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RÉSUMÉ DE THÈSE 

Aperçu  

L'utilisation des technologies de modélisation et de simulation pour prévoir et comprendre le 

fonctionnement des services d'urgence des hôpitaux en cas de catastrophe est essentielle pour 

la préparation, la gestion efficace des ressources, la coordination des interventions et la sécurité 

des patients. La technologie de simulation peut être un outil précieux pour la formation des 

professionnels de la santé, l'identification des domaines d'amélioration des soins et 

l'optimisation des interventions d'urgence et des processus de soins de santé. L'interopérabilité 

des processus systémiques dans les scénarios d'urgence peut être examinée à l'aide de la 

modélisation et de la simulation basées sur les agents. Cela permet d'expliquer comment les 

décisions des agents affectent leur efficacité et comment ces décisions sont liées à différents 

niveaux. Par conséquent, cette étude utilise une approche interdisciplinaire qui combine la 

gestion des catastrophes et des urgences, la simulation sanitaire et la gamification pour 

apporter des réponses aux questions de recherche examinées.  

Questions de recherche   

Les deux questions de recherche examinées dans cette étude sont les suivantes :  

• Comment pouvons-nous modéliser l'interaction entre un hôpital régional (RH) et un 

hôpital mobile de campagne (MFH) ou un hôpital de campagne dans une situation de 

catastrophe dans l'industrie pétrolière et gazière ?  

• Comment les jeux de rôle sur table pour les interventions en cas de catastrophe 

(DRTRPG) peuvent-ils être utilisés pour vérifier/valider la représentativité du processus 

de réponse de l'agent d'un modèle ABMS dans le contexte d'un scénario d'intervention 

en cas de catastrophe ?   

Méthodologie  

La méthodologie utilisée dans cette étude intègre la conception de processus, les techniques 

de simulation et la gamification pour simplifier, documenter et modéliser un scénario de 
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catastrophe nécessitant l'intervention des services d'urgence. À l'aide du Business Process 

Model and Notation (BPMN), les activités et les flux de processus entre les systèmes régionaux 

et mobiles d'hôpitaux de campagne en interaction (modélisés comme un service d'urgence 

simplifié) et les sous-systèmes dans le scénario de catastrophe ont été détaillés. NetLogo 6.3.0 

(outil de modélisation et de simulation basé sur des agents) a été utilisé pour simuler les 

interactions entre les paramètres des systèmes en interaction. Enfin, un jeu de rôle sur table de 

réponse aux catastrophes (DRTRPG) a été développé et mis en œuvre pour fournir une 

plateforme permettant de valider les simulations par le biais d'exercices basés sur des scénarios 

et de s'assurer que les réponses du modèle étaient réalistes et efficaces. 

Résultats clés  

L'application NetLogo 6.3.0 a démontré comment modéliser et tester la prestation de services 

d'urgence et l'intervention dans un scénario de catastrophe. Le modèle mis en œuvre a été 

utilisé pour expérimenter l'impact des stratégies de répartition des ambulances sur la mortalité 

et les temps d'attente moyens dans les services d'urgence. Ces expériences ont produit des 

résultats significatifs et ont mis en évidence le potentiel des techniques de simulation dans la 

gestion des catastrophes, la simulation des services d'urgence et l'optimisation des processus. 

Les résultats montrent également que les jeux de rôle peuvent contribuer de manière 

significative à la formation à la préparation aux catastrophes en améliorant la compréhension 

par les participants des systèmes complexes et des processus de prise de décision. Toutefois, le 

défi consiste à concevoir le jeu de manière à représenter pleinement la complexité et 

l'interaction du modèle ABMS, ce qui limite le niveau de validation du modèle. Néanmoins, les 

jeux de rôle se sont révélés inestimables pour offrir des possibilités d'apprentissage par 

l'expérience et identifier les domaines à améliorer dans la réponse aux catastrophes.  

Contributions de l'étude  

Les contributions de cette étude interdisciplinaire à la communauté scientifique peuvent être 

résumées en quatre domaines :  
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• Identification des domaines à améliorer : L'étude a identifié une lacune critique dans les 

connaissances en matière de réponse aux catastrophes qui peut guider la recherche 

future en donnant la priorité aux efforts spécifiques à chaque domaine. C'est ce que 

montrent les résultats sur l'effet et l'importance des stratégies de sauvetage dans un 

scénario de catastrophe entre les services d'urgence en interaction. 

• Meilleure compréhension des systèmes complexes : L'intégration de l'ABMS dans cette 

recherche a permis de mieux comprendre la dynamique de la réponse aux catastrophes 

pour les systèmes hospitaliers en interaction. L'approche adoptée dans cette étude a 

mis en évidence des facteurs critiques tels que l'allocation des ressources et la 

coordination de la réponse, qui sont essentiels pour améliorer les capacités de réponse 

aux catastrophes. 

• Formation et éducation : Le modèle de simulation et le jeu de rôle développés dans 

cette étude peuvent servir d'outil de formation efficace pour les intervenants d'urgence 

et peuvent être des outils précieux pour les équipes d'intervention d'urgence et les 

prestataires de soins de santé. Le jeu développé et mis en œuvre a permis d'améliorer 

les compétences des participants et de faciliter l'apprentissage par l'expérience des 

systèmes d'intervention en cas de catastrophe. 

• Pratiquer la coordination et la communication : Le scénario du jeu sérieux souligne 

l'importance d'une coordination rapide et efficace entre les différents établissements 

de soins de santé et les services d'urgence et fournit une plateforme pour pratiquer et 

affiner les compétences des joueurs (en particulier par le biais de la formation). Les 

décideurs politiques et les praticiens de la santé publique peuvent utiliser les résultats 

de cette étude pour formuler des propositions visant à relever des défis équivalents en 

matière de réaction aux catastrophes. 

Conclusion  

Cette étude met en évidence la nécessité de plans d'intervention d'urgence efficaces, en 

particulier dans l'industrie pétrolière et gazière, qui est exposée à des catastrophes industrielles 

majeures. L'étude démontre les résultats potentiels et l'impact des stratégies d'intervention sur 

la mortalité et les temps d'attente. Bien que la recherche soit basée sur un scénario 
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hypothétique, elle souligne l'importance de l'étalonnage du modèle et de la poursuite des 

recherches pour obtenir des résultats optimaux. La combinaison des techniques NetLogo 

(ABMS) et DRTRPG fournit une approche pour évaluer les plans d'intervention d'urgence et une 

plateforme de simulation réaliste pour la prise de décision et la formation des ambulanciers. 

Les résultats de l'étude soulignent également la nécessité d'améliorer les stratégies 

d'intervention d'urgence et de réduire les taux de mortalité et les temps d'attente pour les 

patients dans les situations de catastrophe. L'étude peut être particulièrement utile aux 

gestionnaires de catastrophes et aux travailleurs de la santé, y compris les organisations, pour 

améliorer les plans, les normes et les politiques d'intervention d'urgence.  

Travaux futurs  

Cette étude exploratoire sert de travail préliminaire à de futures recherches sur l'amélioration 

des systèmes de soins de santé par la modélisation des interactions entre les systèmes 

hospitaliers dans les situations de catastrophe. La recherche future devrait se concentrer sur 

la modification du modèle pour tester des scénarios équivalents en utilisant des données 

réelles. Il est également nécessaire de convertir l'outil de jeu de rôle en une version en ligne 

afin d'améliorer le réalisme et de réduire les biais dans les protocoles de décision, de générer 

des ensembles de données plus robustes et d'améliorer la validation du modèle.
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CHAPTER 1 

1.0 INTRODUCTION 
 

1.0.1. Overview of the study 

The need to use modelling and simulation technology to predict and understand how 

hospital emergency departments would function in a disaster situation is critical for 

preparedness, effective resource management and patient safety. Simulation technology can be 

helpful in training healthcare professionals, identifying areas for improvement in care, and 

optimizing processes (Munira Ibrahim et al., 2018; Shirazi et al., 2022). To investigate the 

interoperability of systems in a disaster response scenario, agent-based modelling and simulation 

can be used. This helps explain how agents' decisions affect their effectiveness and how these 

decisions are linked at various levels (Pescatore & Beery, 2022). 

1.0.2. Background of the study 

Disasters may strike at any time and in any location, causing effect on human (even death) 

and material damage on critical infrastructures. They also represent a threat to environments 

that are not well maintained and need quick emergency response while dealing with limited 

resources (Uhm et al., 2019). Table 1 shows the categories of natural and anthropogenic disasters 

that impact substantial number of people annually. The potential for major adverse events to 

cause catastrophic loss of life and physical injuries is high. Communities can be left in shock as 

these events are often unexpected. Despite best efforts in healthcare, disasters and major 

incidents still pose a challenge in providing adequate care for those affected. Recent findings 
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show that, natural, and anthropogenic events alone caused fifty thousand deaths and affects 

around 97 million persons (Massazza et al., 2019; Murphy, 2021). 

Table 1: Categories of disasters and major incidents 

Category Subcategory Examples 

Natural Meteorological Cyclones, storms 

Geophysical Earthquakes, tsunamis, landslides 

Hydrological Floods, avalanches 

Climatological Drought, wildfires, extreme temperatures 

Biological Epidemics/pandemics (toxic materials or living things) 

Anthropogenic Technological Food supply, transportation, telecommunications, 

energy 

Antagonistic Terrorism, shootings, cyber-attacks 

Major 
accidents 

Transport emergencies, extensive fires, chemical, 
nuclear, radiological, and explosions 

Sources: (Chaudhary & Piracha, 2021; Makhutov, 2013; Mijalkovic & Cvetkovic, 2014) 

Pre- and post-disaster phases are commonly used to classify disaster management. While 

efforts to provide goods and services, coordinate humanitarian assistance resources, and protect 

infrastructure are the focus of post-disaster efforts, pre-disaster studies aim to minimize damage 

by assessing potential hazards. This methodology covers the four phases of disaster 

management: response, recovery, mitigation, and preparation (Altay & Green, 2006; Aringhieri 

et al., 2022; Boonmee et al., 2017; Shiripour & Mahdavi-Amiri, 2019). Research on disaster 

management draws on findings from a diverse range of scientific domains, including disaster 

medicine (Tintinalli, 2015), to public policy and politics (Birkland, 2009).  

The goal of disaster management is to improve coordination and preparedness in times 

of crisis (González, 2022). It can involve conducting simulation exercises to validate response 
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plans and improve systems for all hazards (Mahdi et al., 2023). Furthermore, during the response 

phase, power dynamics, reconfigurations and interactions between different actors are the focus 

areas of disaster response management (Coles & Zhuang, 2011). Figure 1 shows the disaster 

management continuum which includes a component that deals with response management.  

 

Figure 1: The disaster management continuum (FutureLearn, 2023). 

 
Effective disaster response involves meticulous planning, organization, and deployment 

of resources to protect property and human life. Key activities include supporting search and 

rescue efforts, delivering medical aid and essential supplies, setting up evacuation zones and 

security perimeters, and repairing infrastructure. The main objectives are to stabilize survivors 

physically and mentally, recover deceased individuals, and restore essential utilities like water 

and power. This "response" phase precedes other phrases like "recovery," "mitigation," and 

"preparedness." (‘Background of Disaster Management’, 2023; Disaster Management, 2024). 
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Particularly given the impact of a disaster on critical hospital systems, the response phase 

of the event is important in managing the situation. This presents challenges including increasing 

patient volume, limited resources, space and staffing of the hospital due to the influx of patients. 

Involving hospital physicians in emergency planning and incident response is critical to 

coordinating and managing crises (Persoff et al., 2018). Building on this established background, 

the study shifts focus to defining the problem of this study.  

1.1. Definition of the problem (disaster response for oil and gas industry) 

Despite safety measures and technological advances, the oil and gas industry continue to 

experience accidents that harm both people and the environment. These incidents often lead to 

fatalities and strain emergency systems and medical facilities, particularly due to the industry's 

remote and harsh conditions. Figure 2 shows the trend of the number of fatalities underscores 

the urgent need for improved emergency preparedness and response. Traditional methods may 

fall short, highlighting the necessity for specialized interventions tailored to the unique demands 

of the industry.      

 

Figure 2: Fatality rates among oil and gas extraction workers 2013-2022 (IOGP, 2023). 
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According to the International Association of Oil and Gas Producers (IOGP) annual reports 

for 2013 to 2022, the death toll from onshore and offshore activities is currently increasing. This 

rise raises concern as it is projected to continue. For oil and gas drilling crews, activities in this 

sector are heavily related to life-threatening risk concerns. Inadequate safety and health 

legislation and preventative measures have resulted in hundreds of mishaps and fatalities at 

onshore and offshore drilling sites (Department of Occupational Safety and Health - 2014, 

2014). The environmental dynamism and uncertainty in the oil and gas industry often pose 

unique challenges for healthcare systems. For example, following a disaster, healthcare 

responders might have to deal with scarce resources, secondary contamination and health 

related issues, which are characteristic of the oil and gas industries (Deinkuro et al., 2021; Kostyuk 

et al., 2020; Olalekan et al., 2018). 

Simulation techniques are essential for improving coordination, preparedness, and 

response times during emergencies in the petroleum industry. By utilizing agent-based 

simulation modeling (Yousefi & Ferreira, 2017), in-situ simulation-based assessments (Abulebda 

et al., 2018), the petroleum industry can enhance training, resource allocation, and emergency 

planning through these techniques. By evaluating distinct designs, performance levels, and 

response capacities, these methods foster the development of more effective emergency 

response systems. 

Emergency Departments (EDs) are undoubtedly one of the top priorities in the healthcare 

system. In emergency rooms, seriously ill or injured patients are cared for around the clock. 

Emergency departments are inherently complex, just like other parts of the healthcare system. 

To address these issues, methods such as System Dynamics (SD) and Discrete Event Simulation 
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(DES) are becoming increasingly popular (Brailsford, 2007; Gul & Guneri, 2015; Gunal & Pidd, 

2006; Koelling & Schwandt, 2005). Furthermore, Agent-Based Modelling and Simulation (ABMS) 

is also becoming increasingly popular as a simulation modelling technique in emergency 

department studies. In addition to managing non-urgent patient schedules and predicting 

hospital admissions, it is also used as a tool for public health interventions and infection 

prevention in hospitals (Bruballa et al., 2020; Encinas et al., 2021; Jones et al., 2021). These tools 

have proven useful in emergency departments and in modeling and simulating disaster response 

scenarios. 

1.1.1. What are possible impacts of the problem? 

Inadequate or inefficient collaboration between hospital systems in the event of an oil 

and gas explosion disaster can have several impacts. These impacts may include the following: 

1. Poor patient care: In emergency situations, a lack of response coordination and/or 

patient severity information can lead to gaps and errors in understanding patient care 

needs. This can have a negative impact on the overall well-being of the affected persons. 

2. Ineffective utilization of healthcare resources: If communication between systems and 

stakeholders is poor, health resources may not be used effectively in disaster relief. This 

can lead to increased costs and inefficient processes. 

3. Delay in emergency response: Worker health and safety can be significantly affected by 

delays in disaster response, which may be due to inadequate coordination among various 

systems and stakeholders. 
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The design and evaluation of interoperable health systems that can help understand the 

best possible response strategies can be facilitated by using modeling and simulation to predict 

the complex dynamics of disaster response scenarios. The design of healthcare systems that 

consider human decision-making and performance can be enhanced by this approach's ability to 

illuminate human variables and their impact on effective system interactions. Therefore, to 

improve coordination and real-time response capabilities during emergencies, research on 

interoperability between an MFH and a RH is required. Simulation technology helps us find and 

fix problems in medical and logistical operations, which can improve the efficiency and 

coordination of important healthcare services. 

1.1.2. Purpose of the study 

The aim of this study is to develop and implement a health system solution for disaster 

relief in the context of the oil and gas industry using simulation technology to study and predict 

patient outcomes. The study seeks to evaluate the impacts of critical parameters, utilizing 

established modeling and simulation concepts to offer insights into methods that can improve 

the seamless integration and efficiency of healthcare system operations following disasters. This 

is achieved through enhanced coordination of responses and better resource allocation. The 

target of this study is expected to be beneficial and relevant to the oil and gas sector by expanding 

upon computational concepts to draw attention to gaps that are anticipated to exist in 

emergency response plans.  

To give evidence-based insights into the efficacy and cost-effective application of 

computational tools in disaster response management and healthcare simulation, this study 

examines and evaluated important characteristics in a disaster scenario via the use of simulation 
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techniques and virtual environments. These insights can guide the development of policies and 

regulations related to interoperable healthcare systems for disaster response and propose policy 

recommendations that promotes standardization and coordination among different 

stakeholders involved in disaster response in the oil and gas industry and hospital systems 

optimization. 

1.1.3. Aims and objectives 

This study aims to contribute to existing knowledge by examining the challenges of 

interaction between health systems in disaster environments, focusing on disaster planning and 

response using mobile field hospitals as a support mechanism. Furthermore, the study attempts 

to bridge the gap between theoretical simulations and real-world applications, thereby helping 

to develop decision support before deploying expensive healthcare resources. This research is 

dedicated to the design and implementation of a solution based on the impact of using a mobile 

field hospital in disaster situations in the oil and gas sector. 

The primary aim of this study is to improve the interoperability between a regional 

hospital and a mobile field hospital by detailing the process of interaction between the systems. 

To answer the study’s aim, the following objectives have been proposed:  

1. Detail the system and sub-systems of a Mobile Field Hospital via a modelling language- 

Business Process Model and Notation (BPMN), 

2. Model, simulate and implement the interactions between the systems parameters by 

utilizing Agent-Based Modelling and Simulation (NetLogo), 

3. Conduct industrial explosion scenario-based exercises via Disaster Response Tabletop 

Role-Playing Games (DRTRPGs) to validate the model agents’ response decisions. 
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1.1.4. Research questions 

The goals and objectives of a study serve as the basis for developing research questions. 

They serve as a guide to the methodology, data collection and analysis procedures that are 

essential for finding solutions. The following research questions were developed for this study: 

1. Research question 1: “How can the interaction between a Regional Hospital (RH) and a 

Mobile Field Hospital (MFH) in a disaster setting, and dedicated for oil and gas industry 

be modelled”? (Objectives 1 and 2), 

2. Research question 2: “How can a Disaster Response Tabletop Role-Playing Games 

(DRTRPGs) be used to verify/validate the representativeness of an ABMS model agents’ 

response process in the context of the disaster response scenario”? (Objective 3). 

This mixed-methods study is underlined by the research questions that emphasize a 

process-oriented investigation. The focus is on explaining the step-by-step procedures for 

modelling and simulating interactions between hospital emergency departments within a 

hypothetical disaster scenario. In addition, the processes underlying the development and 

implementation of scenario-based exercises are examined. The aim is to formulate and further 

develop effective strategies for understanding and communicating the results of complex 

systems. 

1.1.5. Significance of the study 

In this study, the significance of modeling and implementing an interoperable healthcare 

system for the oil and gas industry is outlined as follows: 
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1. Knowledge: This study's findings enhance the knowledge base within the academic and 

research sectors by deepening insights into healthcare systems interactions, disaster 

response strategies, and the use of modeling and simulation. This investigation offers a 

starting point for studying how ABMS can be applied in a disaster context to healthcare 

simulation while also inspiring fresh perspectives and strategies for resolving challenges 

related to disaster response. For other researchers or professionals involved with disaster 

responses. This study serves as a critical point-of-reference that promotes knowledge-

sharing while fostering academic collaborations around various topic areas, that is ABMS 

application to predict and manage disaster outcomes. 

2. Preparedness: Natural disasters such as hurricanes or earthquakes, along with human-

caused disaster including oil spills, explosions, are just some of the hazards experienced 

in the oil and gas industry, which has led to serious health issues and loss of life. The need 

for investing in specialized healthcare systems and optimizing response interventions 

before crisis events can be emphasized by this study's findings. Improving disaster 

preparedness via pre-disaster simulations will enable industries visualize and understand 

the possible outcomes in a post disaster setting. This can help create effective response 

measures with minimal negative effects on human health and safety or environmental 

damage while also minimizing overall economic loss. 

Simulation technology has the potential to improve training and quality control in hospital 

emergency departments during disasters. However, overcoming organizational and 

technological barriers requires managerial support, including from the management side and in 

terms of data sharing. Effective implementation of disaster response and business continuity 
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strategies could lead to improved planning, execution and management that takes decision-

making and human behaviour into account (Kanno et al., 2023; Shirazi et al., 2022; Umemoto et 

al., 2023). This is important for healthcare operations in a disaster setting as it supports decision-

making, saves costs that may arise due to unforeseen errors, and, as a result, delivers high-quality 

services. The use of simulation techniques in healthcare management is promising because it 

enables the identification and testing of various potential service designs through quantitative, 

evidence-informed analysis This method shows potential to improve health outcomes and 

effectiveness of care by addressing quality, safety, and cost concerns (Kelton, 1996).  

The utilization of BPMN to detail and then simplify the process of flow of personnel and 

resources in the scenario being investigated, can help give healthcare executives a consistent 

description that allows them to see the processes in the systems. Implementing BPMN as a 

workflow in healthcare organizations can streamline complex hospital processes and improve 

the quality of care. BPMN simplifies healthcare processes through an understandable and simple 

presentation. It offers a simplified view of system behavior and the various resources that 

support successful processes. Its implementation can also improve the exchange of health 

reports, thereby enhancing patient care and clinical operations (Faturahman, 2021; Sbayou et 

al., 2017). 

To further strengthen and validate the modelling and simulation of the processes, a 

scenario-based Disaster Response Tabletop Role-playing Game (DRTRPG) is designed to simulate 

stakeholder’s response in real-life like setting. To get the most out of the DRTRPG sessions and 

to maximize learning, the DRTRPGs are designed to capture as much as possible the critical 

components of the scenario of interaction within the scene of an industrial accident and the 
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interaction between the MFH and the RH with needs, time constraint, limited resources, and 

ethical dilemma of typical emergency responders. This can be an important lesson for triage and 

some of the critical decisions that must be made in crisis decision situations. 

The main idea of the model is to allow professionals and researchers alike to observe how 

system agents make decisions under pressure and then make them aware of the impact of those 

decisions. The purpose of this research is not to create a complex replica of a real system using 

modeling and simulation. Rather, it focused on a simplified hypothetical situation often faced by 

disaster responders to represent, experiment, and evaluate the possible consequences of 

decisions made in the aftermath of a sudden onset of a disaster. From the disaster response 

tabletop role-playing games, the study attempts to find how the situation awareness and 

decisions from the teams resulted in outcomes, leading to some useful lessons. This will assist 

other researchers with both similar or different situations to understand and partition their own 

model and game-based exercises to align with their objectives. In other words, this exploratory 

research gives future researchers a shoulder to stand on to take the next steps, by showing how 

to connect the different components in the context of applying simulation methodology in a 

disaster setting, thus allowing them to decide which aspect is of interest to be added to their 

model. 

1.1.6. Motivations of the study 

Healthcare systems encounter various challenges such as difficulties in interaction, a lack 

of real-time data sharing and analysis, and the demand for patient safety and response efficiency 

in an intricate and dynamic environment. This underscores the necessity for: 



   

 

13 
 

1. Enhancement of response plans and coordination in emergencies (Kostyuk et al., 2020): 

The ability to coordinate responses during or after an emergency is a critical component 

of disaster management as it can significantly increase the effectiveness of disaster 

response efforts. The enhancement of response coordination involves several aspects, 

including stakeholder identification that will be involved in the intervention, a defined 

centralized command center, updated and effective operating procedures, and regular 

exercises and training (scenario-based simulations). 

2. Assessment of the impacts of key factors in disaster response (George & Kumar, 2022) : 

Enhancing the effectiveness of disaster response efforts relies on evaluating key factors 

in the disaster setting. These factors encompass resource availability, response 

coordination systems, the interactions and interferences among these elements, and the 

preparedness of the response team. The identified factors can then be modelled to 

simulate their impact in various scenarios, which can reveal gaps in the response 

intervention. 

3. Identification of gaps in disaster response plans (Goniewicz et al., 2021): The 

minimization of the effect of a disaster is highly dependent on the effectiveness of its 

disaster plans, especially in hazardous and complex operation environments such as the 

oil and gas industry, which can have serious effects on worker safety, the economy, and 

the environment. A comprehensive risk assessment determines the need for efficient 

implementation of the disaster response plan, and an effective plan includes a detailed 

assessment of available resources and their performance. It is essential that response 

plans be tested (through drills, exercises, and simulations). 
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1.2. Definition of terms in healthcare simulation and crisis domain 

A variety of sub-themes must be considered for the design and implementation of the 

interaction between a Mobile Field Hospital facility and a Regional Hospital dedicated for 

response in a hypothetical disaster scenario for the oil and gas industry. To improve 

understanding of the fundamental ideas and their application in disaster response and healthcare 

simulation, it is essential to identify and define these terms to clearly delineate the language used 

in this area of study. Some of these concepts that have been defined include disaster response 

(including, disaster response coordination, resource allocation), mobile field hospital, regional 

hospital, interoperability, agent-based modelling and simulation, situational awareness, surge 

capacity, location for use, business process management and notation etc. 

1.2.1. Disaster response  

Disaster response is a crucial component of overall disaster management, involving 

immediate actions to manage the effects of the disaster and reduce its risks. It forms one 

segment of a four-stage cycle that also includes preparation, recovery, and mitigation. In the 

response phase, emergency managers work together to organise and implement measures 

aimed at safeguarding health and safety, providing essential services, and restoring stability. This 

phase is characterised by the mobilisation of emergency resources, medical aid provisions, and 

the establishment of shelters (Klein & Irizarry, 2020). Addressing new threats and challenges in 

system interaction demands enhanced coordination and institutional adaptability. To build 

sociological resilience, it is essential to establish cross-scale linkages tailored to the disaster's 

scope and needs. Engaging in participatory planning with institutional actors from initial response 

organizations and long-term recovery institutions can foster the development of linkages that 
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enhance legitimacy and trust, thus supporting more integrated and coordinated emergency 

responses (Baker & Refsgaard, 2007).  

When it comes to disaster response efforts, mobile hospitals are valuable resource that 

can provide much needed medical assistance and support quickly. However, future 

improvements to these facilities could include the development of intelligence capabilities along 

with rapid deployment and retrieval features as well as modularization. By focusing on these 

areas, we could make considerable progress in enhancing mobile hospital performance (Chen et 

al., 2020). Response coordination and resource allocation are two of the critical aspect of disaster 

response. 

1.2.1.1. Coordination in disaster response 

Coordination in disaster response refers to interorganizational coordination and network 

governance that is made up of emergency support functions and interorganisational 

networks. The resource allocation in the disaster response coordination process is through an 

optimal distribution of resources to local agencies, national or international organizations and 

restoration of local agencies as well (Kapucu et al., 2022; Sarma et al., 2022). To address 

coordination issues in disaster response, (Guo & Kapucu, 2015), using Petri net computer 

simulation, investigated coordination in disaster response. A model based on stochastic petri 

nets was developed as the study focused on interorganizational processes. The performance of 

collaborative disaster response was demonstrated in the simulation using process analysis. 

According to (Hossain & Kuti, 2010), a coordination model based on social network is required to 

explore the potential for distributed coordination in emergency situations, such as emergency 
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response management. Such a model has potential to enhance emergency response 

management effectiveness.  

By utilizing simulation, Comfort et al (2005) was able to evaluate the resilience of an 

actual disaster response system and identified its breaking point. The findings of their research 

showed that adopting a simulation-based approach to access core information enhances the 

efficiency of response actions and boosts coordination across the network of responding 

organizations. These methods based on simulations highlight the importance of cognitive agents 

in social system simulations. 

1.2.1.2. Resource allocation in disaster response 

The placement and distribution of emergency personnel and resources in view of 

emergencies is the focus of a disaster resposne operations. The distribution of resources, 

including patient cases such as the hospital mass casualty, is an aspect of the disaster response 

allocation (Jiang & Ouyang, 2021; Umemoto et al., 2023). Due to the increasing frequency and 

severity of natural disasters on a global scale, it is imperative to improve resource distribution in 

affected areas. Using a national resource inventory, it will be possible to distribute personnel, 

facilities, supplies and equipment more effectively across affected areas. By using an agent 

programming model, this process can be optimized, and response times can be significantly 

increased (Altay, 2013).  

Using their discrete event simulation model in a fictional disaster scenario, Cao & Huang 

(2012) evaluated four primary resource allocation approaches to determine how to efficiently 

manage resources during emergency operations. Various asset combinations were examined. 
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According to the study's findings, random sampling strikes a balance between ethical and 

practical considerations when allocating limited medical resources during natural disasters. 

Sulis & Di Leva (2018) found that process analysis and computer simulation are useful 

tools for public health management in disaster response scenarios. From a business process 

management and notation perspective, they compare the results of discrete event and agent-

based simulations with real data from an emergency room in a post-disaster scenario. This 

includes patient arrivals, activities, and resources. According to the authors, once validated, 

simulations can provide suggestions and different approaches to emergency management 

problems during disasters. The use of agent-based modelling and simulation to reduce disaster 

risk in a Pakistani urban area was also demonstrated in the study by Maqbool et al  (2020). The 

model focuses on resource allocation for first responders and leverages Geographic Information 

System (GIS) maps. In a hypothetical disaster scenario, the study compared the resource 

allocation of two interacting emergency departments based on basic emergency protocols using 

NetLogo (NL) algorithms. The aim of the model is to evaluate each approach in the context of a 

disaster simulation and to improve knowledge of resource allocation and collaboration strategies 

in emergency scenarios. 

1.2.2. Agent-Based Modelling and Simulation (ABMS) 

Agent-based modeling and simulation (ABMS) is a computational method that simulates 

the actions and interactions of an individual agent in a predefined environment. This makes it 

possible to analyze emergent properties from the perspective of the system level (Kraner et al., 

2023; Wallinger et al., 2023; Zschaler & Polack, 2023). Depending on the situation, the word 

“agent” can have different meanings. When discussing dynamics, the term “agent" usually refers 
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to the material that causes density changes within gravity flows, such as: temperature, salinity, 

or volume fraction of the sediment  (Salinas et al., 2023). On the other hand, in computer science 

and artificial intelligence, an agent is characterized as something that communicates with itself 

and other agents. An arrangement of agents working together to solve a widespread problem is 

called a Multi-Agent System (MAS) (Pérez-Pons et al., 2022).  

An example of a typical agent interaction model is shown in Figure 3. The agents interact 

with each other, collect information from their environment and are influenced by both the 

environment and the other agents through the actions they take. 

 

Figure 3: Agent interaction model (Salamon, 2011) 

The concept of Agent-Based Modeling (ABM) or Individual-Oriented Modeling (IOM) 

defines systems primarily through the interactions of their autonomous agents. While ABM 

draws from fields like robotics, Artificial Intelligence (AI), and Multi-Agent Systems (MAS), its core 

emphasis lies in modeling human social interactions and individual decision-making (Bonabeau, 

2002). The ABMS methodology, which is part of Operational Research Management Science 

(OR/MS), is becoming increasingly popular due to its ability to link individual behaviour with 

emergent behaviour that arises from the collective nature of systems. The goal of ABMS is to 
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understand a problem entity, which can be an actual system, a phenomenon, or policy in place 

as well as an idea that has not been fully developed (Sargent, 2013).  

1.2.3. Mobile Field Hospitals (MFH) 

A mobile field hospital is a “A mobile, self-contained, self-sufficient health-care facility 

capable of rapid deployment and expansion or contraction to meet immediate emergency 

requirements for a specified period. It can be set up in an existing structure or in a structure, tent 

or similar, that is brought in with a Foreign Medical Team” (Rossodivita, 2011). Mobile hospitals 

are hospitals set up to implement prompt treatment of casualties in disasters, and can provide 

medical aid in natural disasters, but more research is needed to evaluate their interventions and 

outcomes (Sheerazi et al., 2022).  

When disasters occur in a complex environment with effect on a considerable number of 

persons, it is recommended that the kind of response that should be deployed must be adapted 

to the needs of the affected people. Also, depending on their capabilities, specialized treatments 

can also be performed. Some of the key features of a conventional mobile hospital include an 

intensive care unit, technical unit, patient ward unit, emergency unit, medical unit etc. Such a 

medical system is referred to as a mobile field hospital.  

In comparison, the structure, architecture, and application of field hospitals, in a way 

differ from conventional hospitals. Unlike fixed hospitals, which are designed to address day-to-

day health challenges, the health services provided by MFHs are temporary. MFHs are made up 

of interconnection of both internal and external elements. In the event of a disaster, they provide 

immediate medical assistance with the aim of minimizing the number of victims, preventing 

disabilities, and reducing the risk of epidemics by providing on-site medical services such as 
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diagnosis and treatment. This helps prevent the escalation of injuries and associated costs 

(Marom et al., 2014; Ramasamy et al., 2009; Zaboli et al., 2016).  

1.2.4. Regional Hospital (RH) 

A hospital is an institutional facility that offers medical care to individuals suspected of or 

afflicted with various illnesses or injuries. This care may take the form of observational, 

diagnostic, therapeutic and rehabilitation services (Islam, 2019). Regional hospitals offer 

healthcare services to patients situated within a particular geographic area, and in rural or 

suburban locations they may provide essential medical care to the local population. Examining 

factors that determine firm mark-ups and evaluating tele-rheumatology service outcomes 

provided to outpatient clinics are some research studies related to regional hospitals (De Silva et 

al., 2018; Ramathuba & Ndou, 2020; Romero-Brufau et al., 2020; Tardivo et al., 2017; Wang et 

al., 2014). 

1.2.5. Interoperability in healthcare domain 

Interoperability refers to the ability of entities to operate together effectively as a group, 

encompassing various domains from technical to business-related aspects. Over the past decade, 

interoperability has transitioned from Information Technology (IT) focus to a more business-

oriented concern, with its evaluation becoming increasingly important. Its implementation aims 

to enhance organizational agility, enabling swift adjustments to information systems to facilitate 

growth and address emerging business needs. This involves identifying potential challenges and 

exploring practical solutions. As a result, such an evaluation establishes their current condition 

and gives a roadmap to their future state, assisting businesses in developing tailored reforms and 

improving their situations. In addition, interoperability refers to the management and exchange 
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of electronic products and project data between the systems used by collaborating companies 

for design, construction, maintenance, and business processes, as well as between systems used 

by other companies. It refers to how effectively systems can use and exchange information 

(Gallaher et al., 2004; Leal et al., 2019; L. Liu et al., 2020). 

In the context of healthcare, interoperability refers to the ability of different healthcare 

systems to communicate and efficiently use patient data once they receive it. It ensures that 

medical technology and devices can reliably share, interpret, and present health data in an 

understandable manner, regardless of where a patient is being treated. This seamless exchange 

of health information between healthcare providers improves decision-making and requires 

electronic access to external patient data while integrating care records with Electronic Health 

Records (EHRs). However, there are significant differences in interoperability between hospitals 

of varied sizes, which impact both the achievement of universal interoperability and the delivery 

of high quality and equitable healthcare. The difference between larger and smaller, resource-

constrained hospitals is exacerbated by the fact that larger hospitals often devote more 

resources to implementing advanced features (Healthit.gov, 2013; Pylypchuk et al., 2019). 

As reported by  (Aloui et al., 2006), interoperability is defined as the ability of different 

elements - people, machines, and applications - to interact with each other to achieve the 

following goals: 

1. Effectiveness: This implies that the component must accomplish its task under standard 

operating conditions.  
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2. Stability: The component should possess resilience to withstand disruptions originating 

from within the organization or its environment, including other components and the 

broader system context. 

3. Consistency: The system should maintain consistency throughout its lifecycle, unaffected 

by the events and conditions encountered.  

The interoperability of a system improves when the resilience of that system is 

strengthened, and systems become capable of exchanging and cooperating in any scenario. Using 

agent-based models to predict interactions between hospital systems can provide particularly 

important insights to emergency response, enabling responders to know what is required during 

disaster response and what should be done. This proactive approach allows responders to 

develop intuition and understanding, thus improving preparedness for unprecedented events 

(Wang et al., 2012). This study examines the process-workflow interoperability that exists 

between health systems (regional and mobile field hospitals) in a hypothetical disaster response 

scenario. The goal is to improve response coordination and resource allocation activities through 

effective patient outcome-focused strategies. 

1.2.6. Role-Playing Game (RPG) 

Role-playing games (RPGs) are a broad category of interactive media in which users take 

on the roles of imaginary characters and tell stories together (Thorens et al., 2016). These games 

are designed to improve a variety of skills, including problem solving, collaboration, and strategic 

thinking (D’água et al., 2023). RPGs serve as effective tools for teaching, training, and 

communication in various contexts, including sustainable resource management and 

environmental education (Shimabukuro et al., 2022). They facilitate learning and skill 
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development by providing an environment in which users can immerse themselves in different 

scenarios, make decisions, and experience the consequences of those decisions (Ozpolat et al., 

2007). 

RPGs are designed to teach, guide, and prepare players to overcome a specific obstacle 

by simulating actual events (Bowman, 2011; Rye & Aktas, 2022). In other applications, Guyot & 

Honiden (2006) argue that RPGs can be integrated with ABMs and applied in a variety of ways, 

including but not limited to: (i) Educating stakeholders on decision-making in challenging or 

extreme scenarios; (ii) Fostering group learning and negotiation among stakeholders; and (iii) 

Validating and refining model design through observation of stakeholder behavior. The final 

aspect explored in the use of RPGs constitutes the subject and focus of this study. According to 

d’Aquino & Bah (2014), when the research objective is to model a particular case, RPG players 

may be selected from key stakeholders at the case study site. However, participants can be 

selected from the wider population if the study aims to test a hypothesis, enabling comparisons 

between distinct groups (Anand et al., 2016). 

1.2.7. Situational awareness 

Situational awareness (SA) is the capacity to perceive, integrate, and make predictions 

about notable features and qualities of an environment. The goal of SA is to grasp what is going 

on around you: the main concept is to use previously learned information to detect, analyze, and 

comprehend the current situation. Time, capital, and human resources are all restricted, thus 

limited materials and employees must be mobilized swiftly and efficiently. Emergency managers 

must have a thorough grasp of the situation on the ground to mobilize effectively, especially 
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amongst organizations with different interests and objectives (Abate et al., 2014; Kedia et al., 

2022; Stroud et al., 2010). 

One of the most crucial components for handling complex crises is situational awareness. 

Levin et al. (2012), asserts that it entails the perception of environmental variables throughout a 

measure of space and time, understanding of their importance, and projection of how they will 

fare soon. Effective situational awareness has three levels: (1) recognizing important aspects 

through active sensing; (2) comprehending those critical factors, and (3) predicting the impact 

soon, utilizing situational information from the preceding two stages. This level necessitates 

extensive domain knowledge (Kedia et al., 2022). Situational awareness refers to information 

about events on site in the context of disaster management and response (Mohsin et al., 2016). 

1.2.8. Location for use 

The effectiveness of a Field Hospital (FH) is significantly influenced by its location. While 

scant literature elaborates on the determinants of FH placement, there is a consensus that they 

should be positioned near existing local health facilities. This proximity facilitates improved 

integration with local health services and ensures long-term support (Bar-On et al., 2020; 

Demirel, 2014). Demirel (2014) states that other selection criteria include population density in 

the region, good access to main roads, the ability to quickly set up FH operations and the 

potential to optimize bed capacity. In 2003, the World Health Organization published guidelines 

specifying that site selection must consider victims' accessibility, medical needs, and logistical 

requirements (Bar-On et al., 2020). 

According to the study by Deloui & Mofrad (2021), which supports the claims of Bar-On 

et al. (2020) and Demirel (2014), the location of an MFH is of particular importance as it 
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influences how effective a disaster response operation is. However, they also maintained that 

several other considerations need to be contemplated when selecting a location for these 

facilities. These factors include; 

1. Integration with existing healthcare infrastructure: Whenever possible, mobile field 

hospitals should work in coordination, with hospitals and clinics complementing and 

supporting their efforts. By integrating with the existing healthcare infrastructure, the 

overall response effort can be optimized. 

2. Accessibility: Roads to be used for the delivery of medical supplies and personnel and for 

the public must be easily accessible from the hospital. This ensures that victims arrive at 

the hospital on time for treatment and hospital care runs smoothly. 

3. Safety: Safety must be the top priority when choosing a location and considering risks 

such as earthquake aftershocks, floods, or conflict areas. Protecting the environment is 

critical to protecting healthcare workers and patients. 

4. Proximity to population: The hospital should ideally be located near places where the 

affected population is highly concentrated. This shortens travel time. It also allows faster 

access for patients in need of medical attention. In order not to hinder ongoing rescue 

and recovery efforts, it is important to strike a balance and ensure that the hospital is 

located a sufficient distance from the disaster site. 

5. Conditions: The chosen location should consider the weather and a solid surface for 

setting up tents or other structures. It should also be free from hazards such as floods or 

landslides that could affect operations or jeopardize safety. 



   

 

26 
 

When designing an ABMS model for a disaster scenario that involves the use of an MFH, 

it is important to consider as many of these factors as possible. In this way, the operational 

challenges that arise in a real scenario can be precisely represented in the virtual model. This 

allows for advance planning and preparation, ensuring that in the event of a Sudden Onset of 

Disaster (SOD), the mobile field hospital can be placed in the best possible location to treat 

victims quickly and effectively. 

1.2.9. Business Process Management and Notation (BPMN) 

Modelling processes in healthcare using Business Process Model and Notation (BPMN) is 

a recognized standard. By combining BPMN with simulation techniques, it is possible to analyse 

and improve workflows in the healthcare sector. For example, to simulate medical interventions, 

a model-based methodology was developed. This methodology creates executable simulation 

code using BPMN as the process specification (Antonacci et al., 2016; Sbayou et al., 2017). BPMN 

can be used to simplify and represent healthcare process flows and components when simulating 

healthcare disaster scenarios. This helps evaluate process performance, identify issues, perform 

“what if” analysis, and explore improvements. In healthcare, combining BPMN with simulation 

techniques can create reliable models for resource management, cost analysis and process 

optimization. This integration can have significant benefits for certain areas, including treatment, 

emergency department operations and disease management (Bisogno et al., 2016; Tomaskova 

et al., 2019). 

Planning resource allocation, patient management, and crisis response coordination is 

facilitated when BPMN is used in simulation studies that focus on healthcare interactions in 

disaster scenarios. To do this, a Business Process Model and Notation (BPMN) is used. By using 
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BPMN for process representation in healthcare modelling and simulation, organizations can 

improve their preparation and response to events such as disease outbreaks, natural disasters, 

industrial accidents, and emergency situations. 

1.3. Methodology of the study 

1.3.1. Introduction 

This section provides an overview of the methodology used to achieve the aim of the 

study. It combines agent-based modeling and simulation methodology (using NetLogo 6.3.0) in a 

mixed, quantitative, and qualitative strategy and a tabletop disaster response serious game. By 

employing a comprehensive computational system modeling and simulation framework to 

investigate the intricate system dynamics involved in implementing the proposed response 

aligned with the research objectives and utilizing collaborative scenario-based tabletop role-

playing to delineate a detailed approach to a hypothetical disaster response scenario, this section 

elaborates on the rationale behind the chosen strategies. The concluding aspects of the chapter 

explain the reasons for using a disaster response role play to validate the ABMS prediction 

capability and how to implement it, including information on how to plan and implement the 

disaster response scenario game and a summary of this introductory chapter. 

1.3.2. Computational system modelling framework  

The identification of concepts being studied, and their relationships carried out utilizing a 

hypothesized model is known as a conceptual framework (Tott, 2013). Moreover, crucial 

scientific and engineering tools have emerged as models to represent and solve problems 

involving multi-faceted systems in several fields. To achieve these objectives, I propose use both 

System Thinking (ST) and Computational Thinking (CT) and incorporate crucial aspects from 



   

 

28 
 

related processes and literatures on ST and CT, to propose a comprehensive framework. This 

framework also shows how these aspects of ST and CT are expressed in computational modeling 

by showing how every modeling practice incorporates elements of ST and CT to solve problems 

or clarify phenomena. The purpose of this framework is to provide guidance for researchers and 

educators in designing effective learning activities that integrate ST and CT into modeling 

contexts, to enhance skills around study (Shin et al., 2022). A representation of the processes 

involved in computational systems modelling framework is shown in Figure 4 . 

 

Figure 4: Computational systems modelling framework (Shin et al., 2022). 

Due to the complex and uncertain requirements in healthcare modeling, especially during 

disasters, researchers encounter numerous conceptual and methodological challenges. 

Contemporary trends show an increase in simulation-based research in this field. Conceptual 

frameworks used in this research provide a robust foundation for modeling the intricate 

dynamics of public health disaster responses, including interactions among components and the 
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environment. Open-source agent-based modeling frameworks like NetLogo or Mesa are 

commonly used to model entities like patients, doctors, hospitals, or clinics. 

In summary, the computer modelling method used in this study involves developing, 

implementing, experimenting, and validating a computer-based model, which can be modified 

to study other similar or different complex systems depending on the objectives of the study. 

Other aspects include analysis and refinement, which are essential parts of the computational 

methodology. This powerful framework enables researchers to increase understanding into the 

behaviour of complex systems that may be difficult or impractical to study using traditional 

empirical methods. 

1.4. Development of research methodology 

It is important to clearly delineate the distinct phases in developing a simulation model 

to understand the workflow of how critical disaster response factors can impact healthcare 

systems. This can be achieved through a combination of agent-based modelling and simulation 

and a role-playing approach. Such exploratory (mixed) research using simulation strategies and 

a collaborative game in disaster response can be effective in predicting and understanding the 

intricacies of complex operations and preparing health systems, emergency responders and 

authorities for actual disaster events. Scenario-based exercises allow teams to realistically 

respond to different scenarios, increase awareness of real-time threats, and test existing policies 

and procedures in the most realistic environments possible. 

These methods aim to uncover weaknesses in organizational preparation and resource 

allocation and to help refine plans to effectively deal with emerging disasters. Additionally, they 

can serve as a valuable resource for policymakers in developing best practices to address the 
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growing complexity of current disasters. The methodology used in this study to address the 

intricacies of hospital system interaction design is summarized and illustrated in the methodology 

block diagram shown in Figure 5. It presents the simplified steps associated with fundamental 

aspects of the generalized modelling and game-based simulation framework. 

 

Figure 5: Methodology implementation process block diagram  (Amakama, et al., 2023). 

1. A conceptual model was first developed based on a hypothetical scenario. The 

concept considers a RH operating in a location and engaged in routine triaging and 

treatment of patient. In addition, there is an oil and gas industry operating around the 

region, which experienced an industrial accident leading to explosion (sudden onset 

of disaster), prompting the deployment of the MFH as a supporting healthcare system 

to help reduce mortality outcomes from patients from the incident site.  

2.  Employing BPMN, the components and subcomponents of the MFH) designed for 

deployment in the oil and gas industry were outlined. This process describes the 

essential healthcare services required for disaster response interventions, tailored to 

address the anticipated injuries and illnesses typical in an oil and gas industry 

scenario.  

3. The concept was simplified by assuming and equating both healthcare systems as EDs. 

According to (Sayama, 2023), complex systems must be simplified because of their 

unique features (networks, self-organization, emergence, nonlinearity) which are 

rarely understood. This approach is further supported by literature: it is not practical 
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and also impossible to have a model of every aspects in a hospital (Günal & Pidd, 

2010); EDs accounting for at least half of the primary entry point into hospitals; need 

to address the challenges of EDs preparedness in disaster response;  and the need for 

EDs readiness in response to all types of disaster (Clancy, 2007).  

4. Using the conceptual model's assumptions as a foundation, which is supported by 

literatures, algorithm/agent-based model was developed to generate dataset of the 

emergent outcomes (as patient deaths variation) and then analysed. Furthermore, 

the modelled scenario was transformed into a scenario-based tabletop role-playing 

games to generate results to attempt to validate the predictive capability of the ABMS 

model. 

Using these simplified concepts presented in the methodology, the simulation model was 

developed following detailed methodological processes, discussed in chapter 3 of this document. 

In this study, I assert that the utilisation of modelling and simulation with focus on emergency 

departments can provide an effective framework for comprehending and optimising the 

performance of key healthcare facilities, thereby having a substantial effect on patient outcomes 

and the wider functioning of other hospital systems. 

1.5. ABMS predictive capability validation 

The ABMS model developed as part of this research is not intended to replicate the 

interactions between an existing regional hospital and a mobile field hospital during an oil and 

gas industry disaster scenario. Rather, its objective is to develop a framework as proposed by 

(Sargent, 2013), which serves to explore and understand the nuances of a specific problem entity. 

Furthermore, it illustrates the capacity of ABMS to systematically examine and predict various 
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contingencies within the domain of disaster response management. The ABMS model is based 

on a hypothetical case that the I developed and implemented. During the validation process, the 

ABMS model concepts were transformed into a collaborative and relatable scenario-based 

exercise, and the results are compared with each other (ABMS and DRTRPG), rather than being 

compared to the real world or another simulation model of a similar nature.  

Several studies suggest that, validating ABMS using the classical empirical methods is 

particularly challenging, as there is typically a paucity of data and ABMS models are often based 

on future predictions (Anand et al., 2016; Gore et al., 2017; Marks, 2007; Onggo & Karatas, 2016; 

Takadama et al., 2008; Utomo et al., 2022). The results of these studies also demonstrated the 

difficulty of validating agent-based models in a classical manner due to features such as path 

dependence, emergence, and complicated interactions, which are worsened by the lack of micro-

level data. The complexity of social processes and the stochasticity of simulations were also cited 

as reasons for the deviation from carefully monitored experiments.  

For this study, a scenario-based Disaster Response Tabletop Role-Playing Game (DRTRPG) 

was designed, as a validation strategy, which highlights a modified ABMs model validation 

approach as suggested by (Ligtenberg et al., 2010). This is summarized below: 

1. Create a foundational ABMS model, 

2. Create an RPG version of the basic ABM model and assign roles. The baseline model is 

transformed into an RPG in which the players are assigned tasks that corresponds to the 

agents in the ABMS model, 

3. Execution of the tasks by the participants. The participants carry out tasks like those in 

ABM. 
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4. Collect data with the RPG, 

5. Contrast the RPG results with the ABMS model outcomes.  

This method compares the results of the ABMS model with the results of the RPG 

(referred to as Disaster Response Role Playing Game (DRTRPG) in this study) to authenticate their 

conclusions regarding the representativeness of the agents' decision dynamics relative to the 

observations made during the DRTRPG. In this approach, if the TRPG outcomes can replicate the 

outputs of the ABM, the agent's decision rule is deemed credible. According to Ligtenberg et al 

(2010), and Amadou et al.(2018), it is possible to compare the ABMS outputs with the RPG 

outcomes qualitatively or quantitatively, or by employing sensitivity analysis to determine the 

direction of changes or by using descriptive statistics. The following section outlines the 

organization of the entire study. 

1.6. Organization of the document structure 

The document is divided into six chapters, including this chapter, which provide the basic 

context, aim, objectives, research questions, definition of terms and an overview of the 

methodological process. Chapter two presents an overview of related literature on the 

application of BPMN in representing simulation processes for hospital components and various 

simulation strategies such as system dynamics (SD), agent-based modeling and simulation 

(ABMS), and discrete event simulation (DES). The aim is to identify gaps and understand the 

implications to determine the most appropriate strategy for this study. 

The third chapter details the systematic process of designing and building the ABMS 

model for this study. It includes comprehensive descriptions of the concepts, processes, and 

entities (agents) to be modeled as well as their interactions with each other (agent-agent 
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interaction) and with the environment (agent-environment interactions). In addition, the chapter 

presents the criteria for selecting ABMS for the study and the assumptions made in model 

development. 

Chapter four presents the ABMS model implementation carried out in NetLogo, the 

experimentation process and the simulation results for the study, including the developed 

simulation graphical user interface and the analysis performed on the generated data from the 

BehavioralSpace function within the NetLogo programming tool. In addition, a sensitivity analysis 

for the examined disaster response factors (effects of ambulance policy on mortality and wait 

times outcomes) is presented in the context of the interacting regional and mobile field hospitals 

for the disaster response scenario. The chapter ends with a discussion and implications of the 

results. 

Chapter Five provides details of the disaster response role play developed and 

implemented to validate the predictive capability of the ABMS model developed in NetLogo 

presented in Chapter four, including a summary of the goal, objectives, guidelines and 

methodology used in the design and implementation of the exercise, data generation, analysis 

and discussion of the implications of the results compared to the ABMS results. 

The concluding chapter (chapter six) provides a summary of the most important results 

resulting from the methods used to provide answers to the research questions. In addition, the 

contribution of the study to the scientific field is presented and the challenges and limitations 

encountered are also discussed. Furthermore, my conclusions regarding the study are presented 

by contextualizing the answers to the research questions formulated for the study. Finally, the 

chapter offers recommendations and perspectives for future research initiatives. 
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1.7. Chapter summary 

Chapter one introduces the research context and provides an overview and background 

of the area of study. It describes the problem statement, scope, primary research aim, objectives, 

research questions, significance, and motivations. It also presents definitions of important terms 

and concepts used in the following chapter. The chapter concludes with an overview of the 

methodology used to answer the research questions and explores the concept of improving 

workflow interoperability between a regional and a mobile field hospital for the oil and gas 

industry. This structure of the document is intended to guide readers and future researchers 

through the research process. 
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CHAPTER 2 

2.0. MODELLING AND SIMULATION FOR HEALTHCARE SYSTEMS IN 

DISASTER SETTINGS: A REVIEW 
 

2.1. Introduction 

Modelling and Simulation (M&S) is central to understanding the dynamics of various 

systems, particularly healthcare systems. These methods provide fresh perspectives on system 

dynamics, resource allocation, decision-making of system which in turn improve the efficiency 

and effectiveness in health care. Chapter 1 provided an overview for this study with a definition 

of the problem that underpin the necessity for the conduct of the study. The goals and objectives 

established in the previous chapter bridges the gap between the study 's overall purpose and 

method adopted its investigation. 

This chapter is divided into two parts. The first part reviews previous studies on how 

BPMN is used to represent complex healthcare systems. The second part examines the 

importance and application of simulation techniques in operations research management 

sciences (OR/MS). It provides a detailed overview of common modelling and simulation methods 

and highlights their use and impact in healthcare, with a focus on disaster relief and hospital 

emergency departments, to identify any gaps and explain the rationale for the approach and 

focus of this study. 

2.2. Application of BPMN in representing hospital emergency department processes 

Business Process management and Notation (BPMN) are valuable tools for visualizing 

patient flow, identifying bottlenecks, and conducting scenario analysis within the hospital 
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emergency departments (Sulis & Di Leva 2018a). They are great at enhancing healthcare 

processes by representing the various elements of an ED. BPMN facilitates the modeling of 

patient pathways, streamlining workflows, and enhancing performance metrics (Ajmi et al., 

2018). According to Ajmi et al. (2018), optimizing workflow through BPMN representation of ED 

components in simulation studies decreases average wait times by 11% while enhancing patient 

care quality. Onggo et al. (2018) discovered that BPMN enhances modeling procedures and 

increases engagement in healthcare simulation studies, by developing an efficient extension 

model (BPMN4SIM) for describing healthcare processes. 

Another study conducted by Sbayou et al. (2017)  revealed that the implementation of 

BPMN in healthcare resource management enhanced the quality of care in hospital emergency 

departments. Additionally, as indicated by Liu et al. (2017), the integration of BPMN with ABM 

offers a diverse perspective on patient distribution, organizational networks, and resource 

utilization in healthcare environments. The research demonstrates the capability of the proposed 

model to replicate various emergency departments. This framework within the healthcare sector 

facilitates the optimization of intricate operational processes. 

According to Contreras et al. (2022), using a combination of BPMN and agent-based 

simulation techniques can lead to a thorough understanding of business processes incorporating 

complex phenomena such as social interactions, human behavior, and nonlinear dynamics. 

Employing agent process modeling with BPMN enables the organization of agent behavior 

through process models, thereby enhancing decision explainability and verification (Ramos-

Merino et al., 2019). In this research, BPMN was utilized to simplify the interactions within the 

emergency departments of interacting hospital system, to facilitate the communication of the 
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ABMS model to stakeholders and users. The subsequent section explores the purpose and 

utilization of M&S methodologies for modeling and simulating emergency departments in 

disaster settings. 

2.3. The purpose of simulation models 

Simulation models serve as powerful tools in business and management research by 

reflecting real-world dynamics, providing abstract illustrations, and incorporating plausible 

behavioral assumptions to address complex study problems (Tram, 2022). Figure 6 shows the 

role of simulation models that depend on the understanding of the system being modelled. 

 
Figure 6: The purpose of simulation models (Katsaliaki & Mustafee, 2011) 

The authors explained that simulation acts as a “predictor” when the system is fully 

understood, like a calculator that accurately predicts the outcome. Conversely, when 

understanding of the real system is lacking, simulation acts as a “mediator,” providing 

representation rather than precise operations. In cases with very little information, the 

simulation acts as a “generator” that formulates hypotheses about system behavior. Although 

they propose theories and hypotheses, the authors assert that simulation as a generator pursues 
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the same goal as other media: to assess whether the conceptual model or theory accurately 

reflects the hypothesized system behavior. These three simulation purposes are not mutually 

exclusive. 

In the study of Zi-jian (2005), the author supported the use of simulation as a “generator” 

by stating that simulation research can be beneficial for theory and hypothesis generation since 

it is a convenient, safe, cheap, and avails an opportunity for exploration of complex systems, data 

generation, predictions testing and for guiding experiments. The author stated that, the 

development of generative models of a system; 

1. Can assist researchers understand the underlying mechanisms of a system's behaviour, 

which is essential for theory development, adjusting parameters, observing changes, and 

essential to inferring causal relationships,  

2.  Provides the opportunity to manipulate variables and observe outcomes that would be 

impractical or impossible to assess in the real world, 

3. Is cost-effective than real-world experiments, especially when dealing with high-cost or 

rare events, eliminating the need for physical materials, and reducing the time required 

to conduct studies, 

4. Allows the forecasting of the behaviour of systems under various conditions. This can lead 

to the generation of new hypotheses that can be tested in future research, 

5. Can generate data that may not be available through empirical research due to ethical, 

practical, or temporal constraints. Theoretical and hypothetical frameworks can be 

developed and improved with this data. 
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6.   Can help guide the design of practical experiments by determining the range of 

conditions to be tested and the most relevant variables. 

Furthermore, according to Berg et al. (2023) and Kanno et al. (2020), simulation studies 

that focuses on hypothetical systems can help in improving disaster preparedness and response 

in rural setting. They argued that in such setting, simulation studies can help improve disaster 

resilience, aid in the efficient design and management of hospital exercises and serve as a 

decision support tool in resource-limited environments. In this current study, I developed and 

implemented an adaptable and modifiable agent-based model to improve the workflow 

interoperability between interacting EDs of hospital systems in a disaster setting for a 

hypothetical case, by leveraging on the capabilities of both BPMN and simulation technique, 

including a disaster response tabletop role-playing game (validation). The goal is to be able to 

generate theory and guide future research directions.  

2.4. The application of modelling and simulation in healthcare  

Modeling and simulation are widely used in healthcare and serve as essential tools for 

understanding and improving the intricacies of healthcare systems. Myriad studies emphasize 

the transformative impact of simulation-based learning on holistic improvements in healthcare 

ecosystems. These methods facilitate research, understanding and refinement of health 

management and policy formulation (Lamé & Simmons, 2020; Saleem & Khan, 2023). M&S have 

emerged as an indispensable tool, ensuring preparedness and resilience in crisis settings 

(Basaglia, Spacone, van de Lindt, et al., 2022; Berg et al., 2023; De Rouck et al., 2023). The results 

of these studies offer numerous benefits: from assessing the effectiveness of emergency plans 

to stress testing response capabilities to simulating patient flow within hospital districts. 
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Furthermore, they emphasize the potential for restructuring disaster plans with computer 

simulations to improve disaster management strategies and ensure smooth coordination in crisis 

situations. 

Discrete Event Simulation (DES), System Dynamics (SD), and Agent-Based Modelling and 

Simulation (ABMS) find extensive applications within healthcare systems, serving as dynamic 

methodologies to enhance resource management and simplify operations, particularly in 

resource-limited contexts (Mwanza et al., 2023). In this study, the authors assert that DES, SD, 

and ABMS can be used in the development of effective response plans for healthcare facilities 

and serve as cost-effective tools for intervention planning and performance forecasting. DES has 

wide application in modeling and simulating various aspects of healthcare systems, including 

waiting times, patient flows, and resource optimization. It supports the representation of 

problem scenarios within a system, integration of components and identification of solutions 

(Vázquez-Serrano et al., 2021; X. Zhang, 2018). Simulation techniques such as DES, SD and ABMS 

are becoming increasingly common in healthcare. These approaches support decision-making 

and effectively address the complex, multi-layered structure of healthcare systems. The 

application of these simulation methods is discussed in the following sections, with emphasis on 

their use in EDs. 

2.5. Discrete-event simulation in modelling Emergency Departments (EDs) 

Current research in the field of healthcare simulation maintains that the focus for 

implementing Discrete Event Simulation (DES) is in emergency departments (EDs) (Castanheira-

Pinto et al., 2021; Palomino Romani et al., 2023). These studies demonstrate the flexibility of DES 

in addressing healthcare challenges, particularly in hospital emergency departments where 

resource allocation and patient flow management are critical components. Several other studies 
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have also demonstrated the popularity of DES for simulating disaster response scenarios and in 

optimizing resource allocation (Y. Liu et al., 2023), simulating patients flow (Forbus & Berleant, 

2022) and in the prediction of patients wait times in hospital systems (Basaglia, Spacone, Van De 

Lindt, et al., 2022). DES promotes efficiency and reduces patient waiting times by supporting the 

evaluation of techniques such as centralized resource allocation and First-In-First-Out (FIFO)-

based planning (De Santis et al., 2023). In Figure 7, we see the representation of research papers 

(2004-2023) related to the use of DES in OR/MS research area, for ED.  

 

Figure 7: Discrete event simulation in modelling Emergency Departments (EDs). 

The use of DES in OR/MS for ED is well documented, with 79 papers accounting for 25.08% 

of the 315 records searched. This highlights the role that DES plays in optimizing processes, 

allocating resources, and improving system performance in ED settings. Computer Science (CS) 

again produced the greatest number of papers with 107 records representing 33.97%. This 
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indicates an incorporation of computer science principles in modelling and simulating ED 

operations due to its relevance to DES related aspects such, as software development, algorithm 

design and data processing. 

Despite the established advantages and widespread use of DES in modelling healthcare 

systems there are still challenges to overcome during the implementation phase. According to a 

study conducted by Vázquez-Serrano et al (2021), less than 10% of DES applications in healthcare 

result in implementations after the modelling stage. This indicates a gap between the 

development of models and their practical application, which emphasizes the need for research 

and development in this area. Additionally, as mentioned by Forbus & Berleant (2022), although 

DES is an effective tool, it may not encompass all aspects of healthcare systems. As a result, 

hybrid simulation models that combine DES with methods such, as SD or ABMS have emerged to 

address this limitation; however, this integration introduces complexity. ABMS has gained 

popularity as a method for modelling healthcare systems and in evacuation-type simulations. 

Nevertheless, the application of M&S to ED modelling has not been directly investigated 

in disaster response scenarios involving the deployment of a mobile field hospital to assist in 

triage, transport, treatment, and outcome assessment following an oil and gas explosion disaster. 

The following section describes the areas and extent of use of SD and ABMS in EDs for disaster 

response scenarios. 

2.6. System dynamics in modelling Emergency Departments (EDs) 

The EDs for disaster response settings have been improved through the effective 

application of system dynamics simulation. Emergency physicians can optimize outcomes by 

using this approach to model patient flow, resource allocation, and response strategies. Applying 
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system dynamics also helps emergency physicians create effective communication frameworks 

such as the Incident Command System (ICS), ensure coordinated responses to emergencies, 

pinpoint bottlenecks in the triage process, and provide insights into improving patient wait times 

and overall quality of care (England et al., 2023; Farcas et al., 2021; Ferreira et al., 2020; G. Zhang 

et al., 2021). The application of SD in various research fields, shows a rising trend. Literature 

search yielded a total of 61 results related to the application of SD in OR/MS for EDs in disaster 

setting as shown in Figure 8. 

 

Figure 8: System dynamics in modelling Emergency Departments (EDs). 

 

As anticipated, the use of SD in computer science-related studies for EDs holds the highest 
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to modelling emergency departments, the field of computer science is commonly associated with 

system dynamics. It also suggests that computational approaches and algorithms play a 

significant role in this study area. OR/MS represents 21.31% of the total records, suggesting a 

considerable level of system dynamics application within the domain. The high percentage in 

OR/MS compared to other fields implies that system dynamics modelling is more heavily utilized 

for its analytical and optimization capabilities rather than solely focusing on medical or age-

specific considerations within the context of emergency departments. 

However, it is widely recognized that statistical modelling at a level as permitted by SD 

may not be suitable for capturing the complexities of diverse populations at an individual level. 

This limitation becomes particularly relevant when modelling EDs, as the characteristics of both 

clinicians and patients along with their individual interactions play a crucial role in representing 

various aspects of ED performance.  According to Gullett et al. (2023), SD may be unsuitable for 

capturing the intricacies of diverse populations at an individual level due to their emphasis on 

system-level processes and feedback loops. Hence, it is understandable that there is no 

substantial evidence regarding the application of SD in this context. A more significant research 

study tends to focus on exploring the connection between individual behaviour and ED 

performance, to which DES and ABMS are better suited for. 

2.7. Agent-based modelling and simulation application in OR/MS 

Modelling techniques in operations research management science have a wide range of 

applications, with certain approaches being preferred due to their effectiveness in solving 

specific types of problems. Discrete event simulation and system dynamics are more common in 

healthcare modelling compared to ABMS (Robertson, 2016). As with DES and SD, results from 
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literature search shown in Figure 9 reveals that Computer Science (CS), having a total of 29,531 

(41.97%) studies is the subject area with the greatest number of papers. The results obtained for 

OR/MS regarding ABMS usage shows that there is lesser popularity in the application of agent-

based methodologies with a 5.97% of the overall records. This low application of ABMS is 

understandable as ABMS techniques have deep foundation in computer science related 

development. For instance, in computer science, the concepts of object-oriented programming 

and distributed computing aligns well with ABMS principles 

 

Figure 9: Agent-based modelling and simulation application in OR/MS by research area. 

 
According to Halaška & Šperka (2018), ABMS is highly effective for depicting human 
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remains limited. This is partly because ABMS deals with complex systems, such as EDs, where 

patient flows are unpredictable and intricate. Additionally, ABMS relies on equation-based 

modelling, which differs from the graphical notations employed in established simulation 

methods like SD and DES used in OR/MS. This difference in modelling approaches contributes to 

the slower adoption of ABMS in this field. Despite these challenges, ABMS has demonstrated 

potential in fields such as intelligent transportation systems, where it has been successfully 

applied to model urban traffic control systems (Pilla & Patel, 2009). 

Another reason is that developing a model in ABMS often requires extensive data on 

individual behaviours and interactions. However, such detailed information may not always be 

available or necessary for the issues being addressed. Agents can represent data or processes 

that interact within an environment, making ABMS an ideal choice for studying complex systems 

such as social networks, ecological systems, and market behaviours, where individual 

components function autonomously and complexly. 

In contrast, the focus of OR/MS has traditionally focused on optimization and efficiency 

within predictable and controllable systems. Therefore, although ABMS provides opportunities 

to examine emerging behaviours and system characteristics resulting from individual actions, it 

may not always align with the goals or parameters of typical OR/MS modelling projects. 

Nevertheless, agent-based modelling and simulation has also shown promising growth in usage 

in Operations Research/Management Science (OR/MS). As techniques and data accessibility 

continue to advance, these methodologies are expected to address complex, and dynamically 

evolving problems characterized by individual agents’ interactions. 
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2.7.1. Agent-based modelling and simulation in modelling Emergency Departments (EDs) 

Studies have highlighted the increasing use of ABMS methodologies in the modelling and 

simulation of EDs. In a review carried out between 2007 to 2019, on the use of simulation-based 

optimization methods for hospital EDs, the 38 analysed studies identified areas for further 

research (Yousefi et al., 2020). In another study by Su et al. (2021), ABMS was developed to 

simulate emergency room evacuation while assessing rescue strategies and their impact on 

traffic and evacuation times. 

A systematic literature review by Barghi Shirazi et al. (2022), identified the aspects and 

elements that play the most crucial role in the simulation of EDs during crises and disasters. The 

review highlighted several factors such as human resource management, medical services, 

resource allocation etc. The study goes further to highlight the different applications of ABMS in 

solving various problems in hospital EDs, including power reduction, the development of 

evacuation plans and strategies, and patient scheduling. Figure 10 shows this study’s WoS review 

of literatures on the application of ABMS in modelling and simulating EDs, between 2004-2023. 
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Figure 10: Agent-based modelling and simulation in modelling Emergency Departments (EDs). 

Based on the hits returned for this review, ABMS finds application in approximately 

14.71% of all WoS recorded studies. The data presented in the chart indicates a growing interest 

in the utilization of ABMS to address operational complexities in ED in a several OR/MS research 

areas. The results further highlight the interdisciplinary approach on the use of ABMS in 

improving patient care in emergency situations, by improving operational efficiencies, and 

overall patient care.  

Other studies have utilized ABMS in similar and related domains to maximize patient flow 

in ED resource planning and recommended the integration of DES and ABMS (Y. Liu et al., 2023). 
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situations (Naim et al., 2021). One further example of a higher-level application of ABMS is the 

development of an ABMS simulation for an emergency department by Liu et al (2017). They 

designed a tool to aid in policy analysis, understand intricate behaviours, and productivity 

enhancement. The actions of patients and staff were replicated in their model that utilized basic 

ifs rules. Their model primarily addressed agent actions, activities, waiting times, and staff 

scheduling. 

Finally, Kanagarajah et al (2008) developed and examined a hypothetical agent-based 

model and simulation of an emergency department. The primary objective was to evaluate the 

influence of economic factors and workload fluctuations on patient safety. The model included 

various agents including patients, doctors, nurses, technicians, treatment rooms and managers. 

Each active unit is programmed to mitigate adverse events with a focus on favourable patient 

outcomes. The model determines a patient's treatment based on the severity of their disease. 

However, the rules that govern the behaviour of the agents in the model only take external 

factors into account and ignore the internal states of the agents. 

Based on these premises, we can conclude that agent-based modelling and simulation 

can also be used for other important hospital components as well as hospital operations. When 

considering their application in disaster scenarios, it is important to examine how ABMS models 

have been adapted and applied to overcome the difficulties of providing emergency care under 

disaster conditions. The gap that this study fills in the use of agent-based modelling and 

simulation in improving interoperability between EDs in a disaster response operation is 

discussed in the following section. 
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2.8. Gap in literature 

This review highlights the use of BPMN and M&S techniques in the representation and 

simulation of healthcare operations during disasters, specifically examining its utilization in EDs. 

Previous studies have modeled observable processes such as arrivals, queues, and interactions 

to assess emergency department dynamics. However, compelling evidence is lacking on the 

impact of strategic factors like evacuation and ambulance strategies on these operations. DES, 

SD and ABMS have been extensively used in computer science than in operational OR/MS 

methodologies which are more common in healthcare. Within healthcare, ABMS has been 

applied more to study disease prevention and epidemiology, rather than at the policy level to 

model emergency department responses to disasters. 

The slow adoption of ABMS in healthcare, especially in disaster settings, is attributed to 

its high computational demands and the complexity of developing models involving multiple 

agents. It should be noted that ABMS software may also require in-depth programming 

knowledge and a comprehensive understanding of ABMS theories. Other challenges that may 

need to be addressed include data collection and preparation or the complete lack of data. The 

use of ABMS in the study of complex systems also includes data cleaning and manipulation, which 

requires a certain level of expertise in secondary data analysis tools. This study used the NetLogo 

6.3.0 ABMS toolkit to examine how ABMS can be used to model emergency responses within an 

oil and gas industry's disaster response framework. The aim is to improve workflow 

interoperability in the interaction between a regional and a mobile field hospital. 
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2.9. Chapter summary 

This chapter reviewed relevant literature and examined how previous studies have used 

business process management and notation and simulation methods to improve healthcare 

delivery, particularly in hospital emergency departments in disaster scenarios. The focus was on 

the application of simulation techniques such as DES, SD and ABMS. These methods have been 

investigated for several objectives, e.g., staffing, optimization, coordination, waiting times, 

patient evacuation, etc., with emphasis on their application in emergency rooms and crisis 

situations. The results of the literature review conducted in this chapter demonstrate how well 

these simulation methods are integrated into the study and improvement of various components 

of disaster preparedness, resource allocation, and coordination in health systems. However, 

studies that specifically focus on rescue strategies do not appear to receive widespread attention. 

The following chapter covers the ABMS model creation process and describes the phases and 

underlying assumptions used in designing and implementing the simulation model using the 

NetLogo ABMS toolkit. 
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CHAPTER 3 

3.0. THE MODEL DEVELOPMENT AND DESIGN PROCESS 
 

3.1. Introduction  

The previous chapter examined how BPMN and simulation techniques are used in 

healthcare, focusing on their applications in hospital emergency departments and disaster 

response scenarios. The importance of these approaches for improving health services and 

understanding complex systems was highlighted. This chapter focuses on the agent-based 

modelling and simulation development process of this study, drawing on findings from previous 

studies. The content of this chapter serves as a foundation for understanding the nuances of 

ABMS model development, particularly as it relates to improving workflow interoperability 

between emergency department processes and disaster response protocols. The aim is to give 

readers an insight into the ABMS development process for simulating disaster health systems. It 

highlights the various aspects of the model development process, such as the definition of model 

requirements, the conceptual model, the platform-specific model, the simulation, and the 

underlying assumptions of the ABMS model. 

3.2. ABMS development process  

Simulation methods such as agent-based modelling, system dynamics and discrete event 

simulation all share a common development approach. These common properties help improve 

the effectiveness of simulation methods in applications such as process validation and 

verification and reduce time and costs during development (Klingstam & Olsson, 2000; Marchetti 

et al., 1998). However, the iteration design may vary between the various M&S techniques 
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(Robinson, 2014; Tako & Robinson, 2009). One of the most important aspects of conceptual 

modeling, which represents a crucial component of both modeling and simulation, is the 

conceptualization of the simulation model from the system under study (Al-Fedaghi, 2016; 

Freebairn et al., 2016; Robinson, 2015). This aspect of the M&S design and development 

process (conceptualization) is typically considered the least understood, but is a crucial part 

of simulation studies (Durán, 2020). 

The conceptual model development phase of the model design process includes concept 

formulation and evaluation. The next phase involves translating the conceptual model into a 

computer-based version using appropriate computer software. Another crucial aspect in the 

model development process is the verification and validation of both the conceptual and 

computational model through comparison with real or alternate data sets. This concept of 

integrating conceptual and computational strategies is what defines the Systems Thinking (ST) 

and Computational Thinking (CT) framework described by Shin et al (2022) in subsection 1.3.2 

(Figure 4). After the model design phase, the computer model is used to generate and collect 

new data about the behavior of the phenomenon under study to deepen the understanding of 

the modeled concept. 

In the methodology used to design the ABMS model for this study,  Salamon (2011) 

outlines a detailed, step-by-step approach to developing ABMS simulation models in four phases, 

as shown in Figure 11. These phases are “requirements definition.” “Conceptual model,” 

“platform-specific model” and “simulation model.” Each phase consists of specific steps that 

contribute to the overall modeling approach. The first two phases include the conceptual 

modeling phase, while phases three and four focus on the simulation procedures. 
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Figure 11: Methodology for ABMS process development. Adapted from Salamon (2011). 

3.3. Phase 1: requirements definition 

From the more general requirements definition phase, we focus on the first step of 

problem formulation, where we clearly define and express the problems this study aims to 

address. This step serves as a bridge and shifts the focus of the study from a broad perspective 

to the specifics of the model development process. 

3.3.1. Step 1: problem formulation 
 

Characterization of the problem under study using ABMS is the first step in this phase, 

regardless of the software application used, as described in (Salamon, 2011). At this point it is 

important to consider six aspects: “The problem: give an overall description of the problem”, 

“The model processes: identify the processes”, “The model entities: describe the entities 

involved in the processes and their properties and define what they want and what they do and 

how they interact with each other", "The model environment: Explain the characteristics of the 
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environment and their interrelationships and interactions with the entities", "The objective: 

define the purpose of the study, what measured should be, how it should be measured and what 

questions should be answered", "The validation: how to evaluate and test the developed model". 

The model problem 

In earlier chapters, it was mentioned how EDs are intricate and ever-changing 

environments. EDs serve as the primary entry point for hospitals, accounting for more than half 

of all admissions (Uriarte et al., 2015). The challenge lies in the fact that emergency rooms must 

not only handle emergencies but also manage, evaluate, prioritise, and treat patients alongside 

those seeking care. This leads doctors to navigate between meeting their patients’ clinical needs 

and working within the constraints of their resources. As a result, the various scenarios that 

unfold during healthcare delivery constantly influence the decisions made by healthcare 

professionals. These complexities are represented in the context of this study as a hypothetical 

response scenario, with EDs of a regional and mobile field hospital interacting. 

The hypothetical disaster response scenario  

As part of a test case modelling and simulation study scenario as shown in Figure 12, this 

study considered an oil and gas industry explosion resulting from routine operations needing 

intervention from healthcare systems. The scenario begins with a Regional Hospital (RH) 

conducting routine activities (triage, treating, hospitalization etc.). Also, happening 

simultaneously in an oil and gas industry, are routine daily activities, including cutting, welding, 

grinding activities, which results in an explosion. The RH is prompted to respond to the victims of 

the explosion (first responder), however, sensing surge and delay (wait times for patients to be 

treated) in attending to victims from the incident site (due to distance, resource limitations etc.), 
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request is made for assistance from a Mobile Field Hospital (MFH) to assist in the transportation, 

triage and treatment of the victims.  

The implemented model I developed addressed cases of both a fixed and/or normally 

distributed number of injured individuals, one to six available ambulances, and the location of 

the RH and MFH without initialization of their positions based on real/local data. The location for 

use of the MFH is set up at a distance of 0.3 hours (18 minutes) from the site of the explosion, to 

assist the RH (0.9 hours/54 minutes from the incident site) in response to the disaster with the 

theory of the MFH deployment, location and assistance expected to reduce the overall mortality 

outcome and waiting times of the victims. The MFH is modelled to become operational four 

hours after the request for assistance, located closer to the incident site etc. as suggested by Bar-

On et al (2020); Deloui & Mofrad, (2021); and Demirel (2014) to satisfy the critical factors 

necessary for the location and use of MFH in a disaster response case (Section 1.2.8). For 

instance, the UMPEO (the Multipurpose Mobile hospital Europe Occitanie), an innovative mobile 

hospital that is designed for deployment as emergency centres or intensive care units, has the 

capability to be mobilized within one hour. It is transportable by truck and autonomous for a 

span of over two hours, successfully providing medical assistance to 266 patients over a two-

week period (Houze-Cerfon et al., 2023). Furthermore, as mentioned by Rezapour et al (2018), 

the overall survival rate of sudden-onset disasters can be increased by proportionately optimizing 

the allocation of emergency units to affected sites.  
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Figure 12: The hypothetical disaster response scenario (Amakama, et al., 2023b). 

The distribution of the patient’s severity is assumed and set at 20%, 30%, and 50%, for 

severe, moderate, and mild injuries, respectively. The distribution of victims preceding a disaster 

are either obtained from historical data, epidemiological modelling, experts’ opinions, or 

outcomes of simulation experimentation (Guha-Sapir et al., 2015). However, according to 

Ouhmidou (2020), EDs are a category of healthcare institutions where intensive services must be 

provided to victims of a disaster, irrespective of prior knowledge of the severity distribution of 

the patients. Therefore, the choice of severity distribution in this study is justified. It examines 

how ambulance policies affect deaths and mean patient waiting times in a disaster response 

scenario involving two interacting health systems functioning as simplified emergency 

departments. 
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1. The model processes  

Figure 13 shows a simplified outline of the ambulance-patient flow in the EDs to and from 

the incident site and via walk-in as a chain of activities represented in Figure 12. New patients 

are typically sent from the triage room to the preoperative room or to the preoperative room 

based on their severity index. In this triage scheme, a color-coding system is used to identify 

patients' needs blue indicates non-urgent care, orange indicates patients of moderate urgency, 

and red indicates patients requiring urgent and immediate attention. 

The process of attendance to the patients follows four simple rules, the First-In-First-Out 

(FIFO), ambulance deployment strategy, and triage-prioritization that is based on the time left to 

live of the patient (Al Halabi et al., 2022; Fava et al., 2022; Sigle et al., 2023; Van Barneveld et al., 

2018). Both the patients with severe and moderate conditions have limited time to live if not 

attended to, however, the mild case patient that are assumed to have injuries or illnesses that 

are not life threatening are not expected to die. When the pre-set time elapses without 

treatment being achieved, the patients (severe and moderate severity) die off and are moved to 

available the morgues. Also, death can occur at any stage in the process, including at the incident 

site and throughout the EDs processes, but not at the operating rooms or wards. 
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Figure 13: Process flow for the interacting incident site-hospital system. 

With respect to the interaction with the incident site (oil and gas industry), the process is 

designed with 1,2,3,4,5, or 6 ambulances starting at the RH just after the incident when the clock 

starts ticking on hours-to-live for the patients, that are created at the site (room), alongside other 

patients that can be set to trickle through the EDs at pre-set rate. Until the MFH arrives, the 

ambulances would be evacuating patients from the incident site to the RH. However, once the 

MFH arrives, the ambulances would take the most severe patients there first until the expected 

waiting time to be seen at the MFH is longer than the time needed to take the serious patients 

directly to the RH, then the ambulances run would skip the MFH and go directly to the RH.   

2. The model entities  

The key entities modelled in the process are: 
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1. The room/stage where the patients are arriving from (e.g. incident site) or goes to (triage, 

pre- operating rooms, operating rooms) for treatment are agents, having their awareness 

and decisions that is based on their objectives, 

2. The ambulances/vehicles are agents with awareness and decisions based on their defined 

protocols and objective, which is dependent of the activities of other agents in the 

process. 

The overall system can also be viewed as a unit, potentially functioning as an Incident 

Command System (ICS) for a disaster response environment to manage and coordinate the 

response to a sudden onset of a disaster. This includes a clear chain of command, established 

roles and responsibilities, and specific procedures for communicating, assessing the situation, 

and responding to the emergency. 

3. The model environment  

A range of factors contribute to this uncertainty, including patient demand and the length 

of service process activities. Additionally, the conditions of the environment evolve as decisions 

are made by entities, which are characterized by three dynamic features. First, the influx of 

patients into emergency departments (whether through walk-ins or ambulances), fluctuates over 

time. Second, the workload in triage, pre-operating, and operating rooms can vary based on 

agent conditions and severity at any given moment. Thirdly, the availability of resources like 

ambulances for patient evacuation to EDs may vary depending on patient volume or their time 

to live within the system. 
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4. The model aims  

The ABMS model in this study was developed to understand the value of incorporating a 

disaster scenario into simulating interactions between emergency departments as part of the 

study objective. Specifically, the model aims to simulate the impact of introducing a mobile field 

hospital to collaborate with an existing regional hospital on patient outcomes during disaster 

response, evaluating how well the two hospital systems can interoperate. This model simplifies 

the essential components of typical emergency departments, depicting interactions between 

patients (as agents) seeking treatment for their medical conditions based on severity and the 

resources needed to transport and care for victims at the disaster site using ambulances. 

5. The model validation   

To generate data and conduct predictive tests that may be useful as a baseline model that 

can be adopted and manipulated to guide future research, the ABMS model developed in this 

study demonstrates how disaster response settings can be incorporated into health simulation 

for an ABMS model hypothetical case. The goal is not to replicate the interactions of EDs in a 

disaster scenario for a real-world scenario. Therefore, the validation process included performing 

a sensitivity analysis on the generated dataset. Critical elements of the ABMS model were then 

converted into a Disaster Response Tabletop Role-Playing Game (DRTRPG) to evaluate the results 

of the ABMS model using game results rather than a real system as suggested by Ligtenberg et 

al. (2010). 

3.3.2. Step 2: method evaluation  

This step of the model development process presents the method used in evaluating the 

model design. Section 3.3.2.1 defines the requirements and criteria that verify the use of ABMS 
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in studies. This provides the basis for ensuring that the decision to use ABMS in the study is 

both appropriate and applicable. 

3.3.2.1. Criteria for ABMS utilization 

This stage in the development of the ABMS model focuses on assessing if agent-based 

approach is suitable for modelling the problem outlined in Section 3.3.1. Identifying a suitable 

simulation technique does not adhere to a singular procedure to ascertain if one method is more 

appropriate than another for addressing a specific problem. Nevertheless, specific criteria can 

offer guidance in selecting one simulation method over another. To determine whether an agent-

based method is appropriate for a particular area of interest given the objectives of the study, 

Salamon (2011) proposes a series of questions that, if answered in the affirmative, can be 

immensely helpful. These questions include; 

1. “Are there entities that can make decisions”? In this study’s simulation, various 

individuals such as patients, medical professionals and emergency services personnel are 

constantly making decisions at distinct stages. For instance, once the ambulances are 

informed about the state at the MFH, they must assess whether to proceed with 

transporting patients to either the RH or MFH based on factors like severity of condition 

and treatment resource availability at both EDs, 

2. “Are there different types of decision-making entities or different types of decisions”? 

This model involves various decision-making entities, such as patients, ambulances, 

clinicians (portrayed as stages in the process) and others. Each of these entities makes a 

variety of decisions, from patients entering the EDs or progressing to the next stage for 
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clinician evaluation based on severity, to ambulances choosing to transport a moderately 

ill patient from the scene rather than a severely ill patient with limited time left, 

3. “Does the system appear to have dynamic characteristics”? The model for in this study 

has memory and information that is based on their objectives that affects their future 

behaviours and the overall outcome of the process in a dynamic manner, 

4. “Is it difficult to describe the whole situation as an activity (with a diagram)”? Process 

diagrams such as BPMN can be used to delineate specific elements of the problem being 

modelled. However, because decisions are made at an individual micro-level, such 

diagrams may not fully capture the interactions and activities between the parties 

involved. 

5. “Do we feel a need to treat the overall behaviour of the whole system on a macro 

level”? The design of the model is done to meet the objectives of the agents at the 

individual level. Each of the agent relies on its current and past conditions, as well as 

environmental information to make decisions,  

6. “Is it difficult to ‘count-up’ the entities into lump sums and then work solely with such 

amounts”? Since different entities are involve in decision-making in the model, it is only 

possible to group those having similar traits (example ambulances). Nevertheless, 

individual characteristic plays a role in the overall system behaviour,  

7. “Are spatial factors of the environment important for the simulation”? the use of spatial 

features in the model, such as the representation of the EDs and incident site are merely 

for visualization and does not result in any improvement of system interactions. 
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By utilizing these seven criteria, all questions within the scope of this study yields positive 

responses. Thus, it is easy to infer the suitability of agent-based methodology as the platform for 

the modelling and simulation of the outline problem. 

3.4. Phase 2: conceptual model  

Agent-based conceptual modelling involves developing a comprehensive overview of the 

system being analysed. This includes detailing the components, interactions, and behaviours of 

the agents and their environment. This phase is crucial as it lays the foundation for constructing 

the computational model. Conceptual modelling aids in defining the objectives of the simulation, 

identifying key factors, and understanding the dynamics among the agents (Salamon, 2011). 

According to Robinson (2008), the subjective nature of conceptual models as art implies that 

there is no singular “correct” model for a given problem. Robinson suggests that the goal should 

focus on creating a framework that facilitates communication, consultation, and consensus in 

the design of conceptual models, while leaving room for creativity in the modelling process. 

A predominant conceptual framework for various ABMS approaches is the Unified 

Modelling Language (UML), which is implemented on an object-oriented system (Bauer & Odell, 

2005). The use of UML offers the advantage of using symbols that facilitates the model’s 

verification and validation process. Software developers employ UML, a standardized visual 

modelling language, to design, visualize, and document systems. According to Aslam (2023), the 

use of UML has application in various industries such as customer relationship management 

system, education sector, and heterogeneous high-performance computing. However, Business 

Process Management Notation (BPMN) has proven to be a valuable tool for representing agent-
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based models, which is becoming increasingly popular in various areas despite the lack of formal 

semantics (Halaška & Šperka, 2018). 

Using BPMN diagrams when representing activities in ABMS provides a way to simplify 

the complexity of ABMS processes and make it easier to identify bottlenecks, inefficiencies, and 

optimization opportunities within the ABMS framework (Sulis et al., 2019). The BPMN 

representation ensures a clear and consistent representation of business processes. When 

integrated with ABMS, it serves as a valuable tool to visually represent agent interactions and 

workflows within systems, improving communication and understanding. This can assist 

organizations to simulate agent’s behaviour within business processes, facilitate scenario testing 

and system performance evaluation (Onggo & Foramitti, 2021; Tour, 2023). For example, when 

representing entity interactions and activities for the ABM/S approach, the BPMN schema proves 

to be a valuable tool for simplifying and communicating the entire ABMS model structure. This is 

demonstrated in the generalized representation of ABM/S using BPMN, as shown in Figure 14. 
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Figure 14: Representation of ABMS process activities using BPMN diagrams (Onggo, 2012). 

Specifically, the proposed representation of ABM/S includes two types of BPMN 

diagrams: the collaboration diagram and the conversation diagram. The collaboration diagrams 

represent interactions between model agents and are used to illustrate the interactions between 

two or more agents, while the conversation diagram provides a general overview (Onggo, 2012). 

This study focuses on the use of collaborative diagrams to represent agents' interaction with the 

system using simple BPMN objects. 

3.4.1. Agents’ interactions representation using BPMN  

The representation used for the simplification of the various agents’ interaction in the 

model are represented using BPMN flow notations. Figure 15 illustrates some of the fundamental 

notations widely employed in BPMN activity diagrams utilized for this study. 
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Figure 15: BPMN activity diagrams notation 

For example, as part of this simulation study and the applied concepts and methods, the 

I developed a model using the basic BPMN notations to represent the workflow of the 

interacting MFH and RH for the disaster scenario, as shown in Figure 16. 

 

Figure 16: Process workflow for interacting MFH and RH as EDs (Amakama, et al., 2023) 

In this scenario, the hypothetical setting (as shown in Figure 16) consists of entities that 

interact within it. These entities include patients, rooms (like the incident site, triage area, pre-

operating room, operating room, wards, and morgues), and ambulances. Each entity follows 
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simple rules and objectives. For example, until the MFH arrives, the ambulances will keep 

transporting patients to the RH. However, once the MFH is deployed based on a predefined time, 

the decision-making process (method, technique, procedure, system) of where to transport the 

next cohort of patients is influenced by determinants such as the criteria of the patients (time 

left to live) and the waiting times in pre-operating and operating rooms.  

Because the ABMS tool (NetLogo) utilised in this study is not object-oriented (Dickerson, 

2011), the I had to use BPMN representation, and structured programming practices as much as 

possible, to keep all the data structure as easy as possible. Object-oriented programming is to 

reduce the amount of work it will take to develop a good model. Based on the developed and 

implemented model, I assert that there is nothing too intricate that requires the application of 

object orientation activity diagram such as UML for the process representation 9class diagrams), 

making BPMN sufficient for the study.  

3.4.2. The agents and agents’ behaviour  

Agent-based models are characterized by their ontological correspondence (Gilbert, 

2007), which suggests that the entities described in the first phase that represent the modelled 

system are directly connected to the agents in the model. The agents in this study could read 

data from the environment and other agents, as well as observe the surroundings using the 

information they have stored. Agents interpret their surroundings distinctively based on their 

objectives and present condition. Their decision-making mechanisms can be classified as either 

deliberative or reactive. In deliberative decision making, an agent evaluates its perceptions, 

internal state, and goals before deciding. In contrast, when an agent makes a reactive decision, 
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the pre-set sensor directly influences the agent's behaviour (for instance, the deployment time 

the MFH uses).  

Agents possess the capacity to sense and perceive their surroundings, transition between 

stages of a process, transmit and receive messages, engage with the environment through 

resource utilization, and determine appropriate actions. Simple if/then rules make up the 

reactive behaviour. Patients, rooms, and other entities are specified by the agent of the ABMS 

model, which eliminates the need for them to make complex decisions and reduces their actions 

to simple ones like moving and activity. However, when ambulances are simulated as agents, 

their behaviour becomes more complex as they can make decisions not only about the current 

states of the system, such as patient deaths, but also about their own internal states and 

perceptions of the system.  

 The first activity is to direct patients to the triage room via walk-in (Figure 16). This 

activity involves interaction between the patient and the triage nurse/triage room (agent). When 

patients are in the queue for triage or the maximum space for patients is reached, the other 

patients join the queue and wait for their treatment or die out if the distribution is in the severe 

or moderate category and the time-to-live is exceeded. Patients check whether there are any 

vacancies in the next phase and go there to be seen by the pre-operative doctor. 

If the incident begins at time t=0, ambulances assess the condition of the emergency 

responders on site and go there to transport patients. From the scene of the incident, patients 

are taken to the triage room where they can either join the queue, be given priority over patients 

with minor illnesses or, in severe cases, be declared dead and taken to the mortuary. If there are 

no more patients at the scene, the ambulances will either remain there and wait for another 
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patient to appear, or they will either return to the RH or the MFH (if they are on duty) or, if 

necessary, they will remain at the RH/MFH was the last Position when the last patients were 

taken over by other ambulances. For simplicity, all patients are assumed to be of the same 

undetermined age and gender. 

3.4.3. Handling the time factor 

Before implementing the model on a specific platform, it is important to consider the 

model's approach to time management. In agent-based models, simulation typically runs at 

discrete time intervals during which agents perform specific tasks. The process continues until 

agents complete all tasks or are removed from the simulation. The model then moves on to the 

next time interval. Nevertheless, several challenges can arise when formulating a simulation 

model that uses discrete time increments. The study by (Gilbert, 2007) discusses three of these 

issues that can arise in handling time factors in simulation models: 

1. Synchronicity: This refers to the possibility that different agents need to perform 

different actions at a given time (or step). The model may need to run in a specific order 

for each action to be invoked. For example, when the simulation begins, the ambulances 

must update their status and decide what to do. However, when an agent updates its 

status (the deployed MFH), the ambulances update their status according to the new 

destination detected by the system. If this goal is not achieved, an error may occur that 

leads to the simulation being terminated because not all requirements are met.  

2. Inactivity periods: There are phases in which the agents in the simulation are inactive and 

cannot carry out any further actions. The simulation then goes through several steps and 
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checks whether something needs to be done. However, nothing happens until the pre-

set sensor shows current activity. 

3.  Time calibration: It is crucial to determine the connection between the simulation time 

and the modelled scenario. In particular, the modeler should evaluate the importance of 

each phase of the simulation. 

Certain events such as the start of the simulation at the beginning of the incident - occur 

at regular intervals. However, there are active and inactive times. For instance, the ambulances 

have a period of high activity at the beginning of the incident, but the intensity of these activities 

diminishes as the number of patients at the incident site tends to zero. With no patients available 

at the incident site, the activities of the ambulances come to a stop, while anticipating the next 

activity to response to in the environment. In the absence of accessible real-world or local 

datasets that align with the specifications of this study, time (modelled as ticks-per-hour) is 

assumed and set to 10. In other words, one “go” step (tick) represents (1 / 10) hour (0.1 hour/6 

minutes), and reported in decimal hours formats (e.g., 4.2).  

3.4.4. Model data source(s)(input/output)/requirement  

In this study, I decided against using real data because of the difficulty of data access and 

to have the freedom to control the specific properties of the generated dataset. Other factors 

include reducing biases that may exist in utilizing real data, as well as reducing the cost and time 

required to collect, clean, and prepare the datasets. Since there were no local datasets suitable 

for the needs of this study, the development of synthetic data proved to be an essential option 

and strategy to facilitate the investigation and to achieve the study's objectives. The conceptual 

framework outlined in Sections 3.3 and 3.4 describes a hypothetical system that is likely to occur 
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in the event of a crisis in the oil-rich Niger Delta region (NDR) of Nigeria. An algorithmic/agent-

based model was developed based on the basic principles of this conceptual framework. After 

the data generation using the BehaviorSpace feature of the NL interface, factors influencing 

ambulance strategy were examined considering the generated results (e.g., patient deaths). 

Although the model is valid for its intended purpose, I do not anticipate that stakeholders, 

organizations, or individuals will use the results of this study as a basis for critical decision making 

(until calibrated and tested against real-world data). 

The goal of the model is to provide valuable insights to stakeholders, including 

researchers in related fields, by demonstrating that in scenarios with specific shortages, patient 

accumulation is likely to occur, potentially leading to mortality. Additionally, factors such as 

ambulance policy are expected to produce promising results. For example, by reducing the 

capacity of operating rooms, we can estimate the resulting impact on mortality rates. For 

instance, the implementation of the hospitalist care model (HOS) in an ED led to a significant 50% 

decrease in mortality rates, demonstrating the model's effectiveness in improving patient 

outcomes (Yang et al., 2019).  Unlike typical simulation models, the goal of this study is not to 

monitor the input distribution and its impact on the output. Studies have shown that 

overcrowding and long waiting times in EDs can lead to increased hospital stays, negatively 

impacting patient care and hospital performance (J. Collins, 2021; Mistarihi et al., 2023)  The 

model for this study examines the consequences of operating in a scenario with limited or no 

information. With relevant data, the optimal approach would be to set up input variable monitors 

and analyse the outputs against the actual target system. 
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3.4.5. Supplementary assumptions of the model 

Building generator models that are based on hypothetical cases often involves making 

assumptions to simplify complex systems and processes. Other important assumptions made in 

building the model include: 

1. Assumptions regarding patients: No health condition depends on the age or sex of the 

patients, other known “pre-existing conditions” or “co-morbidities.” All patients have a 

specific limit of time they will wait around to be “admitted” after which they will simply 

move until they get to the home room or die off. This time limit varies by patient, by injury 

severity, and by each patient’s prediction of how long it will be before they are seen. 

2. Assumptions regarding injuries: Similar kinds of injury exist for all patients which vary 

only in severity. Both the MFH and RH can treat the different severity of injury. More 

severe injuries require more time vis-a vis the time the patient will spend in the Operating 

Room (OR) and recovery room (ward) before discharge. The total number of injuries at 

the accident scene is defined by a normal distribution characterized by a specified mean 

and standard deviation. The beta-distribution is asymmetric with the long-tail on the less-

severe side. The size (headcount) and severity distribution might be related or 

independent. The mean, standard deviation and beta-distribution parameters are 

variables.  

3. Assumptions on time-to-die: This is the time that a patient must live if treatment is not 

administered. Patients with time-to-live of less than or equal to 4 hours are color-coded 

red, those with 8 hours-to-live are coded orange, and those with up to 1000 hours-to-live 

are coded blue (such patients are assumed to have none-life threatening mild injuries), 
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4. Assumption on recovery/ward: Recovery/ward is where patients go after 

surgery/treatment. There are a finite number of beds in recovery which cannot be 

expanded. If the recovery room is full, no patients can be moved from preop to the OR, 

and the capacity of the ward is fixed at 15 for the MFH and 100 for the RH. 

3.5. Phase 3: the platform specific model 

Phase 3 focuses on the platform-specific toolbox in the model development process, 

which represents an essential phase that includes both theoretical and practical considerations. 

Creating a transformation guide and selecting an appropriate development platform are the 

focus of steps 1 and 2 of these phases. By following these steps, it is important to ensure that the 

model developed properly addresses all specific aspects of the defined problem. 

3.5.1. Step 1 and 2: development platform/transformation guide/model-specific platform 

This section explains the context for the selection of the model-specific platform 

(NetLogo 6.3.0) by examining the reasons for its suitability as a modelling software for 

translating the conceptual model into logical codes. It demonstrates the effectiveness of 

NetLogo as a robust ABMS tool and highlights its features, capabilities, and applications. 

3.5.1.1. NetLogo 6.3.0 (ABMS) tool: features, capabilities, and applications 

  NetLogo (NL) is an interactive tool for modelling and simulating dynamic processes within 

complex networks. It enables the study of emerging properties, supports the teaching of 

complexity science, promotes the conceptualization of creative networks, and finds application 

in modelling and simulating various scenarios, including emergency evacuation (Chatterjee et al., 

2023; Wahyudiono et al., 2022). NL has a non-object-oriented structure, which can lead to 
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efficient use of computational resources, especially in scenarios like emergency department 

optimization where computational efficiency is crucial (Dickerson, 2011).  

The program facilitates the development and examination of agent-based models. 

Originating from the Center for Connected Learning, it utilizes StarLogoT1, compatible with Mac 

OSX, and StarLogo2, a creation of MIT's Media Laboratory. It is StarLogo2 that has notably shaped 

NetLogo's programming language, Logo3, which draws upon the traditions of the Lisp 

programming language family. Reflecting on the history of Logo offers valuable insights into 

NetLogo's philosophical underpinnings (Arnaud et al., 2015). Due to its transparency, stability, 

capacity, and most significantly, because it is an open-source program that can be configured to 

communicate with various third-party applications, this software was chosen above other 

simulators for this study. It can simulate not only the process's net result, but also how the result 

is produced through an incremental stepwise simulation if needed.  

The NL platform conforms to a simulation technique known as "in time-discrete 

intervals", which means it causes a set of entities to evolve in equal-length time intervals. The 

corresponding modelling method entails selecting the entities to be included in the model and 

then characterizing their behaviour over time intervals. This strategy focuses on the entities 

involved, often known as agents. The metamodel in NL distinguishes three categories of entities: 

(i) The environment: a rectangular area with a regular grid of n x m square tiles (patches); (ii) The 

turtles (mobile agents): these are the objects that move around in the environment and interact 

with it and with one another; and (iii) The links: these are generated dynamically between the 

turtle agents. There is also a distinct agent known as the observer (modeller). The role of the 

observer is to supervise and regulate the simulation's execution. The observer (agent) develops 
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and controls the simulated behaviour of all the entities in the model (patches, turtles, and links) 

(Arnaud et al., 2015).  

3.5.1.2. Why NetLogo as a tool for modelling and simulation? 

The NetLogo software was chosen over other simulators for this study because of its 

transparency, stability, capacity, convenience of use, and, most importantly, since it is an open-

source programme that can be set to interface with numerous third-party applications. NL is 

capable of simulating and representing a wide range of spatial phenomena that include mobile 

agents. The software can simulate not only the overall performance of the process, but also, if 

necessary, the way in which the result is achieved, through an incremental, step-by-step 

simulation. It is especially suitable for examining the connection between the micro-level actions 

of individual agents and the macro-level spatial patterns that result from their interactions (J. 

Gao, 2022). Other justifications for choosing NL are stated below; 

1. Acceptance: There is considerable evidence that NL is increasingly being used in research 

and education. The application has been downloaded by thousands of individuals. 

Currently, there are about 50 downloads every day. There are more than 5,000 users on 

the announcements list. There are around 1,600 members in the NL discussion group, and 

it posts about 100 times a month on average. The discussion group's traffic has increased 

fivefold since 2002 (Wilensky & Rand, 2015). 

2. Reproducibility: Since one of NL's primary design goals is for results to be scientifically 

reproducible, it is imperative that models operate deterministically. To achieve true 

parallel computing programmes must be written appropriately to prevent 

nondeterminism. As a result, a NL model always executes the same steps in the same 
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order and produces the same results if the random number generator is "seeded" in the 

same way regardless of the machine used to run it (Wilensky & Rand, 2015). 

3. Extensibility: NetLogo (NL) offers two main options for extended communication: the NL 

Extension API, allowing creation and access of Java objects within NL, and the NL 

Controlling API, for controlling NL through Java calls from external programs. These APIs 

are pivotal for NL's successful integration with other software. Continuous improvements 

in formats, tools, and data sources enhance its extensibility, bridging the gap between 

user-friendly integrated modeling environments and more complex, versatile modeling 

toolkits (Wilensky & Rand, 2015).  

Using the conceptual model presented earlier in this chapter, a computer simulation 

model is created as part of the transformation guide. First, the structure of the model was 

represented by the BPMN diagram, and then the computer model was created using logical 

instructions. The various parts of the system are then represented through a graphical user 

interface designed to help stakeholders understand and communicate with the interactions 

between the model units.  

3.5.2. Steps 3 and 4: model input/output 

In the context of this NetLogo model development, the model (referred to as MFH-06-6-2) 

(NL model created specifically for this research) has been structured to facilitate paired runs, 

which have been named “matching sets”. This suggests that everything stays the same in each 

set (“pair”), including the random-seed value, so that the difference in the runs is the ambulance 

policy that is being compared. It implies that a new routine assigns a sequential number to both 

of a paired run, and then for one of the sets of ambulance-policy to either "always to go RH" and 
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for the other one of the pairs sets ambulance-policy to "Alternate". It also implies that the 

number of cases (i.e., say "injured") is random overall, but identical for the “pair” of runs, so what 

is seen is the impact of the different ambulance dispatch policy. 

Using matching set suggests that, in the BehaviorSpace function (for experimentation) of 

the NL interface, the specific values of input (“ambulance policy,” “injured,” “number of 

ambulances”) and output variable(s) (“total deaths,” “mean wait”) are easy to track. The code 

dynamically configures the behavior of the model, ensuring robust and flexible exploration. 

Consequently, the generated coma separated values (CSV) file contains only the variables 

necessary to generate statistics and confirm that the correct case matches. 

Furthermore, the code executes a difference of the "deaths" count between the different 

policies to see the improvement that one policy, say "Alternate" policy has over "Always go to 

RH", and produces charts for easy visualization. In this study, i decided to use the term 

"matching" instead of "pairs" because in the future, it is expected that there may be need to 

compare other policies already captured in the code (“always go to MFH”, “shortest wait” or “flip 

a coin” etc.), to see what the outcome would be and compare to determine the best response 

policy. The general model agents and their behaviour have already been addressed in sub-section 

3.4.2. 

 3.6. Phase 4: simulation model 

The simulation model MFH-06-6-2 (the NL model developed specifically for this study) 

aims to demonstrate the basic principles of simulating the impact of a disaster on coordination 

between a regional hospital and a mobile field hospital using ABMS. This model is structured 

around a hypothetical situation outlined in Sections 3.3 and 3.4 and does not represent any 
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current system. Hence, the MFH-06-6-2 model executed in NetLogo is not designed to be a 

precise representation of a functional ED. Several types of NL-specific structured commands such 

as agent sets, lists, arrays, turtles, patches, links, and global variables have been used to specify 

how activities should be performed. The model's actions and consequent simulation were 

defined using procedures, commands, and conditionals (such as 'ifs' and 'else'), and loops ('while' 

and 'repeat'). 

3.6.1. Step 1: verification and validation process 

In any simulation study, ensuring the accuracy and reliability of the simulation results is 

essential. Verification and validation play a key role in increasing confidence in the outcomes. 

Verifying agent-based models is aimed at validating that the agents perform as intended. The 

validation process often involves the use of model checking and runtime verification techniques 

(Ferrando & Malvone, 2022). Consequently, the goal of models, which is usually defined at the 

start of the simulation study, is associated with the conception of simulation precision. There are 

six types of verification and validation methods used in computing techniques. These include 

conceptual model validation, data validation, verification, black box validation and white box 

validation. The focus of this study is on conceptual, black box and white box validation. 

It is important to recognize that evaluating an ABMS can be a significant challenge. There 

have been numerous studies to validate ABMs, but the lack of data and the fact that ABMS 

models are based on future predictions hinder the validation of ABMs models using traditional 

empirical approaches (Anand et al., 2016; Gore et al., 2017; Onggo & Karatas, 2016; Takadama 

et al., 2008; Utomo et al., 2022). The research on validating ABMS models highlights the 

challenges in verifying agent-based models. Studies on these challenges in validating agent-based 
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models show that traditional empirical validation faces these difficulties at the micro level due 

to issues such as path dependence, emergence, complex interactions, and limited data 

availability. In addition, they highlighted the complexity of the processes and the randomness of 

the simulations as other aspects of concern. These factors may cause the results to differ from 

those of a controlled experiment. 

In this study, validation of the conceptual model was enabled through unit testing of the 

process logic. The goal of the process was to ensure that every logic from the conceptualized 

model appeared in some form in the ABMS model. The rationale behind the white box validation 

is that the concept that the model's logic replicates the operations of the emergency department 

during a disaster response scenario. The validation process was aimed to confirm that the model 

accurately represented the patient flow process as outlined in the BPMN conceptual model and 

that the agent's actions adhered to the decision rules described in the code. To accomplish this, 

the model underwent debugging at various phases of the development process, with its graphical 

user interface facilitating the evaluation of the model's behaviour at each stage. 

The model's overall performance was assessed using black-box validation, emphasizing 

functional testing. This method focuses on evaluating the model's functionality without using the 

code. Techniques such as error estimation, equivalence partitioning, and boundary level analysis 

were employed to assess the system's behaviour from an end user's viewpoint, typically 

concerning issues like functionality gaps, usability, and compatibility. The ABMS model data 

underwent 720 iterations for the analysis, averaging 20 minutes per iteration. Additionally, 

Alternate runs (1,200, 5,000, 20,000, etc.) were conducted to verify the model's consistent and 

stable behaviour across varying numbers of iterations. For the experiment (the final phase in the 
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development of the ABMS), the BehaviorSpace feature of the NL program was used and the 

update graphics button was disabled for large iterations to reduce runtime and speed up model 

execution. 

3.7. Chapter summary 

This chapter provides a detailed discussion of the design process for the NetLogo MFH-

06-6-2 model developed for this study. It utilizes the generalized framework for computing 

systems development as proposed by Shin et al. (2022), along with the phases of the ABMS 

design methodology outlined in the step-by-step approach by Salamon (2011). The objective of 

this chapter is to enhance comprehension of the problem structure by emphasizing the 

conceptual and simulation dimensions of the model. Through the fusion of a broad system 

thinking framework with an agent-based modeling approach, this study suggests that the 

feasibility of constructing a more intricate and instructive model that includes both the 

macroscopic and microscopic components of complex systems can be achieved. This combined 

approach enables a deeper understanding of system interactions, which can help make more 

informed decisions during model design.  

The following chapter outlines the final stage of the development phase (Phase 4 – 

simulation model) within the methodology of the model development process. This also includes 

a BPMN representation of the model structure and implementation process as well as the results 

of the experiment, the analyzes carried out and discussions on the factors examined as part of 

the study. 
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CHAPTER 4 

4.0 EXPERIMENTATION, RESULTS, ANALYSIS AND DISCUSSION 
 

4.1. Introduction 

The development and design of the NetLogo MFH-06-6-2 model for this study, which aims 

to improve workflow interoperability between regional and mobile field hospital emergency 

departments in a hypothetical disaster response scenario, was covered in Chapter 3. The distinct 

phases of the model development process were explained, starting from the conceptualization 

of the model to the simulation phase. This model design approach is holistic and captures both 

microscopic and macroscopic system dynamics based on established methods and frameworks. 

This chapter begins by introducing the final phase and step of the model design and development 

process (experimentation). It then goes into detail and presents the BPMN diagram of the 

experimental setup and the graphical user interface of the implemented model. This is followed 

by a presentation of the results, analyses, and discussions, including the implications of the 

results in the context of the research. Therefore, this chapter highlights the interactions and 

consequences that can occur between hospital emergency departments in the event of a 

disaster. 

4.2. Phase 4-step 2: experimentation 

In this part, we will briefly discuss the final component of the design and development of 

the model within the adopted ABMS methodology suggested by Salamon (2011). Before 

implementing the NetLogo MFH-06-6-2 model, agents were modelled to have simple reactive 

and deliberative rules and goals based on their protocol: 
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1. The ambulances start heading to the site of the incident as soon as the simulation is 

started (they receive information about the explosion), 

2. The ambulances transport patients from the site, based on their severity distribution, 

information about the environment and time left to live of the patients,  

3. Patients who exceed their total time to live, die off and move to any of the available the 

morgues, 

4. If patients are waiting to go to the next stage (pre-operating room, operating room etc.), 

then the one with the highest triaged severities goes first (first-in-first-out-severity rule) 

5. If the patient gets into the operating rooms on time, they get treated and go on to the 

wards for recuperation and then go home. 

The experiments conducted in this study evaluate the impact of ambulance policies on 

mortality outcomes and mean patient wait times by examining the interaction between RH and 

MFH. An ambulance policy is a set of guidelines that govern emergency response times, patient 

care, ambulance dispatch, performance, and other aspects of an emergency response system. 

These policies can be optimized using Markov decision process models, which help determine the 

best ambulance to dispatch to each patient based on various factors like urgency and patient 

needs (Albert, 2023).  A Dell Latitude 5520 11th Generation Intel (R) Core i5 CPU-1135G7 at 2.40 

GHz with 16 GB RAM was used for the experiments and synthetic data was generated using the 

BehaviorSpace feature within the NetLogo 6.3.0 modelling interface.  

Figure 17 shows the Graphical User Interface (GUI) of the implemented model. This 

interface is intended to enable dynamic interaction between the user and the simulation by 

providing immediate visual feedback on the effects of the changes made and allowing real-time 
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monitoring of the parameters. The configuration is customizable and can be adjusted to model 

similar healthcare disaster response scenarios and test different strategies.  

Figure 18 shows the BPMN diagram for the setup process for performing simulation runs. 

It begins with an initial process that requires the user to decide what type of experiment they 

want to perform. This also includes setting the sliders (e.g. background, matching sets, incident 

formula, severity distribution, etc.). After the initial setup is complete, the model setup moves to 

the execution phase (simulation). The “Start/Stop/Step” button starts the simulation process. 

When patients are present at the scene, the flow of ambulances to and from the scene to the RH 

and/or MFH (provided the set response time is achieved) is triggered. Data export begins, 

generating the output in the form of an Excel file and/or Comma Separated Values (CSV) in a 

designated folder for analysis. Patient status decision points are part of the execution phase, 

which includes managing patient flow from triage to Operating Room (OR), Pre-Operating Room 

(Pre-OP), discharge, etc. At the same time, morgues also record deceased patients at any time. 

To provide visual feedback on the progress of the simulation, the graphics and model clock are 

continuously updated to show the passage of time in ticks.  

The BehaviorSpace experimentation step-by-step setup for data sampling and synthetic 

data generation is described in detail and presented in Appendix B1 to B4. The source code for 

the model, including comments about the reasons for certain coding decisions and details about 

how the model works and instructions for its use, is available on my GitHub page at: 

https://github.com/MFHproject/MFHrepo/blob/main/mfhmodels/MFH-06-6-3.nlogo. 
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Figure 17:  NetLogo (6.3.0) MFH-06-6-2 Graphical User Interface (GUI) (Amakama et al., 2023). 
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Figure 18: BPMN diagram for MFH-06-6-2 GUI simulation set up (Ambulance-policy) 
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Continued 

 

Figure 18: BPMN diagram for MFH-06-6-2 GUI simulation set up (Ambulance-policy) 
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4.3. Data generation, results, and analysis       

Typically, the generation, collection, analysis, and visualization of data sets are crucial 

elements of any successful scientific investigation. Sampling, data generation, analysis and 

presentation in this study were enabled by a combination of software tools. With NetLogo 6.3.0, 

the data sets for the system were generated through simulation experiments (BehaviorSpace). 

The Python libraries from Pandas, which are based on the Anaconda programming language for 

scientific computing, were used for data cleaning, filtering, and aggregation - including sensitivity 

analysis. The analysis conducted to determine how ambulance policy affects model behavior, 

mortality outcomes and mean waiting times is presented in the following subsections with 

explanations and graphics. 

4.3.1. Model behaviour on effect of ambulance policy on mortality and mean wait time 

In Figure 19 we see the effects of two different ambulance deployment strategies on 

patient outcomes in the simulations. The x-axis shows the number of runs (720 iteration runs) 

that generated the dataset shown in the Figure 19 and the influence of the different number of 

ambulances (Num Amb) has on the overall performance of the emergency department in terms 

of average deaths. The average number of deaths is a function of the sum of the deaths for each 

run, divided by the total number of deaths in the total iterations. The y-axis shows the total 

number of patients affected by each response intervention. Since the modelled scenario is 

unpredictable and variable, the simulations were created to reflect a wide range of the 

emergency scenario combinations. Each iteration contributes to the overall result of how the 

different policies might work in real-world situations. The metrics examined in this comparison 
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include indicators such as: mortality rates as a direct measure of patient outcomes, which is a 

function of the resource utilization efficiency, and response capacity of the interacting EDs.  

 
     Figure 19: Model variability behaviour on patients’ mortality outcomes (ambulance policies). 

The first variation chart in the ambulance policy (“Always go to RH”) is based on a 

traditional dispatching approach where ambulances are dispatched based on patient severity and 

availability, with only the RH available. The second variant (“Alternate”) involves a more dynamic 

approach by using a mobile field hospital to strategically support the RH in the scenario. 

Figure 20 shows the influence of the ambulance policies (“Always go to RH” and 

“Alternate”) on the Mean Wait Time (MWT) variation. The MWT is a function of the total sum of 

wait times for each individual run, divided by the total number of iterations. The x-axis represents 

data from 720 iterations and also indicates the number of ambulances deployed (Num Amb), 

while the y-axis shows the number of patients (injured) for each run under the respective 

ambulance policy. 
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        Figure 20: Model variability behaviour on patients’ mean wait times (ambulance policies) 

The aim of the simulations is to recreate an operational environment, considering the 

different demands for emergency services and the use of ambulances. The substantial number 

of simulations runs guarantees a complete data set reflecting a wide range of outcomes, thereby 

increasing the validity of the comparative analysis. Further comparisons and quantifications of 

these effects can be found in the following sections. 

4.3.2. Effects of ambulance policy on mortality outcomes 

To achieve the goal of this study, we examined how ambulance policies affect patient 

mortality outcomes from both the interaction or lack of interaction of a regional and mobile field 

hospitals (modelled as basic emergency departments) in a hypothetical disaster scenario. 

“Always go to RH” describes a policy used by the regional hospital to respond to the disaster; on 

the other hand, the term “Alternate” describes the use of the mobile field hospital in 

collaboration with the regional hospital to support emergency operations. Figure 21 shows two 

boxplots of the impact of ambulance policy on mortality outcomes from the simulation 

experiment runs.  
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Figure 21: Effect of ambulance policy on mortality outcomes for interacting EDs. 

Boxplots are great statistical tools that provides visual analysis of the distribution of the 

datasets. By using boxplots in analysing the 720 iterations (runs) for each ambulance policy, a 

thorough visual and quantitative comparison of the policies' performance can be achieved, 

improving the clarity and depth of the results. 

4.3.3. Effects of ambulance policy on patient’s mean wait times 
 

Figure 22 shows two boxplots comparing the mean wait times for the two ambulance 

policies, “Always go to RH” and “Alternate”. These charts are helpful in displaying the data 

distribution. The codes used to analyse and visualize both the effects of ambulance policy on 

mortality outcomes and mean wait times is available on Github at: 

https://github.com/Nimisingha/Ambulance_Policy_RPG. 
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Figure 22: Effect of ambulance policy on patients mean wait times for interacting EDs. 

The behaviour and interactions of agents are determined by a variety of parameters that 

make up ABMs. Because the effects of model parameters on output is methodically studied, 

sensitivity analysis is an essential step in understanding the behaviour of the output variable(s) 

from the interactions of the input variables and subsequent usage of ABMs. The methodology 

used to conduct the sensitivity analysis for the model results and outcomes is presented in the 

following section. 

 4.3.4. Sensitivity analysis (effects of ambulance policy on mortality and MWT outcomes) 

Understanding the behaviour of the variables of agent-based models’ dataset can be 

facilitated by conducting sensitivity analysis. Many sampling and global sensitivity analysis 

techniques are available through the open-source Python-based sensitivity analysis library SALib. 

Fourier Amplitude Sensitivity Test (FAST), Morris, Sobol, and Delta Moment Independent 

Measure (DMIM) are some of these methods (Herman & Usher, 2017). 
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4.3.4.1. Criteria for sensitivity analysis technique 

To facilitate the selection of the most appropriate Global Sensitivity Analysis (GSA) 

method for problems and models, Iooss & Lemaître (2015) proposed a decision tree that 

considers the unique characteristics of different Sensitivity Analysis (SA) methods as shown in 

Figure 23. Although the decision tree can be particularly useful in simplifying the concepts and 

requirements for the various SA techniques, caution should be exercised when using this diagram. 

 

Figure 23: Decision tree for selection of Sensitivity Analysis (SA) technique (Radišić et al., 2023). 

Considering the decision tree (Figure 23), the purpose of the investigation, and the 

characteristics of the data set, this study selected the Sobol global sensitivity analysis (GSA) as 

the optimal technique to improve the understanding of the model's core dynamics and 

variability. This choice is based on the use of Sobol indices that quantify variance decomposition. 
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Typically, Python's SALib (sensitivity analysis libraries) are used for this. All SALib's methods can 

be accessed through a single interface known as a ProblemSpec (problem specification). 

4.3.4.2.  Sobol’s indices: functional decomposition of variance 

According to Radišić et al (2023), Sobol' indices are a widely accepted method to express 

how sensitive a model output is to the input parameters. When examining how input parameters 

affect output variance, the Sobol approach is inherently variable. 

Let D be the model output's variance, 𝑌 as shown in Equation 1: 

 𝐷 = 𝑉𝑎𝑟(𝑌) (1)  

Given the input parameter 𝑋i, let 𝐷𝑖  , Equation 2 represent the expected output's variance. 

 𝐷𝑖  = 𝑉𝑎𝑟(𝔼[𝑌 ∣ 𝑋𝑖]) (2)  

Sobol′ (2001), defines the input parameter's first-order Sobol' index 𝑋i as the proportion 

of the conditional variance to the output's overall variance as shown in Equation 3: 

𝑆𝑖 =
𝐷𝑖 

𝐷
      (3) 

With the specified set of input parameters {𝑋𝑖1, . . . . 𝑋𝑖𝑠}, Di1….is denotes the variance of 

the expected output variables corresponding to these input parameters. For every subset of these 

input parameters, the variance of the expected output variables can be expressed as follows in 

Equation 4: 

𝐷𝑖1....𝑖𝑠  = 𝑉𝑎𝑟(𝔼[𝑌 ∣ 𝑋𝑖, . . . 𝑋𝑖𝑠])  −  ∑ 𝐷𝑖1....𝑖𝑘 ,𝔗𝑠         (4) 

Where,  𝔗𝑠  =  {{𝑖1, . . . 𝑖𝑘 }}: {𝑖1, . . . 𝑖𝑘 } ⫋ {𝑖1, . . . 𝑖𝑠 } 
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The Sobol' index for higher-order interactions among input parameters 𝑋𝑖, . . . 𝑋𝑖𝑠  can be 

similarly expressed as shown in Equation 5: it denotes the ratio of the total variance in output to 

the conditional variance of the output linked to a particular parameter set. This calculation 

subtracts the variances of the output conditioned on other subsets of the parameter being 

examined. 

𝑆𝑖1....𝑖𝑠 =
𝐷𝑖1....𝑖𝑠  

𝐷
     (5) 

The input parameter's overall Sobol' index,  𝑋𝑖  is determined by adding together all the 

Sobol' indices of the sets that contain it. 

The input parameter's total Sobol' index 𝑋𝑖   is calculated by summing all the Sobol' indices 

for the sets that include it, using Equation 6. 

𝑆𝑇𝑖 =  ∑  
𝐷𝑖1....𝑖𝑠  

𝐷𝔗𝑠      (6) 

Where,  𝔗𝑠  =  {{𝑖1, . . . 𝑖𝑘 }}: ∃𝑘, 1 ≤  𝑘 ≤ 𝑠, 𝑖𝑘 =  𝑖} 

An alternate definition for the entire Sobol' index is represented in Equation 7 as follows: 

Since all first and higher order Sobol' indices add up to 1. 

𝑆𝑇𝑖 = 1 −  𝑆~𝑖                 (7) 

𝑆~𝑖 is the total of all Sobol' indices 𝑆𝑖1....𝑖𝑠  , excluding index 𝑖. First-order Sobol' indices and 

total Sobol' indices exemplify the advantageous characteristics of Sobol' indices. 

These indices effectively illustrate the impact of a parameter alone or in conjunction with 

others. However, estimating them can be challenging, especially for large models with numerous 
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input parameters and simulations that require significant computational resources. In this study, 

the sensitivity indices are denoted as ST for total sensitivity, S1 for first-order sensitivity, and S2 

for second-order sensitivity. 

4.3.5. Sensitivity analysis of effect of ambulance policy on outcomes 

The results of the Sobol' sensitivity analysis for the MFH-06-6-2 model are shown in Figure 

24. This analysis identifies input parameters that significantly influence the model's output, 

thereby improving the understanding of the dependencies and sensitivities within the model 

framework. The results shown in the figure deepens our understanding of how adjustments to 

the input parameters can affect the overall behaviour and performance of the model. 

 

Figure 24: Sensitivity analysis of the effect of ambulance strategy outcomes 
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Sobol’s sensitivity analysis is a technique for evaluating how various sources of 

uncertainty in model inputs affect the uncertainty in the output. This is particularly useful when 

it comes to simulating complex systems, be it mathematical or computational. The overall Sobol’ 

index (ST) considers both the main effects of components and their interactions with other inputs 

to assess the extent to which each input accounts for the output variance. The first-order Sobol’ 

index (S1) shows how much an input variable independently influences the output variance and 

helps identify the key influencing variables responsible for the output variability. In addition, the 

second-order sensitivity index (S2) evaluates the contribution of interactions between input 

variables and output variance, revealing how the joint variation of two inputs can affect output 

variance beyond their individual effects. Further explanation of these results can be found in 

Section 4.4. 

4.4. Discussion    

Because the operations of healthcare systems are complex, it is often difficult to predict 

emergency room outcomes in the event of a disaster. However, by modeling the behavior of 

individual agents, the interaction of such system elements can be simulated, which makes them 

indispensable in disaster response. In this problem case, NetLogo, an agent-based modeling and 

simulation platform, proved effective in predicting mortality outcomes and mean wait times. A 

detailed discussion of the research results is presented below, considering the given problem 

context. 

4.4.1. Effects on ambulance policy on mortality outcomes 

This aspect of the analysis compared two disaster response policy for an oil and gas 

explosion-type scenario, specifically examining the effects of the collaboration (or lack) between 
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a Regional Hospital (RH) and a Mobile Field Hospital (MFH) (Figure 21). In the first policy (“Always 

go to the RH”), the response depends on the RH for transport, triage, and treatment of the 

injured patients. The second policy (“Alternate”) involves utilizing both the RH and MFH for 

response efforts.  

While the mean value of mortality outcome for the policy “Always go to RH” is 23.22 with 

S.D of 8.98, the interquartile range — approximately 50 % of the data – is between 18 and 30 

deaths suggesting variability in the distribution of the average number of deaths. The low 

standard deviation from the average life saved of 15.85 is 0.79 reveals that the policy “Always go 

to RH” in the number of lives saved is consistent. In this case, the minimum and maximum 

mortality outcome is from 4 to 44 with 50 % of deaths falling in the range between 14 and 29. 

Conversely, the Average number of deaths for the “Alternate” policy is 19.75 with SD 8.27 

recording a significantly lower mean number of deaths compared to “Always go to RH”. While 

the S.D of 1.30 is slightly higher implying even higher variability, its mean number of lives saved 

is also higher. The “Alternate” policy reduces the average number of deaths by approximately 

14.94% when implemented in comparison to “Always go to RH” policy. Conversely, the 

“Alternate” policy also increases the average number of lives saved by 17.32%. 

These findings highlight how ambulance policies impact mortality outcomes during 

disasters when emergency departments interact. Simulation methods have effectively showed 

that the function of emergency department, especially coordination and resource allocation 

under such conditions can be enhanced. For example, Fu et al. (2022) modelled emergency 

scenarios using simulation to evaluate the effect of ambulance strategies on death rates. Their 

study considered hospital schemes for emergency medical services; specifically, how operational 
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influences optimize such services. Z. Liu et al. (2014), employed NetLogo modeling to virtually 

recreate different accident and emergency areas. Their computational design allowed evaluating 

and improving emergency care quality.  

In a related investigation, Azimi et al. (2017) employed multi-agent modelling to maximize 

emergency centre space allocation. The model they proposed successfully reduced ambulance 

response times by 36.7%. Laker et al. (2018) emphasized the role of computer simulation in 

improving utility systems and discussed the use of the widely used M&S techniques in emergency 

scenarios. Their work was particularly focused on how ambulance deployment strategies can 

impact mortality outcomes in emergency departments. Another study by Ogie et al. (2022), also 

suggests that the application ABM is beneficial in modelling and simulating changes in crisis 

settings, and in optimizing crowdsourcing for disaster response. 

4.4.2. Effects of ambulance policy on mean wait times 

This aspect of the results analysed examined the two different disaster response policies 

but focuses on how the policies affects the mean wait times. The boxplot shown in Figure 22 

reveals that the “Always go to RH” policy produces a longer mean wait times compared to the 

“Alternate” policy (12.34, 10.20) and a higher standard deviation (3.11,2.06) (descriptive 

statistics). The “Always go to RH” policy also has a larger interquartile range, indicating greater 

variability in MWT. This is indicated by the length of the boxplot. The minimum wait times of the 

two policies are similar, however the maximum MWT of the “Always go to RH” policy (17.48) is 

higher than that of the “Alternate” policy (13.81). From the results, implementing the “Alternate” 

policy reduces the average wait time of patients in the treatment process by 16.68%. From this 

results, one can infer that under a comparable disaster response situation, the implementation 
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of the “Alternate” policy, which involves the deployment of a Mobile Field Hospital to collaborate 

with the Regional Hospital in place, could reduce the waiting times for the disaster victims and 

improve the quality of care and patients’ outcomes. 

Studies using M&S techniques have produced similar or related results. For example, the 

hybrid model developed by Y. Liu et al. (2023) combining simulation methodologies (ABS and 

DES) effectively reduced patient waiting times through optimizing resource planning. Using their 

strategy research results, the effect of "FIFO+Centralized" hospitalization is cut by 3.75%, while 

under "Random+Centralized" conditions, it falls to 0.57%.In another study by Yousefi & Ferreira 

(2017), ABS combined with group decision making led to a 12.7% reduction in average waiting 

time at emergency departments and a 14.4% decrease in the proportion of patients who leave 

after being seen, thereby improving the overall performance of such systems. 

Furthermore, Z. Liu et al. (2014) created a model for generalized ABMS-based simulation 

and optimization of various ED scenarios in the NetLogo environment. They argued that this 

model allows for a more comprehensive understanding of response planning and response 

strategy by analyzing patient wait times in emergencies. Similarly, Z. Liu & Luque (2015) stated 

that NetLogo has the potential to simulate emergency room wait times during a disaster to 

enable efficient disaster relief planning. In contrast, Taboada et al. (2013) reported that 

simulation helps clinical staff make better decisions for patient flow and optimal resource 

utilization. These authors conducted a simulation in NetLogo to evaluate the impact of patient 

deviation policies on ED outcomes. 

Data analysis of the hypothetical scenario shows that collaboration between RH and MFH 

can effectively reduce mortality rates and MWT, resulting in higher effectiveness and efficiency 
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of the response measures. The comparison between the “Always go to RH” and “Alternate” 

policies can be seen as creating a more flexible and dynamic framework that can improve the 

system's responsiveness to emergency situations. Consequently, flexibility and adaptability are 

particularly notable features of disaster response frameworks as they form the basis for 

establishing disaster response measures and policies. Therefore, applying agent-based modeling 

and simulation to disaster management planning, resource allocation and policy effectiveness 

evaluation is helpful to evaluate the influence of different policies. 

The better results of the “Alternate” policy in terms of MWTs and survival rates also 

suggest that the “Alternate” strategy may be more versatile and applicable to a wider range of 

disaster scenarios. However, a comprehensive analysis of these results must rely on the 

distribution of the data sets. Significantly, the Alternate policy indicates a minimum of 1 for 

mortality, signifying its potential utility in certain circumstances, and provides a smaller 

maximum for this metric. The results confirm the utility of a collaborative disaster response 

approach for the best possible outcome. 

It is also possible that improvements in responsiveness, efficient resource allocation, or 

triage and treatment protocols, which only appear to benefit from the more collaborative 

approach, are responsible for the “Alternate” policy results. The greater variations in the number 

of lives saved by the “Alternate” measures could represent a more heterogeneous environment 

in terms of coordination, thus providing the possibility for optimal outcomes or, conversely, 

greater setbacks in the logistical system of the disaster response continuum. Here RH and MFH 

must work together and exchange the necessary resources and information. Conversely, the 

“Always go to RH” strategy provides consistent performance, albeit with extreme limitations on 
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all outcomes, as suggested by the lower variance, fewer lives saved, and longer average times. 

This could be since MFH deployment allows for rapid delivery of life-saving interventions, as the 

RH infrastructure and procedures are only capable of efficiently serving a certain number of 

specific cases and therefore are not as scalable or flexible.  

Deploying an MFH in addition to the existing RH could be a critical decision in the event 

of an oil and gas explosion disaster response. In the critical first hours after the explosion, the 

MFH's mobility and proximity to the explosion site could mean the difference between life and 

death. The agent-based model thus draws attention to the complexity and variability of disaster 

scenarios. This also suggests that while certain measures are consistently implemented, there 

are significant differences in the effectiveness of disaster response efforts in terms of mortality 

outcomes and wait times. Therefore, in this context, there is a need for a more thorough analysis 

of the strategies in future simulation studies, to test and optimize comparable or different 

disaster scenarios.  

4.4.3. Sensitivity analysis on effect of ambulance policy on outcomes  

The use of global sensitivity analysis and particularly Sobol' in this study helps us to 

expand the knowledge of the results as it helps us to understand the system behavior, the 

characteristics, and the influence of the system agent's behavior on the overall result. Such 

sensitivity analyzes also help reveal the key factors that impact the efficiency of the disaster 

response model: hospital coverage and effective deployment and transfer times for injured 

patients (Alrehaili et al., 2022; Çağlayan & Satoglu, 2022; Hierink et al., 2020). The given results 

in Figure 24 portray the following results in the form of Sobol’s total sensitivity index: ST, Sobol’s 

first-order sensitivity index: S1, and Sobol’s second-order sensitivity index: S2. 
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The total index (ST) calculates the total effect of the input variables on the variance of the 

output by considering both the main effects and the interactions of the input variable with other 

variables. The first-order sensitivity index (S1) evaluates the direct effect of each input variable 

on the output variance and identifies the variables that have the greatest influence on the 

variation. The second-order sensitivity index (S2) shows that simultaneous changes in inputs can 

have larger effects on output than their individual effects suggest. This is achieved by evaluating 

the effects of interactions between two variables on the output variance. 

• Total sensitivity index (ST): “Ambulance policy” has the highest ST value at 0.64, meaning 

that it is the most crucial factor influencing all performance indicators (total deaths and 

MWT). “N Ambulances” also has a significant ST value (0.45), indicating the extent to 

which this also determines the model results. These ST values reveal the proportion of 

the variance of each input variable that is attributed to the output variable. 

• First-order sensitivity index (S1): This index shows that of all input variables, ambulance 

policy has the largest impact on performance, as measured by total deaths/wait times, 

with the highest S1 value of 0.54. “N Ambulance” has the second largest correlation to 

output power with the following S1 value (0.35). The S1 values provide information about 

the individual contribution of each of the input variables to the variance of the output. 

• Second-order sensitivity index (S2): The pair “N Ambulances” and “Ambulance Policy” 

has a positive S2 value of 0.11, indicating a stronger joint effect on the output variable. 

However, for other combination pairs (“Ambulance Policy,” “Injured”) and (“Injured,” “N- 

Ambulances”) there are negative to near zero values, indicating that little interaction 

leads to the model results. 
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These results show that “Ambulance policy” has the strongest influence on the model 

outcomes, indicating that it has a significant impact on performance of the model capability both 

individually and collectively. As significant ST and S1 values show, the number of ambulances (“N-

ambulances”) also has a major influence. In the context of a real situation, decision makers 

should give priority to optimizing “Ambulance policy” to influence the outcomes while 

considering the function of “N-ambulance directly and significantly.”  

The effectiveness of using the Sobol method in the analysis of ABMs is demonstrated by 

Borgonovo et al. (2022), who found that ABMs can be effectively evaluated by applying the Sobol 

sensitivity technique, which can improve the reliability of the model and its applicability in 

emergency decisions. According to Gao et al. (2023) and White et al. (2023), Sobol's sensitivity 

analysis can be highly effective in ABMS robustness assessment by helping to identify all essential 

elements in the model, providing an understanding of system interaction and influencing factors, 

and helping to predict the direction of change in a system. They claim that such analysis can be 

helpful in optimizing response strategies, improving decision-making processes, and improving 

the performance of EDs in disaster response scenarios. 

4.5. Chapter summary 

The results of this chapter demonstrate how modelling EDs using agent-based modelling 

in NetLogo can integrate and enable experimentation in a hypothetical disaster scenario. In 

addition, the implemented MFH-06-6-2 model was described and shown how experiments on the 

impact of ambulance policy on mortality outcomes and mean waiting times provided promising 

insights and a basis for further research. This refers to the application of computational 

techniques in disaster response, emergency department simulation and process optimization 

issues. While NetLogo's agent-based modelling has proven to be a helpful tool for realistic and 
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complex behavioural representation of simulation models, simulating entities in a disaster 

situation can be a daunting task that can be influenced by several factors such as the validation 

process. In addition, the level of complexity of the model could have an impact on the realism 

and reliability of the results. It is critical that model validation is carried out carefully to ensure 

that simulated results match potential reality. 

To validate the predictive ability of the ABMS model (MFH-06-6-2), I designed and 

implemented a Disaster Response Tabletop Role-Playing Game (DRTRPG). DRTRPG is a strategy 

that can serve as a valuable tool for validating ABMs, training in disaster response, and expanding 

healthcare workers' knowledge, including communication and collaboration. This is discussed in 

detail in the next chapter. 
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CHAPTER 5 

5.0. DISASTER RESPONSE TABLETOP ROLE-PLAYING GAME (DRTRPG) 
 

5.1. Introduction 
 

Building on the findings of the previous chapter, this chapter examines the development 

and implementation of a Disaster Response Tabletop Role-Playing Game (DRTRPG). The previous 

chapter demonstrated how Agent-Based Modelling Simulation (ABMS), particularly with the 

NetLogo modelling toolkit, can be modelled and effectively used to represent and integrate 

complex behaviours of EDs in a disaster scenario. In addition, the implementation of the NetLogo 

(MFH-06-6-2) model was simulated and promising results from experiments on the effects of 

ambulance policy on mortality outcomes and Mean Wait Time (MWT) were presented for the 

studied case. To validate the decision dynamics protocols of the ABMS model agents, the game-

based approach presented in this chapter will not only test the predictive capability of the ABMS 

model but also provide a platform for further studies on disaster response and simulation 

optimization in healthcare disaster response management. 

5.2. Disaster Response Tabletop Role-Playing Game (DRTRPG) 
 

Disaster response tabletop role-playing games have been investigated as a potential 

teaching tool for disaster preparedness. Tabletop disaster exercises or simulations have been 

shown to significantly improve healthcare workers' understanding of disaster management 

(Suleman et al., 2022). Role-playing games have also been used in the validation process of 

various ABMS. One of the variations in using games as a validation strategy is participatory 

simulation (A. J. Collins et al., 2024; Szczepanska et al., 2022). Additionally, games such as PREDIS 
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allow both experts and non-experts to simulate decision-making in disaster management and 

assess their choices (Rye & Aktas, 2022).  

The Disaster Response Tabletop Role-Playing Game (DRTRPG) developed for this study is 

a TRPG that utilized the analytical and predictive capabilities of an ABMS model to design a 

collaborative and interactive role-playing game. The aim is to create an environment in which 

participants can take on roles in a situation that represents aspects of the interactions within the 

ABMS simulated system. This combination can be particularly useful in areas where 

understanding complex systems and human behavior in decision-making situations is essential. 

Several factors highlight the importance of using a DRTRPG to verify/validate the 

predictive ability of the NetLogo MFH-06-6-2 model developed and implemented for this study. 

This includes: 

1. Cost-effective: Using tabletop role-playing games, training, educating 

people/organizations about disaster response and validating ABMs can be achieved at an 

exceptionally low cost. TRPG do not require the same resources as large-scale disaster 

simulations or exercises. 

2. Data collection: This involves observing and recording players interactions, decisions, and 

actions during gameplay. This data can then be used to examine the decision protocols of 

the agents in the model. 

3. Scenario testing: TRPGs focused on disaster response can be valuable tools for evaluating 

the effectiveness of different disaster scenarios in one model. By using these games, any 

defects or errors in the model can be located and corrected. 
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4. Expert validation: Disaster response experts can monitor the game and provide 

comments on the realism and accuracy of the model. By using their comments, the model 

can be expanded and improved. 

5. Analytical comparison: It is possible to compare the results of the model with those of 

the tabletop role-playing game. This makes it possible to detect and correct errors or 

inconsistencies in the model or game. 

This study's RPG integrated components from a validation strategy for ABMs suggested 

by Ligtenberg et al (2010). To confirm the ABMS model's accuracy in representing agent behavior 

and game outcomes, the method initially translates pertinent ABM elements into an RPG. 

Subsequently, it contrasts the outcomes of the RPG with those from the ABMS model. If the RPG 

can produce results akin to those of the ABM (whether visual, statistical, or otherwise), it 

suggests that the model agent's decision-making rule is dependable. 

5.2.1. The DRTRPG planning and development process 

The planning and development of tabletop role-playing games for this study includes 

various aspects that contribute to the design of an interactive and collaborative gaming 

experience. The development process includes detailing and simplifying aspects of the ABMS 

model and in-game implementation. This includes clear communication of the aim, objectives, 

guidelines, methodology, including the design concept, principles and experimental design, 

participant role(s), metrices, materials, data collection and analysis. All these aspects are 

elaborated in the following sections. 
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5.2.1.1. Aim of the DRTRPG exercise 

One aim is to shape the design and implementation of the DRTRPG. This is related to 

answering the second research question of this study (and consequently dealing with the third 

objective). The question is: “How can Disaster Response Tabletop Role-Playing Games (DRTRPGs) 

be used to verify/validate the representativeness of the response process of an ABMS model 

agent in the context of the disaster response scenario?” The objective is to ascertain if the data 

produced by the agents' decisions in the game align with the decision-making process of the 

ABMS model concerning the industrial explosion scenario. This will aid in enhancing the model's 

effectiveness and accuracy, ensuring it accurately reflects a real disaster response decision 

protocol. 

5.2.2.2. Objectives of the DRTRPG 

To address the research question, the following specific objectives were carefully 

formulated for the DRTRPG: 

1. Objective 1: To assess the improvement in understanding gained through the trainings 

and implementation of the DRTRPG through pre- and post-training assessments; 

2. Objective 2: To assess the effect of ambulance policy on mortality outcomes from the 

activities of the disaster response teams/agents (players) and visually and/or statistically 

compare the outcomes of the DRTRPG against the MFH-06-6-2-ABMS model outcomes 

(validation). 

To achieve these objectives, the DRTRPG-specific game rules are followed to ensure that 

the ABMS disaster response scenario remains central throughout the design process. These 

guidelines are listed below and are essential to the effectiveness and value of the exercise. 
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5.2.2.3. The DRTRPG guidelines 

The DRTRPG is conducted under the following guidelines, which are based on the 

traditional guidelines for disaster resposne-type role-playing games:  

1. Only players on the same team must communicate and collaborate effectively within their 

group before making decisions.  

2. The MoD/GM provides hints, guidance, and instructions for the game while the observers 

observe the players' actions and evaluate/record their findings. 

3.  Discussion in each group will focus on the emergency challenges that require quick 

decision-making. This promotes collaboration within teams to complete all aspects of 

tasks.  

4. The game has a time limit on the scenario tasks, forcing players to make quick decisions 

and allocate resources.    

5. The game includes consequences for decisions (e.g., death consequences) to encourage 

thoughtful decisions and increase realism.  

6. The game's design incorporates the concept of limited resources (ambulance, operating 

room, etc.) that players must use effectively to save lives if possible 

 The following section describes the methodology used in the game's design and implementation. 

5.3. Methodology: disaster response tabletop role-playing game design 
 

The Disaster Response Tabletop Role-Playing Game (DRTRPG), which emphasizes an 

ABMs model validation approach, as described by Ligtenberg et al (2010) was created as a 

scenario-based validation strategy for this study. This is summarized below: 

1. Create a foundational ABMS model, 
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2. Design an RPG version of the basic ABMS model and assign roles. The ABMS model is 

converted into a role-playing game in which the participants play through scenarios like 

those in the ABMS model, 

3. Guide participants/players to execute tasks in the game. The participants carry out tasks 

like those in ABM. 

4. Collect data with the RPG, 

5. Compare and contrast the RPG findings with those of the ABMS model.  

The exercise consists of two phases. In the first phase, participants are introduced to the 

DRTRPG concept in a group setting through preparatory training and exercises. During this phase, 

several elements of the ABMS model and the game were expanded and improved. In Phase 2, 

response data were then generated, examined, and compared against the basic ABMS model 

(again in a group-based setting) and between medical and master's students. The DRTRPG was 

created between 2023 and 2024 and two exercises (or three training sessions) were carried out 

during this time. Ten to fifteen people could easily fit into the standard classroom used for 

tabletop role-playing games at the IMT Mines Ales Clavières location. 

According to this design, each group experienced the same crisis response scenario 

(during the game). Prior to participating in the DRTRPG exercise, participants' knowledge of 

disaster management and health-related decision-making was assessed using a multiple-choice 

pre-game questionnaire. Next, a simulation (in-game activities) was conducted that represented 

components of the ABMS model (in the DRTRPG) by creating an environment (the disaster 

response case) in which players from each group collaborated and made decisions. While playing 

the game, each group simultaneously recorded the time spent on each task. At the same time, 
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observers also observed and evaluated players' actions during the in-game activities. The reason 

is to be able to generate extensive data in a brief time. The in-game activities are followed by a 

debriefing as well as a post-game questionnaire and an observer rating assessment answered by 

the players and observers, respectively. 

5.3.1. Participants 

Participants in this research with diverse experiences and backgrounds are asked to play 

the DRTRPG game as members of a team with specific roles (e.g., emergency responders, triage 

nurses, surgeons, etc.) in a cooperative role-playing environment to respond to a problem to 

respond to hypothetical explosion events and decide on the best possible medical care. In the 

first practice session, four groups of fifteen players each (including observers) test the game. In 

phase 2, a total of 11 participants were divided into just two groups in order to compare the 

behaviour of students and medical professionals. Using agent-based models and tabletop role-

playing techniques, I argue that the DRTRPG increases the validity and effectiveness of disaster 

response strategies. 

5.3.2. The DRTRPG design concepts, principles, and experimental setup  

Tabletop role-playing games developed for disaster response are useful resources for 

confirming the accuracy of agent-based models used in disaster management. Both experts and 

non-experts can make decisions faster and more accurately with games like PREDIS (Rye & Aktas, 

2022). Utomo et al (2022) state that data from RPGs can be used to validate ABMS models at 

both micro and macro levels to accurately represent real-world processes and knowledge in the 

model. Figure 17 shows the GUI of the ABMS simulation model underlying the game design 

(already presented and discussed in sections 4.2). 
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Figure 17: Graphical user interface of simulation used in the DRTRPG design (Amakama,2023a). 

The simulated crisis scenario provides the components of the disaster response role-

playing game's design found in the ABMS model's Graphical User Interface (GUI). Just as the 

agents (having defined roles) in the ABS collaborate to respond to an explosion in the oil and gas 

industry, players assume different roles in collaborate in the DRTRPG to deal with similar 

scenario. These roles represent simplified aspects of the ABMS simulation. In addition to other 

considerations of each of the key elements (game elements, game roles, and simulations) that 

were required to define and design the game. Table 2 provides a summary of the game design 

guiding principles. 
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Table 2: DRTRPG components, design choices and considerations 

Game elements Game description Game design decision Game playing considerations 

Game storyline A scenario modeled on the 
ABMS model and based on a 
simulated oil and gas industry 
disaster to validate response 
interactions and outcomes in a 
regional and mobile field 
hospital. Pre- and post-game 
questionnaires to evaluate 
knowledge gained from the 
game. 

- The game follows the parameters 
and guidelines of the ABMS model 
as much as possible to ensure 
accurate representation  
- Adapt the game in real time to 
address player concerns as they 
arise. 
- Storyline of the scenario can 
examine various “what if” 
scenarios. 

- The degree of accuracy with which 
the game captures the dynamics of the 
ABMS-modeled scenario. 
- The degree to which the game 
scenario and model are representative 
of a possible real-world scenario. 

Game roles Participants assume roles 
adapted from the ABMS model 
such as: emergency dispatcher, 
triage nurse, surgeon, etc. 

- Clearly define the responsibilities 
and decision-making procedures of 
the roles. 
- To assess performance, certain 
quantifiable metrics are used. 
- In DRTRPG design, players should 
feel the impact of their role 
interactions 

- Making sure a role is playable even if 
it might be complex enough to test the 
model. 
- The roles' impact on the thorough 
model validation procedure. 
- The requirement that participants 
learn the ABMS protocols through 
instruction. 

Simulations 
 
 
 
 
 
 
 
 
  

A series of ABMS-derived 
simulations that replicate the 
oil and gas explosion event and 
its aftermath, with an 
emphasis on collaborative 
response and decision making 
via in-game tasks 

- The simulations include scenarios 
and exercises that call for the 
application of disaster management 
techniques 
- Create recurring game loops that 
allow validation of the model 
through repeated trials. 
- Provide statistical or graphical 

comparisons between the impact 

of DRTRPG decisions and ABMS 

results. 

- Ensure game simulation provides 
useful/robust data for model 
validation. 
- Finding a balance between the 
simplicity of the game and the 
complexity of the ABMS. 
- Clearly convey the objectives and 
design of the basic ABMS model to 
participants and other relevant parties. 
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For tabletop role-playing exercises intended to provide instruction, validation, and 

training in disaster response and healthcare simulation, this table can serve as a three-step design 

guide. Next comes the experimental setup of the game. 

5.3.3. Experimental set-up 

The course of the experiment can be summarized in five progressive steps: (i) describing 

the DRTRPG plot, rules, and goals to the participants; (ii) assigning roles; (iii) simulation activities 

(in-game action); (iv) debriefing; and (v) player feedback presented in Table 3. 

 Table 3: Experimental implementation steps (DRTRPG) (estimated time: 2hrs:15 minutes) 

 
Actions  

                      
Resources 

                        
Duration (est.) 

The GM/MoD explains and discusses the plot 
and the rules of the game to the participants, 
including its objectives 

Presentation (PowerPoint) 30 mins 

Each participant is assigned a role by the 
GM/MoD (typically pre-selected into a group 
based on the participant's background). 

Printed label/computer 
online selection 

10 mins 

The participants (each group) deliberate about 
the particulars of their respective roles). 

 5 mins 

The GM/MoD presents the possible outcomes 
of the scenario as hypothetical truths and 
begins the simulations. 

Presentation (PowerPoint) 10 mins 

Participants take part in simulations of 
scenario tasks. By directing the story and 
generating relevant dialogue with tasks, the 
GM/MoD makes the game easier. The game 
leader makes sure that everyone follows the 
rules. 

Cards, phones, 
PowerPoint presentation 

60 mins 

Debriefing discussion, initiated by the 
GM/MoD with the observers and players. 

Presentation (PowerPoint) 10 mins 

After the experiment, participants receive a 
short post-experience questionnaire to 
complete to assess their expanded knowledge 
and insights gained. 

Questionnaires designed 
in Microsoft Form (online) 

10 mins 
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The GM(s)/MoD describes the environment at the beginning of the experiment. Each 

player is then assigned a role that determines their tasks for the duration of the game. Before 

the in-game simulation activities begin, players in each group are given a few minutes to interact 

so that everyone becomes familiar with their roles and can assign any other sub-role to a group 

member. The GM guides the players by giving them hints, initiating relevant conversations, and 

introducing important plot points according to the DRTRPG rules. To facilitate debriefing after 

the experiment, the research team observers documented and scored their observations. My 

research shows that a playgroup with eight to sixteen participants would be perfect. To generate 

meaningful datasets to validate the ABMS model, the game should have more activities. 

5.4. Metrics and data generation 
 

The DRTRPG activity scoring chart as shown in Table 4 was used to evaluate team 

decisions in the disaster scenario, with a focus on estimating mortality outcomes based on 

response times (performance metrics). Points are awarded to encourage competition and 

effective decision-making between groups (does not affect results). One tick in the ABMS model 

corresponds to the estimated six minutes for each task. 

Table 4: Game activity scoring chart 

Decision time conditions  Estimated outcomes (deaths)  Outcome 
points  

Team decision taken at     
T ≤ 2 minute  

All mild patients are saved. Mortality outcome, d ≤ 
5 from moderate and severe  

10  

Team decision taken at     
2 < t ≤ 4 minutes  

All mild patients are saved. Mortality outcome, 5 < 
d ≤ 10 from moderate and severe patients  

5  

Team decision taken at     
4 < t ≥ 6 minutes  

All mild patients are saved. Mortality outcome, d ≥ 
10 for moderate and severe patients  

0  
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Based on the ambulance policy for this task, this study estimated mortality outcomes 

using this scoring table and recorded response times for each group. This implies that faster 

response times could be a sign of better decision making and coordination within the team. 

5.4.1. Data collection and analysis 

In the ABMS validation phase, the data collected from the role-playing experiments can 

be used in various ways. One method is to examine the results and compare them with the ABMS 

results. However, these comparison results can be divided into two types; myopic or hyperopic. 

The myopic comparative data focuses on the decisions made by participants in the scenario 

game, with emphasis on the characteristics of each decision. To analyze how often both the 

simulated agents and role players make similar decisions, detailed micro-level myopic 

comparative data can be used (A. J. Collins et al., 2024). In contrast, hyperopia comparison data 

focuses on the possible outcomes of the situation, specifically determining whether both exhibit 

comparable overall behaviour. A macro-level hyperopic comparison can be difficult to perform 

because the role-playing scenario may only cover a small percentage of the simulated scenario 

(A. J. Collins et al., 2024). This study considers the hyperopia comparison strategy using basic 

tabletop materials for the game implementation and data collection. 

5.4.2. Materials for the DRTRPG  

For the success of any tabletop role-playing game, it is important to select materials that enhance 

the experience. Each material that makes up the DRTRPG's resources has a specific function within the 

game's ecosystem. The following are the basic materials of the exercise: 

1. Maps of the disaster response scenario, based on the in-game tasks 
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2. DRTRPG presentation slides 

3. In-game tasks response record form 

4. Pencils/pens/stopwatches 

5. Pre/post assessment test/observer’s evaluation forms  

The DRTRPG was designed to assess the impact of rescue efforts on mortality outcomes 

using data from games and to validate the predictive power of the ABMS model. The results were 

then compared visually and statistically with the results in Section 4.3 regarding the impact of 

ambulance policy on mortality ABMS results.  The aim is to assess whether the decision-making 

processes in the two approaches correspond qualitatively and/or quantitatively. Figure 25 shows 

an overview of the DRTRPG configuration. 
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Figure 25: Disaster Response Tabletop Role-Playing Game (DRTRPG) process setup summary 

 During this experiment, two teams (A and B) compete against each other by completing 

a set of 18 emergency tasks in a disaster scenario with different patient counts, response times, 

and severity distributions. The exercise is conducted using predetermined rules and procedures 

designed to reproduce the developed ABMS NetLogo model. The DRTRPG setup and in-game 

action sessions are shown in Figure 26. 
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Figure 26: (a) - (d): DRTRPG players interaction and collaboration (a) the group 
stakeholder's tabletop setup, (b)-(c) the second experiment for students and medical 
doctors (7 March 2024) and (d) the first experiment (6 March 2023). (Amakama et al., 
2024) 

 

5.5. Results  

Sixteen participants (split into four groups) and two observers participated in the tabletop 

test experiment. Nine master's students, one doctor, one emergency responder, one PhD 

student, and one postdoctoral student make up the distribution of participants based on their 

backgrounds and experiences. The last DRTRPG exercise involved 10 participants (in two groups), 

along with 2 observers. There was a 100% response rate (8 out of 8) on the pre-(12 multiple 

choice) and post-(13 multiple choice) DRTRPG evaluation test questions to assess whether the 

game resulted in knowledge gain.  
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5.5.1 Pre and post DRTRPG tests  

For the doctors (Group A), the pre- and post-assessment test shows an 11.5% (64.5% to 

72.9%) increase in knowledge from the game about disaster management and health 

interactions, but on average there was no increase in the time, required to complete the tests 

(11.5 minutes out of an estimated 15 minutes for both assessment tests). The pre- and post-

assessment of the DRTRPG for Group B (students without a medical background) shows a slight 

increase in knowledge (3.1%) based on the correctly answered assessment test questions. 

However, there was a slight decrease between pre- and post-assessment response times (15:05 

to 14:30 minutes). 

In the post-game survey answered by participants regarding team challenges and how 

they were overcome during the game, the physicians' (Group A) reflections showed a pattern 

focused on group members' difficulty in reaching consensus, which was attributed to their 

medical background became experiences. The team addressed this problem with strategies such 

as assigning roles to less engaged members and adaptive leadership, which led to improved 

coordination and unified decision-making. For the students, their reflections show that their 

challenges lay in resource management and understanding some technical terms. The group 

overcame these obstacles through effective communication and scenario resource tracking. 

Both groups agreed that the guidance and support from the Game Master/Master of 

Disaster (GM/MoD) was helpful, and the tabletop exercise was an effective tool for 

understanding the modelled disaster management concepts. Additionally, observer ratings 

during and after the game (using the forms in Appendix C2-C3) indicate that both teams 
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demonstrated elevated levels of engagement and communication skills. However, time 

management presented some challenges for both groups, indicating room for improvement. 

Overall, both teams were rated by the observers as competent in terms of their performance in 

the various criteria. However, to achieve the second objective of DRTRPGs (validation of the 

predictive ability of the ABMS model), this study collected and analysed data from the in-game 

activities on the impact of ambulance policy on mortality rates. 

5.5.2. Effects of ambulance policy on mortality outcomes (validation) 

An ambulance policy is a group of regulations that govern the performance, deployment, 

and other aspects of emergency response systems in addition to patient care. A boxplot is used 

to represent the distribution of data from the teams participating in the game activity (Figure 

27b) to compare the results of the ABMS model and evaluate the effectiveness of the response 

measures. This evaluation uses the results (shown in Figure 27) for the two policies (“Always go 

to RH” and “Alternate”). Figure 27(a) shows the ABMS results, which simulate the behavior and 

interactions of autonomous agents using computational techniques to generate data about the 

agents' interactions in the disaster scenario and analyze them using Pandas. Figure 27(b) shows 

the results of the DRTRPG experiment, which utilizes a more participatory and interactive 

simulation technique by using RPG to reproduce aspects of the decision protocols of the ABMS 

model. 



   

 

 
124 

 
 

 

Figure 27: Effects of ambulance policy on morality outcome for (a) ABMS model, (b) DRTRPG 

This study's comparison of results offers insights into the efficacy of each response policy 

by using role-playing methods to validate agent-based models. It achieves this by comparing the 

outcomes of the two approaches. The subsequent sections delve into the interpretation and 

implications of these findings. 

5.6. Discussion of the results 

The validation and communication of the results of the ABMS model in this study differs 

slightly from widely used traditional techniques. This study chose to compare the simulation 

results of an ABMS model qualitatively (visually) and statistically with the results of a disaster 

relief role-playing game, rather than comparing the accuracy of the model results with an 

equivalent model in the real world. The aim is to increase stakeholder confidence in the 

predictive power of the model. Conversely, the goal is to examine the ability of the DRTRPG to 

replicate tasks of individual agents and analyse the results of group decision-making processes. 
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During the study period, a hypothetical ABMS scenario was first modelled and then 

doctors and students took on the role of agents in the DRTRPG since it was not possible to obtain 

experimental or real data during this period. This enabled various observations to be made and 

controlled experiments, analytical comparisons, and scenario-based tests to be carried out cost-

effectively. For the simplified class case of the study, using the group-based collaborative 

approach to data generation and validation of the ABM appears to provide promising results that 

are understandable to both the modeler and the role-playing participants. 

The results of the DRTRPG show that the game contributes to increasing knowledge about 

disaster management in interacting emergency departments, especially for people with a 

medical background. While there was a slight increase in knowledge among students (Group B), 

there was a significant increase in knowledge among doctors (Group A). The fact that players 

who had experience with medicine or disaster relief appeared to benefit more from the game 

suggests that the questions were appropriate to their level of experience. However, the reduced 

time to complete the post-test assessment in Group B may be due to an adjustment in practice 

rather than a notable improvement in disaster management knowledge. Players recognized that 

the game could be used as a teaching tool for disaster management and generally found it 

educational and useful. I emphasize that the background of the participant should be considered 

when designing the game in order to optimize learning success. 

A nuanced assessment of team performance is supported by the observers scores on 

game activities and feedback ratings. Both teams were perceived as very collaborative and 

communicative. Observers recognized that time management was a minor weak point for both 
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teams, suggesting an area for improvement in subsequent exercises. Team B received higher 

ratings overall, suggesting that observers placed slightly more weight on role connection than on 

situational awareness, an area in which Team A performed particularly well. Additionally, Team 

B was believed to be more sympathetic to their positions. Across all metrics, no team appeared 

to be in control, and observers generally rated different competencies differently within each 

team. 

The two strategies (Figure 27) shows that both the ABMS model outcomes and DRTRPG 

outcomes have similar decision dynamics (the mortality outcomes for the policies). However, it 

is necessary to conduct additional study on the data using basic statistics as there appear to be 

significant differences in the data distribution. The “Always go to RH” policy has mean mortalities 

and S.D for ABMS scores that are 23.22 and 8.98, respectively, higher than the “Alternate” policy 

values. The policy has consistently resulted in lives being saved, as evidenced by the lower mean 

of 15.85 and S.D (0.79). There are also some differences in mortality outcomes, as shown by the 

mean and SD of the “Alternate” policy, which are 19.75 and 8.27, respectively. The median, 25th, 

and 75th percentiles, located at 20, 14, and 26.75, respectively, show a higher concentration of 

dataset points below the median. 

Regarding the DRTRPG results, the “Always go RH” policy has a slightly higher mean 

mortality (8.94) than the “Alternate” policy with an S.D. of 2.6, indicating greater variability. The 

lives saved, on the other hand, show good consistency, although with a mean of 29.72 and an 

S.D. of 2.86, above that of the “Alternate” policy (33.0, 2.11). The results of the “Alternate” policy 

show a S.D of 1.19, indicating lower variability and lower mean mortality (6.11) compared to the 
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“Always go RH” policy. In terms of average number of lives saved, the “Alternate” policy results 

in a higher number (33 lives saved) with an S.D. of 1.90, showing that this policy consistently 

saves more lives.  

Although the "Alternate" policy has a lower average mortality compared to the "Always 

go to RH" policy (suggesting that the "Alternate" policy may be a more effective strategy for 

reducing mortality/saving lives), the " Always go to RH” policy produces more consistent results 

in lives saved, as evidenced by the lower S.D. for lives saved. For both policies, DRTRPG results 

consistently show lower mortality and more lives saved than ABMS results, with less variability 

in results. This could mean that the ABMS overestimates the variability or that the DRTRPG does 

not fully capture the range of variability encountered in the ABMS model. The maximum values 

for lives saved in the DRTRPG compared to the ABMS could indicate that the ABMS overestimates 

lives saved or that the DRTRPG results are overly optimistic. 

The notable differences between the results of the DRTRPG and ABMS models highlight 

the difficulties in validating the predictive power of ABMS through role-playing games. This 

significant deviation may be caused by the significantly lower number of simulations runs (18) of 

the DRTRPG compared to 720 of the ABMS model, which limits the statistical robustness of the 

DRTRPG. This means that the validation process may be uncertain as the smaller sample size may 

not accurately reflect the scope of the scenario. I therefore recommend adjusting the calibration 

to better adapt the ABM to the human-interactive dynamics of the DRTRPG and thus improve 

the validation results.  
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Additionally, it is possible that the DRTRPG results were influenced by players' knowledge, 

experience, and bias, which may have resulted in more optimal decision-making than expected. 

One may have to assume that the DRTRPG represents only a “best case” scenario since the 

purpose of the study is to validate ABMS model protocols using the DRTRPG. If real data is 

available, additional analysis could include comparing the models against it to determine which 

strategy more accurately represents the actual results and determine the reason for the 

significant difference between the two simulation results. 

Several studies have successfully used RPG to validate or understand ABMs in disaster 

response and related areas. For example, the study by Ramchurn et al (2016) used tabletop 

disaster response RPG to validate ABMs to improve understanding and test the effectiveness of 

the system in simulating scenarios. In another study, Guyot & Honiden (2006) merged TRPGs with 

ABMs, improving validation by allowing human participants to control agents, thus bridging the 

gap between model and real behavior. A tabletop disaster response role-playing game such as 

RimSim was also used by Campbell & Schroder (2009), to validate ABMs for emergency response 

training and to improve crisis management strategies through simulations. This approach of using 

TRPGs to validate ABMs is also supported by Janssen & Ostrom (2006), who claimed that disaster 

response tabletop role-playing games can be used as an empirical approach to validating ABMs. 

Finally, Mariano & Alves (2020) also integrated role-playing games such as WaDiGa with ABM in 

water management to reflect local decision-making and show the correspondence between 

game and model results. 
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5.7. Lessons learnt 

Responses from both groups highlight the importance of effective communication, 

leadership, and resource management in disaster response scenarios. For the physicians, their 

experiences highlight the need for interdisciplinary skills such as team leadership and decision-

making under pressure that go beyond their medical expertise. Adapting to assigned roles and 

leadership adjustments demonstrates the value of flexibility and the ability to learn from 

experience in a dynamic crisis environment. The master's students' reflections highlight the 

importance of a clear understanding of the operational environment, including technical 

languages. Both teams agree that support from the GM/MoD is critical in dealing with complex 

situations. Additionally, they agree that the use of simulations such as DRTRPGs can be an 

effective teaching tool that provides practical experience that can be translated into real-world 

applications. These insights can inform the development of disaster management training 

programs and protocols, ensuring teams are better prepared to meet the challenges of real-

world emergency situations. 

5.8. Chapter summary  
 

 This chapter discussed the planning, design, and implementation of DRTRPGs as a method 

to improve knowledge of disaster response management and validate the predictive capability 

of ABMs in the context of interacting EDs for a disaster response event. By simulating a complex 

decision-making scenario, the DRTRPGs not only serve to engage participants in the mechanics 

of the DRTRPG, but also provide a platform for data collection, scenario testing and comparative 

analysis, bridging the gap between theoretical models and practical application. The insights 
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gained highlight the crucial role of effective communication, leadership, resource management 

and adaptability in crisis situations.  

Furthermore, the results suggest that RPGs can make a significant contribution to disaster 

preparedness training and highlight their potential to improve participants' understanding of 

complex systems and decision-making under pressure. However, the use of RPGs in validating 

ABMS models is challenging, as it is a daunting task to have a complete representation of the 

ABMs implemented in RPGs. The closing chapter summarizes the study and describes in detail its 

contributions, challenges, conclusions, and recommendations. The aim is to provide a 

comprehensive overview of the research implications and future directions in the areas of 

disaster management, simulation-based studies, and collaborative simulation games. 
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CHAPTER 6 

6.0. SUMMARY, CONTRIBUTIONS, CHALLENGES/LIMITATIONS, 

CONCLUSION AND RECOMMENDATIONS 
 

6.1. Introduction 

In this final chapter, I share my thoughts and insights from the data analysis performed 

using various tools, including Microsoft Excel, Pandas from the Anaconda libraries, and others, 

on the data produced by the applied methods (ABMS and RPG). This chapter also includes a 

summary of the results of the study, its contribution to the scientific community, its limitations 

and difficulties, and recommendations for further research. 

The previous chapters presented the context of the study, conducted a literature review, 

and described the model design and development process. In addition, the impact of ambulance 

policy on mortality and mean waiting times examined using data generated from NetLogo's 

BehaviorSpace (data generation and experimentation function) and the DRTRPG exercise. The 

use of Business Process Management and Notation (BPMN) provided a way to simplify and 

represent the workflow of the interacting MFH and RH as emergency departments (EDs). The 

analysis of the simulation results provided insights into the phenomenon of complex interaction 

between the EDs in the hypothetical disaster response scenario. In addition, the DRTRPG results 

from participants' interaction and collaboration were used to evaluate the predictive capability 

of the ABMS model and assess its consistency. 
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6.2. Summary of the study 

This study examines the application of computational techniques and disaster response 

role-playing game to assess the feasibility of developing a reproducible and adaptable simulation 

model for disaster response and crisis decision-making in healthcare. A crisis management 

approach is used to deploy resources and evacuate victims from a hypothetical disaster site 

following a sudden onset of disaster. This approach requires diverse agents and their ability to 

coordinate and allocate resources effectively. While the model in no way replaces any real 

system, the simulations and exercise developed and implemented in this study can serve as an 

analytical tool to support process improvement, training, and decision-making.  

The simulation model and game developed for this study analysed the results of both 

reactive and deliberative agents’ decisions, evaluated as mortality, and mean wait time outcomes 

from interacting emergency departments. The core elements of the developed agent-based 

model (NetLogo 6.3.0) were then transformed and implemented in a tabletop serious game 

where participants played through the model's decision-making rules, providing an answer to the 

study’s research questions. This research questions posed in this study are: (1) "How can the 

interaction between a regional hospital (RH) and a mobile field hospital (MFH) be modelled for a 

disaster response setting for the oil and gas industry?" and (2) "How can Disaster Response 

Tabletop Role-Playing Games (DRTRPGs) be used to verify/validate the representativeness of the 

ABMS model agents’ response process in the context of the disaster response scenario?" The aim 

of this study is to "improve the interoperability between a regional hospital and a mobile field 
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hospital by detailing the process of interaction between the systems," describing a typical 

disaster response incident control system.  

In the event of an industrial explosion such as that hypothesized in this study, the 

parameters examined highlighted the uncertainties associated with the complexity of responding 

to a disaster scenario and the variability due to the crisis context as critical to patient outcomes. 

The examined indicators can serve two purposes: (1) enable an assessment of the overall 

effectiveness of disaster response strategies; and (2) draw attention to elements in the context 

of disaster response management that may have larger and complementary impacts. The need 

for informed decision-making in disaster situations to reduce patient mortality rates and mean 

waiting times between interoperable healthcare systems is demonstrated in this study through 

modelling, simulation, and gamification. Therefore, the potential and effectiveness of using 

combined techniques to gain valuable insights into the interactions within complex systems is 

established. 

6.3. Contributions of the study 

For a study to be successful and useful for a particular area, it must consider both the 

research purpose and objectives and describe in detail how each objective was achieved. To 

develop a methodological, interaction-based, and exploratory technique that can guide future 

interdisciplinary research, this study combined both ABMS and RPG methods. By using datasets 

generated from both approaches, the feasibility of the proposed technique was validated. 

Therefore, the form of contributions in this study provides answers to the research questions. 

ABMS-RPG based exploratory studies that simulate interactions between a RH and an MFH in 
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emergency situations have enormous potential to contribute to progress in various areas, as 

outlined below: 

• Knowledge gap identification: Identifying critical knowledge gaps is a major advantage 

when conducting exploratory research in the field of disaster response and serves a dual 

purpose: to guide and inform future research and to facilitate the prioritization of domain-

specific efforts in this area. Therefore, the contribution of assessing the impact of 

ambulance operations in a disaster response scenario between interacting health systems 

while addressing issues of response coordination and resource allocation is significant to 

the advancement of future scientific investigations. 

• Improved understanding of complex hospital systems interaction in disaster settings: By 

integrating an agent-based model into this research study, a better understanding of the 

complex systems and dynamics of disaster response for interacting hospital systems was 

achieved. This approach enabled a better understanding of critical factors such as resource 

allocation and efficient response coordination, which are crucial to improving disaster 

response competency in sudden-onset disasters. In addition, it provides a basis for future 

research aimed at refining the understanding and effectiveness of computational methods 

for disaster response class problems. 

• Training/Education: The simulation model and role-play developed as part of this research 

study can be an effective, versatile training and educational tool tailored to the needs of 

emergency response teams and healthcare providers and can help practitioners gain a 

better understanding of disaster response systems. As a result, it can help improve skills 
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and strengthen preparedness for real-world disasters. Additionally, the simulation model's 

ability to enable experiential learning about its simulated environment for scenario-based 

training exercises can help response teams and health care providers improve their 

preparation and ability to effectively respond to the complex disaster response class 

problems. 

• Coordination and communication practice: The game scenario offers the opportunity to 

improve basic knowledge, but also illustrates how important it is to coordinate various 

health facilities and emergency services quickly and effectively. 

• Evidence-based policy making: By closely examining the results of various strategies in 

both the ABMS model and the game setting, policymakers and public health practitioners 

can develop more informed and evidence-based policies and protocols that specifically 

address the disaster response challenges associated with the oil and gas industry. 

Additionally, previous work on using NetLogo in modelling and simulating disaster 

response scenarios with a focus on the mortality outcomes and mean wait times of emergency 

scenarios was conducted using older versions that may not have taken advantage of the 

BehaviorSpace feature set to enable numerous sampling combinations. These parameter 

experiments are carried out automatically and generates very extensive data sets. This study 

argues that although Netlogo provides a visualization window and basic graphics, it needs other 

tools for better data manipulation, statistics, and graphics. 

To meet this requirement, this study utilized several Pandas upon Anaconda libraries 

(Python tools) and other statistical tools for data analysis. Although there are articles about using 
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NetLogo in healthcare and disaster response, this study provides further details on the specific 

issues a programmer new to Netlogo faces when tackling a crisis and disaster management 

challenge. This is available in the “code” and “info” tabs for the model and system 

documentation, along with inline comments explaining the reasoning behind some coding 

decisions. This study therefore serves as preliminary work to achieve future improvement of 

healthcare systems by modelling the interaction between hospital systems in disaster situations. 

6.4. Challenges/limitations of the study 

The validity and applicability of research results are always influenced by the availability 

and quality of the data; Therefore, it is crucial that any challenges or limitations that may have 

influenced the results are properly acknowledged. This will help define a clear perspective for 

future studies. Although I am convinced and confident that both the model and the role-play 

(with some variations) correctly predict the concept, there is no clear claim that a sufficiently 

strong relationship exists (until it is tested, calibrated, and validated against a real system), 

between the outcomes of the investigated strategies and an actual disaster response scenario. 

According to Collins et al. (2024), a simulation can never fully reproduce the system under study; 

Therefore, comparisons should be limited to the critical elements of the simulated environment. 

They also noted that the goals of the simulation determine the necessary components and serve 

as the standard against which all validation efforts are measured. 

On the above crucial points, my position is that no individual or organization is 

recommended to use the results of this study in making important policy decisions. This is 

because the modelled system is a hypothetical case and therefore the agents decisions are not 
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based on local data. Therefore, the agent’s interactions and the resulting outcomes are based on 

simple rules and goals based on certain simplified assumptions. In other words, this study 

investigates the usefulness of the NetLogo 6.3.0 modelling tool and simulation game in testing 

and evaluating outcomes in a disaster environment based on simply defined rules in emergency 

situations. 

Another limitation of this study is its narrow scope, as it examines only a few selected 

performance indicators: mortality outcomes and waiting times related to ambulance policy. 

Therefore, other secondary Key Performance Indicators (KPIs) such as the impact of patient 

waiting time on system performance in distinct phases were not considered. Additionally, other 

important aspects in EDs such as patient diagnoses, patient satisfaction, overall quality of care, 

or physician physical condition were assumed to have been completed in the course of the 

patient care.  For example, studying the impact of physician fatigue on service quality, such as: 

accurate diagnoses and fewer readmissions. Furthermore, to model the scenario, this study 

relied primarily on literature reviews and plausibility checks rather than experimental 

observations of real systems. 

Additionally, because the study focuses on predicting mortality outcomes and waiting 

times in simplified emergency departments, it ignores other factors that could result in other 

secondary outcomes from the interaction between these systems (e.g., logistics, clinical staff, 

etc.). Future models could consider integrating additional social decision-making processes of 

stakeholders (agents) into the system and conduct better classical tests (calibration, validation, 
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refinement, etc.) based on local data availability to evaluate the feasibility of using the model 

more effectively for Improve decisions support. 

Finally, regarding the challenge of using ABMS for the modelled system, this study showed 

that a substantial number of computational resources and detailed data are required to achieve 

better results. As computer power increases, new opportunities for ABMS modelling could 

emerge. However, running a highly detailed model with hundreds or thousands of agents 

requires computational resources. ABMS software can also be a challenge to master in a brief 

period because it requires some basic programming skills in addition to a thorough 

understanding of the underlying theories. Concerns about patient privacy also posed a major 

challenge in data acquisition. This research also shows that, data sources may not exist (as this 

study demonstrates) or may not contain all the necessary information for an accurate and 

comprehensive ABMS model development and to design a robust role-playing game. Under these 

circumstances, synthetic data generation became the only way to explore the capabilities of the 

ABMS toolkit. Additionally, data cleaning and manipulation can be time-consuming. 

6.5. Conclusion 

The demand for oil and gas resources has made the petroleum industry an important 

contributor to the global economy. However, statistics on petroleum exploration and production 

activities have shown that they are prone to major industrial disasters, resulting in injuries and 

deaths. In disaster situations, an efficient and effective emergency plan is required. This study 

highlights the need to generate potential outcomes and test how response strategies would 

influence mortality and waiting times. The research demonstrated how effective procedures can 
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be implemented for different scenarios, resulting in faster response times and better health 

outcomes. However, since the results of the study are based on a hypothetical case, further 

investigation and calibration of the model is recommended to achieve the best results. 

The combination of NetLogo (ABMS) and DRTRPG techniques provides a unique approach 

to evaluating contingency plans, supported by evidence of their significant value from the results. 

The methodological approach adopted in this study provided not only a realistic simulation, but 

also a platform that can be adapted for informed decision making and employee training. The 

use of these tools provided evidence of the need to improve emergency response to disasters 

and reduce mortality rates in disaster situations.  

These collections of generative scientific knowledge led to significant results achieved 

through the combination techniques and thus provided an important framework for 

consideration in future studies. The results of this study also showed that the proposed 

hypothesis that the deployment of MFHs within the first four hours in a post-disaster situation in 

collaboration with an existing regional hospital can help reduce the mortality rate and mean 

waiting times of injured patients. Therefore, the importance of policy assessment for improving 

emergency response strategies and the application of simulation technologies such as NetLogo 

ABMS and scenario-based RPG for disaster response in modelling, simulating and communicating 

system interactions is highlighted. 

The main findings of the study provided essential information and viable solutions to 

improve industrial disaster response plans. It also highlights the need for flexible and dynamic 

response strategies that can successfully mitigate the challenges posed by disaster scenarios 
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through a thorough comparative analysis between “Always go to RH” and “Alternate” policies. 

With DRTRPG, simulation exercises are conducted that not only provide the opportunity to 

validate the predictive accuracy of the response decisions made by the ABMS model agents, but 

also act as a bridge between theoretical models and real-world applications. Decision makers 

may utilize the study's findings to prioritize disaster response variables and improve emergency 

services in high-risk situations. 

Based on the results, I suggest that policymakers should think about how response 

methods affect the consequences of disasters. In this study, I also propose the use of simulation 

tools to develop, evaluate and improve resilient and adaptive health systems. This study 

demonstrates the benefits of integrated response strategies in addition to its insights into RH-

MFH dynamics in possible disaster scenarios. The study reveals that the “Alternate” policy that 

utilizes RH and MFH resources, achieve better outcomes and enabled collaborative disaster 

management to save more lives and subsequently reduced the average waiting times. 

Using the DRTRPG validation approach, I developed, implemented and evaluated the 

predictive ability of the ABMS models while providing empirical data and perspectives to the 

disaster management literature to improve the forecasting tools. This strategy provides a 

collaborative framework for problem-solving and decision-making while testing the theoretical 

foundations of disaster response plans. The research uses ABMS and DRTRPG to improve our 

understanding of disaster response processes, optimize policies, and provide theory for disaster 

planning, training, and response education. Thus, this exploratory study serves as a foundation 

for simulation and game-based disaster response strategies by highlighting the transformative 
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potential of simulation-based methods in creating robust, effective, and flexible disaster 

management systems. 

6.6. Recommendations for future studies 

Further research is needed in this area as the review of the literature highlights the need 

for additional studies on simulation models for interoperability between healthcare systems in 

an industrial emergency scenario. Subsequent research could explore topics related to human 

factors, such as simulating and quantifying the effects of human characteristics such as fatigue 

on medical systems. Therefore, “How can human aspects related to fatigue and emotions of 

people be developed and modeled in healthcare systems during emergencies?” would be an 

interesting research question that would arise from such a study. 

In addition, since this study is not based on the development of a comparable, real-world 

system of an actual emergency department, it would be interesting to investigate the feasibility 

of developing a generic simulation model for the emergency department that considers human 

aspects related to service quality, effectiveness of diagnosis and patient satisfaction in health 

systems. A research question that could be investigated could be: “How can a generic model be 

developed and used to incorporate emotional and competence aspects such as patient 

satisfaction and service quality in disaster situations?” A third aspect for further research using 

simulation techniques would be to use more advanced modeling - and simulation packages such 

as AnyLogic, which are intended to integrate both ABMS and DES approaches. Such a study would 

enable better calibration and comparison of hybrid strategies. 
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While using tabletop role-playing games to validate agent-based NetLogo models 

presents challenges, it also provides a dynamic approach that promotes a deeper understanding 

of complex systems. This study therefore highlights the potential benefits of this validation 

technique (although it focuses on a hypothetical scenario) and recommends that game 

participants should be included in the ABMS model development structure from the beginning 

of the project to achieve better calibration and validation results. Both the agent-based model 

and the serious game should be continuously refined through feedback loops and collaboration 

between modelers and game developers. 

Appendices A2-A6 show BPMN diagrams based on predictions of the severity of 

consequences of industrial explosions, ranging from polytrauma to influenza-related illnesses. 

This provides a basic operational planning and decision-making framework for future studies. The 

purpose of these diagrams is to provide strategic guidance for disaster response mechanisms for 

MFHs. Future research should attempt to model these processes and focus on improving and 

empirically testing the proposed BPMN frameworks, focusing on their adaptability and scalability 

in a range of disaster scenarios. In this way, it will be possible to practically apply the theoretical 

insights from this research to improve disaster resilience in more complex cases. 

 

 



   

 

 
143 

 
 

REFERENCES  

Abate, V., Adacher, L., & Pascucci, F. (2014). Situation awareness in critical infrastructures. 

International Journal of Simulation and Process Modelling. 

https://www.inderscienceonline.com/doi/10.1504/IJSPM.2014.061451 

Abulebda, K., Lutfi, R., Whitfill, T., Abu-Sultaneh, S., Leeper, K. J., Weinstein, E., & Auerbach, M. 

A. (2018). A Collaborative In Situ Simulation-based Pediatric Readiness Improvement 

Program for Community Emergency Departments. Academic Emergency Medicine, 

25(2), 177–185. https://doi.org/10.1111/acem.13329 

Ajmi, F., Ben Othman, S., Zgaya Biau, H., & Hammadi, S. (2018, August). Scheduling Approch to 

Control the Execution of the Patient Pathway Workflow in the Emergency Department. 

The 3th International FLINS Conference on Data Science and Knowledge Engineering for 

Sensing Decision Support (FLINS 2018). https://hal.science/hal-01773708 

Al Halabi, A. M., Habas, E., Ghazouani, H., Borham, A. M., Swallmeh, E., & Abou-Samra, A.-B. 

(2022). Scenarios to Improve the Patient Experience Time in a Tertiary Academic 

Hospital Using Simulation. Cureus. https://doi.org/10.7759/cureus.30751 

Albert, L. A. (2023). A mixed-integer programming model for identifying intuitive ambulance 

dispatching policies. Journal of the Operational Research Society, 74(11), 2300–2311. 

https://doi.org/10.1080/01605682.2022.2139646 

Al-Fedaghi, S. (2016). Conceptual Modeling in Simulation: A Representation that Assimilates 

Events. International Journal of Advanced Computer Science and Applications, 7(10). 

https://doi.org/10.14569/IJACSA.2016.071038 

Aloui, S., Chapurlat, V., & Penalva, J. M. (2006). Linking interoperability and risk assessment: A 

methodological approach for socio-technical systems. IFAC Proceedings, 39(3), 585–590. 

Alrehaili, N. R., Almutairi, Y. N., Alghamdi, H. M., & Almuthaybiri, M. S. (2022). A Structural 

Review on Disaster Management Models and Their Contributions. International Journal 

of Disaster Management, 5(2), 93–108. https://doi.org/10.24815/ijdm.v5i2.27087 



   

 

 
144 

 
 

Altay, N. (2013). Capability-based resource allocation for effective disaster response. IMA 

Journal of Management Mathematics, 24(2), 253–266. 

https://doi.org/10.1093/imaman/dps001 

Altay, N., & Green, W. G. (2006). OR/MS research in disaster operations management. 

European Journal of Operational Research, 175(1), 475–493. 

https://doi.org/10.1016/j.ejor.2005.05.016 

Altevogt, B. M., Stroud, C., Nadig, L., & Hougan, M. (2010). Forum on Medical and Public Health 

Preparedness for Catastrophic Events. 

Amadou, M. L., Villamor, G. B., & Kyei-Baffour, N. (2018). Simulating agricultural land-use 

adaptation decisions to climate change: An empirical agent-based modelling in northern 

Ghana. Agricultural Systems, 166, 196–209. https://doi.org/10.1016/j.agsy.2017.10.015 

Amakama, N. J., Dusserre, G., Cadiere, A., & Schuette, R. W. (2023a, September 5). Assessing 

the Impact of Wait Times on Patient Mortality Outcomes in a Hypothetical Oil and Gas 

Industry Disaster Scenario: An Agent-Based Modeling Approach Using NetLogo. QPSS 

2023 - Qatar Process Safety Symposium. https://imt-mines-ales.hal.science/hal-

04199308 

Amakama, N. J., Dusserre, G., Cadiere, A., & Schuette, R. W. (2023b, September 5). Assessing 

the Impact of Wait Times on Patient Mortality Outcomes in a Hypothetical Oil and Gas 

Industry Disaster Scenario: An Agent-Based Modeling Approach Using NetLogo. QPSS 

2023 - Qatar Process Safety Symposium. https://imt-mines-ales.hal.science/hal-

04199308 

Amakama, N. J., Dusserre, G., Cadiere, A., Schuette, R. W., & Zacharewicz, G. (2023, April 13). 

Risk Management and Disaster Response In the Oil and Gas Industry: Modelling and 

Implementation of Interoperable Healthcare Systems Solution for Disaster Response in 

the Oil and Gas Industry. Colloque IMT 2023 : « Sécurité et Résilience ». 

https://doi.org/10.5281/zenodo.7937270 

Amakama, N. J., Dusserre, G., Cadiere, A., Schuette, R. W., & Zacharewicz, G. (2024). How 

Effective are Tabletop Role-Playing (Serious) Games in Understanding and Validating the 

Predictive Capabilities of Disaster Response Agent-based Models? American Journal of 



   

 

 
145 

 
 

Multidisciplinary Research and Innovation, 3(4), 49–61. 

https://doi.org/10.54536/ajmri.v3i4.2937 

Anand, N., Meijer, D., van Duin, J. H. R., Tavasszy, L., & Meijer, S. (2016). Validation of an agent 

based model using a participatory simulation gaming approach: The case of city logistics. 

Transportation Research Part C: Emerging Technologies, 71, 489–499. 

https://doi.org/10.1016/j.trc.2016.08.002 

Antonacci, G., Calabrese, A., D’Ambrogio, A., Giglio, A., Intrigila, B., & Ghiron, N. L. (2016). A 

BPMN-Based Automated Approach for the Analysis of Healthcare Processes. 2016 IEEE 

25th International Conference on Enabling Technologies: Infrastructure for Collaborative 

Enterprises (WETICE), 124–129. https://doi.org/10.1109/WETICE.2016.35 

Aringhieri, R., Bigharaz, S., Duma, D., & Guastalla, A. (2022). Fairness in ambulance routing for 

post disaster management. Central European Journal of Operations Research, 30(1), 

189–211. https://doi.org/10.1007/s10100-021-00785-y 

Arnaud, B., Christophe, L., & Nicolas, M. (2015). Agent-based Spatial Simulation with Netlogo. 

Elsevier. https://doi.org/10.1016/C2015-0-01299-0 

Aslam, A. (2023). Universal Language Modelling agent (arXiv:2306.06521). arXiv. 

https://doi.org/10.48550/arXiv.2306.06521 

Azimi, S., Dalavar, M. R., & Rajabifard, A. (2017). Multi-agent simulation of allocating and 

routing ambulances under condition of street blockage after natural disaster. ISPRS - 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information 

Sciences, 325–332. https://doi.org/10.5194/ISPRS-ARCHIVES-XLII-4-W4-325-2017 

Background of Disaster management. (2023). INSIGHTSIAS. 

https://www.insightsonindia.com/disaster-management/background-of-disaster-

management/ 

Baker, D., & Refsgaard, K. (2007). Institutional development and scale matching in disaster 

response management. Ecological Economics, 63(2), 331–343. 

https://doi.org/10.1016/j.ecolecon.2007.01.007 

Barghi Shirazi, F., Moslehi, S., Rasouli, M. R., & Masoumi, G. (2022). A Systematic Literature 

Review Identifying the Dimensions and Components of Simulation of the Hospital 



   

 

 
146 

 
 

Emergency Department During Emergencies and Disasters. Medical Journal of the 

Islamic Republic of Iran. https://doi.org/10.47176/mjiri.36.82 

Bar-On, E., Peleg, K., & Kreiss, Y. (Eds.). (2020). Field Hospitals: A Comprehensive Guide to 

Preparation and Operation (1st ed.). Cambridge University Press. 

https://doi.org/10.1017/9781316493489 

Basaglia, A., Spacone, E., van de Lindt, J. W., & Kirsch, T. D. (2022). A Discrete-Event Simulation 

Model of Hospital Patient Flow Following Major Earthquakes. International Journal of 

Disaster Risk Reduction, 71, 102825. https://doi.org/10.1016/j.ijdrr.2022.102825 

Basaglia, A., Spacone, E., Van De Lindt, J. W., & Kirsch, T. D. (2022). A Discrete-Event Simulation 

Model of Hospital Patient Flow Following Major Earthquakes. International Journal of 

Disaster Risk Reduction, 71, 102825. https://doi.org/10.1016/j.ijdrr.2022.102825 

Bauer, B., & Odell, J. (2005). UML 2.0 and agents: How to build agent-based systems with the 

new UML standard. Engineering Applications of Artificial Intelligence, 18(2), 141–157. 

https://doi.org/10.1016/j.engappai.2004.11.016 

Berg, T. A., Marino, K. N., & Kintziger, K. W. (2023). The Application of Model-Based Systems 

Engineering to Rural Healthcare System Disaster Planning: A Scoping Review. 

International Journal of Disaster Risk Science, 14(3), 357–368. 

https://doi.org/10.1007/s13753-023-00492-z 

Birkland, T. A. (2009). Disasters, Catastrophes, and Policy Failure in the Homeland Security Era1. 

Review of Policy Research, 26(4), 423–438. https://doi.org/10.1111/j.1541-

1338.2009.00393.x 

Bisogno, S., Calabrese, A., Gastaldi, M., & Levialdi Ghiron, N. (2016). Combining modelling and 

simulation approaches: How to measure performance of business processes. Business 

Process Management Journal, 22(1), 56–74. https://doi.org/10.1108/BPMJ-02-2015-

0021 

Bonabeau, E. (2002). Agent-based modeling: Methods and techniques for simulating human 

systems. Proceedings of the national academy of sciences, 99(suppl 3), 7280–7287. 

https://doi.org/10.1073/pnas.082080899 



   

 

 
147 

 
 

Boonmee, C., Arimura, M., & Asada, T. (2017). Facility location optimization model for 

emergency humanitarian logistics. International Journal of Disaster Risk Reduction, 24, 

485–498. https://doi.org/10.1016/j.ijdrr.2017.01.017 

Borgonovo, E., Pangallo, M., Rivkin, J., Rizzo, L., & Siggelkow, N. (2022). Sensitivity analysis of 

agent-based models: A new protocol. Computational and Mathematical Organization 

Theory, 28(1), 52–94. https://doi.org/10.1007/s10588-021-09358-5 

Bowman, S. L. (2011). The functions of role-playing games: How participants create community, 

solve problems and explore identity. Choice Reviews Online, 48(06), 48-3103-48–3103. 

https://doi.org/10.5860/CHOICE.48-3103 

Brailsford, S. C. (2007). Tutorial: Advances and challenges in healthcare simulation modeling. 

2007 Winter, Simulation Conference, 1436–1448. 

https://doi.org/10.1109/wsc.2007.4419754 

Bruballa, E., Wong, A., Rexachs, D., & Luque, E. (2020). An Intelligent Scheduling of Non-Critical 

Patients Admission for Emergency Department. IEEE Access, 8, 9209–9220. 

https://doi.org/10.1109/ACCESS.2019.2963049 

Çağlayan, N., & Satoglu, S. I. (2022). Simulation analysis of critical factors of casualty 

transportation for disaster response: A case study of Istanbul earthquake. International 

Journal of Disaster Resilience in the Built Environment, 13(5), 632–647. 

https://doi.org/10.1108/IJDRBE-03-2021-0031 

Campbell, B. D., & Schroder, K. A. (2009). Training for emergency response with 

RimSim:Response! (D. A. Trevisani, Ed.; p. 73480G). https://doi.org/10.1117/12.819337 

Cao, H., & Huang, S. (2012). Principles of Scarce Medical Resource Allocation in Natural Disaster 

Relief: A Simulation Approach. Medical Decision Making, 32(3), 470–476. 

https://doi.org/10.1177/0272989X12437247 

Castanheira-Pinto, A., Gonçalves, B. S., Lima, R. M., & Dinis-Carvalho, J. (2021). Modeling, 

Assessment and Design of an Emergency Department of a Public Hospital through 

Discrete-Event Simulation. Applied Sciences, 11(2), Article 2. 

https://doi.org/10.3390/app11020805 



   

 

 
148 

 
 

Chatterjee, A., Cao, Q., Sajadi, A., & Ravandi, B. (2023). Deterministic random walk model in 

NetLogo and the identification of asymmetric saturation time in random graph. Applied 

Network Science, 8(1), Article 1. https://doi.org/10.1007/s41109-023-00559-2 

Chaudhary, M. T., & Piracha, A. (2021). Natural Disasters—Origins, Impacts, Management. 

Encyclopedia, 1(4), 1101–1131. https://doi.org/10.3390/encyclopedia1040084 

Chen, X., Lu, L., Shi, J., Zhang, X., Fan, H., Fan, B., Qu, B., Lv, Q., & Hou, S. (2020). Application and 

Prospect of a Mobile Hospital in Disaster Response. Disaster Medicine and Public Health 

Preparedness, 14(3), 377–383. https://doi.org/10.1017/dmp.2020.113 

Clancy, C. M. (2007). Emergency Departments in Crisis: Implications for Disaster Preparedness. 

American Journal of Medical Quality, 22(2), 123–126. 

https://doi.org/10.1177/1062860606298915 

Coles, J., & Zhuang, J. (2011). Decisions in Disaster Recovery Operations: A Game Theoretic 

Perspective on Organization Cooperation. Journal of Homeland Security and Emergency 

Management, 8(1). https://doi.org/10.2202/1547-7355.1772 

Collins, A. J., Matthew, K., & Christopher J., L. (2024). Methods That Support the Validation of 

Agent-Based Models: An Overview and Discussion. https://doi.org/10.18564/jasss.5258 

Collins, J. (2021). Improving Emergency Department Throughput: Using a Pull Method of Patient 

Flow [Doctor of Nursing Practice, University of St. Augustine for Health Sciences]. 

https://doi.org/10.46409/sr.CSAP4806 

Comfort, L. K., Ko, K., & Zagorecki, A. (2005). Coordination in rapidly evolving disaster response 

systems: The role of information. In T. Terano, H. Kita, T. Kaneda, K. Arai, & H. Deguchi 

(Eds.), Agent-Based Simulation: From Modeling Methodologies to Real-World 

Applications (pp. 208–219). Springer. https://doi.org/10.1007/4-431-26925-8_19 

Contreras, A., Falcone, Y., Salaün, G., & Zuo, A. (2022). WEASY: A Tool for Modelling Optimised 

BPMN Processes. In S. L. Tapia Tarifa & J. Proença (Eds.), Formal Aspects of Component 

Software (Vol. 13712, pp. 110–118). Springer International Publishing. 

https://doi.org/10.1007/978-3-031-20872-0_7 

d’Aquino, P., & Bah, A. (2014). Multi-level participatory design of land use policies in African 

drylands: A method to embed adaptability skills of drylands societies in a policy 



   

 

 
149 

 
 

framework. Journal of Environmental Management, 132, 207–219. 

https://doi.org/10.1016/j.jenvman.2013.11.011 

D’água, J. B., Cláudio, A. P., Carmo, M. B., Guerreiro, M., Cavaco, A., Piedade, D., Gomes, C. F., 

Pais, A., Mateus, E., de Lisboa, U., & Moniz, E. (2023). Pare Vitoria, a virtual assistant to 

promote education and awareness on juvenile rheumatic musculoskeletal diseases. 

https://doi.org/10.1136/annrheumdis-2023-eular.5927 

De Rouck, R., Benhassine, M., Debacker, M., Dugauquier, C., Dhondt, E., Van Utterbeeck, F., & 

Hubloue, I. (2023). Creating realistic nerve agent victim profiles for computer simulation 

of medical CBRN disaster response. Frontiers in Public Health, 11. 

https://doi.org/10.3389/fpubh.2023.1167706 

De Santis, A., Giovannelli, T., Lucidi, S., Messedaglia, M., & Roma, M. (2023). A simulation-based 

optimization approach for the calibration of a discrete event simulation model of an 

emergency department. Annals of Operations Research, 320(2), 727–756. 

https://doi.org/10.1007/s10479-021-04382-9 

De Silva, D. G., Jung, H., & Kosmopoulou, G. (2018). The impact of regional competition on the 

health care industry. Applied Economics, 50(48), 5135–5141. 

https://doi.org/10.1080/00036846.2018.1467551 

Deinkuro, N. S., Knapp, C. W., Raimi, M. O., & Nimlang, N. H. (2021). Environmental Fate of 

Toxic Volatile Organics from Oil Spills in the Niger Delta Region, Nigeria. International 

Journal of Environment, Engineering and Education, 3(3), 89–101. 

https://doi.org/10.55151/ijeedu.v3i3.64 

Deloui, H., & Mofrad, S. S. (2021). Identification and evaluation of physical indicators affecting 

emergency accommodation and safe places with physical resilience approach Case 

study: District 11 of Mashhad. https://www.semanticscholar.org/paper/Identification-

and-evaluation-of-physical-affecting-Deloui-

Mofrad/f61b60eff38cc934c4053dc2219ad93fadb6b5a1 

Demirel, M. C. (2014). İSTANBUL TEKNİK ÜNİVERSİTESİ. 

Dickerson, M. (2011). Multi-agent simulation and netLogo in the introductory computer science 

curriculum. https://dl.acm.org/doi/abs/10.5555/2037151.2037175 



   

 

 
150 

 
 

Disaster Management. (2024). Physiopedia. https://www.physio-

pedia.com/Disaster_Management 

Durán, J. M. (2020). What is a Simulation Model? Minds and Machines, 30(3), 301–323. 

https://doi.org/10.1007/s11023-020-09520-z 

Encinas, D. O., Maccallini, L., & Romero, F. (2021). An Approach to the Modeling and Simulation 

of Intra-Hospital Diseases. Journal of Computer Science and Technology, 21(2), e14. 

https://doi.org/10.24215/16666038.21.e14 

England, T., Brailsford, S., Evenden, D., Street, A., Maynou, L., Mason, S. M., Preston, L., Burton, 

C., Van Oppen, J., & Conroy, S. (2023). Examining the effect of interventions in 

emergency care for older people using a system dynamics decision support tool. Age 

and Ageing, 52(1), afac336. https://doi.org/10.1093/ageing/afac336 

Farcas, A., Ko, J., Chan, J., Malik, S., Nono, L., & Chiampas, G. (2021). Use of Incident Command 

System for Disaster Preparedness: A Model for an Emergency Department COVID-19 

Response. Disaster Medicine and Public Health Preparedness, 15(3), e31–e36. 

https://doi.org/10.1017/dmp.2020.210 

Faturahman, B. M. (2021). DISKURSUS MANAJEMEN BENCANA ERA COVID-19. Madani Jurnal 

Politik Dan Sosial Kemasyarakatan, 13(1), Article 1. 

https://doi.org/10.52166/madani.v13i1.2291 

Fava, G., Giovannelli, T., Messedaglia, M., & Roma, M. (2022). Effect of different patient peak 

arrivals on an emergency department via discrete event simulation: A case study. 

SIMULATION, 98(3), 161–181. https://doi.org/10.1177/00375497211038756 

Ferrando, A., & Malvone, V. (2022). Towards the Combination of Model Checking and Runtime 

Verification on Multi-Agent Systems (Vol. 13616, pp. 140–152). 

https://doi.org/10.1007/978-3-031-18192-4_12 

Ferreira, L. A. F., Santos, I. L. dos, Santos, A. C. de S. G. dos, & Reis, A. da C. (2020). Discrete 

event simulation for problem solving in the context of an emergency department. 

Independent Journal of Management & Production, 11(5), Article 5. 

https://doi.org/10.14807/ijmp.v11i5.1286 



   

 

 
151 

 
 

Forbus, J. J., & Berleant, D. (2022). Discrete-Event Simulation in Healthcare Settings: A Review. 

Modelling, 3(4), Article 4. https://doi.org/10.3390/modelling3040027 

Freebairn, L., Atkinson, J., Kelly, P., McDonnell, G., & Rychetnik, L. (2016). Simulation modelling 

as a tool for knowledge mobilisation in health policy settings: A case study protocol. 

Health Research Policy and Systems, 14(1), 71. https://doi.org/10.1186/s12961-016-

0143-y 

Fu, X., Krzhizhanovskaya, V., Yakovlev, A., & Kovalchuk, S. (2022). Modelling Hospital Strategies 

in City-Scale Ambulance Dispatching (arXiv:2201.01846). arXiv. 

https://doi.org/10.48550/arXiv.2201.01846 

FutureLearn. (2023). Preparedness and the disaster cycle. FutureLearn. 

https://www.futurelearn.com/info/blog 

Gallaher, M. P., O’Connor, A. C., Dettbarn, Jr., J. L., & Gilday, L. T. (2004). Cost Analysis of 

Inadequate Interoperability in the U.S. Capital Facilities Industry (NIST GCR 04-867; p. 

NIST GCR 04-867). National Institute of Standards and                                         

Technology. https://doi.org/10.6028/NIST.GCR.04-867 

Gao, J. (2022). Fundamentals of Spatial Analysis and Modelling (1st ed.). CRC Press. 

http://dx.doi.org/10.1201/9781003220527-6 

Gao, Y., Sahin, A., & Vrugt, J. A. (2023). Probabilistic Sensitivity Analysis With Dependent 

Variables: Covariance-Based Decomposition of Hydrologic Models. Water Resources 

Research, 59(4), e2022WR032834. https://doi.org/10.1029/2022WR032834 

George, S., & Kumar, P. P. A. (2022). Indicator-based assessment of capacity development for 

disaster preparedness in the Indian context. Environment Systems and Decisions, 42(3), 

417–435. https://doi.org/10.1007/s10669-022-09856-0 

Gilbert, N. (2007). Computational Social Science: Agent-based social simulation. 

http://www.bardwell-press.co.uk 

Goniewicz, K., Goniewicz, M., Włoszczak-Szubzda, A., Burkle, F. M., Hertelendy, A. J., Al-

Wathinani, A., Molloy, M. S., & Khorram-Manesh, A. (2021). The importance of pre-

training gap analyses and the identification of competencies and skill requirements of 



   

 

 
152 

 
 

medical personnel for mass casualty incidents and disaster training. BMC Public Health, 

21(1), 114. https://doi.org/10.1186/s12889-021-10165-5 

González, D. P. (2022). Disaster Risk Governance as Assemblage: The Chilean Framework of the 

1985 San Antonio Earthquake. International Journal of Disaster Risk Science, 13(6), 878–

889. https://doi.org/10.1007/s13753-022-00453-y 

Gore, R. J., Lynch, C. J., & Kavak, H. (2017). Applying statistical debugging for enhanced trace 

validation of agent-based models. SIMULATION, 93(4), 273–284. 

https://doi.org/10.1177/0037549716659707 

Guha-Sapir, D., Vos, F., & Below, R. (2015). Annual Disaster Statistical Review 201. 

http://www.cred.be/sites/default/files/ADSR_2015.pdf 

Gul, M., & Guneri, A. F. (2015). A comprehensive review of emergency department simulation 

applications for normal and disaster conditions. Computers & Industrial Engineering, 83, 

327–344. https://doi.org/10.1016/j.cie.2015.02.018 

Gullett, H., Brown, G., Collins, D., Mathews, M., Stange, K., & Hovmand, P. (2023). 249 

Addressing Structural Racism Using Community Based System Dynamics. Journal of 

Clinical and Translational Science, 7(s1), 76–77. https://doi.org/10.1017/cts.2023.316 

Gunal, M. M., & Pidd, M. (2006). Understanding Accident and Emergency Department 

Performance using Simulation. Proceedings of the 2006 Winter Simulation Conference, 

446–452. https://doi.org/10.1109/WSC.2006.323114 

Günal, M. M., & Pidd, M. (2010). Discrete event simulation for performance modelling in health 

care: A review of the literature. Journal of Simulation, 4(1), 42–51. 

https://doi.org/10.1057/jos.2009.25 

Guo, X., & Kapucu, N. (2015). Examining Coordination in Disaster Response Using Simulation 

Methods. Journal of Homeland Security and Emergency Management, 12(4), 891–914. 

https://doi.org/10.1515/jhsem-2014-0092 

Guyot, P., & Honiden, S. (2006). Agent-Based Participatory Simulations: Merging Multi-Agent 

Systems and Role-Playing Games. Journal of Artificial Societies and Social Simulation, 9. 



   

 

 
153 

 
 

Halaška, M., & Šperka, R. (2018). Is there a Need for Agent-based Modelling and Simulation in 

Business Process Management? Organizacija, 51(4), 255–269. 

https://doi.org/10.2478/orga-2018-0019 

Healthit.gov. (2013). The Path to Interoperability. 

Herman, J., & Usher, W. (2017). SALib: An open-source Python library for Sensitivity Analysis. 

The Journal of Open Source Software, 2(9), 97. https://doi.org/10.21105/joss.00097 

Hierink, F., Rodrigues, N., Muñiz, M., Panciera, R., & Ray, N. (2020). Modelling geographical 

accessibility to support disaster response and rehabilitation of a healthcare system: An 

impact analysis of Cyclones Idai and Kenneth in Mozambique. BMJ Open, 10(11), 

e039138. https://doi.org/10.1136/bmjopen-2020-039138 

Hossain, L., & Kuti, M. (2010). Disaster response preparedness coordination through social 

networks. Disasters, 34(3), 755–786. https://doi.org/10.1111/j.1467-7717.2010.01168.x 

Houze-Cerfon, V., Viault, B., Marcou, E., Pardon, T., Ribera-Cano, A., Nouzières, C., & Bounes, V. 

(2023). An Innovative Mobile Hospital for the Management of a Massive Flow of 

Victims. Prehospital and Disaster Medicine, 38(S1), s88–s88. 

https://doi.org/10.1017/S1049023X23002522 

IOGP. (2023). Overall—Fatalities. https://data.iogp.org/Safety/OverallFatalities 

Iooss, B., & Lemaître, P. (2015). A Review on Global Sensitivity Analysis Methods. In G. Dellino & 

C. Meloni (Eds.), Uncertainty Management in Simulation-Optimization of Complex 

Systems (Vol. 59, pp. 101–122). Springer US. https://doi.org/10.1007/978-1-4899-7547-

8_5 

Islam, M. S. (2019). Clinical Waste Management Scenario of Private Health Care Establishment 

in Rajshahi City. Trends in Civil Engineering and Its Architecture, 3(3). 

https://doi.org/10.32474/TCEIA.2019.03.000161 

Janssen, M. A., & Ostrom, E. (2006). Empirically Based, Agent-based models. Ecology and 

Society, 11(2), art37. https://doi.org/10.5751/ES-01861-110237 

Jiang, Z., & Ouyang, Y. (2021). Reliable location of first responder stations for cooperative 

response to disasters. Transportation Research Part B: Methodological, 149, 20–32. 

https://doi.org/10.1016/j.trb.2021.04.004 



   

 

 
154 

 
 

Jones, K., Hadley, E., Preiss, S., Kery, C., Baumgartner, P., Stoner, M., & Rhea, S. (2021). North 

Carolina COVID-19 Agent-Based Model Framework for Hospitalization Forecasting 

Overview, Design Concepts, and Details Protocol (arXiv:2106.04461). arXiv. 

https://doi.org/10.48550/arXiv.2106.04461 

Kanagarajah, A. K., Lindsay, P., Miller, A., & Parker, D. (2008). An Exploration into the Uses of 

Agent-Based Modeling to Improve Quality of Healthcare. In A. Minai, D. Braha, & Y. Bar-

Yam (Eds.), Unifying Themes in Complex Systems (pp. 471–478). Springer. 

https://doi.org/10.1007/978-3-540-85081-6_58 

Kanno, T., Hong, S., Yamashita, T., & Sharikura, S. (2020). The disaster context model and its 

application in creating disaster scenarios for hospitals. Human-Intelligent Systems 

Integration, 2(1–4), 75–87. https://doi.org/10.1007/s42454-020-00013-z 

Kanno, T., Karikawa, D., Fujino, H., & Ishida, C. (2023). Mini Special Issue on Modeling of 

Human-Policy-Technology Nexus and Simulation for Disaster Response and Business 

Continuity. Journal of Disaster Research, 18(2), 87–88. 

https://doi.org/10.20965/jdr.2023.p0087 

Kapucu, N., Okhai, R., & Hu, Q. (2022). Network Governance for Coordinated Disaster Response. 

Public Administration Quarterly, 46(4), 309–333. https://doi.org/10.37808/paq.46.4.2 

Kedia, T., Ratcliff, J., O’Connor, M., Oluic, S., Rose, M., Freeman, J., & Rainwater-Lovett, K. 

(2022). Technologies Enabling Situational Awareness During Disaster Response: A 

Systematic Review. Disaster Medicine and Public Health Preparedness, 16(1), 341–359. 

https://doi.org/10.1017/dmp.2020.196 

Kelton, W. D. (1996). Statistical issues in simulation. Proceedings of the 28th Conference on 

Winter Simulation, 47–54. https://doi.org/10.1145/256562.256570 

Klein, T. A., & Irizarry, L. (2020, July 22). EMS Disaster Response. 

https://www.semanticscholar.org/paper/EMS-Disaster-Response-Klein-

Irizarry/ee77d53301aae234a607df3143d2d123201f839b 

Klingstam, P., & Olsson, B.-G. (2000). Using simulation techniques for continuous process 

verification in industrial system development. 2000 Winter Simulation Conference 



   

 

 
155 

 
 

Proceedings (Cat. No.00CH37165), 2, 1315–1321. 

https://doi.org/10.1109/WSC.2000.899101 

Koelling, P., & Schwandt, M. (2005). Health systems: A dynamic system-benefits from system 

dynamics (p. 1327). https://doi.org/10.1109/WSC.2005.1574393 

Kostyuk, A., Tumanov, A., Tumanov, V., & Zybina, O. (2020). Improving Emergency Response 

Systems in the Oil and Gas Industry To Reduce Environmental Damage. E3S Web of 

Conferences, 221, 01008. https://doi.org/10.1051/e3sconf/202022101008 

Kraner, B., Vallarano, N., Tessone, C. J., & Schwarz-Schilling, C. (2023). Agent-Based Modelling 

of Ethereum Consensus (arXiv:2305.13906). arXiv. http://arxiv.org/abs/2305.13906 

Laker, L. F., Torabi, E., France, D. J., Froehle, C. M., Goldlust, E. J., Hoot, N. R., Kasaie, P., Lyons, 

M. S., Barg-Walkow, L. H., Ward, M. J., & Wears, R. L. (2018). Understanding Emergency 

Care Delivery Through Computer Simulation Modeling. Academic Emergency Medicine, 

25(2), 116–127. https://doi.org/10.1111/acem.13272 

Lamé, G., & Simmons, R. K. (2020). From behavioural simulation to computer models: How 

simulation can be used to improve healthcare management and policy. BMJ Simulation 

& Technology Enhanced Learning, 6(2), 95–102. https://doi.org/10.1136/bmjstel-2018-

000377 

Leal, G. D. S. S., Guédria, W., & Panetto, H. (2019). Interoperability assessment: A systematic 

literature review. Computers in Industry, 106, 111–132. 

https://doi.org/10.1016/j.compind.2019.01.002 

Levin, S., Sauer, L., Kelen, G., Kirsch, T., Pham, J., Desai, S., & France, D. (2012). Situation 

awareness in emergency medicine. IIE Transactions on Healthcare Systems Engineering, 

2(2), 172–180. https://doi.org/10.1080/19488300.2012.684739 

Ligtenberg, A., van Lammeren, R. J. A., Bregt, A. K., & Beulens, A. J. M. (2010). Validation of an 

agent-based model for spatial planning: A role-playing approach. Computers, 

Environment and Urban Systems, 34(5), 424–434. 

https://doi.org/10.1016/j.compenvurbsys.2010.04.005 

Liu, L., Li, W., Aljohani, N. R., Lytras, M. D., Hassan, S. U., & Nawaz, R. (2020). A framework to 

evaluate the interoperability of information systems–Measuring the maturity of the 



   

 

 
156 

 
 

business process alignment. International Journal of Information Management, 54, 

102153. https://doi.org/10.1016/j.ijinfomgt.2020.102153 

Liu, Y., Moyaux, T., Bouleux, G., & Cheutet, V. (2023). Hybrid Simulation Modelling of 

Emergency Departments for Resource Scheduling. Journal of Simulation. 

https://www.tandfonline.com/doi/full/10.1080/17477778.2023.2187321 

Liu, Z., Cabrera, E., Rexachs, D., & Luque, E. (2014). A Generalized Agent-Based Model to 

Simulate Emergency Departments. https://shorturl.at/iuW37 

Liu, Z., & Luque, E. (2015). High Performance Computing Based Simulation for Healthcare 

Decision Support. 

Liu, Z., Rexachs, D., Epelde, F., & Luque, E. (2017). An agent-based model for quantitatively 

analyzing and predicting the complex behavior of emergency departments. Journal of 

Computational Science, 21, 11–23. https://doi.org/10.1016/j.jocs.2017.05.015 

Mahdi, S. S., Jafri, H. A., Allana, R., Battineni, G., Khawaja, M., Sakina, S., Agha, D., Rehman, K., 

& Amenta, F. (2023). Systematic review on the current state of disaster preparation 

Simulation Exercises (SimEx). BMC Emergency Medicine, 23(1), 52. 

https://doi.org/10.1186/s12873-023-00824-8 

Makhutov, N. (2013, February 22). Big disasters analysis in problems of technical systems 

safety. https://www.semanticscholar.org/paper/Big-disasters-analysis-in-problems-of-

technical-Makhutov/3a5885dd83697aee1e6c5f2809b7b3fb81bca602 

Maqbool, A., Usmani, Z. ul A., Afzal, F., & Razia, A. (2020). Disaster Mitigation in Urban Pakistan 

Using Agent Based Modeling with GIS. ISPRS International Journal of Geo-Information, 

9(4), Article 4. https://doi.org/10.3390/ijgi9040203 

Marchetti, J., He, Y., Than, O., & Akkaraju, S. (1998). Efficient process development for bulk 

silicon etching using cellular automata simulation techniques (P. J. French & K. H. Chau, 

Eds.; pp. 287–295). https://doi.org/10.1117/12.323900 

Mariano, D. J. K., & Alves, C. de M. A. (2020). The application of role-playing games and agent-

based modelling to the collaborative water management in peri-urban communities. 

RBRH, 25, e25. https://doi.org/10.1590/2318-0331.252020190100 



   

 

 
157 

 
 

Marks, R. E. (2007). Validating Simulation Models: A General Framework and Four Applied 

Examples. Computational Economics, 30(3), 265–290. https://doi.org/10.1007/s10614-

007-9101-7 

Marom, T., Dagan, D., Weiser, G., Mendlovic, J., Levy, G., Shpriz, M., & Albukrek, D. (2014). 

Pediatric otolaryngology in a field hospital in the Philippines. International Journal of 

Pediatric Otorhinolaryngology, 78(5), 807–811. 

https://doi.org/10.1016/j.ijporl.2014.02.019 

Massazza, A., Brewin, C. R., & Joffe, H. (2019). The Nature of “Natural Disasters”: Survivors’ 

Explanations of Earthquake Damage. International Journal of Disaster Risk Science, 

10(3), 293–305. https://doi.org/10.1007/s13753-019-0223-z 

Mijalkovic, S., & Cvetkovic, V. (2014). Victimization of people by natural disasters: Spatial and 

temporal distribution of consequences. Temida, 17(4), 19–42. 

https://doi.org/10.2298/TEM1404019M 

Mistarihi, M. Z., AL-Tahat, M. D., & AL-Nimer, S. H. (2023). Improving Process Efficiency at 

Pediatric Hospital Emergency Department Using an Integrated Six-Sigma Simulation 

Methodology. Processes, 11(2), Article 2. https://doi.org/10.3390/pr11020399 

Mohsin, B., Steinhäusler, F., Madl, P., & Kiefel, M. (2016). An Innovative System to Enhance 

Situational Awareness in Disaster Response. Journal of Homeland Security and 

Emergency Management, 13(3), 301–327. https://doi.org/10.1515/jhsem-2015-0079 

Munira Ibrahim, I., Liong, C.-Y., Abu Bakar, S., & Farid Najmudd, A. (2018). Performance 

Improvement of the Yellow Zone in Emergency Department using Discrete Event 

Simulation Approach. International Journal of Engineering & Technology, 7(4.33), 102. 

https://doi.org/10.14419/ijet.v7i4.33.23509 

Murphy, J. P. (2021). DISASTER RESPONSE AND PREPAREDNESS: 

https://openarchive.ki.se/xmlui/bitstream/handle/10616/47840/Thesis_Jason_Murphy

?sequence=3&isAllowed=y 

Mwanza, J., Telukdarie, A., & Igusa, T. (2023). Optimising Maintenance Workflows in Healthcare 

Facilities: A Multi-Scenario Discrete Event Simulation and Simulation Annealing 

Approach. Modelling, 4(2), Article 2. https://doi.org/10.3390/modelling4020013 



   

 

 
158 

 
 

Naim, A., Alimo, R., & Braun, J. (2021). AI Agents in Emergency Response Applications. 

Official Website Department of Occupational Safety and Health—2014. (2014). 

https://www.dosh.gov.my/index.php/archive-statistics/2014 

Ogie, R. I., O’Brien, S., & Federici, F. M. (2022). Towards using agent-based modelling for 

collaborative translation of crisis information: A systematic literature review to identify 

the underlying attributes, behaviours, interactions, and environment of agents. 

International Journal of Disaster Risk Reduction, 68, 102717. 

https://doi.org/10.1016/j.ijdrr.2021.102717 

Olalekan, R. M., Omidiji, A. O., Nimisngha, D., Odipe, O. E., & Olalekan, A. S. (2018). Health Risk 

Assessment on Heavy Metals Ingestion through Groundwater Drinking Pathway for 

Residents in an Oil and Gas Producing Area of Rivers State, Nigeria. Open Journal of 

Yangtze Oil and Gas, 03(03), 191–206. https://doi.org/10.4236/ojogas.2018.33017 

Onggo, B. S., & Foramitti, J. (2021). Agent-based modeling and simulation for business and 

management: A review and tutorial. 2021 Winter, Simulation Conference (WSC, 1–15. 

Onggo, B. S., & Karatas, M. (2016). Test-driven simulation modelling: A case study using agent-

based maritime search-operation simulation. European Journal of Operational Research, 

254(2), 517–531. https://doi.org/10.1016/j.ejor.2016.03.050 

Onggo, B. S. S. (2012). BPMN pattern for agent-based simulation model representation. 

Proceedings of the 2012 Winter Simulation Conference (WSC), 1–10. 

https://doi.org/10.1109/WSC.2012.6465145 

Onggo, B. S. S., Proudlove, N. C., D’Ambrogio, S. A., Calabrese, A., Bisogno, S., & Levialdi Ghiron, 

N. (2018). A BPMN extension to support discrete-event simulation for healthcare 

applications: An explicit representation of queues, attributes and data-driven decision 

points. Journal of the Operational Research Society, 69(5), 788–802. 

https://doi.org/10.1057/s41274-017-0267-7 

Ouhmidou, I. M. (2020). Modelling and Optimizing Hospital Emergency Department Workflow. 

11. https://shorturl.at/GPSW7 

Ozpolat, B., Akar, U., Steiner, M., Zorrilla-Calancha, I., Tirado-Gomez, M., Colburn, N., 

Danilenko, M., Kornblau, S., & Lopez Berestein, G. (2007). Programmed Cell Death-4 



   

 

 
159 

 
 

Tumor Suppressor Protein Contributes to Retinoic Acid–Induced Terminal Granulocytic 

Differentiation of Human Myeloid Leukemia Cells. Molecular Cancer Research, 5(1), 95–

108. https://doi.org/10.1158/1541-7786.MCR-06-0125 

Palomino Romani, G., Blowes, K., & Molina Hutt, C. (2023). Evaluating post-earthquake 

functionality and surge capacity of hospital emergency departments using discrete 

event simulation. Earthquake Spectra, 39(1), 402–433. 

https://doi.org/10.1177/87552930221128607 

Pérez-Pons, M.-E., Parra-Dominguez, J., Anzola-Rojas, C., Durán Barroso, R. J., Miguel, I. D., 

Queiroz, J., & Leitao, P. (2022). A brief review on Multi-Agent System Approaches and 

Methodologies. Proceedings of the IV Workshop on Disruptive Information and 

Communication Technologies for Innovation and Digital Transformation: 18th June 2021 

Online, 35–47. https://doi.org/10.14201/0AQ03153547 

Persoff, J., Ornoff, D., & Little, C. (2018). The Role of Hospital Medicine in Emergency 

Preparedness: A Framework for Hospitalist Leadership in Disaster Preparedness, 

Response, and Recovery. Journal of Hospital Medicine, 13(10), 713–718. 

https://doi.org/10.12788/jhm.3073 

Pescatore, M., & Beery, P. (2022). Interoperability analysis via agent-based simulation. The 

Journal of Defense Modeling and Simulation, 15485129221111171. 

https://doi.org/10.1177/15485129221111171 

Pilla, V. N., & Patel, N. V. (2009). Using agent based simulation to empirically examine 

complexity in carbon footprint business process. 

http://bura.brunel.ac.uk/handle/2438/3510 

Pylypchuk, Y., Alvarado, C. S., Patel, V., & Searcy, T. (2019). Uncovering differences in 

interoperability across hospital size. Healthcare, 7(4)). 

http://dx.doi.org/10.1016/j.hjdsi.2019.04.001 

Radišić, K., Rouzies, E., Lauvernet, C., & Vidard, A. (2023). Global sensitivity analysis of the 

dynamics of a distributed hydrological model at the catchment scale. Socio-

Environmental Systems Modelling, 5, 18570–18570. 

https://doi.org/10.18174/sesmo.18570 



   

 

 
160 

 
 

Ramasamy, A., Harrisson, S., Lasrado, I., & Stewart, M. P. M. (2009). A review of casualties 

during the Iraqi insurgency 2006–A British field hospital experience. Injury, 40(5), 493–

497. https://doi.org/10.1016/j.injury.2008.03.028 

Ramathuba, D. U., & Ndou, H. (2020). Ethical conflicts experienced by intensive care unit health 

professionals in a regional hospital, Limpopo province, South Africa. Health SA 

Gesondheid, 25, 1183. https://doi.org/10.4102/hsag.v25i0.1183 

Ramchurn, S. D., Huynh, T. D., Wu, F., Ikuno, Y., Flann, J., Moreau, L., Fischer, J. E., Jiang, W., 

Rodden, T., Simpson, E., Reece, S., Roberts, S., & Jennings, N. R. (2016). A Disaster 

Response System based on Human-Agent Collectives. Journal of Artificial Intelligence 

Research, 57, 661–708. https://doi.org/10.1613/jair.5098 

Ramos-Merino, M., Álvarez-Sabucedo, L. M., Santos-Gago, J. M., & De Arriba-Pérez, F. (2019). A 

Pattern Based Method for Simplifying a BPMN Process Model. Applied Sciences, 9(11), 

2322. https://doi.org/10.3390/app9112322 

Rezapour, S., Naderi, N., Morshedlou, N., & Rezapourbehnagh, S. (2018). Optimal deployment 

of emergency resources in sudden onset disasters. International Journal of Production 

Economics, 204, 365–382. https://doi.org/10.1016/j.ijpe.2018.08.014 

Robertson, D. A. (2016). Agent-Based Models and Behavioral Operational Research. In M. Kunc, 

J. Malpass, & L. White (Eds.), Behavioral Operational Research (pp. 137–159). Palgrave 

Macmillan UK. https://doi.org/10.1057/978-1-137-53551-1_7 

Robinson, S. (2008). Conceptual modelling for simulation Part I: definition and requirements. 

Journal of the Operational Research Society, 59(3), 278–290. 

https://doi.org/10.1057/palgrave.jors.2602368 

Robinson, S. (2014). Simulation: The Practice of Model Development and Use. Bloomsbury 

Publishing. 

Robinson, S. (2015). A tutorial on conceptual modeling for simulation. 2015 Winter Simulation 

Conference (WSC), 1820–1834. https://doi.org/10.1109/WSC.2015.7408298 

Romero-Brufau, S., Wyatt, K. D., Boyum, P., Mickelson, M., Moore, M., & Cognetta-Rieke, C. 

(2020). Implementation of Artificial Intelligence-Based Clinical Decision Support to 



   

 

 
161 

 
 

Reduce Hospital Readmissions at a Regional Hospital. Applied Clinical Informatics, 11(4), 

570–577. https://doi.org/10.1055/s-0040-1715827 

Rossodivita, A. (2011). (A340) The Role of Field Hospitals in Severe Environments—Guidelines 

to Prepare and Build a Field Hospital during a Disaster. Prehospital and Disaster 

Medicine, 26(S1), s95–s96. https://doi.org/10.1017/S1049023X11003244 

Rye, S., & Aktas, E. (2022). Serious Games as a Validation Tool for PREDIS: A Decision Support 

System for Disaster Management. International Journal of Environmental Research and 

Public Health, 19(24), 16584. https://doi.org/10.3390/ijerph192416584 

Salamon, T. (2011). Design of Agent-Based Models. https://pub.bruckner.cz/titles/salamon 

Saleem, M., & Khan, Z. (2023). Healthcare Simulation: An effective way of learning in health 

care. Pakistan Journal of Medical Sciences, 39(4), Article 4. 

https://doi.org/10.12669/pjms.39.4.7145 

Salinas, J. S., Balachandar, S., Zúñiga, S. L., Shringarpure, M., Fedele, J., Hoyal, D., & Cantero, M. 

I. (2023). On the definition, evolution, and properties of the outer edge of gravity 

currents: A direct-numerical and large-eddy simulation study. Physics of Fluids, 35(1), 

016610. https://doi.org/10.1063/5.0138187 

Sargent, R. G. (2013). Verification and validation of simulation models. 16. 

https://doi.org/10.1109/wsc.1994.717077 

Sarma, D., Das, A., Dutta, P., & Bera, U. K. (2022). A Cost Minimization Resource Allocation 

Model for Disaster Relief Operations With an Information Crowdsourcing-Based MCDM 

Approach. IEEE Transactions on Engineering Management, 69(5), 2454–2474. IEEE 

Transactions on Engineering Management. https://doi.org/10.1109/TEM.2020.3015775 

Sayama, H. (2023). Introduction to the Modeling and Analysis of Complex Systems. 

Sbayou, M., Bouanan, Y., Zacharewicz, G., Ribault, J., & Francois, J. (2017, April). DEVS 

modelling and simulation for healthcare process application for hospital emergency 

department. Proceeding ANSS’17 Proceedings of the 50th Annual Simulation 

Symposium. 



   

 

 
162 

 
 

Sheerazi, S., Awad, S., & Von Schreeb, J. (2022). Use of Mobile Health Units in Natural Disasters 

– A Scoping Review. Prehospital and Disaster Medicine, 37(S2), s88–s88. 

https://doi.org/10.1017/S1049023X2200187X 

Shimabukuro, M., Toki, T., Shimabukuro, H., Kubo, Y., Takahashi, S., & Shinjo, R. (2022). 

Development and Application of an Environmental Education Tool (Board Game) for 

Teaching Integrated Resource Management of the Water Cycle on Coral Reef Islands. 

Sustainability, 14(24), 16562. https://doi.org/10.3390/su142416562 

Shin, N., Bowers, J., Roderick, S., McIntyre, C., Stephens, A. L., Eidin, E., Krajcik, J., & Damelin, D. 

(2022). A framework for supporting systems thinking and computational thinking 

through constructing models. Instructional Science, 50(6), 933–960. 

https://doi.org/10.1007/s11251-022-09590-9 

Shirazi, F. B., Moslehi, S., Rasouli, M., & Masoumi, G. (2022). Identifying the Challenges of 

Simulating the Hospital Emergency Department in the Event of Emergencies and 

Providing Effective Solutions: A Qualitative Study. Disaster Medicine and Public Health 

Preparedness, 17. https://doi.org/10.1017/dmp.2022.144 

Shiripour, S., & Mahdavi-Amiri, N. (2019). Optimal distribution of the injured in a multi-type 

transportation network with damage-dependent travel times: Two metaheuristic 

approaches. Socio-Economic Planning Sciences, 68, 100660. 

https://doi.org/10.1016/j.seps.2018.10.011 

Sigle, M., Berliner, L., Richter, E., Van Iersel, M., Gorgati, E., Hubloue, I., Bamberg, M., Grasshoff, 

C., Rosenberger, P., & Wunderlich, R. (2023). Development of an Anticipatory Triage-

Ranking Algorithm Using Dynamic Simulation of the Expected Time Course of Patients 

With Trauma: Modeling and Simulation Study. Journal of Medical Internet Research, 25, 

e44042. https://doi.org/10.2196/44042 

Sobol′, I. M. (2001). Global sensitivity indices for nonlinear mathematical models and their 

Monte Carlo estimates. Mathematics and Computers in Simulation, 55(1–3), 271–280. 

https://doi.org/10.1016/S0378-4754(00)00270-6 

Stroud, C., Altevogt, B. M., & Goldfrank, L. R. (2010). Institute of Medicine’s Forum on Medical 

and Public Health Preparedness for Catastrophic Events: Current Initiatives. Disaster 



   

 

 
163 

 
 

Medicine and Public Health Preparedness, 4(2), 174–177. 

https://doi.org/10.1001/dmphp.4.2.174 

Su, B., Kwak, J., Pourghaderi, A. R., Lees, M. H., Tan, K. B. K., Loo, S. Y., Chua, I. S. Y., Quah, J. L. 

J., Cai, W., & Ong, M. E. H. (2021). A Model-based Analysis of Evacuation Strategies in 

Hospital Emergency Departments. 2021 Winter Simulation Conference (WSC), 1–12. 

https://doi.org/10.1109/WSC52266.2021.9715522 

Suleman, I., Pomalango, Z., & Slamet, H. (2022). Disaster exercise tabletop media improves 

knowledge of health personnel about disaster management. Jambura Journal of Health 

Sciences and Research, 5(1), 90–99. https://doi.org/10.35971/jjhsr.v5i1.16633 

Sulis, E., Amantea, I. A., & Fornero, G. (2019). Risk-Aware Business Process Modeling: A 

Comparison of Discrete Event And Agent-Based Approaches. 2019 Winter Simulation 

Conference (WSC), 3152–3159. https://doi.org/10.1109/WSC40007.2019.9004822 

Sulis, E., & Di Leva, A. (2018a). An Agent-Based Model of a Business Process: The Use Case of a 

Hospital Emergency Department. In E. Teniente & M. Weidlich (Eds.), Business Process 

Management Workshops (Vol. 308, pp. 124–132). Springer International Publishing. 

https://doi.org/10.1007/978-3-319-74030-0_8 

Sulis, E., & Di Leva, A. (2018b). Public Health Management Facing Disaster Response: A Business 

Process Simulation Perspective. 2018 Winter Simulation Conference (WSC), 2792–2802. 

https://doi.org/10.1109/WSC.2018.8632534 

Szczepanska, T., Antosz, P., Berndt, J. O., Borit, M., Chattoe-Brown, E., Mehryar, S., Meyer, R., 

Onggo, S., & Verhagen, H. (2022). GAM on! Six ways to explore social complexity by 

combining games and agent-based models. International Journal of Social Research 

Methodology, 25(4), 541–555. https://doi.org/10.1080/13645579.2022.2050119 

Taboada, M., Cabrera, E., Epelde, F., Iglesias, M. L., & Luque, E. (2013). Using an Agent-based 

Simulation for Predicting the Effects of Patients Derivation Policies in Emergency 

Departments. Procedia Computer Science, 18, 641–650. 

https://doi.org/10.1016/j.procs.2013.05.228 

Takadama, K., Kawai, T., & Koyama, Y. (2008). Micro- and Macro-Level Validation in Agent-

Based Simulation: Reproduction of Human-Like Behaviors and Thinking in a Sequential 



   

 

 
164 

 
 

Bargaining Game. Journal of Artificial Societies and Social Simulation, 11. 

http://jasss.soc.surrey.ac.uk/11/2/9.html 

Tako, A. A., & Robinson, S. (2009). Comparing model development in Discrete Event Simulation 

and System Dynamics. Proceedings of the 2009 Winter Simulation Conference (WSC), 

979–991. https://doi.org/10.1109/WSC.2009.5429423 

Tardivo, S., Moretti, F., Nobile, M., Agodi, A., Appignanesi, R., Arrigoni, C., Baldovin, T., 

Brusaferro, S., Canino, R., Carli, A., Chiesa, R., D’Alessandro, D., D’Errico, M. M., Giuliani, 

G., Montagna, M. T., Moro, M., Mura, I. I., Novati, R., Orsi, G. B., … GISIO - Italian Study 

Group of Hospital Hygien. (2017). Definition of criteria and indicators for the prevention 

of Healthcare-Associated Infections (HAIs) in hospitals for the purposes of Italian 

institutional accreditation and performance monitoring. Annali Di Igiene: Medicina 

Preventiva E Di Comunita, 29(6), 529–547. https://doi.org/10.7416/ai.2017.2183 

Thorens, G., Billieux, J., Megevand, P., Zullino, D., Rothen, S., Achab, S., & Khazaal, Y. (2016). 

Capitalizing upon the Attractive and Addictive Properties of Massively Multiplayer 

Online Role-Playing Games to Promote Wellbeing. Frontiers in Psychiatry, 7. 

https://doi.org/10.3389/fpsyt.2016.00167 

Tintinalli, J. (2015). Tintinallis Emergency Medicine A Comprehensive Study Guide. McGraw-Hill 

Education. https://lib.hpu.edu.vn/handle/123456789/32417 

Tomaskova, H., Kopecky, M., & Maresova, P. (2019). Process Cost Management of Alzheimer’s 

Disease. Processes, 7(9), 582. https://doi.org/10.3390/pr7090582 

Tott, G. (2013). Influence Of Donor Funded Projects On The Social-economic Welfare Of The 

Rural Communities: Case Of Cadsal In Elgeiyo Marakwet County, Kenya [Thesis, 

University of Nairobi]. http://erepository.uonbi.ac.ke/handle/11295/55781 

Tour, A. (2023). Mining Agent-Based Models of Business Processes: Extended PhD Abstract. 

Tram, N. T. B. (2022). Simulation modeling—An effective method in doing business and 

management research. HO CHI MINH CITY OPEN UNIVERSITY JOURNAL OF SCIENCE - 

ECONOMICS AND BUSINESS ADMINISTRATION, 12(1), 108–124. 

https://doi.org/10.46223/HCMCOUJS.econ.en.12.1.1916.2022 



   

 

 
165 

 
 

Tykhonov, D., Jonker, C., Meijer, S., & Verwaart, T. (2008). Agent-Based Simulation of the Trust 

and Tracing Game for Supply Chains and Networks. Journal of Artificial Societies and 

Social Simulation, 11. http://jasss.soc.surrey.ac.uk/11/3/1.ht 

Uhm, D., Jung, G., Yun, Y., Lee, Y., & Lim, C. (2019). Factors Affecting the Disaster Response 

Competency of Emergency Medical Technicians in South Korea. Asian Nursing Research, 

13(4), 264–269. https://doi.org/10.1016/j.anr.2019.09.005 

Umemoto, M., Kadono, S., Kanno, T., Kajiyama, K., Sharikura, S., Ikari, R., Yoneyama, M., & 

Chuang, S. (2023). Modeling and Simulation of In-Hospital Disaster Medicine in a Mass 

Casualty Event for the Resilience Evaluation of BCPs. Journal of Disaster Research. 

https://doi.org/10.20965/jdr.2023.p0104 

Uriarte, A. G., Zúñiga, E. R., Moris, M. U., & Ng, A. H. (2015). System design and improvement of 

an emergency department using simulation-based multi-objective optimization. Journal 

of Physics: Conference Series, 616(1), 012015. https://doi.org/10.1088/1742-

6596/616/1/012015 

Utomo, D. S., Onggo, B. S. S., Eldridge, S., Daud, A. R., & Tejaningsih, S. (2022). Eliciting agents’ 

behaviour and model validation using role playing game in agent-based dairy supply 

chain model. Journal of the Operational Research Society, 73(12), 2670–2693. 

https://doi.org/10.1080/01605682.2021.2013137 

Van Barneveld, T., Jagtenberg, C., Bhulai, S., & Van Der Mei, R. (2018). Real-time ambulance 

relocation: Assessing real-time redeployment strategies for ambulance relocation. 

Socio-Economic Planning Sciences, 62, 129–142. 

https://doi.org/10.1016/j.seps.2017.11.001 

Vázquez-Serrano, J. I., Peimbert-García, R. E., & Cárdenas-Barrón, L. E. (2021). Discrete-Event 

Simulation Modeling in Healthcare: A Comprehensive Review. International Journal of 

Environmental Research and Public Health, 18(22), 12262. 

https://doi.org/10.3390/ijerph182212262 

Wahyudiono, S., Darmawan, A. A., & Burhan, M. S. (2022). Pemodelan Shift Kerja dalam Proyek 

Konstruksi menggunakan NetLogo dalam meminimalkan Penyebaran Covid-19. Jurnal 



   

 

 
166 

 
 

Ilmiah Universitas Batanghari Jambi, 22(2), Article 2. 

https://doi.org/10.33087/jiubj.v22i2.2465 

Wallinger, S., Grundner, L., Majic, I., & Lampoltshammer, T. J. (2023). Agent-Based Modelling 

for Sustainable Tourism. In B. Ferrer-Rosell, D. Massimo, & K. Berezina (Eds.), 

Information and Communication Technologies in Tourism 2023 (pp. 355–360). Springer 

Nature Switzerland. https://doi.org/10.1007/978-3-031-25752-0_40 

Wang, Y., Luangkesorn, K. L., & Shuman, L. (2012). Modeling emergency medical response to a 

mass casualty incident using agent based simulation. Socio-Economic Planning Sciences, 

46(4), 281–290. https://doi.org/10.1016/j.seps.2012.07.002 

Wang, Y., Sun, B., Yue, H., Lin, X., Li, B., Yang, X., Shan, C., Fan, Y., Dong, M., Zhang, Y., Lin, W., 

Zuo, X., Su, P., Heng, Y., Xu, J., & Kissoon, N. (2014). An epidemiologic survey of pediatric 

sepsis in regional hospitals in China. Pediatric Critical Care Medicine: A Journal of the 

Society of Critical Care Medicine and the World Federation of Pediatric Intensive and 

Critical Care Societies, 15(9), 814–820. https://doi.org/10.1097/PCC.0000000000000247 

White, L., Basurra, S., Alsewari, A. A., Saeed, F., & Addanki, S. M. (2023). Temporal Meta-

optimiser based Sensitivity Analysis (TMSA) for Agent-Based Models: A Children’s 

Services Application. https://doi.org/10.21203/rs.3.rs-3096058/v1 

Wilensky, U., & Rand, W. (2015). An introduction to agent-based modeling: Modeling natural, 

social, and engineered complex systems with NetLogo. The MIT press. 

Yousefi, M., & Ferreira, R. P. M. (2017). An agent-based simulation combined with group 

decision-making technique for improving the performance of an emergency 

department. Brazilian Journal of Medical and Biological Research, 50, e5955. 

https://doi.org/10.1590/1414-431X20175955 

Yousefi, M., Yousefi, M., & Fogliatto, F. S. (2020). Simulation-based optimization methods 

applied in hospital emergency departments: A systematic review. SIMULATION, 96(10), 

791–806. https://doi.org/10.1177/0037549720944483 

Zaboli, R., Toufighi, S., Raiess Zadeh, M., Ghaed Amini, R., & Azizian, F. (2016). Key Performance 

Indicators in Field Hospital Appraisal: A Systematic Review. Trauma Monthly, 23(1). 

https://doi.org/10.5812/traumamon.42604 



   

 

 
167 

 
 

Zhang, G., Shen, X., Hua, J., Zhao, J., & Liu, H. (2021). System Dynamics Modelling for Dynamic 

Emergency Response to Accidents Involving Transport of Dangerous Goods by Road. 

Journal of Advanced Transportation, 2021, e2474784. 

https://doi.org/10.1155/2021/2474784 

Zhang, X. (2018). Application of discrete event simulation in health care: A systematic review. 

BMC Health Services Research, 18(1), 687. https://doi.org/10.1186/s12913-018-3456-4 

Zi-jian, L. (2005). Research on Concurrent Design Oriented Assembly Sequence Planning. 

Computer Simulation. https://www.semanticscholar.org/paper/Research-on-

Concurrent-Design-Oriented-Assembly-Zi-

jian/88fa2122cf42479650001256c9e3640db19ecb33 

Zschaler, S., & Polack, F. A. C. (2023). Trustworthy agent-based simulation: The case for domain-

specific modelling languages. Software and Systems Modeling, 22(2), 455–470. 

https://doi.org/10.1007/s10270-023-01082-9 

 



   

 

 
168 

 
 

APPENDICES 

This section contains a suggestion for additional research as well as additional relevant 

supporting documents, figures, tables, and screenshots to clarify further points. 

Appendix A1: BPMN representation of patients triage flow in MFH 

 

Figure 28: BPMN representation of patients triage flow in MFH 
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Appendix A2: BPMN diagram of patients flow in MFH (polytraumatic injuries) 

 

  Figure 29: BPMN diagram of patients flow in MFH (polytraumatic injuries) 
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Appendix A3: BPMN diagram of patients flow in MFH (mono-traumatic injuries)

 

 Figure 30: BPMN diagram of patients flow in MFH (mono-traumatic injuries) 
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Appendix A4: BPMN diagram of patients flow in MFH (minor injuries/lacerations) 

 

    Figure 31: BPMN diagram of patients flow in MFH (minor injuries/lacerations) 
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Appendix A5: BPMN diagram of patients flow in MFH (other illnesses/comorbidities) 

 

           Figure 32: BPMN diagram of patients flow in MFH (other illnesses/comorbidities) 
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Appendix A6: BPMN diagram of patients flow in MFH (flu related conditions) 

 

    Figure 33: BPMN diagram of patients flow in MFH (flu related conditions) 
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                Appendix B1: BehaviorSpace experimental set up (data sampling and generation) – step1 

 

               Figure 34:BehaviorSpace experimental set up (data sampling and generation)-step 1 
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                Appendix B2: BehaviorSpace experimental set up (data sampling and generation) – step 2 

 

             Figure 35: BehaviorSpace experimental set up (data sampling and generation)-step 2 
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Appendix B3: BehaviorSpace experimental set up (data sampling and generation) – step 3 

 

            Figure 36: BehaviorSpace experimental set up (data sampling and generation)-step 3 
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          Appendix B4: BehaviorSpace experimental set up (data sampling and generation) – step 4 

 

         Figure 37: BehaviorSpace experimental set up (data sampling and generation)-step 4
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Appendix C1: Disaster response scenario tasks 

Table 5: Disaster response scenario tasks 

Task # Scenario tasks requiring team collaboration/communication and response action Decision taken / 
rationale 

1 Your team receives an emergency call from the Oil & Gas industry (incident site) 
with 40 injured (8 severe,12 moderate and 20 mild). You have available 3 free 
ambulances and 2 free operating rooms (ORs). With only RH operational, decide 
how to respond to the situation? 

 

2 Your team was alerted of more victims on site. On arrival, triage information 
shows that 4 out of 39 cases were results of underlining health issues (2 
respiratory, 2 cardiovascular), with 9 severe, 10 moderate and 20 mild cases 
(result of the explosion). Who amongst the victims would your team prioritize, 
having 3 ambulances and 4 ORs and only the RH in operation? 

 

3 On getting to the incident site (ambulance), triage information reveals 38 injured 
[6 severe (2 unconscious), 12 moderate severity, 20 mild victims]. With only the 
RH still in operation, 3 ambulances and 1 OR available for surgery. How will your 
team respond? 

 

4 Distress call of 37 patients (15 moderate,5 severe, 17 mild) are expected to start 
arriving in 45 minutes in the RH. Anticipate the surge, and plan for optimal 
transport, triage, and treatment of the patients. 

 

5 40 patients (8 severe, 12 moderates, 20 mild) need urgent evacuation and 
treatment. Only 3 ambulances are available. Decide on the priority and 
distribution if there is a secondary request for a critical case in a location 30 
minutes away? 

 

6 RH has 3 ambulances available, but 38 patients (10 moderate, 3 severe, 25 
mild) need transport, triage, and treatment. There are 2 available ORs and 1 
Pre-OR. What decision will your team take to save the most life if 2 moderate 
cases become worse and have 118 minutes (about 2 hours) to live with 
treatment? 

 

7 Your team already dispatched 4 ambulances bearing 3 severe cases (approx. 
1hr.30mins to live without surgery). There are also 8 moderate, and 28 mild 
cases patients on site. Information from the RH indicates 2 OR is available. What 
should be your teams resolve to handle the situation? 

 

8 Ambulances are dispatched by your team from the incident site en route the RH 
with 8 severe patients. Meanwhile patients are still held up in the ORs (3 
patients) and no bed spaces at the wards. However, there is 1 OR available. 
What would be your team’s call for action as the patients need to get in for 
surgery? 13 moderate and 21 milds are also reported on site. 

 

9 Your team received an emergency call of 3 patients needing ambulance service 
from home 25 minutes’ drive from the RH. While preparing to respond, an 
update came in from the MFH informing your team of readiness to take in 
victims for surgery (38 total injured). How will your team dispatch the 4 
available ambulances (the other 2 ambulances are heading back to the RH)? 
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10 Your team gets the good news of the MFH being fully operational. However, at 
the incident site, triage reveals 39 injured (8 severe, 11 moderates, 20 mild). 
There are 5 ambulances available. How would your team distribute the 
resources and what decision will be taken about the victims if only 4 ORs are 
available (2 at the MFH and 2 at the RH)? 

 

11 There is prediction of a surge at the MFH in the 25 mins. [(if the remaining 
victims are transported there, it will take longer for them to be seen (7 severe, 
12 moderates, 21 mild)]. A comparable situation is projected to happen in 3 
hrs. at the RH. What would your team do if 3 ambulances were located at the 
RH and 3 were 10 mins out from the incident site? 

 

12 Triage personnel on site informs your team of readiness to transport 8 severe 
patients and awaits your directive on how to distribute the patients to either 
system (RH/MFH). There are no free OR at the MFH and 3 OR at the RH with 5 
ambulances available. What decision would your team take, if there are also 
11 moderate and 22 mild also waiting for medical assistance? 

 

13 18 patients out of the 36 injured (7 severe, 11 moderate) need urgent 
evacuation. Only 4 ambulances are available for the RH and MFH. Decide on 
what will be your team’s priority and distribution of the victims. 

 

14 Your team is receiving a call about the distribution of 40 victims at the incident 
site and, there is a sudden disconnection in the line which may take half an 
hour to fix (30mins). What will be your team’s decision if you have 2 ORs at the 
MFH, 3 ORs at the RH for surgery and other related issues? 

 

15 38 patients (8 severe, 11 moderates, 19 mild) require various levels of 
attention. The MFH has 1 OR for a moderate severity patient. How will your 
team coordinate the affected patients if 5 severe patients and 3 moderate 
patients require surgery? 

 

16 42 patients (8 severe, 13 moderates, 21 mild) need evacuation and treatment. 
The MFH has 2 ORs to attend to patients. How will your team coordinate 
patients if all ambulances are between 15-20 minutes from the incident site 
and 3 patients have 45 minutes to live without surgery? 

 

17 14 out of the 40 patients (8 severe, 12 moderates, 20 mild) in the incident site 
are expected to require hospitalization after treatment. RH has separate wards 
for severe and moderate patients, but the available space is limited. How will 
your team manage the patients if 7 hospitalization spaces are available at the 
MFH and, only 5 bed spaces are in the RH? 

 

18 37 patients (7 severe, 11 moderates, 19 mild) require various degrees of 
medical attention. Only 1 OR is available at the MFH for moderate patients. RH 
has 4 ORs available. How will your team coordinate the patients if 7 severe 
patients and 5 moderate patients require surgery? 

 

 

**Injects 1- 9 describes the scenarios of the intervention carried out only by the Regional Hospital (RH) 

prior to the deployment, setup, and operation of the Mobile Field Hospital. **Injects 10-18 describes the 

scenarios capturing the intervention of both the Regional and Mobile Field Hospitals, based on the 

ambulance policies. This nuanced approach to the scenario design ensures that players are consistently 

challenged to reassess and apply disaster response strategies in varying contexts, enhancing the 

educational and training value of the disaster response tabletop role-playing game. 
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Appendix D1: DRTRPG in-game response time form (data collection) 

 

Table 6: In-games response time form (Group A and B) 

 

# Scenario tasks 

Response Time 

Start Stop 

1   

2   

3   

4   

5   

6   

7   

8   

9   

10   

11   

12   

13   

14   

15   

16   

17   

18   
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Appendix D2: DRTRPG in-game observers rating form  

 

Date:  __7th March,2024__ 

Team Name: __A and B__ 

Scenario: Disaster/emergency response in an oil and gas industry 

Time: __9:30hr – 12:00hr__ 

Role (observer): The role of the observer in the role-playing game is to assess the performance 

of the players acting as ambulance dispatchers in the group. 

Instruction: Use the scale provided to rate the following items. Additional comments may be 

added in the spaces provided. Please use circles or ticks to indicate your selections in the box. 

This information is to be collected during the DRTRPG and is intended to help summarize the 

observer’s findings on the participants during the exercise. 

 

Table 7: DRTRPG in-game tasks performance evaluation 

 Injects Response Scoring 

 
Performance evaluation criteria 

Strongly  
Disagree 

 
Disagree 

 
Agree 

Strongly  
Agree 

i. Involvement: All members of the group were actively 
engaged throughout the inject exercise 

 
1 

 
2 

 
3 

 
4 

ii. Communication: The group members communicated 
with each other during the injects/exercise 

 
1 

 
2 

 
3 

 
4 

iii. Role-playing: The group stayed in character (ambulance 
dispatcher) during the injects scenario 

 
1 

 
2 

 
3 

 
4 

iv. Decision-making skill: The players were able to make 
quick decision in the high-pressure situations 

 
1 

 
2 

 
3 

 
4 

Additional observations on groups’ performance: 
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Appendix D3: DRTRPG post-game observers rating form  

 

Date:  __7th March,2024__ 

Team Name: __A and B__ 

Scenario: Disaster/emergency response in an oil and gas industry 

Time: __9:30hr – 12:00hr __ 

Role (observer): This information is to be collected after the DRTRPG and is intended to help 

summarize the observer’s feedback on the participants engagement in the exercise. 

Instruction: Use the scale provided to rate the following items. Additional comments may be 

added in the spaces provided. Please use circles or ticks to indicate your selections in the box. 

 

Table 8: Observers’ post-game evaluation criteria 

 RPG Evaluation Scoring 

 
Evaluation Factor 

Strongly  
Disagree 

 
Disagree 

 
Agree 

Strongly  
Agree 

i. Situation Awareness (SA): The team successfully 
maintains SA through sharing and communicating 
knowledge across the scenarios? 

 
1 

 
2 

 
3 

 
4 

Comment: 

ii. Teamwork: The team effectively collaborated in 
decision taking throughout the exercise 

 
1 

 
2 

 
3 

 
4 

Comment: 

iii. Time management: The team effectively managed the 
time they had available to them during the exercise 

 
1 

 
2 

 
3 

 
4 

Comment: 

iv. Role empathy: The team effectively empathized with 
their given role? 

 
1 

 
2 

 
3 

 
4 

Comment: 

v. Performance: The team demonstrated good 
understanding of the objectives for the exercise 

 
1 

 
2 

 
3 

 
4 

Comment: 
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Appendix E1: Disaster response role-playing game data gathering forms 

 

Table 9: Observers’ in-game response rating (official use) 

                                  
Group A 

 
Group B 

 

Average Evaluation Criteria 4 3 2 1 4 3 2 1 

Involvement          

Communication          

Role-playing          

Decision-making skill          

            

        Overall score: ----------------------------- 

Appendix E2: Disaster response role-playing game data gathering forms 

Table 10: Observers’ evaluation feedback rating (official use) 

 Group A Group B  

Average 
 Questions 4 3 2 1 4 3 2 1 

i Situation Awareness (SA)          

ii Teamwork          

iii Time managements          

iv Role empathy          

v Performance          

 
       Overall Score: -------------------------------- 

 

***These table gives a standardized rating scale that will be used to assess the performance of 

the players on each of the criteria mentioned on the observer's form. Scores might reveal game 

flaws or areas for improvement. If players repeatedly score low in one area, the task or challenge 

may need to be changed to make it more interesting or demanding in the future. 
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Appendix F1: DRTRPG observers in-game performance evaluation results 

 

 

Figure 38: DRTRPG observers in-game performance evaluation results 

Appendix F2: DRTRPG observers feedback performance evaluation results 

 

Figure 39: DRTRPG observers feedback performance evaluation results 
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