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Résumé

Les matériaux architecturés sont des matériaux qui présentent une mésostructure entre leur macrostructure et
leur microstructure. Ils sont connus pour avoir de nombreuses propriétés intéressantes telles qu’un bon rap-
port rigidité/poids, guidage d’ondes et absorption d’énergie. Il est important d’utiliser toutes ces propriétés de
manière optimale, ce qui peut être fait à l’aide d’outils d’optimisation de la topologie. Assurer la tenue mé-
canique tout en ayant des propriétés optimales reste, jusqu’à présent, un problème. Les matériaux architecturés
sont connus pour avoir un comportement mécanique particulier où l’on trouve deux modes de ruine : (1) la
plasticité (ou rupture) en traction et (2) le flambage (ou plasticité) en compression. Ils sont donc fortement
anisotropes et présentent des dissymétries (en traction et en compression). Il est nécessaire de définir un critère
de tenue mécanique capable de décrire précisément ce comportement afin d’assurer la tenue mécanique de la
structure optimisée. Dans la littérature, de multiples approches sont disponibles lorsqu’il s’agit de définir un
critère prenant en compte l’anisotropie. Nous trouvons (i) la théorie de la représentation des groupes, (ii) les
transformations linéaires et (iii) l’utilisation de polynômes de degré supérieur. Parmi toutes ces approches, nous
nous intéressons au critère (iii). Les critères polynomiaux se sont révélés efficaces et précis dans la modélisation
de l’anisotropie d’ordre élevé et dans la modélisation des dissymétries en traction/compression.

Avec le développement rapide des méthodes de fabrication additive, il est absolument nécessaire de garantir la
résistance mécanique tout en ayant des propriétés optimales. Cela peut se faire en imposant un critère mécanique
établi, généralement exprimé dans l’espace des contraintes (par exemple Von Mises), comme contrainte dans
un problème d’optimisation de la topologie. Le problème qui en résulte est connu sous le nom de problème
d’optimisation topologique sous contrainte. Ce type de problème présente de nombreuses difficultés numériques,
et de nombreux auteurs l’étudient afin de le rendre plus pratique pour les applications industrielles.

Notre étude se limitera à la 2D pour un comportement élastique linéaire statique où le matériau considéré
est un "Lattice 2D" triangulaire équilatéral. Pour ce matériau, un critère de seuil, qui permet de modéliser
approximativement la dissymétrie traction/compression, a été établi. Le critère est ensuite considéré comme
une contrainte dans un problème d’optimisation de la topologie, qui est résolu avec la méthode SIMP en utilisant
l’algorithme de Lagrangien augmenté (une approche basée sur le gradient). Le matériau est considéré comme
continu (par homogénéisation).



Abstract

Architectured materials are materials that present a mesostructure between their macrostructure and their
microstructure. They are known to have many interesting properties such as a good stiffness/weight ratio, wave
guide, energy absorption. It is important to use all these properties in an optimal way and this can be done
with the help of topology optimisation tools. Ensuring mechanical strength while having optimal properties
remains, until now, a problem. Architectured materials are known to have a particular mechanical behaviour
where two modes of failure can be found: (1) plasticity (or brittleness) in tension and (2) buckling (or plasticity)
in compression. They are therefore highly anisotropic and exhibit asymmetries (in tension and in compression).
It is necessary to define a failure criterion capable of accurately describing this behaviour in order to ensure
the mechanical strength of the optimised structure. In the literature, multiple approaches are available when
it comes to to define a criterion that takes into account the anisotropy. We find (i) the group representation
theory, (ii) linear transformations and (iii) the use of a higher degree polynomials . From all these approaches,
we are interested on the (iii). Polynomial criteria have been shown to be efficient and accurate in modelling
high-order anisotropy and in modelling dissymmetries in traction/compression.

With the fast development of additive manufacturing methods, ensuring the mechanical strength while
having optimal properties is absolutely worth it. This can be done by imposing an established mechanical
criterion, generally expressed in the stress space (e.g. Von Mises), as a constraint in a topology optimisation
problem. The resulted problem is known as a stress constrained topology optimisation problem. This kind of
problem exhibits lot of numerical issues, many authors are studying it in order to make it more convenient for
industrial applications.

Our study will be limited to 2D for a static linear elastic behaviour where the considered material is an
equilateral triangular honeycomb. For this material, a threshold criterion, that allows the tension/compressive
strength dissymmetry to be modelled approximately, has been established. The criterion is then considered
as a constraint in a topology optimisation problem, which is solved with SIMP method using the augmented
Lagrangian algorithm (a gradient based approach). The material is considered continuous (through homogeni-
sation).
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Introduction: Optimal design of lattice
structures

Contents
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This thesis is a part of the MOMAP project (measurement and optimisation of architectured periodic ma-
terials). It is funded by the French National Research Agency (ANR). It is held on in the Multi-scale Modelling
and Simulation Laboratory (MSME) at the Gustave Eiffel University. The subject of the thesis is "Topological
optimisation of anisotropic lattice structures using invariants". It will be carried out in two phases. The first
phase is theoretical and aims to propose an versatile analytical expression describing the mechanical strength
limit of the architectured materials. The second phase is numerical and focuses on topological optimisation
where, in the process, the proposed criterion will be implemented and considered as a constraint.

The current chapter, as an introduction, gives the context and the objective the thesis. The outline is as
follows: The first section gives briefly the definition and the interests of using architectured material. The
second speaks, in a very general manner, about topology optimisation and the purpose of apply it. The last
section gives the context of this thesis by introducing the project MOMAP.

Architectured materials

The definition of architecture materials remains until now kind of ambiguous it covers a very large range of
materials [72]. A lot of versions exist in literature [79, 142, 112]. They share some similarities as they also have
some differences. Only thing they share is that all they have a micro structure from which we can identify the
effective properties.

Kromm et al. [112] provided the following definition: "the architectured material refers to the notions
of materials combination and structure, and as consequence, it focuses the attention on observation scale.
An architectured material is defined by the association of several non-miscible materials disposed following
predefined morphology such that a representative elementary volume has at least one dimension that is very
small in comparison of the part in composes". This definition is accurate and introduce the notion of scale
which is mainly used to distinguish architectured materials from bulk materials.

(a) A normal material with a macrostructure and a
microstructure whose scales are well separated

(µ << M)

(b) An architectured material presenting 3 scales of structures

Figure 2: The difference between an architectured material and standard one
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Figure 3: The modulus–density ratio space, Part of the space is occupied by the known materials, while part is empty (the
“holes”) [12].

A better resumed definition is proposed by Poncelet et al. [144], a material is said to be architectured (i) if
it presents between its microstructure and its macrostrucutre one or more other scales of organisation of matter
(called mesostructiure) and (ii) if the intermediate scales of organised are comparable with the those of the
macrostructure, but separate with the one of microstructure (see figure 2).

As mentioned previously, architectured covers huge range of material and according to Ashby [12], it can
give the possibility of covering the holes illustrated in his material diagram (see figure 3). Some examples of
sub-classes of architectured materials are given below and illustrated in figure 4:

• Composites (solid, regular or random materials).

• Sandwich structures (solid, regular or random materials).

• Cellular materials (hollow, regular or random) [79].

Cellular materials are part of architectural materials consisting mainly of voids and walls surrounding. Because
of their structure, cellular materials are very good candidates for filling the zones of interest in Ashby diagrams.

Figure 4: Examples of architectured materials with differing configurations [12].
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Interests
Architectured materials are known for their interesting priorities in various industrial purposes such as good
stiffness-weight ratio, acoustic, thermal conductivity and absorbing impacts energy, ... In general, the proprieties
of architectured materials are resumed in the following points:

1. A good strong stiff/ weight ratio. Indeed, architectured materials can have a low percentage of matter
which allows reaching a very low density and at the same time, they can have relatively a high Young’s
modulus. An example is given of of Cellulose foams [79] which have a density of 1.5mg/m3 and Young’s
modulus of 25GPa. Its yield strength can reach 350MPa.

2. Several acoustic proprieties are found. Architectured materials are known to have great damping effects
on wave propagation depending on its morphology [124]. Controlling and guiding the wave propagation
is possible. An example of cloaking effects is given by Chen et al. [49]. Another example is given by
Giuseppe et al. [149] where they found out that it feasible to guide the wave in the hexagonal lattice
structure considering Strain-Gradient elasticity continuum model and using available optimisation tools.

3. Some classes of architectured materials are known for low thermal expansion and high impacts energy
absorption which required for aerospace industrial applications. Examples is provided by Craig et al. and
Lehman et al. for thermal expansion in a bimaterial lattices [118, 174]. A theoretical example of resisting
shock loading of honeycombs (2D Lattice) is provided by Hutchinson et al. [99].

4. With architectured materials, some unusual special characteristics can be found. For example a class
called auxetic materials. They are known to have a negative Poisson’s coefficient. They exist few in
nature however, they can be artificially manufactured. The reader is invited to read the review carried
out by Pasternak et al. [139] where examples of microstructures, that are able to generate auxetic effects,
are available. Another example of materials called double-negative metamaterials [88] is provided. It is
defined as a class of materials with effective properties of a negative Poisson’s ratio and negative stiffness.

Lattice structures
In this thesis is focused on Lattice materials. It remains a subclass of architectured materials and it is considered
as a part of cellular materials (examples in figure 5). A definition is provided by Phani et al. [142]. It is defined
as a spatially periodic network of structural elements, such as rods, beams, plates, or shells. One of main
characteristics is a spatially ordered pattern of unit cells in a periodic or semi-periodic manner. A unit cell is
an interconnected network of structural elements. It is important to note that structural elements can be made
of bulk materials or composites, which means that the multi-scale aspect can be present.

Figure 5: Lattice materials formed from a periodic network of beams: (a) ultralight nanometal truss hybrid lattice; (b)
pentamode lattice [142].

Phani et al. [142] pointed out on how to differentiate lattice materials from other materials and structures
displayed in figure 6. Some of these are actually spatially ordered network of structural elements hence, the
definition above gives us the impression that they are the same thing. Phani et al. stated that the spatial
periodic network of beams is called lattice material if The deformation length scale is at length scale of the
structural elements. In others words, a scale separation rule (e.g., between microstructure and macrostructure)
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must be respected, the figure 6 shows how the scale separation scale is with comparison to a truss bridge
structure.

Figure 6: Periodic material and structures and their length scale (m=meter, MEMS = MicroElectroMechanical Systems) [142].

The following statements resume the reasons why the study is focused on lattice materials:

1. All the interests mentioned are present, making them very multifunctional. Since they are periodic (or
semi periodic) and characterised by a unit cell, it is possible to control their properties by means of
optimisation tools for the sake of better performance.

2. The high development of mathematical modelling tools for lattice material when it comes to their behaviour
(static/dynamic). It is important to note that homogenisation approaches play an important role to
characterise periodic lattice material and elaborate a continuum model [144, 173].

3. Lattice materials are now possible to make specially the fast development of additive manufacturing
methods [183].

Optimisation

Lattice material are known to have a very interesting properties [142] which are possible to control. For a defined
application, it is worth to get best desired performance and this is possible by the means of optimisation tools.
Optimisation consists of mathematical approaches used to minimise (or maximise), with respect to defined
variables, a cost function. The variable can be subject to constraints. It is applied in mechanical engineering
where there are numerous applications for several purposes [31]. The reader is invited to read the section 4
for more details on how structural optimisation is preformed. A focus is put on topology optimisation which
consist of founding optimal distribution of matter for defined problem.

(a) (b)

Figure 7: Optimised Lattice structure designs ([104] for (a), [195] for (b)).

In this document, the conducted study will focus on using the topology optimisation of 2D lattice structures
(structures made of lattice material). Many authors managed to do that [7, 104, 195, 42]. The optimal lattice
designs, illustrated in figure 7, can be obtained using the so-called homogenisation or SIMP (Simple Isotropic
Material Penalisation) method and, subsequently, by applying a dishomogenisation approach. Lattice material
are known to have a particular mechanical behaviour where two modes of failure can be found: (1) plasticity
(or brittleness) in traction and (2) buckling (or plasticity) in compression. Ensuring the mechanical strength
while having optimal properties is absolutely worth it. This can be done by imposing an established mechanical
criterion, generally expressed in the stress space (e.g. Von Mises), as a constraint in the topology optimisation
problem. The resulted problem is known as a stress based topology optimisation problem. Moreover, lattice
materials are often anisotropic therefore orientation (additional to the topology) can be considered as an addi-
tional variable in the optimisation problem. The study is divided into two main phases: (i) the establishment
of a strength criterion, and (ii) its implementation in a topology optimisation problem.
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Project MOMAP

The MOMAP project ("Modélisation et Optimisation des Milieux Architecturés Périodiques") is led by Marc
François (professor at Nantes university) and funded by the ANR ("Agence Nationale de la Recherche"), bringing
together several laboratories and organisms (see figure 8).

Figure 8: The laboratories and the organisms that are involved in project MOMAP.

The mechanical strength (tension/compression asymmetry) and the lack of control tools for lattice materials
are obstacles to their development and more widespread industrial use. This project therefore aims to provide
tools for developing the use of architectural materials in engineering to make them structural materials. As
illustrated the project is focusing on 3 main following topic:

Optimisation of lattice materials:

� Marc François (GeM, Nantes).

� Christelle Combescure (IRDL, Lori-
ent).

� Valentin Jeanneau (PhD, GeM,
Nantes).

� Nicolas Auffray (∂’Alembert, Paris).

� Boris Desmorat (∂’Alembert, Paris).

� Djimedo Kondo (∂’Alembert, Paris).

� Nassim Kesmia (PhD, MSME, Marne-
la-vallée).

Mechanical characterisation:

� Marc François (GeM, Nantes).

� Martin Gaudeul (PhD, GeM,
Nantes).

� Ralph Gruand (Méca).

� Romain Duballet (XtreeE).

Measurement of cell
shape and deformation:

� Marc François (GeM, Nantes).

� Julien Réthoré (GeM, Nantes).

� Lucie Calmettes (PhD, GeM,
Nantes).

Figure 9: The three main topic of project MOMAP with the members involved.

1. Optimisation of lattice materials: The objective is to provide an optimisation algorithm for lattice struc-
ture taking into account the elasticity threshold. The study focus on studying the 2D triangular lattices.
The aim is to provide optimal designs of lattice structures for experimental testing ( for the two other
axes). 2 thesis are present in this axis:

(a) The first thesis has the objective to establish the relation between different geometric parameters of
the unit cell and effective elasticity tensors [47]. Moreover, in the stress space, the discrete elasticity
limit must established considering the plasticity and buckling instabilities. All this work (first step)
is carried out by Jeanneau [102].

(b) The second thesis aims to establish analytically a threshold criterion for the discrete elastic strength
limit established by Jeanneau (for triangular lattices). This work is carried out in the first part of
the document. Once done, the established threshold will implemented in a topology optimisation
problem in the second part of the document.

2. Mechanical characterisation: The objective is to design and manufacture a specific mechanical test set-up
for lattice materials that can be used to induce all possible deformation tensors while limiting edge effects
and allowing the X-ray tomography this work was carried out by Gaudeul (in his internship).

3. Measurement of cell shape and deformation: The objective is to provide an algorithm based on virtual
image correlation (VIC) to find the shape defects present in the architectural material after it has been
manufactured and tested. The work is carried out by Calmettes in her thesis.
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Chapter 1

Classical threshold criteria: a review
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In solid mechanics, we define criterion as loading or a stress limit for which if it is reached, we will have
a transition in the mechanical behaviour e.g. from elasticity to plasticity. It is important to have an idea of
what the authors have done in order to theoretically establish a criterion that meets the requirements in terms
of accuracy and fidelity with experimental tests. In this chapter, a review about some available criteria in the
literature is presented. They are classified according to 2 main aspects: (i) The 1st one is material symmetry.
A material can be isotropic, it means that their properties remain the same in all in direction with respect to
a defined base reference. Meanwhile, an anisotropic material has properties that do not remain the same in all
in directions1. (ii) The 2nd point is the loading symmetry. Some materials behave differently when they are
subject to tension or to compression stresses. It is very common feature for architectured materials, we can
give example of lattice structures where two modes of failure can be found, plasticity in traction and buckling
in compression [79]. It is important to see how different authors managed to establish criteria for both isotropic
and anisotropic materials with such a mechanical aspect. Mathematically, a criterion is usually represented by
the following equation:

F (σ
∼
) = σlim,

where the state variable σ
∼

is the Cauchy stress tensor (in linear elasticity). σlim ∈ R∗
+ is the threshold stress

and F is called threshold function. We denote {σ1, σ2, σ3} as principal stresses of stress tensor (defined as its
eigenvalues). The deviatoric part is denoted s

∼
where {s1, s2, s3} are its principal stresses. This notation is

adopted for this chapter.
The plan of this chapter is as follows: First section speaks about available isotropic criteria. The second

section is for anisotropic criteria. In the third section, some established criteria for lattice materials will be
discussed.

Remarks
1. Most of reviewed threshold criteria are coming from plasticity studies [19, 150, 126].

2. Some of threshold criteria here are introduced in 3D (R3). The proprieties of stress tensors are not the
same as in 2D (as showed section 2.2). Nonetheless, all 3D threshold functions can be reduced to 2D
(plane stress) with simple simplifications.

1In this case, we can particularly find subsets of anisotropic materials e.g. orthotropic materials.
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1.1. ISOTROPIC CRITERIA

1.1 Isotropic criteria

A criterion associated to an isotropic material is the one that is independent of its the orientation. Therefore,
a criterion is said to be isotropic if and only if its threshold function F is completely invariant under any
orthogonal transformation g of σ

∼
(rotations, mirrors), we write:

F (g
∼

Tσ
∼
g
∼
) = F (σ

∼
) ∀g

∼
∈ O(2), (1.1)

where O(2) is the groups of orthogonal transformations and (.T ) is the transpose. In this case F can be written
as a function of the invariants of σ

∼
.

1.1.1 Symmetric criteria
A criterion is said to be symmetric only if [169]:

F (σ
∼
) = F (−σ

∼
),

geometrically, in the stress space ({σ11, σ22, σ12}), it is interpreted as a surface having a central point symmetry
with respect to the origin {0, 0, 0}.

Tresca 1864 (3D)

It is one of the oldest criterion [152]. It is based on the fact that the crystallographic max-dense planes gliding
(i.e. plasticity) are caused by shear stress. So the yielding occurs when the maximum shear is reached. The
criterion is written as follows:

max{|σ1 − σ2|, |σ2 − σ3|, |σ3 − σ1|} = σlim, (1.2)

where σ1, σ2 and σ3 are principal stresses, σlim is the threshold stress (also called yield stress in plasticity).
This is a shear based criterion, it means that it is independent of the hydrostatic pressure. Hence, the red

axis of the hexagonal prism (see figure 1.1) is the hydrostatic axis.

Figure 1.1: Threshold surface of Tresca criterion for σlim = 1.

Von-Mises 1913 (3D)

It is the most common criterion for isotropic pressure independent materials. It was introduced by Huber [98]
and Von Mises [129]. The criterion is formulated based on the energy of distortion. When it reaches a threshold
point, a transition from elasticity to plasticity occurs.

The energy of deformation Wf has two parts : volumetric energy Ws and the deviatoric (distortion) energy
Wd meaning:

Wf = Ws +Wd, (1.3)

and Wd is given by:

Wd =
1 + ν

6E
[(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2] , (1.4)
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1.1. ISOTROPIC CRITERIA

where E is the Young’s modulus and ν is the Poisson’s coefficient. In an uniaxial loading (σ2 = 0 and σ3 = 0),
The yielding (threshold stress is reached) occurs when σ1 = σlim. In this case, the deviatoric energy is given by:

Wd =
1 + ν

6E
2σ2

lim. (1.5)

Hence, the Von-Mises criterion is written as follows:

1 + ν

6E
2σ2

lim =
1 + ν

6E
[(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2] . (1.6)

At the end we have:
1

2
[(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2] =
3

2
s
∼
: s

∼
= σ2

lim, (1.7)

where,

s
∼
= σ

∼
− 1

3
tr(σ

∼
)I
∼
, (1.8)

is the deviatoric part of the stress tensor σ
∼
. The obtained threshold function is a homogeneous polynomial of

degree 2 in s
∼
. It is independent of hydrostatic pressure (figure 1.2). It is important to notice in planar stress,

(figure 1.3) the criterion is dependant on the 2D hydrostatic pressure.

Remark In 2D, the stress tensor is given by

[σ
∼

2D] =

[
σ11 σ12

σ12 σ22

]
. (1.9)

In this case the deviatoric stress is given by:

s
∼

2D = σ
∼

2D − 1

2
tr(σ

∼

2D)I
∼

2D. (1.10)

In this case Wd is given by:

Wd =
1 + ν

4E
(σ1 − σ2)

2, (1.11)

which means that Von Mises criterion, is given by the following equation:

(σ1 − σ2)
2 = 2s

∼

2D : s
∼

2D = σ2

lim. (1.12)

(a) 3d surface in the space {σ1, σ2, σ3} (b) Plane σ3 = 0

Figure 1.2: Threshold surface of Von Mises criterion for σlim = 1 (principal stresses). The red line is hydrostatic axis.

The figure 1.2 represents the 3D Von Mises criterion surface in function of principal stresses (R3) and it
has a cylinder shape. The red line is the axis of the cylinder and corresponds to the hydrostatic axis (of
direction {1, 1, 1}). This form is due the fact that the criterion is independent from the hydrostatic pressure.
The figures 1.3 and 1.4 represent the surface the Von Mises criterion in function of stress spatial components
{σ11, σ22,

√
2σ12} hence, planar stress assumption is considered. The two represented surfaces are different, one

is an ellipsoid and other is and cylinder of which the axis is 2D hydrostatic axis (red line). Mathematically,
the difference between the two comes from the fact that the surface in figure 1.3 comes from 3D criterion by
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1.1. ISOTROPIC CRITERIA

simplifying σ3 = 0 in equation (1.7). The other one, in figure 1.4, comes directly from equation (1.12). The
difference is due to the deviatoric part of the stress tensor being defined from two different assumptions (look at
equations (1.8) and (1.10)). The conclusion is that the 3D von Mises criterion is independent of 3D hydrostatic
pressure but, it is dependant of 2D hydrostatic pressure. Meanwhile, the 2D Von Mises criterion is completely
independent of 2D hydrostatic pressure which explains the cylindrical form in figures 1.4.

Figure 1.3: Tri-component representation of threshold
surface of 3D Von Mises criterion under planar stress

assumption for σlim = 1.

Figure 1.4: Tri-component representation of threshold
surface of 2D Von Mises creterion for σlim = 1.

Hershey/Hosford 1972 (3D)

Hershey [87] and Hosford [94] proposed the following isotropic criterion for metallic materials:

(σ1 − σ2)
m + (σ2 − σ3)

m + (σ3 − σ1)
m = (2σlim)

m, (1.13)

in which m is a parameter that depends on the crystallographic structure of the metallic material. The criterion
is a generalisation of Tresca and Von-Mises. While m = 2 the Von Mises criterion is retrieved, while m = 1 or
m =∞ Tresca criterion is obtained. It is mentioned in [20] that when 2 < m < 4 the yield surface lies outside
the Mises circular cylinder. When 1 < m < 2 and m > 4 the yield surface lies between Tresca and Von-Mises.
Hence, the criterion has a lower bound (which is Tresca criterion).

In order to obtain an upper bound, a more generalised version was introduced by Karafillis et al. [107]. The
proposed criterion is given by:

1− c

2
Φ1 − c

32k

22k + 2
Φ2 = σ2k

lim, (1.14)

where,
Φ1 = |s1 − s2|2k + |s2 − s3|2k + |s3 − s1|2k and Φ2 = |s1|2k + |s2|2k + |s3|2k . (1.15)

s1, s2 and s3 are the principal values of s
∼
, (2k) have the same meaning as m and c ∈ [0, 1] is a constant. The

criterion is a combination of two threshold functions Φ1 and Φ2. Therefore, varying k and c gives more flexibility
on the threshold surface and also adds an upper bound (comparing to Hershey/Hosford, see figure 1.5). The
new upper bound is related to the Mohr-Coulomb maximum shear stress [94]. All this work comes following
Mendelson [125] in which he demonstrated the existence of bounds in an isotropic yield (threshold) surface.

Figure 1.5: The upper bound, the lower bound (Tresca) and the von Mises yield surface in the deviatoric plane (π plane) [107]
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1.1. ISOTROPIC CRITERIA

Drucker 1949 (3D)

Drucker [62] proposed an isotropic criterion expressed in function of the two invariants J2 and J3 of s
∼
. In

order to represent data located between [20] Tresca and Von Mises threshold surface he proposed the following
criterion:

27 (J3

2 − cJ2

3 ) = σ6

lim, (1.16)

where,

J2 =
1

2
sijsij ; J3 = (

1

3
)sijsjkski, (1.17)

where c is a material parameter, its value is based on experimental data.

Bartlat and Richmond 1986 (2D)

Hosford attempted [28, 95] to express his criterion in function of the 3 components {σ11, σ22, σ12} of σ
∼

(assuming
planar stress). The intention is to make the criterion more suitable for sheet forming applications where plane
stress is assumed. Hosford was unsuccessful because the new threshold function can not be expressed in function
of the invariants of σ

∼
(hence, it is not isotropic). Barlat et al. [26] managed to it do by assuming plane stress

state σ3 = 0, calculating the principle stresses σ1 and σ2 in function σ11, σ22, σ12 and by replacing then in
equation (1.13). The resulting criterion:

|J1 − J2|m + |J1 + J2|m + |2J2|m = 2σm

lim, (1.18)

where

J1 =
σ11 + σ22

2
; J2 =

√(
σ11 − σ22

2

)2

+ σ12. (1.19)

is an isotropic criterion which is a generalisation of Hosford’s one (2D). If the principal directions of the stress
tensor coincide with material orthotropic directions (σ12 = 0) and Hosford’s criterion is found. It is shown [20]
that the criterion works well with isotropic FCC metals and they meet excellently data found numerical with
Hill-Bishop model for polycrystal deformation.

Concluding remarks
Most of mentioned examples of isotropic criteria come from plasticity studies. The majority of these criterion
are homogeneous polynomial of up to degree 6 of σ

∼
. It was proven that all isotropic threshold surfaces has

an upper and lower bound defined by Tresca and Mohr maximum shear stress. Lot authors tried to take into
account this aspect.

1.1.2 Dissymmetric criteria
Some materials (e.g. concrete) can exhibit different behaviour when the loading (or the stress) stat changes
from tension/compression (σ) to compression/tension (−σ). A criterion is said disymmetric when its threshold
function verify:

F (σ
∼
) ̸= F (−σ

∼
). (1.20)

Mathematically, it means that the expression of F (σ
∼
) includes elements that are sensitive to the change of sign.

Cazacu 2004 (3D)

Cazacu et al. [46] introduced an interesting isotropic threshold function for isotropic materials exhibiting
tension/compression dissymmetry. The proposed threshold function is given by:

(J2)
3/2 − cJ3 = σ3

lim. (1.21)

where c is material parameter which is linked to dissymmetry tension/compression. This particular aspect
comes from the presence of odd powers of J2 and J3 (sensitive to the sign of σ

∼
). The criterion fits very well with

the results of polycrystal simulations obtained by Horsford.
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1.2. ANISOTROPIC CRITERIA

-3 -2 -1 1 2 3
σ11

-3

-2

-1

1

2

3
σ22

Figure 1.6: The contour of Cazacu’s threshold surface in
(σ11, σ22) plane [46].

Figure 1.7: The contour of François’s threshold surface in
(σ11, σ22) plane [76].

François 2007 (3D)

Concrete is known to exhibit diffuse micro-cracking when exposed to high stress compressive stresses. It is also
known to exhibit concentrated microcracking when subjected to low stress tension loading [76]. Francois et al.
proposed the following criterion:

√
(σ2 − σ3)

2 + (σ3 − σ1)
2 + (σ1 − σ2)

2

3

+ σu

(√
exp

(
2σ1

σu

)
+ exp

(
2σ2

σu

)
+ exp

(
2σ3

σu

)
−
√
(3)

)
= σlim,

(1.22)

The constants σu and σlim are identified experimentally from uniaxial tension/compression tests. The proposed
criterion is able to into account high tension/compression dissymmetry (see figure 1.7) it is driven by σ0. It
seems that the threshold is a sum of Von Mises function plus an exponential term that takes into account the
loading dissymmetry.

1.2 Anisotropic criteria

Anisotropic material such as some metallic alloys and composites have a large variety of application. They posses
privileged directions e.g. unidirectional carbon/epoxy has a very important difference in mechanical strength
between rolling (longitudinal) and transversal direction. An associated criterion should take into account the
anisotropic aspects of the material. A criterion is said to be anisotropic if:

F (g
∼

Tσ
∼
g
∼
) = F (σ

∼
) ∀g

∼
∈ H ⊂ O(2), (1.23)

H is a subgroup of O(2). The equation (1.23) means that the threshold function remains the same under a
certain orthogonal transformations belonging to the group H. In this subsection, some examples of anisotropic
criteria are given. Different approaches has been used to take into account the anisotropy of the material (mostly
metal sheets forming applications).

1.2.1 Hill’s Criteria

Hill 1948 (3D)

Hill [93] proposed the following criterion:

F (σ22 − σ33)
2
+G (σ33 − σ11)

2
+H (σ11 − σ22)

2
+ 2Lσ2

23 + 2Mσ2

13 + 2Nσ2

12 = 1, (1.24)

where F,G,H,L,M and N are material parameters. If all the 6 are equal the Von Mises criterion is retrieved.
Under plane stress assumption (σ33 = σ13 = σ23 = 0), the criterion becomes:

(G+H)σ2

11 − 2Hσ11σ22 + (H + F )σ2

22 + 2Nσ2

12 = 1. (1.25)

When the principal directions (σ12 = 0) coincide with the orthotropy directions we have:

(G+H)σ2

1 − 2Hσ1σ2 + (H + F )σ2

2 = 1, (1.26)

19



1.2. ANISOTROPIC CRITERIA

the criterion is widely used for orthotropic materials. It is also used for composite laminate [43]. The criterion
is known to be user-friendly. It means that it meets the following requirements [92]:

• The derivative of threshold function is easy manipulate algebraically.

• It must contains a minimum number of parameters that are strictly necessary in technological applications.

• All parameters should be determinable by straightforward tests and without excessive computation.

All material parameters has proper physical meaning. However, it has limitation, it has poor prediction in case
all the experimental data come from uniaxial tensile tests. It cannot also describe some materials presenting
certain behaviours called anomalous and second order anomalous.

The anomalous behaviour was observed firstly in [193]. It consists of a noticeable disagreement between
theoretical formulas (identification of the material parameters) and experimental observations in planar stress
assumptions. The experimental data are:

1. rθ the ratio of the transversal (width) strain and normal (thickness) one.

2. σθ is the threshold (tensile) stress.

Both quantities are measured for a cut specimen, which is inclined at an angle of θ from the rolling (longitudinal)
direction. From the process of identification, it is found that:

σ0

σ90

=

√
r0 (1 + r90)

r90 (1 + r0)
. (1.27)

By replacing F,G,H,N with the experimental data in equation (1.26), it is found that:

σ2

1 −
2r0

1 + r0

σ1σ2 +
r0 (1 + r90)

r90 (1 + r0)
σ2

2 = σ2

0 . (1.28)

In a particular case where r90 = r0 = r and σ90 = σ0, the equation (1.28) becomes:

σ2

1 −
2r

1 + r
σ1σ2 + σ2

2 = σ2

u, (1.29)

where σu is the uniaxial tensile stress. It is observed that when r < 1 the threshold surface stays inside the
Von Mises one (or the reverse). Woodthrope et al. [193] observed (by doing biaxial tests) the opposite in some
cases (in particular Aluminium alloys) hence this behaviour cannot be properly described by Hill 1948 criterion,
therefore it is called anomalous.

The second order anomalous behaviour is found following the equation (1.27). It is noticed that when
r0

r90
> 1, σ0

σ90
> 1. Experimentally, some opposite cases were found [90].

Hill 1979 (3D)

Researchers [20] agreed that higher degree polynomial functions are best candidates to address the problem
(anomalous behaviour). Therefore, since 1970 several higher degree polynomial criteria were proposed. Since
Hill 1948 cannot describe the anomalous behaviour, Hill et al. [90] introduced the following criterion:

f |σ2 − σ3|m + g |σ3 − σ1|m + h |σ1 − σ2|m + a |2σ1 − σ2 − σ3|m +

+ b |2σ2 − σ1 − σ3|m + c |σ3 − σ1 − σ2|m = σm

lim,
(1.30)

where we have f, g, h, a, b and d are material parameters obtained from experimental data (rθ and σθ), m is an
non integer coefficient and it is numerically obtainable from a non-linear relationship (experimental data), m is
not an integer thus, the threshold function in equation (1.30) is not polynomial.

In plane stress and under assumption of plane isotropy, the equation (1.30) can have 4 possible forms. The
most widely used is called "case 4" and it’s given by:

c |σ1 + σ2|m + h |σ1 − σ2|m = σm

lim. (1.31)

This case corresponds to a = b = f = g = 0. It is shown by Banabic [20] that the criterion in equation (1.31)
is similar to Bassani’s one [29] given by:

∣∣∣∣
σ1 + σ2

2σb

∣∣∣∣
n

+

∣∣∣∣
σ1 − σ2

2τ

∣∣∣∣
m

− 1 = 0, (1.32)
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1.2. ANISOTROPIC CRITERIA

where σb is the biaxial tensile yield stress, τ is shear yield stress. The equation has a form similar to the equation
(1.31) when m = n. The difference is in the way the material parameters are defined.

The advantages Hill 1979 is that it can describe anomalous behavior of some materials. The formulas are
quiet simple in the identification process (except the part where it is needed to solve a non-linear equation to
define m). One of the disadvantages is that the threshold function is expressed in function of the 3 principal
stresses instead of the 6 components of σ

∼
({σ11, σ22, σ33, σ23, σ13, σ12}).

Hill 1990 (2D)

In order to include to the 3 components of σ
∼

(assuming planar stress) when principal stress direction does not
coincide with the orthotropy direction, Hill [91] introduced the following criterion:

|σ11 + σ22|m +
(σb

τ

)m ∣∣(σ11 − σ22)
2
+ 4σ2

12

∣∣m/2

+ |σ2

11 + σ2

22 + 2σ2

12|(m/2)−1
(
−2a (σ2

11 − σ2

22) + b (σ11 − σ22)
2
)
= (2σb)

m
,

(1.33)

where a, b,m are materials parameters, σb, τ are respectively biaxial tensile and pure shear yield stress. In
principal stresses, the criterion is given by:

|σ1 + σ2|m +
(σb

τ

)m

|σ1 − σ2|m

+ |σ2

1 + σ2

2 |m− 1
2
[
−2a (σ2

1 − σ2

2) + b (σ1 − σ2)
2
cos 2θ

]
cos 2θ = (2σb)

m
,

(1.34)

where θ is the angle between the first principal direction and the rolling (longitudinal) direction. If a = b = 0
or θ = π

4
we retrieve the "case 4" of Hill 1979. Hill 1990 conserve all advantages of Hill 1979. It is usable

considering any physical basis in planar anisotropy. Liu et al. (2D) [120] proposed a more generalised form as
follows:

|σ1 + σ2|m + (1 + 2R) |σ1 − σ2|m

+ |σ2

1 + σ2

2 |m− 1
2 · (−2a (|σ1|s − |σ2|s) + b |σ1 − σ2|s cos 2θ) cos 2θ = (2σb)

m
,

(1.35)

where s and R are material parameters. The "case 4" for Hill 1979 is found when s = 2 and θ = π

4
. We notice

in equation (1.35) that the term in second line is not quadratic which can give more improvement comparing
to Hill 1990 model.

Leacock (2D) [116] gave a more general version of Hill 1990. He proposed the following criterion:

|σ1 + σ2|m +Am |σ1 − σ2|m + |σ2

1 + σ2

2 |(m/2)−2
[(σ2

1 − σ2

2)

(H (σ2

1 + σ2

2) + I (σ2

1 − σ2

2) cos 2θ) + (σ1 − σ2)
2

(J (σ2

1 + σ2

2) +K (σ2

1 − σ2

2) cos 2θ) cos 2θ] = (2σb)
m
.

(1.36)

where A,H, I, J,K and m are material parameters. The criterion is able describe the anomalous and second
order anomalous behaviour. All the mentioned criteria are not user-friendly and require a lot of experimental
data in the identification process.

1.2.2 Criteria based on linear transformation
The convexity remains one the main requirement for a criterion in order to be in plasticity studies. Establishing
the convexity conditions could be difficult for certain threshold functions especially for anisotropic cases. One
of the approaches to tackle this problem is using the linear transformation. It was introduced by Barlat [24]
and Kraffilis [107]. In a brief manner, the concept of the approach is to consider an isotropic threshold function
F (σ

∼
) and to create an anisotropic one by simply replacing the tensor σ

∼
with a transformed one Σ

∼
defined by:

Σ
∼
= M

≈
: σ

∼
. (1.37)

Σ
∼

is the transformed stress tensor. M
≈

is a second order tensor which includes all material parameters. In this
subsection we denote:

[S
∼
] =




S11 S12 S13

S12 S22 S23

S13 S23 S33


 ,

the deviatoric part of Σ
∼

and {S1, S2, S3} its principal values (stresses). This approaches may not be user-
friendly. The material parameters in M

≈
might not have an intuitive physical meanings. The main advantage is

the guarantee of the convexity (required for plasticity). Lot of criteria that are based on linear transformation
were proposed by Barlat. We briefly introduce the principal ones.
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Yld91 (3D)

Barlat [24] proposed Yld91 which is a generalisation of his previous one [28]. The criterion is based on linear
transformation where he picked the Hershy/Hosford isotropic criterion and applied the linear transformation
on σ

∼
. The Yld91 [150] is given by:

|S1 − S2|m + |S3 − S1|m + |S2 − S3|m = 2Y m. (1.38)

where 


S11

S22

S33√
2S23√
2S13√
2S12




=




c+b

3

−c

3

−b

3
0 0 0

−c

3

a+c

3

−a

3
0 0 0

−b

3

−a

3

a+b

3
0 0 0

0 0 0 f

2
0 0

0 0 0 0 g

2
0

0 0 0 0 0 h

2




︸ ︷︷ ︸
[M
≈

]




σ11

σ22

σ33√
2σ23√
2σ13√
2σ12




, (1.39)

where a, b, c, f, h and g are material parameters. The described material is orthotropic due to index symmetry
and the form of [M

≈
]. When a = b = c = f = h = g = 1, Hershy/Hosford isotropic criterion is obtained. Yld91

[20] has a good agreement with Taylor and Bishop and Hill polycrystal model and experimental data [96].

Karaffilis and Beyoce (3D)

Karaffilis et al. in their work [107] generalised framework of linear transformations. In their studies, they
introduced the isotropic criterion showed in section 1.1.1. In order to generalise it to an anisotropic criterion,
they replaced the stress tensor with a transformed one in the isotropic criterion. Karafillis et al. were the first
to introduce linear transformation using a 4th order tensor as follows:

Σ
∼
= M

≈
: σ

∼
. (1.40)

where Σ
∼

is the transformed stress tensor, M
≈

is an 4th order tensor which the same index symmetry as the
elasticity tensor. Karafillis et al. in their paper spoke about the irreducible decomposition, a topic which
we will extensively dwell on in chapter 3 and it is known as harmonic decomposition. They also established
conditions for each the material symmetry (anisotropy) that can be described with tensor M

≈
. The criterion

has a lot advantages such as good agreement with Bishop and Hill Model [96] and experimental data. It has a
simple numerical implementation. Though the only disadvantage is that the elements of M

≈
are obtainable via

numerical process (not user-friendly).

Yld94 and Yld96 (3D)

It is shown in [25] that the Yld 91 has a poor prediction for on some samples of Aluminum-Magnesium alloys
(fabricated differently). Barlat et al. proposed Yld94 as a generalisation of Yld91. The criterion is given by:

α3 |S1 − S2|m + α2 |S3 − S1|m + α1 |S2 − S3|m = 2σm

lim (1.41)

It is same one as Yld91 except that αk are added as material parameters. If α1 = α2 = α3 = 1 the Yld91 is
retrieved therefore, Yld94 is a more general criterion.

Yld94 is able to give an accurate prediction of Bishop and Hill model and has a good agreements with
experimental data. Though, finite element simulations revealed some inaccuracies [20]. Barlat et al. improved
the criterion and proposed Yld96 [25] by adding changes in the way αk are defined. Yld96’s has no proof of
convexity hence its numerical implementation is complicated (plasticity).

Yld2000-2d (2D)

To overcome the convexity problem with Yld96, Barlat et al. proposed another criterion. It is mainly based on
linear transformations from isotropic function (unlike Yld96). The reason is that linear transformation does not
affect the convexity conditions. Barlat et al. had the idea to use two different linear transformations in order
to add more material parameters [23]. The criterion is only available for planar stress, it’s called Yld2000-2d
and it’s given by:

ϕ′(X
∼

′) + ϕ′′(X
∼

′′) = 2σa

lim, (1.42)
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where a is material parameter, ϕ′ and ϕ′′ are isotropic functions:

ϕ′(X
∼

′) = |X1 −X2|a ϕ′′(X
∼

′′) = |2X ′′
2 +X ′′

1 |a + |2X ′′
1 +X ′′

2 |a , (1.43)

X ′ and X ′′ are the linear transformed stress tensor. All material parameters are included as follows:


X ′

11

X ′
22

X ′
12


 =



C ′

11 C ′
12 0

C ′
21 C ′

22 0

0 0 C ′
66






s11

s22

s12


 , ;



X ′′

11

X ′′
22

X ′′
12


 =



C ′′

11 C ′′
12 0

C ′′
21 C ′′

22 0

0 0 C ′′
66






s11

s22

s12


 , (1.44)

where {s11, s22, s12} are elements of s
∼

(not to be confused with S
∼
). Yld2000-2d appears to have a good agreement

on both experimental data and polycrystal model. However, it is not easy to use because of the complexity of
the process of identifying the material parameters.

Barlat et al. [21] extended Yld2000-2d to 3D. The criterion is called Yld2004-18p and it remains mainly
based on linear transformation. This criterion has a great agreement with different experimental data [21] and it
is recommended for highly anisotropic metals [150]. Barlat et al. also proposed Yld2004-13p [22]. It is simplified
version of Yld2004-18p where 13 material parameters are considered (hence less amount of experimental data).

Cazacu 2004 (3D, anisotropic)

Cazacu et al. continued their work after proposing the dissymmetric isotropic criterion mentioned in subsection
1.1.2. She established an extension to orthotropic criterion (with dissymmetry) by the mean of theory of
representation. She replaced the second and third invariant (J2, J3) by (J0

2 , J
0
3 ) where:

J0

2 =
a1

6
(σ11 − σ22)

2
+

a2

6
(σ11 − σ22)

2
+

a3

6
(σ11 − σ22)

2
+ a4σ

2

12 + a5σ
2

13 + a6σ
2

23,

J0

3 =
1

27
(b1 + b2)σ

3

11 +
1

27
(b3 + b4)σ

3

22 +
1

27
[2 (b1 + b4)− b2 − b3]σ

3

33

+ 2b11σ12σ13σ23 +
2

9
(b1 + b2)σ11σ33σ22 −

1

9
(b1σ22 + b2σ33)σ

2

11

− 1

9
(b3σ33 + b2σ11)σ

2

22 −
1

9
[(b1 − b2 + b4)σ11 + (b1 + b3 + b4)σ22]σ

2

33

− σ2
23

3
[(b6 + b7)σ11 − b6σ22 − b7σ33]

− σ2
13

3
[2b9σ22 − b8σ33 − (2b9 − b8)σ11]−

σ2
12

3
[2b10σ33 − b5σ22 − (2b10 − b5)σ11] ,

(1.45)

where all ai(i = 1, ..., 6) and bi(i = 1, ..., 11) are materials parameters. J0
2 , J0

3 come from a generalisation of
Drucker’s criterion to orthotropy [44, 45] using the theory of representation (more details in section 2.4.3). The
criterion show a very good agreements between theoretical and experimental data for different materials.

Polynomials criterion

Some authors introduced directly their criterion as polynomials of degree n. When the degree greater, the more
important the number of material parameters therefore, taking into account the material anisotropy is more
convenient and precise. In planar, a criterion is said to be orthotropic means that [166]:

F (σ11, σ22,−σ12) = F (σ11, σ22, σ12). (1.46)

This condition is only valid when the orthotropy axes coincide with the axes of the chosen base reference. The
main disadvantages is that convexity conditions (required for plasticity) must be established and considered in
the identification process.

Hill 1950 (2D)

Hill in 1950 proposed an homogeneous polynomial criterion [89] in an attempt to improve the quadratic one (cf.
section 1.2.1). The criterion function is defined as follows:

∑

i+j+2k=n

aijkσ
i

11σ
j

22σ
2k

12 = σn

lim, (1.47)

where aijk are material parameter. i, j and k are non-negative integers. The threshold function is independent
of the sign of σ12 hence, the criterion is orthotropic.
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Gotoh 1977 (2D)

Gotoh [84] proposed a 4th degree polynomial criterion as follows:

A0 (σ11 + σ22)
2
+ [A1σ

4

11 +A2σ
3

11σ22 +A3σ
2

11σ
2

22 +A4σ11σ
3

22 +A5σ
4

22+

(A6σ
2

11 +A7σ11σ22 +A8σ
2

22)σ
2

12 +A9σ
4

12] = Y 4
(1.48)

Where all Ai, i = 0, ..., 9 are material parameters. The first term is meant to add dependency on the hydrostatic
pressure to the criterion. Gotoh in his paper established conditions (for Ai) for which the criterion describes
planar isotropy (2D) and isotropy (3D). The criterion is capable of modelling the anomalous behaviour however,
it has problems with predicting directional yield stress and with the convexity [167].

Soare’s criteria

Soare et al. [167] [171] proposed three criteria "Poly4", "Poly6" and "Poly8". They are all homogeneous
polynomials of degree 4, 6 and 8 respectively and they are given by:

a1σ
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11 + a2σ
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2
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4
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4
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(1.49)

where ai are material parameters and they are in total 8, 16, 25 for Poly4, Poly6, Poly8 respectively. The Poly4
is an improvement of Gotoh’s criterion where Soare added changes to the identification process in order to solve
the convexity issue and to have a good agreement with experimental results. For Poly6 and Poly8 the convexity
conditions are also taken into account in the identification process. In his applications for sheet metal forming,
he observed that the higher the degree of the polynomial, the greater the accuracy of the material model (when
compared to experimental data).
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1.3 Threshold criteria for Lattice

When it comes to lattice (or architectured) materials, defining a threshold functions is not that easy. Having a
discontinuous unit cell with different geometries (like a truss system) leads to additional non linear phenomenons.
For example when lattice is exposed to stresses, two phenomenons are observed [79] buckling and plasticity.
Lot of authors managed [127, 68, 202, 201, 103, 188] to give a threshold surface for some lattice materials with
numerically validation. Most of them reduce the study to one unit cell (different geometries) assuming the
periodicity of the material. Most of them also used beam theory to establish an analytical criterion considering
plasticity and buckling. It is important to point out that all these studies classified lattice materials into
two main categories [58] stretching dominated and bending dominated. Under different loading conditions and
for stretching dominated lattices, the unit cell tends to behave a rigid truss structure. This means that the
structural elements (of the unit cell) are subjected to axial stresses in a dominant manner (no bending nor
shearing). For bending dominated lattices, the unit cell tends to behave like a mechanisms [188] under plane
loading. This means that structural elements are subjected mainly to bending or shearing (near joints) [172].
From experimental point of view, things are complicated specially with manufacturing defects [66]. We give
example of the of work of Köhnen et al. [114], they did an experimental comparison between stretching and
bending dominated lattices by doing tensile/compression and fatigue tests. Deshpande et al. [59] conducted an
analytical and a numerical study of the octet-truss lattice. In their model they considered certain imperfections.
A comparison between experimental, theoretical and numerical results has been done.

Figure 1.8: Different 2D periodic lattice materials showing their unit-cells : (a) rectangular,(b) triangular and (c) hexagonal [188]

In this section we give examples of some established threshold functions for 2D lattice materials. The first
example is the work of Wang et al. [188]. Using simple beam theory, they managed to establish a threshold
function for different lattice in planar stress considering only plasticity (no buckling). Different geometries are
studied such as triangular, rectangular and hexagonal. We also give the example of Jeanneau et al. [103].
They established threshold surface numerically for equilateral triangular 2D lattice considering the plasticity
and buckling instabilities.

For a lattice materials the relative density ρ is defined [79] as the ratio of the density of the lattice ρ∗ divided
that of the solid ρs:

ρ =
ρ∗

ρs
. (1.50)

An example is given with equilateral triangular 2D lattice where the beam length is l and the wall thickness is
t. ρ∗ is evaluated as the surface occupied, divided by the surface of the triangle, multiplied by ρs.

ρ∗ =
3tl√
3

2
l2
ρs = 2

√
3
t

l
ρs,

hence, the relative density if equilateral triangular lattice is:

ρ =
2
√
3
t

l
ρs

ρs

= 2
√
3
t

l
.

1.3.1 Rectangular lattice
A 2D lattice with a rectangular unit cell is exposed to axial stresses σ11 and σ22 and to a shear stress σ12 as
illustrated in figure 1.9 (σ11 = σ1, σ22 = σ2, σ12 = τ). Due to periodicity, the study is reduced to the unit
cell. The lattice here is considered to be bending dominated [188]. It means that plasticity occurs when the
maximum bending moment, calculated in each beam, is reached. The criterion is given by:
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Figure 1.9: 2D lattice with rectangular unit cell under plane stresses : (a) periodic material, (b) the studied unit cell [188]

max

{[
b

a

(
σ2

σlim

)2

+ 2
|σ12|
σlim

− (t2)
2

ab

]
,

[
a

b

(
σ1

σlim

)2

+ 2
|σ12|
σlim

− (t1)
2

ab

]}
= 0, (1.51)

where σlim is the tensile stress of constituent solid, ρ relative density defined by:

ρ =
at2 + bt1

ab
, (1.52)

where (a, b) and (t1, t2) are lengths and thicknesses of the walls of the unit cell. The figure 1.10 shows the
threshold surface defined by criterion (1.51).

(a) tri-component representation (b) plane σ12 = 0

(c) plane σ22 = 0 (d) plane σ11 = 0

Figure 1.10: The plasticity threshold surface in the stress space for rectangular lattice [188].

1.3.2 Equilateral triangular lattice
A 2D lattice with a equilateral triangular unit cell is considered. As in previous case, the material is exposed
to axial stresses σ11 and σ22 and to a shear stress σ12 depicted in figure 1.11. The lattice is considered to be
stretching dominated [188] this means that we look for maximum axial stress in each beam. The criterion is
given by:
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Figure 1.11: 2D lattice with triangular unit cell under plane stresses : (a) periodic material, (b) the studied unit cell [188].
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√
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}
=

1

2
ρ, (1.53)

where ρ, in this case, is given by:

ρ = 2
√
3
t

l
, (1.54)

where l and t are length and thickness of walls of the unit cell. The figure 1.12 shows the corresponding threshold
surface.

(a) tri-component representation (b) plane σ12 = 0

(c) plane σ22 = 0 (d) plane σ11 = 0

Figure 1.12: The plasticity threshold surface in the stress space for equilateral triangular lattice [188].

1.3.3 Hexagonal lattice
A 2D lattice with a hexagonal unit cell is considered. As in the previous cases, the materials is exposed to
axial stresses σ11 and σ22 and to a shear stress σ12 depicted in figure 1.13. The honeycomb is considered to be
bending dominated [188]. It means that plasticity occurs when the maximum bending moment, calculated in
each beam, is reached. The criterion is given by:
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Figure 1.13: 2D lattice with a hexagonal unit cell under plane stresses : (a) periodic material, (b) the studied unit cell [188]
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the relative density is given by:

ρ = 2
√
3
t

l
, (1.56)

where l and t are length and thickness of walls of the unit cell. The figure 1.14 shows the corresponding surface.

(a) tri-component representation (b) plane σ12 = 0

(c) plane σ22 = 0 (d) plane σ11 = 0

Figure 1.14: The plasticity threshold surface in the stress space for hexagonal lattice [188].

1.3.4 Jeanneau’s threshold surface for equilateral triangular 2D lattice
In the strain stress, a threshold surface is established numerically by Jeanneau et al. [103] for equilateral
triangular 2D lattice considering plasticity and buckling instabilities. It is the same studied unit cell as the one
in section 1.3.2. The lattice is stretching dominated therefore the plasticity limit is established analytically. For
the local buckling, the threshold surface is established numerically. A semi-analytical technique is used, which
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combines Bloch wave theory and a finite element model of the unit cell [54]. Therefore, the buckling surface
is given by points in the strain space (green points in figure 1.15). The threshold surface is the intersection of
plasticity (in grey) and buckling (in red) surfaces and it is illustrated in figure 1.15.

(a) tri-component representation (b) plane ε12 = 0

(c) plane ε22 = 0 (d) plane ε11 = 0

Figure 1.15: The intersection the buckling (red) and the plasticity (black/grey) surface in the strain space. The green points
represent the buckling limit obtained numerically [103].

1.4 Conclusion

In this chapter, an overview is provided of some established criteria for both bulk and lattice materials. Some
isotropic criteria were introduced in the first step. For plasticity applications, it is proved [125] that all isotropic
threshold surfaces has an upper and lower bound defined by Tresca and Mohr maximum shear stress. Lot authors
tried to take into account this aspects hence, various isotropic criterion where proposed such as Hershey/Hosford
[87] and Barlat and Richmond [26]. Some authors proposed tension/compression dissymmetric criteria. To
include the dissymmetry aspect, they rely on adding terms that are sensitive to the change of sign of σ

∼
such as

odd degree polynomial terms for Cazacu criterion [46] and an exponential function for Francois criterion [76].
Lot of anisotropic criteria were proposed. An important work was done specially in sheet metal forming

applications (plasticity) where orthotropic metal alloys were used. One of the first and known criterion is Hill
1948 [93]. Some theoretical (e.g. convexity) and experimental difficulties (e.g. anomalous behaviour) were
encountered hence lot of anisotropic criteria where proposed. To address these difficulties lot of approaches
are used: (i) The first approach of them is to add weight coefficients as material parameters [89, 91]. (ii) The
second approach is to use linear transformations [27], it has an advantage of adding material parameters without
need to prove the convexity. The third approach is the use of high degree polynomial functions. A number
of orthotropic homogenous polynomial criteria were proposed. It is observed [166] that the higher the degree
(more material parameters) the greater the accuracy. However, the convexity conditions need to be established
[168]. For dissymmetric anisotropic criteria, only Cazacu’s [46] is mentioned. Cazacu’s et al generalised their
dissymmetric isotropic criterion to orthotropy [44] using theory of representation (not spoken a lot in this
chapter, see section 2.4.3 for more details).

Speaking of lattice materials, lot of authors [59, 127, 103] established criteria theoretically (beam theory)
and numerically (finite elements) considering plasticity and buckling. Assuming the periodicity, the study is
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always reduced to an unit cell and they are classified into two main categories stretching and bending dom-
inated. From Wang’s examples [188] (only plasticity), it is noticed that stretching dominated lattices resists
to shear loading better than bending dominated lattices. All criteria are anisotropic and visually can be seen
in their representation in the stress space. The threshold surfaces are not smooth due the fact the threshold
functions are max functions (looking for maximum stress in each beam), this may cause issues for the numerical
implementation. All featured examples show anisotropic, non-smooth and pressure dependant (dissymmetric is
case of buckling) threshold surfaces.

From all the reviewed criteria coming from plasticity, most of them are polynomials functions. With high
degree polynomial threshold functions, complicated shapes of threshold surfaces can be generated. We have
seen that the theory of representation [44] can be used to generate polynomial threshold function which are
invariant under a known material symmetry. When it comes to tension/compression dissymmetry odd degree
polynomials also can be used. We conclude that in order to theoretically define a threshold function for lattice
material polynomials meet all the requirements and can be a good enough to generate at least an approximate
smooth threshold surfaces for lattice materials.
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Physical field theories, such as solid continuum mechanics, relies on specific relations that link primal (kine-
matic) variables to dual (static) ones. Those relations, which are called constitutive laws, are not canonical and
depend both on the physical nature of the material and on external parameters. Despite their great diversity, at
room temperature, constitutive laws of solid materials generally have a linear regime for low intensity loading.
This operating regime is called linear elasticity. This domain is finite since the constitutive law will become
non-linear for higher loading. The nature of these non-linearities are very diverse: plasticity, instability, frac-
ture,... and strongly depends on the material and on the modelling situation. In most engineering situations,
to ensure their integrity, structures are designed to work within their linear regime. To meet this exigence, the
domain of loading for which the behaviour is linear should be 1) experimentally defined , 2) mathematically
characterised. This domain is a hypervolume in the loading space (which is generally the stress space) bounded
by a hypersurface. The hypersurface enclosing the domain of elastic regime has different names according to the
physical context: plasticity surface, yield surface, failure surface... . Its form is very dependant on the nature
of material and two aspects are generally distinguished:

• anisotropy, it consist on how is the form the hyperspace changes in the stress space when the material is
rotated with respect a fixed reference. There has been a lot of work on describing different phenomenons
specially in plasticity for sheet metals (metal forming application [19]).

• loading state, some material can behave differently when the loading changes. Generally, it concerns
tension/compression states. An example of a studied lattice material is given in section 1.3.3 where it is
observed that plasticity occurs under tension loading, while buckling instabilities occur under compressive
loading.
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2.1. FROM MATERIAL INVARIANCE TO PHYSICAL SYMMETRY

In the following, the terminology of threshold surface (instead of the hypersurface) will be adopted. Furthermore,
it is important to point out that the evolution of surface during the loading process and the associated dissipative
process will not be modelled. This chapter gives theoretical framework to well understand and analyse the
threshold functions and their associated threshold surfaces. It begins from describing the state variable (Cauchy
stress tensor), defining threshold function, describing anisotropy and giving some examples.

This chapter is organised as follows. In a first time in section 2.1 basic notions on material and physical
symmetries are provided. Because of its importance for the sequel, the O(2) orthogonal group is introduced
and some of its properties are detailed. The notion of group action is then used in section 2.2 to investigate the
geometry of the stress space. This geometry is first analysed with stress-tensor considered as a second-order
order tensor in R2, then as a vector in R3. This section brings together some very classic concepts, but in a way
that we do not believe is standard. With all this material at our disposal, the next section 2.3 is devoted to
a geometric description of the criterion functions as surfaces in R3. Different properties of surface symmetries
are highlighted and a link is made with the physics of the problem under consideration. A set of characteristic
surfaces identified in chapter 1 is reanalysed using the tools introduced in this chapter. In the last section 2.4,
a quick overview of the representation theory of groups is proposed in order to make the geometrical approach
of the previous section effective. In the context of polynomial criteria, we look at the minimum degree of the
polynomial in σ

∼
to be considered in order to take explicit account of material anisotropy. This point is important

for the modelling of criterion functions for architectured lattices.

2.1 From material invariance to physical symmetry

The mechanical properties of a material are usually determined by its microstructure.
Let Ω be a R3 domain supposed to describe a solid continuum. At this scale, Ω is a continuous collection of

material points. The material point is a richer physical concept than the geometric point since it also includes
information about the organisation of matter at scales smaller than that used to establish the continuous model.

Figure 2.1: The description of the continuum solid Ω.

In the case of a multi-scale model, the connection between scales is explicit and the processes of homogeni-
sation and localisation allow for transit between scales. But such an explicit description is not mandatory and
we generally do not have a precise description of the organisation of matter at microscopic scales. What is
generally retained at the material point of the microscopic organisation is its symmetry group, i.e. the set of
operations that leave the microstructure invariant. A general principle is that a transformation that leaves the
microstructure invariant leaves the physical properties, defined at the same point in the material, invariant.

Let us place ourselves at a material point, and let begin by introducing the notions of material symmetries.
We will then introduce the concept of physical symmetries and the link between these two concepts. This
section will end with a subsection devoted to the O(2)-orthogonal group and its subgroups. The language of
symmetry groups will allow us to be more precise in the discussion of invariance properties.

2.1.1 Material and physical symmetry group
In what follows, attention is limited to what happens at a given material point P, and we do not look at how
the microstructure and physical properties evolve in the Ω domain.
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2.1. FROM MATERIAL INVARIANCE TO PHYSICAL SYMMETRY

Therefore, let us denote the microstructure at a given material point P byM(P). In the case of a continuum
with a periodic microstructure,M(P) can generally be reduced to a primitive unit cell. Let us now consider the
set of rigid transformations letting P unchanged, in R2 this corresponds to the group of linear isometries O(2).
This set will be discussed in more detail later, but it includes rotational symmetries and mirror symmetries.

To fix the idea, consider the periodic lattice materials which unit cells are depicted in figure 2.2. In this case
M(P) corresponds to the unit cell.

X

Y

Z

(a) A hexachiral unit-cell

X

Y

Z

(b) A hexagonal unit-cell

Figure 2.2: Two examples of unit-cell.

As appear clearly on this figureM(P) can possess geometrical symmetries, i.e can be invariant with respect
to orthogonal transformations. To keep track of this information, let us define GM(P) the set of operations that
leave the microstructure invariant:

GM(P) := {g ∈ O(2) | g ⋆M =M} . (2.1)

At the macroscopic scale, the behaviour is described by physical property fields on Ω. These fields define at
each point P of Ω the values of the physical properties: elastic stiffnesses, thermal properties, damage state,
etc. of the model. For the present discussion, let us consider that the physical properties are described by a
n-th order tensor field on Ω.

Let denote by T(P ) ∈ Tn, the tensor that describes a physical property at the material point P. This tensor
can posses some invariance with respect to orthogonal transformations, hence it is natural to introduce GT(P ),
the physical symmetry group which is the group of transformations that preserves the tensor T(P ). We write:

GT(P ) := {g ∈ O(2) | g ⋆T(P ) = T(P )} . (2.2)

in which ⋆ is the classical tensorial action, i.e. O(2) acts on Tn as

⋆ : O(2)× Tn → Tn (2.3)
(g,T) 7→ g ⋆T := gi1j1

gi2j2
. . . ginjn

Tj1j2...jn
. (2.4)

Since the constitutive tensor is defined at a material point P of Ω, the material symmetry group GM(P ) and
the physical symmetry group GT(P ), must be related in some way. This link is provided by the Curie-Neumann
principle.

Principle 2.1.1 (Curie-Neumann’s Principle). At each material point P ∈M with a physical property described
by T (P ) ∈ Tn, every material symmetry is a physical symmetry, i.e :

GM(P ) ⊂ GT(P ).

It is important to note that this is only an inclusion, indicating that the physical properties emerging from a
microstructure may be more symmetrical than this one. This principle state that the material symmetry group
is always a subgroup of the physical symmetry group.

In the case of tensor properties, Hermann’s theorems give sufficient conditions for having hemitropic and
isotropic physical properties.

2.1.2 The orthogonal group O(2)

The group of invertible linear transformations of R2 is denoted GL(2)
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2.1. FROM MATERIAL INVARIANCE TO PHYSICAL SYMMETRY

Definition 2.1.2 (Linear Group). The linear group in R2 is defined as

GL(2) = {g | detg ̸= 0} (2.5)

Let consider O(2) the subset of invertible transformations g of R2 satisfying g−1 = gT , i.e.

O(2) := {g ∈ GL(2),gT = g−1}

This set equipped with the classical product has the algebraic structure of a group, that is

Definition 2.1.3. A group is a set G together with a multiplication on G which satisfies four axioms [11]:

1. (Closed) Multiplication of any ordered pair g,h of elements from the set G imply a unique "product" g ·h
which also lies in the set G.

2. (Associative) g · (h · k) = (g · h) · k for any three (not necessarily distinct) elements from G.

3. (Existence of an identity element) there is an element e ∈ G, called an identity element, such that
g · e = e · g = g for ∀g ∈ G.

4. (Existence of an inverse) each element g ∈ G has a (so called) inverse g−1 which belongs to the set G and
satisfies g−1 · g = e = g · g−1.

O(2) is called the orthogonal group and is the set of vectorial isometries. This is a non commutative group
of dimension 1 generated by:

• r(θ) is the rotation by an angle θ;

• π(n), in which π(n) is the reflection across the line normal to n:

π(n) := I
∼
− 2n⊗ n, ∥n∥ = 1,

with I
∼

the second order identity tensor.

Those generators satisfy the presentation relation

π(n)r(θ) = r(−θ)π(n)

In terms of matrix we have,

r(θ) =

(
cos θ − sin θ

sin θ cos θ

)
with 0 ≤ θ < 2π and π(e2) =

(
1 0

0 −1

)
.

As a special transformation we mention the inversion i2 = −I
∼
, with in R2 i2 = r(π), and which matrix

representation is

i2 =

(
−1 0

0 −1

)

Among O(2) we can identify an infinite collection of closed subgroups [11]:

• Id is the identity group;

• Zπ(n)
2 is the cyclic group1 with 2 elements, generated by π(n);

• Zk(k ≥ 2) the cyclic group with k elements, generated by r(2π/k);

• Dn

k (k ≥ 2) is dihedral group2 with 2k elements generated by r(2π/k) and a mirror through an axis n;

• SO(2): the special orthogonal group generated by r(θ), it can be viewed as the infinite cyclic group when
k →∞;

• O(2): the full orthogonal group, which can be viewed as the infinite dihedral group when k →∞.
1A group is said to be cyclic if it is monogene and finite, meaning it is generated by an unique element q satisfying qk = e for a

given k.
2A group is said to be dihedral if it is finite and generated by two elements q and s verifying the following relation qk = s2 =

(qs)2 = e.
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2.1. FROM MATERIAL INVARIANCE TO PHYSICAL SYMMETRY

In the notion of a group, the orientation of the symmetry elements is important. Among O(2) subgroups,
this point is particularly important for Dn

k dihedral groups because, for a given k, Dn1
k and D

n2
k can have non-

coincident mirror symmetry lines. An example of such a situation is depicted on figure 2.3. The subfigure 2.3a
depicts a geometry which is invariant with respect to D

e2
4 , while the subfigure 2.3b is let invariant with respect

with Dn
4 , with n ̸= r( kπ

2
) · e

2
, k ∈ Z.

e1

e2

(a) D
e2
4

e1

e2
n

(b) D
n
4

Figure 2.3: An example showing the difference between D
n
4 and D

e2
4 symmetries.

In this situation the two groups D
e2
4 and Dn

4 are different but are of the same type, they are said to be
conjugate. The general definition is as follows

Definition 2.1.4. Two subgroups H1 and H2 of a group G are said to be conjugate if ∃g ∈ G such that
gH1g

−1 = H2

From this idea, we can define the conjugacy class of subgroup H < G, denoted [H] as the collection of
subgroups of G that are conjugate to G:

[H] := {H∗ = gHgT ∈ G,g ∈ G} , (2.6)

This notion of conjugacy class will be important for future discussions as it allows us to characterise the type
of symmetry an object has, rather than the specific symmetries it has about a given orientation.

Theorem 2.1.5. The conjugacy classes of O(2)-closed subgroups are

{[1], [Zπ

2 ], [Zk], [Dk], [SO(2)], [O(2)]}k>1

in which Zπ
2 and Dk stands for Z

π(e2)

2 and D
e2
k .

Chirality and non-centrosymmetry

O(2)-subgroups and their classes have been introduced in terms of the nature of their generators, before closing
this section it is interesting to look at their geometric content. To that aim we will consider geometric figures
that are left fixed by each kind of group and look at their symmetry properties. Consider the following figure
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Trichiral : Z3

X

Y

Z

r(π) //

π(n)

��

Hexachiral : Z6

X

Y

Z

π(n)

��

Trigonal : D3

X

Y

Z

r(π) //

Hexagonal : D6

X

Y

Z

Figure 2.4: Examples of geometries showing the differences between trichiral, hexachiral, trigonal and hexagonal symmetries.

It appears that the Z3- and Z6-invariant figures do not possess mirror invariance and can therefore turn
left or right. As such, they will be called chiral. It can be observed that Z6- and D6-invariant figures are
centro symmetric, meaning that they are invariant under the transformation i2 which correspond, in R2 to r(π),
this properties is clearly not satisfied by the Z3- and D3-invariant figures. Hence from this example introduce
the notions of chirality and centrosymmetry. These concepts are very important for the intended physical
applications. For a more formal defintion:

Definition 2.1.6. A subgroup of O(2) will be said to be:

• centrosymmetric (denoted by I) if it contains the inversion r(π), and non-centrosymmetric (I) otherwise;

• chiral (noted c) if it only contains rotations, and achiral (noted c) otherwise (i.e. if it contains reflections).

O(2)-closed subgroups can be divided into four subsets according to the nature of their generators. The
different situations are reported in the following table:

I I

c D2k D2k+1

c Z2k Z2k+1

Theorem 2.1.7 (Hermann Theorem). ConsiderM be a microstructure and T ∈ Tn a non-degenerate nth-order
tensor describing a physical property emerging from M.





Zn+1 ⊂ GM ⇒ GT ⊃ SO(2)

Dn+1 ⊂ GM ⇒ GT = O(2)

The figure 2.5 is an illustration of the Hermann theorem in linear elasticity. The geometry of a honeycomb
material is D6 (left hand side figure), the effective elastic properties of such a material are described by a fourth-
order elastic tensor. As a consequence of Hermann theorem in R2, the effective elasticity must be isotropic.
The figure on the right illustrates the propagation of a wave from a point source in the effective continuum, the
propagation being isotropic.
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2.2. THE GEOMETRY OF THE STRESS SPACE

Figure 2.5: Wave propagation in an effective elastic continuum having hexagonal microstructure [148].

2.2 The geometry of the stress space

In the literature, threshold surfaces are most often expressed as surfaces in stress space. We will follow this
approach here, and the stress tensor will therefore be the central variable in our study. Because of this central
role, we will devote this section to recalling the basic properties of this tensor and of the space to which it
belongs. The emphasis will be on the geometry of this space and on the way in which a tensor transforms
under the action of the group of isometries. It is important to have a clear vision of this geometry in order to
construct threshold surfaces and understand their physical content.

2.2.1 The stress tensor (2D)
Let define, within the two-dimensional Euclidean space E2, a reference frame associated to a point O and an
orthonormal basis B = {e1, e2}. This permits to identify E2 with the vector space R2 and to labelled any point
P by it position vector x = OP. Consider a domain Ω ∈ R2 as shown in figure 2.6

Figure 2.6: Stress vector exerted on a point of material surface Γ of Ω

Consider a surface Γ ∈ R embedded within Ω. Let n(x) be the normal vector to Γ at point x, we denote by
t(x,n) the traction vector exerted at x on the infinitesimal surface γ ∈ R tangent to Γ. According to Cauchy’s
fundamental theorem [73], there exists a second order tensor field σ

∼
such as

t(x,n) = σ
∼
(x) · n, n ∈ Γ (2.7)

At a point x we can look at the stress vector exerted on the facet of normal e
i
, let us denote t(x, e

i
) the resulting

vector. This vector can be decomposed with respect to B, the associated matrix expression condenses this
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information into a table :

[σ
∼
] =

(
t(e1).e1 t(e2).e1

t(e
1
).e

2
t(e

2
).e

2

)

B

=

(
σ11 σ12

σ21 σ22

)

B

, (2.8)

where σii are normal stresses and σij, i ̸= j are shear stresses. The components of σ
∼

can be interpreted as follows

σij = t(e
i
).e

j

meaning that σij is the projection along e
j

of the traction vector acting on the facet of normal e
i
. The first

index i indicates that the stress acts on a plane normal to e
i
, while the second index j indicates the direction

in which the stress acts.

The local angular momentum equation reads in 2D

ϵ
∼

.. σ
∼
= m

with m the volumic density of torque, and ϵ
∼

the Levi-Civita symbol in R2 which is defined as

[ϵ
∼
] =

(
0 1

−1 0

)

In R2 this quantity is a pseudo-scalar. This equation expresses that the antisymmetric part of σ
∼

equilibrates m.
In most of classical situations [73, 78] m = 0, leading to a symmetric stress tensor. This hypothesis will always
be considered in the following. As a consequence, the space of stress tensors corresponds to

σ
∼
∈ Ls(R2,R2) ≃ S2(R2), (2.9)

in which Ls(R2,R2) denotes the space of linear symmetric applications of R2 and S2(R2) is the space of symmetric
second-order tensors on R2.

2.2.2 O(2)-action on S2(R2)

As well-known, any stress tensor can be decomposed into a deviatoric part σ
∼

(2) and a spherical part σ
∼

(0) as
follows:

σ
∼
= σ

∼

(2) + σ
∼

(0), with





σ
∼

(0) =
1

2
tr(σ

∼
)I
∼
,

σ
∼

(2) = σ
∼
− σ

∼

(0).
(2.10)

This decomposition can be expressed in terms of projectors as follows

σ
∼

(2) = P
≈

2 : σ
∼
, σ

∼

(0) = P
≈

0 : σ
∼
.

in which P
≈

2 and P
≈

0 are, respectively, the deviatoric and spherical projectors. They are defined as follows:

P
≈

0 =
1

2
I
∼
⊗ I

∼
; P

≈

2 = I
≈
− P

≈

0. (2.11)

with I
∼

and I
≈

the second and fourth order identity tensors. In this notation

1. the exponent 0 is associated with spherical part because it depends on one scalar;

2. the exponent 2 is associated with deviatoric part because it is a second-order tensor.

The following table (0
≈

is 4th order null tensor) indicates that the projectors are orthogonal

: P
≈

2 P
≈

0

P
≈

2 P
≈

2 0
≈

P
≈

0 0
≈

P
≈

0

Table 2.1: The orthogonality of the projectors P
≈

2 and P
≈

0.
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It results that the space S2(R2) can be decomposed orthogonally as follows:

S2(R2) ≃ K0 ⊕K2

in which K2 denotes the space of traceless second-order symmetric tensors and K0 the space of spherical tensors.
This decomposition is also called [13, 60] harmonic decomposition (or O(2)-irreducible decomposition). A
concept on which we will dwell in the next chapter 3.

Principal stresses and Invariants (2D)

Since σ
∼

is a symmetric tensor, its matrix can be diagonalized. Let us denote by σ1 and σ2 the eigenvalues of σ
∼

called the principal stresses in the present physical context. In the basis P of its eigenvectors,

[σ
∼
] =

(
σ1 0

0 σ2

)

P

, with σ1 ≥ σ2 (2.12)

The principal stresses σ1, σ2 are the solutions of the equation:

det (σ
∼
− λI

∼
) = λ2 − I1λ+ I2 = 0, i.e. σ1,2 =

I1 ±
√
I2
1 − 4I2

2
(2.13)

in which I1 and I2 are symmetric polynomials in σ1 and σ2 of σ
∼
:

I1 = tr(σ
∼
) = σ1 + σ2 ; I2 = det(σ

∼
) = σ1σ2. (2.14)

Those quantities are invariant with respect to the action of O(2). Since σ
∼

can be decomposed as follows:

[σ
∼
] = [σ

∼

(2)] + [σ
∼

(0)] =
σ1 − σ2

2

(
1 0

0 −1

)

P

+
σ1 + σ2

2

(
1 0

0 1

)

P

,

it is obvious that in the case σ1 = σ2, the deviatoric part vanishes and σ
∼

reduces to its spherical part

[σ
∼
] = σ1

(
1 0

0 1

)

P

.

The polynomial invariants of σ
∼

(2) are as follows:

J1 = tr(σ
∼

(2)) = 0 ; J2 = σ
∼

(2) : σ
∼

(2) =
1

2
(σ1 − σ2)

2. (2.15)

It can be observed that
J2 =

1

2
(I2

1 − 4I2) =
∆

2
,

which correspond to the discriminant ∆ of the characteristic polynomial. (I1, I2) constitutes a polynomial basis
that allows to write any invariant polynomial in σ

∼
as a polynomial with respect to (I1, I2). Polynomial invariants

are labelled according to the following convention: their index indicates the degree of the associated polynomial,
i.e. Ik is an homogeneous polynomial of degree k in the components of σ

∼
. Using results from [204, 61] we obtain

Proposition 2.2.1. A minimal integrity basis for the invariant algebras Inv(S2(R2),SO(2)) and Inv(S2(R2),O(2))
is given by

{I1 = trσ
∼
, J2 = σ

∼

(2) : σ
∼

(2)}

in which Inv(V,G) = R[V]G is the algebra of G-invariant polynomials on V.

The orbit of stress tensor

The O(2)-action on S2(R2), is the classical tensorial action, i.e.

(σ
∼

∗)ij = (g ⋆ σ
∼
)ij = gikgjlσkl. (2.16)

This is particular case of the general formula (2.3). In this definition, we retain the active interpretation of
transformations, this is an important point that deserves being discussed. This means that the transformation
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of an object gives rise to a new object which is usually different from the original object. This interpretation
has to be distinguished from the passive interpretation in which the object is unchanged but the basis used for
its description is transformed. The difference between of point of view is illustrated in figure 2.7.

Figure 2.7: Active transformation on the left figure: a new vector is obtained; Passive transformation on the right figure, in
which only the basis is changed

Starting from this, we can define the O(2)-orbit of a stress tensor σ
∼

as the set of stress tensors resulting from
all applied transformations O(2) on σ

∼

Orb(σ
∼
) =

{
σ
∼

∗ ∈ S2(R2)|σ
∼

∗ = g ⋆ σ
∼
, ∀g ∈ O(2)

}
. (2.17)

Figure 2.8: The SO(2)-orbit of a stress tensor σ
∼

corresponds to the set of all the rotated states of stress. In the figure, the orange
ellipsoids represent the stress states, while the material, with its preferred directions, is shown in blue.

This definition can be restricted to a subgroup H of O(2), and we define the H-orbit of the stress tensor
Orb(σ

∼
,H) as

Orb(σ
∼
,H) =

{
σ
∼

∗ = g ⋆ σ
∼
, ∀g ∈ H

}
. (2.18)

The following result is demonstrated in appendix ii.3

Proposition 2.2.2. For σ
∼
∈ S2(R2), Orb(σ

∼
,O(2)) = Orb(σ

∼
,SO(2))

This result is not generic and depends on the specific nature of the vector space under consideration; for
more generic spaces, the orbits with respect to SO(2) and O(2) would be distinct. For instance, in the case of
an asymmetric stress tensor, the orbits will be different depending on the considered group. In our case, this
property can be read from theorem 2.2.1. Since the integrity bases, with respect to SO(2) or O(2), are identical,
the orbits are also identical. More details can be found in appendix ii.

Since the orbits are identical, the study can be restricted to SO(2)-action, considering r ∈ SO(2) instead of
general g ∈ O(2). Hence, considering any σ

∼

⋆ ∈ S2(R2), any point in Orb(σ
∼

⋆) is parameterised by θ ∈ [0, π[:

σ
∼
(θ) = r(θ) ⋆ σ

∼

(0).
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The function σ
∼
(.) is a π-periodic. Since every orbit intersects the space Span (e1 ⊗ e1, e2 ⊗ e2) the diagonal

form is a natural choice for parameterising the orbits. This geometric picture of the stress orbit will be further
detailed in the next subsection.

With this image in mind, we can see that there are two types of orbit for a stress tensor, either

• σ1 = σ2, the stress tensor is spherical and therefore isotropic. Its orbit is reduced to a single point;

• σ1 ̸= σ2, the stress tensor is orthotropic, its orbit is a circle since

∥σ
∼
(θ)∥ = ∥σ

∼

(0)∥, ∀θ

2.2.3 Geometric representation in R3

Upon the choice of a basis V = S2(R2) can be identified with R3. It results that stress tensors can be represented
as points in R3. We will take advantage of this particular situation3 to construct a geometric picture of the
stress space in R2.

A first natural basis of V is given by the orthonormal Kelvin basis K = {ê1, ê2, ê3} defined by:

ê
∼1

= e
1
⊗ e

1
, ê

∼2

= e
2
⊗ e

2
, ê

∼3

=
1√
2
(e

1
⊗ e

2
+ e

2
⊗ e

1
).

σ
∼

can be pictured as a vector with respect to K:

{σ
∼
}K =




σ11

σ22√
2σ12




K

. (2.19)

Associated to this picture of V, we consider the group O(3), which is the set of linear isometries acting of
S2(R2) ≃ R3. Its action on an element σ

∼
of V gives a new element σ

∼

♯ of V,

σ
∼

♯ = G · σ
∼
, G ∈ O(3),

O(3) contains as a subgroup the group of physical transformations O(2)k, in which k denotes in R3 the axis of
physical rotations. But in O(3) there are also additional transformations, whose physical content will be studied
later. The notion of O(3)-orbit can be defined

Orb(σ
∼
,O(3)) =

{
σ
∼

♯ ∈ V, σ
∼

♯ = G · σ
∼
, ∀G ∈ O(3)

}
. (2.20)

It can be demonstrated that4

Lemma 2.2.3. The action of O(3) on R3 can be reduced to SO(3).

It results that the definition of the orbit can be restricted to Orb(σ
∼
,SO(3)), and we have the obvious

relationship
Orb(σ

∼
,SO(2)k) ⊂ Orb(σ

∼
,SO(3)),

when σ
∼
= 0 the orbits are reduced to a point and are therefore coincident, in the general case the inclusion is

strict.
3In R3 the situation is far more complex since S2(R3) should now be embedded in R6.
4A proof is provided in Appendix iii.1.
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σ11

σ22

√
2σ12

k

Orb(σ
∼
, SO(3))

hydrostatic axis

Orb(σ
∼
, SO(2)k)Orb(σ

∼
, SO(3)) = Orb(σ

∼
, SO(2)k) when σ

∼
= 0

∼

Figure 2.9: The inclusion of Orb(σ
∼
, SO(2)k) in Orb(σ

∼
, SO(3)) in the stress space.

Polar parameterisation of stress tensor

Let us get back to the parameterisation of the stress tensors from an original diagonal one, i.e. σ
∼

∗ = r(θ) ⋆ σ
∼

0.
The vector form of σ

∼

∗ with respect to K is

{σ
∼

∗} =




σ∗
11

σ∗
22√
2σ∗

12




K

=




1

2
(σ1 + σ2 + (σ1 − σ2) cos(2θ))

1

2
(σ1 + σ2 − (σ1 − σ2) cos(2θ))

√
2

2
(σ1 − σ2) sin(2θ)




K

, (2.21)

and we observe that for θ = 0, the original diagonal form is retrieved. The orbit parameterisation can be
expressed as

{σ
∼

∗} =



σm + σeq cos(2θ)

σm − σeq cos(2θ)√
2σeq sin(2θ)




K

. (2.22)

where

σm =
1

2
(σ1 + σ2) =

1

2
I1 ; σeq =

1

2
(σ1 − σ2) =

√
J2

2
(2.23)

In this parametrisation θ ∈ [0, π[ represents the orientation of σ
∼

∗ with respect to σ
∼

in the diagonal form. It can
be seen that σm and σeq are O(2)-invariants related to the spherical and deviatoric part of the stress tensor.
The form given by equation (2.22) is known as the polar parametrisation of σ

∼
[43, 184].

Geometrically, in the stress space, consider a point C which coordinates with respect to Kelvin basis are
(σ∗

11, σ
∗
22,
√
2σ∗

12). The polar parametrisation of σ
∼

∗ has the geometric content depicted in figure 2.10. The

coefficient σm is related to the length of the segment [OB] =
√
2σm along the hydrostatic axis (red line) defined

by the direction (1, 1, 0).
√
2σeq is the radius of the blue circle in the plane (D) normal to the hydrostatic axis.

The parameter 2θ represents the angle ̂⟨BD,BC⟩. The blue circle thus, represents the orbit of the stress tensor.
In the orbit, we have two particular cases. When the value of θ is kπ and π

2
+ kπ (k ∈ {0, 1}), the point C

touches the plane σ12 = 0. This indicates that we are in the diagonal form since no shear stress is present. Both
cases represent a permutation of the principal stresses, this phenomenon is known as monodromy [17].

This representation evidences two interesting points:

• (i) when the orientation is changed by θ, we have a rotation of an angle of 2θ along the hydrostatic axis;

• (ii) in the stress space the hydrostatic axis and the deviatoric plane (the D plane) are perpendicular.
It results an interesting basis (which we call harmonic basis) in which the deviatoric and spherical (or
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hydrostatic) part of the stress tensor are orthogonal. This splitting is useful for parameterising threshold
functions.

σ11

σ22

√
2σ12

O

B

C

D
σ1

σ2

σ2

σ1
√
2r

α

α

2θ

D

Figure 2.10: The geometric signification of polar parameterisation in the stress tensor space.

Harmonic basis

As a consequence of the previous observation, it is interesting to change the basis to a system compatible with
the harmonic decomposition of σ

∼
. For this purpose we consider the orthonormal basis H = {f̂

1
, f̂

2
, f̂

3
} defined

as follows
f̂
1
=

1√
2
(ê

1
− ê

2
) ; f̂

2
= ê

3
; f̂

3
=

1√
2
(ê

1
+ ê

2
). (2.24)

with the following properties:
K2 = span{f̂1, f̂2}, K0 = span{f̂3}.

The change of basis results from the change of variables (σ11, σ22, σ12)→ (σd1
, σd2

, σh)





σd1
=

σ11 − σ22√
2

,

σd2
=
√
2σ12,

σh =
σ11 + σ22√

2
.

leading to the passage matrix

[M] =




1√
2
− 1√

2
0

0 0 1
1√
2

1√
2

0




,

such as
{σ

∼
}H = [M]{σ

∼
}B, (2.25)

with

{σ
∼
}H =



σd1

σd2

σh




H

. (2.26)

The harmonic basis is depicted in figure 2.11. In the harmonic basis, the orthogonality of the deviatoric
part and the spherical part of the stress tensor is clear. Indeed, σh is directly related to σm (equation (2.10))
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and σd1
and σd2

are the components of σ
∼

(2).

{σ
∼
} =



σd1

σd2

σh




H

=



σeq cos(2θ)

σeq sin(2θ)√
2σm




H

.

The polar parameterisation expressed in the harmonic basis corresponds to cylindrical coordinates:

σ
∼
= σeq

(
cos(Θ)f̂1 + sin(Θ)f̂2

)

︸ ︷︷ ︸
f̂Θ

+σh f̂3 = σeq f̂Θ + σh f̂3,

with Θ = 2θ. Any change in the orientation of the stress tensor means a rotation along f̂
3
. It is clear that the

subgroup of O(3) which corresponds to the physical transformations of R2 is O(2)f̂3 .

σd1

σd2

σh

C

r = σeq

√
2σm

Θ
D

Figure 2.11: Representation of the orbit of σ
∼

in harmonic cylindrical coordinates.

In this picture, the orbits with respect to the physical transformation are either points when the constraint
is purely hydrostatic, or circles in the generic cases. The altitude of the orbit indicates the level of hydrostatic
stress. Changing the sign of the hydrostatic stress is equivalent to taking the symmetric of the orbit with respect
to the deviatoric plane.

This observation leads us to extend the set of transformations to include generalised transformations acting
on the loading parameters. To that aim, introduce ρ the intensity of the loading. This quantity is the norm
of σ

∼
and correspond to the length of the stress vector in the R3 picture. In terms of O(2) invariants, we have

ρ = 1

2

√
I2
1 + 2J2. Introducing the loading angle φ defines as follows

φ = arctan
σh

σeq

,

the stress state is parameterised as follows


σd1

σd2

σh




H

=



ρ sin(φ) cos(2θ)

ρ sin(φ) sin(2θ)

ρ cos(φ)




H

. (2.27)

It can be observed that

σ
∼
= ρ

(
sin(φ) cos(Θ)̂f1 + sin(φ) sin(Θ)̂f2 + cos(φ)̂f3

)
= ρf̂ρ.
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In other words, it amounts to introducing spherical coordinates. The harmonic spherical coordinate system is
illustrated in figure 2.12. Compared to the harmonic cylindrical coordinates (and to polar parametrisation), we
have added another rotation in the stress space. The group of transformations on a vector in R3 is now the full
orthogonal group5 O(3). But its action can be reduced according to SO(3) according to the lemma 2.2.3.

In the present context, it is the set of transformations that lead from one state of stress to another state of
equal intensity.

σd1

σd2

σh

C

ρ

√
2σeq

Θ

φ

D

Figure 2.12: Representation of the harmonic basis (spherical coordinates).

Synthesis :
In the spherical parametrisation of σ

∼
provided by equation (2.27):

• θ is associated to the physical orientation of the stress tensor;

• φ is the ratio of the hydrostatic stress to the shear stress

– φ = 0: purely positive hydrostatic stress;

– φ =
π

2
: purely deviatoric

– φ = π: purely compressive hydrostatic state.

Remark 2.2.4. The operation
σ
∼
→ −σ

∼
,

which corresponds to the inversion in R3 is obtained by rotation of π

σ
∼
(θ, ϕ)→ σ

∼
(θ, ϕ+ π).

5In fact, it can be demonstrated that this action can be reduced to SO(3).
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2.3 Threshold criterion theory in a nutshell

The transition of the behaviour of a material from elasticity to anelasticity occurs when the stress level reaches
a critical state in the stress space6. The threshold point is mostly determined experimentally (tensile tests).
The set of threshold points defines in S2(R2) ≃ R3 a surface that will be denoted S and called the threshold
surface.

2.3.1 Threshold surface
Consider S as a geometric object in R3, and denote by P(h) the intersection of S with the affine plane of
equation σh = h. The symmetry group of the slice P(h) will be denoted G2D

P(h), it is conjugate to a subgroup of
O(2). For S, its symmetry group will be noted GS , generally speaking

GS := {g ∈ GL(3)| g · S = S}.

Physical information of various kinds is contained in GS . From it we can obtain G3D
S = GS ∩ O(3), which is

the group of linear isometric transformations leaving the 3D surface invariant. It includes rotations, mirror
symmetries, inversion and their products. As such G3D

S is conjugate to a closed subgroup of O(3).
This group characterises the overall symmetry of the surface, which includes both spatial anisotropy and

load sensitivity. To study the spatial anisotropy of the criterion, cross-sections by planes parallel P(h) to the
deviatoric plane need to be made. In this notation h indicates the value of the hydrostatic stress. Two notions
will here be introduced and considered,

• G2D
P(h), it is the symmetry group (in R2) of the restriction of the threshold surface to the plane P(h). It

characterises the spatial anisotropy associated to a certain level of hydrostatic stress.

• G2D
S =

⋂
h
G2D

P(h), it is the intersection of the symmetry group of all the cross section of S by parallel devi-
atoric planes. It characterises the global anisotropy of the criterion. This group can also be characterises
by the restriction to O(2) ∈ R2 of

GS ∩O(2)(−,̂f3),

and will be called the column symmetry group of S.

The intensity of the stress is evaluated through a function F defined as follows:

F : S2(R2) −→ R+,

σ
∼
−→ F (σ

∼
),

(2.28)

F is the equivalent stress function7. Let us denote by σlim ∈ R∗
+ the threshold stress. The surface S in the stress

space is the level set F−1(σlim):
S =

{
σ
∼
∈ S2(R2), F (σ

∼
)− σlim = 0

}
.

As long as F < σlim the material is in its elasticity domain, when F = 0 the system is at the boundary of its
elasticity domain and we have a transition to another behaviour such us plasticity, damage, buckling ... etc.

Depending on the experimental observations, one can specify different additional properties to be satisfied
by F :

• insensitivity to hydrostatic pressure:
∂F

∂σh

= 0,

in such a case the transformation
g = I+ λf̂3 ⊗ f̂3,

for λ ̸= 0 belongs to GS . The surface S is a cylinder along f̂3.

• symmetry with respect to the reversal of the load :

F (−σ
∼
) = F (σ

∼
),∀σ

∼
∈ S2(R2).

6It should be noted that most of the examples come from work on plasticity. Interesting reviews related to plasticity can be
found in [20, 150]. In the context of plasticity additional constraints can be placed on the threshold functions, notably convexity
criteria. These restrictions will not be considered in the following discussion.

7It should be noted that the equivalent constraint function as defined is not a norm. A norm should verify the property that
∥σ
∼
∥ = 0 ⇒ σ

∼
= 0. This property is not verified by, for example, the equivalent Von-Mises constraint function.
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In such a case the transformation8 i3 belongs to GS . The surface S is centrosymmetric.

• the maximum order of discrete rotational invariance which can be described as anisotropic by F .

The previous examples illustrate 3 types of invariance of different nature. The first one concerns the choice
of the model, the second one concerns the invariance with respect to the loading while the last one concerns the
anisotropy of the material. We will not go back to the first type of invariance here, and before looking in detail
at the anisotropy we will characterise the invariances associated with mechanical loading.

2.3.2 Relation with the material symmetry group
It is important to observe that, even if related to the anisotropy of the material, the symmetry group G2D

P(h) of
a slice of S is not the physical symmetry group GP .

Indeed the azimuthal angle Θ of the surface is twice the physical angle θ, parameterised with respect to
this angle the surface covers only the angular sector [0, π]. To obtain the complete surface, and to read the
anisotropy of physical properties, it is necessary to add the angular sector [π, 2π], that is to consider two periods
instead of one. This is illustrated graphically in figure 2.13. In fact any symmetry of order n observed on any
slice corresponds to a physical invariance of 2n.

Figure 2.13: The symmetry group of the slice is half the symmetry group of the physical property

The symmetry group of the material and the symmetry group of a cross-section are related by the Currie-
Neumann principle, which states that :

GM ⊂ GP .

To be more precise, we have the following property

Zn ⊂ GM ⇒





Zn/2 ⊂ GP , n = 2p

Zn ⊂ GP , n = 2p+ 1

This means, for example, that a material with hexagonal symmetry will have a threshold surface with an axis
of invariance in rotation of order 3. Note that a material with 3rd order rotational symmetry will also have a
surface with a 3rd order rotational invariance axis.

2.3.3 Invariance with respect to O(3)

G3D

S := {g ∈ O(3)| g · S = S}.
It is the group of linear isometries of S. It includes rotations, mirror symmetries, inversion and their products.
As such G3D

S is conjugate to a closed subgroup of O(3).
To characterise the geometry of the threshold surface, the following transformations are important

1. For the anisotropy
8i3 denotes the inverssion in R3, i.e. the transformation which matrix representation is

[i3] =

−1 0 0

0 −1 0

0 0 −1

 .
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(a) i2 = r(π, f̂3), the in-plane inversion9;
(b) π(̂f2), in-plane miror symmetry;

2. For the loading

(a) π(̂f
3
), the mirror symmetry with respect to the deviatoric plane, i.e. the operation that changes the

sign of the hydrostatic stress:
(σ
∼

(2), σh)→ (σ
∼

(2),−σh),

(b) i3, the inversion, i.e. the operation that change the sign of σ
∼
:

σ
∼
→ −σ

∼
.

The inversion can result from the combination of the in-plane centro symmetry and π(̂f
3
).

To be more specific we should now introduce definitions relative to the closed subgroups of O(3). Classifica-
tion of O(3)-closed subgroups is classical [100, 176]. Following Golubitsky and al. [83], O(3)–closed subgroups
can be described using three types of subgroups. These subgroups are defined as follows, where e is the neutral
element in O(3):

Type I (Chiral) A subgroup Γ is of type I if it is a subgroup of SO(3). Type I subgroups are also said to be
chiral subgroups;

Type II (Centrosymmetric) A subgroup Γ is of type II if i ∈ Γ. In that case, Γ = K ⊗ Zc
2 where K is some

SO(3) closed subgroup and Zc
2 := { e, i }. Type II subgroups are also said to be centrosymmetric

Type III A subgroup Γ is of type III if i /∈ Γ and Γ is not a subgroup of SO(3).

To have a geometrical picture of these groups some illustrations are provided. In figures 2.15, 2.16 and 2.17,
the geometries are invariant with respect to groups of type I, II and II are provided. On these figures:

• the rotational order of the invariance is indicated on the rotation axis (depicted with an arrow);

• symmetry planes are indicated in solid lines and without arrow;

• arrows drawn on the figures indicate the spin of the object. The presence of spin is due to chirality.

8

(a) a

8

2

(b) b

Figure 2.14: Type I invariant figures: (A) is SO(2)-invariant, while (B) is O(2)-invariant.

4

(a)

4

2

2

2
2

(b)

Figure 2.15: Type I invariant figures: (A) non regular oriented tetrahedron, Z4-invariant (Chiral and Polar), while (B) non cubic
twisted rectangular parallelepiped, D4-invariant (Chiral).

9Attention due to the doubling of the angle, the in-plane centro-symmetry corresponds to a rotation of angle 2θ = π, thus to
material invariance by rotation of θ = π

2

48



2.3. THRESHOLD CRITERION THEORY IN A NUTSHELL

(a)

4

2

2

2
2

(b)

Figure 2.16: Different invariant figures of Type II: (A) is Z4 ⊗ Zc
2-invariant, while (B) is D4 ⊗ Zc

2-invariant. The central inversion
is indicated by a dot.

4

(a)

4

(b)

Figure 2.17: Type III invariant figures: (A) non regular tetrahedron, Z−
4 -invariant, while (B) is Dv

4-invariant (Polar). The
diamond shape indicates an axis of rotoinversion.

From a physical point of view:

Type I (Chiral) The surface S does not posses mirror symmetries, nor centrosymmetry. The threshold surface
is asymmetric in traction compression. No type I threshold surface seems to have been identified in the
literature so far;

Type II (Centrosymmetric) The surface S is centrosymmetric but may not necessary possess symmetry
planes. The threshold surface is symmetric in traction compression; classical symmetric threshold functions
always possess a type II symmetry group;

Type III The surface S is not centrosymmetric but possess symmetry planes. The threshold surface is asym-
metric in traction compression; classical asymmetric threshold functions are of type III.

Let us consider some examples.

2.3.4 Geometric analysis of some criteria

Cazacu isotropic criterion

Let us take up the isotropic criterion of Cazacu as it has been introduced section 1.1.2.
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Figure 2.18: Threshold surface defined an example of cazacu’s criterion

The criterion is isotropic as can be observed in figure 2.19 on any cut of the surface by plane

σh = k.

Hence, for all k, G2D
P(k) = O(2) and G2D

S = O(2).

-2 -1 1 2

σd1

Y

-2

-1

1

2

σd2

Y

Figure 2.19: The projections of Cazacu’s threshold surface on the deviatoric plane from bottom (black) to the above level (red).

Other cuts of the surface are given on the following figure:

(a) The plane σh = 0. (b) The plane σd1
= 0. (c) The plane σd2

= 0.

Figure 2.20: Cut of the Cazacu’s surface along different relevant planes
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As the criterion is asymmetric, the surface is not centro-symmetric, but it has vertical planes of symmetry
(the criterion is achiral). The symmetry group of the surface is therefore type III, more precisely

G3D

S = O(2)−.

A precise description of this group and its generators can be found in the section iii of appendix A.

Soare’s Poly4 anisotropic criterion

Consider now a the symmetric anisotropic fourth-order polynomial criterion introduced in chapter 1 section
1.2.2. Consider the threshold surface (yield surface) corresponding to the AA2090-T3 alloy [166]:

Figure 2.21: The threshold surface corresponding to Poly4 criterion for AA2090-T3 alloy [166].

The different sections of S by parallel planes are drawn on the figure below

-1.0 -0.5 0.5 1.0
σd1

-1.0

-0.5

0.5

1.0

σd2

Figure 2.22: The projections of Poly4 threshold surface on the deviatoric plane from bottom (black) to the above level (red).

The symmetry groups of the different slices are

G2D

P(k) =





Zπ
2 , k ̸= 0;

D2, k = 0.

Hence G2D
S = Zπ

2 . The rotation order of the physical invariance being twice the rotation order of G2D the criterion
is globally orthotropic. For σh = 0, the situation is degenerated and the criterion appears as tetragonal for this
loading. This situation is clear on the following slices:
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(a) The plane σh = 0. (b) The plane σd1
= 0. (c) The plane σd2

= 0.

Figure 2.23: The cuts of the threshold surface corresponding to Poly4 criterion for AA2090-T3 alloy along different relevant planes.

The criterion is symmetric, the surface is centro-symmetric and possess a vertical plane of symmetry (the
criterion is achiral). The symmetry group of the surface is therefore of type II, more precisely

G3D

S = D2 ⊗ Zc

2.

A precise description of this group and its generators can be found in the section iii of appendix A.

Wang’s anisotropic criterion

Consider the Wang criterion for equilateral triangular 2D lattice as introduced in section 1.3.2. The following
surface is obtained for a relative density of 0.15.

Figure 2.24: The threshold surface of equilateral triangular 2D lattice [188].

The different sections of S by parallel planes are drawn on the figure below
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-0.06 -0.04 -0.02 0.02 0.04 0.06
σd1

-0.06

-0.04

-0.02

0.02

0.04

0.06

σd2

Figure 2.25: The projections of Wang et al. threshold surface on the deviatoric plane from bottom (black) to the above level (red).

The symmetry groups of the different slices are

G2D

P(k) =





D3, k ̸= 0;

D6, k = 0.

Hence G2D
S = D3. The rotation order of the physical invariance being twice the rotation order of G2D the criterion

is globally D6. For σh = 0, the situation is degenerate and the criterion appears as D12 for this loading. This
situation is clear on the following slices:

(a) The plane σh = 0. (b) The plane σd1
= 0. (c) The plane σd2

= 0.

Figure 2.26: The cuts of the threshold surface of equilateral triangular 2D lattice [188] along different relevant planes.

The criterion is symmetric, the surface is centro-symmetric and possess a vertical plane of symmetry (the
criterion is achiral). The symmetry group of the surface is therefore of type II, more precisely

G3D

S = D3 ⊗ Zc

2.

A precise description of this group and its generators can be found in the section iii of appendix A.

Remark 2.3.1. These examples reveal an interesting general property. Surfaces whose symmetry group is of
the type Z2p+1⊗Zc

2 or D2p+1⊗Zc
2 have a column symmetry group G2D

S of type Z2p+1 or D2p+1. However the section
with σh = 0 has a symmetry group for which the rotation order is double i.e. GP(0) = Z2(2p+1) or D2(2p+1). We
see this phenomenon in the case of Soare’s Poly4 criterion (cf. fig.3.17.(a)) as well as Wang’s (cf. fig.3.18.(a)).
The reason for this is simple, the restriction of the inversion i3 to the plane σh = 0 is the rotation of order 2 in
this plane. This invariance applied to a figure which is non-centro symmetric in the plane, will double the order
of its rotation. This is particularly noticeable on the Wang surface, whose cross-section is generally triangular,
with the exception of the k = 0 cross-section, for which the intersection is hexagonal.
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Jeanneau’s anisotropic criterion

Consider the Jeanneau criterion for equilateral triangular 2D lattice introduced section 1.3.4 for which insatia-
bility in compression has been considered. The lattice is made of aluminium with of walls of length l = 10mm
and thickness t = 1mm. The obtained threshold surface (in the strain space) is illustrated in the following
figure.

Figure 2.27: The threshold surface of the a equilateral triangular lattice considering the buckling [103].

The different sections of S by parallel planes are drawn on the figure below

-0.010-0.005 0.005 0.010
εd1

-0.010

-0.005

0.005

0.010

εd2

Figure 2.28: The projections og the threshold surface of the a triangular lattice on the deviatoric plane from bottom (green) to
the above level (orange). [103].

This shows that the central symmetry is broken by the change of failure mechanism in tension and com-
pression. The symmetry groups G2D

P(k) of the different slices are D3. The symmetry group of the σh = 0 slice,
i.e. GP(0), does not present any particularity for the current surface. Different cuts are represented on the figure
below:
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(a) The plane ϵh = 0. (b) The plane ϵd1 = 0. (c) The plane ϵd2 = 0.

Figure 2.29: The cut threshold surface of the equilateral triangular 2D lattice [103] in the relevant planes.

The criterion is asymmetric, the surface possess three vertical planes of symmetry (the criterion is achiral).
The symmetry group of the surface is therefore of type III, more precisely

G3D

S = Dv

3 .

A precise description of this group and its generators can be found in the section iii of appendix A.

2.4 Anisotropic threshold function

This last subsection is devoted to the explicit modelling of an anisotropic polynomial threshold criterion. In a
first time the central notion of G−equivariant map will be introduced [83]. This notion is also known as the
Principle of Isotropic of Space [33] or Principle of Material Indifference [182]. We will first particularised this
notion to the case of isotropic functions to retrieve the classical results. We will move, in a second time, to the
case of anisotropic functions which motivate our study. The different strategies used in the literature to model
anisotropic functions will be reviewed and compared. It will be shown that in the case of polynomial function
F , the order of anisotropy to consider fixes the minimal degree of the polynomial in σ

∼
.

2.4.1 G−equivariant map
Let V and W two vector spaces on which the group G acts and consider a map ϕ between these spaces [137]:

ϕ : V −→W
u 7−→ v = ϕ(u)

The map ϕ is said G−equivariant if10

∀g ∈ G, ϕ(g
V
⋆ u) = g

W
⋆ ϕ(u)

which means that the following diagram commutes ∀g ∈ G,

u ∈ V
g

��

ϕ // v ∈W
g

��
u

ϕ // v

when obvious from the context the notation
W
⋆ is simplified as ⋆.

Particular case W = R

A particular interest is the situation for which W = R, in this case the action
W
⋆ reduces to the identity and the

equiavriance property G is expressed by

∀g ∈ G, ϕ(g ⋆ u) = ϕ(u)

In the context of mechanics the function ϕ is said to be G-invariant for G < O(2), and simply invariant or
isotropic if G = O(2).

10The notation
U
⋆ underlines the fact that the action depends on the space considered.
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Principle of Isotropy of Space

This principle can be formulated as follows. The ambient space being isotropic, the mechanical fields resulting
from an experiment do not intrinsically depends on the specific orientation of the experiment setting in space.

We consider a tensor-valued function T depending on 2 arguments, the first argument indicating the value
of a field A, the second describing the orientation of the material M.

T = ϕ(A,M)

The principle of isotropy of space indicates that this function is O(2)-equivariant.

∀g ∈ O(2), ϕ(g ⋆A,g ⋆M) = g ⋆T

That is, if the argument tensor and the material are rotated, the resulting tensor will be rotated in a concordant
manner

ϕ(g ⋆A,g ⋆M) = g ⋆T

g ⋆M

g ⋆A

M

T

A

Figure 2.30: Isotropy of space, transforming both the material (in blue) and the physical source field (in red) in the same way
transform the physical response field (in green) by the same transformation.

Anisotropy

When studying the anisotropy of a physical property, we are interested in the variation of T when either

• M is transformed relatively to A, i.e.
T = ϕ(g ⋆A,M)

• A is transformed relatively to M, i.e.
T = ϕ(A,g ⋆M)

The choice of one transformation over the other is a matter of point of view, what is important is that is testing
the consequence of the transformation of one field relatively to the others.

g ⋆M

M

T

A

T = ϕ(A,g ⋆M)

A

Figure 2.31: Anisotropy, on fixe chargement on tourne materiau
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2.4.2 Isotropic threshold criterion
In the context of threshold functions V = S2(R2) and W = R. The definition of an isotropic threshold function
F is:

∀g ∈ O(2), F (g ⋆ σ
∼
) = F (σ

∼
). (2.29)

Isotropic threshold functions are generally used for elastically isotropic materials. But basically nothing prevents
an elastically isotropic material from having an anisotropic plasticity limit. Only experiments can determine
this. Referring to the geometric framework introduced in section 2.2.2, equation (2.29) means that isotropic
functions are constant on O(2)-orbits. Since, as depicted on figure 2.10, generic orbit intersects the vector
space of symmetric matrices in two points, F depends on the eigenvalues of σ

∼
through elementary symmetric

polynomials11

F (σ
∼
) = f(I1, I2)

with I1 = σ1 + σ2, and I2 = σ1σ2. Further, since being able to separate the orbit of S2(R2), any integrity basis
is also a functional basis and can serve as a basis for constructing non-polynomial invariant functions [33, 147].

2.4.3 Anisotropic threshold criterion
Let us consider now the case of an anisotropic threshold function. Anisotropic functions are H-invariant functions
for H a closed subgroup of O(2), i.e

∀g ∈ H, F (g ⋆ σ
∼
) = F (σ

∼
). (2.30)

From a physical point of view, the group H correspond to GM the material symmetry group12. Unlike isotropic
functions, anisotropic functions depend on the orientation of σ

∼
with respect to specific material directions. The

function F is no more constant over the orbits but is still π-periodic.
In the literature, different strategies are used to model anisotropic threshold functions, we can mention :

1. Representation theorems [33, 204];

2. Tensor polynomial functions [167].

3. Linear transformations [27];

The the first two approaches are closely related and will be presented and discussed below. The third
approach will not be discussed further, and we refer the interested reader to the references already mentioned.
The results of this section will form the basis for the modelling choices made and developed in the next chapter.

It should be noted that most of the examples come from work on plasticity. Interesting reviews related
to plasticity can be found in [20, 150]. In the context of plasticity additional constraints can be placed on
the threshold functions, notably convexity criteria. These restrictions will not be considered in the following
discussion.

Group representation theorems

The most rigorous and versatile approach to anisotropic threshold function is to use group representation theory
[33, 204].

Consider an anisotropic material which material symmetry group GM = H, with H < O(2). Consider also a
collection of tensors Mk such as

⋂
k
GMk

= H. The tensors Mk belonging to this collection are referred to as
Structure Tensors [204].

The key property is the following one based on the equivariance properties discussed above.

Proposition 2.4.1. Any H-invariant function

∀g ∈ H, F (g ⋆ σ
∼
) = F (σ

∼
). (2.31)

can be reformulated as an O(2)-invariant function using a collection of tensors Mk such that
⋂

k
GMk

= H and
satisfying

∀g ∈ O(2), F̂ (g ⋆ σ
∼
,g ⋆Mk) = F̂ (σ

∼
,Mk). (2.32)

11Obviously, any integrity basis equivalent to (I1, I2) can be used, for instance the basis (I1, J2).
12The material is supposed to be homogeneous and hence the symmetry group do not depend on the choice of particular point.
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Proof. The equivalence is as follows. When studying anisotropy of F amounts to transforms the stress field
while keeping the material unchanged.

F (σ
∼
,M)→ F (g ⋆ σ

∼
,M)

If F is H-invariant,
∀g ∈ H, F (g ⋆ σ

∼
,M) = F (σ

∼
,M)

Since GM = H, the last relation is equivalent to

∀g ∈ H, F (g ⋆ σ
∼
,g ⋆M) = F (σ

∼
,M)

which holds for any g ∈ O(2) thanks to the Isotropy of Space.

Conversely consider the Principle of Isotropy of Space, for g ∈ GM = H

g ⋆M = M

and we obtain
∀g ∈ H, F (g ⋆ σ

∼
,M) = F (σ

∼
,M)

Hence any anisotropic function of σ
∼

can be reformulated as an isotropic function of σ
∼

and structure tensors.

The next step is the use of representation theorems, that will be formulated here in the framework of
polynomial invariant functions.

Theorem 2.4.2. Let V be a real vector space, there exists a finite set IB = {Ik} of O(2)-invariant polynomials,
such that any O(2)-invariant polynomial P on V, is a polynomial with respect to the elements of IB. The set
IB is the integrity basis of V for the O(2)-action.

Let us sketch out a general methodology:

1. Consider a collection of tensors Mk such that
⋂

k
GMk

= H and denote by K the space to which they
belong;

2. The space V is then V = S2(R2)⊕K;

3. Compute the O(2)-integrity basis IB of V. In R2, we have a general algorithm to determine such a basis
[61];

4. A H-invariant polynomial of degree n is a linear combination of monomials of degree n obtained from the
elements of IB.

One last point before closing this theoretical section and considering explicit examples, how to choose the
collection of structure tensors Mk associated to a subgroup H of anisotropy ? In R2, the simplest choice will be
to choose structure tensors as harmonic tensors.

Harmonic tensors

Harmonic tensors are the elementary building block of anisotropic tensors. For a more thorough introduction
of harmonic tensor in R2, we refer to [16]. Their definition is as follows:

Definition 2.4.3. Let Kn be the space of nth-order harmonic tensors in 2D, its elements are:

1. n-th order tensors: Ki1i2...in

2. symmetric with respect to the permutation of all the indices: K(i1i2...in)

3. traceless13: K(i1i2...ipip) = 0

13Since being completely symmetric all the traces of K are equivalent.
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Harmonic tensor are the nth-order generalisation to the notion of a deviatoric tensor. Harmonic tensors
have multiple interesting properties. Regarding their dimension, we have in R2

dimKn =





2, n ≥ 1;

1, n = {0,−1}.

O(2)-representation on harmonic tensors is very simple, for all n ≥ 1, O(2)-action on Kn is given by ρn:

ρn(r(θ)) :=

(
cosnθ − sinnθ

sinnθ cosnθ

)
, ρn(π(e2)) :=

(
1 0

0 −1

)
.

The O(2)-action on K0 is the identity and the O(2)-action on K−1 is given by the determinant of the transfor-
mation:

ρ0(Q) := 1, ρ−1(Q) := detQ. (2.33)

Hence submitted to a rotation of θ, a harmonic tensor in Kn>0 will turn at nθ. Its results from this, the
following results concerning the symmetry classes of harmonic tensors:

Theorem 2.4.4. Let I(Kn) denotes the set of all isotropy classes associated to Kn. The symmetry classes of
Kn are:

I(Kn) =





n ≥ 1, {[Dn] , [O(2)]}
n = −1, {[SO(2)] , [O(2)]}
n = 0, {[O(2)]}

.

with the convention that D1 = Zσx
2 .

This theorem is essential for our purposes. From it we can obtain the following result that define the needed
collection of structure tensors Mk to describe any H-invariant function as an O(2)-invariant one:

Proposition 2.4.5. H being a subgroup of O(2), it is either of type Zn or Dn. The space V to consider for
computing the integrity basis of a H-invariant polynomial is

• V = S2(R2)⊕Kn if H = Dn;

• V = S2(R2)⊕Kn ⊕K−1 if H = Zn.

Practical examples

Rather than being abstract, let’s look at practical examples of how to apply the method. In the following
example the notation (T)0 stands for the generalised deviatoric part [61] of T, i.e.

(·)0 : Tn 7→ Kn

Example 1: Orthotropic threshold functions In R2, the group Dn
2 can be characterised by the following

structure tensor K
∼
= (n⊗n)0 ∈ K2. Without loss of generality, we will consider the case n = e

1
in what follows.

In this case
K
∼
∝ (e

1
⊗ e

1
)0 ∝ e

1
⊗ e

1
− e

2
⊗ e

2

in which ∝ means proportional to. Following the equation (2.31), a D2-invariant function F :

∀g ∈ D2, F(g ⋆ σ
∼
) = F(σ

∼
)

can be reformulated as an isotropic function:

∀g ∈ O(2), F(g ⋆ σ
∼
,g ⋆K

∼
) = F(σ

∼
,K

∼
)

The O(2)-integrity basis of a pair of symmetric second order tensors is a well known result [204]. In R2 it
consists of the following set of five polynomials (or any equivalent combinations):

IB = {tr(σ
∼
), tr(K

∼
), σ

∼

.. σ
∼
, σ

∼

..K
∼
, K

∼

..K
∼
}

This integrity base can be reduced by
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• dropping the invariants tr(K
∼
) and K

∼

..K
∼

which are constant with respect to σ
∼
;

• decomposing σ
∼

into σm and σ
∼

(2).

A the end we obtain 3 elementary invariant monomials:

IB = {I1 = σm, J1 = σ
∼

(2) ..K
∼
, J2 = σ

∼

(2) .. σ
∼

(2)}

Any orthotropic polynomial function of σ
∼

is a polynomial in (I1, J1, J2). In this basis we retrieve (I1, J2) which
are the classical O(2)-invariants of σ

∼
, already introduced in section 2.2. Alongside these isotropic invariants

appears J1 which is characteristic of the considered anisotropy. It can be seen that this is a linear invariant, so
the anisotropy will manifest itself as a polynomial function from degree 1 in σ

∼
.

The collection of monomials generating orthotropic invariant homogeneous polynomials is provided in the
table below up to degree four. In this table, anisotropic monomials are shown in red.

Degree Monomials Dimension

1 I1, J1 2

2 I2
1 , I1J1, J2

I , J2 4

3 I3
1 , I2

1J1, I1J
2
1 , J3

I , I1J2, J1J2 6

4 I4
1 , I3

1J
2
1 , I2

1J
2
1 , I1J

3
1 , J4

I , I2
1J2, J2

1J2, I1J1J2, J2
2 9

As a result, and for the example, a general homogeneous polynomial of degree two has the following expres-
sion14 :

F (σ
∼
,K

∼
) = α1I

2

1 + α2I1J1 + α3J2 + α4J
2

I

= α1(σm)
2 + α2σm

(
σ
∼

(2) : (e1 ⊗ e1)
)
+ α3σ

∼

(2) : σ
∼

(2) + α4

(
σ
∼

(2) : (e1 ⊗ e1)
)2

with αk ∈ R.

It is interesting to compare what has been obtained using representation theorems with Tsai-Hill criterion.
The Tsai-Hill criterion can be written as

F (σ
∼
) = σ

∼
: F

≈
: σ

∼
.

where F
≈

is a fourth-order tensor whose index symmetries are identical to those of the elasticity tensor. As such,
results from elasticity can be used to decompose15 and parameterise it [60, 13]:

F
≈
= αJ

≈
+ βK

≈
+

1

2
(I
∼
⊗ h

∼
+ h

∼
⊗ I

∼
) + H

≈

in which h
∼
∈ K2 and H

≈
∈ K4. This decomposition can be interpreted as follows:

F (σ
∼
) =


σ

∼

(2)

σ
∼

(0)




H

≈
+ αJ

≈

1

2
h
∼
⊗ I

∼
1

2
I
∼
⊗ h

∼
βK

≈




σ

∼

(2)

σ
∼

(0)




This allows to express the polynomial criterion with respect to the stress tensor decomposed into its deviatoric
and its spherical part, i.e.

F (σ
∼
) = β(σm)

2 + 2(σ
∼

(2) : h
∼
)σm + ασ

∼

(2) : σ
∼

(2) + σ
∼

(2) : H
≈
: σ

∼

(2) (2.34)

It can be observed that setting β and h
∼

to zero, the Hill criterion is retrieved.

The previous polynomial is generic and corresponds to a Z2-invariant function, not to an orthotropic one.
The condition of being D2-invariant imposes a relation between H

≈
and h

∼
[130]:

14In the present case we have
J1 = σ

∼
(2) ..K

∼
= σ

∼
(2) .. (e1 ⊗ e1)0 = σ

∼
(2) .. (e1 ⊗ e1)

the last equality holds since K2 is a subspace of S2(R2).
15The concept behind this decomposition will be fully detailed in the chapter 3.

60



2.4. ANISOTROPIC THRESHOLD FUNCTION

Lemma 2.4.6. F
≈

is orthotropic if and only if H
≈
∝ (h

∼
⊗ h

∼
)0.

Since h
∼
= λ(e1 ⊗ e1)0, we have H

≈
= µ(e1 ⊗ e1 ⊗ e1 ⊗ e1)0. As a result, the developed expression for the

orthotropic Tsai-Hill criterion gives

F (σ
∼
) = β(σm)

2 + λ(σ
∼

(2) : (e1 ⊗ e1))σm + ασ
∼

(2) : σ
∼

(2) + µ(σ
∼

(2) : (e1 ⊗ e1))
2

and we retrieve the expression provided by the group representation theory.
The computation of the last term should be a bit detailed, we need to compute

σ
∼

(2) : H
≈
: σ

∼

(2) = µσ
∼

(2) : (e
1
⊗ e

1
⊗ e

1
⊗ e

1
)0 : σ

∼

(2)

From the definition of the harmonic product [15], the term (e
1
⊗ e

1
⊗ e

1
⊗ e

1
)0 can be computed as

(e
1
⊗ e

1
⊗ e

1
⊗ e

1
)0 = (e

1
⊗ e

1
⊗ e

1
⊗ e

1
)− 1

2
I
≈

It results that
σ
∼

(2) : H
≈
: σ

∼

(2) = µ(σ
∼

(2) .. (e
1
⊗ e

1
))2 − µ

2
σ
∼

(2) .. σ
∼

(2)

Injecting this expression into equation (2.34) we obtain

F (σ
∼
) = β(σm)

2 + 2λσm(σ
∼

(2) : (e
1
⊗ e

1
)) + (α− µ

2
)σ
∼

(2) : σ
∼

(2) + µ(σ
∼

(2) : (e
1
⊗ e

1
))2

As a side result, it provides the following explicit link between the structure tensor N
∼

= (n ⊗ n)0 and the
harmonic decomposition of F

≈
in the orthotropic case:

F
≈
= αJ

≈
+ βK

≈
+

λ

2
(I
∼
⊗N

∼
+N

∼
⊗ I

∼
) + γ(N

∼
⊗N

∼
)0

Example 2: Hexatropic threshold functions

Let us now define the general shape of a polynomial function invariant with respect to the group D6. In R2,
this group can be characterised by the structure tensor K∼∼∼

= (n⊗6
)0 ∈ K6. As for the previous example the case

n = e
1

is considered. In this case [204, 61]:

K∼∼∼
∝ e⊗6

1 − 15
(
e⊗4

1 ⊗ e⊗2

2

)s

+ 15
(
e⊗2

1 ⊗ e⊗4

2

)s

− e⊗6

2

in which Ts denotes the total symmetrisation (over all subscripts) of T, i.e is a projector from Tn(R2) onto
Sn(R2).

Following (2.31), a D6-invariant function F :

∀g ∈ Dn

6 , F(g ⋆ σ
∼
) = F(σ

∼
)

can be reformulated as an isotropic function:

∀g ∈ O(2), F(g ⋆ σ
∼
,g ⋆K∼∼∼

) = F(σ
∼
,K∼∼∼

)

for a K∼∼∼
∈ K6 such as GK∼∼∼

= D6.

Direct construction of the integrity basis, using for instance the algorithm provided in [61], provides the
following integrity basis:

IB = {I1 = σm, I2 = σ
∼

(2) .. σ
∼

(2), I3 = K∼∼∼
6·
(
σ
∼

(2) ⊗ σ
∼

(2) ⊗ σ
∼

(2)

)
0

}

It should be noted here that the invariant characterising the anisotropy is of degree 3 with respect to σ
∼

(2).
By way of comparison, in the orthotropic case, the anisotropic invariant was of degree 1. Let us examine the
consequences of this for generating monomials up to degree 4.
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Degree Monomials Dimension

1 I1 1

2 I2
1 , I2 2

3 I3
1 , I1I2, I3 3

4 I4
1 , I2

1I2, I1I3, I2
2 4

Two interesting observations can directly be made reading this table:

• hexatropic quadratic homogeneous polynomials are in fact completely isotropic since anisotropy can only
manifest itself from a cubic polynomial. Translated into the language of tensor criteria, this means that
a tensor of order at least six is needed to capture this anisotropic feature;

• while at degree 3 the hexatropic term is purely deviatoric, at degree 4 it encodes a coupling between
deviatoric and spherical stress. As such, it will vanish for purely deviatoric criteria at this degree, such as
the generalized Hill criterion.

For instance, a general homogeneous polynomial of degree four has the following expression:

F (σ
∼
,K∼∼∼

) = α1I
4

1 + α2I
2

1I2 + α3I1I3 + α4I
2

2

= α1σ
4

m + α2σ
2

m

(
σ
∼

(2) : σ
∼

(2)

)
+ α3σm

(
K∼∼∼

6· (σ
∼

(2) ⊗ σ
∼

(2) ⊗ σ
∼

(2))

)
+ α4

(
σ
∼

(2) : σ
∼

(2)

)2

Such function corresponds to a tensorial criterion having the following shape

F (σ
∼
) = A∼∼∼∼

8· (σ
∼
⊗ σ

∼
⊗ σ

∼
⊗ σ

∼
)

with GA∼∼∼
= D6.

Example 3: Trichiral threshold function

Let us now define the general shape of a polynomial function invariant with respect to the group Z3. In R2, this
group can be characterised by two structure tensors

• K
≃
= (n⊗3

)0 ∈ K3, for the D3-invariance;

• ξ ∈ K−1 to impose the chiral dependency.

In the case n = e
1
:

K
≃
∝ e1 ⊗ e1 ⊗ e1 − 3 (e1 ⊗ e2 ⊗ e2)

s

As usual now, the Z3-equivariance properties:

∀g ∈ Z3, F(g ⋆ σ
∼
) = F(σ

∼
)

can be reformulated as the O(2)-equivariance one:

∀g ∈ O(2), F(g ⋆ σ
∼
,g ⋆K

≃
,det(g)ξ) = F(σ

∼
,K

≃
, ξ)

The associated integrity base is

IB(Z3,O(2)) =

{
I1 = σm, I2 = ξ2, J2 = σ

∼
(2) .

. σ
∼
(2), I3 =

(
K
≃
⊗K

≃

)
0

6·
(
σ
∼
(2) ⊗ σ

∼
(2) ⊗ σ

∼
(2)

)
0
,

J3 = ξ
(
( I
∼
×K

≃
)⊗K

≃

)
0

6·
(
σ
∼
(2) ⊗ σ

∼
(2) ⊗ σ

∼
(2)

)
0

} (2.35)

and can be reduced for trigonal functions (i.e. with ξ=0) to

IB(D3,O(2)) = {I1 = σm, J2 = σ
∼

(2) .. σ
∼

(2), I3 =
(
K
≃
⊗K

≃

)
0

6·
(
σ
∼

(2) ⊗ σ
∼

(2) ⊗ σ
∼

(2)

)
0

}.
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If we forget chirality sensitivity, what we should observe here is that there is no difference between IB(D3,O(2))
and IB(D6,O(2)). Associated to σ(2)

∼
the structure tensor viewed by the system is not K

≃
∈ K3 but its image in

K6, as a result16

R[S2(R2)]D3 = R[S2(R2)]D6

This result can be checked here up to degree four:

Degree Monomials Dimension

1 I1 1

2 I2
1 , I2 2

3 I3
1 , I1I2, I3, J3 4

4 I4
1 , I2

1I2, I1I3, I1J3, I2
2 5

A general homogeneous polynomial of degree four has the following expression

F (σ
∼
,K

≃
) = α1I

4

1 + α2I
2

1I2 + α3I1I3 + α4I1J3 + α5I
2

2 ,

= α1σ
4

m + α2σ
2

m

(
σ
∼

(2) : σ
∼

(2)

)
+ α3σm

(
K
≃
⊗K

≃

)
0

6·
(
σ
∼

(2) ⊗ σ
∼

(2) ⊗ σ
∼

(2)

)
0

,

= +α4σmξ
(
(I
∼
×K

≃
)⊗K

≃

)
0

6·
(
σ
∼

(2) ⊗ σ
∼

(2) ⊗ σ
∼

(2)

)
0

+ α5

(
σ
∼

(2) : σ
∼

(2)

)2

.

16In fact, the following result can be conjectured

R[S2(R2)]D2p+1 = R[S2(R2)]D2(2p+1)
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2.5 Synthesis

In this section we have detailed the links between writing H-invariant functions:

1. from group representation theory and integrity basis computation;

2. from a tensor polynomial of a given order;

More precisely we have seen how 1)⇒ 2) and how to obtain a H-invariant tensor polynomial from a suitable
structure tensor.

This approach allows us to state the following properties:

Proposition 2.5.1. A rotational symmetry of order 2p is perceived as anisotropic for a polynomial whose
minimal degree in σ

∼
is p.

Proposition 2.5.2. A rotational symmetry of order 2p + 1 is perceived as a rotational symmetry of order
2(2p+ 1) and is perceived as anisotropic for a polynomial of minimal degree 2p+ 1 in σ

∼
.

These properties can be reformulated in terms of tensor polynomials as follows:

Proposition 2.5.3. A rotational symmetry of order 2p is perceived as anisotropic for a tensor of minimal order
2p;

Proposition 2.5.4. A rotational symmetry of order 2p+1 is seen as a rotational symmetry of order 2(2p+1)
is seen as anisotropic for a tensor of minimal order 2(2p+ 1).

It follows from this that if we wish to establish a threshold allowing to describe in the same formalism the
different surfaces presented in this chapter, i.e.

• Cazacu’s isotropic asymmetric surface;

• Soare’s Poly4 orthotropic surface;

• Wang’s hexatropic symmetric surface;

• Jeanneau’s hexatropic asymmetric surface

the criterion must be at least of degree 4 in σ
∼

and contains odd powers in order to allow for compression
asymmetry. The function is a generalised case of the Tsai-Wu function, so we call it "Tsai-Wu4" and it is given
by:

F (σ
∼
) = A∼∼∼∼

8· (σ
∼
⊗ σ

∼
⊗ σ

∼
⊗ σ

∼
) + B∼∼∼

6· (σ
∼
⊗ σ

∼
⊗ σ

∼
) + C

≈
:: (σ

∼
⊗ σ

∼
) + D

∼
: σ

∼
. (2.36)

Note that in the case of Wang’s criterion a tensor of order 12 would be needed to describe the anisotropy of the
deviatoric plane. In our case the order of the dominant tensor being of order 8, we will only see a circle in this
plane.

The study of this criterion is the subject of the next chapter.
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Quartic polynomial threshold criterion
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It is concluded in chapter 1, that polynomial function is the best candidate that meets all the requirements
to establish a threshold criterion for architectured materials. This because polynomial function has been very
effective to it comes to modelling anisotropy and the asymmetry in traction/compression.

In chapter 2, a methodology based on group representation theory has been introduced to construct, on a
case-by-case basis, H-invariant polynomials. Using this approach some general principles have been put forward.
The most important one is that to model an anisotropy of order n, a tensor of order n is needed in the criterion.

We will adopt here a different point of view from the one considered in the previous chapter by choosing
a polynomial criterion and by looking at the set of situations that it can describe. Our aim is to determine a
unified framework to describe threshold function for architectured materials. These materials are known to be
anisotropic and known for an asymmetric failure modes depending on the the stress state (plasticity/brittleness
in tension and plasticity/buckling compression). The proposed threshold function includes the contribution of
all polynomial terms from 1st to 4th degree.

This idea is not new and has a history. Gol’denblat et al. [82] seems to be the first to have introduced a
threshold function of the following form:

F (σ
∼
) =

(
D
∼
: σ

∼

)α

+
(
C
≈

.

.
.
. (σ

∼
⊗ σ

∼
)
)β

+

(
B∼∼∼

6· (σ
∼
⊗ σ

∼
⊗ σ

∼
)

)γ

+ ... ,
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3.1. HARMONIC DECOMPOSITION: CONCEPT AND METHODOLOGY

in which D
∼
, C

≈
and B∼∼∼

are, respectively, 2nd, 4th and 6th order strength tensors. α, β and γ are coefficients. In

the cited paper, Gol’denblat et al. studied the case of in-plane stress (2D) with α = 1, β = 1

2
and γ = −∞.

Tsai et al. considered the 3D situation and simplified the formulation by getting rid of the square roots, they
obtained the function which has since become known as the Tsai-Wu criterion:

F (σ
∼
) = D

∼
: σ

∼
+C

≈

.... (σ
∼
⊗ σ

∼
).

They justify ignoring higher degree terms for two reasons

1. the number of parameter woulds be too large, and their physical content unclear;

2. badly chosen parameter leads to non-closed surfaces.

As illustrated in the previous chapter, in the case of achitectured materials higher degree terms are required to
model higher-order anisotropy. These materials also have asymmetrical failure modes depending on the state of
stress (plasticity/fragility in tension and plasticity/stress in compression). The proposed threshold function is
the contribution of all polynomial terms for 1st degree to 4th are considered. The function is a more generalised
case of the Tsai-Wu function, so we call it Tsai-Wu 4 (TW4) and it is given by:

F (σ
∼
) = A∼∼∼∼

8· (σ
∼
⊗ σ

∼
⊗ σ

∼
⊗ σ

∼
) + B∼∼∼

6· (σ
∼
⊗ σ

∼
⊗ σ

∼
) + C

≈

.... (σ
∼
⊗ σ

∼
) + D

∼
: σ

∼
. (3.1)

All A∼∼∼∼
,B∼∼∼

,C
≈

and D
∼

are respectively 8th, 6th, 4th and 2nd order tensors which include all material parameters.

By adding higher degree we have higher order tensors which will certainly be much richer when it comes to
anisotropy. With polynomial terms of even degree, we can only generate symmetric surfaces [170] verifying
F (−σ

∼
) = F (σ

∼
). On the other hand, with odd terms, we can generate asymmetric surfaces. Tsai-Wu4 is a very

general form of quartic polynomial function: this means that it encompasses a significant number of existing
functions in the literature (e.g. [167, 158]) as special cases. It is important to notice that the proposed form
is already present in some papers. We find the work of Bower et al. [37] where he proposed the same function
(3D case) and established all convexity conditions. We also find Sanya et al. [155]. He studied the multiaxial
yielding behaviour of human trabecular bone. He concluded that the function proposed in his study, can be
extended to the form we have in the equation (3.1). Hence, it is a more appropriate form for generating boxlike
shaped threshold surfaces that are often found with foams.

As mentioned before, the expression of our threshold function is in a general. It is worth simplifying according
to the anisotropy of the described material. In order to do so, the so-called the harmonic decomposition [16]
is applied. In a nutshell, it is a generalisation of deviatoric and spheric decomposition of the stress tensor for
higher order tensors. It is suitable for harmonic basis where distinguish anisotropy and loading symmetry is
more practical.

This chapter is organised as follows. The section 3.1 is devoted to introduce the concept of harmonic decom-
position. The harmonic space structure of the material tensors of TW4 is provided in section 3.2. The section
3.3 is devoted the explicit algebraic decomposition of all material tensors. In section 3.4 we analyse the geometry
of threshold surface of TW4 under the effect of the harmonic parameters (elements of harmonic tensors). Lastly,
in section 3.5 approximations of some of selected threshold criteria from chapter 1. Simplifications with respect
to the anisotropy are considered in the approximation process.

3.1 Harmonic decomposition: concept and methodology

When a material is rotated1 its physical nature is not affected but, with respect to a fixed reference, material
tensors are transformed2. Since material tensors are usually of order greater than 2, the way they transform is
not simple and their different parts transform differently: some components are left fixed while others turn at
different speeds.

3.1.1 Concept of harmonic decomposition
In mathematics, when facing a sophisticated object, a general strategy consists in decomposing it into a collection
of elementary parts, whose behaviour is easier to understand. This is the idea of harmonic decomposition. This
concept, which exists in Rd, will be used for d = 2 and 3. For this reason, it will be introduced in all generality
before being particularised to the specific dimensions.

1Here rotated is understood in the broad sense of a full orthogonal transformation.
2By material tensor, we mean tensors that translate physical properties (in the broadest sense) resulting from the arrangement

of matter.
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3.1. HARMONIC DECOMPOSITION: CONCEPT AND METHODOLOGY

Consider a general tensor space Tn and denote by T one of its element. To study the way T transforms
under O(d)-action, the idea is to decompose T into elementary pieces:

T = ϕ (Hi1
, . . . ,Hin) , with (Hi1

, . . . ,Hin) ∈ H(Rd)i1 × . . .×H(Rd)in .

in such way that:
∀g ∈ O(d), g ⋆ ϕ (Hi1

, . . . ,Hin
) = ϕ (g ⋆Hi1

, . . . ,g ⋆Hin
)

i.e.
T

g

��

ϕ // (Hi1
, . . . ,Hin

)

g

��
g ⋆T

ϕ//
(
H

′
i1
, . . . ,Hin

)

This O(d)-equivariance property expresses the idea that it is the same to decompose T and then transform the
elements of its decomposition, or to first turn T and then decompose it. In this decomposition:

• Hik
is a harmonic tensor;

• H(Rd)i1 × . . .×H(Rd)in is the harmonic structure of Tn;

• ϕ is an explicit harmonic decomposition.

Harmonic tensors have been introduced in chapter 2 (cf. Definition 2.4.3), in the case d = 2. Their defining
properties are the same for d = 2, 3, i.e. the space of harmonic tensors are O(d)-irreducible, i.e

1. O(d)-invariant (i.e., g ⋆ T ∈ H(Rd)k for all g ∈ O(d) and T ∈ H(Rd)k);

2. its only invariant subspaces are itself and the null space. It is known that O(2)-reducible spaces are
isomorphic to a direct sum of harmonic tensor spaces H(Rd)n [83, 16].

In the following, the classical convention will be used:

• d = 2, H(R2)k will be denoted Kk;

• d = 3, H(R3)k will be denoted Hk;

The harmonic decomposition consists in decomposing a finite-dimensional vector space into a direct sum
of O(d)-irreducible subspaces. Associated with harmonic decomposition we can distinguish two different but
closely related objects

• Harmonic structure: the harmonic structure only concerns the structure of the tensor space, i.e. the
number and type of harmonic tensor spaces it contains.

• Explicit harmonic decomposition: it is an explicit formula detailing the decomposition. The explicit
harmonic decomposition is, in general, not unique.

The rest of the section is devoted to the harmonic structure of the tensor spaces involved in the threshold
function, with respect to R2 and R3 respectively. The harmonic structure with respect to R2 allows us to
understand the role of material anisotropy, while that with respect to R3 allows us to take loading into account
and to characterise the symmetry of the threshold surface in the stress space. These harmonic structures will
first be established before constructing, in section 3.3, the explicit harmonic decomposition in the case R2.

3.1.2 Clebsch-Gordan formula
The harmonic structure of tensor space T is its expression as a direct sum of harmonic spaces,

Tn =
⊕

k

αkH(Rd)k. (3.2)

where αk stands for the multiplicity of H(Rd)k in the decomposition. Many significant information is encoded
by the harmonic structure

• the set of symmetry classes;

• the structure of the integrity basis;

• . . .
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further it is a precious guideline when it comes to determining an explicit isomorphism.
Interestingly, the harmonic structure of a tensor space can be determined without making heavy compu-

tations by using Clebsch-Gordan formula. These formula indicate how the tensor product of two irreducible
spaces decomposes into a direct sum of irreducible spaces:

H(Rd)k1 ⊗H(Rd)k2 =
⊕

j

H(Rd)j

These formula are known both for d = 2 and d = 3.

Clebsch-Gordan formula in R2

For the determination of the harmonic structure, we use the following result, the proof of which is found in [16].

Lemma 3.1.1 (Clebsch-Gordan formula). The tensor product of two O(2)-irreducible spaces is reducible and
decomposes according to:

⊗ Kn K0 K−1

Km

{
Km+n ⊕K|m−n|, m ̸= n

K2n ⊕K0 ⊕K−1, m = n
Km Km

K0 Kn K0 K−1

K−1 Kn K−1 K0

In the case where the spaces are identical, the tensor product can be decomposed into S2 and Λ2. This
represents, respectively, the symmetrized product and the anti-symmetrized product3:

∀n ≥ 1,Kn ⊗Kn = S2 (Kn)⊕ Λ2 (Kn)

Therefore, Lemma 3.1.1 is completed by the following lemma:

Lemma 3.1.2 (Clebsch-Gordan formula). For all n ≥ 1, we have the following isotropic decompositions, in
which meaningless products are indicated by ×:

S2 Kn K0 K−1

Kn K2n ⊕K0 × ×
K0 × K0 ×
K−1 × × K0

Λ2 Kn K0 K−1

Kn K−1 × ×
K0 × 0 ×
K−1 × × 0

Clebsch-Gordan formula in R3

In R3 the formula are slightly different [105]:

Lemma 3.1.3. The tensor product of 2 harmonic spaces is reducible and decomposes into:

Hi ⊗Hj =

i+j⊕

k=|i−j|

Hk.

In the case where the spaces are identical, the tensor product can be decomposed into S2 and Λ2, represent
respectively, a symmetrized product and an anti-symmetrized product

∀n ≥ 1,Hn ⊗Hn = S2 (Hn)⊕ Λ2 (Hn)

Therefore, Lemma 3.1.1 is completed by the following lemma:

Lemma 3.1.4. For all n ≥ 1, we have the following Clebsch-Gordan formulas [105, 134]:

S2 (Hn) =

n⊕

k=0

H2k ; Λ2 (Hn) =

n⊕

k=1

H2k−1.

3Let V a vector space of dimension d, and vi the basis of V, thus the basis of V⊗ V is defined by: B(V⊗ V) = vi ⊗ vj, we have:

B(S2(V)) =
1

2
(vi ⊗ vj + vj ⊗ vi) B(Λ2(V)) =

1

2
(vi ⊗ vj − vj ⊗ vi)
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3.2 Harmonic structures of TW4

The considered threshold function is as follows:

F (σ
∼
) = A∼∼∼∼

8· (σ
∼
⊗ σ

∼
⊗ σ

∼
⊗ σ

∼
) + B∼∼∼

6· (σ
∼
⊗ σ

∼
⊗ σ

∼
) + C

≈

.... (σ
∼
⊗ σ

∼
) + D

∼
: σ

∼
, (3.3)

in this expression the 4 tensors are A∼∼∼∼
, B∼∼∼

, C
≈

and D
∼

are respectively 8th, 6th, 4th and 2nd order tensors which

contain all material parameters. Let us begin by introducing some definitions.

Definition 3.2.1. Let us denote by Wn the space of tensors of order 2n which works with σ
∼

⊗n . Such tensors
will be referred to as nth-order Wu tensors.

Definition 3.2.2. Let TWn the space of nth order Tsai-Wu criterion, defined as

TWn =

n⊕

i=1

Wi

in which Wi = Si(S2(R2)) denotes the space of ith order Wu tensors.

3.2.1 Harmonic structure with respect to R2

In order to determine the R2-harmonic structure of the TWn tensor spaces, the first step is to identify the space
to which they belong. The index symmetries of the elements of Wn correspond those of the tensor σ

∼

⊗n , i.e. the
space Wn has the structure Sn(S2(R2)). Let us denote by G(T) the index symmetry group of T ∈ Wn. G(T)
is given by4:

G(T) = Sn ⊗ Z2

in which

1. Sn corresponds to the permutation of the n terms σ
∼
;

2. Z2 corresponds to the transposition σ
∼
→ σ

∼

T of each term.

In the present case:

A∼∼∼∼
∈W4 = S4(S2(R2)), B∼∼∼

∈W3 = S3(S2(R2)), C
≈
∈W2 = S2(S2(R2)), D

∼
∈W1 = S2(R2)

The results available in the literature, and summarised in the subsection above, allow us to deal directly with
the case of C

≈
and D

∼
. To consider the other cases we had to establish the following results

Lemma 3.2.3. The isotypic decomposition of Sn(K2 ⊕K0) (n ≥ 1) are given by:

Sn (K2 ⊕K0) ≃
n⊕

k=0

Sk (K2) (3.4)

in which S1 (K2) = K2 and S0 (K2) = K0.

Lemma 3.2.4. The isotypic decomposition of S2n(Kp) and S2n+1(Kp) (n ≥ 1) are given by:




S2n (Kp) ≃
n⊕

k=0

K2kp,

S2n+1 (Kp) ≃
n⊕

k=0

K(2k+1)p.

4This group contains n!2n elements.
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Generic harmonic structure

Using these results, we obtain the following harmonic structures for the tensor spaces of TW4

Proposition 3.2.5. The harmonic structure of tensor spaces of TW4 are as follows:

D
∼
∈W1 ≃ K2 ⊕K0, dim(W1) = 3,

C
≈
∈W2 ≃ K4 ⊕K2 ⊕ 2K0, dim(W2) = 6,

B∼∼∼
∈W3 ≃ K6 ⊕K4 ⊕ 2K2 ⊕ 2K0, dim(W3) = 10,

A∼∼∼∼
∈W4 ≃ K8 ⊕K6 ⊕ 2K4 ⊕ 2K2 ⊕ 3K0, dim(W4) = 15.

As a result, the number of coefficients required in the most generic situation is

dim(TW4) = 34

This number of parameters is quite large, but corresponds to a situation with no symmetry, either material or
physical. As will be seen, as soon as symmetries come into play, the number of parameters decreases. But, even
in the most generic situation, many interesting properties can be read directly from the harmonic structure.
First of all, note that:

1. the harmonic structure of W2 corresponds to the structure of the Hill tensor as detailed in section 2.4.3.
The result is retrieved here using Clebsch-Gordan formula;

2. the harmonic structures of W3 and W4 correspond to the structures of the cubic and quartic polynomials
discussed in the same subsection.

Anisotropic properties

To derive properties associated to material symmetries, we need first to introduced the following notion. The
generalised cross product for two symmetric tensors defined is defined as follows [61]

S1 × S2 := (S1 · ϵ
∼
· S2)

s

the result is a totally symmetric tensor of order n1 + n2 − 2. It can further be demonstrated that if K1 and
K2 are harmonic tensors of order n1 and n2, respectively, the result is an harmonic tensor of order |n1 − n2|
embedded in a symmetric tensor of order n1 + n2 − 2. We can now enunciate the following proposition [74, 14]

Proposition 3.2.6. Let T ∈ Tn, GT its symmetry group and denote by ϕ its harmonic decomposition

T = ϕ (Ki1
, . . . ,Kin

) , with (Ki1
, . . . ,Kin

) ∈ Hi1 × . . .×Hin .

• If Zp ⊂ GT, Ki /∈ Kαp = 0, α ∈ N,

• If Zπ
2 ⊂ GT, ∀i, j Ki ×Kj = 0,

• If Dp ⊂ GT, the two previous conditions are combined.

To say the same thing in words, if a tensor T is Zp-invariant all harmonics belonging to spaces whose order
is not an integer multiple of p are zero. The second property says that if T is invariant with respect to at least
a symmetry line, then all its harmonics are co-linear (in a general sense cf. [61]). The last condition, that is, to
be Dp-invariant, is obtained by combining the two previous requirements.

Other observations can be made from this result:

• harmonic structure of TW4 only contains even-order harmonic spaces, its results that

1. TW4 is always at least Z2-invariants, which means centrosymmetric in R2;

2. TW4 can not see material rotational symmetry of odd-order 2p + 1, the rotation perceived by the
tensor will be of twice order, i.e. 2(2p + 1). This explains why a D3-invariant material is modelled
as a D6-invariant one.
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• in the case of a D6-invariant polynomial the harmonic structure reduces to5

D
∼
∈W1 ≃ K0, dim(W1) = 1,

C
≈
∈W2 ≃ 2K0, dim(W2) = 2,

B∼∼∼
∈W3 ≃ K6 ⊕ 2K0, dim(W3) = 3,

A∼∼∼∼
∈W4 ≃ K6 ⊕ 3K0, dim(W4) = 4.

This result should be compared with the table obtained in section 2.4.3

Degree Monomials Dimension

1 I1 1

2 I2
1 , I2 2

3 I3
1 , I1I2, I3 3

4 I4
1 , I2

1I2, I1I3, I2
2 4

This highlights the link between the representation theorem approach and the harmonic decomposition
approach. It reveals that the structure tensor we introduced in the previous chapter corresponds exactly
to the harmonic tensor of the harmonic decomposition of W3 and W4.

• The last point amounts to compare the structure we obtain for a D2-invariant polynomial and the harmonic
decomposition in the same case. The harmonic structure reads

Fix(W4,D2) ≃ K8 ⊕K6 ⊕ 2K4 ⊕ 2K2 ⊕ 3K0

Being orthotropic, the harmonic tensors of the decomposition are all collinear (in a generalised sense).
Hence up to a rotation each harmonic component is defined by a unique parameter, it results that

dimFix(W4,D2) = 8

in which Fix(V,G) indicates the vector subspace of elements that are at least G-invariant.

Consider now the monomials generating the quartic polynomial

{I4

1 , I3

1J
2

1 , I2

1J
2

1 , I1J
3

1 , J4

I , I2

1J2, J2

1J2, I1J1J2, J2

2}

These monomials can be seen as polynomials in J1, if we list these polynomials with respect to the degree
in J1

4 3 2 1 0
J4

1 I1J
3
1 I2

1J
2
1 , J2J

2
1 I1J2J1, I3

1J1 I4
1 , J2

2 , I2
1J2

The powers of Jk
1 can be mapped to the harmonic tensor elements of K2k appearing in the harmonic

structure.

As we have just shown, the harmonic structure under R2 provides a good understanding of the link between
the material symmetries and the independent components of the threshold function.

3.2.2 Harmonic structure with respect to R3

As discussed in the previous chapter, it is interesting to look at a threshold function as a surface in the stress
space, i.e. in R3. This point of view makes it possible to include in the approach the extended symmetry of
the material with respect to the loading. In fact, we will adopt this generalised point of view in the following
sub-section.

Exceptionally we will note, in this section, σ the stress tensor considered as a vector of R3. The threshold
function has the following shape

F (σ) = Â
≈

.... (σ ⊗ σ ⊗ σ ⊗ σ) + B̂
≃

... (σ ⊗ σ ⊗ σ) + Ĉ
∼

.. (σ ⊗ σ) + D̂ · σ,

5The notation is a little abusive, and the dimensions are given up to one rotation, which reduces the number of parameters for
anisotropic spaces by one.
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the 4 tensors are Â
≈
, B̂

≃
, Ĉ

∼
and D̂ are respectively 4th, 3rd, 2nd and 1st order tensors which contain all material

parameters. In the present situation, each tensor of the threshold function is completely symmetric, i.e. belongs
to Sn(R3). To continue, we need to introduce the notion of harmonic tensors in R3.

Definition 3.2.7. Let Hn be the space of nth-order harmonic tensors in R3, its elements are:

1. n-th order tensors: Hi1i2...in

2. symmetric with respect to the permutation of all the indices: H(i1i2...in)

3. traceless: H(i1i2...ipip) = 0

As for R2, harmonic tensors in R3 are the nth-order generalisation to the notion of a deviatoric tensor.
Regarding the dimension of these spaces we have:

dimHn = 2n+ 1

We have in R3 the following property: [105, 136]

Lemma 3.2.8. In R3, the spaces of completely symmetric nth order tensors have the following harmonic
structures

Sn =





⊕p

0
H2i, if n = 2p,

⊕p

0
H2i+1, if n = 2p+ 1.

Proposition 3.2.9. The harmonic structure of tensor spaces of TW4 with respect to SO(3) are:

D ∈ S1 ≃ H1, dim(S1) = 3,

C
∼
∈ S2 ≃ H2 ⊕H0, dim(S2) = 6,

B
≃
∈ S3 ≃ H3 ⊕H1, dim(S3) = 10,

A
≈
∈ S4 ≃ H4 ⊕H2 ⊕H0, dim(S4) = 15.

It can be observed that dim(TW4) = 34, since, of course, the change of decomposition does not affect the
dimension of the space.

Threshold functions that are invariant with respect to σ
∼
→ −σ

∼
are centro symmetric in R3. It results that

odd-order harmonic tensors are null for such functions. As a result D and B
≃

are null for symmetric criteria and
are necessary to model disymmetric ones.

3.2.3 Symmetry classes of the threshold surface
The main interest of deriving the R3 harmonic structure, is that it allows to obtain the exhaustive set of
symmetry classes that the threshold surface can have. Indeed, the symmetry classes of harmonic spaces are
known [100] and we have a tool, called clips product, to combine them [134, 135, 18] in order to obtain the
symmetry classes of a direct sum of harmonic spaces. This approach will not be detailed here, we refer the
interested reader to the above mentioned references, only the main results will be given without proof.

Proposition 3.2.10. The O(3)-symmetry classes of each tensor of the TW4 threshold function

I(S1) = {[O(2)−], [O(3)]}
I(S2) = {[D2 ⊗ Zc

2], [O(2)⊗ Zc

2], [SO(3)⊗ Zc

2]}
I(S3) = {[1], [Z−

2 ], [D
v

2 ], [D
v

3 ], [D
h

6 ], [O−], [O(2)−], [O(3)]}
I(S4) = {[Zc

2], [Z2 ⊗ Zc

2], [D2 ⊗ Zc

2], [D3 ⊗ Zc

2], [D4 ⊗ Zc

2], [O ⊗ Zc

2], [O(2)⊗ Zc

2], [SO(3)⊗ Zc

2]}

As a trivial observation, the symmetry classes of even-order tensor spaces are centro-symmetric (Type II,),
while the symmetry classes of odd-order tensor spaces are not centro-symmetric (Type I and III). For definitions
of surface types, see the section 2.3.3.

A first result is that we can characterise the symmetry classes of the threshold surfaces that can be modelled
using the classical Tsai-Wu criterion:

Proposition 3.2.11. The symmetry classes of TW2 are

I(TW2) = {[1], [D2 ⊗ Zc

2], [O(2)⊗ Zc

2], [Z
−
2 ], [D

v

2 ], [O(2)−], [O(3)]}
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3.3. EXPLICIT HARMONIC DECOMPOSITION

In this collection the centro symmetric classes are indicated in red, while the chiral one is in blue and the
type III ones in purple. It can be observed on this result that the symmetric criteria that can be described by
the model are of three types: [D2 ⊗ Zc

2], [O(2)⊗ Zc
2] and [O(3)].

The physical content of this result is a little subtle and we need to be careful about relating it to material
anisotropy. For instance, it says that the symmetry symmetry class of the most generic surface that can be
described by the model is [D2 ⊗ Zc

2]. This result only indicates that the shape of the surface in the stress space
is a generic ellipsoid: λ1 ̸= λ2 ̸= λ3 > 0, and it does not specify the anisotropy of the material. Material
anisotropy, which can be read in the deviatoric plane, is a property of invariance with respect to the specific
axis f̂

3
axis. Consider the harmonic basis H = {f̂

1
, f̂

2
, f̂

3
} together with V = {v

1
, v

2
, v

3
} the direct orthonormal

basis consisting of the principal axes of the ellipsoid:

• if f̂3 = vi for some i, the surface is D2 ⊗ Zc
2 along this axis, and due to the doubling of the angle the

criterion is D4.

• if there is no i such as f̂
3
= v

i
, but a v

i
is in the deviatoric plane the surface is Zπ

2 due to the doubling of
the angle the criterion is D2, i.e. orthotropic.

• if there is no i such as f̂
3
= v

i
, and no v

i
in the deviatoric plane the surface is 1 hence, due to the doubling

of the angle, the criterion is Z2, i.e. biclinic.

As such the expected R2 symmetry classes are retrieved.

The addition of higher-order tensors extends the capabilities of the model by allowing it to describe a richer
set of surfaces. The descriptive capabilities of TW4 are given by the following result:

Proposition 3.2.12. The symmetry classes of TW4 are

I(TW4) = {[1], [Z2], [Z3], [D2], [D3], . . .

, [Zc

2], [Z2 ⊗ Zc

2], [D2 ⊗ Zc

2], [D3 ⊗ Zc

2], [D4 ⊗ Zc

2], [O ⊗ Zc

2], [O(2)⊗ Zc

2], [O(3)]

, [Z−
2 ], [Z

−
4 ], [D

v

2 ], [D
v

3 ], [D
v

4 ], [D
h

2 ], [D
h

4 ], [D
h

6 ], [O−], [O(2)−]}
Some immediate observations can be made:

• 23 different symmetry classes can be seen by the model instead of 7 in the case of TW2;

• the criterion has a greater ability to describe anisotropy. For instance, its ability to see the [D3⊕Zc
2] class

indicates that the criterion is capable of qualitatively describing the anisotropy of the Wang criterion, and
the presence of the [Dv

3 ] class allows the Jeanneau surface to be modelled.

• we can also note the appearance of chiral classes (in blue) which were not really present in the standard
model. These classes may be of interest for materials with chiral architecture.

• finally, the criteria can model some non crystallographic symmetry class, for instance a surface of class
[D4 ⊗ Zc

2] can be described. This would correspond to a material with 8-fold invariance, such as the
Ammann-Benker quasi-periodic lattice (cf. figure 3.1). Such an approach would therefore be of interest
for quasi-periodic architectured materials.

Figure 3.1: Quasi-periodic Amman-Beenker tilling "has" 8-fold symmetry.

3.3 Explicit Harmonic Decomposition

In the previous section we have seen, thanks to the harmonic structure of the different constitutive tensors, what
physical information is contained in the model: anisotropy classes, asymmetry with respect to the loading,...
This analysis has highlighted the role of the different harmonic tensors in the shape of the threshold surface.

However, at this stage we have no explicit parametrisation for this decomposition. Such a parametrisation
is necessary to
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1. to study the model in more detail using graphs, and thus better understand the specific contribution of
each term;

2. provide an explicit threshold function for a given material;

3. fit an existing surface via our criterion.

The objective of the present section is to construct such a parametrisation. This involves constructing an
explicit harmonic decomposition for each tensor in the criterion. A few points need to be made before we begin

• the harmonic decomposition of a tensor is, in general, not uniquely defined. So choices have to be made,
which ideally should be made based on the physics of the problem under consideration. This simplifies
the interpretation of the results as well as their use for optimisation.

• in the literature, few results are available concerning the harmonic decomposition of tensors of order
greater than 4. In our case, we need to go up to order 8.

Consequently, the explicit decomposition of the 6th and 8th tensors of the model are new results that we had
to establish. To do this, we adapted the Clebsch-Gordan approach to the harmonic decomposition introduced
by Auffray et al. in [13].

The section is organised as follows. First, the available results concerning the explicit harmonic decomposi-
tion of the tensors C

≈
and D

∼
will be presented. Then, the general method to obtain the new result is introduced

following the formalism used in [13]. The next subsection illustrates how to adapt this method to the 6th order
tensor B∼∼∼

. Finally, results for the 8th-order tensor A∼∼∼∼
are provided, while the explicit construction has been

deferred to section i.

3.3.1 Explicit harmonic decompositions available
The explicit harmonic decomposition of the tensors C

≈
and D

∼
has already been done in [13]. We summarise the

associated propositions here:

Proposition 3.3.1. The tensor D
∼
∈ S2(R2) admits the uniquely defined Clebsch-Gordan Harmonic decomposi-

tion defined as follows:
D
∼
= h

∼

2,1 + α2,0 I
∼
.

I
∼

is the identity second order tensor. (h
∼

2,1, α2,0) are elements of K2 ×K0 defined from D
∼

as follows:

h
∼

2,1 = P
≈

(2) ..D
∼

; α2,0 I
∼
= P

≈

(0) ..D
∼
=

1

2
(trD

∼
)I
∼
,

where P
≈

(2) and P
≈

(0) are the deviatoric and the spherical projectors.

Proposition 3.3.2. The tensor C
≈
∈ S2(S2(R2)) admits the uniquely defined Clebsch-Gordan Harmonic De-

composition defined as follows::

C
≈
= H

≈

4,1 +
α4,2

2
P
≈

(2) + h
∼

4,1 ⊗ I
∼
+ I

∼
⊗ h

∼

4,1 + 2α4,0P
≈

(0), (3.5)

I
∼

is the identity second order tensor. (H
≈

4,2,h
∼

4,1, α4,2, α4,0) are elements of K4×K2×K0×K0 defined from C
≈

as
follows:

K0 K2 K4

α4,0 = P
≈

(2) .... C
≈

h
∼

4,1 = P
≈

(2) : C
≈

α4,2 = C
≈

2,2 .... P
≈

(2) H
≈

4,2 = C
≈

2,2 − α4,0

2
P
≈

(2)

where C
≈

2,2 = P
≈

(2) : C
≈
: P

≈

(2).

The remaining two harmonic decompositions are not yet available in the literature and have therefore been
explicitly derived during this PhD. the next section, the three-step method introduced in [13] is presented as
defined in the original article. This method will then be adapted to the current situation.
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3.3. EXPLICIT HARMONIC DECOMPOSITION

3.3.2 The original three-step methodology
Consider two spaces of state tensors denoted by E and F. The (linear) constitutive law is an element T ∈
L(E,F). In the present context, T represents the constitutive tensor of which we want to obtain the harmonic
decomposition. The construction of a Clebsch-Gordan Harmonic Decomposition (in abbreviated form CGHD)
of T is obtained using the following procedure:

1) State Tensor Harmonic Decomposition (STHD) Choose and compute a harmonic decomposition for
elements v ∈ E and w ∈ F. This decomposition implies the definition of harmonic embedding operators.
From these operators, we get a family of orthogonal projectors that will be used to decompose T;

2) Intermediate Block Decomposition (IBD) Consider an element T ∈ L(E,F) which represents the con-
stitutive tensor of which we want to obtain the harmonic decomposition. The choice of a STHD and the
use of the associated projectors induce a decomposition of L(E,F) into blocks. This decomposition, that
will be referred to as the Intermediate Block Decomposition, is not irreducible;

3) Clebsch-Gordan Harmonic Decomposition (CGHD) Each elementary block of the Intermediate Block
Decomposition belongs to a space Kp ⊗ Kq, the harmonic structure of which is known by the Clebsch-
Gordan formula. The use of harmonic embeddings allows us to break down each block into irreducible
tensors.

The combination of the last two steps provides the Clebsch-Gordan Harmonic Decomposition of T ∈ L(E,F).
The resulting decomposition is a particular explicit harmonic decomposition of T which is compatible with the
harmonic decompositions of v and w. This decomposition is uniquely defined by the choice of a particular
form of the harmonic decompositions for the spaces E and F. It has to be noted that different choices for the
decompositions of E and F will lead to different decompositions of T.

3.3.3 The CGHD of W3

The previous method will be adapted to the current situation. The associated changes are minor and will be
illustrated below. But first, let’s define some of the notations that will be used.

Step 0: General settings

First let us introduce the notation:
B∼∼∼

6.(σ
∼
⊗ τ

∼
⊗ η

∼
) = (σ

∼

.. B∼∼∼
.. η

∼
) .. τ

∼
(3.6)

which reads, in components,
B(ij)(kl)(mn)σ(ij)τ(kl)η(mn)

Here, only the case σ
∼
= τ

∼
= η

∼
will be considered, hence

B(ij) (kl) (mn)σ(ij)σ(kl)σ(mn)
(3.7)

The coefficients of the third-order polynomial in σ
∼

are contained in the 6th-order tensor B∼∼∼
∈ W3. We recall

that this space has the following structure W3 = S3(S2(R2)). The index symmetry group of B∼∼∼
is

G(B∼∼∼
) = S3 ⊗ Z2.

where S3 is the symmetric group on 3 elements and corresponds to the permutation of the underlined blocks
appearing in equation (3.6). The group Z2 corresponds to the index symmetry of σ

∼
indicated by parentheses in

equation (3.6). The resulting number of index symmetries of B∼∼∼
is #G(B∼∼∼

) = 3!23 = 48 and a set of generators

of G(B∼∼∼
) is given by:

Gen

(
G(B∼∼∼

)

)
= {(12), (13)(24), (15)(26)} .

Knowing G(B∼∼∼
), let us establish the harmonic decomposition of B∼∼∼

.

Let us adapt the algorithm introduced in section 3.3.2 to the current situation
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Step 1: Decomposition of the state tensor

In this case there is a unique state tensor space E which is the stress tensor space S2(R2). The harmonic
decomposition of σ

∼
has been introduced in section 2.2.2, we have:

σ
∼
= σ

∼

(2) + σ
∼

(0), (σ
∼

(2), σ
∼

(0)) ∈ K2 ×K0

This decomposition can be obtained using the deviatoric P
≈

(2) and the spherical projector P
≈

(0)

σ
∼

(2) = P
≈

(2) .. σ
∼
, σ

∼

(0) = P
≈

(0) .. σ
∼
,

and, for the next step, we recall the following properties of the projection operator:

P
≈

i .. P
≈

i = P
≈

i, P
≈

i .. σ
∼
= σ

∼

.. P
≈

i for i ∈ {0, 2}. (3.8)

Step 2: Intermediate block decomposition

The introduction of the decomposition σ
∼

in equation (3.7) induces the following partition

(σ
∼

.

. B∼∼∼
.
. σ

∼
) .. σ

∼
=

[
(σ
∼

(2) + σ
∼

(0)) .. B∼∼∼
.
. (σ

∼

(2) + σ
∼

(0))

]
.
. (σ

∼

(2) + σ
∼

(0)),

= (σ
∼

(2) .. B∼∼∼
.
. σ

∼

(2)) .. σ
∼

(2) + (σ
∼

(2) .. B∼∼∼
.
. σ

∼

(2)) .. σ
∼

(0) + (σ
∼

(2) .. B∼∼∼
.
. σ

∼

(0)) .. σ
∼

(2) + (σ
∼

(0) .. B∼∼∼
.
. σ

∼

(2)) .. σ
∼

(2)

+ (σ
∼

(0) .. B∼∼∼
.
. σ

∼

(0)) .. σ
∼

(2) + (σ
∼

(0) .. B∼∼∼
.
. σ

∼

(2)) .. σ
∼

(0) + (σ
∼

(2) .. B∼∼∼
.
. σ

∼

(0)) .. σ
∼

(0) + (σ
∼

(0) .. B∼∼∼
.
. σ

∼

(0)) .. σ
∼

(0).

(3.9)

This expression can be reformulated from the following property

(σ
∼

(p) .. B∼∼∼
.. σ

∼

(q)) .. σ
∼

(r) = (σ
∼

(p) .. B∼∼∼
p,q,r .. σ

∼

(q)) .. σ
∼

(r), ∀p, q, r ∈ {0, 2}.

in which
B∼∼∼

p,q,r = B∼∼∼
6
◦ (P

≈

p ⊗ P
≈

q ⊗ P
≈

r) (3.10)

with the definition (
B∼∼∼

6
◦ (P

≈
⊗Q

≈
⊗ R

≈
)

)

ijklmn

= BpqrstuPpqijQrsklRtumn.

To see why consider a term from (B.3) (the table 2.1 is useful):

(σ
∼

(2) .. B∼∼∼
.
. σ

∼

(2)) .. σ
∼

(0) =

[
(P
≈

(2) .. σ
∼
) .. B∼∼∼

.

. (P
≈

(2) .. σ
∼
)

]
.
. (P

≈

(0) .. σ
∼
),

= BijklmnP
2

ijopσopP
2

mnqrσqrP
0

klstσst,

= BijklmnP
2

ijopP
2

mnqrP
0

klstσopσqrσst,

= BijklmnP
2

ijuvP
2

klyzP
0

mnwx︸ ︷︷ ︸
B∼∼∼

6
◦ (P

≈
(2)⊗P

≈
(2)⊗P

≈
(0))

P 2

uvopσop︸ ︷︷ ︸
P
≈

(2)..σ∼

P 2

yzstσst︸ ︷︷ ︸
P
≈

(2)..σ∼

P 0

wxqrσqr︸ ︷︷ ︸
P
≈

(0)..σ∼

,

=

[
(P
≈

(2) .. σ
∼
) ..

[
B∼∼∼

6
◦ (P

≈

(2) ⊗ P
≈

(2) ⊗ P
≈

(0))

]
.
. (P

≈

(0) .. σ
∼
)

]
.
. (P

≈

(2) .. σ
∼
),

= (σ
∼

(2) ..

[
B∼∼∼

6
◦ (P

≈

(0) ⊗ P
≈

(2) ⊗ P
≈

(0))

]

︸ ︷︷ ︸
B∼∼∼

2,2,0

.

.σ
∼

(0)) .. σ
∼

(2).

(3.11)

It follows that B∼∼∼
can be split into

B∼∼∼
= B∼∼∼

2,2,2 + B∼∼∼
2,2,0 + B∼∼∼

2,0,2 + B∼∼∼
0,2,2 + B∼∼∼

2,0,0 + B∼∼∼
0,2,0 + B∼∼∼

0,0,2 + B∼∼∼
0,0,0

in which, because of equation (3.10), all the blocks are orthogonal to each other with respect to the complete
contraction.
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On this decomposition it can be observed that only the terms B∼∼∼
2,2,2 and B∼∼∼

0,0,0 have the same index symmetry

as B∼∼∼
, i.e. belongs to W3, being S3 symmetric, these blocks will henceforth be denoted B∼∼∼

(222) and B∼∼∼
(000). This

is not the case for the remaining blocks taken individually, but if we group them as follows

B∼∼∼
(220) = B∼∼∼

2,2,0 + B∼∼∼
2,0,2 + B∼∼∼

0,2,2

B∼∼∼
(200) = B∼∼∼

2,0,0 + B∼∼∼
0,2,0 + B∼∼∼

0,0,2

B∼∼∼
(220) and B∼∼∼

(220) are elements of W3 and the mismatch is solved. At the end,

B∼∼∼
= B∼∼∼

(222) + B∼∼∼
(220) + B∼∼∼

(200) + B∼∼∼
(000)

which means that W3 has been split into 4 orthogonal subspaces, i.e

W3 = W3

3 ⊕W2

3 ⊕W1

3 ⊕W0

3, (B∼∼∼
(222),B∼∼∼

(220),B∼∼∼
(200),B∼∼∼

(000)) ∈ (W3

3 ×W2

3 ×W1

3 ×W0

3) (3.12)

in which the number k in Wk
3 indicates the number of occurrences of the space K2 in the underlying tensor

product. This decomposition should be compared with the expression given by the lemma 3.2.3, i.e.

W3 ≃ S3(K2)⊕ S2(K2)⊕K2 ⊕K0 (3.13)

through the isomorphism
Wk

3 ≃ Sk(K2)

.

Step 3: Clebsch-Gordan harmonic decomposition

The blocks B∼∼∼
(pqr) we have obtained are not O(2)-irreducible and should therefore be decomposed further.

The first step to compute their explicit harmonic decomposition is to determine their harmonic structure.
This structure is a consequence of equation (3.12) and equation (3.13). For W1

3 and W0
3, the results are

straightforward,
W1

3 ≃ K2, W0

3 ≃ K0

whereas for the other two spaces, they are obtained by applying the formula of the lemma 3.2.4

W3

3 ≃ K6 ⊕K2, W2

3 ≃ K4 ⊕K0

It results that the harmonic structure of W3 is:

W3 ≃ K6 ⊕K4 ⊕ 2K2 ⊕ 2K0, dim (W3) = 10

as already known from proposition 3.2.5 but, now, we know explicitly in which elementary block each harmonic
tensor is located.

Using this information, we can now carry out an explicit decomposition, block by block. The cornerstone of
the procedure is the expression of P

≈

(0), which for the record is

P
≈

(0) =
1

2
I
∼
⊗ I

∼
,

and which will be injected into the definition of each block. The different problems will be dealt with in order
of increasing complexity.

a) The space W0
3 Since B∼∼∼

(000) ∈ W0
3 ≃ K0 this term is isotropic and reduces to a unique scalar that will be

denoted6 α6,0. Let us insert the expression of P
≈

(0) into the definition of B∼∼∼
(000)

B∼∼∼
(000) = B∼∼∼

6
◦ (P

≈

(0) ⊗ P
≈

(0) ⊗ P
≈

(0)) =
1

8
B∼∼∼

6
◦
[
(I
∼
⊗ I

∼
)⊗ (I

∼
⊗ I

∼
)⊗ (I

∼
⊗ I

∼
)
]

=
1

8

(
B∼∼∼

6
◦
[
I
∼
⊗ I

∼
⊗ I

∼

])

︸ ︷︷ ︸
α6,0

I
∼
⊗ I

∼
⊗ I

∼

6In the notation αp,q , p denotes the order of the tensor and q the degree in K2. Here q = 0 since B∼∼∼
(000) is purely hydrostatic.
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B∼∼∼
(000) = B∼∼∼

6
◦ (P

≈

(0) ⊗ P
≈

(0) ⊗ P
≈

(0)) =
1

8
B∼∼∼

6
◦
[
(I
∼
⊗ I

∼
)⊗ (I

∼
⊗ I

∼
)⊗ (I

∼
⊗ I

∼
)
]

=
1

8

(
B∼∼∼

6
◦
[
I
∼
⊗ I

∼
⊗ I

∼

])
I
∼
⊗ I

∼
⊗ I

∼

=
1

8
α6,0 I

∼
⊗ I

∼
⊗ I

∼

=
1

4
α6,0 I

∼
⊗ P

≈

(0)

Hence the following parameterisation is obtained

B∼∼∼
(000) =

1

4
α6,0(I

∼
⊗ P

≈

(0)),

and conversely the scalar we are looking for is determined as

α6,0 = (I
∼

.. B∼∼∼
.. I

∼
) .. I

∼
= tr12

(
tr12

(
tr12(B∼∼∼

)

))
= tr(3)12 (B∼∼∼

)

in which tr(n)

ab stands for the nth-order iterated trace on the index ab, and should not be confused with the n-th
power of trab.

b) The space W1
3 The term B∼∼∼

(200) ∈W1
3 will be treated in two stages. First the harmonic term B∼∼∼

2,0,0 will be

proceed, and then its expression symmetrised to obtained B∼∼∼
(200).

From its harmonic structure, we know that B∼∼∼
2,0,0 is parameterised by a second order harmonic tensor

h
∼

6,1 ∈ K2. As in the previous paragraph, let’s start by inserting the expression for P
≈

(0) into the definition of

B∼∼∼
2,0,0.

B∼∼∼
2,0,0 = B∼∼∼

6
◦ (P

≈

(2) ⊗ P
≈

(0) ⊗ P
≈

(0)) =
1

4
B∼∼∼

6
◦
[
P
≈

(2) ⊗ (I
∼
⊗ I

∼
)⊗ (I

∼
⊗ I

∼
)
]

=
1

4

(
B∼∼∼

6
◦
[
P
≈

(2) ⊗ I
∼
⊗ I

∼

])
I
∼
⊗ I

∼

=
1

4
h
∼

6,1 ⊗ I
∼
⊗ I

∼

=
1

2
h
∼

6,1 ⊗ P
≈

(0)

Hence the following parameterisation is obtained

B∼∼∼
2,0,0 =

1

2
h
∼

6,1 ⊗ P
≈

(0),

and conversely the harmonic tensor we are looking for is determined as

h
∼

6,1 = P
≈

(2) .. (I
∼

.. B∼∼∼
.. I

∼
) = P

≈

(2) ..

(
tr(2)12 (B∼∼∼

)

)
.

The parameterisation of B∼∼∼
(200) can now be obtained by symmetrisation

B∼∼∼
(200) = B∼∼∼

2,0,0 + B∼∼∼
0,2,0 + B∼∼∼

0,0,2

= (ς(e) + ς(13)(24) + ς(15)(26))︸ ︷︷ ︸
τ3

⋆B∼∼∼
2,0,0

in which τ3 is the symmetrisation operator from K2 ⊗ S2(R2) to W1
3.
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c) The space W2
3 As for the previous situation, the term B∼∼∼

(220) ∈W2
3 will be treated in two stages. First the

harmonic term B∼∼∼
0,2,2 will be proceed, and then its expression symmetrised to obtained B∼∼∼

(220). The harmonic

structure of B∼∼∼
0,2,2 is a little more complex because it contains two terms H

≈

6,2 ∈ K4 and α6,2 ∈ K0. The insertion

of P
≈

(0) into the definition of B∼∼∼
0,2,2 allows to write

B∼∼∼
0,2,2 = B∼∼∼

6
◦ (P

≈

(0) ⊗ P
≈

(2) ⊗ P
≈

(2)) =
1

2
B∼∼∼

6
◦ ((I

∼
⊗ I

∼
)⊗ P

≈

(2) ⊗ P
≈

(2))

=
1

2
I
∼
⊗
[
P
≈

(2) .. (B∼∼∼
.. I

∼
) .. P

≈

(2)

]

=
1

2
I
∼
⊗Q

≈

6,2

The sixth-order tensor B∼∼∼
0,2,2 can thus be reduced to a fourth-order one Q

≈

6,2 element of S2 (K2), i.e.

Q
≈

6,2 = P
≈

(2) .. (B∼∼∼
.. I

∼
) .. P

≈

(2) = P
≈

(2) ..

(
tr12(B∼∼∼

)

)
.. P

≈

(2),

but, unlike the previous situations, this tensor is not O(2) -irreducible and must therefore be redecomposed.
Using a procedure described in [13], and recalled in appendix ii, it can be demonstrated that

Q
≈

6,2 = H
≈

6,2 +
α6,2

2
P
≈

(2), with (H
≈

6,2, α6,2) ∈ K4 ×K0

with:
α6,2 = P

≈

(2) .... Q
≈

6,2, H
≈

6,2 = Q
≈

6,2 − α6,2

2
P
≈

(2),

hence, putting all the pieces together,

B∼∼∼
0,2,2 =

1

2
I
∼
⊗
(
H
≈

6,2 +
α6,2

2
P
≈

(2)

)

The ultimate expression is obtained by symmetrising the last one

B∼∼∼
(220) = τ3 ⋆ B∼∼∼

0,2,2

in which τ3 = (ς(e) + ς(13)(24) + ς(15)(26)) is the already introduced symmetrisation operator from K2 ⊗ S2(R2) to
W2

3.

d) The space W3
3 Unlike the other terms, B∼∼∼

(222) ∈W3
3 cannot be reduced to a lower order tensor by contraction

with P
≈

(0). It is minimal for this aspect, although this does not make it O(2)-irreducible.
From the harmonic structure of W3

3, we know that the harmonic parameterisation is given by two harmonic
tensors S∼∼∼

6,3 ∈ K6 and h
∼

6,3 ∈ K2 such as

B∼∼∼
(222) = S∼∼∼

6,3 + Φ∼∼∼∼
6,3 .. h

∼

6,3,

in which Φ∼∼∼∼
6,3 ∈ S3(K2)⊗K2 is a 8th-order tensor to be determined. Full details of how we find Φ∼∼∼∼

6,3 are presented

in appendix ii. At the end, the following formula is obtained

Φ∼∼∼∼
6,3 .. h

∼

6,3 =
1

3
τ3 ⋆

[
h
∼

6,3 ⊗ P
≈

(2)

]
. (3.14)

Once Φ∼∼∼∼
6,3 identified the converse formula are

h
∼

6,3 = tr(2)23 (B∼∼∼
(222)), S∼∼∼

6,3 = B∼∼∼
(222) − Φ∼∼∼∼

6,3 .. h
∼

6,3. (3.15)

All this is summarised in the following proposition
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Proposition 3.3.3. The tensor B∼∼∼
admits the uniquely defined Clebsch-Gordan harmonic decomposition asso-

ciated to the family projectors
(
P
≈

(2),P
≈

(0)

)
:

B∼∼∼
= S∼∼∼

6,3 +
1

2
τ3 ⋆

[
2

3
h
∼

6,3 ⊗ P
≈

(2) + I
∼
⊗
(
H
≈

6,2 +
α6,2

2
P
≈

(2)

)
+ h

∼

6,1 ⊗ P
≈

(0)

]
+

α6,0

4
(I
∼
⊗ P

≈

(0)),

where I
∼

the identity second order tensor, and τ3 = (ς(e)+ς(13)(24)+ς(15)(26)). All tensors (S∼∼∼
6,3,H

≈

6,2,h
∼

6,3,h
∼

6,1,α6,2,α6,0)

are elements of K6 ×K4 ×K2 ×K2 ×K0 ×K0 defined from B∼∼∼
as follows:

K0 K2 K4 K6

α6,0 = tr(3)12 (B∼∼∼
)

h
∼

6,1 = tr(2)12 (B∼∼∼
) .. P

≈

(2)

α6,2 = Q
≈

6,2 .... P
≈

(2) H
≈

6,2 = Q
≈

6,2 − α6,2

2
P
≈

(2)

h
∼

6,3 = tr(2)23 (B∼∼∼
(222)) S∼∼∼

6,3 = B∼∼∼
(222) − Φ∼∼∼∼

6,3 .. h
∼

6,3

where Q
≈

6,2 = P
≈

(2) .. tr12(B∼∼∼
) .. P

≈

(2). The projectors P
≈

(2), P
≈

(0) are defined by equation (2.11), the block B∼∼∼
(222) by the

equation (3.10) and Φ∼∼∼∼
6,3 .. h

∼

6,3 by equation (3.14).

3.3.4 The CGHD of W4

This subsection will be limited to the statement of the main result concerning the explicit harmonic decompo-
sition of A∼∼∼∼

∈W4. Full details of the derivation are given in appendix i, and follow the lines of the method used

in the previous section for W3.

Proposition 3.3.4. The tensor A∼∼∼∼
admits the uniquely defined Clebsch-Gordan harmonic decomposition asso-

ciated to the family projectors
(
P
≈

(2),P
≈

(0)

)
:

A∼∼∼∼
= E∼∼∼∼

8,4 + τ2 ⋆
(
H
≈

8,4 ⊗ P
≈

2

)
+

1

2
τ4 ⋆

[
I
∼
⊗
(
S∼∼∼

8,3 +
1

3
τ3 ⋆

(
h
∼

8,3 ⊗ P
≈

(2)

))]
+ τ22 ⋆

[(
H
≈

8,2 +
α8,2

2
P
≈

(2)

)
⊗ P

≈

(0)

]

+
1

4
τ4 ⋆

[
h
∼

8,1 ⊗ I
∼
⊗ P

≈

(0)

]
+

1

4
α8,0P

≈

(0) ⊗ P
≈

(0) + α8,4τ ⋆

3 ⋆
(
P
≈

2 ⊗ P
≈

2

)
,

where I
∼

is the identity second order tensor, and with the following symmetrizers:

• τ2 =
1

2
(ς(e) + ς(13)(24)(35)(48)));

• τ22 = (ς(e) + ς(35)(46) + ς(37)(48) + ς(15)(26) + ς(17)(28) + ς(15)(26)(37)(48));

• τ3 = (ς(e) + ς(13)(24) + ς(15)(26));

• τ ⋆
3 = 1

3
(ς(e) + ς(35)(46) + ς(37)(48));

• τ4 = (ς(e) + ς(13)(24) + ς(15)(26) + ς(17)(28));

We have the tensors, E∼∼∼∼
8,4 ∈ K8, S∼∼∼

8,3 ∈ K6, (H
≈

8,4,H
≈

8,2) ∈ (K4)2, (h
∼

8,3,h
∼

8,1) ∈ (K2)2 (α8,4, α8,2, α8,0) ∈ (K0)3.

Those elements are defined from A∼∼∼∼
as follows:
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3.3. EXPLICIT HARMONIC DECOMPOSITION

K0 K2 K4

α8,0 = tr412(A∼∼∼∼
)

h
∼

8,1 = P
≈

(2) .. (tr312(A∼∼∼∼
))

α8,2 = Q
≈

8,2 .... P
≈

(2) H
≈

8,2 = Q
≈

8,2 − α8,2

2
P
≈

(2)

h
∼

8,3 = tr223(Q∼∼∼
8,3)

α8,4 = 2 tr12(tr
3
23(A∼∼∼∼

(2222))) H
≈

8,4 = tr13(tr12(A∼∼∼∼
(2222) − α8,4Θ∼∼∼∼

))

K6 K8

S∼∼∼
8,3 = Q∼∼∼

8,3 − Φ∼∼∼∼
6,3 .. h

∼

8,3

E∼∼∼∼
8,4 = A∼∼∼∼

(2222) − Φ∼∼∼∼∼∼

8,4 ..H
≈

8,4 − α8,4Θ∼∼∼∼

where Q
≈

8,2 = P
≈

(2) .. (A∼∼∼
.. I
∼
) .. P

≈

(2). Q
≈

8,3 = (A∼∼∼∼
.. I
∼
)

6◦ (P
≈

(2) ⊗ P
≈

(2) ⊗ P
≈

(2)). The projectors P
≈

(2), P
≈

(0) are defined by

equation (2.11). All blocks A∼∼∼∼
p,q,r,s are defined by equation (B.4). Φ∼∼∼∼∼∼

6,4 .. H
≈

8,4 and Θ∼∼∼∼
are given equations (B.11)

and (B.12) in the appendix i.

3.3.5 Synthesis
At the end, the TW4 function can be parameterised as follows:

F (σ
∼
; A∼∼∼∼

,B∼∼∼
,C

≈
,D

∼
) = F (σ

∼
; E∼∼∼∼

8,4, S∼∼∼
8,3, S∼∼∼

6,3,H
≈

8,4,H
≈

8,2,H
≈

6,2,H
≈

4,2,h
∼

8,3,h
∼

8,1,h
∼

6,3,h
∼

6,1,

h
∼

4,1,h
∼

2,1, α8,4, α8,2, α8,0, α6,2, α6,0, α4,2, α4,0, α2,0),

where

Terms degree K8 K6 K4 K2 K0

4 E∼∼∼∼
8,4 S∼∼∼

8,3 H
≈

8,4, H
≈

8,2 h
∼

8,3, h
∼

8,2 α8,4, α8,2, α8,0

3 S∼∼∼
6,3 H

≈

6,2 h
∼

6,3,h
∼

6,2 α6,2, α6,0

2 H
≈

4,2 h
∼

4,1 α4,2, α4,0

1 h
∼

2,1 α2,0

As the decomposition process detailed above clearly shows, the harmonic elements are indexed according to the
coupling they induce between the deviatoric part and the spherical part of the stress tensor. This coupling is
clear from the couple of index used to designate harmonic tensors. For instance, Kq,p ∈ Kn (0 ≤ n ≤ q), the
index q means that K parameterise a tensor of order q. Meanwhile, the index p indicate that the deviatoric
part of stress tensor occurs p times in the coupling, and hence the spherical part occurs

q

2
− p times. If p =

q

2
or p = 0 there is no coupling between the two parts which allows to say that the harmonic tensor is purely
deviatoric or spherical respectively.

From the general situation, some particular interesting cases can directly be derived.

Hexatropic Tsai-Wu The hexatropic symmetry is a non standard feature of threshold surface that may be
of interest for architectured materials. In the following table, the terms for symmetrical criteria are shown in
black, and the blue terms represent the contribution to be added in the case of an asymmetrical function.

81
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Terms degree K8 K6 K4 K2 K0

4 S∼∼∼
8,3 α8,4, α8,2, α8,0

3 S∼∼∼
6,3 α6,2, α6,0

2 α4,2, α4,0

1 α2,0

In the case of a symmetrical threshold function, the expressions of the tensors involved can be reduced to :

A∼∼∼∼
=

1

2
τ4 ⋆

[
I
∼
⊗ S∼∼∼

8,3

]
+ α8,4τ ⋆

3 ⋆
(
P
≈

2 ⊗ P
≈

2

)
+

α8,2

2
τ22 ⋆

[
P
≈

(2) ⊗ P
≈

(0)

]
+

α8,0

4
P
≈

(0) ⊗ P
≈

(0)

C
≈

=
α4,2

2
P
≈

(2) + 2α4,0P
≈

(0),

The general expression contains 6 material parameters to be identified. This result was anticipated using the
representation theorems in the previous chapter, and is confirmed here using harmonic decomposition. The
Wang criterion should be approximated with this expression.

If we want to consider Jeanneau’s surface, the following terms should be added to the previous ones

B∼∼∼
= S∼∼∼

6,3 +
α6,2

4
τ3 ⋆

[
I
∼
⊗ P

≈

(2)

]
+

α6,0

4
(I
∼
⊗ P

≈

(0))

D
∼

= α2,0 I
∼
.

and the complete criterion requires a maximum number of 10 material parameters.

Generalised Hill This criterion is purely deviatoric, hence all hydrostatic coupling are nil.

Terms degree K8 K6 K4 K2 K0

4 E∼∼∼∼
8,4 H

≈

8,4 α8,4

3 S∼∼∼
6,3 h

∼

6,3

2 H
≈

4,2 α4,2

1 h
∼

2,1

In the case of a symmetrical threshold function, the expressions of the tensors involved can be reduced to :

A∼∼∼∼
= E∼∼∼∼

8,4 + τ2 ⋆
(
H
≈

8,4 ⊗ P
≈

2

)
+ α8,4τ ⋆

3 ⋆
(
P
≈

2 ⊗ P
≈

2

)

C
≈

= H
≈

4,1 +
α4,2

2
P
≈

(2)

It can be seen from this expression that a generalised Hill criterion is unable to describe a 6-fold invariant
anisotropic surface. Sensitivity to hydrostatic pressure is necessary to see such symmetries, at least using
polynomial functions.

3.3.6 Polar parameterisation
Now that the threshold function has been decomposed, the question arises of how to parameterise its components.
A good parameterisation that is easy to handle allows to design graphical representation tools that are simple
to use.

In the case of R2, all non-trivial harmonic spaces are of dimension 2. Let Kn be an orthonormal basis of Kn,
n > 0. We refer to [15] for a systematic method for constructing Kn.

A first possibility is to use Cartesian coordinates with respect to Kn.

{K} = K1E1 +K2E2,

but another possibility is to use polar coordinates [43, 75, 184]. In such a case, the vector K being parameterised
by its norm ∥K∥ =

√
K2

1 +K2
2 and its angle with respect to E1 (see figure 3.2)

{K} = ∥K∥ (cos θkE1 + sin θkE2) = ∥K∥Er (3.16)
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θK

K1

K2

||K||

E1

E2

Figure 3.2: Polar parametrisation of n-th order harmonic tensor (n ≥ 1).

The main interested is associated with the way harmonic tensors are transformed

ρn(r(θ)) :=

(
cosnθ − sinnθ

sinnθ cosnθ

)
, ρn(π(e2)) :=

(
1 0

0 −1

)
∀(n > 0).

Hence the rotation of θ angle of a harmonic tensor just changes its angle by nθ in polar coordinate without
affecting its norm.

r(θ) ⋆ K ∈ Kn =⇒ (||K||, θK + nθ) (3.17)

The harmonic decomposition of TW4 will therefore be parameterised using the polar representation of the
components of the harmonic tensor. In this way, it will be fairly intuitive to manipulate the surfaces generated
from the TW4 criterion.

3.4 Influence of harmonic components on the shape of surfaces

As TW4 has been parameterised by harmonic tensors, it is interesting to understand the role of these different
contributions on the resulting threshold surface. This point will be addressed in this section by means of
graphics.As TW4 is a versatile function, this section is not intended to be exhaustive and only a few relevant
cases will be examined below.

All surfaces will be represented below with respect to the harmonic basis. As mentioned previously, the
interest is that this representation naturally decouples anisotropy and charge. Consequently, the physical
content is easier to grasp using this convention. In the following, the surface areas are taken from the TW4
criterion expressed as below:

FTW4(σ
∼
) = 1.

The influence of the various harmonic components of the criterion will be considered in two steps. First,
we will look only at the physical anisotropy. Secondly, the terms modelling the sensitivity to loading will be
studied.

3.4.1 Invariance with respect to the material symmetry
In the harmonic basis, the material symmetry is indicated by the group G2D

S which characterises the symmetry
of all slices of S with respect to the deviatoric plane. To simplify the following study we will consider the
restriction of the criterion to that of a generalised Hill criterion as introduced above, that is:

A∼∼∼∼
= E∼∼∼∼

8,4 + τ2 ⋆
(
H
≈

8,4 ⊗ P
≈

2

)
+ α8,4τ ⋆

3 ⋆
(
P
≈

2 ⊗ P
≈

2

)

C
≈

= H
≈

4,1 +
α4,2

2
P
≈

(2)
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The influence of the asymmetry will be considered by adding the following contributions

B∼∼∼
= S∼∼∼

6,3 +
1

2
τ3 ⋆

[
2

3
h
∼

6,3 ⊗ P
≈

(2)

]

D
∼

= h
∼

2,1.

The advantage of having an exclusively deviatoric criterion is that the S surface will be invariant along the
hydrostatic axis. In other words, S will be a cylinder which constant cross-section will be characteristic of
spatial anisotropy.

Let’s start by considering only the role of α8,4, with the other parameters set to zero. On the figure 3.3, S
appears as cylinder with circular section. The criterion is obviously isotropic, G2D

S = O(2), and the R3 symmetry
class of S is G3D

S = O(2)⊗ Zc
2.

(a) Tri-component representation. (b) The plane σh = 0.

Figure 3.3: The TW4’s surface with only α8,4 = 0.3. The surface is G3D
S = O(2)⊗ Zc

2

Now let us add the contribution of E∼∼∼∼
8,4. As shown on Figure 3.4, this contribution changes the shape of the

section of the cylinder which appears now to have square symmetry, ie. G2D
S = D4. As discussed in subsection

2.3.2 of the previous chapter, this means the associated physical symmetry is GP = D8. This is due to the

8th order harmonic tensor which is
2π

8
periodic in spatial basis. The periodicity in the stress space, is halved

because the angle Θ of the surface is twice the physical angle θ (look the subfigures (c) and (d)).

(a) Tri-component representation
(θ = 0).

(b) The plane σh = 0 (θ = 0). (c) Tri-component representation
(θ = π

3 ).
(d) The plane σh = 0 (θ = π

3 ).

Figure 3.4: The TW4’s surface with only ||E
≈
8,4|| = 0.3, α8,4 = 0.8. The surface is G3D

S = D4 ⊗ Zc
2

Let us now substitute E∼∼∼∼
8,4 with E∼∼∼∼

6,3, the resulting surface is pictured on Figure 3.5. In this case the shape

of the section of the cylinder has now trigonal symmetry, ie. G2D
S = D3, which means the associated physical

symmetry is GP = D6. The symmetry of the whole surface in R3 is G3D
S = Dv

3 . What is interesting is that
such a surface only appears in the case of asymmetric criteria, which is not necessarily intuitive at first sight.
However, this is perfectly logical since this surface is not centrosymmetrical and therefore cannot correspond to
a symmetrical criterion.
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(a) Tri-component representation
(θ = 0).

(b) The plane σh = 0 (θ = 0). (c) Tri-component representation
(θ = π

8 ).
(d) The plane σh = 0 (θ = π

8 ).

Figure 3.5: The TW4’s surface with only ||S∼∼∼
6,3|| = 0.23, α8,4 = 0.3. The surface is G3D

S = Dv
3

To make the criterion sensitive to hexagonal symmetry, we could consider the term S∼∼∼
8,3 instead of S∼∼∼

6,3.

It should be noted that this approach involves taking into account sensitivity to hydrostatic stress, since S∼∼∼
8.3

reflects a coupling between deviatoric stress and spherical stress. Since S∼∼∼
8,3 is contained in the tensor 8th order

tensor A∼∼∼∼
, the resulting surface, as pictured on Figure 3.6, is now centrosymmetric. It is twisted figure with

varying sections, the symmetry group of which depends on the hydrostatic stress. From bottom to top, the
symmetry of the section changes as follows7:

G2D

P(σh





D3, σh ̸= 0;

O(2), σh = 0.

(a) The plane σh = 0. (b) Tri-component representation S83=0.023, a84=0.3

Figure 3.6: The TW4’s surface with only ||S∼∼∼
8,3|| = 0.023, α8,4 = 0.3. The surface is G3D

S = D3 ⊗ Zc
2

As a results the symmetry class of the criterion is G2D
S = D3 and hence the described physical symmetry is

GP = D6. The symmetry class of the surface with respect to R3 is G3D
S = D3 ⊗ Zc

2.
It should be noted that if the sectional symmetry groups are indicated, the overall symmetry of the surface

is different, since in this case it is centrosymmetrical. This difference is associated with the sensitivity of the
criterion to loading, a point that will be dealt with in the next section.

3.4.2 Invariance with respect to the loading
The main elements for characterising invariance with respect to the loading are the following ones:

1. π(̂f
3
), the mirror symmetry with respect to the deviatoric plane, i.e. the operation that changes the sign

of the hydrostatic stress:
(σ
∼

(2), σh)→ (σ
∼

(2),−σh)

7It can be observed that symmetry of the cross-section for σh = 0 is O(2). This result can be understood as follows. As noted in
remark (2.3.1) surface with symmetry group D2p+1⊗Zc

2 have cross-section symmetry group GP(0) = D2(2p+1). In the present case,
it means GP(0) = D6. Due to Hermann theorem, a model should possess at least a 12-th order tensor to see such a symmetry. Since
the higher-order tensor of the model is 8th order, this anisotropy can not be described by the TW4 criterion and hence conduct to
an isotropic behaviour.
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when present this symmetry will be indicated below as π, ans when absent as π.

2. i3, the inversion8, i.e. the operation that change the sign of σ
∼
:

σ
∼
→ −σ

∼

when present this symmetry will be indicated below as i, ans when absent as i.

These invariances translate into the following harmonic structure of TW4 :

• centro-symmetry: Kp,q = 0 if p

2
̸= 2n;

• hydrostatic invariance: Kp,q = 0 if p

2
− q ̸= 2n;

As a result, threshold surfaces fall into one of the following 4 types:

i i

π type 1 type 2

π type 3 type 4

i.e.:

• type 1: surfaces are centrosymmetric and possess mirror symmetry with respect to the deviatoric plane.
The associated TW4 harmonic structure is

Terms degree K8 K6 K4 K2 K0

4 E∼∼∼∼
8,4 H

≈

8,4, H
≈

8,2 h
∼

8,2 α8,4, α8,2, α8,0

3
2 H

≈

4,2 α4,2, α4,0

1

• type 2: surfaces are just centrosymmetric. The associated TW4 harmonic structure is

Terms degree K8 K6 K4 K2 K0

4 E∼∼∼∼
8,4 S∼∼∼

8,3 H
≈

8,4, H
≈

8,2 h
∼

8,3, h
∼

8,2 α8,4, α8,2, α8,0

3
2 H

≈

4,2 h
∼

4,1 α4,2, α4,0

1

• type 3: surface a not centrosymmetric, the criterion is dysmetric but still invariant with respect to the
reverse of σh The associated TW4 harmonic structure is

Terms degree K8 K6 K4 K2 K0

4 E∼∼∼∼
8,4 H

≈

8,4, H
≈

8,2 h
∼

8,2 α8,4, α8,2, α8,0

3 S∼∼∼
6,3 h

∼

6,3

2 H
≈

4,2 α4,2, α4,0

1 α2,0

• type 4: Completely asymmetric, the harmonic structure is generic.

For the sake of simplicity, let’s consider the effect of these different terms on an isotropic criterion, i.e. one
for which the harmonic decomposition reduces to the elements of K0.

Four different isotropic functions (G2D
S = O(2)), with an increasing number of terms in their harmonic

structure are considered and their associated surfaces are plotted in figures 3.7, 3.8, 3.9 and 3.10 below.
8The inversion can result from the combination of the in-plane centro symmetry and π(̂f3).
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1. The first polynomial just contains α8.4. This is a purely deviatoric criterion, so the resulting surface is an
unclosed cylinder. This surface is obviously of type 1.

2. The second polynomial now includes α8,0, which is a purely spherical term. The addition of this contri-
bution closes the previous cylinder. The type of the surface is unchanged.

3. In the third polynomial (cf. figure 3.9); the term α8,2 is added, which correspond to a coupling between
deviatoric and sphercial stress. The surface show now a strong dependence on the hydrostatic level, but
is still of type 1.

4. In the last polynomial, the term α6,0 is added. This term is purely spherical and comes from a cubic
polynomial in σ

∼
. As a result, the associated surface is not centrosymmetric (see figure 3.10). This

characteristic models the tension/compression asymmetry. The surface is of type 4.

(a) Tri-component representation. (b) The plane σh = 0.

Figure 3.7: The TW4’s surface with only α8,4 = 0.3. The surface is G3D
S = O(2)⊗ Zc

2

.

(a) tri-component representation. (b) The plane σh = 0. (c) The plane σd2
= 0. (d) The plane σd1

= 0.

Figure 3.8: The TW4’s surface with only α8,4 = 0.25, α8,0 = 0.12.

(a) tri-component representation. (b) The plane σh = 0. (c) The plane σd2
= 0. (d) The plane σd1

= 0.

Figure 3.9: The TW4’s surface with only α8,4 = 0.25, α8,2 = 0.2 and α8,0 = 0.12.
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(a) tri-component representation (b) The plane σh = 0. (c) The plane σd2
= 0. (d) The plane σd1

= 0.

Figure 3.10: The TW4’s surface with only α8,4 = 0.25, α8,2 = 0.2 , α8,0 = 0.12 and α6,0 = 0.3.

The next two examples, now add anisotropic terms in the criterion:

1. Figure 3.11 shows an anisotropic surface which is shaped like a box. It is in fact similar to that of figure
3.4. The difference is due to the addition of H

≈

8,4 which has broken the D4 (slice) symmetry into D2. This
is followed by α8,0 to close the surface at the top and bottom.

2. For the figure 3.12, the tensor H
≈

6,2 as been added, it results that the surface is of type 4. More specifically
the surface has the following symmetry G3D

S = Z−
4

(a) tri-component representation. (b) The plane σh = 0. (c) The plane σd1
= 0. (d) The plane σd2

= 0.

Figure 3.11: The TW4’s surface considering ||E∼∼∼∼
8,4|| = 0.3, ||H

≈
8,4|| = 0.5, α8,4 = 0.8 and α8,0 = 0.2. The surface is G3D

S = D2 ⊗ Zc
2

(a) H84=0.3, a84=0.8, θ = π/3 (b) The plane σh = 0. (c) The plane σd1
= 0. (d) The projections on plane

σd2
= 0.

Figure 3.12: The TW4’s surface considering ||H
≈

6,2|| = 0.5 and α8,4 = 1.5. The surface is G3D
S = Z−

4 .

3.5 Approximation of some existing threshold functions

As indicated in the first part of this chapter, the TW4 function has been taken into account as it seems to be
able to encompass in its formalism many different threshold criteria that can be found in the literature.

The previous section gave us an idea of how the harmonic parameters influence the shape of the threshold
surface. The goal of the present section is to retrieve with our model some of the four particular criteria we
identified in the literature:

• Cazacau’s isotropic threshold function [46];
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• The anisotropic "Poly4" threshold model of Soare;

• the Wang hexagonal criterion for architectured material;

• the dissymetric Jeanneau threshold surface for architectured materials.

For details concerning these threshold functions we refer to chapter 1. The used process of identification is quite
simple:

1. the first step consists of generating enough number of points from a given model ;

2. the second step, consist in identify harmonic parameters by using Mathematica standard fitting tools9.

Each harmonic tensor is parameterised by its norm and orientation as detailed by equation (3.16) (polar
parametrisation). As discussed above, the number of harmonic parameters can be considerably lowered de-
pending on the anisotropy of material.

3.5.1 Cazacu 2004 (3D)
As a recall, the threshold function of Cazacu et al. [46] is given by:

F (σ
∼
) = (J2)

3/2 − cJ3,

where c is a material parameter and J2 and J3 are the second and third invariant of the deviatoric part of the
3D stress tensor. The function is meant to be used for isotropic materials that present a traction/compression
asymmetry in tensile yield stress. In the case of plane stress hypothesis, the function is given by:

F2D(σ
∼
) =

[
1

3
(σ2

1 − σ1σ2 + σ2

2)

]3/2

− c

27
[2σ3

1 + 2σ3

2 − 3 (σ1 + σ2)σ1σ2] ,

=

[
1

3
(I2

1 − 3I2)

]3/2

− c

27
(2I3

1 − 9I1I2) ,

(3.18)

where σ1 and σ2 are the principal stresses while I1 and I2 are the first and the second invariant of the stress
tensor. The isotropy of the function is clear from its expression. It can be noticed that

1. the function is purely deviatoric in 3D but not in 2D;

2. the function is not polynomial.

The fact that the function is isotropic can be visualised in the stress space (cf. figure 3.13, since the projections
of cross section of the surface on the deviatoric plane give a family of concentric circles.

-2 -1 1 2

σd1

Y

-2

-1

1

2

σd2

Y

Figure 3.13: The projections of cazacau’s threshold surface on the deviatoric plane from bottom (black) to the above level (red).

9As a fitting tool we use the NonLinearModelFit of the software. All options are set to defaults and no constraints are considered.
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Knowing the symmetry of the threshold surface, the parametrisation of the function to be identified can be
simplified. All harmonic tensors of order n ≥ 1 are null and can be set to zero. As a result, the independent
parameters of the problem that remain to be adjusted are as follows:

{α8,4, α8,2, α8,0, α6,2, α6,0, α4,2, α4,0, α2,0}. (3.19)

(a) Tri-component representation. (b) The plane σh = 0.

(c) The plane σd1
= 0. (d) The plane σd2

= 0.

Figure 3.14: The threshold surface and the fitted of Cazacu’s function for F (σ
∼
) = 1. The green one is the analytical expression

from equation (3.18). The orange one is the fitted one. The points are in red are the ones chosen in the identification process.

The identification results are shown in the figure 3.14. It shows that with the proposed threshold function, we
manage identify the Cazacu’s one with 20 chosen points (in red). We calculated the volume difference between
both analytic and fitted surface and the relative error is valued of 0.01%. The values of the considered harmonic
parameters (see equation (3.19)) in approximation process are given in the following table (for FTW4(σ

∼
) = 1):

α8,4 α8,2 α8,0 α6,2 α6,0 α4,2 α4,0 α2,0

0.2070 0.0325 0.03575 0.2421 -0.09 0.06899 0.02303 0.0206

3.5.2 Poly4
The threshold function Poly4 of Soare [167] is given by:

F (σ
∼
) = a1σ

4

11 + a2σ
3

11σ22 + a3σ
2

11σ
2

22 + a4σ11σ
3

22 + a5σ
4

22 + (a6σ
2

11 + a7σ11σ22 + a8σ
2

22)σ
2

12 + a9σ
4

12. (3.20)
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This function corresponds to the homogeneous polynomial function of degree 4 :

F (σ
∼
) = A∼∼∼∼

8· (σ
∼
⊗ σ

∼
⊗ σ

∼
⊗ σ

∼
) (3.21)

In terms of parameters, the identification process concerns the following harmonic tensors:

{E∼∼∼∼
8,4, S∼∼∼

8,3,H
≈

8,4,H
≈

4,2,h
∼

8,3,h
∼

4,1, α8,4, α8,2, α8,0}.

which, without any further assumptions, correspond to a set of 15 parameters. The equation (3.20) corresponds
to the specialisation of the general form to the orthotropic case. According to the proposition 3.2.6, the
orthotropic symmetry condition requires all harmonic tensors to be "collinear" with each other in a generalised
sense. This deceases the number of independent parameters to identify from 15 to 9. When the orthotropy axis
coincides with the physical base axis, the orthotropy condition is expressed as follows

F (σ11, σ22, σ12) = F (σ11, σ22,−σ12) (3.22)

this explains why monomials involving odd powers in σ12 are missing in the expression, and why 9 parameters
appears in the Soare’s Poly4 function. In stress space, cf figure 3.15, this condition means that the threshold
surface is symmetric with respect to the plane (σd1

, σh).

-1.0 -0.5 0.5 1.0
σd1

-1.0

-0.5

0.5

1.0

σd2

Figure 3.15: The projections of Poly4 threshold surface on the deviatoric plane from bottom (black) to the above level (red).

(a) Tri-component representation. (b) The plane σh = 0.
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(c) The plane σd1
= 0. (d) The plane σd2

= 0.

Figure 3.17: The threshold surface and the fitted of Soare’s function for F (σ
∼
) = 1. The green one is the analytical expression

from equation (3.20). The orange one is the fitted one. The points are in red are the ones chosen in the identification process.

The considered harmonic parameters (see equation (3.19)) in approximation process are (we remind that
each harmonic tensor K of order n ≥ 1 has 2 components (K1 and K2)):

{E8,4

1 , S8,3

1 , H8,4

1 , H4,2

1 , h8,3

1 , h4,1

1 , α8,4, α8,2, α8,0}, (3.23)

Their values are given in the following table (for FTW4(σ
∼
) = 1):

E8,4
1 S8,3

1 H8,4
1 H4,2

1 h8,3
1 h4,1

1 α8,4 α8,2 α8,0

0.1234 0.018 -1.0226 -0.0164 -0.4854 0.1931 8.8288 2.0272 0.8703

As mentioned in chapter 1, Poly4 is an improvement on Gotoh’s criterion for which Soare has added new
conditions in the identification process in order to resolve convexity problems. Gotoh, in his article [84],
established the conditions for which Poly4 is isotropic in 2D (planar isotropy). The same conditions can be
established by setting all harmonic tensors of order n ≥ 1 to 0, i.e.

∥E∼∼∼∼
8,4∥ = ∥S∼∼∼

8,3∥ = ∥H
≈

8,4∥ = ∥H
≈

4,2∥ = ∥h
∼

8,3∥ = ∥h
∼

4,1∥ = 0

This implies the following relations in the polynomial expression (3.20):

a5 = a1 ; a4 = a2 ; a8 = a6 ; a2 + a6 = 4a1,

a3 + a7 + a9 = 6a1 ; 4a1 + 2a2 = 2a3 + a7

As shown in figure 3.17 we manage to identify the threshold function with 11 points. We compared the obtained
values from the identification and the analytical ones, the error is valued 1%.

3.5.3 Triangular lattice (plasticity)
In their paper Wang et al. [188] established the threshold surface for equilateral triangular 2D lattice shown in
figure 1.11. Assuming periodicity, they reduced their study to one unit cell and used beam theory the evaluate
the stress. The Lattice is considered to be stretching dominated therefore, plasticity occurs the axial stresses,
evaluated in each beam, reaches the threshold. The obtained threshold criterion is given by:

F (σ
∼
) = max

{∣∣∣∣∣
σ11

Y
−
√
3σ12

Y

∣∣∣∣∣ ,
∣∣∣∣∣
σ11

Y
+

√
3σ12

Y

∣∣∣∣∣ ,
∣∣∣∣
3

2

σ22

Y
− σ11

2Y

∣∣∣∣

}
, (3.24)

where Y in the tensile stress of the constituent material. The threshold surface is defined by the equation
F (σ

∼
) =

ρ̄

2
where ρ̄ is the relative density. For ρ̄ = 0.15 the surface shown in figure 3.18 (harmonic basis) is

obtained:
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(a) Tri-component representation. (b) The plane σh = 0.

(c) The plane σd1
= 0. (d) The plane σd2

= 0.

Figure 3.18: The threshold surface of equilateral triangular 2D lattice for (ρ̄ = 0.15) [188].

As detailed in section 2.3.4, and illustrated on figure 3.19, the symmetry group of each cross section are

G2D

P(k) =





D3, k ̸= 0;

D6, k = 0.

Hence the resulting in-plane anisotropy of the surface is G2D
S = D3, which is consistent with the symmetry of

the unit cell which is D6.

-0.06 -0.04 -0.02 0.02 0.04 0.06
σd1

-0.06

-0.04

-0.02

0.02

0.04

0.06

σd2

Figure 3.19: The projections of Wang et al. threshold surface on the deviatoric plane from bottom (black) to the above level (red).
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Further, the surface is symmetric with respect to traction compression. The symmetry group of the surface
is therefore of type II, more precisely

G3D

S = D3 ⊗ Zc

2.

Hence, in the identification process, the non null components to be identified are

{S∼∼∼
8,3, α8,4, α8,2, α8,0, α4,2, α4,0}.

which means that we have a total of 7 unknown parameters. Since the surface has a symmetry plane positioned
at an angle θ = 0, the number of parameter can be reduced to only 6:

{S8,3

1 , α8,4, α8,2, α8,0, α4,2, α4,0}.

Figure 3.20: The chosen red points (25 in total) for identification process.

The results of the identification are shown in figure 3.21. The figure 3.20 shows the considered points10 in
the identification. It seems that the surface identified corresponds fairly well to the analytical surface, although
there are some discrepancies. The fitted surface is open in certain areas and extends beyond the analytical
surface. In addition, certain constraints must be added to make the surface convex (if necessary).

10We tried to consider the maximum of points in an attempt to obtain the best results.
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(a) Tri-component representation. (b) The plane σh = 0.

(c) The plane σd1
= 0. (d) The plane σd2

= 0.

Figure 3.21: The threshold surface and the fitted of Wang et al. function for ρ̄ = 0.15. The green one is the analytical expression
from equation (3.18). The orange one is the fitted one.

All this is due to discontinuities in the corners, which are singularities and need to be smoothed out. One
way of doing this is to smooth the max function. We have the following lemma:

Lemma 3.5.1. For all x1, ..., xn ∈ Rn (nN), we have the P-norm [186]:

∥(x1, . . . , xn)∥p = (|x1|p + · · ·+ |xn|p)1/p

which converges to ∥(x1, . . . , xn)∥∞ = max1≤i≤n |xi| as p→∞.

The function F (σ
∼
) (3.24) can be approximated by the following function F̃ (σ

∼
) :

F̃ (σ
∼
) =

(∣∣∣∣∣
σ11

Y
−
√
3σ12

Y

∣∣∣∣∣

p

+

∣∣∣∣∣
σ11

Y
+

√
3σ12

Y

∣∣∣∣∣

p

+

∣∣∣∣
3

2

σ22

Y
− σ11

2Y

∣∣∣∣
p
) 1

p

, (3.25)

The special case p = 4 is considered, which corresponds to a homogeneous polynomial function of degree 4.
Hence, instead of identifying the surface coming from F (σ

∼
) =

ρ̄

2
, we try this time to identify F̃ (σ

∼
) =

ρ̄

2
. The

following 4 harmonic parameters are considered:

{S8,3

1 , α8,4, α8,2, α8,0}. (3.26)

which are issued from the homogeneous polynomial of degree 4:

F (σ
∼
) = A∼∼∼∼

8· (σ
∼
⊗ σ

∼
⊗ σ

∼
⊗ σ

∼
) (3.27)
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(a) Tri-component representation. (b) The plane σh = 0.

(c) The plane σd1
= 0. (d) The plane σd2

= 0.

Figure 3.22: The threshold surface and the fitted of Wang et al. for the smoothed function for ρ̄ = 0.15. The green one is the
analytical expression from equation (3.24). The orange one is the fitted one. The points are in red are the ones chosen in the

identification process.

The value of the considered harmonic parameters (see equation (3.19)) for the approximated threshold
surface (fitted one) in figure 3.22 are given in the following table (for FTW4(σ

∼
) = 1

2
ρ):

S8,3
1 α8,4 α8,2 α8,0

-1775.32 28435.44 14208.75 7113.39

Using this approach, a polynomial approximation of the Wang threshold criterion is established, the result
of the adjustment is plotted on the figure 3.22. Unlike the first approach, the fitted surface is closed, convex
and does not extend beyond the analytical surface. Of course, in order to be more precise, one will need to add
polynomial terms of higher degree as indicated by the lemma 3.5.1.

One can also try identifying the analytical surface F (σ
∼
) =

ρ̄

2
, from the reduced set of parameters (3.26) and

considering the points in figure 3.20. The result is shown in figure 3.24. The fitted surface, this time, is closed.
comparing it to figure 3.22, the result is better, although convexity is not respected.

As for the failure of direct identification, this is probably due to the fact that we used too broad a set of param-
eters, which led to an unwanted solutions. By deduction, knowing a priori the presence of tension/compression
symmetry, probably, only one homogeneous polynomial of even degree is needed. The choice of the degree of
this polynomial obviously depends on the degree of anisotropy to be described. In our case, for example, the
material symmetry is D6 which cannot be described by a polynomial of degree 2.
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(a) Tri-component representation. (b) The plane σh = 0.

(c) The plane σd1
= 0. (d) The plane σd2

= 0.

Figure 3.24: The threshold surface and the fitted of Wang et al. for the analytical function for ρ̄ = 0.15. The green one is the
analytical expression from equation (3.24). The orange one is the fitted one.

In figure 3.24 the value of the harmonic parameters, corresponding to the fitted surface, are given in the
following table (for FTW4(σ

∼
) = 1

2
ρ):

S8,3
1 α8,4 α8,2 α8,0

-2386.48 21201.65 14669.1 3055.31

3.5.4 Triangular lattice (plasticity and buckling)
A threshold surface has been established numerically by V. Jeanneau [103] during his PhD for equilateral
triangular 2D lattice by considering plasticity and buckling instabilities. The plasticity limit is established
analytically by considering the following function Fp (p is referred plasticity):

Fp(ε
∼
) = max{|P1|, |P2|, |P3|}

where
P1 : (Eε11) = 0

P2 :

(
1

4
E
(
ε11 +

√
6ε12 + 3ε22

))
= 0

P3 :

(
1

4
E
(
ε11 −

√
6ε12 + 3ε22

))
= 0

This time, the criterion is formulated in strain space, which makes no difference to the previous approach since
the two spaces are identical (S2(R2)). The parameters E is the Young’s modulus of the solid constituent material
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(the solid material used to make Lattice). The plasticity threshold surface is defined by the equation F (ε
∼
) = Y .

In this example we have E = 72000MPa and Y = 500MPa

Figure 3.25: The triangular 2D lattice (grey line), unit cell C (red dashed line) and basis vectors (red arrows) [103].

To take account of the local buckling limit, the surface is established numerically. A semi-analytical technique
is used, which combines Bloch wave theory and a finite element model of the 2D lattice unit cell [54]. The
buckling surface is given by the red points in figure 3.26). A surface passing through most of the points is
defined by the equation Pb = Y . In this expression Pb is obtained by directly fitting the proposed threshold
function (see figure 3.26).

Figure 3.26: The buckling surface (spatial basis)).

to take into account the presence of plasticity and buckling at the same time, the following threshold function
Fpb (pb refers to plasticity and buckling) is considered:

Fpb(ε
∼
) = max{P1, P2, P3, Pb}

The resulting threshold surface is plotted on figure 3.27 (harmonic basis). It is clear that the surface is dissym-
metric in tension/compression. The 3 intersecting planes above the surface represent the plasticity limit, while
the curved surface at the bottom represents the locus of buckling instabilities. It is noticed, in figure 3.28, that
symmetry groups G2D

P(k) of the different cross sections are D3. In addition, the surface has a plane of symmetry
positioned at an angle θ = 0. The symmetry class of the surface is Dv

3 which is a type III group.
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(a) Tri-component representation. (b) The plane ϵh = 0.

(c) The plane ϵd1 = 0. (d) The plane ϵd2 = 0.

Figure 3.27: The threshold surface of the a triangular lattice considering the buckling.

-0.010-0.005 0.005 0.010
εd1

-0.010

-0.005

0.005

0.010

εd2

Figure 3.28: The projections og the threshold surface of the a triangular lattice on the deviatoric plane from bottom (green) to
the above level (orange). [103].

Consequently, the independent parameters to be taken into account in the identification process can be
reduced to the elements in the following list (10 in total):

{S8,3

1 , S6,3

2 , α8,4, α8,2, α8,0, α6,2, α6,0, α4,2, α4,0, α2,0}.
As before, it seems that the surface identified corresponds fairly well to the analytical surface, but a few problems
have arisen. The fitted surface is open in certain areas and extends beyond the analytical surface. In addition,
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certain constraints must be added to make the surface convex (if necessary). As in tre previous case, the max
function need to be smoothed, but this time the P-norm approach is not usable because it can only admits
positive values (the absolute value is not applied to Pb).

Instead, the so-called LSE (log-sum-exp) function.

(a) Tri-component representation. (b) The plane ϵh = 0.

(c) The plane ϵd1 = 0. (d) The plane ϵd2 = 0.

Figure 3.29: The threshold surface of the a triangular lattice (green) and the fitted surface (orange).

Lemma 3.5.2. We the log-sum-exp (LSE) function as follows [131]:

LSE (x1, . . . , xn) = log (exp (x1) + · · ·+ exp (xn))

The function in Rn domain is an approximation of the maximum maxi xi with the following bounds:

max {x1, . . . , xn} ≤ LSE (x1, . . . , xn) ≤ max {x1, . . . , xn}+ log(n) (3.28)

The function has the propriety of being strictly convex.

LSE is one of approaches that are used to have a smooth approximation of the maximum function, and
has many uses, particularly in optimisation problems. We can tighten the bounds in the inequality (3.28) by
introducing a coefficient λ > 0 as follows:

max {x1, . . . , xn} ≤
1

λ
LSE

(x1

λ
, . . . ,

xn

λ

)
≤ max {x1, . . . , xn}+

log(n)

λ
,

hence, in our case, we approximate the function Fpb(ε
∼
) with the following function F̃pb(ε

∼
):

F̃pb(ε
∼
) =

1

λ
(exp(λP1) + exp(λP2) + exp(λP3) + exp(λPpb))
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λ is set 0.0085. The approximating is done to the surface coming from F̃pb(ε
∼
) = Y instead of the one coming

from Fpb(ε
∼
) = Y . The same set of harmonic parameters as before is considered.

(a) Tri-component representation. (b) The plane ϵh = 0.

(c) The plane ϵd1 = 0. (d) The plane ϵd2 = 0.

Figure 3.30: The threshold surface of the triangular lattice (green) and the fitted surface (orange) after smoothing the function.

Although, the surface is smoothed, identifying the surface of the threshold is difficult (cf. figure 3.30).
Assuming having too large a set of parameters, (which leads to unwanted solutions), the 1st and 2nd degree
polynomials are of no use in modelling the anisotropy we are looking for, we will remove them from the set of
independent variables. Consequently, only the terms associated with 3rd and 4th degree polynomials will be
taken into account. The number of independent parameters is therefore reduced from 10 to 7:

{S8,3

1 , S6,3

1 , α8,4, α8,2, α8,0, α6,2, α6,0}, (3.29)
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(a) Tri-component representation. (b) The plane ϵh = 0.

(c) The plane ϵd1 = 0. (d) plane ϵd2 = 0.

Figure 3.32: The threshold surface of the a triangular lattice green and the fitted surface orange (smoothed version).

As the figure 3.32 shows, this assumption leads to a physical solution. As it is already mentioned, a more
accurate fit can be obtained by taking into account polynomials of higher degree. The value of the corresponding
harmonic parameters are given in the following table (for FTW4(ε

∼
) = Y ):

S8,3
1 S6,3

1 α8,4 α8,2 α8,0 α6,2 α6,0

2.76×1011 −3.68×108 1.92×1012 6.79×1012 1.93×1013 −1.74×1010 −6.25×1010

We can try to directly identify the surface Fpb(ε
∼
) = Y (unsmoothed) from the reduced set of harmonic

parameters (3.29) (see figure 3.34). Better result than the previous one is obtained though, the convexity is not
respected. In the end, we were able to identify a fairly complicated surface as a special case of our generalised
threshold function with just 7 parameters. The value of the corresponding harmonic parameters are given in
the following table:

S8,3
1 S6,3

1 α8,4 α8,2 α8,0 α6,2 α6,0

3.62×1011 −3.93×108 1.64×1012 6.25×1012 1.47×1013 −1.4×1010 −7.47×1010
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(a) Tri-component representation. (b) The plane ϵh = 0.

(c) The plane ϵd1 = 0. (d) The plane ϵd2 = 0.

Figure 3.34: The threshold surface of the a triangular lattice (green) and the fitted surface (orange) after smoothing the function.

3.6 Synthesis

The following statements allow to summarise in a concise manner this chapter:

• The established analysis in both chapter 1 and 2, guided us to propose a general threshold criterion
named Tsai-wu 4. It a polynomial function of degree 1 to 4 in σ

∼
. For each degree, material tensors of

order (2, 4, 6, 8) are considered.

• The harmonic decomposition allowed to look for the set of all situations that TW4 can describe. It
starts with anisotropic properties (in R2) in section 3.2.1 where it confirms the link between harmonic
decomposition and the representation theory. Furthermore, the harmonic decomposition with respect to
R3 (considering harmonic basis), allowed us to give all the possible symmetry classes of threshold surface
associated to TW4.

• As it was done before, the explicit algebraic harmonic decomposition of the 6th and 8th order tensor were
established in section 3.3 (for 2nd and 4th order tensor it is already done [13]). A demonstration, on how
the threshold surface shape (anisotropy and loading symmetry) changes with presence/absence of some
harmonic tensors, is provided. Lastly, approximation of some selected threshold criterion was done in
section 3.5, and which validates the obtained results from representation theory in section 3.2.1.

The threshold function approximated in section 3.5.4 will be implemented as constraints in a topology
optimisation problem in the next part of the manuscript.
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Towards Stress based topology
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Chapter 4

Topology optimisation : methods and
algorithms
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In mechanical engineering, it is important to derive the best performance from a design of manufactured
structure. This can be done through engineering experience by doing experimental or numerical tests. However,
for complex applications, it is not intuitive hence, it is time-consuming and expensive. To address the problem, it
turns out that the whole process can be automated by solving a mathematical structural optimisation problem.
Since the middle the 20th century, many numerical methods [123] for structural optimisation, with a solid
mathematical background, have emerged. It all started with: (i) firstly with parametric optimisation where
only the engineering variables are optimised (thickness, radius, truss layout design, ... etc). (ii) Then with the
shape optimisation in which the geometry of the boundary is optimised [67]. (iii) Finally to arrive at the topology
optimisation where the presence of matter is determined [31]. The figure 4.1 shows the difference between the
three types of structural optimisation.
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4.1. TOPOLOGY OPTIMISATION

(a) Parametric optimization. (b) Shape optimization. (c) Topological optimization.

Figure 4.1: The three types of structural optimisation [5].

A structural optimisation problem is defined by the following elements [2]:

• A physical model describing the mechanical behaviour of the structure, often in the form of partial
differential equations.

• An objective function derived from a mathematical representation of topology (or the shape).

• Constraints which define a set of admissible solutions (manufacturing constraints, mechanical strength,
...etc). The set of possible solutions that satisfy the constraints is called feasible domain.

In our study, only the topology optimisation for 2D elasticity problems will be featured. On years 1990s,
topology optimisation has reach a high level maturity where it is possible to be used in various industrial
applications. Now, lot of tools are available in different commercial finite element software (Abaqus, Ansys,
Nastran, ... etc).

This chapter focuses on giving a brief overview about the topology optimisation. In the first section, some
aspects on what are the most popular methods to parametrise the topology will be shown. In the second
section, some examples of different objective functions are discussed. It is important to point out that the
mentioned functions will be the encountered ones in our optimisation problems. In the third section, different
numerical algorithms are described. In the fourth section, some explanations about the numerical difficulties
that are present in stress constrained topology optimisation are given. Lastly, in the fifth section, we will speak
about including anisotropy in a topology optimisation problem by adding other optimisation variables (e.g.
orientation). The last section is a general conclusion which justifies the choice of the topology optimisation
problem and the resolution algorithm used un this thesis.

4.1 Topology optimisation

The topology optimization is defined as a set of computational methods used in engineering to determine the
optimal distribution of material within a given design space. It aims to find the most efficient and lightweight
configuration of a structure while meeting certain constraints (e.g. manufacturing constraints). Generally a
topology optimisation problem is written as follows:

{
min
Ωmat

J (uΩmat
,Ωmat),

Constraints,
Ωmat ⊂ Ω, (4.1)

where Ω is the design space, Ωmat is the subspace of Ω where the material is being distributed, J is the objective
function. u

Ωmat
is the displacement and it is dependent on Ωmat. The problem can be subjected to constraints

(volume, geometry, ... etc). The figure 4.2 shows an example of an optimal material distribution for a linear
elasticity problem where stiffness is maximised under a volume constraint.

Figure 4.2: Optimal distribution of an isotropic material for a cantilever beam (elasticity). The compliance is considered as the
objective function to minimize, subjected to a volume constraint. The black area indicates the presence of material, the grey one

indicates absence of material.
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Lot of resolution algorithms are available in the literature [189]. They depend on the optimisation problem
and on the chosen parameters. Numerical difficulties are encountered [163, 56], it is important to see how
different authors managed to address them.

4.2 Parametrisation of the topology

In a topology optimisation problem, one can ask the following question: "How to mathematically parametrise
the topology ?". Different methods exist, the first one is the density based method. The second one is the
level-set [9]. In this section, some details about each method are provided. It is important to point out that it
exists a third method called phase field [36] that however be detailed in this section.

4.2.1 Density based method
In density based methods the presence of material is indicated explicitly by a parameter field denoted χ(x). In
a position1 x, χ(x) = 1 indicates the presence of the material, χ(x) = 0 indicates void (absence of the material).
In a physical model, the effective properties are pondered by the density variable. For example, in an elasticity
problem the optimised stiffness tensor C

≈
(x) is given as follows:

C
≈
(x) = χ(x)C

≈

0, (4.2)

where C
≈

0 is the the material stiffness tensor. The problem here is ill-posed due the fact that χ is a discrete
variable (0 or 1) and due the fact that when χ(x) = 0, the elasticity problem (or the physical model) can not
be defined. To address this, one can relax the problem by replacing χ with ρ ∈ [0, 1], hence in the previous
example, the optimised stiffness tensor C

≈
(x) is given as follows:

C
≈
(x) = [ϵ+ (1− ϵ)ρ(x)]C

≈

0. (4.3)

where ϵ, generally set to 10−6, is the Ersatz stiffness [159]. Therefore, the role of ϵ is avoid having a null
stiffness. Allowing ρ(x) to be valued in the interval [0, 1] involves intermediate densities appearing in the
optimal topologies. In the literature [5], it is considered as a mixture of material and void. It can describe
a microstructure (e.g. a unit cell of a lattice material [42, 53]). In this case, it is known as homogenisation
method. Some difficulties are encountered on how the relationship between the density and microstructure is
defined and also on how the passage from a continuous material to a discontinuous one is done (the process is
known as dis-homogenisation). The reader may refer to the following references [77, 119, 104, 181] for more
details.

(a) No penalisation. (b) SIMP penalisation p = 3.

Figure 4.3: The topology of an optimised beam [194].

In order to eliminate the intermediate, penalisation techniques are used. they force the density to converge
to either 0 ot 1. Several techniques are available: (i) the first one called ’SIMP’ (Simple Isotropic Material
Penalisation) [162]. (ii) The second one is RAMP (Rational Approximation of Material Properties) [177] and
(iii) the third one is SINH [39]. In a case where the penalisation is enabled, the equation (4.3) becomes:

C
≈
(x) = [ϵ+ (1− ϵ)f(ρ(x))]C0

≈
, (4.4)

where, f(ρ) = ρp

︸ ︷︷ ︸
SIMP

; f(ρ) =
ρ

1 + p(1− ρ)︸ ︷︷ ︸
RAMP

; f(ρ) =
sinh(pρ)

sinh(p)︸ ︷︷ ︸
SINH

. (4.5)

1Given a structure domain subdivided by finite elements, χ(x) is a local variable constant in each element which indicates the
presence/absence of material
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4.2. PARAMETRISATION OF THE TOPOLOGY

Figure 4.4: Difference between the 3 penalisation techniques for p = 3.

The figure 4.4 shows that the 3 penalisation techniques are similar. SIMP remains the most popular and
generally the penalisation parameter p is set to 3. The figure 4.3 shows us the effect of the SIMP penalisation
on the obtained result. All density based methods have advantages of being simple to understand and easy for
numerical implementation. However, when a penalisation technique is applied, the boundaries of the optimal
topology are not clear where some remaining intermediate densities can be found. Therefore, the obtained results
will need to be post-processed [200]. Some numerical difficulties are encountered [163] such as checkerboards
issue and some remaining intermediate densities, to overcome these problems different filters are used such as
regularisation and heaviside filters.

4.2.2 Level set method

In the level-set parametrisation, the distribution of the material Ωmat ⊂ Ω (Ω = Ωmat∪ Ω̄mat is the design space)
is defined by an implicit function ϕ(x). The boundaries of Ωmat corresponds to the intersections of the level
zero with the surface of ϕ(x). Mathematically, the function ϕ : Ω 7→ R verifies:





ϕ(x) < 0 if x ∈ Ω̄mat,

ϕ(x) = 0 if x ∈ ∂Ωmat,

ϕ(x) ≥ 0 if x ∈ Ωmat.

(4.6)

ϕ(x) = 0
ϕ(x) > 0

ϕ(x) < 0
Ωmat

Ω̄mat

ϕ(x) > 0

ϕ(x) < 0

Figure 4.5: The representation of Ωmat with the level-set method (Ω = Ωmat ∪ Ω̄mat) [106].

The equation (4.6) indicates that the material is present when ϕ(x) > 0. (see figure 4.5). When ϕ(x) < 0
there is void. With the level-set method, the optimisation is assimilated to dynamical problem [106, 56] where
in each iteration the form of Ωmat(t), defined by ϕ(x), evolves with time t following a normal velocity denoted
v(x, t) evaluated as the descent direction calculated from the shape derivative of the objective function using
Hadamard’s boundary variation method. The evolution of Ωmat is determined by solving the following advection
equation:

∂ϕ

∂t
+ v(t, x)|∇ϕ| = 0 ∀x ∈ Ω, (4.7)

During the evolution of Ωmat , the topology can changes only by eliminating holes. This means that using the
shape derivative cannot create holes, therefore, it is important, in the initialisation, to put enough holes in order
to obtain better results. In a case where no holes are introduced in the initial distribution of the material, a
shape optimisation problem is being dealt with. The hole problem can be addressed by using the topological
derivative [153] (or alongside of shape derivative) which is capable of creating holes.
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Concluding remarks
The density-based method is best candidate for all featured topology optimisation problems in this document.
The main reason is that it has the ability to include anisotropy (if it is desired). In other terms, additional
variables (to the topology), such as orientation of the material or anisotropy parameters, can be considered.
This can be done with both homogenisation and SIMP method. The reader is invited to read section 4.6. The
level-set is able to include some aspects of anisotropy [6, 165] however, despite the numerical difficulties [163],
density based methods are much simpler to implement numerically.

4.3 Objective function and optimisation constraints

In our study, three main aspects are brought to light: volume, rigidity and mechanical strength. The volume
represents the amount of volume that the material occupies in the the design space. The rigidity is defined as
compliance which is the work of the external forces (an energy). The mechanical strength consists of a criterion
that must be satisfied in the obtained topology (after solving the optimisation problem). All these three aspects
are somehow linked to each other e.g. with the lower volume, the lower the rigidity. In this section, a description
on each aspect is given.

4.3.1 Compliance
It is known as the work of external forces. The most popular problem in topology optimisation is the minimi-
sation of the compliance subjected to a defined volume. The volume (less that the volume of the design space)
must be imposed in order avoid trivial solution (which is presence of the material in whole design space). With
SIMP method the optimisation problem is given by:





min
ρ∈[0,1]

C(u),
1

VΩ

∫

Ω

ρ dv = η,
(4.8)

where in an elasticity problem,

C(u) =
∫

Ω

σ
∼
(u) : ε

∼
(u) dv, (4.9)

with VΩ as the volume of the design space, η =
V0

VΩ

, V0 is the objective volume and u is the displacement vector,

solution of the elasticity problem (more details are found in section 5.1). The optimisation problem (4.8) can
be solved with multiple algorithms. It has a lot of mathematical particular properties especially for optimality
criteria and for gradient-based algorithms [5, 146] which simplify the problem and make the implementation
more convenient.

4.3.2 Volume
The volume represents the amount of volume that the material occupies in the the design space. In SIMP
method, it is defined by:

VΩmat
=

∫

Ω

ρ dv, (4.10)

The volume can be used as a constraint usually in the compliance minimisation [146, 42] (see equation (4.8)).
It can be considered as an objective function in volume (or mass) minimisation problems [143, 186] subjected
to inequality constraints in rigidity or in mechanical strength (or both). This kind of problem is very useful
because the mechanical strength is usually known (defined by a criterion). It is also useful when the required
rigidity (or compliance) is known and the corresponding volume is unknown. The idea is to reduce of volume
while maintaining the required rigidity and the required mechanical strength. The problem is often solved with
gradient based algorithm in both SIMP and level-set methods.

4.3.3 Threshold function
It is related to a strength criterion, defined by a threshold function (see part I), that is featured in a topology
optimisation problem. It is known in the literature as stress based topology optimisation where the mechanical
strength (threshold function) is either employed as an objective function [128, 8] or as a constraint [141, 159,
186, 55, 81]. It is more practical to solve a volume minimisation problem instead of minimising an equivalent
stress field (e.g. Von Mises) due to fact that the mechanical limit strength is always known (e.g. when the max
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Von Mises stress field reach the threshold). If we minimise the threshold function (as an objective function) we
might stumble into a local minima that do not satisfy the mechanical strength [143].

A stress based topology optimisation problems can be solved with both SIMP and level-set methods. A
special attention is brought to stress topology optimisation with SIMP where several numerical issues are
encountered. Meanwhile, the issues are less pronounced for level-set method (due to the absence of intermediate
densities). Lot of approaches are established to tackle these issues [64, 65, 77, 185], more details are available
in section 4.5.

Multiple criteria has been implemented, Giraldo et al. [80] regrouped multiple threshold functions in a single
one. The regrouped threshold functions were: Von-Mises, Drucker-Prager, Tresca, Mohr-Coulomb, Bresler-
Pister and Willam-Warnke.Some anisotropic criteria are found, Tsai-Hill was implemented by Silva et al. [164].
Tsai-Wu was also implemented by Mirzendehdel et al. [128, 187]. It is worth noting that Tsai-Wu cannot be
implemented directly. The reason is that it is non-homogenous polynomial which leads to counter intuitive
design in the topology optimisation problem. A safety factor is introduced to overcome the difficulty.

Concluding remarks
As a stress constrained topology optimisation problem, volume minimisation was the most studied one in the
literature. As stated in section 4.3.2, the main reason is that the mechanical strength is usually known (defined
by a criterion). The concept is to remove material while maintaining the required mechanical strength. This
problem may be subjected to rigidity (compliance) constraint if needed and it will be formulated in next chapter.
It can be solved with a gradient based or a metaheuristic algorithms. More details about resolution algorithms
are available in following section.

4.4 Algorithms for structural optimisation

For topology optimisation problems, it exists several numerical algorithms as ways to solve them. Some of
them are very flexible [57] where they can be adapted for several aspects such as manufacturing constraints
and frequency responses. Some of them are too restrictive [146] as they are suited for only one problem with
one defined method. Therefore, the choice of an algorithm is very dependent on the chosen method and on
the proposed problem. Three main families exist: (1) Optimality criteria, (2) Metaheuristic and (3) Gradient-
based (also known as mathematical programming [123]). Each algorithm has its advantages and disadvantages
hence, it is important to have a background for each one. In this section, an overview on some of most popular
algorithms is provided. For our study, we justify our choice of the algorithm of resolution at the end in the
concluding remarks.

4.4.1 Optimality criteria
Optimality criteria algorithms derive or state conditions characterising the optimal design, then find or change
the design to satisfy them while indirectly optimising the structure [123]. These conditions are often based on
Kuhn-Tucker optimality conditions. It is usually used for compliance minimisation to obtain optimal layout
design of trusses [145, 110, 31]. It is also used in topology optimisation. Sigmund, in his work [162], used
a heuristic optimality criterion to obtain optimal material distribution for an elasticity problem. Allaire et
al. [4] did the same by introducing alternate direction algorithm. The same algorithm is also used for the
simultaneous optimization of topology and material anisotropy [146] (a proof of convergence can be found in
the reference). Optimality criteria has the advantage of being robust and cheap comparing to other algorithms,
however they are only restricted to compliance minimisation and cannot, for example, treat mechanical strength
as constraints.

4.4.2 Metaheuristic
It consists of algorithms that are mainly inspired by nature, physics and biological evolution. These algorithms
have the ability to solve optimisation problem without need to calculate gradient of the objective function.
Therefore, they can be applied to any optimisation without the design variables being continuous. For structural
optimisation, different problems with different constraints (mechanical strength, ... etc) can be solved. Lot of
algorithms are found in the literature. A popular one is the evolutionary structural optimisation (ESO) [197].
The concept consists of removing, in each iteration, the ineffective material elements for the objective function.
What remains enables us to achieve an optimal design. One issue with this algorithm is that it could lead
to a truss-like design. To address that, bidirectional evolutionary structural optimisation (BESO) [199] was
introduced where the material can be removed and added at the same time hence, it allows for a better
convergence to a local minimum to obtain better designs.

110



4.4. ALGORITHMS FOR STRUCTURAL OPTIMISATION

In the literature, one can find Genetic algorithm (GA), it consists of a stochastic global search method that
mimics the metaphor of natural biological evolution [190]. The set of design variable is considered as population
is created. The concept is to select, for each generation, the fittest set of solutions. Mutation and crossover
are applied to seek improvement for the the selected set of solutions. As metaheuristic algorithm, Ant Colony
Optimisation (ACO) [108] and Particle Swarm Optimisation (PSO) [122] can be used for topology optimisation.
They both are nature algorithms that emulates the social behaviour of animals such as insects swarming (ACO)
and birds flocking (PSO) searching for food. The concept is that a group artificial ants or particles cooperate
to solve a combinatorial problem by exchanging information which allows to remove/add material to the design
space.

Despite the advantages, these algorithms are computationally expensive for high dimensional problem (i.e.
large number of FEM elements) because of the sharp rise in the number of combination problems where, for
each one, the objective function must be evaluated.

4.4.3 Gradient based
It is also known as mathematical programming. Generally, the concept [123] is to obtain information from
conditions around the current design point in the design space in order to look for: (i) decent direction and (ii)
how far to go for best descent. The process is repeated until no more reduction is produced in the iterations
within some selected tolerance. One of the classical algorithms is gradient algorithm [2] which can only be
applied to non-constrained optimisation problems. If the constraints are present, projected gradient algorithm
can be used. In each iteration the solution is projected into feasible domain (where the constraints are satisfied).
However, the projection operators can only be defined for certain constraints [3] (e.g. bounds constraint (0 ≤
ρ ≤ 1)) and not for all. Therefore, other flexible algorithms are found in literature [132]. They belong to what
so-called non-linear mathematical programming. The non linear part is represented by the addition of non-linear
equality and inequality constraints. Multiple approaches are available such as Sequential Linear Programming
(SLP), Sequential Quadratic Programming (SQP), Augmented Lagrangian, convex approximations [178], Null-
space gradient flow[71], ... etc.

Gradient-based algorithms are known to be very flexible. they can treat different optimisation problems
with different constraints (multi-constrainted topology optimisation problems [57]). However, the evaluation of
the derivative is not straightforward. From an engineering point of view, it is difficult to implement it using
commercial software. It can be also expensive specially in case of slow convergence. In complex application,
the Sensitivity Analysis, which is often required for the numerical implementation of the algorithm, can be
"tedious" . This problem can be tackled by using automatic differentiation tools [10].

In this subsection, an overview on some popular gradient-based algorithm is provided. The first one is the
convex approximation, the second one is the augmented Lagrangian and the last is the null-space gradient flow.
For our study, we justify our choice in the conclusion.

Convex approximation

For an optimisation problem, the idea behind these algorithms is to establish several sub-problems and solve
them. These sub-problems are approximations proven to be convex. Several algorithms are available in the
literature. One of them is the CONvex LINear approximation (CONLIN) [69]. The concept is to perform, in
each iteration, the linearisation process (first order Taylor expansion) and select an appropriate approximation
scheme so the resulting problem is convex. An application on truss structures is available [40]. Another
algorithm is found and it is the Method of the Moving Asymptotes (MMA) [178]. The idea remains the same
as before except that the approximation process is more general. Another variant is proposed and it is called
GCMMA (Globally Convergent MMA) [179]. The choice between the two (MMA and GCMMA) is dependant
on the proposed optimisation problem. If the the objective function is not stable and fluctuates a lot then
GCMMA is recommanded. If it is stable and does not fluctuate a lot then MMA is the better choice. If the
problem presents multiple variables (e.g. topology and material orientation) one can use SplitMMA [187]. It
allows establishing a sub-problem for each variable and they can be treated separately with a chosen approach
(MMA or GCMMA) depending on the variation of the objective function. The MMA algorithms has proven to
be efficient for topology optimisation problems and they is very often used for complex applications [185, 203].

Remark It is important to point out that more algorithm are available [69] such as sequential linear approx-
imation (SLP), sequential quadratic approximation (SQP). They are based on approximation which is linear
(first order Taylor expansion) for SLP and quadratic (second order Taylor expansion) for SQP. These algorithms
are implemented in IPOPT libraries they are used in topology optimisation problems. In the literature [30],
another algorithm called Method of Feasible Direction (MFD) can be used. It is a modified version of SLP and
SQP based on the concept of marge maximisation [69] and it is proven to be efficient for handling large number
of constraints.
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Augmented Lagrangian

In an optimisation problem, there exists a way of taking into account the constraints: the Lagrangian approach
[2]. It has the property of changing a constrained optimisation problem to an unconstrained one with a different
objective function. To clarify, we consider the following problem:

{
min

p
J (p),

f(p) = 0,
(4.11)

where J is the objective function, h is an equality constraint function and p is the optimisation variable. The
Lagrangian function is given by:

L(p, λ) = J (p) + λf(p), (4.12)

where λ is the Lagrange multiplier. It is proven that the equivalent problem [2, 132] to (4.11) is:

max
λ

min
p
L(p, λ) (4.13)

and it corresponds to looking for a saddle point (P ∗, λ∗) (see figure 4.6). The optimisation is transformed into
a free one at a cost adding another variable which is λ. One can see that if the constraints are verified the
Lagrangian becomes the objective function. This can only be the case if the right value of λ is found. The
Lagrangian can be extended to multiple equality and inequality constraints by simply adding more Lagrange
multipliers. The inequality can be transformed into equality constraint using the so-called slack variables [32]
(an example is shown in section 5.4). The problem (4.13) can be solved using Uzawa algorithm. It defines an
updating strategy to the Lagrange multipliers and other non-physical parameters in order to find the saddle
point. The implementation of Uzawa algorithm is simple however, the algorithm has issues [69], the convergence
is slow, the constraints are not strictly respected and oscillations to the optimisation variable could occur because
of the difficulty of defining non-physical parameters.

p

(p∗, λ∗)L(p, λ)

λ

Figure 4.6: Graphical representation of a saddle point [106].

The problem (4.11) can be solved with what so-called penalisation algorithm [106]. Same as previous
approach, it transforms a constrained optimisation problem into a unconstrained one. The equivalent problem
is given by:

min
p

(
J (p) + 1

ϵ
f(p)2

)
(4.14)

where ϵ is a penalisation parameter. The greater the value of
1

ϵ
(ϵ → 0), the more importance is attached to

the constraint. Therefore, solving (4.14) is easy by simply choosing a sufficiently small value of ϵ (e.g. using
gradient algorithm) however, the problem appeared to be poorly conditioned [2] which makes to choice of ϵ
difficult. If ϵ is too small, numerical errors (Rounding, ...) can therefore be very pronounced. It is important
also to keep in mind that multiple equality and inequality constraints can be added by simply introducing more
penalised terms to problem (4.14).

To address the problem in both previous algorithms (Uzawa and penalisation), Augmented Lagrangian was
proposed. It is a combination of both Uzawa and penalisation algorithms. For problem (4.11), the augmented
Lagrangian consists of adding a penalisation parameter to the Lagrangian as follows:

L(p, λ, b) = J (p) + λf(p) +
b

2
f(p)2, (4.15)

where b is a penalisation parameter. The equivalent problem remains the same (looking for saddle point). It
is important to point out that the augmented Lagrangian is a regularised version of the basic Lagrangian of
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type Moreau-Yosida, more details are found in [41]. b does not need to be importantly high (it is penalisation
problem) but it has an important role in the updating scheme of λ. A very detailed algorithm for an optimisation
problem is available in section 5.2.

(a) Augmented Lagrangian. (b) Uzawa

Figure 4.7: An example showing the difference in convergence between Uzawa and augmented Lagrangian algorithms in the
optimisation variable space [69].

The augmented Lagrangian algorithm, has the advantage of being easy to implement. comparing to Uzawa
algorithm, it converges faster due to the improved updating scheme leading directly to the right value of λ. An
example of comparison is found in [69] where the figure 4.7 shows the convergence history in the variable space.
Some disadvantages are present. A lot of non-physical parameters has to be chosen (in a kind of arbitrary
manner) and can influence greatly the convergence history and the obtained results.

Null-space gradient flow

As gradient based algorithm, a list of algorithms was briefly reviewed such as augmented Lagrangian, MMA,
SLP, SQP and MFD. All these algorithms have non-physical parameters and tuning them is not an easy task
and it is time consuming. An algorithm called Null-space gradient flow was proposed [71]. The algorithm is
based on a dynamical system approaches to non-linear constrained optimization. It is not very common within
topology optimisation community. The main advantage is that it does not need tuning due to the fact that the
only non-physical parameter is the descent step (very intuitive to adjust). It is also effective when it comes to
inequality constraints, the algorithm has the option to not use the slack variables and it shows faster saturation2.
It can be used for topology optimisation problems [70] and it is proven to be efficient.

Concluding remarks
For stress based topology optimisation, MMA remains the most efficient and most commonly used as an algo-
rithm of resolution. It is used in augmented Lagrangian [81] when the stress are local. It is also used directly
when the local stresses are aggregated [186] (more details are given in the next section). The classical gradient
algorithm can be also used [55] in augmented Lagrangian for local stresses, however, it is not common and few
explicit algorithm are provided. All featured optimisation problems in this document will be solved by aug-
mented Lagrangian with the classical gradient. For pedagogical purposes, the explicit algorithm with explicit
derived expressions will be provided and tested.

4.5 Stress constrained topology optimisation

The most encountered optimisation problem in the literature is the volume minimisation subjected to stress
constraints. This problem can be solved using with different methods (SIMP, Level-set) and with different
algorithms (BESO [196], augmented Lagrangian [141], MMA [186], ...). In this section a special attention is
given to the problem when SIMP method is used, it is given as follows:





min
ρ∈[0,1]

∫

Ω

ρ dv,

gj =

(
σeq

j

σlim

− 1

)
≤ 0 ∀x ∈ Ωmat := {x ∈ Ω, ρ ̸= 0}

(4.16)

2the inequality constraint is saturated when it is brought close to its bounds, e.g. x < 1 is saturated when x = 0.999
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where Ne is the total number of elements in FEM analysis and σeq
j is an equivalent stress (e.g. Von Mises)

evaluated on elementj (j = 1, 2, ..., Ne). Solving this directly does not lead to a black/white solution because
several numerical difficulties need to be addressed. In this section, a brief overview of these numerical difficulties
is given, together with the different approaches to solve them.

4.5.1 Micro and Macro stress
In SIMP approach, ρ = 1 means that the material is present and the evaluated by what so-called macro stress
it is the same as in equation (4.4) and it given by:

σ
∼

mac = ρpC
≈

0 : ε
∼
. (4.17)

However, the intermediates densities, in the literature, is often refereed to composite microstructure. The stress
described in SIMP method (equation (4.17)) fails to predict the real stress in the microstructure and could lead
to all void design (trivial solution) [185]. Lot of authors have proposed the so-called micro stress and it is based
on a studied model of microstructure. Donders [77] used homogenisation method to optimise periodic lattice
structure. In the optimisation process, she introduced the corrector tensors, obtained from a unit cell problem,
to evaluate the micro stress. Duysinx et al. [65] provided a mathematical formulas to compute the micro stress
for rank 2 composites, it is given by:

σ
∼

mic =
ρp

ρq
C
≈

0 : ε
∼
, (4.18)

where q is an exponent to be chosen. Due to its simplicity, it is widely used in several studies [159, 81]. Verbat et
al. [186] mentioned 2 rules for a local stress, it should: (i) be inversely proportional to the density, (ii) converge
to a finite stress as the density reaches zero. To respect the second rule, they set p = q. A difficulty arises for
this definition and it is that the stress is non-zero when ρ = 0 which leads the algorithm to be unable to remove
materials. The problem is known as singular optima and relaxation approaches are introduced to tackle the
difficulty. The reader is invited to see section 4.5.3 for more details.

4.5.2 Vanishing constraints
The proposed problem in (4.16) belongs to a class called mathematical program with vanishing constraints
(MPVC) [1]. This terminology comes form the fact that some constraints should not exist (or be considered)
in some parts of the feasible domain. In our case, when ρ = 0 the constraints (gj) should not exist because
the material is not present. This is a problem because, numerically, when ρ = 0 the material is present and
it is infinitely compliant. This means that the constraint will be evaluated in the whole design space Ω and
consequently leading to numerical issues. To avoid the problem [51], the constraints gj are modified and replaced
by ḡ as follows:

ḡj = ρjgj = ρj

(
σeq

j

σlim

− 1

)
∀x ∈ Ω (4.19)

gj is simply multiplied by ρj, so when ρ = 0, ḡ = 0 hence, the constraint vanishes. By doing so, it allows us
to define the constraints in the whole design space Ω. Another approach is proposed by Giraldo-Londono et al.
[80]. It is the polynomial vanishing constraints and it is given by:

ḡj = ρp

jgj(g
2

j + 1) ∀x ∈ Ω, (4.20)

Figure 4.8: Comparison between the "traditional" (equation (4.19)) and "polynomial" (equation (4.20)) vanishing constraints [81].
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where p is the SIMP exponent, it helps correlating the constraints to the density. ḡj is a polynomial of degree 3
on gj. Comparing to previous one in equation (4.19) (indicated traditional in figure 4.8), polynomial vanishing
constraints conserve the limit and penalise the violation severely. The cubic polynomial adds more non-linearity
to the constraints but it helps finding an optimal design at a faster pace.

Remark : It is important to point that "vanishing constraints" does not solve the problem of singular optima
which is explained in the next section.

4.5.3 Singular optima
In a stress constrained topology optimisation, the singular optima defined by presence of the solution (optimal
design) in a degenerate subspace in the feasible domain. It was observed by Cheng et al. [51] in truss structure
optimisation. The best way to describe that is the two-bar truss example explained by Verbat et al. [186].

(a) The two-bar truss problem

(b) Feasible domain
Figure 4.9: The two-bar truss example [186]

The point D in figure 4.9b is the solution to the truss problem, and it is situated in degenerate subspace (R)
of the feasible domain (R2). Therefore, with a gradient-based algorithm, it is not possible to reach the solution
D. The only way to do so, is to pass through violated domain (where the constraints are not satisfied) therefore,
the constraints need to be relaxed. Lot of relaxation approaches are found in the literature. Cheng et al. [50]
proposed the ε-relaxation. It was first introduced truss optimisation and later then to topology optimisation
[141]. Bruggi et al. proposed [38] the qp-relaxation. It is particular case of ε-relaxation and it is related to
the defined micro stress in equation (4.18). It is mentioned in section 4.5.1 that in order to respect the rule
regarding the micro stress, q = p should be verified, it is what caused the singular optima problem. For the
qp-relaxation, q is lower than p (q < p) where, generally, it is set p− q = 0.5 [81]. The reader is recommanded
to read [185] for more details. Another approach called aggregation is used to reduce the number of constraints
as well as playing a role (optionally) in the relaxation of constraints is details in next section.

4.5.4 Aggregation
In the problem (4.16), the constraints are local, it means that a constraint is present on each element (supposedly
linear elements). In order calculate the gradient of the objective function FEM analysis has to be done for
each constraint. This leads to high computational cost. One can look for the maximum stress but numerical
instabilities could be encountered due to the fact that the max stress could change from one position to another.
Moreover, the max function is not differentiable [161]. To reduce the number of constraints, aggregation
approaches are proposed, they are widely used for stress constrained topology optimisation [55] and they are
also used as a regularisation approach in some non-smooth optimisation problems [157, 48]. There is the p-norm
[65], the upper Kreisselmeier–Steinhauser (KS) [109]. These functions are a smooth differentiable approximation
of the max function. By applying to the local constraints, the resulting problem will have only one constraint
and a gradient-based algorithm can be used to solve it. Both approaches have the similar effects and they can
be combined with a relaxation approach.
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Figure 4.10: The boundaries of the relaxed feasible domain of the bar-truss problem with respect to a varying parameter [186].

A variant of p-norm and upper-KS function [186] called p-mean and lower-KS (respectively). They both
represent a lower bound approximation of the max function and it is found out that they can play the double
role of aggregation and relaxation. This means that, when using p-mean and lower-KS, relaxation is not needed.
This is important because it reduces the number of parameters for the optimisation problem. It appears that the
relaxation with p-mean and lower-KS is an particular adaptive case (to the number of elements) of ϵ-relaxation
approach. The figure 4.10 shows the boundaries of relaxed feasible domain of the bar-truss problem using the
Lower-KS function.

The aggregation proved to work very well using gradient based-method, however, the main disadvantage of
the aggregation is that it underestimates the maximum stress field. This problem has been tackled using what
so-called rectifier [133, 198]. It consists of multiplying the aggregation value by a term which is dependent on
the ratio of the actual maximum and aggregated value. Another disadvantage regarding the aggregation, it
is the disability to have control over the whole design space. It means that only the regions where the stress
concentration occurs are taken into account.

It important to point out that it exist other alternative ways to reduce the number of constraints, one of
them is the augmented Lagrangian [159, 81]. It has the properties of transforming a constrained problem into
an unconstrained one. The computational cost is reduced because only one FEM analysis is required for all
the constraints to calculate the gradient of the augmented Lagrangian (in each iteration). Bruggi proposed a
strategy called active stress constraints where only the constraints that are violated or close to being violated
are taken into account. This strategy works well with a coarse mesh however, with a refined mesh the number
of constraint could still be important. A block aggregation strategy was attempted by Paris et al. [138] in order
to have more control when using aggregation approach. The constraints number is reduced but they are highly
non-linear (due to aggregation) which could lead to an important computational cost.

Concluding remarks
For our study, the chosen problem is the volume minimisation with aggregated strength constraints, the reason
is that the aggregation can play a double role relaxation and reducing the number to constraints into one.
Therefore, the number of parameters is reduced by picking (p = q) for the micro-stress. The lower KS-function
will be used instead of the p-mean because of fact that the local constraints do not need be strictly positive
hence, it can be applied directly (unlike the p-mean). The main disadvantage of using the aggregation that it
gives a highly non-linear constraint which could slow down the convergence speed.

4.6 Including anisotropy

Considering anisotropic material opens the possibility to add more optimisation variables (additional to the
topology) to the optimisation problem. In this section, a brief overview, on how different authors manage to do
it, is given for several range applications. The additional parameters depend on the context of the application
(composite laminate, 3D printing, ... ). The main parameters, when an anisotropic material is considered, are
mainly the orientation and the stiffness (elasticity) tensor. The section starts by considering a fixed anisotropy
where the optimisation is only performed with respect to the topology. Then the orientation is added. Some
numerical details need to be considered when optimising for topology and orientation. Lastly, the optimisation
with respect to elasticity tensor (considering only elasticity problems), where a lot of strategies are found in the
literature, is presented.

4.6.1 Fixed anisotropy
Fixed anisotropy means that an anisotropic material is considered in the elasticity problem and the optimisation
problem is only performed with respect to the topology. The problem can solved in both SIMP and level-set
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method. In terms of equations for any available algorithm, the only thing that changes is the form of the
elasticity tensor and the obtained optimal design is dependent on the material orientation. The figure 4.11
shows the results of compliance minimisation for a cantilever elasticity problem [146], considering unidirectional
carbon/epoxy composite material. It is noticed that 2 different results are obtained considering an orientation
angle of 0° and 45° with respect to fixed reference frame.

(a) 0° (b) 45°
Figure 4.11: Optimal design from compliance minimisation for cantilever elasticity problem with respect to material

orientation[146].

It is important to mention that anisotropy can be exhibited by the mechanical strength. Indeed, a material
can have an isotropic elasticity tensor with an anisotropic mechanical strength described by an anisotropic crite-
rion. An example is given with equilateral triangular lattice [103] where its threshold function is approximated
by TW4 in section ??. Another example is found in an additive manufacturing (AM) application [128]. In order
to manufacture a mechanical part, layer are deposited with 2 alternated orientations (45°/-45°), the effective
stiffness is isotropic, however, because of AM flows, the mechanical strength is anisotropic.

The next sections gives some details on to get better performance from anisotropy by adding more optimi-
sation variables.

4.6.2 Optimisation with respect to topology and orientation
In addition to the topology, orientation can be added as an optimisation variable when anisotropic material is
considered. It is proven that it could allow drawing better performance. Concurrent topology and orientation
optimisation is possible with both SIMP3 and level-set method. For density based method, the orientation is
a local variable in each element (like the density). One of early studies was done by Pederson et al. [140],
they proved that he optimal orientation for an orthotropic material is the one of the principal direction of stress
tensor field (or strain tensor field). This is valid only when in a single load case (it is not valid for multiple loads).
Ranaivomiarana [146], used the polar parametrisation (see section 3.3.6) to establish the optimal orientation
using optimality criteria conditions.It was found out that, in a case, the optimal material orientation in stiffness
is aligned with the direction of the principal stress which has the greatest absolute value. And in another
case, the optimal material orientation in stiffness is not aligned with the direction of the principal stress. Its
value is the greatest absolute value of the principal stress added with a certain angle depending on the material
properties and on the spherical and deviatoric part of the stress tensor. The main advantage of this approach
relies on the practicality and simplicity for the numerical implementation and moreover, relies on the fact that
it leads to a global optimum. Donders [77] used the same approach to optimise, with respect to the orientation,
some lattice materials. With the same algorithm (optimality criteria) concurrent topology and orientation
optimisation has been done for several applications [146, 151].

The optimisation with respect the orientation using gradient-based algorithm is also possible, Shen et al.
[160] proved, in a simple manner, that it is possible to use gradient descent algorithm. One of the numerical
issues is that there are a lot of local minima. Discontinuities are observed in the obtained optimal orientation
field. Schmidt et al. [156] applied concurrent topology and orientation optimisation for composite fibers (also
known as Continuous Fiber Angle Optimization CFAO) using MMA algorithm. In their paper, they explained
how they addressed several numerical issues by using filters to tackle the discontinuities and by introducing
a numerical strategy to avoid local minima in multiple loads case. An interesting approach is given by [117]
for CFAO. In order to apply the concurrent topology and orientation optimisation, a vector parametrisation is
used in which the magnitude indicates the presence of material and the direction (of the vector) represents the
orientation. The advantage of this approach is that the number of local minima is reduced.

It is worth noting that level-set method can be used for concurrent topology and orientation optimisation.
An interesting example is provided by Liu et al. [121]. In their study they point out that the level-set method
is well suited for AM applications (e.g. for fused deposition modeling process) where the iso-value contours can
gives the deposit path planning. From the iso-value contours the orientation of the material can be derived,

3SIMP stands for "simple isotropic material penalisation" but it can be applied to anisotropic material.
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therefore, the optimisation with respect to the orientation is possible (together with the topology using shape
derivative). Some numerical examples are available in the mentioned reference.

4.6.3 Optimisation with respect to topology and material anisotropy
In topology optimisation problem, the material anisotropy can considered as an additional variable to the
topology. In other words, we are looking for an optimal distribution of materials and an optimal tensor elasticity
field. Lot of strategies are proposed different studies. One of them is the Multi-scale Topology Optimisation
(MTO) [194], it is described by 5 steps [113]: (1) a microstructural analysis (numerical homogenisation) is
performed for each distinct microstructure to extract the equivalent elasticity tensor, (2) the elasticity tensors are
then used to assemble a global stiffness matrix, (3) a macroscale analysis is carried out, (4) followed by sensitivity
analysis, and (5) finally, the micro and macro design variables are updated, subject to various constraints. One of
the main difficulties of this strategy is ensuring acceptable connection between the neighbouring microstructures
and also reduce computational cost [113, 63]. Homogenisation approach seems to be very similar yet simpler.
An example for lattice materials is provided [42] where the density variable ρ is considered as the relative
density (see equation (1.50)) of the unit cell (microstructure), the orientation can be set as variable [5, 77], in
the mentioned studies, a dis-homogenisation approach is proposed to address the connection issues however, it
works only for a limited types of lattice.

Another strategy found in the literature is the Free Material Optimisation (FMO) [206]. In this approach, the
optimisation variable is the elasticity tensor. The idea is to design the best material (its mechanical properties
and distribution in space) for a given purpose. It should be physically attainable. The attainability requirements
consist of the fact that elasticity tensor must be symmetric and positive definite [191]. Therefore, FMO problem
belongs to a class of Semi Definite Programming (SDM) and it can be solved with an interior point algorithm
[132] or the augmented Lagrangian. Additional constraints can be added such as rigidity and mechanical
strength [86]. Lot of applications has been done. Hu et al. [97] combined FMO and dis-homogenisation to
obtain optimised cellular structures. Weldeyesus et al. [191] used FMO to optimise laminated plates and shells.
FMO has been also used to obtain the design of the ribs of the leading edge of the Airbus A380 [111].

Ranaivomiarana [146] managed to apply concurrent topology and orthotropy optimisation for composite
laminates. She used the polar parameterisation of elasticity tensor and considered the anisotropic invariants
as optimisation variables. She established optimality criteria to optimise with respect to both topology and
orthotropy. It was found out that the obtained optimal materials were not feasible by composite laminates and
feasibility constraint needed to be added. Vertonghen [187] continued the study and managed to impose the
feasibility constraint using MMA algorithm. He also managed to add the mechanical strength constraints in
the topology optimisation problem.

(a) 0° (b) 45°
Figure 4.12: (right) Optimal design of a structure considering multiple material phases. (left) the correspond Young’s modulus for

each phase (colour) [154].

Finally, it is possible to optimise a structure by taking into account 2 or multiple material phases in the
final optimal design. An example is illustrated in figure 4.12. This is known as multi-material topological
optimisation (MMTO). The concept is to introduce multiple densities (ρ1, ρ2, ...) and use a linear combination
of elasticity tensors. The equation (4.21) gives the example of interpolation of 3 phases [192]: void (ρ1 = 0),
material A (ρ1 = 1 and ρ2 = 1) and material B (ρ1 = 1 and ρ2 = 0)

C
≈
= ρp

1

[
ρp

2C
≈

A + (1− ρP

2 ) C
≈

B

]
. (4.21)

The interpolation changes for high number of materials [175]. MMTO can be applied using isotropic or
anisotropic materials or both [35]. A MMTO MatLab code "PolyMat" is provided by Sanders et al. [154] for
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the interested reader. In the framework of MMTO, Direct material optimisation was proposed by Stegmann
and Lund [175] for composite shell structures. It uses the MMTO to find the best ply orientation in a variable
stiffness for a constant thickness laminate layup. This approach is extended to Discrete Material and Thickness
Optimisation (DMTO) [180] where, in addition to the material distribution, the thickness of laminated composite
is optimised.

Concluding remarks
For our study, for TW4, only one anisotropic threshold surface, for an example of lattice material (equilateral
triangular lattice), is provided. So, only the orientation can be considered as an additional variable in the
topology optimisation problem. SIMP method will be applied where the presence of the material will indicate
the presence of lattice (in the microscopic scale). To apply homogenisation or the FMO (or MMTO) approach,
several threshold surfaces are required for a given set of triangular lattice materials (a set of geometric parameters
for the unit cell). Either way, the dishomogenisation approach must be applied to recover the optimal triangular
lattice design obtained from the optimisation process.

4.7 Conclusion

This chapter provides a concise yet rich review about topology optimisation. At first, a general framework was
given about the structural optimisation then the main methods to describe a topology of a structure (Density
and Level-set) were presented. In the topology optimisation problem, a brief definition is given regarding three
main aspects: (i) Mass, (ii) rigidity and (iii) mechanical strength. One of these aspects will be considered in the
objective function and the others will be included as constraints. It is more convenient to pick the volume (or
mass) as the objective function subjected mechanical strength constraints. This is because of the fact that the
mechanical strength is always known (defined by a criterion). Additional constraints can be imposed such as
the rigidity (stiffness or compliance). Because the SIMP method is chosen to solve the optimisation problem,
an overview on different encountered numerical problems and on different solutions to tackle them, is given.
For mechanical strength constraint, it appears that the aggregation is useful to transform the problem with Ne

local constraints (Ne is the number of elements in FEM analysis) to a problem with only one constraint. Also,
the aggregation can be used as a relaxation approach which allows obtaining the 0/1 optimal design. After
reviewing most of resolution algorithms, the augmented Lagrangian is chosen because it is simple to implement.
For pedagogical purposes, a classical gradient is used to minimise the augmented Lagrangian since it is not often
used for stress based topology optimisation. To include anisotropy, the orientation (only) might be considered
as an additional optimisation variable to topology, if needed. In the next chapter, a more detailed and explicit
formulation to the optimisation problem is provided. Numerical examples will be discussed.
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Stress based topology optimisation
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In the part 1, a 4th degree generalised polynomial threshold criterion (TW4) was proposed for architectured
material where the harmonic decomposition showed its versatility. In section 3.5, TW4 proved to be capable
of approximating the threshold surface established from studying the equilateral triangular 2D lattice [103]
considering plasticity and buckling instabilities. Lattice materials are known to have very interesting properties
such as good stiffness/weight ratio [142]. Optimising their properties is absolutely worth it and this can be done
with the help topology optimisation tools. However, they have a particular mechanical behaviour where two
mode ruins: plasticity (or brittleness) in tension and buckling in compression. Considering a local mechanical
strength constraint is necessary. The objective of this chapter is to implement, as constraints, the approximated
threshold surface for the triangular lattice (section 3.5.4) in a topology optimisation problem. Three aspects are
focused on: mass, rigidity and mechanical strength. SIMP method will be used where the presence of material
means the presence of lattice at the microscale level. The mentioned numerical difficulties presented section 4.5,
will be detailed again in a more explicit manner. Additional to topology, the orientation could be considered
an optimisation variable if is required.

The outline of chapter is as follows: the first section 5.2 , will explain, in a detailed manner, the
augmented Lagrangian algorithm for a general constrained optimisation problem. In the next section 5.3, a
full description of the optimisation problem that will solved with the augmented Lagrangian. It consist of a
volume minimisation problems in which different constraints will be imposed in each case. More details, on
how the numerical problems are dealt with, will be presented. The implementation of various threshold criteria,
which are will be considered in the mechanical strength constraints, is provided. In section 5.4, the augmented
Lagrangian (explained in section 5.2) is applied the proposed problems. A more explicit algorithm is provided.
Finally, the section 5.5, will give and explain the different obtained results.

Remark: It important to point out, that it is possible to use homogenisation method (instead of SIMP). To
do so, multiple threshold surfaces, for different geometric parameters of the unit cell, need to be established. For
this case, multiple strategies can employed such as the multi scale topology optimisation (MTO) or concurrent
topology and anisotropy optimisation. etc.
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5.1. ELASTICITY PROBLEM AND SIMP FORMULATION

5.1 Elasticity problem and SIMP formulation

The physical model of all featured topology optimisation problems in this manuscript, is the linear elasticity.
Let’s consider Ω the structure domain with boundaries ∂Ω illustrated in figure 5.1. ΓD denotes a part of
boundaries where displacements are imposed (Dirichlet boundary conditions). ΓN denotes free (no applied
forces) boundaries and the boundaries where a line force is applied (a single load case). The volumic forces are
not present. The linear elasticity equilibrium problem is given by:





div(σ
∼
(u)) = 0 x ∈ Ω,

σ
∼
(u) = C

≈
: ε

∼
(u) x ∈ Ω,

ε
∼
(u) =

1

2
(∇

∼
(u) +∇

∼
(u)T ) x ∈ Ω

σ
∼
(u).n = t x ∈ ΓN

u = 0 x ∈ ΓD

(5.1)

where x is the vector position, u is the displacement field, ε
∼
(u) is the strain tensor, t is line force and σ

∼
(u) is

the cauchy stress tensor where, under plane stress assumption, it is given by:

[σ
∼
] =

(
σ11 σ12

σ12 σ22

)
(5.2)

The equation system (5.1) represents the equilibrium in its strong form. In order to apply finite element analysis,
a weak form (or variational form) needs to be established. Let Uad be the space of kinematically admissible
space of displacement field v for the considered problem:

Ω

ΓN

ΓD

u
∣∣
ΓD

= 0

t

Figure 5.1: The structure Ω and its boundaries

Uad = {v = (v1, v2); vi ∈ H1(Ω); v = 0 on ΓD} (5.3)

The first equation in system (5.1) is picked, we multiply it by v ∈ Uad and we integrate in all domain Ω:
∫

Ω

v. ˙div(σ
∼
) dv = −

∫

Ω

ε
∼
(v) : σ

∼
(u) dv +

∫

∂Ω

v.(σ
∼
(u).n) ds

= −
∫

Ω

σ
∼
(u) : ε

∼
(v) dv +

∫

ΓN

t.v ds,
(5.4)

The variational form of the equilibrium problem is:

a(u, v) = L(v) ∀v ∈ Uad. (5.5)

where 



a(u, v) =

∫

Ω

ε
∼
(u) : C

≈
: ε

∼
(v) dv

L(v) =

∫

ΓN

v.t ds
(5.6)
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5.2. GENERAL OPTIMISATION PROBLEM USING AUGMENTED LAGRANGIAN

For topology optimisation problem, SIMP method is used. A parameter denoted ρ(x) is introduced in the
weak form of equilibrium equations. It is introduced in the material elasticity tensor C

≈
as follows:

C
≈
= ρpC

≈

0 (5.7)

where C
≈

0 is the material elasticity tensor, p is the penalisation exponent generally set as p = 3. ρ(x) indicates
the presence and the absence of the material in Ω. When ρ(x) = 0 there is void, when ρ = 1 there is material.
p plays the important role of eliminating the intermediate densities (ρ ∈]0, 1[) which, in our case, will not have
a physical meaning. The weak form of equilibrium equation, in SIMP method, is introduced as follows:

aρ(u, v) = L(v) ∀v ∈ Uad. (5.8)

where
aρ(u, v) = ρϵ

∫

Ω

ε
∼
(u) : C

≈

0 : ε
∼
(v) dv, (5.9)

where
ρϵ = (ϵ+ (1− ϵ))ρp), (5.10)

ϵ, generally set to 10−6, is the Ersatz stiffness [159]. It is specifically added to equation (5.8) in order to avoid
having a null elasticity tensor and have an unique solution. The equation (5.8) will be the physical model of
the topology optimisation problem. The next section, treats a general topology optimisation problem in the
framework of augmented Lagrangian.

5.2 General optimisation problem using augmented Lagrangian

All featured problems in this document will be solved with the augmented Lagrangian algorithm. It is worth
to give a general framework by posing a general optimisation problem and by giving a general algorithm.
Derivatives are needed for the gradient descent therefore, sensitivity analysis has to be established in order to
be able to implement the algorithm. The following optimisation problem is proposed as follows:





min
ρ∈[0,1]

J (u, ρ) = min
ρ∈[0,1]

∫

Ω

j(u, ρ) dv,

f(u, ρ) = 0,

h(u, ρ) ≤ 0,

aρ(u, v) = L(v) ∀v ∈ Uad,

(5.11)

where f(u) ∈ Rζ and h(u) ∈ Rη are continuos functions describing the (ζ+η) equality and inequality constraints
respectively. J (u, ρ) is the objective function. The inequality constraints are treated by introducing the so
called slack variables included in s ∈ Rη. The problem (5.11) is equivalent to the one in (5.12):





min
ρ∈[0,1]

J (u, ρ) = min
ρ∈[0,1]

∫

Ω

j(u, ρ) dv,

f(u, ρ) = 0,

hs(u, ρ) = h(u) + s = 0, si ≥ 0,

aρ(u, v) = L(v) ∀v ∈ Uad,

(5.12)

The slack variables allow transforming the inequality constraints into equality ones. All the elements of s must
be positive otherwise the inequality constraints are not verified. The augmented Lagrangian is introduced as
follows:

L(u, q, ρ, s, λ
f
, λ

h
) = J (u, ρ) + q · div(σ

∼
(u)) . . .

· · ·+ λ
f
· f(u, ρ) + λ

h
· h

s
(u, ρ) +

bf

2
· (f(u, ρ)⊛ f(u, ρ)) +

bh

2
· (h

s
(u, ρ)⊛ h

s
(u, ρ)),

=J (u, ρ)− ρϵ

∫

Ω

ε
∼
(u) : C

≈

0 : ε
∼
(q) dv +

∫

ΓN

t · q ds . . .

· · ·+ λ
f
· f(u, ρ) + λ

h
· h

s
(u, ρ) +

bf

2
· (f(u, ρ)⊛ f(u, ρ)) +

b
h

2
· (h

s
(u, ρ)⊛ h

s
(u, ρ)),

(5.13)

where λf ∈ Rζ and λh ∈ Rη are Lagrange multipliers that enforce all the constraints. bf ∈ Rζ and bh ∈ Rη are
penalisation coefficients, q ∈ Uad is also a Lagrange multiplier that enforces the constraint that u is solution
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5.2. GENERAL OPTIMISATION PROBLEM USING AUGMENTED LAGRANGIAN

of elasticity problem, ⊛ refers to the Hadamard product [34], which is the element-wise product between two
vectors (or matrices), for example: (

f1

f2

)
⊛

(
h1

h2

)
=

(
f1h1

f2h2

)
. (5.14)

The equivalent problem to (5.12) is:




max
q,λf ,λh

min
ρ,s
L(u, q, ρ, s, λf , λh),

0 ≤ ρ ≤ 1 and s ≥ 0,
(5.15)

by introducing the augmented Lagrangian the constrained problem (5.12) is transformed into the unconstrained
problem (5.15) at the cost of having more variables (which are the Lagrange multipliers). The bounds constraints
on ρ and s can be taken into account by means of applying a projection into feasible domain space. It is important
to point out, that minimising with respect to s will affect only the inequality constraints by saturating them
(i.e. bring them close to the limit of the inequality).

5.2.1 Sensitivity analysis
Solving the problem (5.11) consists of finding saddle point of the augmented Lagrangian in equation (5.15).
This will require establishing the optimality criteria conditions (stationarity conditions [2]) which will be useful
later for the implementation of the algorithm. Before anything and for the sake of clarification, it is worth giving
some notions about Differentiability which play a key role to establish the sensitivity analysis of the problem
(5.15).

Definition 5.2.1. A function F , defined in the neighbourhood of u ∈ V into R, is differentiable in sense of
Gateaux if for any direction û ∈ V , the following limit exists:

⟨F ′(u), û⟩ = lim
δ→0+

F (u+ δû)− F (u)

δ
= F ′(u) · û, (5.16)

Remarks:

• if V = R then F ′(u) =
dF (u)

du
.

• if V = Rn then;

F ′(u) = ∇(F (u)) =




∂F (u)

∂u1

...
∂F (u)

∂un




.

The derivative in the sense of Gateaux is also know as directional derivative [205]. The main interest of
introducing it, is that it allows establishing the sensitivity analysis in a simple and convenient way when the
augmented Lagrangian (or the Lagrangian).

Calculating the derivatives of the objective function and the constraints with respect to the variables ρ and
u, is needed. One can see that u is indirectly dependent on ρ through the elasticity problem therefore, the
derivatives are not established in a straightforward manner. The derivatives can be calculated [5] by using
composition rule. It consists of calculating the directional derivative ⟨J (u, ρ), û⟩ and then ⟨u, ρ̂⟩ where û ∈ Uad

and ρ̂ ∈ [0, 1] are directions. It appeared that it is not practical because there is no direct expression for
⟨u, ρ̂⟩ (calculating it is possible but very expensive because infinite number (or high) of directions needs to be
explored).

Another way of calculating the derivative and it is by using adjoint stat problem. It consists of introducing
q ∈ Uaq solution of the adjoint problem in a way that it allows calculating the derivative of objective function
with respect to ρ directly. The adjoint problem is established through the variational formulation (weak form)
of the elasticity problem.

In a simple manner, the adjoint problem can be established using the Lagrangian (or the augmented La-
grangian). Indeed, it was proven [5, 2] that q is actually the solution of the adjoint problem. As remind, it is
also the Lagrange multiplier that enforces the fact that u is the solution of the elasticity problem. Considering
finding the saddle point of the following augmented Lagrangian in equation (5.13), the weak form of the elasticity
adjoint problem is one of the optimality criteria conditions given by the following directional derivative:

⟨
∂L(u, q, ρ, λ

f
, λ

h
)

∂u
, û⟩ = 0, ∀û ∈ Uad, (5.17)
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where q ∈ Uad is determined by solving adjoint problem (5.17), û ∈ Uad is the direction of derivative. It is
important to point out that λ

f
, λ

f
, b

f
and b

h
are arbitrary chosen1 at the first iteration. Their updating

scheme is explained in section 5.2.2. The derivative of the augmented Lagrangian with respect to ρ is given as
follows:

⟨
dL(u, q, ρ, λ

f
, λ

h
)

dρ
, ρ̂⟩ =⟨

∂L(u, q, ρ, λ
f
, λ

h
)

∂ρ
, ρ̂⟩+

�������������:0

⟨
∂L(u, q, ρ, λ

f
, λ

h
)

∂u
,
∂u

∂ρ
(ρ̂)⟩+

�������������:0

⟨
∂L(u, q, ρ, λf , λh)

∂q
,
∂q

∂ρ
(ρ̂)⟩,

(5.18)

one can observe that the second term and the third term will lead to the weak form of the adjoint and elasticity
problem respectively. If we consider that fact that q is the solution of the adjoint problem and u is solution of
the elasticity problem then the second and third term are null. Hence, the conclusion is that:

⟨
dL(u, q, ρ, λ

f
, λ

h
)

dρ
, ρ̂⟩ =⟨

∂L(u, q, ρ, λ
f
, λ

h
)

∂ρ
, ρ̂⟩, (5.19)

The equation (5.19) means that total derivative of the augmented Lagrangian is simply its derivative considering
u and q constant. This is only true when u and q are solutions to (5.8) and (5.17).

Lastly, when using the augmented Lagrangian, the sensitivity analysis consists of establishing the adjoint
problem and calculating the derivative with respect to ρ. For our general problem (5.15), the adjoint problem
is as follows:

∫

Ω

ρϵε
∼
(q) : C

≈

0 : ε
∼
(û) dv =

∫

Ω

∂j(u, ρ)

∂u
· û dv + (λ

f
+ b

f
⊛ f(u, ρ)) · (∂f(u, ρ)

∂u
· û)

+ (λ
h
+ b

h
⊛ h

s
(u, ρ)) · (∂hs

(u, ρ)

∂u
· û)

∀û ∈ Uad, (5.20)

The derivative with respect to ρ is given by:

⟨
∂L(u, q, ρ, λf , λh)

∂ρ
, ρ̂⟩ =

∫

Ω

∂j(u, ρ)

∂ρ
ρ̂ dv− (1− ϵ)p

∫

Ω

ρp−1ε
∼
(u) : C

≈

0 : ε
∼
(q)ρ̂ dv

+ (λf + bf ⊛ f(u, ρ)) · ∂f(u, ρ)
∂ρ

ρ̂+ (λh + bh ⊛ hs(u, ρ)) ·
∂h

s
(u, ρ)

∂ρ
ρ̂,

(5.21)

the derivative (5.21) will be used to minimise the augmented Lagrangian.

Remarks:

• It is important to point out that λf , λh, bf , bh are not yet determined. Their updating scheme is detailed
in the next section.

• If (u∗, q∗, λ∗
f
, λ∗

h
) correspond to a case where all the constraints are verified one can see that:

⟨
∂L(u∗, q∗, ρ, λ∗

f
, λ∗

h
)

∂ρ
, ρ̂⟩ = ⟨∂J (u

∗, ρ)

∂ρ
, ρ̂⟩,

which means that if the values λ∗
f , λ

∗
h are found, the minimisation of the augmented Lagrangian is the

minimisation of the objective function.

• In a case where the orientation denoted θ (for example) is considered as additional variable to ρ in the
optimisation problem, the derivative of the augmented Lagrangian with respect to θ, given below, will be
calculated in the same way as with respect ρ:

⟨
dL(u, q, ρ, θ, λf , λh)

dθ
, θ̂⟩ = ⟨

∂L(u, q, ρ, θ, λf , λh)

∂θ
, θ̂⟩, (5.22)

hence:

⟨
∂L(u, q, ρ, θ, λ

f
, λ

h
)

∂θ
, θ̂⟩ =

∫

Ω

∂j(u, ρ, θ)

∂θ
θ̂ dv +

∫

Ω

ρϵε
∼
(u) :

∂C
≈

0

∂θ
: ε

∼
(q)θ̂ dv

+ (λ
f
+ b

f
⊛ f(u, ρ, θ)) · ∂f(u, ρ, θ)

∂θ
θ̂ + (λ

h
+ b

h
⊛ h

s
(u, ρ, θ)) · ∂hs

(u, ρ, θ)

∂ρ
θ̂,

(5.23)

1the choice can influence the convergence
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5.2.2 Augmented Lagrangian algorithm
The purpose of the algorithm is to find the saddle point which is supposed to correspond to (u∗, q∗, ρ∗, λ∗

f , λ
∗
h).

It is shown in the section 5.2.1 shows that u∗, q∗ are respectively the solutions to the adjoint and the elasticity
problem. What remains is to give the updating scheme of λf and λh. The concept of augmented Lagrangian
resides on two main steps:

1. For λ
f
, λ

h
,b

f
,b

h
fixed, A minimisation of the augmented Lagrangian with respect to ρ and s is applied

(e.g. using gradient, MMA, ...).

2. For u, q fixed, a maximisation with respect to λf and λh is applied.

At an iteration n, the density, slack variables, displacement and the Lagrange multipliers are denoted (ρn, sn,un, qn, λn

f
, λn

h
).

un and qn are determined by solving the the elasticity and the adjoint problem considering ρn.

• The minimisation with respect to ρ is done with the projected gradient (it is projected because of bound
constraints). From directional derivative (5.21), the direction ρ̂ that minimise the augmented Lagrangian is
given as follows:

ρ̂ = −
[
∂j(u, ρ)

∂ρ
− (1− ϵ)pρp−1ε

∼
(u) : C

≈

0 : ε
∼
(q) + (λ

f
+ b

f
⊛ f(u)) · ∂f(u, ρ)

∂ρ

+ (λ
h
+ b

h
⊛ h

s
(u)) · ∂hs

(u, ρ)

∂θ

] (5.24)

Hence the updating of ρn is given as follows:

ρn+1 = max(0,min(ρn + τ ρ̂n, 1)) (5.25)

where τ > 0 is the step which is chosen sufficiently small to assure the convergence. Using max/min ρ is
projected2 in [0, 1] to take into account the bounds constraints.

• The value of sn that minimise the augmented Lagrangian is given explicitly [159] as follows:

sn = max [0,−(λn

h
⊘ b

h
+ h(un, ρn))] , (5.26)

where ⊘ is the Hadamart division [34] which is the element-wise division , for example:
(
f1

f2

)
⊘
(
h1

h2

)
=

(
f1/h1

f2/h2

)
. (5.27)

It is important to keep in mind that minimise with respect to s means saturating the inequality constraints.
Same as for ρ, the max function is used here to take into account the bounds constraints si ≥ 0.

• Speaking of λn

f , λ
n

h, it is proved from the optimality conditions from both the augmented Lagrangian and the
Lagrangian (the basic one) [3, 132] that:

{
λ∗

f
= λn

f
+ b

f
⊛ f(un, ρn),

λ∗
h
= λn

h
+ b

h
⊛ h

s
(un, ρn),

(5.28)

where λ∗
f

and λ∗
h

are the optimal Lagrangian multipliers (which correspond to the saddle point). The equation
(5.28) give us two important information [3]:

1. The values of the bf and bh do not need to be very important (have very high value) to enforce the
constraints.

2. The updating of scheme of λn

f
and λn

h
is given as follows:

λf = λn

f + bf ⊛ f(un, ρn),

λh = λn

h + bh ⊛ hs(u
n, ρn),

(5.29)

2The reason why it is called projected gradient.
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• Depending on convergence, the penalisation coefficients b
f

and b
h

require neither a very high nor a very low
value. In an attempt to have better convergence [132], only for the violated constraints, the values b

f
and b

h

gradually increase as the iterations go on in the following way:

bn+1

fi
= min(bmax, αb

n

fi
) if fi ̸= 0 ∀i ∈ {1, 2, ..., ζ},

bn+1

hj
= min(bmax, αb

n

hj
) if (hj + sj) ≥ 0 ∀j ∈ {1, 2, ..., η}, (5.30)

where α > 1 is chosen close to 1 (generally α = 1.1), bmax is maximum value that penalisation coefficient can
take. One should note that if the value bmax is very high, convergence problems could occur.

At iteration 0, the initial values ρ0, λ0

f
, λ0

h
,b0

f
,b0

h
must be set. Also the values of τ, α, bmax has to be set. To

solve problem (5.11) (equivalent to (5.15)), the algorithm 1 is used. It stops when the number of iteration has
reached a chosen max.

Regularisation filter

When using the density method, the penalisation causes the so-called Checkerboards problem (see figure 5.2).
To tackle the problem, regularisation filters [163] are used. The one that it is applied for the all presented
optimisation problems in this document, is based on the Helmholtz equation [115] as follows:





−R2∆(ρf) + ρf = ρ Ω

∂ρf

∂n
= 0 ∂Ω

(5.31)

where R is the radius of the filter. By solving the equation, the obtained ρf has smooth and regularised
distribution of ρ over Ω. In algorithm 1 the regularisation filter with radius R is defined by FR. It is worth
noting that the same filter is also used for the orientation field [117] (of the material) to avoid discontinuities.

Figure 5.2: Checkers boards issue in the optimal distribution of an isotropic material for cantilever beam (compliance
minimisation subjected to volume constraints).
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Algorithm 1 Augmented Lagrangian algorithm: general optimisation problem

1. Define the algorithm parameters itermax, τ, α,R,.

2. Initialise the field ρ(x) and the value of p, λ
f
, λ

h
,b

f
,b

h
, ϵ.

3. Precomputations:

u ← Ela_FE(ρ) % Elasticity problem, equation (5.8)

s← max [0,−(λh ⊘ bh + h(u, ρ))]

4. For j=1 to itermax:

| q ← Adj_FE(u, ρ, λ
f
, λ

h
, ,b

f
,b

h
) % Adjoint elasticity problem, equation (5.20)

| ρ̂← −
[
∂j(u, ρ)

∂ρ
− (1− ϵ)pρp−1ε

∼
(u) : C

≈

0 : ε
∼
(q)+(λ

f
+b

f
⊛ f(u)) · ∂f(u, ρ)

∂ρ
+(λ

h
+b

h
⊛h

s
(u)) · ∂hs

(u, ρ)

∂ρ

]

| ρ̄← max(min(ρ+ τ
FR(ρ̂)

max(|FR(ρ̂)|)
, 1), 0)

| u ← Ela_FE(ρ̄)

| s← max [0,−(λ
h
⊘ b

h
+ h(u, ρ̄))]

| λ
f
← λ

f
+ b

f
⊛ f(u, ρ̄)

| λ
h
← λ

h
+ b

h
⊛ h

s
(u, ρ̄)

| for i = 1 to ζ: % ζ is the number of equality constraints
| | If | fi(u, ρ̄)| ≤ 10−3

| | | bfi = min(bmax, αb
n
fi
)

| for i = 1 to η: % η is the number of inequality constraints
| | If hi(u, ρ̄) ≥ 0
| | | bhi

= min(bmax, αbhi
)

5.3 Mass minimisation subjected to compliance and mechanical strength
constraints

It is mentioned in chapter 4 that it is more convenient to treat a volume minimisation for topology optimisation
problem. This is because of the fact that the mechanical strength limit is known by the definition of the
associated criterion. Compliance constraints also will be added because the mechanical strength does not
guarantee the rigidity if it is required. For the volume minimisation problem, 3 cases are treated:

1. Problem 1 : volume minimisation with compliance constraint.

2. Problem 2 : volume minimisation with mechanical strength constraints.

3. Problem 3 : volume minimisation with both compliance and mechanical strength constraints.

To avoid redundancy, only the resolution algorithm for the problem 3 will be provided. The problem 1 and
2 are particular cases of of problem 3. Therefore, their resolution algorithm can directly deduced by applying
simple simplification (make a coefficient null). Speaking of mechanical strength constraints, in order to reduce
the number of mechanical strength, an aggregation function will be used. All details about measuring stress and
the aggregation will be provided. When it comes to the anisotropy, it can be included by considering anisotropic
material or considering anisotropic criteria (or both). The orientation of the material (with respect to fixed
reference) can be considered an additional optimisation variable.

All the points mentioned above will be covered in this section.

5.3.1 Optimisation problem
The volume minimisation problem is considered as follows:
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min
ρ∈[0,1]

∫

Ω

ρ dv,

βg = β

(
σeq

σlim

− 1

)
≤ 0 ∀ x ∈ Ωmat := {x ∈ Ω, ρ ̸= 0},

γ

C0
(

∫

ΓN

u · t ds− 1) ds ≤ 0,

aρ(u, v) = L(v) ∀ v ∈ Uad,

(P)

where ρ is the density, u is the displacement vector, t is applied line force on part of ΓN (details are in section
5.1). C0 is the imposed compliance value. σeq is the equivalent stress associated to a threshold criterion defined
by the equation

F (σ∼)

σlim
= 1. σeq could be a safety factor in a case where the threshold function cannot be

implemented directly (more details in section 5.3.2). β and γ are simplification coefficients where the following
three particular cases are found:





min
ρ∈[0,1]

∫

Ω

ρ dv,

γ

C0
(

∫

ΓN

u · t ds− 1) ds ≤ 0,

aρ(u, v) = L(v) ∀ v ∈ Uad,

(P1)

Problem 1 : volume minimisation with compliance
constraints (β = 0, γ = 1).





min
ρ∈[0,1]

∫

Ω

ρ dv,

g =

(
σeq

σlim

− 1

)
≤ 1 ∀ x ∈ Ωmat,

aρ(u, v) = L(v) ∀ v ∈ Uad,

(P2)

Problem 2 : volume minimisation with mechanical
strength constraints(β = 1, γ = 0).





min
ρ∈[0,1]

∫

Ω

ρ dv,

g =

(
σeq

σlim

− 1

)
≤ 1 ∀ x ∈ Ωmat,

1

C0
(

∫

ΓN

u · t ds− 1) ds ≤ 0,

aρ(u, v) = L(v) ∀ v ∈ Uad,

(P3)

Problem 3 : volume minimisation with both compliance and
mechanical strength constraints(β = 1, γ = 1).

Using augmented Lagrangian, solving the problems (P1), (P2) and (P3) is equivalent to solving (P) considering
{β, γ} ∈ {{0, 1}, {1, 0}, {1, 1}}. It is important to point out that the problem, at this form, cannot be solved
because of several numerical issues concerning the evaluation of the mechanical strength constraints (see section
4.5 for more details). In problem (P), the mechanical strength defined by g, will have modifications, the process
is detailed in the next subsection.

5.3.2 The evaluation of mechanical strength constraints
In problem (P), the mechanical strength constraints are defined by g as follows:

g =

(
σeq

σlim

− 1

)
≤ 0 ∀ x ∈ Ωmat := {x ∈ Ω, ρ ̸= 0}, (5.32)

To overcome numerical difficulties, 3 major aspects need to be treated:

• Vanishing constraints.

• Measuring the stress.

• Aggregation.

Vanishing constraints

Starting by the first one, the problem (P) is considered of class MPVC [1]. The reason is due to the fact that
g can only be evaluated the presence of the material (Ωmat). In order the be able to evaluate the constraint in
whole domain (Ω), g is multiplied by ρ, therefore the constraints is defined by ḡ:

ḡ = ρg = ρ

(
σeq

σlim

− 1

)
, (5.33)
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by multiplying by ρ the constraint g will vanish when the material is absent ρ = 0.

Measuring the stress

When using SIMP method intermediate densities will appear along the iterations and it corresponds to a
composite material (microstructure). When measuring the stress tensor, it is important to distinguish between
the so-called macro-stress and micro-stress tensor. The reason is that the macro-stress (same as in equation
(5.7)) given by:

σ
∼

mac = ρpC
≈

0 : ε
∼
, (5.34)

fails to predict the real stress in the microstructure and could lead to all void design (trivial solution) [185].
Therefore, for intermediate densities, the micro-stress is introduced where a simple mathematical formulas is
provided [64] for rank 2 composite materials and will be used to compute ḡ, it is given by:

σ
∼

mic =
ρp

ρq
C
≈

0 : ε
∼
, (5.35)

where q is an exponent to be chosen. Verbat et al. [186] mentioned 2 rules for a local stress: (i) it should be
inversely proportional to the density, (ii) converges to a finite stress as the density reaches zero. To respect the
second rule, we choose p = q.

Aggregation

Choosing p = q when evaluating mechanical strength constraints leads to so-called singular optima described
in section 4.5.3. To overcome the problem a relaxation approach is applied. For the problem (P), aggregation
over Ω is applied on the constraint ḡ by using the Lower-KS function:

ΨL

KS(ḡ) =
1

µ
ln(

1

VΩ

∫

Ω

exp(µḡ) dv) (5.36)

where µ is a parameter. The Lower-KS function is a conservative (lower) approximation of the max function,
it has the following property:

lim
µ→∞

ΨL

KS(ḡ) = max
Ω

(ḡ) (5.37)

The figure 5.3 shows an example where the max of 3 functions (in black) is approximated with the lower-KS.
The greater µ the better the accuracy.

Figure 5.3: The max of 3 functions (in black) is approximated using the lower-KS function.

It is important to point out that ḡ designs local constraints3. The aggregation has the double role of reducing
the number of constraints to 1 and of relaxation (see section 4.5.4). However, the constraint becomes highly
non-linear which leads to a convergence problems (slow and unstable convergence).

3numerically, it means that it has to be considered for each element (FEM analysis)
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Considering all numerical difficulties, the mechanical constraints in problem (P), will replaced by ΨL
KS(ḡ)

given by equation (5.36). The resolution algorithm is explicitly provided in section (5.4). The following deriva-
tives are useful for the sensitivity analysis:

∂ΨL

KS(ḡ)

∂σ
∼

=

∫

Ω

exp(µḡ)ρ
∂g

∂σ
∼

dv

∫

Ω

exp(µḡ) dv
(5.38)

5.3.3 Threshold criteria
A brief description on the some threshold criteria that will be implemented and tested in our optimisation
problem. Their derivative with respect to σ

∼
will be given, enabling the sensitivity analysis to be established.

Three threshold criteria will be implemented: Von Mises, Tsai-Wu (TW2) and Tsai-Wu 4 (TW4).

Von-Mises

It is isotropic criterion used for isotropic material. It is based on the energy distortion (see section 1.1.1. Its
threshold function is given by:

σeq =
√
2s
∼

mic : s
∼

mic, (5.39)

where s
∼

mic = σ
∼

mic −
tr(σ

∼

mic)

2
I
∼

is deviatoric part of σ
∼

mic. The following derivatives with respect to σ
∼

mic are
useful for the sensitivity analysis:

∂g

∂σ
∼

mic
=

ρ

σlim

∂σeq

∂σ
∼

mic
;

∂σeq

∂σ
∼

mic
=

2s
∼

mic

σeq

. (5.40)

Tsai-Wu

It is a degree 2 polynomial generalised criterion, it is used for orthotropic material (e.g. unidirectional compos-
ites). The criterion is given by:

σ
∼

mic : M
≈

: σ
∼

mic + m
∼
: σ

∼

mic − 1 = 0 (5.41)

where tensors M
≈

and m
∼

include the material parameters in the following way:

M1111 =
1

XtXc

, M2222 =
1

YtYc

, m11 =
Xc −Xt

XtXc

,

M1122 =
1

2
√
XtXcYtYc

, M1212 =
1

4S2
, m22 =

Yc − Yt

YtYc

,

M1112 = 0, M1222 = 0, m12 = 0,

where Xt and Xc are respectively the magnitude of the tension and compressive strength allowable along
the fiber direction, whereas Yt and Yc are the ones in the transverse direction. S is the shear tensile stress.
It important to point out that the threshold function in a non homogeneous polynomial. Implementing the
threshold function directly leads to counter intuitive design [128]. To overcome this limitation safety factor
denoted κ is introduced as solution of the following equation:

A κ2 + B κ− 1 = 0, (5.42)

where A = σ
∼

mic : M
≈

: σ
∼

mic and B = m
∼
: σ

∼

mic. The solution of the above equation is given by:

κ =
−B +

√
B2 + 4A

2A (5.43)

κ is the positive root of equation (5.42). It can be interpreted as a stress tensor multiplier. In case where the
mechanical strength are satisfied, κ ≥ 1. It means the stress tensor in within threshold surface in the stress
space (defined by equation (5.41)). In the opposite case, κ < 1 indicates failure. κ cannot be implemented
directly due to the fact that it leads to a load dependent solutions [85]. Adding to that, in low stress state,
the safety will be high which could lead to having overflow problem when applying of the aggregation. Instead,
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to tackle these problems, it is more convenient to use the inverse the safety factor κ to define the mechanical
strength in the following way:

ḡ = ρg =

(
1

κ
− 1

)
. (5.44)

From our perspective, this form gives us advantages. The mechanical strength constraint is respected when
1

κ
≤ 1. In the low stress state,

1

κ
has small values. Therefore, it is more suitable for using the aggregation

function where the lower-KS function can be used directly as it is described in equation (5.36). The following
derivatives are useful for establishing the sensitivity analysis:

∂g

∂σ
∼

mic
= −ρ 1

κ2

∂κ

∂σ
∼

mic

∂κ

∂σ
∼

mic
=

∂κ

∂A
∂A

∂σ
∼

mic
+

∂κ

∂B
∂B

∂σ
∼

mic

∂κ

∂A =
2A(A2 + 4A)− 1

2 − (−B +
√
B2 + 4A)

2A2

∂κ

∂B =
−1 + (B2 + 4A)− 1

2B
2A

∂A
∂σ

∼

mic
= 2M

≈
: σ

∼

mic

∂B
∂σ

∼

mic
= m

∼

(5.45)

Tsai-Wu 4

It was proven in chapter 2 that the threshold surface established from triangular equilateral lattice cannot be
generated by Tsai-Wu threshold criterion. For that reason Tsai-Wu 4 (TW4) was proposed in chapter 2.4 as
non-homogeneous polynomial of degree 4. The harmonic decomposition has enabled us to establish the set of
all possible symmetries that the associated threshold surface can have. With the lowest number of coefficients,
TW4 was able to approximate well the threshold surface established from an equilateral triangular lattice with
tension/compression asymmetry. TW4 is given by:

F (σ
∼
) = A∼∼∼∼

8· (σ
∼
⊗ σ

∼
⊗ σ

∼
⊗ σ

∼
) + B∼∼∼

6· (σ
∼
⊗ σ

∼
⊗ σ

∼
) + E

≈

.... (σ
∼
⊗ σ

∼
) + F

∼
: σ

∼
, (5.46)

where the tensors A∼∼∼∼
,B∼∼∼

,E
≈

and F
∼

include material parameters, they are defined by their harmonic parameters

(see chapter ?? for more details). Same as Tsai-Wu, the threshold function is a non-homogenous polynomial
function thus, it cannot be implemented directly. Safety factor κ is used and in this case it is the solution of
the following quartic equation:

A κ4 + B κ3 + E κ2 + F κ− 1 = 0, (5.47)
where:

A = A∼∼∼∼
8· (σ

∼
⊗ σ

∼
⊗ σ

∼
⊗ σ

∼
) B∼∼∼

6· (σ
∼
⊗ σ

∼
⊗ σ

∼
) B∼∼∼

6· (σ
∼
⊗ σ

∼
⊗ σ

∼
) F = F

∼
: σ

∼ (5.48)

4 analytic solutions can be established [52, 101]. The case of the threshold surface approximated in section ??,
the following simplification can be applied:

E = F = 0 (5.49)
which means that in this case the safety factor κ is the solution of the following equation:

A κ4 + B κ3 − 1 = 0, (5.50)

the 4 analytic solution {κ1, κ2, κ3, κ4} are established using Mathematica and providied in appendix (with their
derivatives with respect to A and B). Knowing that A > 0, the positivity conditions4, the 4 four solution are:





κ1 > 0→ ∅
κ2 > 0→ B < 0

κ3 > 0→ B > 0

κ4 > 0→ ∅

A > 0, (5.51)

One can see that there is only one positive solution. It is κ2 if B < 0 or κ3 if B > 0 .

5.4 Resolution algorithm

As a resolution algorithm, two cases are distinguished:

1. Topology optimisation: The minimisation is performed only with respect to density ρ. It can be considered
for an isotropic case or for a fixed anisotropic case (fixed orientation).

2. Simultaneous topology and orientation (ot the material) optimisation: The minimisation is performed
only with respect to density ρ and θ simultaneously. It can only be consider for anisotropic cases.

4Established using the available tools in Mathematica
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5.4.1 Topology optimisation
Taking into account the evaluation numerical issues in section 5.3.2, the final version of the topology optimisation
problem is: 




min
ρ∈[0,1]

∫

Ω

ρ dv,

βΨL

KS(ḡ) ≤ 1,

γ

C0
(

∫

ΓN

u · t ds− 1) ds ≤ 0,

aρ(u, v) = L(v) ∀ v ∈ Uad,

(P)

where ḡ = ρg and ΨL
KS(ḡ) is given by equation (5.36). As recall, the three particular cases of problem P are

given bellow:



min
ρ∈[0,1]

∫

Ω

ρ dv,

1

C0
(

∫

ΓN

u · t ds− 1) ds ≤ 0,

aρ(u, v) = L(v) ∀ v ∈ Uad,

(P1)

Problem 1 : volume minimisation with compliance
constraints (β = 0, γ = 1).





min
ρ∈[0,1]

∫

Ω

ρ dv,

ΨL

KS(ḡ) ≤ 1,

aρ(u, v) = L(v) ∀ v ∈ Uad,

(P2)

Problem 2 : volume minimisation with mechanical
strength constraints(β = 1, γ = 0).





min
ρ∈[0,1]

∫

Ω

ρ dv,

ΨL

KS(ḡ) ≤ 1,

1

C0
(

∫

ΓN

u · t ds− 1) ds ≤ 0,

aρ(u, v) = L(v) ∀ v ∈ Uad,

(P3)

Problem 3 : volume minimisation with both compliance and
mechanical strength constraints(β = 1, γ = 1).

Solving the problems (P1), (P2) and (P3), is solving the problem (P) considering {β, γ} ∈ {{0, 1}, {1, 0}, {1, 1}}.

From now on, we start applying the augmented Lagrangian as it is described in section 5.2. Using the slack
variables (s1 and s2 in (5.52)), the inequality constraints are turned into equality constraints. The equivalent
problem to (P) is given by: 




min
ρ∈[0,1]

∫

Ω

ρ dv,

β [ΨL

KS(ḡ) + s1] = 0 s1 ≥ 0,

γ

[
1

C0
(

∫

ΓN

u · t ds− 1) ds + s2

]
= 0 s2 ≥ 0,

aρ(u, v) = L(v) ∀ v ∈ Uad,

(5.52)

The augmented Lagrangian is given by:

L(u, q, ρ, s, λ,b) = 1

VΩ

∫

Ω

ρ dv−
∫

Ω

ρϵε
∼
(u) : C

≈

0 : ε
∼
(q) dv +

∫

ΓN

t.q ds

+ β

[
λ1(Ψ

L

KS(ḡ) + s1) +
b1
2
(ΨL

KS(ḡ) + s1)
2

]

+ γ

[
λ2(

1

C0
(

∫

ΓN

t · u ds− 1) + s2) +
b2
2
(
1

C0
(

∫

ΓN

t · u ds− 1) + s2)
2

]
.

(5.53)

where s =

[
s1

s2

]
, λ =

[
λ1

λ2

]
,b =

[
b1

b2

]
. The augmented allows transforming a constrained optimisation

problem into an unconstrained one, However, Lagrangian multipliers are added as additional variables. The
following problem is equivalent to (P):





max
q,λ

min
ρ,s
L(u, q, ρ, s, λ,b),

0 ≤ ρ ≤ 1 and s ≥ 0,
(5.54)
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Before providing the resolution algorithm, sensitivity analysis has to be done. As it described in section
5.2.1. Let’s start by calculating the directional derivative of L with respect to u:

⟨
∂L(u, q, ρ, s, λ,b)

∂u
, û⟩ =−

∫

Ω

ρϵε
∼
(q) : C

≈

0 : ε
∼
(û) dv + β(λ1 + b1(Ψ

L

KS(ḡ) + s1))

∫

Ω

exp(kḡ)ρ
∂g

∂σ
∼

mic
: σ

∼

mic(û) dv

∫

Ω

exp(kḡ) dv

+ γ(λ2 + b2(
1

C0

(

∫

ΓN

t · u ds− 1) + s2))

∫

ΓN

t · û ds

C0
,

where
∂ḡ

∂σ
∼

mic
is provided in section 4.3.3. The weak form of adjoint elasticity problem, given below, is established

by considering ⟨
∂L(u, q, ρ, s, λ,b)

∂u
, û⟩ = 0:

∫

Ω

ρϵε
∼
(q) : C

≈

0 : ε
∼
(û) dv =β(λ1 + b1(Ψ

L

KS(ḡ) + s1))

∫

Ω

exp(µḡ)ρ
∂g

∂σ
∼

mic
: σ

∼

mic(û) dv

∫

Ω

exp(µḡ) dv

+ γ(λ2 + b2(
1

C0
(

∫

ΓN

t · u ds− 1) + s2))

∫

ΓN

t · û ds

C0
∀û ∈ Uad,

(5.55)

remark: The following formulas is useful and it can be proved by the definition 5.2.1:

⟨
∂σ

∼
(u)

∂u
, û⟩ = σ

∼
(û) ; ⟨

∂ε
∼
(u)

∂u
, û⟩ = ε

∼
(û)

The directional derivative with respect to ρ is needed for the minimisation using projected gradient. As it
is detailed in section 5.2.1, when q is solution of (5.55):

⟨
dL(u, q, ρ, s, λ,b)

dρ
, ρ̂⟩ = ⟨

∂L(u, q, ρ, s, λ,b)
∂ρ

, ρ̂⟩ = 1

VΩ

∫

Ω

ρ̂ dv−
∫

Ω

(1− ϵ)pρp−1 ε
∼
(u) : C

≈

0 : ε
∼
(q)ρ̂ dv

+ β(λ1 + b1(Ψ
L

KS(ḡ) + s1))

∫

Ω

exp(µḡ)gρ̂ dv
∫

Ω

exp(µḡ) dv
.

(5.56)

Hence, the direction ρ̂ that minimises L(u, q, ρ, s, λ,b) (considering λ and b constant):

ρ̂ = −
[

1

VΩ

− (1− ϵ)pρp−1 ε
∼
(u) : C

≈

0 : ε
∼
(q) + β(λ1 + b1(Ψ

L

KS(ḡ) + s1))
exp(µḡ)g∫

Ω

exp(µḡ) dv

]
. (5.57)

The minimisation with respect to s and the updating scheme of λ is provided in the following algorithm:
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Algorithm 2 Augmented Lagrangian algorithm: Volume minimisation

1. Define the algorithm parameters itermax, τ, R, bmax, α.

2. Initialise the field ρ(x) and the value of p, λ,b, ϵ.

3. Precomputations:

u ← Ela_FE(ρ) % Elasticity problem, equation (5.8)

ḡ ← ρg(u) % g id given by the two equations (5.33) or (5.44) (depending on threshold criterion)

s1 ← max

[
0,−

(
λ1

b1
+ βΨL

KS(ḡ)

)]

s2 ← max

[
0,−

(
λ2

b2
+

γ

C0
(

∫

ΓN

u · t ds− 1)

)]

4. For j=1 to itermax:

| q ← Adj_FE(u, ρ, s, λ,b) % Adjoint elasticity problem, equation (5.55)

| ρ̂← −
[

1

VΩ

− (1− ϵ)pρp−1 ε
∼
(u) : C

≈

0 : ε
∼
(q) + β(λ1 + b1(Ψ

L

KS(ḡ) + s1))
exp(µḡ)g∫

Ω

exp(µḡ) dv

]

| ρ̄← max(min(ρ+ τ
FR(ρ̂)

max(|FR(ρ̂)|)
, 1), 0)

| u ← Ela_FE(ρ̄)

| ḡ ← ρ̄g(u)

| s1 ← max

[
0,−

(
λ1

b1
+ βΨL

KS(ḡ)

)]

| s2 ← max

[
0,−

(
λ2

b2
+

γ

C0
(

∫

ΓN

u · t ds− 1) ds
)]

| λ1 ← λ1 + b1β(Ψ
L
KS(ḡ) + s1)

| λ2 ← λ2 + b2
γ

C0
(

∫

ΓN

u · t ds− 1)

)

| if βΨL
KS(ḡ) + s1 > 0:

| | b1 ← min[bmax, αb1]

| if
γ

C0
(

∫

ΓN

u · t ds− 1) + s2 > 0:

| | b2 ← min[bmax, αb2]

5.4.2 Simultaneous topology and orientation optimisation
Adding the orientation as an optimisation variable allows us to obtain the better performance from anisotropic
material. It is particularly useful for a variety of applications where architectured materials are involved, such
as unidirectional oriented fibre composites. It is also practical especially with the fast development of additive
manufacturing methods. The concurrent topology and orientation optimisation is possible only if one of material
tensors (describing stiffness and/or mechanical strength) is anisotropic. In this section, θ denotes the orientation
of the material with respect to fixed reference. The following problem is posed:





min
ρ,θ

∫

Ω

ρ dv,

βΨL

KS(ḡ) ≤ 1,

γ

C0
(

∫

ΓN

u · t ds− 1) ds ≤ 0,

aρ(u, v) = L(v) ∀ v ∈ Uad,

0 ≤ ρ ≤ 1, −3π
2
< θ < 3

π

2
,

(O)

As a recall, the three particular cases of problem O are given bellow:
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min
ρ,θ

∫

Ω

ρ dv,

γ

C0
(

∫

ΓN

u · t ds− 1) ds ≤ 0,

aρ(u, v) = L(v) ∀ v ∈ Uad,

0 ≤ ρ ≤ 1, −3π
2
< θ < 3

π

2
,

(O1)

Problem 1 : volume minimisation with compliance
constraints (β = 0, γ = 1).





min
ρ,θ

∫

Ω

ρ dv,

βΨL

KS(ḡ) ≤ 1,

aρ(u, v) = L(v) ∀ v ∈ Uad,

0 ≤ ρ ≤ 1, −3π
2
< θ < 3

π

2
,

(O2)

Problem 2 : volume minimisation with mechanical
strength constraints(β = 1, γ = 0).





min
ρ,θ

∫

Ω

ρ dv,

ΨL

KS(ḡ) ≤ 1,

1

C0
(

∫

ΓN

u · t ds− 1) ds ≤ 0,

aρ(u, v) = L(v) ∀ v ∈ Uad,

0 ≤ ρ ≤ 1, −3π
2
< θ < 3

π

2
,

(O3)

Problem 3 : volume minimisation with both compliance and
mechanical strength constraints(β = 1, γ = 1).

Solving the problems (O1), (O2) and (O3), is solving the problem (O) considering {β, γ} ∈ {{0, 1}, {1, 0}, {1, 1}}.
One can see that θ has bounds. It allows having more freedom design when minimising the objective and the
constraints. The polar parameterisation [75, 184], described briefly in section 2.2.3 is used to explicitly express
the orientation dependence of all material tensors.

From now on, the augmented Lagrangian is applied, after transforming the inequality constraints into equal-
ity constraints by the mean of the slack variables (see equation (5.52)), the associated augmented Lagrangian
is given as follows:

L(u, q, ρ, θ, s, λ,b) = 1

VΩ

∫

Ω

ρ dv−
∫

Ω

ρϵε
∼
(u) : C

≈

0 : ε
∼
(q) dv +

∫

ΓN

t.q ds

+ β

[
λ1(Ψ

L

KS(ḡ) + s1) +
b1
2
(ΨL

KS(ḡ) + s1)
2

]

+ γ

[
λ2(

1

C0
(

∫

ΓN

t · u ds− 1) + s2) +
b2
2
(
1

C0
(

∫

ΓN

t · u ds− 1) + s2)
2

]
.

(5.58)

The equivalent problem to (O) is given by:




max
q,λ

min
ρ,θ,s
L(u, q, ρ, s, λ,b),

0 ≤ ρ ≤ 1, −3π
2
< θ < 3

π

2
and s ≥ 0,

(5.59)

Before providing the resolution algorithm, sensitivity analysis has to be done. The sensitivity analysis is very
similar the one in section 5.4.1. To avoid redundancy, we have the following statement:

• The adjoint problem is the same as in equation (5.55), it must be keep in mind that the changes coming
from the orientation θ (in addition to ρ and s) must be taken into account.

• The directional derivative with respect to ρ remains also the same the on in equation (5.60).

What’s remaining is the directional derivative of the augmented Lagrangian with respect to θ, it is given by:

⟨
dL(u, q, ρ, s, λ,b)

dθ
, θ̂⟩ = ⟨

∂L(u, q, ρ, s, λ,b)
∂θ

, θ̂⟩ = 1

VΩ

∫

Ω

ρ̂ dv−
∫

Ω

ρϵ ε
∼
(u) :

∂C
≈

0

∂θ
: ε

∼
(q)θ̂ dv

+ β(λ1 + b1(Ψ
L

KS(ḡ) + s1))

∫

Ω

exp(µḡ)ρ
∂g

∂θ
θ̂ dv

∫

Ω

exp(µḡ) dv
.

(5.60)
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Hence, the direction θ̂ that minimises L(u, q, ρ, θ, s, λ,b) (considering λ and b constant):

θ̂ = −
[
− ρϵ ε

∼
(u) :

∂C
≈

0

∂θ
: ε

∼
(q) + β(λ1 + b1(Ψ

L

KS(ḡ) + s1))
exp(µḡ)ρ

∂g

∂θ∫

Ω

exp(µḡ) dv

]
. (5.61)

The following algorithm for concurrent topology and orientation optimisation is given:

Algorithm 3 Augmented Lagrangian algorithm: Concurrent topology and orientation optimisation

1. Define the algorithm parameters itermax, τρ, τθ, R, bmax, α.

2. Initialise the field ρ(x), θ(x) and the value of p, λ,b, ϵ.

3. Precomputations:

u ← Ela_FE(ρ, θ) % Elasticity problem, equation (5.8)

ḡ ← ρg(u) % g id given by the two equations (5.33) or (5.44) (depending on threshold criterion)

s1 ← max

[
0,−

(
λ1

b1
+ βΨL

KS(ḡ)

)]

s2 ← max

[
0,−

(
λ2

b2
+

γ

C0
(

∫

ΓN

u · t ds− 1)

)]

4. For j=1 to itermax:

| q ← Adj_FE(u, ρ, θ, s, λ,b) % Adjoint elasticity problem, equation (5.55)

| ρ̂← −
[

1

VΩ

− (1− ϵ)pρp−1 ε
∼
(u) : C

≈

0 : ε
∼
(q) + β(λ1 + b1(Ψ

L

KS(ḡ) + s1))
exp(µḡ)g∫

Ω

exp(µḡ) dv

]

| ρ̄← max(min(ρ+ τ
FR(ρ̂)

max(|FR(ρ̂)|)
, 1), 0)

| θ̂ ← −
[
− ρϵ ε

∼
(u) :

∂C
≈

0

∂θ
: ε

∼
(q) + β(λ1 + b1(Ψ

L

KS(ḡ) + s1))
exp(µḡ)ρ

∂g

∂θ∫

Ω

exp(µḡ) dv

]

| θ̄ ← max(min(θ + τ
FR(θ̂)

max(|FR(θ̂)|)
, 3

π

2
),−3π

2
)

| u ← Ela_FE(ρ̄, θ̄)

| ḡ ← ρ̄g(u)

| s1 ← max

[
0,−

(
λ1

b1
+ βΨL

KS(ḡ)

)]

| s2 ← max

[
0,−

(
λ2

b2
+

γ

C0
(

∫

ΓN

u · t ds− 1) ds
)]

| λ1 ← λ1 + b1β(Ψ
L
KS(ḡ) + s1)

| λ2 ← λ2 + b2
γ

C0
(

∫

ΓN

u · t ds− 1)

)

| if βΨL
KS(ḡ) + s1 > 0:

| | b1 ← min[bmax, αb1]

| if
γ

C0
(

∫

ΓN

u · t ds− 1) + s2 > 0:

| | b2 ← min[bmax, αb2]
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5.5 Results and Discussion

In this section the 3 problems (P1), (P2) and (P3) will be solved. Many cases are distinguished. In first one, the
optimisation with isotropic stiffness and isotropic strength is performed. The effect of the aggregation and the
constraints are investigated closely. The second case treat the optimisation considering isotropic material with
a fixed (fixed orientation) anisotropic strength.

L

l

l

t
ΓN

∂Ω

Ω

ΓD

Figure 5.4: The L-shaped beam linear elasticity problem.

For the model, the L-shaped beam problem, illustrated in figure 5.4, will be considered. The structure domain
Ω subdivided into ne linear quadrilateral elements (Q4). All details about the finite element discretisation,
optimisation and the algorithm parameters are resumed in the following table:

Model

Model Plane stress (linear elasticity)
Element type Q4
Mesh Linear quadrilateral elements ne = 10000.
Dimensions L = 100mm, l = 40mm

Load A distributed force over ΓN , No volumic forces.

optimisation parameters

Minimum density (Ersat parameter) ϵ = 10−6

Initial density Uniform distributed density ρ(x) = 1 ∀x ∈ Ω

Density filter Based on Helmholtz PDE (equation (5.31)) with radius R = 2mm

Algorithm settings

Algorithm Augmented Lagrangian
Parameters α = 1.1, τ ∈ [0.05, 0.3]

Initial Lagrange multipliers and penal-
isation coefficients

λ1 = λ2 = 0.1, b1 = b2 = 0.1, bmax = 3

Table 5.1: Numerical model and optimisation settings

ρ is a local variable constant in each element which indicates the presence/absence of material. The algorithm
is implemented using FEniCS, a python library for finite element analysis.

5.5.1 Topology optimisation with isotropic material and strength
In the following, the case of isotropic stiffness with isotropic strength is considered. The material parameters
are defined by E Young’s modulus, ν Poisson’s coefficient and σlim is the tensile limit stress. The values are
displayed in table 5.2. To describe the strength, the Von Mises criterion is used with fictitious tensile stress. Its
implementation is straight forward and it is detailed in section 5.3.3.
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E [MPa] ν σlim [MPa] t [N]

69.7 0.29 45 93.5

Table 5.2: Problem parameters

Let’s focus on the problem (P2). The strength stresses are aggregated using the lower KS function, which
is a smooth approximation to the max function. As shown in equation (5.37), µ plays an important role, the
larger it is, the closer it is to the maximum. It must not be very high, otherwise convergence problems arise
(due to high non-linearity). Consequently, µ must be chosen wisely. In order to have a hunch about the suitable
values of µ to choose, the initial state of the optimisation problem where ρ(x) = 1∀x ∈ Ω is considered. After
solving the elasticity, the normalised Von Mises stress field

σeq

σlim

(normalised with respect σlim) is illustrated in

the figure 5.5. The max value is around 1.55 in the corner.

Figure 5.5: Normalised Von Mises stress field
σeq

σlim
where ρ(x) = 1∀x ∈ Ω.

The following function is evaluated (keep in mind ρ(x) = 1 ∀x ∈ Ω):

ΨL

KS(ḡ + 1)

ḡmax + 1
=

ΨL

KS(σeq/σlim)

σmax

eq /σlim

(5.62)

The above function is the ratio between the aggregated normalised stress field and the non-aggregated one. The
figure 5.6 shows its variation according to µ. The dashed line (value 1) corresponds to the max stress field.
It is observed that the greater µ, the closer the aggregated field to 1 (max). One can see that aggregation
grows very fast at the beginning (µ < 40) then, it slows down. To choose a reasonable value for µ, we opt
for those corresponding to around the ratio 0.9 (meaning 90% of the maximum value). The values chosen are
µ = {40, 50, 60} as those for which the problem (P2) will be solved.

Figure 5.6: Variation of
ΨL

KS(ḡ + 1)

ḡmax + 1
according to µ.

The figures 5.7, 5.8 and 5.9, show the results for solving the problem (P2) considering µ = {40, 50, 60} respec-
tively. The three optimal design are similar where they all have a rounded corner to avoid stress concentration.
As µ get greater, the final volume also get slightly higher. This can be explained by the fact that more volume
is needed to reduce the maximum stress as it approaches 1. The design plays an important role. One can see a
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gap appearing (right of superior part of structure) when µ = 60 which the design more rounded in the corner
thus reducing maximum stress.

(a) Density field (b) Normalised stress field σeq
σlim

(c) volume history (d) Strength ΨL
KS(ḡ) history

Figure 5.7: The Results of solving problem (P2) for µ = 40. The final values: VΩmat = 28.4%, C = 36.00 mJ,
σmax
eq

σlim
= 1.11

(a) Density field (b) Normalised stress field σeq
σlim

(c) volume history (d) Strength ΨL
KS(ḡ) history

Figure 5.8: The Results of solving problem (P2) for µ = 50. The final values: VΩmat = 29.90%, C = 36.05 mJ,
σmax
eq

σlim
= 1.09

(a) Density field (b) Normalised stress field σeq
σlim

(c) volume history (d) Strength ΨL
KS(ḡ) history

Figure 5.9: The Results of solving problem (P2) for µ = 60. The final values: VΩmat = 30.06%, C = 36.00 mJ,
σmax
eq

σlim
= 1.07

When looking at the convergence history for three figures, one can see that they are kind of similar. The
volume decreases at the beginning at very slow pace then it accelerates. The reason is because of strength
constraint. Being violated at beginning, the algorithm prioritises minimising the strength constraint (over the
volume) until it is saturated (inequality). Once done, the priority is progressively given to minimising the
volume. It is important to note that the priority mechanism is driven by the Lagrange multipliers, which can be
interpreted as sensitivity parameter in relation to the constraints [4]. The higher µ is, the greater the number
of iterations required to converge. Indeed, as µ increases, the constraint becomes increasingly non-linear. Some
peaks can be found when looking to strength history, this is explained by fact that stress concentrations could
occur when looking for optimal design. In an attempt to avoid the convergence problems, caused by these
peaks, the step τ must be chosen small enough and the descent direction must be normalised with respect to its
max absolute value (see algorithm 2). Although the strength constraints are checked at the end, the maximum
stress field is always greater than 1 (but close). This illustrates one of the disadvantages of using aggregation.

From now on, The focus is on problem (P3), the inequality constraints are currently the mechanical strength
and the stiffness. Previously, after solving the problem (P2), the strength constraint is satisfied, though, it is
assumed that it is not stiff enough. The final compliance was around 36.0 mJ therefore, in problem (P3), C0 = 25
mJ will be imposed as a rigidity (or stiffness) constraint.
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(a) Density field (b) Normalised stress field
σeq
σlim

(c) volume history (d) Strength ΨL
KS(ḡ) history (e) compliance C

history

Figure 5.10: The Results of solving problem (P3) for µ = 40. The final values: VΩmat = 40.01%, C = 25.00 mJ,
σmax
eq

σlim
= 1.19

(a) Density field (b) Normalised stress field
σeq
σlim

(c) volume history (d) Strength ΨL
KS(ḡ) history (e) compliance C

history

Figure 5.11: The Results of solving problem (P3) for µ = 50. The final values: VΩmat = 40.13%, C = 25.00 mJ,
σmax
eq

σlim
= 1.14

(a) Density field (b) Normalised stress field
σeq
σlim

(c) volume history (d) Strength ΨL
KS(ḡ) history (e) compliance C

history

Figure 5.12: The Results of solving problem (P3) for µ = 60. The final values: VΩmat = 43.03%, C = 25.00 mJ,
σmax
eq

σlim
= 1.11

The results are illustrated in figure 5.10, 5.11 and 5.12 for µ = {40, 50, 60} respectively. The final volume is
higher due to the presence of stiffness constraint. The maximum values of the equivalent stress field is higher
than the ones obtained with problem (P2). This is explained by the fact that the aggregated strength constraint
is evaluated over larger volume Ωmat. It is also due the fact that the stress field is not close to 1 over all Ωmat

unlike what’s found after solving problem (P2). In any case, the same effect is present: the greater the µ, the
closer the maximum normalised Von Mises stress is to 1.

Looking to convergence history, one can see that it is faster because the minimum volume, imposed by
stiffness constraint, is more than sufficient to satisfy the aggregated strength constraint. At the beginning, the
stiffness inequality constraint is satisfied thus, it was inactive. As a result of the decrease in volume, compliance
increases until it reaches the required (imposed) value, then remains close to this value; the stiffness inequality
constraint remains therefore close to saturation. The mechanism of deactivating and saturating the inequality
constraints is driven by the slack variables. For the aggregated strength constraints, some peaks are observed in
their convergence history especially in figure 5.10 (where they are more present). It is explained by the fact to
step τ was little higher than it needs to be (τ was higher in 5.10 thus, fast convergence and many peaks). As it
is mentioned before, to avoid the problems caused by these peaks, the step τ must be chosen small enough and
the descent direction must be normalised with respect to its max value (see algorithm 2). The figure 5.14 show
the the influence of the constraints on the obtained optimal design from the volume minimisation problem.
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Problem P1: VΩmat = 38.15%, C = 25 mJ,
σmax
eq

σlim
= 3.60

Problem P2: VΩmat = %, C = 36.05 mJ,
σmax
eq

σlim
= 1.09

Problem P3: VΩmat = 40.13%, C = 25 mJ,
σmax
eq

σlim
= 1.14

Figure 5.14: Influence of the optimisation problem (P1, P2 and P3) with an isotropic material and a Von Mises criterion.

5.5.2 Stress based topology optimisation with isotropic stiffness and fixed anisotropic
strength

A particular case where the stiffness is isotropic and the strength is anisotropic is treated for problems P2 and
P3. It important to keep in mind that this case is possible, an example is given in an additive manufacturing
application [128]. The same L-shaped beam problem is considered (details are available in table 5.2). For
mechanical strength, the Tsai-Wu threshold criterion (TW2) is considered. Its implementation is possible using
the safety factor (see section 5.3.3). Both problems (P2) and (P3) will be solved for µ = 50. The following
material and problem parameters are given in the following table:

E [MPa] ν t [N]

69.7 0.29 40

Table 5.3: Problem parameters

Xt [MPa] Xc [MPa] Yt [MPa] Yc [MPa] S [MPa]

79.2 140 118.4 152 40

Table 5.4: Tsai-Wu material parameters Figure 5.15: The (σ11 − σ22) plane cut of
the TW2 threshold surface associated to

mentioned parameters in table 5.4)
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θ=0° ,VΩmat = 25.89%, C = 8.94 mJ,(
1
κ

)
m

ax = 1.07

θ=60° ,VΩmat = 31.72%, C = 6.77 mJ,(
1
κ

)
m

ax = 1.10

θ=90° ,VΩmat = 29.18%, C = 7.63 mJ,(
1
κ

)
m

ax = 1.09

Figure 5.18: The Results of solving problem (P2) considering Tsai-Wu criterion for µ = 50 and for the material orientations: 0°,

60° and 90° . The first row of figures are density field. The second row,
1

κ
strength indicator field. The volume history.

The figure 5.18 shows the results (problem (P2)) for the three material orientations 0°, 60° and 90°. By
changing the orientation different optimal designs and TW2 fields are obtained however, they remain similar.
This because the micro stress tensor field σmic does not change with the orientation due the fact that the stiffness
is isotropic.

The figure 5.18 illustrates the results (problem (P3)) for the three material orientations 0°, 60° and 90°.
where, this time, rigidity constraint is imposed. Same as before the results are different for each orientation,

however some similarities are present due to isotropic stiffness. Looking at
1

κ
strength indicator field, some

tension/compression dissymmetry are present some parts of the optimal design. This is clearer in the upper

part of the design space, where the
1

κ
field on the left (compression) is less pronounced than on the right

(tension).
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θ=0° ,VΩmat = 41.26%, C = 4.5 mJ,(
1
κ

)
max

= 1.14

θ=60° ,VΩmat = 42.56%, C = 4.5 mJ,(
1
κ

)
max

= 1.14

θ=90° ,VΩmat = 46.86%, C = 4.5 mJ,(
1
κ

)
max

= 1.11

Figure 5.21: The Results of solving problem (P2) considering Tsai-Wu criterion for µ = 50 and for the material orientations: 0°,

60° and 90° . The first row of figures are density field. The second row,
1

κ
strength indicator field. The volume history.

5.6 Synthesis

The following statements allow to summarise this chapter:

• For pedagogical purposes, the general framework of augmented Lagrangian is explained in a concise
manner. An algorithm is provided to solve a general constrained optimisation problem.

• Three volume minimisation problems with different constraints (stiffness and strength constraints only)
has been solved. the augmented Lagrangian algorithm allowed condensing the three optimisation prob-
lems into one main parametric problem. For the strength constraints all details about threshold func-
tions, aggregation and addressing numerical issues were explained. An explicit algorithm is provided for
both topology optimisation and concurrent topology and orientation optimisation (in case of included
anisotropy).

• Some results are discussed L-shaped beam elasticity. Interesting designs with rounded corner were obtained
for both problem 1 and problem 2. Only the topology optimisation is performed for the two following
cases:

1. The first case is the topology optimisation considering isotropic stiffness and isotropic mechanical
strength (Von Mises threshold criterion). A closer look was given the influence of the aggregation
parameter and the constraints.

2. The second case is the topology optimisation considering isotropic stiffness and fixed anisotropic
mechanical strength (TW2 threshold criterion). Different results were obtained for different orienta-
tions. The designs obtained are similar (especially when stiffness constraint is imposed) because the
stress tensor field is not affected by the change in orientation due to the isotropic stiffness.
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Chapter 6

Conclusion and Perspectives

6.1 Conclusion

The two main objectives of the carried out study in this document were (i) to establish a threshold criterion for
lattice then, (ii) to implement it a topology optimisation problem. The purpose is to obtain optimised lattice
structure design. With all mentioned work in this document, The first objective was achieved thanks to the
proposal and the study of TW4 polynomial threshold function. With regard to the second objective, significant
progress has been made, with an algorithm having been proposed and proven to work for stress constrained
topology optimisation. What remains to be done is to implement the TW4 function and perform simultaneous
topology and orientation optimisation.

In the first part of the study, a review was done about different threshold criteria available in the literature
(mostly in plasticity studies of bulk materials), it led us to conclude that there exist some approaches that
used to establish a threshold criterion when the anisotropy of the material in known. The main approaches
are representation theory, linear transformation and high degree polynomials. For lattice materials, a review
is provided, on how some authors manage to establish threshold criteria taking into account plasticity with or
without buckling. It was found out that they are non-smooth max functions (thus, non smooth threshold surface)
due to using beam theory as model. Tension/compression asymmetry is present when buckling instabilities
are taken into account (in parallel with plasticity). It was concluded that to theoretically define a threshold
function for lattice materials, polynomials meet all the requirements and may be sufficient to generate at least
an approximately smooth threshold surface.
A framework has been established for anisotropy in the stress space. The harmonic basis allows to interpret
geometrically a threshold surface with two main point of views: anisotropy and loading symmetry. Mathemat-
ically, the links, between writing H-invariant functions from group representation theory and polynomial nth
order tensor tensor, is detailed. More precisely we have seen how from representation theory, how to obtain an
H-invariant tensor polynomial from a suitable structure tensor (harmonic tensors). However, one step in the
process remains tedious, namely the establishment of an integrity base, and as a tool it is neither accessible nor
user-friendly for anyone.
Consequently (opposite what is done with representation theory), a general high polynomial threshold function
of degree 4 is proposed and named TW4. 4 material tensors were present of orders 2, 4, 6, 8 with total of
34 material parameters (which is a lot). However, with the help of harmonic decomposition of all 4 tensor,
which is established the three step methodology (section 3.3.2), H-invariant polynomial functions are much easy
to establish (by simple eliminations) and it was found out that they are linked to the representation theory.
Moreover, all possible threshold surface group symmetries can be found with the clips product (section 3.2.3).
Interesting shapes have been found when they are driven by harmonic parameters, making it possible to find
possible cases of loading symmetry under hydrostatic pressure. Lastly, approximation of some selected threshold
criterion was done in section 3.5, and which validates the obtained results from representation theory in section
3.2.1. The threshold surface established by Jeanneau [102] for 2D equilateral triangular lattice was successfully
approximated with only 7 material parameters.

In part 2 of the study, a state of art about topology optimisation was provided. The main approaches on how
to parameter the topology of structure (SIMP, level-set) were explained. An overview on different algorithm that
are used to solve different optimisation problems were provided. A special attention is brought to augmented
Lagrangian which is used to solve all featured problems in our study. For the objective and the constraints, 3
aspects were focused on: volume (or mass), stiffness (rigidity) and mechanical strength.
Speaking mechanical strength, several numerical issues were encountered and addressed by different authors
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especially when SIMP method. The stress tensor need to be evaluated differently when intermediate densities
are present. Relaxation approaches must be used to avoid singular optima problem. The high number of strength
constraints (due to the fact that they are local) will induce an expensive computational cost. Aggregation (using
KS-function) remains one of best solution to tackle the problem. Easy to use, it is also used as a relaxation
approach which comes makes it more convenient however, some disadvantages are present such us losing control
over the design space.
Including anisotropy (stiffness or strength or both), opens the possibility to add (to the topology) more variables
to the optimisation problem which allows getting better performance in the obtained optimal designs. It is
often performed with SIMP (or homogenisation)method due its simple implementation. The additional variable
consists generally of considering the orientation or the material itself the reader is invited to read section for
more details 4.6.
The proposed problem in the study, was the volume minimisation subject to aggregated strength and stiffness
constraints. The problem was solved by the augmented Lagrangian algorithm using SIMP method. The strategy
is that the presence of material, in the design space, means the presence of lattice at the microscale level.
For pedagogical purposes, the general framework of the algorithm is explained in a simple manner, explicit
algorithm is provided for both topology optimisation and concurrent topology and orientation optimisation.
Some obtained results were discussed to validate the algorithm where a close look was paid to the influence
of aggregation parameter and to the type of constraints (stiffness and strength). It is important to point out
that the implementation of TW4, provided in section 5.3.3, is not yet tested. It is the same thing with the
concurrent topology and orientation optimisation.

6.2 Perspectives

As perspectives for the first part of the study, it would be interesting to establish threshold surface for hexachiral
2D lattice, depicted in figure 2.2a, and attempt to approximate its threshold surface taking into account it
symmetry classes (which is Z6). It would also be interesting to impose convexity conditions in the identification
process. Bower et al. [37] studied the same quartic polynomial function as TW4 and established convexity
conditions. These conditions are necessary but not sufficient, hence it is worth it looking again into it. Lastly,
a generalisation to R3 is possible. It means that the stress tensor σ

∼
∈ S2(R3). With such tensor space, the rules

are little different when it comes to harmonic decomposition where a nth order harmonic tensor will contain
2n+ 1 element (parameter). The determination of H-invariant function is possible though it is different where
the so-called Covariant basis need to be established for each harmonic tensor. More details are found in [137].
It would be even more complicated if Kelvin basis is considered where {σ

∼
} ∈ R6.

As perspectives for the second part, it would be interesting, in case of successful implementation of TW4, to
apply a dishomogenisation approach [195, 77] to obtain the optimal lattice structure. Considering a sufficient
scale separation, numerical tests must be performed to see if there is conformity with the continuous optimal
structure design. Moreover, Jeanneau, in his thesis [102], managed to established an analytical expression
between the geometric parameters of the lattice unit cell and the elasticity tensor. For the same set of parameters
(geometric), several threshold surfaces can be establish and interpolated. This means that it is possible to use
homogenisation method [77] for the problem (P) (and for (O)). The optimisation with respect to the anisotropy
is also possible. Using the polar parameterisation, it is possible to optimise with respect to anisotropic invariant
like it was done composite laminate by Ranaivomiarana [146] and Vertonghen [187]. For dishomogenisation,
clustering approaches [113, 97] can be used to the optimised lattice structure for optimised elasticity tensor
field. It is possible to use Multi-material optimisation where, for example, two lattice materials are considered
(e.g. two equilateral triangular lattices with different wall thickness). The fact that it is possible to establish
threshold criteria for lattice materials can potentially open up the possibility of finding new coherent designs in
terms of mechanical strength.
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Appendices
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Appendix A

Orthogonal groups O(2), O(3)

i Basic properties of groups

i.1 Invariant algebra
Let (V, ρ) be a linear representation of G = O(2) or G = SO(2). The action of G on V induces a linear
representation of G on the algebra R[V] of polynomials functions on V, which will be denoted by ⋆, and which
is given by

(g ⋆ p)(v) := p(ρ(g)−1v). (A.1)

The invariant algebra of V under the group G, denoted by Inv(V, G) (and more usually by R[V]G in the
Mathematical community), is defined as

Inv(V, G) := { p ∈ R[V], g ⋆ p = p, ∀g ∈ G } .
It is a subalgebra of R[V], which is furthermore finitely generated, thanks to Hilbert’s theorem [? ? ]. Moreover,
since the group action on polynomials preserves vector spaces of homogeneous polynomials of given degrees, it
can always be generated by homogeneous polynomial invariants.

Definition i.1 (Integrity basis). A finite set of G-invariant homogeneous polynomials { J1, . . . , JN } over V is a
generating set (also called an integrity basis) of the invariant algebra Inv(V, G) if any G-invariant polynomial
J over V is a polynomial function in J1, . . . , JN , i.e if J can be written as

J(v) = P (J1(v), . . . , JN(v)), v ∈ V,

where P is a polynomial function in N variables. An integrity basis is minimal if no proper subset of it is an
integrity basis.

ii The orthogonal group in R2: O(2)

We have the following properties

Proposition ii.1. 


∀g ∈ O(2), gZkg

T = Zk

∀g ∈ O(2), gDn

kg
T = Dg.n

k

Proof. It is sufficient to understand how the generators of each kind of group are transformed by conjugacy.
• Zk

We have
Gen (Zk) = r(

2π

k
) = r(−2π

k
)

Hence

Gen (gZkg
T ) = gr(

2π

k
)gT =





r( 2π

k
), if detg = 1

r(− 2π

k
), if detg = −1

Since the generator are unchanged, the resulting group is the same.
• Dn

k

We have
Gen (Dn

k) = {r(
2π

k
),π(n)} = {r(−2π

k
),π(n)}
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III. THE ORTHOGONAL GROUP IN R3: O(3)

For the rotational generator, the situation has been dealt with. We now need to consider how the mirror line
is transformed

gπ(n)gT = g
(
I
∼
− 2n⊗ n

)
gT = I

∼
− 2(gn)⊗ (gn)

Hence
Gen (gDn

kg
T ) = {r(2π

k
),π(gn)} = Gen (Dgn

k )

It can also be observed that the conugacy modulo O(2) and SO(2) are equivalent.

Remark ii.2. The following classes {[1], [Zk], [SO(2)], [O(2)]}k>1 contain one element, while [Zπ
2 ], [Dk] contains

an infinite number of members. This is partially related to the fact that in R2 all the rotation are along a same
axis. As soon as axes or planes are to be specified, the conjugation classes will contain an infinite number of
elements. Indeed, [Zk] in O(3), as will be seen later, is a class not reduced to a single element.

It can be observed that

Proposition ii.3. Orb(σ
∼
,O(2)) = Orb(σ

∼
,SO(2))

Proof. It sufficient to show that for any σ
∼

it exists θ such that

r(θ) ⋆ σ
∼
= π(n) ⋆ σ

∼

This is direct since σ
∼

is at least orthotropic, as such, it exists v such aas

π(v) ⋆ σ
∼
= σ

∼

Hence
π(n) ⋆ σ

∼
= π(n) ⋆

(
π(v) ⋆ σ

∼

)
= (π(n).π(v)) ⋆ σ

∼

and π(n).π(v) ∈ SO(2). Direct computation shows that θ depends on σ
∼

and that

θ =
−2σ12

σ11 − σ22

iii The orthogonal group in R3: O(3)

iii.1 Some theorems
Lemma iii.1. The action of O(3) on R3 can be reduced to SO(3).

Proof. Consider a non-null vector k of R3, its symmetry group is Gk = O(2)(−, k). In the notation k indicates
the axis of rotational invaraince. This symmetry group also contains mirror planes of symmetry with respect
to n, with n · k = 0. These elements are improper, ie. detπ(n) = −1. Consider now g ∈ O(3)/SO(3), that is an
improper element of O(3), we have

g ⋆ k = g ⋆ (π(n) ⋆ k) = (g · π(n)) ⋆ k

In the last expression, g · π(n) is an element of O(3) whose determinant is 1. There therefore exists a rotation
r ∈ SO(3) such that r = g · π(n). Therefore, any element of g ∈ O(3)/SO(3) is seen as an element of SO(3) by
k

iii.2 subgroups
The following different tables (Table A.1,-A.2,-A.3) detail the physical characteristics of the 32 crystallographic
point groups of type I, II and III. In these tables, the correspondence between the Golubtisky’s notations and
the crystallographers’ ones such as the Hermann–Maugin or the Schonflies systems are provided. Note also that
the column System refers to the Bravais lattice, and Space Groups indicates the reference of the space groups
having this group as its point group (see [176] for instance).
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III. THE ORTHOGONAL GROUP IN R3: O(3)

Type I closed subgroups

System Hermann-Maugin Schonflies Golubitsky Nature Space Groups
Triclinic 1 Z1 1 CP 1

Monoclinic 2 Z2 Z2 CP 3-5
Orthotropic 222 D2 D2 C 16-24

Trigonal 3 Z3 Z3 CP 143-146
Trigonal 32 D3 D3 C 149-155

Tetragonal 4 Z4 Z4 CP 75-80
Tetragonal 422 D4 D4 C 89-98
Hexagonal 6 Z6 Z6 CP 168-173
Hexagonal 622 D6 D6 C 177-182

∞ Z∞ SO(2) CP

∞2 D∞ O(2) C

Cubic 23 T T C 195-199
Cubic 432 O O C 207-214

532 I I C

∞∞ SO(3) C

Table A.1: Type I closed subgroups: designation and characteristics (C = Chiral, P=Polar).

Type II closed subgroups

System Hermann-Maugin Schonflies Golubitsky Nature Space Group
Triclinic 1̄ Zi Zc

2 I 2
Monoclinic 2/m Z2h Z2 × Zc

2 I 10-15
Orthotropic mmm D2h D2 × Zc

2 I 47-74
Trigonal 3̄ S6, Z3i Z3 × Zc

2 I 147-148
Trigonal 3̄m D3d D3 × Zc

2 I 162-167
Tetragonal 4/m Z4h Z4 × Zc

2 I 83-88
Tetragonal 4/mmm D4h D4 × Zc

2 I 123-142
Hexagonal 6/m Z6h Z6 × Zc

2 I 175-176
Hexagonal 6/mmm D6h D6 × Zc

2 I 191-194
∞/m Z∞h SO(2)× Zc

2 I

∞/mm D∞h O(2)× Zc

2 I

Cubic m3̄ Th T× Zc

2 I 200-206
Cubic m3̄m Oh O× Zc

2 I 221-230
5̄3̄m Ih I× Zc

2 I

∞/m∞/m O(3) I

Table A.2: Type II closed subgroups: designation and characteristics (I = Centrosymetric).
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III. THE ORTHOGONAL GROUP IN R3: O(3)

Type III closed subgroups

System Hermann-Maugin Schonflies Golubitsky Nature Space Groups
Monocinic m Zs Z−

2 P 6-9
Orthotropic 2mm Z2v Dv

2 P 25-46
Trigonal 3m Z3v Dv

3 P 156-161
Tetragonal 4̄ S4 Z−

4 81-82
Tetragonal 4mm Z4v Dv

4 P 99-110
Tetragonal 4̄2m D2d Dh

4 111-122
Hexagonal 6̄ Z3h Z−

6 174
Hexagonal 6mm Z6v Dv

6 P 183-186
Hexagonal 6̄2m D3h Dh

6 187-190
Cubic 4̄3m Td O− 215-220

∞m Z∞v O(2)− P

Table A.3: Type III closed subgroups: designation and characteristics (P=Polar).

In the following table a set of generators is detailed for each finite O(3)-closed subgroups.

Group Order Generators

Z−
2 2 π(e3)

Zn, n ≥ 2 n r (e3; 2π/n)

Dn, n ≥ 2 2n r (e
3
; 2π/n) , r(e

1
;π)

Z−
2n, n ≥ 2 2n −r (e

3
; π/n)

Dh

2n, n ≥ 2 4n −r (e
3
; π/n) , r(e

1
, π)

Dv

n, n ≥ 2 2n r (e
3
; 2π/n) , π(e

1
)

T 12 r(e
3
;π), r(e

1
;π), r(e

1
+ e

2
+ e

3
; 2π/3)

O 24 r(e3; π/2), r(e1;π), r(e1 + e2 + e3; 2π/3)

O− 24 −r(e3; π/2), π(e2 − e3)

I 60 r(e3;π), r(e1 + e2 + e3; 2π/3), r(e1 + ϕe3; 2π/5) ϕ := (1 +
√
5)/2

Table A.4: Generators of finite closed O(3)-subgroups.
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Appendix B

Explicit harmonic decomposition

i The CGHD of W4

First let us introduce the following notation:

A∼∼∼∼
8.(ρ

∼
⊗ σ

∼
⊗ τ

∼
⊗ η

∼
) = ρ

∼

.. (σ
∼

.. A∼∼∼∼
.. η
∼
) .. τ

∼
(B.1)

which reads, in components,
A(ij)(kl)(mn)(op)σ(ij)ρ(kl)τ(km)η(op)

Here, only the case σ
∼
= ρ

∼
= τ

∼
= η

∼
will be considered, which leads to

A(ij) (kl) (mn) (op)σ(ij)σ(kl)σ(km)σ(op) (B.2)

The coefficients of the fourth-order polynomial in σ
∼

are contained in the 8th-order tensor A∼∼∼∼
∈W4. We recall

that this space has the following structure W4 = S4(S2(R2)). The index symmetry group of A∼∼∼∼
is

G(A∼∼∼∼
) = S4 ⊗ Z2.

where S4 is the symmetric group on 4 elements and corresponds to the permutation of the underlines blocks
appearing in Equation 3.6. The group Z2 corresponds to the index symmetries of σ

∼
indicated by parentheses in

Equation 3.6. The resulting number of index symmetries of A∼∼∼∼
is #G(A∼∼∼∼

) = 4!.24 = 384 and a set of generators

of G(A∼∼∼∼
) is given by:

Gen

(
G(A∼∼∼∼

)

)
= {(12), (13)(24), (15)(26), (17)(28)} .

Knowing G(A∼∼∼∼
), let us establish the harmonic decomposition of A∼∼∼∼

.

Let’s apply the algorithm introduced in subsection 3.3.2 to the current situation. The first step has already
been done in subsection 3.3.3. Hence only the second and the third steps will be considered.
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I. THE CGHD OF W4

i.1 Block decomposition of A∼∼∼∼
The introduction of the decomposition σ

∼
in Equation B.2 induces the following partition

σ
∼

.

. (σ∼
.
. A∼∼∼∼

.

. σ∼
)
.
. σ∼

= (σ
∼

(2)
+ σ

∼
(0)

)
.
.

[
(σ
∼

(2)
+ σ

∼
(0)

)
.
. A∼∼∼∼

.

. (σ∼
(2)

+ σ
∼

(0)
)

]
.
. (σ∼

(2)
+ σ

∼
(0)

),

= σ
∼

(2) .
. (σ∼

(2) .
. A∼∼∼∼

.

. σ∼
(2)

)
.
. σ∼

(2)

+ σ
∼

(2) .
. (σ∼

(2) .
. A∼∼∼∼

.

. σ∼
(2)

)
.
. σ∼

(0)
+ σ

∼
(2) .

. (σ∼
(2) .

. A∼∼∼∼

.

. σ∼
(0)

)
.
. σ∼

(2)
+ σ

∼
(2) .

. (σ∼
(0) .

. A∼∼∼∼

.

. σ∼
(2)

)
.
. σ∼

(2)
+ σ

∼
(0) .

. (σ∼
(2) .

. A∼∼∼∼

.

. σ∼
(2)

)
.
. σ∼

(2)

+ σ
∼

(2) .
. (σ∼

(2) .
. A∼∼∼∼

.

. σ∼
(0)

)
.
. σ∼

(0)
+ σ

∼
(2) .

. (σ∼
(0) .

. A∼∼∼∼

.

. σ∼
(2)

)
.
. σ∼

(0)
+ σ

∼
(0) .

. (σ∼
(0) .

. A∼∼∼∼

.

. σ∼
(2)

)
.
. σ∼

(0)
+ σ

∼
(2) .

. (σ∼
(0) .

. A∼∼∼∼

.

. σ∼
(0)

)
.
. σ∼

(2)
+ σ

∼
(0) .

. (σ∼
(2) .

. A∼∼∼∼

.

. σ∼
(0)

)
.
. σ∼

(2)
+ σ

∼
(0) .

. (σ∼
(2) .

. A∼∼∼∼

.

. σ∼
(0)

)
.
. σ∼

(2)
+ σ

∼
(0) .

. (σ∼
(0) .

. A∼∼∼∼

.

. σ∼
(2)

)
.
. σ∼

(2)

+ σ
∼

(2) .
. (σ∼

(0) .
. A∼∼∼∼

.

. σ∼
(0)

)
.
. σ∼

(0)
+ σ

∼
(0) .

. (σ∼
(2) .

. A∼∼∼∼

.

. σ∼
(0)

)
.
. σ∼

(0)
+ σ

∼
(0) .

. (σ∼
(0) .

. A∼∼∼∼

.

. σ∼
(2)

)
.
. σ∼

(0)
+ σ

∼
(0) .

. (σ∼
(0) .

. A∼∼∼∼

.

. σ∼
(0)

)
.
. σ∼

(2)

+ σ
∼

(0) .
. (σ∼

(0) .
. A∼∼∼∼

.

. σ∼
(0)

)
.
. σ∼

(0)

(B.3)
This expression can be reformulated from the following property

σ
∼

(o) .. (σ
∼

(p) .. A∼∼∼∼
.. σ

∼

(q)) .. σ
∼

(r) = σ
∼

(o) .. (σ
∼

(p) .. A∼∼∼∼
o,p,q,r .. σ

∼

(q)) .. σ
∼

(r), ∀p, q, r ∈ {0, 2}.

in which
A∼∼∼∼

o,p,q,r = A∼∼∼∼

8
◦ (P

≈

o ⊗ P
≈

p ⊗ P
≈

q ⊗ P
≈

r) ∀o, p, q, r ∈ {0, 2} (B.4)

with the definition
(
A∼∼∼∼

8
◦ (O

≈
⊗ P

≈
⊗Q

≈
⊗ R

≈
)

)

ijklmnop

= ApqrstuvwOpqijPrsklQtumnRvwop.

Proceeding this way, 16 different blocks have been obtained. As for B∼∼∼
, only the tensors A∼∼∼∼

2,2,2,2 and A∼∼∼∼
0,0,0,0

satisfy the index symmetries of W4. Other blocks have lower symmetries and need to be symmetrised

A∼∼∼∼
(2222) = A∼∼∼∼

2,2,2,2

A∼∼∼∼
(2220) = A∼∼∼∼

2,2,2,0 + A∼∼∼∼
2,2,0,2 + A∼∼∼∼

2,0,2,2 + A∼∼∼∼
0,2,2,2)

A∼∼∼∼
(2200) = A∼∼∼∼

2,2,0,0 + A∼∼∼∼
2,0,2,0 + A∼∼∼∼

0,2,2,0 + A∼∼∼∼
2,0,0,2 + A∼∼∼∼

0,2,0,2 + A∼∼∼∼
0,0,2,2

A∼∼∼∼
(2000) = A∼∼∼∼

2,0,0,0 + A∼∼∼∼
0,2,0,0 + A∼∼∼∼

0,0,2,0 + A∼∼∼∼
0,0,0,2

A∼∼∼∼
(0000) = A∼∼∼∼

0,0,0,0

At the end,
A∼∼∼∼

= A∼∼∼∼
(2222) + A∼∼∼∼

(2220) + A∼∼∼∼
(2200) + A∼∼∼∼

(2000) + A∼∼∼∼
(0000)

which means that W4 has been split into 5 orthogonal subspaces, i.e

W4 = W4

4 ⊕W3

4 ⊕W2

4 ⊕W1

4 ⊕W0

4, (A∼∼∼∼
(2222),A∼∼∼∼

(2220),A∼∼∼∼
(2200),A∼∼∼∼

(2000),A∼∼∼∼
(0000)) ∈ (W4

4 ×W3

4 ×W2

4 ×W1

4 ×W0

4)

(B.5)
in which the number k in Wk

4 indicates the number of occurrences of the space K2 in the underlying tensor
product. This decomposition should be compared with the expression given by the lemma 3.2.3, i.e.

W4 ≃ S4(K2)⊕ S3(K2)⊕ S2(K2)⊕K2 ⊕K0 (B.6)

i.2 Clebsch-Gordan harmonic decomposition

The blocks A∼∼∼∼
(opqr) we have obtained are not O(2)-irreducible and should therefore be decomposed further. The

first step to compute their explicit harmonic decomposition is to determine their harmonic structure. This
structure is a consequence of Equation B.5 and Equation B.6. For W1

4 and W0
4, the results are straightforward,

W1

4 ≃ K2, W0

4 ≃ K0,
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I. THE CGHD OF W4

whereas for the other three spaces, they are obtained by applying the formula of the lemma 3.2.4

W4

4 ≃ K8 ⊕K4 ⊕K0, W3

4 ≃ K6 ⊕K2, W2

4 ≃ K4 ⊕K0.

It results that the harmonic structure of W4 is:

W4 ≃ K8 ⊕K6 ⊕ 2K4 ⊕ 2K2 ⊕ 3K0, dim (W4) = 15

as already known from Proposition 3.2.5 but, now, we know explicitly in which elementary block each harmonic
tensor is located.

a) The space W0
4 Since A∼∼∼∼

(0000) ∈W0
4 ≃ K0 this term is isotropic and reduces to a unique scalar that will be

denoted α8,0. Let us insert the expression of P
≈

(0) into the definition of A∼∼∼∼
(0000)

A∼∼∼∼
(0000) = A∼∼∼∼

8
◦ (P

≈

(0) ⊗ P
≈

(0) ⊗ P
≈

(0) ⊗ P
≈

(0)) =
1

16
A∼∼∼∼

8
◦
[
(I
∼
⊗ I

∼
)⊗ (I

∼
⊗ I

∼
)⊗ (I

∼
⊗ I

∼
)⊗ (I

∼
⊗ I

∼
)
]

=
1

16

(
A∼∼∼∼

8
◦
[
I
∼
⊗ I

∼
⊗ I

∼
⊗ I

∼

])
I
∼
⊗ I

∼
⊗ I

∼
⊗ I

∼

=
1

16
α8,0 I

∼
⊗ I

∼
⊗ I

∼
⊗ I

∼

=
1

4
α8,0P

≈

(0) ⊗ P
≈

(0)

Hence the following parameterisation is obtained

A∼∼∼∼
(0000) =

1

4
α8,0P

≈

(0) ⊗ P
≈

(0),

and conversely the scalar we are looking for is determined as

α8,0 = I
∼

.. (I
∼

.. A∼∼∼∼
.. I

∼
) .. I

∼
= tr(4)12 (A∼∼∼∼

)

in which tr(n)

ab stands for the nth-order iterated trace on the index ab, and should not be confused with the n-th
power of trab.

b) The space W1
4 The term A∼∼∼∼

(2000) ∈W1
4 will be treated in two stages. First the harmonic term A∼∼∼∼

2,0,0,0 will

be proceed, and then its expression symmetrised to obtained A∼∼∼∼
(2000).

From its harmonic structure, we know that A∼∼∼∼
2,0,0,0 is parameterised by a second order harmonic tensor

h
∼

8,1 ∈ K2. As in the previous paragraph, let’s start by inserting the expression for P
≈

(0) into the definition of

A∼∼∼∼
2,0,0,0.

A∼∼∼∼
2,0,0,0 = A∼∼∼∼

8
◦ (P

≈

(2) ⊗ P
≈

(0) ⊗ P
≈

(0) ⊗ P
≈

(0)) =
1

8
A∼∼∼∼

8
◦
[
P
≈

(2) ⊗ (I
∼
⊗ I

∼
)⊗ (I

∼
⊗ I

∼
)⊗ (I

∼
⊗ I

∼
)
]

=
1

8

(
A∼∼∼∼

8
◦
[
P
≈

(2) ⊗ I
∼
⊗ I

∼
⊗ I

∼

])
I
∼
⊗ I

∼
⊗ I

∼

=
1

8
h
∼

8,1 ⊗ I
∼
⊗ I

∼
⊗ I

∼

=
1

4
h
∼

8,1 ⊗ I
∼
⊗ P

≈

(0)

Hence the following parameterisation is obtained

A∼∼∼∼
2,0,0,0 =

1

4
h
∼

6,1 ⊗ I
∼
⊗ P

≈

(0),
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I. THE CGHD OF W4

and conversely the harmonic tensor we are looking for is determined as

h
∼

8,1 = P
≈

(2) .. (I
∼

.. A∼∼∼∼
.. I

∼
) .. I

∼
= P

≈

(2) ..

(
tr(3)12 (A∼∼∼∼

)

)
.

The parameterisation of A∼∼∼∼
(2000) can now be obtained by symmetrisation

A∼∼∼∼
(2000) = A∼∼∼∼

2,0,0,0 + A∼∼∼∼
0,2,0,0 + A∼∼∼∼

0,0,2,0 + A∼∼∼∼
0,0,0,2

= (ς(e) + ς(13)(24) + ς(15)(26)) + ς(17)(28))︸ ︷︷ ︸
τ4

⋆A∼∼∼∼
2,0,0,0

in which τ4 is the symmetrisation operator from K2 ⊗ S3(R2) to W1
4.

c) The space W2
4 As for the previous situation, the term A∼∼∼∼

(2200) ∈W2
4 will be treated in two stages. First the

harmonic term A∼∼∼∼
2,2,0,0 will be proceed, and then its expression symmetrised to obtained A∼∼∼∼

(2200). The harmonic

structure of A∼∼∼∼
2,2,0,0 contains two terms H

≈

8,2 ∈ K4 and α8,2 ∈ K0. The insertion of P
≈

(0) into the definition of

A∼∼∼∼
2,2,0,0 allows to write

A∼∼∼∼
2,2,0,0 = A∼∼∼∼

8
◦ (P

≈

(2) ⊗ P
≈

(2) ⊗ P
≈

(0) ⊗ P
≈

(0)) =
1

4
A∼∼∼∼

8. (P
≈

(2) ⊗ P
≈

(2) ⊗ (I
∼
⊗ I

∼
)⊗ (I

∼
⊗ I

∼
))

=
1

4

[
P
≈

(2) .. (I
∼

.. A∼∼∼∼
.. I

∼
) .. P

≈

(2)

]
⊗ I

∼
⊗ I

∼

=
1

2
Q
≈

8,2 ⊗ I
∼
⊗ I

∼

= Q
≈

8,2 ⊗ P
≈

(0)

The eighth-order tensor A∼∼∼∼
2,2,0,0 can thus be reduced to a fourth-order one Q

≈

8,2 element of S2 (K2), i.e.

Q
≈

8,2 = P
≈

(2) .. (I
∼

.. A∼∼∼∼
.. I

∼
) .. P

≈

(2) = P
≈

(2) ..

(
tr(2)12 (A∼∼∼∼

)

)
.. P

≈

(2),

but, unlike the previous situations, this tensor is not O(2)-irreducible and must therefore be redecomposed.
Using a procedure described in [13], and recalled in section ii, it can be demonstrated that

Q
≈

6,2 = H
≈

6,2 +
α6,2

2
P
≈

(2), with (H
≈

6,2, α6,2) ∈ K4 ×K0

with:
α6,2 = P

≈

(2) .... Q
≈

6,2, H
≈

6,2 = Q
≈

6,2 − α6,2

2
P
≈

(2),

hence, putting all the pieces together,

A∼∼∼∼
2,2,0,0 =

(
H
≈

6,2 +
α6,2

2
P
≈

(2)

)
⊗ P

≈

(0)

The ultimate expression is obtained by symmetrising the last one

A∼∼∼∼
(2200) = τ22 ⋆ A∼∼∼∼

2,2,0,0

in which
τ22 = (ς(e) + ς(35)(46) + ς(37)(48) + ς(15)(26) + ς(17)(28) + ς(15)(26)(37)(48))
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c) The space W3
4 As for the previous situations, the term A∼∼∼∼

(2220) ∈W3
3 will be treated in two stages. First the

harmonic term A∼∼∼∼
0,2,2,2 will be proceed, and then its expression symmetrised to obtained A∼∼∼∼

(2220). The harmonic

structure of A∼∼∼∼
0,2,2,2 is a little more complex because it contains two terms S∼∼∼

6,3 ∈ K6 and h
∼

6,3 ∈ K2. The insertion

of P
≈

(0) into the definition of A∼∼∼∼
0,2,2,2 allows to write

A∼∼∼∼
0,2,2,2 = A∼∼∼∼

8
◦ (P

≈

(0) ⊗ P
≈

(2) ⊗ P
≈

(2) ⊗ P
≈

(2)) =
1

2
A∼∼∼∼

8. ((I
∼
⊗ I

∼
)⊗ P

≈

(2) ⊗ P
≈

(2) ⊗ P
≈

(2))

=
1

2
I
∼
⊗
[(

P
≈

(2) .. (A∼∼∼∼
.. I

∼
) .. P

≈

(2)

)
.. P

≈

(2)

]

=
1

2
I
∼
⊗Q∼∼∼

8,3

The eighth-order tensor A∼∼∼∼
0,2,2,2 can thus be reduced to a sixth-order one Q∼∼∼

8,3 element of S3 (K2), i.e.

Q∼∼∼
8,3 = P

≈

(2) .. (A∼∼∼∼
.. I

∼
) .. P

≈

(2) = P
≈

(2) ..

(
tr12(A∼∼∼∼

)

)
.. P

≈

(2),

but this tensor is not O(2)-irreducible and must therefore be redecomposed. Using a procedure described in
[13], and recalled in section ii, it can be demonstrated that

Q∼∼∼
8,3 = S∼∼∼

6,3 + Φ∼∼∼∼
6,3 .. h

∼

6,3, with (S
≈

6,3,h
∼

6,3) ∈ K6 ×K2

It can be shown that
Φ∼∼∼∼

6,3 .. h
∼

6,3 =
1

3
τ3 ⋆

[
h
∼

6,3 ⊗ P
≈

(2)

]
. (B.7)

in which τ3 = (ς(e) + ς(13)(24) + ς(15)(26)). Once Φ∼∼∼∼
6,3 identified the converse formula are

h
∼

6,3 = tr(2)23 (Q∼∼∼
8,3), S∼∼∼

6,3 = Q∼∼∼
8,3 − Φ∼∼∼∼

6,3 .. h
∼

6,3, (B.8)

Hence, putting all the pieces together,

A∼∼∼∼
0,2,2,2 =

1

2
I
∼
⊗
(
S∼∼∼

6,3 + Φ∼∼∼∼
6,3 .. h

∼

6,3

)

The ultimate expression is obtained by symmetrising the last one

A∼∼∼∼
(2220) = τ4 ⋆ A∼∼∼∼

0,2,2,2

where τ4 is the symmetrisation operator introduced earlier.

c) The space W4
4 Unlike the other terms, A∼∼∼∼

(2222) ∈ W4
4 cannot be reduced to a lower order tensor by

contraction with P
≈

(0). It is minimal for this aspect, although this does not make it O(2)-irreducible. We remind
you that:

A∼∼∼∼
(2222) ≃ K8 ⊕K4 ⊕K0 (B.9)

Hence, from the harmonic structure of W4
4, we know that the harmonic parametrisation is given by three

harmonic tensors E
≈

8,4 ∈ K8, H
≈

8,4 ∈ K4 and α8,4 ∈ K0 such as

A∼∼∼∼
(2222) = E∼∼∼∼

8,4 + Φ∼∼∼∼∼∼

8,4 ....H
≈

8,4 + α8,4Θ∼∼∼∼
, with

(
E∼∼∼∼

8,4,H
≈

8,4, α8,4

)
∈ K8 ×K4 ×K0 (B.10)
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I. THE CGHD OF W4

where Φ∼∼∼∼∼∼

8,3 and Θ∼∼∼∼
are respectively a 12-th and a 8-th order tensor to be determined which represent, respectively,

embeddings from K4 and K0 into the tensor space S4(K2).
The same method as in subsection 3.3.3 is applied, it results that

Φ∼∼∼∼∼∼

8,4 ..
.
.H

≈

8,4 = τ2 ⋆
(
H
≈

8,4 ⊗ P
≈

2

)
=

1

2

[
P
≈

2 ⊗H
≈

8,4 +H
≈

8,4 ⊗ P
≈

2

]
, (B.11)

α8,4Θ∼∼∼∼
= τ ⋆

3

(
α8,4P

≈

2 ⊗ P
≈

2

)
=

α8,4

8

[
(P
≈

2 ⊗ P
≈

2) + ς(35)(46) ⋆ (P
≈

2 ⊗ P
≈

2) + ς(37)(48) ⋆ (P
≈

2 ⊗ P
≈

2)
]

(B.12)

where τ2 =
1

2
(ς(e) + ς(13)(24)(35)(48))) and τ ⋆

3 = 1

3
(ς(e) + ς(35)(46) + ς(37)(48)).

All this is summarised in the following proposition

Proposition i.1. The tensor A∼∼∼∼
admits the uniquely defined Clebsch-Gordan harmonic decomposition associated

to the family projectors
(
P
≈

(2),P
≈

(0)

)
:

A∼∼∼∼
= E∼∼∼∼

8,4 + τ2 ⋆
(
H
≈

8,4 ⊗ P
≈

2

)
+

1

2
τ4 ⋆

[
I
∼
⊗
(
S∼∼∼

6,3 +
1

3
τ3 ⋆

(
h
∼

6,3 ⊗ P
≈

(2)

))]
+ τ22 ⋆

[(
H
≈

6,2 +
α6,2

2
P
≈

(2)

)
⊗ P

≈

(0)

]

+
1

4
τ4 ⋆

[
h
∼

8,1 ⊗ I
∼
⊗ P

≈

(0)

]
+

1

4
α8,0P

≈

(0) ⊗ P
≈

(0) + α8,4τ ⋆

3 ⋆
(
P
≈

2 ⊗ P
≈

2

)
,

where I
∼

is the identity second order tensor, and with the following symmetrisers:

• τ2 =
1

2
(ς(e) + ς(13)(24)(35)(48)));

• τ22 = (ς(e) + ς(35)(46) + ς(37)(48) + ς(15)(26) + ς(17)(28) + ς(15)(26)(37)(48));

• τ3 = (ς(e) + ς(13)(24) + ς(15)(26));

• τ ⋆
3 = 1

3
(ς(e) + ς(35)(46) + ς(37)(48));

• τ4 = (ς(e) + ς(13)(24) + ς(15)(26)) + ς(17)(28));

We have the tensors, E∼∼∼∼
8,4 ∈ K8, S∼∼∼

8,3 ∈ K6, (H
≈

8,4,H
≈

8,2) ∈ (K4)2, (h
∼

8,3,h
∼

8,1) ∈ (K2)2 (α8,4, α8,2, α8,0) ∈ (K0)3.

Those elements are defined from A∼∼∼∼
as follows:

K0 K2 K4

α8,0 = tr412(A∼∼∼∼
)

h
∼

8,1 = P
≈

(2) .. (tr312(A∼∼∼∼
))

α8,2 = Q
≈

8,2 .... P
≈

(2) H
≈

8,2 = Q
≈

8,2 − α8,2

2
P
≈

(2)

h
∼

8,3 = tr223(Q∼∼∼
8,3)

α8,4 = 2 tr12(tr
3
23(A∼∼∼∼

(2222))) H
≈

8,4 = tr13(tr12(A∼∼∼∼
(2222) − α8,4Θ∼∼∼∼

))

K6 K8

S∼∼∼
8,3 = Q∼∼∼

8,3 − Φ∼∼∼∼
6,3 .. h

∼

8,3

E∼∼∼∼
8,4 = A∼∼∼∼

(2222) − Φ∼∼∼∼∼∼

8,4 ..H
≈

8,4 − α8,4Θ∼∼∼∼

where Q
≈

8,2 = P
≈

(2) .. (A∼∼∼
.. I
∼
) .. P

≈

(2). Q
≈

8,3 = (A∼∼∼∼
.. I
∼
)

6◦ (P
≈

(2) ⊗ P
≈

(2) ⊗ P
≈

(2)). The projectors P
≈

(2), P
≈

(0) are defined by

equation (2.11). All blocks A∼∼∼∼
p,q,r,s are defined by equation (B.4). Φ∼∼∼∼∼∼

6,4 .. H
≈

8,4 and Θ∼∼∼∼
are given equations (B.11)

and (B.12) in the appendix i.
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II. HARMONIC EMBEDDING

ii Harmonic embedding

Consider T ∈Wn where Wn is a space 2n-th order tensor. We have the isomorphism:

Wn ≃ Sn(K2)

The index symmetry group of T ∈Wn is given by:

G(T) = Sn ⊗ Z2.

Gen (G(T) = {(12), (13)(24), ..., (1 (2n− 1))(1 2n)} .
#G(Wn) = n!2n

Sn is the symmetric group between n elements and Z2 the cyclic group between 2 elements.
We look for an embedding of H ∈ K2k into Sn(K2), denoted by Π(H, Sn(K2)), or simply Π when the context

is clear. To construct such an embedding, we start by considering the 2nth order tensor V defined:

V = H⊗ (P
≈

2)⊗
q
, withV ∈ Vk,n ≃ K2k ⊗ Sq(S2(K2)) (B.13)

in which q = n−k

2
. The index symmetry group of V ∈ Vq is given by:

G(V) = S2k × (Sq ⊗D2).

and it contains (2k)!q!23 elements, i.e.
#G(V) = (2k)!q!23

It should be observed that generally G(V) is a not a subgroup of G(Wn). This is because the harmonic
tensor has index symmetries not present in Wn. But V can be viewed as a particular element of the space
Vk,n ≃ Sk(K2)⊗ Sq(S2(K2)), and this time G(Vk,n) < G(Wn).

The embedding operator we look for Π is the projection of V onto Sn(K2). It can be obtained using the
appropriate Reynolds projector, i.e. as the sum of the index permutations of G(Wn):

Π =
1

#G(Wn)

#G(Wn)∑

i=1

gi ∗V gi ∈ G(Wn) (B.14)

Since by construction G(Vk,n) is a subgroup of G(Wn), and since G(Vk,n) is non-trivial, the number of permu-
tations required can be reduced and a priori determined. Hence, by Lagrange Theorem,

Ck,n =
#G(Wn)

#G(Vk,n)
= 2n−k−3

n!

k!(n−k

2
)!

in which C indicates the number of left cosets of G(Vk,n) in G(Wn). It should be noted that the quotient set
G(Wn)/G(Vk,n) is, generically, not a group. The symmetrisation can hence be reduced to

Π =

#Ck,n∑

i=1

gi ∗V gi ∈ Ck,n (B.15)

The gi elements to be considered can be easily determined using a CAS such as Mathematica or GAP. It should
be noted that since G(Vk,n) < G(V), the number of elements to be taken into account in symmetrization can
be further reduced.

ii.1 Harmonic embedding of K2 ∈ S3(K2)

Consider T∼∼∼
∈ S3(K2), its harmonic parameterisation is realised by two harmonic tensors S∼∼∼

6,3 ∈ K6 and h
∼

6,3 ∈ K2

such as
T∼∼∼

= S∼∼∼
6,3 + Φ∼∼∼∼

6,3 .. h
∼

6,3,

in which Φ∼∼∼∼
6,3 ∈ S3(K2)⊗K2 is a 8th-order tensor to be determined.

The index symmetry group of W3 is
G(W3) = S3 ⊗ Z2.

a set of generators of which is given by:

Gen (G(W3)) = {(12), (13)(24), (15)(26)} .
which is a group of order 48. Using Mathematica, we can define this group as follows
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II. HARMONIC EMBEDDING

W3=PermutationGroup[{Cycles[{{1, 2}}], Cycles[{{1, 3}, {2, 4}}], Cycles[{{1, 5}, {2, 6}}]}];

As obvious the instruction Cycles[{{}}] indicates a permutation, and Cycles[{{1, 3},{2, 4}}] stands for
the operation (13)(24).

The embedding Φ∼∼∼∼
6,3 .. h

∼

6,3 is obtained by some symmetrisation τ of

V∼∼∼
= h

∼

6,3 ⊗ P
≈

(2)

The index symmetry group of V∼∼∼
is given by:

G(V) = Z2 ×D2.

and it contains 16 elements, i.e.
#G(V) = 16

Using Mathematica, we can define this group as follows

V13=PermutationGroup[{Cycles[{{1, 2}}], Cycles[{{3, 5}, {4, 6}}], Cycles[{{3, 4}}]}];

In this particular case G(V) is a subgroup of G(Wn), as such the left coset approach applies directly, and

C1,3 = 3

The three left cosets are computed as follows in Mathematica

ClasseS3 = Gather[GroupElements[W3], GroupElementQ[V13, PermutationProduct[InversePermutation[#1], #2]] &]

and the following cosert are obtained:

• first coset:

{Cycles[{}], Cycles[{{1, 2}}], Cycles[{{3, 4}}], Cycles[{{5, 6}}],
Cycles[{{3, 5, 4, 6}}], Cycles[{{3, 6, 4, 5}}], Cycles[{{1, 2}, {3, 4}}],
Cycles[{{1, 2}, {5, 6}}], Cycles[{{1, 2}, {3, 5, 4, 6}}], Cycles[{{1, 2}, {3, 6, 4, 5}}],
Cycles[{{3, 4}, {5, 6}}], Cycles[{{3, 5}, {4, 6}}], Cycles[{{3, 6}, {4, 5}}],
Cycles[{{1, 2}, {3, 4}, {5, 6}}], Cycles[{{1, 2}, {3, 5}, {4, 6}}],
Cycles[{{1, 2}, {3, 6}, {4, 5}}]}

• second coset:

{Cycles[{{1, 3, 2, 4}}], Cycles[{{1, 4, 2, 3}}], Cycles[{{1, 5, 3, 2, 6, 4}}],
Cycles[{{1, 5, 4, 2, 6, 3}}], Cycles[{{1, 6, 3, 2, 5, 4}}], Cycles[{{1, 6, 4, 2, 5, 3}}],
Cycles[{{1, 3}, {2, 4}}], Cycles[{{1, 4}, {2, 3}}], Cycles[{{1, 5, 3}, {2, 6, 4}}],
Cycles[{{1, 5, 4}, {2, 6, 3}}], Cycles[{{1, 6, 3}, {2, 5, 4}}], Cycles[{{1, 6, 4}, {2, 5, 3}}],
Cycles[{{1, 3, 2, 4}, {5, 6}}], Cycles[{{1, 4, 2, 3}, {5, 6}}], Cycles[{{1, 3}, {2, 4}, {5, 6}}],
Cycles[{{1, 4}, {2, 3}, {5, 6}}]}

• third coset:

{Cycles[{{1, 5, 2, 6}}], Cycles[{{1, 6, 2, 5}}], Cycles[{{1, 3, 5, 2, 4, 6}}],
Cycles[{{1, 3, 6, 2, 4, 5}}], Cycles[{{1, 4, 5, 2, 3, 6}}], Cycles[{{1, 4, 6, 2, 3, 5}}],
Cycles[{{1, 5}, {2, 6}}], Cycles[{{1, 6}, {2, 5}}], Cycles[{{1, 3, 5}, {2, 4, 6}}],
Cycles[{{1, 3, 6}, {2, 4, 5}}], Cycles[{{1, 4, 5}, {2, 3, 6}}], Cycles[{{1, 4, 6}, {2, 3, 5}}],
Cycles[{{1, 5, 2, 6}, {3, 4}}], Cycles[{{1, 6, 2, 5}, {3, 4}}], Cycles[{{1, 5}, {2, 6}, {3, 4}}],
Cycles[{{1, 6}, {2, 5}, {3, 4}}]}

The symmetrisation operator is obtained by choosing a transformation in each coset. Since all the transfor-
mations in each coset produce the same effect, let’s choose the simplest elements:

{(), (13)(24), (15)(26)}
At the end, the following formula is obtained

Φ∼∼∼∼
6,3 .. h

∼

6,3 = τ3 ⋆
[
h
∼

6,3 ⊗ P
≈

(2)

]
.

with τ3 =
1

3
(ς(e) + ς(13)(24) + ς(15)(26)).

To sum up, the determination of the embedding amounts to the search for the symmetrisation of V such
that τ ⋆ V ∈Wn. The zero trace conditions are satisfied by construction.
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II. HARMONIC EMBEDDING

ii.2 Harmonic embedding of K4 ∈ S4(K2)

Consider T∼∼∼∼
∈ S4(K2), its harmonic parameterisation is realised by we know that the harmonic parameterisation

is given by three harmonic tensors E
≈

8,4 ∈ K8, H
≈

8,4 ∈ K4 and α8,4 ∈ K0 such as

T∼∼∼∼
= E∼∼∼∼

8,4 + Φ∼∼∼∼∼∼

8,4 ....H
≈

8,4 + α8,4Θ∼∼∼∼
(B.16)

where Φ∼∼∼∼∼∼

8,4 and Θ∼∼∼∼
are respectively a 12-th and a 8-th order tensor to be determined which represent, respectively,

embeddings from K4 and K0 into the tensor space S4(K2). We will consider here the term Φ∼∼∼∼∼∼

8,4 ....H
≈

8,4.

The index symmetry group of W4 is
G(W4) = S3 ⊗ Z2.

a set of generators of which is:

Gen (G(W4)) = {(12), (13)(24), (15)(26)} .

it is a group of order 384. Using Mathematica, this group is set as follows

W4=PermutationGroup[{Cycles[{{1, 2}}], Cycles[{{1, 3}, {2, 4}}], Cycles[{{1, 5}, {2, 6}}],
Cycles[{{1, 7}, {2, 8}}]}];

The embedding Φ∼∼∼∼∼∼

8,4 ....H
≈

8,4 is obtained by some symmetrisation τ of

V∼∼∼∼
= H

≈

8,4 ⊗ P
≈

(2)

The index symmetry group of V∼∼∼
is given by:

G(V∼∼∼∼
) = S4 ×D2.

and it contains 192 elements, i.e.
#G(V∼∼∼∼

) = 192

Using Mathematica, we can define this group as follows

V24 = PermutationGroup[{Cycles[{{1, 2}}], Cycles[{{1, 3}}],
Cycles[{{2, 4}}],
Cycles[{{5, 7}, {6, 8}}], Cycles[{{5, 6}}]}]

In this case G(V∼∼∼∼
) is not a subgroup of G(Wn), and the left coset approach can not be directly applied. Let

us note anyway that
#G(W4)

#G(V∼∼∼∼
)

= 2

giving rise to the hope that symmetrisation can be reduced to 2 permutations.
To circumvent this problem, V∼∼∼∼

can always be viewed as a particular element of the space V2,4 ≃ S2(K2) ⊗

S2(K2), and this time G(V2,4) < G(Wn). The left coset approach applies , and

C2,4 = 6

The sixth left cosets are computed as follows in Mathematica

ClasseS6 = Gather[GroupElements[W4], GroupElementQ[V24, PermutationProduct[InversePermutation[#1], #2]] &]
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II. HARMONIC EMBEDDING

Since each coset contains 64 elements, they will not be reproduced here. Following the set approach as in the
previous subsection the following set of representative transformation can be considered

{(), (35)(46), (37)(48), (15)(26), (17)(28), (15)(26)(37)(48)}

Meaning that

G(W4) = (e)H + (35)(46)H + (37)(48)H + (15)(26)H + (17)(28)H + (15)(26)(37)(48)H

with H = G(V2,4).

Φ∼∼∼∼∼∼

8,4 ....H
≈

8,4 =
1

6

(
V∼∼∼∼
+ (35)(46) ⋆ V∼∼∼∼

+ (37)(48) ⋆ V∼∼∼∼
+ (15)(26) ⋆ V∼∼∼∼

+ (17)(28) ⋆ V∼∼∼∼
+ (15)(26)(37)(48) ⋆ V∼∼∼∼

)

Since G(V∼∼∼∼
) > G(V2,4), the number of terms on the symmetrisation can be reduced.

It can be noticed that
(15)(26)(37)(48) ⋆ V∼∼∼∼

= P
≈

(2) ⊗H
≈

8,4,

it results that the index symmetries of (15)(26)(37)(48)⋆V∼∼∼∼
are complementary to those of V∼∼∼∼

. Same observation

can be made with respect to the pairs (35)(46) ⋆ V∼∼∼∼
, (17)(28) ⋆ V∼∼∼∼

and (37)(48) ⋆ V∼∼∼∼
, (15)(26) ⋆ V∼∼∼∼

, meaning that

(
V∼∼∼∼
+ (15)(26)(37)(48) ⋆ V∼∼∼∼

)
=

(
(35)(46) ⋆ V∼∼∼∼

+ (17)(28) ⋆ V∼∼∼∼

)
=

(
(37)(48) ⋆ V∼∼∼∼

+ (15)(26) ⋆ V∼∼∼∼

)

At the end, the following formula is obtained

Φ∼∼∼∼∼∼

8,4 ....H
≈

8,4 =
1

2
((e) + (15)(26)(37)(48)) ⋆ V∼∼∼∼

= τ2 ⋆
(
H
≈

8,4 ⊗ P
≈

(2)

)
(B.17)

with τ2 =
1

2
(ς(e) + ς(15)(26)(37)(48)).

When you look at the final result, you think you could have guessed it beforehand. However, the proposed
method is applicable to more general situations and can lead to the development of an algorithm that can be
automated.
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Appendix C

The 4 solutions of equation (5.51)



κ1 = −
B

4A
+

1

2

√√√√√−
4 3
√

2
3

3
√√

81B4 + 768A3 − 9B2
+

3
√√

81B4 + 768A3 − 9B2

3√232/3A
+

B2

4A2
−

1

2

√√√√√√√√
4 3
√

2
3

3
√√

81B4 + 768A3 − 9B2
+

B2

2A2
−

3
√√

81B4 + 768A3 − 9B2

3√232/3A
−

B3

4A3

√
−

4 3
√

2
3

3
√√

81B4+768A3−9B2
+

3
√√

81B4+768A3−9B2

3√232/3A
+ B2

4A2

,

κ2 = −
B

4A
+

1

2

√√√√√−
4 3
√

2
3

3
√√

81B4 + 768A3 − 9B2
+

3
√√

81B4 + 768A3 − 9B2

3√232/3A
+

B2

4A2
+

1

2

√√√√√√√√
4 3
√

2
3

3
√√

81B4 + 768A3 − 9B2
+

B2

2A2
−

3
√√

81B4 + 768A3 − 9B2

3√232/3A
−

B3

4A3

√
−

4 3
√

2
3

3
√√

81B4+768A3−9B2
+

3
√√

81B4+768A3−9B2

3√232/3A
+ B2

4A2

,

κ3 = −
B

4A
−

1

2

√√√√√−
4 3
√

2
3

3
√√

81B4 + 768A3 − 9B2
+

3
√√

81B4 + 768A3 − 9B2

3√232/3A
+

B2

4A2
−

1

2

√√√√√√√√
4 3
√

2
3

3
√√

81B4 + 768A3 − 9B2
+

B2

2A2
−

3
√√

81B4 + 768A3 − 9B2

3√232/3A
+

B3

4A3

√
−

4 3
√

2
3

3
√√

81B4+768A3−9B2
+

3
√√

81B4+768A3−9B2

3√232/3A
+ B2

4A2

,

κ4 = −
B

4A
−

1

2

√√√√√−
4 3
√

2
3

3
√√

81B4 + 768A3 − 9B2
+

3
√√

81B4 + 768A3 − 9B2

3√232/3A
+

B2

4A2
+

1

2

√√√√√√√√
4 3
√

2
3

3
√√

81B4 + 768A3 − 9B2
+

B2

2A2
−

3
√√

81B4 + 768A3 − 9B2

3√232/3A
+

B3

4A3

√
−

4 3
√

2
3

3
√√

81B4+768A3−9B2
+

3
√√

81B4+768A3−9B2

3√232/3A
+ B2

4A2
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