
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cleared
contracts

Figure 10: Contractual cash flows between market participants. The blue arrows represent position com-
mitments cleared by members on behalf of their clients, the orange arrows are bilateral commitments
and their symmetrical positions facing the CCP as a hedge (also known as proprietary trading).

A CCP applies a cascade (waterfall) of protection layers M = IMS + TM; " + DF for each

of its members ¢ € I (see principle 6 in the set of principles issued and recommended by
( )). Initial margins [IM] are calculated separately between cleared positions

(client account) and hedging positions (house account), and are denoted respectively IM;” and mj‘”’.
Member 0 receives from its cleared clients and its bilateral counterparties the cash flows Y P and Y,
respectively with corresponding initial margins IMS® and IM,,. For bilateral OTC exposures, member
0 can post initial margins IMy, for each of its counterparties b. Most CCPs also require a guarantee fund
(or default fund DF) noted DF;{“P for each member 7 on the CCP ccp . We ignore an additional layer of
capital specific to CCPs (skin-in-the-game) given its low amount compared to other layers of protection
( s , Section 8.4.5).

The formulation of the loss C, supported by the reference member indexed 0, constitutes the starting
point of the various costs of holding its portfolios (Proposition 1.5 and equations I.(15) and 1.(16))

C=S"(1-J,) (Yer — IMeP)+ crpeer LS4 =) (Y — IMy)t
> ) ( ) oo j%:( b) (Yo b)

cep,c

15)

loss on client ¢ cleared by 0 ““P loss on cep allocated to 0 loss on counterparty b
with

Leep — Z(l _ Jz)( (Yviccp _ IM;ECP)-F =+ (?:PP - mch)+ _DF’;CP blg)+

i

(16)

client position on ccp house position on ccp

The formulations (15) and (16) follow from the following principles:
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1. A counterparty in default towards another and having debts beyond the posted collateral, reim-
burses them up to the posted collateral and not beyond. If this debt is below the collateral, all
debts are repaid without any loss materialization for the other counterparty.

2. The incoming and outgoing cash flows to and from any CCP cancel each other out, as do any
member facing a CCP. A member is thus considered to be perfectly hedged on its market risks
emanating from its own positions, whether for clearing activities or bilateral OTC activities.

Most of the members being large banks, they actually have a relatively well hedged market position, as
evidenced by their capital requirements analyzed in ( ) (estimated as a
fraction of the weighted assets reported in this report).

The costs of holding the various types of positions for the member 0 are valued under a probability
noted P*, with an expectation operator E*, and with numeraire a risk-free rate asset making it possible
to simplify the valuation equations of all financial flows and collateral accounts. The probability P* is a
mix of physical and risk-neutral measures, which we will qualify as a “fininsurance” measure, and it is
constructed as follows: given a physical probability measure completely defining the model reflected by
the o-algebra A and equivalent to a risk-neutral measure on the o-algebra B reflecting only the market
uncertainty and contained in A, P* is equal to the risk-neutral measure on B and to the physical measure
conditionally to B. These two conditions uniquely characterize P* ( , , Proposition
4.1). This construction dates back to ( ) and ( ). The default
probability of a member i is denoted by ~; = P*(J; = 0). For simplicity, Jy is denoted simply J, and
Yo simply 7.

Regarding the funding of the member 0 exposures, and therefore its liquidity needs, the terms IM“?
and Y, 5 IM,, , constitute amounts of collateral to be borrowed and posted either to the CCP or to its
bilateral counterparties. The member O receives in exchange a remuneration rate which is considered
below its funding rate taken as its probability of default  so that the financing cost is based on a diluted
rate ¥ < - (member 0 is financed at the rate  and is remunerated at the rate v — 7). Additionally,
member 0 transfers its aggregate counterparty risk and margin funding costs, summarized by the term
CA, toits clients. CA is the acronym for contra-asset and plays the role of a liability in the balance sheet
of member 0, counterbalancing the value of the derivatives held as assets. Its shareholders must then bear
the potential loss ¢ := C + F — CA for which a capital level EC is calculated as a measure of risk of this
loss where the measure is for example an expected shortfall IEISSK under the probability P* conditioned by
the survival of 0, denoted Q. This risk measure corresponds, in the case where it is applied to a random
variable of continuous distribution, to the average of losses under Q° beyond a certain threshold Q2 (¢)
for a confidence level a € (1/2,1) also taken under Q°, i.e. EC = ES?(.J¢) = E° [¢|¢ > QY (¢)], with
QO (¢ > Q%(¢)) =1 — a. It becomes the measure of choice considered for the regulatory standard for
market risk measurements ( s ). The executive committee of this
member must ensure a dividend, up to a hurdle rate denoted by h, on the risk capital of its shareholders,
ie. (EC — KVA)* where KVA represents the capital cost also charged to the clients in addition to
CA. We then make the assumption that at time 0, the amounts of these costs collected by the member
0 are deposited into its capital reserve and risk capital accounts and can be used for its variation margin
funding needs. Thus the expenses due to the financing of the various margins can then be written as the
flow (Proposition 1.5 equation (17))

.7-"=’y(z:\/b—CA—max(EC,KVA)>+_y_?yz:l\/[ccp_|_§z:mb7 a7
b ccp b

where V), represents the difference between the collateral owed by member 0 to counterparty b and the
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one collected from this same counterparty. CA is decomposed into various terms reflecting credit and
margin funding costs of the form CA = CCVA+BCVA+CMVA+BMVA +FVA, where the different
terms are defined Table 3.

‘ XVA ‘ Expression ‘ Full name and description ‘
* _ + _
KVA E VE;L]CIESS C _Kl;:[g() 7 (é_ J(rl F ;I)CIT{AV;?] ’ capital valuation adjustment
. _ R Y Res _ credit valuation adjustment
BOVA B ;(1 o) (Yo = IMy)™ + (1 = J)BCVA for bilateral expositions
CCVA E*|J Z (1 _ J‘)(Y(:cp _ H\’I(:(:p)+ + Z H(:cpﬁccp + (1 _ J)CCVA credit valuation adjustment pour
ot “ATe ¢ pn clearing activity expositions
/ T R S _ ' margin valuation adjustment
BMVA ETN A ; IM, + (1 = J)BMVA for bilateral expositions
CMVA B |7 Z 5 (IM“” LIV 4 DFCCP) +(1-J)CMVA margin valuation adjustment pour
g clearing activity expositions
+
FVA E* Jw( Z Y, — CA — max(EC, KVA)) + (1 - J)FVA funding valuation adjustment
L b J

Table 3: X VA costs definitions (with C, F and L respectively given by (15), (16) et (17)).

We observe that these counterparty risk, margin funding and capital costs are written as a solution
of a fixed-point type equation under the probability “fininsurance” and are well defined when they are
re-written under the survival probability Q. We can then obtain explicit formulas for these different
costs, which we list in the Table 4 (Theorem 1.4 and Proposition L.5).

XVA Explicit formula
CCVA E Y (1= J)(YVEP — IMEP) T 4y pPLer
cep,e ccp
CMVA 3> owmeer
ccp
BCVA E > (1= )Y, — M)
L b J
BMVA 5 E M,
b
EC ES(J(C — CVA))
+
FVA | —— (3%, — (CCVA + CMVA + BCVA + BMVA) — EC
14+~ -
h
KVA —E
v N

Table 4: Explicit formula of XVA costs under the survival probability Q" (with C and L¢P
given by (15) and (16)).

We propose several numerical examples, based on an elliptic Student model with a degree of free-
dom of 3 to generate heavy-tailed distributions for the portfolio random variations (amounting to as-
suming the existence of moments of order 1 and 2 only, as it can be observed in practice on certain
portfolios), to highlight the possible application of the XVA metrics framework for exploratory or re-
verse stress test exercises. One of them relates to the default on two CCPs of the asset manager firm
Ronin Capital following the COVID 19 pandemic, in March 2020. Another example highlights the
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identification of an optimal re-arrangement that a CCP could carry out following the default of one of
its members with the defaulted portfolio takeover, and its corresponding symmetrical positions to the
cleared clients, by the surviving member leading to the lowest costs across all surviving members. For
each non-analytical XVA metric (e.g. CVA and KVA) and quantiles (taken as exploratory stress test
scenario for a given confidence level), we perform simulations via the Monte Carlo technique with non-
parametric confidence intervals, and for quantiles estimates based on ( , Appendix G)
which uses the binomial distribution of order statistics of independent uniform random variables.
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§6 Monotonicity of credit provisions and economic capital risk
measures

Given the elliptical framework considered for the random variables following Student distributions in the
numerical tests mentioned in §1 and Chapter I, we observe that the expectation and expected shortfall
measures are nondecreasing compared to the correlation parameters. It leads to the question of having
such a property of the modeling framework consisting of the application of convex risk measures to
functions of random variables following elliptical distributions. It turns out that elliptical distributions
belong to random variables obeying the so-called supermodular property and that the loss functions that
we use for bilateral OTC and clearing activities also have the functional property of the same name.
By applying convex risk measures to these supermodular functions of such particular random vectors,
we can obtain the monotonicity of these risk measures as a function of the covariances and therefore
correlation coefficients. These measures are also applied from the point of view of a reference financial
actor, typically a systemic bank, also a member of a CCP, subject to bilateral OTC and clearing activities,
and which is indexed by 0.

Contributions in Chapter II: In ( ), which constitutes this chapter,

¢ we demonstrate and illustrate the monotonic behavior of convex risk measures for multidimen-
sional random variables having the supermodular property (Theorem I1.12);

* we apply these results to elliptical models for the factors governing portfolio movements and
latent default variables, thus highlighting the monotonicity of risk measures such as expectation
and expected shortfall [ES] operators compared to correlation coefficients between these fac-
tors (Proposition II.13, Proposition I1.14, Proposition I1.16, Corollary I1.17) and which we
illustrate numerically;

* we also extend the results of ( ) concerning the monotonicity of the
valuation of equity and senior collateralized debt obligation [CDO] tranches with default latent
variable models (Proposition I1.7 and Corollary IL8).

A supermodular function is a function f : R® — R which, for all x € R", alle > 0, any ¢ > 0
and any pair of index ¢ < j in 1 .. n, satisfies

flr, . o xite ., +0,. . ,mn) — flo, ..,z +e, o 2y, T,) > (18)
f(acl,...,xi,...,xj +5,...,Z(Jn) —f(ﬁ!?l,...,l‘i,...,I‘j,...,.fcn).

The random variables that we consider subsequently in this section are assumed to belong to a
closed linear subspace X of L!(Q), defined from a probability space (€2, .4, Q), with E the correspond-
ing expectation operator, and considered without any atom, i.e. for all w € Q, Q({w}) = 0. These
hypotheses allow the results of (1997); (1998); (2000);

( ); ( ) to apply without particularly constraining the
modeling framework.

A random vector X = (X4, ..., A},) is smaller than another random vector Y = ()1, ..., V) for
the supermodular order, also written X <., Y, if the inequality E(f(X)) < E(f(Y)) holds for all
supermodular functions f : R™ — R such that the written expectations exist.

We also define the stop-loss order as follows: X precedes )/, both in X, for the stop-loss order,
written X < ), if E[X — A]T™ < E[Y — A]T is true for all constant A > 0, which is equivalent to
( , , Theorem 2.2 b)) that E(f (X)) < E(f(Y)) holds for any convex increasing
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function f : R — R and such that the written expectations exist (which is the case in particular for
f = id). This order makes it possible to obtain the result stated in ( , Theorem
4.4) concerning the monotonicity of a risk measure p defined on a probability space without atom, i.e.
[X <a V] =p(X) < p((D).

Our considered definition of a risk measure relaxes the translation equivariance assumption com-
monly used in risk measure theory (see for example ( , Introduction (A3))). It then includes
the 4 following properties: (i) the risk measure p is assumed to be proper (VX € X, p(X) > —o0,
and domp = {X € X;p(X) < +o0} # 2); (ii) p is invariant for random variables with the same
distribution (aka law-invariant, i..e. X’ 4 YV=p&)=pQ), X,V € X), (iii) p is monotonic (X <
Y=p(X)<p(), X, Y€ X)and (iv) pis convex (p (AX + (1 = A)Y) < Ap(X) + (1 = A)p (D),
YA€ (0,1), X, € X). The risk measures that we use in ( ) are the expectation
and the expected shortfall as defined by ( , Definition 2.6) from the probability
Q. These two measurements obey the 4 properties previously mentioned on the space L!(Q).

The starting argument to obtain our monotonicity results for risk measures according to the super-
modular order is based on the Lemma II.1 which we recall below:

Lemma .2. I[f X <,,, Y in X with X, Y with values in R™, then, for any supermodular nondecreasing
Sunction f : R™ — R, we have f(X) <4 f(Y).

This lemma directly follows from ( , Theorem 3.9.3 f), page 113) which
states that if f : R”™ — R is nondecreasing and super-modular and ¢ : R — R is nondecreasing and
convex, then ¢ o f : R™ — R is also supermodular. Consequently, according to
( , Theorem 4.4), if p : X — R is proper, monotonic, convex, and law-invariant and if f : R™ — R
is nondecreasing super-modular, then X <;,, Y = p (f(X)) < p (f(X)).

Moreover, the result ( , Theorem 3.9.3 f), page 113) makes it possible to
complete the results from ( ) regarding the monotonicity properties of the val-
uations of equity and senior tranches of CDOs under latent default variable models. To do this, it is
enough to observe that the corresponding financial cash flows of these tranches are written as convex
nondecreasing functions composed with supermodular increasing functions of the latent default vari-
ables of the underlying bondholders. We illustrate this result numerically in IL.§3.A.

About the monotonicity of the risk measures as previously introduced and applied to loss functions
of bilateral OTC and clearing activities, we consider the form of the loss functions over a period of
time [0,7] as Y., fi(X1,...,X,)g:(Y;) with n a given number of obligors (that can be a member,
a bilateral counterparty or a cleared client). The default times 7; of these obligors are indexed by
1 € 1...n and modeled using a latent variable X; exceeding a certain level B;, typically X; represents
the liabilities level which may exceed the sum of the obligor’s assets and capital levels ¢, and denoted
B;. The variable g;();) represents a positive loss due to the default of obligor ¢. The functions f; are
positive and nondecreasing with respect to each of its arguments and have the supermodular property
(when n > 1, as the case n = 1 can be handled directly without any particular difficulty). The g;
functions are also positive and nondecreasing.

We thus establish (Proposition IL11) that (z1,..., %y, Y1, .- Yn) = Doy fi(T1, oo, 20)9i(vs)
is a supermodular nondecreasing function on R?". For example, we demonstrate in the Proposition
I1.16 that functions of the form

n - 1
RQ 9(‘T17"'axn7y17"'ayn)’i>z n ]l{xlzBl} X (yi_mi)+ €R+
s Zﬂj]l{m_KBj}

j=1

19)
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are nondecreasing and supermodular with By,..., B, € R, 51,...,8, € R,. These loss function
forms are found in clearing activities against CCPs as presented in §1 and Chapter I. The loss function
forms for bilateral OTC or cleared client exposures are simpler and expressed as » 3, 1¢,, >, (ys —
myp)T where the sum is taken over all counterparties and cleared clients b to which the reference bank
is exposed, and in which case the form of the loss function is f,(xy)gp(ys) for a counterparty or cleared
client b. So, according to the Lemma .2, if (X1,..., X, V1, s Vn) <om (X, ., X V1., V0,
we obtain

Zfi(X17~~-7 gz yz sl Zfl Xlav‘)(r/L)gl(yz/) (20)
=1

( , Theorem 4.4) allows us to conclude that p (37", fi(X1,..., X,)g: (Vi) <
p (icy filX, o, X)) gi(V)).
For X = (Xo,Xiseoy X)) = (Xoo X1seeo Xo, Yise o V) and X! = (Xo, XLy X)) =
(Xo, X1,..., X, Y],....,Y)) (for n > 0) such that X <,,, X’, we define the loss functions as

L= fi(Xi,...,X,)g;(V;) and L' = Zfl X1, XD g (Y, 1)
i=1

with supermodular nondecreasing functions f; and nondecreasing functions g;. We recall, as specified in
§1 and Chapter I, that risk measures are defined under the survival probability measure of the reference
financial actor, denoted here Q°, equivalent to a starting probability, for instance with Q = P* the
“fininsurance” probability measure introduced in §1. More precisely, we can write Q°(-) = Q*(-, X <
By)/(1 — ~) where 7 is the default probability under Q* over the period of the static model defined in
§1 and Chapter I for this leading financial player. Therefore, this requires that L, L’ € X° = L1(Q°)
while the supermodular order is initially taken under Q*. However, the default of this actor 0 stems from
the latent variable X so that we can rewrite Q°(-) = E* [h(X¢)1(], with h(-) = L..,/(1—7). Soas
to reproduce the industry practices, we favor supermodular random vectors X, X’ under Q* whose data
are observable under this probability. They are also supposed to have the same component X} and verify
[X1:m|X0] <sm [X).|X0], i-e. the supermodular order on the components other than the component
0 but conditionally on the latter one (which we also write E* [ f (X1.n) |Xo] < E* [f (X].,,,) | Xo] for
any supermodular function f : R™ — R). This assumption then makes it possible to demonstrate that
for h defining the change of measurement from Q* to Q", we obtain X.,,, <o X1.,, Where <0 is
the supermodular order under Q°.

To illustrate these results numerically, we consider the family of random vectors with elliptical
distributions under Q* with the same characteristic generator, same mean, same first component Xj,
same variance for all components, but whose non-diagonal covariances I‘;{ = Cov*(X;, Xj), I‘;é, =
Cov* (X, X]) (with Cov* the covariance operator under Q) satisfy I‘;{ < I‘;{, fori #j€l..m
(and I'y = I', for ¢ € 1..m regarding variance terms). These vectors are then supermodular con-
ditionally to Xj. The equality of the first components of X and X’ also requires that I‘g(j, = I‘gg, for
all j € 0..m and reflects the fact of keeping the same point of view of the reference actor through
which the risk measures are considered. Under these assumptions, we have Xi.,,, <gp» X}.,,, where
<sm 18 the super modular order under Q* ( , , Corollary 2.3). It follows that
[X1:m|X0] <sm* [X].m|Xo] (Proposition IL5) then that Xy, <0 X1, (Lemma IL.6). We can thus
apply our Lemma .2 with f of the form (19) (but also for any nondecreasing supermodular function of
more general form Y| fi(X1,...,X,)g:(Y;)) for supermodular elliptical random vectors under Q*
keeping this supermodular property under Q° in order to get a stop loss order relation of the type (20).
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By taking a risk measure as previously defined under Q°, we obtain the monotonicity of such a
measure as a function of the covariance coefficients of the supermodular vectors (and therefore of the
correlation parameters for those expressed as a positive factor of the corresponding covariance coef-
ficients). The expectation and the expected shortfall verify the risk measure hypotheses on L!(Q0).
Furthermore, expectation is associated with the accounting metric of current expected credit loss used
for the calculations of credit provisions (hence CVA) and the expected shortfall relates to the risk man-
agement metric of an economic capital amount (hence of KVA).
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§7 Radner Equilibrium and application to Clearing Member De-
fault Management by a CCP

The price impact of the management of one or more defaults by CCPs is covered in a third chapter based
on ( ), along with numerical examples, using the convex
analysis and Radner equilibrium which constitute a special case of Nash equilibrium. This price impact
relates to the proprietary trading positions of the defaulted members of the CCPs that are not covered in
the applications exposed in Chapter I dealing only with the resolution of the defaulted members with
client positions. This third chapter therefore aims to deal with the proprietary positions of these members
not impacted by the porting of client positions from a defaulting member to a surviving member. These
default resolutions of defaulting members by CCPs and their proprietary positions are considered with
different strategies that a CCP can implement to manage a default of its members, as prescribed by
the recommendations of the Bank for International Settlements [BIS] and International Organization of
Securities Commissions [IOSCO], namely the hedging and then auctioning of the defaulting member
portfolios, or its liquidation on a financial market ( s s ).
These organizations explicitly recommend that CCPs analyze the impacts of such strategies on the prices
of the corresponding portfolios and markets.

Contributions in Chapter III:

* we express the losses that a participant in one or more markets may suffer on its different types
of portfolios that it holds following market prices moves, modeled over a single period of time;

» we formulate the impact of handling defaults resolution by the CCP on the traded prices securities
on several markets using Radner equilibria in a default-free network by considering portfolio
recoveries following defaults;

* we demonstrate the existence (Theorem IIL.2) and the uniqueness under certain conditions of
such equilibria (Theorem III.3), adapting results from
( ) to a one-period static framework for unbounded random loss variables, illustrated with
several examples covering various possible strategies that a CCP can implement in case of the
default of one or more of its members;

» we take the formulations of these price impacts in the expressions of credit, capital and financing
costs covered in the Chapter I and numerically illustrate these applications.

The main risks in the financial network the players are exposed to, and for which regulators require
sufficient amounts of capital from banking institutions with a probability level of 99.9% (
s ), can be summarized in 4 risk types ( s
): market, counterparty, credit and operational. Liquidity risk, linked to the need for a market
participant to honor payment commitments in cash or securities, may indirectly give rise to additional
capital requirements. Various indicators allow for testing the solvency of a banking institution regarding
its contractual payments and reimbursement commitments. For example, the liquidity coverage ratio
[LCR] is defined as the ratio of the amount of very high quality liquid assets divided by the amount of
flows to be payed out in the next 30 days citep[Chapters 3 and 8]CGM2014. Poor performance of these
indicators for a financial institution can signal disruptions of its operational flows and lead to repressive
actions by regulators such as capital surcharges.
When a financial actor exposed to a CCP defaults, its traded portfolio on a financial market must be
managed by the CCP, linked to this market. For example, the EUREX Group has its market services for
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negotiating the terms of contracts and its own clearing services to settle them once negotiated. The CCP
can either fully or partially hedge the defaulting member portfolio and then auction it to its surviving
members, possibly inviting other players to the auction, or liquidate it on the financial markets by selling
it at a loss or buying it beyond its price depending on whether the CCP initially purchased or sold this
portfolio respectively ( , , ). These resolution choices may
generate losses on this portfolio, which will be borne, beyond the collateral of the defaulting member,
by the surviving members: the CCP cannot have a non-zero aggregated position on all of its surviving
clients nor support a cost due to losses of the defaulting member (apart from a tiny part of its capital
called the skin-in-the-game).

To complete the quantification of the credit risk through the XVA costs under the static one-period
model detailed in the Chapter I, we propose to capture the impact of hedging, full liquidation, or a
combination of both, of defaulting members portfolios of a CCP. The use of Radner’s equilibrium based
on the concepts of Walrassian competitive economic equilibrium with uncertainty appears natural in
this context ( , , ). A Radner equilibrium is defined by a predetermined quantity of each
security in the market, traded at a certain unit price minimizing a utility or risk metric applied to the
random variables of the future financial loss of each participant in this market. This is a special case
of Nash equilibria where a clearing constraint, on top of common securities traded on the considered
exchange, connects all the participants and their actions to minimize their respective risk metric. We
show that such a Radner equilibrium exists and can be calculated by assuming financial flows with
elliptical distributions.

For a given financial market E/, composed of m > 1 securities, we consider that each of its partici-
pants ¢ bears a market loss over a period of time [0, T'] where T represents the maturity of all negotiated
contracts. Each loss is expressed as

—R, + 4 (p-P). 22)
—_—————
random flow exogenous to E/ hedge

The cash flow R; € R is promised at maturity 7" to participant ¢, and is potentially correlated to the
random value market securities which value are P € R™ at maturity for a quantity ¢; € R™, with price
p € R™ at time 0. The notations q; € R™,¢ € E and p € R™ are reserved for the solutions of a Radner
equilibrium on E. The random variables R; and P defined on a probability space (€2, .4, P) belong to a
vector subspace X C L'(£2), containing the constants. We denote by E, Var and Cov the expectation,
variance and covariance operators respectively under the probability P.

The member a portfolios represented by the equilibrium quantities q, facing a CCP settling for a
market F, can contain both hedging positions (called also proprietary trading, recorded in the member’s
owner account, also known as house) and client clearing positions of the CCP member (recorded in
oco o (where the
financial actor o is outside the market processed by the CCP) taken on OTC markets and not cleared by
CCPs. Clearing positions are back-to-back and denoted qi. This is a consequence of the intermediary
role of the CCP between a financial actor b not accessing the CCP, by choice or by constraints due to
insufficient resources to claim direct access to the CCP, and the member a which aligns with regulatory
requests ( s ).

Let us denote £ = AU B, with AN B = &, A the set of participants a having direct access to the
CCP services for the corresponding market represented by its participants E and B all the participants b
that are not members of the CCP and clients to any member in A to indirectly access the CCP. g, defines

the member’s client account). The hedges are with respect to all positions R, = )

a proprietary trading position of member @ and g; the position of one of its clients noted b for which a
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exercises the role of clearing member. Thus the position g; only transits from b to a then from a to the
CCP. So, even if the total position of a towards the CCPis g, +) . 5 g as a holds — >, _ ;s qf towards
its clients it clears for, the positions of a and b involved in the resolution of the Radner equilibrium on
E are respectively g, and gy = D, 4 G5 -

Prior to any default on the exchange, the equilibrium market loss borne by a member a € A on the
market F is expressed

—Rq+4q, (p” = P)=-)_ R{+q,(p”-P)
0€0

and that of a participant b, not a member of the CCP settling positions taken on F, is written

.
—Ry+q, (p¥ — P) = —Ry + (Z qZ) (p” - P).
acA

It is not necessary to know the terms (qf ),c 4 but only g.

When a CCP chooses to hedge the defaulting member’s portfolio, it becomes a participant in the
exchange within which the hedge is taken. Alternatively it may choose to liquidate the defaulted position
on the exchange where it operates on or on another exchange. In both cases, the CCP is not one of the
market participants where the position is liquidated. A combination of these two hedging and liquidation
strategies on the same exchange or different exchanges is possible. For each market exchange F prior
a default event, called pre-default, and whose securities have the initial equilibrium price p considered
at time 0—, we note £’ and we qualify this same market as post-default after the occurrence of one
or several instantaneous defaults d at date 0. The quantities and securities prices of E’ depend on the
resolution procedure considered by the CCP with new prices of securities p’ considered at time 0.

For any member 7 in a post-default market £’ whose set of pre-default participants is F, its in-
cremental share of positions Aq; decomposes into Aq! due to the liquidation of the defaulting mem-
bers positions qld, and into Aq? due to the CCP hedging the positions qg. We have q4 = qu + qZ,
d) = Y,cp Adband g = Y. 5 Aql. The post-default equilibrium quantity of participant i is
denoted by q; = q; + Aq,; with q; = 0 if ¢ is a new participant, i.e. initially non-participant of E.
The liquidation is done on the basis of pre-default and contractual prices p while the intervention of the
CCP in the market to cover part of the portfolio of the defaulting member generates new prices p’. The
post-default market loss for ¢ € E’ is then written (see I11.§3.B)

—Ri+(a)T(@F - P) + (a4, +Ad)"(p" —p'"), (23)

market loss post-default at price =:LC; (liquidation cost)

where LC represents the cost of liquidating the defaulting members portfolios. It can be interpreted as
margin call payments, similar to futures contracts, to move from a pre-default market based on prices p
to a post-default market based on prices p’. These margin calls, due by any surviving participant i € F,
only apply to contracts based on old prices, including those that are liquidated by the CCP.

To solve both the pre and post-default Radner equilibria, the minimization of the risk of any partic-
ipant ¢ € E results in a minimization of a convex and homogeneous positive risk measure p; applied
to its market loss. This minimization is first done by assuming that no default has occurred, and sec-
ond following the occurrence of one or more defaults, to establish the equilibrium prices and positions
before and after such a default event. The resulting market cost for participant 7 € E’, denoted MC;,
is defined as the difference between the participant 7’s risk measure applied to its market loss after a
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default event has occurred and market loss prior any default event, with portfolio allocations and prices
taken at both pre-default and post default equilibria:

MC; = LC; + pi( = Ri + (@) " (p'" = P)) = pi(— Ri + (@) " (P — P)) .

=:Ap;

The overall liquidation cost is LCg = Zie g LC; and its overall market cost is MCg = Zie 5 MC;,
redistributed across all members of the CCP. If the CCP chooses to implement such a strategy of a
mix of liquidation and hedging of one of its defaulting portfolio on several exchanges, the market and
liquidation costs are aggregated over all of these exchanges: MC = )~ . MCp. This cost thus represents
the fund transfer price [FTP] since it reflects the cost of transferring defaulted positions to surviving
and/or new market participants.

For an exchange [ that has not suffered any default, the clearing condition is written ) ., q; = 0,
q; € R™, corresponding to a quantity of zero for any security in the considered exchange. For each
participant ¢, we consider a risk measure p;: X — R, law invariant, monotonic, convex, translation
equivariant (p;(L + m) = p;(L) + m for all L € X and m € R) and normalized (p;(0) = 0), leading,
for a given p, to the optimality condition

pi(—R;+a] (p—P)) < pi(-R; +¢; (p—P)), ¢; € R™. (24)

A Radner equilibrium on an exchange represented by its participants E consists of a pair
{(q:)ick,p} verifying the securities quantities clearing condition and optimality conditions of any
participant ¢ € E. Solving a Radner equilibrium relies on the properties of the convex measures
p; employed by each of the participants ¢. These must be convex, monotone (for Ly,L; € X,
Ly < Ly = pi(L1) < pi(L2)), translation equivariant, law invariant for random variables with the
same distribution (for L1 4 Lo, pi(L1) = p;i(L2)), normalized (p;(0) = 0) and sensitive to large losses
(lim— 00 pi(AL) = oo for all L € X such that P[L > 0] > 0). By translation equivariance, we rewrite
the optimality condition for any participanti € F as p;(—R; —q, P)+q, p < pi(—Ri; —¢; P)+q,' p,
q; € R™. Setting r;(¢;) = pi(—R; — ¢ P), we define the inf-convolution of the participants’ risk
measures as

r(q) = inf {Z ri(g); > ¢ = q} . gER™ 25)

i€ER i€EE

A Radner equilibrium can be expressed equivalently with the following three characteristics based on
inf-convolution (11) (Lemma III .1): (i) —p € 97(0), (ii) 7(0) = >, ri(qs), and (iii) >, ; q; = 0.

The Lemma III.1 combined with the assumption of sensitivity to large losses of the risk measures
p; guarantees the existence of a Radner equilibrium (Theorem IIL2). The price uniqueness can be
obtained if the risk measures p; expressed as functions of the security quantities held by any participant
i are differentiable at their respective equilibrium vector of positions q; (the sub-differential dr;(q;) at
the point q; is the singleton gradient Vr;(q;) evaluated at this same vector point) while the uniqueness
of the equilibrium positions is guaranteed if these same functions are differentiable and strictly convex
(Theorem IIL3). In the case of entropic or expected shortfall risk measures with (P, R;) taken as vec-
tors with elliptical distributions, it is possible to obtain a unique analytical formula for the equilibrium
positions and quantities (see Proposition II1.4, Proposition III .5 and Remark IIL.5).

Credit costs which capture counterparty risk in the broad sense, including those induced by funding
and capital requirements, must be added to the market cost to constitute the entire FTP. They are based
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on the indirect exposure of each member of the CCP to all the other members of that same CCP and
on the funding costs to maintain a position towards the CCP. If the position of a member changes,
following the rearrangement of its positions in response to a default management strategy by the CCP,
the other members of that CCP will be impacted in terms of their XVA costs as detailed in

( ). For portfolio variations assumed to be Gaussian, and for a given
CCP before a default event, the equation (1) is written for the member 0 on the pre-default market
E = A cupB,

Co = Ci+Cy+Cp, with
T +
A _ A _ “ B ~ N
& Ee W20 (qu> (P - P)—IMJ | +
acA beB
oyt +
(alw# -~ p)-Bl) - pre|
+
¢ = =) (@)TRF - P) - IMG) and € = 31— (R~ M)
bes ocO

(26)

w()“ (zero if 0 ¢ A) is the loss allocation coefficient attributed to member 0 by the CCP, IMf, mf, and
DF;4 are the initial margins and contributions to the default fund as detailed in Chapter I (summarized
in the equations (1) and (2)).

R§ is the cash flow exogenous to the market £ and received by the participant 0 from its bilateral
counterparties o on the OTC markets, with a corresponding initial margin IM{ (which can be zero for
certain commitments of this type). After a default event, a similar formulation applies by updating the
quantities wgl, IM#, TN, , DF and IMY, in (26).

We can then calculate the XVA costs before and after the CCP’s default event management, thus
complementing the market costs using their explicit formulas (Table 2 taken from Theorem 1.4 and
Proposition L.5). The total costs borne by the surviving members are expressed as

FTP =TLC+ Y Y Api+ Y (XVA] - XVA;) +AC, 27)
E’ i€E’ i#d AX"VAi

market cost (MC) credit cost (CC)

with, for each surviving participant i, XVA; = CVA; + FVA; + MVA,; + KVA;, XVA] these XVA
amounts calculated after the default management carried out by the CCP and AC the cost due to the
auctioning by the CCPs of the portfolios of members who have defaulted and including their hedges.
This cost is another incremental cost in XVA, corresponding to the funds transfer price detailed in
II1.§7 (only including credit costs), i.e. the impact of the auction of these defaulted members’ portfolios
including the hedging instruments used by the CCPs on XVA costs.
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§8 Simulated Annealing Algorithms for identifying optimal finan-
cial network reorganization following a clearing member de-
fault

In this fourth part, we consider more catastrophic scenarios where the failure of a member does not
only occur on a single CCP but on a multitude of them. The numerical illustrations in the first chapter
employ a direct approach by testing all possible recoveries of the defaulting member’s portfolio on a
single CCP, which is not possible in the case of several portfolios due to the combinatorial problem of all
possible recoveries scenarios. Such a scenario of default on several CCPs could really have occurred at
the beginning of 2023 with the difficulties of Credit Suisse bank, a major player to around thirty CCPs,
if the Swiss National Bank had not intervened with granting a liquidity contribution of around €170
billion (CHF 168 billion, see ( )). A smaller, but very real, example with a default on two
CCPs occurred in the United States with the asset manager Ronin Capital and is illustrated in the first
chapter. Regarding a network of a few dozen CCPs (around 50 major CCPs in the world) and hundreds
of members (300 to 400), the number of combinations being of the order of 10'3%, even for small
networks (like ten CCPs and 200 members), it seems inconsiderate to envisage the exploration of the
entire space of all possible take*over combinations. The use of stochastic optimization techniques thus
appears natural. We illustrate the application of discrete simulated annealing algorithms on a network
problem involving a few CCPs and the numerical behaviors expected for this type of technique.
Contributions in Chapter IV:

» we describe the re-allocation problem of a defaulting member portfolio on several CCPs towards
their surviving members; we formulate it as the solution of a combinatorial minimization problem
on a finite space of a non-linear and non-convex function of random variables approximated by
Monte Carlo techniques; these variables represent the future contractual flows of these portfolios
and latent default variables for each of the members;

* we summarize the main convergence and error control results of discrete simulated annealing
algorithms on finite spaces by putting them in the context of our problem; for a given number
of iterations, we deduce bounds on errors between the value of the approximated function at the
state returned by the algorithm and the minimum value of the function without approximation
(Theorem IV.7, Corollary 1V.8);

* we also obtain a bound of the probability of error between the combination proposed by the
approximate version of the algorithm and the ground truth of the non-approximated problem
(Proposition IV.9); these results are obtained using concentration inequalities resulting from
empirical errors and known errors of simulated annealing algorithms;

* we specify the application of simulated annealing for a given sample making it possible to ap-
proximate the real problem, with an exploration phase specific to the financial structure arising
from the CCPs and their members by emphasizing the heavy tails distribution behaviour of the
losses, that we confirm based using dedicated statistical tests;

* we illustrate numerically the adequate behaviour of the algorithm on a set of 4 CCPs and 11
members, among which one is considered in default; the designed algorithm significantly out-
performs the naive approach of successive random suggestions takeover combination of takers
without replacement.
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In Chapter I, following the default of a member on one or several CCPs, we address the identification
of a member taking over a defaulted portfolio leading to the least XVA costs on all members by going
through all the possible recoveries, where the portfolios are taken without subdivision. It thus reflects an
idealized auction where each participant proposes a price allowing the takeover to be achieved with the
least XVAs costs across the entire financial network. This strategy quickly becomes computationally
inefficient in the case of a default on several CCPs with a considerable number of combinations of
buyers. Furthermore, although the XVA costs are of different types, namely credit (CVA, BCVA and
CCVA), funding (FVA, MVA, BMVA and CMVA) and capital (KVA), we consider the minimization to
solely rely on capital costs. This type of cost appears indeed predominant among the others, as illustrated
in Section I.§5.
The application of discrete simulated annealing algorithms ( , , ;

; ; , ; , ; ; ; ; )
to problems involving a large number of combinations in finance is best known as one of the toolbox
techniques for solving portfolio optimization problems ( , ; , ). The
latest advances in quantum computing have allowed adaptations of this type of algorithms for such
portfolio optimization problems ( , ). Although it is possible to apply these algorithms to
capture adverse scenarios leading a banking institution to default ( , ), its application to
identify a possible restructuring of the financial network through portfolios re-allocation in the financial
network seems new.

For any participant £ = 0, ..., L, we denote (Y,!,...,Y,) the set of random variables defined on
a sub-vector space X C L(Q), with (€2, F, P) a probability space, where Y,* expresses the future cash
flows over a time horizon T of its portfolio towards the CCP k, k = 1,..., K. For{ = 1,..., L and
a combination of takeover members i = (i1,...,ix) € Z = {1,..., L}¥, the variable (Y p; Yo)j
indicates the /-th participant’s portfolio update following the portfolio takeover of the member 0, as-
sumed in default, by the buyer i, on CCP k. For M € N* and the participant ¢, we note Ré” the
empirical measure of a measure R, for calculating its required capital on all of its portfolios held
on the K CCPs based on a sample of size M. This measure is applied to a loss function g, which
depends on all the portfolio variation variables after takeover by the buyers i = (i1,...,ix), i.e.
((Y@iYo)} (Y, YE (YEBiYO)lp...,(Y@iYO)f) = Y @, Yo. We can then
write for a given combination of buyers i the function (the Hamiltonian) of the cost to be minimized
as the sum of the approximated risk measures on all the participants (1,..., L) applied to the random
variables after takeover:

Hy: IT—R
T EL:Ré” 9 (YEP, Yo)] -
(=1

We thus look for arg minjez Hps (i), based on a sample of size M of the random portfolio variables

(28)

considered to be common for each value H (i) to calculate ( , ). This problem
approximates the real one which is written similarly to (14) by replacing the approximated measure-
ments R} with their non-approximated version Ry, £ = 1,..., L.

Given the Hamiltonian form H,; to be minimized as a function of i, where it is difficult to iden-
tify any linear or convex structure with respect to the combinations i € Z and which has numerous
local minima (see in particular the example in Section IV.§4.E), the use of a simulated annealing algo-
rithm seems justified since it allows, under certain conditions and for such functions, for a convergence
towards a distribution attributing all its mass to the minimum of this Hamiltonian. This same distribu-
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tion, when expressed as a function of a control parameter converging towards 0, is written as the limit
of a Boltzmann-Gibbs distribution, depending on this control parameter, which attributes the greatest
probability to the minimum of the function to be minimized.

For a fixed number of iterations N, which indicates the given budget for the algorithm run, and for
€ > 0, we obtain error bounds, similar to concentration inequalities ( , ), but with
an error component due to the algorithmic error (in our case, that of a simulated annealing algorithm,
see ( ) and ( ), for the error between the value of the approximate
Hamiltonian applied to the combination obtained by running the algorithm and the non-approximated
one applied to the optimal combination of the non-approximated problem (Theorem IV.7). By noting
i* € argminjez H(i) =: Z°! and I} the solution returned by the algorithm after NV iterations for a
sample of size M, we can thus write:

P (VM|Hy (137) - H(i*)

>¢) < Bi(iZ].e, M. N),

with By (|Z|,, M, N) a certain deterministic bound converging to 0 for ¢, M, N — oo and |Z| = L¥.
In a similar way, it is possible to obtain a bound on the probability of the estimation error (Corollary
IV.8):

P (x/M]H(Iﬁ) “H@GY| > g) < By(Z,¢, M, N),

with Ba(|Z|,e, M, N)) another deterministic bound converging to 0 for &, M — cc.

We can deduce bounds on the probabilities of error that the algorithm does not return the correct
solution compared to the correct one for the approximated problem, and compared to the correct one of
the non-approximate problem:

P (I ¢ Z30") < Bs(M,N) and P (I} ¢ Z°") < By(M,N,Hs — H)

with Iﬁt = argminjez Hpy (i), H = minjezp), Ho the second smallest value of {H (i)}iez,
B;3(M, N) and By(M, N, Hs — H) deterministic bounds converging to 0 for M, N — oc.
These error bounds can be specified in various cases, notably for random variables with heavy-

tail distributions ( , ; s ) such as the loss functions gy (Y @ Y0> s
1

¢ = 1,...,L that we find in our problem. This characteristic can be tested for various classes of

distributions, for a generic framework is described in ( , ). The loss functions of our

problems show indeed Pareto distribution tails. We can then specify the error bounds when the risk mea-
sures are expectations, quantiles or expected shortfalls ( s ; R ; s

, ). In the case of an expected shortfall without knowing the exact value of the corresponding
quantile, an estimator based on a quantile of several averages can ensure the consistency and a some
robustness of such an estimator ( s ; s ).

To ensure good performance of the algorithm, the exploration phase must capture the structure of
the positions and the financial network made up of the CCPs and their members. We propose a stochas-
tic matrix partially covering this requirement which does not retain the combination of the previous step
of the corresponding Markov chain. Although the numerical results, in the case of 4 CCPs and 11 mem-
bers including one in default state, show significantly better performance than a naive exploration and
exploitation of combinations of takers without resampling (Section IV.§4.E), an improvement should
be considered where the previous combination state influences the stochastic matrix of the exploration.
Furthermore, the sole choice of the cost of capital as a minimization criterion can lead to irrational be-
havior from the surviving members, who should not consider this cost of capital as the only criterion
but other economic constraints, and that may be a limitation to the application of such an algorithm.
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Chapter 1

Derivatives’ risks as costs in a
one-period network model

Note. The results of this chapter are based on the paper! ( ).

Abstract. In counterparty credit risk complete markets, collateral and capital requirements would be
indifferent to banks. The quantification by banks of market incompleteness based on various XVA

metrics ( ( )) has emerged as the unintended consequence of the FRTB banking reform
( ( )) and of the more demanding regulatory capital require-
ments ( ( )). The related risks are

in fact reckoned today as the major risks for banks, well ahead market risk (( ,
, Figure 65 page 67)). The XVA metrics have been introduced and traditionally used by investment
banks for pricing and collateral/capital optimization purposes. We demonstrate in this paper that they
can be fruitfully used for risk management, suggesting a sound approach to regulatory requirements.
We present a one-period cost-of-capital XVA setup encompassing bilateral and centrally cleared trading
in a unified framework, with explicit formulas for most quantities at hand. We illustrate possible uses of
this framework for running stress test exercises on financial networks with one and two clearinghouses
from a clearing member’s perspective or for optimizing the porting of the portfolio of a defaulted clear-
ing member using Monte Carlo technique with corresponding confidence errors in elliptical models. A
continuous-time extension of this approach is provided in the companion paper ( ).

§1 Introduction

In the wake of the 2008-09 global financial crisis, clearing through central counterparties (CCPs) has
become mandatory for standardized derivatives, other ones remaining under bilateral setup with higher
capital requirements.

One role of the CCPs? is to provide to their clearing members fully collateralized hedges of their
market risk with their clients. But this comes at a cost to the clearing members, which pass it to their
corporate clients in the form of XVA (cross-valuation adjustment) add-ons. Bearing in mind that the

lAcknowledgements: We thank Paul Besson, Head of Quantitative research, Euronext, and Mohamed Selmi,
Head of Market Risk, LCH SA, for useful discussions.
2See ( ) and ( ) for general CCP and X VA references, as well as
( ) for a CCP survey.
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risks of a hedge are, by definition, of the same magnitudes as the ones of the originating position and that
standardized derivatives usable as hedging assets have to be traded through CCPs, the XVA footprint
of not only bilateral but also centrally cleared trading is significant and should be analyzed in detail,
which is the topic of this paper. ( , , Section 6) provides a continuous-time XVA analysis in
the realistic situation of a bank dealing with an arbitrary number of clients and CCPs. For the sake of
tractability, this is mimicked here in a stylized one-period setup, fine-tuned to applications including risk

3 or optimizing the porting of the portfolio of defaulted

assessment in the context of stress test exercises
clearing members.

The first type of application is motivated by the default in 2020 of Ronin Capital, a broker/dealer
firm that had clearing exposures on both CCP services Fixed Income Clearing Corporation (FICC) GSD*
segment (123 members) and CME Futures (56 members of which 24 common with FICC GSD). If all
members are assumed to be only exposed to these CCPs and their cleared clients, we can illustrate these
relationships by the network depicted in Figure 1. Any common member on those two CCPs needs to
ensure conservative risk assessment that can be achieved in the proposed framework by accounting for
common memberships on the two CCPs. If such common memberships are ignored, they can lead to

lower loss estimates giving wrong risk view on potential losses.

Figure 1: Network consisting of two CCPs (in red), 123 members for CCP1 seen on the left hand side,
and 56 members for CCP2 on the right hand side, with 24 common members displayed as the group of
members in the middle of the two CCPs (155 members in total, in blue), and with 179 cleared clients
(in green).

The second type of application is an illustration of the results of defaulted portfolio porting as it
has been the case for the trader Einer Aas on NASDAQ OMX? that has defaulted on 2018 with loss
spill-over effect on surviving members.

The paper is outlined as follows. Section §2 sets the stage. Section §3 develops the corresponding

3as required by ( , , Article 302).
*Government Securities Division.
>Optionsmiklarna/Helsinki Stock Exchange.
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XVA analysis. Section §4 sets up an elliptical market and credit model amenable to efficient XVA
computations. Section §5 introduces the case studies. Section §6 provides numerical results of stress
test exercises. Section §7 shows how to optimize the porting of defaulted members portfolios. Section
§8 concludes.

§2 General setup

We consider a finite set of market participants, also susceptible to serve as clearing members of CCPs.
Derivative transactions can then be concluded between two individual participants, or between a set of
participants®, pooled in the form of a CCP, and a clearing member of this CCP.

The trades of a clearing member bank with a CCP are partitioned between proprietary trades, which
are in effect hedges of the bilateral trading exposure of the bank, and back-to-back hedges of so-called
cleared client trades, through which non-member clients gain access to the clearing services of a CCP:
see Figure 2. The contractual cash flows from cleared and bilateral clients to a reference clearing mem-
ber, dubbed the bank hereafter, are promised in successive turns from the bank to the CCP (cash flows
denoted by P and P on Figure 2), from the CCP to other clearing members, and from the latter to their
own clients. As a consequence, the CCP is flat in terms of market risk, as is also each of the clearing
members. CCPs are typically siloed into different services, each devoted to a specific class of deriva-
tives. We first consider a setup with a single CCP service, the extension to several CCPs being done in
Section C.

\
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Figure 2: Promised cash flows between market participants. The reference clearing member bank is on
the left.

Stwo or more, in practice from a few units to a few hundreds.
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A Defaults settlement rule

As reasserted in the wake of the 2008—09 global financial crisis by the Volcker rule, a dealer bank should
be hedged as much as possible, at least in terms of market risk’. Jump-to-default risk, on the other hand,
is hardly hedgeable in practice. Instead it is mitigated through netting and collateralization. Namely,
designated netting sets of transactions between two given counterparties (two individual participants or
a participant and the CCP) are jointly collateralized, i.e. guaranteed against the default of one or/and the
other party. The collateral (or guarantee) comprises a variation margin, which tracks the mark-to-market
(counterparty-risk-free value) of the netting set between the two parties, and nonnegative amounts of
initial margin posted by each party to the other, which provide a defense against the risk of slippage
of the value of the netting set away from its (frozen) variation margin during its liquidation period. In
the case of transactions with a CCP, there is an additional layer of collateral in the form of the (funded)
default fund contributions of the clearing members, which is meant as a defense against extreme and
systemic risk. For each participant, variation margin is rehypothecable and fungible across all its netting
sets. Initial margin is segregated at the netting set level. Default fund contributions are segregated at the
clearing member level.

The general rule regarding the settlement of contracts of a defaulted netting set, to be instantiated
in practical setups on a case by case basis®, is that:

Principle 1. If a counterparty in default is indebted toward the other beyond its posted margin, then this
debt is only reimbursed at the level of this posted margin (assuming zero recovery rate of the defaulted
party for simplicity in this paper); otherwise the debt between the two parties is fully settled.

Here debt is understood on a counterparty-risk-free basis.

Remark 1. One intuitively expects client default cash flows of the form ¢ = (1 — R)(D — M)*,
where the“debt" D represents the pre-default value of the client derivative portfolio to the bank, M the

margin posted by the client to the bank, and R the recovery rate of the client. Technically, such an
(1 — R)(D — M)™ effectively arises as

D—(M+RD-M*-(D-M)")=(1-R)(D-M)*,

where M + R(D — M)* — (D — M)~ is what the bank obtains from the client and D what the bank
pays on the hedge of the portfolio. In the special case where case R = 0, what the bank obtains from
the client simplifies to M — (D — M)~ = D A M, in line with Principle 1, and the above expression to

D—DAM=(D—M)*.

We emphasize that a counterparty credit default loss C = (1 — R)(D — M) (or simply (D — M)™
if R = 0) should not be taken as an assumption, but only arises as the result of a computation accounting
for the cash flows of the portfolio and its hedge, derived in a specific market setup under the umbrella
of the guiding principle 1 (or the corresponding extension to nonzero recovery, skipped for simplicity in
this work). The exact outcome in fact depends on the refined specification of the setup at hand: see e.g.
Assumption 3 below and the ensuing formulas (7) (in a single CCP setup) and (15) (under the multiple
CCP extension) for the counterparty credit default loss C in the market setup of this work. Such formulas
cannot be safely guessed, they should only be derived from first principles.

7cf. paragraph number 1851 in section 619 from ( ).
8¢f. e.g. Assumption 3 below.
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Remark 2. The above is of course a very crude description of default cash flows. Nonzero, possibly
random, recoveries could be introduced at no harm from a theoretical viewpoint, as already pointed out
above and done in the continuous-time setup of ( . , Section 3.3). Nonzero recoveries are of
course more realistic. But, from a qualitative viewpoint that is our main objective in this work, they only
soften the impacts of the defaults. Random recoveries are in line with the uncertainty about the actual
level of recovery rates that are only observed a posteriori and can reflect the possibility of liquidating
various forms of collateral, account for the output of liquidation procedures, legal resolutions, and other
complex and unobservable features. For our purposes in this work, random recoveries could be used for
emphasizing some extra dependencies via correlations with other random modeling features. This is all
ignored hereafter for avoiding to blur the main features.

Principle 1 also applies to a netting set of transactions between a clearing member and a CCP.
However, in our stylized setup, a CCP is nothing but the collection of its clearing members. Our CCP
has no resources of its own (in particular, it cannot post any default fund contribution, or “skin-in-
the-game™®). As long as it is non-default, i.e. as long as at least one of its clearing members is non-
default, our CCP can only handle the losses triggered by the defaults of some of its clearing members
by redirecting these losses on the surviving ones. This participation of the surviving members to the
losses triggered by the defaults of the other members corresponds in our framework to the usage by
the CCP of their default fund contributions, both funded (as already introduced above) and unfunded.
As will be detailed in equations below, the funded default fund contributions are used for covering
losses triggered by the defaults of clearing members over their margins. The unfunded default fund
contributions correspond to additional refills that can be required by the CCP, often up to some cap in
principle, without bounds in our model, in case the funded default fund contributions of the surviving
members are not enough.

B XVA framework
In a nutshell, the main XVAs are the CVA, the FVA/MVA, and the KVA, where:
i. the CVA is the expected cost for the bank of the default risk of its clients;

ii. the FVA/MVA is the expected cost for the bank of its own default risk or, more precisely, of the
implications of this risk in terms of rehypothecable/segregated collateral funding spreads for the
bank;

iii. the KVA is the cost for the bank of having to remunerate its shareholders at some hurdle rate for
their capital at risk, capital which is required by the regulator as a provision against the residual
risk left uncovered by i. and ii. (as default risk cannot be hedged by the bank).

Going into details, assume that at time O all the banking participants, including the reference clear-
ing member bank'®, with no prior endowments, enter transactions with their clients and hedge their
positions, both bilaterally between them and through the CCP. As seen above, the CCP and each bank
are flat in terms of market risk. However, as market participants are assumed to be defaultable with zero
recovery, in order to account for counterparty credit risk and its funding and capital consequences, the
reference bank (and each clearing member bank alike) requires from its corporate clients a pricing rebate

%such additional protection layer, though quite common in practice, is of marginal magnitude compared to the
other protection layers. By omitting skin-in-the-game component, the obtained results are conservative in terms of
risk management and the various formulations are simplified.

10¢f. Figure 2.
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(considering conventionally the bank as the “buyer”) with respect to the mark-to-market (counterparty-
risk-free) valuation of the deals. The corporate clients of the bank are assumed to absorb the ensuing
prices via their corporate business, which is their primary motivation for these deals.

A reference probability measure R*, relevant for grounding both stress test exercises and risk man-
agement analysis such as economic capital calculation, with corresponding expectation operator denoted
by E*, is used for the linear valuation of cash flows, using the risk-free asset as our numéraire every-
where. This choice of a numéraire simplifies equations by removing all terms related to the (assumed
risk-free) remuneration of all cash and collateral accounts. The funding issue is then refocused on the
risky funding side of the problem, i.e. funding costs in what follows really means excess funding costs
with respect to a theoretical situation where the bank could equally borrow and lend at the risk-free rate.

More precisely, as suitable for XVA calculations ( s , Remark 2.3): given a
physical probability measure defined on the full model o algebra A and equivalent to a given risk-
neutral measure on the financial sub o algebra 55 of A, we take R* equal to the risk-neutral measure on
BB and equal to the physical probability measure conditionally on B'!.

Following the general X VA guidelines of ( , , Section 1), the X VA pricing rebate required
by the reference clearing member bank from its corporate clients, dubbed funds transfer price (FTP),
comes in two parts: first, the expected counterparty default losses and funding expenditures of the
bank, an amount that flows into the bank liabilities and which we refer to as contra-asset valuation
(CA = CVA + FVA + MVA as we will see); second, a cost of capital risk premium (KVA), which
instead is loss-absorbing'? and is also used by the management of the bank as retained earnings for
remunerating the shareholders of the bank for their capital at risk within the bank. All in one, the
bank buys the deals from its clients at the (aggregated) price (MtM — FTP), where MtM is their
counterparty-risk-free value and

FTP = CA + KVA . €))
<~ —~
Expected costs  Risk premium

Let EC denote an economic capital of the bank corresponding to the minimum level of capital at
risk that the bank should hold from a regulatory (i.e. solvency) perspective. If KVA < EC, then the
bank shareholders need to provide the missing amount (EC — KVA) of capital at risk, so that the actual
level of capital at risk of the bank is

max(EC, KVA),

while shareholder capital at risk reduces to

max(EC, KVA) — KVA = (EC — KVA)*. @)

§3 Theoretical XVA analysis

In this section we detail each term in the equations above, in the realistic setup of a bank involved into
an arbitrary combination of bilateral and centrally cleared portfolios, in a tractable one-period setup
with period length 7'. In the one-period XVA model of ( s , Section 3), there were
no CCPs and the bank was assumed to have access to a “fully collateralized back-to-back hedge of
its market risk", ensuring by definition and for free to the bank a cash-flow (P — MtM) at time 1,

"these two conditions uniquely characterize R* ( s , Proposition 4.1).
Zhence, not a liability.
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irrespective of the default status of the bank and its client. There, P denoted the contractual cash flows

from the (assumed unique) client to the bank and MtM was the corresponding counterparty-risk-free

value. In the present paper we reveal the mechanism of such a “fully collateralized hedge of the market

risk” of the bank, which can be achieved through central clearing, but at a certain cost that we analyze.
All proofs are deferred to Section §9.

A Cash flows

Given disjoint sets of indices I > 0, C, and B for the clearing members (including the reference bank
labeled by 0) and for the respective cleared and bilateral netting sets of the bank with its (individual)
counterparties, we denote by:

* Jo, shortened as J, and J;, ¢ € I\ {0}, the survival indicator random variables of the bank and
of the other clearing members at time 1; v = R*(J = 0), the default probability of the bank;

* J = max; J;, the survival indicator random variable of the CCP (i.e. of at least one clearing
member),

e P;, MtM,; = E*P;, and IM;, i € I, the contractual cash flows, variation margin, and initial
margin from the clearing member ¢ to the CCP corresponding to the cleared clients account of
the member 7;

e P;, MtM; = E*P;, and IM;, i € I, the contractual cash flows, variation margin, and initial
margin from the clearing member ¢ to the CCP corresponding to the proprietary (also dubbed
house) account of the clearing member ¢;

e DFj, @ € I, the funded default fund contribution posted by the clearing member i to the CCP;

* Jp, b € B, the survival indicator random variable of the counterparty of the bilateral netting set b
of the reference bank; Py, VMy, and IMy, the associated contractual cash flows, variation margin,
and initial margin from the corresponding counterparty to the bank; and IM,, the initial margin
from the bank to this counterparty;

e J., c € C, the survival indicator random variable of the client of the cleared trading netting set ¢
of the bank, and P,, MtM, = E*P,'3, and IM,, the associated contractual cash flows, variation
margin, and initial margin from the corresponding client to the bank'4;

» L, the loss of the CCP, i.e. the loss triggered by the defaults of its clearing members beyond their

115

posted collateral'>, which is borne by the surviving members (if any)'¢;

* 1 = Jpu, the proportion of these losses allocated to the reference clearing member bank (based
on remaining survivors).

Moreover, in case ¢ = 0 (so regarding the reference clearing member bank), we typically skip the index
i (asin Jo = J).

Assumption 2. Y, (P; +P;) = 0 (the CCP is flat in terms of market risk), >, P. = Py (by definition
of cleared trades and of their mirroring trades), and Zb P, = Py (the reference bank is flat in terms of
market risk).

Breflecting the fact that members of CCPs are fully collateralized.

note that a bank does not post any initial margin on its cleared client netting sets.
Byariation margin, initial margin, and (funded) default fund contributions.

1S5ee the last paragraph of Section A.
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Assumption 2 yields the clearing conditions regarding the contractually promised cash flows, which
applies to each banking participant (written there for the reference bank) and to the CCP.
Moreover, in line with Principle 1 that monitors the default cash flows:

Assumption 3. On the CCP survival event {7 = 1}, the CCP receives from each clearing member i

Ji(Py+ Pi) + (1= ) (P A (MEM; + IMG) + Py A (MEM + VL)
o 3)

+ (P — (MtM; + IM;)) " + (P; — (MtM; + IM;))H) A DFi>,
On the bank survival event {J = 1} (C {J = 1}), the bank receives on each cleared netting set ¢ and
bilateral netting set b

JePe+ (1= Jo) (Pe A (MEM, + IM,.)) and Jy Py + (1 — Jp) (Py A (VM + IM)), 4)
whereas it pays to the CCP
SPeAY Po=> (JePet (L—Jo) Po) + D (APs+ (1= J)Py). )
c b c b

We need one more condition, regarding the funding side of the problem:

Assumption 4. At time O the amounts CA and KVA sourced from the corporate clients of the bank
are deposited on reserve capital and capital at risk accounts of the bank. The bank can use the amounts
CA and max(EC,KVA)!7 on its reserve capital and capital at risk accounts for its variation margin
borrowing purposes. Funds needed beyond CA +max(EC, KVA) for variation margin posting purposes
are borrowed by the bank at its credit spread v above OIS. Instead, the bank must borrow entirely the
amounts to post as initial margin and funded default fund contributions, but this can be achieved at some
blended funding spread v < ~.

The rationale for funding variation margin but not initial margin from CA + max(EC, KVA) is set
out before Equation (15) in ( ). The motivation for the assumption ¥ < - is provided
in ( , , Section 5), along with numerical experiments suggesting that 7 can be several
times lower than ~.

Lemma 1. The borrowing needs of the bank for reusable and segregated collateral amount to, respec-
tively,

(3" (MtM, — VM) — CA — max(EC, KVA)) "and
b

— — (©)
IM +IM + DF + > TMs,.
b

Lemma 2. On the bank survival event {J = 1}, the counterparty default losses C and the funding
expenses F of the bank are given by

C=> (1= J)(Po— VMy —IMp)* + > (1 = Jo)(Pe — MtM, — IM)* + puL, )
b c
where
£="(1— J)((P; = MtM; — IM,)* + (P; — MM, — IM,)* — DF;) ", )
and
_ _ +
F=5(IM+IM+DF) +7 5 M, + 7( 3 (MM, — VM) — CA — max(EC, KVA)) _—
b b

"where max(EC, KVA) — KVA = (EC — KVA)™ is provided by the bank shareholders, cf. (2).
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B Valuation

Let E denote the expectation with respect to the bank survival measure R associated with R*, i.e., for
any random variable )/,

EY = (1 — ) 'E*[JY]. (10)

(expectation of ) conditional on the survival of the bank). As (readily) seen in ( , ,
Section 3):

Lemma 3. For any random variable ) and constant Y, we have
Y=FEJY+(1-J)Y]<Y =E). (11)

Under a cost-of-capital XVA approach, the bank charges its future losses to its corporate clients at
a CA level making ¢ = J(C + F — CA), the trading loss of the shareholders of the bank, R* centered.
In addition, given a target hurdle rate h assumed in [0, 1] (and typically of the order of 10%), the
management of the bank ensures to the bank shareholders dividends at the height of h times their capital
at risk (EC — KVA)* (cf. (2)), where we model EC as ES(), the expected shortfall of the trading loss
£'3 computed under the bank survival measure R at a quantile level'® o (e.g. @ = 99% and o = 99.75%

in our experiments), i.e., under the dual representation of the expected shortfall?’:

EC = sup {E[Ex] ; x measurable, 0 < x < (1 —a)™!, and E[x] = 1} , (12)

which for atomless ¢ coincides?! with E[¢|¢ > VaR(¢)], where VaR is the R value-at-risk (lower
quantile) at the level a.. Note that, in view of (12), an expected shortfall of a centered random variable
is nonnegative.

The definitions of the XVA metrics corresponding to the above specifications are given in Table 1.

Bassumed R integrable.

Punder normal distribution assumptions, such ES at percentile level 99.75% allows reaching similar loss level
as with a VaR (quantile) risk metric at the level 99.9%. In practice, regulatory and economic capital indeed aims at
capturing extreme losses that can occur once every 1000 years, cf. paragraph 5.1 from

( ) for the detailed instructions.
Dgee e.g. ( R , Theorem 4.1).
Hsee Corollary 5.3 and representation thanks to expression (3.7) from ( ).
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| XVA | Expression | Full name and description |

* _ + _
KVA E Ph(EC KVA)"+ (1 J)KVAJ ’ capital valuation adjustment
where EC = ES(J(C + F — CA))
’ CA \ CVA + MVA + FVA \ contra-asset valuation ‘
CVA BCVA + CCVA credit valuation adjustment
E* T (1= Jy)(Py — VM, — IM,)*
b credit valuation adjustment
BCVA .
for bilateral exposures
+(1 - J)BCVA
E*|JY (1= Je)(Pe — MtM, — IM,)*
credit valuation adjustment
CCVA ¢ . ..
for clearing activity exposures
+ul 4+ (1 — J)CCVA
MVA BMVA 4+ CMVA margin valuation adjustment
. — B margin valuation adjustment
BMVA EX1 Ty zb: M + (1 — J)BMVA for bilateral exposures
CMVA | B [Ji(IM +1IM + DF) + (1 — J)CMVA} margin valuation adjustment
for clearing activity exposures
E* ny( 3 (MM, — VM) — CA
FVA b funding valuation adjustment
+
— max(EC, KVA)) +(1- J)FVAW

Table 1: XVA definitions, cf. Section B (with C, F and £ given by Lemma 2).

Hence in view of (7) and (9):

CA=E*[J(C+F) +(1- J)CA, (13)

ie. E*|J(C+F — CA)| = 0, as desired?. The terminal cash flows of the form (1 — J) x - - - in Table
1 expressions and in (13) are thus consistent with the desired shareholder centric perspective. They can
also be interpreted as the amounts of reserve capital and risk margin lost by the bank shareholders, hence
valued as such by CA, as their property is transferred to the liquidator of the bank if the bank defaults.
Due to these terminal cash flows, the above definition is in fact a fix-point system of equations. The
split of the underlying CA equation (13) into the collection of equations in Table 1 is motivated by both
interpretation and numerical considerations. From an interpretation viewpoint, it is useful to provide
the more granular view on the costs of the bank provided by the split of the global CA amount between,
on the one hand, bilateral and centrally cleared trading default risk components BCVA and CCVA and,
on the other hand, bilateral and centrally cleared trading funding risk components BMVA and CMVA
for segregated initial margin, whereas the FVA cost of funding variation margin is holistic in nature

Zsee after Lemma 3.
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(can only be apprehended at the level of the bank balance-sheet as a whole), via the feedback impact of
CA + max(EC, KVA) into the FVA. From a numerical viewpoint, the collection of smaller problems
in Table 1 may be easier to address than the global equation (13). Each of the smaller problems can also
be handled by a dedicated desk of the bank, namely the CVA desk, for the BCVA and CCVA, and the
Treasury of the bank, for the BMVA, CMVA and the FVA.

Passing in the above equations to the bank survival measure R based on Lemma 3 shows that the
corresponding fixed point problem is in fact well-posed and yields explicit formulas for all the quantities
at hand.

Theorem 4. The explicit XVA formulas of Table 2 hold and we have

J(C — CVA) :J( 3 (1 Jo)(P. — MtM, — IM.)* + uL — CCVA

‘ (14)
+5 (1 J)(Py — VM, — IM,)* — BCVA).
b

In particular, all the XVA (and also EC) numbers are nonnegative®.

XVA Explicit formula

CCVA E > (1= Jo)(Pe — MtM, — IMe)* + p

CMVA ’ 3(IM +IM + DF)

BCVA E > (1= Jy)(Py — VM, — IMp) *

BMVA — 7S v, ]

BC ES(J(C ~ CVA)) ]

FVA ﬁ (;(Mth — VM,) — (CCVA + CMVA + BCVA + BMVA) — EC)
KVA HLhEC

Table 2: XVA explicit formulas (with C, F and £ given by Lemma 2).

Remark 3. The reason why funding disappears from the bank trading loss, i.e. J(C + F — CA) =
J(C — CVA), is because, in a one-period setup, the collateral borrowing requirements (6) of the bank
are simply constants. Hence funding triggers no risk to the bank, but only a deterministic cost. In the
dynamic setup of ( ), funding generates both costs and risk.

C Extension to several CCPs or CCP services

In the realistic case where the reference bank is a clearing member of several services of one or several
CCPs, we index all the CCP related quantities in the above by an additional index ccp in a finite set
disjoint from I U C'U B. Then, with CA = CCVA + CMVA + BCVA + BMVA + FVA as before:

Bef. ( R , Sections 1 and 7.1).
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Proposition 5. The counterparty default loss C across several counterparties and several CCPs is given

by

C =) (1=J) (PP = MOMEP —IMEP) T4 P LP 43 " (1= T (Py = VM, — M), (15)
cep,c ccp b

where

£ = 30 (T - MO DG (P N T - D) (16
The funding expenses F across several CCPs and several counterparties are given by
F=7> (IMP+IM P +DF?) +3 3 " TMp, +7( > (MtMp, — VM) — CA —max(EC, KVA)) "
cep b b
a7

The only XVA definitions and explicit formulas that change with respect to Tables 1 and 2 (on top of C
and F generalized as above) are the ones for CCVA and CMVA, the way detailed in Tables 3 and 4.
Moreover,

J(C — CVA) :J( Z (1 — Jo) (PSP — MEMEP — IMZCP)Jr + Z peP LY — CCVA

cep,e ccp (18)
+3 (1= ) (P — VM, — IM,)* — BCVA).
b

XVA Expression Full name and description
E* [T (1= Jo)(PEP — MEMEP — IMEP)+ ‘ -

CCVA cepc credit valuation adjustment

for clearing activity exposures
+ Y uPLEP + (1 - J)CCVA
ccp

CMVA | B |73 5(IM + TN 4+ DFSP) 4 (1 — J)CMyA | | Mrein valuation adjustment
po for clearing activity exposures

Table 3: CCVA and CMVA definitions with several CCPs (also, C and F are now given by
Proposition 5, as also LP).

XVA Explicit formula
CCVA | E Z (1 — J.)(PEP — MEMEP — IMEP) T 4 Z uePLEP
cep,e ccp
CMVA > FIMP + IN? + DFCP)
cep

Table 4: CCVA and CMVA explicit formulas with several CCPs (also, C and F are now given
by Proposition 5, as also £LP).

Before passing to the case studies, we specify the calculation of economic capital under the member
survival measure.

Lemma 6. [fR(¢ = VaR(¢)) = 0, where { = J(C — CVA), then
EC =E*[C — CVA|C — CVA > VaR(¢(),J = 1]. (19)
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§4 Market and credit model

We introduce a market and credit model, written under R*, with parameters that can capture dependence
between portfolio changes, joint defaults and possible averse exacerbated changes of the portfolio due
to their owner default known as wrong-way risk.

For any j € I U B U C, denoting by F}; the marginal cdf of a financial participant j’s default time
7j, APj := P; — MtM;, S the Student-t cdf with 3 degrees of freedom, nom; a (signed) nominal of the
portfolio of the market participant j, o; its annualized relative volatility, and A; a positive liquidation
period accounting for the time taken by the CCP to novate or liquidate?* defaulted portfolios, we define

7 = Fi 1 (S(X5)),

20
AP; _ v (20)
nom;oj v/ A 7
where

Xj — /ICj (WT_ \/pjwwrxj + \/1 _pcr _p}uwrf]})
21

Y'j = 4 /pmktg + \/’?7 p;'uwTXj +./1— pmk-t _ p}uwrgj.
Here p°", p™** and the p¥*" are positive credit/credit, market/market and credit/ market correlation

J
coefficients, while 7, 7;, X; are i.i.d. random variables following Normal distributions, £, £; are i.i.d.

Student-t distributions with degree of freedom 3, and 3/K; follows a chi-squared distribution of degree
of freedom 3 independent from all other variables, such that:

T represents the common systemic factor for default times across members,
¢ & represents the common systemic factor for portfolio variations across members,

* /K;&; is the common factor co-driving portfolio variations and default time of market partici-
pant j,

* 7T; is the idiosyncratic factor for market participant j’s default time,
* &; is the idiosyncratic factor for market participant j’s portfolio variations.

Remark 4. In practice, margin computations rely on historical estimates based on several market stressed
periods. Our approach, instead, aims at reflecting extreme market shocks with fat tailed Student-t distri-
butions of degree of freedom v = 3, and volatility level within a reasonable range of [20%, 40%]. Our
static formulation depicts stationary increments of the defaulted portfolios’ value over the liquidation
period.

In view of the above, the setup is well defined if and only if?®

pY™" < min (1—p™,1— p™*). (22)

24¢f. Section §7.
P otherwise, the model for both default time and portfolio variation factors is undefined due to their idiosyncratic

wwr

coefficient term /1 — p" — p’*" and /1 — pmkt — pyT. Also we discard the limit cases where pj =

1— pcr or p;uw'r =1 pmkt

unrealistic.

as they lead to a zero contribution of the idiosyncratic factors, which would be
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The “minus"” sign in front of the common credit-market factor —, /p7™" for the default time component
in (21) ensures that the corresponding common factor accelerates defaults, whilst increasing the market
exposure due to the +, /p}*" factor in the second part of (21).

Remark 5. ( ) introduce a dynamic model locally elliptical in the sense
of elliptical on each next time step given the information at the beginning of the time step. Under
simplifying assumptions including their equation (32) and Assumption 2, they obtain (in our notation)
explicit CMVA and approximate CCVA formulas. In their case, defaults are triggered by AP; (in
our notation) falling below a Merton-like threshold. In our static setup with extra latent variables for
defaults, we do not have such explicit formulas. However, Monte Carlo simulation is quite efficient and
required anyway for stress test exercises that aim at identifying scenarios leading to extreme losses with
adequate description such as the identification of defaulted members and their corresponding losses.

Hereafter, we describe two possible applications of our XVA framework which will be illustrated
by numerical case studies in the above model. To these ends, two networks will be defined to serve the
numerical illustrations, one rather educational on the use of the XVA metrics and the other one reflecting
the more realistic situation depicted by Figure 1.

In the numerical applications that follow, all members play in turn the role of the reference bank in
the theoretical XVA framework of Sections §2-§3. The CVA and KVA computations require a Monte
Carlo routine run under R* in combination with a rejection technique in order to yield simulations under
the survival measures associated with different clearing members. For obtaining confidence intervals
regarding the expected shortfalls that are embedded in the KVA computations, the simulations are split
into several batches, from which the mean of the (partial) EC estimates yields the final EC estimate,
while their standard deviation is used to define a confidence interval.

§5 Case studies setup

In the examples that follow, market participants are identified by a number and can then be included
in one of several of the considered CCPs. We restrict ourselves to cleared client trades, so that the
nonvanishing XVA metrics reduce to the CCVA, the CMVA, and the KVA.

A Single CCP setup and initial XVA costs

We consider a single CCP service with 20 members labeled by ¢ € 0---n = 19, only trading for
cleared clients (i.e. without bilateral or centrally cleared proprietary trading). Each member faces one
client. The ensuing financial network is depicted by Figure 3.
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C10

Cl6 Cl15 Cl4

Figure 3: Financial network composed of 1 CCP, its 20 members (labeled by B) and one client per
member

All clients are assumed to be risk-free. For any member ¢, its posted IM to the CCP is calculated
based on the idea of a VM call not fulfilled over a time period A; < A; at a confidence level o €
(1/2,1), using a VaR metric?® applied to the non-coverage of VM call taken also to follow a scaled
Student-t distribution S,, with v degrees of freedom, with cdf S, :

IM; = VaR (nomiai v/ ASSV) = |nom;| o/ AS, ! (). (23)
The default fund is calculated at the CCP level as
Cover2 = SLOIM(O) + SLOIM(l), 24)

for the two largest stressed losses over IM (SLOIM;) among members, identified with subscripts (0)
and (1), where SLOIM is calculated as the value-at-risk VaR’ at a confidence level o’ > « of the loss
over IM, i.e.

SLOIM; = VaR’ (nomioi\/AsSl, — IMZ') = |nom;| o/ Ag (Sl,_l(o/) — Sl,_l(a)). (25)

The total amount (24) is then allocated between the clearing members to define their (funded) default
SLOIM;

> SLOIM;
The nom;’s of other clearing members are not observable by a given one. However, following
Murphy and Nahai-Williamson (2014) and Lipton (2018), |nom|;) denoting the i-th largest absolute

fund contributions as DF; = Cover2.

nominal amount for ¢ € 0---n = 19, a parameterization of the form

|nom|(i) - 56—,8/(i+1)’ 8,8 >0 (26)

%yunder the member survival measure.
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cm id 0 1 2 3 4 5 6 7 8 9
DP (bps) | 50 60 | 70 | 80 | 90 | 200 | 190 | 180 | 170 | 160
size -242 | 184 | 139 | 105 | -80 | -61 | 46 | 35 | 26 | -20
vol (%) 20 21 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29

cm id 10 11 12 13 14 15 |16 | 17 | 18 | 19
DP (bps) | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60
size -15 | -11 | -9 -6 5 403122 -1
vol (%) 30 | 31 32 | 33 | 34 | 35 |36 |37 |38 |39

Table 5: Member characteristics and portfolio parameters, ordered by decreasing member size.

can be fit to the total default fund held by the CCP?’ and the sum of its five largest default fund contri-
butions?®, made public each quarter for most of the CCPs. The parameters 3 and 3’ inferred from the
default fund data are used to depict a similar pattern on the absolute nominal sizes?®. The participants
and portfolios parameter inputs are detailed in Table 5, where id is the identifier of the CM, DP stands
for the one year probability of default of the member expressed in percentage points, size represents the
overall portfolio size of the member detained within the CCP, and vol is the annual volatility used for
the portfolio variations.

The portfolios listed in the Table 5 relate to the members towards the CCP (which are mirroring
the ones between the members and their clients). The signs of the nominals are distributed so that
> ;nom; = 0, consistent with the clearing condition (first identity in Assumption 2, here without
proprietary trades).

The parameters of the XVA costs calculations are summarized in Table 6. Note that the chosen
period length of T" = 5 years covers the bulk (if not the final maturity) of most realistic CCP portfolios.

Yjtem referenced as 4.3.15 in ( ), Value of pre-funded
default resources (excluding initial and retained variation margin) held for each clearing service in total, post-
haircut. in the quantitative disclosure documents.

Bitem referenced as 18.4.2 in ( ):For each segregated
default fund with 25 or more members; Percentage of participant contributions to the default fund contributed by
largest five clearing members in aggregate.; or item referenced 18.4.1 for CCP services with less than 25 members

Pas if the default fund amounts are proportional to the portfolio sizes.

¥such confidence level at 97% for SLOIM in DF calibration allows for a ratio of default fund over initial margin
of about 10% in our calculations, a ratio (of this level or less) often observed in practice.
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One-period length T'

5 years

Liquidation period at default A; 5 days
Portfolio variations correlation p"**¢ 30%
Credit factors correlation p°" 20%
Correlation between credit factors and portfolio variations p"*" 20%
IM covering period (MPoR) A, 2 days
IM quantile level 95%
Funding blending ratio 7/~ 25%
SLOIM calculation®® for DF Cover-2 VaR 97%
Funded DF allocation rule o SLOIM
L allocation rule (5 ) x DF;
Quantile level used for clearing members EC calculation 99.75%
Hurdle rate h used for KVA computations 10.0%
Number of Monte Carlo simulation (for CCVA and KVA computations) 10M
Number of batches (for KVA computations) 100

Table 6: XVAs calculation configuration

For each member, the CCVA, CMVA and KVA costs are calculated and reported in Table 7. For
KVA, two calculations have been performed, one based on ES at 99th percentile level and another one
based on 99.75t" percentile level. The amount in square bracket is the corresponding quantile level
from which average is calculated and numbers in parenthesis represent the 95% confidence interval in
relative difference from calculated metric for both CCVA and KVA. All the XVA numbers decrease with

the member size.
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cmid | CMVA CCVA KVA (99%) KVA (99.75%)
0 0.0687 | 0.1413 (0.3%) | 0.2631[0.1327] (0.7%) | 0.8512[0.5129] (1.0%)
1 0.0656 | 0.1154 (0.3%) | 0.3088 [0.1373] (0.7%) | 0.7818 [0.453] (1.1%)
2 0.0604 | 0.0932 (0.3%) | 0.2505 [0.1103] (0.7%) | 0.6606 [0.3855] (1.1%)
3 0.0544 | 0.0750 (0.4%) | 0.2023 [0.0886] (0.8%) | 0.546 [0.3172] (1.3%)
4 0.0485 | 0.0604 (0.4%) | 0.1562[0.0646] (0.8%) | 0.445[0.2572] (1.2%)
5 0.0834 | 0.0440 (0.4%) | 0.1303 [0.0540] (0.8%) | 0.3578 [0.2108] (1.1%)
6 0.0623 | 0.0358 (0.4%) | 0.1044 [0.0447] (0.8%) | 0.2843 [0.1663] (1.1%)
7 0.0467 | 0.0291 (0.4%) | 0.0839 [0.0371] (0.7%) | 0.228 [0.1321] (1.4%)
8 0.0341 | 0.0230 (0.4%) | 0.0645 [0.0286] (0.7%) | 0.1768 [0.1019] (1.4%)
9 0.0256 | 0.0187 (0.4%) | 0.0514 [0.0227] (0.7%) | 0.1425 [0.0811] (1.4%)
10 0.0187 | 0.0147 (0.4%) | 0.0398 [0.0177] (0.7%) | 0.1124 [0.0629] (1.8%)
11 0.0132 | 0.0113 (0.4%) | 0.0301 [0.0134] (0.7%) | 0.086 [0.0476] (1.5%)
12 0.0104 | 0.0097 (0.4%) | 0.0254 [0.0113] (0.7%) | 0.0731 [0.0401] (1.6%)
13 0.0066 | 0.0068 (0.6%) | 0.0174 [0.0077] (0.7%) | 0.0536 [0.0276] (2.8%)
14 0.0052 | 0.0059 (0.6%) | 0.0149 [0.0066] (0.7%) | 0.0472 [0.0237] (2.8%)
15 0.0039 | 0.0050 (0.8%) | 0.0122 [0.0054] (0.8%) | 0.042[0.0195] (3.4%)
16 0.0027 | 0.0039 (0.9%) | 0.0094 [0.0042] (0.7%) | 0.0341 [0.0151] (3.7%)
17 0.0017 | 0.0028 (1.1%) | 0.0064 [0.0029] (0.7%) | 0.0251 [0.0103] (4.3%)
18 0.0015 | 0.0029 (1.4%) | 0.0066 [0.0029] (0.7%) | 0.0275 [0.0106] (4.9%)
19 0.0007 | 0.0016 (2.5%) | 0.0033 [0.0015] (0.7%) | 0.0194 [0.0055] (8.6%)

Table 7: Initial XVA costs: estimates, [value-at-risk underlying the KVA estimate] and (95%
confidence level errors).

To assess the average behavior w.r.t. p, p™k* and p®™" of the CCVA and KVA, we vary these
correlations between 5% and 95%, with 5% step and display in Figures 4 and 5 the corresponding
metrics, aggregated over all clearing members successively considered as the reference bank. For such
tests, the default correlation p°" and p™** are both set to 4% when they are not changed between 5%
and 95%. This is to allow for runs with p"*" = 95% satisfying the condition (22).

The KVA depicts an increase w.r.t. p°" but also w.r.t. p”*" and very limited change w.r.t. p
The correlation p™*" has more impact than p" and p™** (right panels in Figures 4 and 5). As seen
on the left panels of Figures 4 and 5, there are very marginal changes for the aggregated CCVA w.r.t.

p°" and p™"t, but a significant positive impact of p**". This is understandable for the sensitivity to
mkt

mkt

p" and p as, apart for modulations of the measure with respect to which each individual CCVA is
assessed, the CCVA aggregated over clearing members is essentially an expectation of the CCP loss £
(cf. the first line of Table 2). The individual CCVAs (as per the first line of Table 2) of each clearing
member, however, may depend on p°" and p"** (on top of p™*") in a strong and nontrivial manner, via

the allocation coefficient .
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Total CCVA overall members Total KVA overall members

Figure 4: CCVA and KVA w.r.t. credit factors correlation and credit and portfolio variation factors
correlation.

Total CCVA overall members Total KVA overall members

Figure 5: CCVA and KVA w.r.t. market factors correlation and credit and portfolio variation factors
correlation.

B Two CCPs network setup

‘We now consider the case of Figure 1 where there are two CCPs with some common members and stress
test is considered from the perspective of one of these common members. The motivation for this case
is to provide a realistic example mimicking in a simplified way the default of the trading firm Ronin
Capital, which had memberships on both FICC GSD*' segment, hereafter denominated by CCP1, and
CME Futures segment, hereafter denominated by CCP2, in March 2020. It is well known that a VaR
type risk measure is not sub-additive, in particular for credit portfolios as illustrated in Example 5.4 in

3 Government Securities Division
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Acerbi and Tasche (2002) and Example 2.25 in McNeil et al. (2015) for a portfolio of defaultable bonds,
so that for a common member adding VaR estimates of trading losses on two CCPs separately can lead
to underestimated levels with respect to the actual VaR of the global exposition of the member. As such,
stress test exercises accounting for common memberships could reveal a larger value-at-risk compared
to the exercise where stress tests are conducted separately on each CCP.

To perform the analysis, the following setup is considered:

« all members have only clearing client positions®?, with 123 members on CCP1 and 56 members
on CCP2, out of which 24 are common to both CCPs,

¢ all clients are assumed default free,
* both CCPs use configuration as per Table 6,

* the sizes of the positions are assumed exponentially distributed in the sense that from the most
exposed member to the least one, absolute value of positions decrease exponentially with the
form in (26) as depicted by Figures 6 and 7 respectively,

* the proportion of the default fund detained by the 5 biggest members is 25% for CCP1 and 61%
for CCP233,

e the size of the default fund of CCP1 is assumed to be twice the one of the default fund of CCP2.

Portfolio sizes for the 50 biggest CMs of CCP1 Portfolio sizes for the 30 biggest CMs of CCP2
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Figure 6: Decreasing absolute nom; per member  Figure 7: Decreasing absolute nom; per member
for CCP1 for CCP2

All data used are either public sources or have been anonymized, with default intensities ranging
from 10 bps to 400 bps and portfolio volatilities ranging from 20 to 30. Similar configuration as given in
Table 6 is used, apart from the number of Monte Carlo simulations reduced to 2M for memory capacity
reasons.

The clearing conditions are ensured by setting the sum of the portfolio sizes nom; to zero on each
CCP. The situation of member 3, exposed to both CCPs, as the defaulting member, corresponds roughly
to the situation of Ronin Capital in 2018. In particular, an annual probability of default of 0.1% corre-

sponds roughly to a BBB rating, that was assigned to Ronin Capital in 2018 for its issuances®*.

32Ronin Capital had in fact only a house account and was thus not clearing any client position.

3taken from the quantitative disclosure of both CCPs as of third quarter of 2020.

¥nttps://www.spglobal.com/marketintelligence/en/news-insights/blog/banking
—essentials—-newsletter-july-edition-2.
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§6 Stress test exercises

As outlined in the capital requirements regulation detailed in
( ) article 290, financial institutions must conduct regular stress test ex-
ercises of their credit and counterparty exposures. Paragraph 8 of this article also stipulates the reverse

t35

stress test™ requirement to

[...] identify extreme, but plausible, scenarios that could result in significant adverse out-
comes.

This is complemented by article 302 on the exposure financial institutions may have towards CCPs:

Institutions shall assess, through appropriate scenario analysis and stress testing, whether
the level of own funds held against exposures to a CCP, including potential future credit
exposures, exposures from default fund contributions and, where the institution is acting
as a clearing member, exposures resulting from contractual arrangements as laid down in
Article 304, adequately relates to the inherent risks of those exposures.

In practice, stress test exercises aim at assessing the capacity of financial institutions to absorb
financial and economic shocks. In regular exercises, such as the ones conducted by the European Bank-
ing Authority, the shocks are usually considered under so called central and baseline macro-economic
scenarios corresponding to a median quantile and adverse scenario usually taken as a 90" percentile
reflecting severe yet plausible scenario that can occur once every 10 years®®. Additionally, extreme
scenarios can be considered for measuring the capital adequacy?’ for absorbing extremely severe losses
around confidence level at 99.9%. From a clearing member perspective, this requires to have the ca-
pacity of scanning certain points of its trading loss distribution. In our framework, this boils down to
identifying particular levels of the distribution of the trading loss £ = J(C — CCVA — BCVA) of the
reference clearing member bank, where the different terms are detailed in Proposition 5.

The other type of stress test exercises, referenced as reverse stress tests ( ),
consists in identifying the probability of reaching a given loss level as well as describing the scenario
configuration such as projected defaults and loss magnitude leading to such loss levels. The distribution
must span a sufficient large spectrum of losses, including the ones targeted by the exercise, but it also
has to be sufficiently rich numerically to allow identifying combinations of events leading to such losses.

Confidence intervals of corresponding extreme scenario probabilities should complement the anal-
ysis to ensure the reliability of the used model and numerical methods.

Regulators have the ability to challenge financial institutions on these elements and demand for

improvements>°.
Fsee dedicated definition p-12in ( ) and articles 97, 98
p- 37 in ( ) for official regulatory definitions.

38such confidence levels are suggested by the Federal Reserve outlining p.10 in
( ) the various recession periods of the United States listed in their Table 1 p. 14. The

2021 instructions in ( ) also indicate p.72 that stressed market risk factors are based
on shocks specified in ( ), citing ( s , p- 29), with the US
recessions periods as stressful economic episodes.

37¢cf. paragraph 5.1 p.11 from ( ).

3Bsee also dedicated definition on p-121in ( ) and articles
97,98 p. 37 in ( ) for official regulatory definitions.

¥this may entail re-assessment of the Pillar 2 guidance additional capital requirement set in the annual Super-
visory Review and Evaluation Process reported by Banks, cf. ( ) for a brief definition
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A Scenarios identification for reverse stress test

We now briefly explain how to identify and exploit the scenarios leading to contribute the most to
economic capital, in the spirit of ( ). We denote by M the number of Monte Carlo
scenario for which J = 1, i.e. survival of the reference bank. Its trading loss C — CVA for a simulation m
is given by C"* — CVA, where m € 1--- M enumerates the simulated scenarios for which the reference
member bank ends up in survival state.
To get an estimate of the economic capital based on expected shortfall, relying on (

R , Definition 2.6 and Proposition 4.1), we calculate, for a high confidence level « € ( %, 1)

and [z] denoting the integer part of any real z,

M
- 1
ES(C-CVA)i= — (M _ QVA 27
S(C-OVA) = 3 —g _{%Hl{c CV. } 27)

where the C(™) — CVA’s are the simulated trading losses of the reference bank ranked in increasing
order.

To obtain the contribution of any simulated scenario m (with C™ > C ([aM ])) to the economic capital
estimated by (27), we compute

ES " (C— CVA)
= ! M — [aM])ES (C — CVA) — (C™ — CVA .
.7M—1—[a(M—1)}{( — [ ]) (€ - )— (™" — )}
The contribution &, ES (C — CVA) of scenario m to ES (C — CVA) is then given by:
6,ES(C— CVA) =ES(C — CVA) —ES " (C - CVA). (29)

To illustrate the various flavors of stress test exercises that can be conducted by a CCP member,
we report numerical results for the two network examples introduced in Section §5. We start with a
reverse stress test exercise on example covered by Table 5. For this first illustration, a specific extreme
loss is targeted and the corresponding probability of loss reaching at least such target level is estimated.
We then consider the example illustrated by Figure 1 where projected loss levels for specific confidence
levels are indicated for the members with common memberships on the two CCPs.

B Numerical results

In Table 8, we report, for the example summarized in Table 5, the 99.9'" percentile trading loss lev-
els, referenced as extreme quantile, with corresponding (asymmetric) confidence intervals based on the
approach proposed in ( , , Section G.2). This is done for every clearing member suc-
cessively playing the role of the reference bank in the setup of Sections §2-§3. We also compute the
probabilities of reaching a loss equal to 1.5 times the obtained extreme quantile level, referenced as RST
scenario, with corresponding confidence levels*.

and use and ( ) for more extensive details as well as
( ) for similar requirements.
“the calculation of the latter confidence intervals of the probability of being above a quantile relies on the same
numerical approach based on batches used for KVA calculations. Also, the batch approach leads to reasonably tight
confidence intervals for the RST scenario probabilities.
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cmid 99.9% 1.5 x 99.9% | RST scenario probability
0 4.7322 (-0.9%, 1.0%) 7.0984 0.0395% (3.2%)
1 5.9679 (-0.9%, 0.9%) 8.9518 0.0382% (3.4%)
2 4.8541 (-0.9%, 1.0%) 7.2812 0.0386% (3.2%)
3 3.9294 (-0.9%, 0.9%) 5.8942 0.0380% (3.7%)
4 3.0931 (-0.9%, 1.1%) 4.6396 0.0388% (3.6%)
5 2.5726 (-0.9%, 1.0%) 3.8590 0.0385% (3.7%)
6 2.0423 (-1.1%, 1.0%) 3.0635 0.0382% (3.6%)
7 1.6224 (-0.9%, 1.0%) 2.4336 0.0380% (3.4%)
8 1.2488 (-0.9%, 1.0%) 1.8732 0.0379% (3.5%)
9 0.9938 (-0.9%, 0.9%) 1.4906 0.0379% (3.6%)
10 0.7682 (-1.0%, 0.9%) 1.1523 0.0379% (3.6%)
11 0.5811 (-1.0%, 0.9%) 0.8716 0.0384% (3.6%)
12 0.4900 (-0.9%, 0.9%) 0.7351 0.0381% (3.6%)
13 0.3353 (-0.9%, 1.0%) 0.5029 0.0379% (3.8%)
14 0.2862 (-0.9%, 0.9%) 0.4294 0.0383% (3.7%)
15 0.2356 (-0.9%, 1.0%) 0.3534 0.0382% (3.8%)
16 0.1809 (-0.8%, 1.0%) 0.2714 0.0382% (3.7%)
17 0.1235 (-0.8%, 1.0%) 0.1852 0.0381% (3.7%)
18 0.1264 (-0.9%, 1.0%) 0.1896 0.0379% (3.6%)
19 0.0645 (-0.9%, 1.0%) 0.0967 0.0382% (3.7%)

Table 8: Stress test (ST) extreme quantile, 1.5x ST extreme quantile and RST probability to
breach 1.5 times the 99.9t" quantile loss level, for each member, based on 10M simulations (in
parentheses: corresponding 95% confidence intervals).

Our description of the scenarios leading to such losses includes the identified defaulted members,
the generated losses and the allocated loss coefficient of the reference clearing member (CM1 in this
example). Table 9 provides the description of the 20 worst scenarios, contributing the most to the
EC estimation for the second biggest member, that is CM14!. Most of these scenarios are driven by
significant losses stemming from CMO’s default, reflecting the highly concentrated position of CMO.
We observe that several scenarios illustrate the cases where more than one clearing member default

5th

such as 3" to scenarios for which not only CMO generates most of the loss but other defaulting

members generate losses yet of less magnitude compared to CMO.

From CM1 viewpoint (i.e. with CM1 in the role of the reference clearing member), 17 scenarios
entail significant losses over the collateral posted by the defaulted CMO (positive first entries in the
last column of Table 9). CMO bears a very large concentrated position compared to other members.
Even if CMO has more IM and DF requirements than others, this is still not enough: this example
highlights that employed DF allocation rules in this example dilute the DF collateral requirements for
concentrated positions. It also illustrates that scenarios with multiple defaults do not necessarily lead
to extreme losses, due to the fact that members with medium or small positions have large default fund
contributions stemming from others’ concentrated positions.

In Table 10, we report, for the example illustrated by Figure 1 with 2 CCPs, the trading loss levels

#lits theoretical number of scenarios above the RST loss level should be 3709, i.e. the number of MC simulations
of 10M multiplied by CM1’s survival probability over 5 years and by CM1’s RST loss level probability estimated
in Table 8 as 0.0382%, which is of course far too many to report. Nonetheless a focus on the 20 worst ones already
illustrates the type of information that can be exploited for such exercises.
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Rank | Loss | n I Defaulters Losses triggered by defaulters
1 10.04 | 1 0.21 cm0 518
2 892 | 2| 0.21 cm0, 19 459.21,0.18
3 8.67 |5 0.23 | cm0, 8, 10, 15, 18 411.41,0,1.83,0,0
4 830 | 3 0.19 cmo, 8, 12 489.31,0.17,0.79
5 797 |1 0.21 cm0 411.19
6 7.81 |1 0.21 cm0 403.05
7 748 | 4| 0.20 cm3, 7,12, 17 409.76, 0, 0,0
8 735 | 2| 024 cm0, 4 339.10,0
9 696 | 2| 023 cmO, 7 340.43,0
10 694 | 3 0.29 cmO, 2, 4 258.70, 0, 1.01
11 691 | 3 0.24 cm0, 6, 8 318.76,0,0
12 6.84 | 1 0.21 cm0 352.86
13 660 | 2| 022 cmO, 11 334.17,0.10
14 659 | 2| 021 cm2, 5 344.84,0
15 647 |1 0.21 cm0 333.87
16 627 |1 0.21 cm0 323.79
17 597 |1 0.21 cm0 308.19
18 575 | 2| 022 cm0, 8 284.80, 0
19 570 | 5 0.28 cm0, 5, 6,7, 8 222.31,0,0.63,0,0
20 550 | 3 0.23 cm0, 7,9 258.51,1.12,0.29

Table 9: Economic Capital 20 worst scenarios details for member 1 in decreasing order of total
loss where column with header p indicates allocated coefficient loss to member 1 and n is the
number of defaults within the scenario.

(value-at-risks) at confidence levels 90% and 99.9%, for the 24 common members on the two CCPs.
The corresponding numbers in the case where the two CCPs would be considered separately is reported
in the columns VII and IX. For members with very low size on one of the two CCPs compared to the
other, considering the common memberships or not does not affect the loss estimates, as expected*>. For
other members, however, at 90% confidence levels, the value-at-risks are significantly higher (compare
columns VII and VIII in Table 10) when the common membership are considered compared to the
stand-alone value-at-risks calculation conducted on each CCP and summed, especially for the first ten
members. On the contrary, at the confidence level 99.9%, the sum of the stand-alone value-at-risks
is well above the value-at-risk when common memberships are taken into consideration (columns IX
and X in Table 10). These two situations illustrate that a regulator and the board (top management) of
the bank could equally and rightfully criticise a simplistic standalone approach, too aggressive in some
cases (making it unacceptable by the regulator) and over-conservative in others (making it unacceptable
by the board).

§7 Optimizing the porting of defaulted client portfolios

In case a clearing member defaults, the CCP tentatively novates part of the CCP portfolio of the defaulted
member through auctions among the surviving clearing members

( ); ( ), and it liquidates the residual on the
market. A natural baseline is that the CCP novates (auctions among surviving members) client trades

“2as the CCP with the very low size compared to the other should have marginal impact.
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and their mirroring client account positions, collectively dubbed client positions for brevity hereafter,
whereas house account positions are liquidated.

The liquidation side of the procedure cannot be handled in our modeling setup, which does not
embed the fundamentals of price formation (our MtM processes are assumed to be exogenously given).
On the other hand, an XVA-based procedure can be used for rendering what would be the output of
an idealized, efficient auction, assuming a large number of clearing members ( , , Section
3.3). Namely, supposing that the reference clearing member, labeled by 0 in Sections §2-§3, defaults at
time 0, i.e. just after that all portfolios have been settled, for each surviving member CMx successively
envisioned as a potential taker of the defaulted (client) positions of CM0, one computes the incremental
(A) XVAs of porting the defaulted positions to CMsx, for each surviving member (CM* included*?).
The corresponding incremental XVA numbers are then summed over metrics and survivors, resulting in
the funds transfer price (F'TPx) of porting defaulted client positions to CMx. The effective taker is then
the surviving member for which the ensuing F'TPx is the smallest*. See ( s , Section
5.2) for more details on such “XVA Pareto optimally driven" novation procedures.

In what follows, based on the example of Table 5 (which only involves client positions), we analyze
from this perspective a first scenario of a single default on the CCP.

Taking the first case with a single default, we first assume the scenario whereby CMO defaults at
time 0. Table 11 summarizes the total AXVAx aggregated over survivors, across members * from 1 to
19, in increasing order of the FTPx indicated in the last column. Based on the results of Table 11, CM1
appears to be the potential taker leading to the least overall FTP costs across all surviving members. This
is understandable as this member’s portfolio size (184 in Table 5) nets the most the defaulted member’s
portfolio size (-242), with volatility and credit default probability similar to* the ones of the defaulted
member.

As CM1 concentrates more risks due in particular to non-perfect offset*® between its prior positions
and the defaulting one, there is an increase of its IM reflected through an increase of CMVA. But the new
risk of CM1 is less than the sum of the former risks of CM0 and CM1, hence the ACCVA aggregated
across surviving members is reduced. This only happens when CM1 takes over the defaulting portfolio,
other potential takers leading to an overall increase of the CCVA. As for the KVA, there is a reduction
effect for CM1 when CML1 is the taker (see the term in parentheses in Table 11), and an overall decrease
in the total KVA (aggregated over all surviving members), which is also the case for most members.
Having CM1 as the taker allows to obtain the most significant decrease in AKVA.

As expected, among the three XVA components, KVA is the main determinant of the optimal taker:
see Table 12.

Once the CCP has re-allocated all defaulted client positions, the resulting financial network formerly
depicted in Figure 3 becomes the network with 19 members shown in Figure 8. The thick lines represent
the new portfolio exposures for CM1 and the pale dashed lines show the defaulted CMO positions.

“note that all members are impacted by additional margin to fund due to the re-calibration of their DF by the
CCP, whereas only the member taker of the portfolio sees in addition its IM adjusted.

#or, indifferently in case of multiple minima, one of the minimizing FTP* members.

“in particular, not significantly higher than.

6By offset we refer to risk reduction when taking over some additional position. The effect of correlation is such
that an opposite sign in portfolio size does not imply an equal offset of the risk of the aggregated positions. For
instance, even with opposite sizes and same volatilities but for p™** € (0,1/2), the member ends up with more
risk.
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Surv. member x | Total ACMVAx | Total ACCVAx Total AKVAx Total FTPx
1 0.0768 (0.0295) | -0.0428 (-0.0045) | -0.4165 (-0.1065) | -0.3826 (-0.0815)
19 0.1298 (0.0818) | -0.0278 (0.0371) | -0.4284 (0.2790) | -0.3264 (0.3979)
2 0.0921 (0.0428) | -0.0392 (0.0018) | -0.3530 (-0.0391) | -0.3001 (0.0055)
18 0.1417 (0.0939) | -0.0230 (0.0363) | -0.3898 (0.2737) | -0.2710 (0.4038)
3 0.1054 (0.0576) | -0.0323 (0.0080) | -0.2953 (0.0281) | -0.2221 (0.0937)
17 0.1549 (0.1070) | -0.0178 (0.0363) | -0.3284 (0.2759) | -0.1913 (0.4192)
4 0.1525(0.1022) | -0.0513 (0.0158) | -0.2429 (0.1050) | -0.1416 (0.2230)
16 0.1688 (0.1208) | -0.0145 (0.0359) | -0.2720 (0.2760) | -0.1177 (0.4327)
15 0.1814 (0.1334) | -0.0109 (0.0354) | -0.2262 (0.2739) | -0.0557 (0.4426)
14 0.1903 (0.1426) | -0.0048 (0.0345) | -0.1907 (0.2665) | -0.0052 (0.4437)
13 0.2061 (0.1582) | -0.0030 (0.0344) | -0.1204 (0.2704) | 0.0827 (0.4630)
12 0.2171 (0.1692) | -0.0021 (0.0332) | -0.0905 (0.2635) | 0.1245 (0.4659)
11 0.2285 (0.1807) | 0.0013 (0.0325) | -0.0344 (0.2622) | 0.1954 (0.4753)
10 0.2385 (0.1908) | 0.0010 (0.0309) | -0.0151 (0.2520) | 0.2244 (0.4738)
9 0.2478 (0.2003) | 0.0013 (0.0292) 0.0375 (0.2421) 0.2865 (0.4715)
8 0.2340 (0.1881) | 0.0149 (0.0262) 0.0515 (0.2057) 0.3004 (0.4200)
7 0.2327 (0.1876) | 0.0182 (0.0233) 0.1009 (0.1825) 0.3518 (0.3934)
6 0.2687 (0.2225) | -0.0074 (0.0213) | 0.1390 (0.1876) 0.4004 (0.4314)
5 0.2728 (0.2274) | -0.0146 (0.0171) | 0.1746 (0.1491) 0.4327 (0.3936)

Table 11: Total AXVAx aggregated over survivors corresponding to the different surviving
CMx, i.e. for * other than 0, assuming an instant default of CMO at time 0. In parenthesis, the
contributions to AXVAx of CMx itself.

ACMVA ACCVA AKVA

0.0593

0.0189

0.1964

Table 12: Standard deviation across surviving members * of the AX VA for the example with
1 CCP and 20 members, assuming an instant default of CMO at time 0.
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Figure 8: The 1-CCP, former 20-member financial network with 19 members post CMO default. De-
faulted CMO, labeled “B0” in the presented network, is represented as pale dashed node with pale dashed
links to reflect former exposures to its client and toward the CCP. The optimal porting of CMO portfolio
with CM1, labeled “B1”, is outlined with bold links to reflect the new exposures for CM1.

Co

§8 Conclusion

We have proposed a fully integrated risk management framework that can be used for stress test anal-
ysis, including reverse stress test in line with regulatory requirements, or for optimizing the porting
of defaulted portfolios, in a setup encompassing all the trades (bilateral as centrally cleared and their
hedges) of a reference bank. The framework includes dependence between financial participants port-
folios, joint defaults, and a configurable wrong-way risk feature. This is done in a numerically tractable
static setup (although already quite demanding on large financial networks)*’. A possible improvement
would be to incorporate regulatory constraints such as minimum regulatory capital requirements and
liquidity leverage ratios. More fundamentally, in this paper, we tackle the derivatives risk problem from
a pure counterparty credit risk viewpoint: if members, clients and counterparties are all default free,
then in view of Proposition 5 all considered XVAs are zero, so that our setup becomes trivial. Another
dimension to the problem is liquidity ( ); ( ). Depending on the
considered applications*®, credit or liquidity is the main force at hand. A challenging research project
would be to integrate both in a common setup.

“"The dynamic extension considered in ( s , Section 6) is only workable at a much higher computa-
tional burden, using the simulation and learning techniques of ( ).
“see e.g. the beginning of Section §7.
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§9 Appendix

A Proof of Lemma 1 on the borrowing needs

On the bilateral trades of the bank and their hedges, the Treasury of the bank receives ), VM, of
variation margin from its counterparties and has to post an aggregated amount ), MtM, of variation
margin. Assumption 4 then leads to (6).

B Proof of Lemma 2 on counterparty loss and funding expense expressions

In view of Lemma 1 and Assumption 4, the (risky) funding expenses of the bank correspond to the
formula (9) for 7. Regarding C, On the CCP survival event {7 = 1}, the CCP receives, by Assumption
37

i (30)
+ ((Pi = (MtM; +IM;)) " + (P; — (MtM; + IM;)) ) A DFi))

By the CCP clearing condition in Assumption 2,

Hence (30) is equal to

=3 = J) (P = MtM; — IM)T + (P; — MM, — IM,)* — DFy) " = L, 31)

by definition (8) of L.
On the bank survival event {J = 1} (C {J = 1}), by the respective Assumptions 3 and 2, the bank
receives from its clients and counterparties

3 (JCPC + (1= Jo) (P A (MM, + IMC))) +3 (Jbe + (1= Jy) (Py A (VM + IMb))),
c b

(32)

respectively pays to the CCP

NP+ P=> (JPet (1= J)P) + > (JsPy+ (1= J)P). (33)
c b

c b

Subtracting (32) from (33), we obtain

D (1= J)(Pe = MtMe — IM) T+ (1= J)(Py — VM, — IM,,)
c b

On top of this comes the participation x.L of the bank to the CCP default losses, which yields the formula
(7) for C.
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C Proof of Theorem 4 on XVA equivalent formulations

By the result recalled after (12), EC is nonnegative as an expected shortfall under R of the random
variable J(C + F — CA), which is centered under R* and therefore under R, by (10). The first four
formulas in Table 2 directly follow from the definitions of Table 1 and Lemma 3, which also implies that
KVA = E[h(EC — KVA)*] = h(EC — KVA)™. As h is nonnegative, this KVA semilinear equation
is equivalent to

(KVA > EC and KVA = 0) or (KVA < EC and KVA = HLhEC),

where (KVA > EC and KVA = 0) contradicts the nonnegativity of EC, whereas, for h € [0,1] as

assumed and EC > 0, KVA = HLhEC implies KVA < EC, i.e. max(EC,KVA) = EC. This and

Lemma 3 yield

FVA = E|7( 37 (MM, — VM) — CA — EC) ™| = (D (MM, — VM,) — CA — EC) ™.
b b
As CA = CCVA + CMVA + BCVA + BMVA + FVA, this is an FVA semilinear equation, which, as
~ is nonnegative, is equivalent to the FVA formula

FVA = ﬁ (3" (MM, — VMy) — (COVA + CMVA + BCVA + BMVA) — EC) .
b

Last, we have EC = ES(J(C + F — CA)), where the identity C + F — CA = C — CVA and the formula
for J(C — CVA) in Table 2 are obtained by substituting the already derived XVA formulas in (7) and

).
D Proof of Proposition 5 on XVA equivalent formulations with several CCPs

In the case of several CCP services, the second line in (6) must be turned into 3, (IM°? + IM“" +
DFCCP) +> IM,,; the terms in the first lines of (7) and (9) must be summed over the various CCP
services in which the bank is involved as a clearing member. The rest of the analysis proceeds as before.

E Proof of Lemma 6 on economic capital calculation
If R(¢ = VaR(¢)) = 0, then, by the ES formula recalled after (12), we have
EC = ES(¢) = E[J(C — CVA)|J(C — CVA) > VaR(/)]
E {J(C - CVA)]I{J(CCVA)>Va]R(£)}]
R(J(C — CVA) > VaR(¢)) (34)

E’ [(C - CVA)]l{(C—CVA)ZVaR(@)}]l{J_l}}
R*((C— CVA) > VaR((),J =1) '

using (10) on both numerator and denominator expressed in expectation form, which yields (19).
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Chapter 11

Provisions and economic capital for
credit losses

Note. The results of this chapter are based on the paper! ( ).

Abstract. Based on supermodularity ordering properties, we show that convex risk measures of credit
losses are nondecreasing w.r.t. credit-credit and, in a wrong-way risk setup, credit-market, covariances
of elliptically distributed latent factors. These results support the use of such setups for computing credit
provisions and economic capital or for conducting stress test exercises and risk management analysis.

§1 Introduction

Elliptical distributions are largely used in finance modelling, be it for credit latent variables or portfolio
positions modelling ( , ). They allow to generate, by means of Monte Carlo routines,
a span of possible losses. Risk indicators can then be formed so as to inform top management or
supervisors about the monitoring of possible future losses borne by a financial institution. In particular,
regulatory bodies instruct to rely on value-at-risk and expected shortfall measures, where the last type,
which falls under the remit of coherent risk measure?, is often preferred to quantiles usage. One example
can be found in ( ), where the economic capital of a clearing
member bank of a central counterparty (CCP) is based on an expected shortfall risk measure of the bank
loss over one year. Such measure of loss depicts numerically a nondecreasing property w.r.t. credit-
credit and credit-market dependence parameters, capturing an increase in loss given default amounts as
more defaults materialize. ( ) outlined the possible application of supermodular
order for comparing CDO tranche premiums w.r.t. a credit correlation parameter of their default latent
variables modelled as Brownian motions. ( ) generalize the use of such notion,
citing application to credit losses with bounded support. The supermodular order property finds its
root in ( , Definition C.2, page 146) under the name of lattice-superadditive
property. It has attracted subsequent attention with the works of ( ) and

( ), applied to stop-loss ordering of aggregated losses. ( ) emphasize the
role of several stochastic orders in relation with convex risk measures. In particular, multidimensional

LAcknowledgements: We thank Mekonnen Tadese, postdoctoral researcher at Université Paris Cité / LPSM, for
useful references and discussions.
Zsee e.g. ( ).
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elliptically distributed random variables have the supermodular order property w.r.t. their covariance

matrix coefficients ( ( , Corollary 2.3) recalled in Section B). This result will
play a key role in this paper.

In ( ), the loss takes a more complex form than what
is usually found in the credit risk literature such as ( ). This is due to a loss

allocation coefficient attributed by the CCP to the surviving members. In this paper, we prove the
nondecreasing property of convex risk measures w.r.t. covariance coefficients of portfolio credit losses.
Our main motivation is to provide evidence of the soundness of the related approaches for computing
credit provisions such as current expected credit loss (CECL, akin to the CVA in the central clearing
one-period XVA setup of ( )), and economic capital (EC).
This is important in justifying model assumptions and design, part of the model development cycle
advocated by regulators and supervisors ( , ). Table 1 details the two main
targeted metrics in this work.

Name Expression Reference
current expected 0 - A s .
credit loss (CECL) E (Zl fi(Xq,... 7Xn)gz(Yz)> Definition 5

economic capital (EC) ESg (Z fi(Xq, ... ,Xn)gi(Yi)> Deﬁ;llg%ns 6
i=1

Table 1: Metrics of interest (. relates to the survival probability measure of the reference
bank).

The paper is organized as follows. Section §2 introduces the strategy of proof by supermodularity
arguments that will be used to establish our main result, Theorem 12 (leading to the CECL and EC
monotonicity results of Propositions 13 and 14), in an appropriate elliptical framework with wrong-way
risk. Section §3 completes the results from ( ) regarding equity and senior CDO
tranches. The properties of Section §2 are used in Section §4 for implying the monotonicity of credit
provisions and economic capital metrics w.r.t. covariance coefficients in elliptical models. Section §5
concludes. Supermodular functions, elliptical distributions and risk measures are reviewed in Sections
A,BandC.

Hereafter we consider a non-atomic probability space (€2, .4, Q), with corresponding expectation,
variance and covariance operators denoted by E, Var and Cov. All the considered random variables are
real-valued and taken in a closed linear subspace and sublattice X of L! (Q) that includes the constants.

§2 Supermodular Ordering Properties

A Strategy of Proof

The following classical supermodularity results will be instrumental in establishing our main result
Theorem 12.

( , Definition 2.6) A random vector X = (X7, ..., X},) is said to be smaller than the random
vector Y = (Y1, ..., V) in the supermodular ordering, written X <,,, Y, if E(f(X)) < E(f(Y))
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holds for all the supermodular functions® f : R™ — R such that the expectations exist. (]

( , Definition 3.9.4, page 113) A random vector X = (A1,...,X,,) is said
to be smaller than the random vector Y = ())1,...,),,) in the increasing supermodular ordering,
written X <5, Y, if E(f(X)) < E(f(Y)) holds for all the nondecreasing supermodular functions
f + R™ — R such that the expectations exist. [

An equivalent characterization of supermodular vectors is given by
( , Theorems 3.9.11 (i) and (ii), page 118) The following statements are equiva-
lent:

i) X<om Y,
(i) X and Y have the same marginals and X <;,,, Y.

( , Theorems 3.2 (c)) If X, Y, Z are random vectors such that any random vectors
distributed as X and Y conditionally on Z = z, denoted by [X|Z = z] and [Y|Z = z}, verify
[X\Z = z] <sm [Y|Z = z] for all possible values of z, then X <,,,, Y. O

( , Definition 2.1) For X and ) in X, X precedes ) in stop-loss order, written X < ), if
E(X — A)" <E(Y — A)" holds for all real constants A > 0. [J

Equivalently, for the same random variables A and ) as in ( , Definition 2.1):

( , Theorem 2.2 b)) X <y Y if and only if E(f(X)) < E(f())) holds for all
the nondecreasing convex functions f : R — R such that the expectations exist (e.g. f = id).

( , Theorem 3.1) Let X = (X1,...,Xn) and Y = (J1,...,Vm) be random vectors with
X <gm YandletS=>" 4,5 =>",Y.ThenS <y 5.0

Lemma 1. If X <;,,, Y, then, for any nondecreasing supermodular function f : R™ — R, f(X) <y

fY).

Proof. For any A € R, the function ¢ : R — Ry, z — (x — A)T is nondecreasing and convex. By
( , Theorem 3.9.3 f), page 113), ¢ o f is nondecreasing supermodular. Hence
E((f(X)—A)") <E((f(Y)— A)T), which yields the result by (1997, Definition 2.1). [J

( , Theorem 4.4) Assuming p a risk measure as per Definition 7, then X < Y
implies p (X) < p(¥). O

A succinct proof of this result can be found in ( ) prior to its statement. We
give a more detailed proof for completeness at the end of Section C. Note that the original statement
postulates, instead of the law-invariance property, that the risk measure p has the Fatou property, that

is, if X', X1, Xs, ... are integrable random variables with X, L—1> X, then p (X) < liminfg_ o0 p (Xk).
We recall from ( , page 832) that a closed linear subspace of a Banach space is a Banach
space and from ( , Definition 1.2.1 i), page 12) that a sublattice of a lattice with the
same meet and join operations A and V is again a lattice. Therefore, if X is a Banach lattice (i.e. an

3see Appendix A.
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order lattice that is a complete normed vector space, e.g. L? space withp > 1) and p : X — R is proper,
monotonous and convex, then p is continuous on the interior of its domain ( s

, Proposition 1), thus has the Fatou property on the interior of its domain. Hence the Fatou property
requirement is automatically satisfied by p as long as it is defined on a Banach lattice. This is the case
for both expectation and expected shortfall defined on any sublattice and linear subspace of L*.

In Section §4, we will consider financial credit losses over a period of time [0, 7] of the form
Yoy fi(X, ..., X0)gi(Y;) for some given number n of credit obligors. The default times 7; of the
credit obligors indexed by 7 € 1...n will be modelled by the latent variable & breaching a cer-
tain threshold. g;();) represents nonnegative losses given default of obligor i. The functions f; are
nonnegative nondecreasing w.r.t. each of their arguments and have the supermodular property (when
n > 1) and the functions g; are nonnegative and nondecreasing. We will establish in Section §4 that
(T1y o Ty Y1y oo Yn) > >on g fil®1, ..., ¢n)9i(y;) is a nondecreasing supermodular function on
R?", Hence, by Lemma 1, if (X1, ..., X, Vi,..., Vn) <sm (X],..., X, Vi,..., V), then

S Fil X Xa)gi () Sa D> Fi( XL X)) g (V). 1)
i=1 i=1
Having assumed the probability space non-atomic*, ( , Theorem 4.4) allows

concluding that p (31, fi(X1, ..., %) g (Vi) < p (i fi(X], ..., X)g:(Y))). This is the plan
for proving our main result Theorem 12.

The following two Lemmas 2 and 3 will be the building blocks for establishing the above-needed
supermodularity property.

Lemma 2. The supermodularity property is satisfied by any function R* > (z1,...,z,) +—
h(z1,...,2n) € R that can be written as h(z1, ..., x,) = Y iy hi(x;) for some functions hq, ..., hy,
of single arguments. In particular, for any constants Bi,...,B,, the function (z1,...,z,) —

—>oiy Lyu,<p,y is supermodular. This function is also nondecreasing w.rt. each of its arguments
Z;.

Proof. By ( , Corollary 1), recalled in Section A, we can focus on increasing differences.
Let h(x;, zj|x—; ;) denote the function & applied to x; and x; but keeping all other arguments x_; ; :=
(k) g ; fixed. Fixing 6, > 0, the difference h(z; + 6, x5 +e[x—; ;) — h(@i, 75 +€[x—i5) — h(zi +
0, |x—; ;) +h(xi, xj|x_i ;) = hi(zi+0)+hj(x;+¢)—hi(x;) —hj(x;+¢€) — hi(z; +6) — hj(z;)+
hi(x;) + hj(y;) simplifies to 0, showing the supermodularity of /. [J

Lemma 3. Ifg : R — Rand h : R — R are both nondecreasing, then (x,y) — g(x)h(y) is
supermodular.

Proof. If 2’ > x and y > y, then
g(z"h(y') — g(@")h(y) — g(x)h(y') + g(x)h(y)
9(z") (My') — h(y)) — g(z) (h(y") — h(y)) )
g(x)(h(y') — h(y)) — g(z)(h(y') — h(y)) = 0.

Hence (z,y) — g(z)h(y) has increasing differences w.r.t. any pair (x,7) € R2, i.e. is supermodular,
by ( , Corollary 1). [J

>

“see ( , Example 3.1) for a counter-example to the monotonicity property for probability
space with atom(s).
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B Elliptical Setup

We consider a one-period financial market model on (€2, A), assumed arbitrage-free, with related risk-
neutral probability measure Q*3. We index all the formerly introduced notation by *.*” whenever
applied in reference to Q = Q*. We consider random vectors X = (Xp, Xy,...,X) and X' =

(Xo, X, ..., X/, following elliptical distributions (see Section B) under Q* as per
X=p+AZand X' = pu+ A'Z, 3)

for constant matrices A, A’ € R™*¥ of full rank. Z = (2, 21, .. ., Z,) follows, under Q*, a spherical
distribution Sk11(20) (see Section B), with characteristic generator ¢). As the components 0 for both
vectors X and X’ must the same, we also require the first row of A and A’ to be the same. The rationale
for keeping the same reference latent variable X in X and X’ in (3) is that the point of view will be the
one of a reference bank indexed by 0 (cf. Lemma 4 and Proposition 5).

We denote by 'x = AAT and Ty = A’(A’)T the Q* covariance matrices of X and X', assumed to
be positive semi-definite. We write I’y = Cov*(X;, X;) forall i, € 0..m, and likewise for T'x.

Assumption 1. T =T%, andTY =TY,,j€1.m,andT% <T%, i#jec1.m.0

In particular, X1., <gm> Xi.m» DY ( , Corollary 2.3) recalled in Section
B.
Let pux,.,, = (xy,-..,px,)and T'x, = (I‘;{l_ ) be the mean vector and the covariance
/) 1<ij<m
matrix of (X7,...,X,,) under Q*. We use similar notations regarding (X7, ..., X ). Our next result,

Lemma 4, makes use of the two following results. Let Ugn—1 denote the uniform distribution on the
unit sphere S"~! := {s € R” : s's = 1} in R". A radial r.v. is a one-dimensional r.v. with values in
[0, +00).

( , Theorem 6.21, page 197) Z has a spherical distribution in R™ if and only if it has a
stochastic representation

4

Z L RS, 4)

where S ~ Ugn-1 and R > 0 is a radial r.v. independent of S. [J

( , Theorem 2.18, page 45) Let Y 4 u+RAS ~ E,(u, X, v) (see Section B) with
¥ = AAT positive definite. Let

Y@ p »(Lh)  »n1.2)
Y= <Y(2)> ) m= (“@) ) 2= \ney yne ) ®)
where YV and p(!) are m x 1 vectors and (1) is an m x m matrix, for some 0 < m < n. Then

d m
(Y(l)‘Y@) _ y<2>) LD+ Riyeroym ALY, S0

(6)
(1) (1,1)
~ En, (I'I’|Y(2>:y(2) , Z‘Ym):y(z) ) w\Y(2):y(2)> ,
where
3see for instance ( s , Part I).
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-1
ul(;)@):y(z) — u(l) + 2(172) (2(272)) (y(2) — l‘l’(Q)) R

11) -1 1,1) 1,1) T
By = s - 502 (5E0) 78D = Ay@_yo (Amz):y(z)) )

S ~ Ugm-1,

Riy@r—ye) = ((Rz _yq (y(2)>>1/2
of S(M),

y? = y(2)> and Ry ) —y( is independent D

g (y?) = (y® — p@) " (222)7 (y@ — u@)

w|y(2>:y<2) is of the form (53) for n = m, F’ given as the c.d.f. of R‘Y(z):y(z) and
S given as (™). O

Lemma 4. Under the elliptical form (3) satisfying Assumption 1 for X and X', we have, under Q*,

[le R} Xm‘XO] ~ Em (l‘l’xl:ml-XO’ FXl:mrl‘XO’w‘XO) ’

(3
(XL, X | o] ~ By (Hx;:m\x(,,Fx;:m|xo,%/f\'x0) ;
with
leo = waO ’ l‘l’Xlzm‘XO = l‘l’/)(l;m‘Xo (9)
and, foranyi,j € 1..m,
TR te STx0 (2 (10)
Proof. Applying (7) to Y1) = X, and Y?) = A} yields (8) with
1 01 om T
KX X = BXqim + Fgg (FX s »I‘X ) (XO - ,UXO),
1O o2 (1n
I'ximte = I'xy. — T00 Z (Fx)
X j=1
and, using Assumption 1 and (11),
1 01 om) |
MX) Xy = BXy., T W(FX N ) (X — ) = X4, | X0
X
1O o2 (12)
Txi a0 = Tx, — 15 00 (T%) 2 Tyl
X j=1
where > is meant componentwise.
It remains to show that ¢| X, = 1/1" X For all z9 € R, by ( , Theorem 2.18,

page 45), which includes (7), the radius R|x,—s, of [X1,..., X |Xo = z0] is distributed like

1/2

1

<R2 - W(l‘o - uX0)2> , where R := ||Z|, and so is the radius R|, _, of [X],..., & |X =
X
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o] (as both X and X' are defined based on the spherically distributed vector Z). Thus R |x, 4 RT Xo»
with common c.d.f. denoted by Fr , . The corresponding conditional characteristic generator com-

mon to [Xy,..., X, |Xo] and [X7, ..., & |Ap] is given by ¥y, (z) = / Qm(xr2)FR|X0 (dr), where
0
Qo (UTU) is the characteristic function of a r.v. ~ Ugm-1. [

Proposition 5. Under the assumptions of Lemma 4, we have:
[Xla-”aX’m|XO] <sm» [XllvaX;n|X0] (13)

Proof. By Lemma 4, conditionally on Xp, X;.,,, and X.,,, have the same elliptical distribution under
Q*, except for their covariance matrix coefficients that verify (10). ( , Corollary
2.3) recalled in Section B (here applied under Q) then yields the result. [

C Preserving Supermodularity and Stop-Loss Order Properties Under a Mea-
sure Change

The metrics of interest in this work are considered from a reference market participant viewpoint,
namely a bank indexed by 0. In this context, it is sometimes useful to introduce a measure Q° de-
fined in terms of a measurable function A of a latent variable X of the default of the bank, such that

h(Xp) = dQ°/dQ* > 0 and E* [h(Xp)] = 1. (14)
We index all the formerly introduced notation by . °” whenever applied in reference to Q = Q°.
Example 1. In the setup of ( ), financial risk factors are

specified under Q*, but explicit XVA formulas arise in terms of the related bank survival probability
measure Q.

Assumption 2. X = (Xp, X1,..., &) and X' = (A, &Y, ..., &),), with components in X* =
L'(Q*) (with the same X} in X and X'), satisfy

(X1, X | K] s [X, -, X | 0], (15)
ie.
E* [f(X1, ..., %) |Xo] SE* [f(X],.... X),)|Xo] (16)
holds for any supermodular function f : R™ — R such that the conditional expectations exist.
Lemma 6. If X and X' satisfy Assumption 2, then (X1, ..., Xm) <gmo (X{,..., X))

Proof. As h(Xy) > 0, for any supermodular function f on R™ such that both E° [f(X1,. .., X,,)] and
EO [f(X],...,X")] exist, (14) and (16) yield

EO [£( X1, ., Xon)] = B [A(Xo) F( X, - -, X)) = B [A(X)E" [£(X0, - .., Xon)|X0]]

. . 17
< B [h(X)E" [f(X], ..., X0)|X0]] = E° [f(X],.... XL)].
Hence (X1,...,Xm) <gmo (X7,...,X).O
In terms of applications, we start by precising the monotonicity result of ( )

for equity and senior CDO tranches default leg w.r.t. the credit correlation. We then explore a more
complex counterparty credit risk example pertaining to the risk management of clearing activities.

91



§3 Teaser: Credit Derivatives

We analyse the monotonicity of default leg and coupon leg of synthetic equity and senior CDO tranches
prices w.r.t. credit correlation. Such prices are obtained by taking the expected value under the pricing
measure Q* of the loss function underlying the CDO tranche contract. The characteristics of the payoff
are as follows. There are n obligors, indexed by ¢. All underlying CDS are assumed to mature at some
common time 7. For any obligor 7, the default time is denoted by 7;, the recovery rate is R; € [0, 1],
the underlying notional is N; > 0 and the loss given default is L; = (1 — R;)N;. The maximum loss is
Linax = E:L:l L;. To simplify calculations, we assume that the payments due to the obligors defaults
are only made at maturity 7" and the discounting rates are set to zero (nonzero discounting rates can be
included as long as they are independent from the credit risk factors).

Definition 3. The cumulative credit loss at time ¢ < T is

n
L(t) = Lil{r,<yy. (18)
i=1
The default leg of an equity tranche with maturity 7" and detachment point B € (0, Lyax] is
Dey(T) = L(T) — (L(T) — B)" = min (L(t), B). (19)
The default leg of a senior tranche with maturity 7" and attachment point A € [0, Lyax) is
Den(T) = (L(T) — A) . O (20)

Definition 4. The payment leg consists in payments, at K regular times ¢y (with tx = T), of a fixed
spread s applied to the remaining tranche amount at risk. In the case of the equity tranche, the payment
leg writes

7K
=522 Z (B — L(ty)) " @21)
In the case of the senior tranche, it writes
PralT) = (Lmax = A= (L(t) - A)*)
k=1 (22)

T K
= 5T (Linax = A) = 57 ; .0

T
s—
K

Putting default and payment payoffs together, we obtain, for the equity tranche,

K
Dey(T) — Peg(T) = L(T) — (L(T) — B) " — s% (B—L(t))", (23)
k=1

and, for the senior tranche,

Dsen(T> - Psen(T) =
(24)

N\ﬂ
Mx

(L(T) = A) " = §T(Luax + A)
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Specifying X; = F,'(1 — 7i(7i)), where F; is the c.d.f. of X;, 7; the Q* c.d.f. of 7; and letting
By(t) :== F;7 ' (1 —7i(t)), we have {r; <t} = {X; > B;(t)} and

n
L(t) = ZLi]l{XiZBi(t)}' (25

i=1

The following result precises the outlined application for comparing CDO tranche premiums in
( ) with heterogeneous obligors under our static setup.

Proposition 7. If (X1,...,X,) ~ E,(u,T,¢) and (X1,..., X)) ~ E,(u,T',¢), with T < T
elementwise except for equal diagonal entries, then

n + n +
E* (Zl Li]l{X,izBi(t)} - A) < E* (Zl Li]l{X;zBi(t)} — A) , AeR. (26)

That is, the price of the default leg of a senior CDO tranche is nondecreasing w.r.t. p°"; we also get that
the price of the default leg of an equity CDO tranche is nonincreasing w.r.t. p°".

Proof. For any t € R, the function
ft : R™ — R+

n
(@1, wn) Y Lil(e,>5,0)

i=1

27)

is nondecreasing w.r.t. each of its arguments and it is supermodular, by Lemma 2. Hence, due to the

nondecreasing and convexity properties of z + (x — A)T, ( , Theorem 3.9.3
f), page 113), recalled in Section A, implies that (x1,...,x,) — (ft(xl, B A)+ is also non-
decreasing supermodular. Moreover, by ( , Corollary 2.3), recalled in Sec-
tion B, (X1,...,X,) <em= (X1,...,X)). Applying ( , Definition 2.6) to (X7, ..., X,),
(X1,..., X,) and (z1,...,20) = (fe(@1,... @) — A)+ then yields the result for the senior tranche.

AsE* 300, Liﬂ{xpBi(t)ﬂ -

default leg, where the left expectation term does not depend on p°”, the result for the equity tranche fol-

+
(Z?_l L;1 {XiZBi(t)} — B) ] is the price of an equity tranche

lows. [

Corollary 8. Under the same assumptions as in Proposition 7, the price of the payment leg of the CDO
equity (resp. senior) tranche is nondecreasing (resp. nonincreasing) w.r.t. p°".

Proof. By call-put parity,

n + n *
oy (B_ELi]l{XizBi(t)}> = E (Zl Li]l{XQBi(t)} _B>

—B+ E* ;Liﬂ{szBi(t)}

(28)

so that, in view of (21)-(22), as a consequence of Proposition 7,

+

n + n
E* (B_Z;Li]l{ximi(t)}) < [E* (B_Z;Li]l{xp&(t)}) .0 (29)
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Obligor id 1 2 3 4 5 6 7 8 9 10
Notional 100 105 110 115 120 100 105 110 115 120
RR (%) 30 31 32 33 34 35 36 37 38 39
A(%) 2 2.5 3 35 4 4.5 5 5.5 6 6.5
Obligor id 21 222 23 24 25 26 27 28 29 30
Notional 100 105 110 115 120 100 105 110 115 120
RR (%) 39 40 30 31 32 33 34 35 36 37
A(%) 12 12.5 13 13.5 14 14.5 15 15.5 16 16.5
Obligor id 11 12 13 14 15 16 17 18 19 20
Notional 100 105 110 115 120 100 105 110 115 120
RR (%) 40 30 31 32 33 34 35 36 37 38
A(0) 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5

Table 2: CDO portfolios and obligors parameters.

Remark 2. For mezzanine tranches, such results do not hold. Indeed, the tranched loss default leg payoff
function

Diiers (T) = (L(T) — A) "

3

—(L(1)-B)" (30)

where A, B € (0, Liyax), is not a convex function of the cumulative loss nor is the payment leg

Prcn(T) = sgé B4~ ((L) - 4)" (L) - B)")] an

A Numerical Results

The results are illustrated in Figure 1 for the equity tranches, varying detachment point from 5% to 95%
with 5% steps, i.e. considering the tranches from [0, 5%)] to [0,95%)]. Figure 2 illustrates the results
for the senior tranches, varying attachment point from 5% to 95% with 5% steps, i.e. considering the
tranches from [5%, 100%] to [95%,100%)]. The correlation p" is varied from 5% to 95% with 5%
step for both tranche types. The parameters of the underlying obligors and CDSs are detailed in Table
2, where values have been assigned arbitrarily to ensure heterogeneity of the various obligors. The
CDO tranche spread has been set to 10% with a single coupon paid at a maturity of 5 years. The
monotonicity patterns are observed for both tranches, with incremental prices between two consecutive
credit correlation steps being nonpositive for the CDO equity tranche default leg prices and the CDO
senior tranche payment leg prices. Incremental prices between two consecutive credit correlation steps
are nonnegative for both the CDO equity tranche payment leg prices and the CDO senior tranche default
leg prices. These results are in line with Proposition 7 and Corollary 8. Also, incremental prices
between two attachment point steps are nonnegative for both the CDO equity tranche default leg and
payment leg prices, as expected from (29). The incremental prices between two attachment point steps
are nonpositive for the CDO senior tranche default leg and payment leg prices, as expected from (26).
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Default Leg Price Payment Leg Price

ocr 02

Figure 1: Default leg and Payment leg prices of CDO equity tranches w.r.t. latent variable credit corre-
lation p°" and detachment point B.

Default Leg Price Payment Leg Price

Figure 2: Default leg and Payment leg prices of CDO senior tranches w.r.t. latent variable credit correla-
tion p°" and attachment point A. Note that the axes are different from Figure 1, for a better readability.

§4 Main Results: Counterparty Credit Risk

We assume the setup of Sections B and C regarding X = (Xp,Xy,...,X,) =
(X0, X1,..., X, 11,...,Y,) and X' = (A, &f,..., X)) = (Xo,Xy,..., X, Y{,....,Y.)) (for
some n > 0). Let

L=Y fi(X1,...,Xn)g(Yi) € X0 = L'(Q"), (32)
=1
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where Y; € X* drives a loss that obligor ¢ € 1..n generates if it defaults, with default of each
credit name j € 0..n (including the reference bank O as in Section C) driven by a latent variable
X; € X*. The f; : R® — R, are measurable supermodular (when n > 1) functions nonde-
creasing w.r.t. each of their arguments, and the g; : R — R, are measurable nondecreasing func-

tions. When f;(Xy,...,X,) = fi(X;) as in ( ) or

( ), [i(X;)g:(Y;) can represent the loss related to a bilateral counterparty position, i.e. a portfo-
lio position between the reference bank 0 and its client . As detailed in Section A, the more gen-
eral case where f;(X1,...,X,,) depends on several X, encompasses the financial losses generated
by clearing exposures towards a central counterparty (CCP). This is due to the loss allocation coef-
ficients attributed to each surviving member ( R ). It also
covers the case of financial resolution funds ( , ). As outlined in Section

A, if we can establish that R*™ > (z1,..., %0, Y1, Yn) = Doy fi(T1,. .., 20)9i(yi) € RT is
supermodular, then we can conclude that p (L) < p(L’) holds for any risk measure p on X°, with
L'=300 filXe, - X ) (Y]) € X0

Remark 3. Wrong-way risk is the potential increase of the exposure a financial actor w.r.t. certain coun-
terparties when their probability of default increase. A risk model should include a wrong-way risk
feature in order to ensure conservative treatment. See ( , Section 8.6.5) for more detailed
explanations and ( ) for various examples of asset classes models
incorporating the wrong-way risk feature. Under the elliptical model (3) and the credit loss form (32),
wrong-way risk holds provided that an increase of the covariance between the default latent variable X;
and the potential loss driver Y; leads to an increase of the loss amount g;(Y;). This is the case when f
and g are nondecreasing (as assumed) in each of their arguments.

Lemma 9. If f; : R™ — R is a supermodular function nondecreasing w.r.t. each of its arguments
and g; : R — R is a nondecreasing function, i € 1..n, then R®" > (x1,..., %0, Y1, .., Yn)
S f(@1, .., 20)0i(yi) € R has increasing differences w.r.t. any pair (z;,y;) € R? i,j € 1..n.

Proof. Let f;(x;|x_;) denote the function f; applied to x; but keeping all other arguments x_; :=
(k) p; fixed. We look at the two cases where we consider either a pair of argument (z;, y;) € R2,
1 € 1..n (i.e. the pair of arguments tested for the increasing difference are part of the same term of the
sum), or a pair (z;,y;) € R?,i # j € 1..n, and the corresponding increasing differences.

Case (v;,y;) € R?% i € 1..n: the function R? > (z;,v;) — fi(wi|x_i)gi(v:), has the increasing
differences property by application of Lemma 3 with g(-) = f;(-|x_;) and h(-) = g¢;(-). The increasing
difference writes

Fol@ix—)gs(wi) + Y fe(@ilxa)gn(yn) = fi(@ilx-0)gi(y:) = Y ful@ix—s)gn(us)

k#i k#1
filwilxa)gi(uh) = > frlmilx_i)gn(ue) + filwilx—i)gi(wi) + Y Fulwilx_i)gr(ve)
k#i k#i

= filailx—i)gi(yi) — fiailx—i)gi(yi) — fiwilx—s)gi(vi) + fixilx—s)g: (i)
>0 by Lemma 3

+ 3 fe@ixo)ge(ue) = > fr(@hlx—i)gn ()
k#i k#i
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=) rel@milx-a)gryn) + D frlwilx—i)gr (yr)
ki ki
=0

>0

)

hence (z;,v:) — > p_y fe(@i|x_i)gr(yx) has the increasing differences property.

Case (z;,y;) € R?, i # j € 1..n: we write the increasing difference

> fel@ilx—i) g () + £ (@51x-)g; (W) = > fu(@ilx—i)gr(yn) — i (2]|x_:)g;(y;)

k#j k#j
= Felwilxi)gr () = Fi(@ilx_i)g; (W) + > fe(@ilx—i) g () + fi(zilx_i)g;(y;)
k#j k#j

=Fi(wix-i)g; (v5) — £i(@ilx—i)g; (y;) — fi(@ilx—i)g; () + f(wilx—i)g;(y;) = 0,
by application of Lemma 3 with ¢(-) = f;(-|x—;) and h(-) = g;(-). O

Proposition 10. [f f; : R — R is a nondecreasing function and g; : R — R is a nondecreasing
function, i € 1..n, then R®™ > (21,...,%n, Y1, Yn) el Yo fi(z:)9i(yi) € R has increasing
differences w.r.t. any pair (x;,y;) € R% i,j € 1..n.

Proof. By Lemma 2, X has increasing differences w.r.t. any pair (z;,z;) € R% i # j € 1..n, as
well as any pair (y;,y;) € R% i # j. Fori € 1..n, (x;,y;) — fi(x:)gi(y;), has the increasing
differences property by application of Lemma 3 with g(-) = f;(-) and h(-) = g¢;(-). Hence, A has
the increasing differences property for any pair (z;,y;) € R?. Finally, fori # j € 1..n, (2;,y;) —
fi(zi)gi(y:)+ fi(z;)g;(y;) has the increasing differences property by Lemma 2 with 7; () = fi(-)g: (v;)
and h;(-) = fj(x;)g;(-). Hence, X has the increasing differences property for any pair (z;,y;) € R,
i#jel.nO

Proposition 11. Let f; : R™ — R be a nondecreasing supermodular function and g; : R — R be a
nondecreasing function, i € 1..n. Then the function

R2n > (xh ey Ty Y1,e e 7yn) ’A> Zfi(irlw .. 7xn)g’b(yz) S R (33)

is supermodular.

Proof. By Lemma 2 with h;(-) = fi(x1,...,2,)g:(-), for any i € 1..n, A has increasing differences

with respect to any pair (yx, i), k,I € 1..n. By assumption and closure by addition of the increasing

differences property, A has increasing differences with respect to any pair (zy, x;), k,I € 1..n. Finally,

by Lemma 9, A has increasing differences with respect to any pair (zx,y;), k,! € 1..n. Hence, by
( , Corollary 1%, A is supermodular. [J

Theorem 12. Assume L and L' defined by (32) applied respectively to (X1, ..., X, Y1,...,Y,) and
(XU XYY YD) 5t (Xns e, X Vi oo Vo) <amo (XLoeoo  XLYY ... Y)). Then, for
any risk measure’ pon X° > L, L', we have p (L) < p (L'). In particular, if X° = L'(Q°) and that L
and L' are QO integrable, then E° [L] < E° [L'].

bsee Section A.
7see Definition 7.
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Proof. By Proposition 11, the function (1, ..., %, Y1, Yn) — Dorey fi(@1s- .., Tn)gi(yi) is su-
permodular on R?". The result p (L) < p (L’) then follows the way outlined in Section §2. [J

Remark 4. By Lemma 6, the conclusion of Theorem 12 holds, in particular, for X =
(X(),Xl, v ,X.,L,Yh. .. 7Yn) and X' = (Xo,X{,. . ,X/

n?

satisfying Assumption 2, e.g. (by Proposition 5) in the Q* elliptical setup (3) under Assumption 1.

Y/,...,Y})) (see beginning of Section §4)

Remark 5. An analogous monotonicity result does not hold for p = p (- — E(-)) (see Definition 7). For
instance, if p = ES,,, U is uniform on [0, 1] and U5 is uniform on [1, ] for some 6 > 1, then U; < Us
as., ESq(Uh) = 2 < ES,(Us) = 1+ (0—1) 142, but ES, (Uh) —E(U) = & > ESo(Us) —E(Us) =
(0—-1)5forl <0 <2.

We now take in (14)

1,
h(zo) = %j} where v = Q*(Xo > By), (34)

so that QP is the survival measure of the reference bank associated with Q* (
, , Section 3).

Definition 5. The current expected credit loss CECL of the reference bank 0 is CECL = E° [L].

Similarly, we define CECL' = E° [L/].

Remark 6. From a financial application point of view, the CECL that considers the lifetime for all related
asset is preferred to the IFRS9 expected credit loss (ECL) that segments into stage 1 and stage 2. The
CECL allows for a 1-year maturity assumption instead of the full lifetime of the assets considered for
the ECLS.

Proposition 13. If L and L' are defined by (32) for X and X' satisfying Assumption 2, e.g. (by Proposi-
tion 5) in the elliptical setup (3) under Assumption 1, then CECL < CECL' whenever L, L’ € L*(Q°).

Proof. By definition of CECL and application of Theorem 12 and Remark 4 to p = E°. [J

Definition 6. The economic capital of the reference bank 0 is EC = ES?, (L), with ES? as per Defini-
tion 8 assumed under Q° and L > 0 given by (32).

Similarly, let EC" = ES{, (L').

Proposition 14. If L and L' are defined by (32) for X and X' satisfying Assumption 2, e.g. (by Propo-
sition 5) in the elliptical setup (3) under Assumption 1, then EC < EC’ whenever L, L' € L'(QV).

Proof. By definition of EC and application of Theorem 12 and Remark 5 to p = ]ESg. (]

Remark 7. The Definition 8 of ES?, ensures its domain is all L*(Q0), thus is in particular proper.

( , Proposition 3.1) outlines ESg is subbaditive and positively homogeneous (therefore
convex) as well as monotonous (in our case where we consider loss variables, for X < 0 we have
p(X) < 0 and using subadditivity we get for ¥ < Y, p(X) = p(X =Y+ V) < p(X = V) + p(Y) <

p()). Hence it verifies the assumptions of ( R , Proposition 1). Therefore
0 - . : 0

ES,, is continuous on L'(Q) and ( , Theorem 4.4) applies to p = ES,.
8see (2022, Article 5.3.3) and (2019).
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A CCP Case Study

We denote Y = X, 1.0 = (V1,...,Y,) and Y = X7 1, = (Y{,...,Y)). Given real constants

Bi,---yBn >0,mq,...,my and By, ..., B,, we consider the credit losses
n 1 N
L(X10,Y) = Z - Lix,>py % (Yi—ms) . 35)
=11 4 Zﬁj]l{xj<,3j}
j=1

Xon = (Xo,X1,...,X,) drives the default events, namely, {7; < T} = {X; > B;} models the
default event of participant ¢ € 0..n, e.g. its liability return taken as the latent factor breaching a
certain threshold. Y; = nom;o;G;, with nom; € R, o; > 0 and G; spherical (hence Var*(Y;) =

nom?c2Var*(G;)) represents the loss of the market participant 0 in case of the default of obligors

-1
indexed by ¢, collateralized by a corresponding amount m;. The weights ( 1+ 2?21 Bilix,< Bj})

represent a stylised specification of a default fund allocation in a central counterparty (CCP) setup, with
then 3; = DF;/DF (see Section B), or of a liability size allocation in a single resolution fund (SRF)
setup.

n 1= 27
Lemma 15. For any i € 1..n, the function R™ > (z1,...,z,) V> (B Sy v e Ry is

nondecreasing supermodular.

Proof. By ( , Corollary 1), it is sufficient to show that f; has increasing differences. Let
k,lel, . n.

- 2 g ]1{-’%25%}
Case k’l ;é i LetR” 5 (.’Ek7.'1,'l) — A+Brlie, <y HAil{o <3y}
For x}, > xy, ] > x;, we form the increasing difference

e R, with A= Zj;ék,l Bj]l{xj<B_7~}~

9(xh, 7)) — g(x), 21) — g(wk, 27) + g(2n, 1)
_ ]]'{1‘7‘,231‘,}61 (]l{rl<Bz} - ]l{m§<Bz}) B ﬂ{zizBi}ﬁl (ﬂ{ml<Bl} - ﬂ{z;<Bl}) (36)
denom; denoms ’

with denom; = (A + Bk]l{zﬁc<3k} + Bl]l{m;<Bl}) (A + Bk]l{1§c<Bk} + ﬁl]l{ml<Bl}) and denomy =
(A Bl o<y + Bilia<ny) (A + Bilia, <y + Bil{e,<p,y)- 21 < x) < Byor By <z < wj,
then the increasing difference (36) is zero as the numerators of both terms are zero. If x; < B; < xf, then
both numerators in (36) equal 1,,>p,} Bi. In this case: (i) if z < x}, < By, then both denominators in
(36) equal (A+ Bi) (A + B + B;) and the increasing difference (36) is zero; (ii) if By, < x4 < «},, then
both denominators in (36) equal A (A + ﬂl) and the increasing difference (36) is zero; If , < By, < z7,,
then the increasing difference in (36) writes equivalently

ABy

—(d —d 37
denomldenomg( cHott enoml), 37

with denomy = (A + B; + 51) (A + Br) > A(A+ B;) = denom; as 3; > 0 for all j € 1..n. Hence the
increasing difference (36) is nonnegative.

- . 2 g Uo;>B;) ; —
Case k = i and | # i: Let R? > (x;,m) A+ﬁiﬂ{mi<Bi)fﬂlﬂ{ml<Bl} € Ry, with A =
Zﬁéi ! Bj]l{xj<3j}. For 2, > x;, mg > x;, we form the increasing difference

9oy, xp) — g(ah, 1) — g(wi, 27) + g, 21)
_ Y bi(Lw<ny — Lw<ny) — LenyBi(Lim<ny — La<ny) (38)

)

denom; denoms

99



with denom; = (A + ﬂi]l{$£<3i} + 5l]l{;p;<Bl})(A + B,’ﬂ{wé<3i} + Bl]l{ml<Bz}) and denomy =
(A + Bil(g,<B,y + Bilizr<ny) (A + Bilfa, <y + Bil{a,<py) 21 < 2] < Bior By < ay <
then the increasing difference (38) is zero as the numerators of both terms are zero. If z; < B; < x7j,
then the numerator of the first terms in (38) is Lo >B:y and 1., > p, for the second term. In this case:
(i) if z; < 2} < B, then both numerators in (38) are zero and the increasing difference (38) is zero; (ii)
if B; < x; < a, then both numerators in (38) are equal to 12,>B,}B: and both denominators are equal
A(A + 61) so the increasing difference (38) is zero; If x; < B; < x, then the second term in (38) is
zero and the first term is nonnegative. Hence the increasing difference (38) is nonnegative. []

Proposition 16. The function

m - 1 +
]RQLB($1,---7$n7y1,---7yn)’i>z Py T1ie,>B,) ¥ (yi_mi) eRy (39)
=17 —+ Zﬂjﬂ{zj<3j}
j=1
is nondecreasing supermodular.
Proof. Let fi(x1,...,2,) = RCIELH. and g;(y;) = (y; — m;)™ in (33). By Lemma 15, f;

14+271 Bile, <y}
has increasing differences with respect to any pair (xy,z;) € R?, k,l € 1..n forany i € 1..n. Hence
f verifies all assumptions of Proposition 11, thus it is supermodular. [J

Corollary 17. If L(X1.,,Y), L(X}

1:n>

Y’) € LY(QY), then,

E° [L(X1:n, Y)] < E° [L(X]

1:n>

Y], (40)
i.e. CECL is nondecreasing w.r.t. I‘g{ foreachi,j €1..2n.

Proof. By Proposition 5 and Lemma 6, (X1,---,X,,,Y1,...,Y,) <gno (X1,---,X],Y/,....Y)).

— & n? Y n

Applying Proposition 13 with f defined by (39), which is supermodular thanks to Proposition 16, then
yields the result. [

Similarly (with Proposition 14 instead of Proposition 13 in the above argument)

Corollary 18. If L(X1.,,Y), L(X]

1:n>

Y') € LY(QY), then,
ESY (L(X1n, Y)) < ESY (L(X4,, Y1), @l
i.e. EC is nondecreasing w.r.t. I‘;{ foreachi,j€1..2n. 0

B Numerical Setup

We consider a CCP service with 20 members, labeled by 7 € 0..n = 19, trading for cleared clients
(i.e. without bilateral or centrally cleared proprietary trading). Each member faces one client. The
corresponding financial network is depicted in Figure 3.
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Figure 3: Financial network composed of one CCP service, its 20 members (labeled by B) and one
cleared client per member

All clients are assumed to be risk-free. For any member ¢, its posted initial margin (IM) to the CCP
is calculated based on the idea of a variation margin (VM) call not fulfilled over a slippage time period
A, at a confidence level o € (1/2,1). Such IM uses a VaR metric under the member survival measure
applied to the non-coverage of VM call on the cleared portfolio. The latter follows a scaled Student
t-distribution S,, with v degrees of freedom, with c.d.f. S,,, and where such scaling reflects both A, the
portfolio nominal size, denoted nom;, and its standard deviation, denoted ;. Namely,

IM; = VaR* (nomiai\/ ASS,,) = |nom;| o;+/ AS, ! (). (42)
The default fund is calculated at the CCP level as
Cover2 = SLOIM(O) + SLOH\/I(l)7 43)

for the two largest stressed losses over IM (SLOIM;) among members, identified with subscripts (0)
and (1). SLOIM; is calculated as the value-at-risk VaR*” at a confidence level o/ > « of the loss over
M, i.e.

SLOIM,; = VaR*/(nomiam/AsSl, — IMZ-) = |nom;| o;v/ A (S,fl(o/) — S,fl(a)>. (44)

The total amount (43) is then allocated between the clearing members to define their (funded) default

— SLOIM,
fund contributions as DF; = 3=, SLOIM,

0 with default fund contribution DFO is

x Cover2. Finally, the loss function of the reference member

L(X,Y)= Z DFy Lix,>p} ¥ (YZ ~IM; — DFi)+
=1 1+ZDF ]l{X <B }
- B 45)
Z 1 Lix,>p,) x (Yi—IM; — DFi)+

=1 1+ZDF Lix.<B;)
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cm 0 1 2 3 4 5 6 7 8 9
A (bps) 50 60 70 80 90 200 190 180 170 160
size -242 184 139 105 -80 -61 -46 35 26 -20
vol (%) 20 21 22 23 24 25 26 27 28 29
cm 10 11 12 13 14 15 16 17 18 19
A (bps) 150 140 130 120 110 100 90 80 70 60
size -15 -11 -9 -6 5 -4 -3 2 2 -1
vol (%) 30 31 32 33 34 35 36 37 38 39

Table 3: Member characteristics and CCP portfolio parameters, ordered by decreasing member
|size|.

Letsgn(xz) = 1ifz > 0, 0if z = 0, —1 otherwise. An elliptical model is specified under Q* as

{Yi = nomio, AV (VpmHE + T, 4 /1= R = g ) (46)

X; =VK (VP T + sgn(nom;) /o™ W; + /T = p = p==T;)

for any ¢ € 0..n, where T, T;, £, & and W; are i.i.d. normal random variables, 3/K follows a chi-
squared distribution independent from all random variables (common to all members). In particular,
Y; and X; follow centered Student t-distributions of degree 3 and (Xy, Yy, X1,Y1,...,X,,,Y,) isa
multivariate t-distributed random vector. 4; is the period accounting for the time taken by the CCP
to novate or liquidate its portfolios in case of defaults (practically, A; > A, by a few business days).
T represents the final maturity of the clearing members portfolios, assumed to be the same for all
members. B; = S, ! (1 —DP;(T)) where DP;(T) is the default probability over the period [0, T’]
defined from a constant default intensity \; given for each member 7 in Table 3 (which can be obtained
from their 1-year Q* default probability DP;(1Y"), inferred either from the agency ratings or the CDS
quotes when available, as \; = —In (1 — DP;(1Y)) so that DP;(T) = 1 — e~ 7). The model is
well defined if and only if 0 < p“™" < min (1 — p, 1 — p™**). Also, note that Cov*(X;,Y;) =
nom;o;v/A;/pP 7 sgn(nom; )/pP" = |nom;|o;/Ap¥™" > 0, hence increasing p“*" leads to an
increase of Cov*(X,,Y;).

The participants and portfolios parameter inputs are detailed in Table 3, where cm is the identifier
of the clearing member, )\ is the one year Q* default intensity of the member expressed in basis points,
size represents the overall portfolio size of the member detained within the CCP, and vol is the annual
volatility used for the portfolio variations. The portfolios listed in Table 3 relate to the members towards
the CCP (which are mirroring the portfolios between the members and their clients). The sizes of the
CCP portfolios of members sum up to 0, in line with the CCP clearing condition (without proprietary
trades).

Remark 8. The random variables (46) follow Student t-distributions that are continuous. Therefore, O is
the only possible atom of the nonnegative credit loss (45). Hence, by ( , Corollary
5.3), Definition 8 is equivalent to ES,(X) = E (X|X > VaR, (X)) ( , , Eqn.
(3.7)) whenever VaR,, (X) > 0, i.e. fora € (%, 1) sufficiently close to 1 so that VaRR,,(X’) > 0. In our
numerical illustration with o = 99.75%, this is indeed the case.
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C Numerical Results

The parameters of the CECL and EC calculations are summarized in Table 4. The confidence level at
97% for SLOIM in DF calibration allows for a ratio of default fund over initial margin of about 10%
in our calculations, a ratio (of this level or less) often observed in practice. Note that the chosen period
length of T' = 5 years covers the bulk (if not the final maturity) of most realistic CCP portfolios.

One-period length 7' 5 years
Liquidation period at default A; 5 days
Portfolio variations correlation p"*** 30%
Credit factors correlation p“" 20%
Correlation between credit factors and portfolio variations pj"*" 20%
IM covering period (MPoR) A, 2 days
IM quantile level 95%
SLOIM calculation for DF Cover-2 VaR 97%
DF allocation rule based on IM
Quantile level used for clearing members EC calculation 99.75%
Number of Monte Carlo simulation (for CECL and EC computations) 10M
Number of batches (for EC computations) 100

Table 4: CECL and EC calculation configuration

Figures 4, 5 and 6 show the results of CECL and EC calculated for the members 0, 5, and 10,
each under their survival risk measure (i.e. letting them in turn play the role of the reference bank

wwr js varied

indexed by 0 in previous sections). In each figure, the credit-credit correlation p°" and p
between 5% and 95%;, using 5% step. The same nondecreasing pattern is observed for all three members,
with nonnegative incremental CECL and EC between two consecutive credit-credit and credit-market
correlation steps, in line with Corollaries 17 and 18. The market-market correlation p™** has been kept
constant with value 4%. The results of the centered EC, i.e. EC — CECL, are also provided for each
of these 3 members in Figure 7. As CECL < EC holds for all three members, despite Remark 5, the

monotonicity is also observed for this centered version of EC.
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CECL for member cm0 EC for member cm0

Figure 4: Member 0 CECL and EC w.r.t. credit factors correlation p°" and credit and portfolio variation
factors correlation p™*".

CECL for member cm5 EC for member cm5

Figure 5: Member 5 CECL and EC w.r.t. credit factors correlation p°" and credit and portfolio variation
factors correlation p**".
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CECL for member cm10 EC for member cm10

Figure 6: Member 10 CECL and EC w.r.t. credit factors correlation p°" and credit and portfolio variation
factors correlation p™*".
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EC — CECL for member cm0 EC — CECL for member cm5

Figure 7: Members 0, 5 and 10 EC — CECL w.r.t. credit factors correlation p°" and credit and portfolio
variation factors correlation p™*".
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Remark 9. In our example, Cov*(Y;,Y;) = nom;nom;o;o; %5 p™*. Hence, depending on the sign

mkt either increases or decreases Cov*(Y;,Y;). Thus, we cannot hope to
mkt

of nom;nomy, increasing p
observe a monotonous behaviour of EC or CECL w.r.t. p

§5 Conclusion

The main mathematical results of the paper are summed up in Table 5. In a nutshell, if a participant uses
a convex risk measure to assess its credit risk depicted as an aggregation of nonnegative losses driven by
elliptically distributed factors, then the measure increases with the covariance coefficients between these
factors. These results and their numerical illustrations support the use of such elliptical factor models
for both risk management and regulatory credit provision and capital requirement purposes.

Proposition 11 Let f; : R™ — R be nondecreasing supermodular functions, g; : R —
R be nonnegative nondecreasing functions, ¢ € 1..n. Then the function
(T1, - @y Y1y Yn) = Doy fi(z1, ..., 2,)9i(y;) is supermodular on
R2",

Theorem 12 If (X1, Y) T <gmo (X].,,, YT and p is a risk measure” on X0, then p (L) <

p (L") holds for any L, L’ € X° of the form (32) applied to (X1.,,Y)" and
(X1, YT

Proposition 7 | The price of the default leg of an equity (resp. senior) tranche is nonincreasing
and Corollary 8 (resp. nondecreasing) w.r.t. the credit correlation p°". The price of the payment
leg of the CDO equity (resp. senior) tranche is nonincreasing (resp. nondecreas-
ing) w.r.t. p.

Proposition 13 Under Assumption 1 on (X0, X1,..., X0, Y1,...,Y,) and
(Xo, X1,..., X, Y],...,Y) in the roles of X and X’ there, CECL is a
nondecreasing function of the Q* covariance coefficients.

Proposition 14 Under Assumption 1 on (X0, X1,..., X0, Y1,...,Y,) and
(Xo, X1,..., X, Y/,...;Y) in the roles of X and X' there, EC is a
nondecreasing function of the Q* covariance coefficients.

Table 5: Main theoretical and applied results of the paper (with risk neutral measure Q*,
reference participant labelled by 0, related survival measure Q).

§6 Appendix

A Supermodular Functions

( , Definitions 2.4 and 2.6) A function f : R™ — R is said to be supermodular if
flxy, . xi+e. x40, . ,0n) — flo,..,xi+e, 0,2y, 20) > “n
flxe, ooz, + 0,000, 20) — f(T1, 0, Zay o Ty, Xn)
holds forallz € R™, ¢, >0and1 <i< j<n.O
( , Theorem 2.2 (a)) For functions twice differentiable on R, the supermodu-

larity is equivalent to the nonnegativity of its second derivatives. [J

%see Definition 7.

107



More general definitions can be found in ( ) and ( ).

( , Section 1.1, page 1) A partially ordered set (S, >) is said to be a lattice if and
only if any two elements z,y have a greatest common minorant, denoted = A y, and a least common
majorant, denoted x V y. [

( , Definition 6, page 6) A function f : & — R is said to be supermodular on a lattice
(6,>)if

flavy)+ fl@ny) = f(z)+ f(y) (48)
holds forall z,y € &. O

For a family of lattices (&1, <),...,(6,,<),let & = &; X - - - x G,, be endowed with the coordinate-
wise order (z1,...,2n) < (y1,-..,yn) if and only if Vi, 2; < y;. This order makes & = &1 x---x &,
a lattice. For x € & and any 7 and j, define x_(; j) = (2 )xx,j. For any function f : & — R, define
J(1x_(i5) : 6; x &5 — R as the restriction of f to vectors with entries other than i and j fixed at
X_(i,5) ( , , Section 2.4).

( , remark after Definition 7, page 7) A function f : G = &1 X --- X G,, — R is said to be
pairwise supermodular if

F(@iy25) V(@ 25 gy) + F((@i,25) A (@5, 25) X 5)

(49)
> fl@nwjlx-.5) + £ (20 25 )
holds for all z4,...,z, € 61 x...6,.0
( , Definition 7) A function f : 6 = &1 X --- x &, —> R is said to have increasing
differences if
[l‘i > Ty, T > .’L‘j/] -
‘ (50)

F@ins 21X gy) — (@, ix ) > [(@i i lx_5) — flezix_j))
holds for any x = (x1,...,2,), 4, 5,4, /. O

If the partial order is a total order, increasing differences and supermodularity in the sense of Definition
A are equivalent. In particular:

( , Corollary 1) For any f : R™ — R, the following are equivalent:
1. fis supermodular;
2. fhas increasing differences;
3. fis pairwise supermodular. [

( , Theorem 3.9.3 f), page 113) If f : R™ — R is nondecreasing and
supermodular and ¢ : R — R is nondecreasing and convex, then ¢ o f : R — R is nondecreasing
supermodular. [
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B Elliptical Distributions

( , Definition 6.17, page 196) A random vector Z = (Z,,...,Z,)" has a spherical
distribution in R™ if, for every orthogonal map A € R"™*" (AAT = ATA =1,),

AZ L 7.0 (51)
( , Theorem 6.18, page 196) The following are equivalent.
(1) Z is spherical in R™.

(2) There exists a function 1) : R, — C such that, for all u = (u1,...,u,)" € R”, the character-
istic function of Z is

E [e72] = pnTw) = gl + -+ o). 2

(3) Foreveryu € R, u'Z 4 [|lu]|Z:. O

1 is called the characteristic generator of Z and the notation Z ~ S,,(¢) is used (see
( ) and ( )). We denote by S*~! := {s eER”:s's = 1} the
unit sphere in R™, and by Us.—1 the uniform distribution on S"~*.

( , Theorem 2.2, page 29) A function 1) is a generator of an n-dimensional elliptical r.v.
if and only if it can be written as

V(@) = / Q (wr®) F(dr), (53)
0
where F(.) is some c.d.f. over RT and €, (u'u) is the characteristic generator of a random vector
S ~ Ugn-1, namely ( , » Eqn. (2))
: (m/2) LT (m—3)/2
Q,(uTu) =E (e"“TS) - / et ut (1 _ 42 dt, ue R0 (54)
Vl((m =1)/2) J - ( )

( , Definition 6.25, page 200) X = (Xy,...,X,) is said to have an elliptical dis-
tribution in R™ with parameters g, ¥, v, where X is an n X n square semi-positive definite matrix,
if

E (e“‘T(X—“)) = ¢(u"Su), ucR". (55)
We then write X ~ E,,(u, 3, 1)10. 0

( , Proposition 6.27, page 200) X ~ E,(u, %, ) if and only if there exist S, R and
A satisfying
X £ 1+ RAS,

where S ~ Usk—1, R is a radial r.v. independent of S, and A in R"* satisfies AAT = ¥. 0

gee ( ) and ( ).
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Remark 10. As outlined in ( , Eqn. (6.41), page 201)), for X positive
definite,

X ~ En(p,8,9) <= 73X = p) ~ S,(4). (56)
Following ( , Eqn. (6.42), page 201)), for an elliptical variate X ~
E, (@, X, 1), if ¥ has full rank n, then, by ( , Corollary 6.22, page 198) and (56),

ST(X — p)
VX =) TE (X~ p)
( , Corollary 2.3) Let X ~ E, (u,X,%) and h : R™ — R be a supermodular,

bounded and right-continuous function. Then ]E(h(X)) is nondecreasing in the off-diagonal elements
of ¥. O

<\/<X—u>T21(X—u), )i (R,S).0 (57)

The extension of ( , Corollary 2.3) to all supermodular functions follows
from ( , Theorem 3.3 and Theorem 3.4). Hence, if X, X’ verify Assumption
1 under some probability measure Q, then X <,,, X’. As a direct consequence outlined in

( ) after their Definition 2.1, “it follows that the family of multivariate normal

distributions (more generally, the family of elliptically contoured distributions) is increasing in the
supermodular stochastic order as the correlations increase.”

C Risk Measures

The following definition of a risk measure relaxes the definition of a convex risk measure in
( , Introduction (A3)) by not requiring the translation-equivariance property.

Definition 7. A risk measure is a function p : X — R satisfying, for X, Y € X:
a) properness: p (X) > —oo and dom p := {X € X;p(X) < 400} # &;
b) law-invariance: if X < ) then p(X)=p();
¢) monotonicity: if X < Y then p(X) < p());
d) convexity: p(AX + (1 =N)Y) < p(X)+ (1 —=Xp (), A€ (0,1).

(—p(—-)) is named an acceptability functional'!. We denote p = p(- — E(-)). If p is translation-
equivariant i.e. p (X +¢) = p(X) + ¢, ¢ € R (see ( , Definition 2.2 (i), page
29)), then j(—-) is known as a deviation risk functional'? and p (—-) a risk capital functional'®. [J

Definition 8. The expected shortfall (ES)'* at the confidence level (quantile) o € (3,1) of aloss X €
X = LY(Q)is ESa(X) = (1 — o) (IE(X]I{XZ%RQ(X)}) + VaR, (X) (Q(X < VaRy (X)) — a)),
with VaR, (X) =inf {z e R: Q(X < z) > a}.O

see ( , Definition 2.17, pages 35-36).
Zsee ( , Definition 2.21, page 37).
Bsee ( , Definition 2.25, pages 38-39).
Hsee ( , Definition 2.6).
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ES is a standing example of a translation-equivariant risk measure.
We conclude this appendix by a detailed proof of ( , Theorem 4.4) stated in

Section A. The proof relies on the definition of stochastic order:

( , Definition 2.1a)) For X and ) in X with respective c.d.f. Fx and Fy, X
precedes ) in stochastic order, written X' < Y, if Fx(z) > Fy(x),z € R. O

Proof of ( , Theorem 4.4) (see Section A). If X < ), then, by
( , Theorem 1.5.14, page 22), there exists ar.v. Z € X s.t. X <y Z <. V, where <., is
the convex order. By ( , Theorem 1.2.4, page 3), there exist r.v. X’ and Z’ on

a modified probability space (€',.4’,Q’), with same respective laws as X and Z, such that X’ < 2’
holds with certainty i.e., Vw € /, X'(w) < Z’(w) where < is the partial order'®> on R™ if X" and Z
take value in R™. The law-invariance and monotonicity of p yield

p(X)=pX)<p(2')=p(2). (58)

From ( , Theorem 4.3), which requires the convexity and law-invariance of p,
we also have p (£) < p (), hence p (X) < p()).O

Bsee ( , Remark 1.2.5, page 3).
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Chapter 111

Resolving a Clearing Member’s
Default, a Radner Equilibrium
Approach

Note. The results of this chapter are based on the paper! ( ).

Abstract. For vanilla derivatives that constitute the bulk of investment banks’ hedging portfolios, central
clearing through central counterparties (CCPs) has become hegemonic. A key mandate of a CCP is to
provide an efficient and proper clearing member default resolution procedure. When a clearing member
defaults, the CCP can hedge and auction or liquidate its positions. The counterparty credit risk cost
of auctioning has been analyzed in terms of XVA metrics in

( ). In this work we assess the costs of hedging or liquidating. This is done by comparing pre-
and post-default market equilibria, using a Radner equilibrium approach for portfolio allocation and
price discovery in each case. We show that the Radner equilibria uniquely exist and we provide both
analytical and numerical solutions for the latter in elliptically distributed markets. Using such tools, a
CCP could decide rationally on which market to hedge and auction or liquidate defaulted portfolios.

§1 Introduction

Financial actors can discover counterparties for their transactions by participating in an exchange. In
the case of derivatives, an exchange is backed by a central counterparty (CCP). As surveyed in

( , Sections 13.3.5, 13.3.6 and 13.4) and ( ), a CCP transforms coun-
terparty credit risk into liquidity risk by netting and managing multiple flows of collateral, including
a default fund that is pooled among the clearing members. A CCP is also responsible for rewiring or
liquidating the CCP portfolios of a defaulted clearing member within a few days of the default. As
emphasized in Table 1,

'Acknowledgements: We thank Yannick Armenti, head of front office risk Europe derivatives execution and
clearing at BNP Paribas securities services, and Mohamed Selmi, head of market and liquidity risk at LCH SA, for
useful discussions.
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Pros

Cons

Netting

Multilateral netting benefit

Loss of bilateral netting across
asset classes

Counterparty credit risk and
liquidity risk

Reduced default risk of
the CCP itself and reduced
“domino effects” between
members

Concentration risk if a major
CCP were to default.
Joint membership and feed-
back liquidity issues.

- about 30 major CCPs to-
day and only a few promi-
nent ones (CME, LCH, Eu-
rex, ICE,..)

Information

Better information of the regu-
lator via access to the reposito-
ries of the CCP

Opacity of the default fund for
the clearing members, which
are not in a position of estimat-
ing their risks and the corre-
sponding costs with accuracy

Costs

Default resolution cheaper:

- Bilateral trading means a
completely arbitrary transac-
tion network.

High cost of raising funding
initial margins (at least, if
funded by unsecured borrow-
ing)

- An orderly default proce-
dure cannot be done manu-
ally. It requires an IT net-
work, whether it is CCPs,
block-chain technology,...

Table 1: Pros and cons of CCPs ( , ; , ;
, ).

an ordered resolution of clearing members’ defaults might actually be the most tangible benefit of
CCPs. However, a CCP is faced with several possibilities for settling the default of a clearing member.
This paper provides quantitative tools to assess and compare the costs of alternative default resolution
strategies.

So far, the optimal settlement of the portfolio of a clearing member has been mostly addressed
from the financial engineering viewpoint of optimal liquidation schedules accounting for exogenous
liquidity constraints ( ); ( ).
In this paper, we look at the default resolution procedure from a less dynamic but more endogenous,
economic equilibrium perspective, with offer and demand determined by clearing member strategies,
positions, and preferences. Our default resolution market costs arise from the perturbation of the market
equilibrium triggered by the default resolution procedure. To estimate these costs, one has to know
the values of the traded assets as well as the positions of all market participants, in both the pre- and
post-default markets. A classical method for valuing a derivative is to compute the expectation of its
discounted payoffs under an equivalent martingale measure. But in a realistic, incomplete market, this
strategy may not perform properly, because of the non-uniqueness of a pricing measure. An equilibrium
) or (1982),

approach may then be more appropriate. As surveyed in (
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the concept of competitive or Walras equilibrium in economics was first stated in deterministic and
static settings. ( ) extends it to a stochastic framework based on a sequence of market
future conditions, but with trading taking place only at time zero. ( , ) revisit the
approach in a multi-period and stochastic setting, well suited to the pricing of financial assets, financial
derivatives in particular, with inherently uncertain future cash flows. We use a Radner equilibrium
approach to discover prices and reallocate a defaulted derivative portfolio among trading participants,
under two (main) possible specifications: either the CCP hedges the portfolio by trading on an exchange,
or it liquidates the portfolio on an exchange. The ensuing costs are determined by comparing pre- and
post-default Radner equilibria. This is done in a one-period specification of the discrete-time Radner
equilibrium approach of ( ). Though the application of Radner
equilibrium in static and dynamic problems is not new, using it to estimate CCP close-out costs appears
to be a novel approach.

On top of hedging and liquidation, there is a third vertex to the triangle of the possible close-out
procedures, namely auctions. Hedging and liquidation are driven by equilibria between the agents,
whereby the market decides endogenously the optimal prices and asset allocation. Auctioning, instead,
is of a game theoretical nature. Actual default resolution procedures are in fact a combination of the
three, with implications not only in terms of price impact liquidity risk as emphasized in the above, but
also of counterparty credit risk, the way addressed in the last section of the paper.

Outline

Section §2 provides our Radner equilibrium market model. Section §3 introduces the related compara-
tive statics approach for the analysis of the market costs of hedging or liquidating a defaulted clearing
member portfolio, either on the exchange of the CCP of the defaulter, or on an external exchange. Sec-
tions §4 and §5 detail these costs in the case of entropic and expected shortfall risk measures. Section
§6 analyzes the additional impact of counterparty credit risk, based on XVA specifications detailed in
Section A.

Standing notation

Given vectors z € R™ and iy € R™ (understood as column matrices), 2 ' is the transpose of = and (z,y)
is the vector of R™*" formed by stacking x above y. We denote by N,,(u, '), the n-variate Gaussian
distribution with mean y and covariance matrix I', and by ¢ and ®, the standard univariate Gaussian
probability density and cumulative density functions; by &, (i, I', ), the n-variate elliptical distribution
with mean p, covariance matrix I', and characteristic generator function v, by 7, (i, I', v), the n-variate
Student ¢-distribution of degree of freedom v with mean px and covariance matrix I', and by ¢, and
T,, the standard univariate Student ¢ probability density and cumulative density functions of degree
v. Throughout the paper, (2, .4,P) denotes a fixed probability space, with expectation, variance and
covariance operators [, Var and Cov; L and L' respectively denote the space of all the measurable
and integrable random variables (identified in the P almost sure sense), X is a linear subspace of L!
containing the constants. Capital letters denote random vectors with components in X. Bold letters refer
to the solution of a Radner equilibrium.
For a function f: R™ — R, its directional derivative at = in the direction of y is defined as
[z +ey) — f(=)

D, f(x) = lim : ; (1)
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for f convex, a point y € R™ is said to be a subgradient of f at x, denoted y € Jf(z), if
f2) 2 f@) +y' (z—2), z€R™ )
the convex conjugate f* of f is defined as
) =swp{y'z— f(z);z €R™}, yeR™ 3)

Let f;: R™ — R be convex functions, for ¢ in a finite set £. The inf-convolution f of the f; is defined

f(x)zinf{Zfi(xi); Z%’:w}, z €R™. )

i€l i€EE

as

§2 Radner Equilibrium Market Model

We consider a one-period model of a financial exchange, with trading participants indexed by a finite
set E. A unitary position in each of the assets traded on the exchange pays a vector of random payoffs
P € R™ (with m > 1) at the terminal time 7. We assume that each participant 7 in E' is endowed with a
real valued random receivable R; (i.e. R; > 0 means a cash flow promised to the participant 7). For each
i € F, the participant i hedges® R; by entering a portfolio q; € R™ of traded assets. The corresponding
market loss of member 7 is

~Ri+q/(p—P), )
where p € R™ is the vector of prices of the traded assets at initial time: see Table 2, where

| Var(R;) cov;
i = [ cov; T ] ' ©)

unhedged market risk can generate significant regulatory capital requirements, rendering the contractual com-
mitments non viable for the trading participant ( , , Section MAR23, pp.
64 and 93).
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P equilibrium prices of the traded (hedging) assets

q; equilibrium positions of participant 7 in the traded (hedging) assets
p the vector E[P]

r the matrix Cov(P)

R; receivable to be hedged by the participant i € F

i the vector E[(R;, P)]
cov; the vector Cov(R;, P) = (Cov(R;, Py),...,Cov(R;, Py))

cov Y icE COVi

Iy the covariance matrix Cov((R;, P)), i.e. of the vector (R;, P)

Di risk measure of the participant %

0i risk-aversion parameter of an entropic risk measure of the participant ¢

0 the number (3,5 (1/0;)) 7"

Q; confidence level for an expected shortfall risk measure of the participant ¢

Table 2: Main notation relative to an exchange F.

For the monetary valuation of the risk of the participant ¢, we consider a law invariant risk measure
pi: ¥ — R monotonous, convex?, translation equivariant* in the sense that’, and normalized (pi(0) =
0). We want to determine the portfolios q; and the prices p endogenously as a Radner equilibrium
driven by the offer and demand of all the participants to the exchange:

Definition 1. A matrix of positions (q;);c g and a price vector p € R™ form a Radner equilibrium on
Eif
o (optimality condition relative to each market participant ¢ € E)

® (zero clearing condition)

> ai=0 ®)

el

O

Remark 1. Since R; is assumed to be exogenously given, the price of the corresponding receivable to
the participant ¢ is not part of the equilibrium. We say nothing on this price (assumed exogenously given
and in fact implicitly part of R; itself in our setup) in the paper, nor on the way it could be impacted (in
our setup it is simply not) by the instant default of a participant to the exchange. [

A Generic Results

For each trading participant ¢ in E, we consider the convex function r;: R™ — R defined as

ri(¢;) = pi(—Ri — ¢} P), ¢ € R™.

3in the sense of ( , Definition 2.24, p. 74).
“also known as translation invariance.
Ssee ( , Definition 2.2 (i), page 29) pi(L + m) = p;(L) + m holds for any L in X and

real constant m.
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By translation equivariance of p;, the member ¢ optimality condition (8) can be rewritten as

ri(q) > ri(a:) + (—p) (¢ — @), ¢ €R™,

i.e., by (2),
—p € 0ri(q;). 9
By ( , Theorem 23.5), this is in turn equivalent to
ri(a;) = —a; p — i (-p), (10)

where 77 is the convex conjugate (3) of ;. Note that

_qz—rp_’r:(_p) ST’L(QZ)7 QiaPERma (]])
with equality if and only if — p € 9r;(¢;), (12)
by ( , Theorem 23.5).

Lemma 1 and Theorems 2-3 below are variants, for a single period model but with unbounded
(R;, P) (as we want to endorse elliptical factor models later in the paper), of
( , Theorems 1 and 2). Radner equilibria admit the following dual characterization in
terms of the inf-convolution (4) r of the r;.

Lemma 1. A matrix of positions (q;)icg and a price vector p € R™ form a Radner equilibrium on E
if and only if

() —p € 9r(0),

(i) r(0) = >, cpri(qi), and

(iii) ZiEE q; = 0.

Proof. Let ((q;)ick, p) be a Radner equilibrium as per Definition 1. The zero clearing condition (8)

yields (iii). By ( , Theorem 16.4, page 145), the convex conjugate of the inf-convolution
of proper convex functions is the sum of the corresponding conjugates, i.e.

r*(-p) =) _ri(-p).
iCE
Summing the expression (10) across all ; and using (iii) gives
> rila;) =0—r*(-p) < r(0),
i€E
where the inequality holds by definition (3) of the convex conjugate of r. By definition of (0), the
above inequality becomes equality, i.e.

r(0) = —r*(=p) = >_ri(a).
icE
Hence (ii) holds and so does also (i), in view of the equivalence between (9) and (10), here applied to r
(instead of r; there).

Conversely, suppose that ((q;):cg, p) satisfies (1)—(iii). (iii) is the zero clearing condition (8),
whereas (i) implies via (10) applied to r that

r(0)=—r*(-p)=>_(~a/p— r{(-P))- (13)



By (11) and (13), —p ¢ 9r;(q;) for some i € E would imply that 7(0) < >, 5 7i(q;), contradicting
(i1). Hence (9), which is equivalent to the member ¢ optimality condition (8), holds for each ¢ € E.
Since the subgradient of a real valued convex function is non-empty, Lemma 1 implies that a Radner
equilibrium exists if and only if the inf-convolution r is attained at 0. It also implies that, whenever a
Radner equilibrium exists, the optimal price is unique if and only if 7 is differentiable at 0.

Theorem 2. If p; is sensitive to large losses, ie® limy_ oo pi(AL) = oo for all L € X such that
P[L > 0] > 0, i in E, then there exists a Radner equilibrium on E.

Proof. Let @ be the set of vector of positions (g;);c g satisfying the zero clearing condition, i.e.
Q= {qeRm‘E‘: ¢V =0k = 1,...,m}7

where b* is a vector in R™ Z| such that, forall j = 0, ..., |E| — 1, the k + jm entries of b* equal 1 and
all the other entries of b* are 0 . Note that @ is a non-empty closed convex polyhedral subset of R”/ZI,
Let 4 = E[P]. By ( , Theorem 3.3), ¢;' (1 — P) = 0 almost surely
holds or P[q," (x — P) > 0] > 0 holds, for any g; in R™. The closed proper convex function

R™EIS g = (g1, qe) Y pi(—Ri+ 4] (n—P)) €R (14)

i€E
is such that

inf B(q) = _ inf ri(qi).

2P0 = ot 3 e
In view of the comment preceding the statement of the theorem, it suffices to show that 8 attains its
minimum on Q. Let B = {q € R™FI: 5(q) < B(0)}, with recession cone 0T B = {y € R™Fl. p +
My € B,YA > 0,Vb € B}. Let 078 = {y € R™FEl. B0*(y) < 0} denote the recession cone of

3, where 307 is its recession function’. By ( , Theorem 8.7, page 70), 07 B = 07 3.
Since B is a closed convex set containing the origin, ( , Corollary 8.3.2, page 64) yields
0fB={yeR™Fl: \yec B vA>0} (15)

Lety = (y1,...,ym) € R™EI\ {0} (where each y; is in R™). (i) If P[y; (1 — P) > 0] > 0 holds
for some i € F, then, by the sensitivity to large losses condition on p;, S(Ay) goes to infinity as A goes
to infinity, which implies that y ¢ 07 B. (ii) If, instead, y,' (u — P) = 0 holds for all i € E, then
+y € 0% B hold by definitions (14) of 3, B and (15) of 0" B. In particular, for any y € R™FI\ {0}
such that y € 073, we have —y € 07 3. Hence, by ( , Corollary 8.6.1, page 69), every
direction of recession is a direction in which /3 is constant. Following ( , Theorem 27.3,
page 267), in either case (i) or (ii), 8 attains its minimum over ). [J

Remark 2. Let X be given as the Orlicz heart corresponding to the Young function 6: [0, c0) — [0, 00)
given by 0(t) = exp(t — 1) — exp(—1), i.e.

X ={Lec L’ Ef(c|L])] < o0, c>0} C L,

bsee ( , Section 2.3).
"the recession function B07 is the map defined on R™ P! as g0* (y) = inf {m €R: (y,m) € 0Fepi [3} ,

where epi 8 = {(q,n) ERMEl x R:p = g(q)}.
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where LC is the space of all real valued measurable random variables. An entropic risk measure of the
form, for some g; > 0,

pi(L) = ~ (Elexp(ail)]), LeX, (16)

K2

is sensitive to large losses ( s , Section 2.3). I

Regarding the uniqueness of an optimal solution:

Theorem 3. Lef ((q;)icr, P) be a Radner equilibrium on E.
(i) If r; is differentiable at q; for some i in F, then p is unique.
(ii) For any i € E, if r; is differentiable and strictly convex on R™ then q; is unique.

Proof. Let ((q;)icr, p) be optimal. If r; is differentiable at q;, then Lemma 1(i) together with
( , Theorems 23.2, p. 216 and 25.2, page 244) yield

D,ri(q;) =z (—p) < D,r(0), (17)

where D, 7;(q;) is the directional derivative (1) of r; at g, along x. Take §; = q; + ex and §; = q; for
all j # 4. By definition (4) of the inf-convolution,

rex) <Y (@) =Y rilay) +rilai + ex).

jeE j#i

This together with Lemma 1(ii) yields

— cpTi(d;) =7
D,r(0) = tim "D =) iy Zaen 5B 7Oy <o),
N0 € e\ 0 €
where the second inequality is due to (17). Hence = — D,r(0) is linear. Thus, by ( ,

Theorem 25.2, page 244), r is differentiable at 0 , i.e. 9r(0) is a singleton, which, in view of Lemma (1)
(>ii) implies (i). As for (ii), if r; is a strictly convex and differentiable on R™, then it is closed and proper.
Following ( , Corollary 26.3.1, page 254), Orf(—p) is a singleton and q; = Vr}(—p)
is unique, by (10). O

Remark 3. Let ((q;)icr,p) be optimal. Following ( , Proposition 2), if a risk
measure p; is differentiable® at —R; — qiTP for some ¢ in F, then r; is differentiable at q;, hence the
optimal price p is unique. U

B Results Specific to Entropic or Expected Shortfall Risk Measures

With explicit solutions and regulatory standards in view, from now on, p; is either an entropic or an
expected shortfall risk measure. In elliptical markets, entropic or coherent® risk measures lead to an-
alytical expressions for equilibria. We first consider the case of entropic p; and normally distributed
(R’ia P )

8 pi is differentiable at L € X if there exist a random variable W € X* (the dual space of X) such that (cf. (1))

lim pill+eY) =pill) _ gy y ez,
€ €

In this case, we write W = Vp;(L).
%e.g. expected shortfall.
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Proposition 4. Let (R;,P) ~ Npi1(ui,Ti), i in E, and T'° be invertible. If p;(L) =
%i In(Elexp(o;L)] for some ¢; > 0, i in E, then

q=I" (gcov — covi) ,1€FE, and p = pu— ocov, (18)
Qi

where 9 = (ZZGE L%) and cov = ), cov;, is a unique Radner equilibrium.
Proof. By Theorem 2 and Remark 2, there exists a Radner equilibrium. In view of (6),
—R; —q P~ N1(—E[R;] — q u, Var(R;) + 2q, cov; + q; T'q;). (19)

The moment generating function of a standard normal variate L is R > z +— Elexp(zL)] =
exp (2E[L] + Var(L)z?/2), hence p;(L) = E[L] 4 ¢;Var(L)/2. This and (19) yield

o;Var(R; 1
ri(g;) = —E[R)] —q; p+ # + 0,q; cov; + 591"];—1—‘(]1’ (20)
and
Vri(g) = —p+ oicovi + 0iT'q;, i€ E. 21

The optimality condition relative to the participant ¢ € F yields
—p = Vri(qi) = —p + gicovi + oil'q,

hence
(1
q=T Q—(,u —p) —cov; | . (22)

On the other hand, the clearing condition yields

11
> ai=0=T""(=(u—p)—cov),
i€E e
which is equivalent to

P = |4 — QCOV.

(22) in turn gives (18). U

We now turn to the case where each p; is an expected shortfall risk measure ( , ,
page 69)

1 1
pD) =ESu (L) = 1—— [ auDdu, Lex=1, 3)

for some 0 < a; < 1, where ¢, (L) is the left u-quantile of L.
Proposition 5. If (R;, P) ~ Nyuy1(ui, T;) and p; = ES,, for some 0 < o; < 1, i € FE, then there

exists a Radner equilibrium with a unique equilibrium price. If T'; is further positive definite, i € F,
then the Radner equilibrium is unique.

Proof. We divide the proof in three steps.

0gee Table 2.
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* Existence: For a univariate normally distributed L, by ( , Example 2.14, page 70),

-1
ESq( L] + /Var(L) ES,(Z) with Z ~ N1(0,1), ES,(Z) = w. This and (19) yield
ri(¢;) = —E[Ri] — ¢ u + ES,, \/Var ) +2q cov; + ¢/ Tq;, ¢ €R™. (24)
By ( , Corollary 8.5.2), the recession function of r; is given by

(ri0M)(y) = hm Ari(y/N) = —y Tu++yTy ESa,

Letqi, ..., q E| be vectors in R™ such that
> (ri0M) (@) <0 and > (ri07)(—gq) > 0,
IS i€EE
ie.
—p' (Z Qi> <> V@ Ta ESa,(Z) <p” (Z qz-) :
icE i€E icE
Thus ), ¢ # 0. By ( , Corollary 9.2.1, page 76), the inf-convolution of real valued

convex functions is a real valued convex function. Hence the inf-convolution r is attained on R™ and,
by Lemma 1, there exists a Radner equilibrium ((q;)ic g, P)-

* Unique price: We know that —R; — q;r P, i € FE, is a continuous random variable. By
( , Theorem 4.3 and Section 5.2), an expected shortfall is differentiable at continuous random vari-
ables. Therefore, by Remark 3, the optimal price p is unique.

* Unique portfolio: If T'; is positive definite, then,
(1,4:) "Tu(1,q:) = Var(R:) + 2¢, cov; + ¢ Tg; >0, ¢; € R™.

This and (24) implies that r; is differentiable such that

ES., (Z
Vrilg) = —n+ ——om B (cov, +Tq), g e R,
(1,q:) "Ti(1, )
Following ( , Theorem 2.14, page 47), the strict convexity of r; is equivalent

to
ri(y) > ri(@) + Vri(a) (v — @), @ #y

A simple computation reduces this first order condition to

VI a) TTi(L )] (L) (L y)) > (1a) Tl y), 4 # . 25)

If y # ¢;, then (1, y) is not colinear to (1, ¢;). Hence, by ( , Eqn. (2.49), page
79) applied with b = (1,¢;),d = T';(1,y), and B = T; (hence (1,¢;) = b # ¢cB~d = ¢(1, y) for any
constant c),

(1) Ta(1,¢)] [(1,9) TTu(1,9)] > [(17Qi)TFi(1vy)]2 holds for any ¢; # y.

This in turn yields (25). Hence by Theorem 3 there exists a unique equilibrium. [
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Remark 4. 1f Var(R;) > 0, cov; = 0, and I is invertible, then 2" I';z = 22Var(R;) + 22,2 cov; +
2TT2 > 0 holds for any z = (21,..., 2my1) € R™T1\ {0}, where 2 = (22, ..., 2zmy1). Hence T; is
positive definite as assumed in the last part of Proposition 5.

Instead, the positive definiteness of I'; is not guaranteed when Var(R;) = cov;rl"_lcovi, because
21T,z = 0 for z = (-1, Fflcovi). This is for instance the case when R; is in the span of P, i.e.
R; = a P+ b, for some constants a; € R™ and b; € R, whence cov; = I'a; and Var(R;) = a, ['a; =
cov; I teov;. O
Remark 5. An n-variate random vector L has an elliptical distribution written as L ~ &, (u, I, ¢) if its
characteristic function is expressed as

) 1
E[e‘ZTL} = exp(iz' ) (22TFZ> , z€eR™

for p = E[L],T" = Cov(L), and a function ¢: [0,00) — R such that —¢)'(0) = —1. As is well
known ( , ; , ), if L ~ &,(u,T,4) (or,
more specifically'!, 7,,(u, T, v)), thena ' L 4 a'pu+va'l'a Z, where Z ~ £(0,1,) (specifically,
71(0,1,v)). Hence, for any coherent risk measure p,

pla"L)y=a"p+ p(Z)VaTTla. (26)

Assuming (R;, P) ~ Epy1(ui, iy ) (e.g. Tmt1(pi, i, v)) with T'; positive definite, ¢ € E, the
above implies that

ri(q;) = —E[R;] — q;ru + pi(Z)\/Var(Ri) +2¢, cov; + ¢ T'q;. 27

The proof of Proposition 5 thus works for any law invariant and coherent risk measure p; differentiable
on the linear space spanned by the components of (R;, P), ¢ in E. O

§3 The Comparative Statics Approach for Default Resolution
Analysis

When a clearing member of a CCP defaults, its position is taken over by the CCP. The CCP should then
close the defaulter’s positions in a way that does not harm the other members or the CCP itself. As
outlined in ( s ), the CCP can settle the defaulter’s positions via
an auction organized by the CCP between the surviving members (and sometimes invited participants).
According to ( , , page 7), the chance of a successful auction is
increased by hedging the defaulted portfolio’s risks prior to the auction:

A CCP should establish a framework for its approach to hedging risks from a defaulted
participant’s portfolio prior to a default management auction to increase the chance of a
successful auction. [...] The goals of a CCP’s hedging strategy are generally to minimise
the CCP’s exposure to the defaulted participant’s portfolio and to decrease the overall risk
that the portfolio may pose to the CCP and the auction participants. Portfolios with less
risk exposure lessen the potential effects of market volatility on the portfolio [...] and time
dependency of valuations by auction participants.

A Student ¢-distribution is elliptical ( , ).
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A close-out procedure can also involve some liquidation on open markets. As different positions are
liquidated separately, hedging prior to liquidation would entail additional costs for liquidating the hedg-
ing side of the portfolio. The main default resolution strategies are thus liquidation versus hedging then
auctioning. As pointed out in ( ),

in cases where the position to be transferred is large in relation to market liquidity or
where a central market does not exist, auctions with the surviving agents as bidders is the
mechanism of choice.

In any case, the CCP deals with the losses incurred throughout the close-out period by using the collat-
eral of the defaulter, its own resources (skin in the game), and financial resources pooled between the
clearing members in the form of a default fund ( , ; R ; s ). The
CCP should assess the adequacy of these financial resources by a careful estimation of the close-out
costs of the defaulters’ positions, which is the focus of this paper.

Let an index d represent a clearing member of a CCP defaulting instantaneously at time 0'2. We
want to analyze and compare different close-out procedures, of the ‘hedging or not and liquidation or
auctioning’ types, for the CCP portfolio of member d. These strategies can be implemented on several
possible exchanges F, starting with the one of the CCP itself, denoted hereafter by D. For each (pre-
default) exchange F, we denote by E’ its advent in the wake of the instant default of d, depending on
the settlement procedure implemented by the CCP. We assume that the different exchanges E' trade the
same assets with terminal payoff P, possibly at different initial prices p (interpreted in this setup as
“time 0—", pre-default prices), reflecting different market equilibria. Hedging procedures involve the
CCP itself in the form of a new trading participant, represented for this purpose by a new index c (not
involved in any exchange E). We use similar notation for d and c as for participants ¢ of E in Section
§2 (see Table 2). Although other choices could be used without methodological change in what follows,
fault of suitable calibration data in this regard, we assume that any data other than p and q; in Table
2 are not affected by the instant default of d—with the only exception reflected in (35) below of R.,
which represents the post-default receivable!? of the hedging CCP due to the portfolio of the defaulted
member d taken over by the hedging CCP, whereas the pre-default receivable of the CCP is zero (a CCP
should not bear any positions, except for the ones inherited from defaulted market participants during
the close-out period of their portfolios).

The pair ((d});cr/, p’) relative to any post-default exchange E’ involved in the settlement of the
defaulted portfolio is derived using a Radner equilibrium in E’. Note that all the receivables and equi-
librium portfolios and prices implicitly depend on the corresponding exchange. Regarding prices, we
make this dependence explicit hereafter, denoting by p” a pre-default (“time 0—") equilibrium price on
E and by p'¥ a post-default (“time 0”) equilibrium price on E'.

A Price Impact

We define q; = 0,i € E'\ E, and Aq; = g}, — q;,% € E' U E, hence

Yooat+ Y Aai=) a+Y Ag=)Y d (28)

i€E'NE ISy i€EE E’ ek’

12Considering several instant defaulters would mainly mean replacing qq by >4 9a hereafter, see e.g. Remark
14. We refrain from doing so for parsimony of notation.
Bsee (42) below.
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If the CCP chooses to liquidate a portion qfi of q4 and hedge the remaining qZ = qq — qg, then
the incremental positions of the participants to any post-default exchange E’ can be split as Aq; =
Aq! + AqP?, where Aq! and Aq” are the increments implied by the liquidation and hedging legs of the
strategy (see e.g. Sections C-C)-with always in particular

Aq. =0, (29)

as a CCP does not take part as a participant to a liquidation. Since the amount demanded should be
equal to the amount supplied on both legs of the strategy, we have

Z Aql = qfi and Z Aqf = 0, hence Z Aq; = qil (30)

ieR’ i€k’ ek’

The first consequence of a default resolution strategy is then a liquidity cost

LC =) LCpg, 31)
E
where
LCr= Y. o/ —pP)+ > (Ad)T(p” - p'P) (32)
i€eE'NE i€R’
=Y (a4 +Ad) " (pF —p'*) (33)
icE’ LG,

(asq; = 0,i € E’\ E) corresponds to margin payments (like in futures markets) by market participants
at time O in response to the default settlement procedure of d, i.e. the price they have to pay for the
transition from the pre-default to the post-default exchanges.

As reflected in (32), it is only the contracts Aq! involved in the liquidation leg of the strategy, which
are old (“time 0—") contracts with the pre-default prices p¥, that deserve margin payments, while the
new (“time 0”) contracts Aq” involved in the hedging leg of the strategy are post-default contracts with
the new prices p’®. However, the following reformulation of LC in terms of the q; + Aq; = d
(instead of the q; + Aqé natively in (32)) is possible:

Lemma 6. On each exchange E,

LCg = Z q?(pE _ p/E) + Z Aq;F(pE _ p/E) — Z (q/i)T(pE _ p/E). (34)
i€E'NE 1€R’ i€EE’

Proof. By (30), 3, Aq! = 0. Hence (32) yields

LCp =Y (q; +Adl +Agl)  (pf — p'P),

1€EE’
where Aq! + Aq? = Aq;. O
B Funds Transfer Price
Let
Ap;=pi(— Ri + ()" (0" = P)) — pi( — LizcRi + g/ (p” — P)),i € E'. (35)
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Using (28) and Aq! + Aq? = Aq;, the post-default market loss of any trading participant i € E’ is

—R;+q; (b — P) +(Aq!) " (0" ~ P) + (Aq)) ' (p” — P)
pre-default market loss
-
=—R;+aq; (p” - P) + Aq/ (p"" — P) + (Aq;) (p” —p'")
== Ri+(q) (" - P) + LC;,

(36)

for LC; as per (32). Hence, by translation equivariance of g;, the post-default risk of participant i is
pi( = Ri+ (q;)" (p'" — P)) + LCi.

The risk incremental of participant i is therefore LC; + Ap;, i € E’. Accordingly, we assess the market
cost (MC) of a default resolution strategy by the funds transfer price

MC =) "MCg, where MCg =LCg + Y Ap;. (37)
E i€E’

If the CCP of an exchange D faces the default of a clearing member d, then this CCP can envision
different default resolution procedures, impacting possibly different exchanges E’ (starting with D’
itself), for the CCP portfolio q4 of the defaulter (in a pre-default equilibrium on D). For each considered
default resolution strategy, each of the impacted exchanges E’ (or their corresponding CCPs) would
compute its corresponding MC g and communicate it to the CCP of D . The ensuing MC (37) of the
strategy is the price that the markets would charge to the CCP of D, should the latter choose this strategy
for resolving q4. The CCP of D would then choose the most efficient strategy, i.e. the one minimizing
MC. This approach is inspired by a notion of Pareto optimality in financial markets, where numerous
exchanges (and trading participants themselves in Section §6) compete with one another.

C Examples

The pre-default equilibria ((q;);c &, p¥) involved in (37) are obtained by direct application of the results
of Section §2. We now detail the corresponding post-default Radner equilibria ((q’);cz/, p') in eight
reference cases (without post-default new invited participants other than the CCP itself in the hedging
cases, though; extra new invited participants will only be considered later in the paper). The member
optimality condition for the post-default market participant i € E’ is always of the form

pi( = Rit (@) (0" = P)) < pi( = Ritaf (b = F)), ¢ €R™. (38)

The clearing condition, instead, depends on the considered default resolution strategy.

The CCP fully liquidates on its own exchange

As a first default resolution alternative, the CCP may want to liquidate the defaulter’s position q4 on its
own exchange D. Then MCg = 0, E # D, and ZieD’:D\{d} Aqg; = qq. As ZieD\{d} qi+aqq =0,
we obtain a post-default equilibrium clearing condition
> q=0 (39)
ieD’=D\{d}

and
LC=LCp=0,MC=MCp= Y Ap;.
D/=D\{d}
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The CCP fully liquidates on another exchange

If the CCP liquidates q4 on some exchange E # d (hence E # D), then MCg = 0, E # E, D, and
Yicw—g Adi = da. As Y, q; = 0, the ensuing the post-default equilibrium clearing condition on
E’is

D, di=a (40)

i€E'=E

Remark 6. By change of variables z;, = q; — k;qq and R, = R; + kquP, for reals k; such that
> B k; = 1, the clearing condition (40) and the optimality condition (38) relative to the post-default
equilibrium ((q})icr, ™) become Y-, 1, z; = 0 and

pi( =R + (z;) " (p"® = P)) < pi(=Ri + 2 (p" = P)), z € R™.

On E/, we thus recover a zero clearing condition and member optimally conditions formally similar to
Definition 1.

On the exchange D of the CCP, we have ZieD,:D\ () Aq; = 0, whence the post-default clearing

condition
> di=-au (41)
ieD’=D\{d}
Therefore
MC = MCg + MCp,
where

MCe=q; (" -p")+ > Ap;, MCp=—q;e”-p")+ Y Ap:
) N————— .
LCg i€B/=E LCp 1ebr=D\{d}

Remark 7. By change of variable z, = Aq; and R, = R; + q/ P,i € D’ = D\ {d}, the clearing
condition (41) and optimality condition (38) relative to the post-default equilibrium ((q’);ep/, p'P)
become ), .y, z; = 0 and

pi( — R+ (z)" (™ = P)) <pi( - R+ 2z (P - P)), z e R™. O

The CCP fully hedges on its own exchange

If qq is not instantaneously liquidated upon the default of member d at time 0, then the CCP c of d
endorses at time O the receivable
Re = qq (P —p"), (42)

which it can hedge by holding on its own exchange D a portfolio Ag, minimizing some risk measure
pc. The corresponding member optimality condition (38) for the CCP ¢, playing the role of a new
post-default trading participant, is

pe (ag (PP = P)+ (d) " (0P = P)) < pc (ag (P° = P)+¢. (PP —P)), q €R:  (43)

In this case, MCg = 0, E' # D, and ZiED’:(D\{d})U{c} Aq; = 0 (as, in this hedging case, on the post-
default market D', the amount demanded must be equal to the amount supplied). Since ;.\ 14y Ai =
—qq and Aql, = g, we obtain a post-default equilibrium clearing condition

> q; = —qd (44)

i€D’=(D\{d})U{c}
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and

MC = MCp = —q, (p° — pP) + Z Ap;.
—_———— .
I~ ieD/=(D\{d})U{c}

Remark 8. Much like in Remark 7, by change of variable z; = Aq;,i € (D \ {d}) U {c}, and R} =
R;+q] P,i € D\{d}) and R, = R.., the clearing condition (44) relative to the post-default equilibrium
((d})iep’, p'P) can be converted to a zero clearing condition as per Definition 1 on D’. [J

The CCP fully hedges on another exchange

The considered CCP of d can also hedge the portfolio g4 that it inherit from member d (if not liquidated)
by trading on an exchange E 3 d, in which case E’ = EU {c} and R, = q, (P — pP) (arising from
the pre-default Radner equilibrium on the exchange D of the CCP). In this case, MCg = 0, £ # E, D,
and )o@ {c} Aq; = 0 (the amount demanded must be equal to the amount supplied on the post-
default exchange E’ where the hedge is implemented). As » ;. q; = 0 and Aq, = q_, the ensuing
post-default equilibrium clearing condition on E' is

> q =0 (45)

i€E/=EU{c}

The corresponding member optimality condition (38) for the CCP c is
pe (ag (P = P)+ (@) " (p"" = P)) < pe (s (P° = P) + ¢ (P = P)), qc € R™

On the own exchange D of the CCP, we have }_,.p/_p\ 14y A4 = 0, whence the post-default
clearing condition
> di=-au (46)
i€D’=D\{d}
Therefore MC = MCg + MCp, where

MCp=_0_+ Y. Ap, MCp=-q;(p”-p")+ > Ap:.
LCs  E/=EU{c} s D’=D\{d}
Remark 9. As in Remark 7 again, by change of variable z; = Aq; and R, = R; + qZTP, i€ D\ {d},

the clearing condition (46) relative to the post-default equilibrium ((q’);cp/, p’®) can be converted to a
zero clearing condition as per Definition 1 on D’. O

The CCP fully replicates on its own exchange

By replication, we refer to a default resolution strategy whereby the CCP c replicates the portfolio
qq (if not liquidated) that the CCP inherits from d by mirroring position q, = —qg on its own ex-
change D. In this case MCp = 0,F # D, and we have D’ = (D \ {d}) U {¢},Aq. = —qq (in
the replication case, the only admissible trading strategy for c as a post-default trading participant is
—qa), Ape = pe (q;—(pD - P)—q,(p® - P)) = q, (PP — p'P). On the post-default exchange
D’ where the hedge is implemented, the amount demanded must be equal to the amount supplied i.e.
ZieD,:(D\ {d)u{c} Agq; = 0, whence the post-default clearing condition

4= Y  d+ q =-qa 47)
1€D’=(D\{d})U{c} 1€D’=D\{d} —qu
0
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Therefore

MC=MCp =—-q; (P —pP)+ D> Api+ Ap. = Y Ap;
LC=LCp i€D\{d} a] (pP—p'P) ieD\{d}

The market cost is the same as in the liquidation case of C (note that the embedded post-default Radner
equilibria are the same), but its split between LC and Zl Y Ap; is different, see Table 3.

Remark 10. As in Remark 7, by change of variable z; = Aq;,i € (D \ {d}) U {c}, and R, =
R; +q/ P,i € D\ {d}), R. = R., the clearing condition (47) relative to the post-default equilibrium
((d})ien’, p'P) can be converted to a zero clearing condition as per Definition 1 on D’. O

The CCP fully replicates on another exchange

Alternatively, the considered CCP of d can replicate the portfolio qq4 (if not liquidated) that it inherits
from d by mirroring positions g/, = —qq on an external exchange E % d, hence E' = E U {c}. As
in Section C, replication means that the only admissible trading strategy for the post-default trading
participant ¢ is —qq. In this case, MCp = 0,E # E,D, and } r/_p (.} Aq; = 0 (the amount
demanded must be equal to the amount supplied on the post-default exchange E’ where the hedge is
implemented), » ., q; = 0. The ensuing post-default clearing condition on E' is

>, di=) di+a. =0
i€E'=EU{c} i€E ey
dd

We also have Ap, = pe (da(pD —P)—q(p" - P)) =q, (p? - p'").
On the own exchange D of the CCP, we have }_,.pp,_p\ (43 Aq; = 0, whence the post-default
clearing condition
> di=-aqu

ieD’=D\{d}
Therefore MC = MCg + MCp, where

MCg=_0 + Z Ap;+Ap. and MCp = —q, (p° —pP) + Z Ap;.
LCy i€E oo ieD’=D\{d}

Remark 11. As in Remark 7, by change of variable z; = Aq; and R, = R; + q, P,i € D\ {d}), we
recover member optimally and zero clearing conditions as per Definition 1 on D’. (J

The CCP partially liquidates and hedges on its own exchange

The CCP can also liquidate a portion qfi of the defaulted position q4 and hedge the remaining qZ =dqq—
q', on its own exchange D. The amount demanded should be equal to the amount supplied on each leg of

the strategy, hence Zz’eD\{d} Aq! = g, and ZiE(D\{d})Uc AqP = 0, thus ZiE(D\{d})UC Aq; = 4},
AS D iep\ {4} 9 = —Qd, the ensuing post-default clearing condition on D’ is

> q; = —qj, (48)

i€D’'=(D\{d})U{c}
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We assume that both liquidation and hedging happen simultaneously at the same price p’®. Hence each
trading participant on the post-default market D’ has a single member optimality condition (38) (with,
in particular, R. = (q?) " (P — pP)). Then

MC = MCp = —(q}) " (p” — pP) + > Ap;.
Tooron ieD/=(D\{d})U{e}

Remark 12. By change of variables z; = g} + kiqg and R, = R; — ki(qZ)TP, for reals k; such that
Zi eD’ k; = 1, the clearing condition (48) and the optimality conditions (38) relative to the post-default
equilibrium ((q})icp’, p'P) respectively become Y, 1, z; = 0 and

pi(=R; + (2)" (0" = P)) < pi(~R; + 2 (p” = P)), z € R™. O

The CCP partially liquidates and hedges on another exchange

The CCP can also liquidate a portion qil of the defaulted position q4 and hedge the remaining qg =
qQa — qél on another exchange E 2 d. In this case, MCg = 0, E # E, D. Since the amount demanded
should be equal to the amount supplied on each leg of the strategy, we have . . Aql = qld and
>icw Aql = 0, hence Y, Aq; = ql). As Y,z q; = 0and g, = 0, the ensuing post-default
equilibrium clearing condition on E' is
Y di=d (49)
i€E’
We assume that both liquidation and hedging happen simultaneously on the exchange E with the same
price p’¥. Hence each trading participant on the post-default market E’ has a single member optimality
condition (38) (with, in particular, R. = (q/) " (P — pP)).
Regarding the own exchange of the CCP, the post-default equilibrium clearing condition on D is

> di=-a (50)

ieD/=D\ {d}
Hence MC = MCg + MCp, where
MCg = (ay)" (" —p®)+ Y Api, MCp=—q;(p" -p")+ Y. Ap:
—_— — ———
LCOg E'=EU{c} LCo D’=D\{d}

Remark 13. Similarly to Remarks 6 and 7, by change of variables, the clearing conditions (49) and
(50) relative to the post-default equilibria ((q});cr/, ') and ((q})iep’, P'P)
clearing conditions on the exchanges E’ and D’. [

can be converted to zero
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LC Z Z Ap;

E i€FE’
1. 0 > Api
ieD\{d}
2. —q)(p”-pP)+q](PF - p") > Api+ ) Ap
ieD\{d} i€k
3. —q) (p? - pP) > Ap
ie(D\{ahu{c}
4 —a; (P —p") o Api+ > Ap
1€D\{d} 1€EU{c}
5. —q, (pP? - p™) > Ap;with Ap. = q (p - pP)
ie(D\{d})Ufc)
6. —q; (pP? - p™) > Api+ Y Ap;with Ap. = q] (pP — p®)
1€D\{d} 1€EU{c}
7. —(d4)"(pP - pP) Y Ap
ie(D\{d})Ufc}
8. —q)(P” —pP)+(d})"(p" - p") S Api+ > Ap
1€D\{d} i€eBEU{c}

Table 3: Decomposition of the market costs in the eight examples of Section C.

In Sections §4-§5, we provide explicit or numerical solutions regarding the market cost of default
resolutions on D, hence

LC=LCp =Y (¢) (p° —p""),  MC=MCp=LCp+ Y Ap;. 1)
ieD’ ieD’

By translation equivariance of the p;, (35) yields

Ap; =1i(d}) — Lizeri(a:) + (qf) 'p° —q pP, i € D".

A further computation based on (51) then yields
MC =MCp = > (Aq;) 'p° + > (ri(d)) — Lizeri(a)). (52)

€D’ €D’
§4 Market Cost: the Case of Entropic Risk Measures

Throughout this section, we assume that the risk preference of each trading participant 7 in D U D’ is an
entropic risk measure of the form

pi(L) = l In(E[exp(o;L)]), for some g; > 0. (53)

(2

We also assume that each (R;, P) is jointly normal, so that r;(g;) is given by (20).

A Liquidation on D

Proposition 7. Let (R;, P) ~ Nypt1(pi, 1), @ € DUD, and T be invertible. If the CCP liquidates
the defaulter position qq on its own exchange D, then

LCp =0 and (54)
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1 T 1
MCp = ~d'qjTqq — ¢ (F’l Z L cov— COVj) (cov’ + ffqd)ﬁ— (55)
2 ep\p % 2
j

ie%:\D (F—l(gcov — gicovi))T (covi + %Fq;), (56)
where o' = (ZieD, i)_l.

Proof. By the clearing condition EieD, q; = 0 (established like (39)), (51) yields LCp =
e (@) T (PP — p’®) = 0. Letting D and D’ successively play the role of E in Proposition 4,
the pre-default and the post-default equilibrium are uniquely given by

q=I" (Ecov — covi), ieD; pP = [ — ocov, 57
i
and
Q/
q=T" (—cov' - covi>, ieD; pP =p—ocov, (58)
9i

-1 —

where o = (ZZED gi) ,cov =) . pcovy, ¢ = (ZZED/ gi) ,cov' = 3.y covy. From (20),
we obtain

1
ri(d}) —ri(a;) = —Ag] p+ 0;Aq; |:COV2' + F(Qz‘ + §Aqi)j|7 ieD. (59)

As also ), .y, Aq; = qgq holds in a liquidation setup and since q; = 0 for each trading participant
i € D'\ D, (52) yields

MCo = af (" ) + 3 o) eovi P (a + 380,
ieD’

= —oq, cov + ZgD:, 0i(Aq;) " {covi + F(qi + %Aqi)} , (60)

by the second identity in (57).
To compute Aq; therein, note that

cov’ = cov — covy + Z cov,; = ﬁcov + (1 — £)cov — COVg + Z Ccov;

ieD’\D 0d Qd ieD’\D
-7 4 4
=I'qq + —cov — Z —COV — COVj |,
¢ ieD’\D Qi

by the first identity in (57) and the fact that ; = ¢ — -~ + 3=, cpnp o~ This implies

o'cov’ = o'T'qq + ocov — o Z (gcov — covi). (61)
ieD’\D Qi

The definition of Aq;, (57), (58), and (61) yield

~ {;qd — LD Yy (Leov — covy) i €D\ {d}
o

62
13 jepnp (geov —covj) + T (Leov —cov;) i €D'\D. (62)

As ZieD\{d} q; = —qq and ZiED/ Aq; = qq, substituting (62) into (60) yields

132



MCp = —pq, cov + [qud — Tt Z (ﬁcov - COVj>:| ! (cov' — }qu)+
jepnp % 2
T 1
Z (F_l(gcov - QiCOVi)) (COVi + ifq;),
i€D'\D
whence the expression for MCyp in (54) . O

Remark 14. To cope with the case of several instant defaulters d at time 0, one just needs to replace qg,
covgand 2 by 3>, da, >, covg and 3, 2 in Proposition 7 and its proof. [J

Remark 15. If the CCP liquidates the defaulter’s position among the surviving members, i.e. for D'\D =
& in the above, then Proposition 7 yields

1
MCp = ;¢'ayTau > 0.

Using (57), (59), and (61), we obtain p’® = pP — o'I'qq. Moreover, (62) yields Aq; = %qd, S
D\ {d}. In the case m = 1 for simplicity, the reason why MC > 0 when the CCP liquidates among the
surviving member can thus be explained as follows. If g4 > 0, then the CCP replaces the defaulter’s
contract with each surviving member by selling at a “fire sales” price p’® < pP. If q4 < 0, then the
CCP buys from each surviving member at a “dear” price p’® > pP. In both cases, there is a market
cost. J

Example 16. LetD = {1,...,15},d = {15}, D'\ D =0, 9; = 1, m = 1 and (R;, P) ~ Na(u;, L),
i € D . Suppose cov; = c;04/Var(R;), where 0> = Var(P), ¢; = (—1)""10.8 (the correlation
coefficient between R; and P), and Var(R;) = 0.09i2, i € D. Fix o = 0.2. The corresponding pre-
and post-default optimal positions computed from (57) and (58) are given by Table 4.

CM; 1 2 3 4 5 6 7 8
cov; 0.05 —-0.10 0.14 —-0.19 0.24 —-0.29 034 —0.38
Qi —-0.56  3.04 —2.96 5.44 —5.36 7.84 —7.76  10.24
q —1.80 1.80 —-4.20  4.20 —-6.60  6.60 —-9.00 9.00
CM; 9 10 11 12 13 14 15

Cov; 0.43 —-0.48  0.53 —-0.58  0.62 —-0.67  0.72

Qi —10.16 12.64 —-12.56 15.04 —-14.96 1744 —17.36

q, —-11.40 11.40 -—-13.80 13.80 —-16.20 16.20

Table 4: Pre- and post-default optimal positions of each clearing member ¢ (CM;) when the
CCP liquidates g4 on its own exchange in the entropic case.

Note that each q; or q} is positive (negative) provided cov; is negative (positive) (here and again in
Table 7 below), in line with the hedging feature of the exchange. For 1 = 2, Proposition 7 and its proof
yield pP = 1.97, p’D = 2.02, and MCp = 0.43 (with LCp = 0 as per the first line in Table 3). [

As it can be seen from the analytical expressions (57)-(58) and Table 4, the covariance matrices
T;,i € DUD/, are the major driving factors for portfolio and price changes. But the number and the
risk preferences of the trading participants can also significantly affect these optimal quantities and the
market cost:
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Example 17. LetD = {1,...,[D| =n + 1},d = {n+ 1}, o; = 0. and (R;, P) ~ Na(u;, ;). i € D.
Suppose cov; =0, i € {1,...,n— 1}, and cov,, = —cov, 1 = 4. We consider two cases.
(i) D'\ D = @. By (57) and (58), the pre- and post-default portfolios are then given by

0 1= n—1 .
’ o ’ 2 i=1,...,n—1
_ 1) _ d ! _ no2? 9 ’
qi - 52 1=mn, an q’L - (n—1)§ z—n

The pre- and post-default prices are given by

010
p°’=p and pP=p-=—.

A further computation based on (54) yields

N
MC =2 () :
2n \ o
which decreases to 0 as the number n of surviving members to co.

(ii) D’ \ D = {n + 2} with cov,,1o = §’. In this case, the pre-default equilibrium is the same as in case
(i), while the post-default equilibrium is given by

5+38’

, 1=1,...,n—1,
o - S as i ad  pP—p 20+
7 (Tg__f_(15252a ' Y Tl+1 .
W7 Z:n+2

A further computation based on (54) yields

B 20162 4+2018'5 — 01(8")%n

Me 202(n+ 1) ’

the sign of which depends on the value of the parameters. [

B Hedging on D

We now turn to the “hedging on own exchange D" case of Section C, but with possibly new participants
beyond the CCP cin D'.

Proposition 8. Ler (R;, P) ~ Nyi1(pi, 1), ¢ € DUD, with invertible covariance matrix T of P.
When the CCP hedges the defaulter position qq on its own exchange D, then

™), (63)
o.Var(R,)
2

LCp = —qq (p° - p

MCp = > oi(Aay)T [cov; + T (a; + %Aqi)} +
€D’

~E[R]), (64

-1
where o' = (ZZED, Qi) . In the absence of new participants (other than the CCP itself ¢) to D/,

20 / /
MC = Q(Qifc)covj—r*lcov + gq;ll—FQd - %QZJ—CO‘“ (65)
20 2 Ce
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Proof. By the clearing condition EieD, d; = —qq (established like (44)), (51) yields LCp =
Yien (@) T (PP — p'P) = —q (PP — p'P). Applying Proposition 4 to E = D, the pre-default
equilibrium is uniquely given by (57). As for the post-default equilibrium, if the CCP hedges on D,
then, in view of Remark 8, introducing the changed variable z;, = q — q; and R} = R; + q, P yields

ri(z) == pi(—R; — 2/ P) = pi(~Ri — (zi + ;) ' P), €D

Following the proof of Proposition 4 with r; here in the role of r; there, we obtain a unique post-default
equilibrium

/ /
q,=T" (gcov/ — covl-> - Q—qd, ieD, and p'P =pu—ocov + o Tqa. (66)
9; Qi

Hence, by (20),
1
ri(a;) = ri(ai) = A p+ 0i(Aay) " [eovi + T(a; + 5Aq)], €D

This and ), ,, Aq; = 0 reduce (52) to (63).
In the absence of new participants other than the CCP itself to D’, (57) and (66) yield

il’_l(g’cov’ — ocov) — g—’_qd i € D\ {d},
N T

Ar-1gcov —qu — & i=c

ot S a1 — %qq :

One can check that the value of ¢’cov’ given by (61) also holds true for the hedging case. Hence, using
o'cov’ given by (61) and cov, = I'qq, we obtain

Aqi = {gr_l(rqd — feov), i €D\ {d}.

Q—/F*(qu - g—gccov) + ilﬂflcov —qq, i=c.

(67)
Qi
Since R. = q (P — pP), we have Var(R.) = q, I'qq and E[R.] = oq cov. Further computations
using Aq; given by (67) reduce (63) to (65). [
Example 18. In the “CCP hedging on its own exchange” case, let D = {1,...,15},d = {15},D’'\D =
{c}, 0i = 1 = g, and (R;, P) ~ Na(u;,T;) with cov; = oc;/Var(R;), 0 = 0.2, ¢; = (—1)1710.8,
and Var(R;) = 0.09:2, i € D. The corresponding pre- and post-default optimal positions computed
from (57) and (66) are given in Table 5.
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CM; 1 2 3 4 5) 6 7 8
cov; 0.05 -0.10 0.14 -0.19 0.24 -0.29  0.34 —0.38

q; —0.56 3.04 —2.96 5.44 —5.36 7.84 —7.76  10.24
q; —1.76 1.84 —4.16 4.24 —6.56 6.64 —8.96 9.04
CM; 9 10 11 12 13 14 15 ¢
cov; 0.43 —0.48 0.53 —0.58 0.62 —-0.67  0.72 —0.69
Qi —-10.16 12.64 —-12.56 15.04 —-14.96 1744 —17.36

q —11.36 11.44 -13.76 13.84 —16.16 16.24 16.80

Table 5: Pre- and post-default optimal positions when the CCP hedges on its own exchange D
with D’ \ D = () in the entropic case.

For 1 = 2, Proposition 8 and its proof yield p® = 1.97,p’® = 2.02, and MCp = 0.42 (with, by the
third line in Table 3, LCp = —0.83). [J

Table 6 displays the impacts of the default resolution of d in terms of LC; and Ap;,i € D'. As
can be seen from the table, the impact of the default resolution on the Ap; is almost the same in the
liquidation and hedging cases, whereas its impact on the LC,; is significantly different in the two cases.

cM; 1 2 3 4 5 6 7 8
Licuidatiog LCi 009 =009 021 —021 033 —0.33 045 —045
q Ap; —006 01 —018 024 —030 036 —042 0.48
Hedein LC;, 003 —015 014 —026 026 —038 037 —0.49
EME  Ap, 006 012 —017 023 -029 035 -040 0.46
CM; 9 10 11 12 13 14 c
Licuidatiog LCi 056 —056  0.68  —0.68 0.80 —0.80
4 Ap; —053 060 —065 072 —0.77 0.83
. LC;, 049 —061 0.60 -072 072 -084 0
Hedging

Ap; —-052 058 —-0.63 069 —-0.75 0.81 0.83

Table 6: Impacts of the default resolution on the LC; and Ap; in the liquidation and hedging
cases in the entropic risk measure examples 16-18.

§5 Market Cost: the Case of Expected Shortfall

Throughout this section, we assume that the risk preferences of each market participant is an expected
shortfall ES,,, as per (23); each vector (R;, P) ~ &u11(pi, i, 1) (or, sometimes, a more specific
Tr+1 (i, T, v;)); the CCP only operates on its own exchange D. Hence MC = MCp as in (52), with,
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by (26),

ri(a:) = ~E[Ri] — ¢ j1+ BSo, (Z:)y/ Var(Ry) + 24 cov; + ¢/ Tg; (68)
where Z; ~ 51(0, ].,’(/J)(OI' Zy ~ 7-1(0, 1, l/i))7 ieDUD. (69)

A Liquidation on D

Let us first consider the liquidation case of Section C, but with possibly new participants in D’. If
(R;, P) ~ Emy1(pi, Ty, 90) with T; positive definite, ¢ € D U D', then, by Proposition 5, there exists a
unique pre-default Radner equilibrium ((q;)sep, pP). Following (9) and (27), the pre-default member
1 € D optimality condition yields

ESa,(Z)

D ,
P =u— cov; +I'q;), ©€D. (70)
VVar(R;) +2q/ cov; + q/ Tq ( )
The zero clearing condition and (70) imply
>iep @i =0
ESa, (Z) Var(R;)+2q, covi+q, I'q; . (71)

55.2) \| Var(R)+2q coviTa Tar (covy +'q1) —cov; —T'q; =0, i€D.

Therefore, computing the optimal position is equivalent to finding the root of a vector function from
R™Pl into R™IPI. Likewise, the post-default optimal positions solve

Yien € =0
ESa, (2) \/Var(Ri)+2(QQ)TCOW+(Q§)TF‘1§ 1D 72

/ ; — / =
ES., (2) Var(R1)+2q)  covi+q, T, (covi +I'qy) — cov; I'q; =0,

and the post-default price is equal to

ES.,(Z;)

cov; +I'q)), ie€D.
\/Vw1304-%qDT“Wi+(qDTFq§( )

PP =p-

In the remainder of this subsection, we assume that m = 1, a; = 0.975 for each market participant,
uw=2,and o = 0.2.
Example 19 (Multivariate normal). Let D = {1,...,15},d = {15}, D’\D =0, o; = 1, (R;, P) ~
Na(pi, Ty), cov; = cioy/Var(R;) with ¢; = (—1)"710.8, and Var(R;) = 0.09i, i € D. Solving
(71)-(72) yields the pre- and post-default optimal positions displayed in Table 7.
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CM; 1 2 3 4 5) 6 7 8
cov; 0.05 -0.10 014 -019 024 =029 034 —-0.38

Qi —1.12 2.56 —3.36 5.12 —5.60 7.68 —7.84 10.24
q; —1.28 2.24 —3.84 4.48 —6.40 6.72 —8.96 8.96
CM; 9 10 11 12 13 14 15

Ccov; 0.43 —0.48 0.53 —0.58 0.62 —-0.67  0.72

qi —10.08 12.80 —-12.32 1536 —14.56 17.92 —16.80

q —11.52 11.20 -—-14.08 13.44 —-16.64 15.68

Table 7: Pre- and post-default optimal positions when the CCP liquidates on its own exchange
D with D’ \ D = () in the expected shortfall case.

The above results also yield p® = 1.96, p’® = 2.04, and MCp = 0.69 (with LC = 0 as per the first
line in Table 3). (I

Example 20 (Multivariate Student ¢). Reconsider Example 19 but for (R;, P) ~ Tz(us, I's,v;) with
vi = v =25,i€D. (68) yields

ri(¢;) = —E[R;] — q:u + ES,, (Z)\/Var(Ri) +2g,' cov; + ¢/ Tq;
with Z ~ 71(0,1,v), ¢ € D.

By ( ,  Example 2.15, page 71), we obtain ES,,(Z) =
B tV(le(ai))[u+(T;1(a))2}
v (1—a)(v—1)

given by Table 7. The above result also yield p® = 1.94,p® = 2.06, and MCp = 1.06 (with

LCp = 0 as per the first line in Table 3). O]

. By inspection, q and q’ are the same as in Example 19,

B Hedging on D

We now turn to the “hedging on own exchange D" case of Section C, but with possibly new participants
beyond the CCP ¢ in D’. Let (R;, P) ~ Epmy1(wi, i, 1) with T'; positive definite, for each i € D U
(D'\ {c}). By Proposition 5, there exists a unique pre-default Radner equilibrium ((q;);ep, p*), which
can be computed by (70) and (71). Since R. = q; (P —pP), letting z = (21, 29, . . -, Zms1) = (21, 2),
we obtain

E{eiZT(RC’P)} = E[ei((zlqd+2)Tpleq;pD)] = exp(i 2| pe )b (;ZTFCZ> , z€R™TL

as (2194 + 2) ' P — 219, p° ~ &1( 27 pie, zTFCz,w). Hence (Rc, P) ~ Epnii1(pte, T, ). However,
as R. is in the span of P, I'. is not positive definite (see Remark 4). To nevertheless ensure a unique
post-default equilibrium (beyond the setup of Proposition 5), we assume that D'\ {c} # @. By Theorem
3, we have a unique post-default price p’® and a unique post-default portfolio q},i € D"\ {c}. Hence
by the post-default clearing condition, we also have a unique post-default position .

Letting R, = R; + q; P play the role of R; in (24), we obtain
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ri(2) == ES,, (=R, — 2] P)

=-E[R] — (zi +a) n+ ESai(Z)\/(l,zi +q;)"Ti(1,2+q;), ieD

with Z ~ &1 (0, 1,%). In view of Remark 8, by change of variable z, = g} —q;, the proof of Proposition
5 shows that, for s € D’ \ {c}, r} is differentiable and strictly convex with

V(1,2 + ;) TTi(1, 2, + q;)
ES,, (Z)
\/Var(R,;) +2(q}) Tcov,; + (q}) 'T'q}

—pP =Vrl(z) = —pu+ (cov; +T'z; +T'q;)

(cov; +I'q}) .

For the CCP, the member c optimality condition gives —p'P € 9r’.(z..) = 9r’(d.), i.e. (r.)*(—p'P) =
—q."p® — 7.(q.). Hence computing the optimal post-default position reduces to the root-finding
problem

Yien i +da =0

ESa, (Z) [Var(R;)4+2(q}) T covi+(q;) "I'q; o .
., (2) \/ Var(R1)+2d; | covi+q; ' I'd} (covy +Tay) —covi =I'g; =0, 7 €D\ {c}  (73)

ri(ql) + . p® + (rl)*(—p®) = 0.

Example 21. In the “hedging on own exchange D" case with D’ \ D = {c} (as per Section C) and
expected shortfall risk measures, let D = {1,...,15},d = {15}, a; = 0.975 and (R;, P) ~ Na(p4, 1)
(so m = 1) with cov; = ac;y/Var(R;), 0 = 0.2, ¢; = (—1)1710.8, and Var(R;) = 0.09i%, i € D. The
corresponding pre- and post-default optimal positions computed by (71) and (73) are given in Table 8.

CM; 1 2 3 4 5 6 7 8
cov; 0.05 -0.10 0.14 —-0.19 0.24 -0.29 0.34 —0.38
qi —-1.12 2.56 —3.36 5.12 —5.60 7.68 —7.84 10.24
q, —1.28 2.24 —-3.84 448 —-6.40  6.72 —8.96 8.96
CM; 9 10 11 12 13 14 15 c
cov; 0.43 —0.48 0.53 —0.58 0.62 —-0.67  0.72 —0.69
Qi —10.08 12.80 -12.32 1536 —14.56 17.92 —16.80

q, —-11.52 11.20 -14.08 13.44 -16.64 15.68 16.80

Table 8: Pre- and post-default optimal positions when the CCP hedges on its own exchange D
with D’ \ D = {c} in the expected shortfall case.

For ;1 = 2, we obtain pD = 1.96, p’D = 2.04, and MCp = 0.69 (with, by the third line in Table 3,
LCp =—-1.39).0

Table 9 is the expected shortfall analog of Table 6, with qualitatively similar conclusions.
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CM; 1 2 3 4 ) 6 7 8
LC; 011 -0.18 032 —-0.37 053 —056 0.74 —0.74

Liquidation " 510 020 —0.30 040 —050 0.60 —070 0.80
. LC; 009 -021 028 -042 046 -0.64 065 —0.85
Hedging
Ap; —010 020 —030 040 —050 0.60 —0.70 0.80
cM; 9 10 11 12 13 14 c
Liouidation LG 095 —0.93 1167 —111 138 —130
d Ap; —089 0.99 —1.09 119 —1.29 1.39
. LC; 084 -1.06 102 -1.27 121 —148 0
Hedging

Ap; —-0.89 099 —-1.09 119 —-1.29 1.39 1.39

Table 9: Impacts of the default resolution on the LC; and Ap; in the liquidation and hedging
cases in the expected shortfall examples 19-21.

§6 Credit Cost

The MC term (37) only addresses the impact of the considered default resolution strategy in terms of
mis-hedge of market risk. It remains to address its credit cost (CC), meant to account for counter-
party credit risk in a broad sense including the implications of this risk in terms of capital and funding
costs. There is in fact empirical evidence that credit risk could actually even dominate market risk
( , , Figure 65 page 67). Accordingly, the overall impact of a clearing
member default’s resolution strategy should not be assessed in terms of MC only, but of the following
all-inclusive funds transfer price:

FTP = MC + CC, (74)

which should thus supersede MC in the default resolution approach depicted in the last paragraph of
Section B.

A Structure of the Exchanges

As depicted in Figure 1, clearing member bank a’s trades with a CCP are divided into proprietary
or house trades q,, which are in effect hedges of the bank’s OTC bilateral trading exposures R, =
Zoe o R (where the non-cleared, end-clients o are “outside” of the exchange), and back-to-back hedges
qj of intermediated cleared client trades, through which non-member clients b (simple participants to
the exchange) can access the CCP clearing services.

Table 10 shows that both categories are really significant and should therefore be encompassed in
the analysis.
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Figure 1: Client clearing (qg transits from b to the CCP via a) versus bilateral hedging (a hedges
Ry =3 ,co RS by a proprietary trading position q, with the CCP).

Interest Rates Credit Equity Commodity

ISDA (USA) 90% 83% 26%
ESMA (Europe) 71% 41% 2% 1%

Table 10: Percentage of derivative notionals cleared by asset classes. See
( , pages 2 and 5) for US as of end of 2020 (no
figure for commodity derivatives), ( , page 16)
for European interest rates and credit as of end of 2020, and
( , page 18) for European equities.

Our next task is to clarify the nature of the Radner equilibrium on an exchange F accounting for
this distinction between proprietary and cleared deals. Let £ = AU B, with AN B = &, be the split
between the set A of those participants a to the exchange that are also clearing members of the CCP
and the set B of simple participants (non clearing members) b, having recourse to the clearing members
for intermediating trades with the CCP. Let g, be the proprietary position of member a and ¢ be the
position of client (simple participant to the exchange) b cleared by member a. As depicted in Figure 1,
the position g;' only transits from b to a and then passes from a to the CCP. Hence, even though the total
position of @ vis-a-vis the CCPis g, + ) ,c 5 43> as a holds —  °, _ ;5 ¢i vis-a-vis the clients it clears for,
the respective positions of a and b involved in the Radner equilibrium on E are g, and g = >, 4 4 -
Once ((q;)iee=AuB, PY) has been obtained as the solution of the corresponding Radner equilibrium
(7)-(8), the splits q; = Zae 4 9 (for each b € B) should follow in a second stage from pure credit risk
considerations. Similar comments apply “with -* everywhere" to any post-default Radner equilibrium
onE' =A"UB’.

B Credit Costs XVA Framework

The settlement of a CCP portfolio of a defaulted clearing member entails a mixture of market and/or
counterparty credit risk, which depends on the nature of this portfolio.

Figure 2 and the rows of Table 11 take up the distinction of Section A between house and intermedi-
ation deals. The intermediated client deals of a clearing member are perfectly (back-to-back) hedged by
the corresponding intermediating transactions (upper part of Figure 1). If a clearing member d defaults,
its client deals and their static hedge are ported as a package to a surviving clearing member (right panel
in Figure 2). As market risk is perfectly hedged throughout, such porting has no market impact, but
entails a transfer of counterparty credit risk that can be quantified by XVA costs as per
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( , Section 7) (second row in Table 11).
The columns of Table 11 distinguish delta-one financial assets, often rolled over time with no up-
front payment, such as repo market transactions, equity swaps and futures ( ,
, Section 4.2.1), from upfront derivative assets traded on a primary market, such as multi-legs
swaps and options. Delta-one rolled transactions have a nominal maturity that is infinite, but an ef-
fective maturity determined by the next reset date, i.e. typically less than one day, whence a very little
counterparty credit risk footprint (second column of Table 11), but possibly significant liquidation or
hedging costs. The market costs analysis of the above sections can be enough to deal with a portfolio of
delta-one assets. In the case of swaps or derivatives portfolios, however (first column of Table 11), the

XVA implications of a default resolution strategy also matter, which is the object of this section.

- -
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(a) case of a house portfolio (b) case of a client portfolio

Figure 2: Default management of the CCP portfolios of a defaulted clearing member d. With pre-
default positions in red dashed lines and post-default positions in red solid lines: (Leff) The receivable
Ry of d from its OTC bilateral counterparties (which are outside the exchange) is left aside in the
default resolution procedure, while the corresponding house (hedging) portfolio q4 is ported to the
surviving clearing member a; (Right) The client account q{f of the defaulted clearing member d, as well
as the corresponding (mirroring) receivable R from its cleared client b, are ported as a package to the
surviving clearing member a.

Notations as detailed below and in Sections §2-§3-A.

Assets swaps and options delta-one
Cleared wap p ]

centrally via house account liquidity and credit liquidity, no credit
centrally via client account  no liquidity, credit 1%/

Table 11: Costs of the CCP for settling a netting set of deals of a defaulted clearing member,
depending on the nature of the defaulted portfolio.

The deals corresponding to the lower right cell would entail no liquidity nor credit risk, but this cell is in fact empty,
due to the nature of delta-one transactions that do not require intermediation.

Our XVA metrics are computed under the premise that the (random) loss triggered by the default of
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a market participant in the future is allocated between the surviving members of its CCP, pro-rata of their
default fund contribution to the CCP (see e.g. after (87)). At time “0—", i.e. “right before” the instant
default of the clearing member d at time 0, the participants ¢ to the exchanges charge to their clients the
expectation of their ensuing losses, in the form of their CVA;, as well as their collateral funding costs
FVA; and MVA,, and costs of capital KVA;. These costs sum up to XVA; = CVA; +FVA,; + MVA; +
KVA;, computed for each participant i the way detailed for ¢ = 0 in Section A, based on the pre-default
Radner equilibrium quantities and prices on each exchange. To quantify the XVA impact of a given
default resolution procedure for a CCP portfolio of d, we also compute the time 0, post-default XVA?,
for any participant ¢ # d to the exchanges. The credit cost of the settlement of the defaulted portfolio,
coming on top of the already computed MC, is

CC =) (XVA] - XVA;) +AC, (75)
i#d AXVA;

where the auctioning cost AC is another XVA incremental impact corresponding to the FTP in
( , Section 7) (which only involves credit costs), i.e. the XVA impact of auctioning any hedged
(as opposed to liquidated) positions. Indeed, a CCP is not inclined to keep the defaulted portfollo and
the corresponding hedge on its book, it will look at auctioning them ( , ; ,
).
In the end, the full FTP (74) that emerges from the present paper (where both market and credit
costs are involved) can be detailed as

FTP=LC+ ) Y Api+» AXVA; +AC. (76)
E' i€E’ i#d
MC CC

Remark 22. Under the pure auctioning default resolution strategy, only the last term remains. But this
AC term could be very expensive in the case of an unhedged portfolio (see the first quotation in Section
§3). 0

C Example 19 Continued

We complete from the credit costs perspective the “liquidation on own exchange” Example 19. In the
case of default resolution procedures implemented on the own exchange D of the CCP, (76) boils down

to
FTP=LCp+ » Api+ »  AXVA;+AC. (77)
ieD\{d} 1€D\{d}
MC CcC

We assume risk-free OTC bilateral counterparties (end-users) o and no simple participants to the ex-
change D, which thus only involves proprietary trading between its clearing members. We endorse the
Gaussian latent factors X VA setup of Section B. Table 12 provides the resulting “time 0—" XVA; (with
all members, d included) and time O XVAQ (without d), using the allocated positions of Table 7 and the
XVA specifications of Table 21 along with IM; = DF; = 0, whilst Table 13 presents the same results
for IM; and DF; set at the 75% and 80% confidence level. Note that the chosen period length of 7' = 5
years covers the bulk (if not the final maturity) of most realistic CCP portfolios'. The aggregated X VA

“most OTC derivatives have a maturity of less than 5 years ( , , Graphs

A2-4).

143



cost (75) of liquidating the defaulted portfolio’’ is CC = ZieD\ (a4} AXVA;, namely —0.77 for the
case IM; = DF; = 0 and —0.25 with IM,; and DF set at the 75% and 80% confidence level, coming
on top of the market cost of MC = 0.70 already obtained in Example 19.

CM; 1 2 3 4 ) 6 7 8
XVA; 0.81 1.21 1.36 1.70 1.74 2.05 2.02 2.37
XVA/ 0.92 1.17 1.47 1.61 1.82 1.93 2.07 2.19
AXVA; 0.11 —0.04 0.12 —0.09 0.08 —0.12 0.05 —0.18
CM; 9 10 11 12 13 14 15

XVA; 2.25 2.62 2.42 2.84 2.57 3.04 2.69

XVA] 2.28 2.42 2.42 2.60 2.54 2.77

AXVA; 0.03 —0.20 —0.01 —0.24 —0.03 —-0.27

Table 12: The pre- and post-default XVAs computed from (90) when the CCP liquidates d on
its own exchange, D, in the expected shortfall case with IM; = DF; = 0.

CM; 1 2 3 4 ) 6 7 8
XVA; 0.37 0.59 0.72 0.89 1.00 1.12 1.21 1.34
XVA/ 0.42 0.56 0.80 0.84 1.07 1.05 1.28 1.22
AXVA; 0.05 —0.03 0.08 —0.06 0.07 —0.07 0.07 —0.11
CM; 9 10 11 12 13 14 15

XVA; 1.42 1.50 1.57 1.64 1.72 1.77 1.85
XVA/ 1.49 1.37 1.63 1.49 1.78 1.60
AXVA; 0.07 —0.12 0.06 —0.15 0.06 -0.17

Table 13: The pre- and post-default XVAs computed from (90) when the CCP liquidates d on
its own exchange, D, in the expected shortfall case with IM; and DF; set at the 75% and 80%
confidence level.

Instead of liquidation on the CCP’s own exchange D, we now consider another default resolution
strategy, in the form of an (idealized) auction inducing the taker giving rise to the least auction cost AC
among all possible takers i € D\ {d}'®. The results are displayed in Table 14 for the case IM; = DF; =
0 and in Table 15 for IM; and DF; set at the 75% and 80% confidence level.

Bnote that there is no auction in this (liquidation) case.

!$This approach developed in ( , , Section 7) can indeed be seen as rendering the output of an
idealized, efficient auction used for closing out the account of a defaulted clearing member (cf. (
Section 3.3)).

144



CM; > (CVA]—CVA;) Y (KVA]—KVA) AC

i€D\{d} i€D\{d}
14 -1.00 (-0.38) -3.52 (-0.63) 452 (-1.01)
12 -0.85 (-0.34) 2.93 (-0.57) -3.78 (-0.91)
10 -0.58 (-0.23) -2.02 (-0.42) -2.60 (-0.64)
8 20.31 (-0.11) “1.13 (-0.24) -1.44 (-0.35)
6 -0.04 (0.02) -0.30 (-0.04) -0.34 (-0.02)
4 0.23 (0.15) 0.42 (0.20) 0.65 (0.35)
2 0.50 (0.29) 0.95 (0.52) 1.45 (0.81)
1 0.77 (0.43) 1.59 (0.86) 2.35(1.29)
3 0.77 (0.39) 2.09 (0.62) 2.85 (1.01)
5 0.77 (0.36) 2.47 (0.47) 3.23 (0.82)
7 0.77 (0.32) 2.70 (0.37) 3.46 (0.70)
9 0.77 (0.29) 2.84 (0.30) 3.60 (0.60)
11 0.77 (0.26) 2.92(0.27) 3.69 (0.53)
13 0.77 (0.23) 2.96 (0.25) 3.73 (0.48)

Table 14: Auctioning costs AC corresponding to the different possible takers of the portfolio of
the defaulted member d = 15, ranked by increasing value, for IM; = DF; = 0. In parenthesis,
the contributions to AC of the considered possible taker itself.

CM; Y (MVA;—MVA;) > (CVAj—CVA;) >  (KVA;—KVA) AC
ieD\{d} ieD\{d} ieD\{d}
14 -0.06 (-0.15) -0.49 (-0.13) -2.33 (-0.42) -2.88 (-0.71)
12 -0.01 (-0.11) -0.45 (-0.12) -2.00 (-0.39) -2.46 (-0.63)
10 0.06 (-0.04) -0.36 (-0.08) -1.47 (-0.27) -1.77 (-0.40)
8 0.13 (0.03) -0.27 (-0.04) -0.93 (-0.14) -1.07 (-0.16)
6 0.20 (0.10) -0.17 (0.00) -0.44 (0.01) -0.41 (0.11)
4 0.26 (0.17) -0.07 (0.04) 0.00 (0.19) 0.20 (0.40)
2 0.33 (0.23) 0.03 (0.09) 0.38 (0.41) 0.74 (0.74)
1 0.41 (0.31) 0.11 (0.14) 0.76 (0.64) 1.28 (1.09)
3 0.42 (0.31) 0.10 (0.13) 0.92 (0.51) 1.44 (0.95)
5 0.42 (0.31) 0.09 (0.11) 1.06 (0.42) 1.58 (0.85)
7 0.43 (0.32) 0.08 (0.10) 1.16 (0.37) 1.67 (0.78)
9 0.44 (0.32) 0.07 (0.09) 1.23 (0.31) 1.74 (0.72)
11 0.45 (0.32) 0.06 (0.08) 1.28 (0.28) 1.78 (0.68)
13 0.45 (0.33) 0.05 (0.06) 1.29 (0.26) 1.80 (0.65)

Table 15: Auctioning costs AC corresponding to the different possible takers of the portfolio
of the defaulted member d = 15, ranked by increasing value, for IM; and DF; set at the 75%
and 80% confidence level. In parenthesis, the contributions to AC of the considered possible
taker itself.

From Tables 14-15, participant 14 is the survivor taker leading to the smallest auctioning cost AC,
namely—4.52 and —2.88, when taking over the defaulted portfolio of CM;5 (and there are in this case no
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additional costs to consider, cf. Remark 22). Such takeover makes intuitive sense given the pre-default
position qi5 = —16.8 of the defaulting member d = 15, compared with the position of member 14 at
qi14 = 17.92, an almost offset of q;5. Member 12 shows the second best solution with an auctioning
cost AC close to zero, also justifiable by his offsetting position at g2 = 15.36.

Finally, we consider one more default resolution strategy, where the CCP hedges (as per Section
C) the defaulted portfolio before auctioning all its positions. In the hedging case, with the CCP ¢
contributing to the post-default quantities and price discovery ((q;)iep/=(D\{d})U{c}> p'P), resolving
(38) (for £ = D) and (42)—(44) in the configuration of Example 19 (except for the new member c) leads
to q,. = —qg. Coincidentally, this hedging resolution thus leads to a perfect replication as per Section
C. The corresponding Z#d AXVA,;, detailed in Tables 16 and 17, is —14.45 for IM; = DF; = 0 and
—6.80 for IM; and DF; set at the 75% and 80% confidence levels. As the residual market risk is null in
such a replication case, taking over the defaulted portfolio and its hedge does not generate any market
risk. Hence in these cases no additional cost is generated by the auctioning process, i.e. AC = 0.

CM; 1 2 3 4 ) 6 7 8
XVA; 0.81 1.21 1.36 1.7 1.74 2.05 2.02 2.37
XVA/ 0.19 0.34 0.54 0.63 0.83 0.89 1.07 1.13
AXVA; —-0.62 —0.87 —0.81 —1.06 -0.91 —1.15 —0.94 —1.24
CM; 9 10 11 12 13 14 15 c
XVA; 2.25 2.62 2.42 2.84 2.57 3.04 2.69

XVA 1.28 1.34 1.44 1.54 1.59 1.72 2.39
AXVA; -0.98 -1.27 —0.98 -1.3 —0.98 —1.32

Table 16: The pre- and post-default XVAs computed from (90) when the CCP hedges the
portfolio of the defaulted member d = 15 on its own exchange D, in the expected shortfall
case with IM; = DF; = 0.

CM; 1 2 3 4 ) 6 7 8
XVA; 0.37 0.59 0.72 0.89 1 1.12 1.21 1.34
XVA/ 0.13 0.21 0.38 0.4 0.6 0.56 0.79 0.72
AXVA; -0.24 —0.38 —0.34 -0.5 —-0.4 —0.56 —0.42 —0.62
CM; 9 10 11 12 13 14 15 c
XVA; 1.42 1.50 1.57 1.64 1.72 1.77 1.85

XVA/ 0.97 0.85 1.12 0.98 1.26 1.09 1.30
AXVA; -0.45 —0.64 —0.45 —0.67 —0.46 —0.68

Table 17: The pre- and post-default XVAs computed from (90) when the CCP hedges the
portfolio of the defaulted member d = 15 on its own exchange D, in the expected shortfall
case with IM; and DF; at the 75% and 80% confidence level.

We sum up in Tables 18 and 19 the FTP of each considered default management scheme without and
with collateral (in the sense here of initial margins and default fund contributions), from the cheapest to
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the dearest one (again, in this example, hedging then auctioning with D’ \ D = {c} happens to coincide
with replicating then auctioning with D’ \ D = &). The FTPs of the hedging then auctioning scheme
provides much larger gains then the pure auctioning strategy, which itself provides more gains than the
full liquidation strategy. Coincidentally in this example, at least, this happens to be in line with the
BIS recommendations quoted in the beginning of Section §3. However, our approach only endorses the
point of view of the participants to the exchange. Indeed, our costs of settling the house portfolio of a
defaulted clearing member ignore the damage of the default to the “outer” actors o (end-users external
to the exchanges). From this viewpoint (compare the two panels of Figure 2), whenever available,
centrally cleared trading is preferable to bilateral trading (but, as per today, centrally cleared trading can
only concern the standardized half of the market, cf. Table 10).

LCp Y Api Y AXVA; AC  FTP

€D’ i€D\{d}
liquidating 0 0.70 -0.77 0 -0.08
auctioning 0 0 0 -4.52 -4.52
hedging then auctioning -1.39 2.09 -14.45 0 -13.75

Table 18: F'TPs of different default management schemes on D split as per (77) for IM; =
DF; = 0.

LCp > Ap; Y AXVA; AC FTP

ieD’ i€D\{d}
liquidating 0 0.70 -0.25 0 0.45
auctioning 0 0 0 -2.88 -2.88
hedging then auctioning -1.39 2.09 -6.80 0 -6.11

Table 19: F'T'Ps of different default management schemes on D split as per (77) for IM; and
DF; set at the 75% and 80% confidence level.

In this example, hedging then auctioning with D’ \ D = {c} happens to coincide with replicating then auctioning
with D’ \ D = .

§7 Appendix

A XVA Gaussian Setup

The purpose of this part is to provide a bridge from the equilibrium setup of Sections §2—§5 to the XVA
setup of ( ), so that we are able to provide an overall FTP (76) quantifying the market
but also credit costs of a given default resolution strategy. We leave for future research the extension of
the approach of this paper to a setup where not only the market costs, but also the credit costs, would be
treated endogenously as part of a global (or perhaps two-stage!”) equilibrium, ideally in the setup of a
dynamic model.

7accounting for the segregation between the market and credit spheres in banks ( s , Section 6.1)

( , , Article 92).
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We endorse the structure of exchanges £ = A U B depicted in Section A. Note that even for those
clients clearing through a CCP member and also having OTC positions with that same member, the
corresponding exposures must be treated separately, hence B N O = &. For each participant ¢ to an

exchange F, a comparison of the present setup with ( , Eqns. (15)-(16)) yields the
mapping of Table 20.
( R R This paper Description
Eqns. (15)-(16))
P — MtMEP (ap) " (p¥ - P) Cash flows from a cleared client (¢ in
( ), b in this paper) of
a CCP (ccp in ( ), the

CCP of exchange E in this paper) to the
participant O (if the latter is not a clearing
member of the CCP, these cash flows are
simply zero)

PP — MM P Sven(@d) T (PP — P)  Client account cash flows from a clear-
ing member (7 in ( ), a
in this paper) to his CCP (ccp in

( ), the CCP of exchange F in
this paper)

PP — MM, ” q) (p¥ - P) Proprietary account cash flows from a
clearing member (¢ in
( ), a in this paper) to his CCP

Py, — VM, Rg Cash flows from an end-user (b in
( ), o in this paper) to
participant 0

Table 20: Some notation adaptation for the cash flows of some market participants after varia-
tion margin is subtracted, in the setup of ( ) and in this paper.

Let J; be the survival indicator of participant % to an exchange E, i.e. J; = ]l{ﬂ>T}, where 7; is
the default time of participant ¢ over the period [0, T'], with probability v; = P(.J; = 0) of default over
[0, T']. We denote likewise J, = 1, -} for any end-user o € O. Via the mapping of Table 20, (

, , Eqns. (15)-(16)) yield the following (pre-default equilibrium) credit loss profile Cy of a
participant i = 0 to the exchanges, on which we focus in what follows: Co = >~ ,_ 4,z (CE+C¢')+C,
where

cf =30 1) (@) - P -ng)",
beB

664wgl;uJa){((éqZ)T(pEP)IMf)++ (78)

A\t +
(ar " - P) -1, ) ~DF|

cf = "(1—J,)(Rg — M),
oecO
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Here IMS is the initial margin (IM) requested by the participant O to the simple participant b € B on the
cleared position qg (equalto 0if 0 ¢ A); w()“ (equal to 0if 0 ¢ A) is the loss allocation coefficient of the
participant 0 w.r.t. the CCP of the exchange £ = A U B; IMf, mf, and DF;4 are the initial margins
for the cleared clients and proprietary accounts as well as the default fund contribution requested by (the
CCP of) exchange E to the clearing member a; 2§ is the exogenous receivable of the participant 0 from
its OTC bilateral counterparty o, with corresponding initial margin IM{ (which can be null under OTC
agreement) requested by 0 to o (cf. Figure 1).

Likewise, the post-default equilibrium'® default loss profile C) of the participant 0 is C) =
S m—aup (CF +C) +CS, for C§ as in (78) and (cf. Table 20 and (36)-(32))

CP=> (1—J) ((Q?)T(p’E —P) + (df + (Ad)))) " (pF — p'F) — IMBZ’)+7

beB’
1A 1A o
Gt = it Y (1= Ja)x
acA’
79)
a a ai\ T + (
(( S g (@ -P)+ Y (ap + (Agp)) (p¥ —p'F) - IM;A) +
beB’ beB’

+
— A\ T
((q&)T(p’E — P) + (qq + AdY) T (pF — p'F) — 1M, ) - DFZ?) :

where w{)A, IM;A, m;A, DF;A, and IMS’ are the post-default analogs of w{?, IM:;‘, m:, DFf, and
IM} in (78).
The pre- and post-default CVA of the participant O are given by

CVAo =E [Co|Jo = 1] = (1 =) "E[JoCo], CVAG = (1 —v0) 'E[JoCP] , (80)

by ( , Theorem 3.7). Denoting by mg the initial margin from the participant 0 to
its OTC bilateral counterparty o, based on Remark 1, such margin remains constant in the post-default
equilibrium, hence the pre- and post-default MVA of participant 0 are given by

MVA, = o (Z MG+ Y (IME + 1M, + DF{;J)) :
0€0 E (81)

MVA) = 7, (Z o+ Y (IMOE' FIMD 4+ DFOE')> ,
0€0 E

for some possibly blended funding rate 7y < =y, as detailed in ( ,

Section 5). The pre-default KVA, defined for a hurdle rate h, is calculated based on an expected shortfall

ES2 , of the participant 0 under its own survival measure, P(-Jo)/(1 — 7o) (with &g > the confidence

level o introduced for the market cost computation in Section §5 when the risk measures used by the

hedgers are expected shortfall risk measures'?), as

KVA, = HL}LIESO&D (Co — CVAy) (82)

18 post-default referring as usual in the paper to the instant default at time 0 of a clearing member d, here assumed
# the reference clearing member 0.
Yregulatory and economic capital aim at capturing extreme losses that can occur once every 1000 years

( , , paragraph 5.1), which leads to considering a much higher confi-
dence level & for economic capital calculation, such as 0.9975, from which the KVA is defined, than the o used
for market risk, set to 0.975, in line with ( R , Section 1.4 (i)).
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=17 7F [Jo (Co — CVA) |Co — CVAq > VaRy (Jo(Co — CVAy)),Jo =1], (83)

by ( , Theorem 3.7, last row of Table 2), where VaRgo denotes the value-at-risk
at the confidence level G under the measure (1 — 79) "*P (-Jy). The post-default KVA has a similar
expression substituting C{, to Cy and CVA{ to CVA in (82):

h o
h / / 0 / /
=1Th h]E [Jo (Cy — CVAy) |Ch — CVAg > VaRy, (Jo(Ch — CVAQ)) , Jo = 1], (85)
Finally, by ( , Theorem 3.7, next to last row of Table 2), the pre- and post- FVA of

the participant 0 is given by

+

FVAo = —° [ 37 ER§ — (CVAq + MVA,) — ESY, (Co — CVAg) |
1+ o 0€0

(86)

+

8l 0

FVAj = 1 +°% (Z ER§ — (CVA{ + MVA)) — ESY (C) — cmg)) :
0€O

B XVA details in the setup of Section C

In the setup of Section C, only clearing members a participate to the only exchange of interest D (so
all participants ¢ are clearing members a and there are no cleared clients b) and all the end-users (OTC
bilateral counterparties) o are assumed to be default risk-free, Hence the pre-default credit loss (78) of
member 0 € D reduces to

—D +
Co=wp Y (1-J)) (qj(pD - P) -1, - DF}D) , (87)
jeDb

D DFP Jo

where wy = —. Under the post-default equilibrium when the CCP fully liquidates on D (so

E]‘GD DF? J
that Aq? = 0), the post-default credit loss (79) of member 0 € D reduces to

——/D +
Ch = wi® Y- (1= J;) (a(®™ = P) +qj(p" — p) ~ M, — DF}")
€D’

/D 1D P D\ (88)
=wP > (1= ;) (ai(p” - P)~ M~ DF) ",
ieD’
whereas, when the CCP fully hedges on D (so that Aq! = 0, q; + AqgZ = q;-),
_ +
Ch=wy > (1—Jy) (CIQ(p’D — P)+qi(p® - pP) -, - DFQD) : (89)

ieD’

In both cases wiP, m;D and DF'P, i € D/, are the post-default analogs of wy, m? and DFP, i € D,
based on the post-default updated portfolio positions. The pre- and post-default CVA, MVA and KVA
of member 0 € D \ {d} are given by

CVAg = (1 —70) "E[JoCo], CVAY = (1 —v0) *E [JoCP], (90)
MVA, = Fo (TMy + DFp) , MVA} = 7 (Ng + DFg) , 1)
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h

KVA, = H—hE [Jo (Co — CVAg) |Co — CVAq > VaR] (Jo(Co — CVAy)),Jo=1],  (92)
h
KVA{ = H—hE [Jo (C — CVAQ) |C) — CVA) > VaRY (Jo(Cy — CVAY)),Jo=1].  (93)

Moreover, in the setup of Section C, ER§ in (86) corresponds to MtM;, — VM, in the setup of

( ), i.e. a difference of received (VM) variation margin by the member 0 and posted (MtMj)
variation margin by the member O for an OTC bilateral position between the clearing member 0 and the
end-user 0. We assume, as it is the case in practice, that there is only marginal, if no, difference between
the two quantities. Hence we have ERJ ~ 0 and, in any case, dominated by (CVAy + MVA,) —
ESy, (Co — CVA) and (CVA{ + MVA)) — ESZ_ (C) — CVA}) in (86), leading to negligible FVA,
and FVA{,, which we therefore simply take as O (and do not report) in the numerics of Section C.

Latent Factor Model

For default modeling purposes, we introduce for each member ¢ € D a latent variable X; ~ N7(0,1)
such that {J; = 0} <~ {Xi < <I>*1('yi)}. These default latent variables are correlated as per X; =
V0e + /T — o%¢;, where ¢ and ¢; are i.i.d. N71(0, 1), while ¢ is a positive credit/credit correlation
coefficient. Writing P = p + oY with Y ~ N7(0, 1), the IM posted to the CCP by member 4, based
on the idea of a q;(p” — P) VM call not fulfilled over its corresponding time period T (versus A in

( )), is computed by the VaR metric® at a confidence level c;,,, € (1/2,1) as
—D —
IM; = VaRa,,, (q:(p” = P)) = ai(p” — 1) + |ai| 0@~ (ctim). 94)
The liquidation time period A; in ( ) is also taken as the one-period of time considered

in the Radner equilibrium setup of the present paper, so that A; = A; = T. The default fund is
calculated at the level of the considered CCP of d as the sum of the two highest stress loss over IM
(SLOIM), where SLOIM is given for each member ¢ as

SLOIMP = VaR,,, (qz-(pD —-P)— m?) — || o (& (ag) — D ) ,
for some confidence level cvgr > vr,. The default fund contribution of member i is given as

SLOIMY

DFY = 2L
>,ep SLOIM;

(SLomvp, +sLomy, ). (95)

based on the cover-2 amount given as the sum of two largest stressed losses over IM (SLOIM;) among
its members, identified with subscripts (0) and (1).

2yunder the member survival measure.
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Portfolios maturity T’ 5 years

Liquidation period at default A; 5 years
Credit factors correlation " 20%
IM covering period (margin period of risk) Ag 5 years
Default probabilities ~; 39.3%
MVA funding blending ratio 7; /~; 25%
Quantile levels &; used for clearing members KVA 99.75%
Hurdle rate h used for KVA computations 10.0%
Number of Monte Carlo simulations (for CVA and KVA computations) 10M
Number of batches (for KVA computations) 100

Table 21: XVAs calculation configuration
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Chapter IV

Takers identification for defaulted
portfolios with simulated annealing
algorithms

This chapter corresponds to a work in progress! with E. Gobet.

§1 Introduction

This research looks at the problem of identifying multiple takers of portfolios of a member defaulting
on several Central Clearinghouse Counterparties [CCPs] using the stochastic optimization algorithm
of simulated annealing for discrete combinatorial problems. CCP institutions have become prominent
actors within the financial network by transforming counterparty risk into liquidity risk. They allow
such transformation by guaranteeing the contracts negotiated on financial markets in exchange of vari-
ous layers of collaterals posted by their members. The financial network revamp follows from the G20
September 2009 summit where the settlements of transactions through CCPs have been made manda-
tory for all products that can be standardized including OTC ones ( , ). The
considered scenario of particular interest for financial regulators and covered by this research work con-
sists, for each considered CCP, in experiencing the default of a common member to all those CCPs.
The corresponding portfolio needs to be taken over by the other surviving members of each CCP. This
scenario is of particular interest as it allows identifying optimal takers and assess if such resolution does
not put too much pressure on them and other members. As the network of members portfolios have to
be re-arranged, corresponding requested collaterals by the CCPs need to be re-calibrated. This can lead
to additional collateral calls on certain members that may have difficulty to answer these additional re-
sources requirements thus indicating a possible propagation effect of further defaults. Indeed, members
not in the capacity of meeting additional collateral calls are put in default state by the CCPs, resort-
ing then to further portfolios re-allocation needs on the corresponding markets. Such a scenario could
have actually occurred at the beginning of 2023 with the difficulties of the bank Credit Suisse, a major
member of thirty CCPs across the world, if the Swiss National Bank [SNB] had not intervene. The
SNB granted a liquidity contribution of around €170bn (CHF 168bn, see ( )) to prevent the

'Acknowledgements: We thank Stéphane Girard, Senior research scientist at Inria Grenoble Rhone-Alpes, for
his inputs on extreme value theory.
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default of Credit Suisse. A smaller, yet real, example with a default on two CCPs occurred in the United
States with the asset management firm Ronin Capital in March 2020 during the Covid-19 pandemic
crisis, detailed and illustrated in ( ).

The described scenario occurs when looking at the auction results of defaulted members on CCP
services. However, we undertake an idealized auction resolution where instead of conducting the auction
(see ( ) for first price auction application in the CCP portfolio liquidation context with
and without additional bidders, incentive for high bids e.g. default fund loss juniorization), each CCP
selects the taker among its surviving members leading to minimal costs across all of them, including
risk to other CCPs those members detain. Such resolution is considered based on the ideal behavior
of members that would agree to take the defaulted portfolio on a CCP leading to the least additional
costs for all members across all CCPs. Indeed, any member has to support costs related to all CCPs it
has exposure to. In particular, whilst Clearing Credit Value Adjustment [CCVA] ( ,

) costs are calculated on each CCP independently, the capital costs for any member to ensure
their corresponding sharehoders adequate remuneration in the form of Capital Value Adjustment [KVA]

( ; , ), must relate to all CCPs it is exposed to, adjusted by
all credit costs”. As KVA cost is the leading component among other CCP costs that are Credit Margin
Value Adjustment ( , ; s ) and CCVA for default resolution?,

we simplify the cost minimization to the sole capital cost.

Given the high dimension of the problem and the involved high computational capacity needs,
we explore the possibility to apply simulated annealing algorithm technics, in particular the discrete
version, to identify the set of optimal takers in terms of capital cost minimization across all CCPs and
their corresponding surviving members. To the best of our knowledge, this approach, which resembles
an idealized auction of defaulted portfolios, has never been attempted so far.

As outlined in ( ), the simulated annealing algorithm
for combinatorial optimization problems was introduced by ( ),
published in ( ), with an implementation based on the Metropolis-
Hastings acceptance criteria suggested in ( ).

It has established itself as part of the algorithm tool box to solve complex optimization problems with
no particular convex features but, potentially, with several local minima, see
(1989), (1989), (1992), (1996), (2003),
( ) ( ), ( , Chapter 1) and

( ). Part of our problem relates to the use of an approximated en-
ergy function rather than the true one through an empirical expected shortfall, mean or quantile with
Monte Carlo procedures instead of exact expected shortfall, mean or quantile respectively. The result-
ing uncertainty can be handled through applying certain adjustments to the empirical energy function
as introduced in ( ), with other applications in ( ) and

( ) for instance.

Simulated annealing algorithms for combinatorial problems in finance are mostly known for port-
folio assets allocation optimization with discrete number of units of assets ( , ;
, ). The optimization problem formulation is based on Harry Markowitz’s portfolio op-
timization theory through mean-variance formulation ( , ; R ;
, ), combined with recent developments of quantum computer technologies such as

2¢f Remark 2 in ( )
3See study cases in ( )
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quantum annealing algorithm ( , ). It requires the translation of the Hamiltonian of
the formulated problem from weighted maximum independent set graph-theoretic approach into Ising
form. The latter can be optimized as a quadratic unconstrained binary optimization problem by a quan-
tum computer ( , ). The simulated annealing algorithm can also be used for identifying optimal
capital growth ( , ) similar to a portfolio allocation with a different Hamiltonian formu-
lation. Another financial application relates to business risk, arising from actions or elements that can
diminish the business profits that can be minimized through cost minimization over several safeguards
modelled as binary integers under some constraints ( , ). Application of simu-
lated annealing algorithm can also be found in the field of time-series forecasting for optimal portfolio
performances based on combining Support Vector Regression and Simulated Annealing for generat-
ing a better set of parameters of the Support Vector optimization part ( , ;

, ). Finally, the application of identifying combinations of averse macroe-
conomic and market conditions leading to particular loss magnitude, aka reverse stress test exercises,
can be found in ( ).

We test the algorithm on a complex problem of identifying the optimal combination of takers of a
defaulted common member portfolio on a network of 4 CCPs with 10 surviving and common members
with non-linear loss calculation depending on all members and their portfolios towards the 4 CCPs.
With adequate generation probabilities, we can observe, through several runs, much more frequent
and faster selection of the optimal combination of takers w.r.t. the algorithm number of iterations and in
comparison to a naive approach where a random combination of takers is suggested without re-sampling.
The generation probabilities definition are thus critical in the algorithm performance. This is observed
when we compare the runs of the algorithm with the probabilities not suitably defined for the problem
structure at hand, showing results even worse than the naive suggestion of combinations of takers.

§2 Motivation: the combinatorial problem with default on several
CCPs

We consider an idealized auction situation where, after a default has occurred on the financial network
composed of several CCPs and corresponding common members, the combination of surviving mem-
bers leading to the least costs to the entire network of CCPs and members are the takers of the defaulted
portfolios. In such a situation, the CCP where the member 0 has defaulted identifies the optimal taker
hence no auction resolution is effectively run. Any potential loss that can materialize following such
default scenario and taker-over afterwards is allocated to members pro-rata to their default fund contri-
bution. The latter is calculated based on the position of each member so that any change of the positions
following a default resolution impacts the allocation coefficients on top of their portfolios update due to
the defaulting member taken out from the network.

A Notation and problem formulation

To probabilistically model all CCP related risks, consider a probability space (€2, 7, P) and a sub-vector
space B C L*(£2) with corresponding set of probability measures noted Py . For any scalarr.v. X € R,
we denote by Py € Pr its distribution under P.

e L + 1 is the number of clearing members, indexed by ¢ = 0,1,..., L, in the network that can
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have access to CCPs and K is the number of CCPs*, indexed by k& = 1,. .., K; the member that
will be considered in default state is indexed by 0;

* we denote by 7 the random default time of member ¢ for any ¢/ = 1,..., L generated by some
latent factor X, breaching a certain constant upper threshold By, typically the liability level; we
do not need such notation for member 0 as it is considered in default state deterministically; the
survival event of member ¢ is described as {7, > T} = {X, < B,} for some maturity time T’
and with the corresponding survival indicator J, = 17,5 7y};

* any combination of takers with the assumption of a single defaulter and K corresponding port-
folios is denoted i = {iy,...,ix} € {1,..., L}* =: T; we implicitly assume that the defaulted
member 0 is exposed to al CCPs k = 1,--- , K;

« any member s portfolio towards CCP k is given by ar.v. Y € R with sz’m for an m-simulated
value among M pre-simulated values for each portfolio;

« L[*] denotes the overall potential loss across members of the CCP k prior to any default resolution
and by L*%! the corresponding loss post default resolution where member iy, of the k-th CCP
takes over the defaulted portfolio;

. wy;] is the allocation coefficient of member ¢ on the k-th CCP prior to any default resolution,

and w@’”’“] is the allocation coefficient post default resolution with member i taking over the

defaulted portfolio on CCP k;

* prior to default resolution, we write ﬁgﬂ] = wgk]ﬁ[k] for the allocated loss to member ¢ by the
CCP k; Ey”’“] = wgk’”]ﬁ[k’i’“] corresponds to the allocated loss to member £ by the CCP k in
case member i, takes over the corresponding defaulted portfolio;

 for any member /, its aggregated loss over all CCPs after defaulted portfolio allocation writes
> & Egk’““] and is a nonnegative real-valued r.v.;

« for any member ¢ we define the corresponding survival measure Q° and corresponding expec-
tation E* so that for any measurable variable X on the probability space (€2, F,P), Ef [X] =
E [X1{p,57y] /B (7 > T);

* in terms of stochastic factors, and prior to default of member 0, we assume that Lyﬁ] is a function
of each CCP-member payoffs Yy, Y{¥,...,Y/") that can be easily generated (e.g. elliptical r.v.’s)
so that

oy = fE (Y YY), )

for some loss function f§ : REF! — R defined prior to default of member 0. For example, in
the case of a member ¢ € 1.. L exposed to CCP k, with some deterministic real-valued constants
b’g, cf, its credit loss towards the other members writes

k(vk vk k blfﬂ{fe>T} = k T

Y ) = T S (YE — o) <y 0
> b om
=0

with the convention b, = ¢k, = 0 as well as Y}, = 0 for members ¢”" not exposed to the CCP
k. We do not consider such loss for member 0 as it will be assumed in default state;

“The extreme cases are the network configuration where each of the L members has access to the K CCPs and
a more practical case is when each CCP £ has a different number of clearing members L < L
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¢ when the defaulted portfolio of the member 0 is taken over by member i, on CCP k, his payoff
variable becomes th + Y and other payoffs (for other member i # ;) remain unchanged. We
adopt a short notation for this "taking over” operation: we write Y €, Y the updated version

of Y := {V/}}1<i< € RE¥X where the components Yy, ..., Y{* are added to V;!,..., V%
1<k<K
respectively and all other components are kept unchanged; hence

k
Y Y) — Yk 4 Yk
< @i 0 i 11c+ 0
3)
k
(Y@.YO>_ =Yk, foranyi¢ {i1,...,ix}and CCP k;

several of the indices among (i1, ...,7x) can represent the same member that can take over a
defaulting portfolio on several CCPs. In particular, (2) becomes

Hr @) (v
= M XL: <(Y @i YO):/ - Cf”>+ U<ty @

k =1
Z by L(r, >}
=1

where to reduce notations, we have reused fé“ for defining a function of L arguments instead of

L + 1 and used the same notations for the constants b%, C’Z, ¢ € 1..L though bfk and cfk

to be updated to reflect member ¢, has taken-over the defaulted portfolio on CCP k. To alleviate

have

notations, we also omit the dependence of flf“ w.r.t. latent variables X1, ..., X,, that translate the
corresponding default events {r; < T'},..., {7y < T} as they are assumed to remain unchanged
after the default resolution with the combinations of takers i;

o weuse gi(-) = Ele fE(-) with f¥(-) being the post-default loss functions, see for instance (4),
tel..L,kel. K,toexpress more generically the aggregated trading loss for member ¢ as

=g (YED, Yo) 5)

¢ each member ¢ manages its overall risk towards the network of CCPs by applying a certain risk
measure Ry on its aggregated loss EE] =g (Y @i Y0>, e.g., among other possible choices,
expectiles, entropic risk measures, expectations, quantiles (i.e. a VaR-type measure) or expected
shortfalls under the survival measure Q. Such risk measure reflects the needed capital to sustain
the updated portfolio position for member ¢ w.r.t. all positions it detains against the K CCPs,

discarding any other types of positions for simplicity, but that can be added at no additional

theoretical cost (e.g. bilateral OTC and other credit portfolios, see ( , , Section
2)).
The ideal takeover across all CCPs should comprise of the set of takers i7,...,4% € 1.. L such that the

aggregated measure of risks over the CCPs’ members is minimal i.e.
L K _
i) =g in SR e ) ®
k=1

i=(i1,...,iK) — —
—_———

- (Y 69i YO)
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A risk measure of choice for Ry, £ = 1,..., L, that is coherent ( s ), is the ex-
pected shortfall (under the survival measure Q). Under certain mild regularity conditions® the expected
shortfall applied to the loss g, (Y @ YO), using ( s , Lemma 3.10), writes

o (B () )
R R e o TN B e (7 |

2l (B (v v, (u(v B,

P(T5>T)(1—Ozg) ’

with Qf; . (gg (Y @i Y())) the quantile level from the distribution of gy (Y @i YO)
at confidence level «a, under Q° (typically ay = 99.75%) and using
P (gg (Y@ Yo) > Qf, (ge (Y@ YO>) | Je = 1) = 1 — oy by definition. In practice,
though the expected shortfall measure has gained momentum in its usage preference by supervisors and
regulators for market risk ( , ; R
), large banking institutions still prefer R, = Q°, , rather than ES;*.

Capital costs have been the sole cost considered for minimization, excluding costs for funding
margins and indirect credit risk to other members in the optimisation problem based on the following
observations:

* margin costs are specific to each member and for each CCP a member is exposed to, irrespective
from the other exposures in terms of calculation. Moreover, it is not of priority interest, as
practically members may require initial margin [IM] on each of their clients for clearing their
position whilst members are required by the CCP to post IM on their aggregated positions leading
to clients margin levels conservative compared to the CCP requirement made to the member®.

* credit costs are calculated for each CCP any member is exposed to and taking into consideration
all other members’ positions of that same CCP. However, cost calculations are separated i.e.
conducted for each CCP irrespective of the other CCPs the member is exposed to. This is due to
the use of expectation measure for calculating such cost. Also in practice such cost has an order
of magnitude significantly less than the capital costs.

* capital costs, in the form of KVA, is the most complex element as it requires to account for former
costs of each member across all CCPs and are calculated considering the overall position of the
member across all CCPs.

B Simulated annealing problem formulation

For a member /¢, considering the takeover of the defaulted portfolio on each CCP k by the combination
of takers i, its individual cost function is Ry [ge (Y @ YO)] The aggregated cost function across

all members is 25:1 R [gg (Y @ Yo)} so that the minimization problem writes as a combinatorial
1

Scontinuity of the loss variable distribution around the quantile reference level
Sthis is in particular due to the high cost entailed by the client segregated accounts.
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problem on the space of combinations of takers Z = {1,..., L}¥

i SR (B, o)) vz g3 o (YD, Y))-

=:H(i)

H(i) = 25:1 Re (ge (Y @i Yo)) can be interpreted as the Hamiltonian evaluated at state i in the
state space Z.

More generally, for minimizing the aggregated cost across all members of the network, one can
recourse to simulated annealing method where, for a given combination of takers i, the energy function
is given by the Hamiltonian

H: T—R ©))

i im (gg (Y@iYO)). (10)

But in our problem, we do not have access to the exact evaluation of (9), only to an approximated
version which uses M samples. Let Ré” be the empirical version of R, for each member ¢. Using an
approximated Hamiltonian, the approximated problem to solve is

find le{lman}LZRL; [gg (Y@ Yoﬂ (11)

:=H (1)

We thus denote by Y™ and Y the m — th simulated value of Y and Y, respectively. Note that
sampling all samples (Y™, Y7 : 1 < m < M) will be done once for all before the optimization
routine: alternatively, regenerating on the fly new samples would have been more costly; in addition
for optimization purposes it is recommended to use Common Random Numbers, see

( ). Similarly to the original problem, we define I]‘:gt = argminjer Hps(i). The problem (11)
at hand requires a minimization of a discrete function where the discrete space Z can be computation-
ally tedious and time consuming to explore. Even if such state space is reduced to its most plausible
outcomes, one would still have to handle a large number of combinations possibilities in the order of
200°° ~ 1.13 10'%, 200 being the number of main financial actors and 50 the number of the major
CCP services.

Finally, relying on formulation of non-asymptotic concentration inequality (see e.g.

( )), we denote by B : R} x N* — R, the function such that, for any € > 0, forany i € Z,

for any M € N*,

P (\/MHMu) ~H(3)| > s) < B(e, M). (12)

In particular, thanks to a union bound argument (see Lemma 6) below, for any r.v. I with values in Z,
for any € > 0, for any M € N*, we have

P (\/MHM(I) ~HI)| > a) < |Z|B(e, M). (13)

In practice, a specific level of confidence ¢ is considered so that B(e, M) = §. Hence ¢ should be taken
to attain such confidence level i.e. setting ¢ = (8, M) which leads to

P (\/MHM(i) — H@)| > (5, M)) <. (14)
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We additionally require B(e, M) — 0 for any M > 0 and if B(e, M) indeed depends on M,

E— 0O
B(e,M) — Oforanye > 0.
M—ro00
Example 1. ( , Lemma 3.1.1, page 84) Let Uy.pr < --- < Ups.s be the sorted order statistics
of M i.i.d. uniform random variables on (0,1), o}y, = 3/, € {1,...,M}. Forevery e > 0 and

re{l,..., M}, we have

M1/2
P ((U —afy)
afy (1 —afy)

2

—& g
e ) < exp <_3(1 +e//May,(1— ajw)))

For order statistics X1.p7 < -+ < Xz of M ii.d. random variables of common c.d.f. F'x, we get

IV IA

M1/2 a” < _
p M(XT:M ~Ften) ST ) <

ane (1~ aj,) >e

" (15)
M <h(-— A
P (UT:M - av]"v[) < h( c M; al\l)
ah, (1= aj,) > hie, M, oy
where g (oz}"w) is a nonnegative constant and h (s, M, oz}"\/[) =
M {FX (F)}l(a’]’w)JrsM) a’j\/l}. We can show that we can still re-
o (1=aj,) Viig(as, )
cover a relationship of the type given in (12). Defining E(e,a’A"/I,M ) = sw and
g\
B(e, o, M) :=exp | — h(E’M’aR[)Q (15) writes more compactly
UMD 3(14n (e, M 05,) /(/May, (1-ay,))) )
“1f gy < E(-¢,ah;, M) B(—¢e,M,a%,)
vV M= <

P( M (X~ F' (o) > B(e,ah M) )= B(e,M,a). (16)

Denoting C'(M, o) = 7W > 0, and E(z—:, M, a%,) := B(e/C(M,a},), M, ah,), (16) can
g\

be equivalently expressed for any € > 0 as

_ < —¢ E( —e,M,a})
]P\/M(X. —F1T>— < Z\madhay 17
( e~ Fileh)) 5 )‘ B(e, M, ay). 0
Example 2. ( , Corollary 2.3) Let § € (1,4+0c0). Then for
any Xi,..., Xy iid in Lyur(R) = {X:Q%Rs.t. 1 X g <+oo} with [|X[[gur =

inf {c >0:E [eXp ((1n(\X|/c+ 1))5) — 1] < 1},

]P’(\/M

1 X 5
=3 X —E[X] 25) < 2exp (— (In (14 ke))” ), (18)
oy ( )

where k£ > 0 is some constant depending on || X ||\I,EIT and || X1||z, (), but not on M. Hence the r.h.s.
of (18) does not depend on M, contrary to (17).

Remark 3. Under the assumptions of ( s , Corollary 2.3), ﬁ Zi\g:l X,, 1s an un-
biased estimator of E [X]. Also, if the distribution of X is continuous and strictly increasing around
its quantile level @, (X) for some confidence level o € (0, 1), the corresponding expected shortfall
ES.(X) can be approximated by an empirical unbiased mean estimator as well provided the corre-
sponding quantile Q,(X) at confidence level « is known ( , , Lemma A.1).
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Hence (18) applies for an expected shortfall by replacing X with ﬁX T{x>0. (x)} assuming Q. (X)
is indeed known (where X is a loss random variable and « is a very high confidence level). If the
quantile level is unknown, ( ) proposes a biased but adversarially robust’ esti-
mator of the expected shortfall for which a concentration inequality can be obtained ( ,

, Theorem 1.3). Their approach relies on a quantile-of-means estimator (including the well-known
median-of-means, see e.g. ( )), for random variables that have a square-
integrable positive part with continuous distribution around the quantile level of the considered expected
shortfall.

In the case of the use of an approximated algorithm for minimizing H (1), it is not straightforward
to enforce a certain probability bound level 6 from which to infer (9, M) as in (14). This is due to the
additional error brought by the use of the approximated algorithm.

§3 Simulated annealing algorithm

In this section, we outline main known results on simulated annealing algorithm applied to discrete
state space and useful for our combinatorial problem. Less critical yet key known results material are
deferred to Appendix A.

A Algorithm construction

For a given energy function H, either given by Q° . (gg (Y @ YO)) or ES(‘; , (gg (Y @ YO)) as
per (7), we consider the minimization problem

find i* € argr.ni%lH(i), with H : Z — R. (19)
ic

The simulated annealing algorithm relies on the Boltzmann-Gibbs distribution. It expresses the proba-
bility for a solid subject to a sudden high temperature heat bath to reach a certain thermal equilibrium
energy state as the heat bath temperature applied to the solid is slowly reduced. As the temperature
applied to the solid reduces slowly, the Boltzmann-Gibbs distribution concentrates most of its mass on
the lowest energy states ( , , Chapter 2). As such this principle can be used
for determining the global minimum of a complex function with no particular regularities.

Definition 1. ( , Definition 2.3.1, page 37) The Boltzmann-Gibbs measure
associated to an energy function H and a temperature parameter 7' > 0 is the probability measure
(nr(i),i € Z) given by:
. 1 _pg
pr(i) = e O/, (20)
T

with Zr = Zi T e~ H/T the normalization constant, also called the partition function. Moreover, for
a given n € N* and corresponding real-valued constant ¢,, such that T is replaced by c¢,,, we write

1 .
pn(i) = ——e T/ en, @n

Cn

with Z,, = > ;e TW/en,

"i.e. even if a fraction of the sample is changed, it is still possible to have concentration bounds similar to the
ones for the unaltered sample ( R , Theorem 1.7)
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The steps of the algorithm, running for N iterations and approximating i* by i’V after such number
of iterations, are given as per below

e Starting from the former generated state I,,_; € Z at iteration step n — 1 of the algorithm,
with a non-null probability, the state I’ is suggested at time n, in some neighborhood of I,,_;
noted O (I,,_1) (to be precised later on), based on some given generation (transition) probability
distribution — a.k.a. proposal distribution —, for instance for I,,_; = i, by the finite probabil-
ity coefficient sets (Pn(i,j))jeo(i) with (P”(i’j))i,jeI

> Pu(i,j) =1and P,(i,j) =P (L, = j|T,_1 = i);
Jeo()

a stochastic matrix i.e. for any i € Z,

* a temperature schedule (Cn>n> o 1s given so that at each time n, a low-speed cooling coefficient
can be used to accelerate the algorithm convergence, typically ¢,, = h/log(n + 1); we recall in
Appendix A Theorem 18 ( s , Theorem 1) and Proposition 17 ( s

, Theorem 2.3.8) that this logarithm cooling sequence (for & large enough) leads to asymp-
totic convergence to the minimum (as the number of iteration goes to oo), but it is frequent to use
other cooling sequences that can better find the minimum in a given number of iterations;

« forall j € O(i), assuming the target probability to reach is y,, given by (21) and given some ir-
reducible Markov chain with probabilities (P”(i, j))i jer (the generation probabilities), we con-
sider the acceptance probability quantity, depending on 7, and noted 4, (i, j) set to

1(3) P 3, 1)

An (i, j) = min (M(i)Pn(i,j)

,1>, i,jeZ, (22)
with the convention A, (i,j) = 1 if pu(i)P,(i,j) = 0. The acceptance probability is used with
a uniform r.v. U,, ~ U(0,1), independent of all other r.v.’s, to form a Bernoulli distributed r.v.
of parameter A, (i,j). At time n, and assuming I,,_; = i, the value I’ is proposed based on

the (discrete and irreducible) generation probability distribution (Pn (i, j))j co)” It allows build-
ing a Markov chain verifying the reversible condition w.r.t. 1, so that the latter is its invariant
distribution ( s , Section 4.9, p. 260). As outlined in ( s s

Section 1.2.1), for such reversibility condition to be verified, it is necessary that the acceptance
ratio obeys the multiplicative property, necessary for proving the simulated annealing algorithm

convergence ( s , Theorem 2), ( s , Theorem 3.3),
( , , Section 2):
Vi,LjeZ, H(i) < H() < H(j) = An(i,]) = An(i, D An(LJ). (23)
The particular form of acceptance probabilities, initially considered in ( ),
and given by
An (1) = exp { = (HG) — HD) " e} 4)

indeed verifies (23).

* the next iteration of the process I is defined as:

L =11, <a,q, 1)+ Inc1liu, >4, 1, 1.1} (25)
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By ( s , Proposition 2.2.1, p. 35), I, follows the discrete distribution
defined, for all i € Z and for all j € O(i), by the probability coefficients
.. P,(i,j)A.(1,] ifj#£i
Quiig) = G DAY A (26)
1- Z_j/7éi Qn(i,j) ifj=1i

Now, we can define two Markov chains: first, for each given n, a homogeneous Markov chain with
transition probability (,,; second, a non-homogeneous Markov chain with a transition probability @,,
at step n (which corresponds to the simulated annealing algorithm). We start by describing a few
properties of the fixed-n Markov chain.

Proposition 1. ( , Proposition 2.2.1, page 35) Let n be a fixed integer. The

transition probability Q,, in (26) defines a homogeneous Markov Chain (X ,gn))k>0 which is reversible

W.EL. . In particular, ., is an invariant probability for the Markov chain (X ,E"))k>0.

The Theorem 2 below outlines the necessary conditions for a homogeneous Markov chain con-
structed using (26) to result into a Markov chain whose invariant distribution converges towards the
distribution putting all mass on the minimizers of the energy function.

Theorem 2. ( , Theorem 3.3, page 42) Consider the energy function H to minimize
on I with the cooling schedule (cn, n > 1) such that lim,, oo ¢,, = 0. Assume that for any n > 1 the
acceptance probability function (A(i, j, c,))

7 and the generation probabilities (P, (i,])); ;.1 are

i.je ije

linked through (26) and respectively satisfy

(i) the generation transition probability distributions {(Py,(i,j)ijez)},~, is irreducible and sym-
metric
Al j,en) € (0,1) if H() < H(j)

(iii) ¥n > 1, Vi,j,1 € Twith HGi) < H(G) < H(1), AG,1,¢) = A(§, ) AG, 1, ¢n)

(i) ¥n>1,¥i,j €T, {

(iv) Vi,j € T with H(i) < H(j): limy_e0 A(i, ], cn) = 0.

Then the Markov chain (X,in))]po defined by (26) with A,(i,i) = A(i,1i,c¢,) admits an invariant
distribution ji,, whose components are given by

A(iOa i7 CTL)

wn (1) = m, forallie T, (27)
and for arbitrary iy € Z. Moreover, we have
lim p,(i) = L]l{iezopt}. (28)
e ) = o
Remark 4. As outlined in ( , , Section 2), the symmetry of the generation probabil-

ities { (P (1,J)i,jez)},,> .~ ooutlined in (i), is in fact not required as long as the acceptance probabilities
verify (iii) in Theorem 3.1 and the generation probabilities reflect a weak reversibility property, intro-
duced in ( ). According to ( ) and ( ), this means
that the graph of energy functions of all states is strongly connected in the sense that any pair of vertices
(H(i), H(j)) is connected by a directed graph fromito j, i, j € Z and H the energy function, and this
assumption suffices for obtaining (28) regarding the homogeneous Markov chain defined by (26).
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The case where A(i,j,c,) = An(i,j) is given by (24) leads to pu,, being the Boltzmann-Gibbs
distribution (21). The last statement of Theorem 2 indicates that all mass of the limit distribution of the
simulated annealing algorithm, if the Doeblin condition is indeed satisfied for the generation probability
P, concentrates on the area where the minimum of the energy function is attained. In particular, some
Doeblin condition is verified by @ if P satisfies one, cf proof of ( , Lemma
2.3.6, page 41).

Remark 5. The reversible property of a homogeneous Markov chain defined by (24) can be obtained by
remarking, for i # j, with for any i,j € Z, P, (i,j) > 0 and as in ( , proof of
Proposition 2.2.1, page 35),

,Ufn(i)Qn(imi) = ,U'n(i)Pn(iaj)An(iyj) (29)
= min (j10 () P (3.3). () P 3.1 (30)
- . 5 1) min U7L(i)P7z(i7j)
= )P0,y (2252 1) a1
= pn(3)Pn (3, 1) An(j, 1) (32)
= pn(§)@n (1) (33)

Remark 6. It is well known that any irreducible homogeneous Markov chain that is defined on Z, which
is a finite set, has a unique invariant distribution 7, see Theorems 15 and 16 in Appendix A.

We now describe the non-homogeneous Markov chain of the simulated annealing algorithm.

In what follows, including our application case, we consider that the generation Markov chain re-
flected through ((P"(i’j»jeo(i))neN* is homogeneous i.e., for all n € N¥, (P”(i’j))jeO(i) =
(P(i, j))j coy For very large combinatorial problems, the convergence may be hard to achieve in
reasonable amount of time. A finite computational time approach, i.e. the run of the algorithm with a
finite given number of steps must be considered instead, as outlined in ( , Section

3.3) and ( ). Such budget constraint allows to obtain error bounds.

Definition 2. Let i such that H (i) > H where

H := min H (j

min H(j)
and consider a possible trajectory v = (i, ...,1i,) fromito i* € Z°P" with iy = i and i, = i* i.e.
i, € Z°" and P(i;,i;41) > 0 for 0 <1 < n. The energy gap crossed over by this trajectory is

H(y) := o Jnax H(i;) —H.

Denote by TI'; the set of all possible trajectories from i to Z°P¢ and

H, = min H
H; = min (7)

the minimum of all the energy gap crossed over among all possible trajectories I';. The quantity

H = max Hj, (34)
ieZ
is the highest energy gap and depends on both the energy function / and the Markov Chain generation
matrix (P(i, ), jez- We also define
H=minH;
ieT
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the minimum of those energy gaps. Thus for any i such that H (i) > #, there exists a trajectory from i
to Z°P! for which the energy gap is below or equal to H. Let
H,

D := ————-1>0
1H()>7—LH() H -

be the difficulty associated to the energy function H.

In particular D < % — 1 so that D is bounded from both sides for any energy function H. As it can be
quantified below, the smaller the gap D, the faster the convergence that can be achieved with a proper
cooling schedule.

Theorem 3. ( , Theorem 2.3.9) There are two constants By > By > 0 such
that for all N > 1,

By B,

Nl/D < I?eaIXco;ngc IED(co,...,czv) (H(IN) > H|IO = i) Nl/D’ (35)
where P(¢, . cy) Is the probability measure under the considered cooling schedule co > --- > cy.
And for all A > 0, there exists § 4 > 0 such that for all N, the cooling schedule ( (N, A), , (N7A)>,

n/N
defined by ™) = 5 () satisfes
1/D
. log() log (log(V)) \
I&%XP(C((JN,A>).MC§VN,A)) (H(IN) > /H’IO = 1) <da N . (36)

We recall that the necessary and sufficient conditions for convergence of the simulated annealing
algorithm is known (see Proposition 17 and Theorem 18 in Appendix A taken from
( ) and ( ) respectively, with logarithm cooling schedule that we refer to as unlimited
budget version). However, we prefer to focus our analysis on accuracy guarantee at finite range IV,
using the (triangular) cooling schedule ( (N, A), .. ,CS\J,V’A)> above that we refer to as fixed-budget
version. The expression (36) indicates that the worst probability of getting an energy level above the
minimum one starting from any i € Z is controlled by a bound decreasing in the number of the algorithm
number of iterations (but increases with D). As with ( , Theorem) in the case where the
unlimited budget cooling schedule is of the form ¢, = ¢/In(n + 1), ( ,
Theorem 2.3.9) indicates that as NV increases, the algorithm based on the fixed-budget cooling schedule

2 'I’L/N
- < o =A ( loggN) ) ,n < N, indeed converges towards the invariant distribution putting all mass
Cn

on the optimal set I°P* as outlined also by ( , Theorem 3.3, page 42). In particular,
whatever the initial distribution of i is,

P(H(Ly) > H) Z]P’( (Iy) >7—[’10_)P(i0:i)

ieZ
< maxP (H(IN) > H‘io _ i) S P =)
1€ ieZ (37)
=1
log(IV) log (log(V)) "
og(N)log (log
< .
> 6A < N > m 0
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Remark 7. Let M € N and consider any empirical estimation H,; of H based on the sample
Xim = (Xq,...,Xn) with Xy,..., X iid.. Denote by Dx, ,, the difficulty associated to the
empirical estimate Hj; of H with H,; = minjez Hpy (1), Hjs and H v the corresponding maximum
and minimum gap and Dx,,,, the difficulty associated to the function Hj; as defined in Definition 2
applied to Hp;. From Theorem 3, for any A > 0 there exists 5321: > 0such that for all IV, using the

n/N
cooling schedule defined by C7(1N) = % ( A ) ,n=0,..., N, satisfies

(log N)?
Pxar (e (Tp) > Har) <maxPx, .y, (Har (Thg) > Ha[To = i) (38)
= 1
log(N) log ( log(N Xim

with 6§1:M and Dx,,, implicitly depending on X;.5;. However the considered samples formed of M
ii.d. versions of a r.v. X have the same distributions. To be more specific, for some fixed A > 0, for
two samples Xy.5; and X/1: s based on two independent sets of i.i.d. versions of a r.v. X, we have that
X1.a and X7, possess the same distribution and:

E 5§1:M <log(N)lo;gV(1Og(N))>%w (10g(N)10]gV(10g(N))>DX&;M o

The latter quantity appears in our bound results in the following section.

B Convergence and error analysis of the approximated problem

We do not have direct access to H but only to an approximated version Hj; defined also on Z and
which depends on M Monte Carlo samples X1.p; = (X1,...,Xum) (e.g. Xon = go (Ym @ Y{J”),
m € 1... M, where g(-) will be made explicit in Section §4). But the same type of algorithm c;m find,
after N iterations and through a single run, an approximated (random) solution I%; to the approximated
problem:

find I3, € I = arg min Hy (i) with Hy 0T — R, (41)
[SS

We look at how close the approximated problem algorithm candidate H 5, (I%) to (41) after NV iterations
of the simulated algorithm is to the true solution H (i*) of (19) e.g. how large the difference |H M (Iﬁ) —
H(i*)
wrong i.e. getting an upper bound for P (IJ\N4 #* i*). We will thus prove the following bounds, for any
e >0,

can be with i* € Z°Pt. Also, we are interested in knowing how likely for the algorithm to be

P (VM (Hu (13) — H()) < —2) < |Z|B(e, M),

P (VM (Hy (1) — H()) > <) <E |64, , <1°g(N) lo]gv( log(I)) ) I (5.m),

and

log(N) log (log(N)) \ 7%~
B(IY ¢ Ti}) <E a;zw("“ it ”) e
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1

P (I3 ¢ I°) < |Z|B (W,M) +E 5§W <10g(N) lo;gv(log(N))> DXy
B (W@ |

with Hy := min; s« H (i) the second minimum value of H. These bounds written in these forms only
inform about the convergence to zero of an error from both the approximated function value in R and the
approximated solution in Z as M and NV tend to zero. Due to the bound constants (5§le and 1/Dx ..,
it seems delicate to infer an error level for € from a given probability the way written in (14). This is left
to further investigation.

Lemma 4. For any rv.s X,Y; € X withi = 1,...,n such that | X| < Y0 | |Y;
have

, and any € > 0, we

P(X|>e) <> P (il > %) (42)
i=1

Proof. By assumption, {|X| > ¢} C {31, |Yi| > e}. Moreover,

n
Y [Wil>e
1=1

which can be proven by contradiction. Hence, we get

P(X| > <) gp(im >g> <P (U il > ;) sznjﬂm(\m >2), (44)
=1

=1 i=1

:>[\Y1|>£or...0r\Yn|>£}, (43)
n n

where we have used (43) for the second inequality. [J

Let I}, be some random solution identified by the simulated annealing algorithm after NN iterations
relying on the samples Xi.ys to estimate H(-) from Hy;(-). This means that Hy (I5;) writes as a
measurable function f of the samples X7y, ..., Xy, the member proposal on each CCP at each itera-
tion step, based on uniforms Ui, ..., U, ... U N Uf\f , and acceptance uniform random variables
U{,...,U%. Tt may also depend on an initial random combination guess of takers based again on
uniforms Ug, . .., U({( . Then one can express

Hy(IY) = f (X1, o, X, UL U UL, LU U UR UL UR)

If the initial guess is deterministic, as it will be the case in our use case, then the former expression
simplifies into

Hy (L) = f (X1, o, Xn, UL, UE UL US U UR) (45)
Note  that  I¥; should also  be  understood as a  measurable  func-
tion of Xi,..., X, U, UK UL L UE U, UE (or
Xi,oo0, X, UL, UK Uk, ..., UK if the initial guess is deterministic).

Lemma 5. Let i* € argminjer H(i), I, € argminijez Hyy(i)and 1Y, be the solution found by the
algorithm to minimize Hpy(-) over T after N iterations with Hyy (i) an empirical estimation of H (1),
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i€ 7, based on M i.i.d. samples X1, ..., X ;. We have

H (1) — (L) < Hy (13) — HG) < Ha (1) — Ha (L) + Hu (i) — HE).

empirical error algorithmic error empirical error (46)

Proof. LetI;, € IX/’;t. For the upper bound, we have

Hy (I3) — HG*) = Hy (13)) — Hu (Ty) + Ha () — Ha (%) +Ha (i%) — H(i")
<0 (47)
< Har(13)) — Har (Tyy) + Har (i) — H(i).

Moreover, as H(i*) < H (I}}), we get for the lower bound
Hy (Iyy) — H(Iyy) < Hy (1) — H(i%). (48)
Combining (48) with (47) yields (46). O

Lemma 6. Assume for any ¢ > 0 that maxjez P (\/M|HM(i) — H({)| > 6) < B(e, M) for some
deterministic constant B(e, M) depending explicitly on € and M as introduced with (12) in Section B.
Then, for any r.v. I with values in Z,

P (VM|Hu (1) - H()| > £) < [T|B(=, M), (49)
Proof. By application of the union bound principle,

i (\/M|HM(I) “H)| > g) < ;w (\/M|HM(i) CH@)| >eI= z)
<SP (\/M|HM(1) —HG)| > 5)
i€z

<> B(e, M),

ez
using the assumption for each term of the last inequality, which yields (49). U

Remark 8. As illustrated in Examples 1, 2 and Remark 3, Hj; can be an empirical mean or a quantile es-
timate. Though empirical quantities can be scaled naturally by v/M to allow B to be expressed without
M for instance in the case of empirical mean estimate, it may happen that the error level upper bound
may still depend on M, like e.g. for the estimates of quantile or expected shortfall without unknown
quantile.

Theorem 7. Let i* € argminiez H(i), I, € argminiez Hyy (i)and I be the solution found by the
algorithm to minimize Hp;(-) over T after N iterations with H (1) an empirical estimation of H (i),
i€ 7, based on M i.i.d. samples X1, ..., Xp;. Forany € > 0, we have

P (\/M(HM(I%) — H(i") < —g) < |Z|B(e, M),

B (VAT (1) ~ 1) > =) <8 o, , (200 (b)) P

(50)

168



Proof. According to Lemma 5, we have
Hy (I3)) — H(*) < Hy (I3)) — Hy (L) + Hy (i) — H(E), (5D
Hyy (L)) — H (L) <Hy(13) — H({). (52)

Let Ea(H)(i) := Hp (1) — H(i),i € Z, and EN (Hypy ) (13)) := Har (I3;) — Har (T;,) the empirical
error for H evaluated at i* and the algorithm error for H,; for IV iterations evaluated w.r.t. its optimal
value H (I}*w) Therefore,

Enr(H)(Tyy) < Har(Ty) — H() < EN(Har) (137) + En (H) (1) (53)
Using the Lh.s. of the first inequality of (53) we get, for any € > 0,

P(VM(Hu () — HG) < —¢) < P(VMEM(H)(IY) < —¢)

(53) L.h.s.
< |Z|B(e, M).
(13)

Using the r.h.s. of the second inequality of (53) we get, for any € > 0,
p (m(HM () - H(iY) > 5) <P (m(sN(HM)(Iﬁ) + EM(H)(i*)) > 5) :
Applying Lemma 4 further yields
P (VM (Hy (1) — H(")) > <)

<P (\/MEN(HM)(IZIXI) > g) +P (\/MEM(H)(i*) > g) (54)

<P(eV(HM)(IN) > 0) + B (5. M).
using, for the first term of the r.h.s. of the second inequality, the fact that

{\/MsN(HM)(Iﬁ) > g} c {\/MSN(HM)(I]A\Q) > o}

= {EN(Hy)(13)) > 0},

and by assumption for the second term. Applying Remark 7, and denoting Px,,,, the conditional prob-
ability to the empirical sample X;.,7, we get

P (EN(Hwm) (1Y) > 0) =E [Px,.,, (EN(Hu)(I};) > 0)]

log(N) log (log(N)) | "Xrar
x 521:M<0g( ) log (log( ))) .

N

Corollary 8. (Estimation error) Let i* € argminier H(i), I, € argminier Hy (i) and I3, some
random solution identified by the algorithm after N iterations. For any € > 0,

P (VM (H(TY) - H(i")) > <) (55)

log(N) log (log(N)) \ 7%+
<I7IB (5.M) +E 5§éw(°g( = ))> M

+B (Z,M) . (56)
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Proof. We have
0< H(IY) — HG®) =H (1) ~ Har (1) + Har (1) - HG) (57

By application of Lemma 4, we get

P (VM (H(I3) - H(i")) > <) (58)
<P (\/M(H(I%,) —uy (IANI)) > %) P (\/M(HM (1) - H(i*)) > g) (59)
<|7|B (%M) +E |64, <log(N> lozgv(log(m)>DXW +B GM) (60)

where we have used Lemma 6 for bounding the first term of the r.h.s. of the first inequality and Theorem
7 for bounding the second term of the r.h.s. of the first inequality. [J

Proposition 9. Let Hy := min;;- H(i) the second minimum value of H. Under the same assumptions
of Theorem 7,

P (1) ¢ Tif') <E |6%,.,, <1°g<N> IOJgV( log(N>)> e | o)
and
P (I3 ¢ %) <|7|B (WM) +E |64, <1°g(N) 10;5\[( 10g(N))> Pis )
+B (‘/M(ZQ_H) M> . (63)
Proof. LetT}; € Z70'. Then {18, ¢ T3?'} = {Hy (IY)) — Hp (T;,) > 0}, and therefore,
P (13 ¢ T') = P (VM (Hu (13) = Ha(I3) ) > 0). (64)

Applying Remark 7 and taking expectation w.r.t. the distribution of X;.5s, we get the inequality (61).
Let i* € Z°P. We have {1}, ¢ Z°7'} = {H(I};) — H(i*) > ¢} for any € € (0,H2 — H], and in
particular

P (1} ¢ T) = B (VI (H(IY,) - HG") > VA(Ha = H)) (65)

and applying Corollary 8 with e = v M (Hz — H), we get the inequality (62). O

C Tail distribution analysis
The random variables we deal in this work, formalized by (4) is recalled here and develop as:
k k
k
Y Y) (Y Y)
(Y@, ¥o), o (YD, V),

L

b1, +
L (@) )t

k =1
Z by lyr, >1}
=1

170



We assume heavy-tailed distributions (see e.g. ( , , Chapter 1) or ( s s
Chapter 1)) on the risk drivers (Y, Y}, ..., Y}F), as it should be the common practice in financial
applications, and with their updated version post-default resolution with combination of takers i to
((Y b, YO)IIC oo (Y 6B, YO)IZ), k =1,...,K as per (3). Given the particular form (66) that can
be seen as a (stochastic®-)weighted sum of semi-linear functions of those risk drivers, we can expect
(66) to also have a heavy-tailed distribution. We will see in our numerical examples, though fictitious,
yet quite realistic, that the log-log QQ plots depict for the right tail distribution a form similar to a
Pareto, log-Weibull or Weibull tail-distribution depending on the assumption of the law of the Y;’s (see
( s , Section 6.5) or ( s , Section 6.4, page 325)). Under the assumption
of Student-t distributions of degree 3 for the portfolio drivers, the statistical tests favor a heavy-tail
distribution behaviour for a random variable of the form (66). A generalization of such analysis, finding
its root with the Hill-estimator (Hill, ) is described in ( ) that we summarize here
for completeness.

Let £ : R — R, be a slowly varying function i.e. limy, o %((t;)) = 1forall ¢ > 0. For any

nondecreasing function 7' : R — R, with T(—o0) = lim,|_o T'(z), T(c0) = limyeo T'(z), we

define its generalized inverse 7 : R — R = [—00, 0],y ~ inf {x € R : T(z) > y} and with the
convention that inf @ = oo (such generalized inverse coincides with the classical inverse whenever 7' is
continuous and strictly increasing, see for instance ( ). ( )

consider a family of survival distribution functions F(x) = 1 — F(x) with F some c.d.f. and
A(7,€): F(x) =exp (—K; " (log Te(x))) , for x > ay, for z; > 0, (67)

with K, (y) = [/ w"'du, v € [0,1], T a nondecreasing function such that TE(t) = t5£(t), where
& > 0and £ a slowly varying function. Let X7, ..., X, be a sample of size n assumed to be drawn from
arandom variable X with unknown distribution and let X,,_,, 1, denote the k,, upper order statistics
Xp—ppt1in < - < Xy = Lgaxn X;). The (biased) estimator of £ is defined as

kn—1

T T 2 () ). 6

& (kn) ! !

with 11 4 (t) = / (Ky(z +t) — Ky(x))e *dx. Under some mild second-order assumption on £, it
0

can be shown that gn(kn) given by (68) converges towards £ if k,, — oo and %" — 0¢( ,
noo noo

, Theorem 1). Considering two quantiles z,, and z, of F' with 0 < u < v < 1 and under A(~, £)
in (67), we have

log z,, — log z,, = &(K,(—logu) — K (—1logv)) + log <£(exp K, (= log u))) . (69)

£(exp K (—logv))

By definition of £ which is slowly-varying and for v and v close to zero (e.g. v = k, /n close to zero),
the second term of the r.h.s. of (69) is negligible in front of the first term so that we get the approximation

log z,, — log z,, ~ {(Kﬂ,(— logu) — K (— logv)). (70)

8due to the allocation coefficients depending on the default events, themselves expressed w.r.t. random latent
variables X1,..., X,
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The approximation (70) holds for any v € [0, 1] hence shared by Pareto-type, Weibull and log-Weibull
tail distributions. Such property can be graphically tested on the sample (X1, ..., X,,) by plotting the
pairs

(K’Y(log(n/z)) - K’Y(log(n/kn))a log(XTL—i+1,7L) - 1Og(Xn—kn+1,n))1§i§k” (71)

depending on the tested distribution specified by the expression of K. If the graph is approximately
linear, there is evidence that the sample may be drawn from the tested distribution type. For particular
cases, we consider ( s , Proposition 2)

* Weibull tail-distributions W(1/&, 1), with K(t) = logt corresponding to A(0, £) in (67),

* log-Weibull tail-distributions with K(t) = logt, and for which we define X = e¥ with Y
following a Weibull distribution W(1/¢, 1), included in the cases A(0, §) in (67),

* a Pareto distribution with tail index 1/&, with K;(¢t) = ¢, included in the case A(1,&) corre-
sponding to distribution tails belonging to the Fréchet Maximum Domain of Attraction.

The type of identified distribution (light, heavy or in-between) for the tail distribution of the loss random
variable (66) allows precising B(e, M) in the concentration-like inequality (12). In the case of statistical
test in favor of heavy-tailed distribution such as Pareto ones, a Fuk-Nagaev concentration inequality can
be envisaged should the risk measure be an expectation or a quantile level (see e.g. ( , ,
Theorem 2.1) with a class consisting of a single element). If the statistical tests are more in favor of
Weibull-like distribution, part of the a-exponential distribution class, a dedicated concentration inequal-
ity applies, see ( , , Theorem 1) (with a compact consisting of a single point) whilst
a statistical test favoring a log-Weibull type of distribution, also part of the S-heavy tailed distribution
class, leads to the concentration inequality that can be found in ( s , Corollary 2.3).

§4 Application to the CCPs defaulted portfolios takeover problem

The calculation of R}/ [gg (Y @ YO)] for any i € 7 in the minimization problem (11) is costly due
to the loss variable form (4) appliezl to (elliptically) heavy-tailed distributed variables for the portfolio
drivers and default latent variables, with no analytical form for the employed risk measures Ry, { =
1,..., L. Moreover, the large financial network at hand, e.g. realistically about 50 CCPs, hundreds of
members with many common to several CCPs, and thousands of clearing clients, lead to aggregating
thousands of approximated risk measures, each relying at least on hundreds of thousands Monte Carlo
simulations for minimal approximated errors. As such the minimization procedure cannot apply on all
possible states and must resort to a more strategic research namely based on scenario exploration and
exploitation which is the purpose of using the discrete combinatorial version of the simulated annealing
algorithm. To this end, we need to define:

* the generation homogeneous Markov kernel for generating a new candidate set of takers, namely
P(i.J);
¢ an estimate of either the cooling schedule hyper-parameter ¢ (unlimited budget version) or A

(fixed-budget version) to ensure adequate algorithm convergence, and, for the fixed-budget ver-
sion depending on N, to ensure appropriate bound (36).

For the unlimited budget cooling schedule in the form of ¢/ In(n + 1), the constant ¢ should be set to
at least the maximum gap between the energy level of any state i through a path towards the minimum
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energy level, or if unknown, to the difference between an upper bound Up and lower bound L of such
energy function.

A Generation probabilities definition

As outlined by ( ), the exposure sizes of members decrease exponen-
tially. This implies that the biggest members have portfolio position decreasing when ranked according
to any metric relying on their portfolio absolute size whilst smaller members may depict similar charac-
teristics e.g. rating and portfolio size. The collateral layers calculated by the CCPs also depend on the
portfolios of the members. Any structural change to these portfolios such as a portfolio update reflecting
taking over some defaulter position leads to recalculation of those layers on all members.

As it is not possible to explore the space of combinations of takers directly and as each combination
is a proposition consisting of one taker per CCP, we start by considering a taker proposal for each CCP,
namely the one minimizing the risk measure on each stand-alone CCP. Then, for each CCP £, one
member ¢ out of the surviving L members is suggested based on its portfolio notional size 1V, f Ww.I.t. tO
the CCP using the following principles:

« if the notional size of the proposed taker is large compared to the defaulted notional portfolio
NE # 0, that is taking over the defaulted portfolio should not affect significantly the risk of the
taker, there should be a significant probability that this taker would be indeed willing to taker
over the defaulted position,

« if the defaulted position greatly offsets the taker position, this taker should have a great probability
to be willing to take over the defaulted portfolio on that CCP.

One pragmatic and economically sound approach to do so is to look at the netting effect on the port-
folio of that member taking over the defaulted portfolio on each CCP. Denoting P(i, j) the genera-
tion (homogeneous) probabilities from state of combination of takers i to state j, we start by con-
sidering the netting effect properties at each CCP level, independently from each other. For each
CCP k, we denote by Py(iy, ji) the proposal generation probability from member proposition iy, to
ji so that P(i,j) = P((i1,- - ix), (G1s--r7x)) = [Irey Pelin,jx) with i = (i1, ... ix) and
j= (1,-..,JK). For any member member ¢ on CCP k, we define the netting benefit ratio

N}

k
= |—=]. 72
Cp ‘Néc“v—N(])C ( )

There are economic rationale properties stemming from this ratio definition:

e if N, lf‘ + NE =~ 0, i.e. there is a strong benefit for member ¢ to take over the defaulted position on
CCP k, then the ratio (72) is high and the corresponding probability of picking up such member
should be high;

o if |[NJ| < |NE|, then ok = 1i.e. there is no strong netting effect when member ¢ acquires the
defaulted position on CCP k;

e if N, f and NF are of the same sign, i.e. portfolios have the same direction, with no big magnitude
difference between one another, then o should be smaller i.e. there is an overall position increase
for member ¢ when acquiring the defaulted position on CCP k, thus not benefiting from taking
over the defaulted position on CCP k; the corresponding probability of picking up such member
should then be low.
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Hence the generation probabilities can be set proportional to those netting ratios. As such, by setting
the probabilities of suggesting member j; on CCP £ from former member ¢, at any iteration as:

2= 9y
we get the desired features despite losing the information of transiting from ¢y, to ji. For a CCP where
the notional sizes are not significantly different from one another, a simple homogeneous probability
attribution to each surviving member of that CCP is simpler and can be preferred.

At each iteration and for each CCP k, a uniform number U ~ 1/(0, 1) is drawn, independently of
any other draw, and compared to the cumulative probabilities from (73) to identify the proposed taker
i.e. the proposed taker index is 25:1 g, (1—1)<U<sy () With 51,(0) = 0 and 55, () = Zg,zl Py (ig, 0,
¢e€l1..L, k € 1..K. The resulting generation probability of proposing a combination (ji,...,jx)

from a previous state (i1, ..., 4x) is stochastic as required. We indeed observe that
L K L L
> I PeGrde) =D+ > Pilin,n) x -+ x Prclixe, ) (74)
J1yees Jr=1k=1 Jji=1 Jr=1
L L
=Y Pilin, 1) x - x Y Prlix, jx) (75)
Jji=1 jr=1
=1 =1
=1 (76)

B Maximum gap bound based on the problem features

To set the constant ¢ of the unlimited budget cooling schedule n — ¢/ log(n + 1), and to validate the
assumptions on ¢,, from Theorem 18 ( , , Theorem 1), we look at estimating the maximum gap
between the energy levels based on upper and lower bounds of such energy values. For the upper bound,
in the ideal case of using a convex risk measure’, we can use a diversification argument whereby the risk
is bigger when aggregated across each CCP compared to the overall risk of the aggregated exposures
to all CCPs. The upper bound Upg is the approximated energy function applied to the combination of
takers maximizing the aggregated cost across all members on each CCP k separately. Considering all
RN (ﬁ&k’i]) >0,k=1,...,K,¢,i=1,..., L, we thus set

Ug = Hy <arg(max ZZRZ (ﬁ”“’”)). (77)

)

A simple lower bound L g can be zero. However, though the unlimited budget cooling schedule constant
c should be lower bounded by the maximum energy gap, it can be detrimental to select a too large value
as numerical results appear poorer, which is the case Lp = 0. Instead, we consider, the approximated
energy function applied to the combination of takers minimizing the aggregated cost across all members
on each CCP k taken individually, that is

Lg:=Hy (arg min ZZR ( m’“])) (78)

(15 ﬂK)}C 10=1

®which is not the case for VaR measures based on quantiles given the non-elliptical nature of credit losses.
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Finally, the constant ¢ in the unlimited budget schedule version of the algorithm is set to
¢c=2x (Ug— Lp), ( with A = log 2/¢, for fixed-budget cooling schedule)7 (79)

where the factor 2 in the expression (79) of c allows for a greater magnitude than simply taking Up — L g.
The latter may not be enough for conditions of Theorem 18 ( , , Theorem 1) to be fulfilled.
Indeed, Lp is most likely expected not to be below min;c7 H /(i) as diversification reduces risk when
using convex risk measures. Nonetheless, it is expected that (i%, ..., %) is not too far from the right
solution with an energy level close to the minimum one. Some of the members (i, ..., 4% ) may be
even part of the optimal combination of takers and for some CCPs, it should be economically consistent.
Hence multiplying by two should ensure c is bounded below by the maximum energy gap Hj, given in
(34) for the approximated energy function. It also proves to give reasonable good results when looking
at numerical examples, see section E. We finally define the initial proposal combination of the algorithm
as

K L
(@,....i%) =arg_min > 3 RY (/:5’“"6]). (80)

(31500050 5) k=1 =1

Though in our numerical examples we use a non-convex risk measure quantile approach for the energy
function combined with equations (77), (78) and (79) for setting the cooling schedule hyper-parameter,
the results appear reasonably good compared to brute force resolution as illustrated in Section E.

C Used simulated algorithm

As there is uncertainty in the risk measure calculation for any member, the algorithm is run based on
the upper confidence level of the estimated values of the risk measure for each member. Such upper
level, that we denote H}, (i) for a combination i € Z, remains an energy function that depends on
both the size of the used samples M and takers combination i. For instance, in the case of empirical
mean, this is simply the Monte Carlo upper confidence level at 97.5% with the corresponding sample
standard deviation and the Student-t dsitribution of degree M — 1 ( R , Appendix A.2,
pages 141-144). Another example is quantiles estimate for which a non-parametric upper confidence
level is proposed in ( , Section G.2). We depict such algorithm in Algorithm 1.
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Algorithm 1 Simulated Annealing for CCPs Default resolution

1: Initialize:

2. Fork=1,...,K,{= 0,...,L,generateYOk,Ylk,...,ij’,
Xi,..., X, common random numbers to all H(i) and H}, (i)
calculations,i € Z = {1,..., L}

3: Calculate Up, Lp, c based on (77), (78) and (79) resp. with H},
deduced from H s based on (11) with gy(+) = 25:1 fF(-) where f; are

of the form (4)

4: Define (44, ..., zl}() using (80) with H}, from Hj; based on (4) and
(11)

5:seti* =i=(i4,...,i%), n = 1 and evaluate HY, = HY,(i*) from

H);(i*) based on (4) and (11)
6: whilen < N do

7. cptc/In(n+1) (or cn + % (4/(log N)Q)n/N)
8: for k =1to K do

9: Draw 1, based on (72) and (73)
10 or homogeneous probabilities for all surviving members of CCP k
11: end for

12: Define j = (i1, ...,ix) and evaluate H},(j), H}y;(i) from Hps (i), Hps(j) resp. based
on (4) and (11)
13: Calculate A, (i, j) using (24)

14: Draw a uniform r.v. U,

15: if U, < A,(i,j) then

16: update i = j, based on (25)
17: end if

18: Evaluate H}, (i) from H/ (i) based on (4) and (11)
19:  if HY (i) < HY (i) then

20: i* =iand H}, = H},(i)

21: end if

22: end while

23: Return i* and HY,
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D Computational complexity

1 K
For¢ =1,...,L, let Y, = ((Y @ Yo)p ey (Y @ Y0>€ ) A one-shot Evaluation cost of

Hy, (i) consists in:

L]

updating K position factors among Y7, ..., Y, each of size M with Y, ..., Y ie. M x K
operations,

for each member, re-evaluating the loss function g, (Ym @ Y{)”) with/ =1,...,Land m =
1,...,Mie. Cstt x L x K x M operations with some constant Cstt for the application of the
function g, (similar for all members and depending on all K’ CCPs),

for each member, re-evaluating the R, such as a quantile or an expected shortfall requiring to
read an order statistic from the M simulated values and summing the values above this quantile
i.e. an overall cost of Cstt x L x M log(M) for some other constant Cstt and with M log(M)
the worst case for the sorting algorithm for reading the necessary order statistic.

Considering either K ~ log M or K < log M, we get an overall calculation cost of order Cstt x L x
M log(M) as an incremental evaluation cost for changing from combination i to i’ # i.

E Numerical results

We list below the setup considered for running the approximated algorithm based on given sample of
size M.

Consider 4 CCPs with 11 common members indexed from 0 to 10 among which member 0 has
defaulted.

The portfolio drivers (Yek)OS ¢<10 are all (correlated) Student r.v.’s with degree of freedom 3. The
1<k<4
credit latent variables (X/)1<<, are (correlated) standard Gaussian r.v.’s N (0, 1) (see also Table

2).

All surviving members are assumed to have a one year default intensity of 1%.

For convergence numerical illustration and confidence levels, 100 runs of the algorithm has been
considered with IV varying from 25 to 3000 iteration steps, with a step of 25 iterations.

A quantile at 99.9% is considered for the risk measure of all members with it upper confidence
level as estimated energy levels ( , , Appendix G, p. 497).

The parameters of the various costs calculations are summarized in Table 1:

One-period length for default 7' 1 year
Portfolio variations correlation p.’s 30%
Credit factors correlation p,,’s 20%
Quantile level used for clearing members risk measure calculation 99.9%
Number of Monte Carlo simulation (for risk measure computations) | 100,000

Table 1: XVAs calculation configuration
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* The (simplified non-centered) loss r.v. for member / is

4 ]].X 5 bk 10 BN\ T
L= e L 1x,>8, <<Y .Y0> ) )
; L= bf+ Z%?:l bp1x, <B, e'z:% e @‘ 4 @®1)
e#e (£'#0)
where no collateral layers have been considered i.e. ¢, = 0 and b} = [NF|1,z;, + |NF +
Ng |14, for £ =1,...,10 in (4) with 4; the member index taking over the defaulted portfolio
onCCPk.For{=1,...,L, N, f corresponds to a deterministic signed size of exposure position

member ¢ has towards CCP k.

This example can be run with a brute force ground truth resolution by running the cost of each com-
bination of takers (10000 aggregated cost values H (i) to calculate for each combination i and their
corresponding upper confidence levels), pre-generating the empirical energy levels based on the M-
sized samples for each possible combination. As such, we can process several tests without having to

recompute these energy levels, simply reading them from a saved file.

The characteristics of the positions on each CCP are specified in Table 2.

portfolio id size trend  volatility portfolio id size trend  volatility
P20 (cm0) 47.36 4.74 30% p21 (cm0) -3.44 —-0.34 30%
p0 (cm1) —32.41 -3.24 20% pl0(cml) —60.54 —6.05 35%
pl (cm2) 22.18 2.22 21% p11 (cm2) 45.88 4.59 36%
p2 (cm3) —15.17 —1.52 22% pl2 (cm3) —34.77 —3.48 37%
p3 (cm4) —10.38 —1.04 23% pl13 (cm4) 26.35 2.63 38%
p4 (cm5) -71 —0.71 24% pl4 (cm5) 19.97 2 39%
pS (cm6) —4.86 —0.49 25% pl5 (cmb) 15.13 1.51 40%
p6 (cm7) 3.33 0.33 26% pl6 (cm7) —11.47 —1.15 39%
p7 (cm8) —2.28 —0.23 27% pl7 (cm8) —8.69 —0.87 38%
p8 (cm9) —1.56 —0.16 28% p18 (cm9) 6.59 0.66 37%
p9 (cm10) 0.9 0.09 29% p19 (cm10) 4.99 0.5 36%
(a) CCP1 (b) CCP 2
portfolio id size trend volatility portfolio id size trend volatility
p31 (cm0) 17.08 1.71 37% P39 (cm0) —-2.46 —0.25 21%
p22 (cml) 12.94 1.29 30% p33 (cm3) —-4.13  -0.41 20%
p23 (cm?2) —11.27 —1.13 29% p34 (cm?2) 3.79 0.38 19%
p24 (cm3) 9.81 0.98 28% p35(cml) —3.47 —0.35 18%
p25 (cm4) —8.54 —0.85 27% P36 (cmd4) 3.19 0.32 17%
p26 (cm5) 7.43 0.74 26% p37 (cm5) —-2.92  —-0.29 16%
p27 (cm6) 10.38 1.04 25% p38 (cmb) 2.68 0.27 15%
p28 (cm7) —25.89 —2.59 40% p40 (cm9) 2.26 0.23 22%
p29 (cmy) 22.54 2.25 39% p41 (cm8) —-2.07 -0.21 23%
p30 (cm9) —19.62 —1.96 38% p42 (cm7) 1.9 0.19 24%
p32 (cml10) —14.87 —1.49 36% p43 (cm10) 1.24 0.12 25%
(c)CCP3 (d)CCP4

Table 2: CCPs and members portfolios with defaulted member and corresponding portfo-
lios, ground truth takers and their corresponding portfolios prior takeover
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We start by displaying the energy levels landscape for all possible combinations with the estimated
upper and lower confidence levels based on the samples using the approach proposed in (Mecker et al.,
2017, Section G.2) in Figure 1. The algorithm will be run on the upper confidence energy levels that
can be obtained for each combination of takers.

Empirical energy levels
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Figure 1: Estimated energy levels including lower and upper confidence levels, per combination indexed
from 1 to 10000.

The loss form (81) is suspected to have a heavy-tailed distribution. As we start with Student-t

k
distribution of degree 3 for all Y/* and thus their update (Y @ Y0>Z that are indeed heavy tailed,

the sum of their positive parts is expected to remain heavy-tailed. We thus first conduct heavy-tail
|Ng |
INe[+32,7_, INGx,, <8,
040
k
application of the positive part on the components (Y @ Yo)e ,O=1,...,10, k = 1,...4. The
i ’

corresponding loss simplifies to

tests where we do not consider any allocation factors of the form in (81) nor

4 10
L= 3 1x.28, (YED, Y0>Z. (82)
k=1 ¢'=
(¢%0)

we test the heavy tailedness on member 4 when the combination of members {1, 1,1, 2} takes over the
defaulted portfolio of member 0 on CCP 1,2, 3 and 4 respectively. To ensure our tests are adequate,
we also consider the cases where the portfolio drivers YZ’C are driven by Student-t distribution of degree
2 (thus heavier than the case of degree of freedom 3) and also standard Gaussian in Appendix B. For
each graph, the red line depicts the hypothetical log-log plots based on the tested distribution (Weibull
for light-tail test, log-Weibull for in-between light and heavy tail test or fat tail test, Pareto for heavy
tail test). We give two performance metrics of the simulated data from (81): the usual R? metric and
another one based on the percentage of simulated point, taken as a vector departing from 0, remaining

179



close to the tested theoretical value by less than 5% that we indicate as ng<¢.o5 With one unit angle
equivalent to 7.

§= 1.9222627538830472 K = 1/€ = 0.5202202445945333 R?=9543% ng<oos =59.51% n_data =495
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Figure 2: Weibull tail test log-log plot using (71), for member 4 loss r.v. when takers are {1,1,1,2}
with portfolios drivers following Student-t distributions with 3 degrees of freedom and based on (82).
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Figure 3: Log-Weibull tail test log-log plot using (71), for member 4 loss r.v. when takers are {1, 1,1, 2}
with portfolios drivers following Student-t distributions with 3 degrees of freedom and based on (82).
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£=0.32143137506344094 K = 1/€ =3.1110839749312893 R2=99.11% nNg=00s =95.24% n_data =232
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Figure 4: Pareto tail test log-log plot using (71), for member 4 loss r.v. when takers are {1, 1,1, 2} with
portfolios drivers following Student-t distributions with 3 degrees of freedom and based on (82).

As expected, the Pareto test, illustrated in Figure 4, leads to the highest indicator levels (both R?
and number of angles bellow 5%7) suggesting a heavy-tail behaviour for (82), compared to the Weibull
and log-Weibull tests in Figures 2 and 3. The estimated parameters in the Weibull and log-Weibull
tests (respectively ~ 0.52 and =~ 2.89), though giving a poorer fit supports the heavy-tailedness of the
considered simplified loss form (82).

We present those same tests in Figures 7, 5 and 6, this time including the allocation coefficients and
positive part on the loss definition as per (81)

£ =1558593910755039 K = 1/€ = 0.6416039438493404 R2 =9246% Ng=00s=22.27% n_data =495
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Figure 5: Weibull tail test log-log plot using (71), for member 4 loss r.v. when takers are {1,1,1,2}
with portfolios drivers following Student-t distributions with 3 degrees of freedom and based on (81).
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Figure 6: Log-Weibull tail test log-log plot using (71), for member 4 loss r.v. when takers are {1, 1,1, 2}
with portfolios drivers following Student-t distributions with 3 degrees of freedom and based on (81).
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Figure 7: Pareto tail test log-log plot using (71), for member 4 loss r.v. when takers are {1, 1,1, 2} with
portfolios drivers following Student-t distributions with 3 degrees of freedom and based on (81).

Again, the Pareto test, illustrated in Figure 7, depicts the highest indicator levels. We thus have
evidence that (81) possesses heavy tails compared to the Weibull and log-Weibull tests in Figures 5 and
6. This implies that the empirical errors, in the case of using expectation, quantiles or expected shortfall
with known corresponding quantile level for the risk measure R, must rely on the Fuk-Nagaev type of
inequalities ( s ; s ) to be controlled.

To assess the algorithm operating adequacy, we depict some diagnostic indicators of the run algo-
rithm in terms of energy path for those combinations that have been selected, the temperature scheme,
the acceptance ratio and the empirical probability of selecting the proposed state across 50 iterations,
rolled as the number of iterations increases for a single run of the algorithm. This is the purpose of
Figure 8 showing for the first 4 graphs, the diagnosis for the fixed-budget triangular cooling schedule
and for the last 4, the same diagnosis but for the logarithmic unlimited budget cooling schedule. As
covered in the literature ( s ; s ; s

), the fixed-budget cooling schedule is preferable and from the diagnosis, such schedule allows a
better exploration of the energy landscape with a reduction of the acceptance ratio kick-in more rapidly
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than the logarithmic cooling schedule permitting a more local exploration towards the latest iteration
steps.
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Figure 8: Algorithm diagnosis consisting of the energy path, the temperature cooling schedule function
graph, the acceptance ratios and empirical probabilities of acceptance across 50 steps (first 4 panels for
the fixed-budget triangular cooling schedule, the last 4 for the unlimited budget schedule).

Conditionally to a set of M samples, and for 100 runs, we can observe the performance of the
algorithm based on the fixed-budget triangular cooling schedule where for each of the 100 runs under a
fixed-budget schedule, we run the algorithm up to a certain number of iterations /N that we make increase
with 25 additional iteration steps from 25 to 3000 total iterations. Using a logarithmic unlimited budget
cooling schedule does not degrade the result though the exploration is more chaotic when compared
to a fixed-budget triangular cooling schedule, see Figure 8. For each tested number of iteration N,
we deduce an empirical probability, with its corresponding confidence interval, of not selecting the
right combination and observe it decreases significantly w.r.t. N, outperforming a simple greedy search
without resampling. This is shown in Figure 9 along with the diagnosis analysis for the first run.
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Figure 9: Error probabilities w.r.t. NV, using 25 iterations step, using fixed-budget cooling schedule based
on 100 runs.

Figure 10 and Figure 11 indicate the most selected taker combinations aggregated across all 100
runs for 3000 iterations for the bar chart 10 and for each run for the heat map 11. The 4 combinations
that are the most selected are precised in Table 3 with their rank, a rank of 1 being the combination
giving the minimum energy level. The heat map in Figure 11 shows the 4 with most occurrences in
accordance with the 4 most selected combination of takers across all runs observable in Figure 10.
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Figure 10: Number of occurrences per combinations aggregated across the 100 runs for those combina-
tions with more than 30 occurrences across the 100 algorithm runs and 3000 iterations.

omi_cm10_cm7_cm2
omi1_cm10_cm7_cm4
cm1_cm10_cm7?_cm6
cni_em10_cm7_cm7
omi_cm10_cm7_cmd
cm1_cm1_cm7_cmé
cm1_cm2_cm7_cm10
cm1_cmZ_cm7_cm2 1 [ | n [ o8 | 1 |
cn1_cm2_cm7_cm3
am1”em2_cm7_cm4 110 m I = = l 'l §Imi . I I 0 HEm 1
em1_em2 cm7_cm5

cm1_cm2_cm7_cmé Il NI N 1 m i 1 | N | 1 HBi

cmi_cm2_cm7_cm7
om1_cm2_cm7_cmg 1 ENIEE wEr I I 1 = i1 H '§Im [ Of ] - 800
em1_em3 cm7_cm4
ecm1_cm3_cm7_cmé
cn1_cm3_cm7_cm3
cmi1_cmd_cm?_cm10
em1_cméd cm7 cmé

1000

cm1_cmd_cm7_cm6
cm1_cmd_cm7_cm7
cm1_cmd4_cm7_cm3
cm1_cm5_cm7_cm10
cm1_cmB_cm7_cm2

- 600

cm1_cm5_cm7_cm4
em1_ecmb_cm7_cmb
em1_cm5_cm7_cm6
cn1_cm5_cm7_cm7
cm1_cm5_cm7_cm3d
cm1_cmb_cm7_cm10
cm1_cmB_cm7_cm2
cm1_cmé_cm7_cm4
cm1_cmé_cm7_cms
em1_cm6_cm7_cm6
cm1_cm6_cm7_cm7
cn1_cmB_cm7_cm&
cm1_cmé_cm7_cm3d
em1_cm6_cm9 cm6
em1_cm7_cm7_cmé
omi_cm8_cm7_cmi0
cm1_cm8_cm7_cm4
em1_cm8_cm7_cm6
ani_cm9_cm7_cmi0
cn1_cm3_cm7_cm2
cm1_cm8 _cm7_cm4
em1_cm9 cm7_cm6
em1_cm@_cm7_cm7

combination of takers

200

an1_cmd_cm7_cm&
cm1_cm8_cm7_cm3d

0246 510121416 1520 22 24 26 25 30 32 34 36 35 40 42 44 46 48 50 52 54 56 56 60 62 64 66 66 70 72 74 76 7880 6264 56 85 9092 94 96 95
run simulation index

Figure 11: Number of occurrences per combinations for each of the 100 runs for those combinations
with more than 30 occurrences across the 100 algorithm runs and 3000 iterations.
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combination number of occurrences rank

{1,2,7,4} 34431 1
{1,2,7,9} 23402 6
{1,2,7,6} 19728 8
{1,6,7,4} 14859 1

Table 3: Most selected combination of takers for 100 algorithm runs and 3000 iterations and
their corresponding ranks.

Another informative analysis consists in looking at the distributions of the iteration step where the
optimal combination is selected across the 100 algorithm runs. Figure 12 displays such distribution as
we increase the maximum number of iterations N, the budget, to run the algorithm. As expected, the
selection of the optimal combination tends to happen slightly more frequently at the beginning of the
algorithm run though extending the budget N allows to generate more opportunities for the algorithm
to reach this optimal.
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Figure 12: Number of occurrences the optimal combination is reached with respect to the maximum
number of iterations based on 100 runs with a fixed-budget cooling schedule. The first figure can be
viewed as a focus of the last one for the first 50 iterations.

As a comparison of the similar algorithm set with an inappropriate generation probabilities, such as
homogeneous probabilities instead of those formulated in (73), of proposing any combination of takers,
we illustrate in Figure 13 the obtained empirical error probabilities with corresponding confidence inter-
vals with respect to the increase of the maximum number of iterations /N used to define the fixed-budget
schedule.
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Figure 13: Error probabilities w.r.t. N, using 25 iterations step, using fixed-budget cooling schedule
based on 100 runs with homogeneous explorations.

§5 Conclusion

We have tested the use of the simulated annealing algorithm to a financial network problem consisting of
a default of a financial actor, member on several CCPs, that can affect all other members towards which
the defaulters portfolios must be reallocated. Such reallocation is defined by targeting a minimal overall
capital cost as the sum of approximated risk measures across each surviving members, leading to an
approximated problem and thus algorithm. If the corresponding generation probabilities are adequately
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defined for relevant proposal in the algorithm, numerical examples show it outperforms a simple naive
search of the combination of takers. We also explore the error bounds between the solution offered
by the approximated algorithm and the true problem algorithm as well as the probability of errors of
such approximated algorithm, relying on concentration inequalities and algorithm errors. Given the
nature of the problem comprised of financial portfolios represented through risk drivers that should
follow heavy-tailed distributions, the use of extreme-value theory appears natural to identify the relevant
concentration inequalities. The error bounds, though not fully exploitable, assert of the adequacy for
using such approximated algorithm.

§6 Appendix

A Standard results on convergence guarantees

In this section, we consider a discrete state space denoted Z, on which some discrete time stochastic
processes take value. All the aforementioned results apply to such state space and such discrete-valued
stochastic processes . We start by briefly recalling some characteristics definitions of the Markov chains
that will be used in the results on the algorithm convergence.

The case of homogeneous Markov chains

Definition 3. ( , Definition 1.3.1, page 10) A probability m on Z is called
an invariant probability, or stationary probability, of a homogeneous Markov Chain with transition
probability Pon Z if 1 = wP.

Definition 4. ( , Definition 1.3.2, page 11) The Markov chain of transition
matrix P, or simply the transition matrix P, is said to be reversible w.r.t. the probability = if for all
i,jel

()P, ) = 7() PG, 1) (83)
Summing on i € Z, we get the following lemma

Lemma 10. ( , Lemma 1.3.3, page 11) If the Markov chain is reversible w.r.t.
the probability m, then m is an invariant probability.

Definition 5. ( , Definition 1.4.1, page 11) A homogeneous Markov chain
I = (I,)nen, or its transition matrix P, is said to be irreducible if the probability of attaining any
state j € Z starting from any state i € Z in a number of steps n; j is strictly positive i.e.: Vi,j € Z,
n = ny; > 1, st. P™i(i,j) > 0. Equivalently, for all i,j € Z, Jip = i,i1,...,ip,; = js.t.
[Tre) P(in—1,in) > 0.

Definition 6. ( , Definition 1.4.2, page 12) A homogeneous Markov chain
is said to be periodic of period D > 1 if we can decompose the state space Z into a partition with D
subsets C, ..., Cp such that forany d € {1, ..., D},

P(Il S CdlIO S Cd—l) =1. (84)

The Markov chain is said to be aperiodic if its highest period is 1.
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The simulated annealing algorithm convergence, relying on the construction of a non-homogeneous
Markov chain, subject to Doeblin condition at each algorithm iteration, relies on the following lemma.

Lemma 11. ( , Lemma 2.3.3, page 38) Let AH = maxjez H(i) — H. We
have
I | < ! 1 AH (85)
pr = prll < |\ = 7 | AR
Lemma 12. ( , Lemma 2.3.2, page 37) Let H = minjcz H(i). We have
limr_,o+ pr({i € Z; H(i) > H}) = 0.
Definition 7. ( , Appendix D, page 415) Given a signed measure 7 on Z,

which is countable, the variation norm is defined as

1
Il =5 > ()] (86)

icZ

which corresponds to half of the L' norm of 7 seen as a vector of RZ.

Definition 8. ( , Definition D.1, page 415) A sequence of measures (7,,,n >
1) converges in variation to m iff lim,,_, o ||, — 7| = 0.
Lemma 13. ( , Lemma D.2, page 415) Let (1,,,n € N*) be a r.v. sequence in

I. Denote by 7, = (7, (i) = P (L, = ) ,i € I) the distribution of 1,,. Let L a r.v. in I with distribution
7= (r(i) =PI =x),i € Z). The three following statements are equivalent:

(i) The sequence (1,,,n € N*) converges in distribution to the distribution of L.
(ii) Foralli € T, we have lim,,_, o, m, (1) = 7 (i)
(iii) The sequence (m,,n € N*) converges in variation to .

Definition 9. ( , Definition 2.1.1, page 33) We say that the homogeneous
Markov chain I = (In, > 0) verifies the Doeblin’s condition iff there exist ng € N*, « > Oand p a
probability on Z such that for alli,j € 7

P (i) = ap(j). (87)

Theorem 14. ( , Theorem 2.1.2, page 33) Assume that I = (In,n > O)
verifies the Doeblin’s condition. Then, for any distribution g of Yo, the distribution of 1, converges in
variation to a probability measure . Moreover, this probability T is the unique invariant probability of

L

The two following results emphasize that any irreducible homogeneous Markov chain that is defined
on Z, which is a finite set, has a unique invariant distribution 7.

Theorem 15. ( , Theorem 1.4.3, page 12) An irreducible homogeneous
Markov chain has at most one invariant probability w and if so, for all i € I, we have (i) > 0.
If T is finite, any irreducible Markov chain has exactly one invariant probability.
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Theorem 16. ( , Theorem 1.4.4, page 12) Let (In, n > O) be an aperiodic and
irreducible homogeneous Markov chain. If it has a (unique) invariant probability m, then for all i € I,
we have lim,,_, o, P (I, = z) = 7(x) i.e. the sequence of the distributions of the r.v. 1,, converges tightly
to the unique invariant probability 7. If the Markov chain does not possess an invariant probability, then
lim, oo P (L, =) =0forallic T

Remark 9. ( , Remark 2.1.3, page 33) As T is finite, the Theorem 15 and
Theorem 16 imply that the Markov chain (In, n > 0) is irreducible and aperiodic iff it verifies the
Doeblin’s condition with a probability p such that, for all i € Z, p(i) > 0 (which is not true in the
infinite case).

The case of non-homogeneous Markov chains

Equipped with the definitions and results of Section A, we can now state the principal result for the
simulated annealing algorithm to converge. We consider the transition matrix (P(i, j))i7 jez verifying
the Doeblin’s condition (87) and with an invariant probability (ﬂ'(i), ie I). We additionally consider
the transition probability to be irreducible. We define the Markov chain (In, n > 0) with the transition
matrix given by

. P,(i,j)e- HO-HO) Jen fj £
Qn(ij) = (4.J) o e (88)
1- Zj/;gi Qn(lv.] ) ifj=i
with I given by (7). For n > 1, the Boltzmann-Gibbs distribution ,, is given by
1 .

pn(i) = —e O/ ieT, (89)
with Z., =3 .7 e H@/en,
Proposition 17. ( , Proposition 2.3.5, page 40) Let P be irreducible, satis-

fying the Doeblin’s condition (87). Assuming there is a constant Hy such that for all h > H,, if the
temperature schedule (c,,n > 1) is given by ¢,, = h/log(n + 1), then for all distribution o of Io, we
have

lim ||v, — pnl| =0, (90)
n— oo

where v, is the distribution of 1,,. In particular, we have lim, .o P(H(I,) > H) = 0 with H =
miniez H(i)

Another important convergence result concerns the adequacy of the cooling schedule definition,

given by ( , Theorem 1) and reformulated in ( ). As outlined in
( ), the following results is due to ( , Theorem 1):
Theorem 18. ( , Theorem 2.3.8) We have lim,,_, o P (H(I,) > H) = 0 iff

7H*/C" frd

limy, o0 ¢, =0and Y " € 0.

In particular, for a cooling schedule of the form ¢,, = ¢/log(n + 1), Theorem 18 ensures that
lim,, o P(H(1,) > H) = 0iff ¢ > H*. The important underlying assumptions for these results to be
valid are the symmetric and irreducible characteristics of the generation probabilities. Thus a particular
attention must be given to these characteristics, in particular for the irreducible characteristic when
designing the generation probabilities. All these results are with an infinite exploration time horizon,
while for our analysis, we prefer to highlight finite range results.
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B Distribution heavy-tail tests

We illustrate the tail distribution behaviour tests for the simplified loss random variable based on (82)
when the portfolios drivers sz ,0=0,...,10and k£ = 1,...,10, follow a Student-t distribution with
2 degrees of freedom for member 4 when takeover is conducted by the set of members {1,1, 1,2} in
Figures 14, 15 and 16. As expected for this type of distribution for the portfolio drivers, the Pareto test
is the one indicating the highest score. We conduct the same analysis this time with portfolio drivers Y}
following standard Gaussian distributions in Figures 17, 18 and 19. Both the Weibull and log-Weibull
distribution tests now lead to the highest R? and number of small angles scores with for the log-Weibull a
low level estimated parameter E The high level of the tail index in Figure 19(~ 11.45) is also indicative
of a light tail behaviour when Gaussian random variables are considered for the portfolios drivers.
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Figure 14: Weibull tail test log-log plot using (71), for member 4 loss r.v. when takers are {1,1,1,2}
with portfolios drivers following Student-t distributions with 2 degrees of freedom and based on (82).
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Figure 15: Log-Weibull tail test log-log plot using (71), for member 4 loss r.v. when takers are
{1,1,1, 2} with portfolios drivers following Student-t distributions with 2 degrees of freedom and based
on (82).
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Figure 16: Pareto tail test log-log plot using (71), for member 4 loss r.v. when takers are {1, 1,1, 2} with
portfolios drivers following Student-t distributions with 2 degrees of freedom and based on (82).
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Figure 17: Weibull tail test log-log plot using (71), for member 4 loss r.v. when takers are {1, 1, 1,2}
with portfolios drivers following Gaussian distributions and based on (82).
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Figure 18: Log-Weibull tail test log-log plot using (71), for member 4 loss r.v. when takers are
{1,1,1, 2} with portfolios drivers following Gaussian distributions and based on (82).
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Figure 19: Pareto tail test log-log plot using (71), for member 4 loss r.v. when takers are {1, 1,1, 2} with
portfolios drivers following Gaussian distributions and based on (82).

We produce the same analysis for the loss random variable based on (81) with Yfk, {=0,...,10
and £k = 1,..., K following Student-t distributions with 2 degrees of freedom (Figures 20, 21 and
22) and following standard Gaussian distributions (Figures 23, 24 and 25). Similar observations apply
compared to the analysis conducted on the previous simplified form.
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Figure 20: Weibull tail test log-log plot using (71), for member 4 loss r.v. when takers are {1,1,1,2}
with portfolios drivers following Student-t distributions with 2 degrees of freedom and based on (81).
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Figure 21: Log-Weibull tail test log-log plot using (71), for member 4 loss r.v. when takers are
{1, 1, 1, 2} with portfolios drivers following Student-t distributions with 2 degrees of freedom and based

on (81).
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Figure 22: Pareto tail test log-log plot using (71), for member 4 loss r.v. when takers are {1, 1, 1, 2} with
portfolios drivers following Student-t distributions with 2 degrees of freedom and based on (81).
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Figure 23: Weibull tail test log-log plot using (71), for member 4 loss r.v. when takers are {1,1, 1,2}
with portfolios drivers following Gaussian distributions and based on (81).
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Figure 24: Log-Weibull tail test log-log plot using (71), for member 4 loss r.v. when takers are
{1,1, 1,2} with portfolios drivers following Gaussian distributions and based on (81).
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Figure 25: Pareto tail test log-log plot using (71), for member 4 loss r.v. when takers are {1, 1,1, 2} with
portfolios drivers following Gaussian distributions and based on (81).

§7 Algorithm diagnosis

We show in Figure 26 a similar analysis as per Figure 12 but in the case where the cooling schedule is
based on a logarithmic unlimited budget cooling schedule form. No significant difference can be seen
compared to the fixed-budget schedule.
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Figure 26: Number of occurrences of the optimal combination of takers reached with respect to the
maximum number of iterations based on 100 runs with a logarithmic unlimited budget cooling schedule.
The first figure can be regarded as a focus of the last for the first 50 iterations.
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Chapter V

Perspectives

All approaches presented in this work are based on static one-period type of models. Though for the
portfolio random variations, it can be argued that they can present some stationary increments property,
hence the presented models could still prevail for these components, dedicated adjustments are needed

for credit default latent variables, e.g. in the vein of ( ). A dynamic supermodular property
analysis could then be considered, based for instance on ( ) and
( ). As for a dynamic version of the Radner equilibrium use for price impact, ( )

actually present a dynamic framework for bounded random variables that we adapt in our Chapter III
to a static one-period setup with non-bounded random variables. A line of research could thus be to go
back to their initial dynamic framework and adjust to non-bounded random variables.

Financial actors actions on the market such as a CCP liquidating or hedging large portfolios of
defaulting members leading to liquidity drains for certain assets or multiple fire sales from others as a
response to such signals, can have detrimental effects on smaller players leading them into default state.
Such defaults could exacerbate even more the market with feedback loop effects between financial actors
positions and their default. As outlined in Chapter III, a future line of research could be the extension
of both the approaches detailed in the Chapters I and III are combined in a single setup where the
market costs and credit costs would be treated endogenously as part of a global equilibrium.

The use of combinatorial simulated annealing algorithms seems promising though requires some
refinement regarding the generation Markov chain probabilities to account from the previous proposed
combination of takers. Also relying solely on capital costs for identifying the least costly financial
network positions rearrangement following a CCP member default may depict abnormal economic sit-
uations for certain takers, thus shown to be acting irrationally with respect to other financial constraints
(limited funding access, unbearable significant liability increases). The error probabilities bound ex-
posed in Chapter IV though informative regarding convergence guarantees like the practicality of usual
concentration bounds where by one can fix a certain confidence level of error to reach to infer the pa-
rameterization of the hyper-parameters such the sample number or the iterations number. This may be
considered for future research. Moreover, we have only covered the case of one single default on several
CCPs, but it is worth looking at several defaults, such as two and three big bank institution players using
for instance particle models ( , ).

As climate risk is also a key topic, and as our setups rely on default latent variables that can include
climate risk drivers, see e.g. ( ), an extension for capturing climate risk aspects should
be quite natural and lead to applications for identifying severe climate scenario socks that could rapidly
propagate defaults and financial network potential deformations.
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