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Selective vehicle routing problems during wildfires

by Quentin Peña

In the last 10 years, around 82 million hectares of forests have been destroyed by
wildfires. These fires pose imminent threats to the wildlife, as well as in urban areas, to
human lives and critical infrastructure. The need for a strategic and resource-efficient
response to the growing threat of wildfires, exacerbated by climate change, led to the
launch of the GEO-SAFE project. Among its many challenges, this thesis focuses on
the Asset Protection Problem during escaped wildfires (APP) and its disrupted coun-
terpart, D-APP. These problems aim to route firefighting crews to carry out protection
operations on community assets. Existing exact methods, particularly the Mixed Integer
Program (MIP) for APP, struggled with efficiency. We performed a structural analysis
that led to significant enhancements, notably the introduction of three sets of valid
inequalities. These improvements not only decreased solution times but also stabilized
an exact solution method for smaller instances. In parallel, D-APP’s complex replanning
requirements for larger instances were met through a novel reformulation based on a
dominance relation on the solutions of the problem. Acknowledging the limitations of
exact methods in real-time scenarios, this thesis introduces two heuristic approaches tai-
lored for D-APP. The first, based on the new formulation, uses a relax-and-fix approach,
while the second implements a genetic algorithm. These methods generated good
approximate solutions in a limited time, paving the way for rapid and effective wildfire
response strategies. Through these contributions, this work stands as a testament to
the ongoing battle against wildfires, reinforcing the synergy between computational
techniques and real-world disaster management.

Keywords: Wildfire Response; Asset Protection; Mixed Integer Programming;
Heuristic Algorithms; Bi-objective Optimization; Disruption Management
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Résumé
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Problèmes d’acheminement sélectif des véhicules lors de feux de forêt

par Quentin Peña

Lors de la dernière décennie, environ 82 millions d’hectares de végétation ont été
détruites dans des feux de forêt. Ces incendies mettent en danger la nature mais aussi,
dans les zones urbaines, des vies humaines et les infrastructures. Le danger croissant
des incendies, exacerbé par le changement climatique, incite au développement d’outils
stratégiques pour y répondre efficacement, notamment par le biais du projet GEO-SAFE.
Parmi les nombreuses problématiques liées, les travaux de cette thèse se concentrent
sur le problème de protection des biens (APP), et sa version perturbée, D-APP. Ces
problèmes visent à déployer des flottes de pompiers pour assurer des opérations
préventives de protection. Les méthodes de résolution exactes existantes, en particulier
de programmation linéaire en nombre entiers (PLNE) pour APP, ne sont pas efficaces.
Nous avons étudié la structure du problème afin d’obtenir de franches améliorations,
notamment via l’introduction de trois ensembles d’inégalités valides. Ces améliorations
ont non seulement grandement réduit les temps de résolution, ils ont permis d’avoir
une méthode de résolution stable pour les petites instances. En parallèle, une nouvelle
formulation PLNE de D-APP, plus efficace, a été proposée, basée sur une relation de
dominance entre les solutions. Toutefois, les méthodes de résolution exactes sont mal
adaptées à des scénarios en temps réel : cette thèse introduit également deux méthodes
de résolution heuristique adaptées à notre problème. La première, reposant sur la
reformulation, utilise une approche relax-and-fix. La seconde implémente un algorithme
génétique. Ces méthodes ont généré des solutions approchées de bonne qualité en
temps limité, permettant de déployer des réponses rapidement et efficacement. Á
travers ces contributions, ces travaux s’inscrivent dans la lutte contre les incendies, en
renforçant la synergie entre techniques d’optimisation et gestion de crises.

Mots-clés: incendies ; protection des biens ; programmation linéaire ;
résolution heuristique ; optimisation bi-objectif ; perturbation
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Chapter 1

Introduction

Contents

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1 background

In recent years, the world has witnessed a surge in devastating wildfires, a phenomenon
exacerbated by the effects of climate change. Beyond the wilderness, these wildfires have
jeopardized urban areas, posing imminent threats to both lives and critical infrastructure.
The escalation of such incidents necessitates a strategic and resource-efficient response,
where the deployment of firefighting teams is pivotal. This response phase not only
involves active suppression efforts but also the evacuation of people and safeguarding
valuable goods.

Recognizing the urgency of this situation, the Geospatial Based Environment For
Optimisation Systems Addressing Fire Emergencies (GEO-SAFE) project was initiated
in 2016. This collaborative project brought together European and Australian research
teams, uniting their expertise to develop innovative tools facilitating decision-making
during the response phase. Spanning multiple disciplines, the GEO-SAFE project delved
into various challenges, ranging from risk prevention to life and goods protection, as well
as advancements in cartography.

Within the scope of this manuscript, our primary focus is the protection of goods dur-
ing a wildfire. Incident Management Teams are faced with complex challenges, aiming
to deploy resources efficiently to protect community assets. Central to this effort is the
Asset Protection Problem during escaped wildfires (APP), a challenge first introduced
by Merwe et al. (2015). APP is a selective vehicle routing problem containing intricate
constraints such as time windows, synchronization, and cooperation requirements.

Yet, emergency situations are inherently unpredictable, introducing disruptions that
can render initial plans obsolete. For APP, such disruptions include vehicle breakdowns
or road closures. In the context of APP, these disruptions can be vehicle breakdowns or
road closures, demanding rapid adaptation and reconfiguration of response strategies.
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This gives rise to the Disrupted Asset Protection Problem (D-APP) as outlined by Merwe
et al. (2017).

In this thesis, we address both versions of the problem. Notably, the existing Mixed
Integer Program (MIP) proposed for APP struggles to generate optimal solutions for
modest instances within the literature. To enhance the efficiency of this formulation,
we lead a structural analysis of APP, identifying valid inequalities that substantially
improve MIP performance and decrease solution times. Simultaneously, we conduct a
similar investigation for D-APP, adapting the valid inequalities and proposing a more
effective formulation. The valid inequalities and reformulation [Peña et al., 2023] have
been submitted for publication. While obtaining optimal solutions for D-APP is crucial
for evaluating deployed strategies, real-time emergency scenarios require solutions in
minutes, making exact methods impractical. To address this challenge, we introduce
two heuristic approaches: a relax-and-fix algorithm, and an implementation of a ge-
netic algorithm (NSGA-II). These methods offer rapid, approximate solutions, ensuring
a timely and effective response in the face of unpredictable disruptions. The results
obtained from the genetic algorithm have been presented at the 15th International Con-
ference on Artificial Evolution [Peña et al., 2022]. Through these efforts, this thesis aims
to enhance our understanding of wildfire response strategies, contributing to broader
disaster management and community safety initiatives.

This study was carried out within the framework of GEOSAFE (Geospatial Based
Environment For Optimization Systems Addressing Fire Emergencies). This work was
partially supported by the framework of the Labex MS2T, funded by the French Govern-
ment, via the program “Investments for the future” managed by the National Agency
for Research (Reference ANR-11-IDEX-0004-02).

1.2 thesis outline

This thesis is organized as follows. In Chapter 2, the first part provides an overview of
the challenges related to responding to wildfires. We review multiple issues highlighted
by various works within the GEO-SAFE project. In the second part, we introduce the
different optimization problems related to vehicle routing and disruption management.
In the third part, we provide basic definitions related to multi-objective optimization,
with a particular focus on bi-objective optimization. We also recall the most popular
methods presented in the literature to solve them.

In Chapter 3, we tackle the Asset Protection Problem during escaped wildfires (APP),
that aim at maximizing the total protected value of deployed firefighting vehicles, subject
to time windows, cooperation and synchronisation constraints. We study the structure
of the problem and introduce three sets of valid inequalities, based on resources and
time windows, to improve its MIP formulation. The valid inequalities manage to stably
decrease the solution time under a minute for small literature instances, down from
potentially hours.

In Chapter 4, we focus on the disrupted version of APP, D-APP. This bi-objective
problem aims at generating efficient routes after a disruption invalidates the initial routes.
We propose a new MIP formulation, based on a dominance relation on the solutions of
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the problem, as well as an extension of APP’s valid inequalities. The reformulation
clearly outperforms the initial formulation and, associated with the valid inequalities,
manages to solve larger instances in reasonable time.

In Chapter 5, we shift our focus to heuristic approaches to solve D-APP. We propose
two heuristic methods tailored to our problem. The first uses the new formulation for
D-APP in a relax-and-fix algorithm. The second implements a widely adopted genetic
algorithm for multi-objective optimization. Each method has its advantages and offer
high-quality approximate fronts in constrained time.

Finally, in Chapter 6, we provide a conclusion that summarizes our contributions and
outlines some perspectives for our future work.
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Chapter 2

General context

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Fire emergencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Fire suppression and fire propagation control . . . . . . . . . . . . . 13

2.2.2 Life and goods protection . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Implementation and training . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Related problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Vehicle Routing Problems . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Selective Vehicle Routing Problems with profits . . . . . . . . . . . . 19

2.3.3 Disruption management . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Bi-objective optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 Scalarization methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1 introduction

During escaped wildfires, urban areas are at risk of destruction, which can be detrimen-
tal to the communities and infrastructure. This manuscript takes particular interest in
swift and efficient deployments of emergency response teams in order to protect com-
munity assets, and adapting plans to unforeseen disruptions.

This chapter introduces the general context of the problems we consider in this
manuscript. Firstly, in Section 2.2, we provide a summary of some of the main challenges
of decision-making during fire emergencies, with a particular focus on the work achieved
through the Euro-Australian project GEO-SAFE. Then, in Section 2.3, we present an
overview of selective vehicle routing problems. Lastly, in Section 2.4, we introduce the
basic concepts of bi-objective optimization as well as exact solution methods to solve
them. A general conclusion of the chapter is provided in Section 2.5.
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2.2 fire emergencies

In recent years, wildfires have been more frequent and more difficult to control. Due to
global warming, summers are drier and hotter, favoring the propagation and strength of
such fires [Running, 2006]. Millions of hectares of vegetation are burnt each year, and
lives and properties are damaged or lost all over the world, from Europe [Pausas et al.,
2009] to the United States [Short, 2014] and including Australia [Cruz et al., 2012].

According to the Federal Emergency Management Agency (FEMA), the emergency
management process consists of four distinct phases: Mitigation, Preparedness, Re-
sponse, and Recovery.

Mitigation

Reduce risk
and prevent
disasters

Preparedness

Plan and
organize for
emergencies

Response

Take action
during

emergencies

Recovery

Restore and
rebuild after
disasters

Figure 2.1: Emergency management phases

The Mitigation phase involves taking proactive measures to prevent or minimize the
causes, impact, and consequences of disasters. Some examples of hazard mitigation
include securing homes or barns with ground anchors to withstand wind damage, cre-
ating water channels and planting vegetation to redirect and absorb water, constructing
levees or barriers to control flooding, reinforcing fencing to prevent animal escapes, and
obtaining insurance policies to mitigate financial risks.

The Preparedness phase focuses on planning, training, and educational activities for
events that cannot be fully mitigated. This involves developing disaster preparedness
plans that outline appropriate actions to take, where to go, and whom to contact in case
of a disaster. It also includes conducting drills, tabletop exercises, and full-scale exercises
to test and refine the plans. Creating a supply list of essential items for emergencies and
identifying vulnerabilities to specific hazards, such as high winds on a farm, are also
part of the preparedness phase.

The Response phase occurs immediately after a disaster and involves implementing
the previously developed disaster response plans. During this phase, normal business
and operational activities are disrupted. The effectiveness and duration of the response
phase depend on the level of preparedness. Response activities include implementing
response plans, conducting search and rescue missions, taking actions to ensure personal
safety and protect others, and addressing public concerns regarding food safety in the
aftermath of a disaster.

The Recovery phase encompasses the restoration efforts that take place concurrently
with regular operations and activities. The recovery period following a disaster can be
lengthy. Recovery activities include preventing or reducing stress-related illnesses and
excessive financial burdens, rebuilding damaged structures based on lessons learned
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from previous disasters, and reducing vulnerability to future disasters by implementing
measures informed by advanced knowledge gained from past events.

The increasing frequency and intensity of wildfires demand effective response op-
erations to safeguard ecosystems, human lives, and property. Faced with the many
challenges rising from the increase in number and intensity of wildfires, scientific com-
munities from Europe and Australia launched a common project: Geospatial Based En-
vironment For Optimisation Systems Addressing Fire Emergencies (GEO-SAFE). The
GEO-SAFE project emerges as a crucial initiative to advance fire management through
innovative tools and collaborative knowledge exchange. In this section, we provide an
overview of response operations to wildfires, with a specific focus on integrating insights
from the GEO-SAFE project. By incorporating dynamic risk cartography, resource allo-
cation tools, and training processes, we highlight the potential of the GEO-SAFE project
to enhance the efficacy of wildfire response operations. The project spans multiple disci-
plines, from cartography to crisis management or operations research, for example. Fire
management problems were split in three main categories:

• Fire suppression and fire propagation control.

• Life and goods protection.

• Implementation and training.

We propose in the following sections a deep dive into each category, highlighting the
main challenges and contributions.

2.2.1 Fire suppression and fire propagation control

Active suppression measures play a pivotal role in controlling and mitigating the spread
of wildfires. The GEO-SAFE project contributes to active suppression efforts by develop-
ing a dynamic risk cartography tool. This tool utilizes data collected from satellite and
remote sensors to analyze and forecast fire extension, allowing for improved predictions
of fire behavior and risk evolution during the response phase. By integrating the dy-
namic risk cartography into active suppression strategies, response teams can enhance
their decision-making processes and resource allocation, leading to more effective fire
suppression efforts.

The GEO-SAFE project also focuses on developing efficient algorithms for risk pre-
vention. For example, León et al. (2019) and Croce et al. (2020) explore different aspects
of fuel management. The landscape is divided into cells to be treated in order to mitigate
the potential spread of wildfires. The objective is to select cells for treatment to minimize
the presence of contiguous old cells throughout the time horizon.

2.2.2 Life and goods protection

Timely and safe evacuation of affected populations is critical in minimizing the risks
posed by wildfires. Evacuation is a primary method of protecting lives, and it can
be performed through self-evacuation, assisted evacuation, or supported evacuation.
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Self-evacuation and assisted evacuation are often studied using simulation models or
network flow models ([Artigues et al., 2019]). Supported evacuation, where people
are evacuated by buses or collective transport, can be approached using optimization
models to make decisions on necessary resources and shelter organization ([Flores et
al., 2023]). The choice between evacuation and sheltering depends on factors such as
perception, observation of others’ actions, environmental cues, and wildfire information.
Self-evacuation and assisted evacuation have been extensively studied (see [Ozdamar
et al., 2017], [Veeraswamy et al., 2018]), while supported evacuation, where individuals
require specific support, is less explored.

Preventive protection measures are essential in reducing vulnerabilities to wildfires.
Incident Management Teams (IMT) play a crucial role in minimizing risks and protect-
ing vital infrastructure during wildfires. However, IMTs face complex challenges and
decision-making difficulties in their operations. In this context, the focus is on out-of-
control wildfires spreading across a landscape and posing a threat to various assets such
as bridges, electric substations, schools, and factories. Preventive activities performed
by IMTs near these assets before the fire impact are essential to reduce the risk of dam-
age. Defensive tasks include fuel material removal, wetting down buildings, and extin-
guishing fires. To address the problem of choosing which assets to protect and when,
an orienteering problem formulation is proposed ([Merwe et al., 2015], [Merwe et al.,
2017]).

2.2.3 Implementation and training

The project goes beyond the development of innovative tools by placing a strong empha-
sis on facilitating their implementation and providing comprehensive training support.
By working closely with end-users and incorporating their feedback, the GEO-SAFE
project ensures that the developed solutions align with their needs and operational re-
alities. Furthermore, the project develops training tools to enhance the capabilities and
preparedness of response teams. These training tools provide valuable guidance on the
utilization of the dynamic risk cartography, resource allocation tools, and other innova-
tions within the context of wildfire response operations. By emphasizing implementa-
tion and training, the GEO-SAFE project enables the practical application of developed
solutions and fosters a shared culture of research and innovation, ultimately improving
the overall effectiveness of response operations to wildfires.

2.3 related problems

This section describes the scientific context of this thesis. We provide an overview of
vehicle routing problems as well as disruption management problems.
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2.3.1 Vehicle Routing Problems

The Vehicle Routing Problem (VRP) has been a subject of extensive research for more
than fifty years, mainly due to its significant applications in logistics and its inherent com-
plexity. This combinatorial optimization problem involves efficiently planning routes at
a minimal cost to serve a group of geographically distributed customers while respecting
various constraints related to resources and customer demands.

The Traveling Salesman Problem (TSP), introduced by Robinson (1949), is one of the
most studied routing problem. The problem arose from the necessity of a commercial
salesman to strategically plan visits to a specific set of cities before ultimately returning
to their starting point, in order to minimize the distance traveled. For the TSP, as
well as most subsequent routing problems, graphs are used for modeling and solving
the problem. Let consider a complete oriented and weighted graph G = (V ,A), with
V = {v0, v1, ..., vn} representing the cities that must be visited by the salesman. Each arc
(vi, vj) ∈ A represents the path connecting the two cities vi and vj, and is associated with
a travel time Cij. An optimal solution of the TSP is a shortest Hamiltonian cycle on the
graph G.

Vehicle Routing Problems (VRP) generalize the TSP by considering multiple vehi-
cles. Initially introduced as the ”Truck Dispatching Problem” [Dantzig et al., 1959], the
VRP has evolved throughout the years. Inspired by real-life applications, various differ-
ent objectives and operational constraints have been introduced to VRP. Laporte (2009)
introduced the classical VRP formulation. Let consider a complete undirected graph
G = (V ∪ {0},E), with V = {1, 2, ..,n} representing customers and vertex 0 the depot. Each
edge of the set E = {(i, j) : i, j ∈ V ∪ {0} interconnecting the vertices is associated with a
cost Cij. The cost distribution is expected to satisfy the triangle inequality. A demand
di is associated with each customer i ∈ V . A fleet F of m homogeneous vehicles with a
maximum capacity Q is available to serve the customers. A solution of VRP is a set of m
routes, that start and end at the depot, where each customer is visited exactly once. The
total demand of the customer served on a route cannot exceed the maximum capacity
Q. An optimal solution of the VRP is a set of routes serving all customers such that the
total traveled cost is minimized. Figure 2.2 illustrates an instance of VRP and a possible
solution.

In the following, we will give an overview of the formulations have been proposed
to model the VRP, either using an exponential number of constraints or variables.

flow formulations The first flow formulation is based on flow of vehicles. Intro-
duced by Laporte et al. (1983). Binary variables xij, (i, j) ∈ E, are set to 1 if a vehicle of
the fleet uses the edge (i, j), 0 otherwise. The set δ+(S) (respectively δ−(S)), with S ⊆ V ,
is the set of edges with i ∈ S and j ∈ V \ S (respectively i ∈ V \ S and j ∈ S).
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Depot

(a) A VRP instance

Depot

(b) A VRP solution

Figure 2.2: Example of a Vehicle Routing Problem

Minimize
∑

(i,j)∈E
Cijxij (2.1)

n∑
j=1

x0j ⩽ m (2.2)

∑
(i,j)∈δ+({i})

xij = 1 ∀i ∈ V (2.3)

∑
(i,j)∈δ−({i})

xij = 1 ∀i ∈ V (2.4)

∑
(i,j)∈δ−(S

xij) ⩾

⌈∑
i∈S qi

Q

⌉
∀S ⊆ V (2.5)

xij ∈ {0, 1} ∀(i, j) ∈ E (2.6)

Equation (2.1) defines the objective function, that minimizes the total travel time.
Constraints (2.2-2.4) are the flow constraints. These constraints ensure that at most m

vehicles leave the depot, and that exactly one arc is used to enter and leave (respectively)
each customer. Constraints (2.5) exclude solutions that use less vehicles than the min-
imal number necessary to meet the capacity requirement for any set of assets. These
constraints also prevent subtours, ie., cycles that do not go through the depot, from
appearing in a solution. Constraints (2.6) define the domain of the decision variables.

The second flow formulation is based on flow of resources. Introduced by Gavish
(1984). It added new continuous variables fij, (i, j) ∈ E, which represent the quantity of
resources carried along the edge (i, j). Constraints (2.5) are replaced by the following
constraints:



2.3.1 vehicle routing problems 17

∑
(i,j)∈d−({i})

fij −
∑

(i,j)∈d−({i})

fij = qi ∀i ∈ V (2.7)

qixij ⩽ fij ⩽ (Q−Qi)xij ∀(i, j) ∈ E (2.8)

Constraints 2.7 ensure that each customer is correctly served. Constraints 2.8 are
bounds on the value of variables fij.

partitioning formulation Introduced by Balinski et al. (1964). Let R be the set
of feasible routes. A binary coefficient air is set to 1 if customer i ∈ V is visited by route
r ∈ R. The total cost of arcs used by route r is denoted cr. Binary variables xr are set to
1 if route r is used in the solution, 0 otherwise.

Minimize
∑
r∈R

crxr (2.9)∑
r∈R

airxr = 1 ∀i ∈ V (2.10)∑
r∈R

xr ⩽ m (2.11)

xr ∈ {0, 1} ∀r ∈ R (2.12)

Equation (2.9) defines the objective function, that minimizes the total cost of the
selected routes. Constraints (2.10) ensure that exactly one selected route visits each
customer. Constraint (2.11) limits the number of routes that can be selected. Con-
straints (2.12) define the domain of the decision variables.

When cost distribution c satisfy the triangle inequality, constraints (2.10) can be re-
placed by:

∑
r∈R

airxr ⩾ 1 ∀i ∈ V (2.13)

The formulation consisting of (2.9, 2.13, 2.11, 2.12) is referred to as the set-covering
formulation. Optimal solutions of the partitioning and set-covering formulations have
the same cost c. Any feasible solution of the partitioning formulation is a feasible
solution of the set-covering formulation. Additionally, if there exists a feasible solution
in the set-covering formulation that is not feasible for the partitioning problem, it can
be transformed into a feasible solution for the partitioning problem with a strictly lower
cost c by removing multiple visits to the customers.

The set-covering formulation was introduced to reduce the dual solution space in
comparison to the partitioning formulation. While dual variables associated with con-
straints (2.10) are unconstrained, those associated with constraints (2.13) must be posi-
tive.
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vrp variants Numerous real-life applications, frequently originating from logistics
and transportation sectors, have been built upon the classical formulation of the VRP. The
classical VRP is a relatively simplistic model that does not encompass all the constraints
encountered in practical scenarios. Addressing these limitations has been a primary
motivation for the scientific community to augment the classical VRP, thereby defining
a wide range of variants to better represent real-world situations. These constraints
include, but are not limited to:

• problems with asymmetric distances,

• problems with maximum travel times for vehicles,

• problems with time-windows,

• problems with an heterogeneous fleet of vehicles,

• problems with multiple depots,

• periodic problems,

• dynamic problems,

• disrupted problems.

On the other hand, while the original objective of VRP is to minimize the travel cost
of the fleet of vehicles, the VRP has been expanded to incorporate a diverse array of
objective functions. These objective functions include, but are not limited to:

• minimizing the total time of the routes, from departure to arrival at the depot,

• minimizing the difference between actual arrival time at a customer and the cus-
tomer’s preferred arrival time,

• minimizing the number of vehicles used,

• minimizing greenhouse gas emissions,

• maximizing profits,

• maximizing the difference between profits and costs.

VRP variants can consider one or multiple of the previously presented objectives.
Other variants are derived by combining multiple constraints and objectives from the
different groups presented above.
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2.3.2 Selective Vehicle Routing Problems with profits

In the TSP, VRP and their variants, all feasible solutions must serve all the customers.
However, real-life applications often impose constraints on resources and time, forcing
companies to prioritize which customers to serve in order to maximize their profits. This
newly introduced class of routing problems is known as Selective VRP with profits. In
these problems, each customer is assigned a value, quantifying the significance of serv-
ing that particular customer. The VRP with profits follows two simultaneous objectives:
firstly, maximizing the total value of served customers by determining which clients to
prioritize, and secondly, minimizing travel costs by efficiently scheduling them within
the routes of the vehicles. VRP with profits are often encountered in real-life applications.
A historically significant application of VRP with profits is the modeling of the sport of
orienteering ([Tsiligirides, 1984]). Other applications include airline crew scheduling
([Gopalakrishnan et al., 2005]), mobile healthcare planning ([Doerner et al., 2007]), waste
collection ([Han et al., 2015]), collaborative logistics ([Defryn et al., 2016]), etc.

The particular case of VRP with profits that considers only one vehicle is known as
the TSP with profits. The problem is similar to the TSP but the vehicle is unable to visit
all the customers. Therefore, a solution is a cycle among the cities that starts and ends
at the depot, visiting the customers at most once. Three main variants of the TSP with
profits have been widely studied, based on their objective function:

• Orienteering Problem (OP). First defined by Tsiligirides (1984), it aims at maximizing
the total profit collected from the customers. The length of the route of the vehicle
cannot exceed a predefined time limit, introduced as a constraint.

• Prize Collecting TSP (PCTSP). First defined by Balas (1989), it aims at minimizing
the total travel costs. The route must visit enough customers to meet a predefined
threshold on the profit, introduced as a constraint.

• Profitable Tour Problem (PTP). First defined by Dell’Amico et al. (1995), it aims at op-
timizing both objectives. The objective function is defined as a linear combination
of profit and costs.

The main VRP with profits considering multiple vehicles is the Team Orienteering
Problem (TOP). It was first introduced by Butt et al. (1994) as the ”Multiple Tour Maxi-
mum Collection Problem”. A fleet F of m vehicles is available; each vehicle has a max-
imum travel distance of Tmax. The route of each vehicle starts and ends at the depot,
and serves a subset of the n customers, collecting their profit, without exceeding their
maximum travel distance. A solution of the TOP must efficiently design the routes of
the m vehicles and chose the customers to serve, in order to maximize the total profit
collected.

An instance of the TOP can be represented by a graph G = (V+,A), with V+ = V ∪ {0}.
V = {1, 2, ...,n} represents the n customer, and 0 is the depot. A profit pi is associated
with each customer i ∈ V . Each arc (i, j) ∈ A ⊆ V+ × V+ is associated with a travel cost
tij.
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The TOP can be modeled as an integer programming model. Binary variables yir are
set to 1 if customer i is served by vehicle r ∈ F, 0 otherwise. Binary variables xijr are set
to 1 if arc (i, j) ∈ A is used by vehicle r, 0 otherwise.

Maximize
∑
r∈F

∑
i∈V

yirpi (2.14)∑
r∈F

yir ⩽ 1 ∀i ∈ V (2.15)∑
i∈V

x0ir =
∑
i∈V

xi0r ∀r ∈ F (2.16)∑
i∈V+\k

xkir =
∑

i∈V+\k

xikr = ykr ∀k ∈ V , r ∈ F (2.17)

∑
(i,j)∈A

xijrtij ⩽ Tmax ∀r ∈ F (2.18)

∑
(i,j)∈U×U

xijr ⩽ |U|− 1 ∀U ⊆ V , |U| ⩾ 2, r ∈ F (2.19)

xijr ∈ {0, 1} ∀(i, j) ∈ A, r ∈ F (2.20)

yir ∈ {0, 1} ∀i ∈ V , r ∈ F (2.21)

Equation (2.14) represents the objective function, that maximizes the total collected
profit. Constraints (2.15) ensure that a customer is served by at most one vehicle. Con-
straints (2.16) and (2.17) are flow constraints. Constraints (2.18) ensure that a vehicle
does not travel further than the maximum distance Tmax. Constraints (2.19) are sub-tour
elimination constraints. These constraints ensure that the route of every vehicle starts
from the depot. Constraints (2.20) and (2.21) define the domain of the decision variables.

Many variants of the TOP have been introduced, adding capacities constraints on
the vehicles (Capacitated Team Orienteering Problem (CTOP) [Archetti et al., 2009]) or
time window constraints (Team Orienteering Problem with Time Windows (TOPTW)
[Amarouche et al., 2020]).

2.3.3 Disruption management

In all the problems presented in the previous section, the routes are drawn based on
instances that are fully defined. However, in real-world applications such instances may
not be realistic. Two distinct approaches exist: stochastic optimization and real-time
re-planning. Stochastic optimization introduces uncertainties in the values of some pa-
rameters, such as travel times or demands. Optimal solutions in stochastic optimization
are those that optimize the objective function under the worst-case scenario. Real-time
re-planning first computes the routes based on the initial instance, and modifications
in the parameters prompt a new computation. These modifications are often seen as
disruptions.
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Disruption management has been studied in various contexts, including produc-
tion scheduling, transport planning, supply chain management [Yu et al., 2004], airline
scheduling [Clausen et al., 2010], as well as a variety of VRPs [Eglese et al., 2018], such
as waste collection [Li et al., 2008] and emergency vehicle routing [Wang et al., 2010]. Yu
et al. (2004) defined disruption management as the need to ”dynamically revise the original
[optimal or near-optimal] plan” after disruptions occur due to ”internal or external uncertain
factors”. The new plan must account for the evolving environment and ”[minimize] the
negative impact of the disruption”.

Figure 2.3 shows a standard workflow for replanning for the VRP. Initial routes are
computed by solving the standard version of the problem. When a disruption occurs,
its impact is evaluated. If the disruption only marginally disturbs the routes, it may be
possible to fix the routes with little effort. When the disruption is consequential, new
efficient routes are generated by solving the disrupted version of the problem (here, D-
VRP). Disruption management can be applied to any variant of the VRP: Single-Depot
VRP, TOP and its extensions, VRPTW, CVRP, etc. Several disruptions can be considered,
for example: vehicle breakdown, disrupted link in the road network, disruption of
supplied goods, changes in customer demands.

Initial routes
generation VRP

Disruption

Impact?

Local
Correction

New routes
computation

D-VRP

Small Large

Figure 2.3: Disruption management workflow for the VRP

Disrupted VRP problems differ from their classic counterparts because:

• Typically, in the original problems, the objective is to determine optimal routes for
the vehicles that start and end at the depot. When a disruption occurs during the
execution of the routes, the vehicles’ starting point becomes their current location.

• In contrast to the original problems, where it is acceptable to spend several hours
or days obtaining the optimal solution, disruption management requires a quick re-
sponse. Consequently, disruption management problems are primarily approached
through heuristic resolution.
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• In disruption management, there is no need to solve the problem from scratch, as
it can benefit from the initial solution. This approach is even encouraged to limit
deviations from the original plan.

• New constraints may emerge due to changes in conditions or to fulfill commit-
ments from the original plan.

• While the objective of VRP problems is to minimize total operational costs or maxi-
mize total collected profit, disruption management problems account for deviations
from the original plan. This is achieved by turning the problem into a bi-objective
problem or by incorporating a term representing the deviation into the objective
function. The additional objectives can represent the costs of deviation (operational
costs, new vehicles, cancellation costs, etc.), inconvenience for drivers (number of
route changes, waiting times), and/or inconvenience for customers (delays).

• Due to the multiplicity of objectives, the decision-making process may require
generating multiple solutions that offer different trade-offs between the objectives,
rather than seeking a single ”optimal” solution.

2.4 bi-objective optimization

In real-world applications, optimization problems may need to simultaneously consider
multiple, often conflicting, objectives. In the following, all the objectives are to be mini-
mized, without loss of generality. Any multi-objective problem can be written as:

(MOP)

{
Minimize f(x) = (f1(x), f2(x), ..., fp(x))
s.t. x ∈ X

The set X ⊆ Rn1 ×Zn2 is the feasible set, defined over n1 continuous variables and n2

integer variables. The set Y = {f(x) : x ∈ X} ⊆ Rp is the image set. The Euclidean vector
space Rn, with n = n1 + n2, comprising the set of feasible solutions is called solution
or decision space. The Euclidean vector space Rp comprising the image set is called the
image or objective space. Figure 2.4 illustrates the link between X and Y.

Definition 1 Consider two solutions x, x ′ ∈ X.

• x weakly dominates x’, denoted by x ≦ x ′ ⇔ fi(x) ⩽ fi(x
′) ∀i ∈ {1, 2, ...,p}

• x dominates x’, denoted by x ⩽ x ′ ⇔
{

fi(x) ⩽ fi(x
′) ∀i ∈ {1, 2, ...,p}

fi(x) < fi(x
′) ∃i ∈ {1, 2, ...,p}

• x stricly dominates x’, denoted by x < x ′ ⇔ fi(x) < fi(x
′) ∀i ∈ {1, 2, ...,p}

Definition 2 A solution x ∈ X is Pareto-optimal (or efficient) if there is no solution x ′ ∈ X, x ′ ̸=
x, such that x ⩽ x ′.

A solution x ∈ X is weakly Pareto-optimal (or weakly efficient) is there is no solution x ′ ∈
X, x ′ ̸= x, such that x < x ′.
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Figure 2.4: Example of a solution space and the corresponding objective space, with
f1 = x1 + x2 and f2 = 2x1 − x2, x ∈ X.

Definition 3 A point y ∈ Y is a non-dominated point if solution x ∈ X such that y = f(x) is a
Pareto-optimal solution.

Definition 4 A non-dominated point y ∈ Y is supported if it is on the convex envelope of Y.
A non-dominated point y ∈ Y is unsupported if it is inside the convex envelope of Y.

In the following, solving (MOP) refers to finding the set of all non-dominated points,
supported or unsupported, denoted by YN, that defines the Pareto front. Multiple
solutions in X can be associated with the same point y ∈ Y. Hence, there are more
efficient solutions than the number of non-dominated points. Two sets of non-dominated
points are defined:

Definition 5 [Hansen, 1980] The minimal complete set of (MOP) is the set of non-dominated
points with at least one efficient solution associated with each point.
The maximal complete set is the set of non-dominated points with all efficient solutions associated
with each point.

Definition 6 A non-dominated supported point y ∈ Y is an extreme point if it is an extreme
point of the convex envelope of Y.

Definition 7 The extreme point y ∈ Y that minimizes objective fi, i ∈ {1, 2, ...,p}, is called the
fi-extreme point.

In order to characterize the objective space, we define two specific points that delin-
eate a rectangle where all the non-dominated points are located: the ideal point and the
nadir point.

Definition 8 The ideal point yI of YN is defined as yI
i = min

x∈X
fi(x).

The nadir point yN of YN is defined as yN
i = max

x∈X
fi(x)
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In bi-objective optimization, the ideal point is given by the maximum value of each
component of the lexicographically optimal images. However, when p > 2, there is no
efficient algorithm currently known [Ehrgott, 2005a].

We can also delineate a precise search area using local ideal and nadir points.

Definition 9 Let Ŷ ⊆ Y.
The local ideal point ŷI of Ŷ is defined as ŷI

i = min
y∈Ŷ

yi.

The local nadir point ŷN of Ŷ is defined as ŷN
i = max

y∈Ŷ
yi

However, in real-world applications, typically only one of these solutions will be
chosen. The decision-making process can intervene in different phases:

• A priori. The decision-maker is involved in the early stages of the solution process
to define preferences between the objectives. These preferences can be defined for
each objective independently (e.g., in an aggregated sum of objectives). A priori
solution methods only solve one mono-objective problem, but it may be challenging
for the decision-maker to precisely define their preferences.

• Interactive. The decision-maker is engaged from the beginning of the solution pro-
cess to define preferences and remains involved throughout to guide the process.
Similar to a priori methods, only one solution is returned at the end of the process,
but this approach is more adaptable to the decision-maker’s needs. The primary
drawback of interactive methods is the need for several interventions from the
decision-maker, which can be time-consuming.

• A posteriori. The decision-maker enters the process only at the end, choosing the
most suitable solution from a set of good solutions. These solution methods are
more costly, as they require generating multiple solutions. Although a posteri-
ori methods might seem less appealing than the two previous approaches, they
provide the decision-maker with insights into all available compromises, enabling
them to make an informed decision.

In the following, we will focus on a posteriori solution methods.

2.4.1 Scalarization methods

In this section, we introduce methods that transform the bi-objective problem into multi-
ple mono-objective problems, which are known as scalarization methods. Below, we list
the most common scalarization methods.

weighted sum The first method relies on the formulation (MOPΛ) introduced by
Geoffrion (1968), where the objective function is represented as the weighted sum of the
objectives.
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(MOPΛ)

 Minimize fΛ(x) =
p∑

i=1

Λifi(x)

s.t. x ∈ X

An optimal solution of (MOPΛ) is a (weakly) efficient solution of the problem, given
a weight Λ ∈ R

p
> (Λ ∈ R

p
⩾). The non-dominated points are obtained by solving a series

of mono-objective problems. The most famous method relying on the weighted sum of
objectives is the dichotomic search method [Aneja et al., 1979]. The perpendicular search
method [Chalmet et al., 1986] extends the dichotomic search to find the complete set of
non-dominated points. The method introduced by Sylva et al. (2004) fixes the weights Λ

and introduces constraints on the objectives to explore the objective space. Finally, the
last method is based on a different scalarization technique using Tchebycheff distances.

dichotomic search Introduced by Aneja et al. (1979). This method is guaran-
teed to identify all extreme non-dominated points and also finds some supported non-
extreme points. No unsupported non-dominated points are found. First, the f1 and
f2-extreme points y1 and y2 are computed. Then, we iteratively consider each pair of
successive non-dominated points (y,y ′), associated with solutions x and x ′, in the cur-
rent objective space. The first pair of points (y,y ′) considered is (y1,y2). The search
direction Λ̂ is computed such that Λ̂(x) = Λ̂(x ′), and (MOPΛ̂) is solved. If the solution
x̂ of (MOPΛ̂) has a lower cost than both x and x ′, a new extreme non-dominated point
has been found. Otherwise, if the cost of x̂ is equal to the cost of either x or x ′, the
non-dominated point associated with x̂ is either identical to y or y ′, or it represents a
newly discovered supported non-extreme point.

perpendicular search Introduced by Chalmet et al. (1986). The perpendicular
search method is similar to the dichotomic search method but aims to find all non-
dominated points. During the iterative exploration phase of consecutive non-dominated
points (y,y ′), with associated solutions x and x ′,where f1(x) < f1(x

′), additional con-
straints are introduced to restrict the objective space. First, the cost f1 of the solution is
constrained to be strictly less than f1(x). Second, the cost f2 of the solution is constrained
to be strictly less than f2(x

′).

sylva and crema method Introduced by Sylva et al. (2004). This method differs
from previous methods in that weights Λ are fixed at the beginning of the solution
process, satisfying 0 < Λi < 1 for all i ∈ J1,pK, and

∑
i = 1pΛi = 1. The problem

(MOPΛ) is solved iteratively until no new non-dominated points are found. When a new
point is obtained, constraints on the objective values are added to the problem in order
to exclude regions dominated by the previously obtained points. As new constraints are
introduced, the computational cost of finding solutions increases progressively.

weighted tchebycheff method Introduced by Steuer et al. (1983). This method
uses Tchebycheff distances to reference points in order to compute efficient solutions.
Changing the reference point in this method has the same effect as changing the weights
in the previous methods.
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epsilon-constraint Introduced by Haimes (1971). The ϵ − constraint method
does not rely on the weighted sum of objectives. In this method, only one objective is
used as the main objective function, while the other objectives are constrained. The con-
straint values for the objectives are iteratively updated to eliminate the space dominated
by points already found. It is based on the following formulation:

(MOPϵ)


Minimize fϵ(x) = fk(x)

s.t. fi(x) ⩽ ϵi , i ∈ {1, 2, ...,p} and i ̸= k

x ∈ X

The first step computes the fk-extreme point by setting all ϵi to +∞. The iterative
reduction of coefficients ϵi allows to search the entire solution space and find all the
non-dominated points.

An optimal solution of (MOPϵ) is a weakly efficient solution of the original problem.
Therefore, ensuring that each solution of (MOPϵ) yields an efficient solution would re-
duce the number of mono-objective problems to solve. In order to only find efficient
solutions, Ozlen et al. (2009) used a weighted objective function to obtain the lexico-
graphical order. When applied to a bi-objective optimization problem, with fϵ = f1, the
formulation becomes:

(BOPϵ)


Minimize f(x) = f1(x) +w2f2(x)

s.t. f2(x) ⩽ ϵ

x ∈ X

The weight w2 must be picked wisely: it must be small enough as to not eliminate
efficient solutions. Then, among the solutions with the same cost fϵ, (BOPϵ) returns the
solution that optimizes the other objective. This method can be applied to p objectives,
with precisely chosen weights for all p− 1 secondary objectives.

Other variations that focus on finding only efficient solutions have been proposed.
Laumanns et al. (2006) and Hamacher et al. (2007) introduced lexicographical versions
of the ϵ-constraint method. Additionally, Ehrgott (2005b) introduced a term in the ob-
jective function of (MOPϵ) that penalizes solutions exceeding the secondary objectives.
Finally, Mavrotas (2009) introduced an augmented ϵ-constraint method. This approach
introduces slack and surplus variables to transform the ϵ constraints into equality con-
straints and adds a linear combination of these new variables to the objective function.

For bi-objective VRPs where the resulting mono-objective problem can be solved
with column-generation algorithms, Glize et al. (2022) proposed an ϵ-constraint column
generation-and-enumeration algorithm.

two-phases method Two-phase methods are typically approaches that combine
two of the previously mentioned methods to compute YN. In general, the first phase
aims at finding easily obtainable points, narrowing the search space, while the second
phase employs a more sophisticated algorithm to find the remaining solutions. For
example, Ulungu et al. (1995) first finds all extreme points with a dichotomic search,
and then use an ϵ-constraint algorithm for the second phase.
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2.4.2 Evaluation

When heuristic solution methods are implemented to solve (MOP), the heuristic sets of
solutions do not only represent non-dominated points. In the following, we present a
simple algorithm to test if a solution is efficient. Additionally, it is not as easy to compare
two heuristic solutions, unlike mono-objective optimization. One of the most commonly
used metrics is the hypervolume, as presented below.

efficiency of a solution Benson’s method [Benson, 1978] can be used to verify
is a solution x0 ∈ X is efficient.

Maximize
p∑

i=1

hi

s.t. f(x0) − f(x) − h = 0

x ∈ X

h ∈ R
p
+

If x0 is not efficient, this method returns a solution x∗ that is efficient.

comparison of heuristic solutions In bi-objective optimization, an upper
bound is obtained by solving a relaxation of the problem, and a lower bound is a set of
feasible solutions that do not dominate each other. To compare the quality of heuristic
methods, one of the most common metrics is hypervolume [Zitzler et al., 1998], or
S-volume, which compares the lower bounds obtained. Hypervolume is widely used in
multi-objective optimization because it can be computed without knowing the optimal
set YN. The computation of the hypervolume requires two reference points: an ideal
point yI and a nadir point yN. It is important to use the same reference points when
comparing multiple approximate fronts. Let Λ(ai) be the size of the rectangular area ai

constructed with a solution si from an approximation set A and the nadir as corners.
For approximate set A, the hypervolume HV is computed as follows:

HV(A) =

Λ

( ⋃
ai∈A

ai

)
(yN

1 − yI
1)(y

N
2 − yI

2)
(2.22)

The hypervolume corresponds to the ratio of the dominated area defined by the
approximation set to the total area of the rectangle defined by the ideal and nadir points.

2.5 conclusion

In conclusion, this chapter has provided an overview for understanding the decision-
making challenges associated with responding to wildfires. Drawing on insights from
the GEO-SAFE project, we have explored the domains of fire suppression, life and goods
protection, implementation, and training, highlighting their critical roles in effective
wildfire response. Furthermore, we have particularly focused on selective vehicle routing
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and disruption management, shedding light on how optimization techniques can be
applied to enhance response strategies. Finally, we have introduced the concept of
bi-objective optimization, necessary to tackle difficult multi-objective decision-making
scenarios. This overview sets the stage for the subsequent chapters, where we will delve
deeper into a specific optimization problem arising during wildfire response: routing
firefighters’ crews for asset protection.



Chapter 3

Valid inequalities for the Asset Pro-

tection Problem
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3.1 introduction

In this chapter, we will focus on the problem of resource allocation for preventive ac-
tions to protect community assets. This problem is referred to as the Asset Protection
Problem during an escaped wildfire (APP). The APP was presented as a variant of the
Team Orienteering Problem with Time Windows (TOPTW) with a heterogeneous fleet
of vehicles and cooperation between the vehicles. Merwe et al. (2015) proposed a MILP
formulation to solve the problem. They managed to solve to optimality small-size in-
stances; however instances with 50 community assets to protect were already very dif-
ficult to solve. Roozbeh et al. (2018) developed an Adaptative Large Neighborhood
Search (ALNS) algorithm based on problem-specific attributes that produces good solu-
tions for large-size instances (up to 200 assets). Nuraiman et al. (2020) proposed a Spatial
Decomposition-based Math-heuristic (SDM) approach that outperforms the ALNS algo-
rithm. Yahiaoui et al. (2022) proposed a Greedy Randomized Adaptive Search Procedure
with Iterated Local Search (GRASPxILS). The authors used an insertion heuristic based
on adaptive candidate lists, a Variable Neighborhood Descent search procedure and a
post-optimization phase using a set cover formulation. It yielded better results in lower
computational time for almost all the benchmark instances
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First, we introduce the problem and its mathematical formulation in Section 3.2. In
Section 3.3, we introduce multiple valid inequalities.

• We introduce symmetry-breaking inequalities based on a dominance relations be-
tween solutions in Section 3.3.1. These inequalities allow for a better use of the
resources by setting lower and upper bounds on the number of vehicles necessary
to protect an asset. We introduce the general formulation for the valid inequalities
given the bounds, and two MIPs to compute these bounds.

• We introduce the notion of incompatibility/vehicle for assets based on their time
window and the travel times of vehicles in Section 3.3.2. We study the graph
of incompatibilities to identify cliques of assets to identify subsets of assets that
cannot be visited by the same vehicle.

• We further investigate cliques of incompatible assets in Section 3.3.3 by also looking
at the resources. We introduce a MIP to compute an upper bound on the number
of assets of a clique that can be protected in a solution.

In Section 3.4, we present the benchmark instances and compare the improvements
obtained with the different sets of valid inequalities. When adding the valid inequalities,
we were able to solve all instances with 35 assets in 10 seconds on average, while only 74

out of the 120 benchmark instances could previously be solved in less than 10 minutes.

3.2 problem description and mip model

During wildfires, community assets such as schools, hospitals, bridges and factories face
the risk of being damaged or destroyed. In most cases, this risk can be diminished
or nullified if preventive protection actions are taken. Protection requires resources to
be dispatched in a timely manner to the asset. These interventions are carried out by
the Incident Management Teams (IMT) before the fire reaches the assets. Such actions
may include removing fuel materials, wetting down buildings or reducing fire. The
time window for performing these actions is crucial: they have to be taken before the
fire fronts reach the asset, but not too early for the protection to be efficient. Some
interventions may require several trucks with specific capacities, thus requiring different
teams to collaborate to perform the task in a synchronous way. Based on fire spread
and behavioral models, it is possible to plan routes for each of the teams that take the
synchronization and time windows constraints into account, so that a maximum number
of community assets are protected.

The first mathematical formulation of the mono-objective APP was proposed by
Merwe et al. (2015). An instance of the problem is defined as a directed graph G = (V ,A)
where V is a finite set of n vertices and A a finite set of arcs.The n vertices represent lo-
cations considered in our problem. The first m vertices represent the depots, the n-th
vertex is the sink node. The remaining n−m− 1 vertices are the assets we seek to pro-
tect. For convenience, we define three sets Vd = {1, ...,m}, the set of the depots only;
Va = {m+ 1, ...,n− 1}, the set of the assets only; and V− = {1, ...,n− 1}, the set of all
locations excluding the sink node. Travel times between the locations satisfy the triangle
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inequality. The planning time horizon is continuous. The route of a vehicle is the com-
bination assignment, i.e., the list of assets visited by the vehicle, and the order in which
the assets of the assignments are visited.

protection requirement An asset is protected in a solution if it contributes to the
total protected value, i.e. the vehicles assigned to the asset collectively meet its protection
requirements and the starting time of service is within the time window of the asset.
Asset protection requirements and vehicle capabilities consist of multiple resources (e.g.,
crew size, water supply, number of ladders, etc.). Table 3.1 shows an example of ten
vehicles and their associated capability vector cap, with three resources. For example,
an asset i with resource requirement ri = (3, 1, 2) can be protected by vehicles 4, 7 and
10 with respective capability vectors cap4 = (2, 1, 0), cap7 = (0, 2, 1) and cap10 = (1, 0, 1).
The starting time of service of an asset must be the same for all the vehicles the asset
is assigned to (synchronization). The aim is to generate updated routes that maximize
the total value of the protected assets, while minimizing the deviation from the pre-
disruption solution.

Table 3.1: Vehicles and their capability vectors

Vehicle Resource 1 Resource 2 Resource 3

1 1 1 2

2 1 1 2

3 1 1 2

4 2 1 0

5 2 1 0

6 0 2 1

7 0 2 1

8 0 2 1

9 1 0 1

10 1 0 1

Table 3.2 lists the sets and parameters used in the mathematical formulation of APP.
Table 3.3 lists the decision variables and their type.
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Table 3.2: Sets and parameters used in the mathematical formulation of APP

Symbol Definition
n Number of vertices in the graph representation of the problem
m Number of depots
V Set of locations
Va Set of locations limited to the assets to protect
Vd Set of locations limited to the depots
V− Set of all locations except the sink node n

Q Set of possible vehicle types
pq Number of vehicles of type q available
Eq Set of available arcs for vehicles of type q

δ+q (i) Set of locations directly reachable from location i by a vehicle of type q

δ−q (i) Set of locations from where location i can be directly reached by a
vehicle of type q

ai Service duration associated with asset i
oi Earliest start of service at asset i
ci Latest start of service at asset i
ri Protection requirement vector of asset i
vi Value of asset i
tijq Travel time from asset i to asset j of a vehicle of type q

capq Capability vector associated with a vehicle of type q

stockiq Number of vehicles of type q initially available at depot i

Table 3.3: Decision variables used in the mathematical formulation of APP

Symbol Definition
Xijq integer, the number of vehicles of type q traveling directly from asset i

to asset j
Zijq binary, 1 if at least one vehicle of type q travels directly from asset i to

asset j
Yi binary, 1 if asset i is protected, 0 otherwise
Si continuous, the start time of service at asset i
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The mathematical model, hereafter denoted by (APP), is written as follows:

Maximize f1 =
∑
i∈Va

viYi (3.1)

∑
j∈δ+q (i)

Xijq = stockiq ∀i ∈ Vd, q ∈ Q (3.2)

∑
i∈δ−q (k)

Xikq =
∑

j∈δ+q (k)

Xkjq ∀k ∈ Va, q ∈ Q (3.3)

Xijq ⩽ pqZijq ∀(i, j) ∈ Eq, q ∈ Q (3.4)

∑
q∈Q

∑
i∈δ−q (k)

Xikqcapq ⩾ Ykrk ∀k ∈ Va (3.5)

Si + tijq + ai ⩽ Sj +M(1−Zijq) ∀(i, j) ∈ Eq, q ∈ Q (3.6)

Si ⩾ oi ∀i ∈ Va (3.7)

Si ⩽ ci ∀i ∈ Va (3.8)

Yi ∈ {0, 1} ∀i ∈ Va (3.9)

Xijp ∈ {0, 1, 2, ...pq}, Zijq ∈ {0, 1} ∀(i, j) ∈ Eq, q ∈ Q (3.10)

Si ∈ R ∀i ∈ V (3.11)

Equation (3.1) represent the objective function f1, the total protected value.
Constraints (3.2)-(3.4) are the flow constraints for each type of vehicles. Con-

straints (3.5) ensure that an asset can be protected only if the vehicles assigned to the
asset collectively meet the requirements on each resource. Constraints (3.6) ensure time
integrity when visiting two assets consecutively. If asset j is directly visited after asset
i by a vehicle p, service at asset j should not start before service at asset i is over and
vehicle p has had enough time to travel from asset i to asset j. Constraints (3.7) and (3.8)
ensure that the start time of service of any protected asset is within its time window.

Constraints (3.9)-(3.11) define the domain of the decision variables.

3.3 valid inequalities

In this section, we propose sets of valid inequalities for the APP. We studied the struc-
ture of (APP) deduce valid inequalities that strengthen the model, improving the linear
relaxation and reducing the solution time. New valid inequalities have been introduced
to solve orienteering problems. Fischetti et al. (1998) proposed new families of valid in-
equalities for the Orienteering Problem (OP). Perboli et al. (2018) did a similar study for
the Two-Echelon Capacitated Vehicle Routing Problem (2E-CVRP). El-Hajj et al. (2016)
presented strong clique cuts deduced from incompatibility graphs for the Team Orien-
teering Problem (TOP).



34 3.3.1 bounds on protection

3.3.1 Bounds on protection

In this section, we introduce valid inequalities based on bounds on the number of vehi-
cles required to protect an asset given its resource requirements. The valid inequalities
rely on the following dominance property on the solutions of (APP):

Proposition 1 For any solution Ψ of (APP), there exists a solution with the same total protected
value such that all assets visited by at least one vehicle are protected.

Proof 1 Consider a solution Ψ of (APP) where an asset i is visited by a vehicle p but asset i is
not protected. Asset i is not protected, thus do not participate in total protected value. Removing
asset i from the route of vehicle p does not impact the time of visit of the remaining assets on the
route, due to the triangle identity, and asset i is still protected because vehicle p was redundant.
The solution obtained by removing non-protected assets from the routes of solution Ψ is a feasible
solution for (APP) and strictly protects the same assets as Ψ, hence having the same total protected
value. ■

Proposition 1 reduces the feasible space we need to explore to find the optimal solu-
tion. There is an optimal solution solution of (APP) such that the following inequalities
are valid:

Yi ⩾ Zijq ∀(i, j) ∈ Eq, q ∈ Q (3.12)

If a vehicle of type q uses arc (i, j), then asset i is necessarily protected. If asset i is
not protected, then no vehicle of type q can use arc (i, j).

Lower bound on vehicle additions for protection

The protection of an asset depends on multiple vehicles assigned to the asset to meet its
resource requirement. Let lbv(i) be a lower bound on the number of vehicles required
to protect asset i. If an asset i is not visited by at least lbv(i) vehicles, it cannot be
protected. For example, for an asset with a requirement vector ri = (3, 3, 3), there is no
combination of two vehicles from Table 3.1 such that each resource requirement is met.
However, vehicles 1, 4 and 6 have a cumulative capability vector of (3, 4, 3), thus covering
the resource requirement of the asset. For such an asset, we have lbv(i) = 3.

Given Proposition 1, there is an optimal solution of (APP) where if asset i is not
protected there is no vehicle visiting the asset, otherwise asset i is visited by at least
lbv(i) vehicles. The following set of inequalities is therefore valid:∑

q∈Q

∑
k∈δ−(i)

Xkiq ⩾ lbv(i)Yi ∀i ∈ Va (3.13)

computation of lbv(i) We introduce a MIP to compute lbv(i) for a given asset i.
For each type of vehicles q ∈ Q, there are pq vehicles available. For each type of vehicle
q ∈ Q, we introduce an integer variable Wq that represent the number of vehicles of type
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q used to protect asset i. We aim at minimizing the number of vehicles used to cover the
resource requirement ri of asset i.

Minimize
∑
q∈Q

Wq (3.14)

∑
q∈Q

Wqcapq ⩾ ri (3.15)

Wq ∈ {0, 1, 2, ...,pq} ∀q ∈ Q (3.16)

Objective (3.14) minimizes the number of vehicles assigned to the asset. Con-
straint (3.15) ensures that the cumulative capability vector of the selected vehicles meets
the resource requirement of the asset. Constraints (3.16) define the domain of the
decision variables.

Upper bound on vehicle additions for protection

Valid inequalities (3.13) offer a lower bound on the deviation induced by adding an asset
to the initial routes of vehicles in order to protect it. We introduce the notion of minimal
protection of an asset.

Definition 10 A set of vehicles represents a minimal protection for an asset if the vehicles meet
the resource requirement of the asset but no subset of the vehicles does.

In other words, removing any vehicle from the set makes at least one of the resources
of the cumulative capability vector strictly inferior to the requirement of the asset. For
example, for an asset with a requirement vector ri = (3, 3, 3), vehicles 1, 4 and 6 provide
minimal protection of the asset. However, vehicles 4, 5, 6, 7, 9 with cumulative capability
vector (5, 6, 3) protect asset i even when removing vehicle 5: the protection is not minimal.
We say that vehicle 5 is redundant. We deduce the following dominance property on the
solutions of (APP):

Proposition 2 For any solution Ψ of (APP), there exists a solution with the same total protected
value such that the vehicles assigned to any asset represent a minimal protection of the asset.

Proof 2 Consider a solution Ψ where an asset i is protected by a set of vehicles that do not
represent a minimal protection for the asset. There is at least one vehicle p assigned to asset i that
is redundant. Removing asset i from the route of vehicle p does not impact the time of visit of the
remaining assets on the route, due to the triangle identity, and asset i is still protected because
vehicle p was redundant. The solution obtained by removing assets from the routes of redundant
vehicles is a feasible solution for (APP) and strictly protects the same assets as Ψ, hence having
the same total protected value. ■

Let ubv(i) be an upper bound on the number of vehicles that can be assigned to asset
i without any of these vehicles being redundant. There is an optimal solution of (APP)
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such that if asset i is not protected, no vehicles visit asset i (Proposition 1), otherwise at
most ubv(i) are assigned to the protection of asset i (Proposition 2). The following set of
valid inequalities thus holds:

∑
q∈Q

∑
k∈δ−(i)

Xkiq ⩽ ubv(i)Yi ∀i ∈ Va (3.17)

computation of ubv(i) We introduce a MIP to compute ubv(i) for a given asset
i. We will denote P the set of available vehicles, representing the pq vehicles of each
type q ∈ Q. We note cappu the u-th resource of capability vector capp and riu the u-th
resource of requirement vector ri. For each vehicle p ∈ P, a binary decision variable Wp

is set to 1 if vehicle p is assigned to the protection of the asset. For each vehicle p ∈ P

and each resource u, a binary decision variable Ypu is equal to 1 if resource u is still
covered when removing vehicle p. We aim at finding the maximum number of vehicles
in P needed to cover the resource requirement of the asset without any of the vehicles
being redundant.

Max
∑
p∈P

Wp (3.18)

∑
p∈P

Wpcapp ⩾ ri (3.19)

∑
p ′∈P\{p}

Wp ′capp ′u ⩽ riu − 1+MpuYpu ∀u = 1, ...,K, p ∈ P (3.20)

K∑
u=1

Ypu ⩽ K−Wp ∀p ∈ P (3.21)

Wp ∈ {0, 1} ∀p ∈ P (3.22)

Ypu ∈ {0, 1} ∀u = 1, ...,K, p ∈ P (3.23)

Objective (3.18) maximizes the number of vehicles assigned to the asset.

Constraint (3.19) ensures that the cumulative capability vector of the selected vehicles
covers the resource requirement of the asset. Constraints (3.20) and Constraints (3.21)
ensure that if a vehicle p ∈ P is selected, at least one resource is no longer covered when
vehicle p is removed. In other words, if a vehicle is selected, it is not redundant. To
ensure that constraints (3.20) are verified when the u-th resource is still covered or when
vehicle p is not selected, we define:

Mpu = 1− rpu +
∑

p ′∈P\{p}
capp ′u

Constraints (3.22) and (3.23) define the domain of the decision variables.
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3.3.2 Incompatibility/vehicle clique cuts

In Section 3.3.1, we focused on valid inequalities derived from the resource requirement
of a specific asset. In this section, we present two sets of valid inequalities based on
incompatibility between assets depending on their time windows.

Two assets i and j are incompatible for a vehicle type q if the same vehicle of type q

cannot visit assets i and j within their respective time window.

Let Ginc/v
q = (Va,Einc/v

q ) be the graph of incompatibilities for vehicle type q between
assets where:

E
inc/v
q = {(i, j) | i, j ∈ Va : oi + ai + tijq > cj ∧ oj + aj + tjiq > ci}

A clique is a subset of nodes in an undirected graph that are pairwise adjacent. Thus,
assigning a vehicle to a protected asset that is part of a clique of the incompatibility
graph G

inc/v
q excludes all other protected assets of the clique from being visited by this

vehicle.
Consider a clique C of graph G

inc/v
q . According to Proposition 1, there is an optimal

solution of (APP) where a single vehicle of type q can only visit at most one asset of
clique C. The following inequality is thus valid for any clique C:∑

j∈C

∑
i∈δ−q (j)

Xijq ⩽ pq (3.24)

3.3.3 Clique protection cuts

In Sections 3.3.1 and 3.3.2, we presented valid inequalities based on resource require-
ments or incompatibility, respectively, between the assets. In this section, we present
a new set of valid inequalities that rely on resource requirements within a clique of
incompatible assets.

Two assets i and j are strictly incompatible if the assets are incompatible for all vehicle
types. Let Ginc/s = (Va,Einc/s) be the graph of strict incompatibilities between assets
where:

Einc/s = {(i, j) | (i, j) ∈ E
inc/v
q ∀q ∈ Q}

A clique C of graph Ginc/s is also a clique in the incompatibility graph G
inc/v
q for any

vehicle type q. Each vehicle can then only be assigned to protect at most one of the
assets of the clique. Let ub(C) be an upper bound on the maximum number of assets of
a clique C for which resource requirements are met, with every available vehicle being
assigned to at most one asset of the clique. In any solution, at most ub(C) assets of clique
C can be protected. The following inequality is valid for any clique C:∑

i∈C
Yi ⩽ ub(C) (3.25)
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computation of ub(C) We introduce a MIP to compute ub(C) for any given clique
C of the incompatibility graph Ginc/s. For each type of vehicles q ∈ Q, there are pq vehicle
savailable. For each asset i in the clique, an integer decision variable Wiq represent the
number of vehicles of type q assigned to asset i. A binary decision variable βi is set to
1 if the cumulative capability vector of vehicles assigned to asset i meets the resource
requirement of the asset. We aim at maximizing the number of assets of the clique that
have their resource requirement met, using each vehicle at most once.

Maximize
∑
i∈C

βi (3.26)∑
q∈Q

Wiqcapq ⩾ βiri ∀i ∈ C (3.27)

∑
i∈C

Wiq ⩽ pq ∀q ∈ Q (3.28)

Wiq ∈ {0, 1, 2, ...,pq} ∀i ∈ C, q ∈ Q (3.29)

βi ∈ {0, 1} ∀i ∈ C (3.30)

Objective (3.26) maximizes the number of assets that have their resource require-
ment met. Constraints (3.27) ensure that if an asset is protected, the cumulative capa-
bility vector of the vehicles assigned to the asset meets the resource requirement. Con-
straints (3.28) ensure that at most pq vehicles of type q are used across the clique. Con-
straints (3.29) and (3.30) define the domain of the decision variables.

3.4 computational experiments

In this section, we compare the results obtained with the valid inequalities to those
obtained on the extended Solomon instances, as used by Roozbeh et al. (2018). There
are 60 instances with 200 assets, divided into R1, C1, RC1, R2, C2 and RC2 classes based
on their spatial distribution within the 140km by 140km grid. Each class is composed of
10 instances. Solomon instances with less than 200 assets are created using a subset of
the original instances. Time windows have a fixed length for every asset. The vehicles
are initially available in a central depot. We consider the number of resources K = 3 and
three types of vehicles with respective capability vectors (1,0,0), (0,1,0) and (0,0,1).

We carried out computational testing on a computer with an Intel Core i7-8550U pro-
cessor and 8GB of RAM. We implemented the models in Julia, and solved the problems
using CPLEX 12.10.

In Section 3.3, we presented valid inequalities adapted to the generation of initial
routes. We can divide the valid inequalities for APP in three groups:

• Deviation-based inequalities (DE): (3.12) + (3.13) + (3.17)

• Incompatibility/vehicle clique inequalities (IC): (3.24)

• Clique protection inequalities (PR): (3.25)
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We solved the APP for the Solomon instances with 35 assets using the formulation
proposed by Merwe et al. (2015) with different combinations of the valid inequalities.
We consider three types of vehicles, and two different sets of vehicles Set1 = (p1 = 4,
p2 = 3, p3 = 2) and Set2 = (p1 = 5, p2 = 4, p3 = 3). We set a time limit of 600 seconds.

Table 3.4 shows the average solution time for the different classes of Solomon in-
stances and sets of vehicles. The following columns show the results based on which
valid inequalities have been added. We show in Columns ”ST” the average solution
time for instances solved to optimality and in Columns ”#Opt” the number of solutions
proven optimal within the time limit.

Table 3.4: Computational results for APP for Solomon instances with 35 assets

Class Vehicles None (DE)+(IC) (DE)+(PR) (IC)+(PR) All
ST #Opt ST #Opt ST #Opt ST #Opt ST #Opt

C1 Set1 28.10 3 9.34 10 10.37 10 8.39 2 9.7 10

Set2 78.7 8 7.56 10 6.57 10 103.46 9 7.49 10

C2 Set1 – 0 24.68 10 18.78 10 – 0 15.44 10

Set2 – 0 32.42 10 29.76 10 – 0 29.14 10

R1 Set1 83.75 9 5.66 10 4.66 10 53.81 9 4.55 10

Set2 81.17 10 6.18 10 5.96 10 61.9 10 5.68 10

R2 Set1 90.22 6 7.26 10 7.2 10 33.36 5 6.73 10

Set2 33.8 10 3.63 10 3.3 10 18.05 9 3.69 10

RC1 Set1 135.48 6 10.17 10 7.84 10 140.27 8 8.24 10

Set2 32.36 9 4.56 10 6.23 10 26.98 9 4.7 10

RC2 Set1 53.28 3 7.79 10 6.61 10 54.83 5 6.11 10

Set2 26.87 10 2.73 10 2.3 10 16.49 9 2.72 10

All Set1 65.14 27 10.82 60 9.24 60 48.44 29 8.46 60

Set2 42.15 47 9.51 60 9.02 60 37.81 46 8.9 60

From Table 3.4, we see that we drastically reduce the solution time when we add the
deviation-based inequalities (DE). Inequalities (IC) and (PR) help further improve the
gains obtained by inequalities (DE). Without valid inequalities, we could only solve 27

instances with 9 vehicles within the time limit, and 47 instances with 12 vehicles. We
solved all instances from all classes to optimality in less than 9 seconds on average, with
a maximum of 30 seconds for the C2 instances with the second set of vehicles.

As expected with large instances, we could not overcome the limitations of MIP res-
olution for instances with 100 assets. Our results were inconclusive. After 30 minutes,
the solver returned low-quality feasible solutions, and adding the valid inequalities only
marginally improved root relaxation. State-of-the-art heuristic solution methods, such as
Adaptive Large Neighborhood Search (ALNS) [Roozbeh et al., 2018], Spatial Decomposi-
tion based Math-heuristic (SDM) [Nuraiman et al., 2020], or Greedy Randomized Adap-
tive Search Procedure coupled with an Iterated Local Search (GRASP-ILS) [Yahiaoui et
al., 2022], remain far more effective than MIP resolution.
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3.5 conclusion

In this chapter, we introduced a novel selective vehicle routing problem: the Asset
Protection Problem during escaped wildfires (APP). The APP is a variant of the Team
Orienteering Problem with time windows and synchronization constraints, involving
multiple vehicles that collaborate to protect community assets from fire damage.

Within the existing literature, a Mixed-Integer Programming (MIP) model was pro-
posed to tackle the APP. However, solving this MIP required extensive computational
time, even for relatively small instances, making it an unreliable solution method. Con-
sequently, prior research efforts primarily focused on heuristic approaches, which were
capable of providing good approximate solutions in significantly shorter time.

Our contribution involved a study of the problem’s structure, enabling us to intro-
duce three sets of valid inequalities to enhance the model and reduce solution times.
The first set of inequalities aimed to establish bounds on the number of vehicles visiting
assets based on resource requirements. The second set of inequalities used the graph
structure of asset distribution to identify cliques of incompatible assets according to dis-
tances and time windows. The last set combined incompatibility properties and resource
sharing to limit the number of assets that can be protected in certain subsets.

The incorporation of these valid inequalities into the MIP formulation allowed us
to significantly reduce solution times for all 35-asset instances from hours to just a
few seconds on average. It constitutes an encouraging first step in generating optimal
solutions to the APP. These results motivate us to extend these valid inequalities to the
disrupted version of the APP, as presented in Chapter 4.
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Disrupted Asset Protection Prob-
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4.1 introduction

In Chapter 3, we introduced the Asset Protection Problem (APP) which aims at routing
a fleet of vehicles to carry out preventive protection operations to a set of community
assets in the event of a wildfire. Unfortunately, due to the destructive and uncertain
nature of wildfires, disruptions may occur and invalidate the planned routes. The routes
need to be updated to consider the effects of these disruptions. Possible disruptions
include, but are not limited to:

• vehicle breakdowns. People and vehicles suffer from the difficult conditions in
which they operate. It may then be necessary to reroute other vehicles to make up
for the breakdown.
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• changes in the weather. Wildfire spread is highly sensitive to weather changes.
An unpredicted change in wind speed or direction may impact the timing of the
operations.

• changes in driving conditions. A road may be blocked by a fallen tree, jammed
by people evacuating their homes, or reserved for emergency vehicles only. These
changes impact the estimated travel times between the assets.

• delays in operations. Incidents such as a water supply problem may increase the
time necessary to carry out the operation protection.

It is then crucial to update the initial routes and reallocate the resources in response
to these unexpected changes. Delays and fire propagation changes may make vehicles
arrive after the closing of the time window, and breakdowns may create a shortage of
required resources. The closing of certain roads may even make an asset unreachable
and completely invalidate the initial routes. The problem at-hands is the static problem
that arises when a disruption occurs, and could be included in a framework that initially
solves APP and handles dynamic disruptions.

Merwe et al. (2017) introduced D-APP and adapted the MIP formulation of [Merwe et
al., 2015] to include the measurement of the deviation from an initial assignment. This is
a bi-objective problem where total protected value must be maximized while minimizing
the deviation from the initial routes. To date, this is the only other study that exists on
the dynamic rerouting of the APP.

The D-APP is a new extension of the VRP with synchronization constraints and a
dynamic component. Drexl (2012) offered a survey of the different synchronization
constraints related to the VRP. Problems with exact operation synchronization have been
solved through column generation or branch-and-price, but required either an involved
labelling algorithm [Bélanger et al., 2006] [Ioachim et al., 1999], or the reformulation of
the problem [Dohn et al., 2009]. Heuristics methods are complicated to implement due
to the temporal interdependencies between vehicles. Most of the promising heuristics
methods include indirect searches [Li et al., 2005] or constraint programming [Hachemi
et al., 2011].

The dynamic component of the D-APP comes from the need to reschedule the routes
of the vehicles after a disruption occurs. In their review, Eglese et al. (2018) have summa-
rized the characteristics of disruption management for VRPs. After an initial plan was
drawn, disruptions occurred on the customers and/or the vehicles and the plan needs
substantial revision. The new plan must take into account the deviation from the initial
plan, either by introducing new costs related to changes in the routes (operational costs,
cancellation costs, new vehicles costs) or a secondary objective (number of changes in
the routes, sum of time delays). Papers on disruption management have often focused
on real-world case studies, where time for replanning is limited. Hence, the authors
have mostly proposed heuristic solution methods. Mu et al. (2011) introduced the dis-
rupted VRP in which the VRP plan needs to be updated after a vehicle breaks down.
The authors presented two Tabu Search algorithms to quickly compute a new routing
solution. Li et al. (2009) solved a disrupted VRP with time windows using a Lagrangian
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relaxation-based heuristic. However, exact solution methods could be used in order to
evaluate the quality of the strategies retroactively.

In this chapter, we focus on the exact solution of D-APP using a MIP. We introduce
the D-APP and its mathematical formulation in Section 4.2. In Section 4.3, we present a
new mathematical formulation for our problem based on a dominance property on the
solutions. In Section 4.4, we extend the three groups of valid inequalities we proposed
for APP in Chapter 3 to the disrupted version of the problem. Computational testing
in Section 4.5 shows that our reformulation and valid inequalities can be used to solve
instances of larger size than the initial model presented by Merwe et al. (2017). Adding
the valid inequalities to the initial formulation allowed us to more reliably solve medium-
sized instances. The reformulation by itself outperformed the initial formulation with
valid inequalities, with solution times decreasing for each of our benchmark instances.
The use of valid inequalities with the reformulation additionally reduced the solution
time for 60-asset instances by an average of 55 seconds.

4.2 problem description and model

When a disruption occurs, the current routes of the vehicles may become obsolete and,
consequently, need to be updated. Altering the route of a vehicle too much from the
original plan may cause problems. At the time they are dispatched, vehicles have the
information about the routes, the assets they are going to protect, and may require spe-
cialized equipment. Communicating in such a context is difficult: limiting the number
of changes on the routes can alleviate the problem. When updating the routes, the pri-
mary objective remains to maximize the total value of protected assets. The secondary
objective is to minimize the deviation from the initial plans.

Contrary to mono-objective optimization, we do not aim at generating the optimal
solution but, instead, a set of solutions that describe the optimal trade-off surface re-
ferred to as Pareto front. A solution is part of the Pareto front if it is non-dominated (or
Pareto-optimal), i.e., no other feasible solution to our problem strictly improves one of
the objectives without degrading the other. Without additional input about preferences
from the decision-maker, all solutions on the Pareto front are of equal interest.

An instance of D-APP is similar to an instance of APP (a set of locations that have
a graph representation G and a set of vehicles) but adds a new parameter: an initial
solution representing the routes of the vehicles before the disruption. The notations we
use to define the mathematical formulation of D-APP are largely similar to those we used
for APP in Section 3.2. Table 4.1 highlights the sets and parameters that differ from APP
(Table 3.2). The main changes come from the need to consider each vehicle separately:
the vehicles of the same type are no longer interchangeable as they have different initial
routes.

disruption The pre-disruption solution Φ defines the initial routes for the available
vehicles. We make no assumptions about the quality of solution Φ before the disruption.
We do not know how nor which parameters have been modified by the disruption. The
vehicles assigned to asset i in Φ are listed in PΦ

i , a subset of the available vehicles P.
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Table 4.1: Sets and parameters updated for the mathematical formulation of D-APP

Symbol Definition
P Set of available vehicles after the disruption
Ep Set of available arcs for vehicle p

δ+p (i) Set of locations directly reachable from location i by vehicle p

δ−p (i) Set of locations from where location i can be directly reached by vehi-
cle p

tijp Travel time from asset i to asset j of vehicle p

capp Capability vector associated with vehicle p

startip 1 if vehicle p starts at depot i, 0 otherwise

Table 4.2: Sets and parameters used in the mathematical formulation of D-APP only

Symbol Definition
Φ Pre-disruption solution
UΦ
p Set of assets not assigned to vehicle p in Φ

VΦ
p Set of assets assigned to vehicle p in Φ

PΦ
i Subset of the vehicles P assigned to asset i in Φ

PΦ
i Subset of the vehicles P not assigned to asset i in Φ

xijp 1 if vehicle p uses arc (i, j) in Φ, 0 otherwise

Table 4.2 present the new sets and parameters used in the mathematical formulation for
D-APP related to the initial solution Φ.

deviation measurement We consider the general deviation measurement intro-
duced by Merwe et al. (2017) with unitary costs. The deviation is thus represented by
the number of asset/vehicle reassignments: each asset added to or removed from the ini-
tial route of a vehicle induces a deviation of one. The aim is to generate updated routes
that maximize the total value of the protected assets, while minimizing the deviation
from the pre-disruption solution.

We define two properties for the arcs of our problem: valid arcs and out-of-window
arcs.

Definition 11 The subset of arcs Ev
p =

{
(i, j) | oi + tijp + ai ⩽ cj

}
is called the set of valid

arcs for vehicle p. An arc (i, j) is valid for vehicle p if by starting the service at asset i at the
opening of its time window, traveling to asset j after serving asset i does not exceed the
closing time of the time window of asset j.

Definition 12 The subset of arcs Eo
p =

{
(i, j) | i ∈ Va, j ∈ VΦ

p

}
is called the set of out-of-

window arcs for vehicle p. It represents all the possible arcs entering the assets assigned to
vehicle p in the pre-disruption solution Φ.

An arc between two assets i and j can be, for a given vehicle p:

• Valid only, in which case the arc can be used to visit asset j after asset i when the
two assets are visited within their time windows;
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• Out-of-window only, in which case the arc can be used to visit asset j, possibly
outside of its time window, after asset i when asset j is not protected;

• Valid and out-of-window, in which case the arc can be used in the two previous
configurations;

• None, in which case the arc will not be used.

Valid arcs are based on the time windows of the assets: they are necessary and suffi-
cient for the visits between protected assets that must be visited within their respective
time windows. Out-of-window arcs are necessary for visiting the assets outside of their
time window. An asset visited outside of its time window can be placed anywhere in
the route of vehicle p; consequently, the vehicle must be able to reach it from any loca-
tion. Out-of-window arcs are only defined for the assets visited by the vehicle in the
pre-disruption solution. We can show that these are the only assets that can be visited
by vehicle p outside of their time windows.

Proposition 3 In a non-dominated solution, if an asset i is unprotected, only vehicles that are
assigned to asset i in the pre-disruption solution can be assigned to asset i.

Proof 3 Consider a non-dominated solution Ψ where asset i is not protected and visited by
vehicle p, with i ∈ UΦ

p . Because the triangle inequality is satisfied, we can remove asset i from
the route of vehicle p in Ψ without delaying the visits of the other assets of the route. The solution
built when removing asset i from the route of vehicle p in Ψ is a feasible solution with the same
total protected value and a strictly lower deviation, thus dominating the initial solution Ψ. ■

Per Proposition 3, a vehicle will not visit an unprotected asset if the vehicle was
not assigned to this asset in the pre-disruption solution. Only unprotected assets can
be visited outside of their time windows. Hence, out-of-window arcs are sufficient for
visits of assets outside of their time window.

We designate Ev
p as the set of valid arcs for vehicle p, and Eo

p as the set of out-
of-window arcs for vehicle p. The set Ep of arcs available for vehicle p is defined as
Ep = Ev

p

⋃
Eo
p. Sets δ+p (i), and δ−p (i) are described based on the available arcs Ep.

Table 4.3 lists the decision variables and their type. The X variables no longer repre-
sent the travels of a type of vehicle but of a single vehicle, hence becoming binary. New

Table 4.3: Decision variables used in the mathematical formulation of D-APP

Symbol Definition
Xijp binary, 1 if vehicle p is traveling from location i to location j, 0 other-

wise
Yi binary, 1 if asset i is protected, 0 otherwise
Si continuous, the start time of service at asset i
Z+
ip binary, 1 if asset i is added to the assignment of vehicle p, 0 otherwise

Z−
ip binary, 1 if asset i is removed from the assignment of vehicle p, 0

otherwise
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Z+ and Z− variables are introduced to represent the deviation. The mathematical model,
hereafter denoted by (D-APP), is written as follows:

Maximize f1 =
∑
i∈Va

viYi (4.1)

Minimize f2 =
∑
p∈P

∑
i∈Va

Z+
ip +Z−

ip (4.2)

∑
j∈δ+p (i)

Xijp = startip ∀i ∈ Vd, p ∈ P (4.3)

∑
p∈P

∑
i∈δ−p (n)

Xinp = |P| (4.4)

∑
i∈δ−p (k)

Xikp =
∑

j∈δ+p (k)

Xkjp ∀k ∈ Va, p ∈ P (4.5)

∑
p∈P

∑
i∈δ−p (k)

Xikpcapp ⩾ Ykrk ∀k ∈ Va (4.6)

Si + tijp + ai ⩽ Sj +M1(1−Xijp) ∀(i, j) ∈ Ep, p ∈ P (4.7)

Si ⩾ oi −M2(1− Yi) ∀i ∈ Va (4.8)

Si ⩽ ci +M3(1− Yi) ∀i ∈ Va (4.9)∑
i∈δ−p (k)

Xikp −
∑
i∈V−

xikp = Z+
kp −Z−

kp ∀k ∈ Va, p ∈ P (4.10)

Yi ∈ {0, 1} ∀i ∈ Va (4.11)

Xijp ∈ {0, 1} ∀p ∈ P, (i, j) ∈ Ep (4.12)

Si ∈ R ∀i ∈ V (4.13)

Z+
ip ∈ {0, 1}, Z−

ip ∈ {0, 1} ∀i ∈ Va, p ∈ P (4.14)

Equations (4.1) and (4.2) represent our objectives. Function f1 is the total protected
value and function f2 is the deviation from the pre-disruption assignments.

Constraints (4.3)-(4.5) are the flow constraints for each vehicle, from their initial
depot to the sink node. Constraints (4.6) ensure that an asset can be protected only
if the vehicles assigned to the asset collectively meet the requirements on each resource.
Constraints (4.7) ensure time integrity when visiting two assets consecutively. If asset j
is directly visited after asset i by a vehicle p, service at asset j should not start before
service at asset i is over and vehicle p has had enough time to travel from asset i to asset
j.

Constraints (4.8) and (4.9) ensure that the start time of service of any protected asset
is within its time window.
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Constraints (4.10) ensure that the decision variables associated with deviation Z+
ip and

Z−
ip are correctly set to 1 when asset i has been added to (respectively, removed from)

the initial route of vehicle p.
Constraints (4.11)-(4.14) define the domain of the decision variables.
A solution of (D-APP) can be represented as a list of routes for each vehicle, and a

start time of service for each asset. The route of vehicle p is a list of assets visited in
that order by the vehicle, starting at its depot (noted depotp) and ending at the sink
node (noted sink). Between its depot and the sink node, the vehicle visits np assets. We
will designate Ip as the ordered set of assets visited by vehicle p, and i

p
1 , ip2 , ..., ipnp its

elements. The service of assets protected in the solution starts strictly within their time
window. For vehicle p, we will represent its route as follows: (depotp, ip1 , ip2 , ..., ipnp ,
sink).

4.3 reformulation

In this section, we introduce a dominance property on the routes of the vehicles based on
the protection status of the assets. Then, based on this dominance property, we introduce
a new mathematical formulation for our problem.

4.3.1 Dominance property

As presented in Section 4.2, the set Ep of arcs available for vehicle p can be broken down
into two sets: the valid arcs, and the out-of-window arcs. Out-of-window arcs ensure
that unprotected assets can be visited outside of their time window if necessary. We
observed that the impact of out-of-window arcs is important since they represent on
average a third of the available arcs for a vehicle.

We propose a new mathematical formulation that will only consider valid arcs. This
new formulation is based on the following dominance property on the solutions of (D-
APP).

Proposition 4 For every non-dominated point on the Pareto front, at least one solution exists
such that unprotected assets are visited after protected assets.

Proof 4 Consider a non-dominated solution of (D-APP). We will build an equivalent solution of
(D-APP) that follows the dominance property by considering the route of each vehicle individually.
For any vehicle p, the route of the vehicle can be represented by the ordered set of assets Ip.

For the protected assets in Ip, we can keep their start time of service unchanged. If we keep
the visits of the protected assets in the same order, only removing unprotected assets in-between,
the necessary valid arcs are available because the triangle inequality is satisfied.

For the unprotected assets in Ip, we may need to alter their start time of service. As these assets
are not protected, the time of service is not restricted by constraints (4.8-4.9). Per Proposition 3,
unprotected assets in Ip were visited by vehicle p in the pre-disruption solution: hence, we have
the necessary out-of-window arcs available to enter unprotected assets. By keeping the order on
unprotected assets, it is straightforward to compute a new start time of service for these assets
that satisfies the synchronization constraint between vehicles.
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Therefore, we can build a valid route for each vehicle p that first visits the protected assets
of Ip and then the unprotected assets, with an updated start time of service for the unprotected
assets.

In the solution that uses the new routes we built, the vehicles visit the same assets as in the
initial non-dominated solution, and protected assets are visited in the same global order and with
the same start time of service (thus, remain protected). Hence, the new solution has the same total
protected value and deviation as the initial non-dominated solution, and satisfies the dominance
property. ■

In a non-dominated solution that satisfies the dominance property, the route of a
vehicle can be divided into two parts: first the valid route, that uses only valid arcs to
visit all the protected assets assigned to the vehicle, and then the ancillary route, that
uses only out-of-window arcs to visit all the unprotected assets assigned to the vehicle.

The only constraint on the ancillary routes is the synchronization between vehicles
assigned to the same asset since time windows are no longer enforced for unprotected
assets and there is no limit on how late an asset can be visited. Due to the synchroniza-
tion constraint, if two assets are visited by different vehicles, the assets are visited in the
same order by the vehicles. We can build a global order on the unprotected assets that
is followed by all the ancillary routes. Due to Proposition 3, this order on unprotected
assets alone is sufficient to describe the ancillary routes of all vehicles. We can build the
ancillary routes of all vehicles based on an order on the unprotected assets in polynomial
time.

If we know which assets are not protected, any order on the unprotected assets
leads to feasible ancillary routes. By construction, there is always an out-of-window
arc between two unprotected assets assigned to the same vehicle, and the order ensures
that the synchronization constraint is verified. As ancillary routes do not contribute to
the total protected value nor to the deviation, all feasible ancillary routes are equivalent
to each other.

Hence, we can focus on finding only the valid routes for the vehicles. We no longer
need to route unprotected assets, thus eliminating the need to consider visits of assets
outside of their time window. All the planned visits contribute towards the total pro-
tected value, more efficiently using time and resources within the allowed deviation.
Additionally, we only plan visits at times where the crews would be safe: we leave to the
decision-maker the handling of unprotected assets.

4.3.2 Mathematical formulation

We therefore propose a new mathematical formulation that aims at constructing the valid
routes for every vehicle. Once we know the valid routes, we can determine the assets
that are not protected in the solution and build the ancillary routes for all vehicles based
on an order on these assets. From Proposition 3, the only assets that can be visited in
the ancillary route of a vehicle are the assets assigned to vehicle p in the pre-disruption
solution. These assets do not contribute to the deviation if they are not protected and
not in the valid route of the corresponding vehicle.
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The set Ep of arcs available for vehicle p is restricted to the set of valid arcs, Ev
p. The

sets δ+p (i) and δ−p (i) are updated accordingly.

The new model, hereafter denoted by (D-APP-V), is written as follows:

Maximize f1 =
∑
i∈Va

viYi (4.15)

Minimize f2 =
∑
p∈P

∑
i∈Va

Z+
ip +Z−

ip (4.16)

∑
j∈δ+p (i)

Xijp = startip ∀i ∈ Vd, p ∈ P (4.17)

∑
p∈P

∑
i∈δ−p (n)

Xinp = |P| (4.18)

∑
i∈δ−p (k)

Xikp =
∑

j∈δ+p (k)

Xkjp ∀k ∈ Va, p ∈ P (4.19)

∑
i∈δ−p (k)

Xikp ⩽ Yk ∀p ∈ P, k ∈ Va (4.20)

∑
p∈P

∑
i∈δ−p (k)

Xikpcapp ⩾ Ykrk ∀k ∈ Va (4.21)

Si + tijp + ai ⩽ Sj +Mijp(1−Xijp) ∀(i, j) ∈ Ep, p ∈ P (4.22)

oi ⩽ Si ⩽ ci ∀i ∈ Va (4.23)∑
i∈δ−p (k)

Xikp = Z+
kp −Z−

kp ∀p ∈ P, k ∈ UΦ
p (4.24)

(1− Yk) +
∑

i∈δ−p (k)

Xikp − 1 = Z+
kp −Z−

kp ∀p ∈ P, k ∈ VΦ
p (4.25)

Yi ∈ {0, 1} ∀i ∈ Va (4.26)

Xijp ∈ {0, 1} ∀p ∈ P, (i, j) ∈ Ep (4.27)

Si ∈ R ∀i ∈ V (4.28)

Z+
ip ∈ {0, 1}, Z−

ip ∈ {0, 1} ∀i ∈ Va, p ∈ P (4.29)

Equations (4.15) and (4.16) representing the objective functions f1 and f2 remain
unchanged from the initial formulation (D-APP).

Flow constraints (4.17)-(4.19) are equivalent to the flow constraints in (D-APP), but
the sets Ep are now considering only valid arcs. Constraints (4.20) ensure that all the
assets that are visited are protected and that only protected assets are visited, as we
only consider the valid part of the routes. Constraints (4.21) remain unchanged from
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(D-APP). Constraints (4.22) are updated with big-M values specific to the arc, Mijp. We
define Mijp = maximum(oi − cj + ai + tijp, 0).

Time window constraints are replaced by constraints (4.23) that enforce that the start
time of service of an asset is always within its time window.

Deviation measurement constraints are split into two sets of constraints. Con-
straints (4.24), for assets not visited by the vehicle in the pre-disruption solution, follow
the same pattern as constraints (4.10) in the initial formulation. Constraints (4.25), for
assets visited by the vehicle in the pre-disruption solution, are updated to ensure that
assets that can be visited in the ancillary route of the vehicle do not contribute to the
deviation. In these constraints, we replaced the expression

∑
xikp by its fixed value (0 in

(4.24), 1 in (4.25)). Constraints (4.26)-(4.29) define the domain of the decision variables.

4.4 valid inequalities

In this section, we extend the valid inequalities presented for APP in Section 3.3 to the
D-APP.

4.4.1 Link between protection and deviation

In a non-dominated solution Ψ, we can link the protection status of an asset to changes
in the vehicles assigned to the asset. If an asset i has been added to the initial route of at
least one vehicle in the solution Ψ, there are no longer only vehicles already assigned to
the asset in the pre-disruption solution Φ that are assigned to the asset. On the basis of
Proposition 3, asset i then must be protected in Ψ. We introduce the following corollary
of Proposition 3:

Corollary 1 In a non-dominated solution, if asset i has been added to the initial route of at least
one vehicle, then asset i is protected in the solution.

Hence, we know that if a variable Z+
ip = 1, then Yi = 1. Proposition 5 shows a similar

link for Z− variables, i.e., when a vehicle has been removed from the initial route of a
vehicle.

Proposition 5 In a non-dominated solution, if asset i has been removed from the initial route of
at least one vehicle, then asset i is protected in the solution.

Proof 5 Consider a non-dominated solution Ψ where asset i is not protected and removed from
the initial route of vehicle p. Because unprotected assets can be visited outside of their time
windows, we can add asset i back to the route of vehicle p in Ψ without delaying the visits of
the other assets of the route. The solution built when adding asset i to the route of vehicle p in
Ψ is a feasible solution with the same total protected value and a strictly lower deviation, thus
dominating the initial solution Ψ. ■

We note that an asset cannot be simultaneously added and removed from the initial
route of the same vehicle. On the basis of Corollary 1 and Proposition 5, the following
set of inequalities is valid:
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Yi ⩾ Z+
ip +Z−

ip ∀p ∈ P (4.30)

4.4.2 Deviation-based inequalities

We want to extend the valid inequalities based on bounds presented in Section 3.3.1.
Proposition 1 does not hold for D-APP: as assets can be visited outside of their time
window in order to avoid deviation, there can be a non-dominated solution where an
asset is visited but not protected. It is not possible to use the valid inequalities for APP
in their current form. However, we can note that Corollary 1 and Proposition 5 are close
in substance to Proposition 1. We no longer seek bounds on the number of vehicles
assigned to an asset but rather on the number of vehicles added to or removed from
protecting an asset. We can note that, contrary to the valid inequalities on APP, the
valid inequalities are based on a property of a non-dominated solution and not on a
dominance relation.

Lower bound on vehicle additions for protection

If asset i is protected, there are at least lbv(i) vehicles entering the asset or, equivalently,
assigned to the asset. A vehicle assigned to the asset contributes to the deviation only if
the asset was not in the initial route of the vehicle. The following set of inequalities is
valid: ∑

p∈P
Z+
ip ⩾ (lbv(i) − |PΦ

i |)Yi ∀i ∈ Va (4.31)

Upper bound on vehicle additions for protection

Proposition 6 In a non-dominated solution, if an asset is added to the initial route of a vehicle,
the vehicle is not redundant.

Proof 6 Consider a non-dominated solution Ψ where asset i was added to the initial route of
vehicle p and vehicle p is redundant to the protection of asset i. Because vehicle p is redundant,
the resource requirement of asset i is still met if we remove asset i from the route of vehicle p in Ψ.
Removing an asset from the route of a vehicle does not impact the time of visit for the remaining
assets on the route, due to the triangle inequality. The solution built when removing asset i from
the route of vehicle p in Ψ is a feasible solution with the same total protected value and strictly
lower deviation, thus dominating the initial solution Ψ. ■

However, a vehicle already assigned to asset i in the pre-disruption solution Φ can
be redundant. Removing asset i from the initial route of such a vehicle would increase
the deviation without changing the total protected value. Let ub+v (i) be an upper bound
on the number of vehicles for which asset i can be added to the initial route without any
of these vehicles being redundant. The following set of valid inequalities thus holds:
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∑
p∈P

Z+
ip ⩽ ub+v (i)Yi ∀i ∈ Va (4.32)

computation of ub+
v (i) We introduce a MIP to compute ub+v (i) for a given asset

i, a set of vehicles P, and a subset of P designated as Λ. For our purposes, we would
use Λ = PΦ

i . We note cappu the u-th resource of capability vector capp and riu the u-th
resource of requirement vector ri. For each vehicle p ∈ P, a binary decision variable Wp

is set to 1 if vehicle p is assigned to the protection of the asset. For each vehicle p ∈ P

and each resource u, a binary decision variable Ypu is equal to 1 if resource u is still
covered if we remove vehicle p. We aim at finding the maximum number of vehicles
in Λ needed to cover the resource requirement of the asset without any of the vehicles
being redundant.

Maximize
∑
p∈Λ

Wp (4.33)

∑
p∈P

Wpcapp ⩾ ri (4.34)

∑
p ′∈P\{p}

Wp ′capp ′u ⩽ riu − 1+MpuYpu ∀u = 1, ...,K, p ∈ P (4.35)

K∑
u=1

Ypu ⩽ K−Wp ∀p ∈ P (4.36)

Wp ∈ {0, 1} ∀p ∈ P (4.37)

Ypu ∈ {0, 1} ∀u = 1, ...,K, p ∈ P (4.38)

Objective (4.33) maximizes the number of vehicles in Λ assigned to the asset. Con-
straint (4.34) ensures that the cumulative capability vector of the selected vehicles covers
the resource requirement of the asset.

Constraints (4.35) and Constraints (4.36) ensure that if a vehicle p ∈ P is selected, at
least one resource is no longer covered when vehicle p is removed. In other words, if
a vehicle is selected, it is not redundant. To ensure that constraints (4.35) are verified
when the u-th resource is still covered or when vehicle p is not selected, we define:

Mpu = 1− rpu +
∑

p ′∈P\{p}
capp ′u

Constraints (4.37) and (4.38) define the domain of the decision variables.

We can note that MIP (3.18-3.23) used to compute ubv(i), the upper bound on the
number of vehicles required for protecting asset i, is a special case of this MIP with
Λ = P.
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Bounds on vehicle removals for protection

The following set of valid inequalities provides bounds on the deviation due to removals
from initial routes implied by the protection of the asset. We first note that there is no
interesting lower bound in that case. As we already noted, in a non-dominated solution,
vehicles assigned to an asset i can be redundant.

Vehicles not assigned to asset i in the pre-disruption solution Φ may not be sufficient
to meet the resource requirement of the asset. In this case, asset i can only be protected
also using some of the vehicles already assigned to the asset in Φ. Let αΦ

v (i) be a lower
bound on the number of vehicles assigned to asset i in Φ that need to remain assigned
to asset i in order to protect it. The following set of inequality is valid:

∑
p∈P

Z−
ip ⩽ (|PΦ

i |−αΦ
v (i))Yi ∀i = m+ 1, ...,n− 1 (4.39)

computation of αΦ
v (i) We introduce a MIP to compute αΦ

v (i) for a given asset
i, a set of available vehicles P and a partition of P in two subsets PΦ

i and PΦ
i . We

suppose that the cumulative capability vectors of vehicles in PΦ
i does not meet the

resource requirement of asset i. Otherwise, if the cumulative capability vector meets the
resource requirement of asset i, we can obtain a straightforward bound. We can carry
out this test by summing the capability vectors of these vehicles, in O(|PΦ

i |.K), where K

is the number of resources. In that case, it is possible to remove the asset from the initial
routes of all vehicles in PΦ

i and still meet the resource requirement. For these assets, we
have αΦ

v (i) = 0.

For each vehicle p ∈ P, a binary variable decision Wp is set to 1 if vehicle p is assigned
to the protection of asset i. We aim at minimizing the number of vehicles in PΦ

i assigned
to the protection of the asset.

Minimize
∑
p∈PΦ

i

Wp (4.40)

∑
p∈P

Wpcapp ⩾ ri (4.41)

Wp ∈ {0, 1} ∀p ∈ P (4.42)

Objective (4.40) minimizes the number of vehicles in PΦ
i assigned to the asset. Hence,

a priority is given to the vehicles that are in PΦ
i . Constraint (4.41) ensures that the

cumulative capability vector of the selected vehicles meets the resource requirement of
the asset. Constraints (4.42) define the domain of the decision variables.
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4.4.3 Incompatibility cliques

We can extend the notion of incompatibility for a vehicle type between two assets to
incompatibility for a single vehicle. Let Ginc/v

p = (Va,Einc/v
p ) be the graph of incompati-

bilities for vehicle p between assets, where :

E
inc/v
p = {(i, j) | i, j ∈ Va : oi + ai + tijp > cj ∧ oj + aj + tjip > ci}

Consider a clique C of graph G
inc/v
p . At most one asset not visited by vehicle p

in the pre-disruption solution Φ can be visited by vehicle p. Otherwise, according to
Corollary 1, vehicle p would visit two different protected assets of the clique, which is
impossible. The following inequality is thus valid for any clique C:

∑
j∈C∩UΦ

p

∑
i∈δ−p (j)

Xijp ⩽ 1 (4.43)

Vehicle p can however visit multiple assets of the clique if only at most one is pro-
tected. As visits of unprotected assets can happen outside of their time window, incom-
patibility/vehicle for unprotected asset can be disregarded. Per Proposition 3, a vehicle
can be assigned to an unprotected asset only if the vehicle was assigned to the asset in
the pre-disruption solution. A vehicle can thus be assigned to every unprotected asset
plus one protected asset within a clique. Hence, the following inequality is valid for any
clique C:

∑
j∈C

∑
i∈δ−p (j)

Xijp ⩽ 1+
∑

j∈C∩VΦ
p

(1− Yj) (4.44)

The reformulation we presented changed the way visits outside of time windows are
handled by the model. An asset visited outside of its time window is never visited using
a valid arc. For a clique C of Ginc/v

p , we can generalize Equations (4.43) and (4.44) to all
the assets of the clique. The following inequality is valid for (D-APP-V) only:

∑
j∈C

∑
i∈δ−p (j)

Xijp ⩽ 1 (4.45)

Strict incompatibility

Strict incompatibility between assets can be defined using incompatibilities for all vehi-
cles. Clique protection cuts (Equation (3.25)) are also valid for (D-APP) and (D-APP-V)
in their current form.
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4.5 computational experiments

We carried out computational testing on a computer with an Intel Core i7-8550U proces-
sor and 8 GB of RAM. We implemented the models in Julia, and solved the problems
using CPLEX 12.10.

We will consider 10 benchmark instances1. We generated 10 custom benchmark
instances with 100 assets following the instructions provided by Merwe et al. (2015).
The assets are randomly distributed on a 80km by 80km grid. Custom instances with
less than 100 assets are created using a subset of the original instances. Time windows
have a fixed length for every asset. The vehicles are initially available in a central depot.
The capability vectors of vehicles for our custom instances are given in Table 3.1. For
each instance, we calculated the pre-disruption vehicle assignment with all ten vehicles
available.

In the following, we consider as disruption the breakdown of a vehicle before the
start of operations. Hence, every vehicle starts at the central depot. We note that we
could consider a disruption that occurs after the start of operations by using the location
of the vehicles at the time of the disruption as their initial depots.

4.5.1 Solution method

We used the ϵ-constraint method introduced by Ozlen et al. (2009) to generate the Pareto
front, i.e., the entire trade-off surface. In this method, we rewrite the objective function
as Maximize f1 −w2f2 where w2 is such that the optimal solution is the solution with
highest possible protected value f1 and offers a lexicographical ordering on deviation f2.
In other words, solving with this objective function always gives a non-dominated point
of the Pareto front. We use w2 =

1
fGUB
2 −fGLB

2 +1
, where fGUB

2 and fGLB
2 are the upper bound

and lower bound on the deviation for any feasible solution. In order to generate all the
points of the Pareto front, we introduce a new constraint f2 ⩽ ϵ that limits the value
of the deviation to ϵ. The initial value of ϵ is an upper bound on the highest possible
deviation. At each step, we replace the value of ϵ by the value of the deviation f2 found
at the last iteration minus one. When ϵ is lower than zero (the lowest possible deviation),
the algorithms ends and returns all of the non-dominated points of the Pareto front. We
provide a description of the method in Algorithm 1.

The first step of the ϵ-constraint method is the computation of the extreme point with
maximum deviation.

bounds computation The global upper bound on deviation fGUB
2 is set to the sums

of the upper bounds on variables Z+ and Z− in inequalities (4.32) and (4.39).

fGUB
2 =

∑
i∈Va

(
ub+v (i) + (|PΦ

i |−αΦ
v (i))

)
(4.46)

1 See https://www.hds.utc.fr/p̃enaquen/dokuwiki/doku.php for the detailed instances, initial routes and
best known results.

https://www.hds.utc.fr/~penaquen/dokuwiki/doku.php
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Algorithm 1: ϵ-constraint method
1: ND = ∅
2: Compute bounds on deviation fGLB

2 and fGUB
2

3: Let w2 =
1

fGUB
2 −fGLB

2 +1

4: Let ϵ = fGUB
2

5: while ϵ ⩾ 0 do
6: Solve the model with objective max f1 −w2f2 and constraint f2 ⩽ ϵ

7: Let x∗ be the optimal solution
8: ND = ND ∪ {x∗}
9: ϵ = f2(x

∗) − 1

10: end while
11: return ND

The global lower bound on deviation fGLB
2 is set to 0.

4.5.2 Extreme point generation

In order to compare our new formulation with the results obtained by Merwe et al.
(2017), we focus on finding an optimal solution with maximum deviation allowed, i.e.,
the extreme point that maximizes total protected value. We computed the extreme point
for each of the ten custom instances, with three different random vehicle breakdowns,
for sizes from 30 to 60 assets, using each of the MIP formulations we presented. We set
a time limit of 1800 seconds (30 minutes). We provided a warm-start solution to CPLEX
by setting the values of X variables to their value x in the initial solution Φ.

Tables 4.4, 4.5, 4.6 and 4.7 give the detailed results obtained when generating the
extreme point for the custom benchmark instances, with 30, 40, 50 and 60 assets, respec-
tively. For each instance, column ”br” shows the vehicle chosen for breakdown. Column
”ST” shows the solution time in seconds, the objective values for the extreme point are
given in column ”TPV” for the total protected value, given as a percentage of the total
asset value, and ”Dev” for the deviation. When the time limit is reached, the objective
values for the best feasible solution found is given. The ”Gap” column shows the relative
optimality gap.

We can see from the tables that the reformulation outperforms the initial formulation
for all instances. In particular, we can see in Tables 4.6 and 4.7 that the time limit is
reached less often with the reformulation.

Table 4.8 presents the aggregated results obtained by the initial formulation and
reformulation, with and without the valid inequalities, for the custom instances. Column
”ST” shows the average solution time in seconds. A dash indicates that no feasible
solution was found for any of the instances within the time limit. Column ”TPV” shows
the average total protected value of the solution returned by CPLEX, as a percentage of
the total asset value. The average relative optimality gap is shown in brackets.
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Table 4.4: Detailed results for extreme point generation for custom instances with 30
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Table 4.5: Detailed results for extreme point generation for custom instances with 40
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Table 4.6: Detailed results for extreme point generation for custom instances with 50
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Table 4.7: Detailed results for extreme point generation for custom instances with 60
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Table 4.8: Computational results for extreme point generation for custom instances

(D-APP) (D-APP) + VI (D-APP-V) (D-APP-V) + VI
n ST TPV ST TPV ST TPV ST TPV

30 127 96.29 (0.5) 2.88 96.29 1.13 96.29 1.35 96.29

40 81.2 96.02 (1.7) 105 96.4 (0.2) 9.24 96.4 7.82 96.4
50 465 94.31 (4.3) 199 95.29 (0.5) 78.9 95.42 43.9 95.42

60 – 91.35 (8.0) 330 93.83 (2.2) 279 94.95 (0.2) 225 94.95 (0.1)

From Table 4.8, we observed that:

• The initial model (D-APP) rapidly reached its limit for the exact solving of our
problem. It could be used to solve most of the small instances within less than 2

minutes. For more than 40 assets, we did not obtain good solutions in a reasonable
time frame.

• The use of valid inequalities greatly improved formulation (D-APP). We could solve
all 30-asset instances to optimality in less than 3 seconds. We solved additional
instances for all sizes, yielding near-optimal solutions for instances with 50 assets
in less than 200 seconds on average.

• The valid inequalities are not sufficient for reliably solving larger instances using
initial formulation (D-APP). We reached the time limit more often for instances
with 60 assets, resulting in an average 2.2% optimality gap.

• The reformulation (D-APP-V) we proposed clearly outperformed the initial model.
Solving time dropped for every instance, generating the extreme point for all in-
stances up to 40 assets in 10 seconds on average, and for instances with 50 assets
in 80 seconds.

• Adding the valid inequalities had a lesser impact on the reformulation. For in-
stances with 30 and 40 assets, the time necessary to compute the valid inequalities
can slightly outweigh the solution time reduction. However, when this computa-
tion time becomes negligible, we reduced the average solution time by 36 seconds
for instances with 50 assets, and 54 seconds for instances with 60 assets.

4.5.3 Impact analysis of valid inequalities

Since initial model (D-APP) was not able to retrieve the first extreme point within the
time limit for most instances with 50 or more assets, we can therefore not use the model
to generate the full Pareto front within a reasonable time.

We generated the Pareto fronts using reformulation (D-APP-V) with different combi-
nations of the valid inequalities presented in Section 4.4. We divided the valid inequali-
ties into three groups:

• Deviation-based inequalities (DB): (4.30) + (4.31) + (4.32) + (4.39)
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• Incompatibility/vehicle clique inequalities (IV): (4.43) + (4.44) + (4.45)

• Clique protection inequalities (CP): (3.25)

We compared the model with no valid inequality with each pair of the valid inequal-
ity groups, and with all the valid inequalities. As in Section 4.5.2, we considered each of
our ten instances, with three different random vehicle breakdowns, and a time limit of
1800 seconds.

Detailed results for custom instances of size 30, 40, 50 and 60 are given in Tables 4.9,
4.10, 4.11 and 4.12, respectively. For each instance, column ”br” shows the vehicle
that broke down. For every combination of valid inequalities, column ”ST” shows the
solution time in seconds, column ”Nb” indicates the number of points in the front, and
column ”HV” gives the hypervolume of the front. The last two ”Optimal” columns
show the number of points and the hypervolume of the optimal Pareto front, when it is
known.

We can see that no combination of the valid inequalities dominates another. The
average number of points in the optimal Pareto front and the solution time increases as
the number of assets goes from 30 to 50. The number of points in the optimal Pareto
front are similar for larger instances, ranging from 9 to 28 for instances with 50 and from
9 to 38 for instances with 60 assets. However, points for instances with 60 assets are
harder to compute, increasing the solution time.

Table 4.13 presents the aggregated results for the generation of the Pareto front using
(D-APP-V), with and without valid inequalities. Column ”ST” shows the average solu-
tion time to obtain the Pareto front. Column ”#Opt” shows the number of instances for
which the Pareto front is obtained within the time limit.
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Table 4.9: Detailed results for Pareto front generation for custom instances with 30 assets
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Table 4.10: Detailed results for Pareto front generation for custom instances with 40

assets
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Table 4.11: Detailed results for Pareto front generation for custom instances with 50
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Table 4.12: Detailed results for Pareto front generation for custom instances with 60
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Table 4.13: Computational results for Pareto front generation for custom instances

None (DB) + (IV) (DB) + (CP) (IV) + (CP) All
ST #Opt ST #Opt ST #Opt ST #Opt ST #Opt

n=30 4 30/30 4 30/30 4 30/30 3 30/30 4 30/30

40 33 30/30 28 30/30 25 30/30 32 30/30 29 30/30

50 117 30/30 99 30/30 100 30/30 115 30/30 97 30/30

60 511 24/30 378 22/30 410 25/30 364 21/30 427 23/30

From Table 4.13, we observed that:

• The valid inequalities we presented further improved the reformulation (D-APP-V).

• For the small custom instances, the model with no valid inequalities can be faster
due to the time necessary to build the model. For 30 assets, the computations of
bounds for the valid inequalities in group (DB) take approximately 0.5 seconds,
and the computation of the cliques takes around 0.1 seconds. For instances with
a larger number of assets, the computation times only increase by 1 or 2 seconds,
becoming negligible.

• We obtained the optimal Pareto front for all custom instances with up to 50 assets
with any combination of the valid inequalities. The (DB) inequalities seemed to
always have a positive impact on solution time and to perform better when associ-
ated with (CP) inequalities or both (IV) and (CP).

• For instances with 60 assets, the impact of the valid inequalities was less uniform.
Depending on the instances, some combinations worked better than others, with
no clear dominance. Models solving less instances are expected to have a lower
solution time, because the additional solved instances are supposedly harder in-
stances.

• On average, the best combination was valid inequalities (DB) and (CP) that could
solve more instances than the model using no valid inequalities and with all valid
inequalities – in both cases, faster.

4.5.4 Results for Solomon instances

As described in Chapter 3, our valid inequalities enabled us to consistently generate
initial routes for Solomon instances with 35 assets. Consequently, we can now use these
instances in a disrupted setting, which was not previously possible. In the following, we
show the impact of the reformulation and valid inequalities when solving the D-APP
on Solomon instances and provide results for the complete front generation for future
reference. For each instance, we selected a random vehicle breakdown as disruption.

Table 4.14 presents a comparison of the extreme points obtained using (D-APP) and
(D-APP-V) with valid inequalities. Column ”ST” shows the average solution time to
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obtain an optimal solution in seconds. A dash indicates that none of the instances
were solved to optimality within the 1800-second time limit. Column ”TPV” shows
the average total protected value of the feasible solutions obtained at the time limit, with
the average relative optimality gap displayed in brackets.

Table 4.14: Computational results for extreme point generation for extended Solomon
instances with 35 assets

(D-APP) (D-APP-V) + VI
Class Vehicles ST TPV ST TPV

C1 Set1 – 65.64 (46.4) 147 69.26 (0.8)
Set2 – 81.2 (22.9) 594 84.3 (3.2)

R1 Set1 – 58.42 (55.3) 226 70.59 (0.1)
Set2 – 81.0 (22.9) 512 85.17 (2.5)

RC1 Set1 – 75.51 (30.3) 472 78.99

Set2 – 92.8 (7.6) 239 93.97 (0.7)

The results obtained for the Solomon instances were similar to the outcomes for large
custom instances. None of these instances could be solved within the time limit using
the initial formulation, resulting in high relative optimality gaps.

The reformulation and valid inequalities significantly enhanced the total protected
value for all classes of instances and both sets of vehicles. The upper bound was also
significantly improved, reducing the relative optimality gaps from between 8% and 55%
to less than 3.2% on average.

Table 4.15 provides detailed results for computing the Pareto front using the extended
Solomon instances with reformulation (D-APP-V) and all valid inequalities. A time limit
of 1800 seconds was set for each instance. For each instance, column ”br” shows the
vehicle that broke down. Column ”ST” shows the solution time in seconds, column ”Nb”
indicates the number of points in the front, and column ”HV” gives the hypervolume of
the front.

Table 4.16 presents the aggregated results for Pareto front generation using the refor-
mulation (D-APP-V) with all valid inequalities. Column ”ST” shows the average solution
time to obtain the optimal Pareto front in seconds. Column ”#Opt” shows the number
of instances for which we know the optimal Pareto front.
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Table 4.15: Detailed results for Pareto front generation for extended Solomon instances
with 35 assets

(a) Set1 (9 vehicles)

Instance br (D-APP-V) + VI
ST Nb HV

200c101 2 460 6 60.3
200c102 5 325 7 47.6
200c103 2 1800 1 –
200c104 8 182 5 59.5
200c105 9 30 9 40.3
200c106 8 12 5 53.3
200c107 4 134 6 44.4
200c108 2 1801 1 –
200c109 8 18 3 44.4
200c110 4 146 5 59.3
200r101 5 686 6 63.5
200r102 3 649 7 51.6
200r103 9 4.5 10 57.8
200r104 2 44 5 64.2
200r105 7 1800 1 –
200r106 5 589 15 72.8
200r107 2 54 10 79.1
200r108 2 516 11 57.9
200r109 5 581 11 76.8
200r110 7 19 7 63.8
200rc101 3 1800 2 0.0
200rc102 6 419 7 73.6
200rc103 6 950 12 76.4
200rc104 7 62 7 56.0
200rc105 2 557 8 63.8
200rc106 9 89 6 47.8
200rc107 8 26 5 58.3
200rc108 2 1796 13 70.1
200rc109 5 287 4 49.0
200rc110 9 43 9 72.5

(b) Set2 (12 vehicles)

Instance br (D-APP-V) + VI
ST Nb HV

200c101 11 116 8 55.0
200c102 11 895 5 60.0
200c103 6 1800 1 –
200c104 5 1801 1 –
200c105 1 1801 1 –
200c106 3 1801 1 –
200c107 8 930 8 65.7
200c108 3 1806 1 –
200c109 1 1801 1 –
200c110 10 1803 1 –
200r101 10 1801 1 –
200r102 5 1802 1 –
200r103 11 84 10 65.6
200r104 6 1337 8 79.5
200r105 2 1800 1 –
200r106 3 1800 3 51.4
200r107 4 1158 11 73.2
200r108 3 1800 1 –
200r109 6 1801 1 –
200r110 1 477 8 72.1
200rc101 5 250 8 67.2
200rc102 7 1017 11 76.0
200rc103 12 43 6 59.8
200rc104 8 1007 10 72.8
200rc105 10 1801 1 –
200rc106 1 1801 1 –
200rc107 2 1801 1 –
200rc108 6 1800 1 –
200rc109 7 47 6 52.3
200rc110 7 1327 10 83.2
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Table 4.16: Computational results for Pareto front generation for extended Solomon
instances with 35 assets

Class Vehicles All
ST #Opt

C1 Set1 163 8/10

Set2 505 2/10

R1 Set1 349 9/10

Set2 280 2/10

RC1 Set1 212 7/10

Set2 113 3/10

For the first set of vehicles, only 6 out of 30 instances reached the 30-minute time
limit. For the remaining 24 instances, we could generate the full Pareto fronts in less
than six minutes on average. When considering the second set of vehicles, we were able
to generate all the non-dominated points for only 7 out of the 30 instances.

4.6 conclusion

The dynamic Asset Protection problem is one of the most recent variant of the Team Ori-
enteering Problem, with time windows, synchronization constraints and two objective
functions. In this section, we introduced valid inequalities and a reformulation of the
mathematical model. We presented valid inequalities that rely on multiple characteris-
tics of our problem, including bounds on deviation, minimal protection, incompatibility
between assets based on time windows and resources. We also studied the structure
of our problem to propose a faster mathematical formulation, that limit the scope of
our model to protected assets. We managed to generate the entire Pareto front for al-
most all of our custom 60-asset instances in an average of 220 seconds, while the initial
formulation (Merwe et al. (2017)) did not manage to obtain the extreme point with max-
imal deviation for any of these instances within the time limit of 1800 seconds. We also
adapted the valid inequalities to apply to the mono-objective version of the problem.
We managed to close all 60 benchmark 35-asset instances with 9 and 12 vehicles in 9

seconds on average, while the model without the valid inequalities (Merwe et al. (2015))
only found the optimal solution within the 600-second time limit for 27 and 47 instances
respectively.

Using the reformulation and valid inequalities, the mathematical model becomes
a more consistent tool to evaluate the efficiency of deployed strategies in retrospect.
However, the solve time for large instances is still too significant for our model to be
used in reaction to real-life situations. Multiple disruptions may occur within minutes of
each other, requiring the recalculation of the Pareto front each time. It may be possible
to further speed up the exact Pareto front generation, but it would probably require
changes in the solution scheme. A more promising real-time approach would be to
only generate a good approximation of the Pareto front, through heuristic methods.
Numerous heuristic approaches for multi-objective vehicule routing problems with time
windows have been studied (see for example, Garcia-Najera et al. (2011), Baños et al.
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(2013), Srivastava et al. (2021), Ben-Said et al. (2022)). The reformulations and valid
inequalities that we present in this section can be used within any exact or heuristic
approach that relies on the mathematical formulation of the problem.
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5.1 introduction

In Chapter 4, we introduced a new MIP formulation for D-APP. Although it brought
improvements, it is not enough to be used to provide real-time responses to disruptions.
Given the urgency of the situation, waiting for optimal solutions is not a viable option.
In this chapter, we shift our focus to heuristic solution methods for D-APP. The goal is
to generate high-quality approximate fronts within limited time constraints. While sev-
eral efficient heuristic methods have been proposed for mono-objective APP, additional
constraints in D-APP, such as deviation considerations, make it complex to adapt these
methods directly.

In this chapter, we introduce two heuristic solution methods for D-APP. In Section 5.2,
we present a relax-and-fix (RF) algorithm embedded in an ϵ-constraint scheme. This
method relies on the improvements in the MIP formulation presented in Chapter 4.
In Section 5.3, we present an implementation of the Non-Dominated Sorting Genetic
Algorithm (NSGA-II) for the D-APP. We introduce multiple mutation and crossover
operators adapted to our problem, as well as methods to evaluate the quality of, and
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repair, solutions. In Section 5.4, we analyze the computational results of both methods
and highlight their respective qualities and drawbacks.

5.2 relax-and-fix algorithm

The new formulation for D-APP introduced in Section 4.3 allowed us to generate the
optimal Pareto front of larger instances than previously in the literature. However, this
approach quickly hits its limits if you set a small time limit. In the following, we present
a heuristic solution method that takes advantage of some characteristics of the linear
relaxation of the new mathematical model.

Wolsey (2002) introduced a relaxation-based solution method called Relax-and-Fix
(RF). The integritality constraints are relaxed to obtain a subproblem easier to solve,
which solution is used to fix the value of some variables to generate a new easy subprob-
lem. After several steps, a near-optimal solution of the initial model is returned. RF has
been applied to many optimization problems, including lot-scheduling [Ferreira et al.,
2010], lot-sizing [Toledo et al., 2015], grid-based location problems [Noor-E-Alam et al.,
2012].

RF is a construction heuristic that iteratively builds a solution using the linear relax-
ation of the problem. At each iteration, we only optimize over a small subset of the
binary variables. The remaining binary variables are either relaxed or have their value
fixed to their optimal value at a previous iteration. The algorithm for the general RF
approach is presented in Algorithm 2.

Algorithm 2: Relax-and-fix algorithm
Require: α, β : parameters

1: Construct the linear relaxation of the problem
2: Enforce the integrality constraint on α variables
3: Solve the model
4: while the solution is not integer do
5: Fix the value of β binary variables to their value at last iteration
6: Enforce the integrality constraint on β additional variables
7: Solve the model
8: end while

There are two parameters for the RF heuristic:

• α: share of all variables that are integer at each iteration

• β: share of integer variables whose values are fixed at each iteration

In order to easily apply the heuristic to various sizes of instances, we express α

as a percentage of all relaxed variables and β as a percentage of the non-fixed integer
variables.

In the following, the models are solved using a generic MIP solver. We consider a
solver-specific parameter: the relative gap acceptance rate (RGA), representing the gap
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between the best lower and upper bounds found by the solver. The best solution is
returned before optimality is proven, as soon as the gap falls below the RGA threshold.

5.2.1 Main loop

We use the RF heuristic within the ϵ-constraint scheme presented in Section 4.5.1 to
replace exact resolution of the model. We cannot ensure that the solution obtained at
each step is non-dominated.

Algorithm 3: ϵ-constraint method with Relax-and-fix
1: ND = ∅
2: Compute bounds on deviation fGLB

2 and fGUB
2

3: Let w2 =
1

fGUB
2 −fGLB

2 +1

4: Let ϵ = fGUB
2

5: while ϵ ⩾ 0 do
6: Solve the model with objective max f1 −w2f2 and constraint f2 ⩽ ϵ

7: Let x∗ be the solution obtained with the relax-and-fix algorithm
8: if x∗ is not dominated by a solution in S then
9: S = S ∪ {x∗}

10: end if
11: ϵ = f2(x

∗) − 1

12: end while
13: return ND

The choices implied by fixing the value of certain variables may ultimately lead to
infeasible solutions. In this event, and in order not to be stuck in a loop, our ϵ-constraint
scheme decreases the value of ϵ by one when an infeasible solution is found. However
the value of ϵ is initialized to an upper bound: if the first resolution does not yield a
feasible solution, it may take several iterations to sufficiently decrease ϵ. We propose an
initial dichomotic step to avoid being stuck in infeasible high ϵ solutions.

5.2.2 Study of the relaxation

In our model, we have three sets of decision variables: X, Y and Z. In this section, we
prove that if all X variables have integer values, then all Y and Z variables also have
integer value, even if the integrality constraint is relaxed on those variables. In other
words, we show that we can apply the relax-and-fix algorithm on the X variables only,
regardless of the integrality of Y or Z variables.

Let suppose that Xijp ∈ {0, 1} ∀p ∈ P, (i, j) ∈ Ep. From the flow constraints (4.17) and
(4.19), we can deduce that ∑

i∈δ−(k)

Xikp ∈ {0, 1} ∀p ∈ P,k ∈ Va (5.1)
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The expression in Equation (5.1) indicates whether vehicle p visits asset k or not.

integrality of Y variables We suppose the integrality constraints on all Y vari-
ables are relaxed, ie. constraint (4.26) is replaced by 0 ⩽ Yi ⩽ 1. In a non-dominated
solution, the total protected value is maximized (Equation (4.15)): hence, the Y values
are maximized. We also suppose that ri has at least one non-null component, requiring
at least one vehicle to meet the resource requirement of the asset (otherwise, the asset is
trivially protected in any solution).

Consider an asset k. If no vehicle visits asset k, then equation (4.21) forces Yk = 0.
Otherwise, if Yk > 0, we deduce from equation (4.21) that at least one vehicle visits asset
k. In that case, equation (4.20) forces Yk = 1. We thus showed that Yk ∈ {0, 1}.

integrality of Z variables We suppose the integrality constraints on all Z+

and Z− variables are relaxed, ie. constraints (4.29) are replaced by 0 ⩽ Z+
ip ⩽ 1 and

0 ⩽ Z−
ip ⩽ 1. In a non-dominated solution, the deviation is minimized (Equation (4.16)):

hence, the Z+ and Z− values are minimized.

Consider a vehicle p and an asset k ∈ UΦ
p . If vehicle p does not visit asset k, it comes

from constraint (4.24) that Z+
kp = Z−

kp. The only other constraint on these variables state
that they are positive: as the values are minimized, we can conclude that Z+

kp = Z−
kp = 0.

Asset k was not in the route of vehicle p in the pre-disruption solution and is still not
visited by vehicle p: there is no induced deviation.

If vehicle p visits asset k, it comes from constraint (4.24) that Z+
kp = 1 + Z−

kp. As
Z+
kp ⩽ 1 and Z−

kp ⩾ 0, the only admissible values are Z+
kp = 1 and Z−

kp = 0. Asset k was
not in the route of vehicle p in the pre-disruption solution and is now visited by vehicle
p: there is one deviation induced by its addition to the route of vehicle p.

Consider a vehicle p and an asset k ∈ VΦ
p . We already showed that Yk ∈ {0, 1}. If asset

k is not protected, ie. Yk = 0, then equation (4.20) states that vehicle p does not visit
asset k. Hence, constraint (4.25) becomes Z+

kp −Z−
kp = 0, implying Z+

kp = Z−
kp = 0. When

an asset is not protected, it does not affect the deviation.

We now suppose asset k is protected, ie. Yk = 1, and vehicle p visits asset k. It
comes from constraint (4.25) that Z+

kp − Z−
kp = 0, which leads to Z+

kp = Z−
kp = 0. Asset

k is protected, it was in the route of vehicle p in the pre-disruption solution and is still
visited by vehicle p: there is no induced deviation.

Finally, we suppose asset k is protected and vehicle p does not visit asset k. Con-
straint (4.25) becomes Z−

kp = 1 + Z+
kp. As Z+

kp ⩾ 0 and Z−
kp ⩽ 1, the only admissible

values are Z+
kp = 0 and Z−

kp = 1. Asset k is protected, it was in the route of vehicle p in
the pre-disruption solution and is no longer visited by vehicle p: there is one deviation
induced by its removal from the route of vehicle p.

In every scenario, we showed that Z+
kp ∈ {0, 1} and Z−

kp ∈ {0, 1}.
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5.2.3 Variable selection strategies

We apply the relax and fix on X variables. We can represent the X variables as a matrix
E× P. Table 5.1 shows an example with three assets, three vehicles and four arcs. All
arcs are not necessarily available for all vehicles.

Table 5.1: Matrix representation of X variables

p1 p2 p3
(x1, x2) X12p1 X12p2 X12p3
(x2, x3) X23p1 – X23p3
(x1, x3) X12p1 X13p2 –
(x3, x1) X31p1 X31p2 X31p3

We define multiple strategies to chose the order of integrality constraints introduction
on the variables X. We base our strategies on the ones defined by Toledo et al. (2015),
where variables are represented in a matrix and are considered row-wise, column-wise
or value-wise. We compare the strategies in Section 5.2.4.2.

most-fractional This strategy is a value-wise strategy. We select the variables
which values are the closest to 0.5. Figure 5.2 shows three iterations on an example
with ten variables representing four arcs and three vehicles. We suppose α = 50% (five
variables) and β = 40% (two variables). We first solve the model where all X variables
are relaxed: the values of the X variables are shown in the table on the left. We introduce
the integrality constraints on the variables closest to 0.5: Xa2p1 , Xa1p1 , Xa1p2 , Xa2p3 and
Xa4p2 . We then solve the model again with the newly added constraints, and obtain the
results shown in the table in the middle. We select two variables to be fixed, here Xa1p1

and Xa2p3 and introduce the integrality constraint on variables Xa3p2 and Xa4p3 (shown
in bold). The results of the third iteration is shown in the table on the right.

p1 p2 p3
a1 0.4 0.4 0.9
a2 0.5 – 0.6
a3 0.7 0.8 –
a4 0.2 0.4 0.1

p1 p2 p3
a1 0 0 0.9
a2 0 – 1

a3 0.2 0.6 –
a4 0.8 1 0.4

p1 p2 p3
a1 0 0 0.3
a2 1 – 1

a3 0.1 1 –
a4 0.4 0 1

Relaxed variable Integer variable Fixed variable

Table 5.2: First iterations of a Most-fractional strategy

row-wise We chose to apply a strategy where variables are introduced and fixed
row by row. In order to maintain [...], we assume that all variables linked to an arc (i.e.,
each row) are added at the same time. Figure 5.3 shows three iterations on an example
with ten variables representing four arcs and three vehicles. We suppose α = 40%
(four variables) and β = 50% (two variables). The values of the variables when the
linear relaxation is solved are given in the table on the left. We introduce the integrality
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constraints on the first four variables appearing Xa1p1 , Xa1p2 , Xa1p3 and Xa2p1 , as well as
Xa2p3 in order to consider all variables associated with arc a2. We solve the model again;
the results are shown in the middle table. We fix the value of the two first variables
Xa1p1 and Xa1p2 , as well as Xa1p3 to consider all variables associated with a1. We also
introduce the integrality constraints on the variables of the next row Xa3p1 and Xa3p2 , for
a total of four free integer variables. The results of the third iteration are shown in the
table on the right.

In the row-wise strategy, the order in which the arcs appear in the matrix deeply
modifies the result. We propose multiple orderings that could lead to interesting results.

p1 p2 p3
a1 0.4 0.3 0.9
a2 0.5 – 0.6
a3 0.7 0.8 –
a4 0.2 0.4 0.1

p1 p2 p3
a1 0 1 0

a2 1 – 0

a3 0.3 0.3 –
a4 0.2 0.4 0.7

p1 p2 p3
a1 0 1 0

a2 0 – 1

a3 1 0 –
a4 0.2 0.4 0.1

Relaxed variable Integer variable Fixed variable

Table 5.3: First iterations of an Arc-wise strategy

We associate to each asset i a weight wi. The assets are ordered in ascending absolute
value of wi. We build the ordering on the arcs based on the ordering of the assets and
their direction. The direction of asset i is determined by the sign of wi: forward if wi is
positive, or backward if wi is negative.

In the forward direction, we build the routes from the depot. If asset i is ordered
before asset j, and both assets are forward, the arcs entering asset i are considered before
the arcs entering asset j. Figures 5.1 show the first three steps for five forward assets,
numbered in ascending order of wi, d represents the depot and s the sink node. In the
first iteration (Figure 5.1a), variables corresponding to arcs (d, x1) and (d, x2) are integer.
In the second iteration (Figure 5.1b), arcs from the depot to x1 are fixed at their values
from the relaxed model, and arcs entering x3 are now integer. In the third iteration
(Figure 5.1c), arcs from the depot to x2 are fixed, and arcs entering x4 are integer.

In the backward direction, we build the routes from the sink node. If asset i is ordered
before asset j, and both assets are backward, the arcs exiting asset i are considered before
the arcs exiting asset i.

First, we propose three orderings based on time windows. The idea is to build
definitive parts of the routes.

• Earliest Closing Time (ECT): wi = ci;

• Latest Closing Time (LCT) : wi = ci −max(c);

• Half-Time Closing Time (HTCT) : wi = 1/(
max(c)−min(c)

2 − ci).

We can note that ECT is only forward, LCT only backwards, and HTCT mixes both.
The idea behind the TW-based orderings is that when we fix a value it never leads

to an infeasible solution because the arcs used before (or after) this arc are necessarily
feasible (and fixed).
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Figure 5.1: First iterations of a Forward strategy
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Other criteria can be chosen, focusing the routing on different characteristics:

• Highest Value (HiV): wi = vi;

• Most Resources (MR): wi = ub+v (i);

• Random (Rdm): wi = rand().

For these criteria, we may encounter situations where the fixed variables lead to
infeasible solutions.

5.2.4 Preliminary results and parameter setup

We generated five additional training instances, generated the same way as custom
instances introduced in Section 4.5. We suppose that each set of parameters we are
testing are almost independent.

In Section 5.2.4.1, we will study the impact of enforcing or not enforcing the inte-
grality constraint on Y and Z variables on the solution time and how it evolves when X

variables are relaxed or not. Then, we will analyse the impact of the different param-
eters of our algorithm: Variable selection strategies (Section 5.2.4.2), values of α and β

(Section 5.2.4.3) and values of RGA (Section 5.2.4.4).

5.2.4.1 Variables relaxation

In Section 5.2.2, we demonstrated that when all X variables are integer, Y and Z variables
necessarily have integer values even when relaxed.

We solved different relaxations of model (D-APP-V), without any valid inequality, on
our test instances, with a time limit of 300 seconds. Average solution times by instance
size are reported in Table 5.4. Each row corresponds to the enforcement of integrality
constraints on X variables. The row ”0 ⩽ X ⩽ 1” corresponds to the case where all X
variables are relaxed, which is the case in the base case for the RF algorithm. The row
”X ∈ 0, 1” corresponds to the case where all X variables are integer, providing insight into
how the RF would react when the number of integer variables α is high. Each column
corresponds to the enforcement of integrality constraints on variables Y and Z.

From Table 5.4, we can see that solution times are higher when Z variables are integer
compared to when Z variables are relaxed, especially when X variables are also relaxed.
Furthermore, relaxing the X variables when Z variables are integer leads to an increased
solution time. Thus, using integer Z variables would be detrimental to the RF algorithm.

When X and Z variables are relaxed, the relaxation of Y variables have little effect.
However, when Y variables are not relaxed, solution time decreases when X variables
are integer. Using integer Y variables would allow the RF algorithm to be used more effi-
ciently at each step of the solution process when integrality constraints are reintroduced,
particularly with higher α values.
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Table 5.4: Aggregated results for linear relaxation of extreme point

Y ∈ {0, 1} 0 ⩽ Y ⩽ 1 Y ∈ {0, 1} 0 ⩽ Y ⩽ 1

Z ∈ {0, 1} Z ∈ {0, 1} 0 ⩽ Z ⩽ 1 0 ⩽ Z ⩽ 1

n = 30 0 ⩽ X ⩽ 1 0.29 34.2 0.11 0.11

X ∈ {0, 1} 0.37 0.40 0.37 1.43

40 0 ⩽ X ⩽ 1 33.0 42.0 (9/10) 0.19 0.14

X ∈ {0, 1} 10.1 13.5 11.0 24.5
50 0 ⩽ X ⩽ 1 74.5 (8/10) 108 (7/10) 0.36 0.31

X ∈ {0, 1} 55.2 (9/10) 75.4 (8/10) 57.1 (9/10) 115 (7/10)
60 0 ⩽ X ⩽ 1 186 (5/10) 206 (4/10) 0.79 0.53

X ∈ {0, 1} 181 (5/10) 185 (5/10) 192 (5/10) 248 (3/10)

5.2.4.2 Selecting a strategy

In Section 5.2.3, we introduced six different criteria for row-wise variable selection. Three
are based on time windows (ECT, LCT and HTCT), one is based on value (HiV), one on
resources (MR) and the last one is random (Rdm).

We run the relax-and-fix algorithm with α = 0.2 and β = 0.5 on the training instances,
using two different vehicle breakdowns, with 30, 40, 50 and 60 assets. Table 5.5 shows
the average hypervolume of the Pareto front obtained using each strategy.

Table 5.5: Aggregated results of RF based on variable selection strategies

ECT LCT HTCT HiV MR Rdm
n = 30 76.27 % 76.12 % 75.74 % 69.03 % 55.33 % 67.47 %

40 78.55 % 77.74 % 78.37 % 57.28 % 64.75 % 67.15 %
50 78.68 % 78.36 % 78.43 % 64.53 % 60.08 % 63.56 %
60 79.37 % 79.73 % 76.46 % 34.75 % 45.43 % 55.54 %

We observed that the three criteria based on time windows clearly outperformed the
other criteria in terms of solution quality. As noted when introduced, using HiV, MR
and random criteria leads to infeasible solutions, which clearly deteriorates the quality
of the fronts obtained.

There is no clear dominance between the three time window-based criteria. Further
investigation is needed to detect properties that would favor one criterion over the others.

5.2.4.3 Tuning α and β

In this section, we study the impact of the parameters α and β on the relax-and-fix
algorithm. We run the relax-and-fix algorithm on the training instances, using two
different vehicle breakdowns, with 30, 40, 50 and 60 assets. The vehicle breakdowns
were chosen at random, not to match the breakdowns considered in the previous
section in order to avoid overfitting. We use the solver default value for RGA
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(1e-4), the ECT strategy, without any valid inequalities. The tested values of α are
(0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1), the tested values of β are (0.1, 0.25, 0.5). We
set a time limit of 600 seconds.

Figures 5.2a and 5.2b show the evolution of the gap and solution time for instances
with 50 assets. Figures 5.3a and 5.3b show the evolution of the gap and solution time for
instances with 60 assets.

We see that for instances with 30 or 40 assets, the value of β have little impact on the
quality of the Pareto fronts returned by our algorithm. Increasing the value of β speeds
up the solution process in almost all cases, as it implies less resolutions of the relaxed
model. The higher the value of α the closer the relaxed model is to the original model,
the solutions are thus closer to the optimal solutions but are more difficult to obtain.
Figure 5.2 depicts this phenomenon for instances with 50 assets. Figure 5.2a shows the
quality of the Pareto front increasing quickly for small values of α and slowing after
α = 0.2. In parallel, Figure 5.2b shows solution time slowly increasing until α reaches
0.2, then sharply increasing for higher values.
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Figure 5.2: Computational results of α, β tuning for 50 assets

We can extend our analysis to instances with 60 assets, however the 600-second time
limit gives us different results. The solution time follow the same pattern, as can be seen
in Figure 5.3b. However, the time limit is reached for some instances with high α values:
the Pareto front has then only a few points, if any. Figure 5.3a illustrates the drop in the
quality of the Pareto front obtained when the time limit is reached, for values of α of 0.3
and higher.
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Figure 5.3: Computational results of α, β tuning for 60 assets

α choice strategy We observed that the value of α highly influences the results
obtained with the relax-and-fix algorithm. In order to balance quality and solution
time, we want to generate fast points (those with low deviation) as precisely as possible
while focusing on reducing computing time for high deviation points. We also want to
avoid middle values (between 0.3 and 0.7), where the solution time is the highest. We
discuss the choice of an α value, ranging from 0.2 to 0.9, based on ϵ using a sigmoid
representation. The base formula for a sigmoid is α(ϵ) = 1− 1

1+exp(−p1(ϵ−p2))
, where p1

sets the slope of the curve and p2 is the midpoint. Figure 5.4 shows an example of a
sigmoid curve.

Figure 5.4: Example of a sigmoid function
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Figure 5.5: Computational results of sigmoid parameter tuning for 40 assets
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Figure 5.6: Computational results of sigmoid parameter tuning for 50 assets

tuning of p1 and p2 We generated the entire fronts using an ϵ-constraint method
with different values for the slope p1 and the midpoint p2, setting a time limit of 600

seconds. Figures 5.5, 5.6 and 5.7 show the average hypervolume obtained and solution
time based on the values of the parameters for training instances with 40, 50 and 60

assets, respectively. We compare these results to the fronts obtained using fixed values
of 0.2, 0.5, and 0.9 for α.

Coherently with previous results, the lowest values for the midpoint p2 yielded solu-
tions of lesser quality, as the values of α used in the process are generally close to 0.2.
However, it showed the impact of using a sigmoid, as even with a very low midpoint,
we obtained a higher hypervolume than the fronts obtained with α = 0.2, as well as a
decrease in solution time. As we increased the value of p2, we generated fronts closer to
the optimal front, at the expense of a higher solution time. For instances with 40 assets
(Figure 5.5), every value of p1 and p2 generated fronts faster than the three references.
For instances with 50 assets (Figure 5.6), good quality fronts were generated faster than
the lower quality solution obtained with α = 0.2 for p2 up to 20, and at least 20 seconds
faster than the solution obtained with α = 0.9 for all p2 values.
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Figure 5.7: Computational results of sigmoid parameter tuning for 60 assets

For instances with 60 assets (Figure 5.7), we observed again the steep decrease in
quality due to reaching the time limit. The use of a sigmoid function for α reduced the
decrease in quality when the time limit is reached compared to a fixed α value of 0.5 or
0.9.

We observed that p1 value only had a small impact on quality and solution time, so
we decided to use p1 = 2. For all instance sizes, p2 = 15 represented a good compromise
between quality and solution time. However, for 60 assets or more, or with a lower time
limit, it may be necessary to decrease the value of p2 in order to generate more points
on the fronts within the time limit.

5.2.4.4 Tuning RGA

The Relative Gap Acceptance (RGA) is a solver parameter that determines when a solu-
tion is returned based on the gap between the best integer objective and the objective
of the best remaining node. In heuristic approaches, it is not necessary to wait for the
solution to be proven optimal. The RGA value influences the relaxed solution obtained
at each iteration.

We run the relax-and-fix algorithm on the training instances, using two different
vehicle breakdowns, with 60 assets. The vehicle breakdowns were chosen at random,
not to match the breakdowns considered in the previous sections in order to avoid
overfitting. We used the ECT criterion, with two pairs of parameters α,β: (0.1, 0.25)
and (0.2, 0.5). We chose these values of α and β because they yield solutions before the
time limit for all training instances with the default RGA value. We tested values for
RGA ranging from 10−4 to 10−1. We set a time limit of 300 seconds.

Figure 5.8 illustrates the results we obtained. Figure 5.8a shows the evolution of the
hypervolume gap, Figure 5.8b the evolution of average solution time.
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Figure 5.8: Computational results of RGA tuning for 60 assets

From Figure 5.8a, we can observe that the quality of the solutions remained stable
for RGA values between 10−4 and 10−2, with a gap of around 1% from the best solution.
Then, the quality started deteriorating with higher RGA values, reaching two-digit gap
values for values close to 10−1.

From Figure 5.8b, we can observe that the solution time started decreasing before
the quality of solutions started deteriorating: an RGA value of 10−2 leads to solutions
of similar quality as an RGA value of 10−4 in two-thirds of the computation time. The
solution time kept rapidly decreasing as the RGA values increased.

5.3 nsga-ii

Several approaches extend the fast and elitist Non-Dominated Sorting Genetic Algorithm
(NSGA-II) [Deb et al., 2002]. It has been efficiently applied to various multi-objective
problems including but not limited to the BTOP [Mirzaei et al., 2017], the Green Vehi-
cle Routing Problem [Jemai et al., 2012] and the Vehicle Routing Problem with Route
Balancing [Jozefowiez et al., 2005].

NSGA-II is an iterative algorithm. For each generation t, we consider a population
Rt of size 2N, that is the combination of two subpopulations of size N: Pt, the parents,
and Qt, the offspring. There are three main steps in the NSGA-II algorithm, described
below. The main loop of the algorithm is described in Algorithm 4. A solution i has
two fitness criteria relative to the current population: a rank ri and a crowding distance
di. The rank represents the quality of the solution with regards to Pareto-dominance.
Algorithm 5 shows the non-dominating sorting algorithm used to determine the rank
of solutions within a population P. The crowding distance represents the quality of
the solution in terms of diversification. Algorithm 6 shows how the crowding distance
criterion is computed on a set of solutions I. For more information on how these criteria
are computed, we refer the reader to [Deb et al., 2002].

At generation t, the three steps are:
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Algorithm 4: NSGA-II main loop
Require: Parent population Pt, Offspring population Qt

Ensure: Parent population Pt+1, Offspring population Qt+1

1: Rt ← Pt ∪Qt;
2: F ← Non dominating sorting(Rt);
3: Pt+1 ← ∅; i← 1;
4: while |Pt+1| < N do
5: Crowding distance assignment(Fi);
6: Pt+1 ← Pt+1 ∪Fi;
7: i← i+ 1;
8: end while
9: Sort Pt+1 according to rank first, distance second;

10: Pt+1 ← Pt+1[1 : N];
11: Qt+1 ← Offspring creation(Pt+1); (See Algorithm 7)
12: t← t+ 1;

Step 1 - Initialization. Create the population Rt by combining the parent and off-
spring populations. Compute the rank of the solutions in Rt and identify all the non-
dominated fronts F = (F1,F2, ...). Compute the crowding distance of the solutions within
each non-dominated front.

Algorithm 5: Non dominating sorting
Require: Population P

Ensure: Set of non-dominated fronts F

1: for each solution u ∈ P do
2: Build Su = {v ∈ P : u ≻ v}

3: Count the number nu of solutions v ∈ P such that v ≻ u

4: end for
5: F1 ← {u ∈ P,nu = 0}

6: i← 1

7: while Fi is not empty do
8: for each solution u ∈ Fi do
9: Decrease nv for each solution v ∈ Su

10: If nv reaches 0, add v to front Fi+1

11: end for
12: i← i+ 1

13: end while

Step 2 - Parent population selection. Create the parent population for next genera-
tion Pt+1 by selecting the N solutions from population Rt. Between two solutions with
different ranks, we prefer the solution with the lowest rank. If both solutions belong to
the same front, we prefer the solution with the lowest crowding distance.
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Algorithm 6: Crowding distance assignment
Require: Set of solutions I

Ensure: Updated crowding distances for set I
1: l← |I|;
2: for i = 1...l do
3: dI[i] ← 0;
4: end for
5: for each objective fi, i = 1...p do
6: Sort I according to objective fi;
7: dI[1] ←∞;
8: dI[l] ←∞;
9: for j = 2...l− 1 do

10: dI[j] ← dI[j] + fi(I[j+ 1]) − fi(I[j− 1])
11: end for
12: end for

Step 3 - Offspring creation. Create offspring population Qt+1 from Pt+1. Details
are given in Algorithm 7. The tournament operator is binary tournament, as described
in [Deb et al., 2002]. Two solutions are selected at random, the solution with lowest
rank is selected, or with lowest crowding distance if there is a tie. The crossover and
mutation operators are discussed in Section 5.3.2. The repair and evaluation procedure
is discussed in Section 5.3.3.

Algorithm 7: Offspring creation
Require: Parent population P, mutation rate µ

Ensure: Offspring population Q

1: Q← ∅;
2: while |Q| ⩽ N do
3: p1 ← tournament(P);
4: p2 ← tournament(P);
5: s← crossover(p1,p2); (See Section 5.3.2)
6: if rand() < µ then
7: s← mutate(s); (See Section 5.3.2)
8: end if
9: s← repair and evaluate(s); (See Section 5.3.3)

10: Q← Q∪ {s};
11: end while
12: return Q
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5.3.1 Encoding

We based the implementation of the NSGA-II algorithm for our problem on a genetic
algorithm proposed for the mono-objective version of the APP with a homogeneous fleet
of vehicles [Merwe, 2015].

A solution s is represented by an array of integers, representing the order in
which assets are visited for each vehicle. The route of a vehicle always starts at a
depot and ends at the sink node. For instance, there are three vehicles in solution
[1, 2, 6, 4, 11, 1, 5, 7, 3, 11, 1, 7, 3, 11], the route of the first vehicle is (1 → 2 → 6 → 4 → 11),
the second (1→ 5→ 7→ 3→ 11) and the last (1→ 7→ 3→ 11).

We note Ps
i the set of vehicles assigned to asset i in solution s, and Ps

i the set of
available vehicles not assigned to asset i in solution s.

5.3.2 Operators

First, we introduce two crossover operators: CXVAL and CXTIM. Then, we introduce
two types of mutation operators. Single-change operators are mutation operators that
slightly modify the solutions, by inserting or removing one asset. The multi-change
operator performs a destruction/construction process on the solution.

valid crossover operator (cxval). This crossover operator between two solu-
tions s1 and s2 selects a vehicle at random. The route for this vehicle in s1 is cut after a
random asset ik. The route for this vehicle in s2 is also cut, after asset jl. The offspring
route for this vehicle is constructed by the taking the part of the route up to, and includ-
ing, asset ik in s1 first, and then the part of the route after asset jl in s2. For example,
suppose we have two routes (i1 → i2 → i3 → i4 → i5) and (j1 → j2 → j3 → j4 → j5 → j6),
and assume the cuts happen after assets i3 and j4 respectively, indicated in bold. The
resulting route would be (i1 → i2 → i3 → j5 → j6). The route of the second vehicle is
cut in a way such that arc (ik, jl+1) is a valid arc. This crossover may result in duplicate
assets in the route of a vehicle; we only keep the first occurrence of an asset to fix this
issue.

time crossover operator (cxtim). This crossover operator between two solu-
tions s1 and s2 selects a time T at random within the time horizon. The routes for the
vehicles in s1 are cut when the start time of service of the asset exceeds the chosen time,
and represent the first part of the offspring routes. We then cut the routes of the vehicles
in s2 such that there is a valid arc between the last asset of the first part of the route and
the first asset of the second part of the route. Figure 5.9 illustrates the use of the operator
with two vehicles. The only arcs that may not be valid are the dotted arcs in the new
solution.
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Figure 5.9: Application of the time crossover operator on solutions with two vehicles

single-change mutation operators . We define two different mutation opera-
tors, with same probability of being used: an insertion operator and a removal operator.

• Insertion operator. The insertion operator adds one randomly selected asset to the
route of one or multiple vehicles. An asset is selected at random. The asset is
added at a random valid position in the route of vehicles, taken in a random order,
until the resource requirement of the asset is met.

• Removal operator. The removal operator removes one randomly selected asset
from the route of one or multiple vehicles. An asset is selected at random. The
asset is removed from the routes of all the vehicles it appears in.

multi-change mutation operator . We define a mutation operator that per-
forms multiple changes on the solution, first removing multiple assets from the solution
in the destruction phase, then inserting multiple protected assets in the construction
phase.

During the destruction phase, the operator randomly selects d assets to be removed
from the current solution. The number of assets removed is randomly selected between
1 and dmax. The destruction parameter dmax is initially set to 3. If there is no improve-
ment on the optimal Pareto front F1, its value is increased, and resets to 3 when an
improvement is found. In the random selection process, we can assign weights to the
assets in order to favor removing assets that induce most deviation. We note w−

i the
weight associated to asset i. The probability of selecting asset i to be removed is thus
p−(i) = w−

i /
∑
i

w−
i . If w−

i = 1 for all assets, we have fully random behavior. Alterna-

tively, we can use a weight based on the deviation induced by the removal of asset i

from solution s, with γ a parameter to be determined:
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w−
i =

(
1+max(0, |Ps

i |− |Ps
i |)
)γ (5.2)

During the construction phase, the operator uses a Best Insertion Heuristic (BIH) to
insert a subset of assets to the current solution. The number of assets to add is chosen
randomly between d and d+ cmax. The construction parameter cmax is initially set to 3.
The assets to be inserted are randomly selected. We can assign weights to the assets in
the selection process. We note w+

i the weight associated to asset i. We can use a weight
based on the profit vi associated with the protection of asset i and a lower bound on the
deviation necessary for the protection of the asset nb+i , with α and β parameters to be
defined:

w+
i = vαi /(1+nb+i )

β (5.3)

We want to add each asset to the route of enough vehicles for the resource protection
to be met. We also want to minimize the number of vehicles we use to protect the
asset. As we do not know how many vehicles will be required to meet the resource
requirement, we will generate multiple insertion patterns and select the one minimizing
our criterion. We detail the process in Algorithm 8. In order to account for the deviation
from the pre-disruption routes, we first select the vehicles for which the asset is in the
pre-disruption route. If these vehicles are not sufficient to meet the resource requirement,
we continue the process with the remaining vehicles. We select the vehicles in a random
order, until the protection requirement is met.

adaptive parameters . The multi-change operator relies on parameters α, β and
γ to control the relative importance of the different factors when associating weights to
assets. They are first initialized with α = 1, β = 1 and γ = 0.5, and then adaptively tuned
during the offspring creation phase. We generate M offspring solutions with slightly
different values of α, β and γ. The values leading to the best offspring subpopulation
are recorded to be used in the next iteration. All the offspring solutions generated are
considered in the offspring population Q of the current step.

5.3.3 Repair and evaluation procedure

A solution is represented by the route of each vehicle. It is sufficient to know the routes
of the vehicles to compute the deviation from the pre-disruption routes. However, we
cannot determine which assets are effectively protected: we must check if it is possible
to synchronize the visits of all assigned vehicles within the time window of the asset and
if the resource requirement is met by these vehicles.

Some solutions are not feasible. For instance, two vehicles may visit the same two
assets in a different order, thus causing synchronization to be impossible.

Our repair procedure aims at finding the best subroutes of the solution to make it
feasible and maximize the total protected value. We do not modify the order in which
assets are visited by a vehicle, nor do we add new assets to the routes. The repair
procedure determines which assets can actually be protected, thus contributing to the
total protected value. It also provides data to correct the deviation, if unprotected assets
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Algorithm 8: Construction: Add an asset
Require: Solution S, asset k, number of insertion patterns nb p

Ensure: A solution that protects asset k, if possible
1: if the available vehicles cannot meet the resource requirement then
2: return S

3: end if
4: for cpt = 1...nb p do
5: Vcpt ← ∅; {Set of selected vehicles at iteration cpt}
6: costcpt = 0;
7: Determine a random order on the vehicles that prioritizes vehicles in PΦ

k
8: for each vehicle p following the previously defined order do
9: if there is a valid position in the route of vehicle p then

10: Vcpt ← Vcpt

⋃
{p}

11: costcpt ← costcpt + 1

12: if vehicles in Vcpt meet the resource requirement of asset k then
13: Begin new insertion pattern (next cpt)
14: end if
15: end if
16: end for
17: end for
18: Select set of vehicles V∗ with lowest cost
19: Insert asset k in the routes of vehicles in V∗ in solution S

20: return S
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have been added to the route of a vehicle, for instance. At the end of the repair procedure,
we know the value of the two objective functions for the solution we have just repaired.
Hence, we can use the repair procedure as the evaluation procedure for our solutions.
By doing so, we also ensure that all the solutions we consider are feasible.

We propose two different MIPs used for repairing and evaluating solutions for our
problem. We note Pi the set of vehicles that have asset i in their route. We note Xp the
set of arcs (ik, il) between assets in the route of vehicle p, with k < l.

asset penalization. The first MIP tries to find a feasible solution from the given
routes. Assets can be visited outside of their time windows, but these assets cannot be
protected. Infeasibilities are lifted by removing assets entirely from the solution.

We define three sets of decision variables:

• Binary variables Yi, set to 1 if asset i is protected. Asset i is protected when service
starts within its time window and its resource requirement is met.

• Binary variables θi, set to 1 if asset i is removed from the solution.

• Continuous variables Si, that represent the start time of service of asset i.

Maximize
∑
i

viYi (5.4)

(1− θi)
∑
p

capp ⩾ riYi ∀i ∈ Va (5.5)

Si + tijp + ai ⩽ Sj +M1(θi + θj) ∀p ∈ P, (i, j) ∈ Xp (5.6)

oi −M2(1− Yi) ⩽ Si ⩽ ci +M2(1− Yi) ∀i ∈ Va (5.7)

Yi ∈ {0, 1}, θi ∈ {0, 1}, Si ∈ R ∀i ∈ Va (5.8)

Objective function (5.4) maximizes the total protected value.
Constraints (5.5) ensure that the protection requirement is met for protected assets.

Assets that have been removed from the solution (with θi = 1) cannot be protected.
Constraints (5.6) set correct start time of service for assets i and j when asset i is

visited by the vehicle before asset j. The order in which the assets are visited is fixed
within the solution. However, as assets can be removed, we need to consider every pair
of assets (i, j) visited by the vehicle such that asset i is visited before asset j.

Constraints (5.7) ensure that a protected asset is visited within its time window.
Constraints (5.8) define the domain of the decision variables.
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assignment penalization. The second MIP tries to find a feasible solution from
the given routes. Infeasibilities are lifted by removing assets from the routes of individ-
ual vehicles.

We use binary variables Yi and continuous variables Si. We replace variables θi by
variables θpi, set to 1 if asset i is removed from the route of vehicle p.

Maximize
∑
i

viYi (5.9)

∑
p∈Pi

(1− θpi)capp ⩾ riYi ∀i ∈ Va (5.10)

Si + tijp + ai ⩽ Sj +M1(θpi + θpj) ∀p ∈ P, (i, j) ∈ Xp (5.11)

Yi + θpi ⩾ 1 ∀p, ∀i ∈ Va (5.12)

oi −M2(1− Yi) ⩽ Si ⩽ ci +M2(1− Yi) ∀i ∈ Va (5.13)

Yi ∈ {0, 1}, Si ∈ R ∀i ∈ Va (5.14)

θpi ∈ {0, 1} ∀i ∈ Va, p ∈ Pi (5.15)

Objective function (5.9) maximizes the total protected value.
Constraints (5.10) ensure that the protection requirement is met for protected assets.

If asset i is removed from the route of the vehicle (with θpi = 1), the vehicle does not
contribute to the protection.

Constraints (5.11) set correct start time of service for assets i and j when asset i is
visited by the vehicle before asset j, similarly to constraints (5.6).

Constraints (5.12) ensure that unprotected assets are removed from the routes of all
vehicles.

Constraints (5.13) ensure that a protected asset is visited within its time window.
Constraints (5.14) and (5.15) define the domain of the decision variables.

local search . After repairing a solution, we explore its neighborhood to find a
dominating solution. We base our local search on the MIP used in the ϵ-constraint
method for the D-APP introduced in Section 4.3. We use the MIP that maximizes total
protected value with deviation limited to the value of the deviation of the solution we
are considering. This solution is used as a warm-start for the MIP. We set a high relative
gap tolerance in our solver, meaning that the resolution will stop before the solution is
proven to be optimal. For example, with a tolerance of 0.05, a solution is returned when
its objective value is proven to be within 5% of the optimal value.

5.3.4 Preliminary results and parameter setup

In this section, we analyze the impact of the parameters, in order to guide the selection
of efficient values. In Section 5.3.4.1, we focus on the mutation rate µ. In Section 5.3.4.2,
we compare the performance of our operators, evaluation models and additional com-
ponents.
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Figure 5.10: Average gap between the front obtained by NSGA-II and best known front,
based on mutation rate µ

5.3.4.1 Mutation rate tuning

In this section, we want to test the influence of the mutation rate µ on the output of
our algorithm. We launched the algorithm with a time limit of 60 seconds on all our
benchmark instances with 30, 40, 50 and 60 assets, with two different vehicle breakdowns
as the disruption.

Based on preliminary tuning work, we used fixed values for some of our parameters.
The population size is set to N = 100. We use the time crossover operator as crossover
operator and multi-change operator as mutation operator. For the choice criteria w−

i and
w+

i , the parameters are set to α = 1.0, β = 0.5 and γ = 1.0. Destruction and construction
parameters cmax and dmax are initially set to 3. The initial population is generated by
applying the multi-change operator with high cmax and dmax values on the solution
representing the initial routes.

We report in Figure 5.10 the average gap between the hypervolume of the non-
dominated front F1 obtained with each mutation rate and the hypervolume of the best
known Pareto front.

We can see that our mutation operator impacted the quality of the front we generated.
We obtained the worst results when the mutation operator was disabled (µ = 0), with a
gap superior to 63%. The gap steeply decreased to 15% on average when the mutation
operator was enabled and steadily decreased, dropping below 9% on average for µ = 0.5.
The gap reached its lowest point for µ = 0.8 and slightly deteriorated for higer mutation
rates.

5.3.4.2 Performance analysis

In this section, we test the influence of our evaluation models and operators, and the
impact of our additional components. Following preliminary work, we chose not to
consider the valid crossover operator (CXVAL). Hence, we will only present results using
the time crossover operator (CXTIM). We will first compare the results obtained using
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our two different evaluation models, with our single-change operators and our multi-
change operator. Then, we will evaluate the impact of the adaptive scheme and the local
search procedure we presented.

We launched our NSGA-II algorithm five times with the different sets of operators
for each of our ten benchmark instances with 30, 40, 50 and 60 assets, and two different
random vehicle breakdowns as the disruption. We used the parameters presented in
Section 5.3.4.1, and set the mutation rate µ = 0.6.

Table 5.6 shows the results of NSGA-II within a time limit of 300 seconds. For each
evaluation model (shown in row ”Eval.”) and operator (shown in row ”Op.”) combi-
nation, we give the average hypervolume of the non-dominated fronts F1 we obtained
(HVavg), and the hypervolume on the best run (HVmax). In the last column ”ϵ− 300”, we
indicate the hypervolume of the front obtained using the ϵ-constraint method with the
model introduced in Chapter 4, with a 300-second time limit. Due to the time limit, this
method does not always yield the full optimal Pareto front.

Table 5.6: Comparison of the evaluation models and operators of our NSGA-II imple-
mentation

Eval. Asset penalization Assignment penalization ϵ− 300

Op. Single-change Multi-change Single-change Multi-change
HVmax HVavg HVmax HVavg HVmax HVavg HVmax HVavg HV

n=30 84.3% 79.9% 84.2% 80.8% 85.0% 80.5% 84.7% 81.2% 86.3%
40 82.2% 76.7% 82.9% 79.0% 81.6% 77.0% 83.4% 79.7% 82.5%
50 78.9% 74.6% 80.2% 76.7% 80.5% 76.1% 81.7% 77.9% 70.6%
60 78.4% 73.0% 78.7% 72.5% 80.1% 74.4% 79.9% 73.9% 58.9%

We can see that the second evaluation model on average gave fronts with higher
hypervolume on average than the first model for the same operators. For instances with
30, 40 and 50 assets, the multi-change operator performed better than the single-change
operators. The multi-change operator offers more stable results than the single-change
operators, and find solutions with higher profit. For larger instances, we obtain better
fronts on average than the ϵ− constraint method within the same time limit.

Based on Table 5.6, we will consider the second evaluation model with multi-change
operator to evaluate our additional components. We performed a parameter analysis
similar to Section 5.3.4.1 to determine good values for our adaptive method and local
search parameters. We set the initial population to N = 50, and offspring population to
M = 50/4. For the local search, we apply it to 5% of the solutions, with a relative gap
tolerance of 0.05. Each model is run five times on each instance, to ensure the robustness
of our results. In order to avoid overfitting, we selected new breakdowns at random for
the benchmark instances.

Table 5.7 summarizes the results of our algorithm with no additional component,
with the adaptive parameters enabled and our local search procedure. It shows the
average value of the hypervolume found in the best run (HVmax) and the average value
in all the runs (HVavg).
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Table 5.7: Comparison of the components of our NSGA-II implementation

Method No component Adaptive Local Search ϵ− 300

HVmax HVavg HVmax HVavg HVmax HVavg HV

n = 30 79.5% 77.6% 79.8% 77.8% 82.3% 81.9% 82.3%
40 75.8% 73.5% 75.8% 73.6% 79.9% 79.2% 79.1%
50 74.5% 72.2% 75.1% 73.1% 80.7% 79.5% 68.9%
60 70.5% 67.8% 73.0% 69.7% 80.0% 78.3% 56.4%

The adaptive component yielded similar results for instances with 30 and 40 assets
and slightly better results for 50 and 60 assets when enabled. We obtained significant
improvements for all instances when enabling our local search procedure, up 10% for
instances with 60 assets on average. The local search procedure also improved the
stability of our algorithm, reducing the gap between the best solution and the average
solution for all size of instances.

5.4 computational results

In this section, we compare the results obtained with the RF algorithm and the NSGA-
II. We solved the ten custom instances, with two different vehicle breakdowns as the
deviation, with 30, 40, 50 and 60 assets. We set a time limit of 300 seconds for comparison.
The NSGA-II algorithm was launched five times for each instance to test its robustness.
The RF algorithm was only launched once per instance, as there is no randomness in the
solution process.

Based on the tuning work done in Section 5.2.4, we run the relax-and-fix algorithm
with a value of α following a sigmoid function with p1 = 2 and p2 = 15, and a value
of β = 0.25. The integrality constraints was initially enforced on Y variables only. The
integrality constraints on X variables was introduced using the ECT criterion. We tested
two values for the RGA : 10−4 and 10−2.

Based on the tuning work done in Section 5.3.4, we run the NSGA-II algorithm with
a mutation rate µ = 0.6, a population size of 50, and an offspring population of 20. We
used the time crossover operator (CXTIM), and the assignment penalization model for
evaluation solutions. The local search was activated for 5% of the solution with a relative
gap tolerance of 0.05. We tested both mutation operators: Single-change operators (SCO),
and Multi-change adaptive operator (MCAO).

For reference, we also solved the instances with the exact ϵ−constraint method, with
a time limit of 300 seconds.

We compare the quality of the obtained fronts as detailed in Table 5.8. For NSGA-II,
the best hypervolume obtained among the five runs is displayed in column ”HVmax,”
and the average hypervolume across the five runs is shown in ”HVavg”. For RF and the
exact solution method (denoted as ”ϵ− 300), the average hypervolume is presented in
the ”HV” column.
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Table 5.8: Computational results of heuristic solution methods on custom instances,
hypervolume

Model NSGA-II R&F ϵ-300s.
Params SCO MCAO RGA 10−4 RGA 10−2

HVmax HVavg HVmax HVavg HV HV HV

n = 30 61.6% 61.5% 61.5% 61.2% 61.6% 61.6% 61.6%
40 72.3% 71.2% 71.7% 71.1% 72.6% 72.1% 72.6%
50 74.1% 73.0% 72.6% 71.0% 75.0% 74.5% 68.7%
60 78.0% 76.3% 76.3% 74.8% 64.2% 75.9% 55.9%

To compare solution times, we provide the ”Time to Best” in Table 5.9. This time
indicates the moment when a new non-dominated solution was last found. For NSGA-
II, it signifies the time of the last discovery For RF and ϵ− 300, it corresponds to the total
computation time or the time limit if it was reached.

Table 5.9: Computational results of heuristic solution methods on custom instances, time
to best (in s.)

Model NSGA-II R&F ϵ-300s.
Params SCO MCAO RGA 10−4 RGA 10−2

n = 30 77.2 161 2.4 2.3 2.5
40 190 265 13.4 12.3 20.0
50 271 317 53.3 41.0 75.7
60 289 337 157 117 182

From Tables 5.8 and 5.9, we observed that:

• RF managed to generate fronts very close or equal to the optimal fronts for in-
stances with 30 and 40 assets, all within a shorter time frame compared to the
exact solution method. For these instances, NSGA-II also produced good quality
fronts, with continuous improvements observed until later stages of the process.

• For instances with 50 assets, the exact solution method began reaching the time
limit. Consequently, the observed hypervolume dropped as the obtained front
remained partial. In contrast, RF did not reach the time limit and provided the best
solutions for these instances, in less than a minute on average. NSGA-II generated
fronts of slightly lower quality than RF on average but consistently outperformed
the exact solution method within the time limit.

• For instances with 60 assets, RF also started reaching the 300-second time limit
when using an RGA value of 10−4. he average quality of the front obtained with
NSGA-II was comparable to the front obtained with RF when using an RGA value
of 10−2. However, the best runs of NSGA-II outperformed RF by 2
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5.5 conclusion

In this chapter, we presented two heuristic solution methods applied to D-APP, aiming
to overcome the limitations of the exact ϵ-constraint method, especially when dealing
with constrained computation times. First, we introduced a relax-and-fix algorithm
embedded in an ϵ-constraint scheme. We explored various variable selection strategies,
with a particular focus on strategies based on time windows, which proved to be effective
for our problem. We also examined the relaxation of the integrality constraints on the
variables of the MIP formulation to maximize the utility of the new D-APP formulation.

Second, we introduced an implementation of the well-known NSGA-II algorithm. We
defined multiple mutation and crossover operators tailored to our problem, as well as
repair-and-evaluation procedures. Additionally, we proposed a local search procedure
that uses the reformulation of D-APP.

Both methods achieved encouraging results. The RF algorithm provided nearly op-
timal solutions for small instances faster than the exact solution method. Moreover,
it’s worth noting that the RF method doesn’t involve randomness, ensuring consistent
results. However, it’s embedded within an ϵ-constraint scheme, which means that reach-
ing the time limit returns a partial front with significantly lower quality. A trade-off
between solution time and quality can be achieved by increasing the Relative Gap Ac-
ceptance parameter, as the drop in quality due to a high RGA is less significant than
when the time limit is reached.

Our implementation of NSGA-II produced good approximate fronts for all instances
within 300 seconds. This is a promising first step, considering the complexity of our prob-
lem, particularly in dealing with synchronization constraints and time windows. The
local search procedure enabled the solution of small instances near-optimally, despite
the randomness of the process. However, the evaluation of a solution is time-consuming,
especially since any change to the solution necessitates a complete reevaluation. It is
important to note that new non-dominated solutions were found until just before the
time limit was reached. Improving the efficiency of the repair-and-evaluation process,
along with more effective operators, would likely enhance the quality of the solutions.
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Chapter 6

Conclusions and future work

Wildfires are not just devastating global events; they represent multifaceted crises with
far-reaching consequences. The damages they inflict on our natural environment, our
cities, and most importantly, human lives, cannot be overstated. The need for effective
strategies to mitigate these threats and optimize resource allocation has never been more
pressing, as highlighted by the GEO-SAFE project. In this manuscript, we have aspired
to contribute to this ongoing battle by focusing on the Asset Protection Problem (APP)
and its disrupted counterpart, D-APP.

We started our work with an exploration of these relatively recent problems. We
investigated their structure, trying to understand the complexities inherent in the pro-
tection of assets during wildfires. Our efforts yielded significant insights and improve-
ments to their mathematical formulations. For APP and D-APP, we introduced three sets
of valid inequalities, which, by design, not only accelerated the solution process but also
improved its stability, particularly for smaller instances. In parallel, our reformulation
for D-APP managed to generate the entire set of efficient solutions for larger instances.

Yet, we acknowledge the inherent limitations of exact solution methods, especially
in the context of real-time response scenarios. Thus, we introduced two heuristic ap-
proaches for D-APP, each adapted to the specific needs and constraints of the problem.
The first approach, based on our new formulation, uses a relax-and-fix strategy, while
the second implements a widely adopted genetic algorithm for bi-objective problems.

future work

As we reflect on the findings and contributions of this thesis, we recognize that our work
is a stepping stone in a larger quest to optimize resource allocation during wildfires.
There are several paths for future research that hold the promise of further advancements
in this field.

One such path is the development of exact solution methods. An often efficient
approach in vehicle routing problems is column-generation. However, for APP, the coop-
eration and synchronization constraints inherent in the problem pose a unique challenge
that needs to be investigated. The embedding of a column-generation technique within
an ϵ-constraint scheme [Glize et al., 2022] would then be possible for D-APP. Addition-
ally, a line-generation technique, building from the work of Riera-Ledesma et al. (2021),
can be of interest. In their paper, the synchronization constraints on a selective VRP
are relaxed, and a cut generation component identifies resulting infeasible subsystems.
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Future work may investigate the application of this method to APP, especially to account
for time windows.

Another promising path, for exact solution of D-APP, where the solution times de-
crease as deviations become smaller, is to explore different bi-objective solution schemes,
better adapted to the problem.

For the relax-and-fix approach, possible improvements include introducing random-
ness in the process, implementing a fix-and-optimize procedure, or embedding it in an-
other scheme, such as a weighted sum or epsilon approach with an alternative traversal
of the objective space.

In the case of NSGA-II, potential enhancements may include heuristic evaluation of
solutions, bi-objective evaluation of solutions focusing on subsets of the routes, and the
development of new specific operators to boost its performance.

Furthermore, a combination of methods could be explored by using a fast relax-and-
fix strategy, such as one utilizing a high RGA, to generate a robust initial population for
NSGA-II.

In conclusion, the ultimate goal of our research is to eventually enable real-time re-
planning, a critical element in responding effectively to wildfires and similar disasters.
As we look to the future, our commitment to finding innovative solutions remains unwa-
vering. By building on the foundation laid by this thesis and collaborating with fellow
researchers and practitioners, we aspire to strengthen our ability to protect lives, pre-
serve wildlife, and safeguard our cities in the face of such challenges.
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List of Abbreviations

VRP Vehicle Routing Problem

TOP Team Orienteering Problem

APP Asset Protection Problem

D-APP Disrupted Asset Protection Problem

MIP Mixed Integer Programming

RF Relax-and-Fix

NSGA Non-dominated Sorting Genetic Algorithm

HV Hypervolume

PF Pareto Front
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