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Chapter 1. Introduction 

In many imaging systems, various research directions can be pursued to enhance the overall 

system's outcomes. In the relatively new THz technology, we can identify several challenges 

associated with the preprocessing step, but the focus is on image displaying methods. In this thesis, 

significant attention is dedicated to investigating amplitude estimation techniques within ideal and 

noisy conditions [1]. In all imaging systems, regardless of their technology, when the estimation 

of the received signal is poor, the resulting image has low quality. Thus, novel image displaying 

methods are introduced to increase the capacity to estimate the amplitude at reception. 

On the other hand, concerning computer vision tasks such as image characterization and 

classification, the subjects addressed in this thesis envision image classification under view-point 

variation constraints. Features derived from an image subject to translation or rotation differ from 

those originating from the original image. The highly probable consequence of this aspect is an 

erroneous classification of the patterns. In this context, the concept aims to establish a singular 

decomposition method for images sharing the same pattern but undergoing rotation or translation. 

Afterwards, an essential step, developed in this thesis, is to introduce novel discriminative feature 

vectors and to train a variety of machine learning (ML) and deep learning (DL) classifiers to 

analyze their capacity in classification tasks. 

1.1 THz technology 

The aim of this section is to underscore the significance of the increasingly emerging and 

advancing THz technology. [2]. Terahertz (THz) imaging marks a novel advancement in 

diagnostic and sensing technologies, rapidly expanding in scope owing to its benefits and recent 

progress in the efficient generation, manipulation, and detection of THz signals [3]. THz waves 

occupy the quasi-optical domain, situated between the microwave (MW) and infrared (IR) regions 

within the electromagnetic (EM) spectrum, typically around 1 THz ( 1210 Hz). Given the absence 

of a rigorously defined frequency band, numerous researchers opt to specify the range based on 

the specific properties of the samples and materials analyzed via THz radiation. As it is depicted 

in Figure 1-1, the frequency band is limited within 0.3 – 3 THz, but can be extended in both sides 

without exceeding 0.1 – 10 THz [4].  

 

 
Figure 1-1. The electromagnetic spectrum 

 

THz radiation offers a variety of unique spectroscopic characteristics that motivates the 

actual scientific interest and development of the THz sensing as a powerful and complementary 

technique of inspection [3]. It allows for a multidirectional analysis by providing complementary 

information to other sensing technologies such as X-ray computed tomography scans, ultrasounds, 

microwaves, etc. Using THz radiation to create an image brings a variety of advantages which are 
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described in the following paragraph. Due to the shorter wavelength compared with waves at lower 

frequencies (ultrasounds, microwaves, etc.), a THz image has greater spatial resolution. Many 

common materials such as paper, fabrics, cardboard, ceramics, and plastic composites are 

relatively transparent to THz radiation, motivating its use as a contactless and nonintrusive 

diagnostic instrument in many applications [5], [6], [7], [8], [9], [10]. Another important property 

of THz radiation is its sensitivity to chemical and structural information [11]. Moreover, THz 

waves interact with materials in several ways, including reflection, transmission, absorption, and 

scattering. These interactions depend on the material’s dielectric properties, which are the 

refractive index and absorption coefficient. As THz waves are sensitive to changes in these 

properties, it is possible to detect subtle changes in the chemical composition and structure of a 

material. Typically, THz applications leverage fundamental characteristics of THz radiation, 

including its non-ionizing nature, the adequate transparency of materials, and the distinct spectral 

signatures exhibited by many chemical compounds within the THz range. These characteristics 

offer significant contrast in images featuring materials with high electrical conductivity (e.g., 

metals) or substantial static dipoles (e.g., water), as a result of the pronounced absorption or 

reflection of radiation in these mediums. THz imaging is versatile, enabling the generation of 

diverse images from the same measured data, including panchromatic-absorption images, 

refractive-index images, and time-of-flight (TOF) images.   

The specific contrast of THz radiation, associated with the increased spatial resolution, 

opens new perspectives in the imaging framework. In the biological diagnosis domain, the strong 

absorption of THz in water molecules plays a major role by limiting the penetration depth of the 

THz rays. Taking this into account, the research focuses on surface inspection, such as skin 

conditions and cancer diagnosis [12], [13], [14], [15], teeth imagery and identification of dental 

caries [16]. The THz radiation has a great potential in assuring a higher quality control of 

production lines by allowing for an in-depth analysis of the integrity and properties of an object: 

paint thickness analysis and drying time [17], impact control at the surface of steel sheets [18], on 

site measurement of additives in polymers [19]; Another sector where THz technologies are 

successfully applied is represented by the preventive maintenance. The possibility of a volumetric 

and nonintrusive analysis lead to a lot of opportunities in this area: detection of air bubbles in 

foams [20], detection of paint corrosion points for vehicles and airplanes [21], detection of fissures 

under a plaster [22]. Applications of security and defense can also take advantage of the features 

of the THz radiation such as the security of the control points (check-points) in airports, where the 

detection of a dangerous individual is imperative to be done with ease [23]; detection of explosives, 

and drugs [24]. Another interesting branch for THz radiation is the field of telecommunications 

where it can take advantage of both optical and electronic characteristics of the waves. An 

important application is the usage of higher frequency carrier signals to increase the transfer rate 

of two close terminals up to 20 GB/s [25], [26]. 

1.2 THz imaging 

The THz domain remains one of the least explored areas within the electromagnetic spectrum, 

thus the knowledge gap is even more reflected in the imaging domain. Depending on the 

technology of the THz sources and detectors, we can divide the imaging techniques based on the 

type of generated signal. Therefore, a THz system can create an image based on pulses or a 

continuous wave: 

- THz pulsed imaging (TPI) 

- Continuous wave THz imaging (CWI) 

A continuous wave approach detects the intensity distribution of the scattering effect on 

the edges of the motives on the samples by using a narrow frequency band, thus a CW system 
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generally provides information about the transmitted energy [27]. On the other hand, a pulsed 

imaging system considers the interactions between the emitted signal and the sample through 

which it propagates. These interactions envision pulse reflections, amplitude attenuation, phase 

and waveform deformations, etc., thus providing more information about the analyzed sample such 

as: electric field magnitude, depth of scattering centers, optical path length (transmission time), 

absorption spectrum, phase and pulse shape [27]. On average, in terms of power, a continuous 

wave system usually outputs higher energy compared to the pulsed imaging technique though, 

there are pulse sources that can generate THz signals having a power higher than 14 mW [28].  

Furthermore, due to the commonly adopted electro-optic sampling method [29] and 

photoconductive antenna technology [30] used to detect THz radiation in TPI systems, their 

structures are complex, but with advantages such as: improved signal-to-noise ratio (SNR) and 

larger bandwidth of waveforms, usually up to 5 THz [31], [32]. However, CW THz imaging 

systems are compact and can provide real time analysis capabilities without additional pump 

optical detection elements [33].  

1.3 THz pulsed imaging 

In this thesis, THz pulsed imaging is our choice of image creation. The measurements are 

conducted with a TeraPulse Lx system from TeraView, Ltd., a bench top THz transmission 

spectrometer that consist of the following components: an integrated PC to control the system; an 

external laptop which enables the user to control the TeraPulse Lx equipment (remote heads) and 

manipulates the THz analysis data via the TeraPulse Software; an enclosed optical system, an 

enclosed electronics system and a THz focused beam. 

The generation of THz pulsed radiation is based on a photoconductive switch [34], [35], 

[36]. These photoconductive emitters rely on creating THz pulses using the femtosecond laser 

pulse (below 90 fs) to excite a biased low-temperature grown gallium arsenide substrate (LTG-

GaAs). The process of generating a THz pulse is presented in Figure 1-2 (a). The emitted pulse 

(below 500 fs) has the power distributed over a frequency range spreading from 0.1 THz and up 

to 6 THz. THz pulse is radiated when the electrical dipole moment of electron/hole pairs, 

photogenerated in LTG-GaAs by the femtosecond laser pulse is modulated on sub picosecond 

timescales due to bias voltage applied in-between electrodes. The change in current density, and 

therefore photocurrent, comes from two processes:  

 

1. The femtosecond laser illumination that results in a rapid change of the carrier density 

 

2. The acceleration of photo-generated carriers under the influence of an external electric fields 

 

Coherent detection of the THz radiation uses a similar photoconductive antenna circuit. 

With the help of the femtosecond pulse synchronized to the THz emission, the photoconductive 

gap is gated and a current proportional to the THz electric field is measured. The time domain of 

the THz signal can be sampled by varying the optical path length to the receiver. In this manner, 

both the amplitude and the phase of the incident pulse is obtained with a dynamic range (DR) 

greater than 95 dB.  
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(a) (b) 

Figure 1-2. (a) THz pulse generation; (b) THz system with all its components: femtosecond laser, imaging 

module with sample, optical delay line and computer. 

 

In general, most of the THz systems work in transmission or reflection mode [37]. The 

TeraPulse Lx system has a Transmission and Reflection Imaging Module (TRIM) that allows to 

use both types of imaging techniques by interchanging elements. The diagram of the system and 

its modularity feature are presented in Figure 1-2 (b). During the thesis, the transmission mode is 

used to acquire the raw dataset from which the image will be constructed. The working principle 

of the transmission mode is shown in Figure 1-3. The object to be scanned is placed on a 2D 

movable holder at the focal plane of the incident THz pulse. After traveling through the sample, 

the transmitted signal is acquired by the receiver. Both the transmitter and the receiver are required 

to be positioned perpendicularly to the sample under test in order to increase the sensitivity at 

reception. 

 

 
Figure 1-3. Transmission Mode acquisition principle 

 

The samples consist of a polyethylene or paper substrate with a variety of metallic ink 

shapes (stars, squares, circles and hexagons) at different scales printed on it. The TeraPulse Lx 

system is configured to raster-scan in transmission mode an area of 300 mm-by-300 mm of the 

sample with a spatial resolution of 0.3 mm or 0.1 mm. The spatial resolution is the capacity to 

distinguish two close patterns. In far-field, the THz wavelength is approximately 300 micrometers 

at 1 THz. The physical distance between the THz emitter and receiver is 10 cm, adjusted to have 

a maximum amplitude signal when measured with no sample in-between. After the scan, the 
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acquired measurements are recorded in a 3D matrix, where the first two dimensions corresponds 

to the coordinates of each pixel of the image. The time-domain waveform of each of these pixels 

is stored in the third dimension over 2048 temporal points corresponding to 50ps. Figure 1-4 shows 

some of the samples analyzed and used in this thesis. The THz images of the samples are displayed 

using 1 THz frequency. 

 

 
Figure 1-4. Overview of some samples used in our study and imaged using THz pulsed imaging systems at 1 

THz. 

1.4 Challenges and limitations in THz imagery 

This part presents the challenges tackled in this thesis by providing brief descriptions about 

their importance and why is it necessary to overcome them. 

1.4.1 Image reconstruction under ideal and noise conditions 

 Image reconstruction from 3-dimensional raw data is a challenging problem in many fields 

including medical imaging or material science [38], [39], [40]. The reconstruction process uses 

mathematical algorithms to convert the acquired THz data into an image of an object or scene. In 

most of the cases, regardless the technology of the imaging system (acoustic, radar, X-ray, THz, 

etc.), the challenge is to estimate the amplitude of the received signal and to use that value to 

reconstruct the image [41]. These estimates allow for a representation of the intensity of an image, 

as it corresponds to the brightness of the sample being imaged. Accurate amplitude estimation is 

essential as it enables high-quality images with high contrast, otherwise the resulting images may 

be too dark or too bright, making it difficult to discern details or identify objects within the image. 

Secondly, the amplitude estimation is critical for the detection and analysis of subtle changes in 

the image. This is particularly important in medical imaging, where even small changes in tissue 

density or structure can indicate disease or injury [42], [43]. Lastly, a robust amplitude estimation 

is important to calibrate and normalize the imaging system to ensure consistent measurements 

across different images and imaging sessions.  

1.4.2 View-point variation in Computer Vision-related tasks 

View-point variation is a challenge in computer vision-related tasks, such as object 

recognition, detection, and pose estimation [44], [45], [46], [47]. It refers to the changes in the 

position, orientation, or perspective of an object or scene relative to the sensors, which can 

significantly affect the appearance of the object in images. As a result, the task of recognizing or 

detecting the object becomes difficult for computer vision algorithms, as the same object may have 

different shapes if observed from different viewpoints. This variation of the observation angle can 

be caused by various factors, such as the relative positions of the object and sensors, the angle of 

the camera or sensor, the lighting conditions, etc. In addition, the complexity of the object's shape, 

texture, and color can also affect the degree of view-point variation. In THz imaging, view-point 
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variation can be caused by changes in the angle of incidence of the THz radiation or changes in 

the relative positions of the object and the THz source and detector.  

Figure 1-5 shows how three different images of the same pattern, but which is rotated with 

0, 45 and 180 degrees, have distinctive feature vectors. In this case, addressing view-point 

variation is a critical challenge in computer vision as it is essential for real-world applications. For 

instance, autonomous vehicles must be able to recognize and track other vehicles and pedestrians 

from different viewpoints to ensure safe driving. Similarly, object recognition and tracking are 

essential for medical, surveillance, robotics, and augmented reality applications. In THz imagery, 

researchers have developed several methods to address the view-point variation challenge, 

including data augmentation [48] and feature-based approaches [49]. However, this challenge 

remains an ongoing area of research, and there is still much work to be done to improve the 

robustness and accuracy of computer vision algorithms under varying viewpoints. 

 

 
 Figure 1-5. View-point variation challenge in computer vision 

1.4.3 Thesis outline 

Chapter 2 presents the state-of-the art techniques used for THz image reconstruction, their 

limitations and therefore, the need for new techniques to display the image.  

Chapter 3 focuses on a modern signal representation space, the phase diagram, in order to 

define novel methods which, improve the quality of the reconstructed image. The quality 

assessment is achieved using different full- and no- reference quality metrics. 

Chapter 4 describes the means of tackling characterization and classification tasks under 

invariance constraints. Before detailing the novelties, the chapter focuses on presenting some state-

of-the-art techniques used in nowadays imaging systems and how they can be used as a starting 

point to develop two feature extraction techniques. These techniques are based on invariant 

Wavelet Packet Decomposition (WPD) and entropy as the mean to characterize the images.  

Chapter 5 focuses on the classification task by testing the proposed methods from Chapter 

3 on publicly available image datasets, but also on a dataset of THz images created in the 

laboratory. The chapter also presents a comparison between different approaches from the 

literature and assesses our methods in this regard. 

Finally, Chapter 6 concludes the thesis by synthesizing the main contributions and the 

perspectives for future research directions. 
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Chapter 2. State-of-the-art image reconstruction  

2.1 Introduction  

In the THz imaging framework, the acquisition setup has the most important role. Its 

features, limitations, and a priori configuration, determine the quality of the measured data. In this 

context, a critical aspect concerns the data processing methods employed for reconstructing the 

image from raw data. These factors collectively contribute to the overall precision and integrity of 

the THz imaging system, consequently influencing the ultimate diagnostic outcome. In most of 

pulsed THz imaging systems, the resulting image pixels contain time-domain waveforms 

recovered by a raster-scanning (point-by-point) method. 

The problem of THz image reconstruction is to estimate the amplitude of the received 

signal [50]. A primary constraint of THz imaging pertains to the signal-to-noise ratio (SNR), 

underscoring the significance of this factor when utilizing THz systems. The image's quality 

significantly relies on the performance of the THz system and the operational conditions, which 

are not always perfectly controllable, unlike in a research laboratory setting. Consequently, certain 

disturbances, such as those induced by low-performance imaging systems or critical measurement 

conditions, require correction through signal post-processing. In recent years, numerous 

techniques have been introduced for THz signal denoising, aiming to substantially enhance the 

signal-to-noise ratio (SNR) using methods like wavelets [51], shrinkage [52], etc. These 

approaches are primarily formulated under the assumption of additive noise, often regarded as 

constant regardless of the signal's strength. This problem is classically tackled by using either a 

robust pre-processing method that enhances and exploits the strongest characteristics in the 3D 

data structure, or more common methods such as post-processing algorithms.  

2.2 Problem definition  

Suppose the imaging system is under the influence of a slow-varying physical perturbation 

having random amplitude, random phase, and random frequency up to 100 Hz. One thing to 

mention is that the randomness of perturbation’s parameters is of gaussian type. This noise models 

the instability of the hardware setup and its sensitivity to any slow physical move that might appear 

while the system is in use (e.g., temperature drift). To be more precise, we exemplify the following 

possible perturbations: the temperature effect on laser; delay line motion faults (rolling, pitching) 

in translation stage; and noise coming from the THz detection chain which is also proportional to 

the signal [53]. We can image scenarios within identification and authentication applications in 

airport security systems, where achieving precise standoff detection of weapons, including steel, 

firearms, and explosive items, is imperative. Some of the challenges that standoff detection is 

facing, are:  

 

i) extending the distance range at which effective identification can occur;  

 

ii) and improving signal detection and estimation over atmospheric and environmental 

noise and perturbation.  

 

Under the influence of the described perturbation the THz image will degrade, loose 

contour information and will have a deformed contrast, making the further processing difficult and 

therefore having an unreliable result at the end of the processing chain. 
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The various perturbations can be more precisely modeled as a multiplication [54], [55], 

[56] between the received waves and an analytic signal that describes the instantaneous amplitude 

and phase interactions between the emitted wave and various disturbing factors.  

Under the assumption of the physical perturbation, we consider the emitting THz pulse 

defined, in numerical form, by:  

 

     
,

j n
s n A n e


=       (2.1) 

 

where  A n is the envelope of the transmitted signal and  n  is the instantaneous phase. For a 

monochromatic pulse,  n can be expressed as:  
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0f  is the signal’s frequency and 
sf  is the sampling frequency.  

 Considering the nature of the perturbation, for example the slow temperature drift, and the 

raster-scanning approach in pulsed THz imaging, we model the perturbation for each individual 

received THz pulse: 
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where ,i j , ,i jf  and ,i j  are the envelope, frequency and phase of the perturbation signal.  

The received pulse is the product between the two exponential signal and can be described 

as in: 
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where the real part of the signal is: 
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However, this model of the perturbation can be extended to real-time THz imaging, which 

implies a wider THz beam that illuminates the whole sample. In contrast, a raster-scanning 

approach scans the sample point by point with a THz beam radius smaller than 1mm. For THz 

imaging with wider beam, as in radar imaging, diffraction and scattering effects have to be added 

to slow-varying perturbations. [57]. The scattering effect in raster-scan imaging has neglectable 

effects as the beam width is small enough to minimize the encountering of unexpected scattering 

points. Additionally, even if we suppose there are scatterers inside the illuminated zone, the 

distance between them is small compared to the whole THz pulse that they can only affect small 

parts of pulse.  
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Thus, In THz imaging with a wider illuminating zone, the received THz beam has the 

following expression: 
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where ,M N  represent the number of scatter points along each axis, ,i j  represents the amplitude 

attenuation coefficients, ,i jd  is the distance between each scatter points and the receiver and c  is 

the speed of light. 

 If we consider that  n is the phase of a monochromatic pulse, the received THz pulse can 

be written as: 
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where the real part of the signal is: 
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As it can be observed from (2.5) and (2.8), the two types of perturbation are different in 

nature, but are similarly mathematically modeled for the two types of THz imaging techniques: 

raster-scanning and real-time systems. Having a similar model, the methods we proposed in this 

thesis for image reconstruction can be easily extended to both scenarios, but we focus only on 

raster-scanning as it is the acquisition technique used to obtain our images. 

As (2.5) and (2.8) show, the propagation effect multiplicatively influences the amplitude, 

requiring careful consideration to develop an accurate method for synthesizing images. THz image 

reconstruction happens to be a tough problem, especially in the context of physical perturbations 

and environmental interference. Classic time- or frequency-domain methods usually fail to 

distinguish between interference and the informational signal, thus resulting in an improper 

estimation of the amplitude and a low-quality image with contour information loss and deteriorated 

contrast. The effects of the described perturbation are presented in Figure 2-1. The THz images 

are reconstructed using the maximum amplitude value of the received pulses in both cases. The 

perturbated THz image is the result of numerically adding the multiplicative noise to the original 

THz image. In the following perturbed image, we add multiplicative noise with random amplitude 

between 0.5 - 1, frequency between 50 - 100 Hz, and phase between 0 to  . 
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Figure 2-1. The effects of the slow-varying perturbation on the THz image reconstruction. 

2.3  Mathematical modeling of the THz image 

Before diving into the purpose of the chapter, we should first define the means of 

representing 3-D data acquired by our THz system after imaging a sample. The volumetric data 

can be expressed as a discrete function, based on the received THz signals defined in (2.8) : 

 

    ,, , Re   |  x yg x y n r n n +=      (2.9) 

 

where 1... , 1...x W y H= =  iterates through the width and the height of the imaged sample on each 

scanning point ( ),x y ; n  represents the sample number;   ,Re x yr n are the discrete real part of 

the complex THz signals of length N  that propagated through the sample and were received by a 

THz detector. With regards with the photoswitch sampling technique used in TPI systems, we 

consider the equivalent sampling frequency, 
sf  and therefore, the sample number is expressed as

sn t f=  , where t  represents the timestamps of the THz pulse.  

 Some of the state-of-the-art methods to reconstruct images consider either the time or 

frequency-domain representation of the THz pulses [58]. Thus, it is necessary to define the 

frequency volumetric image by applying a Fast Fourier Transform (FFT) on the 3rd dimension of 

the discrete image function, g : 
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where 
kf  is the frequency starting from 0 and going up to the Nyquist frequency, 

2

sf . 

In Figure 2-2 we depict an illustration of the data format presenting a 3-D image, where 

each pixel is a THz waveform represented in time and frequency domain, respectively. 

 



 

21 of 135 

 

 
Figure 2-2. Illustration of 3-D data format in time and frequency domain 

2.4 State-of-the art image reconstruction methods in THz imagery 

In pre-processing, the problem of how to display the image arises. In this part, we detail 

state-of-the-art reconstruction methods based on time and frequency domain representation of the 

signals. For illustration purposes we consider images that have 100 by 100 pixels corresponding 

to a physical image of 3 by 3cm with a spatial step of 0.3mm.  

The objective is to study the state-of-the-art methods to reconstruct images while observing 

their ability to remove noise and artefacts. All methods are compared in both ideal and noisy 

context. We suppose the system is under the influence of a physical perturbation with random 

amplitude, phase and frequency. In all cases, the noise has the following parameters: the amplitude 

is a number randomly picked from the range 0.5 - 1, the random frequency range is 50 - 100 Hz, 

and the phase is randomly chosen from 0 to  . The multiplicative perturbation conditions remain 

consistent across methods to highlight their impact on the information within the image and 

facilitate comparison among state-of-the-art approaches employed in contemporary THz systems. 

The effect of this specific noise is visible through contour information loss for dominant, wide 

motives and even total loss of information in case of small details. Other important aspects are 

contrast degradation and additional background noise. In terms of information, the images in noise 

conditions are highly corrupted with little to no easily detectable details. The contrast is degraded 

and can be analyzed within image histograms, as their shape is related to image appearance and 

information. In most scenarios, depending on the information, for dark images, the majority of the 

histogram's bins are densely clustered towards the lower, darker end of the intensity scale. 

Similarly, for light images, the higher end of the scale is populated. For a low-contrast image, the 

histogram tends to be centered around the middle of the scale, whereas for a high-contrast image, 

the histogram spans a broad range of the intensity scale. THz images are presented along with 

corresponding histograms so that an overview of changes in pixel intensities is provided. 

2.4.1 Time-domain methods  

The widely used reconstruction space is the time-domain [59], [60]. One commonly 

utilized approach involves presenting the maximum amplitude of the signal for each pixel in the 

image. The max function reduces the dimensionality of the volumetric data by discarding all 

amplitude values except the maximum. The image resulted from this procedure is denoted as 

Maximum Peak Image (MPI) and can be expressed as: 

 

     , max , ,MPI x y g x y n= , (2.11) 

 

where the max . function operates on each received signal at ( ),x y  scanning point.   
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Figure 2-3 shows an example of MPI reconstruction method in ideal conditions and under 

the influence of the multiplicative perturbation. Due to the random distortion defined in (2.8), the 

reconstructed image is corrupted and information deformed, aspects also visible in the histogram, 

where pixel values are spread among all domain.  

 

 

 
Figure 2-3. Maximum peak value images in ideal and noisy context 

 

 
Figure 2-4. Minimum peak value images in ideal and noisy context 
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At the same time, one can display the image using the signal’s minimum amplitude. This 

image is further denoted as Minimum Peak Image (mPI) and is expressed as: 

 

     , min , ,mPI x y g x y n= , (2.12) 

 

where the  min * function operates on each received signal at ( ),x y  scanning point. 

Figure 2-4 shows an example of this case in both ideal and noisy conditions. Similarly, to 

MPI, mPI images prove to have the same characteristics, mentioning only that the image intensities 

and histogram are reversed as the image was reconstructed using the minimum amplitude values. 

The two aforementioned display methods derive from a broader approach, wherein the 

image can be rendered using the amplitude at a particular temporal position, usually a timestamp 

where the signal is prominent, or where the reflections of the THz pulse are visible. The image is 

further denoted as Time Slice Image (TSI) [61] and is defined as: 

 

    , , , sliceTSI x y g x y n= , (2.13) 

 

where 
slice s slicen f t=   is the timestamp used to create the image.  

In Figure 2-5, we depict the reference THz pulse,  s n , initially defined in (2.1) and the 

values used to create a TSI image and subsequent methods based on the same reconstruction 

principle. The reference pulse is the signal measured without a sample and it is used to measure 

all samples presented in this thesis. The THz reference pulse is considered constant for each 

measuring point.  

 

 
Figure 2-5. THz pulse and the corresponding timestamps of its reflections 

 

As TPI systems use optical delay lines (ODLs) to sample the electric field in the THz pulse, 

the Ox axis in Figure 2-5  has the optical delay values used to probe the THz electrical field. The 

timestamps are used in subsequent methods in this section and correspond to the start of the pulse, 

0 1273.78 pst = , the first, 
1 1279.36t ps= , and second, 

2 1281.16t ps=  reflection of the THz pulse, 

respectively.  

We chose these timestamps as their amplitudes are larger than others, thus having higher 

probability to correctly reconstruct the image. Usually, the choice of other values yields poor 

results as they have low energy and are sensitive to noise. Additionally, the timestamp of the 

maximum peak value, 
max 1277.34t ps= , is denoted in the same figure as it is used in later methods 

to reconstruct images.  
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(a) 

 

(b) 

Figure 2-6. Time Slice Images in ideal and noisy context at: (a) 1279.36 ps; (b) 1281.16 ps with perturbation; 
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(a) 

 

(b) 

Figure 2-7. Time slices difference images in ideal and noisy context: (a) between maximum peak and first 

reflection; (b) between first and second reflection; 
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Considering the two reflections’ timestamps depicted in Figure 2-5, we reconstruct the 

corresponding TSI images presented in Figure 2-6 in ideal context (a) and noisy conditions (b). As 

the reflections’ energy is low compared to the noise, the image is highly sensitive in terms of pixel 

intensities, resulting in images and histograms resembling noise. 

Another method uses the difference between the signal’s amplitudes at two specific 

timestamps positions and to display the image. Thus, the Time Slice Difference Image (TSDI) [61] 

is defined as: 

 

   , , , , ,i jTSDI x y g x y n g x y n = −   ,   (2.14) 

 

where 
i s in f t=   and j s jn f t=   represent two different time slices.  

Figure 2-7 (a) presents THz images reconstructed using the difference between the 

amplitude values at 
maxt  and 

1t , while Figure 2-7 (b) shows images reconstructed with the 

amplitude difference between 
1t  and 

2t . Considering the phase and frequency deformation as 

consequences of noise’s presence, the THz pulses and their individual reflections’ positions are 

arbitrary shifted at each measuring point, ( ),x y . It is worth mentioning that  
maxt  was chosen on 

the reference pulse and will not correspond to the maximum amplitude value on the received THz 

signals. Thus, the major drawback of this method regards the fixed timestamps which do not 

always correspond to the exploited signals’ components. Additionally, there is no obvious mean 

to select optimal signal’s components and to find their position within the measured signal. The 

consequence is a highly corrupted image with most of the information hidden in noise. 

In the same manner as TSDI, we can integrate between two positions to reconstruct the 

image. A Time Slice Integration Image (TSII) [61] is therefore expressed by: 

 

   , , ,
j

i

n

k n

TSII x y g x y k
=

= ,     (2.15) 

 

where the summation iterates through all timestamps from 
i s in f t=   to j s jn f t=  . Employing 

identical timestamps as in the preceding methods, TSI and TSDI, in Figure 2-8 (a) the images are 

reconstructed by integrating all values between 
0t  and 

1t . In the second scenario, in Figure 2-8 (b), 

the images are reconstructed by integrating from 
0t  to 

2t . TSII images exhibit similar limitations 

as the preceding methods, with the most significant being the lack of information. 

Another approach is based on determining the time of flight (TOF) related to the time shift 

of the THz pulse, and to display it for each pixel. To ascertain the time shift or lag, we calculate 

the position of the maximum value in the cross-correlation between the emission and reception, 

also known as Matching Filtering (MF). To display Time of Flight Images (TOFI) [62], we first 

compute the cross-correlation between  s n , initially defined in (2.1), and all measured THz 

signals. The pixels values are in fact the positions of the cross-correlation maxima determined as 

in: 

 

      , argmax , , ,TOFI x y g x y n s n= ,    (2.16) 

 

where .  denotes the correlation operator. 



 

27 of 135 

 

 

 
(a) 

 

(b) 

Figure 2-8. Time slices integration images in ideal and noisy context: (a) between maximum peak and first 

reflection; (b) between first and second reflection 
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(a) 

 

 

(b) 

Figure 2-9. Time-of-flight images in ideal and noisy context: (a) without contrast enhancement; (b) with contrast 

enhancement 
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In the common case of channels exhibiting convolutional effects [63], the signal 

transmitted to a receiver can take multiple paths to reach the destination. These paths may involve 

reflections, diffractions, and scattering from various objects in the environment. As a result, the 

transmitted signal may experience multiple delays and attenuations. Using MF, the signal of 

interest can be optimally detected in this scenario. However, the model of the multiplicative 

perturbations tackled in this thesis showcases more complex deformations resulting in an efficient 

MF approach. Frequently, when employing TOFI, the signal reflected from the front surface of 

the scanned object emerges as the strongest signal and is identified as the maximum value. If the 

surface remains flat, the TOF will remain approximately constant across the entire surface, 

yielding a uniform image that is sensitive to either the flatness or the optical thickness of the sample 

being measured. To magnify the contrast of such TOF-based image, one can also compute the first 

derivative of the THz pulse at a certain temporal position set as working point. In such imaging 

process the slight temporal shift is multiplied by the slope of the THz pulse, which is maximum if 

the working point is the inflection one, as in: 

 
   

    2 1

2 1

, , , ,
, argmax , , ,

g x y n g x y n
TOFI x y g x y n s n

n n

−
= 

−
,           (2.17) 

 

where 
1n  and 

2n  are two consecutive positions. Figure 2-9 (a) presents TOFI images, and (b) 

depicts the contrast enhanced TOFI images. Amplitude randomness and phase deformations 

introduced by multiplicative perturbations makes this approach unusable as the computed lags are 

randomly varying losing information within the image. Moreover, as the measured sample is not 

multi-layered, TOF values are close to one another and the image contrast is low. 

2.4.2 Frequency-domain methods  

Frequency-domain methods exploit the spectral information of the THz pulses [64], [65]. 

Figure 2-10 presents the spectrum of the reference THz pulse,  s n , emphasizing the spectral 

components,   THz | 1,2,3,4,5if i i=  , which are used to reconstruct the images in the following 

methods. These spectral components are chosen from the frequency pool of the THz imaging 

system. From its technical description manual, the spectral range varies from 0.06 THz and up to 

5 THz. Thus, frequency values higher than 5 THz are not used as the signal-to-noise ratio is below 

1. 

 
Figure 2-10. Frequency spectrum of the THz reference signal 

One of the most straightforward approaches uses the amplitude of a specific frequency 

component as pixel value. The Frequency Slice Image (FSI) [58] can be expressed as: 

 

   , , , kFSI x y G x y f= ,     (2.18) 
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where 
kf  is the chosen frequency. In Figure 2-11 we depicted THz images reconstructed using the 

amplitude value of the frequency components starting with 1 THz and going up to 5 THz.  

 

 
(a) 

 

 
(b)  
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(c) 

 

 
(d)  
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(e) 

Figure 2-11. Frequency slice images in ideal and noisy context at: (a) 1 THz; (b) 2 THz; (c) 3 THz; (d) 4 THz 

and (e) 5 THz. 

 

In general, low frequency values reconstructs images with blurred information and high 

contrast, while higher frequencies generate images with higher spatial resolution, but with lower 

contrast. The spatial resolution is limited by the diffraction limit. The imaging resolution is limited 

to half of the wavelength,  , modified by the refractive index 
in  of the medium and the angle   

of the cone of focused beam: 

 

 limit
2 sini

d
n




=  (2.19) 

 

 As the multiplicative noise is present in all effective bandwidth, it cannot be removed by 

selecting a specific frequency to reconstruct the image. Based on the noise characteristics (arbitrary 

amplitude, frequency and phase), the spectral components are randomly affected and thus, 

obstructing an efficient image reconstruction.  

Similarly, as observed in the time-domain, we can create an image considering the 

amplitude difference between two distinct frequencies. We denote this image as FSDI (Frequency 

Slice Difference Image) and define it as in: 

 

     1 2, , , , ,FSDI x y G x y f G x y f= − ,   (2.20) 

 

where 
1f  and 

2f  are the chosen frequencies to create the image.  
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(a) 

 

(b) 

Figure 2-12. Frequency Slice Difference in ideal and noisy context: (a) 1 THz - 2 THz; (b) 1 THz – 3 THz. 
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(a) 

 

(b) 

Figure 2-13. Frequency Slice Integration Image: (a) from 1 THz to 2 THz; (b) 1 THz to 3 THz 
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Examples of this method are presented in Figure 2-12 (a) where we use the amplitude 

difference between frequency components at 
1 1 f THz= , 

2 2 f THz= and Figure 2-12 (b) where 

the considered frequency are 
1 1 f THz= and 

3 3 f THz= .  

The images loose almost all information with mentioned parameters. In this case, fine-

tuning is a complex process with little rate of success as the efficiency of the method is strictly 

related to noise and its influence on spectral information: the greater the influence of noise, the 

higher the likelihood of failure to recover information. 

Consequently, we can also integrate the amplitudes between two distinct frequencies. The 

image displayed using this method is further denoted as FSII (Frequency Slice Integration Image) 

[65] and is defined as in: 

 

   
2

1

, , ,
f

k f

FSII x y G x y k
=

= ,     (2.21) 

 

where the summation iterates through frequencies from 
1f  to 

2f . 

Figure 2-13 (a) and (b) shows examples of FSII reconstruction by integrating between 1-2 

THz and 1-3 THz, respectively. However, one important disadvantage is that there are no efficient 

bandwidth selection algorithms which can automatically adapt from measure to measure to 

reconstruct the image in a way that reduces noise while maximizing information. Thus, FSII, but 

also FSI and FSDI are rather overwhelming approaches as they need lot of fine-tuning and the 

results are not always expected to be of high quality.  

Filtering procedures applied in electromagnetic sensing are used to enhance the THz image 

reconstruction. A first example is the Fourier Filter method which exploits the part of the signal’s 

spectrum where the amplitudes are not lower than a threshold [66]. The waveforms in the time 

domain, taken along a line or column from the image, are collected into a vector. The Fourier 

Transform is then applied to obtain their spectra. Subsequently, these spectra are normalized to 

their maximum value and converted into a logarithmic scale. The frequencies whose amplitude are 

lower than 3dB are discarded and the Inverse Fourier Transform is applied to retrieve the time-

domain signals.  

The FFI (Fourier Filtered Image) can be briefly described as in: 

 

    
1 2

0

, max , ,
kN j n
N

n

FFI x y IFFT g x y n e
− −

=

     
=     

     
  (2.22) 

 

where IFFT is the Inverse Fast Fourier Transform,  is the bandpass filter that selects the effective 

spectrum of the THz pulses, and max is the function which reduces the dimensionality from 3-D 

to 2-D by selecting the maximum amplitude value after the filtering procedure.  

Figure 2-14 shows a THz image in both ideal and noisy conditions before and after filtering. 

In both cases, the filtered image does not greatly improve the original image. Moreover, it lowers 

the contrast as the multiplicative noise is present in the whole spectrum. 
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(a) 

 

 

(b) 

Figure 2-14. FFT filtering procedure in: (a) ideal conditions; (b) noisy context  
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2.4.3 Subsections concluding remark 

As until now, the presented methods were individually applied on each THz signal. In this 

case, we refer them as pre-processing methods as they operate on the physical level of the image, 

which is the electric field of the THz radiation. While a part of the pre-processing methods ensures 

a roughly good image reconstruction, they are sensitive to noise, which deforms the contours of 

the shapes, blurs the image and adds unwanted artifacts. Some methods have potential in recreating 

images, but they require either fine-tuning or aid from other tools in order to achieve a quality 

result.  

In the following subsection, we briefly present post-processing methods, as they are 

applied after the image was already reconstructed in order to enhance its quality and to remove 

any additional noise. 

2.4.4 Post-processing methods 

To illustrate the post-processing methods, we're utilizing the noisy images introduced in 

the preceding section. The objective of this sub-section is to analyze different widely used methods 

and to observe their robustness and capacity to remove noise and enhance the image. We chose to 

analyze the FSII image from Figure 2-13 (b) as it has a good quality.  

A simple widely form of post-processing method is the histogram equalization [67], which 

is used to enhance the contrast by spreading the most frequent intensity values. Adaptive histogram 

equalization [68] calculates numerous histograms corresponding to distinct regions of the image. 

These local histograms are exploited to reallocate the intensity values among the image. Figure 

2-15 shows how both methods perform on a THz image. Indeed, the contrast is increased, but the 

noise is visible in the background and contour information is lost in both cases. 

 

 
Figure 2-15. THz images obtained after histogram equalization (left) and adaptive histogram equalization (right) 

post-processing 
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Another post-processing method is the morphological filtering [69] which is based on the 

erosion and dilation operators [70]. At the core of morphological image processing lie two 

fundamental operations: erosion and dilation. Erosion acts as a digital "shrinking" mechanism, 

diminishing the extent of information within the image, while dilation serves as its counterpart, 

expansively "growing" the image's content. Building upon these foundational concepts, two 

additional morphological operations emerge: opening and closing. Broadly speaking, the 

application of an opening operation on an image yields a smoothing effect on its borders and 

contours, effectively eliminating fine details such as small, narrow lines and connectors between 

distinct components. Conversely, closing an image entails the amalgamation of fragmented 

regions, effectively bridging narrow gaps or interruptions, eradicating diminutive holes, and filling 

in the spatial voids along the contour. These operations, intricately interwoven, offer versatile tools 

for manipulating image structure and enhancing visual clarity, playing a pivotal role in a myriad 

of image processing tasks across diverse domains. 

Figure 2-16 shows examples of multiple opening and closing procedures with different 

structural elements such as: (a) diamond-shape with a 2-pixel distance from its center to its points; 

(b) disk-shape with a 2-pixel radius; (c) octagon-shape with a 3-pixel distance between its center 

to its sides; (d) a horizontal line of 2-pixel length; (e) a rectangle-shape with 3x2 pixels; and (f) a 

3x3 pixel square. Usually, increasing the width, height or radius of the structural element, the 

erosion or dilation effect on image information is even more visible. By using morphological 

filtering procedures, the image is slightly enhanced but the most important drawback of this 

approach is the fact that the initial information is deformed and additional artefacts, unrelated to 

the original image, are added to the image. 

Other drawback of morphological filtering is the computational complexity, particularly 

for large images. Moreover, as seen in Figure 2-16 morphological operations can inadvertently 

lead to a loss of fine-grained details within images, potentially impacting the fidelity of processed 

results. Sensitivity to noise further compounds these challenges, necessitating careful 

consideration during parameter selection to balance noise suppression with preservation of 

essential image features. Additionally, the subjectivity in parameter tuning and the potential for 

boundary effects underscore the nuanced nature of morphological filtering, demanding expertise 

and iterative refinement for optimal outcomes.  

We can mention other techniques such as noise removal using Wiener filters [71], linear 

contrast adjustment [72], median filtering [73] and unsharp mask filtering [74], which yield 

similarly results as the ones presented.  

While all the methods are easy to apply and provide decent individual results in some cases, 

the post-processing chain consists of several enhancement techniques combined. This results in a 

time-consuming image reconstruction with a requirement of additional computational resources. 

Another problem is related to the careful algorithm adjustment that is needed to achieve the best 

outcome. However, even with a thorough preparation of the post-processing chain, the results are 

not guaranteed to be of high quality, thus enforcing the idea of a new method that can improve the 

overall quality of the image at the physical level, reducing noise influence and the complexity of 

the imaging system in terms of processing. 
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(a) 

 
(b)  
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(c) 

 

(d) 
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(e) 

 

(f) 

Figure 2-16. Multiple opening and closing procedures with different structural elements: (a) diamond-shape; (b) 

disk-shape; (c) octagon-shape; (d) a horizontal line; (e) a rectangle-shape; (f) square-shape 

 



 

42 of 135 

 

2.4.5 Subsection concluding remark 

Finally, our conclusion is that the post-processing methods can off course improve the 

quality of THz images but the quality of the initial formed THz image is naturally crucial. Table 1 

presents an overview of the advantages and disadvantages of the state-of-the-art. This is the reason 

why we have oriented our researches in the sense of proposing a new methodology to construct 

the THz images.  

In the following chapter, we introduce the concept of the phase diagram, followed by the 

development of five innovative image reconstruction methods. 

Method Advantage Disadvantage 

P
re

-p
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ss
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g

 

Time-

domain 

methods 

• Easy to implement 

• Lower computational resources 

• For TSI, TSII and TSDI - control 

over the timestamps 

• TOFI – possibility of imaging in 

layers 

• Perform well in laboratory 

contexts 

• The choice of the 

timestamps for TSI, 

TSII and TSDI. 

• Sensitive to 

multiplicative 

perturbations like 

temperature drifts and 

delay of the optical 

line. 

Frequency-

domain 

methods 

• Exploit the spectrum 

• Controlled resolution of image by 

using different frequencies 

• Possibility to slightly improve the 

image under multiplicative 

perturbations 

• The multiplicative perturbation 

cannot be removed as it deforms 

the amplitude, frequency and 

phase 

• The choice of 

frequency stamps for 

FSI, FSII, FSDI. 

• Filtering is not optimal 

as the multiplicative 

noise is present in the 

whole spectrum. 

• Sensitive to 

multiplicative 

perturbations like 

temperature drifts and 

delay of the optical 

line. 

P
o
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-p
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Hist. Eq. 

Morphologic

al filtering 

• Can improve the contrast of 

images in controlled environment 

• Dependent on the 

image reconstruction 

algorithm 

• Deforms the 

information present in 

the image 

Table 1. Advantages and disadvantages of the state-of-the-art methods 
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Chapter 3. Phase-Diagram method for image reconstruction 

3.1 Introduction  

A common observation arising from the examination of the state-of-the-art is the 

recognition of certain inherent disturbances that cannot be effectively eliminated through 

conventional pre-processing and post-processing methods. These disturbances typically stem from 

noise components or the laser pointing effect caused by yaw in the delay line of THz-TDS systems 

[75]. Therefore, our approach aims to mitigate the impact of low-frequency multiplicative 

perturbations on the quality of THz images by employing the concept of phase diagram. [76]. 

3.2 Introduction of Phase Diagram Representation  

The representation of phase diagrams is a concept typically utilized within the domain of 

nonlinear dynamic system analysis. [77]. Recently, its primary advantage as a data-driven 

technique, which doesn't necessitate any model for data analysis, has broadened its application 

scope, leading to successful implementation across various fields such as: telecommunications to 

identify wide band modulations [78], system monitoring in order to estimate instantaneous 

frequency laws of signals [76], unmanned aerial vehicles’ movement characterization [79], etc. 

However, in the context of THz imagery, the phase diagram provides a robust representation of 

transient signals and, therefore, a potentially better amplitude estimation and capacity to generate 

high resolutions images [80].   

To gain a clearer comprehension of this representational space in the context of THz 

imagery, it is essential to define this technique based on a THz signal measured when imaging a 

sample. We consider the real part of the reference THz pulse defined in (2.1) of length N as 

follows: 

 

   | 1,s s n n N= =  (3.1) 

 

To transpose the time-series into its phase diagram representation, we define state vectors 

as in: 

 

 
1

[ ( 1) ]
m

m

n p

k

P s n k d e
=

= + −   (3.2) 

 

where m  is the embedding dimension of the phase space, d  is the delay between the signal’s 

samples, pe  is the unit vector of the axis that defines the phase space and ( 1)M N m d= − −  is the 

number of points in the trajectory. The delay choice is important as it must ensure the balance 

between redundancy and irrelevancy in phase space [80].  

If the delay is chosen too small, the state vectors will be similar to one another and their 

distribution defined around the principal diagonal of the space, thus a redundant trajectory is 

generated. On the other hand, if the delay is too large, the state vectors will be uncorrelated and an 

initially simple trajectory can turn into a complicated and irrelevant space representation. 

Determining the optimal delay estimate poses a challenge since we lack prior knowledge about the 

characteristics of the original phase space. In practice, the delay is chosen by computing the mean 

mutual information [81]. It is worth noting that there is no generally acceptable technique for delay 
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estimation and that the estimate is only a recommendation, generally considered as a starting point 

from where it is fine-tuned to offer the best representation in the phase space.  

 The embedding dimension, m , is calculated using a false nearest neighbor algorithm 

(FNN) [81]. FNN is based on the observation that when m  has a small value, the real trajectory is 

projected onto a lower dimensional space, resulting in an increase of the false neighbors due to the 

folding of the trajectory. If m  has a large value, the number of the false neighbors decreases due 

to the unfolding of the trajectory.  

The algorithm of phase space reconstruction for a 3-dimensional case is depicted in Figure 

3-1 where the coordinates of the trajectory are represented by delayed values of the time series.    

 

 
Figure 3-1. Phase Diagram reconstruction concept 

 

All the proposed algorithms can be explained based on the following preliminary notation. 

Starting from the time series of length N  defined as in (3.1), we can express its phase space 

trajectory in a matrix form as in: 

 

   ( ), 1p q s q p d = + −    (3.3) 

 

where p  runs over all dimensions up to m , q  iterates through all M  points in the phase space, 

and finally, d  and m  are the phase space reconstruction parameters. In other words, the matrix 

form contains on each column the m -dimensional cartesian coordinates which construct the phase 

trajectory. 

 We started the research by looking into and extrapolating the match-filter (MF) concept 

from the time-domain. As we have already described in State-of-the art image reconstruction 

methods in THz imagery, the MF is not optimal when the convolutive transmission channel is 

affected by the multiplicative perturbation.  

However, by generalizing the MF in order to be applied to phase diagrams, we could be 

able to better emphasize the information and simultaneously, to remove the effects of the 

multiplicative noise. The phase diagram approaches are considered time-domain reconstruction 

methods, as the phase trajectories are constructed from the time-domain signals. 

3.2.1 Algorithm 1: Phase-diagram Matching 

Our first approach uses the MF concept [82] in the phase diagram domain to fit a reference 

trajectory to our data. In the one-dimensional case, but also in higher dimensionality, MF is the 

optimal linear filter that maximizes SNR in an additive stochastic noise environment. Even though, 
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our context is under the assumption of multiplicative noise, MF is considered as a starting point in 

our search for an efficient reconstruction algorithm.  

To illustrate the approaches, we consider two time-domain THz pulses as shown in Figure 

3-2 (a), one being the received pulse under ideal conditions and the other is the same but under 

synthetically introduced multiplicative perturbation. The deformations of the multiplicative noise 

are more complex than the amplitude attenuation and space shifting, as we observe them in the 

time domain and the phase space in Figure 3-2 (b). The perturbed signal most challenging 

characteristic is the phase deformation which is better emphasized in the phase space in Figure 3-2 

(b). Despite the observable attenuation of the THz pulse, the phase diagrams are scaled to 1 to 

illustrate the multiplicative noise impact on the phase. 

 

  
(a) (b) 

Figure 3-2. Two time-domain THz pulses and their phase diagram representation. 

 

A phase diagram matching procedure can be defined as the convolution between the 

reference phase diagram, ref , and a reversed one, ,x y  , corresponding to an ( ),x y  pixel location 

in an image as in: 

 

      , ,

1 1

, , 1, 1
m M

x y ref x y

p q

C j k p q j p k q 
= =

= − + − +  (3.4) 

 

where 1,2 1j m= −  and 1,2 1k M= − .  

Therefore, a Phase Diagram Match Filter Image (PD-MFI) can be defined as the product 

between the highest convolution values per dimension as in: 

 

    ,

1

PD-MFI , max
m

p

x y

p

x y C
=

= , (3.5) 

 

where ,

p

x yC  denotes convolution coefficients on the thp  dimension when processing the pixel 

information at ( ),x y . 

 An example of phase diagram MF is presented in Figure 3-3, where we use the two phase 

diagrams presented in Figure 3-3 to compute the convolution in (3.4). The result is represented in 

a three-dimensional phase space, the same space as the original diagrams. In this scenario, the 
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product between the maximum convolution value on each dimension is used as a pixel intensity 

value. 

  

 
Figure 3-3. Phase Diagram MF result represented in the phase space 

 

 
 

Figure 3-4. PD-MF reconstructed image. 

 

From a physical perspective, match filtering is used to detect the most similar phase 

diagram information with respect to the reference diagram. The reference diagram is the diagram 

reconstructed from the THz reference pulse which is used as the emitted waveform when imaging 

samples with our system. The similarities are subsequently transcribed by (3.5) in PD-MFI. Figure 
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3-4 presents a PD-MFI in ideal and noisy context. In the first scenario the reconstructed image has 

high-contrast and conspicuous motives indicating that the information is overestimated. The 

contour information is not accurately reconstructed as MF tends to dilate the motives in the image. 

The reason behind this comes from propagation-related phenomena such as reflection, diffraction 

and absorption, all which are not characteristics of a convolutive channel where MF is optimal. 

When THz waves pass from one medium to another (from air to metallic ink in our case) the pulse 

deforms. The more it deforms, the lower the energy detected by MF as the information differs 

from the template.  

In the noisy case in Figure 3-4, due to the multiplicative nature of the perturbation, MF 

fails to reconstruct the image as all pulses have random phase deformation, oppressing the capacity 

to detect the information at physical level. The resulting image is mostly noise rendering the fact 

that PD-MFI is not optimal in the proposed noise context. 

 Another idea is to express the phase diagram convolution in (3.4) using state vectors of q  

length, considering ,

,

p q

x yC   as cartesian coordinates on the thp  dimension: 

 

 , ,

1

m
p

p
x y x y p

p

PC C e
=

=   (3.6) 

 

and  pe  are unit vectors. 

 A Phase Diagram Convolution Magnitude Image (PD-CMI) is expressed considering the 

maximum magnitude values of (3.6) per dimension as in: 

 

  
2

,

,

1

- , max | 1,
m

p q

x y

p

PD CMI x y C q M
=

   
= =  

   
 , (3.7)  

 

where the reconstructed image integrates the convolution information from all dimensions, as 

opposed to PD-MF where the information was weighted in-between dimensions by their product. 

An example of PD-CMI approach is presented in Figure 3-5, where we also use the two 

phase diagrams presented in Figure 3-3 to compute the magnitude of the phase diagram 

convolution in (3.6). The maximum magnitude value is used as pixel intensity value. 

 

 
Figure 3-5. Magnitude of the phase diagram MF 

Figure 3-6 presents a PD-CMI analyzed in both contexts. Compared to PD-MF, the 

resulting image has lower contrast in the ideal case, but it can retrieve some information in the 

perturbation scenario, transcribed by slightly highlighting the regions of interest. 
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Figure 3-6. PD-CMI in ideal and noisy context 

  

Despite the improvement of the image quality by using PD-MFI or PD-CMI, the 

performances are limited by the way the MF is computed. Dealing with deformations, which are 

more intricate than the attenuation and spatial shifts seen in convolutive transmission channels, 

has prompted further research to propose more robust techniques. 

3.2.2 Algorithm 2: Phase-diagram Warping 

In our second approach, we quantify the relative deformation of each phase trajectory with 

regards to the reference phase space. An optimal alignment and distance metric between two time-

series can be obtain by using Dynamic Time Warping (DTW) [83]. As we exploit a m  dimensional 

phase space the generalized version of the DTW is used [84]. The principle on which the algorithm 

is based comes from a physical observation that the longer the propagation path of a transient 

signal through a dispersive medium is, the higher its deformation is. As an example of one-

dimensional case, two signals with equivalent features and components which are arranged in the 

same order can appear distinctive due to differences in the durations of their sections. Figure 3-7 

shows an example of this case where we initially depict two signals, a monochromatic signal, Y, 

and a chirp signal, X. The DTW adapts one of the two signals in such way that the difference 

between the features is minimized and the similarities between signals are highlighted. The 

Euclidean distance is used to evaluate the similarity of the signals, where a distance close to 0 

means the signals are similar, while a high value means the signals are distinctive. 
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Figure 3-7. Example of DTW on two time series depicting similar components that differ in duration 

 

In our multi-dimensional context, DTW will deform one phase space trajectory in order to 

match the reference one by minimizing the distance between them. Compared to MF, DTW is 

more versatile and can better fit the template on the actual data. 

Considering the one-dimensional case, the warping cost between two time-series of length 

N  can be expressed as: 

 

  1 2

1

, min
K

k

k

DTW s s p
=

  
=  

  
  (3.8) 

 

where 
kp  is the thk  warping path’s point defining the alignment between two time series and 

2 1N K N  − . The constraint is a consequence of constructing the distance matrix whose 

elements,  ,D i j  are the Euclidean distances between thi  and thj  sample of the first and second 

time series, respectively. Typically, the warping path must originate and terminate at diagonally 

opposite corners of the matrix, with warping steps constrained to adjacent values and points being 

monotonically spaced in time. The most straightforward way to determine the path is to compute 

the cumulative distance or the DTW as following: 

 

      ( )       
2

1 2, min 1, 1 , 1, , , 1c c c cD i j s i s j D i j D i j D i j= − + − − − − , (3.9) 

 

where 
1s  and 

2s  are two time-series.  

DTW is extended to multi-dimensional data considering two strategies: one computes the 

cumulative distances each dimension separately, and the other integrates all dimensions by 

redefining the distance metric from (3.9) as the Euclidean Distance between m -dimensional data 

points. We denote the former as DTWI and the latter as DTWD.  

Considering the definition of one-dimensional DTW from (3.9), a Phase Diagram 

Independent Warping Image (PD-IWI) is constructed using DTWI approach on the reference 

trajectory, ref  and the trajectory of a corresponding pixel location, ,x y  as in: 

   , ,

1

- , , ,
m

p p

I ref x y ref x y

p

PD IWI x y DTW DTW   
=

  = =    , (3.10) 

where ,,p p

ref x y   denote the phase diagram’s thp  dimension. 

 A Phase Diagram Dependent Warping Image (PD-DWI) is calculated using DTWD concept 

by adjusting (3.9) to integrate information from all dimensions as in: 
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m
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p
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=
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Using DTWD’s formalization in (3.11), the PD-DWI can be written as: 

 

   ,- , ,D ref x yPD DWI x y DTW   =   . (3.12) 

 

An illustration of the DTWD is presented in Figure 3-8 (a) where we depict the phase 

diagrams’ dependent alignment based on the monochromatic and chirp signals from Figure 3-7. In 

this scenario, DTWD aligns concomitantly all dimensions of the original chirp’s diagram in such 

way that it resembles the phase diagram of the sinusoid. This is better emphasized in Figure 3-8 

(b) where we present the aligned phase diagrams for both signals. Figure 3-9 (a) shows the process 

of DTWI, the independent phase diagram alignment for the same two signals. The superimposed 

phase diagrams are presented in Figure 3-9 (b).  

When analyzing the two approaches, we note that for DTWI, the result is better due to 

individual alignment of dimensions of the phase diagram. In this case, the aligned X-phase diagram 

is matched on the Y-phase diagram. For DTWD, the alignment is not exact, as this algorithm 

performs on all dimensions simultaneously, making it more complex to have a better match of the 

two phase diagrams.  

 

 

 
(a) 

 
(b) 

Figure 3-8. (a) DTWD - Dependent phase diagram alignment of signals X (chirp) and Y (sinusoid); (b) 

Superimposed aligned phase diagrams of X and Y 
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(a) 

 
(b) 

Figure 3-9. (a) DTWI – Independent phase diagram alignment of signals X (chirp) and Y (sinusoid); (b) 

Superimposed aligned phase diagrams of X and Y 

 

The resulting images using the two proposed approaches are presented in Figure 3-10 and 

Figure 3-11, respectively. In both approaches, in the ideal context, the reconstructed images have 

high quality. They successfully emphasized the information by having a constant low background 

level and high intensity motives which are interpreted as the image having high contrast. The 

consequence is the prominent separation between image components which certainly aids all 

further processing that an image can be subjected to. Between PD-IWI and PD-DWI, the former 

has a slight advantage due to the independent alignment of dimensions as it allows for better 

template matching between the reference and the analyzed trajectory. The reconstruction quality 

edge of the PD-IWI is also observed in the histograms where in the ideal case, the information is 

represented with a smaller intensity range than the other.  

Finally, compared to MF, the additional degree of freedom introduced by DTW improves 

the reconstructed quality of the THz images in ideal environment. Conversely, when the 

multiplicative perturbation is present, the results are slightly better than with a MF approach, but 

not what it is expected from a reconstruction algorithm faced with a noisy environment. Some of 

the information is reconstructed, but the remanent noise still needs to be further processed to be 

eliminated. The histograms better reflect the quality of the reconstruction algorithm, where at least 

for PD-IWI, the contrast is higher. 

Due to the observed limitations of MF and DTW-based methods, we continue our research 

by exploiting the dynamic evolution of the phase trajectory. 
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Figure 3-10. PD-IWI in ideal and noisy context 

 

 

 

Figure 3-11. PD-DWI in ideal and noisy context 

 

  

 



 

53 of 135 

 

3.2.3 Algorithm 3: Frenet-Serret frame of a space curve 

Our third approach is based on a characterizing the dynamics of the phase diagram using 

the mathematical concept of curvatures. The algorithm is depicted in Figure 3-12 and it is 

iteratively applied for every THz pulse by transposing the time-domain signals into their phase 

space. The next steps refer to a phase diagram characterization and quantization in order to estimate 

an intensity value corresponding to a pixel.  

 

 
Figure 3-12. Quantization of phase diagram based on curvatures 

 

Considering that our phase space is basically an evolving trajectory in a m - Euclidian 

space m , it seems natural and con

' ''
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
venient to model its motion using the 

Frenet-Serret frame [85]. As the proposed method transposes the time-series into a three-

dimensional phase space, where 3m = , the emphasis of the mathematical modeling is defined 

using this space constraint. Thus, this frame describes the trajectory using the first derivatives of 

tangent (T), normal (N) and binormal (B) unit vectors as follows: 

 

 
dT
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

=  (3.13) 

 
dN

T B
d

 

= − +  (3.14) 

 
dB

N
d



= −  (3.15) 

 

where 
d

d
 represents the derivative with respect to the arclength  , the parameters   and   

represent the curvature and respectively the torsion of the curve. An example of Frenet-Serret 

phase diagram characterization is presented in Figure 3-13, where we emphasize the three vectors 

for each point of the trajectory.  

 

 
Figure 3-13. Frenet-Serret characterization of a phase diagram 
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The Frenet-Serret formulas given for the unit vectors depend on the curve being defined in 

terms of arclength parameter. In Euclidean geometry, this definition comes as a natural assumption 

as the arclength is a Euclidean invariant of the curve. Nonetheless, this parametrization it is not 

suitable to work with in practice due to the numerical complexity of the arclength’s computation. 

In order to reduce the complexity, in practice, an alternative definition for the curvature it is usually 

considered.  

Defining a three-dimensional phase diagram from (3.3) the Frenet-Serret frame can be 

rewritten as following: 
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  (3.18) 

 

where   is the cross product operator, .  denotes the magnitude defined in an Euclidean sense, 

qT , qN  and  qB  are the unit tangent, normal and binormal vectors at the thq  point of the phase 

space ( )1,q M= ,  and ' , ''  represent the first and second order derivatives of the phase 

trajectory. Following the frame alternative definition, the next step is to introduce the curvature, a 

parameter that dynamically describes our trajectory. 

Considering our phase space trajectory, the curvature can be formulated as: 

 

  
' ''
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
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The interest in curvatures comes from the fact that they describe a three-dimensional curve 

intrinsically, without considering the embedding dimension and its extrinsic properties. In our 

case, an intrinsic property, such as the curvature, is invariant regardless the embedding dimension, 

m , of the phase diagram.  

Generally, properties of curve which depend on the coordinate space in which it is 

embedded, are referred to as extrinsic. On the other hand, intrinsic properties are measured within 

the curve itself without any reference to another space. For an extrinsic property example, we 

consider the slope of a tangent line as it depends on the coordinate system in which it is defined. 

We expect to have highly variable curvatures due to derivatives being sensitive to phase changes. 

However, it does not affect our processing as the curvatures are proportional to deformations of a 

trajectory. Thus, a phase diagram, the more deformed is, the greater the values of its curvatures. 

 Finally, we can define the Phase Diagram - Dynamic Characterized Image (PD-DCI) as 

the mean of all logarithmical scaled curvature values: 
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where  ,x y q  represents the curvature value at the thq  point of a M  points long trajectory 

corresponding to a ( ),x y  pixel location. 

  

  
(a) (b) 

Figure 3-14. (a) Example of two phase diagrams, one exhibiting multiple deformations; and (b) the evolution of 

log-curvatures for both phase diagrams 

 

 
Figure 3-15. PD-DCI image in ideal and noisy context 

  

 An example of two phase diagrams is presented in Figure 3-14 (a), where one exhibits 

multiplicative noise patterns such as phase deformations, change in orientation and amplitude 

reduction. Figure 3-14 (b) shows the log-curvature evolution of the phase diagrams and the results 

of computing (3.20) on both trajectories. Averaging over all curvatures offers an accurate 

estimation of the phase trajectory deformation and noise. The logarithm is used in order to 

equilibrate the initial high difference between curvatures at different points, weighting noise and 
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information in the phase diagram and eliminating the risk of information being overwhelmed by 

noise.  

Figure 3-15 presents the result of our third approach. We observe that the ideal case is 

efficiently reconstructed recovering all contour information. Moreover, the method successfully 

reduced the multiplicative noise. The remaining background noise is minimal compared to other 

approaches. The motives are clearly defined and the naturally occurring smoothing effect on the 

borders is minimized. The results are reinforced by the peaks in the histograms indicating that the 

information is represented with comparable intensities. In the next subsection, we provide a 

comparative analysis between methods using image quality metrics and other samples with 

different information. 

3.3 Comparative analysis of phase diagram methods 

To cross-validate the proposed methods, we tested them on additional samples with 

different printed patterns. We kept the measurement and noise conditions constant across all image 

acquisitions and perturbation modeling to ensure consistent evaluations. To assess image quality, 

we applied a simple thresholding method, as referenced in [86], to segment the background from 

the information. This approach helps identify images with higher contrast and clearer information. 

Additionally, for a correctly reconstructed image, the shapes' contours should be coherent. In this 

context, coherence means having clearly defined contours and a distinct separation between 

motifs. This ensures that the shapes are accurately represented without significant distortions or 

artifacts. By using this thresholding method, we can determine which images exhibit the best 

quality in terms of contrast and information prominence. This process verifies the robustness and 

reliability of our methods across different samples, confirming their effectiveness in various 

scenarios.  

For comparison purposes, the optical images of the 3cm-by-3cm samples used in this 

section are presented in  Figure 3-16 (a), (b) and (c). The first sample in Figure 3-16 (a) is 

composed of polyethylene substrate with metallic ink square patterns printed on it. The patterns 

have their size varying from 0.8mm up to 2mm. The second sample in Figure 3-16  (b) has multiple 

geometric figures such as squares, circles, hexagons and stars with their size varying from 2.5mm 

and up to 5mm. The substrate is polyethylene and the patterns are printed with metallic ink. The 

last sample in Figure 3-16  (c) has also polyethylene substrate with letters from metallic ink. The 

size of the patterns from the image varies between 5mm up to 13mm. 

 

   
(a) (b) (c) 

Figure 3-16. Optical images of the samples used for methods’ comparison 

 



 

57 of 135 

 

Firstly, we start by analyzing the first sample (Sample #1) used to define the state-of-the-

art and our methods in Section 2.4 and Chapter 3. As illustrated in Figure 3-17, applying a 

thresholding method in the ideal scenario allows all methods to separate the information from the 

background, though with some noticeable differences. For instance, with MPI, PD-MF, PD-CMI, 

and PD-DWI, some of the shapes are linked to each other, which is generally undesirable. 

In contrast, when observing FSI and PD-DCI, these methods show similarities in terms of 

the information they convey, but there is a trade-off between linking information and achieving 

contrast. Specifically, in the case of this sample, FSI provides better separation between motifs as 

it considers a single, higher frequency when reconstructing the image. This means that the higher 

the frequency used, the lower the contrast of the image, as the energy of higher frequencies is more 

susceptible to propagation phenomena. 

On the other hand, PD-DCI reconstructs the image by taking into account all frequencies 

in the phase diagram. Consequently, we expect to see a slightly narrower separation between 

shapes but with higher contrast and a consistent background level. The ultra-wide bandwidth of 

the THz pulse, approximately 5 THz, makes our method robust against propagation phenomena 

and various types of perturbations. 

The most significant advantage of PD-DCI over all other methods becomes evident under 

the influence of noise. Among all the methods, PD-DCI is unique in its ability to reconstruct an 

image from noise and achieve overall high quality with consistent images in different contexts. 

This robustness highlights the superiority of PD-DCI, particularly in noisy environments, making 

it a reliable choice for image reconstruction tasks that require both high contrast and stability 

against perturbations. 

In Figure 3-18, we analyzed a different sample (Sample #2) under the same conditions as 

the first. This sample presents larger shapes of various types, including stars, squares, hexagons, 

and circles. The diversity and size of these shapes result in a larger absorption area, posing a 

significant challenge for some classic methods due to pulse deformation during propagation. 

In an ideal scenario, methods such as MPI, PD-CMI, PD-IWI, PD-DWI, and PD-DCI 

exhibit superior reconstruction capabilities. The shapes within the binarized images produced by 

these methods are distinctly defined, demonstrating their effectiveness. However, a notable 

observation pertains to the star shapes: in all cases except PD-DCI, the contours of the star shapes 

are deformed, indicating a limitation in these methods' ability to maintain shape integrity under 

certain conditions. 

Furthermore, the PD-MF approach proves unsuitable for this sample, as it causes the shapes 

within the image to link together, thereby failing to preserve their individuality. Additionally, the 

FSI method is ineffective in reconstructing the image due to the attenuation of the selected 

frequency by the metallic ink, which absorbs the frequency and diminishes the image quality. 

These findings underscore the importance of selecting an appropriate method for image 

reconstruction, particularly when dealing with samples that have complex shapes and varying 

absorption properties. PD-DCI stands out as the most robust method in this context, maintaining 

the integrity of the shapes and providing high-quality reconstruction despite the challenges posed 

by the sample's characteristics. This highlights PD-DCI's potential as a reliable tool for 

applications requiring precise and accurate image reconstruction. 
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 (a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 
Figure 3-17. Segmentation results for a selection of methods including ours for an ideal and noisy context for 

sample #1: (a)MPI; (b) FSI; (c) PD-MF; (d) PD-CMI; (e) PD-IWI; (f) PD-DWI; (g) PD-DCI 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 
Figure 3-18. Segmentation results for a selection of methods including ours for an ideal and noisy context for 

sample #2: (a)MPI; (b) FSI; (c) PD-MF; (d) PD-CMI; (e) PD-IWI; (f) PD-DWI; (g) PD-DCI 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 
Figure 3-19. Segmentation results for a selection of methods including ours for an ideal and noisy context for 

sample #3: (a)MPI; (b) FSI; (c) PD-MF; (d) PD-CMI; (e) PD-IWI; (f) PD-DWI; (g) PD-DCI 
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Our next sample (Sample #3) is composed of the same polyethylene substrate but with 

another pattern printed on in. The sample presents two types of metallic-ink letters with random 

distribution. As we observe in Figure 3-19 but also with previous patterns, one of the main debates 

regards FSI and PD-DCI reconstruction methods. While all the other yield decent results in an 

ideal case, FSI and PD-DCI are by far two of the most promising to display an image. Nevertheless, 

due to the low contrast of FSI and larger absorption areas on the sample, parts of the letters are 

missing when segmenting FSI. In this situation, PD-DCI presents a more stable version of the 

image. In a noise context, FSI has remaining artefacts and incoherent letter borders. On the 

opposite side, PD-DCI shows little to almost no noise artefacts with a steady definition of the 

letters.  

As for the moment, considering the experiments conducted with different samples, PD-

DCI can be assessed as one of the most appropriate methods to reconstruct images. From the 

proposed methods, we mention that PD-CMI, PD-IWI and PD-DWI can also be used to an extent 

considering the tendency to overestimate the information and enlarge the motives. They can be 

successfully applied in order to determine regions of interest (ROIs) in images as they are able to 

detect the presence of information. When the objective is to eliminate artefacts as a result of 

multiplicative perturbations affecting the imaging system, PD-IWI, PD-DWI and PD-DCI are the 

methods to be applied. 

 Not all applications require image segmentation, therefore, a brief review of Figure 3-17, 

Figure 3-18 and Figure 3-19 shows us that our methods are more suitable to be used in image 

reconstruction. One of their primary benefits is their ability to offer enhanced contrast in the final 

image with a fairly constant background. Even in the perturbation context, PD-DCI has one of the 

best qualities compared to the others. 

 Further next, due to the subjective perspective of the previous analysis, we provide the 

results of full-reference image quality metrics such as Mean-squared error (MSE), Peak signal-to-

noise ratio (pSNR) and Structural Similarity Index (SSIM). This analysis is required to objectively 

assess the quality of reconstructed images. 

MSE is a measure of the average squared difference between an image and the ideal (or 

reference) image. A lower MSE value indicates a higher degree of similarity between the analyzed 

image and the reference image. It's important to note that while MSE is straightforward to compute, 

it may not necessarily correlate well with human perception of image quality. The formula of MSE 

for two images is defined as in: 
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The second metric, pSNR, is derived from MSE and represents the ratio of the maximum 

pixel intensity to the power of the distortion. A higher pSNR value indicates a greater similarity 

between the two analyzed images. The mathematical definition of pSNR is: 
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where peak  is the maximum value taken from the range of image data. In our case 1peak =  as 

all the images are rescaled between  0,1  range.  
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In contrast, SSIM combines local image structure, luminance, and contrast into a unified 

local quality score. With SSIM, structures and patterns are essentially discernible as variations in 

pixel intensities between adjacent pixels. Given the human visual system's capability to perceive 

such structures, the SSIM quality index is more pertinent, offering a score that correlates more 

closely with subjective quality perception. The closer the SSIM value approaches 1, the greater 

the similarity between the images. The overall score is calculated as the product between the three 

terms as in: 
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where 
I , 

refI , 
I , 

refI  and 
refI I are the local means, standard deviations and cross-covariance 

for images I and refI . The exponents  ,   and   are chosen to be equal to 1 to give each 

component the same weight when computing the SSIM index. 

 The results of applying the quality metrics for the three cases presented earlier in Figure 

3-17, Figure 3-18 and Figure 3-19 are further discussed below. In order to use these quality metrics, 

we present in Figure 3-20 three reference images used for comparison. The reference images are 

in fact segmented optical images of the three samples. Before segmentation, the optical images are 

sub-sampled in order to have 100 by 100 pixels. As the reconstructed images can report different 

scales, they are commonly scaled in order to match a black background (0s) and white patterns 

(1s) for comparison purposes. 

 

 
Figure 3-20. Reference images used with image quality metrics 

  

Figure 3-21 presents the MSE for all three samples and for all compared methods. For 

sample #1 in Figure 3-21 (a), the FSI reconstruction method has the lowest outcome, thus it has a 

better alignment to the original image compared to the other proposed methods. Considering the 
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results of sample #2 and sample #3 from Figure 3-21 (b) and (c), the lowest MSE is achieved by 

PD-DCI. 

Figure 3-22 shows the pSNR evaluation of reconstruction methods. As pSNR is strictly 

related to MSE, the outcomes are anticipated to be alike. Thus, for sample #1 in Figure 3-22 (a), 

the FSI reconstruction method has the highest pSNR, while for sample #2 and sample #3 in Figure 

3-22 (b) and (c), PD-DCI has the highest score. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 3-21. MSE for (a) Sample #1; (b) (a) Sample #2; and (c) (a) Sample #3 

 
(a) 

 
(b) 

 
(c) 

0.081

0.0119

0.1559
0.0961

0.055 0.0345 0.027

0

0.1

0.2

MPI FSI_2 PD-MF PD-CMI PD-IWI PD-DWI PD-DCI

M
S

E
 #

1

0.0364 0.0527
0.103

0.0404 0.0193 0.0056 0.0015
0

0.1

0.2

MPI FSI_2 PD-MF PD-CMI PD-IWI PD-DWI PD-DCI

M
S

E
 #

2

0.1057 0.0669

0.3189

0.1106 0.1019 0.1025
0.0012

0

0.2

0.4

MPI FSI_2 PD-MF PD-CMI PD-IWI PD-DWI PD-DCI

M
S

E
 #

3

10.9151
19.2445

8.0715 10.1728 12.5964 14.6218 15.6864

0

50

MPI FSI_2 PD-MF PD-CMI PD-IWI PD-DWI PD-DCI

p
S

N
R

 #
1

14.389 12.7819 9.8716 13.9362 17.1444
22.5181

28.2391

0

20

40

MPI FSI_2 PD-MF PD-CMI PD-IWI PD-DWI PD-DCI

p
S

N
R

 #
2

9.7593 11.7457
4.9635 9.5624 9.9183 9.8928

29.2082

0

20

40

MPI FSI_2 PD-MF PD-CMI PD-IWI PD-DWI PD-DCI

p
S

N
R

 #
3



 

64 of 135 

 

Figure 3-22. pSNR for (a) Sample #1; (b) (a) Sample #2; and (c) (a) Sample #3 

 

 
(a) 

 
(b) 

 
(c) 

Figure 3-23. SSIM for (a) Sample #1; (b) (a) Sample #2; and (c) (a) Sample #3 

 

In Figure 3-23 we evaluate the final SSIM results, which conclude that FSI can better 

reconstruct sample #1 among the rest of the methods, while sample #2 and #3 have greater SSIM 

for PD-DCI.  

We present the same analysis but in a multiplicative perturbation context for MSE in Figure 

3-24, pSNR in Figure 3-25 and SSIM in Figure 3-26. The binarized noisy images are compared 

with their references. As it is expected considering the initial results and discussions about the 

proposed methods in the start of this sub-section, with all three samples, the reconstructed images 

using PD-DCI yield the best quality. Most of the artefacts and deformations as consequences of 

the applied noise are eliminated and the information is emphasized.  

In conclusion of this section, certain observations can be made. The proposed methods 

have an increased complexity when it comes to an algorithmic implementation. However, despite 

their complexity, the reconstructed images can have better quality in terms of contour information 

and structural similarity compared to the reference image in an ideal context. Nevertheless, there 

are some situations when classic methods fail such as when the absorption surface is larger and a 

FSI approach is unsuitable due to a possible spectral frequency attenuation. In this case, PD-DCI 

is recommended as it considers the whole spectrum when reconstructing the image. Nevertheless, 

PD-DCI seems to be the second choice when the motives in the sample are small enough. In this 

case, despite detecting all the information, the contour is deformed compared to a FSI approach. 

Another important mention is when the multiplicative noise is present. In this scenario, the 

results shown until now prove the increased capacity of the methods to remove artefacts and to 

reconstruct a close to the ground truth image. PD-DCI has demonstrated superior performance 

compared to all other methods, making it the recommended choice when the system is affected by 

slow-varying perturbations. 
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(a) 

 
(b) 

 
(c) 

Figure 3-24. MSE for (a) Sample #1; (b) (a) Sample #2; and (c) (a) Sample #3 

 

 
(a) 

 
(b) 

 
(c) 

Figure 3-25. pSNR for (a) Sample #1; (b) (a) Sample #2; and (c) (a) Sample #3 
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(a) 

 
(b) 

 
(c) 

Figure 3-26. SSIM for (a) Sample #1; (b) (a) Sample #2; and (c) (a) Sample #3 

3.4 Chapter summary 

This chapter five new reconstruction methods are introduced and tested in an ideal and 

noisy context, providing a performance comparison in terms of image quality, contrast and 

segmentation. The proposed methods are based on the phase diagram representation of time-

domain signals. In most of the cases, their ability to reconstruct information surpass the classic 

methods. However, there are situations with limitations and challenges which force-open new 

research paths revolving around a phase-diagram approach.  

In the next chapter, we discuss classification approaches considering view-point variation 

constraints such as translations and rotations. As the perspective of an object in an image is not 

constant in everyday applications, we propose a couple of entropy-based features computed from 

an invariant wavelet decomposition that increases the classification accuracy in a ML context. 
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Chapter 4. THz image analysis 

4.1 Introduction  

As in most imaging technologies performing in a variety of frequency bands, THz image 

processing pipelines encounter analogous challenges in pattern recognition: sensing instabilities 

such as view-point variation and feature extraction. After a THz image has been reconstructed with 

a method described in the previous chapter, the naturally subsequent step in a classification 

framework is image analysis and feature extraction.  

Nowadays, Deep Learning (DL) approaches are the most common choice in computer 

vision tasks due to rapid advances in computer memory, CPU and GPU, corroborated with DL 

models’ capacity to optimally extract features in highly-hierarchical manner [87]. However, in 

THz imaging framework, DL is still in its early stage. For example, THz DL-based computer vision 

requires large datasets which are, to our best knowledge, very few publicly available and task-

specific such as an image restoration benchmark dataset [88] and a dataset prepared to evaluate 

object detection algorithms [89].  

One of the main obstacles to create large THz image datasets is the time-consuming image 

acquisition process. For an actual THz TDS system, the acquisition process can take from a few 

minutes to hours depending on the size of the sample and the a priori configuration of the system. 

For example, each 100 by 100-pixel image presented in Chapter 2 took approximately fifteen 

minutes to be created with the systems’ parameters set as follows: step size is 0.1mm and there are 

10 averaging procedures when measuring one pixel. The obvious trade-off is between the 

acquisition time and the higher quality of the image in terms of spatial step. Rapid acquired images 

lack information and resolution, while the others are information enhanced, but wearisome. Thus, 

considering the absence of available data and the difficulties of creating large datasets, a Machine 

Learning (ML) approach is more suitable in this case.  

The majority of ML classification methodologies employ a hybrid approach, utilizing 

diverse complementary tools and paradigms to construct an accurate discriminatory system. This 

system should be robust and efficiently handle translations or rotations, two of the most common 

deformations when it comes to image patterns and real-world applications. Bearing in mind the 

observation point uncertainty in a real-world THz system, we firstly review state-of-the-art feature 

extraction methods based on image transforms. Afterwards, we propose a scheme that offers a 

unique sub-band decomposition regardless of image translations or rotations, followed by entropy-

based feature vectors extractions that are further engineered into suitable formats and fed to a large 

pool of classifiers.  

The focus of this chapter is on researching, evaluating and assessing novel features with a 

THz image dataset, but also with public benchmark datasets for classification purposes. 

4.2   State-of-the-art image analysis for ML 

Before diving into details, we briefly review the notions needed to describe image analysis 

methods. These methods essentially act as transforms that break down images into weighted 

combinations of orthogonal or biorthogonal basis functions, whose weights can be subsequently 

examined and converted into features. From this standpoint, we view images as vectors within a 

vector space containing all other images, and the basis functions as the primary features that 

convey the essence of the transformation. It is important to note that image transforms are 

equivalent in terms of information and energy, the difference being only about their distribution 

among the resulting coefficients.  
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All transforms presented in subsequent sections of this chapter use a specific 

transformation kernel. These transformation kernel represent the basis or the functions used to 

decompose the data. To extend the one-dimensional transforms to higher dimensions, the 

separability of the basis functions is essential from an implementation perspective.  

For example, a two-dimensional transformation kernel,  k , , ,x y a b , is separable if it can 

be rewritten as: 

 

      1 2, , , , ,k x y a b k x a k y b=  (4.1) 

 

where x , y , a  and b  are variables traversing the original and transform domains. Moreover, if 

1k  and 
2k  are functionally equal, the transformation kernel is also symmetric. The consequence of 

kernel separability transposes into a simple implementation of transforms in case of images. The 

complexity of the initial two-dimensional case is reduced to multiple one-dimensional transforms.  

This means that an image transform can be computed by applying the one-dimensional 

transform on each row, then on each column, or the conversely without any changes in the final 

result due to symmetry.  

In the following subsection, we discuss some of the most common image transforms and 

formally describe each feature extraction technique individually. 

4.2.1 Discrete Cosine Transform 

One of the most frequently employed transforms in compression and data processing is 

Discrete Cosine Transform (DCT) [90]. These applications are suitable for DCT as it concentrates 

the majority of the image's visual information into a small number of coefficients. For DCT, the 

set of basis functions, or kernels, are represented by a collection of cosines with different 

amplitudes and frequencies.  

In a two-dimensional context, the DCT of an image,  ,f x y , is defined as: 

 

    
( ) ( )

1 1

2 1 2 1
, , cos cos

2 2

W H

DCT a b

x y

x a y b
C a b f x y

W H

 
 

= =

+ +
=  , (4.2) 

 

where 1...x W=  and 1...y H=  iterate through the width and the height of the image; a  and  b  

are the transform variables with the same range as image variables. The two scaling coefficients 

before summations are expanded as in: 

 

 

1 1
, 1 , 1

,       
2 2

, 2 , 2

a b

a b
W H

a W b H
W H

 

 
= = 

 
= = 
    
 

. (4.3) 

 

For simplicity, let’s consider that the image has its width equal to its height so we can 

define DCT transformation matrix. This matrix allows us to visualize the basis functions and to 

redefine (4.2) in matrix form.  
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Thus, the DCT transformation matrix for an -by-W W image can be expressed by: 

 

 
( )

1
                 1 1

2 12
cos 1 1

2

ab

DCT

a b W
W

T
b a

a W b W
W W




=  


= 

+    


. (4.4) 

 

Therefore, DCT becomes: 

 

 '

DCT DCT DCTC T f T=   . (4.5) 

 

where 
DCTT  and  are the original and transposed transformation matrix. 

Figure 4-1 (a) shows an example THz image of 128-by-128 pixels which will be used as 

input to DCT in (4.5). The image will be used to exemplify all the following feature extraction 

methods presented in this chapter. The DCT matrix is shown in Figure 4-1 (b), where we observe 

the frequency variation of the basis. Horizontally, the frequencies increase from left to right, while 

vertically frequencies increase from top to bottom. The coefficient   0,0DCTC  is often called 

Direct Current (DC) coefficient representing the “zero” frequency component. Figure 4-1 (c) 

shows the logarithmically scaled DCT coefficients and emphasizes the concentration property of 

DCT where most of the energy is distributed in the top-left corner, corresponding to lower 

frequencies. 

 

   
(a) (b) (c) 

Figure 4-1. DCT transform example: (a) THz image; (b) DCT matrix transform; and (c) DCT coefficients. 

   

(a) (b) (c) 

Figure 4-2. DCT feature selection methods: (a) zig-zag masking; (b) zonal masking; and (c) Jing’s bands 
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In most cases, when decomposing an image with DCT, the features which can be extracted 

are in fact the full DCT coefficients. Nevertheless, there exist alternatives for reducing the 

dimensionality of the feature vector and to keep only the most important coefficients [91]. One is 

to make the selection with a zig-zag mask as it is depicted in Figure 4-2 (a) with blue. Other ideas 

are to mask an entire region as in Figure 4-2 (b) or to use Jing’s bands as it is depicted in Figure 

4-2 (c). 

The features presented earlier can be formalized as a collection of values, in the order of 

their introduction, as in: 

 

   ,full DCTDCT C a b= , (4.6) 

   ,zig zag zig zag DCTDCT mask C a b− −= , (4.7) 

   ,reg reg DCTDCT mask C a b= , (4.8) 

   ,Jing Jing DCTDCT mask C a b= , (4.9) 

 

where 
fullDCT , 

zzDCT , 
regDCT  and 

JingDCT  represents the whole DCT decomposition, the zig-

zag approach, the masked region and features extracted using Jing’s band masking, respectively. 

4.2.2 Discrete Wavelet Transform 

Wavelet Transforms (WTs) are powerful mathematical frameworks for analyzing data with 

features varying over multiple scales. As an example, for a time-series, features can be represented 

by transient phenomena or highly- or slowly-varying frequencies over a time frame, etc. In two-

dimensions, WTs specialize in detecting features such as edges and textures.  

Wavelet transformations implementation based on multiresolution analysis (MRA) [92] 

concept is an important signal processing approach which includes three major concepts: sub-band 

coding, quadrature mirror filtering and pyramidal image decomposition. As signals often are 

composed of multiple physically meaningful elements, it is useful to analyze each element in 

spectrally separated sub-bands, but on the same time-scale as the original data. Intuitively, MRA 

is decomposing data into parts which can later be added back together to reconstruct the original 

input. To represent and analyze data at multiple resolutions, scaling and wavelet functions are 

concomitantly used. The former creates approximations of data with a difference in resolution by 

a factor of 2, while the latter encodes the information gap between two neighbor approximations.  

A Discrete Wavelet Transform (DWT) expresses data as a linear combination of 

orthonormal or biorthonormal basis functions, which are the scaling and wavelet functions. Under 

the fundamental conditions of MRA [92], the scaling function,  , can be defined as a linear 

combination of double-resolution versions of itself: 

 

      2 2
k

x h k x k



 =   − , (4.10) 

 

expression called the refinement equation, where the integer, k , indicates the position of the 

scaling function on the x axis−  and  h k  are the scaling function coefficients.  
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 Considering the scaling function from (4.10), the MRA theory [92] states that there exist a 

wavelet function,  ,  which can cover the differences between adjacent scaling spaces as: 

 

      2 2
k

x h k x k



 =   −  (4.11) 

where  h k  are the wavelet function coefficients.  

Usually, the two functio '

DCTT ns,  x  and  x , are referred to as the approximation (or 

father) wavelet and detail (or mother) wavelet. Their recursive nature allows to describe the 

approximation and detail coefficients which determines a filter-based approach when defining 

DWT as in: 

 

      , 2 1,
x

C j k h x k C j k  = − + , (4.12) 

      , 2 1,
x

C j k h x k C j k  = − + , (4.13) 

 

where    0,C k f k =  is the original signal.  

As depicted in Figure 4-3 (a) [93], the filters decompose the signal’s spectral content into 

two equally-sized sub-bands, one which is the approximation and the other which contains the 

details. Equations (4.12) and (4.13) can be interpreted as low-pass and high-pass filters followed 

by a 2-factor sub-sampling.  H   and  H   are the transfer functions of the two filters.  Figure 

4-3 (b) shows a two-stage filter bank where each stage yields transform coefficients at scales 1j +  

and 2j + . One important observation is that at the highest scale, j , the transform coefficients are 

the function or image itself,  f x . There are equivalently transposed in signal processing as low- 

and high-pass filters which split the spectrum into halves. 

 

 
 

(a) (b) 

Figure 4-3. (a) Frequency spectrum of the filter bank and; (b) a two-level wavelet analysis 

 

From this point, a two-dimensional implementation of DWT requires a two-dimensional 

scaling function  ,x y  and three wavelet functions,  ,W x y ,  ,V x y  and  ,D x y . These 

wavelets have the natural ability to emphasize directional information as in columns, rows and 

diagonals. The directionality of the two-dimensional wavelet functions is the direct consequence 

of their definition as the product between two one-dimensional and separable wavelet functions 

[92]. 

The two-dimensional DWT is implemented employing the same approach as in one-

dimension. The image,    , 0, ,f x y C k l= , is initially low-pass and high-pass filtered and down 

sampled column-wise. The low-pass component characterizes the low-frequency and vertical 
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information from the original image, while the high-pass component emphasizes the high-

frequency and vertical details. The same procedures are applied row-wise to each of the 

intermediary sub-images resulting in 4 quartered-sized sub-images or wavelet coefficients, three 

which are directionally sensitive:  1, ,VC j k l +  (vertically) ,  1, ,HC j k l +  (horizontally), 

 1, ,DC j k l +  (diagonally) and one approximation,  1, ,C j k l +  as in: 

 

        1, , 2 2 , ,D

x y

C j k l h y k h x k C j k l   + = − − , (4.14) 

        1, , 2 2 , ,V

x y

C j k l h y k h x k C j k l   + = − − , (4.15) 

        1, , 2 2 , ,H

x y

C j k l h y k h x k C j k l   + = − − , (4.16) 

        1, , 2 2 , ,
x y

C j k l h y k h x k C j k l   + = − − . (4.17) 

 

where j  is the scale, k  and l  are transform variables. A block diagram of the process and a visual 

representation of a one-level decomposition are depicted in Figure 4-4 (a) and (b) [93], 

respectively. 

 

 
 

(a) (b) 

Figure 4-4. (a) One-level DWT of an image; (b) Visual representation of a one-level DWT. 

 

We discussed the implementation of wavelet coefficients in DWT and further we present 

two of the most used wavelet functions. Figure 4-5 depicts some of these two-dimensional bases: 

(a) the ‘Daubechies’; and (b) ‘Coiflet’ families, respectively. The 'Daubechies' family comprises 

orthogonal wavelets distinguished by the greatest number of vanishing moments within a specified 

support width. The 'Coiflet' family, like the 'Daubechies' family, consists of compactly supported 

orthogonal wavelets with the highest number of vanishing moments for both the scaling and 

wavelet functions. Vanishing moments indicate the smoothness and regularity of functions, 

representing the number of moments that integrate to zero. In practical terms, this implies that a 

wavelet family with a higher number of vanishing moments is better equipped to distinguish finer 

details and variations, rendering it more suitable for applications where such details are crucial.  

The compact support of a wavelet function is a property that allows for efficient detection 

and localization of features in signals or images. A wavelet function is compactly supported if the 

waveform is non-zero inside and zero outside a predefined interval.  
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(a) (b) 

Figure 4-5. Representative scaling and wavelet functions: (a) ‘Daubechies’ family; (b) ‘Coiflet’ family. 

 

To better visualize DWT, we present in  Figure 4-6 an example of two-level decomposition 

for a THz image with Daubechies wavelet family. It can be observed that each sub-image 

specializes in characterizing information based on directions at different scales. The directional 

nature of each sub-band image is described, where HL stands for horizontal, LH for vertical, HH 

for diagonal details and LL for the approximation. This notation represents the order of the low-

pass and high-pass filtering procedures when generating each sub-image. 

 
Figure 4-6. A two-level DTW example on a THz image with ‘db2’ wavelet family. 

 

As the entire DWT is implemented using filtering procedures, we can visualize the 

frequency spectrum partitioning for a two-level decomposition in Figure 4-7 (a) [93] or the 

equivalent DWT decomposition tree in Figure 4-7 (b). The initial root node is assigned the 

approximation of the image, while the child nodes of the first level contain the approximation (LL) 

and detail components (LH, HL and HH). For the second level, the low-frequency content (LL) 

from level 1 is further decomposed. This process can have several stopping criteria such as: a 

predefined number of levels of decomposition, a criterion based on energy or entropy 

measurements, or a limitation coming from data dimensions. As a trivial example, an 8 by 8-pixel 

image can be decomposed a maximum of 2 levels. The first level of decomposition yields four 4 

by 4-pixel sub-images and the second level yields sixteen 2 by 2-pixel images. Thus, another level 

of decomposition cannot exist as 1 by 1 sub-images are most of the time irrelevant and feature 

extraction methods usually do not apply in this case. In usual applications, the latter stopping 

criterion is never used as for larger images, the process will be tedious and inefficient. 
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(a) 

 

(b) 

 Figure 4-7. (a) DWT frequency partitioning for a two-level decomposition and (b) its analysis tree 

representation equivalent. 

 

In the case of DWT some of the most common features include statistical properties [94] 

such as the mean of wavelet sub-bands; energy [95] computed as the sum of squared DWT 

coefficients which reveals the energy distribution; or the Shannon-entropy [96] of the wavelet sub-

bands which offers information about their complexity.  

The feature vector composed from the means of all DWT coefficients, 
meanDWT , can be 

formalized as a collection of values as follows: 

 

  
1

, , |  is the scalemean DWT

k lj

DWT C j k l j
N

  
=  
  

 , (4.18) 

 

where 
DWTC  represent all DWT coefficients (approximation and details) and jN  is the number of 

elements at scale j  either for the approximation or detail coefficients.  

 The energy-based feature vector, 
EDWT , is defined as a collection of wavelet sub-band 

energy values which can be concisely expressed as in: 

 

  
21

, , |  is the scaleE DWT

k lj

DWT C j k l j
N

  
=  
  

 . (4.19) 
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The entropy-based feature vector, 
EntDWT ,  uses the Shannon definition [97] and it is 

created from all the entropy values of the DWT coefficients as in: 

 

    ( )2 2

2, , log , , |  is the scaleEnt DWT DWT

k l

DWT C j k l C j k l j
 

=  
 
 . (4.20) 

4.2.3 Wavelet Packet Decomposition 

Considering the frequency partitioning in Figure 4-7, we observe that details are 

represented with wider bandwidths compared to the low-frequency content. To have an increased 

control over the frequency spectrum, DWT can be generalized to achieve a more flexible 

decomposition, called Wavelet Packet Decomposition (WPD).  

WPD provides a richer representation of images allowing for an in-depth analysis and 

possible selection of sub-bands to have an optimal decomposition in a sense defined by different 

criteria. A two-dimensional WPD of an image up to level 1j +  can be recursively expressed as: 

 

        4 1, , 2 2 , ,k k

x y

C j k l h y k h x k C j k l + = − −  (4.21) 

        4 1 1, , 2 2 , ,k k

x y

C j k l h y k h x k C j k l + + = − −  (4.22) 

        4 2 1, , 2 2 , ,k k

x y

C j k l h y k h x k C j k l + + = − −  (4.23) 

        4 3 1, , 2 2 , ,k k

x y

C j k l h y k h x k C j k l + + = − −  (4.24) 

 

where    0, 0, ,f x y C k l=  is the original image. 

The recursive process of WPD decomposes the image at scale j ,  kC j , into four sub-

images of quarter-size  4 1kC j + ,  4 1 1kC j+ + ,  4 2 1kC j+ +  and  4 3 1kC j+ + . WPD algorithm is 

illustrated in Figure 4-8 [93] and it is similar to DWT to a point. In contrast to DWT, WPD 

decomposes every sub-band, not only the low frequency content. The same approach is applied 

where each column of the image at level j  is filtered using the wavelet and scaling functions and 

every other column is kept. Afterwards, the rows of the resulting sub-images undergo additional 

filtering, with every alternate row being preserved. 

 
Figure 4-8. WPD decomposition process 
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The difference between DWT and WPD is even more visible when partitioning the 

frequency spectrum. Figure 4-9 (a), (b) shows the differences between decompositions. As we can 

observe, the WPD it is the overcomplete version of DWT by having all spectrum analyzed with 

smaller bandwidths compared to DWT, offering a more flexible and powerful approach when 

characterizing images.  

 

 
(a) 

 
(b) 

Figure 4-9. (a) WPD frequency partitioning vs. DWT and (b) the WPD analysis tree in contrast with DWT 

 

However, the overcomplete WPD is computationally expensive to work with in practice, 

therefore a selection of most important sub-bands is desirable. Optimal decompositions are usual 

based on entropy- or energy-based cost functions [98]. The energy criterium is a reasonable 

criterion used in image compression [99], while the entropy is usually found in pattern recognition 

systems [100], [101]. Considering one of the thesis objectives to classify THz patterns, we further 

detail the entropy-based algorithm of sub-band selection and use this optimization technique in 

every experiment. The process of searching for a space of minimum entropy can be explained in 

two steps: 

 

i) Firstly, we compute the Shannon-entropy for the parent node, pE  and its four child 

nodes, 
AE , 

VE , 
HE  and 

DE . 

 

ii) Then, if pE  is greater than the sum of its child nodes (
A V H DE E E E+ + + ), retain 

the child nodes as being part of the “best” basis, otherwise retain the parent node.  

The nonnormalized Shannon-entropy formula for an image is expressed as follows: 

 

       2 2

2, , log ,
x y

E f x y f x y f x y =   . (4.25) 
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This optimization of the WPD tree generates a space of minimum-entropy sub-images. The 

concept stems from the relationship between entropy and structural information in image 

processing: high entropy values are associated with noise, whereas lower values suggest the 

presence of patterns and motifs, reflecting the complexity of the analyzed image. 

From an algorithmic point of view, Figure 4-10 (a) shows the WPD complete 

decomposition and Figure 4-10 (b) presents the optimal base selected with regards to the entropy 

cost function. In Figure 4-10 (c) we observe the sub-space selection algorithm. In the first level of 

the decomposition, the LH, HL and HH coefficients remain in the “best” basis, meaning that their 

entropy is lower than the sum of their child nodes. The first level LL coefficients respect the second 

condition in the algorithm and thus are further decomposed considering its child nodes in the “best” 

basis.  It is worth mentioning that the selection algorithm is also a decomposition optimization 

technique: we do not need the overcomplete WPD in order to select the “best” basis. The optimal 

sub-space is generated at each step of the decomposition decreasing memory consumption and 

processing time.  

 

   
(a) (b) (c) 

Figure 4-10. (a) a 2-level WPD; (b) “best” basis or subspace of minimum entropy; and (c) graph representation 

of “best” basis  

  

As with the DWT case, some of the most common feature vectors that can be computed 

from WPD “best” basis are created from the mean of the wavelet coefficients, 
meanWPD  ; their 

energy, 
EWPD ; and entropy, 

EntWPD . We formalize the feature vectors as a collection of values 

as in: 

 

  
1

, , |  is the scalemean WPD

k lj

WPD C j k l j
N

  
=  
  

 , (4.26) 

  
21

, , |  is the scaleE WPD

k lj

WPD C j k l j
N

  
=  
  

 , (4.27) 

    ( )2 2
, , ln , , |  is the scaleEnt WPD WPD

k l

WPD C j k l C j k l j
 

=  
 
 , (4.28) 

 

where WPDC  represent all WPD “best” basis coefficients (approximations and details), and jN  is 

the number of elements at scale j  either for the approximation or detail coefficients. 
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An important drawback of DCT and DWT is the partial sub-band exploration, making 

image analysis unthorough and inflexible. The two transforms’ coefficients are even more 

contrasting when the patterns are rotated or translated, as the energy distribution among 

decomposition coefficients is completely different from one image to another. We illustrate the 

comparison between the original THz image and its version that has been shifted and rotated in 

case of DCT and DWT in Figure 4-11. 

 

   

   

(a) (b) (c) 

Figure 4-11. Overview of DCT and DWT analysis: (a) of original image; (b) of shifted image; (c) of rotated 

image; 

 

Comparatively to DCT and DWT, WPD also lacks translation invariance, thus it is 

sensitive to image pattern location with respect to a chosen origin. This translates into features that 

are discordant, meaning that in the feature space, two images exhibiting identical patterns, with 

one being translated, have features which are far apart, making subsequent classification step 

challenging. This is even more problematic for image rotations. An image is usually visualized as 

a grid of pixels, therefore, an image rotation of some random degree transposes pixels in-between 

grid points. This means that in digital image processing, an image rotation introduces intensity 

changes and deformations due to the grid arrangement of pixels. Moreover, opposed to image 
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translations, when rotating an image, part of the initial information is lost and replaced with 0’s to 

fill the empty values. In Figure 4-12 (a) we present the THz image and a 3-level WPD “best” basis 

with ‘db2’ wavelet family. In contrast, we present in Figure 4-12 (b) and (c) the shifted and rotated 

THz image and their 3-level WPD “best” bases computed in the same conditions. It is obvious that 

even if the three images represent the same pattern, the optimal bases are different.  

 

   
(a) (b) (c) 

Figure 4-12. Comparison of “best” bases in three cases: (a) original THz image; (b) shifted THz imaged; and (c) 

rotated THz image. 

 

Generally, when describing the same phenomenon captured from different perspectives, 

the goal is to minimize the variations of the extracted features, or in the WPD case, the 

decomposition. Therefore, it is preferable to achieve identical decomposition for the same pattern, 

regardless of whether it is translated or rotated relative to an origin point. 

The following subsection describes our proposed method, examining every component it 

implies from image analysis to feature extraction frameworks, in the same manner as the state-of-

the-art was presented. It provides a comprehensive analysis of the improved versions of the WPD 

and examples emphasizing their invariant capabilities when it comes to decomposing an image 

under view-point variations. In the same subsection, we introduce novel feature extraction 

techniques that are used to characterize image decompositions.  

4.3 Invariant Wavelet Packet representation 

We propose a framework that can be freely exploited when translation and rotation 

constraints are present in classification tasks. Figure 4-13 provides an overview of the framework. 

Briefly, the framework we developed decomposes an image using the invariant versions of WPD, 

namely the Translation Invariant WPD (TI-WPD) and Rotation Invariant WPD (RI-WPD). Each 

one of these two decompositions tackle the view-point variation challenge we addressed in our 

research. From these two distinctive decompositions we generate novel feature vectors such as N-

directional entropy and N-regional entropy which are further engineered and prepared to be fed to 
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multiple ML classifiers such as neural networks (NNs), decision trees, support vector machine 

(SVM), k-nearest neighbors (K-NN) and graph neural networks (GNNs), etc.  

Further on, we introduce each concept used in the framework starting with the 

decompositions and followed by features. Brief descriptions of the classification frameworks are 

presented in the next chapter.  

  

 
Figure 4-13. Overview of the proposed schema for image analysis and classification task. 

4.3.1 Translation-Invariant Wavelet Packet Decomposition 

Achieving translation invariance involves introducing an extra degree of freedom to WPD. 

To visualize and to offer an intuitive interpretation of the difference between WPD and TI-WPD, 

we provide in Figure 4-14 the comparison between the two decomposition operators. A 

decomposition operator is a functional block used to design and implement a complex analysis 

system as TI-WPD.  

The WPD operator in Figure 4-14 (a) depicts the low-pass (LP) and high-pass (HP) filtering 

procedures, followed by down-sampling factor of 2 and the “best” basis selection algorithm. It's 

important to note that the optimization algorithm relies on minimizing the entropy cost function 

detailed in Section 4.2.3. For the WPD case, the decomposition operator is substantially the first 

level formalization of the filtering-based representation from Figure 4-8 with the additional 

optimization block. 

For the TI-WPD, in Figure 4-14 (b), the additional component is a translation block, where 

T  specifies the number of pixels to be shifted. The translation block generates circularly shifted 

wavelet coefficients. In this scenario, compared to the WPD operator, we enlarge the generated 

subspace at each decomposition step by computing more wavelet coefficients and therefore, 

increasing the complexity of the process. However, the trade-off between the higher complexity 

and translation invariance, is favorable if we consider the significant property we attain as a result 

of exploiting the translation block.  

It is proven that the translation values, T , are dyadic in nature in order to assure the 

invariance conditions imposed in our research [102]. Usually, as in the 2D case there are two 

translation axes, we imply the translations as a pair of two values, ( ),V HT T , whose indices V  and 

H  denote the shifting axes, vertical and horizontal, respectively. Therefore, for a dyadic image of 

W W pixels, VT  and HT  take values of the form, 2t , where ( ) 20,..log 1t W − .  

The choice of t  is essential since it impacts both the chosen subspace and the minimization 

of the entropy cost function. The existing choice of the translation values transposes into the fact 

that there exists, 
minVT  and 

minHT ,  that generate the subspace of minimum entropy. To our 
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knowledge, there is no specific algorithm to compute these values, therefore, we empirically chose 

1V HT T= =  as they have always generated the subspace that minimizes the entropy cost function 

in all of the tests and experiments on our datasets. Thus, when defining TI-WPD, the pair of 

translation values that generates the subspace at each decomposition step are: ( )0,0 , ( )0,1 , ( )1,0  

and ( )1,1 . 

The importance of having a subspace of minimum entropy stirs up from the interpretation 

of entropy in images, as lower values imply that there is structural information present in images, 

or wavelet coefficients in our case. 

 

  
(a) (b) 

Figure 4-14. Comparison between: (a) WPD operator; and (b) TI-WPD operator 

 

With respect to the translation invariance conditions, for an image,  ,f x y , the TI-WPD 

can be defined as follows: 

 

 
( )       ( )  , ,

4 1, , 2 2 , ,V H V HT T T T

k k

x y

C j k l h y k h x k C j k l + = − −  (4.29) 

 
( )       ( )  , ,

4 1 1, , 2 2 , ,V H V HT T T T

k k

x y

C j k l h y k h x k C j k l + + = − −  (4.30) 

 
( )       ( )  , ,

4 2 1, , 2 2 , ,V H V HT T T T

k k

x y

C j k l h y k h x k C j k l + + = − −  (4.31) 

 
( )       ( )  , ,

4 3 1, , 2 2 , ,V H V HT T T T

k k

x y

C j k l h y k h x k C j k l + + = − −  (4.32) 

 

where    0, 0, ,f x y C k l=  and ( ),V HT T  are the pair of translations values. Equations (4.29) - 

(4.32) represent all the coefficients that are generated when using TI-WPD. From this collection 

of wavelet coefficients, we discard the ones that do not verify the entropy minimization criteria 

and finally, determining the “best” basis that is invariant to image translations. 

 Figure 4-15 shows an alternative visual representation of TI-WPD based on Mallat’s 

pyramidal decomposition principle [92], where at each decomposition step, the TI-WPD operator 

is applied and generates the subspace of minimum entropy. 
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Figure 4-15. TI-WPD visualization according to Mallat’s pyramidal decomposition 

  

To observe the effectiveness of TI-WPD, a THz image is circularly translated in different 

directions and decomposed using WPD and TI-WPD simultaneously. It is worth noting that the 

four images contain the same information and no pixel value was substituted, removed or changed, 

apart from the applied translations.  

 

    
(a) (b) (c) (d) 

Figure 4-16. Comparison between WPD and TI-WPD in 4 cases: (a) original unshifted THz image; (b) 

horizontally shifted with 32 pixels; (c) vertically shifted with 32 pixels; and (d) horizontally and vertically shifted 

with 32 pixels. 
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In the example from Figure 4-16, we used the “coiflet5’ wavelet family and additionally, 

we increased the depth to a 4-level analysis to better emphasize and observe the advantages of TI-

WPD over WPD. The choice of the wavelet family is strictly related to the information contained 

in the image and the nature of the application. Therefore, due to the fact that images we analyze 

on a daily basis in computer vision tasks have many patterns, contrasting characteristics and a wide 

variety of possible objects, one of the main challenges of wavelet analysis is the choice of the 

wavelet family. Therefore, in most of our tests we used two families, namely the ‘Coiflet’ and 

‘Daubechies’ wavelets.  

Figure 4-16 shows the decompositions results for the same THz image but which is firstly 

translated horizontally with 32 pixels, then vertically with 32 pixels and finally both vertically and 

horizontally with 32 pixels. As expected, when using WPD to analyze the provided images, we 

observe that in all four cases, the “best” basis selected is different as the image information is 

concentrated in other frequency sub-bands. In this case, a subsequent classification is hindered as 

the potential features are extracted from different sub-bands. On the other hand, TI-WPD assures 

that the selected “best” basis remains the same under any translation regardless of the direction 

and value.  

4.3.2 Rotation-Invariant Wavelet Packet Decomposition 

The other imposed constraint is more complex than the translation invariancy as rotations 

in digital images introduce deformations and loss of information. Nevertheless, the WPD can be 

adjusted to attain rotation invariance [103]. Figure 4-17 outlines a method for achieving rotation-

invariant decomposition. 

 

 
Figure 4-17. Overview of the conceptual approach of RI-WPD 

 

To begin with, the challenging issue of rotation is simplified by converting it into a simpler 

translation problem using the polar representation of the image. In this representation, a translation 

corresponds to a rotation in the cartesian grid. The mapping from an image,  ,f x y , to a polar 

representation,  ,Pf    is defined by the following parameter relations: 

 

 ( ) ( )
22

ccx x y y = − + − , (4.33) 

 
1tan c

c

y y

x x
 − −
=

−
, (4.34) 

 

Where ( ),c cx y  is the center of the image, ( ),x y  denotes the sampling pixel in the cartesian grid 

and ( ),   is the radius and angular position in the polar representation.  
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In contrast to TI-WPD, achieving rotation invariance involves introducing an extra degree 

of freedom during the decomposition process, coupled with the "best" basis selection algorithm as 

it is shown in Figure 4-18 (a), where 
HT  denotes the translation only on the horizontal axis.  

 

  
(a) (b) 

Figure 4-18. (a) RI-WPD operator; and (b) RI-WPD process according to Mallat’s pyramidal decomposition 

 

Following Mallat’s pyramidal decomposition principle, at every node, we produce the 

subspace comprising all wavelet packet coefficients and their row-shifted versions using the RI-

WPD decomposition operator. The RI-WPD process is depicted in Figure 4-18 (b). In contrast 

with TI-WPD, RI-WPD is implemented using only the translations on the horizontal axis, as 

shifting on vertical direction distorts the image when transposed back in the cartesian domain. 

Row-shifting indicates that the translation block, 
HT , accepts only the pair of values ( )0,0  and 

( )0,1 , where the first value expresses the translation on the vertical axis and the other on the 

horizontal axis of the polar image. As RI-WPD is implemented in the similar conditions as the TI-

WPD, the translation value of 1 is sufficient in order to achieve the desired rotation-invariancy. 

 It is worth noting that during the conversion of an image from the cartesian domain to the 

polar domain and back, there is some loss of information inherent to the polar transform. However, 

we are interested in only the information we lose when transposing into the polar domain, as these 

images are further used when generating rotation invariant wavelet coefficients. Using (4.33) and 

(4.34) you transform each pixel’s ( ),x y  coordinates into polar parameters, ( ),  , the radius and 

angular position relative to the center of the image. In this scenario, the extent of information loss 

and distortion depends on factors such as the resolution of the polar grid and the complexity of the 

image such as finer details, patterns and resolution. Another important aspect is the interpolation 

of pixel values. In many cases, the interpolation is needed to estimate the pixel values at non-

integer coordinates. This process induces differences between the original cartesian image and its 

polar representation. However, in order to alleviate the possible artefacts, we can consider a 

bilinear interpolation approach when converting from the cartesian to the polar domain.  

 The bilinear interpolation can be defined as a multilinear polynomial: 

 

 ( ) 00 10 01 11,f x y a a x a y a xy + + + , (4.35) 

 

where f  is a function with a point as argument (x, y) and 
00a , 

10a , 
01a  and 

11a  are the coefficients. 

It is assumed that the value of f is known at the four points ( )11 1 1,P x y= , ( )12 1 2,P x y= , 
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( )21 2 1,P x y=  and ( )22 2 2,P x y= . The coefficients of the bilinear interpolation are found by solving 

the linear system: 

 

 

( )

( )

( )

( )

111 1 1 1 00

121 1 1 2 10

212 2 2 1 01

222 2 2 2 11

1

1

1

1

f Px y x y a

f Px y x y a

f Px y x y a

f Px y x y a

    
    
     =
    
    
      

. (4.36) 

 

Therefore, the coefficients are computed as: 

 

 

( )

( )

( )

( )

1100 2 2 2 1 1 2 1 1

1210 2 1 2 1

2101 2 2 1 1

2211 1 1 1 1

f Pa x y x y x y x y

f Pa y y y y

f Pa x x x x

f Pa

 − −   
    

− −     =
    − −
    

− −      

 (4.37) 

 

The bilinear interpolation uses the four nearest pixels around the location of the pixel with 

unknown value. The unknown pixel’s value is the weighted average of those four pixels. 

Considering the high complexity of the wavelet transforms, one of the advantages it provides 

regard the straightforward implementation and efficiency. Moreover, compared to nearest-

neighbor interpolation method, a bilinear interpolation offers smoother transitions between fine 

lines and details, aiding in preserving the information from the original image.  

Figure 4-19 illustrates examples of cartesian-to-polar and their corresponding polar-to-

cartesian transforms of the same THz image used to exemplify TI-WPD.  

 

  
(a) (b) 

Figure 4-19. Cartesian to polar image representations: (a) for 32-by-32; and (b) 128-by-128 polar grid 

Each presented case has different resolutions of the polar grid as follows: (a) 32-by-32; (b) 

128-by-128. It is easily observable that the more the grid’s resolution is increased, the better the 
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details are retained in the image. For our applications, using a high-resolution polar grid, such as 

128-by-128, it is a suitable way to tackle the problem of information integrity. 

Considering the row-shift invariance of a polar image, the RI-WPD can be expressed as in: 

 

 ( )       ( )  0, 0,

4 1, , 2 2 , ,H HT T

k k

x y

C j k l h y k h x k C j k l + = − − , (4.38) 

 ( )       ( )  0, 0,

4 1 1, , 2 2 , ,H HT T

k k

x y

C j k l h y k h x k C j k l + + = − − , (4.39) 

 ( )       ( )  0, 0,

4 2 1, , 2 2 , ,H HT T

k k

x y

C j k l h y k h x k C j k l + + = − − , (4.40) 

 ( )       ( )  0, 0,

4 3 1, , 2 2 , ,H HT T

k k

x y

C j k l h y k h x k C j k l + + = − − , (4.41) 

 

where    0, 0, ,Pf C k l  =  and ( )0, HT  are the pair of translations values. Equations (4.38) - 

(4.41) represent all the coefficients that are generated throughout the RI-WPD. From all these 

coefficients, we select only the ones that are in accordance with the entropy minimization criteria, 

thus, determining the subspace of wavelet coefficients that are invariant to image rotations. 

Figure 4-20 presents the decompositions results for the same THz image (a) but which is 

firstly rotated counter clock-wise with: (b) 25 degrees; (c) with 125 degrees; and (d) with 225 

degrees. As it was presumed, when we decompose the images using WPD, we observe that in all 

four cases, the “best” basis selected is different.  

 

    
(a) (b) (c) (d) 
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Figure 4-20. Comparison between WPD and RI-WPD in 4 cases: (a) original THz image; (b) 25° counter clock-

wise rotation; (c) 125° counter clock-wise rotation; and (d) 225° counter clock-wise rotation. 

However, RI-WPD assures that the selected “best” basis is the same under any rotation 

regardless of the direction and value. It is noteworthy that the black outer zones in the images are 

the result of transposing the image back to the cartesian domain. The idea is that in order to assure 

that the image information does not change when the image is rotated, as it is usually the case, we 

assume that most of the information is concentrated inside the circle which is inscribed the 

analyzed image. Thus, the outer corners of the image can be discarded.  

As a reminder, the objectives of the two invariant versions of the WPD are to solve the 

view-point variations of the image patterns and to offer a unique decomposition. However, these 

two conditions can hardly be achieved concomitantly with a single decomposition. This is due to 

the fact the rotations and translations differ in nature when it comes to digital images. Therefore, 

our proposal is to use TI-WPD and RI-WPD in conjunction when analyzing an image, resulting in 

two “best” bases, one invariant to translations, and the other invariant to rotations.  

In the following subsections, we introduce novel frameworks used to compute intrinsically 

different features, which significantly increase the robustness of classifiers on a variety of image 

datasets. It is worth noting that the framework we define here exploit the nature of the cost function 

used in the wavelet decompositions, namely, the entropy. As we started the proposal with a search 

of a sub-space of minimum entropy, it is intriguing to extract characteristics that further express 

and describe the entropy distribution among wavelet coefficients. However, we are not limited by 

the entropy and other features can be used to compute the features using the framework such as 

the: energy, mean, standard deviation, skewness, higher order statistics, etc. Before detailing the 

first feature extraction framework, it is important to remind that for an W W  dyadic image, the 

entropy is 0 when the image has constant intensity values and it reaches its maximum, 
2logW W

, when the probabilities of a pixel values are uniformly distributed, as seen in a random image. 

4.3.3 Vertical entropy features 

The vertical feature framework consists of determining features along the vertical 

direction. For a dyadic image of W W , we generate a feature vector of length W by computing 

the entropy measure for each individual column. For the stated dyadic image,  ,f x y , the vertical 

entropy features are defined as a collection of values computed as follows: 

 

  | 1,features xV v x W= = , (4.42) 

 

where    2 2

2logx y y

x

v f x f x =    and yf  is the thy  row. 

An example of this procedure is illustrated in Figure 4-21, where we can note two binary 

images, one containing a square pattern in the upper left corner and the other including the 

additional wide ellipse covering the lower part of the image. The entropy values in both scenarios 

in Figure 4-21 (a) and (b) determine the present of information and quantifies it in order to be used 

as features in subsequent computer vision tasks. For the first case presented in Figure 4-21 (b), the 

entropy senses the overlapping of the two objects and integrates the vertical entropy coming from 

the first image with the ellipse’s information. 
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(a) (b) 

Figure 4-21. Vertical entropy feature extraction for: (a) a binary image with a square; and (b) a binary image with 

an additional ellipse. 

4.3.4 Horizontal entropy features 

In the same manner as the vertical entropy features, we compute the entropy vector for 

each individual row, determining the horizontal features. For the same image,  ,f x y , the 

horizontal entropy features are formalized as in: 

 

  | 1,features yH h y W= = , (4.43) 

 

where    2 2

2logx x x

y

h f y f y =    and 
xf  is the thx  column. 

 As in the previous framework, the same two images are used in order to determine the 

features and evaluate the results. The extracted features are depicted in Figure 4-22 (a) for the first 

image; and (b) for the second. With this approach, the objects are separated and individually 

characterized, implying the complementary relations between the vertical and horizontal 

frameworks. 

 

  
(a) (b) 

Figure 4-22. Horizontal entropy feature extraction for: (a) a binary image with a square; and (b) a binary image 

with an additional ellipse. 

4.3.5 N-directional entropy features 

Starting from the same ideas of the two previous frameworks, we outline the information 

distribution in N  directions or regions of interest (ROI) originating from the image center and 
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extending to its borders. Thus, the feature vector of an image contains N  entropy values, 

corresponding to each region and can be defined as: 

 

  | 1,features nD d n N= = , (4.44) 

 

where    2 2

2, log ,n

x y

d f x y f x y =    and ( ), nx y ROI  . 

The decision of N relies on the information content and spatial distribution within the 

image. Generally, it is advisable for the maximum value should be a power of 2 and lower than 

image’s smallest dimension, W  to prevent pixel overlap between regions. If these criteria aren't 

met, the analysis may still offer a satisfactory description but might involve redundant information 

and increased computational overhead. This is due to the fact that for a number of regions greater 

than W , pixels will be part of two or multiple regions at the same time, thus the redundancy occurs.  

To exemplify the N-directional approach, two binary images are tested. The first image and 

its characterizations are presented in Figure 4-23 (a) for 4N = ; (b) for 8N = ; and (c) for 16N =

directions. The image used in those four cases depicts a single pattern as in the previous 

frameworks, a white square in the upper left corner. In the first scenario, for 4N = , we split the 

image into four regions annotated with numbers, denoting the directions, as shown in Figure 4-23 

(a). The polar plot on the right side presents the entropy values of each region. We use a polar plot 

as it offers an easily interpretable representation, in accordance with the analyzed image. As we 

observe, only in ROI 1 information is present as it has the only non-zero entropy value, while the 

others are zero due to constant intensity in those ROIs. As we increase the number of directions of 

analysis, the polar plot becomes more detailed, providing a more precise depiction of the 

information distribution within the image.  

 

  
(a) (b) 

 

(c) 

Figure 4-23. N -directional entropy characterization for a binary image with a white square for: (a) 4N = ; (b) 

8N = ; and (c) 16N = ; 
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 In Figure 4-23 (b) as the number of directions became eight, the white square is 

characterized by two entropy values from ROIs 1 and 2 which are similar in value, but not the 

same. This difference comes from the imperfect alignment of the white square. Lastly, Figure 4-23 

(c) shows a 16-directional analysis, where we observe the four entropy values from ROIs 1, 2, 3 

and 4, each describing parts of the white square. 

For the second image, with the additional wide ellipse, the N-directional analysis is 

presented in Figure 4-24 (a) for 4N = ; (b) for 8N = ; and (c) for 16N = . It is worth noting that 

in this scenario, increasing the number of directions to 16N = , allows us to jointly localize and 

quantify image information content: both the square and the ellipse are clearly characterized by 

their entropy values. Considering the vertical and horizontal frameworks, the N-directional entropy 

fuses the information coming from both in such a manner that it allows for a more detailed analysis.  

The N-directional feature extraction framework can strengthen the imposed invariance 

conditions due to its circular nature. The input image can be slightly preprocessed to generate 

features quasi-invariant to image rotations only by considering that the information is mostly 

concentrated inside the circle inscribed in the analyzed image as it is depicted in Figure 4-24 (d). 

Indeed, there is a trade-off between information loss and quasi-invariant N-directional features. 

Nonetheless, considering the objective of the thesis, it is worth experimenting with this approach. 

The complete invariance is achieved when the degree of image rotation is equal to the central angle 

of any ROI,
n , which is the angle formed by the two lines defining the region and that has its 

vertex in the center of the inscribed circle as shown in Figure 4-24 (d). In this case, the features 

are circularly shifted while their values remain the same as it is shown in Figure 4-25. The 8-

directional entropy analysis of the two THz images yield the same results but which are rotated 

with 180 degrees. In every other case, the information exchanges between the ROIs will impact 

the generated features to some degree, thus the quasi-invariancy to rotations.  

 

  
(a) (b) 

  

(c) (d) 

Figure 4-24. N -directional entropy characterization for a binary image with a white square and an ellipse for: (a)

4N = ; (b) 8N = ; (c) 16N = ; and (d) ROI and angle created by two lines defining a ROI 
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Figure 4-25. 8-directional entropy for a reference THz image and its 180° rotated version. 

 

Due to direct relationship between the invariance and the ROI angle, we conclude that the 

more ROIs we use, the smaller the angle is; thus, the features are becoming resilient in front of 

image rotations when N  has a greater value. However, as the value of N  increases, the number 

of pixels inside the ROI decreases, resulting in the computed entropy becoming less relevant. The 

value of N should be corelated with the patterns and their size. In this research, we generally use 

16, 32 or 64 ROIs per image when computing the directional entropy. 

4.3.6 N-zonal entropy features 

As the patterns or information present in an image are not always known, the previous 

framework is complemented by other types of regions to compute features. Another interesting 

approach is a square mask. In this context, the image is split in N square zones covering the whole 

image and which are also considered ROIs. The feature vector is expressed using the same 

principle as in the previous frameworks using a collection of values as in: 

  | 1,features nZ z n N= = , (4.45) 

 

where    2 2

2, log ,n

x y

z f x y f x y =    and ( ), nx y ROI . 

 In an ideal case, the number of ROIs, N , should be generally chosen such that the 

dimensions of a ROI capture important parts of the pattern or motive present in the analyzed image. 

For a dyadic image of W W  pixels, 2rN = , where 
2logr W . As in the N-directional 

framework, the trade-off is between the resolution of the analysis and the information contained 

in each ROI. Considering the trade-off, N  should not be too large, as this transposes into small 

area ROIs which are usually insufficient and irrelevant. For the purpose of the thesis, the usual 

chosen values are 16 and 64 zones.  

An example analysis is presented in Figure 4-26 for the same binary image with a square 

and an ellipse. The first case when 4N =  zones is analogous to a 4-directional analysis using the 

previous framework so we expect the same features. The representation of the 4 square ROIs is 

presented in Figure 4-26 (a). The corresponding and conveniently arranged entropy features are 

depicted in Figure 4-26 (b). In this framework, a more relevant and intuitive representation of the 

features is in grid form as it resembles the ROIs positions in the original image. In Figure 4-26 (b) 

the entropy features depict an initial low-resolution distribution of information inside the image.  
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(a) (b) 

Figure 4-26. (a) The binary image and the corresponding ROIs for a (b) 4-zonal entropy characterization 

 

As we increase the number of analysis zones from 4N =  to 16N = , we observe that the 

analysis starts offering insights about the distribution of information. The 16 ROIs are presented 

in Figure 4-27 (a) and the 16-zonal entropy characterization in Figure 4-27 (b). However, the 

separation of the two objects is not clear not even in this case. In the last scenario presented in 

Figure 4-27 (c) and (d), when 64N = , the characterization of the image is even more detailed, the 

objects being clearly distinguished and characterized. 

 

  

(a) (b) 

  

(c) (d) 

Figure 4-27. (a) The binary image and the corresponding 16 ROIs for a (b) 16-zonal entropy characterization; (c) 

The corresponding 64 ROIs for a (b) 64-zonal entropy characterization; 
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It is noteworthy that this framework is not invariant to rotations, but is used alongside with 

the N-directional analysis to enhance the discriminatory power of the features. In this manner, by 

using different ROIs when computing the distribution of information, we have more perspectives 

about the patterns and the data analyzed. 

A second example analysis is presented in Figure 4-28 where we provide the 64-zonal 

entropy features for a THz image. The lower entropy values correspond to regions in the original 

image where the distribution of pixel intensities is mostly constant and organized. The higher 

values are correlated with noisy regions with little to no informational gain.  

 

 
Figure 4-28. THz image and its corresponding 64-zone entropy analysis. 

4.4 Chapter summary 

This chapter presented various methods of image analysis, including DCT, DWT, and 

WPD, with an emphasis on the common features extracted using these transforms. These 

approaches generally perform well in straightforward scenarios where there are no variations in 

viewpoint. However, to address real-world cases where the image of a pattern or subject can vary 

significantly, we have enhanced these image decomposition techniques and computed additional 

features based on these upgraded versions. 

In the final subsection, we developed and introduced the tools we propose to use in image 

analysis procedures, specifically Translation-Invariant Wavelet Packet Decomposition and 

Rotation-Invariant Wavelet Packet Decomposition. The features derived from our frameworks can 

be further engineered and organized to adapt to a variety of machine learning classifiers. This 

adaptability ensures that our methods can be effectively utilized in diverse application scenarios. 

Additionally, these frameworks are versatile and can be integrated with numerous 

statistical measures, allowing the computation of complementary features and providing different 

perspectives on the analyzed image. By incorporating these advanced techniques, our methods 

offer a more robust and comprehensive approach to image analysis, capable of handling the 

complexities and variations encountered in real-world scenarios. This enhances the overall 

accuracy and reliability of image classification and pattern recognition tasks, making our 

frameworks valuable tools in the field of image analysis. 
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Chapter 5. THz image classification 

5.1 Introduction  

In the previous chapter, a general image analysis framework was introduced considering 

view-point variations constraints. Starting from the invariant wavelet decompositions, we 

developed feature extraction methods that are able to provide localized and complete insights about 

the analyzed image. The frameworks allow for complementary analysis that result in a powerful 

set of features that can be used as discriminating assets. From this point, the last challenge tackled 

by the thesis regards the image classification, a task typically regarded as one of the final stages in 

an image processing chain. 

 Considering the scarcity of THz data, ML classifiers are preferred compared to a DL 

approach. Therefore, this chapter provides details about novel feature assembling techniques prior 

to feeding them to ML algorithms. In this case, feature assembling refers to the patterns or 

structures in which the already computed features are transposed and can be further exploited in 

conjunction with ML classifiers. These assembling techniques are tailored based on the graph 

representation of a wavelet decomposition, but also on physical considerations such as the wavelet 

frequency sub-bands. In other words, starting from the vertical, horizontal, N-directional or N-

zonal frameworks, the resulting features can be represented in graph form, thus reflecting the 

structural frequency decomposition of the TI-WPD or RI-WPD tree. The features coming from 

this approach are perfectly adapted to train a Graph Neural Network (GNN) for the image 

classification task. The second idea we propose is to aggregate the features based on their depth 

and type, two identifiers of wavelet sub-images. In this case, the features are fed to classic ML 

classifiers such as k-NN, SVM, decision trees, etc. 

Finally, the chapter ends by presenting the comparative results of ML image classification 

using classical features presented in the previous chapter and the features coming out from the 

frameworks we proposed. To correctly asses our approach, we tested a large pool of ML classifiers 

on many proprietary THz datasets, but also on other non-THz public benchmark datasets. In the 

following sub-sections, we explain the assembling techniques and their corresponding ML 

classifiers, considering a WPD “best” basis. Nevertheless, one family of transforms on which these 

assembling techniques can be applied is the one that follow the multiresolution concept and can 

be represented through a graph. As already mentioned, one example is WPD, but TI-WPD and RI-

WPD are included and also preferred in the conducted experiments due to their invariant nature.  

5.2 Graph-approach in image classification 

Starting from a WPD “best” basis structure, the proposed features are assembled in the 

same manner, retaining the frequency sub-bands selection structure. The process can be visualized 

in Figure 5-1 where we depict the 2-level WPD “best” basis of an image where three level-one and 

four level-two sub-images are considered to “best” represent the original THz image. On each sub-

image we compute one or multiple features using the vertical, horizontal, N-directional, or N-zonal 

frameworks. To maintain the structure of the WPD basis, for sub-images not selected to be part of 

the “best” basis we use a feature vector of zeros with the same size as the vector computed for the 

other nodes. 

A graph signal processing approach provides the mathematical tools to define these graph-

structured features. Thus, a brief introduction of the concepts adapted to our research is needed. 

Generally, a graph is an object that represents relations between entities. Entities are commonly 

referred to as “nodes” or “vertices”, while relations are the “edges” connecting the nodes. A graph 
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can be directed if the edges connecting the nodes point in only one direction. If the directions do 

not exist, or the edges are bidirectional, the graph is undirected. In our case, both types of graphs 

can be implied when assembling the features, however we choose to use the restricted case of 

directed graphs to retain the parent-child relation concept also presented in a wavelet 

decomposition. An example of a directed graph’s nodes and edges is presented in Figure 5-1 along 

with the features computed on the sub-images from the “best” basis. 

 

 
Figure 5-1. Graph-structured features starting from a WPD 

 

A directed graph, fG , containing the set of features and edges can be formally defined as 

follows: 

 

 ( ),fG V E=  (5.1) 

 

where V and E  represent the vertices’ features and edges, respectively. It is noteworthy that the 

set of elements, ( ) , | , 1,i ij f Vv e G i j N = , are ordered so that the graph is directed.  

The edges of the graph, E , can be weighted if any relation between wavelet coefficients is 

considered, otherwise, all edges will share the same weight, equally weighting the features. In this 

thesis, we consider that all the wavelet sub-images and their corresponding features bring 

information of the same priority and importance as they are all apriori selected with a pruning 

algorithm. Thus, the edges’ weights, ije , are equal to 1. Other approaches might consider a 

weighting law for the “best” basis edges, or a more exhaustive idea by exploiting the full wavelet 

decomposition while assigning weights to edges according to an informational criterion. 

 The structure of directed and unweighted graphs containing 
VN  vertices can be explicitly 

defined with an adjacency matrix, A , as in: 

 

  | , 1,ij VA a i j N= = , (5.2) 

 

where  

 

 
1 if there is a edge from node  to 

0 otherwise
ij

i j
a


= 


, (5.3) 

 

and ija  indicates the connection from node i  to node j . 
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The conclusive idea of using graph structured features is that they can be fed to GNNs, an 

emerging trend in signal processing and machine learning that has the potential in increasing 

performances in computer vision tasks [104], [105]. In our research, GNNs take as input graph-

structured features and aggregates them into new graph-representations using the general 

framework presented in [106]. Finally, the newly transformed features are passed to a Multi-Layer 

Perceptron (MLP) network for classification. A MLP is a neural network with multiple layers 

suitable for solving non-linear classification problems. 

Using (5.1) and (5.2) we define the features, their edges and structure according to a WPD 

graph. One example of such graph-representation is presented in Figure 5-2 (a) where the nodes, 

iv , represent the wavelet sub-images; the edges, ije , are the arrows connecting the nodes. 

Additional self-loop edges are also depicted. Self-loops in GNNs refer to edges connecting nodes 

to themselves. These self-loops are not present in a typical WPD graph, but from an algorithmic 

point of view they stabilize the learning process by addressing issues related to the lack of self-

connections in classic convolutional operations on graphs, making the process more robust  [107], 

[108]. They are also a simple mechanism for nodes to influence their own features during message-

passing [109], [110], [111] or aggregation steps [112], [113]. This mechanism is particularly useful 

for refining the representation of nodes based on their own information. However, the benefits of 

self-loops vary depending on the specific application and the characteristics of the graph [114], 

[115]. Our experiments demonstrated that the inclusion of self-loops increases the convergence 

speed during training by facilitating the information exchange between nodes. 

The adjacency matrix in Figure 5-2 (b) represents the graph from Figure 5-2 (a): with 1s 

we show the weighted connections between nodes and with 0s we represent the absence of 

connection. Each one of the nodes, 
iv , contains the horizontal, vertical, N-directional, N-zonal 

features or a combination of these features. 

 

  
(a) (b) 

  
Figure 5-2. (a) Example graph with self-loops; and (b) its adjacency matrix with the proposed features 

corresponding to each node 

 

Having described the structure of the features, we now introduce the GNN architecture and 

its general mathematical formalization. In this case, we start by presenting the intra-layer graph-

processing, we continue with the inter-layer relationship and layer stacking, and finally we present 

the classification neural network. 

If we consider the GNN’s architecture presented in Figure 5-3 [106], the k -th layer, 

conveniently denoted as General Graph Convolution (GGC) layer, can be defined as in: 
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 ( )( )( ) ( ) ( )( 1) ( ) ( ) ( ) ,k k k k

p qv AGG ACT DROPOUT BN W v b q p+ = +  , (5.4) 

 

where ( 1)k

pv +  is the k -th layer embedding node, ( )kW  and ( )kb  are the trainable weights and biases, 

and ( )p  is the local neighborhood of pv , referring to all nodes that have direct connection to the 

analyzed node. 

 

 
Figure 5-3. The architecture of the GNN 

 

Considering the intra-layer architecture depicted in Figure 5-3, we further describe the role 

of each component step by step in the following: 

  

a) The linear layer, often referred as the “weight” layer has an important role in transforming 

the aggregated neighborhood information into updated node representations. In general, 

this layer follows a linear mapping as shown in (5.4) using the trainable parameters, W  

and b , representing the weighting matrix and the bias. 

 

b) Batch normalization is used to improve the training stability and convergence speed. In the 

proposed architecture, batch normalization operates independently on each node’s features, 

considering the features of a single node as a batch [116]. For a node, qv , with a feature 

vector of length 
FeatN , the node-wise batch normalization is defined as follows: 

 

 ( ) q q

q

q

v
BN v





−
= , (5.5) 

 

where q  and q  are the mean and the variance of the feature vector corresponding to 

node qv .  
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These two variables are further defined as in: 

 

  
1

1 FeatN

q q

iFeat

v i
N


=

=  , (5.6) 

 

  ( )
2

1

1 FeatN

q q q

iFeat

v i
N

 
=

= − . (5.7) 

 

c) The dropout, as in classic neural networks, offers a method to mitigate overfitting and 

enhance the model's generalization [104]. A mathematical formalization of this technique 

incorporates the input vector, a probability, p , representing the fraction of units to drop 

out and a binary mask of identical shape as the input vector, where each entry is either 0 

(dropped out) or 1 (kept). Thus, the dropout process can be expressed as in: 

 

 ( )
1

Mask x
DROPOUT x

p


=

−
, (5.8) 

 

where x  represents the hidden layer output. The probability, p , is a hyperparameter that 

is usually tuned based on the characteristics of the data and the complexity of the model. 

In our case, our experiments showed that a value of 0.3 best fits our data and thus, it is used 

throughout the presented results. 

 

d) The activation function introduces non-linearity to the model, enabling it to learn intricate 

patterns within the data and facilitating information propagation in GNNs. Some of the 

most common activation functions in the context of GNNs are Rectified Linear Unit 

(ReLU), Parametric Rectified Linear Unit (PReLU) or Swish [106]. As the choice of an 

activation function often depends on the specific task and dataset, it is a common practice 

to experiment with different functions to find the best solution empirically. However, from 

a computational point of view, especially when working with exhaustive wavelet 

decompositions, we chose to use the activation with the lowest computational impact, 

ReLU, which is defined as in: 

 

 ( ) ( )ReLU max 0,x x= . (5.9) 

 

where x  is the input vector.  

As already mentioned, the favorable characteristic of ReLU is that it induces 

sparsity in the network when the input is negative and thus, being beneficial for memory 

and computational efficiency. Another aspect regarding the choice of ReLU is that it has 

demonstrated empirical success in various machine learning applications, many state-of-

the-art models using it as an activation function [104], [106], [117]. From this point of 

view, ReLU is an appealing first choice when experimenting and it is used throughout the 

comparative analysis later in this chapter. 

 

e) The final aggregation step is a crucial component in a GNN architecture as it is in charge 

of combining information from neighbor nodes to update node representations. As for our 
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scenario, we experimented with the sum aggregation defined for the aggregated 

representation ( 1)k

qv +  for node q  at layer 1k +  as in: 

 

 
( )

( 1) ( ):   k k

q i

i q

SUM v v


+



=  , (5.10) 

 

 where ( )q represents all the neighbors of node q . 

The sum function preserves global information and considers the overall 

contribution of all neighbor nodes. 

 

f) Having defined the GGC layer, the following step is to stack multiple layers to create a 

graph neural network as shown in Figure 5-3. In practice, stacking is one of the most 

frequent options. One of the reasons behind stacking multiple layers is that they allow the 

model to learn hierarchical representations of the input graph, with each layer increasing 

the complexity of the patterns and dependencies in the represented data [104], [111], [113], 

[118]. In this sense, we propose to stack three GGC layers as they are shallow enough to 

prevent overfitting, and deep enough to capture complex feature relationships [119]. 

 

g) The final neural network, MLP, depicted in Figure 5-3 stacks two layers, each being 

composed of a linear layer, with ReLU activation and a Dropout function. The two-layer 

feed-forward neural network is a common classifier, usually used in conjunction with a 

Softmax [120] loss function in computer vision classification task. The Softmax function 

accepts a vector of real numbers as input and transforms it into a probability distribution 

through normalization. Given an input vector, x , the Softmax function produces the 

following output: 

 

 ( )

1

softmax
i

j

x

i K
x

j

e
x

e
=

=


, (5.11) 

 

where 
ix  is the i -th value of the input vector, e  is the base of the natural logarithm and K  

is the total number of classes.  

One advantage of the Softmax function is that it offers a probabilistic interpretation 

of the output. The output scores of each individual class are transposed into probabilistic 

confidence values. If the output value at position i  is close to 1, it indicates high confidence 

that the input belongs to class i , while values close to 0 indicate low confidence.  

 

An overview of the proposed graph-based approach in image classification is presented in 

Figure 5-4. Starting from a database of images, we decompose all the images using TI-WPD and 

RI-WPD. From all the sub-images in the “best” bases we extract the proposed features and 

assemble them in graph-form. The features are then split in training, validation and test sets with 

a ratio of 60/20/20. The described GNN is trained considering the cross-validation approach [121]. 

Cross-validation is a model evaluation technique wherein the dataset is divided into multiple 

subsets. The model is trained on some of these subsets and evaluated on the remaining ones. This 

method offers a more reliable estimate of the model's performance than a single train-test split. By 

averaging the performance across multiple folds, it minimizes the influence of randomness from a 
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single split, thus mitigating overfitting and decreasing the variance in performance estimates, such 

as those derived from the confusion matrix. 

The trained weights of the GNN model are then used to assess its classification 

performance using the confusion matrix and the accuracy obtained on the test dataset. The 

schematically workflow presented in Figure 5-4 is the methodology used in all experiments we 

conducted. 

 

 
Figure 5-4. Overview of the graph-based approach in image classification 

5.3 A 4-channel aggregation framework with frequency localization of 

wavelet sub-bands 

This subsection presents the second novel feature extraction technique which is based on 

aggregating characteristics and including the frequency information of the “best” basis in the final 

feature vector. This process can be visualized in Figure 5-5, where we start by depicting an 

example wavelet 2 level decomposition of an image computed using either TI-WPD or RI-WPD. 

The 4-channel aggregation procedure implies a joint between the aggregated sub-images’ features 

based on their level and type; and the structural frequency domain arrangement of the “best” basis 

expressed by the collection of sub-images’ normalized central frequencies. 

The 4-channel aggregation name comes from the four types of wavelet sub-images 

represented by the approximation and three detail coefficients. The aggregation table showed in 

Figure 5-5 is firstly comprised by a collection of features that can be defined as in: 

 

 
,

, ,

1

d pN

d

d p p i

i

F C
=

=  , (5.12) 

 

where ,

d

p iC  are the p −  type coefficients at level d  of decomposition, ,d pN  is the number of p −

type coefficients at level d , and    is the formal expression of features extraction techniques. 

Many features extraction techniques can be used and adapted with the presented framework. 

However, considering that the pruning algorithm is based on the minimization of entropy, it is 

worth to further experiment with the same concept of measuring the informational randomness of 
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each wavelet coefficient. Moreover, the values of the sub-images’ entropy are already computed 

through the pruning algorithm; thus, we also reduce the time complexity by avoiding additional 

computations. 

 

 
Figure 5-5. A 4-channel feature aggregation example for a wavelet “best” basis 

 

 The central frequencies of the wavelet sub-images are normalized between 0 and  . As  it 

is presented in Figure 5-5, they are added as elements to the features defined in (5.12), thus creating 

the final feature vector coming from the 4-channel aggregation approach is: 

 

   ( ) , , ,|1 ,  1 4,  1d

ch agg d p central p i d pF F F C d D p i N− =       . (5.13)  

 

ML classifiers such as k-NN, SVM, NN and Decision Trees are used to evaluate the 

features on several datasets of images. As for the GNN approach, for 4-channel aggregation with 

sub-band localization we present in Figure 5-6 an overview of the image classification workflow. 

We start from a database of images of different classes. These images are further decomposed 

using TI-WPD and RI-WPD. The “best” bases are characterized using the proposed framework 

and the feature space is created. The initial feature space is then split in training, validation and 

testing sets in order to comply with the cross-validation principles. A variety of ML classifiers are 

simultaneously trained and tested using the confusion matrix and the accuracy inferred from it.  

In the subsequent section, we showcase the outcomes of our proposed frameworks, which 

are tested on two proprietary THz databases and then expanding to public benchmark datasets 

found in image pattern recognition literature. 
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Figure 5-6. Overview of the 4-channel framework in image classification 

 

5.4 Results and discussion 

In Table 2 we present a synthesis of the image analysis decompositions along with the 

feature extraction techniques assessed on multiple databases and with different classifiers. In other 

words, Table 2 depicts all scenarios evaluated in our research and provides the general guidelines 

of this section. Before diving into results, we first describe the scenarios, the ML classifiers and 

introduce the evaluated databases. Following this section, we present more details about the 

databases along with the performance analysis of the classifiers. 

 

a) In the DCT case, we test as features the full decomposition coefficients which is 

exhaustive due to the higher dimension of the feature vector; a zig-zag approach 

improving the efficiency by selecting a smaller number of coefficients that traverse the 

whole frequency content of the DCT; a regional mask, extracting all the high-frequency 

coefficients from the bottom-right region of the DCT matrix; and Jing’s bands with the 

constraint that the bands composing the feature-vector retain more than 95% of the 

maximum energy. For DCT, we use one-dimensional feature vectors to train k-NN, 

SVM, NN and a decision tree. 

 

b) For DWT and WPD, the features are, one at a time, the mean, the entropy, or the energy 

of the sub-images. The additional novel feature extraction technique used here is the 

four-channel entropy aggregation. For DWT and WPD we use one-dimensional feature 

vectors to train the same ML classifiers as for DCT, but also the graph structuring 

approach of features in order to train a GNN. For the graph structured features, we use 

the classic mean, entropy and energy of the sub-images. 

 

c) For TI-WPD and RI-WPD, we tested only the vertical, horizontal, N-directional, N-

zonal and the four-channel aggregation techniques with the entropy as the means to 

characterize the sub-images of the decomposition. The number of directions in the N-

directional framework is 8, and the number of zones in the N-zonal is 9. Both the one-

dimensional feature vector and the graph approach are tested in these cases. The 
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‘Coiflet3’ wavelet family is used throughout the analysis of all wavelet-based 

approaches. 

 

Regarding the ML classifiers, the following paragraph, emphasizes the most important 

aspects of their configuration. As the possibilities of the classifiers’ configuration are indefinite, 

we choose to implement the most common architectures from the literature [122]: the k-NN 

algorithm uses 3k =  neighbors to classify the data [123]. The SVM uses a non-linear cubic kernel 

[124] to capture more complex relationships between data, thus to have a better classification 

capacity. The NN is a MLP with an input layer equal in size to the length of the feature vector, two 

layers of 128 neurons and a classification layer with a dimension that varies with the number of 

classes in each database. The decision tree has a maximum flexibility of 20 splits to help avoid 

overfitting. The GNN architecture, as it was described earlier, uses three GGC layers, each having 

128 neurons per linear layers. The classification network, following the convolutional layers, is a 

MLP with two 128 neurons layers and an additional output layer with a varying number of neurons, 

based on the number of classes.  

In terms of setup and training parameters, in all scenarios, the learning rate is 0.001. The 

training process is continued until the validation accuracy is not improving for five consecutive 

iterations with more than 1%. The learning algorithm is Adam [125]. The batch size used during 

training is 16. 

The evaluation databases consist of images usually depicting patterns under multiple view-

points variations including translations and rotations. Two of the databases exploit the THz 

frequency range to create the image of the pattern: THz database 1 and THz database 2. The other 

one exploits the optical range and is publicly available: Brodatz [126]. 

 

Analysis Features Analysis Features 

DCT 

Full coefficients 

Zig-zag mask 

Regional mask 

Jing mask 

TI-WPD 

Vertical Entropy 

Horizontal Entropy 

N-directional Entropy 

N-zonal Entropy 

Channel agg. (entropy) 

DWT 

Mean 

Entropy 

Energy 

Channel agg. (entropy) 

RI-WPD 

Vertical Entropy 

Horizontal Entropy 

N-directional Entropy 

N-zonal Entropy 

Channel agg. (entropy) 

WPD 

Mean 

Entropy 

Energy 

Channel agg. (entropy) 

ML classifiers: 

k-NN, SVM, NN, decision tree and GNN 

  

Evaluated databases 

THz database 1 

THz database 2 

Brodatz 
Table 2. Synthesis of evaluated approaches in classification task 
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The following sections will describe each database and the analysis of the classifiers’ 

performance. 

5.4.1 THz dataset 1 

In this scenario we use improved THz images [80] of a sample comprising a paper substrate 

(95%) and randomly embedded copper fibers (5%). The enhanced images are the result of using 

the Phase Diagram Dynamic Characterization Image (PD-DCI) reconstruction method which 

exploits the phase diagram trajectory’s dynamism using Frenet-Serret framework [85]. The 

algorithm is presented in Chapter 3. The database consists of 100 images per class, with a 

resolution of 64 64  pixels. Figure 5-7 illustrates the optical image of the sample alongside the 

corresponding THz image obtained using our THz imaging system and a raster-scanning approach. 

It is noteworthy to mention that by using THz frequency range to create the image of a sample, we 

emphasize characteristics that are not visible in the optical range.  

To create this image database, we partition the original image into 9 patterns as in Figure 

5-7. Within each class region, we apply a circular mask to highlight the contained information. 

This circular mask allows for the translation and rotation of an additional sampling mask without 

the possibility of mixing pixel information between classes. The aim is to ensure the independence 

of the images generated for each class.  

 

 
Figure 5-7. THz database 1 generation: 9 classes, 100 images per class 
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The sampling mask creates the images of a class by sampling at random and unique 

positions defined by the mask’s center position ( ),c cx y , its width 
maskw , and angle 

mask , such that 

the square is inscribed in the circle. The arbitrary positions and orientations of the sampling mask 

assures different view-points on the pattern of interest. The number of images per class is 100 with 

a resolution of 64 64 pixels.  

To enhance the learning and evaluation process, we divide the database with the ratio 

60/20/20 corresponding for training, validation and testing sets.  

The classes depict blobs of different dimensions and forms. In this database, the images of 

a class almost depict the same pattern, but with varying information due to the translations and 

rotations. Both of these geometric transformations imply changes of the information contained in 

the image, even if we refer about pixel loss due to translations, or pixels’ intensities deformations 

due to digital rotations. Examples of images from each class are presented in Figure 5-7, where we 

observe the same pattern for a class but under multiple perspectives. 

Regarding the performance analysis on the classification task, we provide individual results 

for each image analysis method. 

  

a) In Figure 5-8 (a), we present the accuracy on the test THz dataset 1 of DCT-based 

features. We determine that the full DCT coefficients used with SVM yields the highest 

accuracy of 69.3%, followed by 62.7% achieved by the same feature vector with the 

NN.  

Overall, the accuracy of the DCT-based approaches is low as the transform cannot 

efficiently handle rotations and translations, resulting in high intra-class variability of 

the energy distribution among the transform coefficients. The consequence is an 

erroneous classification. Moreover, the mathematical model behind DCT is not optimal 

for emphasizing and localizing features. 

 

b) In Figure 5-8 (b) the performance analysis of DWT is presented. It is showed that the 

four-channel entropy aggregation with a NN yields the highest accuracy of 78.65%. In 

the second place it is the decision tree with an accuracy of 72.6%.  

 

c) Figure 5-8 (c) show that the WPD-based features extraction methods, with the graph-

structured entropy features and a GNN achieves the highest accuracy of 83.05%. In the 

second place comes the four-channel entropy aggregation with NN with an accuracy of 

81.95%.  

It is important to note that starting with DWT and its generalization, WPD, the 

accuracy scores increase as the wavelet-based transforms are suited for characterization 

of patterns due to the multiresolution concept and space-scale localization of features. 

However, as for DCT, the translation and rotation constraints are not handled by neither 

DWT or WPD in their classical implementation. This results in lower classification 

rates of datasets, such as THz database 1, that includes variations of the view-point.  

It is noteworthy to mention that through this analysis we observed that the four-

channel aggregation features increased the accuracy of all classifiers based on DWT 

and WPD, demonstrating better discrimination abilities than the classic mean, energy 

and entropy features.  

The extended versatility of WPD throughout the frequency partitioning and 

selection is also reflected in the accuracy results, WPD achieving better scores than its 

counterpart, DWT. Additionally, we observe that the DCT-based approaches yield 
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some of the lowest accuracy scores compared to the wavelet-based features considering 

the disadvantages it has in the pattern classification task. 

 

d) Figure 5-8 (d) and (e) presents the performance of TI-WPD and RI-WPD-based feature 

extraction techniques. It is worth noting than even the lowest accuracy of TI-WPD or 

RI-WPD scenarios, 84.7%, is greater than the highest achieved by the classic image 

decompositions such as DCT, DWT or WPD and the most common features, 83.05%.  

This is expected, as the classic image decompositions vary from image to image, 

while for TI-WPD and RI-WPD, the “best”-bases converge to a quasi-unique 

representation. In other words, the TI-WPD and RI-WPD “best”-bases are similar, in 

their own context, and their variability is lowered. This suggests that addressing 

translation and rotation constraints at the decomposition level can significantly enhance 

the accuracy of the classifiers. The N-zonal features of TI-WPD achieves an accuracy 

score of 92.95%, while the N-directional features of RI-WPD goes up to 95.6%. 

Among the introduced features, the vertical and horizontal frameworks have the 

lowest score. The reason behind this is that the features emphasize the sub-images’ 

characteristics in only one direction, either vertically or horizontally. The accuracy 

scores are increased by using image areas such as the slices of the N-directional 

framework, or rectangles of the N-zonal framework. In this manner, the pattern is better 

analyzed and leads to more discriminatory features, thus, a more robust classifier.  
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(d) 

 
(e) 

Figure 5-8. Overview of the (a) DCT features performance; (b) DWT feature performance; (c) WPD feature 

performance; (d) TI-WPD feature performance; and (e) RI-WPD feature performance 

 

Finally, Figure 5-9 shows the best outcome score for every image decomposition approach 

and ranks them by the accuracy obtained on the test dataset. The RI-WPD with N-directional 

features and TI-WPD with N-zonal features achieve the highest and the second highest accuracy 

on this dataset. It is worth noting that for RI-WPD and TI-WPD, the ML classifier was the GNN. 

Its ability to exploit the frequency partitioning increases the robustness of the classifier. 

Considering that the “best” bases of images of the same class are quasi-unique, the discriminatory 

ability is increased as the different frequency structures of each class are included as features. This 

was not the case of DWT or WPD. The main reason the GNN does not performed well on DWT 

is due to the same frequency partitioning for all classes. For WPD, the issue stirs up from the high 

variability of the frequency partitioning. Finally, the third and fourth place are taken by WPD and 

DWT with four channel entropy aggregation. The lowest accuracy is obtained by using all DCT 

coefficients as features. 

 

 

Figure 5-9. Overview of the approaches with the highest accuracy with every image decomposition. 

 

The confusion matrix in Figure 5-10 continues the analysis of the GNN classifier by 

offering details about its performances. The confusions were between classes 2, 3, 4 and 9 which 

all exhibit similar patterns to an extent. Despite the visual similarity, the proposed approach was 
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able to achieve at least 90% accuracy on these classes, while the others were correctly assessed in 

their corresponding category. 

 
Figure 5-10. Confusion matrix of the classifier based on RI-WPD and N-directional features. 

5.4.2 THz dataset 2 

For our second performance review, we use another THz database containing 480 images 

per class. The images have a resolution of 128-by-128 pixels composing 5 classes that exhibit 

random natural translations and rotations, as opposed to the artificially generated translations and 

rotations from THz dataset 1. Each class consists of 480 images split into training, validation and 

test sets with 60/20/20 proportionality. 

Figure 5-11 presents examples of images from each one of the five classes. The first class 

depicts shapes such as squares, circles, hexagons and stars. The second class contains letters “R”, 

“T”, “A” and “U”. The patterns of the first and second class can be partially or fully present in one 

image. Additionally, some of the images may have two or more shapes or letters. The third and 

fourth class contain small and large bars randomly distributed in the image. The sample of the fifth 

class is composed of copper fiber randomly distributed on paper substrate. All the other samples 

used to create these images are composed of polyethylene substrate with metallic-ink patterns. The 

images were acquired using the same THz imaging system. 
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Figure 5-11. Examples of images from the four classes of THz dataset 2  

 

In the same manner as with THz database 1, the performance analysis is presented in order 

starting with DCT, DWT and WPD image decompositions, followed by TI-WPD and RI-WPD 

approaches. 

 

a) In Figure 5-12 (a), we showcase the test THz dataset 2 accuracy for DCT-based 

features. Our analysis reveals that employing full DCT coefficients in conjunction with 

NN produces the highest accuracy at 74.62%, while the same feature vector with the 

SVM achieves a slightly lower accuracy of 71.22%. We observe that with this dataset, 

DCT-based methods also struggle with accuracy due to issues in handling rotations and 

translations. 

 

b) The performance evaluation of DWT is depicted in Figure 5-12 (b). The results indicate 

that employing four-channel entropy aggregation with SVM yields the highest 

accuracy at 81.43%. Following closely is the NN, achieving an accuracy of 82.7%. In 

Figure 5-12 (c), the WPD-based feature extraction methods reveal that utilizing graph-

structured entropy features with GNN attains the highest accuracy of 83.37%.  

In the second position is the four-channel entropy aggregation with NN, achieving 

an accuracy of 82.27%. Starting with DWT and WPD, accuracy improves due to 

wavelet-based applicability to pattern characterization. However, like DCT, these 
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methods struggle with translation and rotation constraints, leading to lower 

classification rates.  

In our analysis, four-channel aggregation features notably improved accuracy for 

DWT and WPD classifiers, surpassing traditional mean, energy, and entropy features. 

WPD, with its enhanced versatility in frequency partitioning, outperformed DWT in 

accuracy. Conversely, DCT-based approaches showed lower accuracy, highlighting 

their limitations. 

 

c) In Figure 5-12 (d) and (e), the efficiency of TI-WPD and RI-WPD-based feature 

extraction methods is presented. Notably, the lowest accuracy within TI-WPD or RI-

WPD scenarios, at 86.1%, surpasses the highest achieved by traditional image 

decompositions like DCT, DWT, or WPD and classic features, which is 83.37%. 

Regarding their best performance, GNN classifier using the N-zonal features of TI-

WPD achieves 97.89% accuracy, while the same classifier with the same features of 

RI-WPD reaches 99.8%.  

Vertical and horizontal frameworks, introduced in the features, score lower as they 

emphasize characteristics in one direction. Improved accuracy comes from using image 

areas like N-directional slices or N-zonal rectangles, enhancing pattern analysis for a 

robust classifier. 

 

 
(a) 

 
(b) 

 
(c) 

5
7
.4

7

7
1
.2

2

7
4

.6
2

5
4
.7

2

5
6
.9

2

6
2
.4

2

5
3
.0

7

4
4
.2

7

5
0
.8

7

6
0
.2

7

5
0
.8

7

4
9
.7

7

4
6
.4

7

6
0
.3

1

5
6
.3

7

5
0
.3

2

30

80

K N N S V M N N D E C I S I O N  T R E E

A
C

C
U

R
A

C
Y

 (
%

)

DCT ANALYSIS

full zig-zag reg jing

6
5
.7

3

6
5
.7

3

6
6
.8

3

6
7
.4

7

6
3
.5

3

5
9
.1

3

6
6
.8

3

7
4
.5

3

5
7
.4

8

7
1
.7

8

6
8
.4

8

6
2
.9

8

7
1
.2

3

6
4
.0

8

6
3
.5

3

7
1
.7

8

8
1

.4
3

8
0
.5

8

7
4
.5

3

50

100

K N N S V M N N D E C I S I O N  T R E E G N N

A
C

C
U

R
A

C
Y

 (
%

)

DWT ANALYSIS

mean entropy energy channel agg. (entropy)

7
2
.3

7

7
2
.9

2

7
8
.9

7

7
0
.1

7

7
5
.1

2

7
7
.3

2

7
3
.4

7

7
7
.8

7

7
1
.8

2

8
3

.3
7

6
7
.4

2

7
4
.5

7

7
4
.5

7

7
0
.1

7

7
7
.8

7

7
8
.4

2

8
0
.6

2

8
2
.2

7

7
5
.1

2

60

80

100

K N N S V M N N D E C I S I O N  T R E E G N N

A
C

C
U

R
A

C
Y

 (
%

)

WPD ANALYSIS

mean entropy energy channel agg. (entropy)



 

112 of 135 

 

 
(d) 

 
(e) 

Figure 5-12. Overview of the (a) DCT features performance; (b) DWT feature performance; (c) WPD feature 

performance; (d) TI-WPD feature performance; and (e) RI-WPD feature performance 

In Figure 5-13, the optimal outcome scores for various image decomposition approaches 

are displayed, ranked based on their accuracy on the test THz dataset 2. The TI-WPD and RI-WPD 

with N-zonal features secure the highest and second-highest accuracy on this dataset. Notably, 

GNN, employed as the ML classifier for RI-WPD and TI-WPD, enhances robustness by exploiting 

frequency partitioning. The quasi-uniqueness of "best" bases within the same class boosts 

discriminatory ability, an advantage not shared by DWT or WPD. Third and fourth places are 

secured by WPD with four-channel entropy aggregation and GNN, and DWT with the same 

features and SVM. The lowest accuracy results from using all DCT coefficients as features with 

NN. 

 
Figure 5-13. Overview of the approaches with the highest accuracy with every image decomposition 

 

The confusion matrix in Figure 5-14 depicts the individual performance on each class of 

the classifier. As we observe, only one sample is mislabeled, while the others are successfully 

classified. The confused classes are the third and the fifth as they can share some visible 

similarities.  
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Figure 5-14. Confusion matrix of the classifier based on RI-WPD and N-zonal features. 

 

Inferring from the two results obtained on THz dataset 1 and THz dataset 2, we assess that 

the most promising classification approach implies the invariant versions of the wavelet 

decompositions, TI-WPD and RI-WPD. 

The introduced feature extraction methods have shown to increase the accuracy and 

robustness of ML classifiers, especially the four-channel aggregation approach. However, the 

GNN classifier exhibited the highest accuracy score only if it is used along with TI-WPD or RI-

WPD, as they also naturally discriminate between patterns by having different “best” bases for 

each class. 

In the following subsection we briefly present initial classification results on a public 

benchmark dataset, “Brodatz”[126]. 

5.5 Public benchmark dataset 

The original “Brodatz” dataset contains 112 texture images of 640 by 640 pixels. The 

version of “Brodatz” dataset used in this study contains only 13 classes including surfaces of stone, 

bark, fabric, etc. For each class, from the initial texture image, we generated 48 images of 256 by 

256 pixels. We do this, by splitting the image in four, and then rotate them with varying angles, 

 0,30,60,...,330  . Finally, the images have their resolution reduced to 256 by 256 pixels to fit 

the dyadic nature of the wavelet decompositions. Figure 5-15 shows some example patches from 

each texture class. The class numbers start from the upper left with label “1”, and continue left to 

right, up to down, to label “13”.  
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Figure 5-15. The thirteen classes of “Brodatz” dataset used in our research 

 

Based on the results on THz, we computed only the best classifier for each image 

decomposition. For DCT, we trained a SVM on full coefficients. For DWT and WPD we used four 

channel entropy aggregation with NN and finally, for TI-WPD and RI-WPD we trained a GNN 

with N-zonal entropy features. The results are presented in Figure 5-16. As it can be seen, the 

highest accuracy was attained by the RI-WPD with N-zonal features and GNN, followed slightly 

behind by TI-WPD with the same features and classifier. 

 

 
Figure 5-16. Overview of the approaches used for “Brodatz” dataset  

 

The purpose of this analysis is to demonstrate that the introduced features and classification 

approaches based on GNN can be easily extended to any database of patterns, regardless of the 

imaging technology. Compared to some published state-of-the-art results [127], [128], we consider 

that despite having a different training approach, the results are comparable. The main difference 

between the training approaches is that they used the original training dataset, without artificially 

generating translations and rotations of the patterns as in our case. From this point of view, we 
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consider that the complexity of the dataset is increased by adding different perspectives of the 

patterns.  

 

Figure 5-17. Confusion matrix of our approach that uses RI-WPD, N-zonal features and GNN as classifier. 

 

5.6 Comments on DL approaches 

DL approaches stand out for their hierarchical feature extraction capabilities. However, the 

application of DL in THz imaging faces early-stage challenges primarily due to the scarcity of 

datasets. The time-consuming nature of image acquisition in practical THz Time-Domain 

Spectroscopy (TDS) systems, taking minutes to hours, poses a significant obstacle in creating 

substantial THz image datasets.  
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However, given the scarcity of THz data and challenges in dataset creation, we evaluate a 

Deep Embedded K-Means (DEKM) clustering  [129] approach to classify THz dataset 1. Briefly, 

DEKM involves three steps, starting with generating a lower dimensional space with an 

autoencoder network [130]. Next, it evaluates the embedded space and detects clusters using the 

K-Means algorithm [131]. Finally, it optimizes the embedded space to increase inter-class distance 

and lower the intra-class variation. 

 The results of DEKM on THz dataset 1 are presented in Figure 5-18. DEKM clusters, 

where we depict the clusters in a three-dimensional embedding space. We emphasize the 9 classes 

of THz dataset 1 with different colors and we observe that the DL approach cannot separate and 

identify all classes, as opposed to our approaches. Classes 1 and 3 are completely overlapped, 

while the others are intertwined and hardly separable.  

 

 
Figure 5-18. DEKM clusters 

5.7 Chapter summary 

In addressing the challenge of image classification, particularly in the context of limited 

THz data, the chapter opts for machine learning (ML) classifiers over a deep learning (DL) 

approach. The chapter introduces innovative feature assembling techniques, focusing on patterns 

and structures derived from graph representations of wavelet decomposition. These techniques 

leverage physical considerations such as wavelet frequency sub-bands, resulting in features 

adaptable for training graph neural networks (GNNs) for image classification. The second 

proposed idea involves aggregating features based on their depth and type which are the identifiers 
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of wavelet sub-images. These aggregated features are then fed into classical ML classifiers like k-

NN, SVM, and decision trees.  

The chapter concludes with a presentation of comparative results of classical features from 

the previous chapter with features generated by the proposed frameworks. Multiple ML classifiers 

were tested in order to have more reliable results about the improvement introduced by the 

proposed features. Extensive testing on proprietary THz datasets ensures a thorough evaluation of 

the approaches.  

The discussion delves into the details of assembling techniques and their alignment with a 

"best" basis from the wavelet packet decomposition (WPD) family, specifically considering WPD, 

TI-WPD, and RI-WPD due to their multiresolution concept and invariant nature. Finally, most of 

the proposed approaches surpassed the classic feature extraction methods in image classification 

task with a large margin.  

In all tests, the four-channel aggregation framework increased the robustness of the 

classifier regardless of its type (k-NN, SVM, NN, decision tree). Moreover, one of the most 

powerful classification approaches is to exploit the quasi-invariancy of the TI-WPD and RI-WPD 

“best”-bases in conjunction with GNN. The proposal was also successfully tested on the public 

benchmark dataset, “Brodatz”. 
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Chapter 6. Conclusions and perspectives 

6.1 Conclusions 

The research conducted during this thesis analyses and offers solutions to computer vision 

tasks in THz range. Generally, these tasks involve image reconstruction, analysis and 

classification. As THz is a relatively new domain, it lacks comprehensive analysis of the 

reconstruction methods. Moreover, due to the scarcity of THz images, their analysis and 

classification is not thoroughly developed and tested. However, considering the advantages of THz 

range in the domain of non-intrusive inspection, it is desirable to develop the field to a maturation 

stage to be efficiently exploited in a wide variety of medical, security and defense applications, 

etc. 

Based on these facts, we start our research by tackling the image reconstruction task. First 

of all, we evaluate the state-of-the art methods used in nowadays THz-TDS imagery systems. We 

introduce a multiplicative perturbation that affects the phase information and which is factually 

more complex to remove than the common additive noise. The perturbation is multiplicative in its 

nature considering the exponential modeling of the THz signals. Thus, any component that changes 

or deforms the phase of the THz signal can be expressed as a multiplication between two 

exponential signals, the original THz signal and the noise component. To be more precise, we 

exemplify the following possible perturbations: the temperature effect on laser; delay line motion 

faults such as rolling and pitching which are in the translation stage; and finally, the noise resulted 

from the THz detection chain. These types of perturbations have low-frequency range compared 

to THz. In this scenario, when the multiplicative noise is present, THz images exhibit contour 

information loss, contrast degradation and additional artefacts unrelated to the original 

information. 

We demonstrate that most of the common THz reconstruction methods fail to retrieve the 

initial information of the image when the multiplicative noise is considered. Starting from this 

challenge, we developed five novel methods that can be used to reconstruct THz images. Two of 

these methods exploit the MF concept in the phase diagram domain. They provide a good starting 

point as the MF quantifies the similarity of a THz reference template with other received THz 

templates. However, the complex deformations introduced by the multiplicative type of noise 

render MF unusable in this scenario. In order to increase the modeling power of the reconstruction 

method, we choose the implement DTW in phase diagram domain by introducing two other 

reconstruction methods. With DTW, we introduce an additional degree of freedom that helps better 

fit a THz reference template. This additional degree of freedom comes from the dilation and 

contraction of the template until a cost function is minimized. Despite the results slightly 

improving, the effects of the multiplicative type of noise are still present in the final image. The 

previous results conducted the research in the direction of intrinsically characterizing the phase 

diagram of received THz signals, while ignoring the characteristics of the reference THz template. 

The final method exploits the curvatures’ evolution and their quantification. The higher the 

deformation of the phase space, the higher the values of the curvatures. By exploiting this concept, 

we are able to reconstruct THz images in both ideal and noisy context with high fidelity with 

respect to a reference image. We evaluate all the reconstruction methods with image quality 

metrics and conclude that in most of the cases, the curvature-based method successfully surpasses 

all other classic methods in terms of MSE, pSNR and SSIM. Thus, the improved amplitude 

estimation at reception offers a higher quality image with almost no effects coming from the 

multiplicative noise.  
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The next challenge tackled by our research regards the THz image analysis and 

classification methods. Considering that we optimally reconstructed a THz image such that the 

information is clearly emphasized, we want to minimize the effect of instabilities such as view-

point variations. Generally, these instabilities conduct to different sets of features and thus, to an 

inefficient classification. 

Based on the presented challenge, we present the state-of-the-art image decomposition that 

we demonstrate to be suboptimal when image translations and rotations are implied. The idea is to 

have a unique representation of an image regardless of translations and rotations. While the classic 

image decomposition methods perform well in straightforward situations without viewpoint 

variations, real-world cases often involve diverse images of patterns or subjects. Thus, we propose 

to use invariant versions of WPD such as TI-WPD and RI-WPD in order to eliminate the effect of 

the considered instabilities. Thus, by having an invariant decomposition, we introduce several 

feature extraction frameworks that can be further refined and organized to be compatible with 

various ML classifiers. Moreover, these frameworks are adaptable to multiple statistical measures, 

allowing the computation of complementary features and providing diverse perspectives on the 

analyzed image.  

Innovative feature assembly techniques are introduced throughout the thesis, emphasizing 

patterns and structures derived from graph representations of wavelet decomposition. These 

techniques take into account physical considerations, such as wavelet frequency sub-bands, 

resulting in features that are suitable for training GNNs in the context of image classification. The 

second proposed idea involves aggregating features based on their depth and type, which serve as 

identifiers for wavelet sub-images. 

We evaluate a large pool of image decomposition methods starting from DCT, DWT and 

WPD, and ending with TI-WPD and RI-WPD. For each decomposition method we consider 

multiple classic features such as the energy or the entropy of decomposition coefficients, but also 

the novel features. Finally, all these approaches are cross-evaluated on multiple ML classifiers in 

order to determine the efficiency of all classification frameworks. The final results shows that the 

novel features increase the classification accuracy of most ML models. The proposed methodology 

was successfully tested on two proprietary THz datasets and one public benchmark dataset, 

"Brodatz". 

6.2 Perspectives 

In terms of perspectives, we can structure a roadmap for further research in three main 

directions: the image reconstruction challenge, the analysis and classification tasks, and computer 

vision (edge detection). 

6.2.1 Image Reconstruction Challenge 

 Given the unique characteristics and data-driven nature of the phase diagram, we can 

uncover novel insights about signal characteristics that are unobservable in other representation 

spaces. Despite its low complexity, the phase diagram enhances amplitude estimation in imaging 

systems. Leveraging these advantages, we can explore various characterizations and approaches 

to reconstruct images with increased contrast. For example, incorporating the trajectory’s torsion 

as complementary information to the curvature can potentially improve image quality. Using these 

two curve descriptors together, we can integrate them to generate THz images from raw data in 

both ideal and multiplicative contexts.  

 This improved amplitude estimation could also allow for an increased effective bandwidth 

by reducing the impact of noise at reception, resulting in higher quality image reconstructions. 
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Further research will involve reconstructing 2.5-dimensional images with more complex 

samples to fully exploit THz characteristics. These samples could include different density paper 

and multi-layered samples, which harbor hidden information that can be revealed through 

advanced imaging techniques and characteristics of the THz radiation. 

6.2.2 Image Analysis and Classification Tasks 

For image analysis and classification tasks, enhancing the robustness of classifiers can be 

achieved by integrating two invariant decompositions: Translation-Invariant Wavelet Packet 

Decomposition and Rotation-Invariant Wavelet Packet Decomposition. By utilizing features from 

both decompositions, we can strengthen the discriminative capabilities of classifiers.  

Additionally, exploring another invariant version of wavelet packet decomposition that 

addresses shearing could further improve classification performance. The inherent scale-

invariance in all wavelet packet decompositions, particularly in the approximation coefficients, 

should also be incorporated into the image processing pipeline to enhance analysis. 

6.2.3 Computer Vision (Edge Detection) 

In the context of computer vision, the phase diagram can be effectively utilized for edge 

detection. Edges represent small transitions between regions in an image, and the phase diagram 

can emphasize these transitions, as demonstrated with THz pulses. A straightforward edge 

detection procedure involves identifying transients in each column and row using the phase 

diagram, and then integrating the results into a single image. This method leverages the phase 

diagram’s capability to highlight subtle changes, thereby improving edge detection accuracy. 

By pursuing these research directions, we can advance both image reconstruction and 

analysis, leading to improved imaging systems, more robust classification methodologies, and 

enhanced edge detection techniques in computer vision. 
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Résumé - L'imagerie THz est un domaine émergent depuis les avancées technologiques en termes 

d'émission de rayonnement THz et d'équipement de détection. L'objectif principal de la thèse est de 

contribuer et d'améliorer les systèmes d'imagerie THz, de la reconstruction et de l'analyse d'images aux 

tâches de classification d'images. Dans la première partie de la thèse, nous nous attaquons au défi de 

l'estimation de l'amplitude dans des conditions de bruit idéal et multiplicatif. Le bruit multiplicatif déforme 

la phase et introduit des artefacts complexes, tels que la perte d'information sur les contours et la dégradation 

du contraste, qui ne peuvent être éliminés à l'aide des techniques de reconstruction d'image les plus récentes. 

À cet égard, nous présentons cinq nouvelles méthodes de reconstruction qui exploitent la représentation du 

diagramme de phase des signaux. Deux de ces méthodes sont basées sur le filtrage du diagramme de phase 

pour estimer l'amplitude dans les deux conditions. Deux autres méthodes utilisent le concept de déformation 

temporelle dynamique (DTW) pour augmenter la capacité à modéliser le type de bruit multiplicatif. Enfin, 

nous exploitons la dynamique de la trajectoire de phase décrite par les courbures pour reconstruire l'image. 

Parmi le grand nombre de méthodes, nous évaluons tout au long de la thèse que la méthode basée sur les 

courbures reconstruit efficacement l'image dans des contextes idéaux et bruités. Après une reconstruction 

efficace de l'image, la deuxième partie de la thèse, nous étudions les méthodes d'analyse et de classification 

d'images en tenant compte des instabilités des systèmes d'imagerie du monde réel, telles que les translations 

et les rotations. Dans ce sens, nous proposons d'utiliser des décompositions de paquets d'ondelettes 

invariantes par rapport à la translation et à la rotation, qui fournissent une représentation unique et optimale 

d'une image, indépendamment de la translation ou de la rotation de l'image. Sur la base des représentations 

d'images invariantes, de nouvelles techniques d'extraction de caractéristiques sont introduites, telles que les 

cadres verticaux, horizontaux, N-directionnels et N-zonaux. En outre, deux structures de caractéristiques 

sont introduites, qui prennent en compte le partitionnement en fréquence de la décomposition en ondelettes 

et sont adaptées pour fonctionner avec des réseaux neuronaux graphiques (GNN) et des classificateurs ML 

classiques tels que les k-voisins les plus proches (k-NN), les machines à vecteurs de support (SVM), etc. 

Dans l'ensemble, les approches que nous proposons augmentent la précision de tous les classificateurs. 

 

Mots clés: méthodes de reconstruction d'images, caractérisation du diagramme de phase, décomposition 

en paquets d'ondelettes invariants, apprentissage automatique, réseaux neuronaux graphiques, méthodes 

d'extraction de caractéristiques, classification d'images. 
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Abstract – THz imaging is an emerging field since the technological advances in terms of THz radiation 

emission and detection equipment. The main objective of the thesis is to contribute and to improve THz 

imaging systems, from image reconstruction and analysis to image classification tasks. In the first part of 

the thesis, we tackle the amplitude estimation challenge under ideal and multiplicative noise conditions. 

The multiplicative noise deforms the phase and introduces complex artefacts, such as contour information 

loss and contrast degradation, that cannot be eliminated using state-of-the-art image reconstruction 

techniques. In this regard, we introduce five novel reconstruction methods which exploit the phase diagram 

representation of signals. Two of the methods are based on phase-diagram match filtering to estimate the 

amplitude in both conditions. Another two methods use the concept of dynamic time warping (DTW) to 

increase the capability to model the multiplicative type of noise. Lastly, we exploit the dynamic of the phase 

trajectory described by the curvatures to reconstruct the image. From the large pool of methods, we evaluate 

throughout the thesis that the curvature-based method efficiently reconstructs the image in both ideal and 

noisy contexts. After an efficient image reconstruction, the second part of the thesis, we study image 

analysis and classification methods considering the instabilities of real-world imaging systems, such as 

translations and rotations. In this sense, we propose to use translation and rotation invariant wavelet packet 

decompositions, that provide a unique and optimal representation of an image, regardless if the image is 

translated or rotated. Based on the invariant image representations, novel feature extraction techniques are 

introduced such as vertical, horizontal, N-directional and N-zonal frameworks. Additionally, two feature 

structures are introduced and that consider the frequency partitioning of the wavelet decomposition and are 

adapted to work with Graph Neural Networks (GNNs) and classic ML classifiers such as k-nearest 

neighbors (k-NN), support vector machine (SVM), etc. Overall, our proposed approaches increase the 

accuracy of all classifiers.  

 

Keywords: image reconstruction methods, phase diagram characterization, invariant wavelet packet 

decomposition, Machine Learning, Graph Neural Networks, feature extraction methods, image 

classification. 
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