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RESUME DE THESE

Apercu

L'utilisation des technologies de modélisation et de simulation pour prévoir et comprendre le
fonctionnement des services d'urgence des hopitaux en cas de catastrophe est essentielle pour
la préparation, la gestion efficace des ressources, la coordination des interventions et la sécurité
des patients. La technologie de simulation peut étre un outil précieux pour la formation des
professionnels de la santé, l'identification des domaines d'amélioration des soins et
I'optimisation des interventions d'urgence et des processus de soins de santé. L'interopérabilité
des processus systémiques dans les scénarios d'urgence peut étre examinée a l'aide de la
modélisation et de la simulation basées sur les agents. Cela permet d'expliquer comment les
décisions des agents affectent leur efficacité et comment ces décisions sont liées a différents
niveaux. Par conséquent, cette étude utilise une approche interdisciplinaire qui combine la
gestion des catastrophes et des urgences, la simulation sanitaire et la gamification pour

apporter des réponses aux questions de recherche examinées.

Questions de recherche

Les deux questions de recherche examinées dans cette étude sont les suivantes :

e Comment pouvons-nous modéliser l'interaction entre un hoépital régional (RH) et un
hopital mobile de campagne (MFH) ou un hépital de campagne dans une situation de
catastrophe dans l'industrie pétroliere et gaziere ?

e Comment les jeux de rble sur table pour les interventions en cas de catastrophe
(DRTRPG) peuvent-ils étre utilisés pour vérifier/valider la représentativité du processus
de réponse de I'agent d'un modéle ABMS dans le contexte d'un scénario d'intervention

en cas de catastrophe ?
Méthodologie
La méthodologie utilisée dans cette étude intégre la conception de processus, les techniques

de simulation et la gamification pour simplifier, documenter et modéliser un scénario de
Xiii



catastrophe nécessitant l'intervention des services d'urgence. A l'aide du Business Process
Model and Notation (BPMN), les activités et les flux de processus entre les systémes régionaux
et mobiles d'hépitaux de campagne en interaction (modélisés comme un service d'urgence
simplifié) et les sous-systemes dans le scénario de catastrophe ont été détaillés. NetLogo 6.3.0
(outil de modélisation et de simulation basé sur des agents) a été utilisé pour simuler les
interactions entre les parametres des systemes en interaction. Enfin, un jeu de role sur table de
réponse aux catastrophes (DRTRPG) a été développé et mis en ceuvre pour fournir une
plateforme permettant de valider les simulations par le biais d'exercices basés sur des scénarios

et de s'assurer que les réponses du modeéle étaient réalistes et efficaces.
Résultats clés

L'application NetLogo 6.3.0 a démontré comment modéliser et tester la prestation de services
d'urgence et l'intervention dans un scénario de catastrophe. Le modéle mis en ceuvre a été
utilisé pour expérimenter l'impact des stratégies de répartition des ambulances sur la mortalité
et les temps d'attente moyens dans les services d'urgence. Ces expériences ont produit des
résultats significatifs et ont mis en évidence le potentiel des techniques de simulation dans la
gestion des catastrophes, la simulation des services d'urgence et |I'optimisation des processus.
Les résultats montrent également que les jeux de role peuvent contribuer de maniére
significative a la formation a la préparation aux catastrophes en améliorant la compréhension
par les participants des systemes complexes et des processus de prise de décision. Toutefois, le
défi consiste a concevoir le jeu de maniere a représenter pleinement la complexité et
I'interaction du modeéle ABMS, ce qui limite le niveau de validation du modéle. Néanmoins, les
jeux de role se sont révélés inestimables pour offrir des possibilités d'apprentissage par

I'expérience et identifier les domaines a améliorer dans la réponse aux catastrophes.
Contributions de I'étude

Les contributions de cette étude interdisciplinaire a la communauté scientifique peuvent étre

résumées en quatre domaines :
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Identification des domaines a améliorer : L'étude a identifié une lacune critique dans les
connaissances en matiere de réponse aux catastrophes qui peut guider la recherche
future en donnant la priorité aux efforts spécifiques a chaque domaine. C'est ce que
montrent les résultats sur I'effet et l'importance des stratégies de sauvetage dans un
scénario de catastrophe entre les services d'urgence en interaction.

Meilleure compréhension des systemes complexes : L'intégration de I'ABMS dans cette
recherche a permis de mieux comprendre la dynamique de la réponse aux catastrophes
pour les systéemes hospitaliers en interaction. L'approche adoptée dans cette étude a
mis en évidence des facteurs critiques tels que l'allocation des ressources et la
coordination de la réponse, qui sont essentiels pour améliorer les capacités de réponse
aux catastrophes.

Formation et éducation : Le modele de simulation et le jeu de réle développés dans
cette étude peuvent servir d'outil de formation efficace pour les intervenants d'urgence
et peuvent étre des outils précieux pour les équipes d'intervention d'urgence et les
prestataires de soins de santé. Le jeu développé et mis en ceuvre a permis d'améliorer
les compétences des participants et de faciliter I'apprentissage par I'expérience des
systemes d'intervention en cas de catastrophe.

Pratiquer la coordination et la communication : Le scénario du jeu sérieux souligne
I'importance d'une coordination rapide et efficace entre les différents établissements
de soins de santé et les services d'urgence et fournit une plateforme pour pratiquer et
affiner les compétences des joueurs (en particulier par le biais de la formation). Les
décideurs politiques et les praticiens de la santé publique peuvent utiliser les résultats
de cette étude pour formuler des propositions visant a relever des défis équivalents en

matiére de réaction aux catastrophes.

Conclusion

Cette étude met en évidence la nécessité de plans d'intervention d'urgence efficaces, en
particulier dans I'industrie pétroliére et gaziére, qui est exposée a des catastrophes industrielles
majeures. L'étude démontre les résultats potentiels et I'impact des stratégies d'intervention sur

la mortalité et les temps d'attente. Bien que la recherche soit basée sur un scénario
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hypothétique, elle souligne l'importance de I'étalonnage du modele et de la poursuite des
recherches pour obtenir des résultats optimaux. La combinaison des techniques NetLogo
(ABMS) et DRTRPG fournit une approche pour évaluer les plans d'intervention d'urgence et une
plateforme de simulation réaliste pour la prise de décision et la formation des ambulanciers.
Les résultats de [I'étude soulignent également la nécessité d'améliorer les stratégies
d'intervention d'urgence et de réduire les taux de mortalité et les temps d'attente pour les
patients dans les situations de catastrophe. L'étude peut étre particulierement utile aux
gestionnaires de catastrophes et aux travailleurs de la santé, y compris les organisations, pour

améliorer les plans, les normes et les politiques d'intervention d'urgence.

Travaux futurs

Cette étude exploratoire sert de travail préliminaire a de futures recherches sur I'amélioration
des systemes de soins de santé par la modélisation des interactions entre les systémes
hospitaliers dans les situations de catastrophe. La recherche future devrait se concentrer sur
la modification du modele pour tester des scénarios équivalents en utilisant des données
réelles. Il est également nécessaire de convertir I'outil de jeu de réle en une version en ligne
afin d'améliorer le réalisme et de réduire les biais dans les protocoles de décision, de générer

des ensembles de données plus robustes et d'améliorer la validation du modele.
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CHAPTER 1

1.0 INTRODUCTION

1.0.1. Overview of the study

The need to use modelling and simulation technology to predict and understand how
hospital emergency departments would function in a disaster situation is critical for
preparedness, effective resource management and patient safety. Simulation technology can be
helpful in training healthcare professionals, identifying areas for improvement in care, and
optimizing processes (Munira Ibrahim et al., 2018; Shirazi et al., 2022). To investigate the
interoperability of systems in a disaster response scenario, agent-based modelling and simulation
can be used. This helps explain how agents' decisions affect their effectiveness and how these

decisions are linked at various levels (Pescatore & Beery, 2022).

1.0.2. Background of the study

Disasters may strike at any time and in any location, causing effect on human (even death)
and material damage on critical infrastructures. They also represent a threat to environments
that are not well maintained and need quick emergency response while dealing with limited
resources (Uhm et al., 2019). Table 1 shows the categories of natural and anthropogenic disasters
that impact substantial number of people annually. The potential for major adverse events to
cause catastrophic loss of life and physical injuries is high. Communities can be left in shock as
these events are often unexpected. Despite best efforts in healthcare, disasters and major

incidents still pose a challenge in providing adequate care for those affected. Recent findings



show that, natural, and anthropogenic events alone caused fifty thousand deaths and affects

around 97 million persons (Massazza et al., 2019; Murphy, 2021).

Table 1: Categories of disasters and major incidents

Category Subcategory Examples

Natural Meteorological Cyclones, storms
Geophysical Earthquakes, tsunamis, landslides
Hydrological Floods, avalanches

Climatological Drought, wildfires, extreme temperatures

Biological Epidemics/pandemics (toxic materials or living things)
Anthropogenic Technological Food supply, transportation, telecommunications,
energy
Antagonistic Terrorism, shootings, cyber-attacks
Major Transport emergencies, extensive fires, chemical,
accidents nuclear, radiological, and explosions

Sources: (Chaudhary & Piracha, 2021; Makhutov, 2013; Mijalkovic & Cvetkovic, 2014)

Pre- and post-disaster phases are commonly used to classify disaster management. While
efforts to provide goods and services, coordinate humanitarian assistance resources, and protect
infrastructure are the focus of post-disaster efforts, pre-disaster studies aim to minimize damage
by assessing potential hazards. This methodology covers the four phases of disaster
management: response, recovery, mitigation, and preparation (Altay & Green, 2006; Aringhieri
et al., 2022; Boonmee et al., 2017; Shiripour & Mahdavi-Amiri, 2019). Research on disaster
management draws on findings from a diverse range of scientific domains, including disaster

medicine (Tintinalli, 2015), to public policy and politics (Birkland, 2009).

The goal of disaster management is to improve coordination and preparedness in times

of crisis (Gonzdlez, 2022). It can involve conducting simulation exercises to validate response
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plans and improve systems for all hazards (Mahdi et al., 2023). Furthermore, during the response
phase, power dynamics, reconfigurations and interactions between different actors are the focus
areas of disaster response management (Coles & Zhuang, 2011). Figure 1 shows the disaster

management continuum which includes a component that deals with response management.

DISASTER
MANAGEMENT

Figure 1: The disaster management continuum (FutureLearn, 2023).

Effective disaster response involves meticulous planning, organization, and deployment
of resources to protect property and human life. Key activities include supporting search and
rescue efforts, delivering medical aid and essential supplies, setting up evacuation zones and
security perimeters, and repairing infrastructure. The main objectives are to stabilize survivors
physically and mentally, recover deceased individuals, and restore essential utilities like water
and power. This "response" phase precedes other phrases like "recovery," "mitigation," and

"preparedness." (‘Background of Disaster Management’, 2023; Disaster Management, 2024).



Particularly given the impact of a disaster on critical hospital systems, the response phase
of the event is important in managing the situation. This presents challenges including increasing
patient volume, limited resources, space and staffing of the hospital due to the influx of patients.
Involving hospital physicians in emergency planning and incident response is critical to
coordinating and managing crises (Persoff et al., 2018). Building on this established background,

the study shifts focus to defining the problem of this study.

1.1. Definition of the problem (disaster response for oil and gas industry)

Despite safety measures and technological advances, the oil and gas industry continue to
experience accidents that harm both people and the environment. These incidents often lead to
fatalities and strain emergency systems and medical facilities, particularly due to the industry's
remote and harsh conditions. Figure 2 shows the trend of the number of fatalities underscores
the urgent need for improved emergency preparedness and response. Traditional methods may
fall short, highlighting the necessity for specialized interventions tailored to the unique demands

of the industry.

Number of fatalities and fatal accident rate
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Figure 2: Fatality rates among oil and gas extraction workers 2013-2022 (OGP, 2023).
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According to the International Association of Oil and Gas Producers (IOGP) annual reports
for 2013 to 2022, the death toll from onshore and offshore activities is currently increasing. This
rise raises concern as it is projected to continue. For oil and gas drilling crews, activities in this
sector are heavily related to life-threatening risk concerns. Inadequate safety and health
legislation and preventative measures have resulted in hundreds of mishaps and fatalities at
onshore and offshore drilling sites (Department of Occupational Safety and Health - 2014,
2014). The environmental dynamism and uncertainty in the oil and gas industry often pose
unique challenges for healthcare systems. For example, following a disaster, healthcare
responders might have to deal with scarce resources, secondary contamination and health
related issues, which are characteristic of the oil and gas industries (Deinkuro et al., 2021; Kostyuk

et al., 2020; Olalekan et al., 2018).

Simulation techniques are essential for improving coordination, preparedness, and
response times during emergencies in the petroleum industry. By utilizing agent-based
simulation modeling (Yousefi & Ferreira, 2017), in-situ simulation-based assessments (Abulebda
et al., 2018), the petroleum industry can enhance training, resource allocation, and emergency
planning through these techniques. By evaluating distinct designs, performance levels, and
response capacities, these methods foster the development of more effective emergency

response systems.

Emergency Departments (EDs) are undoubtedly one of the top priorities in the healthcare
system. In emergency rooms, seriously ill or injured patients are cared for around the clock.
Emergency departments are inherently complex, just like other parts of the healthcare system.

To address these issues, methods such as System Dynamics (SD) and Discrete Event Simulation
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(DES) are becoming increasingly popular (Brailsford, 2007; Gul & Guneri, 2015; Gunal & Pidd,
2006; Koelling & Schwandt, 2005). Furthermore, Agent-Based Modelling and Simulation (ABMS)
is also becoming increasingly popular as a simulation modelling technique in emergency
department studies. In addition to managing non-urgent patient schedules and predicting
hospital admissions, it is also used as a tool for public health interventions and infection
prevention in hospitals (Bruballa et al., 2020; Encinas et al., 2021; Jones et al., 2021). These tools
have proven useful in emergency departments and in modeling and simulating disaster response

scenarios.

1.1.1. What are possible impacts of the problem?
Inadequate or inefficient collaboration between hospital systems in the event of an oil

and gas explosion disaster can have several impacts. These impacts may include the following:

1. Poor patient care: In emergency situations, a lack of response coordination and/or
patient severity information can lead to gaps and errors in understanding patient care

needs. This can have a negative impact on the overall well-being of the affected persons.

2. Ineffective utilization of healthcare resources: If communication between systems and
stakeholders is poor, health resources may not be used effectively in disaster relief. This

can lead to increased costs and inefficient processes.

3. Delay in emergency response: Worker health and safety can be significantly affected by
delays in disaster response, which may be due to inadequate coordination among various

systems and stakeholders.



The design and evaluation of interoperable health systems that can help understand the
best possible response strategies can be facilitated by using modeling and simulation to predict
the complex dynamics of disaster response scenarios. The design of healthcare systems that
consider human decision-making and performance can be enhanced by this approach's ability to
illuminate human variables and their impact on effective system interactions. Therefore, to
improve coordination and real-time response capabilities during emergencies, research on
interoperability between an MFH and a RH is required. Simulation technology helps us find and
fix problems in medical and logistical operations, which can improve the efficiency and

coordination of important healthcare services.

1.1.2. Purpose of the study

The aim of this study is to develop and implement a health system solution for disaster
relief in the context of the oil and gas industry using simulation technology to study and predict
patient outcomes. The study seeks to evaluate the impacts of critical parameters, utilizing
established modeling and simulation concepts to offer insights into methods that can improve
the seamless integration and efficiency of healthcare system operations following disasters. This
is achieved through enhanced coordination of responses and better resource allocation. The
target of this study is expected to be beneficial and relevant to the oil and gas sector by expanding
upon computational concepts to draw attention to gaps that are anticipated to exist in

emergency response plans.

To give evidence-based insights into the efficacy and cost-effective application of
computational tools in disaster response management and healthcare simulation, this study

examines and evaluated important characteristics in a disaster scenario via the use of simulation



techniques and virtual environments. These insights can guide the development of policies and
regulations related to interoperable healthcare systems for disaster response and propose policy
recommendations that promotes standardization and coordination among different
stakeholders involved in disaster response in the oil and gas industry and hospital systems
optimization.
1.1.3. Aims and objectives

This study aims to contribute to existing knowledge by examining the challenges of
interaction between health systems in disaster environments, focusing on disaster planning and
response using mobile field hospitals as a support mechanism. Furthermore, the study attempts
to bridge the gap between theoretical simulations and real-world applications, thereby helping
to develop decision support before deploying expensive healthcare resources. This research is
dedicated to the design and implementation of a solution based on the impact of using a mobile

field hospital in disaster situations in the oil and gas sector.

The primary aim of this study is to improve the interoperability between a regional

hospital and a mobile field hospital by detailing the process of interaction between the systems.

To answer the study’s aim, the following objectives have been proposed:

1. Detail the system and sub-systems of a Mobile Field Hospital via a modelling language-
Business Process Model and Notation (BPMN),

2. Model, simulate and implement the interactions between the systems parameters by
utilizing Agent-Based Modelling and Simulation (NetLogo),

3. Conduct industrial explosion scenario-based exercises via Disaster Response Tabletop

Role-Playing Games (DRTRPGs) to validate the model agents’ response decisions.
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1.1.4. Research questions
The goals and objectives of a study serve as the basis for developing research questions.
They serve as a guide to the methodology, data collection and analysis procedures that are

essential for finding solutions. The following research questions were developed for this study:

1. Research question 1: “How can the interaction between a Regional Hospital (RH) and a
Mobile Field Hospital (MFH) in a disaster setting, and dedicated for oil and gas industry
be modelled”? (Objectives 1 and 2),

2. Research question 2: “How can a Disaster Response Tabletop Role-Playing Games
(DRTRPGS) be used to verify/validate the representativeness of an ABMS model agents’

response process in the context of the disaster response scenario”? (Objective 3).

This mixed-methods study is underlined by the research questions that emphasize a
process-oriented investigation. The focus is on explaining the step-by-step procedures for
modelling and simulating interactions between hospital emergency departments within a
hypothetical disaster scenario. In addition, the processes underlying the development and
implementation of scenario-based exercises are examined. The aim is to formulate and further
develop effective strategies for understanding and communicating the results of complex

systems.

1.1.5. Significance of the study
In this study, the significance of modeling and implementing an interoperable healthcare

system for the oil and gas industry is outlined as follows:



1. Knowledge: This study's findings enhance the knowledge base within the academic and
research sectors by deepening insights into healthcare systems interactions, disaster
response strategies, and the use of modeling and simulation. This investigation offers a
starting point for studying how ABMS can be applied in a disaster context to healthcare
simulation while also inspiring fresh perspectives and strategies for resolving challenges
related to disaster response. For other researchers or professionals involved with disaster
responses. This study serves as a critical point-of-reference that promotes knowledge-
sharing while fostering academic collaborations around various topic areas, that is ABMS

application to predict and manage disaster outcomes.

2. Preparedness: Natural disasters such as hurricanes or earthquakes, along with human-
caused disaster including oil spills, explosions, are just some of the hazards experienced
in the oil and gas industry, which has led to serious health issues and loss of life. The need
for investing in specialized healthcare systems and optimizing response interventions
before crisis events can be emphasized by this study's findings. Improving disaster
preparedness via pre-disaster simulations will enable industries visualize and understand
the possible outcomes in a post disaster setting. This can help create effective response
measures with minimal negative effects on human health and safety or environmental

damage while also minimizing overall economic loss.

Simulation technology has the potential to improve training and quality control in hospital
emergency departments during disasters. However, overcoming organizational and
technological barriers requires managerial support, including from the management side and in
terms of data sharing. Effective implementation of disaster response and business continuity

10



strategies could lead to improved planning, execution and management that takes decision-
making and human behaviour into account (Kanno et al., 2023; Shirazi et al., 2022; Umemoto et
al., 2023). This is important for healthcare operations in a disaster setting as it supports decision-
making, saves costs that may arise due to unforeseen errors, and, as a result, delivers high-quality
services. The use of simulation techniques in healthcare management is promising because it
enables the identification and testing of various potential service designs through quantitative,
evidence-informed analysis This method shows potential to improve health outcomes and

effectiveness of care by addressing quality, safety, and cost concerns (Kelton, 1996).

The utilization of BPMN to detail and then simplify the process of flow of personnel and
resources in the scenario being investigated, can help give healthcare executives a consistent
description that allows them to see the processes in the systems. Implementing BPMN as a
workflow in healthcare organizations can streamline complex hospital processes and improve
the quality of care. BPMN simplifies healthcare processes through an understandable and simple
presentation. It offers a simplified view of system behavior and the various resources that
support successful processes. Its implementation can also improve the exchange of health
reports, thereby enhancing patient care and clinical operations (Faturahman, 2021; Sbayou et

al., 2017).

To further strengthen and validate the modelling and simulation of the processes, a
scenario-based Disaster Response Tabletop Role-playing Game (DRTRPG) is designed to simulate
stakeholder’s response in real-life like setting. To get the most out of the DRTRPG sessions and
to maximize learning, the DRTRPGs are designed to capture as much as possible the critical
components of the scenario of interaction within the scene of an industrial accident and the

11



interaction between the MFH and the RH with needs, time constraint, limited resources, and
ethical dilemma of typical emergency responders. This can be an important lesson for triage and

some of the critical decisions that must be made in crisis decision situations.

The main idea of the model is to allow professionals and researchers alike to observe how
system agents make decisions under pressure and then make them aware of the impact of those
decisions. The purpose of this research is not to create a complex replica of a real system using
modeling and simulation. Rather, it focused on a simplified hypothetical situation often faced by
disaster responders to represent, experiment, and evaluate the possible consequences of
decisions made in the aftermath of a sudden onset of a disaster. From the disaster response
tabletop role-playing games, the study attempts to find how the situation awareness and
decisions from the teams resulted in outcomes, leading to some useful lessons. This will assist
other researchers with both similar or different situations to understand and partition their own
model and game-based exercises to align with their objectives. In other words, this exploratory
research gives future researchers a shoulder to stand on to take the next steps, by showing how
to connect the different components in the context of applying simulation methodology in a
disaster setting, thus allowing them to decide which aspect is of interest to be added to their

model.

1.1.6. Motivations of the study
Healthcare systems encounter various challenges such as difficulties in interaction, a lack
of real-time data sharing and analysis, and the demand for patient safety and response efficiency

in an intricate and dynamic environment. This underscores the necessity for:
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1. Enhancement of response plans and coordination in emergencies (Kostyuk et al., 2020):
The ability to coordinate responses during or after an emergency is a critical component
of disaster management as it can significantly increase the effectiveness of disaster
response efforts. The enhancement of response coordination involves several aspects,
including stakeholder identification that will be involved in the intervention, a defined
centralized command center, updated and effective operating procedures, and regular
exercises and training (scenario-based simulations).

2. Assessment of the impacts of key factors in disaster response (George & Kumar, 2022) :
Enhancing the effectiveness of disaster response efforts relies on evaluating key factors
in the disaster setting. These factors encompass resource availability, response
coordination systems, the interactions and interferences among these elements, and the
preparedness of the response team. The identified factors can then be modelled to
simulate their impact in various scenarios, which can reveal gaps in the response
intervention.

3. Identification of gaps in disaster response plans (Goniewicz et al., 2021): The
minimization of the effect of a disaster is highly dependent on the effectiveness of its
disaster plans, especially in hazardous and complex operation environments such as the
oil and gas industry, which can have serious effects on worker safety, the economy, and
the environment. A comprehensive risk assessment determines the need for efficient
implementation of the disaster response plan, and an effective plan includes a detailed
assessment of available resources and their performance. It is essential that response

plans be tested (through drills, exercises, and simulations).
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1.2. Definition of terms in healthcare simulation and crisis domain

A variety of sub-themes must be considered for the design and implementation of the
interaction between a Mobile Field Hospital facility and a Regional Hospital dedicated for
response in a hypothetical disaster scenario for the oil and gas industry. To improve
understanding of the fundamental ideas and their application in disaster response and healthcare
simulation, it is essential to identify and define these terms to clearly delineate the language used
in this area of study. Some of these concepts that have been defined include disaster response
(including, disaster response coordination, resource allocation), mobile field hospital, regional
hospital, interoperability, agent-based modelling and simulation, situational awareness, surge

capacity, location for use, business process management and notation etc.

1.2.1. Disaster response

Disaster response is a crucial component of overall disaster management, involving
immediate actions to manage the effects of the disaster and reduce its risks. It forms one
segment of a four-stage cycle that also includes preparation, recovery, and mitigation. In the
response phase, emergency managers work together to organise and implement measures
aimed at safeguarding health and safety, providing essential services, and restoring stability. This
phase is characterised by the mobilisation of emergency resources, medical aid provisions, and
the establishment of shelters (Klein & Irizarry, 2020). Addressing new threats and challenges in
system interaction demands enhanced coordination and institutional adaptability. To build
sociological resilience, it is essential to establish cross-scale linkages tailored to the disaster's
scope and needs. Engaging in participatory planning with institutional actors from initial response

organizations and long-term recovery institutions can foster the development of linkages that
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enhance legitimacy and trust, thus supporting more integrated and coordinated emergency

responses (Baker & Refsgaard, 2007).

When it comes to disaster response efforts, mobile hospitals are valuable resource that
can provide much needed medical assistance and support quickly. However, future
improvements to these facilities could include the development of intelligence capabilities along
with rapid deployment and retrieval features as well as modularization. By focusing on these
areas, we could make considerable progress in enhancing mobile hospital performance (Chen et
al., 2020). Response coordination and resource allocation are two of the critical aspect of disaster

response.

1.2.1.1. Coordination in disaster response

Coordination in disaster response refers to interorganizational coordination and network
governance that is made up of emergency support functions and interorganisational
networks. The resource allocation in the disaster response coordination process is through an
optimal distribution of resources to local agencies, national or international organizations and
restoration of local agencies as well (Kapucu et al., 2022; Sarma et al., 2022). To address
coordination issues in disaster response, (Guo & Kapucu, 2015), using Petri net computer
simulation, investigated coordination in disaster response. A model based on stochastic petri
nets was developed as the study focused on interorganizational processes. The performance of
collaborative disaster response was demonstrated in the simulation using process analysis.
According to (Hossain & Kuti, 2010), a coordination model based on social network is required to

explore the potential for distributed coordination in emergency situations, such as emergency
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response management. Such a model has potential to enhance emergency response

management effectiveness.

By utilizing simulation, Comfort et al (2005) was able to evaluate the resilience of an
actual disaster response system and identified its breaking point. The findings of their research
showed that adopting a simulation-based approach to access core information enhances the
efficiency of response actions and boosts coordination across the network of responding
organizations. These methods based on simulations highlight the importance of cognitive agents

in social system simulations.

1.2.1.2. Resource allocation in disaster response

The placement and distribution of emergency personnel and resources in view of
emergencies is the focus of a disaster resposne operations. The distribution of resources,
including patient cases such as the hospital mass casualty, is an aspect of the disaster response
allocation (Jiang & Ouyang, 2021; Umemoto et al., 2023). Due to the increasing frequency and
severity of natural disasters on a global scale, it is imperative to improve resource distribution in
affected areas. Using a national resource inventory, it will be possible to distribute personnel,
facilities, supplies and equipment more effectively across affected areas. By using an agent
programming model, this process can be optimized, and response times can be significantly

increased (Altay, 2013).

Using their discrete event simulation model in a fictional disaster scenario, Cao & Huang
(2012) evaluated four primary resource allocation approaches to determine how to efficiently

manage resources during emergency operations. Various asset combinations were examined.
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According to the study's findings, random sampling strikes a balance between ethical and

practical considerations when allocating limited medical resources during natural disasters.

Sulis & Di Leva (2018) found that process analysis and computer simulation are useful
tools for public health management in disaster response scenarios. From a business process
management and notation perspective, they compare the results of discrete event and agent-
based simulations with real data from an emergency room in a post-disaster scenario. This
includes patient arrivals, activities, and resources. According to the authors, once validated,
simulations can provide suggestions and different approaches to emergency management
problems during disasters. The use of agent-based modelling and simulation to reduce disaster
risk in a Pakistani urban area was also demonstrated in the study by Magbool et al (2020). The
model focuses on resource allocation for first responders and leverages Geographic Information
System (GIS) maps. In a hypothetical disaster scenario, the study compared the resource
allocation of two interacting emergency departments based on basic emergency protocols using
NetLogo (NL) algorithms. The aim of the model is to evaluate each approach in the context of a
disaster simulation and to improve knowledge of resource allocation and collaboration strategies

in emergency scenarios.

1.2.2. Agent-Based Modelling and Simulation (ABMS)

Agent-based modeling and simulation (ABMS) is a computational method that simulates
the actions and interactions of an individual agent in a predefined environment. This makes it
possible to analyze emergent properties from the perspective of the system level (Kraner et al.,
2023; Wallinger et al., 2023; Zschaler & Polack, 2023). Depending on the situation, the word

“agent” can have different meanings. When discussing dynamics, the term “agent" usually refers
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to the material that causes density changes within gravity flows, such as: temperature, salinity,
or volume fraction of the sediment (Salinas et al., 2023). On the other hand, in computer science
and artificial intelligence, an agent is characterized as something that communicates with itself
and other agents. An arrangement of agents working together to solve a widespread problem is

called a Multi-Agent System (MAS) (Pérez-Pons et al., 2022).

An example of a typical agent interaction model is shown in Figure 3. The agents interact
with each other, collect information from their environment and are influenced by both the

environment and the other agents through the actions they take.

Environment Other Agents

actions actions

- communication
actions ‘ [

percepts

Agent

Figure 3: Agent interaction model (Salamon, 2011)

The concept of Agent-Based Modeling (ABM) or Individual-Oriented Modeling (I0M)
defines systems primarily through the interactions of their autonomous agents. While ABM
draws from fields like robotics, Artificial Intelligence (Al), and Multi-Agent Systems (MAS), its core
emphasis lies in modeling human social interactions and individual decision-making (Bonabeau,
2002). The ABMS methodology, which is part of Operational Research Management Science
(OR/MS), is becoming increasingly popular due to its ability to link individual behaviour with
emergent behaviour that arises from the collective nature of systems. The goal of ABMS is to
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understand a problem entity, which can be an actual system, a phenomenon, or policy in place

as well as an idea that has not been fully developed (Sargent, 2013).

1.2.3. Mobile Field Hospitals (MFH)

A mobile field hospital is a “A mobile, self-contained, self-sufficient health-care facility
capable of rapid deployment and expansion or contraction to meet immediate emergency
requirements for a specified period. It can be set up in an existing structure or in a structure, tent
or similar, that is brought in with a Foreign Medical Team” (Rossodivita, 2011). Mobile hospitals
are hospitals set up to implement prompt treatment of casualties in disasters, and can provide
medical aid in natural disasters, but more research is needed to evaluate their interventions and

outcomes (Sheerazi et al., 2022).

When disasters occur in a complex environment with effect on a considerable number of
persons, it is recommended that the kind of response that should be deployed must be adapted
to the needs of the affected people. Also, depending on their capabilities, specialized treatments
can also be performed. Some of the key features of a conventional mobile hospital include an
intensive care unit, technical unit, patient ward unit, emergency unit, medical unit etc. Such a

medical system is referred to as a mobile field hospital.

In comparison, the structure, architecture, and application of field hospitals, in a way
differ from conventional hospitals. Unlike fixed hospitals, which are designed to address day-to-
day health challenges, the health services provided by MFHs are temporary. MFHs are made up
of interconnection of both internal and external elements. In the event of a disaster, they provide
immediate medical assistance with the aim of minimizing the number of victims, preventing

disabilities, and reducing the risk of epidemics by providing on-site medical services such as
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diagnosis and treatment. This helps prevent the escalation of injuries and associated costs

(Marom et al., 2014; Ramasamy et al., 2009; Zaboli et al., 2016).

1.2.4. Regional Hospital (RH)

A hospital is an institutional facility that offers medical care to individuals suspected of or
afflicted with various illnesses or injuries. This care may take the form of observational,
diagnostic, therapeutic and rehabilitation services (Islam, 2019). Regional hospitals offer
healthcare services to patients situated within a particular geographic area, and in rural or
suburban locations they may provide essential medical care to the local population. Examining
factors that determine firm mark-ups and evaluating tele-rheumatology service outcomes
provided to outpatient clinics are some research studies related to regional hospitals (De Silva et
al., 2018; Ramathuba & Ndou, 2020; Romero-Brufau et al., 2020; Tardivo et al., 2017; Wang et

al., 2014).

1.2.5. Interoperability in healthcare domain

Interoperability refers to the ability of entities to operate together effectively as a group,
encompassing various domains from technical to business-related aspects. Over the past decade,
interoperability has transitioned from Information Technology (IT) focus to a more business-
oriented concern, with its evaluation becoming increasingly important. Its implementation aims
to enhance organizational agility, enabling swift adjustments to information systems to facilitate
growth and address emerging business needs. This involves identifying potential challenges and
exploring practical solutions. As a result, such an evaluation establishes their current condition
and gives a roadmap to their future state, assisting businesses in developing tailored reforms and

improving their situations. In addition, interoperability refers to the management and exchange
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of electronic products and project data between the systems used by collaborating companies
for design, construction, maintenance, and business processes, as well as between systems used
by other companies. It refers to how effectively systems can use and exchange information

(Gallaher et al., 2004; Leal et al., 2019; L. Liu et al., 2020).

In the context of healthcare, interoperability refers to the ability of different healthcare
systems to communicate and efficiently use patient data once they receive it. It ensures that
medical technology and devices can reliably share, interpret, and present health data in an
understandable manner, regardless of where a patient is being treated. This seamless exchange
of health information between healthcare providers improves decision-making and requires
electronic access to external patient data while integrating care records with Electronic Health
Records (EHRs). However, there are significant differences in interoperability between hospitals
of varied sizes, which impact both the achievement of universal interoperability and the delivery
of high quality and equitable healthcare. The difference between larger and smaller, resource-
constrained hospitals is exacerbated by the fact that larger hospitals often devote more

resources to implementing advanced features (Healthit.gov, 2013; Pylypchuk et al., 2019).

As reported by (Aloui et al., 2006), interoperability is defined as the ability of different
elements - people, machines, and applications - to interact with each other to achieve the

following goals:

1. Effectiveness: This implies that the component must accomplish its task under standard

operating conditions.
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2. Stability: The component should possess resilience to withstand disruptions originating
from within the organization or its environment, including other components and the

broader system context.

3. Consistency: The system should maintain consistency throughout its lifecycle, unaffected

by the events and conditions encountered.

The interoperability of a system improves when the resilience of that system is
strengthened, and systems become capable of exchanging and cooperating in any scenario. Using
agent-based models to predict interactions between hospital systems can provide particularly
important insights to emergency response, enabling responders to know what is required during
disaster response and what should be done. This proactive approach allows responders to
develop intuition and understanding, thus improving preparedness for unprecedented events
(Wang et al., 2012). This study examines the process-workflow interoperability that exists
between health systems (regional and mobile field hospitals) in a hypothetical disaster response
scenario. The goal is to improve response coordination and resource allocation activities through

effective patient outcome-focused strategies.

1.2.6. Role-Playing Game (RPG)

Role-playing games (RPGs) are a broad category of interactive media in which users take
on the roles of imaginary characters and tell stories together (Thorens et al., 2016). These games
are designed to improve a variety of skills, including problem solving, collaboration, and strategic
thinking (D’agua et al., 2023). RPGs serve as effective tools for teaching, training, and
communication in various contexts, including sustainable resource management and

environmental education (Shimabukuro et al.,, 2022). They facilitate learning and skill
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development by providing an environment in which users can immerse themselves in different
scenarios, make decisions, and experience the consequences of those decisions (Ozpolat et al.,

2007).

RPGs are designed to teach, guide, and prepare players to overcome a specific obstacle
by simulating actual events (Bowman, 2011; Rye & Aktas, 2022). In other applications, Guyot &
Honiden (2006) argue that RPGs can be integrated with ABMs and applied in a variety of ways,
including but not limited to: (i) Educating stakeholders on decision-making in challenging or
extreme scenarios; (ii) Fostering group learning and negotiation among stakeholders; and (iii)
Validating and refining model design through observation of stakeholder behavior. The final
aspect explored in the use of RPGs constitutes the subject and focus of this study. According to
d’Aquino & Bah (2014), when the research objective is to model a particular case, RPG players
may be selected from key stakeholders at the case study site. However, participants can be
selected from the wider population if the study aims to test a hypothesis, enabling comparisons

between distinct groups (Anand et al., 2016).

1.2.7. Situational awareness

Situational awareness (SA) is the capacity to perceive, integrate, and make predictions
about notable features and qualities of an environment. The goal of SA is to grasp what is going
on around you: the main concept is to use previously learned information to detect, analyze, and
comprehend the current situation. Time, capital, and human resources are all restricted, thus
limited materials and employees must be mobilized swiftly and efficiently. Emergency managers

must have a thorough grasp of the situation on the ground to mobilize effectively, especially
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amongst organizations with different interests and objectives (Abate et al., 2014; Kedia et al.,

2022; Stroud et al., 2010).

One of the most crucial components for handling complex crises is situational awareness.
Levin et al. (2012), asserts that it entails the perception of environmental variables throughout a
measure of space and time, understanding of their importance, and projection of how they will
fare soon. Effective situational awareness has three levels: (1) recognizing important aspects
through active sensing; (2) comprehending those critical factors, and (3) predicting the impact
soon, utilizing situational information from the preceding two stages. This level necessitates
extensive domain knowledge (Kedia et al., 2022). Situational awareness refers to information

about events on site in the context of disaster management and response (Mohsin et al., 2016).

1.2.8. Location for use

The effectiveness of a Field Hospital (FH) is significantly influenced by its location. While
scant literature elaborates on the determinants of FH placement, there is a consensus that they
should be positioned near existing local health facilities. This proximity facilitates improved
integration with local health services and ensures long-term support (Bar-On et al., 2020;
Demirel, 2014). Demirel (2014) states that other selection criteria include population density in
the region, good access to main roads, the ability to quickly set up FH operations and the
potential to optimize bed capacity. In 2003, the World Health Organization published guidelines
specifying that site selection must consider victims' accessibility, medical needs, and logistical

requirements (Bar-On et al., 2020).

According to the study by Deloui & Mofrad (2021), which supports the claims of Bar-On

et al. (2020) and Demirel (2014), the location of an MFH is of particular importance as it
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influences how effective a disaster response operation is. However, they also maintained that
several other considerations need to be contemplated when selecting a location for these

facilities. These factors include;

1. Integration with existing healthcare infrastructure: Whenever possible, mobile field
hospitals should work in coordination, with hospitals and clinics complementing and
supporting their efforts. By integrating with the existing healthcare infrastructure, the
overall response effort can be optimized.

2. Accessibility: Roads to be used for the delivery of medical supplies and personnel and for
the public must be easily accessible from the hospital. This ensures that victims arrive at
the hospital on time for treatment and hospital care runs smoothly.

3. Safety: Safety must be the top priority when choosing a location and considering risks
such as earthquake aftershocks, floods, or conflict areas. Protecting the environment is
critical to protecting healthcare workers and patients.

4. Proximity to population: The hospital should ideally be located near places where the
affected population is highly concentrated. This shortens travel time. It also allows faster
access for patients in need of medical attention. In order not to hinder ongoing rescue
and recovery efforts, it is important to strike a balance and ensure that the hospital is
located a sufficient distance from the disaster site.

5. Conditions: The chosen location should consider the weather and a solid surface for
setting up tents or other structures. It should also be free from hazards such as floods or

landslides that could affect operations or jeopardize safety.
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When designing an ABMS model for a disaster scenario that involves the use of an MFH,
it is important to consider as many of these factors as possible. In this way, the operational
challenges that arise in a real scenario can be precisely represented in the virtual model. This
allows for advance planning and preparation, ensuring that in the event of a Sudden Onset of
Disaster (SOD), the mobile field hospital can be placed in the best possible location to treat

victims quickly and effectively.

1.2.9. Business Process Management and Notation (BPMN)

Modelling processes in healthcare using Business Process Model and Notation (BPMN) is
a recognized standard. By combining BPMN with simulation techniques, it is possible to analyse
and improve workflows in the healthcare sector. For example, to simulate medical interventions,
a model-based methodology was developed. This methodology creates executable simulation
code using BPMN as the process specification (Antonacci et al., 2016; Sbayou et al., 2017). BPMN
can be used to simplify and represent healthcare process flows and components when simulating
healthcare disaster scenarios. This helps evaluate process performance, identify issues, perform
“what if” analysis, and explore improvements. In healthcare, combining BPMN with simulation
techniques can create reliable models for resource management, cost analysis and process
optimization. This integration can have significant benefits for certain areas, including treatment,
emergency department operations and disease management (Bisogno et al., 2016; Tomaskova

etal., 2019).

Planning resource allocation, patient management, and crisis response coordination is
facilitated when BPMN is used in simulation studies that focus on healthcare interactions in

disaster scenarios. To do this, a Business Process Model and Notation (BPMN) is used. By using
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BPMN for process representation in healthcare modelling and simulation, organizations can
improve their preparation and response to events such as disease outbreaks, natural disasters,

industrial accidents, and emergency situations.

1.3. Methodology of the study

1.3.1. Introduction

This section provides an overview of the methodology used to achieve the aim of the
study. It combines agent-based modeling and simulation methodology (using NetLogo 6.3.0) in a
mixed, quantitative, and qualitative strategy and a tabletop disaster response serious game. By
employing a comprehensive computational system modeling and simulation framework to
investigate the intricate system dynamics involved in implementing the proposed response
aligned with the research objectives and utilizing collaborative scenario-based tabletop role-
playing to delineate a detailed approach to a hypothetical disaster response scenario, this section
elaborates on the rationale behind the chosen strategies. The concluding aspects of the chapter
explain the reasons for using a disaster response role play to validate the ABMS prediction
capability and how to implement it, including information on how to plan and implement the

disaster response scenario game and a summary of this introductory chapter.

1.3.2. Computational system modelling framework

The identification of concepts being studied, and their relationships carried out utilizing a
hypothesized model is known as a conceptual framework (Tott, 2013). Moreover, crucial
scientific and engineering tools have emerged as models to represent and solve problems
involving multi-faceted systems in several fields. To achieve these objectives, | propose use both

System Thinking (ST) and Computational Thinking (CT) and incorporate crucial aspects from
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related processes and literatures on ST and CT, to propose a comprehensive framework. This
framework also shows how these aspects of ST and CT are expressed in computational modeling
by showing how every modeling practice incorporates elements of ST and CT to solve problems
or clarify phenomena. The purpose of this framework is to provide guidance for researchers and
educators in designing effective learning activities that integrate ST and CT into modeling
contexts, to enhance skills around study (Shin et al., 2022). A representation of the processes

involved in computational systems modelling framework is shown in Figure 4 .
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Figure 4. Computational systems modelling framework (Shin et al., 2022).

Due to the complex and uncertain requirements in healthcare modeling, especially during
disasters, researchers encounter numerous conceptual and methodological challenges.
Contemporary trends show an increase in simulation-based research in this field. Conceptual
frameworks used in this research provide a robust foundation for modeling the intricate
dynamics of public health disaster responses, including interactions among components and the
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environment. Open-source agent-based modeling frameworks like NetlLogo or Mesa are

commonly used to model entities like patients, doctors, hospitals, or clinics.

In summary, the computer modelling method used in this study involves developing,
implementing, experimenting, and validating a computer-based model, which can be modified
to study other similar or different complex systems depending on the objectives of the study.
Other aspects include analysis and refinement, which are essential parts of the computational
methodology. This powerful framework enables researchers to increase understanding into the
behaviour of complex systems that may be difficult or impractical to study using traditional

empirical methods.

1.4. Development of research methodology

It is important to clearly delineate the distinct phases in developing a simulation model
to understand the workflow of how critical disaster response factors can impact healthcare
systems. This can be achieved through a combination of agent-based modelling and simulation
and a role-playing approach. Such exploratory (mixed) research using simulation strategies and
a collaborative game in disaster response can be effective in predicting and understanding the
intricacies of complex operations and preparing health systems, emergency responders and
authorities for actual disaster events. Scenario-based exercises allow teams to realistically
respond to different scenarios, increase awareness of real-time threats, and test existing policies

and procedures in the most realistic environments possible.

These methods aim to uncover weaknesses in organizational preparation and resource
allocation and to help refine plans to effectively deal with emerging disasters. Additionally, they

can serve as a valuable resource for policymakers in developing best practices to address the
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growing complexity of current disasters. The methodology used in this study to address the
intricacies of hospital system interaction design is summarized and illustrated in the methodology
block diagram shown in Figure 5. It presents the simplified steps associated with fundamental

aspects of the generalized modelling and game-based simulation framework.
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Figure 5: Methodology implementation process block diagram (Amakama, et al., 2023).

1. A conceptual model was first developed based on a hypothetical scenario. The
concept considers a RH operating in a location and engaged in routine triaging and
treatment of patient. In addition, there is an oil and gas industry operating around the
region, which experienced an industrial accident leading to explosion (sudden onset
of disaster), prompting the deployment of the MFH as a supporting healthcare system

to help reduce mortality outcomes from patients from the incident site.

2. Employing BPMN, the components and subcomponents of the MFH) designed for
deployment in the oil and gas industry were outlined. This process describes the
essential healthcare services required for disaster response interventions, tailored to
address the anticipated injuries and illnesses typical in an oil and gas industry

scenario.

3. The concept was simplified by assuming and equating both healthcare systems as EDs.
According to (Sayama, 2023), complex systems must be simplified because of their
unique features (networks, self-organization, emergence, nonlinearity) which are

rarely understood. This approach is further supported by literature: it is not practical
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and also impossible to have a model of every aspects in a hospital (Glinal & Pidd,
2010); EDs accounting for at least half of the primary entry point into hospitals; need
to address the challenges of EDs preparedness in disaster response; and the need for

EDs readiness in response to all types of disaster (Clancy, 2007).

4. Using the conceptual model's assumptions as a foundation, which is supported by
literatures, algorithm/agent-based model was developed to generate dataset of the
emergent outcomes (as patient deaths variation) and then analysed. Furthermore,
the modelled scenario was transformed into a scenario-based tabletop role-playing
games to generate results to attempt to validate the predictive capability of the ABMS

model.

Using these simplified concepts presented in the methodology, the simulation model was
developed following detailed methodological processes, discussed in chapter 3 of this document.
In this study, | assert that the utilisation of modelling and simulation with focus on emergency
departments can provide an effective framework for comprehending and optimising the
performance of key healthcare facilities, thereby having a substantial effect on patient outcomes

and the wider functioning of other hospital systems.

1.5. ABMS predictive capability validation

The ABMS model developed as part of this research is not intended to replicate the
interactions between an existing regional hospital and a mobile field hospital during an oil and
gas industry disaster scenario. Rather, its objective is to develop a framework as proposed by
(Sargent, 2013), which serves to explore and understand the nuances of a specific problem entity.

Furthermore, it illustrates the capacity of ABMS to systematically examine and predict various
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contingencies within the domain of disaster response management. The ABMS model is based
on a hypothetical case that the | developed and implemented. During the validation process, the
ABMS model concepts were transformed into a collaborative and relatable scenario-based
exercise, and the results are compared with each other (ABMS and DRTRPG), rather than being

compared to the real world or another simulation model of a similar nature.

Several studies suggest that, validating ABMS using the classical empirical methods is
particularly challenging, as there is typically a paucity of data and ABMS models are often based
on future predictions (Anand et al., 2016; Gore et al., 2017; Marks, 2007; Onggo & Karatas, 2016;
Takadama et al., 2008; Utomo et al., 2022). The results of these studies also demonstrated the
difficulty of validating agent-based models in a classical manner due to features such as path
dependence, emergence, and complicated interactions, which are worsened by the lack of micro-
level data. The complexity of social processes and the stochasticity of simulations were also cited

as reasons for the deviation from carefully monitored experiments.

For this study, a scenario-based Disaster Response Tabletop Role-Playing Game (DRTRPG)
was designed, as a validation strategy, which highlights a modified ABMs model validation

approach as suggested by (Ligtenberg et al., 2010). This is summarized below:

1. Create a foundational ABMS model,

2. Create an RPG version of the basic ABM model and assign roles. The baseline model is
transformed into an RPG in which the players are assigned tasks that corresponds to the

agents in the ABMS model,

3. Execution of the tasks by the participants. The participants carry out tasks like those in

ABM.
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4. Collect data with the RPG,

5. Contrast the RPG results with the ABMS model outcomes.

This method compares the results of the ABMS model with the results of the RPG
(referred to as Disaster Response Role Playing Game (DRTRPG) in this study) to authenticate their
conclusions regarding the representativeness of the agents' decision dynamics relative to the
observations made during the DRTRPG. In this approach, if the TRPG outcomes can replicate the
outputs of the ABM, the agent's decision rule is deemed credible. According to Ligtenberg et al
(2010), and Amadou et al.(2018), it is possible to compare the ABMS outputs with the RPG
outcomes qualitatively or quantitatively, or by employing sensitivity analysis to determine the
direction of changes or by using descriptive statistics. The following section outlines the

organization of the entire study.

1.6. Organization of the document structure

The document is divided into six chapters, including this chapter, which provide the basic
context, aim, objectives, research questions, definition of terms and an overview of the
methodological process. Chapter two presents an overview of related literature on the
application of BPMN in representing simulation processes for hospital components and various
simulation strategies such as system dynamics (SD), agent-based modeling and simulation
(ABMS), and discrete event simulation (DES). The aim is to identify gaps and understand the

implications to determine the most appropriate strategy for this study.

The third chapter details the systematic process of designing and building the ABMS
model for this study. It includes comprehensive descriptions of the concepts, processes, and

entities (agents) to be modeled as well as their interactions with each other (agent-agent
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interaction) and with the environment (agent-environment interactions). In addition, the chapter
presents the criteria for selecting ABMS for the study and the assumptions made in model

development.

Chapter four presents the ABMS model implementation carried out in NetLogo, the
experimentation process and the simulation results for the study, including the developed
simulation graphical user interface and the analysis performed on the generated data from the
BehavioralSpace function within the NetLogo programming tool. In addition, a sensitivity analysis
for the examined disaster response factors (effects of ambulance policy on mortality and wait
times outcomes) is presented in the context of the interacting regional and mobile field hospitals
for the disaster response scenario. The chapter ends with a discussion and implications of the

results.

Chapter Five provides details of the disaster response role play developed and
implemented to validate the predictive capability of the ABMS model developed in NetLogo
presented in Chapter four, including a summary of the goal, objectives, guidelines and
methodology used in the design and implementation of the exercise, data generation, analysis

and discussion of the implications of the results compared to the ABMS results.

The concluding chapter (chapter six) provides a summary of the most important results
resulting from the methods used to provide answers to the research questions. In addition, the
contribution of the study to the scientific field is presented and the challenges and limitations
encountered are also discussed. Furthermore, my conclusions regarding the study are presented
by contextualizing the answers to the research questions formulated for the study. Finally, the

chapter offers recommendations and perspectives for future research initiatives.
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1.7. Chapter summary

Chapter one introduces the research context and provides an overview and background
of the area of study. It describes the problem statement, scope, primary research aim, objectives,
research questions, significance, and motivations. It also presents definitions of important terms
and concepts used in the following chapter. The chapter concludes with an overview of the
methodology used to answer the research questions and explores the concept of improving
workflow interoperability between a regional and a mobile field hospital for the oil and gas
industry. This structure of the document is intended to guide readers and future researchers

through the research process.
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CHAPTER 2

2.0. MODELLING AND SIMULATION FOR HEALTHCARE SYSTEMS IN
DISASTER SETTINGS: A REVIEW

2.1. Introduction

Modelling and Simulation (M&S) is central to understanding the dynamics of various
systems, particularly healthcare systems. These methods provide fresh perspectives on system
dynamics, resource allocation, decision-making of system which in turn improve the efficiency
and effectiveness in health care. Chapter 1 provided an overview for this study with a definition
of the problem that underpin the necessity for the conduct of the study. The goals and objectives
established in the previous chapter bridges the gap between the study 's overall purpose and

method adopted its investigation.

This chapter is divided into two parts. The first part reviews previous studies on how
BPMN is used to represent complex healthcare systems. The second part examines the
importance and application of simulation techniques in operations research management
sciences (OR/MS). It provides a detailed overview of common modelling and simulation methods
and highlights their use and impact in healthcare, with a focus on disaster relief and hospital
emergency departments, to identify any gaps and explain the rationale for the approach and

focus of this study.
2.2. Application of BPMN in representing hospital emergency department processes

Business Process management and Notation (BPMN) are valuable tools for visualizing

patient flow, identifying bottlenecks, and conducting scenario analysis within the hospital
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emergency departments (Sulis & Di Leva 2018a). They are great at enhancing healthcare
processes by representing the various elements of an ED. BPMN facilitates the modeling of
patient pathways, streamlining workflows, and enhancing performance metrics (Ajmi et al.,
2018). According to Ajmi et al. (2018), optimizing workflow through BPMN representation of ED
components in simulation studies decreases average wait times by 11% while enhancing patient
care quality. Onggo et al. (2018) discovered that BPMN enhances modeling procedures and
increases engagement in healthcare simulation studies, by developing an efficient extension

model (BPMN4SIM) for describing healthcare processes.

Another study conducted by Sbayou et al. (2017) revealed that the implementation of
BPMN in healthcare resource management enhanced the quality of care in hospital emergency
departments. Additionally, as indicated by Liu et al. (2017), the integration of BPMN with ABM
offers a diverse perspective on patient distribution, organizational networks, and resource
utilization in healthcare environments. The research demonstrates the capability of the proposed
model to replicate various emergency departments. This framework within the healthcare sector

facilitates the optimization of intricate operational processes.

According to Contreras et al. (2022), using a combination of BPMN and agent-based
simulation techniques can lead to a thorough understanding of business processes incorporating
complex phenomena such as social interactions, human behavior, and nonlinear dynamics.
Employing agent process modeling with BPMN enables the organization of agent behavior
through process models, thereby enhancing decision explainability and verification (Ramos-
Merino et al., 2019). In this research, BPMN was utilized to simplify the interactions within the
emergency departments of interacting hospital system, to facilitate the communication of the
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ABMS model to stakeholders and users. The subsequent section explores the purpose and
utilization of M&S methodologies for modeling and simulating emergency departments in

disaster settings.

2.3. The purpose of simulation models

Simulation models serve as powerful tools in business and management research by
reflecting real-world dynamics, providing abstract illustrations, and incorporating plausible
behavioral assumptions to address complex study problems (Tram, 2022). Figure 6 shows the

role of simulation models that depend on the understanding of the system being modelled.

Role of a simulation

Generator Mediator Predictor
(Hypothesis) (Microscope) (Calculator)
<
Low Moderate High

Level of understanding about the real system

Figure 6: The purpose of simulation models (Katsaliaki & Mustafee, 2011)

The authors explained that simulation acts as a “predictor” when the system is fully
understood, like a calculator that accurately predicts the outcome. Conversely, when
understanding of the real system is lacking, simulation acts as a “mediator,” providing
representation rather than precise operations. In cases with very little information, the
simulation acts as a “generator” that formulates hypotheses about system behavior. Although

they propose theories and hypotheses, the authors assert that simulation as a generator pursues
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the same goal as other media: to assess whether the conceptual model or theory accurately
reflects the hypothesized system behavior. These three simulation purposes are not mutually

exclusive.

4

In the study of Zi-jian (2005), the author supported the use of simulation as a “generator
by stating that simulation research can be beneficial for theory and hypothesis generation since
it is a convenient, safe, cheap, and avails an opportunity for exploration of complex systems, data
generation, predictions testing and for guiding experiments. The author stated that, the

development of generative models of a system;

1. Can assist researchers understand the underlying mechanisms of a system's behaviour,
which is essential for theory development, adjusting parameters, observing changes, and
essential to inferring causal relationships,

2. Provides the opportunity to manipulate variables and observe outcomes that would be
impractical or impossible to assess in the real world,

3. Is cost-effective than real-world experiments, especially when dealing with high-cost or
rare events, eliminating the need for physical materials, and reducing the time required
to conduct studies,

4. Allows the forecasting of the behaviour of systems under various conditions. This can lead
to the generation of new hypotheses that can be tested in future research,

5. Can generate data that may not be available through empirical research due to ethical,
practical, or temporal constraints. Theoretical and hypothetical frameworks can be

developed and improved with this data.

39



6. Can help guide the design of practical experiments by determining the range of

conditions to be tested and the most relevant variables.

Furthermore, according to Berg et al. (2023) and Kanno et al. (2020), simulation studies
that focuses on hypothetical systems can help in improving disaster preparedness and response
in rural setting. They argued that in such setting, simulation studies can help improve disaster
resilience, aid in the efficient design and management of hospital exercises and serve as a
decision support tool in resource-limited environments. In this current study, | developed and
implemented an adaptable and modifiable agent-based model to improve the workflow
interoperability between interacting EDs of hospital systems in a disaster setting for a
hypothetical case, by leveraging on the capabilities of both BPMN and simulation technique,
including a disaster response tabletop role-playing game (validation). The goal is to be able to

generate theory and guide future research directions.

2.4. The application of modelling and simulation in healthcare

Modeling and simulation are widely used in healthcare and serve as essential tools for
understanding and improving the intricacies of healthcare systems. Myriad studies emphasize
the transformative impact of simulation-based learning on holistic improvements in healthcare
ecosystems. These methods facilitate research, understanding and refinement of health
management and policy formulation (Lamé & Simmons, 2020; Saleem & Khan, 2023). M&S have
emerged as an indispensable tool, ensuring preparedness and resilience in crisis settings
(Basaglia, Spacone, van de Lindt, et al., 2022; Berg et al., 2023; De Rouck et al., 2023). The results
of these studies offer numerous benefits: from assessing the effectiveness of emergency plans

to stress testing response capabilities to simulating patient flow within hospital districts.
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Furthermore, they emphasize the potential for restructuring disaster plans with computer
simulations to improve disaster management strategies and ensure smooth coordination in crisis
situations.

Discrete Event Simulation (DES), System Dynamics (SD), and Agent-Based Modelling and
Simulation (ABMS) find extensive applications within healthcare systems, serving as dynamic
methodologies to enhance resource management and simplify operations, particularly in
resource-limited contexts (Mwanza et al., 2023). In this study, the authors assert that DES, SD,
and ABMS can be used in the development of effective response plans for healthcare facilities
and serve as cost-effective tools for intervention planning and performance forecasting. DES has
wide application in modeling and simulating various aspects of healthcare systems, including
waiting times, patient flows, and resource optimization. It supports the representation of
problem scenarios within a system, integration of components and identification of solutions
(Vazquez-Serrano et al., 2021; X. Zhang, 2018). Simulation techniques such as DES, SD and ABMS
are becoming increasingly common in healthcare. These approaches support decision-making
and effectively address the complex, multi-layered structure of healthcare systems. The
application of these simulation methods is discussed in the following sections, with emphasis on

their use in EDs.

2.5. Discrete-event simulation in modelling Emergency Departments (EDs)

Current research in the field of healthcare simulation maintains that the focus for
implementing Discrete Event Simulation (DES) is in emergency departments (EDs) (Castanheira-
Pinto et al., 2021; Palomino Romani et al., 2023). These studies demonstrate the flexibility of DES
in addressing healthcare challenges, particularly in hospital emergency departments where

resource allocation and patient flow management are critical components. Several other studies
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have also demonstrated the popularity of DES for simulating disaster response scenarios and in
optimizing resource allocation (Y. Liu et al., 2023), simulating patients flow (Forbus & Berleant,
2022) and in the prediction of patients wait times in hospital systems (Basaglia, Spacone, Van De
Lindt, et al., 2022). DES promotes efficiency and reduces patient waiting times by supporting the
evaluation of techniques such as centralized resource allocation and First-In-First-Out (FIFO)-
based planning (De Santis et al., 2023). In Figure 7, we see the representation of research papers
(2004-2023) related to the use of DES in OR/MS research area, for ED.
Discrete event simulation in modelling Emergency Departments
(EDs)
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Figure 7: Discrete event simulation in modelling Emergency Departments (EDs).

The use of DES in OR/MS for ED is well documented, with 79 papers accounting for 25.08%
of the 315 records searched. This highlights the role that DES plays in optimizing processes,
allocating resources, and improving system performance in ED settings. Computer Science (CS)

again produced the greatest number of papers with 107 records representing 33.97%. This
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indicates an incorporation of computer science principles in modelling and simulating ED
operations due to its relevance to DES related aspects such, as software development, algorithm

design and data processing.

Despite the established advantages and widespread use of DES in modelling healthcare
systems there are still challenges to overcome during the implementation phase. According to a
study conducted by Vazquez-Serrano et al (2021), less than 10% of DES applications in healthcare
result in implementations after the modelling stage. This indicates a gap between the
development of models and their practical application, which emphasizes the need for research
and development in this area. Additionally, as mentioned by Forbus & Berleant (2022), although
DES is an effective tool, it may not encompass all aspects of healthcare systems. As a result,
hybrid simulation models that combine DES with methods such, as SD or ABMS have emerged to
address this limitation; however, this integration introduces complexity. ABMS has gained
popularity as a method for modelling healthcare systems and in evacuation-type simulations.

Nevertheless, the application of M&S to ED modelling has not been directly investigated
in disaster response scenarios involving the deployment of a mobile field hospital to assist in
triage, transport, treatment, and outcome assessment following an oil and gas explosion disaster.
The following section describes the areas and extent of use of SD and ABMS in EDs for disaster
response scenarios.

2.6. System dynamics in modelling Emergency Departments (EDs)
The EDs for disaster response settings have been improved through the effective

application of system dynamics simulation. Emergency physicians can optimize outcomes by

using this approach to model patient flow, resource allocation, and response strategies. Applying
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system dynamics also helps emergency physicians create effective communication frameworks
such as the Incident Command System (ICS), ensure coordinated responses to emergencies,
pinpoint bottlenecks in the triage process, and provide insights into improving patient wait times
and overall quality of care (England et al., 2023; Farcas et al., 2021; Ferreira et al., 2020; G. Zhang
et al., 2021). The application of SD in various research fields, shows a rising trend. Literature
search yielded a total of 61 results related to the application of SD in OR/MS for EDs in disaster

setting as shown in Figure 8.
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Figure 8: System dynamics in modelling Emergency Departments (EDs).

As anticipated, the use of SD in computer science-related studies for EDs holds the highest

record, accounting for 26.23% of the total studies conducted. This indicates that when it comes
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to modelling emergency departments, the field of computer science is commonly associated with
system dynamics. It also suggests that computational approaches and algorithms play a
significant role in this study area. OR/MS represents 21.31% of the total records, suggesting a
considerable level of system dynamics application within the domain. The high percentage in
OR/MS compared to other fields implies that system dynamics modelling is more heavily utilized
for its analytical and optimization capabilities rather than solely focusing on medical or age-

specific considerations within the context of emergency departments.

However, it is widely recognized that statistical modelling at a level as permitted by SD
may not be suitable for capturing the complexities of diverse populations at an individual level.
This limitation becomes particularly relevant when modelling EDs, as the characteristics of both
clinicians and patients along with their individual interactions play a crucial role in representing
various aspects of ED performance. According to Gullett et al. (2023), SD may be unsuitable for
capturing the intricacies of diverse populations at an individual level due to their emphasis on
system-level processes and feedback loops. Hence, it is understandable that there is no
substantial evidence regarding the application of SD in this context. A more significant research
study tends to focus on exploring the connection between individual behaviour and ED

performance, to which DES and ABMS are better suited for.

2.7. Agent-based modelling and simulation application in OR/MS

Modelling techniques in operations research management science have a wide range of
applications, with certain approaches being preferred due to their effectiveness in solving
specific types of problems. Discrete event simulation and system dynamics are more common in
healthcare modelling compared to ABMS (Robertson, 2016). As with DES and SD, results from
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literature search shown in Figure 9 reveals that Computer Science (CS), having a total of 29,531
(41.97%) studies is the subject area with the greatest number of papers. The results obtained for
OR/MS regarding ABMS usage shows that there is lesser popularity in the application of agent-
based methodologies with a 5.97% of the overall records. This low application of ABMS is
understandable as ABMS techniques have deep foundation in computer science related
development. For instance, in computer science, the concepts of object-oriented programming
and distributed computing aligns well with ABMS principles
Agent-based modelling and simulation application in OR/MS by
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Figure 9: Agent-based modelling and simulation application in OR/MS by research area.

According to Halaska & Sperka (2018), ABMS is highly effective for depicting human

behaviours in systems cantered around human interactions. However, its application in OR/MS
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remains limited. This is partly because ABMS deals with complex systems, such as EDs, where
patient flows are unpredictable and intricate. Additionally, ABMS relies on equation-based
modelling, which differs from the graphical notations employed in established simulation
methods like SD and DES used in OR/MS. This difference in modelling approaches contributes to
the slower adoption of ABMS in this field. Despite these challenges, ABMS has demonstrated
potential in fields such as intelligent transportation systems, where it has been successfully
applied to model urban traffic control systems (Pilla & Patel, 2009).

Another reason is that developing a model in ABMS often requires extensive data on
individual behaviours and interactions. However, such detailed information may not always be
available or necessary for the issues being addressed. Agents can represent data or processes
that interact within an environment, making ABMS an ideal choice for studying complex systems
such as social networks, ecological systems, and market behaviours, where individual
components function autonomously and complexly.

In contrast, the focus of OR/MS has traditionally focused on optimization and efficiency
within predictable and controllable systems. Therefore, although ABMS provides opportunities
to examine emerging behaviours and system characteristics resulting from individual actions, it
may not always align with the goals or parameters of typical OR/MS modelling projects.
Nevertheless, agent-based modelling and simulation has also shown promising growth in usage
in Operations Research/Management Science (OR/MS). As techniques and data accessibility
continue to advance, these methodologies are expected to address complex, and dynamically

evolving problems characterized by individual agents’ interactions.
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2.7.1. Agent-based modelling and simulation in modelling Emergency Departments (EDs)

Studies have highlighted the increasing use of ABMS methodologies in the modelling and
simulation of EDs. In a review carried out between 2007 to 2019, on the use of simulation-based
optimization methods for hospital EDs, the 38 analysed studies identified areas for further
research (Yousefi et al., 2020). In another study by Su et al. (2021), ABMS was developed to
simulate emergency room evacuation while assessing rescue strategies and their impact on
traffic and evacuation times.

A systematic literature review by Barghi Shirazi et al. (2022), identified the aspects and
elements that play the most crucial role in the simulation of EDs during crises and disasters. The
review highlighted several factors such as human resource management, medical services,
resource allocation etc. The study goes further to highlight the different applications of ABMS in
solving various problems in hospital EDs, including power reduction, the development of
evacuation plans and strategies, and patient scheduling. Figure 10 shows this study’s WoS review

of literatures on the application of ABMS in modelling and simulating EDs, between 2004-2023.
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Figure 10: Agent-based modelling and simulation in modelling Emergency Departments (EDs).

Based on the hits returned for this review, ABMS finds application in approximately
14.71% of all WoS recorded studies. The data presented in the chart indicates a growing interest
in the utilization of ABMS to address operational complexities in ED in a several OR/MS research
areas. The results further highlight the interdisciplinary approach on the use of ABMS in

improving patient care in emergency situations, by improving operational efficiencies, and

overall patient care.

Other studies have utilized ABMS in similar and related domains to maximize patient flow
in ED resource planning and recommended the integration of DES and ABMS (Y. Liu et al., 2023).
ABMS have also been shown to play a critical role in the improvement of the emergency

communication, and evacuation plans, especially in high-risk and heterogeneous crowd
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situations (Naim et al., 2021). One further example of a higher-level application of ABMS is the
development of an ABMS simulation for an emergency department by Liu et al (2017). They
designed a tool to aid in policy analysis, understand intricate behaviours, and productivity
enhancement. The actions of patients and staff were replicated in their model that utilized basic
ifs rules. Their model primarily addressed agent actions, activities, waiting times, and staff
scheduling.

Finally, Kanagarajah et al (2008) developed and examined a hypothetical agent-based
model and simulation of an emergency department. The primary objective was to evaluate the
influence of economic factors and workload fluctuations on patient safety. The model included
various agents including patients, doctors, nurses, technicians, treatment rooms and managers.
Each active unit is programmed to mitigate adverse events with a focus on favourable patient
outcomes. The model determines a patient's treatment based on the severity of their disease.
However, the rules that govern the behaviour of the agents in the model only take external
factors into account and ignore the internal states of the agents.

Based on these premises, we can conclude that agent-based modelling and simulation
can also be used for other important hospital components as well as hospital operations. When
considering their application in disaster scenarios, it is important to examine how ABMS models
have been adapted and applied to overcome the difficulties of providing emergency care under
disaster conditions. The gap that this study fills in the use of agent-based modelling and
simulation in improving interoperability between EDs in a disaster response operation is

discussed in the following section.
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2.8. Gap in literature

This review highlights the use of BPMN and M&S techniques in the representation and
simulation of healthcare operations during disasters, specifically examining its utilization in EDs.
Previous studies have modeled observable processes such as arrivals, queues, and interactions
to assess emergency department dynamics. However, compelling evidence is lacking on the
impact of strategic factors like evacuation and ambulance strategies on these operations. DES,
SD and ABMS have been extensively used in computer science than in operational OR/MS
methodologies which are more common in healthcare. Within healthcare, ABMS has been
applied more to study disease prevention and epidemiology, rather than at the policy level to
model emergency department responses to disasters.

The slow adoption of ABMS in healthcare, especially in disaster settings, is attributed to
its high computational demands and the complexity of developing models involving multiple
agents. It should be noted that ABMS software may also require in-depth programming
knowledge and a comprehensive understanding of ABMS theories. Other challenges that may
need to be addressed include data collection and preparation or the complete lack of data. The
use of ABMS in the study of complex systems also includes data cleaning and manipulation, which
requires a certain level of expertise in secondary data analysis tools. This study used the NetLogo
6.3.0 ABMS toolkit to examine how ABMS can be used to model emergency responses within an
oil and gas industry's disaster response framework. The aim is to improve workflow

interoperability in the interaction between a regional and a mobile field hospital.
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2.9. Chapter summary

This chapter reviewed relevant literature and examined how previous studies have used
business process management and notation and simulation methods to improve healthcare
delivery, particularly in hospital emergency departments in disaster scenarios. The focus was on
the application of simulation techniques such as DES, SD and ABMS. These methods have been
investigated for several objectives, e.g., staffing, optimization, coordination, waiting times,
patient evacuation, etc., with emphasis on their application in emergency rooms and crisis
situations. The results of the literature review conducted in this chapter demonstrate how well
these simulation methods are integrated into the study and improvement of various components
of disaster preparedness, resource allocation, and coordination in health systems. However,
studies that specifically focus on rescue strategies do not appear to receive widespread attention.
The following chapter covers the ABMS model creation process and describes the phases and
underlying assumptions used in designing and implementing the simulation model using the

NetLogo ABMS toolkit.

52



CHAPTER 3

3.0. THE MODEL DEVELOPMENT AND DESIGN PROCESS

3.1. Introduction

The previous chapter examined how BPMN and simulation techniques are used in
healthcare, focusing on their applications in hospital emergency departments and disaster
response scenarios. The importance of these approaches for improving health services and
understanding complex systems was highlighted. This chapter focuses on the agent-based
modelling and simulation development process of this study, drawing on findings from previous
studies. The content of this chapter serves as a foundation for understanding the nuances of
ABMS model development, particularly as it relates to improving workflow interoperability
between emergency department processes and disaster response protocols. The aim is to give
readers an insight into the ABMS development process for simulating disaster health systems. It
highlights the various aspects of the model development process, such as the definition of model
requirements, the conceptual model, the platform-specific model, the simulation, and the

underlying assumptions of the ABMS model.

3.2. ABMS development process

Simulation methods such as agent-based modelling, system dynamics and discrete event
simulation all share a common development approach. These common properties help improve
the effectiveness of simulation methods in applications such as process validation and
verification and reduce time and costs during development (Klingstam & Olsson, 2000; Marchetti

et al., 1998). However, the iteration design may vary between the various M&S techniques
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(Robinson, 2014; Tako & Robinson, 2009). One of the most important aspects of conceptual
modeling, which represents a crucial component of both modeling and simulation, is the
conceptualization of the simulation model from the system under study (Al-Fedaghi, 2016;
Freebairn et al., 2016; Robinson, 2015). This aspect of the M&S design and development
process (conceptualization) is typically considered the least understood, but is a crucial part

of simulation studies (Duran, 2020).

The conceptual model development phase of the model design process includes concept
formulation and evaluation. The next phase involves translating the conceptual model into a
computer-based version using appropriate computer software. Another crucial aspect in the
model development process is the verification and validation of both the conceptual and
computational model through comparison with real or alternate data sets. This concept of
integrating conceptual and computational strategies is what defines the Systems Thinking (ST)
and Computational Thinking (CT) framework described by Shin et al (2022) in subsection 1.3.2
(Figure 4). After the model design phase, the computer model is used to generate and collect
new data about the behavior of the phenomenon under study to deepen the understanding of

the modeled concept.

In the methodology used to design the ABMS model for this study, Salamon (2011)
outlines a detailed, step-by-step approach to developing ABMS simulation models in four phases,
as shown in Figure 11. These phases are “requirements definition.” “Conceptual model,”

III

“platform-specific model” and “simulation model.” Each phase consists of specific steps that
contribute to the overall modeling approach. The first two phases include the conceptual

modeling phase, while phases three and four focus on the simulation procedures.
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Figure 11: Methodology for ABMS process development. Adapted from Salamon (2011).

3.3. Phase 1: requirements definition

From the more general requirements definition phase, we focus on the first step of
problem formulation, where we clearly define and express the problems this study aims to
address. This step serves as a bridge and shifts the focus of the study from a broad perspective

to the specifics of the model development process.

3.3.1. Step 1: problem formulation

Characterization of the problem under study using ABMS is the first step in this phase,
regardless of the software application used, as described in (Salamon, 2011). At this point it is
important to consider six aspects: “The problem: give an overall description of the problem”,
“The model processes: identify the processes”, “The model entities: describe the entities
involved in the processes and their properties and define what they want and what they do and

how they interact with each other"”, "The model environment: Explain the characteristics of the
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environment and their interrelationships and interactions with the entities", "The objective:
define the purpose of the study, what measured should be, how it should be measured and what

guestions should be answered", "The validation: how to evaluate and test the developed model".

The model problem

In earlier chapters, it was mentioned how EDs are intricate and ever-changing
environments. EDs serve as the primary entry point for hospitals, accounting for more than half
of all admissions (Uriarte et al., 2015). The challenge lies in the fact that emergency rooms must
not only handle emergencies but also manage, evaluate, prioritise, and treat patients alongside
those seeking care. This leads doctors to navigate between meeting their patients’ clinical needs
and working within the constraints of their resources. As a result, the various scenarios that
unfold during healthcare delivery constantly influence the decisions made by healthcare
professionals. These complexities are represented in the context of this study as a hypothetical

response scenario, with EDs of a regional and mobile field hospital interacting.

The hypothetical disaster response scenario

As part of a test case modelling and simulation study scenario as shown in Figure 12, this
study considered an oil and gas industry explosion resulting from routine operations needing
intervention from healthcare systems. The scenario begins with a Regional Hospital (RH)
conducting routine activities (triage, treating, hospitalization etc.). Also, happening
simultaneously in an oil and gas industry, are routine daily activities, including cutting, welding,
grinding activities, which results in an explosion. The RH is prompted to respond to the victims of
the explosion (first responder), however, sensing surge and delay (wait times for patients to be

treated) in attending to victims from the incident site (due to distance, resource limitations etc.),
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request is made for assistance from a Mobile Field Hospital (MFH) to assist in the transportation,

triage and treatment of the victims.

The implemented model | developed addressed cases of both a fixed and/or normally
distributed number of injured individuals, one to six available ambulances, and the location of
the RH and MFH without initialization of their positions based on real/local data. The location for
use of the MFH is set up at a distance of 0.3 hours (18 minutes) from the site of the explosion, to
assist the RH (0.9 hours/54 minutes from the incident site) in response to the disaster with the
theory of the MFH deployment, location and assistance expected to reduce the overall mortality
outcome and waiting times of the victims. The MFH is modelled to become operational four
hours after the request for assistance, located closer to the incident site etc. as suggested by Bar-
On et al (2020); Deloui & Mofrad, (2021); and Demirel (2014) to satisfy the critical factors
necessary for the location and use of MFH in a disaster response case (Section 1.2.8). For
instance, the UMPEO (the Multipurpose Mobile hospital Europe Occitanie), an innovative mobile
hospital that is designed for deployment as emergency centres or intensive care units, has the
capability to be mobilized within one hour. It is transportable by truck and autonomous for a
span of over two hours, successfully providing medical assistance to 266 patients over a two-
week period (Houze-Cerfon et al., 2023). Furthermore, as mentioned by Rezapour et al/ (2018),
the overall survival rate of sudden-onset disasters can be increased by proportionately optimizing

the allocation of emergency units to affected sites.

57



Sudden Onset of Disaster (SOD)
(Oil and Gas industry)

(Deployed)

Regional Hospital (RH)

Disaster response role-playing
game/sensitivity analysis
(validation)

Figure 12: The hypothetical disaster response scenario (Amakama, et al., 2023b).

The distribution of the patient’s severity is assumed and set at 20%, 30%, and 50%, for
severe, moderate, and mild injuries, respectively. The distribution of victims preceding a disaster
are either obtained from historical data, epidemiological modelling, experts’ opinions, or
outcomes of simulation experimentation (Guha-Sapir et al., 2015). However, according to
Ouhmidou (2020), EDs are a category of healthcare institutions where intensive services must be
provided to victims of a disaster, irrespective of prior knowledge of the severity distribution of
the patients. Therefore, the choice of severity distribution in this study is justified. It examines
how ambulance policies affect deaths and mean patient waiting times in a disaster response
scenario involving two interacting health systems functioning as simplified emergency

departments.

58



1. The model processes

Figure 13 shows a simplified outline of the ambulance-patient flow in the EDs to and from
the incident site and via walk-in as a chain of activities represented in Figure 12. New patients
are typically sent from the triage room to the preoperative room or to the preoperative room
based on their severity index. In this triage scheme, a color-coding system is used to identify
patients' needs blue indicates non-urgent care, orange indicates patients of moderate urgency,

and red indicates patients requiring urgent and immediate attention.

The process of attendance to the patients follows four simple rules, the First-In-First-Out
(FIFO), ambulance deployment strategy, and triage-prioritization that is based on the time left to
live of the patient (Al Halabi et al., 2022; Fava et al., 2022; Sigle et al., 2023; Van Barneveld et al.,
2018). Both the patients with severe and moderate conditions have limited time to live if not
attended to, however, the mild case patient that are assumed to have injuries or illnesses that
are not life threatening are not expected to die. When the pre-set time elapses without
treatment being achieved, the patients (severe and moderate severity) die off and are moved to
available the morgues. Also, death can occur at any stage in the process, including at the incident

site and throughout the EDs processes, but not at the operating rooms or wards.
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Figure 13: Process flow for the interacting incident site-hospital system.
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With respect to the interaction with the incident site (oil and gas industry), the process is
designed with 1,2,3,4,5, or 6 ambulances starting at the RH just after the incident when the clock
starts ticking on hours-to-live for the patients, that are created at the site (room), alongside other
patients that can be set to trickle through the EDs at pre-set rate. Until the MFH arrives, the
ambulances would be evacuating patients from the incident site to the RH. However, once the
MFH arrives, the ambulances would take the most severe patients there first until the expected
waiting time to be seen at the MFH is longer than the time needed to take the serious patients

directly to the RH, then the ambulances run would skip the MFH and go directly to the RH.

2. The model entities

The key entities modelled in the process are:
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1. Theroom/stage where the patients are arriving from (e.g. incident site) or goes to (triage,
pre- operating rooms, operating rooms) for treatment are agents, having their awareness
and decisions that is based on their objectives,

2. The ambulances/vehicles are agents with awareness and decisions based on their defined
protocols and objective, which is dependent of the activities of other agents in the

process.

The overall system can also be viewed as a unit, potentially functioning as an Incident
Command System (ICS) for a disaster response environment to manage and coordinate the
response to a sudden onset of a disaster. This includes a clear chain of command, established
roles and responsibilities, and specific procedures for communicating, assessing the situation,

and responding to the emergency.

3. The model environment

A range of factors contribute to this uncertainty, including patient demand and the length
of service process activities. Additionally, the conditions of the environment evolve as decisions
are made by entities, which are characterized by three dynamic features. First, the influx of
patients into emergency departments (whether through walk-ins or ambulances), fluctuates over
time. Second, the workload in triage, pre-operating, and operating rooms can vary based on
agent conditions and severity at any given moment. Thirdly, the availability of resources like
ambulances for patient evacuation to EDs may vary depending on patient volume or their time

to live within the system.
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4. The model aims

The ABMS model in this study was developed to understand the value of incorporating a
disaster scenario into simulating interactions between emergency departments as part of the
study objective. Specifically, the model aims to simulate the impact of introducing a mobile field
hospital to collaborate with an existing regional hospital on patient outcomes during disaster
response, evaluating how well the two hospital systems can interoperate. This model simplifies
the essential components of typical emergency departments, depicting interactions between
patients (as agents) seeking treatment for their medical conditions based on severity and the

resources needed to transport and care for victims at the disaster site using ambulances.

5. The model validation

To generate data and conduct predictive tests that may be useful as a baseline model that
can be adopted and manipulated to guide future research, the ABMS model developed in this
study demonstrates how disaster response settings can be incorporated into health simulation
for an ABMS model hypothetical case. The goal is not to replicate the interactions of EDs in a
disaster scenario for a real-world scenario. Therefore, the validation process included performing
a sensitivity analysis on the generated dataset. Critical elements of the ABMS model were then
converted into a Disaster Response Tabletop Role-Playing Game (DRTRPG) to evaluate the results
of the ABMS model using game results rather than a real system as suggested by Ligtenberg et

al. (2010).

3.3.2. Step 2: method evaluation
This step of the model development process presents the method used in evaluating the

model design. Section 3.3.2.1 defines the requirements and criteria that verify the use of ABMS
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in studies. This provides the basis for ensuring that the decision to use ABMS in the study is

both appropriate and applicable.

3.3.2.1. Criteria for ABMS utilization

This stage in the development of the ABMS model focuses on assessing if agent-based
approach is suitable for modelling the problem outlined in Section 3.3.1. Identifying a suitable
simulation technique does not adhere to a singular procedure to ascertain if one method is more
appropriate than another for addressing a specific problem. Nevertheless, specific criteria can
offer guidance in selecting one simulation method over another. To determine whether an agent-
based method is appropriate for a particular area of interest given the objectives of the study,
Salamon (2011) proposes a series of questions that, if answered in the affirmative, can be

immensely helpful. These questions include;

1. “Are there entities that can make decisions”? In this study’s simulation, various
individuals such as patients, medical professionals and emergency services personnel are
constantly making decisions at distinct stages. For instance, once the ambulances are
informed about the state at the MFH, they must assess whether to proceed with
transporting patients to either the RH or MFH based on factors like severity of condition
and treatment resource availability at both EDs,

2. “Are there different types of decision-making entities or different types of decisions”?
This model involves various decision-making entities, such as patients, ambulances,
clinicians (portrayed as stages in the process) and others. Each of these entities makes a

variety of decisions, from patients entering the EDs or progressing to the next stage for
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clinician evaluation based on severity, to ambulances choosing to transport a moderately
ill patient from the scene rather than a severely ill patient with limited time left,

“Does the system appear to have dynamic characteristics”? The model for in this study
has memory and information that is based on their objectives that affects their future
behaviours and the overall outcome of the process in a dynamic manner,

“Is it difficult to describe the whole situation as an activity (with a diagram)”? Process
diagrams such as BPMN can be used to delineate specific elements of the problem being
modelled. However, because decisions are made at an individual micro-level, such
diagrams may not fully capture the interactions and activities between the parties
involved.

“Do we feel a need to treat the overall behaviour of the whole system on a macro
level”? The design of the model is done to meet the objectives of the agents at the
individual level. Each of the agent relies on its current and past conditions, as well as
environmental information to make decisions,

“Is it difficult to ‘count-up’ the entities into lump sums and then work solely with such
amounts”? Since different entities are involve in decision-making in the model, it is only
possible to group those having similar traits (example ambulances). Nevertheless,
individual characteristic plays a role in the overall system behaviour,

“Are spatial factors of the environment important for the simulation”? the use of spatial
features in the model, such as the representation of the EDs and incident site are merely

for visualization and does not result in any improvement of system interactions.
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By utilizing these seven criteria, all questions within the scope of this study yields positive
responses. Thus, it is easy to infer the suitability of agent-based methodology as the platform for

the modelling and simulation of the outline problem.

3.4. Phase 2: conceptual model

Agent-based conceptual modelling involves developing a comprehensive overview of the
system being analysed. This includes detailing the components, interactions, and behaviours of
the agents and their environment. This phase is crucial as it lays the foundation for constructing
the computational model. Conceptual modelling aids in defining the objectives of the simulation,
identifying key factors, and understanding the dynamics among the agents (Salamon, 2011).
According to Robinson (2008), the subjective nature of conceptual models as art implies that
there is no singular “correct” model for a given problem. Robinson suggests that the goal should
focus on creating a framework that facilitates communication, consultation, and consensus in

the design of conceptual models, while leaving room for creativity in the modelling process.

A predominant conceptual framework for various ABMS approaches is the Unified
Modelling Language (UML), which is implemented on an object-oriented system (Bauer & Odell,
2005). The use of UML offers the advantage of using symbols that facilitates the model’s
verification and validation process. Software developers employ UML, a standardized visual
modelling language, to design, visualize, and document systems. According to Aslam (2023), the
use of UML has application in various industries such as customer relationship management
system, education sector, and heterogeneous high-performance computing. However, Business

Process Management Notation (BPMN) has proven to be a valuable tool for representing agent-
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based models, which is becoming increasingly popular in various areas despite the lack of formal

semantics (Halaska & Sperka, 2018).

Using BPMN diagrams when representing activities in ABMS provides a way to simplify
the complexity of ABMS processes and make it easier to identify bottlenecks, inefficiencies, and
optimization opportunities within the ABMS framework (Sulis et al., 2019). The BPMN
representation ensures a clear and consistent representation of business processes. When
integrated with ABMS, it serves as a valuable tool to visually represent agent interactions and
workflows within systems, improving communication and understanding. This can assist
organizations to simulate agent’s behaviour within business processes, facilitate scenario testing
and system performance evaluation (Onggo & Foramitti, 2021; Tour, 2023). For example, when
representing entity interactions and activities for the ABM/S approach, the BPMN schema proves
to be a valuable tool for simplifying and communicating the entire ABMS model structure. This is

demonstrated in the generalized representation of ABM/S using BPMN, as shown in Figure 14.
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Figure 14: Representation of ABMS process activities using BPMN diagrams (Onggo, 2012).

Specifically, the proposed representation of ABM/S includes two types of BPMN
diagrams: the collaboration diagram and the conversation diagram. The collaboration diagrams
represent interactions between model agents and are used to illustrate the interactions between
two or more agents, while the conversation diagram provides a general overview (Onggo, 2012).
This study focuses on the use of collaborative diagrams to represent agents' interaction with the

system using simple BPMN objects.

3.4.1. Agents’ interactions representation using BPMN
The representation used for the simplification of the various agents’ interaction in the
model are represented using BPMN flow notations. Figure 15 illustrates some of the fundamental

notations widely employed in BPMN activity diagrams utilized for this study.
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Figure 15: BPMN activity diagrams notation

For example, as part of this simulation study and the applied concepts and methods, the
| developed a model using the basic BPMN notations to represent the workflow of the

interacting MFH and RH for the disaster scenario, as shown in Figure 16.
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Figure 16: Process workflow for interacting MFH and RH as EDs (Amakama, et al., 2023)

In this scenario, the hypothetical setting (as shown in Figure 16) consists of entities that
interact within it. These entities include patients, rooms (like the incident site, triage area, pre-

operating room, operating room, wards, and morgues), and ambulances. Each entity follows
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simple rules and objectives. For example, until the MFH arrives, the ambulances will keep
transporting patients to the RH. However, once the MFH is deployed based on a predefined time,
the decision-making process (method, technique, procedure, system) of where to transport the
next cohort of patients is influenced by determinants such as the criteria of the patients (time

left to live) and the waiting times in pre-operating and operating rooms.

Because the ABMS tool (NetLogo) utilised in this study is not object-oriented (Dickerson,
2011), the I had to use BPMN representation, and structured programming practices as much as
possible, to keep all the data structure as easy as possible. Object-oriented programming is to
reduce the amount of work it will take to develop a good model. Based on the developed and
implemented model, | assert that there is nothing too intricate that requires the application of
object orientation activity diagram such as UML for the process representation 9class diagrams),

making BPMN sufficient for the study.

3.4.2. The agents and agents’ behaviour

Agent-based models are characterized by their ontological correspondence (Gilbert,
2007), which suggests that the entities described in the first phase that represent the modelled
system are directly connected to the agents in the model. The agents in this study could read
data from the environment and other agents, as well as observe the surroundings using the
information they have stored. Agents interpret their surroundings distinctively based on their
objectives and present condition. Their decision-making mechanisms can be classified as either
deliberative or reactive. In deliberative decision making, an agent evaluates its perceptions,

internal state, and goals before deciding. In contrast, when an agent makes a reactive decision,
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the pre-set sensor directly influences the agent's behaviour (for instance, the deployment time

the MFH uses).

Agents possess the capacity to sense and perceive their surroundings, transition between
stages of a process, transmit and receive messages, engage with the environment through
resource utilization, and determine appropriate actions. Simple if/then rules make up the
reactive behaviour. Patients, rooms, and other entities are specified by the agent of the ABMS
model, which eliminates the need for them to make complex decisions and reduces their actions
to simple ones like moving and activity. However, when ambulances are simulated as agents,
their behaviour becomes more complex as they can make decisions not only about the current
states of the system, such as patient deaths, but also about their own internal states and

perceptions of the system.

The first activity is to direct patients to the triage room via walk-in (Figure 16). This
activity involves interaction between the patient and the triage nurse/triage room (agent). When
patients are in the queue for triage or the maximum space for patients is reached, the other
patients join the queue and wait for their treatment or die out if the distribution is in the severe
or moderate category and the time-to-live is exceeded. Patients check whether there are any

vacancies in the next phase and go there to be seen by the pre-operative doctor.

If the incident begins at time t=0, ambulances assess the condition of the emergency
responders on site and go there to transport patients. From the scene of the incident, patients
are taken to the triage room where they can either join the queue, be given priority over patients
with minor illnesses or, in severe cases, be declared dead and taken to the mortuary. If there are

no more patients at the scene, the ambulances will either remain there and wait for another
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patient to appear, or they will either return to the RH or the MFH (if they are on duty) or, if
necessary, they will remain at the RH/MFH was the last Position when the last patients were
taken over by other ambulances. For simplicity, all patients are assumed to be of the same

undetermined age and gender.

3.4.3. Handling the time factor

Before implementing the model on a specific platform, it is important to consider the
model's approach to time management. In agent-based models, simulation typically runs at
discrete time intervals during which agents perform specific tasks. The process continues until
agents complete all tasks or are removed from the simulation. The model then moves on to the
next time interval. Nevertheless, several challenges can arise when formulating a simulation
model that uses discrete time increments. The study by (Gilbert, 2007) discusses three of these

issues that can arise in handling time factors in simulation models:

1. Synchronicity: This refers to the possibility that different agents need to perform
different actions at a given time (or step). The model may need to run in a specific order
for each action to be invoked. For example, when the simulation begins, the ambulances
must update their status and decide what to do. However, when an agent updates its
status (the deployed MFH), the ambulances update their status according to the new
destination detected by the system. If this goal is not achieved, an error may occur that
leads to the simulation being terminated because not all requirements are met.

2. Inactivity periods: There are phases in which the agents in the simulation are inactive and

cannot carry out any further actions. The simulation then goes through several steps and
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checks whether something needs to be done. However, nothing happens until the pre-
set sensor shows current activity.

3. Time calibration: It is crucial to determine the connection between the simulation time
and the modelled scenario. In particular, the modeler should evaluate the importance of

each phase of the simulation.

Certain events such as the start of the simulation at the beginning of the incident - occur
at regular intervals. However, there are active and inactive times. For instance, the ambulances
have a period of high activity at the beginning of the incident, but the intensity of these activities
diminishes as the number of patients at the incident site tends to zero. With no patients available
at the incident site, the activities of the ambulances come to a stop, while anticipating the next
activity to response to in the environment. In the absence of accessible real-world or local
datasets that align with the specifications of this study, time (modelled as ticks-per-hour) is
assumed and set to 10. In other words, one “go” step (tick) represents (1 / 10) hour (0.1 hour/6

minutes), and reported in decimal hours formats (e.g., 4.2).

3.4.4. Model data source(s)(input/output)/requirement

In this study, | decided against using real data because of the difficulty of data access and
to have the freedom to control the specific properties of the generated dataset. Other factors
include reducing biases that may exist in utilizing real data, as well as reducing the cost and time
required to collect, clean, and prepare the datasets. Since there were no local datasets suitable
for the needs of this study, the development of synthetic data proved to be an essential option
and strategy to facilitate the investigation and to achieve the study's objectives. The conceptual

framework outlined in Sections 3.3 and 3.4 describes a hypothetical system that is likely to occur
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in the event of a crisis in the oil-rich Niger Delta region (NDR) of Nigeria. An algorithmic/agent-
based model was developed based on the basic principles of this conceptual framework. After
the data generation using the BehaviorSpace feature of the NL interface, factors influencing
ambulance strategy were examined considering the generated results (e.g., patient deaths).
Although the model is valid for its intended purpose, | do not anticipate that stakeholders,
organizations, or individuals will use the results of this study as a basis for critical decision making

(until calibrated and tested against real-world data).

The goal of the model is to provide valuable insights to stakeholders, including
researchers in related fields, by demonstrating that in scenarios with specific shortages, patient
accumulation is likely to occur, potentially leading to mortality. Additionally, factors such as
ambulance policy are expected to produce promising results. For example, by reducing the
capacity of operating rooms, we can estimate the resulting impact on mortality rates. For
instance, the implementation of the hospitalist care model (HOS) in an ED led to a significant 50%
decrease in mortality rates, demonstrating the model's effectiveness in improving patient
outcomes (Yang et al., 2019). Unlike typical simulation models, the goal of this study is not to
monitor the input distribution and its impact on the output. Studies have shown that
overcrowding and long waiting times in EDs can lead to increased hospital stays, negatively
impacting patient care and hospital performance (J. Collins, 2021; Mistarihi et al., 2023) The
model for this study examines the consequences of operating in a scenario with limited or no
information. With relevant data, the optimal approach would be to set up input variable monitors

and analyse the outputs against the actual target system.
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3.4.5. Supplementary assumptions of the model
Building generator models that are based on hypothetical cases often involves making
assumptions to simplify complex systems and processes. Other important assumptions made in

building the model include:

1. Assumptions regarding patients: No health condition depends on the age or sex of the
patients, other known “pre-existing conditions” or “co-morbidities.” All patients have a
specific limit of time they will wait around to be “admitted” after which they will simply
move until they get to the home room or die off. This time limit varies by patient, by injury
severity, and by each patient’s prediction of how long it will be before they are seen.

2. Assumptions regarding injuries: Similar kinds of injury exist for all patients which vary
only in severity. Both the MFH and RH can treat the different severity of injury. More
severe injuries require more time vis-a vis the time the patient will spend in the Operating
Room (OR) and recovery room (ward) before discharge. The total number of injuries at
the accident scene is defined by a normal distribution characterized by a specified mean
and standard deviation. The beta-distribution is asymmetric with the long-tail on the less-
severe side. The size (headcount) and severity distribution might be related or
independent. The mean, standard deviation and beta-distribution parameters are
variables.

3. Assumptions on time-to-die: This is the time that a patient must live if treatment is not
administered. Patients with time-to-live of less than or equal to 4 hours are color-coded
red, those with 8 hours-to-live are coded orange, and those with up to 1000 hours-to-live

are coded blue (such patients are assumed to have none-life threatening mild injuries),
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4. Assumption on recovery/ward: Recovery/ward is where patients go after
surgery/treatment. There are a finite number of beds in recovery which cannot be
expanded. If the recovery room is full, no patients can be moved from preop to the OR,

and the capacity of the ward is fixed at 15 for the MFH and 100 for the RH.

3.5. Phase 3: the platform specific model

Phase 3 focuses on the platform-specific toolbox in the model development process,
which represents an essential phase that includes both theoretical and practical considerations.
Creating a transformation guide and selecting an appropriate development platform are the
focus of steps 1 and 2 of these phases. By following these steps, it is important to ensure that the

model developed properly addresses all specific aspects of the defined problem.

3.5.1. Step 1 and 2: development platform/transformation guide/model-specific platform
This section explains the context for the selection of the model-specific platform

(NetLogo 6.3.0) by examining the reasons for its suitability as a modelling software for

translating the conceptual model into logical codes. It demonstrates the effectiveness of

NetLogo as a robust ABMS tool and highlights its features, capabilities, and applications.

3.5.1.1. NetLogo 6.3.0 (ABMS) tool: features, capabilities, and applications

NetLogo (NL) is an interactive tool for modelling and simulating dynamic processes within
complex networks. It enables the study of emerging properties, supports the teaching of
complexity science, promotes the conceptualization of creative networks, and finds application
in modelling and simulating various scenarios, including emergency evacuation (Chatterjee et al.,

2023; Wahyudiono et al., 2022). NL has a non-object-oriented structure, which can lead to
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efficient use of computational resources, especially in scenarios like emergency department

optimization where computational efficiency is crucial (Dickerson, 2011).

The program facilitates the development and examination of agent-based models.
Originating from the Center for Connected Learning, it utilizes StarLogoT1, compatible with Mac
OSX, and StarLogo2, a creation of MIT's Media Laboratory. It is StarLogo2 that has notably shaped
NetLogo's programming language, Logo3, which draws upon the traditions of the Lisp
programming language family. Reflecting on the history of Logo offers valuable insights into
NetLogo's philosophical underpinnings (Arnaud et al., 2015). Due to its transparency, stability,
capacity, and most significantly, because it is an open-source program that can be configured to
communicate with various third-party applications, this software was chosen above other
simulators for this study. It can simulate not only the process's net result, but also how the result

is produced through an incremental stepwise simulation if needed.

The NL platform conforms to a simulation technique known as "in time-discrete
intervals", which means it causes a set of entities to evolve in equal-length time intervals. The
corresponding modelling method entails selecting the entities to be included in the model and
then characterizing their behaviour over time intervals. This strategy focuses on the entities
involved, often known as agents. The metamodel in NL distinguishes three categories of entities:
(i) The environment: a rectangular area with a regular grid of n x m square tiles (patches); (ii) The
turtles (mobile agents): these are the objects that move around in the environment and interact
with it and with one another; and (iii) The links: these are generated dynamically between the
turtle agents. There is also a distinct agent known as the observer (modeller). The role of the

observer is to supervise and regulate the simulation's execution. The observer (agent) develops
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and controls the simulated behaviour of all the entities in the model (patches, turtles, and links)

(Arnaud et al., 2015).

3.5.1.2. Why NetlLogo as a tool for modelling and simulation?

The NetLogo software was chosen over other simulators for this study because of its
transparency, stability, capacity, convenience of use, and, most importantly, since it is an open-
source programme that can be set to interface with numerous third-party applications. NL is
capable of simulating and representing a wide range of spatial phenomena that include mobile
agents. The software can simulate not only the overall performance of the process, but also, if
necessary, the way in which the result is achieved, through an incremental, step-by-step
simulation. It is especially suitable for examining the connection between the micro-level actions
of individual agents and the macro-level spatial patterns that result from their interactions (J.

Gao, 2022). Other justifications for choosing NL are stated below;

1. Acceptance: There is considerable evidence that NL is increasingly being used in research
and education. The application has been downloaded by thousands of individuals.
Currently, there are about 50 downloads every day. There are more than 5,000 users on
the announcements list. There are around 1,600 members in the NL discussion group, and
it posts about 100 times a month on average. The discussion group's traffic has increased

fivefold since 2002 (Wilensky & Rand, 2015).

2. Reproducibility: Since one of NL's primary design goals is for results to be scientifically
reproducible, it is imperative that models operate deterministically. To achieve true
parallel computing programmes must be written appropriately to prevent

nondeterminism. As a result, a NL model always executes the same steps in the same
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order and produces the same results if the random number generator is "seeded" in the

same way regardless of the machine used to run it (Wilensky & Rand, 2015).

3. Extensibility: NetLogo (NL) offers two main options for extended communication: the NL
Extension API, allowing creation and access of Java objects within NL, and the NL
Controlling API, for controlling NL through Java calls from external programs. These APls
are pivotal for NL's successful integration with other software. Continuous improvements
in formats, tools, and data sources enhance its extensibility, bridging the gap between
user-friendly integrated modeling environments and more complex, versatile modeling

toolkits (Wilensky & Rand, 2015).

Using the conceptual model presented earlier in this chapter, a computer simulation
model is created as part of the transformation guide. First, the structure of the model was
represented by the BPMN diagram, and then the computer model was created using logical
instructions. The various parts of the system are then represented through a graphical user
interface designed to help stakeholders understand and communicate with the interactions

between the model units.

3.5.2. Steps 3 and 4: model input/output

In the context of this NetLogo model development, the model (referred to as MFH-06-6-2)
(NL model created specifically for this research) has been structured to facilitate paired runs,
which have been named “matching sets”. This suggests that everything stays the same in each
set (“pair”), including the random-seed value, so that the difference in the runs is the ambulance
policy that is being compared. It implies that a new routine assigns a sequential number to both

of a paired run, and then for one of the sets of ambulance-policy to either "always to go RH" and
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for the other one of the pairs sets ambulance-policy to "Alternate". It also implies that the
number of cases (i.e., say "injured") is random overall, but identical for the “pair” of runs, so what

is seen is the impact of the different ambulance dispatch policy.

Using matching set suggests that, in the BehaviorSpace function (for experimentation) of
the NL interface, the specific values of input (“ambulance policy,” “injured,” “number of
ambulances”) and output variable(s) (“total deaths,” “mean wait”) are easy to track. The code
dynamically configures the behavior of the model, ensuring robust and flexible exploration.

Consequently, the generated coma separated values (CSV) file contains only the variables

necessary to generate statistics and confirm that the correct case matches.

Furthermore, the code executes a difference of the "deaths" count between the different
policies to see the improvement that one policy, say "Alternate" policy has over "Always go to
RH", and produces charts for easy visualization. In this study, i decided to use the term
"matching" instead of "pairs" because in the future, it is expected that there may be need to
compare other policies already captured in the code (“always go to MFH”, “shortest wait” or “flip
a coin” etc.), to see what the outcome would be and compare to determine the best response
policy. The general model agents and their behaviour have already been addressed in sub-section

3.4.2.

3.6. Phase 4: simulation model

The simulation model MFH-06-6-2 (the NL model developed specifically for this study)
aims to demonstrate the basic principles of simulating the impact of a disaster on coordination
between a regional hospital and a mobile field hospital using ABMS. This model is structured

around a hypothetical situation outlined in Sections 3.3 and 3.4 and does not represent any
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current system. Hence, the MFH-06-6-2 model executed in NetlLogo is not designed to be a
precise representation of a functional ED. Several types of NL-specific structured commands such
as agent sets, lists, arrays, turtles, patches, links, and global variables have been used to specify
how activities should be performed. The model's actions and consequent simulation were
defined using procedures, commands, and conditionals (such as 'ifs' and 'else'), and loops ('while'

and 'repeat’).

3.6.1. Step 1: verification and validation process

In any simulation study, ensuring the accuracy and reliability of the simulation results is
essential. Verification and validation play a key role in increasing confidence in the outcomes.
Verifying agent-based models is aimed at validating that the agents perform as intended. The
validation process often involves the use of model checking and runtime verification techniques
(Ferrando & Malvone, 2022). Consequently, the goal of models, which is usually defined at the
start of the simulation study, is associated with the conception of simulation precision. There are
six types of verification and validation methods used in computing techniques. These include
conceptual model validation, data validation, verification, black box validation and white box

validation. The focus of this study is on conceptual, black box and white box validation.

It is important to recognize that evaluating an ABMS can be a significant challenge. There
have been numerous studies to validate ABMs, but the lack of data and the fact that ABMS
models are based on future predictions hinder the validation of ABMs models using traditional
empirical approaches (Anand et al., 2016; Gore et al., 2017; Onggo & Karatas, 2016; Takadama
et al., 2008; Utomo et al., 2022). The research on validating ABMS models highlights the

challenges in verifying agent-based models. Studies on these challenges in validating agent-based
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models show that traditional empirical validation faces these difficulties at the micro level due
to issues such as path dependence, emergence, complex interactions, and limited data
availability. In addition, they highlighted the complexity of the processes and the randomness of
the simulations as other aspects of concern. These factors may cause the results to differ from

those of a controlled experiment.

In this study, validation of the conceptual model was enabled through unit testing of the
process logic. The goal of the process was to ensure that every logic from the conceptualized
model appeared in some form in the ABMS model. The rationale behind the white box validation
is that the concept that the model's logic replicates the operations of the emergency department
during a disaster response scenario. The validation process was aimed to confirm that the model
accurately represented the patient flow process as outlined in the BPMN conceptual model and
that the agent's actions adhered to the decision rules described in the code. To accomplish this,
the model underwent debugging at various phases of the development process, with its graphical

user interface facilitating the evaluation of the model's behaviour at each stage.

The model's overall performance was assessed using black-box validation, emphasizing
functional testing. This method focuses on evaluating the model's functionality without using the
code. Techniques such as error estimation, equivalence partitioning, and boundary level analysis
were employed to assess the system's behaviour from an end user's viewpoint, typically
concerning issues like functionality gaps, usability, and compatibility. The ABMS model data
underwent 720 iterations for the analysis, averaging 20 minutes per iteration. Additionally,
Alternate runs (1,200, 5,000, 20,000, etc.) were conducted to verify the model's consistent and

stable behaviour across varying numbers of iterations. For the experiment (the final phase in the
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development of the ABMS), the BehaviorSpace feature of the NL program was used and the
update graphics button was disabled for large iterations to reduce runtime and speed up model

execution.

3.7. Chapter summary

This chapter provides a detailed discussion of the design process for the NetLogo MFH-
06-6-2 model developed for this study. It utilizes the generalized framework for computing
systems development as proposed by Shin et al. (2022), along with the phases of the ABMS
design methodology outlined in the step-by-step approach by Salamon (2011). The objective of
this chapter is to enhance comprehension of the problem structure by emphasizing the
conceptual and simulation dimensions of the model. Through the fusion of a broad system
thinking framework with an agent-based modeling approach, this study suggests that the
feasibility of constructing a more intricate and instructive model that includes both the
macroscopic and microscopic components of complex systems can be achieved. This combined
approach enables a deeper understanding of system interactions, which can help make more

informed decisions during model design.

The following chapter outlines the final stage of the development phase (Phase 4 —
simulation model) within the methodology of the model development process. This also includes
a BPMN representation of the model structure and implementation process as well as the results
of the experiment, the analyzes carried out and discussions on the factors examined as part of

the study.
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CHAPTER 4

4.0 EXPERIMENTATION, RESULTS, ANALYSIS AND DISCUSSION

4.1. Introduction

The development and design of the NetLogo MFH-06-6-2 model for this study, which aims
to improve workflow interoperability between regional and mobile field hospital emergency
departments in a hypothetical disaster response scenario, was covered in Chapter 3. The distinct
phases of the model development process were explained, starting from the conceptualization
of the model to the simulation phase. This model design approach is holistic and captures both
microscopic and macroscopic system dynamics based on established methods and frameworks.
This chapter begins by introducing the final phase and step of the model design and development
process (experimentation). It then goes into detail and presents the BPMN diagram of the
experimental setup and the graphical user interface of the implemented model. This is followed
by a presentation of the results, analyses, and discussions, including the implications of the
results in the context of the research. Therefore, this chapter highlights the interactions and
consequences that can occur between hospital emergency departments in the event of a

disaster.

4.2. Phase 4-step 2: experimentation

In this part, we will briefly discuss the final component of the design and development of
the model within the adopted ABMS methodology suggested by Salamon (2011). Before
implementing the NetLogo MFH-06-6-2 model, agents were modelled to have simple reactive

and deliberative rules and goals based on their protocol:
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1. The ambulances start heading to the site of the incident as soon as the simulation is

started (they receive information about the explosion),

2. The ambulances transport patients from the site, based on their severity distribution,
information about the environment and time left to live of the patients,

3. Patients who exceed their total time to live, die off and move to any of the available the
morgues,

4. |If patients are waiting to go to the next stage (pre-operating room, operating room etc.),
then the one with the highest triaged severities goes first (first-in-first-out-severity rule)

5. If the patient gets into the operating rooms on time, they get treated and go on to the
wards for recuperation and then go home.

The experiments conducted in this study evaluate the impact of ambulance policies on
mortality outcomes and mean patient wait times by examining the interaction between RH and
MFH. An ambulance policy is a set of guidelines that govern emergency response times, patient
care, ambulance dispatch, performance, and other aspects of an emergency response system.
These policies can be optimized using Markov decision process models, which help determine the
best ambulance to dispatch to each patient based on various factors like urgency and patient
needs (Albert, 2023). A Dell Latitude 5520 11t Generation Intel (R) Core i5 CPU-1135G7 at 2.40
GHz with 16 GB RAM was used for the experiments and synthetic data was generated using the

BehaviorSpace feature within the NetLogo 6.3.0 modelling interface.

Figure 17 shows the Graphical User Interface (GUI) of the implemented model. This
interface is intended to enable dynamic interaction between the user and the simulation by

providing immediate visual feedback on the effects of the changes made and allowing real-time
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monitoring of the parameters. The configuration is customizable and can be adjusted to model

similar healthcare disaster response scenarios and test different strategies.

Figure 18 shows the BPMN diagram for the setup process for performing simulation runs.
It begins with an initial process that requires the user to decide what type of experiment they
want to perform. This also includes setting the sliders (e.g. background, matching sets, incident
formula, severity distribution, etc.). After the initial setup is complete, the model setup moves to
the execution phase (simulation). The “Start/Stop/Step” button starts the simulation process.
When patients are present at the scene, the flow of ambulances to and from the scene to the RH
and/or MFH (provided the set response time is achieved) is triggered. Data export begins,
generating the output in the form of an Excel file and/or Comma Separated Values (CSV) in a
designated folder for analysis. Patient status decision points are part of the execution phase,
which includes managing patient flow from triage to Operating Room (OR), Pre-Operating Room
(Pre-OP), discharge, etc. At the same time, morgues also record deceased patients at any time.
To provide visual feedback on the progress of the simulation, the graphics and model clock are
continuously updated to show the passage of time in ticks.

The BehaviorSpace experimentation step-by-step setup for data sampling and synthetic
data generation is described in detail and presented in Appendix B1 to B4. The source code for
the model, including comments about the reasons for certain coding decisions and details about
how the model works and instructions for its use, is available on my GitHub page at:

https://github.com/MFHproject/MFHrepo/blob/main/mfhmodels/MFH-06-6-3.nlogo.
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Figure 17: NetlLogo (6.3.0) MFH-06-6-2 Graphical User Interface (GUI) (Amakama et al., 2023).
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4.3. Data generation, results, and analysis

Typically, the generation, collection, analysis, and visualization of data sets are crucial
elements of any successful scientific investigation. Sampling, data generation, analysis and
presentation in this study were enabled by a combination of software tools. With NetLogo 6.3.0,
the data sets for the system were generated through simulation experiments (BehaviorSpace).
The Python libraries from Pandas, which are based on the Anaconda programming language for
scientific computing, were used for data cleaning, filtering, and aggregation - including sensitivity
analysis. The analysis conducted to determine how ambulance policy affects model behavior,
mortality outcomes and mean waiting times is presented in the following subsections with

explanations and graphics.

4.3.1. Model behaviour on effect of ambulance policy on mortality and mean wait time

In Figure 19 we see the effects of two different ambulance deployment strategies on
patient outcomes in the simulations. The x-axis shows the number of runs (720 iteration runs)
that generated the dataset shown in the Figure 19 and the influence of the different number of
ambulances (Num Amb) has on the overall performance of the emergency department in terms
of average deaths. The average number of deaths is a function of the sum of the deaths for each
run, divided by the total number of deaths in the total iterations. The y-axis shows the total
number of patients affected by each response intervention. Since the modelled scenario is
unpredictable and variable, the simulations were created to reflect a wide range of the
emergency scenario combinations. Each iteration contributes to the overall result of how the

different policies might work in real-world situations. The metrics examined in this comparison
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include indicators such as: mortality rates as a direct measure of patient outcomes, which is a

function of the resource utilization efficiency, and response capacity of the interacting EDs.
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Figure 19: Model variability behaviour on patients’ mortality outcomes (ambulance policies).

The first variation chart in the ambulance policy (“Always go to RH”) is based on a

traditional dispatching approach where ambulances are dispatched based on patient severity and

availability, with only the RH available. The second variant (“Alternate”) involves a more dynamic

approach by using a mobile field hospital to strategically support the RH in the scenario.

Figure 20 shows the influence of the ambulance policies (“Always go to RH” and

“Alternate”) on the Mean Wait Time (MWT) variation. The MWT is a function of the total sum of

wait times for each individual run, divided by the total number of iterations. The x-axis represents

data from 720 iterations and also indicates the number of ambulances deployed (Num Amb),

while the y-axis shows the number of patients (injured) for each run under the respective

ambulance policy.
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Figure 20: Model variability behaviour on patients’ mean wait times (ambulance policies)

The aim of the simulations is to recreate an operational environment, considering the
different demands for emergency services and the use of ambulances. The substantial number
of simulations runs guarantees a complete data set reflecting a wide range of outcomes, thereby
increasing the validity of the comparative analysis. Further comparisons and quantifications of

these effects can be found in the following sections.

4.3.2. Effects of ambulance policy on mortality outcomes

To achieve the goal of this study, we examined how ambulance policies affect patient
mortality outcomes from both the interaction or lack of interaction of a regional and mobile field
hospitals (modelled as basic emergency departments) in a hypothetical disaster scenario.
“Always go to RH” describes a policy used by the regional hospital to respond to the disaster; on
the other hand, the term “Alternate” describes the use of the mobile field hospital in
collaboration with the regional hospital to support emergency operations. Figure 21 shows two
boxplots of the impact of ambulance policy on mortality outcomes from the simulation

experiment runs.
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Figure 21: Effect of ambulance policy on mortality outcomes for interacting EDs.

Boxplots are great statistical tools that provides visual analysis of the distribution of the
datasets. By using boxplots in analysing the 720 iterations (runs) for each ambulance policy, a
thorough visual and quantitative comparison of the policies' performance can be achieved,

improving the clarity and depth of the results.

4.3.3. Effects of ambulance policy on patient’s mean wait times

Figure 22 shows two boxplots comparing the mean wait times for the two ambulance
policies, “Always go to RH” and “Alternate”. These charts are helpful in displaying the data
distribution. The codes used to analyse and visualize both the effects of ambulance policy on
mortality outcomes and mean wait times is available on Github at:

https://github.com/Nimisingha/Ambulance_Policy RPG.
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Figure 22: Effect of ambulance policy on patients mean wait times for interacting EDs.

The behaviour and interactions of agents are determined by a variety of parameters that
make up ABMs. Because the effects of model parameters on output is methodically studied,
sensitivity analysis is an essential step in understanding the behaviour of the output variable(s)
from the interactions of the input variables and subsequent usage of ABMs. The methodology
used to conduct the sensitivity analysis for the model results and outcomes is presented in the

following section.

4.3.4. Sensitivity analysis (effects of ambulance policy on mortality and MWT outcomes)
Understanding the behaviour of the variables of agent-based models’ dataset can be
facilitated by conducting sensitivity analysis. Many sampling and global sensitivity analysis
techniques are available through the open-source Python-based sensitivity analysis library SALib.
Fourier Amplitude Sensitivity Test (FAST), Morris, Sobol, and Delta Moment Independent

Measure (DMIM) are some of these methods (Herman & Usher, 2017).
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4.3.4.1. Criteria for sensitivity analysis technique

To facilitate the selection of the most appropriate Global Sensitivity Analysis (GSA)
method for problems and models, looss & Lemaitre (2015) proposed a decision tree that
considers the unique characteristics of different Sensitivity Analysis (SA) methods as shown in
Figure 23. Although the decision tree can be particularly useful in simplifying the concepts and

requirements for the various SA techniques, caution should be exercised when using this diagram.
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Figure 23: Decision tree for selection of Sensitivity Analysis (SA) technique (Radisi¢ et al., 2023).

Considering the decision tree (Figure 23), the purpose of the investigation, and the
characteristics of the data set, this study selected the Sobol global sensitivity analysis (GSA) as
the optimal technique to improve the understanding of the model's core dynamics and

variability. This choice is based on the use of Sobol indices that quantify variance decomposition.
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Typically, Python's SALib (sensitivity analysis libraries) are used for this. All SALib's methods can

be accessed through a single interface known as a ProblemSpec (problem specification).

4.3.4.2. Sobol’s indices: functional decomposition of variance
According to Radisi¢ et al (2023), Sobol' indices are a widely accepted method to express
how sensitive a model output is to the input parameters. When examining how input parameters

affect output variance, the Sobol approach is inherently variable.
Let Dbe the model output's variance, Y as shown in Equation 1:
D =Var(Y) (1)
Given the input parameter X, let D; , Equation 2 represent the expected output's variance.
D; =Var(E[Y |X;]) (2)

Sobol’ (2001), defines the input parameter's first-order Sobol' index X, as the proportion

of the conditional variance to the output's overall variance as shown in Equation 3:

D.
Si — Fl (3)

With the specified set of input parameters {X;4,.... X5}, Di1....is denotes the variance of
the expected output variables corresponding to these input parameters. For every subset of these
input parameters, the variance of the expected output variables can be expressed as follows in

Equation 4:
Diy.is =Var(E[Y | X;,...Xis]) — XasDixik» (4)

Where, Ts = {{iy,... i }}:{i, .- i} & {0y, 5}
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The Sobol' index for higher-order interactions among input parameters X;,... X;s can be
similarly expressed as shown in Equation 5: it denotes the ratio of the total variance in output to
the conditional variance of the output linked to a particular parameter set. This calculation
subtracts the variances of the output conditioned on other subsets of the parameter being

examined.

_ Di1..is
Sitis =~ 5 (5)

The input parameter's overall Sobol' index, X; is determined by adding together all the

Sobol' indices of the sets that contain it.

The input parameter's total Sobol' index X; is calculated by summing all the Sobol' indices

for the sets that include it, using Equation 6.

D
Spi = Zits lll.j..lS (6)
Where, Ts = {{iy,...ix }}: Ik, 1 < k <s,ik = i}

An alternate definition for the entire Sobol' index is represented in Equation 7 as follows:

Since all first and higher order Sobol' indices add up to 1.
Sri=1— 5 (7

S.iisthe total of all Sobol' indices S;; ;s , excluding index i. First-order Sobol' indices and

total Sobol' indices exemplify the advantageous characteristics of Sobol' indices.

These indices effectively illustrate the impact of a parameter alone or in conjunction with

others. However, estimating them can be challenging, especially for large models with numerous
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input parameters and simulations that require significant computational resources. In this study,
the sensitivity indices are denoted as ST for total sensitivity, S1 for first-order sensitivity, and S2

for second-order sensitivity.

4.3.5. Sensitivity analysis of effect of ambulance policy on outcomes

The results of the Sobol' sensitivity analysis for the MFH-06-6-2 model are shown in Figure
24. This analysis identifies input parameters that significantly influence the model's output,
thereby improving the understanding of the dependencies and sensitivities within the model
framework. The results shown in the figure deepens our understanding of how adjustments to

the input parameters can affect the overall behaviour and performance of the model.
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Figure 24: Sensitivity analysis of the effect of ambulance strategy outcomes
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Sobol’s sensitivity analysis is a technique for evaluating how various sources of
uncertainty in model inputs affect the uncertainty in the output. This is particularly useful when
it comes to simulating complex systems, be it mathematical or computational. The overall Sobol’
index (ST) considers both the main effects of components and their interactions with other inputs
to assess the extent to which each input accounts for the output variance. The first-order Sobol’
index (S1) shows how much an input variable independently influences the output variance and
helps identify the key influencing variables responsible for the output variability. In addition, the
second-order sensitivity index (S2) evaluates the contribution of interactions between input
variables and output variance, revealing how the joint variation of two inputs can affect output
variance beyond their individual effects. Further explanation of these results can be found in

Section 4.4.

4.4, Discussion

Because the operations of healthcare systems are complex, it is often difficult to predict
emergency room outcomes in the event of a disaster. However, by modeling the behavior of
individual agents, the interaction of such system elements can be simulated, which makes them
indispensable in disaster response. In this problem case, NetLogo, an agent-based modeling and
simulation platform, proved effective in predicting mortality outcomes and mean wait times. A
detailed discussion of the research results is presented below, considering the given problem

context.

4.4.1. Effects on ambulance policy on mortality outcomes
This aspect of the analysis compared two disaster response policy for an oil and gas

explosion-type scenario, specifically examining the effects of the collaboration (or lack) between
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a Regional Hospital (RH) and a Mobile Field Hospital (MFH) (Figure 21). In the first policy (“Always
go to the RH”), the response depends on the RH for transport, triage, and treatment of the
injured patients. The second policy (“Alternate”) involves utilizing both the RH and MFH for

response efforts.

While the mean value of mortality outcome for the policy “Always go to RH” is 23.22 with
S.D of 8.98, the interquartile range — approximately 50 % of the data — is between 18 and 30
deaths suggesting variability in the distribution of the average number of deaths. The low
standard deviation from the average life saved of 15.85 is 0.79 reveals that the policy “Always go
to RH” in the number of lives saved is consistent. In this case, the minimum and maximum
mortality outcome is from 4 to 44 with 50 % of deaths falling in the range between 14 and 29.
Conversely, the Average number of deaths for the “Alternate” policy is 19.75 with SD 8.27
recording a significantly lower mean number of deaths compared to “Always go to RH”. While
the S.D of 1.30 is slightly higher implying even higher variability, its mean number of lives saved
is also higher. The “Alternate” policy reduces the average number of deaths by approximately
14.94% when implemented in comparison to “Always go to RH” policy. Conversely, the

“Alternate” policy also increases the average number of lives saved by 17.32%.

These findings highlight how ambulance policies impact mortality outcomes during
disasters when emergency departments interact. Simulation methods have effectively showed
that the function of emergency department, especially coordination and resource allocation
under such conditions can be enhanced. For example, Fu et al. (2022) modelled emergency
scenarios using simulation to evaluate the effect of ambulance strategies on death rates. Their

study considered hospital schemes for emergency medical services; specifically, how operational
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influences optimize such services. Z. Liu et al. (2014), employed NetLogo modeling to virtually
recreate different accident and emergency areas. Their computational design allowed evaluating

and improving emergency care quality.

In a related investigation, Azimi et al. (2017) employed multi-agent modelling to maximize
emergency centre space allocation. The model they proposed successfully reduced ambulance
response times by 36.7%. Laker et al. (2018) emphasized the role of computer simulation in
improving utility systems and discussed the use of the widely used M&S techniques in emergency
scenarios. Their work was particularly focused on how ambulance deployment strategies can
impact mortality outcomes in emergency departments. Another study by Ogie et al. (2022), also
suggests that the application ABM is beneficial in modelling and simulating changes in crisis

settings, and in optimizing crowdsourcing for disaster response.

4.4.2. Effects of ambulance policy on mean wait times

This aspect of the results analysed examined the two different disaster response policies
but focuses on how the policies affects the mean wait times. The boxplot shown in Figure 22
reveals that the “Always go to RH” policy produces a longer mean wait times compared to the
“Alternate” policy (12.34, 10.20) and a higher standard deviation (3.11,2.06) (descriptive
statistics). The “Always go to RH” policy also has a larger interquartile range, indicating greater
variability in MWT. This is indicated by the length of the boxplot. The minimum wait times of the
two policies are similar, however the maximum MWT of the “Always go to RH” policy (17.48) is
higher than that of the “Alternate” policy (13.81). From the results, implementing the “Alternate”
policy reduces the average wait time of patients in the treatment process by 16.68%. From this

results, one can infer that under a comparable disaster response situation, the implementation
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of the “Alternate” policy, which involves the deployment of a Mobile Field Hospital to collaborate
with the Regional Hospital in place, could reduce the waiting times for the disaster victims and

improve the quality of care and patients’ outcomes.

Studies using M&S techniques have produced similar or related results. For example, the
hybrid model developed by Y. Liu et al. (2023) combining simulation methodologies (ABS and
DES) effectively reduced patient waiting times through optimizing resource planning. Using their
strategy research results, the effect of "FIFO+Centralized" hospitalization is cut by 3.75%, while
under "Random+Centralized" conditions, it falls to 0.57%.In another study by Yousefi & Ferreira
(2017), ABS combined with group decision making led to a 12.7% reduction in average waiting
time at emergency departments and a 14.4% decrease in the proportion of patients who leave

after being seen, thereby improving the overall performance of such systems.

Furthermore, Z. Liu et al. (2014) created a model for generalized ABMS-based simulation
and optimization of various ED scenarios in the NetLogo environment. They argued that this
model allows for a more comprehensive understanding of response planning and response
strategy by analyzing patient wait times in emergencies. Similarly, Z. Liu & Luque (2015) stated
that NetLogo has the potential to simulate emergency room wait times during a disaster to
enable efficient disaster relief planning. In contrast, Taboada et al. (2013) reported that
simulation helps clinical staff make better decisions for patient flow and optimal resource
utilization. These authors conducted a simulation in NetLogo to evaluate the impact of patient

deviation policies on ED outcomes.

Data analysis of the hypothetical scenario shows that collaboration between RH and MFH

can effectively reduce mortality rates and MWT, resulting in higher effectiveness and efficiency
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of the response measures. The comparison between the “Always go to RH” and “Alternate”
policies can be seen as creating a more flexible and dynamic framework that can improve the
system's responsiveness to emergency situations. Consequently, flexibility and adaptability are
particularly notable features of disaster response frameworks as they form the basis for
establishing disaster response measures and policies. Therefore, applying agent-based modeling
and simulation to disaster management planning, resource allocation and policy effectiveness

evaluation is helpful to evaluate the influence of different policies.

The better results of the “Alternate” policy in terms of MWTs and survival rates also
suggest that the “Alternate” strategy may be more versatile and applicable to a wider range of
disaster scenarios. However, a comprehensive analysis of these results must rely on the
distribution of the data sets. Significantly, the Alternate policy indicates a minimum of 1 for
mortality, signifying its potential utility in certain circumstances, and provides a smaller
maximum for this metric. The results confirm the utility of a collaborative disaster response

approach for the best possible outcome.

It is also possible that improvements in responsiveness, efficient resource allocation, or
triage and treatment protocols, which only appear to benefit from the more collaborative
approach, are responsible for the “Alternate” policy results. The greater variations in the number
of lives saved by the “Alternate” measures could represent a more heterogeneous environment
in terms of coordination, thus providing the possibility for optimal outcomes or, conversely,
greater setbacks in the logistical system of the disaster response continuum. Here RH and MFH
must work together and exchange the necessary resources and information. Conversely, the

“Always go to RH” strategy provides consistent performance, albeit with extreme limitations on
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all outcomes, as suggested by the lower variance, fewer lives saved, and longer average times.
This could be since MFH deployment allows for rapid delivery of life-saving interventions, as the
RH infrastructure and procedures are only capable of efficiently serving a certain number of

specific cases and therefore are not as scalable or flexible.

Deploying an MFH in addition to the existing RH could be a critical decision in the event
of an oil and gas explosion disaster response. In the critical first hours after the explosion, the
MFH's mobility and proximity to the explosion site could mean the difference between life and
death. The agent-based model thus draws attention to the complexity and variability of disaster
scenarios. This also suggests that while certain measures are consistently implemented, there
are significant differences in the effectiveness of disaster response efforts in terms of mortality
outcomes and wait times. Therefore, in this context, there is a need for a more thorough analysis
of the strategies in future simulation studies, to test and optimize comparable or different

disaster scenarios.

4.4.3. Sensitivity analysis on effect of ambulance policy on outcomes

The use of global sensitivity analysis and particularly Sobol' in this study helps us to
expand the knowledge of the results as it helps us to understand the system behavior, the
characteristics, and the influence of the system agent's behavior on the overall result. Such
sensitivity analyzes also help reveal the key factors that impact the efficiency of the disaster
response model: hospital coverage and effective deployment and transfer times for injured
patients (Alrehaili et al., 2022; Caglayan & Satoglu, 2022; Hierink et al., 2020). The given results
in Figure 24 portray the following results in the form of Sobol’s total sensitivity index: ST, Sobol’s
first-order sensitivity index: S1, and Sobol’s second-order sensitivity index: S2.
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The total index (ST) calculates the total effect of the input variables on the variance of the
output by considering both the main effects and the interactions of the input variable with other
variables. The first-order sensitivity index (S1) evaluates the direct effect of each input variable
on the output variance and identifies the variables that have the greatest influence on the
variation. The second-order sensitivity index (S2) shows that simultaneous changes in inputs can
have larger effects on output than their individual effects suggest. This is achieved by evaluating
the effects of interactions between two variables on the output variance.

e Total sensitivity index (ST): “Ambulance policy” has the highest ST value at 0.64, meaning
that it is the most crucial factor influencing all performance indicators (total deaths and
MWT). “N Ambulances” also has a significant ST value (0.45), indicating the extent to
which this also determines the model results. These ST values reveal the proportion of
the variance of each input variable that is attributed to the output variable.

e First-order sensitivity index (S1): This index shows that of all input variables, ambulance
policy has the largest impact on performance, as measured by total deaths/wait times,
with the highest S1 value of 0.54. “N Ambulance” has the second largest correlation to
output power with the following S1 value (0.35). The S1 values provide information about
the individual contribution of each of the input variables to the variance of the output.

e Second-order sensitivity index (S2): The pair “N Ambulances” and “Ambulance Policy”
has a positive S2 value of 0.11, indicating a stronger joint effect on the output variable.
However, for other combination pairs (“Ambulance Policy,” “Injured”) and (“Injured,” “N-
Ambulances”) there are negative to near zero values, indicating that little interaction

leads to the model results.
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These results show that “Ambulance policy” has the strongest influence on the model
outcomes, indicating that it has a significant impact on performance of the model capability both
individually and collectively. As significant ST and S1 values show, the number of ambulances (“N-
ambulances”) also has a major influence. In the context of a real situation, decision makers
should give priority to optimizing “Ambulance policy” to influence the outcomes while
considering the function of “N-ambulance directly and significantly.”

The effectiveness of using the Sobol method in the analysis of ABMs is demonstrated by
Borgonovo et al. (2022), who found that ABMs can be effectively evaluated by applying the Sobol
sensitivity technique, which can improve the reliability of the model and its applicability in
emergency decisions. According to Gao et al. (2023) and White et al. (2023), Sobol's sensitivity
analysis can be highly effective in ABMS robustness assessment by helping to identify all essential
elements in the model, providing an understanding of system interaction and influencing factors,
and helping to predict the direction of change in a system. They claim that such analysis can be
helpful in optimizing response strategies, improving decision-making processes, and improving
the performance of EDs in disaster response scenarios.

4.5. Chapter summary

The results of this chapter demonstrate how modelling EDs using agent-based modelling
in NetLogo can integrate and enable experimentation in a hypothetical disaster scenario. In
addition, the implemented MFH-06-6-2 model was described and shown how experiments on the
impact of ambulance policy on mortality outcomes and mean waiting times provided promising
insights and a basis for further research. This refers to the application of computational
techniques in disaster response, emergency department simulation and process optimization

issues. While NetLogo's agent-based modelling has proven to be a helpful tool for realistic and
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complex behavioural representation of simulation models, simulating entities in a disaster
situation can be a daunting task that can be influenced by several factors such as the validation
process. In addition, the level of complexity of the model could have an impact on the realism
and reliability of the results. It is critical that model validation is carried out carefully to ensure

that simulated results match potential reality.

To validate the predictive ability of the ABMS model (MFH-06-6-2), | designed and
implemented a Disaster Response Tabletop Role-Playing Game (DRTRPG). DRTRPG is a strategy
that can serve as a valuable tool for validating ABMs, training in disaster response, and expanding
healthcare workers' knowledge, including communication and collaboration. This is discussed in

detail in the next chapter.
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CHAPTERS

5.0. DISASTER RESPONSE TABLETOP ROLE-PLAYING GAME (DRTRPG)

5.1. Introduction

Building on the findings of the previous chapter, this chapter examines the development
and implementation of a Disaster Response Tabletop Role-Playing Game (DRTRPG). The previous
chapter demonstrated how Agent-Based Modelling Simulation (ABMS), particularly with the
NetLogo modelling toolkit, can be modelled and effectively used to represent and integrate
complex behaviours of EDs in a disaster scenario. In addition, the implementation of the NetLogo
(MFH-06-6-2) model was simulated and promising results from experiments on the effects of
ambulance policy on mortality outcomes and Mean Wait Time (MWT) were presented for the
studied case. To validate the decision dynamics protocols of the ABMS model agents, the game-
based approach presented in this chapter will not only test the predictive capability of the ABMS
model but also provide a platform for further studies on disaster response and simulation

optimization in healthcare disaster response management.

5.2. Disaster Response Tabletop Role-Playing Game (DRTRPG)

Disaster response tabletop role-playing games have been investigated as a potential
teaching tool for disaster preparedness. Tabletop disaster exercises or simulations have been
shown to significantly improve healthcare workers' understanding of disaster management
(Suleman et al., 2022). Role-playing games have also been used in the validation process of
various ABMS. One of the variations in using games as a validation strategy is participatory

simulation (A. J. Collins et al., 2024; Szczepanska et al., 2022). Additionally, games such as PREDIS
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allow both experts and non-experts to simulate decision-making in disaster management and
assess their choices (Rye & Aktas, 2022).

The Disaster Response Tabletop Role-Playing Game (DRTRPG) developed for this study is
a TRPG that utilized the analytical and predictive capabilities of an ABMS model to design a
collaborative and interactive role-playing game. The aim is to create an environment in which
participants can take on roles in a situation that represents aspects of the interactions within the
ABMS simulated system. This combination can be particularly useful in areas where
understanding complex systems and human behavior in decision-making situations is essential.

Several factors highlight the importance of using a DRTRPG to verify/validate the
predictive ability of the NetLogo MFH-06-6-2 model developed and implemented for this study.
This includes:

1. Cost-effective: Using tabletop  role-playing games, training, educating
people/organizations about disaster response and validating ABMs can be achieved at an
exceptionally low cost. TRPG do not require the same resources as large-scale disaster
simulations or exercises.

2. Data collection: This involves observing and recording players interactions, decisions, and
actions during gameplay. This data can then be used to examine the decision protocols of
the agents in the model.

3. Scenario testing: TRPGs focused on disaster response can be valuable tools for evaluating
the effectiveness of different disaster scenarios in one model. By using these games, any

defects or errors in the model can be located and corrected.
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4. Expert validation: Disaster response experts can monitor the game and provide
comments on the realism and accuracy of the model. By using their comments, the model
can be expanded and improved.

5. Analytical comparison: It is possible to compare the results of the model with those of
the tabletop role-playing game. This makes it possible to detect and correct errors or

inconsistencies in the model or game.

This study's RPG integrated components from a validation strategy for ABMs suggested
by Ligtenberg et al (2010). To confirm the ABMS model's accuracy in representing agent behavior
and game outcomes, the method initially translates pertinent ABM elements into an RPG.
Subsequently, it contrasts the outcomes of the RPG with those from the ABMS model. If the RPG
can produce results akin to those of the ABM (whether visual, statistical, or otherwise), it

suggests that the model agent's decision-making rule is dependable.

5.2.1. The DRTRPG planning and development process

The planning and development of tabletop role-playing games for this study includes
various aspects that contribute to the design of an interactive and collaborative gaming
experience. The development process includes detailing and simplifying aspects of the ABMS
model and in-game implementation. This includes clear communication of the aim, objectives,
guidelines, methodology, including the design concept, principles and experimental design,
participant role(s), metrices, materials, data collection and analysis. All these aspects are

elaborated in the following sections.
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5.2.1.1. Aim of the DRTRPG exercise

One aim is to shape the design and implementation of the DRTRPG. This is related to
answering the second research question of this study (and consequently dealing with the third
objective). The question is: “How can Disaster Response Tabletop Role-Playing Games (DRTRPGs)
be used to verify/validate the representativeness of the response process of an ABMS model
agent in the context of the disaster response scenario?” The objective is to ascertain if the data
produced by the agents' decisions in the game align with the decision-making process of the
ABMS model concerning the industrial explosion scenario. This will aid in enhancing the model's
effectiveness and accuracy, ensuring it accurately reflects a real disaster response decision
protocol.
5.2.2.2. Objectives of the DRTRPG

To address the research question, the following specific objectives were carefully

formulated for the DRTRPG:

1. Objective 1: To assess the improvement in understanding gained through the trainings
and implementation of the DRTRPG through pre- and post-training assessments;

2. Objective 2: To assess the effect of ambulance policy on mortality outcomes from the
activities of the disaster response teams/agents (players) and visually and/or statistically
compare the outcomes of the DRTRPG against the MFH-06-6-2-ABMS model outcomes

(validation).

To achieve these objectives, the DRTRPG-specific game rules are followed to ensure that
the ABMS disaster response scenario remains central throughout the design process. These

guidelines are listed below and are essential to the effectiveness and value of the exercise.
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5.2.2.3. The DRTRPG guidelines

The DRTRPG is conducted under the following guidelines, which are based on the
traditional guidelines for disaster resposne-type role-playing games:

1. Only players onthe same team must communicate and collaborate effectively within their
group before making decisions.

2. The MoD/GM provides hints, guidance, and instructions for the game while the observers
observe the players' actions and evaluate/record their findings.

3. Discussion in each group will focus on the emergency challenges that require quick
decision-making. This promotes collaboration within teams to complete all aspects of
tasks.

4. The game has a time limit on the scenario tasks, forcing players to make quick decisions
and allocate resources.

5. The game includes consequences for decisions (e.g., death consequences) to encourage
thoughtful decisions and increase realism.

6. The game's design incorporates the concept of limited resources (ambulance, operating
room, etc.) that players must use effectively to save lives if possible

The following section describes the methodology used in the game's design and implementation.

5.3. Methodology: disaster response tabletop role-playing game design

The Disaster Response Tabletop Role-Playing Game (DRTRPG), which emphasizes an
ABMs model validation approach, as described by Ligtenberg et al (2010) was created as a
scenario-based validation strategy for this study. This is summarized below:

1. Create a foundational ABMS model,

111



2. Design an RPG version of the basic ABMS model and assign roles. The ABMS model is
converted into a role-playing game in which the participants play through scenarios like
those in the ABMS model,

3. Guide participants/players to execute tasks in the game. The participants carry out tasks
like those in ABM.

4. Collect data with the RPG,

5. Compare and contrast the RPG findings with those of the ABMS model.

The exercise consists of two phases. In the first phase, participants are introduced to the
DRTRPG concept in a group setting through preparatory training and exercises. During this phase,
several elements of the ABMS model and the game were expanded and improved. In Phase 2,
response data were then generated, examined, and compared against the basic ABMS model
(again in a group-based setting) and between medical and master's students. The DRTRPG was
created between 2023 and 2024 and two exercises (or three training sessions) were carried out
during this time. Ten to fifteen people could easily fit into the standard classroom used for

tabletop role-playing games at the IMT Mines Ales Clavieres location.

According to this design, each group experienced the same crisis response scenario
(during the game). Prior to participating in the DRTRPG exercise, participants' knowledge of
disaster management and health-related decision-making was assessed using a multiple-choice
pre-game questionnaire. Next, a simulation (in-game activities) was conducted that represented
components of the ABMS model (in the DRTRPG) by creating an environment (the disaster
response case) in which players from each group collaborated and made decisions. While playing

the game, each group simultaneously recorded the time spent on each task. At the same time,
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observers also observed and evaluated players' actions during the in-game activities. The reason
is to be able to generate extensive data in a brief time. The in-game activities are followed by a
debriefing as well as a post-game questionnaire and an observer rating assessment answered by

the players and observers, respectively.

5.3.1. Participants

Participants in this research with diverse experiences and backgrounds are asked to play
the DRTRPG game as members of a team with specific roles (e.g., emergency responders, triage
nurses, surgeons, etc.) in a cooperative role-playing environment to respond to a problem to
respond to hypothetical explosion events and decide on the best possible medical care. In the
first practice session, four groups of fifteen players each (including observers) test the game. In
phase 2, a total of 11 participants were divided into just two groups in order to compare the
behaviour of students and medical professionals. Using agent-based models and tabletop role-
playing techniques, | argue that the DRTRPG increases the validity and effectiveness of disaster

response strategies.

5.3.2. The DRTRPG design concepts, principles, and experimental setup

Tabletop role-playing games developed for disaster response are useful resources for
confirming the accuracy of agent-based models used in disaster management. Both experts and
non-experts can make decisions faster and more accurately with games like PREDIS (Rye & Aktas,
2022). Utomo et al (2022) state that data from RPGs can be used to validate ABMS models at
both micro and macro levels to accurately represent real-world processes and knowledge in the
model. Figure 17 shows the GUI of the ABMS simulation model underlying the game design

(already presented and discussed in sections 4.2).
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Figure 17: Graphical user interface of simulation used in the DRTRPG design (Amakama,2023a).

The simulated crisis scenario provides the components of the disaster response role-
playing game's design found in the ABMS model's Graphical User Interface (GUI). Just as the
agents (having defined roles) in the ABS collaborate to respond to an explosion in the oil and gas
industry, players assume different roles in collaborate in the DRTRPG to deal with similar
scenario. These roles represent simplified aspects of the ABMS simulation. In addition to other
considerations of each of the key elements (game elements, game roles, and simulations) that
were required to define and design the game. Table 2 provides a summary of the game design

guiding principles.
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Table 2: DRTRPG components, design choices and considerations

Game elements

Game description

Game design decision

Game playing considerations

Game storyline

A scenario modeled on the
ABMS model and based on a
simulated oil and gas industry
disaster to validate response
interactions and outcomesin a
regional and mobile field
hospital. Pre- and post-game
guestionnaires to evaluate
knowledge gained from the
game.

- The game follows the parameters
and guidelines of the ABMS model
as much as possible to ensure
accurate representation

- Adapt the game in real time to
address player concerns as they
arise.

- Storyline of the scenario can
examine various “what if”
scenarios.

- The degree of accuracy with which
the game captures the dynamics of the
ABMS-modeled scenario.

- The degree to which the game
scenario and model are representative
of a possible real-world scenario.

Game roles Participants assume roles - Clearly define the responsibilities - Making sure a role is playable even if
adapted from the ABMS model and decision-making procedures of it might be complex enough to test the
such as: emergency dispatcher, the roles. model.
triage nurse, surgeon, etc. - To assess performance, certain - The roles' impact on the thorough

quantifiable metrics are used. model validation procedure.

- In DRTRPG design, players should - The requirement that participants
feel the impact of their role learn the ABMS protocols through
interactions instruction.

Simulations A series of ABMS-derived - The simulations include scenarios - Ensure game simulation provides

simulations that replicate the
oil and gas explosion event and
its aftermath, with an
emphasis on collaborative
response and decision making
via in-game tasks

and exercises that call for the
application of disaster management
techniques

- Create recurring game loops that
allow validation of the model
through repeated trials.

- Provide statistical or graphical
comparisons between the impact
of DRTRPG decisions and ABMS
results.

useful/robust data for model
validation.

- Finding a balance between the
simplicity of the game and the
complexity of the ABMS.

- Clearly convey the objectives and
design of the basic ABMS model to
participants and other relevant parties.

115



For tabletop role-playing exercises intended to provide instruction, validation, and

training in disaster response and healthcare simulation, this table can serve as a three-step design

guide. Next comes the experimental setup of the game.

5.3.3. Experimental set-up

The course of the experiment can be summarized in five progressive steps: (i) describing

the DRTRPG plot, rules, and goals to the participants; (ii) assigning roles; (iii) simulation activities

(in-game action); (iv) debriefing; and (v) player feedback presented in Table 3.

Table 3: Experimental implementation steps (DRTRPG) (estimated time: 2hrs:15 minutes)

short post-experience questionnaire to
complete to assess their expanded knowledge
and insights gained.

in Microsoft Form (online)

Actions Resources Duration (est.)
The GM/MoD explains and discusses the plot Presentation (PowerPoint) 30 mins
and the rules of the game to the participants,

including its objectives

Each participant is assigned a role by the Printed label/computer 10 mins
GM/MoD (typically pre-selected into a group online selection

based on the participant's background).

The participants (each group) deliberate about 5 mins
the particulars of their respective roles).

The GM/MoD presents the possible outcomes | Presentation (PowerPoint) 10 mins
of the scenario as hypothetical truths and

begins the simulations.

Participants take part in simulations of Cards, phones, 60 mins
scenario tasks. By directing the story and PowerPoint presentation

generating relevant dialogue with tasks, the

GM/MoD makes the game easier. The game

leader makes sure that everyone follows the

rules.

Debriefing discussion, initiated by the Presentation (PowerPoint) 10 mins
GM/MoD with the observers and players.

After the experiment, participants receive a Questionnaires designed 10 mins
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The GM(s)/MoD describes the environment at the beginning of the experiment. Each
player is then assigned a role that determines their tasks for the duration of the game. Before
the in-game simulation activities begin, players in each group are given a few minutes to interact
so that everyone becomes familiar with their roles and can assign any other sub-role to a group
member. The GM guides the players by giving them hints, initiating relevant conversations, and
introducing important plot points according to the DRTRPG rules. To facilitate debriefing after
the experiment, the research team observers documented and scored their observations. My
research shows that a playgroup with eight to sixteen participants would be perfect. To generate

meaningful datasets to validate the ABMS model, the game should have more activities.

5.4. Metrics and data generation

The DRTRPG activity scoring chart as shown in Table 4 was used to evaluate team
decisions in the disaster scenario, with a focus on estimating mortality outcomes based on
response times (performance metrics). Points are awarded to encourage competition and
effective decision-making between groups (does not affect results). One tick in the ABMS model
corresponds to the estimated six minutes for each task.

Table 4: Game activity scoring chart

Decision time conditions Estimated outcomes (deaths) Outcome
points

Team decision taken at All mild patients are saved. Mortality outcome, d £ 10

T £ 2 minute 5 from moderate and severe

Team decision taken at All mild patients are saved. Mortality outcome, 5 < 5

2 <t £ 4 minutes d £ 10 from moderate and severe patients

Team decision taken at All mild patients are saved. Mortality outcome, d 2 0

4 <t 26 minutes 10 for moderate and severe patients
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Based on the ambulance policy for this task, this study estimated mortality outcomes
using this scoring table and recorded response times for each group. This implies that faster

response times could be a sign of better decision making and coordination within the team.

5.4.1. Data collection and analysis

In the ABMS validation phase, the data collected from the role-playing experiments can
be used in various ways. One method is to examine the results and compare them with the ABMS
results. However, these comparison results can be divided into two types; myopic or hyperopic.
The myopic comparative data focuses on the decisions made by participants in the scenario
game, with emphasis on the characteristics of each decision. To analyze how often both the
simulated agents and role players make similar decisions, detailed micro-level myopic
comparative data can be used (A. J. Collins et al., 2024). In contrast, hyperopia comparison data
focuses on the possible outcomes of the situation, specifically determining whether both exhibit
comparable overall behaviour. A macro-level hyperopic comparison can be difficult to perform
because the role-playing scenario may only cover a small percentage of the simulated scenario
(A. J. Collins et al., 2024). This study considers the hyperopia comparison strategy using basic
tabletop materials for the game implementation and data collection.
5.4.2. Materials for the DRTRPG

For the success of any tabletop role-playing game, it is important to select materials that enhance

the experience. Each material that makes up the DRTRPG's resources has a specific function within the

game's ecosystem. The following are the basic materials of the exercise:

1. Maps of the disaster response scenario, based on the in-game tasks
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2. DRTRPG presentation slides

3. In-game tasks response record form

4. Pencils/pens/stopwatches

5. Pre/post assessment test/observer’s evaluation forms

The DRTRPG was designed to assess the impact of rescue efforts on mortality outcomes
using data from games and to validate the predictive power of the ABMS model. The results were
then compared visually and statistically with the results in Section 4.3 regarding the impact of
ambulance policy on mortality ABMS results. The aim is to assess whether the decision-making
processes in the two approaches correspond qualitatively and/or quantitatively. Figure 25 shows

an overview of the DRTRPG configuration.
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Figure 25: Disaster Response Tabletop Role-Playing Game (DRTRPG) process setup summary

During this experiment, two teams (A and B) compete against each other by completing
a set of 18 emergency tasks in a disaster scenario with different patient counts, response times,
and severity distributions. The exercise is conducted using predetermined rules and procedures
designed to reproduce the developed ABMS NetLogo model. The DRTRPG setup and in-game

action sessions are shown in Figure 26.
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Figure 26: (a) - (d): DRTRPG players interaction and collaboration (a) the group
stakeholder's tabletop setup, (b)-(c) the second experiment for students and medical
doctors (7 March 2024) and (d) the first experiment (6 March 2023). (Amakama et al.,
2024)

5.5. Results

Sixteen participants (split into four groups) and two observers participated in the tabletop
test experiment. Nine master's students, one doctor, one emergency responder, one PhD
student, and one postdoctoral student make up the distribution of participants based on their
backgrounds and experiences. The last DRTRPG exercise involved 10 participants (in two groups),
along with 2 observers. There was a 100% response rate (8 out of 8) on the pre-(12 multiple
choice) and post-(13 multiple choice) DRTRPG evaluation test questions to assess whether the

game resulted in knowledge gain.
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5.5.1 Pre and post DRTRPG tests

For the doctors (Group A), the pre- and post-assessment test shows an 11.5% (64.5% to
72.9%) increase in knowledge from the game about disaster management and health
interactions, but on average there was no increase in the time, required to complete the tests
(11.5 minutes out of an estimated 15 minutes for both assessment tests). The pre- and post-
assessment of the DRTRPG for Group B (students without a medical background) shows a slight
increase in knowledge (3.1%) based on the correctly answered assessment test questions.
However, there was a slight decrease between pre- and post-assessment response times (15:05

to 14:30 minutes).

In the post-game survey answered by participants regarding team challenges and how
they were overcome during the game, the physicians' (Group A) reflections showed a pattern
focused on group members' difficulty in reaching consensus, which was attributed to their
medical background became experiences. The team addressed this problem with strategies such
as assigning roles to less engaged members and adaptive leadership, which led to improved
coordination and unified decision-making. For the students, their reflections show that their
challenges lay in resource management and understanding some technical terms. The group

overcame these obstacles through effective communication and scenario resource tracking.

Both groups agreed that the guidance and support from the Game Master/Master of
Disaster (GM/MoD) was helpful, and the tabletop exercise was an effective tool for
understanding the modelled disaster management concepts. Additionally, observer ratings

during and after the game (using the forms in Appendix C2-C3) indicate that both teams
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demonstrated elevated levels of engagement and communication skills. However, time
management presented some challenges for both groups, indicating room for improvement.
Overall, both teams were rated by the observers as competent in terms of their performance in
the various criteria. However, to achieve the second objective of DRTRPGs (validation of the
predictive ability of the ABMS model), this study collected and analysed data from the in-game

activities on the impact of ambulance policy on mortality rates.

5.5.2. Effects of ambulance policy on mortality outcomes (validation)

An ambulance policy is a group of regulations that govern the performance, deployment,
and other aspects of emergency response systems in addition to patient care. A boxplot is used
to represent the distribution of data from the teams participating in the game activity (Figure
27b) to compare the results of the ABMS model and evaluate the effectiveness of the response
measures. This evaluation uses the results (shown in Figure 27) for the two policies (“Always go
to RH” and “Alternate”). Figure 27(a) shows the ABMS results, which simulate the behavior and
interactions of autonomous agents using computational techniques to generate data about the
agents' interactions in the disaster scenario and analyze them using Pandas. Figure 27(b) shows
the results of the DRTRPG experiment, which utilizes a more participatory and interactive
simulation technique by using RPG to reproduce aspects of the decision protocols of the ABMS

model.
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Figure 27: Effects of ambulance policy on morality outcome for (a) ABMS model, (b) DRTRPG

This study's comparison of results offers insights into the efficacy of each response policy
by using role-playing methods to validate agent-based models. It achieves this by comparing the
outcomes of the two approaches. The subsequent sections delve into the interpretation and

implications of these findings.

5.6. Discussion of the results

The validation and communication of the results of the ABMS model in this study differs
slightly from widely used traditional techniques. This study chose to compare the simulation
results of an ABMS model qualitatively (visually) and statistically with the results of a disaster
relief role-playing game, rather than comparing the accuracy of the model results with an
equivalent model in the real world. The aim is to increase stakeholder confidence in the
predictive power of the model. Conversely, the goal is to examine the ability of the DRTRPG to

replicate tasks of individual agents and analyse the results of group decision-making processes.
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During the study period, a hypothetical ABMS scenario was first modelled and then
doctors and students took on the role of agents in the DRTRPG since it was not possible to obtain
experimental or real data during this period. This enabled various observations to be made and
controlled experiments, analytical comparisons, and scenario-based tests to be carried out cost-
effectively. For the simplified class case of the study, using the group-based collaborative
approach to data generation and validation of the ABM appears to provide promising results that

are understandable to both the modeler and the role-playing participants.

The results of the DRTRPG show that the game contributes to increasing knowledge about
disaster management in interacting emergency departments, especially for people with a
medical background. While there was a slight increase in knowledge among students (Group B),
there was a significant increase in knowledge among doctors (Group A). The fact that players
who had experience with medicine or disaster relief appeared to benefit more from the game
suggests that the questions were appropriate to their level of experience. However, the reduced
time to complete the post-test assessment in Group B may be due to an adjustment in practice
rather than a notable improvement in disaster management knowledge. Players recognized that
the game could be used as a teaching tool for disaster management and generally found it
educational and useful. | emphasize that the background of the participant should be considered

when designing the game in order to optimize learning success.

A nuanced assessment of team performance is supported by the observers scores on
game activities and feedback ratings. Both teams were perceived as very collaborative and

communicative. Observers recognized that time management was a minor weak point for both
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teams, suggesting an area for improvement in subsequent exercises. Team B received higher
ratings overall, suggesting that observers placed slightly more weight on role connection than on
situational awareness, an area in which Team A performed particularly well. Additionally, Team
B was believed to be more sympathetic to their positions. Across all metrics, no team appeared
to be in control, and observers generally rated different competencies differently within each

team.

The two strategies (Figure 27) shows that both the ABMS model outcomes and DRTRPG
outcomes have similar decision dynamics (the mortality outcomes for the policies). However, it
is necessary to conduct additional study on the data using basic statistics as there appear to be
significant differences in the data distribution. The “Always go to RH” policy has mean mortalities
and S.D for ABMS scores that are 23.22 and 8.98, respectively, higher than the “Alternate” policy
values. The policy has consistently resulted in lives being saved, as evidenced by the lower mean
of 15.85 and S.D (0.79). There are also some differences in mortality outcomes, as shown by the
mean and SD of the “Alternate” policy, which are 19.75 and 8.27, respectively. The median, 25th,
and 75th percentiles, located at 20, 14, and 26.75, respectively, show a higher concentration of

dataset points below the median.

Regarding the DRTRPG results, the “Always go RH” policy has a slightly higher mean
mortality (8.94) than the “Alternate” policy with an S.D. of 2.6, indicating greater variability. The
lives saved, on the other hand, show good consistency, although with a mean of 29.72 and an
S.D. of 2.86, above that of the “Alternate” policy (33.0, 2.11). The results of the “Alternate” policy

show a S.D of 1.19, indicating lower variability and lower mean mortality (6.11) compared to the
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“Always go RH” policy. In terms of average number of lives saved, the “Alternate” policy results
in a higher number (33 lives saved) with an S.D. of 1.90, showing that this policy consistently

saves more lives.

Although the "Alternate" policy has a lower average mortality compared to the "Always
go to RH" policy (suggesting that the "Alternate" policy may be a more effective strategy for
reducing mortality/saving lives), the " Always go to RH” policy produces more consistent results
in lives saved, as evidenced by the lower S.D. for lives saved. For both policies, DRTRPG results
consistently show lower mortality and more lives saved than ABMS results, with less variability
in results. This could mean that the ABMS overestimates the variability or that the DRTRPG does
not fully capture the range of variability encountered in the ABMS model. The maximum values
for lives saved in the DRTRPG compared to the ABMS could indicate that the ABMS overestimates

lives saved or that the DRTRPG results are overly optimistic.

The notable differences between the results of the DRTRPG and ABMS models highlight
the difficulties in validating the predictive power of ABMS through role-playing games. This
significant deviation may be caused by the significantly lower number of simulations runs (18) of
the DRTRPG compared to 720 of the ABMS model, which limits the statistical robustness of the
DRTRPG. This means that the validation process may be uncertain as the smaller sample size may
not accurately reflect the scope of the scenario. | therefore recommend adjusting the calibration
to better adapt the ABM to the human-interactive dynamics of the DRTRPG and thus improve

the validation results.
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Additionally, it is possible that the DRTRPG results were influenced by players' knowledge,
experience, and bias, which may have resulted in more optimal decision-making than expected.
One may have to assume that the DRTRPG represents only a “best case” scenario since the
purpose of the study is to validate ABMS model protocols using the DRTRPG. If real data is
available, additional analysis could include comparing the models against it to determine which
strategy more accurately represents the actual results and determine the reason for the

significant difference between the two simulation results.

Several studies have successfully used RPG to validate or understand ABMs in disaster
response and related areas. For example, the study by Ramchurn et al (2016) used tabletop
disaster response RPG to validate ABMs to improve understanding and test the effectiveness of
the system in simulating scenarios. In another study, Guyot & Honiden (2006) merged TRPGs with
ABMs, improving validation by allowing human participants to control agents, thus bridging the
gap between model and real behavior. A tabletop disaster response role-playing game such as
RimSim was also used by Campbell & Schroder (2009), to validate ABMs for emergency response
training and to improve crisis management strategies through simulations. This approach of using
TRPGs to validate ABMs is also supported by Janssen & Ostrom (2006), who claimed that disaster
response tabletop role-playing games can be used as an empirical approach to validating ABMs.
Finally, Mariano & Alves (2020) also integrated role-playing games such as WaDiGa with ABM in
water management to reflect local decision-making and show the correspondence between

game and model results.
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5.7. Lessons learnt

Responses from both groups highlight the importance of effective communication,
leadership, and resource management in disaster response scenarios. For the physicians, their
experiences highlight the need for interdisciplinary skills such as team leadership and decision-
making under pressure that go beyond their medical expertise. Adapting to assigned roles and
leadership adjustments demonstrates the value of flexibility and the ability to learn from
experience in a dynamic crisis environment. The master's students' reflections highlight the
importance of a clear understanding of the operational environment, including technical
languages. Both teams agree that support from the GM/MoD is critical in dealing with complex
situations. Additionally, they agree that the use of simulations such as DRTRPGs can be an
effective teaching tool that provides practical experience that can be translated into real-world
applications. These insights can inform the development of disaster management training
programs and protocols, ensuring teams are better prepared to meet the challenges of real-

world emergency situations.

5.8. Chapter summary

This chapter discussed the planning, design, and implementation of DRTRPGs as a method
to improve knowledge of disaster response management and validate the predictive capability
of ABMs in the context of interacting EDs for a disaster response event. By simulating a complex
decision-making scenario, the DRTRPGs not only serve to engage participants in the mechanics
of the DRTRPG, but also provide a platform for data collection, scenario testing and comparative

analysis, bridging the gap between theoretical models and practical application. The insights
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gained highlight the crucial role of effective communication, leadership, resource management

and adaptability in crisis situations.

Furthermore, the results suggest that RPGs can make a significant contribution to disaster
preparedness training and highlight their potential to improve participants' understanding of
complex systems and decision-making under pressure. However, the use of RPGs in validating
ABMS models is challenging, as it is a daunting task to have a complete representation of the
ABMs implemented in RPGs. The closing chapter summarizes the study and describes in detail its
contributions, challenges, conclusions, and recommendations. The aim is to provide a
comprehensive overview of the research implications and future directions in the areas of

disaster management, simulation-based studies, and collaborative simulation games.
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CHAPTER 6

6.0. SUMMARY, CONTRIBUTIONS, CHALLENGES/LIMITATIONS,
CONCLUSION AND RECOMMENDATIONS

6.1. Introduction

In this final chapter, | share my thoughts and insights from the data analysis performed
using various tools, including Microsoft Excel, Pandas from the Anaconda libraries, and others,
on the data produced by the applied methods (ABMS and RPG). This chapter also includes a
summary of the results of the study, its contribution to the scientific community, its limitations

and difficulties, and recommendations for further research.

The previous chapters presented the context of the study, conducted a literature review,
and described the model design and development process. In addition, the impact of ambulance
policy on mortality and mean waiting times examined using data generated from NetlLogo's
BehaviorSpace (data generation and experimentation function) and the DRTRPG exercise. The
use of Business Process Management and Notation (BPMN) provided a way to simplify and
represent the workflow of the interacting MFH and RH as emergency departments (EDs). The
analysis of the simulation results provided insights into the phenomenon of complex interaction
between the EDs in the hypothetical disaster response scenario. In addition, the DRTRPG results
from participants' interaction and collaboration were used to evaluate the predictive capability

of the ABMS model and assess its consistency.
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6.2. Summary of the study

This study examines the application of computational techniques and disaster response
role-playing game to assess the feasibility of developing a reproducible and adaptable simulation
model for disaster response and crisis decision-making in healthcare. A crisis management
approach is used to deploy resources and evacuate victims from a hypothetical disaster site
following a sudden onset of disaster. This approach requires diverse agents and their ability to
coordinate and allocate resources effectively. While the model in no way replaces any real
system, the simulations and exercise developed and implemented in this study can serve as an

analytical tool to support process improvement, training, and decision-making.

The simulation model and game developed for this study analysed the results of both
reactive and deliberative agents’ decisions, evaluated as mortality, and mean wait time outcomes
from interacting emergency departments. The core elements of the developed agent-based
model (NetLogo 6.3.0) were then transformed and implemented in a tabletop serious game
where participants played through the model's decision-making rules, providing an answer to the
study’s research questions. This research questions posed in this study are: (1) "How can the
interaction between a regional hospital (RH) and a mobile field hospital (MFH) be modelled for a
disaster response setting for the oil and gas industry?" and (2) "How can Disaster Response
Tabletop Role-Playing Games (DRTRPGs) be used to verify/validate the representativeness of the
ABMS model agents’ response process in the context of the disaster response scenario?" The aim

of this study is to "improve the interoperability between a regional hospital and a mobile field
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hospital by detailing the process of interaction between the systems," describing a typical

disaster response incident control system.

In the event of an industrial explosion such as that hypothesized in this study, the
parameters examined highlighted the uncertainties associated with the complexity of responding
to a disaster scenario and the variability due to the crisis context as critical to patient outcomes.
The examined indicators can serve two purposes: (1) enable an assessment of the overall
effectiveness of disaster response strategies; and (2) draw attention to elements in the context
of disaster response management that may have larger and complementary impacts. The need
for informed decision-making in disaster situations to reduce patient mortality rates and mean
waiting times between interoperable healthcare systems is demonstrated in this study through
modelling, simulation, and gamification. Therefore, the potential and effectiveness of using
combined techniques to gain valuable insights into the interactions within complex systems is

established.

6.3. Contributions of the study

For a study to be successful and useful for a particular area, it must consider both the
research purpose and objectives and describe in detail how each objective was achieved. To
develop a methodological, interaction-based, and exploratory technique that can guide future
interdisciplinary research, this study combined both ABMS and RPG methods. By using datasets
generated from both approaches, the feasibility of the proposed technique was validated.
Therefore, the form of contributions in this study provides answers to the research questions.

ABMS-RPG based exploratory studies that simulate interactions between a RH and an MFH in
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emergency situations have enormous potential to contribute to progress in various areas, as

outlined below:

° Knowledge gap identification: Identifying critical knowledge gaps is a major advantage
when conducting exploratory research in the field of disaster response and serves a dual
purpose: to guide and inform future research and to facilitate the prioritization of domain-
specific efforts in this area. Therefore, the contribution of assessing the impact of
ambulance operations in a disaster response scenario between interacting health systems
while addressing issues of response coordination and resource allocation is significant to
the advancement of future scientific investigations.

° Improved understanding of complex hospital systems interaction in disaster settings: By
integrating an agent-based model into this research study, a better understanding of the
complex systems and dynamics of disaster response for interacting hospital systems was
achieved. This approach enabled a better understanding of critical factors such as resource
allocation and efficient response coordination, which are crucial to improving disaster
response competency in sudden-onset disasters. In addition, it provides a basis for future
research aimed at refining the understanding and effectiveness of computational methods
for disaster response class problems.

. Training/Education: The simulation model and role-play developed as part of this research
study can be an effective, versatile training and educational tool tailored to the needs of
emergency response teams and healthcare providers and can help practitioners gain a

better understanding of disaster response systems. As a result, it can help improve skills
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and strengthen preparedness for real-world disasters. Additionally, the simulation model's
ability to enable experiential learning about its simulated environment for scenario-based
training exercises can help response teams and health care providers improve their
preparation and ability to effectively respond to the complex disaster response class
problems.

Coordination and communication practice: The game scenario offers the opportunity to
improve basic knowledge, but also illustrates how important it is to coordinate various
health facilities and emergency services quickly and effectively.

Evidence-based policy making: By closely examining the results of various strategies in
both the ABMS model and the game setting, policymakers and public health practitioners
can develop more informed and evidence-based policies and protocols that specifically
address the disaster response challenges associated with the oil and gas industry.

Additionally, previous work on using NetLogo in modelling and simulating disaster

response scenarios with a focus on the mortality outcomes and mean wait times of emergency

scenarios was conducted using older versions that may not have taken advantage of the

BehaviorSpace feature set to enable numerous sampling combinations. These parameter

experiments are carried out automatically and generates very extensive data sets. This study

argues that although Netlogo provides a visualization window and basic graphics, it needs other

tools for better data manipulation, statistics, and graphics.

To meet this requirement, this study utilized several Pandas upon Anaconda libraries

(Python tools) and other statistical tools for data analysis. Although there are articles about using
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NetLogo in healthcare and disaster response, this study provides further details on the specific
issues a programmer new to Netlogo faces when tackling a crisis and disaster management
challenge. This is available in the “code” and “info” tabs for the model and system
documentation, along with inline comments explaining the reasoning behind some coding
decisions. This study therefore serves as preliminary work to achieve future improvement of

healthcare systems by modelling the interaction between hospital systems in disaster situations.

6.4. Challenges/limitations of the study

The validity and applicability of research results are always influenced by the availability
and quality of the data; Therefore, it is crucial that any challenges or limitations that may have
influenced the results are properly acknowledged. This will help define a clear perspective for
future studies. Although | am convinced and confident that both the model and the role-play
(with some variations) correctly predict the concept, there is no clear claim that a sufficiently
strong relationship exists (until it is tested, calibrated, and validated against a real system),
between the outcomes of the investigated strategies and an actual disaster response scenario.
According to Collins et al. (2024), a simulation can never fully reproduce the system under study;
Therefore, comparisons should be limited to the critical elements of the simulated environment.
They also noted that the goals of the simulation determine the necessary components and serve

as the standard against which all validation efforts are measured.

On the above crucial points, my position is that no individual or organization is
recommended to use the results of this study in making important policy decisions. This is

because the modelled system is a hypothetical case and therefore the agents decisions are not
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based on local data. Therefore, the agent’s interactions and the resulting outcomes are based on
simple rules and goals based on certain simplified assumptions. In other words, this study
investigates the usefulness of the NetLogo 6.3.0 modelling tool and simulation game in testing
and evaluating outcomes in a disaster environment based on simply defined rules in emergency

situations.

Another limitation of this study is its narrow scope, as it examines only a few selected
performance indicators: mortality outcomes and waiting times related to ambulance policy.
Therefore, other secondary Key Performance Indicators (KPIs) such as the impact of patient
waiting time on system performance in distinct phases were not considered. Additionally, other
important aspects in EDs such as patient diagnoses, patient satisfaction, overall quality of care,
or physician physical condition were assumed to have been completed in the course of the
patient care. For example, studying the impact of physician fatigue on service quality, such as:
accurate diagnoses and fewer readmissions. Furthermore, to model the scenario, this study
relied primarily on literature reviews and plausibility checks rather than experimental

observations of real systems.

Additionally, because the study focuses on predicting mortality outcomes and waiting
times in simplified emergency departments, it ignores other factors that could result in other
secondary outcomes from the interaction between these systems (e.g., logistics, clinical staff,
etc.). Future models could consider integrating additional social decision-making processes of

stakeholders (agents) into the system and conduct better classical tests (calibration, validation,
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refinement, etc.) based on local data availability to evaluate the feasibility of using the model

more effectively for Improve decisions support.

Finally, regarding the challenge of using ABMS for the modelled system, this study showed
that a substantial number of computational resources and detailed data are required to achieve
better results. As computer power increases, new opportunities for ABMS modelling could
emerge. However, running a highly detailed model with hundreds or thousands of agents
requires computational resources. ABMS software can also be a challenge to master in a brief
period because it requires some basic programming skills in addition to a thorough
understanding of the underlying theories. Concerns about patient privacy also posed a major
challenge in data acquisition. This research also shows that, data sources may not exist (as this
study demonstrates) or may not contain all the necessary information for an accurate and
comprehensive ABMS model development and to design a robust role-playing game. Under these
circumstances, synthetic data generation became the only way to explore the capabilities of the

ABMS toolkit. Additionally, data cleaning and manipulation can be time-consuming.

6.5. Conclusion

The demand for oil and gas resources has made the petroleum industry an important
contributor to the global economy. However, statistics on petroleum exploration and production
activities have shown that they are prone to major industrial disasters, resulting in injuries and
deaths. In disaster situations, an efficient and effective emergency plan is required. This study
highlights the need to generate potential outcomes and test how response strategies would

influence mortality and waiting times. The research demonstrated how effective procedures can
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be implemented for different scenarios, resulting in faster response times and better health
outcomes. However, since the results of the study are based on a hypothetical case, further

investigation and calibration of the model is recommended to achieve the best results.

The combination of NetLogo (ABMS) and DRTRPG techniques provides a unique approach
to evaluating contingency plans, supported by evidence of their significant value from the results.
The methodological approach adopted in this study provided not only a realistic simulation, but
also a platform that can be adapted for informed decision making and employee training. The
use of these tools provided evidence of the need to improve emergency response to disasters

and reduce mortality rates in disaster situations.

These collections of generative scientific knowledge led to significant results achieved
through the combination techniques and thus provided an important framework for
consideration in future studies. The results of this study also showed that the proposed
hypothesis that the deployment of MFHs within the first four hours in a post-disaster situation in
collaboration with an existing regional hospital can help reduce the mortality rate and mean
waiting times of injured patients. Therefore, the importance of policy assessment for improving
emergency response strategies and the application of simulation technologies such as NetLogo
ABMS and scenario-based RPG for disaster response in modelling, simulating and communicating

system interactions is highlighted.

The main findings of the study provided essential information and viable solutions to
improve industrial disaster response plans. It also highlights the need for flexible and dynamic

response strategies that can successfully mitigate the challenges posed by disaster scenarios
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through a thorough comparative analysis between “Always go to RH” and “Alternate” policies.
With DRTRPG, simulation exercises are conducted that not only provide the opportunity to
validate the predictive accuracy of the response decisions made by the ABMS model agents, but
also act as a bridge between theoretical models and real-world applications. Decision makers
may utilize the study's findings to prioritize disaster response variables and improve emergency

services in high-risk situations.

Based on the results, | suggest that policymakers should think about how response
methods affect the consequences of disasters. In this study, | also propose the use of simulation
tools to develop, evaluate and improve resilient and adaptive health systems. This study
demonstrates the benefits of integrated response strategies in addition to its insights into RH-
MFH dynamics in possible disaster scenarios. The study reveals that the “Alternate” policy that
utilizes RH and MFH resources, achieve better outcomes and enabled collaborative disaster

management to save more lives and subsequently reduced the average waiting times.

Using the DRTRPG validation approach, | developed, implemented and evaluated the
predictive ability of the ABMS models while providing empirical data and perspectives to the
disaster management literature to improve the forecasting tools. This strategy provides a
collaborative framework for problem-solving and decision-making while testing the theoretical
foundations of disaster response plans. The research uses ABMS and DRTRPG to improve our
understanding of disaster response processes, optimize policies, and provide theory for disaster
planning, training, and response education. Thus, this exploratory study serves as a foundation

for simulation and game-based disaster response strategies by highlighting the transformative
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potential of simulation-based methods in creating robust, effective, and flexible disaster

management systems.

6.6. Recommendations for future studies

Further research is needed in this area as the review of the literature highlights the need
for additional studies on simulation models for interoperability between healthcare systems in
an industrial emergency scenario. Subsequent research could explore topics related to human
factors, such as simulating and quantifying the effects of human characteristics such as fatigue
on medical systems. Therefore, “How can human aspects related to fatigue and emotions of
people be developed and modeled in healthcare systems during emergencies?” would be an

interesting research question that would arise from such a study.

In addition, since this study is not based on the development of a comparable, real-world
system of an actual emergency department, it would be interesting to investigate the feasibility
of developing a generic simulation model for the emergency department that considers human
aspects related to service quality, effectiveness of diagnosis and patient satisfaction in health
systems. A research question that could be investigated could be: “How can a generic model be
developed and used to incorporate emotional and competence aspects such as patient
satisfaction and service quality in disaster situations?” A third aspect for further research using
simulation techniques would be to use more advanced modeling - and simulation packages such
as Anylogic, which are intended to integrate both ABMS and DES approaches. Such a study would

enable better calibration and comparison of hybrid strategies.
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While using tabletop role-playing games to validate agent-based NetLogo models
presents challenges, it also provides a dynamic approach that promotes a deeper understanding
of complex systems. This study therefore highlights the potential benefits of this validation
technique (although it focuses on a hypothetical scenario) and recommends that game
participants should be included in the ABMS model development structure from the beginning
of the project to achieve better calibration and validation results. Both the agent-based model
and the serious game should be continuously refined through feedback loops and collaboration

between modelers and game developers.

Appendices A2-A6 show BPMN diagrams based on predictions of the severity of
consequences of industrial explosions, ranging from polytrauma to influenza-related illnesses.
This provides a basic operational planning and decision-making framework for future studies. The
purpose of these diagrams is to provide strategic guidance for disaster response mechanisms for
MFHs. Future research should attempt to model these processes and focus on improving and
empirically testing the proposed BPMN frameworks, focusing on their adaptability and scalability
in a range of disaster scenarios. In this way, it will be possible to practically apply the theoretical

insights from this research to improve disaster resilience in more complex cases.
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APPENDICES

This section contains a suggestion for additional research as well as additional relevant

supporting documents, figures, tables, and screenshots to clarify further points.

Appendix Al: BPMN representation of patients triage flow in MFH
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Figure 28: BPMN representation of patients triage flow in MFH
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Appendix A2: BPMN diagram of patients flow in MFH (polytraumatic injuries)
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Figure 29: BPMN diagram of patients flow in MFH (polytraumatic injuries)




BPMN diagram of patients flow in MFH (mono-traumatic injuries)
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Figure 30: BPMN diagram of patients flow in MFH (mono-traumatic injuries)
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Appendix A4: BPMN diagram of patients flow in MFH (minor injuries/lacerations)
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Figure 31: BPMN diagram of patients flow in MFH (minor injuries/lacerations)
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Appendix A5: BPMN diagram of patients flow in MFH (other illnesses/comorbidities)
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Figure 32: BPMN diagram of patients flow in MFH (other illnesses/comorbidities)
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Appendix A6: BPMN diagram of patients flow in MFH (flu related conditions)
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Figure 33: BPMN diagram of patients flow in MFH (flu related conditions)
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Appendix B1: BehaviorSpace experimental set up (data sampling and generation) — step1
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Figure 34:BehaviorSpace experimental set up (data sampling and generation)-step 1
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Appendix B2: BehaviorSpace experimental set up (data sampling and generation) — step 2
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Figure 35: BehaviorSpace experimental set up (data sampling and generation)-step 2
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Appendix B3: BehaviorSpace experimental set up (data sampling and generation) — step 3
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Figure 36: BehaviorSpace experimental set up (data sampling and generation)-step 3
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Appendix B4: BehaviorSpace experimental set up (data sampling and generation) — step 4

| speed

continu...

view update

Run options X

v

MODE C:\Users\namalea\Desktop\RESEA Browse... Disable

Table output 'tal Results\MFH-06-6-2 experiment—table.csv‘ Browse... Disable

waiting-queue

5 M mfh
Update view Bh Waitin|
COUNTS of PATIE _
Update plots and monitors N/A
e morgue
MFH in triage-1 Simultaneous runs in parallel [8 | 5 =
0 If more than one, some runs happen invisibly in the background. Al
Defaults to one per processor core. N/A
incident all ambulances I oK | l Cancel morgue-3 2 o 10
10 0 T o]
; » BehaviorSpace >
RH riage:2 pre morguel Occupancy by Hospital
10 0 [Experiments: 0 10 M rRH
M MFH
matches 600_runs 4_5_6 Ambs (600 runs) A M 1ncident]
matches 600_runs 5 _Amb (600 runs) g% M deaths
matches 600_runs 6 _Amb (600 runs) S
matches 600_runs 4_5_6 Ambs seeded (720 runs) S
) matches 600_runs 4_5_6 Ambs with mean wait (600 runs)
3 —
? : : 0
l New ’ ‘ Edit l I Duplicate l I Delete | | Run | 0 TICKS ( divide by 10 to get hou... 10
preop morgu -
deaths by severity Med
15 - severe 10
Bl moderate
€
S

Figure 37: BehaviorSpace experimental set up (data sampling and generation)-step 4
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Appendix C1: Disaster response scenario tasks

Table 5: Disaster response scenario tasks

Task #

Scenario tasks requiring team collaboration/communication and response action

Decision taken /
rationale

Your team receives an emergency call from the Oil & Gas industry (incident site)
with 40 injured (8 severe,12 moderate and 20 mild). You have available 3 free
ambulances and 2 free operating rooms (ORs). With only RH operational, decide
how to respond to the situation?

Your team was alerted of more victims on site. On arrival, triage information
shows that 4 out of 39 cases were results of underlining health issues (2
respiratory, 2 cardiovascular), with 9 severe, 10 moderate and 20 mild cases
(result of the explosion). Who amongst the victims would your team prioritize,
having 3 ambulances and 4 ORs and only the RH in operation?

On getting to the incident site (ambulance), triage information reveals 38 injured
[6 severe (2 unconscious), 12 moderate severity, 20 mild victims]. With only the
RH still in operation, 3 ambulances and 1 OR available for surgery. How will your
team respond?

Distress call of 37 patients (15 moderate,5 severe, 17 mild) are expected to start
arriving in 45 minutes in the RH. Anticipate the surge, and plan for optimal
transport, triage, and treatment of the patients.

40 patients (8 severe, 12 moderates, 20 mild) need urgent evacuation and
treatment. Only 3 ambulances are available. Decide on the priority and
distribution if there is a secondary request for a critical case in a location 30
minutes away?

RH has 3 ambulances available, but 38 patients (10 moderate, 3 severe, 25
mild) need transport, triage, and treatment. There are 2 available ORs and 1
Pre-OR. What decision will your team take to save the most life if 2 moderate
cases become worse and have 118 minutes (about 2 hours) to live with
treatment?

Your team already dispatched 4 ambulances bearing 3 severe cases (approx.
1hr.30mins to live without surgery). There are also 8 moderate, and 28 mild
cases patients on site. Information from the RH indicates 2 OR is available. What
should be your teams resolve to handle the situation?

Ambulances are dispatched by your team from the incident site en route the RH
with 8 severe patients. Meanwhile patients are still held up in the ORs (3
patients) and no bed spaces at the wards. However, there is 1 OR available.
What would be your team’s call for action as the patients need to get in for
surgery? 13 moderate and 21 milds are also reported on site.

Your team received an emergency call of 3 patients needing ambulance service
from home 25 minutes’ drive from the RH. While preparing to respond, an
update came in from the MFH informing your team of readiness to take in
victims for surgery (38 total injured). How will your team dispatch the 4
available ambulances (the other 2 ambulances are heading back to the RH)?
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10

Your team gets the good news of the MFH being fully operational. However, at
the incident site, triage reveals 39 injured (8 severe, 11 moderates, 20 mild).
There are 5 ambulances available. How would your team distribute the
resources and what decision will be taken about the victims if only 4 ORs are
available (2 at the MFH and 2 at the RH)?

11

There is prediction of a surge at the MFH in the 25 mins. [(if the remaining
victims are transported there, it will take longer for them to be seen (7 severe,
12 moderates, 21 mild)]. A comparable situation is projected to happen in 3
hrs. at the RH. What would your team do if 3 ambulances were located at the
RH and 3 were 10 mins out from the incident site?

12

Triage personnel on site informs your team of readiness to transport 8 severe
patients and awaits your directive on how to distribute the patients to either
system (RH/MFH). There are no free OR at the MFH and 3 OR at the RH with 5
ambulances available. What decision would your team take, if there are also
11 moderate and 22 mild also waiting for medical assistance?

13

18 patients out of the 36 injured (7 severe, 11 moderate) need urgent
evacuation. Only 4 ambulances are available for the RH and MFH. Decide on
what will be your team’s priority and distribution of the victims.

14

Your team is receiving a call about the distribution of 40 victims at the incident
site and, there is a sudden disconnection in the line which may take half an
hour to fix (30mins). What will be your team’s decision if you have 2 ORs at the
MFH, 3 ORs at the RH for surgery and other related issues?

15

38 patients (8 severe, 11 moderates, 19 mild) require various levels of
attention. The MFH has 1 OR for a moderate severity patient. How will your
team coordinate the affected patients if 5 severe patients and 3 moderate
patients require surgery?

16

42 patients (8 severe, 13 moderates, 21 mild) need evacuation and treatment.
The MFH has 2 ORs to attend to patients. How will your team coordinate
patients if all ambulances are between 15-20 minutes from the incident site
and 3 patients have 45 minutes to live without surgery?

17

14 out of the 40 patients (8 severe, 12 moderates, 20 mild) in the incident site
are expected to require hospitalization after treatment. RH has separate wards
for severe and moderate patients, but the available space is limited. How will
your team manage the patients if 7 hospitalization spaces are available at the
MFH and, only 5 bed spaces are in the RH?

18

37 patients (7 severe, 11 moderates, 19 mild) require various degrees of
medical attention. Only 1 OR is available at the MFH for moderate patients. RH
has 4 ORs available. How will your team coordinate the patients if 7 severe
patients and 5 moderate patients require surgery?

**Injects 1- 9 describes the scenarios of the intervention carried out only by the Regional Hospital (RH)
prior to the deployment, setup, and operation of the Mobile Field Hospital. **Injects 10-18 describes the
scenarios capturing the intervention of both the Regional and Mobile Field Hospitals, based on the
ambulance policies. This nuanced approach to the scenario design ensures that players are consistently
challenged to reassess and apply disaster response strategies in varying contexts, enhancing the

educational and training value of the disaster response tabletop role-playing game.
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Appendix D1: DRTRPG in-game response time form (data collection)

Table 6: In-games response time form (Group A and B)

Response Time

# Scenario tasks Start Stop

10

11

12

13

14

15

16

17

18
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Appendix D2: DRTRPG in-game observers rating form

Date: __ 7™ March,2024

Team Name: _AandB__

Scenario: Disaster/emergency response in an oil and gas industry

Time: __9:30hr —12:00hr__

Role (observer): The role of the observer in the role-playing game is to assess the performance

of the players acting as ambulance dispatchers in the group.

Instruction: Use the scale provided to rate the following items. Additional comments may be
added in the spaces provided. Please use circles or ticks to indicate your selections in the box.

This information is to be collected during the DRTRPG and is intended to help summarize the

observer’s findings on the participants during the exercise.

Table 7: DRTRPG in-game tasks performance evaluation

Injects Response Scoring

Strongly Strongly
Performance evaluation criteria Disagree | Disagree | Agree | Agree
i. | Involvement: All members of the group were actively
engaged throughout the inject exercise 1 2 3 4
ii. | Communication: The group members communicated
with each other during the injects/exercise 1 2 3 4
iii. | Role-playing: The group stayed in character (ambulance
dispatcher) during the injects scenario 1 2 3 4
iv. | Decision-making skill: The players were able to make
quick decision in the high-pressure situations 1 2 3 4

Additional observations on groups’ performance:
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Appendix D3: DRTRPG post-game observers rating form

Date: __ 7™ March,2024

Team Name: _AandB__

Scenario: Disaster/emergency response in an oil and gas industry

Time: __9:30hr—12:00hr __

Role (observer): This information is to be collected after the DRTRPG and is intended to help
summarize the observer’s feedback on the participants engagement in the exercise.

Instruction: Use the scale provided to rate the following items. Additional comments may be
added in the spaces provided. Please use circles or ticks to indicate your selections in the box.

Table 8: Observers’ post-game evaluation criteria

RPG Evaluation Scoring

Strongly Strongly
Evaluation Factor Disagree | Disagree | Agree Agree

i. | Situation Awareness (SA): The team successfully

maintains SA through sharing and communicating 1 2 3 4

knowledge across the scenarios?
Comment:
ii. | Teamwork: The team effectively collaborated in

decision taking throughout the exercise 1 2 3 4
Comment:
iii. | Time management: The team effectively managed the

time they had available to them during the exercise 1 2 3 4
Comment:
iv. | Role empathy: The team effectively empathized with

their given role? 1 2 3 4
Comment:
v. | Performance: The team demonstrated good

understanding of the objectives for the exercise 1 2 3 4

Comment:
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Appendix E1: Disaster response role-playing game data gathering forms

Table 9: Observers’ in-game response rating (official use)

Group A Group B
Evaluation Criteria 4 3 |2 1 4 3 2 1 Average
Involvement
Communication
Role-playing

Decision-making skill

Overall score:

Appendix E2: Disaster response role-playing game data gathering forms

Table 10: Observers’ evaluation feedback rating (official use)

Group A Group B
Questions 4 3 2 1 4 3 2 1

Average

i | Situation Awareness (SA)

ii | Teamwork

iii | Time managements

iv | Role empathy

v | Performance

Overall Score:

***These table gives a standardized rating scale that will be used to assess the performance of
the players on each of the criteria mentioned on the observer's form. Scores might reveal game
flaws or areas for improvement. If players repeatedly score low in one area, the task or challenge
may need to be changed to make it more interesting or demanding in the future.
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Appendix F1: DRTRPG observers in-game performance evaluation results

Observers' DRTRPG game activities evaluation
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Figure 38: DRTRPG observers in-game performance evaluation results

Appendix F2: DRTRPG observers feedback performance evaluation results

Observers' DRTRPG feedback evaluation
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Figure 39: DRTRPG observers feedback performance evaluation results
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