
HAL Id: tel-04729785
https://theses.hal.science/tel-04729785v1

Submitted on 10 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Language Models towards Conditional Generative
Modelsof Proteins Sequences
Barthélémy Meynard-Piganeau Meynard

To cite this version:
Barthélémy Meynard-Piganeau Meynard. Language Models towards Conditional Generative Modelsof
Proteins Sequences. Bioinformatics [q-bio.QM]. Sorbonne Université; Politecnico di Torino, 2024.
English. �NNT : 2024SORUS195�. �tel-04729785�

https://theses.hal.science/tel-04729785v1
https://hal.archives-ouvertes.fr


Language Models towards Conditional Generative
Models of Proteins Sequences

Barthelemy Meynard-Piganeau

Sous la direction de Martin Weigt et Riccardo Zecchina

Jury:
Directeur du jury: M. Elodie Laine
Rapporteurs: Mme. Armita Nourmohammad, M. David Gfeller
Examinateurs: M. Sergei Grudinin, M. David Bikard
Directeurs: M. Martin Weigt, M. Riccardo Zecchina
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Abstract

English This thesis explores the intersection of artificial intelligence (AI) and biol-
ogy, focusing on how generative models can innovate in protein sequence design.
Our research unfolds in three distinct yet interconnected stages, each building upon
the insights of the previous to enhance the model’s applicability and performance in
protein engineering.

We begin by examining what makes a generative model effective for protein se-
quences. In our first study, ”Interpretable Pairwise Distillations for Generative Pro-
tein Sequence Models,” we compare complex neural network models to simpler,
pairwise distribution models. This comparison highlights that deep learning strat-
egy mainly models second-order interactions, highlighting their fundamental role
in modeling protein families.

In a second part, we try to expand this principle of using second-order interaction
to inverse folding. We explore structure conditioning in ”Uncovering Sequence Di-
versity from a Known Protein Structure”. Here, we present InvMSAFold, a method
that produces diverse protein sequences designed to fold into a specific structure.
This approach tries to combine two different traditions of protein modeling: the
MSA-based models that try to capture the entire fitness landscape, and the inverse
folding types of model that focus on recovering one specific sequence. This is a first
step towards the possibility of conditioning the fitness landscape by considering the
protein’s final structure in the design process, enabling the generation of sequences
that are not only diverse but also maintain their intended structural integrity.

Finally, we delve into sequence conditioning with ”Generating Interacting Protein
Sequences using Domain-to-Domain Translation.” This study introduces a novel ap-
proach to generate protein sequences that can interact with specific other proteins.
By treating this as a translation problem, similar to methods used in language pro-
cessing, we create sequences with intended functionalities. Furthermore, we ad-
dress the critical challenge of T-cell receptor (TCR) and epitope interaction predic-
tion in ”TULIP—a Transformer based Unsupervised Language model for Interacting
Peptides and T-cell receptors.” This study introduces an unsupervised learning ap-
proach to accurately predict TCR-epitope bindings, overcoming limitations in data
quality and training bias inherent in previous models. These advancements un-
derline the potential of sequence conditioning in creating functionally specific and
interaction-aware protein designs.

Français Nous commençons par examiner ce qui rend un modèle génératif ef-
ficace pour les séquences de protéines. Dans notre première étude, ”Interpretable
Pairwise Distillations for Generative Protein Sequence Models” nous comparons les
modèles de réseaux de neurones complexes à des modèles de distributions pair à pair
plus simples. Cette comparaison révèle que les modèles plus simples peuvent égaler
de près la performance des modèles plus complexes dans la prédiction de l’effet des



mutations sur les protéines. Cette découverte remet en question l’hypothèse selon
laquelle les modèles plus complexes sont toujours meilleurs, préparant le terrain
pour de plus amples explorations.

Dans une seconde partie, nous nous penchons sur le conditionnement de séquence
avec ”Generating Interacting Protein Sequences using Domain-to-Domain Transla-
tion” Cette étude introduit une approche novatrice pour générer des séquences de
protéines qui peuvent interagir avec d’autres protéines spécifiques. En traitant cela
comme un problème de traduction, similaire aux méthodes utilisées dans le traite-
ment du langage naturel, nous créons des séquences avec des fonctionnalités inten-
tionnelles. De plus, nous abordons le défi crucial de la prédiction de l’interaction
entre le récepteur des cellules T (TCR) et l’épitope dans ”TULIP—a Transformer
based Unsupervised Language model for Interacting Peptides and T-cell receptors”
Cette étude introduit une approche d’apprentissage non supervisée pour prédire
avec précision les liaisons TCR-épitope, surmontant les limitations de qualité des
données et les biais de formation inhérents aux modèles précédents. Ces avancées
soulignent le potentiel du conditionnement de séquence dans la création de designs
de protéines fonctionnellement spécifiques et conscients de l’interaction.

Enfin, nous explorons le conditionnement de structure dans ”Uncovering Se-
quence Diversity from a Known Protein Structure”. Ici, nous présentons InvM-
SAFold, une méthode qui produit des séquences de protéines diverses conçues pour
se plier dans une structure spécifique. Cette approche met en lumière l’importance
de considérer la structure finale de la protéine dans le processus de conception, per-
mettant la génération de séquences qui sont non seulement diverses mais maintien-
nent également leur intégrité structurelle prévue.
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Chapter 1

Introduction

1.1 Overview of Protein Engineering and Design

1.1.1 Introduction to Proteins and Their Importance in Biology

Proteins are fundamental components of all living organisms, serving as the build-
ing blocks of cells and playing critical roles in virtually every biological process.
Composed of long chains of amino acids, proteins fold into specific three-dimensional
structures that determine their function. These versatile molecules are involved in
a vast array of biological functions, including catalyzing metabolic reactions as en-
zymes, providing structural support to cells and tissues, mediating cell signaling
and communication, and defending the organism against pathogens. The diversity
and complexity of proteins underpin the biological mechanisms that sustain life,
making them a central subject of study in biology and a key target for therapeutic
and biotechnological applications.

The Synthesis of Proteins: The Role of DNA and RNA The synthesis of proteins is a com-
plex process. The DNA encodes the genetic information to produce each protein.
This process can be divided into two main stages: transcription and translation, in-
volving the synthesis of an intermediary molecule, the RNA.

Transcription (From DNA to RNA): DNA contains the instructions for protein
synthesis. During transcription, a segment of DNA is copied into messenger RNA
(mRNA) by the RNA polymerase. This mRNA serves as a portable copy of the genetic
instructions.

Translation (From RNA to Protein): The mRNA is then processed by the ribosome,
the cell’s protein factory. Here, transfer RNA (tRNA) molecules bring amino acids
to the ribosome, where they are added to the growing polypeptide chain according
to the sequence of the mRNA. The specific order of amino acids, determined by the
mRNA template, leads to the protein’s unique structure and function.

Proteins as amino acids chains Proteins are built from 20 different amino acids, each
defined by a unique side chain attached to a core structure. This core consists of
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Figure 1.1: Representation of the link between two amino acids. The repetition of this link between
several amino acids forms the protein macromolecule. Figure from [1]

a central carbon atom bonded to a hydrogen atom, an amino group (NH2), and a
carboxyl group (COOH). The variety in amino acids comes from their distinct side
chains, known as R-groups, which are also attached to the central carbon. This di-
versity allows for a wide range of proteins that perform various functions in living
organisms.

The assembly of proteins occurs through the formation of peptide bonds, linking
amino acids together. This linkage results from the carboxyl group of one amino acid
condensing with the amino group of another, thereby creating a continuous chain.
The outcome is a polypeptide chain with distinct amino and carboxyl termini. This
chain’s backbone is composed of the Cα atom, an NH group, and a C’=O carbonyl
group, with peptide bonds connecting the carbonyl carbon (C’) of one amino acid to
the nitrogen of the next (see 1.1).

Classification of Amino Acids Based on the properties of their side chains (see Fig. 1.2),
amino acids can be categorized into groups such as hydrophobic, hydrophilic (po-
lar), and charged. Hydrophobic amino acids tend to be found in the interior of
proteins, stabilizing the structure, whereas hydrophilic and charged amino acids
are likely to be located on the surface, interacting with the aqueous environment
or other molecules. Some amino acids, like phenylalanine or tryptophan, have aro-
matic ring structures that can interact with each other. These aromatic side chains
can be bulky or more compact depending on their structure. Other amino acids, like
histidine and leucine, have large, bulky side chains that influence protein folding
and interactions. In contrast, glycine and alanine have smaller side chains, allowing
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Figure 1.2: Classification of amino acids according to their chemical properties, from https://en.

wikipedia.org/wiki/Amino_acid
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for tighter packing within the protein.

Protein Structure and Function The function of a protein is intricately linked to its
structure, which can be described at four levels:

The primary structure is the linear sequence of amino acids. The secondary
structure is composed of localized folding patterns such as α-helices and β-sheets,
formed by hydrogen bonding. The tertiary structure is the three-dimensional con-
formation of a single polypeptide chain, determined by various interactions among
amino acids. Finally, the quaternary structure is the assembly of multiple polypep-
tide chains into a functional protein complex.

Importance of Protein-Protein Interactions with some examples Protein-protein interac-
tions are pivotal in nearly every process within a biological cell, facilitating the for-
mation of complex signaling networks and structural assemblies. These interactions
are essential for the cell to carry out its functions properly, including cell signaling,
immune responses, and metabolic control.

Signal Transduction: This process involves the transmission of chemical or phys-
ical signals from a cell’s exterior to its interior, leading to a cellular response. These
signaling pathways are achieved by a chain of proteins phosphorylating each other.
They control cell growth, division, and death, playing critical roles in maintaining
cellular health and responding to environmental changes.

Immune Response: Protein-protein interactions are crucial in the immune sys-
tem, where antibodies and T-Cell Receptor (TCR) bind to specific piece of a pathogen
protein called antigens, and various immune cells communicate to coordinate an im-
mune response. These interactions help the body recognize and respond to pathogens
effectively.

Metabolic Pathways: Enzymes, which are proteins, are sometimes assembled in
complexes to carry out metabolic processes [2]. The interaction between these en-
zymes allows for the regulation of metabolic pathways, ensuring that essential sub-
stances are synthesized and broken down as needed.

Regulatory Complexes: Proteins often regulate the activity of other proteins through
interactions that can either activate or inhibit their functions. This regulation is cru-
cial for controlling the cell cycle, gene expression, and protein degradation, among
other processes.

Understanding protein-protein interactions is therefore essential for deciphering
the complex web of cellular processes.

1.1.2 Historical Perspective on Protein Engineering

Proteins orchestrate a vast array of biological functions critical to life. Their func-
tional diversity, intricately encoded within their amino acid sequences, renders pro-
teins indispensable for various processes in living organisms. The goal of protein
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design is to engineer novel proteins, aiming to either enhance existing functionali-
ties or introduce entirely new capabilities.

The vastness of the potential protein design space, however, presents an imme-
diate challenge. Given that the number of possible amino acid sequences far ex-
ceeds the number of atoms in the universe (for example, for a protein of 100 amino
acids we get 20100 possibilities), identifying sequences that have desired functions
becomes a needle-in-a-haystack problem. This immense design space is sparsely
populated with functionally relevant sequences, making the search for efficacious
proteins highly non-trivial. Indeed the mapping from this space to its functional-
ity, known as the ’fitness landscape’, is unknown and hard to model. The quest to
navigate and model this landscape necessitates strategies that effectively narrow the
search to a more manageable subset of the vast possibilities.

Historically, approaches to protein design have spanned from rational design,
leveraging deep insights into protein structure and function, to experimental meth-
ods such as directed evolution and combinatorial libraries, which explore a wider
array of variants. The development of biophysics-based computational models has
further augmented our capacity to predict protein structure, folding, and interac-
tions, marking a significant advancement in the computational design domain.

Rational Design Minimal design was the first attempt to design proteins. It utilizes
straightforward patterns of hydrophobic and polar residues to influence the folding
and assembly of proteins in water, aiming to create basic protein-like structures [3].

As the field matured, it shifted towards more sophisticated rational design strate-
gies. Rational design in protein engineering combines a deep understanding of
protein structure and function with sophisticated computational and experimen-
tal methods. This approach leverages high-resolution structural data, such as X-
ray crystallography or NMR spectroscopy, to identify and modify key residues. It
builds on minimal design strategies that use simple chemical principles for protein
folding, enhancing specificity and functionality through detailed biochemical and
bioinformatics insights. While rational design has significantly advanced the field
[3], enabling the creation of enzymes with novel activities [4], and the introduction
of metal-binding sites into protein structures [5], it faces challenges. These include
the complexity of accurately predicting the effects of sequence modifications and
the potential evolutionary bias in consensus approaches. Despite these limitations,
rational design has been instrumental in creating functional proteins that bridge nat-
ural protein architectures and unexplored ”dark matter” of protein structure space,
offering a powerful toolkit for expanding the functional repertoire of proteins.

Direct Evolution Directed evolution, pioneered by Frances H. Arnold [6], circum-
vents the need for detailed structural knowledge by mimicking the process of natu-
ral selection in the laboratory. This technique involves generating a library of protein
variants via mutagenesis, subjecting them to a selection process that favors the de-
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sired activity, and iterating this process to evolve proteins with enhanced properties.
Directed evolution has played a crucial role in developing proteins with new func-
tions, such as enzymes capable of catalyzing reactions not found in nature [7]. This
approach’s success lies in its ability to explore the sequence spaces around a starting
point. Indeed the improvement needs to be local, making it particularly efficient for
optimization. It can however be labor-intensive and requires efficient methods for
screening large numbers of variants.

Computational Design in the Pre Deep Learning Era A variety of computational methods
were instrumental in pioneering the field, and despite the rise of new deep learning
approaches, they remain heavily used. These tools addressed various aspects of the
design process.

Rosetta stands out for its comprehensive suite of algorithms tailored for protein
design. [8–10] It facilitates the design of novel protein structures, interfaces, and
functions by employing an all-atom energy function and sophisticated sampling
methods. RosettaDesign [11], a component of Rosetta, allows researchers to redesign
protein cores and surfaces, enabling the creation of proteins with new functions or
improved stability. Its ability to model protein-protein interactions through Roset-
taDock [12] has also been crucial for designing synthetic biological systems.

FoldX [13, 14] was developed as a force field for predicting the effect of mutations
on protein stability and protein-protein interaction affinities. Its fast and quantita-
tive assessments made it a valuable tool for protein engineering, where predicting
the impacts of amino acid substitutions is crucial for designing proteins with desired
properties. FoldX has been applied to improve enzyme catalysis or design protein-
protein interactions.

1.2 Generative Models: A Machine Learning Perspective

Generative modeling has evolved significantly since the 1980s, with applications
ranging from image synthesis to drug discovery. Central to generative models is the
concept of creating a probability distribution over the data space that mimics the
training data distribution. Early models like energy-based models faced scalabil-
ity issues with complex data, but recent advancements in deep learning and data
availability have led to breakthroughs in efficiency. Additionally, self-supervised
learning, closely related to generative modeling, focuses on learning representations
for unsupervised downstream tasks, enhancing the versatility of generative models.
”representation” refers to the way in which data is encoded by a model to capture
essential features that are useful for making predictions or decisions. It means en-
coding data in different directions to capture diverse and higher-level features from
the data, enabling them to discern more abstract patterns and relationships.
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Figure 1.3: Representation of the graph underlying the energy function of the Boltzmann machine
and the Restricted Boltzmann Machine. A specific unit of σ is either hidden or visible, represented
by the σh and σv in the figures.

1.2.1 Energy Based Models

Energy-based models (EBMs) utilize an energy function E(x) : X→ R to map input
data x from the data space X to a real number, associating low energy values with
realistic data points and high values with unrealistic ones. This approach is formal-
ized by expressing any probability density function p(x) as a function of the energy
of x, given by the equation:

p(x) =
e−E(x)∫

x̃∈X e−E(x̃)
.

EBMs offer several advantages, such as simplicity in training, feature sharing which
minimizes parameters, and elimination of assumptions about the data distribution.
Despite their appeal, scaling EBMs to high-dimensional data remains challenging,
although recent developments have shown promise. A notable challenge in EBMs is
optimization, particularly due to the intractable nature of the equation’s denomina-
tor.

The Boltzmann Machine (BM) and its variant, the Restricted Boltzmann Machine
(RBM), are cornerstone models in statistical learning and generative modeling. Both
are energy-based models that learn to represent complex data distributions through
a network of units (nodes) that represent stochastic variables. These models define a
probability distribution over binary vectors of fixed dimensions, making them pow-
erful tools for understanding and generating data.

Boltzmann Machine (BM)

A Boltzmann Machine [15] is a type of energy-based model, based on a fully con-
nected graph (see Fig. 1.3 .a). The energy of a state σ = (σ1, ...,σN ) ∈ {±1}N in a BM
is defined by the equation:

E(σ ) = −
∑
i<j

Jij(σi ,σj)−
∑
i

hi(σi),
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where Jij represents the weight of the connection between units i and j, σi is the
state of unit i, and hi is the bias term for unit i. σi can either be a visible or a hidden
variable. This formulation allows for a broad range of applications in learning and
pattern recognition.

The probability of a configuration σ is given by the Boltzmann distribution:

p(σ ) =
e−E(σ )

Z
,

where Z is the partition function, a normalization term that is the sum of e−E(σ ) over
all possible states σ . The fully connected nature of BMs makes them very expressive
but also computationally intensive, especially due to the difficulty in computing Z,
and the need for sampling to approximate the gradients during training as explained
later 1.2.1.

Restricted Boltzmann Machine (RBM)

The Restricted Boltzmann Machine [16] modifies the structure of the BM by dividing
the units into two layers (see Fig. 1.3.b): a visible layer that represents observed data
and a hidden layer that captures dependencies between observed variables. Cru-
cially, units within the same layer are not connected. This restriction significantly
reduces the computational complexity of the model and allows for more efficient
training algorithms. The energy of a state in an RBM is defined as:

E(σv,σh) = −bT σv − cT σh − σT
v Wσh,

where σh and σv represent the state of the hidden units and visible units. The vector
b is the bias for the visible layer. It influences the energy level of the system based
on the state of the visible units, effectively acting as an external field that biases
the probability of certain states of the visible units. The vector c is the bias for
the hidden layer. Finally W is the weight matrix between the visible and hidden
layers. It encodes the strength and type (excitatory or inhibitory) of the interactions
between visible and hidden units.

Training Boltzmann Machines

Training both BMs and RBMs involves adjusting the model parameters to maximize
the likelihood of the observed data. This process requires estimating the gradient
of the log-likelihood with respect to the parameters. However, exact computation is
infeasible due to the partition function Z, leading to the adoption of approximation
methods.

Monte Carlo methods, specifically Markov Chain Monte Carlo (MCMC), are used
to sample from the model’s distribution to estimate gradients. For RBMs, Gibbs
sampling is particularly efficient due to the bipartite structure. The conditional in-
dependence of a type of node given the other one allows for parallel updating of all
hidden units given visible units and vice versa.
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A workaround involves using Contrastive Divergence (CD) [17], focusing on de-
creasing the energy of real data points while increasing it for samples from the
model’s energy distribution. The process leverages the gradient of the negative log-
likelihood loss, approximated as:

∇θL = Eσ+∼pd [∇θEθ(σ+)]−Eσ−∼pθ [∇θEθ(σ−)],

where pd is the training data and σ− is a sample generated through Markov Chain
Monte Carlo (MCMC) processes where the chains are initiated from the training data
and run for a small number of steps.

Persistent Contrastive Divergence (PCD) [18] enhances the CD method by main-
taining a set of Markov chains that are updated continuously across training itera-
tions, rather than restarting from the training data at each step. Unlike CD, which
uses short chains starting anew from training data at each iteration, PCD’s persis-
tently updated chains evolve over time, exploring the model’s distribution space
more thoroughly. This persistent updating allows the chains to more closely ap-
proximate the model’s equilibrium distribution, leading to improved accuracy in
gradient estimates for model parameters.

1.2.2 Variational Auto-Encoders

Variational Autoencoders (VAEs) [19] are a class of generative models that lever-
age principles from deep learning and Bayesian inference to model complex data
distributions. VAEs are particularly notable for their ability to learn latent repre-
sentations of input data, typically of smaller dimensions, enabling them to generate
new data points that resemble the original dataset. The framework of VAEs provides
a robust approach to unsupervised learning, making them suitable for a wide range
of applications, including image generation, anomaly detection, and more.

Unlike traditional autoencoders that directly learn the encoding and decoding
mappings, VAEs introduce a probabilistic twist: they model the encoding as a distri-
bution over the latent space. This approach allows VAEs to capture the underlying
probability distribution of the data, and thus to sample new data.

A VAE consists of two main components: the encoder (or recognition model) and
the decoder (or generative model), as shown in Fig. 1.4. The encoder maps input
data x to a latent representation z through a distribution qφ(z|x), where φ denotes
the parameters of the encoder. The decoder then maps this latent representation
back to the data space, attempting to reconstruct the input from the latent code via
the distribution pθ(x|z), with θ representing the parameters of the decoder.

The objective function of a VAE, derived from the variational lower bound (or
evidence lower bound, ELBO), is designed to maximize the likelihood of the data
while regularizing the latent space. The ELBO [20] can be formulated as:

L(φ,θ;x) = Eqφ(z|x)[logpθ(x|z)]−DKL(qφ(z|x)∥p(z)),

where DKL denotes the Kullback-Leibler divergence, a measure of how one proba-
bility distribution diverges from a second, expected distribution. The first term of
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Figure 1.4: Variational Auto Encoder map the input data to a probability distribution in the latent
space and then try to reconstruct the original datapoint. Figure from https://en.wikipedia.org/

wiki/Variational_autoencoder

the ELBO encourages the reconstructed data to be as close as possible to the origi-
nal data, while the second term regularizes the encoder by penalizing deviations of
the latent code distribution from a prior distribution p(z), typically assumed to be a
standard factorized Gaussian distribution.

Training a VAE involves optimizing the ELBO with respect to the parameters of
the encoder and decoder, usually achieved via stochastic gradient descent. The op-
timization seeks to find a balance between fidelity in data reconstruction and regu-
larization of the latent space. An important aspect of VAE training is the ”reparam-
eterization trick”, which allows gradients to flow through the stochastic sampling of
the latent variables, enabling end-to-end training of the model. This trick involves
sampling ϵ from a standard normal distribution and computing z = µ+σ⊙ϵ, where µ
and σ are the mean and standard deviation of the latent distribution qφ(z|x), making
the sampling process differentiable.

Once trained, a VAE can generate new data samples by drawing samples from the
prior distribution over the latent space p(z) and passing these samples through the
decoder. This is enabled by the second term in the ELBO, which forces during train-
ing the encoder to encode the data points in a Gaussian latent space. This process
leverages the generative capacity of the model to produce data points that mimic the
distribution of the original dataset. The quality and diversity of the generated sam-
ples are directly influenced by how well the VAE has learned the underlying data
distribution and the regularity of the latent space.

1.2.3 Diffusion Models

Alternatives like score matching and denoising diffusion probabilistic models have
been developed to bypass the slow training times of traditional EBMs. Score match-
ing, for instance, minimizes the difference between the gradients of the data and
the model’s log-density functions [21]. This score-matching strategy has inspired
denoising models that have shown impressive results lately. Denoising diffusion
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Figure 1.5: Noising and denoising process at the core of Diffusion models. Images from https:

//cvpr2022-tutorial-diffusion-models.github.io/

models incrementally add and then reverse noise to data (see Fig. 1.9), simulating a
generative process that can be optimized for better sample generation [22, 23].

Diffusion models are a class of generative models that simulate the gradual pro-
cess of adding noise to data, followed by a learned reverse process that reconstructs
the original data from the noisy version. This process can be described by a Markov
chain that incrementally adds Gaussian noise over a series of steps, thereby trans-
forming the original data distribution into a Gaussian distribution. The forward
diffusion process is defined as:

q(xt |xt−1) =N (xt;
√

1− βtxt−1,βtI),

where xt represents the data at time step t, βt is a variance schedule controlling
the noise level, and N denotes the normal distribution. The reverse process aims
to learn the distribution of the original data x0 given the noisy data xt, modeled by
pθ(xt−1|xt), and is trained by minimizing a variant of the ELBO. This training encour-
ages the model to accurately reconstruct the original data from its noisy versions.

A crucial insight into diffusion models is their ability to transform complex, multi-
modal data distributions into a simple, tractable Gaussian distribution, from which
it becomes easier to sample. The reverse process effectively learns to denoise, captur-
ing the intricate structure of the data distribution as it incrementally removes noise.
This method allows diffusion models to generate high-quality samples that closely
resemble the original data distribution, making them highly effective for tasks such
as image generation [24].

1.2.4 Language Models and Autoregressive modeling

Language models and autoregressive models represent two pivotal facets of modern
generative models, especially in the domain of natural language processing (NLP).
These models have revolutionized the way machines understand, generate, and in-
teract with human language, offering unprecedented capabilities in text generation,
translation, summarization, and more.
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Language Modeling Task The core objective of a language model is to predict the
probability of a sequence of words (called tokens) in a language. Formally, given
a sequence of words w1,w2, ...,wn, the language model aims to estimate the proba-
bility distribution P (w1,w2, ...,wn). This task is fundamental to various applications
in NLP, as it encapsulates the essence of understanding and generating human-like
text.

An autoregressive language model decomposes the joint probability of a word
sequence into the product of conditional probabilities, sequentially predicting the
next word given all the previous ones. The mathematical representation of this de-
composition is:

p(w1,w2, ...,wn) =
n∏
i=1

p(wi |w1,w2, ...,wi−1).

This autoregressive structure combines two main advantages. Firstly it enables
the direct computation of the likelihood of the sequence, as a simple product of to-
ken probability. Secondly, it permits fast and efficient sampling by iteratively sam-
pling the next token following their natural ordering.

Transformer Architecture and Attention Mechanism The Transformer architecture [25]
has become the standard of modern language models. This architecture eschews
recurrence and convolution in favor of attention mechanisms, which dynamically
weigh the importance of different words in a sequence when predicting the next
word. Unlike traditional approaches that process input sequentially (one element
at a time), self-attention enables the model to process all elements of the input se-
quence in parallel. To be more precise it can directly compute P (wi |w1,w2, ...,wi−1)
without having to compute P (wi−1|w1,w2, ...,wi−2) before. This parallel processing
allows the model to directly capture relationships between any two elements in the
sequence, regardless of their distance from each other.

Self-attention operates on the principle that each element in the input sequence
can be a ”query” that seeks to find out how much it should attend to other elements,
which are ”keys”. This relationship is quantified by a weight between each posi-
tion in the sentence. These weights are used to combine the value of each position
accordingly.

1. Queries (Q): A representation of an element that is used to query the other
elements to determine how much attention to pay to them.

2. Keys (K): Representations of all elements that are used to respond to the queries.

3. Values (V): The actual content of the elements that the queries will focus on,
weighted by the attention scores.

The attention mechanism computes a score that reflects how much focus each ele-
ment (query) should put on every other element (key). This score is calculated using
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the dot product of the query with all keys, followed by a scaling factor of 1/
√
dk,

where dk is the dimensionality of the keys. This scaling helps in stabilizing the gra-
dients during training. The scores are then passed through a softmax function to
convert them into probabilities (the attention weights).

The core equation of the attention mechanism is given by:

Attention(Q,K,V ) = softmax

QKT√
dk

V
These attention weights are then used to create a weighted combination of the

values, which gives the output of the self-attention mechanism for each element
in the sequence. This output is a new representation of the sequence where each
element is informed by the entire sequence.

The concept of ”heads” in multi-head self-attention refers to the parallel applica-
tion of the self-attention mechanism, each with different, learnable linear transfor-
mations for Q, K , and V . This design allows the model to capture different types of
relationships between elements in the sequence simultaneously. Each ”head” can be
thought of as an independent feature extractor, focusing on different aspects of the
information contained in the sequence. The outputs of all heads are then concate-
nated and linearly transformed to produce the final output. This multiplicity in the
attention mechanism significantly enhances the model’s ability to understand and
generate text, as it can pay attention to multiple facets of the input data at once.

In summary, the Transformer employs a multi-head self-attention mechanism to
process sequences in parallel, capturing intricate relationships within the data. This
approach enables the model to efficiently handle long sequences with complex de-
pendencies, leading to improved performance in tasks like translation, text genera-
tion, and more.

1.3 Artificial Intelligence for Protein Design

1.3.1 Evolution of AI in Protein Engineering

Protein design aims to uncover new protein sequences with a targeted function. This
task requires navigating a vast design space, where the functional sequences are a
tiny fraction.

Machine learning in protein design focuses on three main objectives [26]: im-
proving existing proteins, creating new functions, or designing new proteins from
scratch.

Redesign to Enhance Existing Function The objective is to improve the properties of a
protein that already performs a desired function. This includes increasing its main
function (e.g., catalytic activity [27], binding affinity), enhancing other attributes
(e.g., thermostability [28]), or reducing undesirable interactions (e.g., immunogenic-
ity [29]).
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Figure 1.6: There exist three main types of protein design tasks: Redesign to enhance a function,
redesign to change the function, and create a completely de novo protein. This figure comes from the
review [26]

Redesign for a New Function The objective is to create a protein with a novel func-
tion from an existing protein with a related function (for example, shifting a binder
or enzyme to act on a new target [30]). This necessitates a comprehensive under-
standing of the function mechanism or significant data linking sequence to the new
function.

De Novo Design The objective is to design protein sequences with entirely new folds.
It needs to combine the creation of a new structure and its sequence. It can be used
for various purposes like metal-binding and protein-protein interactions or enzymes
[31].

Figure 1.7: Schematic categorization of the different types of Generative models for proteins [26]
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Figure 1.8: Evolution of available number of protein sequences and structures. To estimate this we
only compare the most common database Uniparc, and Uniref [32] for sequences and RCSB [33]
for protein structures. Image coming from https://moalquraishi.wordpress.com/2019/04/01/

the-future-of-protein-science-will-not-be-supervised/

1.3.2 Diversity of Proteins Data

The current data landscape for protein modeling is characterized by a significant
imbalance: the number of available protein sequences far exceeds that of protein
structures stored in formats such as the Protein Data Bank (PDB). We account in
2024 for 250 million sequences on Uniprot [32] against 220 thousand structures on
RSCB[33]. This disparity is growing, as highlighted in Fig. 1.8, which contrasts the
rapid accumulation of sequence data against the more gradual increase in structural
data. Although protein structures provide a more detailed understanding of protein
functions, the scarcity of such data has led to the development of both sequence-
based and structure-based models for protein design. This situation is exacerbated
by the fact that only a small fraction of sequences have experimental annotations.

In response to these data availability trends, machine learning models for protein
design have been categorized into three types: sequence-only models that utilize the
extensive sequence databases; conditional sequence models that incorporate addi-
tional annotations to refine predictions; and structure-based models that focus on
protein structures. This classification aids in comparing different methodologies
within a probabilistic framework.

The prevailing gap between sequence and structural data has historically directed
the field toward distinct modeling approaches. However, advancements in structure
prediction algorithms, such as Alphafold 2 [34], are poised to bridge this divide.
As these algorithms become more accurate, the distinction between the wealth of
sequence data and the paucity of structural data is expected to diminish, facilitating
a more unified approach to protein modeling. This development suggests a move
towards a more integrated understanding of proteins, leveraging both sequence and
structure data for enhanced protein design and research in computational biology,
as in [35].
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1.3.3 Sequence-based Models

Sequence-only models in protein design aim at understanding and generating the
primary structure of proteins. Early iterations of these models were largely family-
specific, relying on alignment-based methods to train on multiple sequence align-
ments (MSAs) of homologous sequences. Such models evolved from making sim-
ple position-specific predictions, like those found in Position-Specific Scoring Ma-
trices (PSSMs) [36], to more sophisticated approaches that considered interactions
between pairs of residues. This category has seen significant advancements with the
introduction of generative models capable of simulating entire protein sequences,
marking a pivotal development from their simpler predecessors. Among the no-
table models that have emerged are Hidden Markov Models (HMMs) [37], which
are widely used for homology detection and family alignment, or Variational Au-
toencoders (VAEs) [38], which leverage deep learning to generate new sequences by
learning a latent space representation of protein data.

This progress marks a departure from earlier, simpler prediction models. The
introduction of family-agnostic protein language models, trained on unaligned se-
quences across various protein families, further extends the capabilities of sequence
modeling. These models, leveraging autoregressive and masked-language modeling
techniques from natural language processing, offer a comprehensive approach to
protein sequence generation. Autoregressive models predict residues sequentially,
based on preceding sequence information. It is a very effective strategy for generat-
ing de novo sequences [39, 40]. On the other side, masked-language models predict
masked residues from all the others. This strategy is very efficient in extracting
higher features and creates a meaningful latent representation of the sequence [41].
However, the predictive accuracy of family-agnostic models in fitness-prediction
tasks sometimes does not match that of the more specialized family-specific mod-
els. This discrepancy has led to the development of hybrid models, such as the
MSA Transformer [42], which combines the strengths of both approaches by utiliz-
ing MSAs and being trained across all protein families.

1.3.4 Direct Coupling Analysis: An important example of Sequence-Based Model

Direct Coupling Analysis (DCA) is a specific example within the sequence-only
model category, characterized as a type of Potts model and it will be widely used
in this thesis. Mainly DCA is a Boltzmann Machine cf 1.2.1 (therefore a special type
of Energy-Based-Model) where all variables are visible. More precisely each variable
represents the amino acid at a specific position.

DCA [43] is based on the principle of inferring maximum entropy models that are
consistent with the observed second-order correlations in multiple sequence align-
ments (MSAs). The maximum entropy principle suggests constructing the simplest
possible model that reproduces the observed data, in this case, the pairwise correla-
tions between amino acid positions in protein sequences or nucleotide positions in
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RNA sequences. The goal is to find a statistical model that maximizes entropy, sub-
ject to the constraint that the model reproduces the empirical correlations observed
in the MSA.

The energy equation for DCA, is therefore very close to the one of Boltzmann
Machine, with the specificity to have only visible variables. The energy of a sequence
σ⃗ , under this model, is given by:

E(σ ) = −
∑
i<j

Jij(σi ,σj)−
∑
i

hi(σi)

Where:

• E(σ ) is the energy of a sequence σ⃗ , which determines the probability of observ-
ing that sequence under the model.

• σi and σj are the states (amino acids or nucleotides) at positions i and j, respec-
tively.

• Jij(σi ,σj) are the coupling between positions i and j, reflecting how the presence
of specific amino acids or nucleotides at these positions co-evolve.

• hi(σi) represents the field or bias for a particular amino acid or nucleotide to oc-
cur at position i, capturing the effect of single positions independent of others.

This model aims to capture the most relevant statistical features of the MSA,
specifically the first and second-order correlations, with the maximum entropy ap-
proach ensuring that no unjustified assumptions about the data are made beyond
these correlations. By fitting the model parameters Jij and hi to the empirical data
from an MSA, DCA identifies direct couplings between positions that are likely to
be functionally or structurally important.

DCA was originally utilized for unsupervised contact prediction [43], identifying
amino acids that directly interact within a protein’s three-dimensional structure by
analyzing co-evolutionary patterns in MSAs. This approach relies on the identifica-
tion of co-evolved residues, suggesting functional or structural interactions. Beyond
contact prediction, DCA also plays a crucial role in sampling de novo members of
protein families [44], facilitating the generation of novel protein sequences. DCA’s
utility in protein design lies in its capacity to offer insights for the rational design
of proteins with desired functionalities, ensuring structural integrity and stability.
In this thesis, DCA will be frequently discussed as a principal example of sequence-
only models, highlighting its importance and widespread application in the field of
protein design.

Training a DCA model using the pseudolikelihood method [45] is an efficient al-
ternative to directly maximizing the likelihood of the entire sequence alignment,
which is computationally intensive due to the need to estimate the derivative of
the partition function Z. The pseudolikelihood method replaces the likelihood of
the whole sequence by the product of the conditional likelihoods of observing each

20



amino acid given the rest of the sequence. This approach significantly reduces com-
putational complexity and allows for a direct computation of the gradient.

The pseudolikelihood of a sequence σ⃗ in a multiple sequence alignment (MSA) is
defined as:

L(θ⃗) =
M∑
m=1

L∑
i=1

logP (σm
i |σ⃗

m
\i ; θ⃗)

Where:

• M is the number of sequences in the MSA.

• L is the length of the sequences.

• σm
i denotes the amino acid (or nucleotide) at position i in sequence m of the

MSA.

• σ⃗m
\i represents the sequence m with the amino acid at position i removed.

• θ⃗ represents the parameters of the model, including both the coupling coeffi-
cients Jij between positions and the field parameters hi for individual positions.

• P (σm
i |σ⃗

m
\i ; θ⃗) is the conditional probability of observing the amino acid at posi-

tion i, given the rest of the sequence, under the model parameterized by θ⃗.

This approach allows for efficient estimation of the coupling strengths and fields
and is efficient for contact prediction, even though the resulting model has poor a
poor generative power.

1.3.5 Extending Sequence-Based Model with labels

Conditional Sequence Models refine the generative process by incorporating condi-
tions like taxonomic classifications or gene annotations, offering enhanced control
over the generated sequences characteristics through various modeling techniques,
like conditional VAE [46], Transformer based [47]. This needs a significant amount
of data available for a specific property, these models learn the link between a func-
tional label and an input sequence. This also highlights the need for semi-supervised
approaches, able to benefit from the labeled and unlabeled data. Moreover, this ap-
proach only considers a categorical variable or a scalar value as a conditioning label.
There remains a need for conditioning on more complex types of data such as com-
plete sequences.

1.3.6 Structure-Based Models

In protein design, structure-based models play a crucial role by bridging the intri-
cate relationship between a protein’s linear sequence and its three-dimensional con-
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formation. These models are divided into several distinct categories, each address-
ing different aspects of protein structure and design from unique computational
perspectives.

The advancements in structure prediction models, especially highlighted by the
breakthrough of AlphaFold [48], have significantly influenced computational biol-
ogy. These models, by accurately forecasting protein tertiary structures from amino
acid sequences, provide essential insights into protein functions and lay the ground-
work for innovative protein design. This leap in predictive accuracy has spurred the
development of new AI-driven approaches in structure modeling, rapidly expand-
ing our capabilities in protein engineering. The progress made in structure predic-
tion has not only enhanced our understanding of proteins but also accelerated the
emergence of advanced models for protein design, marking a significant stride in
the field.

Protein structure is a powerful tool for understanding protein function. Since
structure dictates function, it’s a logical approach to directly generate protein struc-
tures for design purposes. This is where structure generation models come in. These
models, employing techniques like Generative Adversarial Networks (GANs)[49]
and Variational Autoencoders (VAEs)[50], and diffusion models [51, 52], bypass the
traditional sequence-based approach and attempt to directly create protein struc-
tures in 3D.

This focus on structure is crucial. By capturing the intricate relationships within
the protein’s spatial organization, these models can generate entirely new conforma-
tions. This ability to explore the vast universe of potential protein structures, many
yet to be found in nature, opens doors for protein design.

Recent advancements have particularly highlighted the effectiveness of diffusion
models in this context. Although diffusion models have achieved significant success
in fields like image and language generation, their application to protein design has
been challenging due to the intricate geometry of protein backbones and the com-
plex sequence-structure relationships. However, the introduction of RoseTTAFold
diffusion (RFdiffusion [51]) represents a major stride forward. By reusing the RoseTTAFold
structure prediction network for protein structure denoising tasks, RFdiffusion has
emerged as a generative model capable of remarkable achievements in various pro-
tein design challenges. It is trained by slowly adding noise to the structure and
training it to recover the original structure as shown in 1.9.

Inverse folding models serve a critical function in protein design by identifying
amino acid sequences predicted to fold into specified 3D structures [53, 54]. This
methodology has several practical usages. It addresses practical needs within the
protein design pipeline. For instance, in the RFdiffusion process, where only the
protein backbone is generated, inverse folding models are essential for determining
the corresponding amino acid sequence. Beyond this specific pipeline, these models
have a proven utility in enhancing protein stability [28]. By starting with a natural
protein’s structure, inverse folding can propose alternative sequences that maintain

22



Figure 1.9: Denoising procedure of diffusion models for proteins. This illustration come from [51]

the original fold but with improved stability. Additionally, this thesis introduces a
novel application of inverse folding models: utilizing them to explore the diversity
of sequences that can adopt a given fold. This approach aims to map out the largest
spectrum of potential candidates, varying in properties yet conserving the structural
fold, thereby broadening the scope for discovering proteins with desired features
and functionalities.

1.4 T-cell Receptor Epitope Binding Prediction

1.4.1 Introduction to T-cell Receptors (TCRs)

T-cell receptors (TCRs) are molecules found on the surface of T-cells, a type of white
blood cell that plays a critical role in the immune system. TCRs are responsible
for recognizing fragments of antigens as peptides bound to major histocompatibility
complex (MHC) molecules on the surface of other cells. This recognition is funda-
mental to the adaptive immune response, enabling T-cells to identify and eliminate
infected or cancerous cells [55]. The specificity of TCRs to their cognate antigen
epitopes—short sequences of amino acids that are part of the antigen recognized by
the immune system—is a cornerstone of the immune system’s ability to detect a vast
array of pathogens.
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Figure 1.10: T cells rely on their surface receptors to recognize and bind with foreign and disease-
associated antigens—in the form of peptide molecules—presented by innate immune cells, such as
dendritic cells or other antigen-presenting cells (APCs). Figure taken from [56]

The interaction between a TCR and its epitope is specific, yet this specificity arises
from a complex repertoire of TCR sequences generated through a random process of
gene rearrangement. This diversity allows the immune system to respond to a wide
variety of antigens but also presents a significant challenge in understanding and
predicting TCR-epitope interactions.

The remarkable specificity of TCRs arises from their structure. TCRs are het-
erodimeric proteins, consisting of two separate polypeptide chains: α and β. Each
chain is formed by the rearrangement of gene segments during T-cell development.
The alpha chain utilizes variable (V) and joining (J) segments, while the beta chain
incorporates an additional diversity (D) segment. This rearrangement process gen-
erates a vast library of unique TCR sequences, contributing to the immune system’s
diverse antigen recognition capabilities, as illustrated in 1.10

Crucially, the recognition of specific antigen epitopes relies on hypervariable re-
gions called Complementarity Determining Regions (CDRs) present on both the al-
pha and beta chains. These CDRs form loops that directly interact with the antigen
peptide bound to the MHC molecule as shown in Fig. 1.11. The amino acid compo-
sition within these CDRs determines the binding affinity of the TCR for a particular
epitope. Ultimately, the precise fit between the CDRs and the epitope dictates T-cell
activation and the elimination of target cells.
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Figure 1.11: Closer view to the interaction zone between TCR and the pMHC. The CDR loops are the
part involved in the binding. Figure taken from [57]

1.4.2 Challenges in TCR-Epitope Binding Prediction

Predicting the interaction between TCRs and epitopes is a daunting task due to sev-
eral factors. Firstly, the immense diversity of TCR sequences, combined with the
variability of epitopes, creates a vast interaction space. Each T-cell has a unique
TCR, and the human body can hypothetically produce an almost infinite variety of
TCRs (> 1060 [58]), making it difficult to predict which TCR will interact with which
epitope.

Secondly, the lack of comprehensive, high-quality data on TCR-epitope interac-
tions limits the development of predictive models. The specificity of TCR-epitope
binding implies that only a small fraction of all possible interactions are biologi-
cally relevant and thus observable. Most datasets are sparse, containing only a small
subset of all potential interactions, and are often biased toward certain types of in-
teractions or diseases.

Additionally, the binding affinity of a TCR for an epitope is influenced by many
factors, including the structure of the TCR and the peptide-MHC complex, the flex-
ibility of the peptide, and the chemical properties of the interacting surfaces. Mod-
eling these interactions requires a detailed understanding of molecular biology that
is difficult to capture with predictive models.

1.4.3 AI Approaches for TCR-Epitope Binding Prediction

The landscape of TCR-peptide interaction prediction has been enriched by various
machine learning (ML) models, each bringing a unique approach to understanding
the specificity of TCRs towards different peptides. Among these models, convolu-
tional neural network (CNN) models like ImRex [59], TCRAI [60], and NetTCR 2.1
[61], have been prominent, utilizing deep learning techniques to analyze TCR se-
quences. Auto-encoder-based models such as DeepTCR [62] and decision-tree mod-
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els like SETE [63] have also contributed significantly to the field, offering differ-
ent perspectives on the prediction task. Gaussian process models, exemplified by
TCRGP [64].

In addition to supervised ML approaches, unsupervised similarity-based meth-
ods such as TCRdist3 [65] have been developed. These methods leverage the inher-
ent similarities between TCR sequences to infer potential interactions without the
need for labeled training data.

Historically, the majority of TCR specificity prediction models relied on single
chain data, predominantly CDR3β, due to its relative abundance. However, the
advent of single-cell sequencing technologies has led to an increase in available
paired data, comprising both the α- and β-chains. Recent works indicate that models
trained on both chains outperform those trained on single-chain data [66].

While similarity-based methods can rival ML-based models under conditions of
high training and evaluation data similarity and the presence of numerous posi-
tive TCR observations for a given peptide, ML methods generally surpass similarity-
based approaches when these conditions are not met.

A notable challenge in the field is the limited extrapolative power of current mod-
els for predicting specificity towards previously unseen peptides, especially those
not closely related to peptides in the training set. This challenge is predominantly
due to the scarcity of training data, particularly for paired-chain data, and the im-
balanced nature of the available data, which tends to favor a few peptides.

The pan-specific model approach, training on data covering a wide range of pep-
tides including the peptide sequence as input, has shown success in the MHC system
but has yet to achieve substantial performance in predicting binding for unseen pep-
tides in the context of TCRs.
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Chapter 2

Evaluating Generative Models of
Protein Family

2.1 Introduction

Incorporating the need for a deeper understanding and evaluation of deep learn-
ing (DL) methods, especially in the context of their generative capabilities, is cru-
cial. The rapid evolution of computational biology has been significantly propelled
by the development of deep learning (DL) techniques, which hold the promise of
unlocking new insights into biological phenomena like protein folding and interac-
tions. As these methods become increasingly complex, the need for a critical evalua-
tion of their generative capabilities and underlying mechanisms is paramount. This
necessity forms the starting point of this work. We now have many deep learning
methods available, which presents both an opportunity and a challenge. There is a
need for a detailed framework to evaluate these methods, focusing not only on their
effectiveness and efficiency but also on their interpretability.

The concept of second-order interactions has been seen as a good indicator of
model quality. However, the question remains: do more profound, more complex
models align with this perspective, or do they tap into higher-order interactions that
significantly contribute to their generative capabilities?

2.2 Order Interactions estimation through distillation

This study employs model distillation to transfer knowledge from complex, deep
neural network models to simpler Potts models. The objective is to critically as-
sess the extent to which second-order interactions are responsible for the predictive
capabilities of these sophisticated models. The Potts model, characterized by its
emphasis on pairwise interactions, serves as an ideal candidate for evaluating the
necessity and efficiency of complex model architectures in capturing the underlying
biological phenomena.

The methodology for implementing model distillation consists of several key
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steps. Initially, the neural network (teacher model) is trained on a dataset of protein
sequences to learn a representation that captures both the explicit sequence charac-
teristics and the implicit interaction patterns. Subsequently, the Potts model (stu-
dent model) is trained not just on the raw sequence data but is also guided to mimic
the output probabilities of the neural network, effectively capturing the learned in-
teractions with a focus on second-order dependencies.

By quantifying the performance of the distilled Potts model against the original
neural network, the study evaluates the contribution of second-order interactions to
the overall predictive success of complex models.

2.3 Knowledge Distillation

The distillation process can be formalized as follows: Let fteacher(x;Θteacher) repre-
sent the output of the teacher model, where x is an input protein sequence and
Θteacher denotes the parameters of the teacher model, a deep neural network trained
to model protein sequences. The goal of the teacher model is to maximize the likeli-
hood (or minimize the energy) of the given input sequence.

The student model, represented by gstudent(x;Θstudent), aims to replicate the be-
havior of the teacher model, where Θstudent are the parameters of the Potts model,
significantly fewer in number compared to Θteacher. The distillation process involves
training the student model to approximate the teacher model’s output distribution,
effectively learning fteacher(x;Θteacher) through the minimization of a divergence met-
ric, typically the Kullback-Leibler divergence (KL divergence), between the output
distributions of the teacher and student models:

Ldistill = DKL (fteacher(x;Θteacher) || gstudent(x;Θstudent))

In a standard distillation, the student model is exposed to both the original train-
ing data and the output probabilities generated by the teacher model. This dual in-
put mechanism allows the student model not only to learn the direct mapping from
sequence to structure/function but also to internalize the nuanced decision-making
process of the teacher model.

In some works, the standard loss on the training set is added, such as a traditional
cross-entropy loss against the true labels, or the negative loglikelihood (NLL) on the
training data.

Ltotal = λLdistill + (1−λ)LNLL(gstudent(x;Θstudent))

where λ is a hyperparameter that balances the contribution of the distillation loss
and the standard training loss.

In the case of generative models, we can highly enrich the set of sequences used,
by sampling new sequences with the teacher model. In such a situation, we can
entirely focus on the distillation task (λ = 1).

28



Figure 2.1: Representation of the distillation process: A first Deep neural network, called teacher is
trained on a specific dataset. Then a smaller, simpler model, called student is trained to reproduce
the same output than the teacher. In some settings, the student can also be trained on the original
task of the Teacher, in addition to being trained to copy the teacher’s output. Figure from https:

//towardsdatascience.com/knowledge-distillation-simplified-dd4973dbc764
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2.4 Paper: Interpretable pairwise distillations for generative pro-
tein sequence models

In our study, we looked at neural network models designed for analyzing protein
sequences, which are used for tasks like predicting mutations, designing proteins,
and understanding protein structures. Although these complex neural networks
are known for their effectiveness, we compared them to simpler models based on
pairwise interactions.

We developed a method to simplify these complex models into ones that only con-
sider pairwise interactions using an energy-based framework. Our results showed
that these simplified models could almost match the performance of the complex
neural networks in predicting the effects of mutations. This highlights the central
importance of second-order interaction in protein modeling.

30



RESEARCH ARTICLE

Interpretable pairwise distillations for

generative protein sequence models

Christoph FeinauerID
1,2*, Barthelemy Meynard-PiganeauID

3,4, Carlo LucibelloID
1,2

1 Department of Computing Sciences, Bocconi University, Milan, Italy, 2 Bocconi Institute for Data Science

and Analytics (BIDSA), Milan, Italy, 3 Laboratory of Computational and Quantitative Biology (LCQB) UMR
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Abstract

Many different types of generative models for protein sequences have been proposed in lit-

erature. Their uses include the prediction of mutational effects, protein design and the pre-

diction of structural properties. Neural network (NN) architectures have shown great

performances, commonly attributed to the capacity to extract non-trivial higher-order inter-

actions from the data. In this work, we analyze two different NN models and assess how

close they are to simple pairwise distributions, which have been used in the past for similar

problems. We present an approach for extracting pairwise models from more complex ones

using an energy-based modeling framework. We show that for the tested models the

extracted pairwise models can replicate the energies of the original models and are also

close in performance in tasks like mutational effect prediction. In addition, we show that

even simpler, factorized models often come close in performance to the original models.

Author summary

Complex neural networks trained on large biological datasets have recently shown power-

ful capabilites in tasks like the prediction of protein structure, assessing the effect of muta-

tions on the fitness of proteins and even designing completely novel proteins with desired

characteristics. The enthralling prospect of leveraging these advances in fields like medi-

cine and synthetic biology has created a large amount of interest in academic research and

industry. The connected question of what biological insights these methods actually gain

during training has, however, received less attention. In this work, we systematically

investigate in how far neural networks capture information that could not be captured by

simpler models. To this end, we develop a method to train simpler models to imitate

more complex models, and compare their performance to the original neural network

models. Surprisingly, we find that the simpler models thus trained often perform on par

with the neural networks, while having a considerably easier structure. This highlights the

importance of finding ways to interpret the predictions of neural networks in these fields,

which could inform the creation of better models, improve methods for their assessment

and ultimately also increase our understanding of the underlying biology.
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1 Introduction

Many different types of generative models for protein sequences have been explored, from pair-

wise models inspired by statistical physics [1–4] to more complex architectures based on neural

networks like variational autoencoders [5–7], generative adversarial networks [8], autoregres-

sive architectures [9, 10] and models based on self-attention [11]. While such models promise a

rich field of applications in biology and medicine [12], the question of what information they

extract from the sequence data has received less attention. This is, however, a very interesting

field of research since especially the more complex models might extract non-trivial higher-

order dependencies between residues. This in turn might reveal interesting biological insights.

Some recent works address this interpretability issue. In Ref. [13], the authors introduce the

notion of pairwise saliency and use it to quantify the degree to which more complex models

learn structural information and how this relates to the performance in the prediction of muta-

tional effects. Ref. [14] instead constructs pairwise approximations to classifiers trained on cat-

egorical data and, among other results, show an example using protein sequence data.

We observe that the performance of many different models on tasks like the prediction of

mutational effects is often similar even when using very different architectures and, in addition,

is close to what simple, pairwise models achieve (see e.g. [9]). It appears natural to ask then

how much of the predictive performance of the more complex models like variational autoen-

coders is due to higher-order interactions which are inaccessible to more simple models.

We therefore ask in this work how close trained neural network (NN) based models are to

the manifold of pairwise distributions. To this end, we train two different architectures on pro-

tein sequence data. Interpreting these models as energy-based models [15], we present a simple

way to extract pairwise models from them and analyze errors in energy between extracted and

original models. We show that the subtle question of gauge invariance is important for this

purpose and address this invariance ambiguity using different objective functions for the

extraction. In addition, we show that even simpler models for which the probability distribu-

tion factorizes over positions in the protein can often come close to the performance of the

original models after extraction.

Our work embeds itself into the field of knowledge distillation [16], where the goal is to

extract simpler models from more complex models, improving the computational perfor-

mance of the models and also increasing interpretability [17]. We also note, however, that

higher-order interactions are not necessarily connected to a lack of interpretability: Restricted-

Boltzmann Machines, for example, provide a way to model higher-order interactions in pro-

tein sequences that are still relatable to biological properties [18].

The main contributions of this paper are 1) we introduce a method for extracting indepen-

dent and pairwise models for arbitrarily complex generative models for protein sequences, 2)

we connect this task to the properties of gauge transformations and show that one can focus

the extraction on different parts of the sequence space, 3) we show that pairwise models (and

sometimes even independent models) are often good approximations for the original models

in terms of the reconstruction of energies and also for tasks like mutational effect prediction.

The code and data for reproducing the experiments in this work are available at https://

github.com/christophfeinauer/PairwiseDistillations.

2 Methods and data

While we present a more detailed description in the following sections, we describe in this sec-

tion the general pipeline we use throughout the paper. Our goal is to analyse generative models

for protein sequences trained on a multiple sequence alignment of homologous protein

sequences. Denoting by N the length of the aligned sequences, these models define a
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probability distribution p(s), where s is an arbitrary sequence of amino acids of fixed length.

One goal of generative modelling is to arrive at a p(s) which reflects faithfully the evolutionary

constraints acting on the family, assigning high probability to sequences with high fitness and

low probability to sequences with low fitness. A common benchmark for such models is the

prediction of experimentally measured fitness values of mutated sequences. A successful

model can then for example be applied when screening pathological mutations involved in

human disease [2, 19].

The arguably simplest generative model is an independent model, where the probability fac-

torizes over the positions in the protein, which is equivalent to saying that the log probability is

a sum over independent terms including only a single position. Slightly more complex models

are pairwise models, where the log probability is a function including terms depending on up

to two positions. A central claim in recent literature is that models based on neural networks

outperform simpler models because they can capture more complex constraints from the data,

which would correspond to higher-order interactions (terms including more than two posi-

tions) in the log probability.

In order to test and quantify this claim, we employ a simple pipeline (see Fig 1): We train

neural network based generative models and test how well we can reproduce their distribution

with independent and pairwise models. We do this by sampling sequences from either the uni-

form distribution or from the distribution induced by the original generative model itself, cal-

culating the energies (negative log probabilities) of these sequences in the original generative

models and then training a pairwise or independent model to reproduce these energies on the

same sequences using a simple mean squared error loss. We then analyse how well these sim-

pler models reproduce the probabilities of sequences on a test set and how well they perform

in the task of the prediction of mutational effects when compared to the original models.

We provide a list of abbreviations for the various distributions and models we use in S1

Appendix.

Fig 1. Pipeline. An overview of our train and test pipeline. Given an input MSA, we remove duplicated sequences and split into training and test set with a ratio of 9:1.

We then train neural network models on the training set. After creating samples (either from the distribution induced by the neural network itself or from another

distribution), we calculate the energy (negative log probability) of these samples from the neural network. We then use the samples and energies to extract a pairwise

model (and also an independent model) and compare the original neural network model with the extracted in terms of their energies and their performance in

mutational effect prediction.

https://doi.org/10.1371/journal.pcbi.1010219.g001
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2.1 Data and preprocessing

The training data for all models are aligned, homologous sequences of protein domains gath-

ered in a multiple sequence alignment (MSA), where every row corresponds to a sequence of

amino acids and every column to a position with homologous residues [20].

We denote a single amino acid sequence of length N as s = (s1, . . ., sN), where we identify

every possible amino acid with a number between 1 and q, with q being the number of possible

symbols (we use 20 amino acids and 1 alignment gap symbol, so q = 21). While we use this

representation for the mathematical description and analysis, the implementations of the mod-

els use a one-hot encoding of the amino acids as inputs, where every amino acid is replaced by

a vector of size q which contains zeros except at the position indicated by the integer corre-

sponding to the amino acid. The input size for the models is thus a vector of size Nq.

The datasets we use are taken from [6]. Since some steps in our pipeline are computation-

ally heavy, we selected 5 of the smaller of the 41 datasets used there. The datasets show a range

of different properties with respect to the performances of different types of models (see Sec-

tion 3.1). Every dataset consists of experimental fitness values for mutations in a target

sequence and an MSA containing homologous sequences of the same target sequence. We use

the datasets for the BRCA1 tumor suppressor gene [21], the GAL4 transcription factor [22],

the small ubiquitin-like modifier SUMO1 [23], the ubiquitination factor UBE4B [24] and the

yes-associated protein YAP1 [25]. When the dataset reported more than on experimental mea-

surement we chose the same one as used in [9], see Table A2 in S1 Appendix for a list of exper-

imental measurements used and the number of mutants in each dataset.

As the first step of preprocessing of the input MSAs, we replaced non-standard amino acids

with a gap and removed all duplicated sequences from the datasets. We then partitioned the

remaining sequences randomly into train and test sets, comprising 90% and 10% of the

sequences respectively (see Table A1 in S1 Appendix for the number of sequences in the train

and test sets).

While there are no identical sequences in the train and test sets due to the prior removal of

duplicated sequences, for most families there is a fraction of the test sequences that have a

Hamming distance of 1 to some sequence in the training set, see Fig 2. We note, however, that

this should not pose a problem in the evaluation phase for the extracted models, since we do

not extract models on the training sequences, but either from samples generated by the origi-

nal models or from uniformly sampled sequences. In order to still control for possible effects

on how well the extracted models reproduce the distribution of sequences in the test set with

Fig 2. Normalized Hamming distance from test to train datasets. Shown are mean (green) and minimum (orange) distances from every test sequence to the sequences

in the training set. The normalized Hamming Distance is the number of differing amino acids between two sequences, divided by the sequence length. The red bar

indicates the distance at which the test set is divided in a ratio 9:1 with respect to the minimum distance to the training set.

https://doi.org/10.1371/journal.pcbi.1010219.g002
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respect to the distance from the training set, we partition the test set further into two sub-data-

sets: One which contains the 10% of test sequences that are farthest from the training set in

terms of the minimum Hamming distance and another one with the other 90% of sequences.

In Fig 2 this cutoff is indicated by a red bar.

2.2 Original models

We train two different types of models on the datasets described in the last section: The autore-

gressive architecture presented in [9] (ArDCA), and a variational autoencoder (VAE) using

the architecture from [5]. We refer to these models as the original models in order to distin-

guish them from the extracted models that are introduced later. For a given family, all models

(including EVMutation, which we discuss in Sec.3.1) are trained on the same training MSA.

All models apply a reweighting scheme, which aims at removing phylogenetic bias by giving a

smaller weight in the objective function to sequences that have many similar sequences in the

training set. We refer to the original publications for details on these.

ArDCA uses an autoregressive decomposition of the probability,

pðsÞ ¼
YN

i¼1

pðsijs<iÞ; ð1Þ

where

pðsijs<iÞ ¼
expðhiðsiÞ þ

Pi� 1

j¼1
Jijðsi; sjÞÞ

ziðs<iÞ
: ð2Þ

Here, the h are parameters depending only on a single position and the J are parameters

depending on pairs of positions. The zi(s<i) is a normalization depending on the part of the

sequence preceding position i, which we denote by s<i. While the form is reminiscent of a pair-

wise model (see Sec. 2.3), the log probability log p(s) cannot be written as a sum of terms

including only up to two positions, and therefore the model can in principle also include

higher-order interactions. The model can be interpreted as a repeated application of the soft-
max operation common in classification using neural networks, predicting the next amino

acid in the sequence given the previous ones.

Due to the autoregressive architecture, the probability p(s) and consequently the likelihood

function can be calculated directly using Eq 2, where both the nominator and denominator are

tractable. The training is done using the L-BFGS method [26], with an additional L2 regulari-

zation, see [9] for further details. We use the code provided by the authors for training.

The VAE we use follows the architecture in [5]. The decoder defines a probability

distribution qψ(z|s) over the latent representation z given the one-hot encoded input sequence

s by using a multivariate Gaussian distribution with means μ = Wμhenc + bμ, log variances log

σ2 = Wσhenc + bσ, and zero off-diagonal correlations. These are expressed in terms of the output

of single layer: henc = tanh(Wencs + benc). The weight matrices Wenc, Wμ and Wσ together with

the biases benc, bμ, bσ form ψ. The decoder pΘ(s|z) defines a factorized probability distribution

over s given z given by pΘ(s|z) = softmax(Wshdec + bs), with hdec = tanh(Wdecz + bdec). Here the

weight matrices Wdec, Ws and the bias vectors bdec, bs form the set of parameters Θ. The prior

over z is a standard Gaussian.

The VAE can be trained using the ELBO objective function, see [5] for details. We use the

code of the authors of [5] to train the VAE models, which uses full-batch gradient descent on

the ELBO objective and a weight decay regularization.

Since neither mutational effect prediction nor contact prediction is the central aim in [5],

we test the VAE for a range of hyperparameters on all five datasets and assess the resulting
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performance on the task of mutational effect prediction, see Section 3.1 for details. The hyper-

parameters we test are the number of units in the hidden layers, the dimension of the latent

representation and the weight decay setting. We then select a subset of these models for the

application of the rest of the pipeline in Fig 1.

An assessment of the performance of the original models is done in Sec. 3.1.

2.3 Energy-based models

Using a framework based on Energy-based models (EBMs) [15], we can define a probability

distribution p(s) over protein sequences by specifying the energy Eθ(s), which is equal to the

negative log probability up to a constant. The energy can be implemented for example by a

neural network with weights and biases represented by θ. While the calculation of the exact

probability

pðsÞ ¼
e� EyðsÞ

Zy
with Zy ¼

X

s0
e� Eyðs0Þ ð3Þ

is intractable since the normalization constant Zθ is a sum over qN terms, numerous ways of

training such models have been developed.

In this work, we use the fact that any probability distribution p(s) can be thought of as an

EBM by defining E(s)≔ −log p(s). We will use the term energy for both cases: when derived

from a distribution p(s), and when given by an explicit energy function. While this formulation

could be extended to models for sequences of varying length, we restrict ourselves in this work

to sequences of fixed length.

2.4 Energy expansions and gauge freedom

We call I = {1, . . .,N} the set of all positions in the sequence s and sL the subsequence consisting

of amino acids at positions in L� I. Then, we can expand any energy E(s) in the form

EðsÞ ¼
X

L�I

fLðsLÞ; ð4Þ

where fL is a function depending only on the amino acids at positions at L, and the sum is over

all subsets of I. We will use f for denoting the set of all fL in the expansion. Models for which

fL = 0 for |L|> 2 are called pairwise models (or Potts models) and their energy can be written as

a special case of Eq 4 as

EpwðsÞ ¼ �
XN

i¼1

XN

j¼iþ1

Jijðsi; sjÞ �
XN

i¼1

hiðsiÞ � C; ð5Þ

with J being commonly called couplings and h the fields [27]. Note that while the terminology

is the same as for the parameters in ArDCA (see previous Sec.2.2), the parameters of ArDCA

cannot be easily mapped to the parameters of a pairwise model. The constant C is typically not

added to the model definition since it does not change the corresponding probabilities, but we

keep it in order to be consistent with the generic expansion in Eq 4.

Models for which fL = 0 for |L|> 1 are called independent or profilemodels [9]. Their energy

function can be written as

EindðsÞ ¼ �
XN

i¼1

hiðsiÞ � C; ð6Þ

which results in a factorized version of the probability distribution in Eq 3.
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The expansion in Eq 4 is not unique, which means that given an energy E(s) it is possible to

find different expansion parameters f for which Eq 4 holds. Therefore additional constraints

must be imposed to fix the expansion coefficients (gauge fixing). It is for example trivial to

rewrite the pairwise model in Eq 5 as a model with interactions only of order N by defining

fI(s) = E(s) and fL = 0 for |L|<N.

A common route is to impose the so-called zero-sum gauge [28], also called the Ising gauge,

which aims to shift as much of the coefficient mass to lower orders as possible (see, e.g., Ref

[14], where the authors use the term ‘Ising gauge’ and Section D.2 in S1 Appendix for details).

This is intuitively sensible, since explaining as much of the variance as possible with low order

coefficients seems to be a key element when trying to understand how complex the model is.

However, we will show in the next section that the problem of gauge invariance is more subtle

and important for understanding the structure of the fitness landscape induced by NN

models.

2.5 MSE formulation for extraction

We formulate the problem of extracting pairwise and independent models from more general

models by using a loss function L that measures the average mean squared error (MSE) in

energies with respect to a distribution D over sequences. We call EM(s) the energy of the origi-

nal model that we want to project onto the space of pairwise or independent models. We

define the loss function over the parameters J, h and C on which the pairwise energy Epw(s) of

Eq 5 implicitly depends as

LðJ; h;CÞ ¼ Es�D ½ðEMðsÞ � EpwðsÞÞ
2
�: ð7Þ

We minimize the loss function with respect to J, h and C and use the resulting pairwise

model Epw as an approximation to EM. For the independent model Eind(s) as defined in Eq 6,

we use the same loss function but fix J to 0. Since independent models can be seen as special

cases of pairwise models, we restrict the following discussion to pairwise models.

The distribution D is central in this formulation of the problem and is closely related to the

question of gauge invariance. It can be shown that if D is the uniform distribution U over

sequences, the minimizer of LðJ; h;CÞ is equivalent to the pairwise part of EM in the zero-sum

gauge (see Section D in S1 Appendix for a proof). This means in reverse, that extracting the

pairwise model using the zero-sum gauge is equivalent to minimizing the MSE in energy when

giving all possible sequences equal weight. However, generative models trained on protein

families are used only on a small region of the sequence space. By changing D it is possible to

give more weight to these regions and construct a pairwise model that might be worse in repli-

cating EM globally, but better in regions of interest. This is equivalent to extracting the pairwise

interactions in a different gauge of EM.

A natural candidate for D is the distribution induced by EM, leading to extracted models

that aim to reproduce the original distribution well on typical sequences of that distribution.

We denote this distribution by M. With this choice, the loss corresponds to an f-divergence

(f(t) = log2(t)) in the unnormalized distribution space [29]. Notice also that for a trained model

EM, one would expect this distribution to be close to the distribution of sequences in the train-

ing data.

One possible interpretation is that using different distributions D, one obtains extracted

models corresponding to different ‘views’ of the original model: Using the uniform distribu-

tion U, we obtain an expansion that explains the original model distribution over the whole

sequence space with minimal higher-order interactions. The extracted pairwise model then

corresponds to the pairwise part in this expansion. Using the model distribution M itself, on
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the other hand, we obtain an expansion where the pairwise part explains as much of the energy

variation on typical sequences from the model distribution itself, and the extracted pairwise

model corresponds to this pairwise part. We show below that using the model distribution

M has advantages when using the extracted pairwise model for reproducing the energies on

the test sequences and also in many cases for mutational effect prediction.

Note that if the original model is in fact a pairwise model, then for any D with a sufficiently

large support the minimizer of Eq 7 should correspond to the original model (up to a gauge

transformation).

The method we use for minimizing the loss in Eq 7 depends on the distribution used for

creating the samples. For the uniform distribution U, the exact minimizer of the loss can be

calculated by taking averages over the energies of the original model EM(s) with s sampled

from a uniform distribution, (see Section D.2 in S1 Appendix for a derivation). This leads to

the sampling estimators

C ¼ � Es�U ½EMðsÞ�

hiðaÞ ¼ � Es�U ½EMðsÞjsi ¼ a� þ C

Jijða; bÞ ¼ � Es�U ½EMðsÞjsi ¼ a; sj ¼ b� þ hiðaÞ þ hjðbÞ þ C;

where Es�U ½EMðsÞ� is the expectation of EM(s) when sampling s from the uniform distribution,

Es�U ½EMðsÞjsi ¼ a� is the expectation of EM(s) when keeping si fixed to a and sampling the

amino acids at the other positions from the uniform distribution and Es�U ½EMðsÞjsi ¼ a; sj ¼ b�
is the expectation of EM(s) when fixing si to a, sj to b and sampling the amino acids at the other

positions from the uniform distribution. For independent models, only the first two equations

are used.

For distributions D different from U, there is in general no simple sampling estimator for

the parameters of the pairwise model Epw. Therefore, in the case where we set D =M, the distri-

bution induced by EM(s), we resort to gradient descent on the loss in Eq 7. After preparing 107

samples from the M distribution, we minimize the loss using the Adam optimizer [30] with a

batch size of 10000. The samples in a batch are sampled individually from all available samples

for every gradient descent step. Since not all amino acids might be observed in all positions in

the samples from the model distribution M, we replace every sample in the batch individually

with a sample from the U distribution with a probability of 1%. All parameters are initialized

to 0. We keep an exponential moving average of the batch losses with a smoothing factor of 0.9

and stop optimizing if this average has not reached a new minimum within 1000 gradient

descent steps. We chose 107 samples based on the observation that minimizing the loss in Eq 7

can be formulated as solving a set of linear equations in the parameters of the extracted model

(see Eq. 4 in S1 Appendix). While we cannot solve this set of equations directly for arbitrary

distributions D, we aim to use a number of samples at least as large as the number of parame-

ters we want to fit. The largest sequence length we have in our datasets is 77, which corre-

sponds to about 1.3 × 106 parameters. For independent models, we use the same method but

discard the gradient of J.

2.6 Sampling from the original models

For both original models we create samples from the uniform distribution by sampling every

amino acid (including the gap) at every position with an equal probability 1/q. For ArDCA, we

obtain samples from the model distribution M by sampling amino acids sequentially using the

expression in Eq 2. For the VAE models, we sample the latent factors z from a standard normal

PLOS COMPUTATIONAL BIOLOGY Interpretable pairwise distillations for generative protein sequence models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010219 June 23, 2022 8 / 20



distribution and sample amino acids at every position given the probabilities as returned by

the decoder.

For calculating the energies for sequences in ArDCA, we can again use the autoregressive

decomposition in Eq 2. For the VAE models, we use importance sampling [31] with 5000 sam-

ples.

3 Results

3.1 Performance of original models

We train ArDCA and VAE models on the five different datasets described in Section 2.1. We

assess their performance in terms of mutational effect prediction using the experimental values

provided in the datasets, see Appendix Table A2 in S1 Appendix for a summary of experimen-

tal measurements used. These experimental values consist of quantitative fitness measures of

sequences that contain mutations with respect to a wild-type sequence. Since these measures

are different for the different datasets, we use the Spearman rank correlation between the ener-

gies of the mutants in the original models and the experimental values as an indicator of

performance.

We also compare the performance of EVMutation [3], which is a method based on pairwise

models, i.e., training an energy function as defined in Eq 5 directly on the training data. We

retrain EVMutation using the code provided by the authors, where the training is based on the

method of pseudolikelihoods (see [3] and [32] for details).

For ArDCA, we use the code and hyperparameters optimized for generative modeling pro-

vided by the authors, using an L2 regularization of strength 0.01 for J and 0.0001 for h (values

communicated by the authors of [9]). The performance in terms of the Spearman correlation

is close to the ones reported in [9]: We report the Spearman correlation for the original

ArDCA models in Fig 3 (the green bars). On four out of five datasets, ArDCA outperforms

EVMutation and is roughly equal in performance on one dataset (GAL4).

For the VAE, we do not have hyperparmeters optimized for generative modeling. We there-

fore keep the general architecture of a single layer of hidden units in the decoder and encoder

(same number of hidden units in encoder and decoder) and train for a series of different num-

bers of hidden units (40, 80, 100, 120, 140 and 160), different latent dimensions (5, 10, 20, 40,

80 and 120) and different settings for the weight decay strength (0.1, 0.05, 0.01, 0.005 and

0.001), using the code provided by the authors of [5]. We then assess the resulting 180 models

Fig 3. Spearman correlation with experimental data of original (O) and extracted models (PW/U, PW/M, IND/U,

IND/M) for ArDCA. Shown is the Spearman rank correlation between the experimental data and the energies of the

original model (O), the pairwise and independent models extracted using samples from a uniform distribution (PW/U

and IND/U) and for the pairwise and independent models extracted using samples from the original model

distribution (PW/M and IND/M).

https://doi.org/10.1371/journal.pcbi.1010219.g003
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for every dataset (so 900 models in total) in terms of their mutational effect prediction

performance.

In Fig B1 in S1 Appendix we display the Spearman correlation values for all 900 models.

From these results, it appears that the number of hidden units and the size of the latent dimen-

sion have minor effects on the performance. The weight decay, on the other hand has a more

pronounced effect for the range we tested. Interestingly, this effect has opposite directions for

different datasets: For example, a lower weight decay strength leads to generally better results

for GAL4, while the best results for SUMO1 are obtained when using the strongest weight

decay. This seems to correlate with the performance of independent models as reported in [9]

(Fig 3 there). There the authors report that for example for SUMO1, an independent model

trained directly on the training data performs better than EVMutation, which is based on a

pairwise model. For GAL4 (called GAL1 in [9]), on the other hand, an independent model per-

forms significantly worse than EVMutation. It is tempting to speculate that the stronger weight

decay suppresses pairwise and higher-order interactions in the VAE, which in the case of

SUMO1 seems to improve the performance and in the case of GAL4 decreases the perfor-

mance. This would indicate that for SUMO1, some of the patterns the models capture in the

data are not in agreement with the experimentally measured fitness values. We corroborate

this finding in later sections.

We note that for all datasets, we can find a VAE model that outperforms EVMutation in

terms of mutational effect prediction. However, since we use the same experimental measure-

ments to assess the performance of extracted models in later sections, choosing the best model

based on these results might introduce biases. Since the number of hidden units and the size of

the latent dimension seem to be less important, we fix these to 40 and 5 respectively, and run

our pipeline for all five weight decay values. Within this subset of the trained models, there is

always a model that performs as well or better than EVMutation (see green bars in Fig 4),

except for UBE4B. On the same time, the performance is often very poor for specific weight

decay settings: Setting for example strong weight decay of 0.1 for GAL4 reduces the Spearman

correlation with the experimental data to well below 0.5, while EVMutation gives a correlation

of more than 0.6.

3.2 Energy errors

In Fig 5 we show the error in the energies of extracted pairwise and independent models with

respect to the energies in the original models for ArDCA. As described in Section 2, we use

two different distributions D in Eq (7) for sampling the sequences used for the extraction of

the pairwise models: The uniform distribution (U) and the distribution of the original genera-

tive model (M). We evaluate the error on the 10% of test sequences that are farthest from the

training sequences in terms of the minimum Hamming distance (called ‘Test Distant’ in Fig

5), on the 90% remaining sequences (called ‘Test Close’ in Fig 5) and on the sequences from

the mutational datasets.

The error in the plot is the root mean squared error, normalized by the range, i.e.,

Normalized RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM

m¼1
ðEMðsmÞ � E

pwðsmÞÞ
2

r

maxm EMðsmÞ � minm EMðsmÞ
;

ð8Þ

where fsmg
M
m¼1

is the set of sequences on which we calculate the error, EM is the energy of the

original model, Epw the energy of the extracted pairwise model and maxm EM(sm) and minm

EM(sm) are the maximum and minimum energies of the original model on the dataset.
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The error for pairwise models is considerably smaller than for independent models, which

is evidence that the original ArDCA models are indeed including at least pairwise interactions.

In most cases, the error drops significantly when using the model distribution M for extraction

instead of the uniform distribution U. This can be taken as evidence that the original models

indeed include higher-order interactions and corroborates the idea that focusing on a specific

part of the sequence space improves the quality of the extracted model on there. On the same

time, the errors as percentages are relatively low for the extracted pairwise models: The errors

are between 1% and 10% when using uniform samples and around 1% or below when using

samples from M for extraction. This indicates that the ArDCA models are relatively close to

pairwise models in the space around the training and test sequences.

Interestingly, the error on the test sequences distant from the training set is similar or

smaller than the error on the test sequences closer to the training set. The largest error is on

the sequences from the mutational dataset, which are very close to the training set. One possi-

ble explanation for this is found in Fig 6, where we plot for the test sequences of the BRCA1

dataset i) the energies of the test sequences in the original model; ii) their standard deviation at

a given Hamming distance; iii) the absolute error on single sequence when comparing the

energies from a model extracted with sequences sampled from the original model distribution;

Fig 4. Spearman correlation with experimental data of original (O) and extracted models (PW/U, PW/M, IND/U, IND/M) for VAE

models. Shown is the Spearman rank correlation between the experimental data and the energies of the original model (O), the energies

of the pairwise and independent models extracted using samples from a uniform distribution (PW/U and IND/U), and the energies of the

pairwise and independent models extracted using sequences sampled from the original model distribution (PW/M and IND/M). The

rows correspond to different weight decay settings in the original model, as indicated on the right.

https://doi.org/10.1371/journal.pcbi.1010219.g004
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iv) the root-mean squared error, all in dependence of the normalized Hamming distance to

the closest sequence in the training set. As can be seen in the upper right panel, there is an

inverse relation between the standard deviation of energies in the original ArDCA model and

the distance from the training set. The root-mean-squared error of the energies (the error

defined in 8 without the denominator), shown in the lower right panel, closely follows this

relation, meaning that the root-mean-squared error decreases on test sequences farther from

the training set. We therefore speculate that the original model is more discriminative on

sequences close to the training set, making it harder for the extracted pairwise model to repro-

duce the energy fluctuations there.

In Fig B3 in S1 Appendix we also show a scatter plot of the test sequences and the sequences

of the mutational training set.

We show the errors for the VAE models with different weight decay settings in Fig 7. The

general trend is very similar to the one described for ArDCA above, albeit with larger errors,

indicating that the VAE models are less well described with pairwise models than ArDCA

models. However, using sequences from the model distribution for extraction the error for

pairwise models is mostly well below 10% on test sequences and, depending on the weight

decay setting, often close to 1%. This indicates that when focusing on the part of the sequence

space close to training and test sequences, the models can still be well approximated with pair-

wise models.

The performance of extracted pairwise and independent model seems to be closer together,

which can be taken as evidence that the VAE models rely less on pairwise interactions. Also,

the difference between extracted pairwise and independent models seems to increase when

switching from using uniformly sampled sequences for extraction to sequences sampled from

the original model distribution.

3.3 Comparing extracted couplings to EVMutation

Given that EVMutation is based on a pairwise model, we can directly compare the couplings

from the extracted models to the ones obtained from EVMutation. In Fig 8 we plot couplings

Fig 5. Errors in energies of the extracted pairwise and independent models with respect to the original ArDCA

models. The three columns correspond to three different datasets: “Test Distant” corresponds to the 10% of sequences

in the test set that have the largest distance to the training set in terms of minimum Hamming distance, “Test Close” to

the remaining sequences. The right-most column corresponds to the sequences in the mutational datasets. The colors

indicate whether the extracted model is an independent model (orange) or a pairwise model (green). Within every

column, the left bar (U) corresponds to models extracted with samples from the uniform distribution, the right bar

(M) to models extracted with samples from the distribution of the original models. The error shown is the normalized

root-mean squared error (see Eq 8. Note the logarithmic scale.

https://doi.org/10.1371/journal.pcbi.1010219.g005
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of pairwise models extracted with sequences sampled from the original model distribution

against EVMutation couplings. For the VAE models, we chose original models with weight

decay setting 0.01. As can be seen, the extracted ArDCA couplings follow the EVMutation cou-

plings more closely than the extracted VAE couplings, although both are correlated. This can

be seen as evidence that ArDCA models are closer to pairwise models directly trained on the

input data. We note that this correspondence could likely be more pronounced for ArDCA by

coordinating regularization strengths in EVMutation and ArDCA. This also suggests the pos-

sibility of using ArDCA with a subsequent extraction step as a training method for pairwise

models, which can in general only be trained approximately for realistic sequence lengths. We

leave this, however, for future research.

3.4 Mutational effect prediction using extracted models

The prediction of mutational effects is a typical field of application for the type of models ana-

lyzed in this work.

Fig 6. Energies and their standard deviations on BRCA1 test sequences. All plots share the abscissa, which shows the normalized Hamming distance of the test

sequences to the closest sequence in the training set.Upper left: Energies of individual test sequences in the original ArDCA model. Lower left: Absolute errors on

individual test sequences of a pairwise model extracted with sequences sampled from the original model distribution M with respect to the original energies.Upper
right: Standard deviation of the energies in the original model at a given distance. Lower right: Root-mean-squared error on all test sequences at a given distance for a

pairwise model extracted with sequences sampled from the original model distribution M with respect to the original energies.

https://doi.org/10.1371/journal.pcbi.1010219.g006
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Fig 7. Errors in energies of the extracted pairwise and independent models with respect to the original VAE models. The three columns correspond to

three different datasets: “Test Distant” corresponds to the 10% of sequences in the test set that have the largest distance to the training set in terms of minimum

Hamming distance, “Test Close” to the remaining sequences. The right-most column corresponds to the sequences in the mutational datasets. The colors

indicate whether the extracted model is an independent model (orange) or a pairwise model (green). Within every column, the left bar (U) corresponds to

models extracted with samples from the uniform distribution, the right bar (M) to models extracted with samples from the distribution of the original models.

The three rows correspond to different settings for weight decay during training. The error shown is the normalized root-mean squared error (see Eq 8. Note

the logarithmic scale.

https://doi.org/10.1371/journal.pcbi.1010219.g007
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Fig 8. EVMutation couplings versus Couplings from PW/M Models extracted from ArDCA and VAE. Shown are scatterplots for all datasets of couplings as obtained

from EVMutation after training versus couplings from pairwise models extracted using sequences sampled from the original model distribution, for ArDCA and VAE

(weight decay setting 0.01). Given that the number of couplings is very large, we plot in all cases a subset of 5000 randomly chosen coupling pairs. Before plotting, all

couplings were transformed to the zero-sum gauge.

https://doi.org/10.1371/journal.pcbi.1010219.g008

PLOS COMPUTATIONAL BIOLOGY Interpretable pairwise distillations for generative protein sequence models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010219 June 23, 2022 15 / 20



In Fig 3 we show the Spearman correlations between the experimental data and the energies

in the original ArDCA models (O), the energies of pairwise and independent models extracted

using samples from a uniform distribution (PW/U and IND/U) and the energies for models

extracted using sequences sampled from the original model distribution (PW/M and IND/M).

The red line indicates the performance of EVMutation, which is a pairwise model directly

trained on the training data. The pairwise models extracted using sequences sampled from the

original distribution reproduce the performance of ArDCA very closely, while pairwise models

extracted using uniformly sampled sequences show a drop in performance. This corroborates

the idea that while ArDCA models are not pairwise models in general, their characteristics on

the part of the sequence space where they are typically used can be reproduced by a pairwise

model.

Interestingly, for SUMO1 independent models extracted from the original models outper-
form the original models as well as extracted pairwise models. Since independent models are a

special case of pairwise models (see Eq 5), this means that additional variability captured in the

pairwise and original models hurts the performance in this case. For a possible explanation

one can note that the available experimental fitness values are for sequences close to a wild-

type sequence, and that the fitness landscape in this specific region might exhibit idiosyncra-

sies that are not mirrored in the fitness landscape at a larger scale or are even contradictory to

it. Another possible explanation is experimental bias, which might systematically generate val-

ues for fitness proxies that are contradictory to the evolutionary patterns in the datasets used

for training the models.

Another interesting case is BRCA1, where the original ArDCA models and the extracted

independent and pairwise model perform similarly, and both outperform EVMutation. This

suggests that one has to be careful when interpreting the relative performance of different

model types: Considering only the values for the original ArDCA and EVMutation models,

one might be tempted to conclude that ArDCA improves the predictions with respect to a

pairwise model due to the capture of higher-order constraints. However, our results suggest

that even an independent model can reach similar results. It is likely, therefore, that the differ-

ential performances in this case are less due to the intrinsic complexity of the model architec-

ture but to specific choices of regularization and other training settings.

In order to test the robustness of these results, we run the pipeline a second time for the

ArDCA models. Since the parameters of the original models and the fields and couplings of

the extracted models are initialized to 0, the important factors in terms of stochasticity are the

random seeds used for the splitting of the training and test sets, the random seeds used when

sampling from the original models and the random seeds used for the stochastic gradient

descent using the Adam optimizer when extracting the models. In Fig B2 in S1 Appendix we

show the same plot as in Fig 3, but with all of these seeds set to a different value. The results

show only minor variations.

In Fig 4 we show the results on mutation effect prediction for the VAE models for the dif-

ferent weight decay settings we tested. In most cases, the pairwise models extracted using

sequences sampled from the original model distribution follow the performance of the original

model more closely than pairwise models extracted using samples from the uniform

distribution.

Interestingly, there is always a weight decay setting for the training of the original VAE

model for which the independent model extracted using sequences sampled from the original

model distribution performs as well or better than EVMutation, with the exception of GAL4.

For SUMO1, the results corroborate the findings when using ArDCA: The original model per-

forms better when a strong weight decay is used, and the extracted pairwise models follow this

tendency. For low weight decay values, however, the independent model extracted using
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sequences sampled from the original model distribution performs significantly better than the

original and the extracted pairwise models. As in the case of ArDCA, this can be taken as evi-

dence that any interaction that the original model might capture in the data is incompatible

with the experimental fitness values from the mutational dataset. We plot the fitness values

against the model energies and the respective ranks in Figures B4–B8 in S1 Appendix.

3.5 Contact prediction

Given that we have the explicit couplings for the extracted pairwise models, we can use stan-

dard methods from this field to predict structural contacts [27, 32] (see Section C in S1 Appen-

dix for the contact prediction pipeline and the PDBs used). We show the results in Fig 9.

For ArDCA, the contact predictions for the extracted pairwise models are largely the same,

irrespective of which distribution the sequences used for extraction come from, and also very

similar to the predictions from the original method. We note that the overall performance is

not particularly good. This can be explained, however, by the fact that we did not use hyper-

parameters optimized for contact prediction for ArDCA, but hyperparameters optimized for

generative modelling (see [9]).

The results for the pairwise model extracted from the original VAE models (trained with

weight decay set to 0.01) are similar, although the overall performance for contact prediction is

worse. This is in line with other recent results [13], where the authors show that VAE models

can learn to predict mutational effects well but structural characteristics poorly.

Fig 9. Contact prediction on YAP1 using extracted models. Top Row: Contact predictions vs. ground truth for the

topN = 30 predicted contacts for models extracted from ArDCA and the VAE (weight decay setting 0.01). Horizontal

and vertical axes show positions. True contacts are grey, true positives are green, and false positives are red. The upper

parts show the contacts for models extracted with the uniform distribution, the lower parts show the same for models

extracted with the original model distribution. The left-most plot shows the contact predictions for ArDCA from the

original method in [9]. Bottom Row: PPV plots for the top 200 predictions for the original ArDCA model and the

extracted pairwise model for ArDCA (left) and the VAE (right). The plots shows the fraction of true positives in

dependence of the number of top predictions taken into account.

https://doi.org/10.1371/journal.pcbi.1010219.g009
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4 Discussion

In this work, we provide evidence that the neural network based generative models for protein

sequences analyzed by us can be approximated well by pairwise distributions in the part of the

sequence space close to natural sequences, and in many cases even by the factorized distribu-

tions of independent models. The autoregressive architecture on which ArDCA is based seems

to be closest to a pairwise model after training. For the VAE, the results seem to at least indi-

cate that their pairwise projection is a very close approximation in the part of the sequence

space in which they are typically used, close to the data manifold.

We cannot of course exclude that the neural network models tested by us do extract some

meaningful higher-order interactions from the data, but the results seem to indicate that their

effect is rather subtle. This suggests that the general strategy outlined in [33], where the pairwise

part of the model is kept explicitly and an universal approximator is used for extracting higher-

order interactions, might be promising. However, the current work also highlights that one has

to be careful when ascribing improved performance of complex models to higher-order interac-

tions. Apart from the fact that it is not trivial to define unambiguously what constitutes a

higher-order interaction in the space of parameters due to gauge invariances, one also has to

show that it is indeed the higher-order interactions that lead to the improved performance. Sev-

eral works have highlighted that pairwise models, which are trained to reproduce the covariance

in the data, are capable of reproducing data characteristics that are not used during training, for

example three-point correlations [34]. At the same time, there are known cases where relatively

clear higher-order interactions can be captured from the data and which can be included in the

model, for example related to stretches of alignment gaps [35]. For the idea of combining a pair-

wise model with an universal approximator, this suggests that a promising approach is to regu-

larize the combined model in way to give more prior importance to the pairwise part, and

possibly to restrict the neural network to model few higher-order interactions.

Several interesting further lines of research suggest themselves. While the general idea of

approximating a pairwise distribution over fixed-length sequences to models trained on

unaligned data (like recent very large attention-based models [36]) seems to be ill-defined, the

approach of extracting a pairwise model for a small part of the sequence space as highlighted

in this work might still be feasible. Another interesting question is whether sparse higher-

order interactions can be efficiently extracted from neural network based models. It is for

example possible that methods like the Goldreich-Levin algorithm [37] might be adapted for

pseudo-boolean functions based on generative models for protein sequence data.
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Chapter 3

Conditioning on Structural
Information

3.1 Introduction to InvMSAFold: Expanding the Horizon of Pro-
tein Sequence Diversity

The effort to understand and design proteins has greatly advanced with the help of
deep learning models. These models are very good at predicting protein structures
and interactions, which has opened up new ways to design proteins. After learn-
ing that focusing on second-order interactions is crucial to understanding protein
behavior and distribution, our latest research introduces an advanced development
called InvMSAFold.

Building upon our exploration of generative models for protein sequences, we
advance our research by integrating additional guidance into the generation process.
Our objective is to incorporate external information into our generative models. In
this study, we achieve this by conditioning the generative process on the structural
information of proteins. This method leverages the foundational understanding of
protein sequence and structure relationships, aiming to generate a diverse set of
protein sequences that fold into a specified structure.

3.1.1 From Model Distillation to Sequence Diversity

The preceding work on model distillation highlighted the significance of second-
order correlations in understanding the generative capabilities of DL models for pro-
tein sequences. Building on this foundation, InvMSAFold seeks to extend the appli-
cation of these insights, by applying the idea of second-order interaction and recon-
struction to the field of inverse folding. We remind that inverse folding represents
the task of generating the sequence for a fixed fold. For example, proteinMPNN [53]
is known to produce sequences that fold extremely close to the actual protein struc-
tures, often resembling them more closely than the variations found within a protein
family. This can lead to the fitting of structural details, where the model might be
focused on mimicking specific structures rather than capturing broader functional
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properties. We transition from the recovery of single sequences to the generation of
entire datasets, aiming at capturing the entire diversity of sequences in this family.

3.1.2 Innovations and Contributions of InvMSAFold

InvMSAFold introduces a methodological advancement in the world of inverse fold-
ing by focusing on defining a probability distribution over the entire space of se-
quences that can fold into a given structure. This distribution is designed to capture
the second-order correlations observed in MSA of homologous proteins, facilitating
the generation of protein sequences that are not only structurally consistent with the
target fold but also exhibit a high degree of sequence diversity.

Natural homologs typically fold into nearly identical structures, and InvMSAFold
aims to replicate this by generating sequences that not only fold into almost the same
structure but also encompass the diversity of sequences possible for that structure.
This approach mirrors the variation seen in a protein family, where despite minor
differences, the sequences are structurally compatible. Therefore it varies from tra-
ditional inverse folding algorithm that aims at recovering a specific sequence and
consequently generates much less diversity. The real challenge here is to explore
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Traditional Inverse Folding recovers
the original sequence

InvMSAfold aims at capturing the
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with this fold

Figure 3.1: This figure summarizes the concept behind this project. From an input backbone, tradi-
tional inverse folding uses a neural network to predict the original sequence of the backbone. How-
ever, the space of sequences able to fold (or nearly fold) into a predefined shape is vast. It is shown
schematically on the right where we map each sequence to the RMSD of its fold with respect to the
input structure. Of course, the sequence has an RMSD of 0, but the space of low RMSD is much
larger. The green arrow shows the aim of InvMSAfold to recover the complete landscape and retrieve
the full width of sequences with an input fold.

and describe the sequence space that is compatible with a given structure.
Our empirical evaluations demonstrate InvMSAFold’s high performance in pre-

serving structural integrity, as evidenced by comparative analyses with the ESM-IF1
model. Metrics such as RMSD score indicate a more faithful retention of the na-
tive structure, even for sequences significantly divergent from the original. This

52



achievement underscores the method’s effectiveness in balancing sequence diversity
with structural fidelity, offering valuable insights into protein adaptation and engi-
neering.

3.2 Paper: InvMSAFold
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Abstract

We present InvMSAFold, a method for generating a diverse set of protein sequences
folding into a single structure. For a given structure it defines a probability distribu-
tion over the space of sequences. This distribution captures second-order correla-
tions observed in Multiple Sequence Alignments (MSA) of homologous proteins.
Our innovation lies in generating highly diverse protein sequences while preserv-
ing structural and functional integrity. This approach offers exciting prospects,
particularly in directed evolution, by providing diverse starting points for protein
design.

1 Introduction

Inverse folding aims to predict amino acid sequences that fold into a given protein structure and
plays a fundamental role for example in the protein design pipeline of RFDiffusion [1]. Recent deep
learning approaches such as ESM-1F [2] or ProteinMPNN [3] achieve remarkable accuracies in this
task. However, instead of predicting a single ground truth sequence, it is often desirable to have a
model that is able to generate a variety of different sequences, for example starting from a source
sequence [4, 5] and taking different molecular environments into consideration [6]. Such approaches
allow to expand the sequence design space while preserving structural consistency, allowing for a
larger pool of sequence when selecting for additional properties like thermostability, solubility or
toxicity.

In this work, we present a method that is able to generate diverse protein sequences given a structure,
including sequences far away from the natural sequence. Our method is potentially applicable in
various domains. In drug discovery, for example, it would allow for the generation of large amount of
diverse candidates, enabling further selection optimized for properties like bioavailability. Similarly,
in biotechnology and enzyme engineering, it could facilitate the creation of enzymes with tailored
properties, such as improved stability and activity under varying conditions.

Recent architectures for inverse folding are based on encoder-decoder architectures, where a structure
is encoded and a sequence decoded. Such models then generally take into account only the native
sequence of a given structure, trying to maximise its output probability. While such an approach
maximises native sequence discovery, it might fail to properly model the sequence diversity known to
exist for a given structure(EXPAND).
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In our approach, we veer off from this paradigm, and instead
use the decoder to generate the parameters of a pairwise
probability distribution which, rather than modelling solely
the native sequence, models the sequence diversity of the
multiple sequence alignment(MSA) of the native sequence
[7]; i.e. we aim at capturing the broader probability distribu-
tion of sequences that correspond to a specific fold, rather
than maximising the native sequence output probability. As
for the output probability distribution we chose direct cou-
pling analysis (DCA) [8], which is a statistical model that has
proven to describe well the amino acid statistics of protein
families by reproducing the second-order correlation of the
Multiple Sequence Alignment (MSA), and has proven to be a
good generative model [9]. DCA trains a Potts model, which
originates from statistical mechanics and is a generalization
of the Ising model for ferromagnetism.

Homologous sequences are known to have very akin folds, hence DCA is well-suited to efficiently
capture the diversity we want to uncover. Indeed in [10], the exploration of large scale library of
mutants, enabled to estimate the importance of different order for capturing the fitness. It revealed
that first and second order are pivotal in this understanding, contrary to the others statistics. While
we use MSAs of families of homologous proteins when training, during inference we only use the
structure of a protein in order to generate such a pairwise model. The generated pairwise model itself
is very light-weight and can be used for rapidly generate a large diversity of sequences for the input
structure.

We show that the models we generate are able to create sets of sequences that capture the diversity of
the protein family better than other models and are able to find sequences far away from the natural
sequence that are predicted to still fold into the same structure.

2 Methods

In this Section, we describe the components of our architecture, InvMSAFold, and its training
procedure.

Inverse folding methods typically define a probability distribution p(s|X) for a sequence s given back-
bone coordinates X . Most deep learning based methods structure this distribution auto-regressively,
using p(σ|X) =

∏N
i=1 p(σi|σi−1, . . . , σ1,X), where N is the sequence length, and train by mini-

mizing the loss of the true sequence for the backbone coordinates X .

Both of these choices have drawbacks: Sampling amino acids auto-regressively requires a full forward
pass through the neural network for every generated token, making it very expensive to use the models
in a virtual-screening like setting, where a large number of sequences are scanned for properties
beyond folding into structure X . Secondly, minimizing the loss on the true sequence ignores the fact
that there are many different sequences that might fold into the same structure. Even if the training
is successful, one would expect the resulting distribution to be peaked around very few sequences
and not capturing other parts of sequence space that might be interesting for the problem one tries to
solve.

The InvMSAFold architecture. In this paper, we propose InvMSAFold, which deviates from
the type of methods described above in two important ways: Instead of directly returning the
probability distribution over amino acids, we use the neural network to generate a set of parameters
for a secondary probability distribution that is then used for sampling amino acids, i.e. we define
p(σ|X) = p(σ|θ(X)), where θ(X)) are parameters of a light-weight probability distribution
generated by a neural network that is given the backbone coordinates X as input.

We explore different choices for parameterizing the distribution. In order to go beyond distributions
that treat different positions in the protein as independent and ensure sufficient expressivity, we focus
on pairwise models [7], which have an experimentally validated ability capture structure-sequence
relationships [9]. We therefore train the neural network to learn on the mapping X → Θ = J ,h,
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where J and h are parameter tensors of size N × q ×N × q resp. N × q. As is common in pairwise
models, we call the quantities hi(a) the fields, indexed by position i and amino acid type a the
fields, and the quantities Jij(a, b), indexed by a pair of positions and a pair of amino acid types, the
couplings. The former describe the propensity of an amino acid to appear at a given position, while
the latter describe the propensity of pairs of amino acids appear at pairs of positions. We show below
how to define a distribution over sequences of amino acids given these parameters.

The complete InvMSAFold architecture neural network composed of two parts, the structure encoder
and a decoder which outputs the fields and couplings, see Fig. 1.
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 GVP-Layer
 GVP-Layer
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Decoder LayerTransformer

Decoder LayerTransformer
Decoder Layer
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Figure 1: Left: Decoder architecture up to the outputting of the low-rank tensor V . Right: how V is
used to produce couplings and fields for the Potts model.

For the encoder, we use pre-trained encoder ESM-IF1 model [2] which follows the GVP-GNN
architecture of [11]. This encoder gives a rotationally invariant representation of the input X .

The decoder takes as input batches of encoded structures, padded to a common length L. The
sequence is embedded to a L × D tensor (D = 512 in our experiments) and passed through 6
transformer layers with 8 attention heads. The output is projected to a L ×K × q tensor V , with
K < L. Using V , we obtain a low-rank coupling matrix as follows:

Jij(a, b) =

K∑

k=1

vki (a)v
k
j (b). (1)

We note that in other settings, low-rank decompositons of J (1) have been shown to be as effective as
the full-rank counterparts [12].

The O(L) values for the fields h are predicted directly as part of the network output.

Pairwise and Autoregressive Pairwise Distributions Given the parameters J and h we explore
two different approaches to defining probability distributions over amino sequences. In all cases, the
distribution is fully determined by J and h and we do not need an MSA in inference.

The first distribution, a standard pairwise distribution [7], defines the probability ppw as

log ppw(σ|h,J) ∼
N∑

i=1

N∑

j=i+1

Jij(σi, σj) +
∑

i

hi(σi). (2)

While this distribution has been explored extensively for proteins [12], it has the disadvantage that
the normalization factor for Eq. 2 is intractable, and therefore also the likelihood. We therefore use
pseudo-likelihoods for inference [13] and resort to MCMC for sampling.

As an alternative, we also consider an efficient auto-regressive variant of pairwise models [14], called
ArDCA, which defines the autoregressive distribution par over amino acids in a sequence as

log par(σi|σ1, . . . , σi−1,h,J) ∼ hi(σi) +
i−1∑

j=1

Jij(σi, σj). (3)
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This parameterization has the advantage that the normalization factor is tractable. This allows for
calculating the likelihood explicitly in training and inference and also for efficient sampling.

Since the number of parts in the sum in Eq. 3 depends on the position i, we rescale the couplings as

Jij ←
Jij

max(i, j)
, (4)

see [15]. We found this to be beneficial for training and note that without this scaling the neural
network would have to generate couplings of significantly different magnitudes for different sites,
something that is not a problem if we were to optimize the couplings directly, as in previous research
[14].

Training on Homologous Sequences In most other works [2], inverse folding models are training
to predict the ground truth sequences only. In this work, we aim to generate a distribution that
captures the complete sequence space that is compatible with the input structure X . To this end,
we use the ground truth sequence corresponding to a structure X and extract an MSA MX from
sequence database (see next section for details). We then use the pairs (X,MX) for training by
taking the mean negative pseudo log-likelihood of a random subsample of sequences in MX given
the parameters generated by the network.

For both model specifications (2), (3) we then add a regularizing L2 term for both the fields and the
couplings; this should concurrently solve the gauge-invariance inherent in the models, while more
importantly oppose overfitting.

For the first standard pairwise distribution (2) we select a batch size of 1, a subsample size for MX

of 64, rank K of 48, a learning rate of 10−4 and equal penalties λh = λJ = 10−4 for fields and
couplings, while for (3) we select those parameters trough hypertuning. We refer the reader to the
dedicated appendix subsection A.3 for the details. Both models are trained with AdamW optimizer
for a total of 94 epochs.

3 Results

3.1 Data Collection and Preprocessing

To train and evaluate models we rely on the curated CATH [16] 4.2 40% non-redundant data set,
in which structures are grouped by their CATH (class, architecture, topology/fold and homologous
superfamily) classification. We leverage this dataset to evaluate the generalization performance of
our models in three different settings. To this end, we split the CATH dataset into a training set and
three testing sets, which we label respectively sequence, structure and superfamily. Sequences in the
sequence testing set have homologous sequences in the training set. Sequences [continue here]

80% of the sequences are divided into train and sequence testing data set: the latter contains those
structures of which we have seen an homologous during the training. The structure test data set,
which contains 10% of sequences, has structures not seen during training, but of which we have
seen a structure belonging to the same superfamily. Finally, in the superfamily test dataset we have
sequences of which we have not even seen an element belonging to the same superfamily during
training: these sequences hence have very different folds from the one seen during training, and hence
test our models capacity to generalize to unseen structures.

Once we have divided the structures of CATH as detailed above, for each structure we generate a
MSA searching for homologous sequences inside the comprehensive Uniprot50 data set. To obtain
the MSAs we leverage the MMseqs2 (Many-against-Many sequence searching) software, which
allows for accurate and fast generation of many MSAs.

3.2 Second Order Reconstruction

In this paper section, we highlight the importance of looking at pairs of amino acids, known as
second-order reconstruction, in machine learning for protein domains. Taking Direct Coupling
Analysis (DCA) as an example, we move beyond studying individual amino acids and focus on
understanding the relationships between pairs of residues in protein sequences. DCA, recognized for
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its ability to capture co-evolutionary patterns, serves as a key method in reproducing essential second-
order information. This approach is particularly crucial for grasping the complex protein landscape,
especially within protein domains where local interactions play a significant role. Prioritizing the
analysis of these pairs enhances the accuracy of predicting protein structures, providing deeper
insights into how amino acids collaborate. The ability of a generative model to reproduce second
order has been proven to be good metric for measuring how well the protein landscape is captured.
Reproducing well this pattern enables efficient sampling of functional protein [9]. We compared the
three different models in their ability to reproduce the covariance matrix of the MSA for structures
belonging to the structure and super-family test data sets. For details on the experimental procedure,
we refer to the Appendix.

Quartiles
Ardca Potts ESM

Superfamily Structure Superfamily Structure Superfamily Structure
First quartile 0.43 0.45 0.50 0.53 0.60 0.60

Median 0.31 0.31 0.43 0.42 0.53 0.53
Third quartile 0.23 0.21 0.29 0.28 0.37 0.35

Figure 2: Comparing the correlations between generated and true samples for ArDCA(blue), potts(red)
and ESM-IF1(green). On the top we have the results for the sequence in the structure test dataset, on
the center of the superfamily test dataset and on the bottom we have a table giving a more quantitative
analysis of the above plots

As we can see from Figure ??, ArDCA and Potts do both significantly better than ESM-IF1. ArDCA
seems also to dominate potts; especially its performance does not seem to deteriorate with the length
of the input sequence, while especially ESM-IF1, and to a lesser extent Potts, exhibit this feature. For
a more quantitative analysis, we can look at Table 2; as we can see the results is robust to the two test
dataset under consideraion.

Such a result signal that both Ardca and Potts are able to better learn the diversity within the MSA,
and as a result then are better suited to generate sequences that better explore the complexity of the
landscape of a MSA. On the other hand, esm1F, by only focusing on the native sequence, is not able
to capture it.

3.3 Sequence Space Exploration

In this subsection, we delve into an experimental exploration aimed at comparing the efficacy of
different sampling methods in navigating the sequence space, utilizing a natural sequence multiple
sequence alignment (MSA) as a reference benchmark. Our investigation centers on the principal
component analysis (PCA) of the natural sequence MSA, serving as a foundational framework for
subsequent analysis.

We initiated our investigation by computing the PCA component of the natural sequence MSA,
providing a robust foundation for comparative analysis. Subsequently, we conducted sampling
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Figure 3: This plot demonstrates the capacity of InvMSAfold ardca to explore the space. First, the
two main principal components of the natural were extracted. We then used esm and our two versions
of InvMSAfold to generate 2000 sequences conditioned on the pdb 1xqiA00. We projected all these
sequences on the two main components computed before and applied a kernel density estimation.
The three plots represent the diversity of the three models compared with the diversity of the natural
sequences. We also used this density estimate to compute the Kullbach-Leiber (KL) divergence
between the density of the natural data and the density of the sampled data. The values of these KLs
are written in the title of each subplots.

esm potts ardca
Structure 15.8 4.6 0.49

Superfamily 11.9 11.2 0.67
Table 1: Kullbach-Lieber Divervence between between Kernel Density of the natural sequence and
sampled sequence. More precisely, for each method (esm, ports, ardca we sampled 2000 sequences
for each backbone. We then project these sequences on the two main PCA components of the natural
MSA. In this 2D space, we apply a Gaussian kernel density estimator of kernel size 1.0. We then use
these densities to compute the KL divergence between the space of natural sequences and the one
generated by the inverse folding approach.

experiments from three distinct models: ESMLfold, INVMSAfold-Potts, and INVMSAfold-ArDCA.
A total of 2000 sequences were sampled from each model to capture a diverse representation of the
sequence space.

Plotting the projection onto the first two PCA components facilitated a comparative examination of
the exploration patterns exhibited by the sampling methods. Notably, the distribution of sequences
sampled from ESMLfold revealed a strikingly narrow focus around a single point in the sequence
space. This observation suggests a limited exploration capability inherent in the ESMLfold model,
potentially constraining its utility in capturing diverse sequence variants.

In contrast, sequences sampled from INVMSAfold-Potts displayed broader exploration across the
sequence space. However, a predominant tendency towards unimodal distributions hinted at a propen-
sity for the model to converge towards specific sequence motifs or modes. While INVMSAfold-Potts
exhibited a broader exploration scope compared to ESMLfold, its exploration remained somewhat
constrained within individual modes.

Remarkably, sequences sampled from INVMSAfold-ArDCA showcased a distinctly different ex-
ploration pattern characterized by comprehensive exploration across the sequence space. Unlike its
counterparts, INVMSAfold-ArDCA demonstrated an ability to detect and explore multiple modes
within the sequence landscape. This enhanced versatility and sensitivity highlight the potential of
INVMSAfold-ArDCA as a powerful tool for navigating complex sequence spaces and capturing
diverse sequence variants.

Our comparative analysis sheds light on the differential exploration capabilities of sampling methods
within the context of sequence space. While ESMLfold and INVMSAfold-Potts exhibit limited
exploration and propensity towards unimodal distributions, INVMSAfold-ArDCA stands out for its
comprehensive exploration and detection of multiple modes. These findings underscore the impor-
tance of employing robust sampling methods, such as INVMSAfold-ArDCA, for effective navigation
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Figure 4: comparison of the quality of the generated sequence under the constraint of increasing
hamming distance (normalized by protein length) from the native sequence. We started aggregated
the score of 14 pdbs from the superfamily set, and sampled from ESM-IF1 and our methods. We then
refold the sequence with alphafold and compare the refolded structure with the original one using the
RMSD. We observe the ESM-IF1 is not able to generate good sequences far away from the native
one. List of pdb used: 1otjA00 2ytyA00 1p9hA00 2o0bA02 1b34B00 1f6mA02 2hs5A01 2bh8A02
2de6A03 1ia6A00 4gc1A01 3sobB02 1xqiA00 4yt9A01

of sequence space and the discovery of diverse sequence variants with potential implications across
various domains of biological research and protein engineering.

3.4 Iso-Structure Exploration

In our pursuit of understanding the relationship between protein sequence variations and structural
deformations, we designed a controlled experiment that systematically explores the tolerance of a
protein structure to increasing sequence dissimilarity. This experiment provides a unique perspective
on protein structural robustness and represents a novel application of state-of-the-art computational
tools.

For a given protein structure of interest, we initiated the experiment by generating a spectrum of
sequence variants. We systematically increased the hamming distance of these variants from the
original native sequence. This divergence was achieved by progressively altering amino acids, thereby
introducing increasing levels of sequence dissimilarity while preserving the protein’s overall fold.

To assess the impact of these sequence variations on the protein structure, we employed a temperature-
based exploration approach. Starting from sequences with minimal dissimilarity from the native
sequence, we gradually elevated the temperature. This step allowed us to reach sequences that were
further and further removed from the native sequence, effectively increasing the structural diversity
under consideration.

Following the generation of these sequence variants, we utilized the AlphaFold protein folding model
[17, 18] to refold the sequences. AlphaFold has demonstrated exceptional capabilities in predicting
protein structures accurately. We leveraged its predictive power to refold the diverse set of sequences
generated at different levels of sequence divergence.

To evaluate the structural fidelity of the refolded sequences, we conducted a comparative analysis
with the ESM-IF1 model, a prominent computational tool in structural bioinformatics. Specifically,
we measured the structural similarity between the refolded sequences and the native structure using
the RMSD 5, 4. Alphafold was used with no templates, and mmseq2 was used for the msa.

4 Melting temperature prediction

INVMSAfold is a valuable tool in molecular biology and bioengineering as it diverges from conven-
tional sequence-structure prediction models by prioritizing the generation of a diverse set of sequences
that adhere to a fixed structural fold. This unique approach has applications in protein engineering,
drug design, where the exploration of sequence space within a specified structural motif is crucial for
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Figure 5: comparison of the quality of the generated sequence under the constraint of increasing
hamming distance (normalized by protein length) from the native sequence. We started aggregated
the score of 14 pdbs from the structure set, and sampled from ESM-IF1 and our methods. We then
refold the sequence with alphafold and compare the refolded structure with the original one using the
RMSD. We observe the ESM-IF1 is not able to generate good sequence far away from the native
one. List of pdb used: 5i0qB02 4iulB00 2wfhA00 2egcA00 3oz6B02 3m8bA01 2pz0B00 2cnxA00
4k7zA02 1dl2A00 1vjkA00 1udkA00 3bs9A00

discovering novel functional variants, designing targeted drug candidates. The model’s applicative
strength lies in its ability to tailor sequences, enhancing for example thermal stability, mitigating
susceptibility to proteolytic degradation, or reducing potential cytotoxicity, all while upholding the
foundational protein structure and function. Anchored in this principled approach, INVMSAfold
aims to contribute to the systematic enhancement of lead proteins.

Protein stability refers to the ability of a protein to maintain its structural and functional integrity
under various environmental conditions. While different environmental factors can affect protein
stability, thermal stability is an important property of proteins, as many biological processes occur
at specific temperatures. Proteins that are less thermally stable are more prone to aggregate at
physiological temperatures leading to loss of activity, dysfunction or even the formation of toxic
protein aggregates.The thermal stability of a protein can be measured by its denaturation or melting
temperature (Tm), which is the temperature at which 50% of the protein loses its native structure and
activity or alternatively defined as the area under the melting curve.

In the past, measuring the stability of proteins required extensive work and resulted in limited data;
while the advancement of mass spectrometry-based thermal proteome profiling (TPP) has allowed
the development of an atlas of the thermal stability for roughly 50k proteins across different species,
the technical limitations, cost, and the labor-intensive nature of the experimental approach limit the
proteome and species amenable to thermal profiling. As a result, predicting protein thermal stability
has become a modern solution when experimental data is incomplete or when assessing thermal
stability is not easy. Recently a novel machine learning architecture, DeepSTABp [19], displayed
reliable and SOTA performance in regression-based prediction of cellular thermal protein stability.
Leveraging DeepStab, we want to assess the predicted Tm of the proteins coming from the different
models.

To do so, we follow a procedure analogous to that one of the iso-structure exploration; We generate
proteins from the different models from both the structure and superfamily test dataset under different
experimental conditions, and compare the predicted Tm, including also a sub-sample from the MSA.
To avoid clutter we avoid reporting details of the experiment here and refer the reader to the appendix;

As we can see by Figure 6 and Figure 7, both Potts and Ardca outperform consistently esm in
predicted Tm across different optimal growth temperatures and CATH superfamilies. This suggests
that both Potts and arDCA,by leveraging the MSA’s diversity during training, are able to generate
explore better the MSA space of a given structure, and generate more thermostable proteins at higher

8



Figure 6: Predicted melting temperatures for different domains inside the structure test dataset at
different optimal growth temperatures and lysate TPP enviroment. Box plots are created from 50
synthetic sequences from every model at different hamming distance from the native one. For the
MSA we randomly select 100 sequences from the MSA.

Figure 7: Predicted melting temperatures for different domains inside the superfamily test dataset
at different optimal growth temperatures and lysate TPP enviroment. Box plots are created from 50
synthetic sequences from every model at different hamming distance from the native one. For the
MSA we randomly select 100 sequences from the MSA.

9



hamming distance than esm both for homeotherminc and heterothermic organisms. Such a feature
could be very valuable in a protein design feature, where it would allow to subsample proposed
proteins for thermostability ...... (extend here)

5 Discussion

Our findings reveal that our approach consistently outperforms the ESM-IF1 model in preserving the
native structure of the protein for sequences that are far removed from the original native sequence.
The RMSD score and pLDDT metrics consistently demonstrate a higher level of structural fidelity in
the refolded sequences generated using our approach.

This experimental setup and comparative analysis underscore the effectiveness of our methodology in
exploring the structural consequences of sequence diversity, emphasizing its potential in applications
ranging from protein engineering to understanding the adaptation of proteins in diverse environments.

Our study marks a significant shift in the domain of inverse folding, where the conventional focus
was on decoding the original sequence from a known structure. In contrast, our research addresses
a more realistic scenario where we possess the native sequence but seek to generate alternative
sequences. This novel approach, aimed at expanding sequence diversity while preserving the fold,
carries profound implications for a range of applications. By systematically generating alternative
sequences for a given protein structure, we open new avenues for filtering and selecting sequences
based on desired properties, such as improved thermostability, altered substrate specificity, or reduced
toxicity.
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Chapter 4

Conditioning Generation on
interacting sequence

Advancing computational protein design to include interaction partners as a condi-
tioning factor is a promising perspective in the field. This progression aims to design
proteins that precisely interact with designated protein or domains. This research
phase is composed of two papers and focuses on encoding interacting sequences and
decoding optimized protein designs for these interactions.

The initial paper sets the stage by presenting a novel methodology for generating
sequences of protein domains designed to interact with specific partner domains.
This approach treats the generation problem as one of domain-to-domain transla-
tion, utilizing unsupervised learning to map the relationship between interacting
protein domains. The project expands the MSA-based, family-specific models, by
enabling family-specific models informed by the rest of the protein, informed by
the context in which a specific domain is inserted. By focusing on the translation
between given interactor domains to new ones, this paper highlights the model’s
ability to understand and predict the complex patterns of protein interactions, lay-
ing the groundwork for subsequent research in conditional protein design.

Building on the concepts introduced in the first paper, the second study, TULIP,
applies and extends the unsupervised learning framework to the specific context of
T-cell receptor (TCR) and epitope interactions. This paper addresses the challenges
of data scarcity and bias by leveraging the transformer architecture, demonstrat-
ing the model’s effectiveness in predicting bindings between TCRs and epitopes.
TULIP’s success in navigating the complexities of the immune response exemplifies
the potential of unsupervised generative models to generalize across different types
of protein interactions.
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4.1 Advancing Protein Design through Domain-to-Domain Trans-
lation

The field of computational biology faces the intricate challenge of designing proteins
for specific functionalities within the complex framework of multi-domain proteins
and protein-protein interactions (PPIs). Generative models, heavily inspired by ad-
vancements in natural language processing (NLP), have been used for generating
amino acid sequences [40, 67]. However, these models frequently overlook the nu-
ances of functional specificity and contextual interactions crucial for effective pro-
tein design. This study introduces a domain-to-domain translation approach to ad-
dress these limitations, aiming to generate protein sequences that are specifically
designed to interact with designated partner domains. This method not only marks
a shift towards incorporating context in protein design but also demonstrates its ap-
plicability to PPIs, as shown in the generation of binding partners in the Histidine
Kinase Response Regulator interaction.

This approach underscores the importance of accounting for the complex inter-
play between protein domains within the same molecule, which is essential for the
functional complexity and specificity of cellular mechanisms. Utilizing data from
natural multi-domain proteins, the research redefines the protein design process as a
translation task, focusing on the creation of sequences that are both structurally and
functionally aligned with their interaction targets. This strategy diverges from con-
ventional practices by emphasizing the generation of interaction-specific sequences,
establishing a more nuanced and context-aware framework for computational pro-
tein design.

4.1.1 Context-Aware Modeling in Protein Sequence Design

Moving beyond the conventional modeling paradigms, our approach adopts a context-
aware perspective, acknowledging that proteins exist within specific organisms and
are subject to unique evolutionary pressures. This recognition of the nuanced fit-
ness landscape necessitates a modeling strategy that can incorporate elements of the
protein’s context into the design process.

Interacting protein families serve as a significant component of this context, in-
fluencing the functional and structural attributes of protein domains. Our method
maintains the strengths of highly specialized MSA-based, family-specific models
while integrating additional contextual information to inform the design with in-
teracting domains. This balance enables the creation of domain sequences that are
not only good representing of their family but also get specifically fit to be inserted
into their specific biological context.

Moreover, this study has explored the task of matching pairs of interacting do-
mains. It consists of predicting which sequence in an MSA is binding with another
sequence from a second MSA. The goal was to do it in a completely unsupervised
manner, leveraging only conditional likelihood. Indeed intuitively, we understand
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that a specific sequence will likely have a higher probability when conditioned with
the right interacting partner. The ability to match pairs efficiently without super-
vision, therefore without having to generate negative examples of non-interacting
partners will be the starting point of the next work.

4.1.2 Innovations and Future Directions

Employing Transformers for this domain translation task allows us to harness the
powerful sequence-to-sequence prediction capabilities demonstrated in language
translation. This architectural choice facilitates direct application to the transla-
tion between protein domains, showing promise over traditional shallow autore-
gressive models. Our methodology stands at the crossroads of generative modeling
for domain-specific applications and the broader potential of Transformer architec-
tures to capture complex data patterns.

One limitation of the current approach is its focus on single-domain contexts
when predicting the sequence of an interacting domain. Future research could ex-
pand this context to include multiple domains or other relevant biological informa-
tion, enriching the model’s predictive capacity. Future work could investigate the
potential of applying transfer learning from extensive domain-domain interaction
datasets to specific PPI tasks. Having demonstrated effectiveness in PPI through the
HK-RR example, it would be intriguing to assess if pretraining on a broad set of
domain-domain interactions enhances performance when subsequently finetuned
to a particular PPI task.

4.1.3 Domain-to-Domain Translation Paper
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Abstract
Motivation: Being able to artificially design novel proteins of desired function is pivotal in many biological and biomedical applications. Generative
statistical modeling has recently emerged as a new paradigm for designing amino acid sequences, including in particular models and embedding
methods borrowed from natural language processing (NLP). However, most approaches target single proteins or protein domains, and do not take
into account any functional specificity or interaction with the context. To extend beyond current computational strategies, we develop a method for
generating protein domain sequences intended to interact with another protein domain. Using data from natural multidomain proteins, we cast the
problem as a translation problem from a given interactor domain to the new domain to be generated, i.e. we generate artificial partner sequences
conditional on an input sequence. We also show in an example that the same procedure can be applied to interactions between distinct proteins.

Results: Evaluating our model’s quality using diverse metrics, in part related to distinct biological questions, we show that our method
outperforms state-of-the-art shallow autoregressive strategies. We also explore the possibility of fine-tuning pretrained large language models
for the same task and of using Alphafold 2 for assessing the quality of sampled sequences.

Availability and implementation: Data and code on https://github.com/barthelemymp/Domain2DomainProteinTranslation.

1 Introduction

Generating novel protein sequences with desired properties is
one of the key challenges of computational biology. It is likely
that machine learning methods will play an important role in
this task, being already used for the generation of new
enzymes, biological sensors, and drug molecules (Wu et al.
2021). A promising approach is to leverage deep generative
models, which use neural networks for learning probability
distributions from known, naturally occurring protein
sequences (Alley et al. 2019, Madani et al. 2020, Hawkins-
Hooker et al. 2021, Shin et al. 2021, Repecka et al. 2021).
Apart from other uses, like the prediction of mutational
effects (Riesselman et al. 2018), these models can be used for
protein design by selecting high-probability sequences (possi-
bly under constraints) from the learned distribution.

Naturally occurring protein sequences are often comprised
of several domains, and domains can be classified into different
families (Alberts 2008). Models that work on the domain level
usually use as training data a single multiple sequence align-
ment (MSA) (Durbin et al. 1998), containing sequences from
the same domain family after aligning them, and make the as-
sumption that each sequence is constrained by the same fitness
landscape. This modeling paradigm neglects the dependence of

the sequence constraints on the specific context corresponding
to each organism, including other proteins interacting with the
sequence or other domains on the same protein. Together with
the fact that most of the crystallographic structures deposited
in the PDB database (Burley et al. 2017) are resolved only at
the single domain level (Zhou et al. 2022), this poses interesting
questions about the limitations of current approaches, e.g.
when predicting the relative orientation of multidomain pro-
teins (Wu et al. 2021). Another field where this issue arises is
immunology, where monoclonal antibody experiments are typ-
ically performed on mouse models and only later tested in
humans. This is related to the so-called humanization problem,
i.e. how to graft a promising variable receptor region (CDR)
from a murine to a human context (Clavero-Álvarez et al.
2018). For protein design, this approach may be especially rele-
vant. When redesigning a protein in order to increase its fitness,
one usually only has to redesign a specific active domain inside
the protein (Cheng et al. 2014, Reimer et al. 2019, Marchand
et al. 2022). Being able to condition this process on the context
(like, e.g. interacting domain inside the protein, or interacting
domain of another protein) could potentially improve the pre-
cision of the design.

Known families of interacting domains can be organized in
a paired MSA (pMSA), where the aligned interaction partners
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are concatenated (Muscat et al. 2020). Given the evolutionary
pressure for maintaining functional interactions between pro-
teins, amino acid substitutions at interaction surfaces are not
independent between the interaction partners. The interacting
sequence therefore can be used as additional information
when generating a novel sequence. The current work
addresses the task of generating domain sequences given an
interacting domain sequence. Given that this task is similar to
translation tasks in natural language processing (NLP), we ex-
plore the use of Transformers in this context. While there is
some recent work using Transformers for translating between
protein sequences (Wu et al. 2020) for specific applications,
there is, to the best of our knowledge, no systematic explora-
tion of this idea on the level of protein domain families on a
diverse dataset. We explore different architectural choices,
and regularization schemes and compare our results with a re-
cently published shallow autoregressive method (Trinquier
et al. 2021), which we use as a baseline. We also compare on
a smaller scale to fine-tuned large protein language models,
using Rita (Hesslow et al. 2022), and explore how structural
predictions from Alphafold 2 correlate with our results.

The general idea of this work is summarized in Fig. 1.
Consider a protein with at least two interacting domains,
where interaction is defined as having a pair of amino acids at
a distance of less than 8 angstrom. We then search a database
of proteins for other sequences where these domains co-occur
in the same protein and assemble the pMSA and use it for

training the Transformer to translate from one domain to the
other. The decoder being a causal language model, we can ef-
ficiently calculate the probability of a target sequence given
the input sequence. This probability enables us to evaluate the
compatibility of domains, which can be used for matching a
domain to an interacting partner among several possible part-
ners. The model is generative in that it can be used for gener-
ating a novel target sequence given the input sequence. Given
a context, we can generate a new “translation” or target se-
quence and evaluate the new de novo proteins. In this setting,
we highlight that one model per pair of domains is trained.
We intend this article to fit into the line of work of domain-
specific models, like in Potts Models, Variational
Autoencoders (VAEs), and Restricted Boltzmann Machines
(RBMs) (Tubiana et al. 2019, Russ et al. 2020, Hawkins-
Hooker et al. 2021). We intend to provide a method for the
task of redesigning a specific domain/protein, e.g. to increase
its specific fitness for a specific task. We also explore the pos-
sibility of training one large Transformer for all the pairs,
without observing any clear transfer learning advantage cf.
Supplementary Appendix Section B.4.

2 Related literature

Generative modeling for protein design has a wide range of
applications and a considerable number of different models
have been proposed in the literature, recently especially

Figure 1. Summary of the work presented in this article. In the first box (Train), we extract interacting domains from known structures. We then build a

pMSA based on homologous sequences of these domains and train the Transformer to translate between them. In the second box (Evaluate), we use the

probabilities of the trained Transformers to match the source and target domains and assess the resulting accuracy. In the third box (Generate), we

sample novel target domains and use them for replacing the original target domain. We then use Alphafold to predict the structure of the modified

sequence and analyze the difference to the original structure.
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deep neural network models (Wu et al. 2021). These include
autoregressive models based on convolutional architectures
(Shin et al. 2021), generative adversarial networks (Repecka
et al. 2021), variational autoencoders (Hawkins-Hooker et al.
2021), LSTM-based architectures (Alley et al. 2019), and self-
attention-based architectures (Madani et al. 2020). The latter
work allows for sequence generation conditioned on tags cor-
responding to molecular function or taxonomic information.
Similar to results in NLP, scaling protein language models to
very large sizes seems promising for protein sequences
(Hesslow et al. 2022).

Transformer-based architectures (Vaswani et al. 2017),
which we use in the present work for sequence-to-sequence
prediction, have also been used, e.g. for creating generic
embeddings trained on almost all known protein sequences
(Rives et al. 2021), the prediction of mutational effects (Meier
et al. 2021), protein interaction prediction and protein family
classification (Nambiar et al. 2020), MSA-based language
modeling (Rao et al. 2021), protein contact prediction
(Zhang et al. 2021), inverse folding (Hsu et al. 2022,
McPartlon et al. 2022), and have been at the core of recent
breakthroughs in protein structure prediction (Jumper et al.
2021).

Recently, specific tasks have been cast as sequence-to-
sequence translation problems using Transformers, similar to
our approach. This includes, e.g. the generation of drug mole-
cules given a protein sequence the molecule should interact
with (Grechishnikova 2021) and the generation of short
signal-peptides guiding the secretion of industrial enzymes,
given the amino acid sequence of the enzymes (Wu et al.
2020).

Finally, non-neural network models borrowed from statisti-
cal mechanics have been extensively used in the context of se-
quence generation, e.g. generalized Potts models, a particular
form of Markov Random Field (Figliuzzi et al. 2018). This
type of model can be used for generating sequences using
MCMC strategies, albeit with a significant computational
cost. Relevant approximation strategies are, e.g. the recently
introduced autoregressive (shallow) variants (Trinquier et al.
2021), which show a similar performance to Potts models but
are computationally more efficient.

3 Data and methods
3.1 Dataset

Our data consist of 27 pMSAs containing domain sequence
pairs that are part of the same multidomain proteins, taken
from Muscat et al. (2020). The dataset contains only domain
pairs which form a structural contact in at least one resolved
PDB structure, making it likely that the two domains coevolve
in order to maintain compatibility. We also extended our
work to protein–protein interaction (PPI) by analyzing the
dataset of histidine kinases and response regulators (HK-RR),
which form the core of bacterial two-component signal trans-
duction systems. In the case of PPI, we consider one protein as
the context of the other, even if being on different proteins.
HK-RR are a good case for our framework, since there are
large and well-studied pMSA available (Anishchenko et al.
2017). Each dataset is comprised of M rows corresponding to
M sequence pairs, where M depends on the dataset and ranges
from a few hundred to more than 15 000, see Supplementary
Appendix Section A for a summary of the datasets used. The
sequences are already aligned using standard bioinformatics

tools (Finn et al. 2011), which means that sequences belong-
ing to the same domain family have the same length. Each
row l in a dataset represents a pair of domain sequences Bl

and Al, which are part of the same protein (or form an inter-
acting pair of proteins). Every sequence consists of symbols
denoting either 1 of 20 amino acids or an alignment gap,
making the total size of the vocabulary equal to 21.

The first sequence Bl ¼ ðbl
1; . . . ;bl

Nin
Þ is called the source or

input sequence and we denote its length by Nin. It is used as
an input to predict the second sequence, called the target or
output sequence, Al ¼ ðal

1; . . . ; al
Nout
Þ, which is of length Nout.

All source sequences fBlgM
l¼1 in the pMSA are members of the

same domain family, and all target sequences fAlgM
l¼1 in the

pMSA are members of the same domain family. Each dataset
was randomly split into a training set (70%) and a validation
set (15%). The last 15% were kept as a testing set in order to
be able to optimize hyperparameters for every domain, but
we did not use it in the experiments shown in this work. Since
sequences in an MSA are related to each other due to phylog-
eny, the validation set might contain sequences that are nearly
identical to some sequences in the training set. We therefore
further divided the validation set into two parts, one close to
the training set and one far from it. This allows us to control
for the effects of phylogeny on the performance metrics. This
second splitting was made based on the median of the
Hamming distance from the training set. The details for this
subpartition are found in Supplementary Appendix Section A.

3.2 Performance metrics
3.2.1 Log-likelihood and perplexity

An interesting property of autoregressive models, such as the
Transformer or arDCA, is that they define a tractable proba-
bility distribution over the space of sequences. Contrary to,
e.g. Potts Models and other energy-based models, we do not
have to evaluate a global normalizing constant over the com-
plete space of possible sequences. We can therefore calculate
the log-likelihood of a sequence A given B as

log PðAjBÞ ¼
XNout

i¼1

log ðPðaijB; a1; . . . ; ai�1ÞÞ: (1)

This is related to the cross-entropy, which we use as a loss
during training,

LðA;BÞ ¼ � log PðAjBÞ
Nout

; (2)

which we average over batches during training.
For assessing one aspect of the quality of our models, we

use the closely related perplexity PPðA;BÞ, which is a com-
mon quality metric for protein language models (Armenteros
et al. 2020), and can be defined as

PPðA;BÞ ¼
�YNout

i¼1

PðaijB; a1; . . . ; ai�1Þ
��1=Nout

: (3)

Below we show averages of the perplexity over the training
and validation sets and use the notation PPtrain and PPval for
these.
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3.2.2 Accuracy

While we use the perplexity as one metric for the quality of
our model, it is not always easy to interpret: A high perplexity
can result from a single wrong prediction with a high level of
confidence. We therefore also use the accuracy AðA;BÞ for
assessing our models. This measure takes the same input as
the cross-entropy (the conditional probability for every posi-
tion) and counts the fraction of times where the true amino
acid is the one with the highest probability, leading to

AðA;BÞ ¼ 1

Nout

XNout

i¼1

I
�

ai ¼ argmax
â2V

½PðâjB; a1; . . . ; ai�1Þ�
�
;

(4)

where V is the alphabet of symbols and I is an indicator func-
tion that is 1 if its argument is true, and 0 else. We define
Atrain and Aval as the average of the accuracy on the training
and validation set.

3.2.3 Matching specificity

We expect the interaction between two domains to affect the
probability distribution of the target sequence only margin-
ally, with much of the variability in the distribution being ex-
plainable by constraints internal to the target sequence. As a
consequence, a good performance in the quality measures de-
fined above might be due to the decoder being a good lan-
guage model of the target protein, possibly ignoring the input
sequence altogether. We therefore also evaluate the specificity
of the predicted target sequence given the source sequence.

Specificity is also related to the task of matching pairs of
protein sequences, which is an active domain of research in
bioinformatics (Bitbol et al. 2016, Gueudré et al. 2016,
Szurmant and Weigt 2018). We implement this task by sepa-
rating the source and target sequences in the validation
pMSA, resulting in two separate MSAs with the same number
of rows, one containing the source sequences and one the tar-
get sequences. We then shuffle the rows in the target MSA
randomly and attempt to use our models to find the permuta-
tion of the target sequences that matches the original order. In
order to create a matching based on a model, we calculate the
log-likelihood of every combination of source and target
sequences in the shuffled validation set and create a matching
between source and target sequences based on the Hungarian
algorithm (Kuhn 1955).

We then use the fraction of correctly matched pairs as an
additional metric for the performance of our model, formally
defining it as

Mval ¼ # of correctly matched pairs in validation set

Mval
; (5)

where Mval is the size of the validation set. Note that the diffi-
culty of this task increases with the size of the validation set,
since the expected fraction of correctly matched pairs using a
random matching is 1=Mval.

3.3 Transformers and baselines

We mainly used two Transformer models with different sizes,
calling one the shallow and one the large model. The shallow
Transformer consists of two layers with a single attention
head, has an embedding dimension of dmodel ¼ 55, and a for-
ward dimension of dff ¼ 2048. The large Transformer

consists of three layers and has an embedding dimension of
dmodel ¼ 105 with the same forward dimension and number
of heads as the shallow transformer. Further details on their
architectures can be found in Supplementary Appendix
Section B.1. Both models are relatively small compared with
Transformers trained on large protein sequence databases (cf.
e.g. Hesslow et al. 2022, Lin et al. 2022). This can be
explained in two ways. Firstly, when looking at one pair, the
task is simpler as we only need to model a small fraction of
the protein space where sequences can be aligned. Secondly,
the smaller the number of training points gives rise to a com-
plex overfitting problem that we analyze in Section 3.4 and
Supplementary Appendix Section C.1. We compare their per-
formance to the recently introduced shallow autoregressive
model called arDCA (Trinquier et al. 2021) and a fine-tuned
version of Rita L (Hesslow et al. 2022). While details on these
methods can be found in Supplementary Appendix Section
B.2, we note here that Rita was pretrained on a large corpus
of unaligned, full-length sequences, which is a different setting
from the pMSAs that we use for the Transformers. We, there-
fore, evaluated Rita only on unaligned, full-length sequences.
For arDCA, which we train from scratch on pMSAs, there is
no such mismatch and we can use it on the same pMSAs as
the Transformers. For the datasets used in this work, the
training time of the Transformer models ranges from less than
an hour to about 1.5 days for the large Transformer on the
largest dataset. The training was done using a single Nvidia
V100 GPU. When using entropic regularization, which we
will introduce in a later section, the training time increases sig-
nificantly. In addition, we also trained a larger Transformer
trained on nearly all the pairs. This Transformer has five
heads, four layers, and a dmodel ¼ 205. The goal was to under-
stand whether training on the joined dataset would enable
transfer learning, or if, by mixing sequences from different
families and alignments, it would make the task harder for
the model. To enable a fair comparison we also replaced the
<SOS> token with a token indicating the domain pair it was
modeling. We need to give this hint to help the model know
which family it has to generate. We held out three pairs of
domains in order to check whether this joined Transformer
was showing some transfer learning between families. We ob-
served a loss of performance of approximately 3% in accu-
racy, 7% in matching, and 0.7 in perplexity. We concluded
that a specialized Transformer for each pair, smaller and
trainable in a few hours, is more suitable for the protein do-
main redesign task of this work. Complete results of the
joined Transformer can be found in Supplementary Appendix
Section B.4. We provide a table with training times in
Supplementary Appendix Section B.5.

3.4 Entropic regularization

When experimenting with the large Transformer, we observed
strong overfitting of the perplexity, especially when trained
on smaller datasets. While this could be expected, we found
that the matching performance was not following the same
trend: While the perplexity started to degrade at some point
during training, which is indicative of overfitting, the accu-
racy, and the matching performance were still increasing, see
Supplementary Appendix Section C.1. While the shallow
Transformer is less prone to overfitting, most likely due to its
limited capacity, we found it necessary to introduce regulari-
zation for the large Transformer. We experimented with
dropout and weight decay with limited success. While both
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schemes prevent overfitting in terms of perplexity, the match-
ing performance and the accuracy dropped significantly. We
show this effect in Supplementary Appendix Section C.1 for
different training set sizes and regularization settings.

In order to find models with a good performance on per-
plexity, matching, and accuracy at the same time, we explored
other regularization approaches.

In this section, we present an approach based on entropic
regularization, where we enforce the probability of a target se-
quence A given a source sequence B to be similar to other
sequences sampled from the model conditioned on B. This
encourages the model to give similar weights to different pos-
sible interaction partners, even if there is only a single one pre-
sent in the training set.

We therefore add a regularization term 1
T

PT
l¼1 RentðAl;BlÞ

to the loss, where l indexes the input sequence Bl and the target

sequence Al in the batch and T is the batch size. We sample S

different target sequences for Bl from the model. We denote the

kth sampled sequence conditioned on Bl as Al;k. We sample us-
ing a Gumbel-Softmax distribution (Jang et al. 2016), which
enables back-propagation through the sampling step. For com-

putational efficiency, we sample every amino acid in Al;k condi-

tioning on the preceding amino acids of the true Al. Then we

evaluate the log-likelihoods Rl;k of the target sequence Al;k

given Bl and the log-likelihood of the true pair Rl,

Rl;k ¼ log PðAl;kjBlÞ 8k ¼ 1; . . . ; S
Rl ¼ log PðAljBlÞ: (6)

We then use these quantities as the input for a log-softmax
operation, resulting in

RentðAl;BlÞ ¼ log PðAljBlÞ

�log
�

PðAljBlÞ þ
XS

k¼1

PðAl;kjBlÞ
�
:

This term is multiplied by a factor a > 0 to regulate its
strength and added to the loss function, meaning that we aim
to minimize it. This enforces similar probabilities for the true
target sequence Al and the sampled target sequences Al;k, con-
ditioned on Bl. A diagram summarizing the regularization ap-
proach can be found in Fig. 2. A closer look reveals that it is a
form of entropic regularization, maximizing the conditional
Rényi entropy of order 2, see Supplementary Appendix
Section C.2.

4 Results
4.1 Performance gain from context sequence

We first tested whether the input sequences had any effect on
the perplexity of the target sequence. As already mentioned
before, this is not self-evident, since the Transformer decoder
itself could be a good model for the target sequence distribu-
tion without taking the input into account. We, therefore,
trained two shallow Transformer models, one with the nor-
mal training set and one where we randomly shuffled the pair-
ing between input and output sequences. We then evaluated
the models on the normal validation sets, without shuffling.
We expect that if the model trained on the normal training set
exploits the information in the inputs when predicting the
output, it should show a considerably lower perplexity than
the model trained on a shuffled dataset.

We show the results of these experiments in Fig. 3. As can
be seen, the models trained on the normal dataset have a sig-
nificantly lower perplexity than the models trained on a shuf-
fled dataset. This corroborates and quantifies the idea that
domain sequences that appear in the context of a second do-
main contain information that can be used for modeling the
constraints on the sequence of the second domain. We note
that the difference in the logarithm of the perplexity, which is
equivalent to the cross entropy, can be seen as a rough esti-
mate of the mutual information between the output and the
input. When the input sequence is randomly chosen, there is
no correlation between the input and the output, and the cor-
responding probability can be seen as the marginal probabil-
ity of the output sequence. We can therefore write

MI ¼
X
a;b

P a;bð Þ log
PðbjaÞ
PðbÞ

� �

�
X

a;b2V

log
�

PðbjaÞÞ–logðPðbÞ
�
; (7)

where a and b are paired sequences. On the left-hand side of
the equation, the sum is on the complete sequence space
whereas on the right-hand side, the sum is only over the
sequences in the validation set.

4.2 Results on performance metrics of the shallow

Transformer

We next compared the shallow Transformer models to the
arDCA baseline. Shallow Transformers outperform arDCA
on nearly all datasets above a certain training set size in terms
of perplexity, accuracy, and matching with a large margin, as

Figure 2. Diagram explaining training with entropic regularization: Panel (A) corresponds to the training batch, with yellow being the input protein

sequences and blue the output protein sequences. At (B), the batch is sent to the Transformer and the log-likelihood Data LL is computed. At (C), Ns

output protein sequences are sampled from the Transformer for every input protein sequence using the Gumbel softmax operation. At (D), we evaluate

the log-likelihood of the sequences sampled at (C) and call it Samples LL. At (E), we measure how well the loglikelihood separates the training sequences

from the sampled sequences using a logarithmic softmax, creating an additional loss term; At (F), the losses calculated at (E) and (B) are combined. Gray

boxes correspond to operations that do not include learnable parameters.
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can be seen in Fig. 4. We note here that the Transformer mod-
els, both shallow and large, have fewer parameters than
arDCA for every family size we tried: The number of parame-
ters in the Transformer models is independent of the length of
the input and target sequences, while the number of parame-
ters in the arDCA models scales quadratically with the
concatenated input length.

The best performance is achieved for the families with the
largest training sets, indicating that the performance of the
Transformer might further increase with increasing training
set size. Comparing the fraction of correctly matched paired
between pairs is not straight forward. The matching task gets
harder with the size of the validation set. For each input se-
quence, there is only one correct partner, which has to be
identified in between all other proteins in the validation set.
We repeated the calculation of the matching performance on
subsampled versions of the validation set in order to obtain a
better understanding of the matching performance of the
model, see Supplementary Appendix Section F.

We also considered the possibility of using a large language
model trained on protein sequences for our task. To this end,
we tested and fine-tuned Rita L (Hesslow et al. 2022), a 680-
M parameters model trained for predicting the next amino
acid in a sequence.

Given that Rita is trained on full-length unaligned sequen-
ces, we used RITA also on full-length unaligned sequences,
comparing the metrics only on match positions as predicted
by the Pfam HMM of the corresponding domain family (ex-
cluding gaps and inserts).

According to our metrics, a large language model like
RITA seems to underperform our family-specific Transformer
by a large margin see Fig. 5. We, therefore, fine-tuned RITA
for each of the domain–domain pairs. We should also note
that RITA is only able to model single, full-length, proteins,
meaning that it cannot be applied to the PPI task of HK-RR.

The details of the fine-tuning can be found in
Supplementary Appendix Section B.3. The results are compa-
rable with the domain-to-domain Transformer model, see
Fig. 6, with the Transformer having a slightly higher accu-
racy. We note that Rita models are trained on Uniref100 and

we suspect that most of the sequences in our validation set are
in the training set of Rita, so this comparison is likely biased
in favor of Rita.

4.3 Performance of the entropic regularization

We performed a set of experiments on the 27 datasets in order
to see if this type of regularization improves the performance.
We retrained the large Transformer with and without the en-
tropic regularization. We used S ¼ 5 and a ¼ 0:7 for the
experiments. The results can be seen in Fig. 7, where we plot
the performance of the shallow Transformer against the per-
formance of the large Transformer for different regularization
schemes and arDCA. The details of the training, models, and
of performance for every family can be found in
Supplementary Appendix Section C.2.1. The large

Figure 4. Perplexity PPval , accuracy Aval , and the matching performance

Mval for shallow Transformers and arDCA on validation set. The families

pairs are ordered by training set size, followed by the PPI pair, HK-RR.

Perplexity below 2000 examples: arDCA is always below Transformer

with an average difference of 0.33. Perplexity above 2000 examples:

Transformer is below arDCA in 91% of cases with an average difference

of 0.48. Accuracy below 2000 examples: arDCA is always above

Transformer with an average difference of 0.02. Accuracy above 2000

examples: Transformer is below arDCA in 81% of cases with an average

difference of 0.01. Matching fraction below 2000 examples: arDCA is

above Transformer in 83% of cases with an average difference of 0.07.

Matching fraction above 2000 examples: Transformer is below arDCA in

77% of cases with an average difference of 0.05.

Figure 3. Performance (lower better) increases when taking domain

sequence in context into account. We plot the perplexity PPval for target

sequences on the validation set, once for a shallow Transformer trained

with the true pairings (Paired) and once for a shallow Transformer trained

with shuffled pairs in the training set. (“Paired” is always below

“Shuffled” with an average difference of 0.48).
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Transformer outperforms the shallow Transformer in terms
of accuracy and matching both with and without regulariza-
tion, indicating that the large Transformer extracted more
useful information from the training set. However, the large

Transformer without regularization has a significantly higher
perplexity on the validation set, indicating overfitting. Adding
the entropic regularization leads to a good performance of the
large Transformer in all metrics.

We also performed a systematic comparison of the entropic
regularization scheme with standard weight decay, testing dif-
ferent weight decay values for the large Transformer. The
details of the experiments and the results for every family can
be found in Supplementary Appendix Section C.3.

4.4 Generalization and phylogeny

One specific characteristic of protein sequences, compared
with data in NLP, is the structure of the data. The sequences
in our datasets have a phylogenetic bias, visible as clusters of
similar sequences in the data, that are simply explained by a
close common ancestor. This bias makes a random split
unsuitable since the test set will contain sequences that are
very similar to some sequences in the training set. We, there-
fore, evaluate our model on different subsets of the test set,
which are selected based on the similarity to the training set.

We show the perplexity on target sequences in the valida-
tion set in dependence of the distance from the training set in
Fig. 8, where the distance of a sequence to the training set is
the smallest Hamming distance from the sequence to any
training sequence. Interestingly, it seems that the advantage in
performance of Transformer models over arDCA is mostly

Figure 5. Perplexity PPval and accuracy Aval for shallow Transformers

and RITA L on validation set. The families are ordered by training set size.

RITA L inverse refers to RITA when given the inverse sequence as input

(RITA is trained on both original and inverse sequences).

Figure 6. Perplexity PPval , accuracy Aval , and the matching performance

Mval for shallow Transformers and fine-tuned RITA L on the validation

set. The families are ordered by training set size. RITA L inverse refers to

Rita when given the inverse sequence as input (Rita is trained on both

original and inverse sequences).

Figure 7. Comparison of the performance of the large Transformer

without regularization (red), with entropic regularization (green) and arDCA

(orange), and the shallow Transformer. The blue lines have a slope 1.
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due to sequences far away from the training set, indicating
that Transformers generalize better in regions of sequence
space far away from the training set. We also verified that this
advantage holds for matching. To do so, we split the test set
into the half closer and the half further from the training set.
When matching the pairs, we look at the performance on
these two subdatasets. The details of these results can be
found in Supplementary Appendix Section E.1 for the shallow
Transformer and at Supplementary Appendix Section C.3 for
the large and regularized Transformer.

4.5 Structural information and generative properties

In this section, we show further results on the performance of
the shallow Transformer.

We tested whether the target sequence distribution of
trained Transformers is integrating structural information. To
do so, we explored the correlation of our metrics with scores
related to structure prediction when using Alphafold (Jumper
et al. 2021). To this end, we selected the protein Q1H158
from the validation set, which contains the Pfam domains
PF00289 and PF02785. We then replaced the domain
PF00289 with homologous sequences from the validation set,
keeping the rest of the Q1H158 sequence unmodified. The
resulting sequences contain natural sequences for both
domains but in a combination that does not exist in any
known protein. We then used Alphafold to predict the struc-
ture of the original sequence and the modified sequence, com-
paring them using the TM-score and the RMSD on the two
domains. We found these structural metrics to be well-
correlated with the cross-entropy of the resampled PF00289
of the shallow Transformer conditioned on PF02785, see
Fig. 9. We stress here that all domain sequences assessed here
are natural sequences with presumably a high fitness, which
makes it more likely that a higher cross-entropy for a pair is
due to a decreased mutual incompatibility, reflected in the
structural scores. We present results for more proteins in
Supplementary Appendix Section D.1.

We next assessed the generative power of domain-to-
domain Transformer models. To this end, we again used the
protein Q1H158 as a test. We sampled novel PF00289 do-
main sequences conditioned on the PF02785 sequence found
in Q1H158 using the shallow Transformer model. We then
replaced the original domain sequence in Q1H158 with the
sampled sequences and compared the structures predicted

with Alphafold based on the original and modified sequences.
For comparison, we also sampled sequences from Rita using
beam search. We note that one reason for choosing Q1H158
is that the domain we want to redesign is at the end of the se-
quence, enabling a causal language model like RITA to sam-
ple the domain conditioned on the rest of the protein. We
show the results in Fig. 10, where several sequences sampled
with RITA have a significantly lower TM-score than sequen-
ces sampled from the Transformer. A closer analysis showed
that some of these sequences did not contain a domain recog-
nized by the Pfam HMM for family PF00289, indicating the
fine-tuned Rita model did not always complete the sequence
with the same domain as is found in the original sequence, as
desired. While such alternative completions might very well
correspond to a domain organization found in natural
sequences, it shows that some care has to be taken when using
unconditional language models for redesigning parts of a se-
quence, even if the model has been fine-tuned only with exam-
ples for the desired domain organization. On the other hand,
the decoder of the shallow Transformer has been trained only
for sampling the desired domain.

Finally, we looked at a method for unsupervised structural
prediction called direct coupling analysis (DCA). We sampled
for each input protein sequence of the training set eight target
sequences, adding all sampled sequences together with the in-
put sequences to a pMSA, which therefore contained natural
sequences from the input domain concatenated to artificial

Figure 8. Perplexity (lower is better) and accuracy (higher is better) for

every sequence of the validation set in dependence on the distance of the

sequence from the training set. The distance of a sequence to the training

set is the Hamming distance to the closest sequence in the training set.

Figure 9. TM-scores and RMSD values when comparing the Alphafold-

predicted structures of true sequences with Alphafold-predicted

structures of sequences where single domains have been replaced with

homologous natural sequences. The results are based on Q1H158, which

contains domains PF00289 and PF02785, which are in contact in PDB

5ks8. Homologous PF00289 sequences are sampled from the validation

set and inserted into the Q1H158 sequence, measuring the change in

structural scores and in cross-entropy in the shallow Transformer model

(abscissa).

Figure 10. TM-scores comparing Alphafold structural predictions based

on original and modified sequences of the protein Q1H158, which

contains domains PF00289 and PF02785. The sequences are modified by

resampling PF00289 from the shallow Transformer and Rita.
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sequences from the target domain. We then attempted to ex-
tract structural contacts between the two domains using
plmDCA (Ekeberg et al. 2013), a popular method for predic-
tion contacts. While the performance in contact prediction is
worse than when using the natural target sequences directly,
see Supplementary Appendix Section D.2, there is a strong
signal with several correctly predicted contacts among the
highest scoring residue pairs.

5 Discussion

In this work, we explored the use of Transformers for gener-
ating protein domain sequences while taking into account
other domain sequences that are part of the same multido-
main protein. We cast the problem as a translation task,
which allowed us to directly use Transformers developed for
translation between natural languages. We showed that this
architecture is capable of outperforming state-of-the-art shal-
low autoregressive models in several metrics and explored a
new regularization scheme optimized for our use case.
Casting the task as a translation problem allowed us to use
metrics like the matching performance for assessing the qual-
ity of the generative models.

Our work is placed at the intersection of two streams of re-
search: There is a long history of building domain-specific
generative models on aligned sequences for tasks like drug de-
sign or mutational effect prediction. More recently, however,
large models based on Transformer architectures trained on
all or nearly all unaligned protein sequences available have
shown remarkable capabilities for capturing complex patterns
in the data. Our work, on the other hand, solves a very ge-
neric sequence-to-sequence prediction task using smaller
Transformer architectures, specialized for a family pair and
using aligned sequences, which allows for domain-specific
models. One limitation of our work is that we consider only a
single domain as the context when predicting the sequence of
an interacting domain, disregarding additional domains that
might be present in the same protein. Conceptually, it would
be interesting to enrich the context to multiple other domains
or other biological information such as location or
phylogeny.

An interesting question for further research is if we could
observe a gain in performance due to transfer learning when
training one model on a very large number of pairs. Given the
successful extension to HK-RR, it would be interesting to ap-
ply this approach to other PPI problems, such as TCR-epitope
binding.

Supplementary data

Supplementary data are available at Bioinformatics online.
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Gueudré T, Baldassi C, Zamparo M et al. Simultaneous identification of
specifically interacting paralogs and interprotein contacts by direct
coupling analysis. Proc Natl Acad Sci USA 2016;113:12186–91.

Hawkins-Hooker A, Depardieu F, Baur S et al. Generating functional
protein variants with variational autoencoders. PLoS Comput Biol
2021;17:e1008736.

Hesslow D, Zanichelli N, Notin P et al. Rita: a study on scaling up generative

protein sequence models. arXiv preprint arXiv:2205.05789, 2022.
Hsu C, Verkuil R, Liu J et al. Learning inverse folding from millions of

predicted structures. bioRxiv, 2022.

Jang E et al. Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144, 2016.

Jumper J, Evans R, Pritzel A et al. Highly accurate protein structure pre-
diction with alphafold. Nature 2021;596:583–9.

Kuhn HW. The hungarian method for the assignment problem. Nav Res
Logist 1955;2:83–97.

Lin Z, Akin H, Rao R et al. Evolutionary-scale prediction of atomic level pro-

tein structure with a language model. bioRxiv 2022;379(6637):2022–07.
Madani A et al. Progen: Language modeling for protein generation.

arXiv preprint arXiv:2004.03497, 2020.
Marchand A, Van Hall-Beauvais AK, Correia BE et al. Computational

design of novel protein–protein interactions—an overview on meth-
odological approaches and applications. Curr Opin Struct Biol
2022;74:102370.

McPartlon M et al. A deep SE (3)-equivariant model for learning inverse
protein folding. bioRxiv, 2022.

Meier J et al. Language models enable zero-shot prediction of the effects
of mutations on protein function. Adv Neural Inform Process Syst
2021;34:29287–29303.

Muscat M, Croce G, Sarti E et al. Filterdca: interpretable supervised con-
tact prediction using inter-domain coevolution. PLoS Comput Biol
2020;16:e1007621.

Nambiar A et al. Transforming the language of life: Transformer neural

networks for protein prediction tasks. In Proceedings of the 11th
ACM International Conference on Bioinformatics, Computational
Biology and Health Informatics, 2020, 1–8.

Rao RM et al. MSA transformer. In International Conference on
Machine Learning, PMLR, 2021, 8844–56.

Reimer JM, Eivaskhani M, Harb I et al. Structures of a dimodular nonri-
bosomal peptide synthetase reveal conformational flexibility. Science
2019;366:eaaw4388.

Domain-to-domain translation 9

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/7/btad401/7218310 by C
ER

M
ES user on 01 M

arch 2024



Repecka D, Jauniskis V, Karpus L et al. Expanding functional protein
sequence spaces using generative adversarial networks. Nat Mach
Intell 2021;3:324–33.

Riesselman AJ, Ingraham JB, Marks DS et al. Deep generative models of

genetic variation capture the effects of mutations. Nat Methods
2018;15:816–22.

Rives A, Meier J, Sercu T et al. Biological structure and function emerge

from scaling unsupervised learning to 250 million protein sequences.
Proc Natl Acad Sci USA 2021;118:e2016239118.

Russ WP, Figliuzzi M, Stocker C et al. An evolution-based model for de-

signing chorismate mutase enzymes. Science 2020;369:440–5.
Shin J-E, Riesselman AJ, Kollasch AW et al. Protein design and variant

prediction using autoregressive generative models. Nat Commun
2021;12:1–11.

Szurmant H, Weigt M. Inter-residue, inter-protein and inter-family coevo-

lution: bridging the scales. Curr Opin Struct Biol 2018;50:26–32.

Trinquier J, Uguzzoni G, Pagnani A et al. Efficient generative modeling
of protein sequences using simple autoregressive models. Nat
Commun 2021;12:1–11.

Tubiana J, Cocco S, Monasson R et al. Learning protein constitutive

motifs from sequence data. Elife 2019;8:e39397.
Vaswani A, Shazeer N, Parmar N et al. Attention is all you need. In:

Advances in Neural Information Processing Systems, 2017. Red

Hook, NY, USA: Curran Associates Inc., 5998–6008.
Wu Z, Yang KK, Liszka MJ et al. Signal peptides generated by

attention-based neural networks. ACS Synth Biol 2020;9:2154–61.

Wu Z, Johnston KE, Arnold FH et al. Protein sequence design with deep
generative models. Curr Opin Chem Biol 2021;65:18–27.

Zhang H, Ju F, Zhu J et al. Co-evolution transformer for protein contact
prediction. Adv Neural Inform Process Syst 2021;34:14252–14263.

Zhou X, Li Y, Zhang C et al. Progressive assembly of multi-domain protein

structures from cryo-em density maps. Nat Comput Sci 2022;2:265–75.

10 Meynard-Piganeau et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/7/btad401/7218310 by C
ER

M
ES user on 01 M

arch 2024



4.2 Integrating Unsupervised Learning in TCR-Epitope Binding
Prediction

The previous work’s success with unsupervised matching of interacting protein do-
mains sets the stage for applying a similar approach to the more complex problem
of TCR-epitope interactions.

The prediction of TCR-epitope binding encompasses significant challenges, in-
cluding the modeling of a 4-element interaction, the limitations imposed by incom-
plete datasets and the biases inherent in supervised learning methods. This work
introduces TULIP, a novel methodology that leverages unsupervised learning and
transformer architecture to overcome these hurdles, demonstrating the potential of
unsupervised approaches in a more complex biological context involving the inter-
action of four elements: the alpha and beta chains of the TCRs, the Major Histocom-
patibility Complex (MHC) and the epitope.

4.2.1 A more complex interaction, enabling the sophisticated immune response

The TCR-epitope interaction intricately combines the specificity of T-cell receptors
(TCR) and the diversity of Major Histocompatibility Complex (MHC) molecules, re-
vealing the adaptive immune system’s refined mechanism for recognizing and re-
sponding to intracellular threats. TCRs, composed of alpha and beta chains, each
feature constant and variable regions, with the Complementarity Determining Re-
gion 3 (CDR3) being pivotal for antigen recognition. The CDR3 regions of the TCR
chains are highly variable, allowing a vast repertoire of TCRs to bind to a very di-
verse array of epitopes. A figure summarizing this process was given in 1.4

Epitopes are peptides derived from the proteolytic processing of proteins, includ-
ing those from intracellular pathogens or abnormal, cancerous cells. These peptides
are presented on the cell surface by MHC molecules, a process central to immune
surveillance. MHC molecules come in various alleles, contributing to the immune
system’s ability to recognize a broad spectrum of epitopes.

Contrary to antibodies that primarily target extracellular pathogens, the TCR-
MHC-epitope axis allows the immune system to monitor and react to intracellular
proteins. This capability makes TCRs natural weapons against cancer, as they can
recognize and eliminate cells expressing cancer-specific or -associated antigens pre-
sented by MHC molecules.

The complexity of TCR-epitope interactions is further amplified by the need to
account for the specificity of TCR binding to the peptide-MHC complex (pMHC),
considering the variations across different MHC alleles. This specificity is not merely
a function of the peptide alone but also how the peptide is presented by the MHC
molecule, which varies significantly across the different MHC alleles found within
and across individuals. Understanding this complex interplay is crucial for devel-
oping targeted immunotherapies, particularly in cancer, where the ability to target
specific, intracellular antigens can lead to significant therapeutic advances [68, 69].
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4.2.2 Challenges in TCR-Epitope Interaction Prediction

The accurate prediction of TCR-epitope binding is compounded by the complexity
of the interactions and the requirement to account for the specificity and variability
inherent in TCRs and their cognate epitopes. Previous models have struggled with
incomplete data sources. Indeed a major issue, is that sequencing the pair of chains
requires the more expensive technique of single cell sequencing. This causes the lack
of one of the two chains in many data instances. Moreover, the prediction is usually
framed as a binary classification problem and was made through the artificial gen-
eration of negative examples.

This introduction of artificial data points can introduce biases, and the proper
way to generate these negative examples has not reached consensus yet.

TULIP addresses these challenges by employing an unsupervised learning frame-
work that can utilize incomplete datasets and can be trained without relying on neg-
ative examples, thereby avoiding the biases introduced by such data in supervised
approaches. TULIP has shown to be capable of recognizing specific TCRs binding
to epitopes, including those not previously seen, if close enough to seen epitopes.
This model represents a different approach in the field, and will participate in the
collective effort and reflection on resolving this major challenge.

4.2.3 TULIP paper
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TULIP — a Transformer based Unsupervised Language model for Interacting
Peptides and T-cell receptors that generalizes to unseen epitopes
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2Department of Computing Sciences, Bocconi University, Milan 20100, Italy
3Laboratoire de Physique de l’Ecole Normale Supérieure,
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The accurate prediction of binding between T-cell receptors (TCR) and their cognate epitopes
is key to understanding the adaptive immune response and developing immunotherapies. Current
methods face two significant limitations: the shortage of comprehensive high-quality data and the
bias introduced by the selection of the negative training data commonly used in the supervised
learning approaches. We propose a novel method, TULIP, that addresses both limitations by lever-
aging incomplete data and unsupervised learning and using the transformer architecture of language
models. Our model is flexible and integrates all possible data sources, regardless of their quality or
completeness. We demonstrate the existence of a bias introduced by the sampling procedure used
in previous supervised approaches, emphasizing the need for an unsupervised approach. TULIP
recognizes the specific TCRs binding an epitope, performing well on unseen epitopes. Our model
outperforms state-of-the-art models and offers a promising direction for the development of more
accurate TCR epitope recognition models.

I. INTRODUCTION

T cells detect foreign invaders such as viruses, bacteria
and cancer cells through their membrane-bound T-cell
receptor (TCR), which recognize specific epitopes pre-
sented on the surface of infected or tumor cells. Epi-
topes are short (8-17 amino acid) peptide fragments pre-
sented by the major histocompatibility complex (MHC)
on the surface of presenting cells, which are bound to
by the TCR (Fig. 1A). The TCR is a heterodimer com-
posed of the alpha and beta chains, which are coded by
separate genes that randomly recombine during thymic
development, giving rise to a large diversity of possible
TCRs. Binding between the TCR and the peptide-MHC
(pMHC) complex is highly specific [1, 2] and plays a key
role in the activation of the adaptive immune response.
Predicting pMHC-TCR binding from their amino-acid
sequences is an important challenge in immunology. It
has important applications to diagnostics, cancer im-
munotherapy, and vaccination, including the engineering
of TCR against target antigens [3], or the design of opti-
mized antigens in personalized cancer vaccines [4].

Given the difficulty to predict the structure and bind-
ing interface of pMHC-TCR pairs, predicting their bind-
ing affinity from general rules of protein interactions re-
mains a promising but arduous approach [5, 6]. Recent
experimental advances [7, 8] have allowed for the gener-
ation of an increasing amount of data linking TCR se-
quences to peptide-MHC (pMHC) complexes, providing
a large number of binding pairs. These data are gath-

∗ Corresponding authors. These authors contributed equally.

ered in several freely available databases: VDJdb [9],
IEDB [10], McPAS-TCR[11]. However, the number of
possible 7-16 amino-acid peptides is very large, and the
potential number of possible TCRs even larger (> 1060

[12]), meaning that experiments may only assay a small
fraction of possible pairs. This calls for machine-learning
methods capable of predicting the binding properties of
unobserved pairs from a limited set of training data, by
learning general rules of pMHC-TCR interactions.

Several studies have attempted to predict TCR speci-
ficity from sequence using a variety of machine learn-
ing techniques (see [13] for a recent benchmark), includ-
ing deep convolutional networks (NetTCR2 [14]), deci-
sion trees and random forests (SETE [15], TCREX [16])
Gaussian process classification (TCRGP [17]), distance-
based methods (TCRdist3 [18]), and language models
(TITAN [19], Pan-Pep [20], ERGO2 [21], STAPLER
[22]), and ensemble methods of Convolutional neural net-
works (DLpTCR [23]) . Many approaches are inherently
incapable of, or show poor performance at, predicting
TCR affinity to epitopes that were not present in the
training set (unseen epitopes), either by design or by lack
of generalizability across epitopes [19, 22]. This funda-
mentally limits their applicability, in particular in the
context of cancer neoantigens which are often unique to
each patient.

Existing models are often trained on a subset of all
available data, because of requirements on quality and
consistency. Experiments rarely report all four elements
of the binding complex: the peptide, the MHC, the alpha
and beta chains of the TCR (Fig. 1B). Because informa-
tion about pMHC specificity is shared across both chains
[7, 24], many methods choose to focus on data that report
both chains, leaving out the large amount of information
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its CDR3. The epitope is presented by the MHC. B Incomplete Data: Schematic representation of the current state of data
availability for this binding problem. C The bias of Supervised Learning: Comparison of Supervised and Unsupervised approach.
The unsupervised approach is only seeing positive pairs, it will only learn to recognize the specific signal of interacting pMHC-
TCR. On the contrary, the supervised approach needs to sample negative examples, and the model will also try to capture the
signature of none interacting pMHC-TCR. This may introduce a bias as the model can be learning to recognize some specific
signal coming from the method used to generate the negative examples. Created with BioRender.com

contained in incomplete datasets.

Another limitation of existing approaches is that they
treat the binding prediction as a supervised learning task,
which requires both positive and negative examples to
train a binary classifier. However, the biological data at
our disposal is not of this type, consisting only of posi-
tive examples. To address this issue, negative examples
are often generated using random association, but these
can lead to subtle biases [22]. The fraction of random
pMHC-TCR functional associations is estimated to be
≈ 10−6–10−4 [25], meaning that non-binding pairs widely
outnumber binding ones. Therefore sampling the nega-
tive space properly for training a supervised classifier is
difficult. Using a supervised approach may push models
to learn the biases in the negative data provided, rather
than biologically meaningful patterns.

The case of having only data from one class is usually

called One Class Classification (OCC), and is not new
in biology [26]. Generative models are one solution to
tackle this task, as we do not need any negative example
to train it [27].

In this paper we present Transformer-based unsuper-
vised language modeling for Interacting pMHC-TCR
(TULIP-TCR), an encoder-decoder language model,
which addresses these limitations. The model is flexi-
ble, leveraging all possible data sources regardless of their
quality or completeness and including single-chain data,
but also learning useful representations of the TCR and
epitope space from examples where only one of them
is present. The approach is unsupervised in the sense
that we do not predict explicitly a binary variable that
indicates binding, but a probability score trained only
on interacting sequence pairs. This allows us to avoid
the pitfalls associated with creating artificial samples of
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non-interacting sequence pairs [27]. TULIP outperforms
state-of-the-art methods on the most studied peptides for
which data is abundant, and shows significant predictive
power on unseen epitopes.

II. RESULTS

A. Model overview: a flexible and unsupervised
architecture

Our model is inspired by techniques used in Natu-
ral Language Processing (NLP), where models are com-
monly trained on large text corpora [28]. In our ap-
proach, we adapt these techniques by replacing words
with amino acids. The central concept behind our model
is translation, which involves predicting the next token
(word or word pieces in NLP, or amino acid in protein
sequences) based on the previously generated tokens, as
well as the source (sentence in NLP, or amino-acid se-
quence in proteins). During training, the model learns
the patterns and dependencies that govern the relation-
ships between tokens. By training only on positive ex-
amples, the model learns the rules that govern token or-
dering.

Models that predict each amino acid conditioned on
the previous ones are called autoregressive. This al-
lows us to compute the probability of each sequence
as p(a1, ..., an) =

∏n
i=1 p(ai|a1...ai−1), and to efficiently

sample new sequences, with tremendous recent success
in modeling language [29] .

The training process involves maximizing the con-
ditional likelihood of the observed sequences (positive
pairs), effectively defining a probability distribution over
the space of sequences. As a result, the model is trained
to assign higher probabilities to positive pairs (binding
pairs) compared to negative pairs (non-binding pairs)
without having been trained on any negative pairs.

Our model uses the Transformer architecture, specif-
ically the encoder-decoder variant originally developed
for translation tasks [30]. In this architecture, the en-
coder receives a protein sequence as input (a sentence in
the source language in NLP), and the decoder aims to
generate an interacting protein sequence (the translated
sentence in NLP) as its objective. The decoder coupled
with the encoder is an autoregressive generative model,
which defines the conditional probability distribution of
the output given the input. The encoder-decoder ap-
proach has been successfully applied to investigate inter-
acting amino acid sequences [31, 32].

Our problem implies interactions between 4 elements:
the epitope, the MHC, and the alpha and beta chains of
the TCR. We reduce the chains to their third complemen-
tarity determining regions (CDR3) known to be primar-
ily contacting the epitope [33]. We denote the α-CDR3,
β-CDR3 and epitope sequences as α = (aα1 , ..., a

α
Nα

),

β = (aβ1 , ..., a
β
Nβ

) and e = (ae1, ..., a
e
Ne

). We extend the ex-

isting architecture and define 3 encoders and 3 decoders

for the α-CDR3, β-CDR3, epitope sequences and a spe-
cial embedding layer for the MHC, which we treat as a
categorical variable MHC (its protein sequence is ignored,
as we expect only the MHC class to be relevant). The
details of this architecture are shown in Fig. 2A. Each
model takes the MHC and the 3 chains as input, and try
to predict each chain given the two other ones and the
MHC.

They define conditional probabilities such as
p(e|α, β,MHC). These conditional probabilities can
be used to match interacting protein sequences [31],
since pairs that bind are expected to have higher
probabilities than non binding ones.

This model can be used with incomplete data by deter-
mining, e.g., restricted conditional like p(e|α) when the
beta chain and the MHC class are not available. This
flexibility enables us to use every known data source
available for model training and for prediction. More
details about the architecture and the training can be
found in the Methods section IV B.

B. Predicting new TCRs binding to known
epitopes

We first evaluate the performance of TULIP for epi-
topes presented on the common HLA-A*02:01 allele,
which is commonly used to assess such models [14]. We
compare TULIP with NetTCR-2.0, a state-of-the-art su-
pervised model [14]. We collected data for which the
epitope, alpha chain, and beta chain were all present.
We then created a random split of 85% for training and
15% for testing, excluding any sequences from training in
which the TCR was also present in the test set. Negative
examples were generated within each split by randomly
pairing TCRs to a different epitope, and this process was
repeated five times for each sequence. To avoid over-
lap between the training and test sets, negative exam-
ples were sampled within each split. We refer to this
database, comprising both the training and test sets, as
the Specialized Dataset (SD). NetTCR was trained on
the training SD and its performance was evaluated on
the testing SD for each epitope separately using the area
under the curve (AUC) of the receiver operating charac-
teristic (ROC) curve as a performance metric.

The primary aim of TULIP is to be trainable on a
larger database. To ensure a fair comparison, we trained
it using the following protocol: Firstly, we removed all
sequences from the full database that shared the same
alpha or beta chain as the test set of the SD. We trained
the TULIP on this filtered dataset for 100 epochs and
then fine-tuned it for an additional 40 epochs using the
positive examples of the training SD. To compute the
AUC, we approximated the probability of binding as
log(p(e|α, β,MHC)) − log(p(e|MHC)) (see IV C), which
quantifies the increase in the odds of observing e upon
being recognized by the TCR.

We compared the performance of TULIP with
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FIG. 2. A - TULIP architecture: Amino acids of each chain are embedded, then encoded by its chain-specific encoder. The
MHC is also embedded. The MHC embedding and the encoded chains are then concatenated (all except the embedding of the
sequence to decode) and given to the decoders. The decoders are then modeling the conditional probabilities of each chain
given the MHC and the other available chains. B - Results of a finetuned TULIP on the most abundand peptides. Comparison
is made with NetTCR2.0. C - ROC curve and PPV curves for the most studied peptide. The average of these ROC curves
appears in red. D - We compare two ways of selecting the negative example. We compare the loss of performance of NetTCR2
and TULIP between an easy and a hard case of negative sampling. In the easy case the TCRs are randomly selected from the
test set, whereas in the harder case, the TCRs are reweighted in order to have a uniform distribution over the true cognate
epitope. This second choice removes the bias of having most negative examples using TCRs from the few highly over-represented
peptides. Because TULIP is unsupervised it is more robust to change in the negative sampling.

NetTCR-2.0 on the testing set of SD, and computed the
AUC separately for each epitope in Fig. 2B. Rare epi-
topes were grouped by similar training set size, and their
AUC averaged. The results indicate that TULIP outper-
forms netTCR2.0 on almost all epitopes. For complete-
ness, we plotted the ROC curves of TULIP in Fig. 2C.
These curves reveal a very good performance on the top-
ranked prediction as ROC curves start with a vertical
line up to 0.5 of True Positive Rate before observing the
first False Positives. This steep start is extremely inter-
esting as it implies that the model is extremely good for
the sample for which it is the most confident.

Because the AUC treats positive and negative ex-
amples symmetrically, it is particularly sensitive to the
choice of negative samples, which the supervised method
can exploit to artificially boost its performance [22]. To
illustrate this bias, we implemented a different sampling

approach for negative examples within our specialized
datasets. Instead of uniformly sampling non-binding
TCRs, we uniformly sampled another epitope and then
selected one of its associated TCRs. This alternative
sampling procedure aims to counteract the bias intro-
duced by the over-representation of TCRs from the most
commonly observed epitope in the negative sets, which
leads supervised methods to learn the features of TCRs
binding to that epitope, instead of learning the features
of the positive TCRs. Fig. 2D shows that performances
of both TULIP and NetTCR-2.0 decrease when this al-
ternative sampling is applied, demonstrating the impor-
tance of this bias. This alternative sampling does not
affect the TULIP model itself, whose training does not in-
volve negative examples, but it does affect its AUC which
relies on negative examples. However, the bias is more
pronounced for a supervised method such as NetTCR-
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2.0, as evidenced by the fact that most points fall below
the diagonal.

C. Generalization to unknown epitopes

A major challenge of pMHC-TCR binding models is
to be able to generalize, i.e. to make binding predic-
tions on epitopes that were not used in the training set
(unseen epitopes). This ability varies a lot depending
on the considered epitope, notably as a function of how
similar it is to other epitopes used during training, mak-
ing comparisons between methods and different contexts
difficult. Here, we propose a systematic approach for
assessing generalization across thousands of unseen epi-
topes, by stratifying them according to their distance to
the training set.

We split the full database into a test set comprised
of epitopes with fewer than 20 examples, and a train-
ing set composed of those with more than 20 examples.
TULIP was subsequently trained on the training set for
100 epochs, following which its performance was evalu-
ated on the testing set, yielding 1796 AUCs. The Leven-
shtein distance between each unseen epitope and its clos-
est counterpart in the training set was then computed.
To mitigate potential bias from deep mutational scan-
ning (DMS) experiments, which contain large numbers of
closely related sequences, we identified TCRs that were
associated to similar peptides and deleted them from the
training set. For each peptide in the test set, the sub-
set of peptides with minimal distance in the training set
was identified, and all TCRs associated to them were re-
moved from the test set. All TCR sequences associated
with both the peptide from the test set and any pep-
tide in the subset of closest peptides within the training
set were removed from the training set. Despite these
corrections, the dataset is still very biased. The distri-
bution of TCR per epitope is skewed with a heavy tail
(SI Fig. S1), and epitope representation is mostly biased
towards COVID peptides and neoantigens (SI Fig. S2).

We computed the average AUC of epitopes as a func-
tion of their distance to the training set (Fig. 3A and
SI Fig. S3, and SI Fig. S4 as a function of normalized
distance). TCR similarity between the training and the
testing sets is shown in SI Fig. S5. Machine learning
methods tend to perform better in the region closer to its
training set. It is a common phenomenon in all machine
learning approaches for the model’s capacity to extrapo-
late and generalize to decrease as one moves further away
from the training set. We used 3 different methods for
sampling the negative examples in the model evaluation
(Fig. 3B). In the Unseen Unconnected Random Asso-
ciation (UURA) and Unseen Connected Random Asso-
ciation (UCRA) methods, negative pairs are drawn by
picking a random TCR and a random epitope that were
not in the training set. In the UURA, which is more rig-
orous, the true cognate epitope of the picked TCR is also
unseen, while in the UCRA it can be any epitope (seen or

unseen). In the Healthy Repertoire Sampling (HRS), the
TCR is chosen at random from the repertoire of healthy
individuals (for which the epitopes are unknown) taken
from Ref. [34]. The results obtained with the most con-
servative negative sampling procedure (UURA, in blue)
indicate that TULIP shows good generalization for epi-
topes that are close to the training set. This performance
decays quickly with distance, reaching 1/2 (chance level)
around at an edit distance of around 4.

For comparison, we also investigated the perfor-
mance of existing models, PanPep [20], Ergo2 [21], and
DLpTCR [23], but re-evaluated using the more rigorous
UURA negative sampling method not used in the original
studies (as the training/testing split of STAPLER [22]
was not available at the moment of writing, we could
not compare performance with that method). For in-
stance, the performance of PanPep on unseen epitopes,
which was originally assessed using the HRS method,
drops to chance level when using the more stringent
UURA (Fig. 3C). By contrast, TULIP, when tested on
the same dataset (and re-trained on data that excluded
that test set) retains some predictability. Similar results
for DLpTCR are reported in SI Fig. S6A. We also com-
pared our findings with ERGO2, which was trained using
the UCRA method for negative sampling. Conducting a
test by resampling the TCRs with the more conserva-
tive UURA shows that the resulting AUC also decays to
values close to chance level (SI Fig. S6B). Note that STA-
PLER [22] was also evaluated using UCRA, potentially
inflating its performance on unseen epitopes.

These findings underscore the risks of using negative
samples during training. Since most pairs are negative,
identifying a non-binding pair carries very little infor-
mation. Any signal captured from negative examples is
likely a result of batch effects introduced by the negative
sampling procedure. This justifies the choice of an unsu-
pervised architecture for pMHC-TCR binding. Thanks
to this structure, TULIP is robust in the face of changes
in negative sampling approaches, since training does not
use any negative samples.

D. Predicting the effect of neoantigen mutations
on TCR activation

To further test our model’s ability to predict bind-
ing to different epitopes, and to predict epitope muta-
tions that may evade immune recognition, we applied
it to deep mutational scans of epitopes against fixed
TCRs from [35]. A deep mutational scan of the epi-
tope binding with a fixed TCR is a systematic analy-
sis that explores the effects of multiple genetic muta-
tions within the epitope on its interaction with a spe-
cific T-cell receptor. The study involved 6 deep mu-
tational scans of two epitopes (HLA-A*02:01 restricted
NLVPMVATV and IMDQVPFSV also present in the
training set) against three TCR targets each. For each
of the 19 × 9 single-amino acid variant of the epi-
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FIG. 3. A. Performance of TULIP on unseen peptides as a function of the distance to seen peptides. Up to edit distance 4, a
clear signal can be seen. This analysis is done on a large set of peptides (171 at distance 1, 43 at distance 2, 44 at distance 3,
161 at distance 4, 501 at distance 5, 500 at distance 6, 103 at distance 7, 54 at distance 8, 219 at distance 9 and more). We also
illustrate the role of negative sampling by showing the performance with three different Negative sampling methods. The details
of these methods are explained in B. Our unsupervised methods show less variability with respect to the sampling methods
compared with other supervised methods as shown in C and SI Fig.S6 B - We detail here three different methods to sample the
negative of unseen epitopes. We illustrate the fact that in the original data, several TCR can be binding a single epitope, by
putting two TCR in front of each epitope in the plots. Unseen Unconnected Random Association: the epitope and the TCRs
are unseen and the TCRs used for the negative are binding with an unseen epitope. Unseen Connected Random Association:
the epitope and the TCRs are unseen and the TCRs used for the negative can be binding to any epitope. We emphasize in red
the association with a unseen connectd TCR, as it is the difference with UURA. Healthy Repertoire Sampling: Negatives are
sampled from a healthy repertoire. Created with BioRender.com C - Testing the effect of change of the negative sampling on
unseen peptides for PanPep and TULIP. We realize that PanPep performance does not resist changing the negative sampling
process for unseen peptides contrary to TULIP. For the HRS, we reused the negative example from the original paper.

topes, the affinity to the TCR was assessed by measur-
ing the epitope concentration at which 50% of T-cells
were activated in culture (EC50). Observing binding
in an experiment requires both the binding of the pep-
tide with the MHC, and of the TCR with the pMHC.
We used the joint probability of binding as a score
log p(binding(e−MHC), binding(e−TCR)|α, β, e,MHC)
We approximate this quantity following the method in
IV C by log p(e|α, β) − log p(e) + log p(e|mhc) − log p(e)
as a predictor of this affinity. The comparisons between
model and experiments are shown in Fig. 4A. Despite
high variability, our model was able to capture the funda-
mental properties of binding in epitope space. To quan-

tify performance, we measured the Spearman correlation
between our score and the measured EC50. The score
correlates up to 0.47 for the best TCRs. While pre-
dictability is limited, these results are encouraging con-
sidering that the model was trained on data with a large
excess of TCRs relative to epitopes, and applied to data
with a large excess of epitopes relative to TCRs. To
assess how much of this predictability is due to peptide-
MHC only (irrespective of the TCR), we compared these
results with NetMHCpan [36], which is based solely on
the epitope-MHC interaction, and found a lower correla-
tion (SI Fig. S7). This highlights the importance of the
TCR-epitope interaction in the experiment.
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B

S

A

Epitope Repertoire Known TULIP TULIP Random TULIP HO TULIP HO
Size TCR Best Rank quantile Best Rank Best Rank quantile

HMTEVVRHC 36376 4 2960 0.287 7275 30 0.0032
HMTEVVRHC 53216 4 4491 0.297 10643 40 0.0030
HMTEVVRHC 16964 4 1441 0.298 3363 7 0.001
ALIHHNTHL 36376 4 8750 0.667 7275 832 0.0883
ALIHHNTHL 53216 4 12722 0.664 10643 1439 0.1038
ALIHHNTHL 16964 4 4029 0.661 3363 419 0.0951
LLGATCMFV 36376 7 214 0.0404 4457 1134 0.1988
LLGATCMFV 53216 7 309 0.0399 6652 1550 0.1869
LLGATCMFV 16964 7 104 0.0421 2120 486 0.1841
RLARLALVL 36376 7 12583 0.948 4457 1 0.00019
RLARLALVL 53216 7 18301 0.947 6652 1 0.00013
RLARLALVL 16964 7 5850 0.948 2120 1 0.00041
YLEPGPVTA 36376 5 584 0.107 6062 5 0.0009
YLEPGPVTA 53216 5 841 0.105 8869 12 0.0015
YLEPGPVTA 16964 5 244 0.096 2867 3 0.0012

YLQPRTFLL 100613 52 25 0.0128 1953 1 0.0005

Table 1: Your table with alternating row colors.

Peptide CDR3a CDR3b
ALIHHNTHL CAVNSNSGYALNF CASSQSETGDGYTF
ALIHHNTHL CAMHRDDKIIF CASSLAVQRPSGNTIYF
ALIHHNTHL CVVSGVNVWGTYKYIF CASSIESGSKQRNEQFF
ALIHHNTHL CAVSDLNSGGYQKVTF CASSPRDRVHEQYF
HMTEVVRHC CAMSGLKEDSSYKLIF CASSIQQGADTQYF
HMTEVVRHC CAFMGYSGAGSYQLTF CAISELVTGDSPLHF
HMTEVVRHC CALDIYPHDMRF CASSLDPGDTGELFF
HMTEVVRHC CVVQPGGYQKVTF CASSEGLWQVGDEQYF
LLGATCMFV CAADSWGKLQF CATSDSTGSYGYTF
LLGATCMFV CAVNPSNQFYF CASRGPYHNEQFF
LLGATCMFV CVVSEEYTNAGKSTF CASSLERLRVYSGYTF
LLGATCMFV CAMDSSYKLIF CASSALAGGQADTQYF
LLGATCMFV CAAGGSYIPTF CASSGTGGYSGANVLTF
LLGATCMFV CAVNDYKLSF CASSWTGANYGYTF
LLGATCMFV CAVYSGGYNKLIF CASSFVNTGELFF
RLARLALVL CASMYSGGGADGLTF CASSFFSNTGELFF
RLARLALVL CASGGGADGLTF CASSFLTDTQYF
RLARLALVL CSSGGGADGLTF CASMDLAFKQYF
RLARLALVL CAYRSGSDGGSQGNLIF CASSQVSGYEQYF
RLARLALVL CAVRDDYGQNFVF CASSPQGDNEQFF
RLARLALVL CAVPDDAGNMLTF CASSELPAGGTNEQFF
RLARLALVL CAGGGGADGLTF CASSYMGPEAFF
YLEPGPVTA CAPGIAGGTSYGKLTF CASSLAYSYEQYF
YLEPGPVTA CGTETNTGNQFYF CASSLGRYNEQFF
YLEPGPVTA CAASTSGGTSYGKLTF CASSLGSSYEQYF
YLEPGPVTA CAVLSSGGSNYKLTF CASSFIGGTDTQYF
YLEPGPVTA CATDGDTPLVF CASSIGGPYEQYF

Table 2: Your table with alternating row colors.

1

FIG. 4. A. Effect of single epitope mutations on the TULIP score (logP ) predicts TCR binding (dissociation constant K
in µg.ml−1) measured by deep mutational scan experiments [35]. The reported ρ and p-values correspond to Spearman
correlations. B. Repertoire mining for neoantigen-binding TCRs. The TCR repertoires of 3 healthy HLA*A02:01 donors from
[34] were spiked with TCRs known from the literature to bind to 5 neoantigens. Sequences from the augmented repertoires were
ranked by the model according to their predicted affinity to the neoantigen of interest. Reported is the rank of the best-scoring
neoantigen-binding TCR. The p value corresponds to the probability of achieving that rank by chance. Two training procedures
were used: one where all TCRs associated to the neoantigen of interest and related peptides were removed from the training
set (TULIP), and one where only the TCR to be ranked was removed (leave-one-out; TULIP LOO). We also integrated the
quantile of our prediction under the null model. This is easily interpretable as the probability that a random model would
achieve equal or better performance than TULIP.

E. Repertoire mining for neoantigen recognition

We then asked whether the model could pick
TCRs binding to a particular epitope from whole
repertoires. We focused on TCRs binding to 6
HLA-A*02:01 restricted epitopes, including 5 cancer-
associated neoantigens (Cyclin D1: LLGATCMFV [37];
p53: HMTEVVRHC [38, 39]; HER2: ALIHHNTHL [40];
TPBG: RLARLALVL[41]; and gp100: YLEPGPVTA
[42], see Table S1 for the full list). In addition, we
looked for TCRs specific to the SARS-CoV-2 spike pro-
tein epitope YLQPRTFLL in the CD8+ repertoire of a
COVID-19 infected donor at the peak of the response
at day 15 [43]. YLQPRTFLL-specific TCR harbored by

the same donor were identified in a separate study using
a multimer-binding assay [44].

We first considered a scenario where no prior knowl-
edge about TCRs binding the epitope was available, by
removing these entries from the training set, as well as
all TCR-epitope pairs whose epitope is similar to the epi-
tope of interest (less than 4 amino acid substitutions).
For the SARS-CoV-2 epitope, we also removed all TCRs
associated with YLQPRTFLL as well as similar epitopes
(’YLRPRTFLL’ and ’YYVGYLQPRTFLL’) to mitigate
potential leakage effects. In the second scenario (hold
out, or HO), we only removed from the training set the
TCR that we want to find: one neoantigen-associated
TCR at a time in the case of neoantigen, and all epitope-
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specific TCR from the donor as reported by the multi-
mer assay in the SARS-CoV-2 repertoire. In both cases,
we removed redundancies of the alpha and beta chains:
when several TCRs has the same alpha chain, we only
retained one of them, and likewise for beta chains.

For each neoantigen, we mixed neoantigen-associated
TCRs (all of them in the first scenario, and only the
removed one in the LOO scenario) with 3 unrelated
TCRαβ repertoires of HLA*A02:01 positive donors from
Ref. [34]. For the SARS-CoV-2 epitope, we simply con-
sidered the CD8+ TCRβ repertoire at day 15 from [43].
We then asked TULIP to rank each TCR according to the
predicted binding to the epitope of interest. The results,
reported in Fig. 4B, show that TULIP in many cases
narrows down the list of candidate TCR to a relatively
small number, even when it was trained with no knowl-
edge about the neoantigen-associated TCRs. When it
does (TULIP LOO first index column), it can even iden-
tify the neoantigen-associated TCR within the very best
ranked ones. In the case of the SARS-CoV-2 epitope,
performance was excellent even when in the first scenario
(no prior knowledge about the epitope), and perfect (best
rank 1) in the hold-out scenario.

That analysis focuses on the top-ranking TCR for each
neoantigen, emphasizing precision in detecting potent
binders within the repertoire. This deliberate emphasis
on the upper tiers of the score distribution provides in-
sights into the model’s discriminative power and its abil-
ity to identify TCRs with high binding affinity to specific
epitopes.

III. DISCUSSION

In this study, we have presented a novel approach
for TCR-epitope binding prediction that overcomes key
limitations of current methods. We demonstrated the
model’s ability to generalize to unseen epitopes, which is
a critical factor in real-world applications where the spe-
cific epitope of interest may not be known in advance.
Furthermore, we addressed the recurrent bias that can
arise from using negative examples generated through
random pairing in previous supervised approaches. To
mitigate this bias, we proposed an unsupervised learning
framework that trains the model exclusively on positive
examples, allowing it to focus on recognizing patterns
within these interactions.

The elimination of negative examples in our approach
was driven by the recognition that randomly generated
negative examples can introduce biases, potentially com-
promising the model’s predictive accuracy. By training
solely on positive examples, our model avoids such bi-
ases and can more effectively capture the specific signal
of interacting pMHC-TCR complexes.

One difficulty in evaluating and comparing methods
is that the exact TCR-epitope binding prediction task
may differ across studies and applications. For instance,
looking for epitope-specific TCR within the peripheral

repertoire is a different task than finding them within
responding clones in lymph nodes or in tumor tissues.
Likewise, identifying TCRs binding to a neoantigen but
not to the wildtype is not the same as identifying the re-
sponse to a specific antigen within a repertoire. Some of
the biases discussed earlier arise from unclear or unrealis-
tic definitions of the tasks. When the objective is to rec-
ognize patterns in binding complexes, the unsupervised
approach emerges as the more natural choice. Supervised
approaches can only demonstrate their potential in spe-
cific use cases where negative samples can be precisely
defined (e.g. sorting cells that do not carry an activa-
tion marker or do not bind a tetramer, although these
negative examples are typically not reported in studies).
Careful consideration should also be given to the sam-
pling of negative examples. Negative examples should be
selected to be close enough to the classification bound-
ary, making them challenging examples (referred to as
Hard Negative Sampling). The combination of these con-
straints, including a well-defined and restricted negative
subspace, the difficulty of examples, presents significant
challenges for most use cases, lead us to conclude that
unsupervised approaches should be preferred for most
applications.

We emphasize the importance of utilizing all available
data sources, regardless of their completeness or quality.
The same is true for NLP approaches, which usually start
by collecting and training on as much data as possible.
The TCR-epitope binding prediction task often suffers
from the scarcity of comprehensive data, as obtaining
complete TCR sequences along with corresponding epi-
topes and MHC information is challenging. However,
our approach is designed to be flexible, leveraging the
available data and accommodating situations where only
partial data is accessible. By using both alpha and beta
chains when available, while being able to learn from one
chain alone, our model can make the most of the data at
hand and extract valuable insights.

While our proposed model shows promise, it is essential
to conduct fair and rigorous model comparisons to assess
its performance accurately. The field of TCR-epitope
binding prediction often lacks standardized benchmark
datasets and evaluation protocols (but see [13]), leading
to difficulties in comparing different models. To address
this challenge, future research should focus on establish-
ing standardized benchmarks and evaluation procedures
that encompass diverse datasets and evaluation metrics
beyond classification.

One limitation of our approach is that the model yields
only probabilities of pairs of sequences, rather than a
proper binding constant, for which titration data (where
the concentration of the epitope is varied) would be
needed. Another limitation is that large areas of the
epitope space have not been measured, and some parts
are extremely hard to measure. For example, having a
model able to determine the risk that a TCR binds to
self-proteins, would be extremely useful for predicting the
safety of T-cell therapy, but such TCRs are by construc-
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tion hard to observe, and the lack of data is a major
limitation for further progress in this direction.

Since our model is generative in nature, it would be
interesting to experimentally test its ability to generate
de novo TCR sequences for given epitopes, or for com-
binations of related epitopes to which it would be cross-
reactive. This avenue of research could provide valuable
insights into the design and discovery of TCRs with spe-
cific binding capabilities.

IV. METHODS

A. Data collection

Data acquisition in the field of immunology presents
a major challenge. The intricate process of T cell re-
ceptor (TCR) binding to its respective epitope depends
on four critical elements: the epitope itself, the major
histocompatibility complex (MHC), and the alpha and
beta chains of the TCR. While each component has been
extensively studied in isolation, the number of instances
where all four components are jointly available remains
remarkably scarce.

In this study, we present a novel computational aim-
ing approach at constructing a model capable of learning
from incomplete data. To achieve this goal, we curated
data from multiple sources, maximizing the total sam-
ple size at our disposal. Specifically, we first accessed
the VDJdb database [9] in its entirety, which boasts the
highest data quality among our available resources (see
Table I).

We also added the IEDB database of Tcell receptors
and McPAS-TCR dataset [10, 11] (see Table I).

The IEDB database is more diverse but we observed
a much poorer quality of the data, and there was never
used for finetuning.

This accounts for 209779 not redundant data points
containing the epitope and at least one chain of the TCR.

The instances listed above consist of T-cell receptors
along with their respective epitopes and major histocom-
patibility complex (MHC). Regrettably, the MHC or one
of its two chains is frequently absent. Additionally, the
diversity of epitopes is relatively low compared to that
of TCRs, with each epitope possessing multiple T-cell
receptors.

To supplement our data, we incorporated the training
database of netMHC, which is solely composed of MHC
and epitope information. Although this dataset does not
directly aid in comprehending the correlation between
TCR and epitope, it is advantageous in two ways. Firstly,
the dataset encompasses a wide range of epitopes, which
assists the model in comprehending the true diversity
of potential epitopes. Secondly, in order to achieve ef-
fective transfer learning between MHC, the model must
comprehend what is distinct to each MHC and what can
be transferred. Therefore, the netMHC database aids in

better modeling the specific role of MHC in the epitope
modeling process. We gather 663, 767 peptides with their
MHC (see Table I).

We gathered all this data in a single one that we will
refer to as the Full Dataset (FD).

B. Model definition

Our model is an extension of the well-known Trans-
former model, in its encoder-decoder version. In the
original version [30], the method was used for transla-
tion. During training the encoder was given a sentence
in the source language and the decoder was given the
translation in the target language as an objective to pro-
duce.

In our specific problem, we would like to condition our
model on more than one interacting element. We, there-
fore, need to extend the existing architecture. We define
3 encoders, 3 decoders, and two embedding layers: an α-
encoder that is specialized in encoding the α-CDR3, an
α-decoder that is specialized in decoding the α-CDR3, a
β-encoder that is specialized in encoding the β-CDR3, a
β-decoder that is specialized in decoding the β-CDR3, an
epitope-encoder that is specialized in encoding the epi-
tope, an e-decoder that is specialized in decoding the
epitope and finally an amino acid embedding and an
MHC embedding, (as we decided to represent the MHCs
as categorical variables). First experiments on initializ-
ing the decoders with the weights of pretrained general
purpose proteins masked language models did not show
any sign of improvement. TCRs α and β chains exhibit
unique characteristics and patterns that are distinct from
general protein sequences. The core of the loops of the
CDR3 is extremely variable. On the other hand, epi-
topes are much smaller than usual proteins and presented
inside an (MHC). All these factors imply that general
rules for proteins do not transpose easily to our scenario.
By utilizing dedicated encoders and decoders tailored to
the specific nature of TCRs and epitopes, we can cap-
ture and encode their domain-specific features more ef-
fectively. This specificity enables the model to focus on
relevant information and potential interactions specific
to TCR-epitope binding.

While we refer to the original work on Transformer [30]
for precise details on the attention layers and the encoder-
decoder architecture, we review here the key components.

Sequences are encoded by their specific encoder and
used as the input for the decoders. They are processed
through alternating blocks of self-attention and linear
layers.

Typical vocabulary sizes in NLP are in the order of
104 to 105, while in our case we have a vocabulary V is
composed of the 20 amino acids and some special token
(PAD for padding, EOS for End-od-Sentence, SOS for
Start-Of-Sentence, UNK for the Unknown characters).
The sequence embedding is composed of two parts, one
for the amino acid identity and one for the position in
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VDJdb VDJdb McPAS-TCR McPAS-TCR IEDB IEDB netMHC

epitope epitope epitope epitope epitope epitope epitope

with MHC without MHC with MHC without MHC with MHC without MHC with MHC

Alpha and Beta 29251 0 5021 77 5021 77 0

Alpha alone 6750 0 1065 87 1065 87 0

Beta alone 23011 0 9898 218 145332 11 0

No TCR 0 0 0 0 451 11 663767

TABLE I. Summary of the data sources used for training.

the sequence. We learn a dictionary, mapping each of
the amino-acids to a vector of dimension dmodel. The
sequence position is embedded as a vector in the same
way, learning an embedding vector for every position.
We also learn a specific embedding for the most common
HLA types. The embedding of each sequence is taken as
the sum of the amino-acids and positional embeddings.
The embedded amino-acid sequences are then passed to
the respective encoders, mapping them to a latent rep-
resentation zT = (z1, . . . , zn), T ∈ (α, β, e). The encoded
sequences are then concatenated with the MHC embed-
dings before being sent to the decoder. For each decoder,
we concatenate the MHC embedding with all the encoded
sequences except the one that the decoder will reproduce,
as we do not want to give a decoder the sequence it is
supposed to reproduce. The details of these groups can
be seen in Fig2. For example, we concatenate the encod-
ing of the α-CDR3 , the β-CDR3, and the MHC for the
Epitope decoder, as the epitope decoder should be condi-
tioned on everything but himself. The decoders are then
trained to predict their respective amino-acid sequences
conditioned on the encoded pieces of information.

The decoder implements an auto-regressive distribu-
tion, for example

P (aαi |aα<i, zβ , ze,mhc), (1)

defining the probability of the ith amino acid in the α−
CDR3 sequence given the preceding amino acids aα<i and
the hidden representation of the others elements. During
training, we use the true amino acids for aα<i. This way
of predicting the next amino acid in a sequence is called
Causal Language Modeling (CLM). The loss associated
with this task for a single sequence is simply the cross
entropy for every predicted token.

LossCLM =−
Nα∑

i

log(P (aαi |aα<i, zβ , ze,MHC))

−
Nβ∑

i

log(P (aβi |aβ<i, zα, ze,MHC))

−
Ne∑

i

log(P (aei |ae<i, zα, zbeta,MHC))

(2)

We schematize the forward pass of Tulip in the follow-
ing pseudo-code:

Algorithm 1 TULIP

1: for C ∈ (α, β, e) do . In parallel
2: embedaaC ← (embedding(aC1 , )..., embedding(aCNα))
3: embedposC ← (Posembedding(1), ..., Posembedding(NC))
4: inputC ← embedaaC + embedposC

5: zC ← C-encoder(inputC)
6: end for
7: rα ← concat(zβ , ze, embedMHC)
8: rβ ← concat(zα, ze, embedMHC)
9: re ← concat(zα, zβ , embedMHC)

10: for C ∈ (α, β, e) do . In parallel
11: for i ∈ (1, .., NC) do . In parallel
12: p(aTi |rC , aC1 , ...aCi−1)← C-decoder(rα, a

T
1 , ...a

T
i−1)

13: end for
14: end for
15: p(α|β, e,MHC) =

∏Nα
i p(aαi |rα, aα1 , ...aαi−1)

16: p(β|α, e,MHC) =
∏Nβ

i p(aβi |rβ , aβ1 , ...aβi−1)

17: p(e|β, α,MHC) =
∏Ne

i p(ae
i |rα, aα1 , ...aαi−1)

This approach has already been used for proteins in
many works. Especially in [31] an encoder-decoder model
was used to investigate interacting amino-acid sequences.
The first thing to remark is that the decoder defines au-
toregressively a probability distribution over the gener-
ated sequence. It is generative as we can sample new
examples but if we give it an existing specific sequence it
will give us its probability. When coupling this to an en-
coder the probability distribution becomes a conditional
probability distribution (conditioned on the input of the
encoder). These conditional probabilities can be used for
matching interacting protein sequences [31].

One interesting property of the Attention mechanism
of the transformer is that it is position-blind and flexible
with respect to the length of its input. This implies that
it does not hard code in its weights where it is expect-
ing to find specific elements. If a chain is missing, let’s
say the α-CDR3, we can only gather the MHC and the
β-CDR3 before giving it to the epitope decoder. The en-
coded β amino acids end up in the first position of the
gathered encoding. This is not a problem thanks to the
position-blindness of the encoder-decoder attention. To
be more precise, the missing α-CDR3 is not completely
skipped but replaced by a learned vector, to inform the
model that the chain is missing.

Because of the incompleteness of the data we want to
learn as much as possible from every piece of data avail-
able. The decoder is in itself a language model, so it is
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able to learn without or with little conditioning. In a
standard encoder-decoder Transformer learning the en-
coder is only trained through the decoder. We want to
avoid this so that the encoder learning will not be entirely
dependent on another piece of data to predict. Luckily,
encoders are also trainable alone (without a decoder) by
doing Masked Language Modeling (MLM). During MLM
training we pick 15% of the amino acid positions, we’ll
call this set of amino acids M. From these ones 80 %
are replaced by a mask token, and 20 % are replaced by
a random amino acids. This deteriorated sequence is fed
to the encoder. We learn a linear classifier on top to pre-
dict the original amino acids inM. The logits output by
this classifier are then passed by a softmax, defining for
every position i a distribution over the amino acids ai:
Pcls(ai|zmasked). The final MLM loss is simply the cross
entropy:

LossMLM =−
∑

i∈Mα

log(Pcls(a
α
i |zαmasked))

−
∑

i∈Mβ

log(Pcls(a
β
i |zβmasked))

−
∑

i∈Me

log(Pcls(a
e
i |zemasked))

(3)

For example, it enables the epitope-encoder to still
learn from the 600000 samples where we do not have
TCRs.

In the end we combined the two losses, using a param-
eter λ that we always use equal to 0.5 in this paper, and
sum over the sequence in the training set:

Loss(θ) =
∑

x∈train
(1− λ)LossMLM(x) + λLossCLM(x) (4)

where x = (xα, xβ , xe,MHC) is our raw datapoint and
θ are the parameters of the model. Details on the training
of a transformer can be found in appendix.

Code and weights for the model can be found at https:
//github.com/barthelemymp/TULIP-TCR/

C. Mutual information as a proxy to the binding
probability

The model presented before is autoregressive. The
structure of the probabilities defined by the model
is simply P (aαi |aα<i, zβ , zepitope,MHC) (resp β, epi-
tope) and a simple multiplication over the position
gives us a conditional probability on the sequences
(p(e|α, β,MHC), p(α|e, β,MHC), p(β|e, α,MHC). How-
ever, we should be more precise on what we want to
evaluate. These conditional probabilities can be good
for generating sequences, but here we first want to eval-
uate the probability of binding. We will show in this
section how to approximate this quantity from the ones
evaluated by our model. Let’s introduce the random bi-
nary variable of binding or not b such that e T becomes

dependant conditionally on b. The first thing we need
to observe is that our TULIP model is trained only on
positive, i.e., binding examples. As a first simplification
let’s look at the link between the binding posterior for a
simple case of e being the epitope and T the alpha and
beta chain of the TCR A simple bayesian approach will
help us here.

p(b = 1|e, T ) =

p(e|T, b = 1)p(T |b = 1)p(b = 1)

p(e, T )

(5)

we can start to do some approximation here.

• All TCR sequenced in blood should have passed
some positive thymic selection for epitope binding.
This implies that p(T |b = 1) = p(T )

• p(e, T ) = p(e)p(T ) by construction as the depen-
dence only appears when conditioning on b.

Leading to:

p(b = 1|e, T ) =
p(e|T, b = 1)p(b = 1)

p(e)
(6)

noticing the p(b = 1) are constants of the problem,
we see that the binding posterior is proportional to the
pointwise mutual information (PMI) between T and e:

log p(b = 1|e, T ) ∝ log p(e|T, b = 1)− log p(e)

= PMI(e;T |b = 1)
(7)

This quantity is the one we used to validate our models
in the previous sections. Pushing further the derivation
to include the role of the MHC, did not improve the re-
sults.

A similar computation can be done for the interaction
between the epitope and MHC, by simply replacing T
with MHC in the previous equation. This second term is
used in Section. II D, where the experimental EC50 are
the results of the simultaneous binding of the TCR with
epitope and of the epitope with the MHC.

V. DATA AND CODE AVAILABILITY

Code is available at https://github.com/
barthelemymp/TULIP-TCR/. The data used
were collected from https://vdjdb.cdr3.net/,
https://www.iedb.org/ and http://friedmanlab.
weizmann.ac.il/McPAS-TCR/.
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Chapter 5

Conclusion

5.1 Scope of the Thesis

This thesis investigated the application of artificial intelligence to protein engineer-
ing, focusing on the utilization of generative models for designing protein sequences.

The research began with an analysis of generative models’ capacity to accurately
model protein sequences, comparing complex neural networks to simpler pairwise
distribution models. This revealed a significant reliance on second-order interac-
tions for representing protein families effectively.

Further exploration introduced InvMSAFold, a method devised for generating
protein sequences with the ability to fold into predefined structures. This repre-
sented an integration of MSA-based models with an inverse folding method, aiming
to condition the fitness landscape with an emphasis on the protein’s structure.

The study then expanded into sequence conditioning, applying these principles
to the generation of interacting protein sequences and the prediction of TCR and
epitope interactions.

5.2 Limitations

5.2.1 Limitations of Protein Generative Models Validation in Silico

One of the limitations encountered in this thesis is the significant challenge associ-
ated with validating in silico protein generative models.

While tools like Alphafold2 have revolutionized our ability to predict protein
structures from their sequences, they are primarily trained and validated on func-
tional and naturally occurring protein data. The predictive accuracy and reliability
decrease when these tools are applied to synthetic sequences and do not detect com-
pletely dysfunctional protein variants [70]. There is a pressing need to develop and
validate new computational methods that are specifically tailored to handle syn-
thetic protein sequences. These methods must be capable of dealing not only with
the prediction of protein structures but also validate functional properties of inter-
est. This calls for a more integrative approach that combines structural predictions
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with functional assays and interaction dynamics in silico.

5.2.2 Experimental Validation as a Critical Bottleneck

The key bottleneck in the pipeline of designing and utilizing synthetic proteins is
experimental validation. Validating the functionality of a protein in a laboratory is
resource-intensive and technically demanding. It involves long-term collaboration
with experimentalists.

The lack of experimental validation impacted the scope and applicability of the
findings in this thesis. Each phase of the research—from designing protein se-
quences using AI models to predicting their interactions—would have substantially
benefited from more robust validation. The ability to experimentally test and con-
firm the predictions made by in silico models would enhance the credibility and
utility of the research, providing a clearer path from computational design to prac-
tical applications. The increasing availability of less and less expensive methods for
high-throughput gene synthesis, functional assaying, and library sequencing will
potentially introduce a major change in these points.

5.3 Beyond TULIP

As part of my PhD project, I have initiated a collaboration with Viroxis@GustaveRoussy
under the guidance of the group led by Thierry Heidmann, to investigate the use of
AI methods for cancer therapeutics.

5.3.1 Selection of the TAX Cancer Target Epitope

The first phase of our collaboration involved selecting a cancer target epitope. The
criteria for selection were based on three main considerations:

• Clinical Relevance: The chosen epitope needed to be associated with cancers
that are hard to cure, thereby addressing a significant unmet medical need.

• Novelty of the Epitope: We focused on cancer-associated epitopes that were
poorly explored, aiming to bring new insights and solutions to difficult-to-treat
cancers.

• Feasibility for Testing: The epitope selection was also influenced by the practi-
cal aspects of testing in the lab environment at GustaveRoussy.

This careful selection ended in the selection of the HTLV-TAX epitope.

5.3.2 The TAX epitope

The Human T-cell lymphotropic virus type 1 (HTLV-1), identified in the early 1980s,
is the causative agent of adult T-cell leukemia/lymphoma (ATLL), a malignancy of
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CD4+CD25+ T cells [71]. This discovery marked HTLV-1 as the first human onco-
genic retrovirus, revealing its role in a rare but aggressive cancer developing decades
after initial infection. The virus employs multiple regulatory proteins, notably Tax
and HTLV-1 basic leucine zipper factor (HBZ), to maintain persistence and latency
while manipulating host cellular mechanisms to its advantage.

Tax is a key protein in promoting cancer, primarily by disrupting essential cel-
lular pathways like NF-κB, which enhances the growth and survival of infected T
cells [72]. This oncogenic potential of Tax, coupled with its ability to evade immune
detection, underscores its role in cancer development long after initial infection.
Targeting Tax for therapeutic intervention is a promising approach due to its central
role in oncogenesis.

5.3.3 Detailed Overview of the HTLV-1 TAX Project

The project targeting the TAX epitope of HTLV-1 has unfolded in several phases, be-
ginning with in silico experimentation. Initial efforts focused on evaluating different
metrics, such as perplexity, adversarial loss [73], and Classification Accuracy Score
[74], to refine the training of the generative model used in this research, TULIP.
This involved generating data with TULIP, training a supervised classifier on this
data, and then assessing the model’s performance against actual data. This pro-
cess enabled a detailed examination of the model’s training, particularly the effects
of randomly masking some Complementarity-Determining Regions to improve the
model’s resilience to incomplete sequence information. Additionally, the dynamics
of model convergence were analyzed to identify the components of the model that
required more focused training.

The project also investigated various sampling strategies. Techniques such as
adjusting the sampling temperature, employing Classifier-Free Guidance [75] to en-
hance mutual information, and exploring filtering mechanisms to select the most
promising TCR sequences based on specific metrics were all evaluated. This rigorous
approach aimed to refine the process of generating artificial sequences, emphasizing
quality and relevance.

In the subsequent phase, the artificially generated TCR sequences were forwarded
to experimental collaborators at Gustave Roussy. These sequences were used to en-
gineer Jurkat T cells [76], modifying their TCRs to express the synthetic sequences.
This step allowed for the in vitro validation of the artificially generated TCRs, test-
ing their functionality and potential therapeutic efficacy. At the time of writing, the
experiments are still in progress, mainly at the step of inserting the CDRs inside the
framework.

5.4 Future Directions

The work conducted on the HTLV-1 TAX project serves as a foundation for future
research in protein engineering and the therapeutic application of AI-generated pro-
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tein sequences. The iterative process of model refinement, combined with experi-
mental validation, offers a model for advancing the design and application of TCRs
in immunotherapy. The insights gained from this project, particularly in optimizing
TCR generation and validation, point towards a continuing evolution of techniques
in both computational biology and experimental immunotherapy.

As a further direction, I am also interested in advancing TCR-peptide prediction
through multimodal approaches, utilizing structural methods and extensive TCR
sequence data to improve TCR design. But more broadly, the integration of artifi-
cial intelligence into biological research has led to an expansion in methodological
approaches, and the use of multimodal data sources is a challenging direction to
explore. The combination of sequence information, structural data, and transcrip-
tomics necessitates the development of specialized methods to manage the complex-
ity and diversity of biological data. A multimodal foundation model for biology
could significantly enhance our understanding and manipulation of biological sys-
tems.

Moreover, as we integrate increasing amounts of modalities, particularly DNA se-
quence data, the scalability of current computational models, including transform-
ers, is being pushed to its limits. The complexities of biological data require not only
large-scale processing capabilities but also models that can efficiently navigate long
contexts. To address these challenges, new approaches such as state space models
(SSMs) [77] are emerging. These models offer promising alternatives to traditional
transformers by potentially providing more efficient ways to handle large datasets
typical in biological research. These models provide a potentially more efficient
means of managing large-scale multi-modal biological data, crucial for advancing
computational biology.

In conclusion, this work contributed to the field of protein engineering by demon-
strating the potential of generative models to enhance our understanding and capa-
bility in designing complex protein systems.

Thank you for reading!
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A Data and Preprocessing

In the following we report the properties of the datasets used.

Dataset Length Sequences Unique Sequences Train Sequences Test Sequences
BRCA1 75 39396 21639 19476 2163
GAL4 62 22985 15833 14250 1583

SUMO1 76 21695 8719 7848 871
UBE4B 75 16478 10248 9224 1024
YAP1 30 86353 17953 16158 1795

Table A1: Length and number of sequences used for all 5 datasets

Dataset Measurement Number of Mutants
BRCA1 function_score 494
GAL4 SEL_A_24h 1104

SUMO1 screenscore 1404
UBE4B log2_ratio 603
YAP1 linear 313

Table A2: Characteristics of experimental datasets. The ’Measurement’ column indicates which measurement was
taken, where the names correspond to the ones used in the supplemental material of [1].

B Additional Results
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Figure B1: Spearman correlation with experimental values of VAE models trained with different hyperparameters.
Every row corresponds to a dataset, every column to a different number of hidden units in the VAE encoders and
decoders. Within every subplot, the rows correspond to different settings for the weight decay strength and the coulmns
to different sizes for the latent dimension. The colors follow the Spearman correlation (the lighter the higher).
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Figure B2: Independent reproduction of main text Fig. 7: Spearman Correlation with experimental data of
original (O) and extracted models (PW/U, PW/M, IND/U, IND/M) for ArDCA. Shown is the Spearman rank
correlation between the experimental data and the energies of the original model (O), the pairwise and independent
models extracted using samples from a uniform distribution (PW/U and IND/U) and for the pairwise and independent
models extracted using samples from the original model distribution (PW/M and IND/M). The random seeds changed
for this reproduction are the seed used for the train-test split, the sampling of the sequences from the original models
and the stochastic gradient descent using the Adam optimizer when extracting the model.
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Figure B3: Scatterplot Energies on BRCA1 Test Set Shown are energies in the original models versus energies in the
extracted models on the sequences in the test set (crosses) and the sequences from the mutational datasets (squares).
The points for the test sequences correspond to 100 randomly chosen sequences. The VAE model used has 40 hidden
units, a latent representation of size 5 and a weight decay setting of 0.01.
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Figure B4: Scatterplot Ranks and Energies on Sequences in Mutational Datasets for BRCA1 Shown are energies
versus experimental fitness (upper two panels) and ranks of energies versus ranks of experimental fitness (lower two
panels) for original and extracted models. Note that energies are negatively proportional to the log probability, so lower
energy means higher probabilities. The VAE model used has 40 hidden units, a latent representation of size 5 and a
weight decay setting of 0.01. If the number of mutants in the dataset was larger than 500, the plot shows data for a
random subset of 500 mutants. The energies were normalized to have 0 mean for all models independently.
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Figure B5: Scatterplot Ranks and Energies on Sequences in Mutational Datasets for GAL4 Shown are energies
versus experimental fitness (upper two panels) and ranks of energies versus ranks of experimental fitness (lower two
panels) for original and extracted models. Note that energies are negatively proportional to the log probability, so lower
energy means higher probabilities. The VAE model used has 40 hidden units, a latent representation of size 5 and a
weight decay setting of 0.01. If the number of mutants in the dataset was larger than 500, the plot shows data for a
random subset of 500 mutants. The energies were normalized to have 0 mean for all models independently.
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Figure B6: Scatterplot Ranks and Energies on Sequences in Mutational Datasets for SUMO1 Shown are energies
versus experimental fitness (upper two panels) and ranks of energies versus ranks of experimental fitness (lower two
panels) for original and extracted models. Note that energies are negatively proportional to the log probability, so lower
energy means higher probabilities. The VAE model used has 40 hidden units, a latent representation of size 5 and a
weight decay setting of 0.01. If the number of mutants in the dataset was larger than 500, the plot shows data for a
random subset of 500 mutants. The energies were normalized to have 0 mean for all models independently.
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Figure B7: Scatterplot Ranks and Energies on Sequences in Mutational Datasets for UBE4B Shown are energies
versus experimental fitness (upper two panels) and ranks of energies versus ranks of experimental fitness (lower two
panels) for original and extracted models. Note that energies are negatively proportional to the log probability, so lower
energy means higher probabilities. The VAE model used has 40 hidden units, a latent representation of size 5 and a
weight decay setting of 0.01. If the number of mutants in the dataset was larger than 500, the plot shows data for a
random subset of 500 mutants. The energies were normalized to have 0 mean for all models independently.
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Figure B8: Scatterplot Ranks and Energies on Sequences in Mutational Datasets for YAP1 Shown are energies
versus experimental fitness (upper two panels) and ranks of energies versus ranks of experimental fitness (lower two
panels) for original and extracted models. Note that energies are negatively proportional to the log probability, so lower
energy means higher probabilities. The VAE model used has 40 hidden units, a latent representation of size 5 and a
weight decay setting of 0.01. If the number of mutants in the dataset was larger than 500, the plot shows data for a
random subset of 500 mutants. The energies were normalized to have 0 mean for all models independently.
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C Contact Prediction

We use standard methods for contact prediction from pairwise models, following mainly [2]. We transform the extracted
pairwise models into the zero-sum gauge and calculate the Frobenius norm of the q − 1 × q − 1 submatrices Jij
corresponding to the pair of positions i and j (we do not sum over gap states, hence q − 1 instead of q). We apply
the average-product correction [3] and sort the positions pairs by the resulting score, excluding pairs for which
abs(i − j) < 5. We map PDB 1PIN:A [4] to the MSA and use it to differentiate contacts from non-contacts (8 Å,
Heavy-Atom criterion [5]).

D Zero-Sum Gauge

In the following we prove that the pairwise model Epw corresponding to the minimizer of main text Eq. 7 is equivalent
to the pairwise part of EM in the zero-sum gauge when using the uniform distribution D for extraction.

D.1 Notation

We denote by A = {1, .., q} the (numeric) alphabet of the q possible amino acids. The terms fL : A|L| → R in the
general expansion in main text Eq. 4 are functions mapping sequences of amino acids of length |L| to a real number,
where L ⊆ I = {1, . . . , N} is a subsequence of positions. In this notation, the pairwise model we train using the loss
in main text Eq. 7 can be written as

Epw(s) =
N∑

i=1

N∑

j=i+1

fpw
ij (si, sj) +

N∑

i=1

fi(si) + f∅. (1)

In main text Eq. 5 we use a different notation for the pairwise model, but in this Appendix we decide to keep all
notations compatible with the generic expansion in main text Eq. 4. The notations can be connected by identifying
fpw
i (a) := −hi(a), f

pw
ij (a, b) := −Jij(a, b) and f∅ := −C for arbitrary amino acids a and b.

Equivalently we define fM
L : A|L| → R as the interaction coefficients between the sites belonging to the set of positions

L ⊆ I in EM in a certain gauge.

We will use fL(aL) in order to denote a specific interaction coefficient for a fixed sequence of amino acids aL of length
|L|, for both pairwise models and models with higher-order interactions. We will use fpw to denote the set of all
parameters of the pairwise model and fM for the set of all parameters of the original model.

D.2 Zero-Sum Gauge

The zero-sum gauge is a reparameterization of the interaction coefficients which leaves the energy invariant (see also
Ref. [6] who discuss this gauge, calling it the Ising gauge). In this gauge, if |L| > 0, summing fL(aL) over any of
the amino acids in aL while keeping the others fixed is 0. It can be applied both to the parameters of the extracted
pairwise model fpw and the parameters fM of the original model. Since the sum over an amino acid is proportional to
the expectation of fL(aL) when the corresponding amino acid is sampled uniformly, this condition can be written as

Es∼U [fL(sL)|sJ = aJ ] = 0 ∀ J ⊂ L, (2)

where Es∼U [fL(sL)|sJ = aJ ] is the expectation of fL(sL) if the subsequence sJ is fixed to aJ . Any model can be
transformed into the zero-sum gauge using the identity fL(aL) = (fL(aL)− f̂L(aL)) + f̂L(aL) with

f̂L(aL) :=
∑

J⊆L

(−1)|J| 1

q|J|
∑

aJ

fL(aL). (3)

It is easy to show that f̂(aL) satisfies the condition in Eq. 2 and that faL
(aL) − f̂aL

(aL) contains only interactions
of order strictly less than |L|. Therefore, any model can be transformed into the zero-sum gauge by first applying the
transformation to the interaction coefficients at the highest order N = |I|. This will lead to interaction coefficients
at order N that satisfy the condition in Eq. 2 and new interaction coefficients of order lower than N . These can be
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absorbed in the interaction coefficients in the lower orders of the expansion. Repeating this procedure at N − 1, then at
N − 2 etc. leads to a final model where all interaction coefficients of all orders satisfy the condition in Eq. 2.

Since the expansion of EM has exponentially many interaction coefficients in general, this procedure has no practical use
in our setting. However, in the next section we show that the lower orders of EM in the zero-sum gauge representation
can be extracted with a simple sampling estimator.

D.3 Proof of Equivalence of Minimizer of Loss and Zero-Sum Gauge

The partial derivative of the loss in main text Eq. 7 with respect to a parameter fpw
L (aL) in the pairwise model (note

that |L| ≤ 2 in this case) can be written as

∂L(fpw)

∂fpw
L (aL)

= 2 Es∼U

[(
Epw(s)− EM (s)

) ∂Epw(s)

∂fpw
L (aL)

]
. (4)

Setting the gradient to 0 leads to

Es∼U [E
M (s)|sL = aL] = Es∼U [E

pw(s)|sL = aL] ∀L : |L| ≤ 2 (5)

which means that the minimisation of the loss with respect to the parameters of the pairwise model is equivalent to
fitting the conditional expectation of the energy under uniform distribution up to the second order of the expansion.

Since the loss in main text Eq. 7 is invariant with respect to a gauge change in the pairwise model Epw, we can assume
without loss of generality that we extract the pairwise model in the zero-sum gauge representation. Using a hat to
denote the parameters f̂pw of the pairwise model in this specific gauge, it is easy to see from Eq. 1 and the condition in
Eq. 2 that

Es∼U [E
pw(s)] = f̂pw

∅

Es∼U [E
pw(s)|si = a] = f̂pw

i (a) + f̂pw
∅

Es∼U [E
pw(s)|si = a, sj = b] = f̂pw

i,j (a, b) + f̂pw
i (a) + f̂pw

j (b) + f̂∅.

Combining this with Eq. 5 we get at the minimum of the loss the conditions

Es∼U [E
M (s)] = f̂pw

∅

Es∼U [E
M (s)|si = a] = f̂pw

i (a) + f̂pw
∅

Es∼U [E
M (s)|si = a, sj = b] = f̂pw

i,j (a, b) + f̂pw
i (a) + f̂pw

j (b) + f̂∅.

(6)

Similar to the pairwise model, we will use a hat to denote the parameters f̂M of the model EM in the zero-sum gauge.
While the corresponding expansion

EM (s) =
∑

L⊆I

f̂M
L (sL)

has interaction coefficients of all orders, we can again use the conditions in Eq. 2 to arrive at

Es∼U [E
M (s)] = f̂M

∅

Es∼U [E
M (s)|si = a] = f̂M

i (a) + f̂M
∅

Es∼U [E
M (s)|si = a, sj = b] = f̂M

i,j (a, b) + f̂M
i (a) + f̂M

j (b) + f̂∅.

10



Taking these relations together leads to the minimizer condition

f̂pw
L = f̂M

L ∀L : |L| ≤ 2

which means that the Epw minimizing the loss in main text Eq. 7 is the pairwise part of EM in its zero-sum gauge
representation. Note that the loss is still invariant with respect to a gauge change in the extracted pairwise model, so the
extracted model can be in any gauge representation.

We also note that Eqs. 6 can be used to estimate the coefficients of the extracted pairwise model directly using uniform
samples and the corresponding energies from the original models in order to approximate the expectations.

E List of Abbreviations in Main Text

Abbreviations in Figures and Text

PW: Pairwise Model
IND: Independent Model
O: Original neural network model
M: Distribution induced by original neural network model
U: Uniform Distribution
PW/M: Pairwise model extracted using samples from the M distribution and energies from O
PW/U: Pairwise model extracted using samples from the U distribution and energies from O
IND/M: Independent model extracted using samples from the M distribution and energies from O
IND/U: Independent model extracted using samples from the U distribution and energies from O
Test Distant: 10% of test sequences with largest Hamming distance to the training set
Test Close: Test sequences not in ‘Test Distant’
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A Appendix

A.1 Fast pseudolikelihood computation

The main rationale behind the low rank approximation (1) is two-fold; first, it is known that, compared
to the covariance matrix, the coupling matrix has often a rank which is much smaller than the
maximum theoretical one(do we have a reference?). Secondly, for computational purposes we wanted
to avoid bottleneck’s of quadratic costs in the length of the protein, both from a memory and a
computational time point-of-view. Technically, once we enforce a low rank constraint of the matrix
J , the number of active parameters indeed passes from O(N2) to O(N). If we though compute the
pseudo-likelihood naively by pre-computing the full coupling matrix J as in (??), we end up again
into a quadratic cost. Luckily, with a careful implementation, we can indeed achieve a linear memory
and computational cost. To see this, let us rewrite the crucial part(as the fields are by nature linear in
cost):

∑

i<j,a,b

Ji,j [a, b]δi[a]δj [b] =
1

2


∑

i,j,a,b

K∑

k=1

vki [a]v
k
j [b]δi[a]δj [b]−

K∑

k=1

∑

i,a

(vki [a]δi[a])
2


 (5)

=
1

2




K∑

k=1


∑

i,a

vki [a]δi[a]




2

−
K∑

k=1

∑

i,a

(vki [a]δi[a])
2


 . (6)

In the previous equation δi[a] is the Kronecker symbol, which equals 1 is the amino-acid in the i-th
position is equal to a, and zero otherwise. This has solved half of the problem, in the sense that we
can now compute every term of the pseudo-likelihood summation in linear time, but again if we
naively compute each term of the summation independently, we again end up with a cost of O(N2).
Logically though the different terms of the pseudo-likelihood have a lot of shared structure, hence we
can hope to recover a linear cost. Indeed, using Bayes’ theorem, we have that

p(sp|s−p) =
p(s)∑

c p(sp = c, s−p)
=

exp{−E(s)}∑
c exp{−E(sp = c, s−p)}

. (7)

we want to compute efficiently the energies and the calculate the logarithm of the loss. For the
moment we will discard the fields contribution to the energy E as its cost is linear and needs no careful
implementation. The crucial part is that we should do minimal effort to calculate E(sp = c, s−p)
once we have already calculated E(s). To do this we note that, labelling as δcp the indicator variable
for the mutates sequence having amino acid c in position p, we have that

∑

i,a

vki [a]δ
c
i [a] =

∑

i ̸=p,a

vki δi[a] + vkp [c] =
∑

i,a

vki δi[a]−
∑

a

vp[a]δp[a] + vkp [c]. (8)

As we can see the first term is common to all energies, hence we can calculate it just once, while
the other have a smaller cost. The thing to remember is that for any p(sp|s−p) we have to calculate
all the energies E(sp = c, s−p) for all the dictionary letters c, and the we have to iterate across all
positions p to get the final loss.

Notice, that in case we also insert a quadratic penalty, we also have to make sure to calculate the
latter in O(N). This though is rather simple, in fact one can just observe the following

∑

i,j,a,b

Ji,j [a, b]
2 =

∑

k,k′


∑

i,a

vki [a]v
k′
i [a]




2

−
∑

k,k′


∑

i

(∑

a

vki [a]v
k′
i [a]

)2

 , (9)

A.2 Experiments details

A.2.1 Second order reconstruction

The experimental procedure for both datasets and can be organized in the following steps:

1. We filtered the structures, keeping only those for which the MSA generated by MMseqs2
has at least 2k sequences. This because since we need to compute covariances, small MSAs
could give very biased benchmarks, leading to wrong conclusions.
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Hypertuning results
Model Dropout B M K (λJ , λh) lr
ArDCA 0.1 8 32 48 (3.2e-6, 5.0e-5) 3.4e-4

Table 2: Parameters selected arDCA by hyperparamter optimization

2. For every sequence in the filtered dataset, we generate 10k syntetic samples for all of the
three models under consideration. To generate the samples from Potts we leverage the
efficient library bmDCA, for ESM-IF1 we used the built in sampler(with some changes for
speed improvements) and for ArDCA we built our own sampler. For bmDCA, we ran 10
parallel chains and then pooled the results, for more details on the sampler parameters refer
to the supplement.

3. For ESM-IF1, given the samples, we re-aligned the samples using the full MSA to get a fair
comparison. This because, while arDCA and Potts have seen many gaps during training,
ESD-IF1 has never seen one since he focuses only on the native sequence. Hence he will
produce un-aligned sequences which seldomly have gaps. To align we used the PyHMMER
library.

4. Given the samples, we compute the covariance matrices of the generated samples and the
one of the true MSA. We then compute the Pearson correlation between the flattening of the
two.

A.2.2 Melting temperature prediction

For both the structure and superfamily test dataset, we take one representative for every CATH
superfamily in it. As in the iso-structure experiment, We then generate 50 proteins at different
hamming distance from the native sequence for every structure and every model. We also get 100
sequences from the structure’s MSA as a comparison.

In order to predict Tm, DeepStab [19] needs as input not only the primary structure, but also the
conditions of the TPP experiment(ether lysate or cellular and the optimal growth temperature of the
organism under consideration. For the former in our experiemnts we set the TPP enviroment to lysate,
while for the latter, since in our sythetic design we do not know the optimal growth temperature of
the organism, we run the prediction at four different optimal growth temperatures {0, 12, 25, 37}.
The choice of those values was driven by the fact that the first three cover the most common outside
environmental conditions over the year, and hence should adequately represent the protein diversity
of most heterotermic organism. On the other hand, 37 represents homeothermic organisms(humans,
mice, E coli, Bacillus), which are the organisms DeepStab has seen most of during training, and
hence where he should be more accurate.

A.3 Hyper-tuning details

To train select some hyperparameters for arDCA we relayed on the library Optuna. The parameters we
optimized for where Adam’s learning rate(lr), the rank of the approximation for the Couplings matrix
J(K), the penalties for the couplings and the fields (λJ , λh), the batch size used for training(B),
the batch MSA size used in the loss(M ) and the value of dropout. To sample parameters we use
the TPESampler, and we allowed for median pruning of bad trials to improve the speed of out
hyper-tuning. We gave optuna 50 trials of 90 epochs each(irrespective of batch size), while as a
selecting metric we used the average of the pseudo-likelihood on the structure and superfamily test
dataset. In the table below we recap the parameter values selected by the hyper-tuning

We actually applied an identical strategy for those same parameters for the Potts model, but there the
hyper-tuned values did not perform better(actually slightly worse) than those reported in the Methods
2 section. It is definitely something we would like to investigate further in subsequent research, but
seemed out of scope for the current work.
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Source Family Target Family Nin Nout Mtrain Mval dmed

PF00689 PF00122 184 223 4460 488 62
PF00289 PF02786 112 213 4502 495 35
PF02785 PF00289 110 112 4396 490 24
PF00004 PF07724 134 173 4886 1118 21
PF00006 PF02874 215 71 5370 464 15
PF02785 PF02786 110 213 4542 494 35
PF00207 PF07677 94 94 552 138 10
PF00207 PF01835 94 98 1027 241 43
PF08264 PF00133 154 604 5846 501 110
PF00501 PF13193 425 76 17050 498 120
PF01591 PF00300 225 196 760 189 31
PF08240 PF00107 111 132 16903 500 38
PF02770 PF02771 99 115 12048 499 33
PF00441 PF02771 152 115 12703 501 38
PF01842 PF13840 69 67 851 190 19
PF08545 PF08541 82 92 2548 556 35
PF00441 PF02770 152 99 12850 497 26
PF00005 PF08402 139 78 4933 1066 49
PF00005 PF08352 139 67 5751 1243 40
PF00664 PF00005 276 139 15889 3473 106
PF03171 PF14226 103 120 5624 1317 29
PF12780 PF12781 270 222 1498 361 37
PF12775 PF12780 274 270 1632 386 39
PF07724 PF10431 173 83 7315 1649 25
PF00690 PF00702 71 212 4450 486 63
PF00690 PF00122 71 223 5356 484 37
PF00004 PF10431 134 83 4685 1088 25

HK RR 64 112 4086 1021 33
Table 1. List of the pairs of domains used in this dataset. Nin and Nout are the length of the input domain and the target domain. Mtrain and Mval

and the size of the training and validation dataset.

Appendix for: Generating Interacting Protein Sequences using Domain-to-Domain Translation

Appendix A Datasets
In this section, we give details about the 27 family pairs used to measure the performance of the different models. The quantities Nin and Nout are the
domain length of the source family and the target family,Mtrain andMval the size of the training set and validation set and dmed is the median distance
of a sequence in the validation set to the training set. This distance was used as a cutoff for distinguishing the matching performance for sequences close
or far from the training set, which are denoted byMClose andMFar .

Appendix B Methods and Models

B.1 Transformer

The translation model we use is matching closely the original Transformer model from Ref. (Vaswani et al., 2017), featuring an encoder-decoder
architecture. While we refer to this work for more details, we review here the key components. Sequences from the source family are encoded by the
encoder and used as the input for the decoder. The source sequence is processed through alternating blocks of self-attention and linear layers. The same
is done for the already translated part of the target sequence, while the part of the target sequences not yet decoded is masked. Typical vocabulary sizes
in NLP are in the order of 104 to 105, while in our case we have a vocabulary V is composed of 21 tokens, corresponding to 20 amino acids and an
alignment gap symbol.

The input embedding is composed of two parts, one for the amino acid identity and one for the position in the sequence. We learn a dictionary W ,
mapping each of the 21 symbols to a vector of dimension dmodel. The sequence position is embedded as a vector PE, calculated as

PE(i,2k) = sin

(
i

1000
2k

dmodel

)

PE(i,2k+1) = cos

(
i

1000
2k

dmodel

), (8)
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where i is the position in the sequence and k is the dimension in the embedding vector. The embedding of a sequence is then taken as the sum of
the amino acid and positional embeddings. The embedded amino acid sequences are then passed to the encoder, mapping them to a latent representation
z = (z1, . . . , zn). This latent representation is then passed to the decoder that predicts the interaction partner sequence.

The decoder implements an auto-regressive distribution

P (ai|z, a<i), (9)

defining the probability of the ith amino acid in the interaction partner sequence given the preceding amino acids in the interaction partner a<i and
the hidden representation z of the input sequenceB. During training, we use the true amino acids for a<i, while during sampling we sample the sequence
A sequentially.

Attention Mechanism Both the encoder and decoder use self-attention mechanisms and the decoder also the cross-attention mechanism.
Following (Vaswani et al., 2017), we define the attention operation as

Attention (Q,K, V ) = softmax

(
QKT

√
dmodel

)
V, (10)

where Q is the query matrix, K is the key matrix, V is the value matrix and dmodel is the dimension of the keys, which we will define below.
For each element of the query Q we compute its similarity with the different values of the keys K. This yields weights used to compute a weighted

average of the value V .
The output of the ith attention head, called headi, is calculated as

headi = Attention
(
QWQ

i ,KW
K
i , V WV

i

)
(11)

We then linearly combine the different heads, resulting in

Multihead (Q,K, V ) = (head1, . . . , headh)W
O. (12)

In the self-attention layers, the keys, queries, and values are calculated from the same input. In this case, K = Q = V .
In cross attention, the keys and values are based on z and the queries on the intermediate decoder representations. In the results presented in this paper,

we only used models with a single head.

Transformer Architecture The complete architecture is represented in Fig. B.1 and is based on stacking encoder and decoder blocks in the two parts. At
the end of these blocks, linear with dimension dff and residual connections to the input of the blocks are added.

Self-Attention

Add & Normalize

Add & Normalize

Feed Forward Feed Forward

Self-Attention
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Encoder Attention
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Positional Encoding
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W
Embedding

aa 1 of input aa 2 of input aa 1 of output aa 2 of output

Fig. B.1. Transformer architecture for an input and output protein of length 2 and T layers: W is an embedding matrix, matching each amino acid to a vector of size e.
The architecture here represents proteins of length 2 for simplicity, but the encoder and decoder can handle inputs of arbitrary length. The positional encoding uses sine
functions of different frequencies to generate an embedding of the protein position.
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The code is based on the PyTorch implementation of the Transformer https://github.com/pytorch/pytorch.

B.2 arDCA Baseline

As a baseline, we use the recently introduced arDCA (Trinquier et al., 2021), which is an efficient autoregressive model for protein sequences. or an
amino acid sequence A = (ai, ..., aN ) of length N , arDCA defines the conditional probability P (ai|ai−1, ..., a1) as

P (ai|ai−1, ..., a1) =

exp

{
hi(ai) +

i−1∑
j=1

Jij(ai, aj)

}

zi(ai−1, ..., a1)
, (13)

with zi(ai−1, ..., a1) =
∑

ai
exp{hi(ai) +

∑i−1
j=1 Jij(ai, aj)} being a normalization factor. The parameters h depend on a single position and

the amino acid found at that position and the parameters J on pairs of positions and the two amino acids found at that pair of positions.
The probability of a sequence can be computed using the decomposition

P (a1, ..., aL) = P (a1) · P (a2|a1) · · ·P (aL|aL−1, ..., a1), (14)

which is tractable. Training can be done using standard convex optimization methods.
For our purposes, we concatenate the source protein B and the target protein A into a single sequence during training. During evaluation, we just

need the conditional probability P (A|B), which we calculate using

P (a1, ..., aNout |B) = P (a1|B) · P (a2|B, a1) · · ·P (aNout |B, aNout−1, ..., a1) . (15)

We also added an L2 regularization on the parameters h and J . During our experiments, we used the regularization parameters communicated by the
authors (λh = λJ = 0.0001).

B.3 RITA

Rita is a decoder-only Transformer without conditioning information. It means that it only uses the decoder part of B.1, where the encoder-decoder
attention layer has been deleted. This defines a generic autoregressive model. We used the Rita L model composed of Large 680M parameters, a model
dimension of 1536, and 24 layers. This huge model was then trained on the UniRef-100 database. Moreover, we should note that the training was done
in both directions. This explains why we present both scores when evaluating the performance of Rita finetuned. For finetuning Rita we used a batch-size
of 6 and the Adam optimizer on the full-length sequence of the proteins in our train-set. Sequences were passed in both directions. Every Validation loss
was computed every 200 gradient updates, and the best-performing model was kept for the experiments shown in the paper.

Rita is a language model based on the decoder of the original Transformer model in Fig.B.1. This means it does not use encoder-decoder attention and
implements a generic unconditioned autoregressive sequence model. In our experiments, we use Rita L, which has 680M parameters, a model dimension
of 1536, and 24 layers. The model we used for finetuning was pre-trained on Uniref-100 predicting in both the natural and the reverse direction of
the protein sequences. We used a batch-size of 6 and the Adam optimizer for finetuning on the full-length sequences (both directions) on our datasets.
We calculated the loss on the validation every 200 gradient updates on a total of 4000 gradient updates. We used the best-performing model for the
experiments shown in the paper. The number of steps to finetuned each model varies between families but usually stands around 1000, way before the
end of our training. To make the loss comparable we only took into consideration the positions that were match state for the Pfam HMM of the domain.

B.4 Joined Transformer

Here we detail more the performance of training a single Transformer (the "joined Transformer") on all the pairs in order to see if we can benefit from
transfer learning between pairs. To do so we joined all the datasets except 4 in one single dataset. The left-out pairs are used for evaluating if there is
transfer learning to unseen pairs. To make the comparison fairer we replaced the <SOS> token with a specific token for the pair (the idea is to tell to
the Transformer the task it has to perform). To make this model also compatible with unseen pairs (and unseen specific tokens) we replaced this token
only 50% of the time in the training examples, 100% of the time in the validation sets of seen pairs, and never for the unseen pairs. The training takes
significantly longer. We trained in parallel for two days on 12 GPU whereas the smaller models were trained on a single one for usually less than a day.
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Fig. B.2. Accuracy Aval on the validation set for the shallow Transformer, and the Joined Transformer. The families are ordered by training set size.
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Fig. B.3. True positive rate for matching on the validation set for the shallow Transformer, and the Joined Transformer. The families are ordered by training set size.
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Fig. B.4. Perplexity PPval for the shallow Transformer, the Joined Transformer on the validation set. The families are ordered by training set size.

The results seem to show very little transfer learning between pairs. Probably such an effect could only appear when training on thousands of pairs.
Moreover, the spirit of this paper is intended to fit the line of work of domain-specific models like in Potts, VAE, RBM Hawkins-Hooker et al. (2021b);
Tubiana et al. (2019); Russ et al. (2020). We intend to guide specific design task when one wants to redesign a specific domain/protein to increase its
fitness for a desired task.
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Fig. C.1. Evolution of the perplexity and the fraction of correctly matched pairs (a) on the validation set and (b) the accuracy during training for PF013171-PF14226 for the
large Transformer.

B.5 Training Time

In this section, we present a table with the training time of our models using a single Nvidia V100 GPU. The first column refers to the family pair, the
second to the training time of the shallow Transformer, the third one to the large Transformer with entropic regularization, and the last one to the large
Transformer without entropic regularization.

Runtime Shallow Runtime Renyi Runtime Large
Pair

PF00289_PF02786 0 days 10:13:10 3 days 17:10:52 0 days 15:10:43
PF02785_PF02786 0 days 10:20:21 2 days 10:45:01 0 days 11:24:58
PF02785_PF00289 0 days 09:50:34 2 days 02:05:06 0 days 15:45:50
PF00004_PF07724 0 days 19:54:55 2 days 15:57:20 0 days 23:05:37
PF00006_PF02874 0 days 12:00:52 2 days 07:07:35 0 days 12:28:15
PF00207_PF07677 0 days 01:44:11 0 days 06:14:45 0 days 01:09:31
PF00207_PF01835 0 days 03:30:15 0 days 11:15:13 0 days 02:17:15
PF08264_PF00133 0 days 18:21:48 6 days 05:37:06 0 days 19:24:28
PF00501_PF13193 1 days 16:47:12 12 days 12:27:26 1 days 07:23:54
PF01591_PF00300 0 days 03:20:45 0 days 19:01:09 0 days 02:23:11
PF08240_PF00107 1 days 13:11:32 6 days 20:56:44 1 days 18:54:09
PF02770_PF02771 1 days 02:09:05 6 days 01:37:54 1 days 07:02:04
PF00441_PF02771 1 days 01:16:55 10 days 18:35:05 1 days 08:18:41
PF00441_PF02770 1 days 02:20:40 6 days 01:56:31 1 days 11:05:05
PF01842_PF13840 0 days 02:38:04 0 days 10:54:23 0 days 02:37:06
PF08545_PF08541 0 days 07:48:42 1 days 04:28:05 0 days 05:54:03
PF00005_PF08402 0 days 11:30:09 1 days 19:43:05 0 days 12:58:03
PF00005_PF08352 0 days 13:42:05 2 days 13:55:30 0 days 16:48:21
PF00664_PF00005 2 days 01:30:23 10 days 19:21:16 2 days 02:02:05
PF03171_PF14226 0 days 22:10:30 4 days 04:10:56 0 days 21:30:18
PF12780_PF12781 0 days 07:10:21 1 days 00:33:05 0 days 03:09:31
PF12775_PF12780 0 days 08:13:18 2 days 05:13:49 0 days 03:43:15
PF07724_PF10431 0 days 18:03:28 3 days 14:18:21 1 days 08:33:09
PF00690_PF00702 0 days 09:55:26 2 days 16:45:33 0 days 10:26:16
PF00690_PF00122 0 days 12:05:13 3 days 04:58:34 0 days 16:48:12
PF00689_PF00122 0 days 10:37:22 5 days 08:58:05 0 days 17:20:30
PF00004_PF10431 0 days 13:00:08 2 days 19:41:44 0 days 18:51:31
HKRR 0 days 9:03:08 2 days 15:41:14 0 days 15:38:34

Appendix C Regularization

C.1 Dropout and Weight-Decay Benchmark

In this section, we show learning curves related to overfitting behavior and regularization.
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Fig. C.2. Performance of the Transformer on PF013171-PF14226 for a varying number of training examples: Left plots show the perplexity PPval, center plots show the
accuracy Aval, right plots show the fraction of correctly matched pairsMval. All values are for the validation set.

C.2 Entropic Formulation of The Regularization

There is a relation between the entropic regularization and the Rényi entropy: For a number of sampled sequences S sufficiently large we can rewrite the
regularization term

Rent(Ai, Bi) = logP (Ai|Bi)− logS − log

(
1

S

S∑

k=1

P (Ai,k|Bi) +
1

S
P (Ai|Bi)

)

≈ logP (Ai|Bi)− logS − log
(
EA∼P (A|Bi)

[P (A|Bi)]
)

≈ logP (Ai|Bi)− logS − log

(∑

A

p2(A|Bi)

)
,

(16)

where the last sum is over all possible sequences A. The first term in the last line is equivalent to the standard loss and can be absorbed there. The
second term is a constant and will not influence the gradient. The last term is the logarithm of the Rényi entropy of order 2, also called the collision
entropy, of the distribution over target sequences conditioned on Bi.

C.2.1 Entropic Regularization Performance
This section presents the results of the large Transformer trained with α = 0.7, and S = 5 in comparison with arDCA and the shallow Transformer in
Fig. C.3, Fig. C.4 and Fig. C.5. The comparison with the large Transformer without regularization or with weight decay is presented in the following
section, see Appendix Sec. C.3.
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Fig. C.3. Accuracy Aval on the validation set for the shallow Transformer, arDCA, and the large Transformer with entropic regularization. The families are ordered by
training set size. -For datasets below 2000 examples, arDCA is always above Transformer with an average difference of 0.02 in terms of accuracy -For datasets above
2000 examples, Transformer is below arDCA in 90.4% of cases with an average difference of 0.02 in terms of accuracy
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Fig. C.4. True positive rate for matching on the validation set for the shallow Transformer, arDCA, and the large Transformer with entropic regularization. The families are
ordered by training set size. -For datasets below 2000 examples, arDCA is above Transformer in 83% of cases with an average difference of 0.02 in terms of matching
fraction -For datasets above 2000 examples, Transformer is below arDCA in 90.4% of cases with an average difference of 0.08 in terms of matching fraction
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Fig. C.5. Perplexity PPval for the shallow Transformer, the large Transformer with entropic regularization and arDCA on the validation set. The families are ordered by
training set size. -For datasets below 2000 examples, arDCA is always below Transformer with an average difference of 0.42 in terms of perplexity -For datasets above
2000 examples, Transformer is below arDCA in 76% of cases with an average difference of 0.28 in terms of perplexity

C.3 Entropic Regularization Compared with Weight Decay

In this section, we compare the entropic regularization and weight decay on different metrics, averaged over all 27 families.

Entropic versus Weight Decay In this section, we compare the performance of the large Transformer on different metrics for all families individually. The
resulting plots were split into different figures in order to make them fit on the pages.
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Fig. C.6. Radar plot comparing different regularization schemes, entropic (Entrp.), and weight decay (WD) with different strengths for the large Transformer. The radial
direction of the perplexity PP is reversed in order to have the same direction for increasing performance as for the other metrics. The plot was done by averaging the
metrics of all families.
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Fig. C.7. Comparing the performance of the large Transformer with entropic regularization and weight decay (WD). The radial direction of the perplexity PP is reversed in
order to have the same direction for increasing performance as for the other metrics.
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Fig. C.8. Comparing the performance of the large Transformer with entropic regularization and weight decay (WD). The radial direction of the perplexity PP is reversed in
order to have the same direction for increasing performance as for the other metrics.
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Fig. C.9. Comparing the performance of the large Transformer with entropic regularization and weight decay (WD). The radial direction of the perplexity PP is reversed in
order to have the same direction for increasing performance as for the other metrics.
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Fig. C.10. Comparing the performance of the large Transformer with entropic regularization and weight decay (WD). The radial direction of the perplexity PP is reversed
in order to have the same direction for increasing performance as for the other metrics.
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Fig. C.11. Comparing the performance of the large Transformer with entropic regularization and weight decay (WD). The radial direction of the perplexity PP is reversed
in order to have the same direction for increasing performance as for the other metrics.
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Fig. C.12. Comparing the performance of the large Transformer with entropic regularization and weight decay (WD). The radial direction of the perplexity PP is reversed
in order to have the same direction for increasing performance as for the other metrics.
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Appendix D Additional Structural Results

D.1 Structural comparison using AlphaFold

For all our computations we used the implementation of CollabFold with template search, 5 models, and 3 recycle. (Mirdita et al., 2022).
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Fig. D.1. TM-Scores and RMSD values when comparing the Alphafold predicted structures of true sequences with Alphafold predicted structures of sequences where
single domains have been replaced with homologous natural sequences. (Left is based on G0S4G4, which contains domains PF00004 and PF07724, which are in contact
in PDB 5D4W. Homologous sequences are sampled from the validation set and inserted into the G0S4G4 sequence. Center is based on Q8ZN46, which contains domains
PF00207 and PF01835, which are in contact in PDB 4U4J. Homologous sequences are sampled from the validation set and inserted into the Q8ZN46 sequence. Right is
based on Q13SV4, which contains domains PF08545 and PF08541, which are in contact in PDB 4EFI. Homologous sequences are sampled from the validation set and
inserted into the Q13SV4 sequence. In all of these proteins, we measure the change in structural scores and in cross-entropy in the shallow Transformer model (abscissa).

D.2 Structural Information using DCA

Direct Coupling Analysis is a group of unsupervised methods for modeling aligned protein sequences, see Ref. (Cocco et al., 2018). Apart from other
applications, it can be used for predicting structural contacts from MSAs.

plmDCA plmDCA is a specific method of DCA based on a pseudolikelihood approximation for training the Potts Model. In this paper we used the
asymmetric version of the method from https://github.com/pagnani/ArDCA.jl with default hyperparameters. The sequences sampled from the Transformer
were realigned using HMMer (Finn et al., 2011).

Results per Pairs In this section, we show the contact prediction results obtained with plmDCA for the 27 families.
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Fig. D.2. Contact Prediction using plmDCA for the original training set, and a sampled dataset from the shallow Transformer. The curves represent the Positive Predictive
Value (fraction of true positives) with respect to the number of predicted contacts. To make it fit the page format, we split the results on the different families into two figures:
this one and the following.
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Fig. D.3. Contact Prediction using plmDCA for the original training set, and a sampled dataset from the shallow Transformer. The curves represent the Positive Predictive
Value (fraction of true positives) with respect to the number of predicted contacts.
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Appendix E Additional Results on Generalization

E.1 Matching Performance for Different Distances from Training Set

Here we plot the fraction of correctly matched pairs in the validation set, separated into below-median and above-median distances from the training set.
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Fig. E.1. Fraction of correctly matched pairs in the validation set for the shallow Transformer and arDCA. The families are ordered by training set size. Shown are results
for the 50% of sequences closest to the training set.
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Fig. E.2. Fraction of correctly matched pairs in the validation set for the shallow Transformer and arDCA. The families are ordered by training set size. Shown are results
for the 50% of sequences farthest to the training set.

E.2 Accuracy and Perplexity with Distance from Training Set

In this section, we present the results for each pair of the analysis of Sec. 4.5.
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Fig. E.3. Distribution of the perplexity PP and the accuracyA of every sequence pair in the validation set with respect to their distance from the training set for the shallow
Transformer and arDCA. To fit the page format, we split the results on the different families into two figures: this one and the following
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Fig. E.4. Distribution of the perplexity PP and the accuracyA of every sequence pair in the validation set with respect to their distance from the training set for the shallow
Transformer and arDCA.

Appendix F Additional Matching evaluation
For each protein family, we measure the fraction of correctly matched pairs when restricting the problem to the first n sequence pairs.
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Fig. F.1. Fraction of correctly matched pairsMval for increasing number of pairs for different families. Shown are the results for the shallow Transformer (blue) and arDCA
(orange). Only a subset of the families is shown in order to save computational resources. The families are ordered according to the training set size. In order to fit the page
format, we split the results into this and the next figure.
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Fig. F.2. Fraction of correctly matched pairsMval for increasing number of pairs for different families. Shown are the results for the shallow Transformer (blue) and arDCA
(orange). Only a subset of the families is shown in order to save computational resources. The families are ordered according to the training set size. In order to fit the page
format, we split the results into this and the previous figure.
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F.1 D

F.1.1 D.3 Sequence Logo and Loss
In Fig. F.3 we show the perplexity per position for family pair PF013171-PF14226, together with the sequence logo. It is evident that biologically
conserved positions correspond to lower perplexities, which is to be expected.

Fig. F.3. Top: Sequence logo of PF013171-PF14226 paired MSA. Bottom: Distribution of the perplexity with respect to the positions. The errors are concentrated on the
most variable position, highlighting that the Transformer has understood the basic site-wise structure of the distribution.
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APPENDICES

Appendix A: Training details

In all the examples presented in this paper, we used the following architecture: embedding dim = 128, hidden size
= 128, and each encoder and each decoder have 2 layers. The MHC embedding was limited to the 50 most represented
MHC. In all the examples presented in this paper, we used the following architecture: embedding dimension = 128,
hidden size = 128, and 2 layers for each encoder and each decoder. The MHC embedding was limited to the 50 most
represented MHC, and none in the training with unseen epitopes. For the repertoire mining experiment, we used 100
epochs in the zero shot setting. During the training we use the Adam optimizer [45] with a learning rate of 0.0001 for
100 epochs. During the finetuning process, we freeze the encoder and the embedding. We train using the same losses
with adam optimizer. The finetuning is done for 40 epochs (but on much smaller dataset) keeping the loss function
the same.

Appendix B: Comparison to other methods

For comparing with DLpTCR we fine-tuned our model on HLA-A02*01 in the same way as for the experiments
of section II.A. For ERGO, metrics are computed on the subset of peptide that were both left out by TULIP and
ERGO.
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Peptide CDR3a CDR3b

ALIHHNTHL CAVNSNSGYALNF CASSQSETGDGYTF

ALIHHNTHL CAMHRDDKIIF CASSLAVQRPSGNTIYF

ALIHHNTHL CVVSGVNVWGTYKYIF CASSIESGSKQRNEQFF

ALIHHNTHL CAVSDLNSGGYQKVTF CASSPRDRVHEQYF

HMTEVVRHC CAMSGLKEDSSYKLIF CASSIQQGADTQYF

HMTEVVRHC CAFMGYSGAGSYQLTF CAISELVTGDSPLHF

HMTEVVRHC CALDIYPHDMRF CASSLDPGDTGELFF

HMTEVVRHC CVVQPGGYQKVTF CASSEGLWQVGDEQYF

LLGATCMFV CAADSWGKLQF CATSDSTGSYGYTF

LLGATCMFV CAVNPSNQFYF CASRGPYHNEQFF

LLGATCMFV CVVSEEYTNAGKSTF CASSLERLRVYSGYTF

LLGATCMFV CAMDSSYKLIF CASSALAGGQADTQYF

LLGATCMFV CAAGGSYIPTF CASSGTGGYSGANVLTF

LLGATCMFV CAVNDYKLSF CASSWTGANYGYTF

LLGATCMFV CAVYSGGYNKLIF CASSFVNTGELFF

RLARLALVL CASMYSGGGADGLTF CASSFFSNTGELFF

RLARLALVL CASGGGADGLTF CASSFLTDTQYF

RLARLALVL CSSGGGADGLTF CASMDLAFKQYF

RLARLALVL CAYRSGSDGGSQGNLIF CASSQVSGYEQYF

RLARLALVL CAVRDDYGQNFVF CASSPQGDNEQFF

RLARLALVL CAVPDDAGNMLTF CASSELPAGGTNEQFF

RLARLALVL CAGGGGADGLTF CASSYMGPEAFF

YLEPGPVTA CAPGIAGGTSYGKLTF CASSLAYSYEQYF

YLEPGPVTA CGTETNTGNQFYF CASSLGRYNEQFF

YLEPGPVTA CAASTSGGTSYGKLTF CASSLGSSYEQYF

YLEPGPVTA CAVLSSGGSNYKLTF CASSFIGGTDTQYF

YLEPGPVTA CATDGDTPLVF CASSIGGPYEQYF

TABLE S1. TCRs used in the repertoire mining tests.
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FIG. S1. For each epitope in our database, we counted the number of known T-cell receptors (TCRs) binding to that epitope.
The histogram shows a strong imbalance in the dataset, where a handful of epitopes harbor a substantial number of known
TCRs, while the majority of epitopes have only a limited number of associated TCRs.

Human (646)

Covid (596)

Hepatitis (28)
Influenza (16)
Tuberculosis (48)
Epstein Virus (9)
HIV (35)

Other or not defined (502)

FIG. S2. Distribution of peptides by organism of origin.
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FIG. S3. Distribution of the AUCs for the different distance groups. The plot complements Fig. 3A.

FIG. S4. Mean AUC of the different distance groups. Equivalent to Fig. 3A, but with normalized distance (Hamming distance
divided by length).
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FIG. S5. A. Scatter plot of AUC of individual peptides, versus the normalized distance (Hamming distance divided by CDR3
length) to closest peptide in the training set. The color indicates the average distance between a TCR associated to the peptide
of interest, and the closest TCR associated to its closest peptides. B. Distribution of Hamming distances between a sequence
from the test set and its closest TCR in the train set.
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FIG. S6. Performance of DLpTCR and ERGO2 on unseen peptides (complement to Fig. 3C).
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FIG. S7. Effect of single epitope mutations on the NetMHCPan [36] score (logP ) predicts TCR binding (dissociation constant
K, in µg.ml−1) measured by deep mutational scan experiments [35]. The reported ρ and p-values correspond to Spearman
correlations.
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