
HAL Id: tel-04731161
https://theses.hal.science/tel-04731161v1

Submitted on 10 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimisation multi-critères de l’allocation des ressources
de calcul à la bordure du réseau

Nour El Houda Yellas

To cite this version:
Nour El Houda Yellas. Optimisation multi-critères de l’allocation des ressources de calcul à la bordure
du réseau. Informatique [cs]. HESAM Université, 2023. Français. �NNT : 2023HESAC063�. �tel-
04731161�

https://theses.hal.science/tel-04731161v1
https://hal.archives-ouvertes.fr
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Centre d’études et de recherche en informatique et communications

THÈSE

présentée par : Nour El-Houda YELLAS

soutenue le : 18 décembre 2023
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préparée au : Conservatoire national des arts et métiers

Discipline : Informatique

Spécialité : Informatique

Multi-criteria Optimization for Resource Allocation in

Multi-access Edge Computing
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Abstract

Mobile cloud computing was a promising paradigm to achieve gigabit access in the new-generation

wireless networks by offloading the computation tasks of mobile devices to a central cloud data

center. However, bandwidth congestion at the core network is an inherent limitation in terms of

communication delays and energy consumption. Multi-access edge computing (MEC) was initially

proposed to overcome the limitation of mobile cloud computing. It moves the cloud computing data

center down into the access network to better meet the requirements of pervasive applications as the

set of constraints in terms of quality of service can go beyond basic low-latency, high bandwidth and

real-time access to radio-network information. However, colocating application servers, cellular core

network and radio-access network sub-components at MEC hosts makes the resource assignment task

a very important challenge to tackle as it has direct impact on network operations cost and end-to-end

infrastructure reliability.

This thesis investigates a set of robust resource scheduling solutions in the context of MEC. More

precisely, we address different techniques to assign the available resources on a MEC host to a given

task. We focus on the optimization of the resource orchestration decisions at both the infrastructure

and the application levels. First, we address the base station to MEC hosts assignment orchestration

decision while taking into account a data-driven assignment objective against traffic fluctuation.

Then, we go beyond MEC infrastructure management by proposing an In-network control scheme for

efficiently placing MEC applications under stringent time constraints where a federated learning-based

anomaly detection is considered.

Keywords: MEC (Multi-access Edge Computing), resource orchestration, optimization, 5G, virtu-

alization, mobile network.
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Résumé

L’informatique mobile combinée avec le cloud computing (ou le mobile cloud computing) consiste

à décharger les tâches de calcul des appareils mobiles vers un centre de données central. Ce paradigme

était prometteur pour obtenir des accès en gigabits dans les réseaux mobiles de nouvelle génération.

Toutefois, la congestion de la bande passante au niveau du réseau coeur constitue une limitation

inhérente en termes de temps de latence et de consommation d’énergie. L’informatique de périphérie

connue aussi sous le nom du edge computing multi-accès ou MEC a été initialement proposée pour

surmonter les limites du mobile cloud computing. Elle permet de déplacer les capacités de calcul

des centres de données centralisées vers le réseau d’accès afin de mieux répondre aux exigences

des applications omniprésentes, nécessitant des contraintes de qualité de service qui peuvent aller

au-delà d’une faible latence ou d’une large bande passante. Toutefois, la colocalisation des serveurs

d’application, du réseau coeur et des sous-composants du réseau d’accès radio dans les serveurs de

périphérie rend l’allocation de ressources un défi très important à relever vu son impact direct sur le

coût d’exploitation du réseau et sur la fiabilité de bout en bout de l’infrastructure.

Cette thèse étudie les solutions robustes d’allocation des ressources dans le contexte du edge

computing multi-accès. Plus précisément, nous abordons différentes techniques pour affecter les

ressources disponibles sur un ensemble d’hôtes MEC à une tâche donnée. Nous nous concentrons sur

l’optimisation des décisions d’orchestration des ressources au niveau infrastructure et niveau applicatif.

Tout d’abord, nous abordons le défi de l’orchestration de l’affectation des stations de base aux hôtes

MEC, tout en tenant compte d’un objectif d’affectation basé sur les données contre la fluctuation du

trafic généré par les utilisateurs mobiles. Ensuite, nous allons au-delà de la gestion de l’infrastructure

MEC en proposant un schéma de contrôle en réseau pour placer efficacement des applications MEC

sous des contraintes temporelles très strictes. Plus précisément, un système de détection d’anomalies

basé sur l’apprentissage fédéré est utilisé.
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RÉSUMÉ

Keywords : informatique de périphérie, allocation de ressources, optimisation, infrastructure,

virtualisation, 5G, réseaux mobiles.
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fédéré . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8.3.2.2 Placement d’applications MEC pour contrôler les retardataires dans
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1.1. MULTI-ACCESS EDGE COMPUTING PARADIGM

1.1 Multi-access Edge Computing paradigm

The Multi-access Edge Computing (MEC) paradigm was initially developed for running IT services

close to end devices in order to lower latency and improve user experience. Despite the fact that

MEC infrastructure hosts can be densely distributed at the edge, resource limitation and robustness

against traffic fluctuations are important challenges to handle by network service providers. New

technologies such as Network Function Virtualization (NFV) and Software Defined Networking (SDN)

were proposed in the last decade; their consideration into network architecture design is to push the

technology barriers toward virtualized infrastructures at Radio Access Network (RAN) subsystems as

well [1], including both the centralization of the control and the virtualization and softwarization of

all involved network functions.

Radio function virtualization leads to additional flexibility in a segment historically more rigid

than core networks, due to the lower importance of routing in these environments. This flexibility

can help to meet the growing and unpredictable demands of mobile users, and also allows the use

of standard hardware to reduce costs for MNO and delay capital expenditures. In addition, MEC

technology allows to cope with users demand variation, since network reconfiguration becomes an

easier operation to perform [2]. Indeed, while MEC infrastructures are recognized as a 5G key enabler,

the reverse is also true: 5G can be considered a key enabler for MEC infrastructures, thanks to NFV

technology [3]. The deployment of virtualization facilities in the access network, for 5G functions and

RAN functions, can therefore favor the deployment of MEC infrastructure elements. The so-favored

deployment of application servers near end users can increase user bit rates and reduce end-to-end

latency [4]. Note that MEC needs a virtualization platform to deploy its applications at the edge. In

that case, the NFV platform can be used to deploy Virtual Network Functions (VNFs) and MEC

applications.

The location of MEC hosts is currently envisioned by telecom operators to happen at so-called

Central Offices (CO) and/or Points of Presence (PoP). The distribution of MEC hosts horizontally

across different access network segments and vertically at different layers of the backhauling network

is needed to meet the access latency and reliability requirements. Typically, MEC hosts are meant

to be therefore situated between base stations and the core network [5]. A reference representation

of the MEC infrastructure is in Figure 8.1. Strictly speaking [6], a ‘MEC host’ (cloudlet or MEC
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1.1. MULTI-ACCESS EDGE COMPUTING PARADIGM

Figure 1.1: Representation of the reference MEC infrastructure.

facility) refers to the hardware servers belonging to the virtualization infrastructure; it can be generic

or NFVI based, and in this case the MEC host can be deployed as a VNF, possibly supporting network

slicing [3]. The ‘MEC platform’ is responsible for managing MEC applications. When different MEC

hosts are deployed on the access network of an operator, it forms a distributed cloud referred to as

‘MEC system’.

In order to have a complete control of service deployment at the MEC infrastructure, the ETSI

standards call for the development of orchestration service elements, with the aim of efficiently

managing the available resources on MEC hosts. Hence, the automation of the aforementioned

task is deemed as one of the important challenges to address. Furthermore, as end users have the

moving functionality within the mobile network, mobility support is another ETSI-MEC requirement

to ensure the continuity of services. MEC applications can be then divided into state-dependant

and state-independent. The former is specific to the user where part or all information should be

maintained whereas the latter is not related to user activity.
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Also, three major categories of MEC use cases were identified by ETSI [7]. The consumer-oriented

applications, they are directly related to the end user (user equipment) such as gaming and augmented

reality. The operator oriented applications, which are services that may not be directly related to

users but to third parties such as safety and security applications, end-device tracking, etc. Finally,

the Quality of Experience (QoE) improvement applications that aim to enhance user experience while

focusing on network optimization. As examples, one can cite content caching, MEC hosts deployment

optimization and resource scheduling. It is worth mentioning that this thesis focuses on the third

category of use cases. In the following, we present the different challenges encountered in MEC

environments.

1.2 Problem Statement and Challenges

MEC applications usually have a set of requirements such as computing capacity, energy efficiency

and latency. As MEC systems are deployed on servers with limited capacities (i.e., storage and

processing capacities), the availability of resources may change over time which requires migration

of MEC applications from one MEC host to another. Note that each location may have a different

cost in terms of performance, deployment, or both. Thus, deploying a MEC application at the best

location (i.e., closest MEC host with enough resources) may not always be the best choice. To that

end, MEC systems should be able to decide on the placement of MEC applications while taking into

consideration that the placement decision may change over time as the conditions evolve.

In this thesis, we consider issues related to resource scheduling in MEC. In general, resource

scheduling refers to the techniques used to assign a set of available resources to mobile users to

accomplish a specif task at a given moment. Designing efficient resource scheduling strategies

is twofold: (i) achieving the desired QoS at the user level, and (ii) optimizing costs at the edge

service provider level. Resource scheduling problems in edge environments are the subject of a great

deal of interest in the literature. For example, [8] discusses the research works that are related to

resource scheduling in edge computing. It classifies the possible actions in resource scheduling into

three categories: (i) computation offloading [9], (ii) resource orchestration [10] and (iii) resource

provisioning [11]. Computation offloading is a promising solution to release User Equipment (UE)

from computation-intensive tasks. The offloading decision is taken based on several requirements such

as latency, cost and energy consumption. As presented by [8], the computation offloading can be
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either classified based on the offloading direction i.e., UE-to-edge, edge-to-cloud, edge-to-edge, ... etc,

or based on the granularity, i.e., tasks partially or totally offloaded. Another research issue in MEC

environment is resource orchestration. It consists of flexibly allocating computation, communication

or storage resources in order to guarantee a given Quality of Service (QoS) and can also jointly

consider several resources. Note that in this thesis, resource orchestration refers to resource allocation,

service and application placement or both. Finally, resource provisioning consists of allocating the

suitable amount of resources to ensure QoS requirements. Note that the difference between resource

orchestration and resource provisioning is that the former assigns available resources to users to ensure

a given service whereas the latter ensures the availability of resources when needed.

1.3 Research Questions and Contributions

The emergence of the new pervasive applications with strict and heterogeneous requirements in

terms of latency and bandwidth led to the appearance of the MEC paradigm to cope with the limitation

of traditional cloud computing. On the other hand, virtualization paradigms such as NFV and SDN

were originally proposed to efficiently manage the available resources leading to the appearance of

network slicing concept to meet the specific and heterogeneous requirements of applications and

services. Hence, designing applications-tailored slices, efficient resource allocation algorithms and

resilient network and system management are now considered as the new research challenges to address

in the network and telecommunication field.

The goal of this thesis is to automate and optimize the allocation of resources in a 5G-MEC

environment taking into account scalability issues. The contributions of this thesis aim at answering

the following research questions:

1. From a MEC infrastructure point of view : in disaggregated RAN where radio processing functions

are split into Centralized Unit (CU) and Distributed Unit (DU), how to efficiently decide which

group of Base Stations (BSs) should be served by a given CU based on MEC hosts capacity,

access latency and deployment costs? Also, how could Mobile Network Operators (MNOs) make

use of data analytics to optimize the orchestration solution by making it scalable and robust

against near-real time deployment? These two questions are addressed in Chapters 3 and 4.

2. From a MEC applications point of view : when deploying distributed AI/ML (Artificial Intelli-
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gence/Machine Learning) models at the edge, how to control end-to-end learning time variation

due to heterogeneous resources at MEC hosts?

This research question is detailed in Chapters 5 and 6.

This thesis aims at providing a deep understanding of the resource orchestration challenges in MEC

environments while proposing several novel approaches that efficiently address them from different

levels (i.e., infrastructure level and application level). The main contributions are presented in the

following.

1.3.1 MEC infrastructure level

1.3.1.1 Spatial clustering for BS-to-MEC hosts assignment

In this work, we focus on optimizing MEC orchestration tasks to deal with new 5G pervasive

applications where we consider the complexity and scalability of base stations to MEC servers

assignment problem. We address this challenge to include secondary objectives to existing algorithms

for MEC orchestration, and in particular for the problem of finding assignments of base stations to

MEC hosts. The proposed framework is composed of two steps. We first apply a spatial clustering

model on the set of BSs at the preprocessing phase then we solve the assignment problem of the

resulting clusters of BSs to the available MEC hosts by adapting the orchestration model. Note

that the assignment operation comes at a cost defined by the access latency. We also consider the

reallocation of resources where a Virtual Machine (VM) serving a user or a set of users is migrated

from a MEC host to another.

The spatial clustering model groups together BSs based on their profile of traffic demands (i.e.,

spatio-temporal behavior) in order to minimize the variance in traffic demands within each cluster

of BSs. The main goal of this proposal is to reduce the spatial and temporal complexity (i.e., the

execution time and the memory consumption). The obtained results from extensive simulation against

real traffic demands show how our proposal reduces time and space complexity w.r.t the baseline

algorithm. Even though the proposed technique yields additional costs, its robustness allows to run

the framework in a real-time manner. More results are available in Chapter 3.
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1.3.1.2 Robust clustering models for BS-to-MEC hosts assignment

While the BS clustering model previously presented increases the users costs in terms of latency

and since 5G services aims at ensuring utlra-low latency, we propose to extend the previous work

to enhance the orchestration decision in terms of latency and the degree of controlling the MEC

hosts capacity by reducing the capacity violation that may occur due to traffic fluctuation. To do so,

we propose to group BSs in pairs based on a set of criteria. The corresponding work is detailed in

Chapter 4. The proposed custering models are evaluated using a real-world dataset. Note that the

orchestration framework is evaluated in an offline setting under different parameters while varying the

number and capacity of available MEC hosts.

1.3.2 MEC application level

1.3.2.1 Optimal placement of MEC applications for a federated learning framework

As MEC paradigm allows to bring resources for AIML computing to the edge network where

data to be processed is located, we propose to extend the aforementioned work to optimize resource

allocation decisions at the MEC application level. We consider that the AIML model is deployed

as a MEC application. Thus, we address the problem of placing Artificial Intelligence Functions

(AIFs) running federated learning against connect-compute network infrastructure monitoring data,

for environments where the introduction of edge computing comes with a heterogeneous and large set

of computing and networking elements, requiring low latency performance. In particular, we use as

reference use-case the Federated Learning (FL) anomaly detection AIF proposed in [12], adapted for

the 5G infrastructure. This federated learning framework makes use of a federated learning server AIF,

and a variable number of edge AIFs: the learning task is distributed to edge AIFs by load-balancing

monitoring data among them, where edge AIFs interact via the server for learning model updates.

The targeted objective is to reduce the end-to-end learning time in order to respect the time

threshold imposed by the specification of the application. To do so, we focus on the placement of

AIFs making use of HardWare Acceleration (HWA). We model the behavior of federated learning

and related inference point to guide the placement decision, taking into consideration the specific

constraint and the empirical behavior of a virtualized infrastructure anomaly detection use-case.

Besides hardware acceleration, we consider the specific training time trend when distributing the
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training over a network, by using empirical piece-wise linear distributions and we model the placement

problem as a Mixed-Integer Linear Programming (MILP). Simulation results show the impact that

hardware acceleration can have in the decision of the number of deployed AIFs, while dividing by a

relevant factor the distributed training time. More details about this contribution are available in

Chapter 5.

1.3.2.2 MEC application placement for controlling stragglers in a federated learning environment

We extend the aforementioned placement model where we introduce the In-network Federated

Learning Control (IFLC), that is an adaptive scheme for the usage of HWAs in distributed systems

to compensate for end-to-end network and learning delays variations leading to stragglers. We go

beyond the existing work, reformulating the model to control stragglers, defining a refined end-to-end

training latency modeling, and proposing a polynomial optimal resolution algorithm hence supporting

near-real-time orchestration of FL-AIFs. Through extensive performance evaluation, we highlight the

impact of using hardware accelerators in meeting a higher ratio of FL participants that positively

contribute to the learning effort while this ratio is increased by up to 100% with respect to a first-fit

algorithm. More details are available in Chapter 6.

Finally, Figure 1.2 outlines the contributions of this thesis.

Figure 1.2: Thesis contributions.
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1.4 Thesis Outline

In this chapter, we gave a brief overview of MEC paradigm and the different encountered challenges

in this type of architecture. Also, the contributions to this research field were summarized.The rest of

this thesis is organized as follows.

• The next chapter provides a background overview on the MEC paradigm and the existing

efforts in the literature that are related to resource scheduling in MEC with a focus on resource

orchestration challenges.

• Our first contribution on MEC infrastructure orchestration is presented in Chapter 3 where a

spatial clustering model is integrated to an adapted BS-to-MEC assignment model.

• An extension of the previous work is presented in Chapter 4 where a collection of BS clustering

models are introduced to target lower latency costs with a higher control over MEC hosts

capacity.

• Chapter 5 presents a MEC orchestration solution at the application level where we propose a

placement model of the artificial intelligence functions running in a federated learning setting

at the edge of the network. The goal is to reduce the overall learning time targeting a time

limitation imposed by the application requirements.

• Chapter 6 builds on top of the previous work by proposing a new in-network control schema for

placing the AIFs with a fine-grained decomposition of time components.

• Finally, conclusions and possible considerations for future works are drawn in Chapter 7.

Note that each chapter has it own list of notations that are independent of the other chapters.
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2.1. INTRODUCTION

2.1 Introduction

Resource scheduling in edge computing has attracted widespread interest from both industry and

academia. This chapter overviews the state-of-the-art works related to MEC resource scheduling from

various perspectives. Specifically, we present in section 2.2 works combining MEC and virtualization

technologies while covering research efforts in data-driven MEC infrastructure orchestration. For

instance, MEC and Virtualized Radio Access Network (vRAN) are complementary technologies

where parts of the RAN protocol stack can be virtualized at the MEC host [13]. The challenge of

assigning base stations to MEC hosts where some RAN functions are deployed is tackled in this section.

MEC infrastructure planning is addressed as well. Section 2.3 elaborates the orchestration of MEC

applications where a special focus is given to FL based-AI applications with low-latency constraints,

as well as one of the most challenging aspect in FL environments (i.e., straggling effect). Section 2.4

draws conclusions.

2.2 Access Points Clustering for MEC Infrastructure Orchestration

In the following, we provide the necessary background on virtualization in edge computing

infrastructures, network analytics and optimization.

2.2.1 Network Virtualization

MEC is one of the 5G key enabler technologies whose main goal is to reduce access latency and

optimize bandwidth to provide real time performance. Combining it with NFV technology can be

of a great benefit for MNOs since the management operations can be held by the NFV architecture,

more precisely by the NFV Management and Orchestration (MANO) subsystem [6]. Several works

exist in the area of MEC-NFV MANO, proposing algorithms or architectures taking advantage from

the presence of MEC-NFV systems. For instance, [14] addresses the relationship between MEC and

other technologies that are considered as 5G enablers such as NFV and SDN: the authors propose

an architectural framework where an SDN controller is responsible for management operations in a

MEC-NFV environment, hence being able to reconfigure the network stack to take into consideration

orchestration decisions such as the assignment of APs to MEC hosts. Other works focus on VNF

placement in a MEC environment [15,16], balancing the placement across multiple MEC locations. A
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clustering scheme for network service chaining is proposed in [17] in order to minimize end-to-end

service latency in MEC. More details about the MEC architecture and different orchestration and

deployment scenarios are presented in [10].

In [18], a study was conducted on how a MEC infrastructure should be planned, that is, where MEC

facilities should be placed, as a function of different MEC resource placement policies. A take-away

result is that for a large metropolitan area network as the one of Paris, France, the number of MEC

facilities ranges from 5 to 20. The workload was equivalent to plan for as much as one virtual machine

per mobile user, which can be considered as an upper bound, and that for a network of approximately

180 thousands users with 606 BSs. The authors used real data volume information from a french

mobile network.

From a radio-access perspective, architectures have evolved toward the virtualization and disaggre-

gation of its control-plane and data-plane functions to improve interference coordination and resource

efficiency. This evolution started with the Centralized/Centralized Radio Access Network (C-RAN),

in 2010, where the innovation consisted in disaggregating Access Point (AP) facilities into two main

units: Radio functions assured by Remote Radio Heads (RRHs) that are deployed on cell sites, and

Base Band computation functions provided by Base Band Units (BBUs).

BBUs are then centralized at so-called BBU pools, hence taking advantage from the centralization for

resource allocation and scaling [19]. More recently, the C-RAN evolution has been integrated in 5G

systems, where a more dense deployment of base stations is needed for a more flexible infrastructure,

leading to a generalized virtualized or software-defined RAN (vRAN or SD-RAN) environment. In

vRAN, the equivalent of the BBU function can be split into two units, the CU and the DU, in order

to facilitate the virtualization and radio scheduling tasks [20], while the radio part is called Radio

Unit (RU). Splitting radio processing functions is known as ‘functional split’ [19] and it enables to

choose the functions that turn on cell sites and those that will be offloaded to CUs, with different

splitting options [21], possibly in a dynamic (runtime) and flexible (different options decisions for

different segments and times) fashion.

Many works investigate on how to combine vRAN and MEC technologies [13]. In [22] the

authors implement a MEC platform on the vRAN front-haul, and evaluate the QoS for end users for

two different locations of MEC hosts. Authors in [1] propose a MEC vRAN joint design problem,

introducing an optimization framework that aims to simultaneously find the best functional split of

13



2.2. ACCESS POINTS CLUSTERING FOR MEC INFRASTRUCTURE ORCHESTRATION

BSs and MEC service placement, taking into account flow routing. The integration of vRAN with

SD-x system lead to the Open RAN (O-RAN) initiative, which has the goal to disaggregate software

and hardware and to create open interfaces for more flexibility. Many O-RAN software releases exist

today already [23]. In [24], the authors discuss the RAN evolution including the detailed description

of the O-RAN reference architecture.

2.2.2 Data-driven MEC Orchestration

Given the natural limitations of MEC hosts in terms of computing resources, resource orchestration

is an important task to optimize its utilization, particularly important when considering the environ-

mental footprint of edge computing [25]. Thus, operations that consist of re-assigning APs to other

MEC hosts need to be deployed; this is needed to ensure that a number of desirable Key Performance

Indicators (KPIs) are met, as for instance maximizing resource utilization, increasing resiliency against

network and computing impairments, and increasing robustness against load variations in time and

space.

Often, data analytics techniques are used in MEC design frameworks, so as to take into account

dynamic load and communication channel states. For instance, stream or online data-analytics is

needed in mobile computation offloading frameworks, where tasks offloading online decisions need

to be made. In this direction, a feedback prediction model of average resource usage (RAM and

Central Processing Unit (CPU)) and offloading time is proposed in [26]. In [27], the authors tackle

the offloading decision for MEC applications where the performance is evaluated using real-world

dataset. Reference [28] aims at offloading intensive computing tasks for energy saving by optimizing

resource allocation, and [29] presents solutions for computation offloading in edge servers for internet

of connected vehicles. Near-real-time or offloading data analytics is indeed often considered when

addressing MEC design problems.

Leveraging on network data analysis is a common requirement for clustering techniques in C-RAN

and MEC environments. In [30] [31] the authors propose a clustering scheme for APs, where APs

of each cluster share the same data processing units that are centralized in datacenters to optimize

costs and energy consumption in vRAN. Another example is [32], where the authors aim at predicting

mobile traffic generated by a cluster of APs to anticipate MEC resource orchestration using real-world

dataset. In [33] the authors propose an AP geo-clustering technique, while taking into account the
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spatial distribution of mobile traffic. The main goal is to define MEC clusters as a set of AP and users

served by the same MEC host, so that the whole area is partitioned into MEC clusters, in order to

offload the core network by maximizing intra MEC hosts communications. Similarly, in [34] where

the authors apply the temporal clustering model proposed in [35] on traffic demands of a real-world

dataset, and integrate it into an orchestration model; the temporal clustering consists of grouping

together similar mobile network profiles using the traffic volume generated by APs at a time slot: this

allows to retrieve a reduced number of profiles, with a similarity assessment based on traffic volume

and traffic distribution.

Recently, the authors in [36] propose an access point clustering scheme extending K-means to

use 3D Hyperbolic distance, using access points locations and traffic demands; the algorithm groups

together APs with complementary demands behaviors, that is, not grouping together APs with similar

demand behavior to avoid idle states during off-peak hours. A similar approach is presented in [37],

where the goal is to reduce the number of reconfiguration handovers, i.e., change of BBUs for base

stations, also called later in this thesis as switching operation.

2.2.3 Summary

The standpoint we adopt in this thesis is the one of an operator running a MEC infrastructure the

operator leverages on, for converging MEC applications and virtualized network functions. Hence APs

are assigned to MEC hosts facilities in a dynamic way by means of MANO operations, leveraging on a

programmable network stack between APs and MEC infrastructure, hence going largely beyond the

legacy situation where APs are statically assigned to COs and PoPs. In our work, we therefore do not

need to delve into the details related to, for instance, functional splitting and the actual coexistence

of NFV and MEC systems; on the other hand, our model has to take into consideration the traffic

fluctuations deriving from the AP to MEC host assignments and related MEC switching operations.

Among all the previous works, either spatial diversity or load changes over time are considered in

the clustering and AP-to-cloud facility assignment modeling. Taking both the spatial and temporal

dimensions is however often not explicitly modeled. The resolution approach in [34] does model both

time and space dimensions when determining an assignment plan by means of an optimization model;

the approach consists in applying decomposition techniques, to obtain an extended formulation which

is then optimized by a branch-and-price algorithm.
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2.3 Placement of MEC applications

Network softwarization technologies made their way into access networks in such a way that

not only nowadays network functions are already mostly deployed as virtualized nodes, but also

hardware components, for radio and computing systems, are redesigned to be re-programmable by

external software and dynamically allocated and shared. The derived landscape is therefore a natural

application domain for artificial intelligence, because many new decision making points appear and

many monitoring probes are made available to network and service management systems. In the

following, we review recent works in the area of AI integration to networks, with a particular focus on

federated learning applications.

2.3.1 In-network AI applications

Incorporating artificial intelligence and machine learning techniques in networks can be beneficial

for a high number of applications [38]. For instance, authors in [39] propose a neural network-based

framework for Service Level Agreement (SLA) management in an SDN-NFV environment. In [40], an

autonomic SLA enforcement strategy is proposed for a cloud environment, with a closed loop system

to map low-level metrics to high-level SLA objectives.

Another AIML application is anomaly detection and fault management, which consists in detecting

abnormal network states, localizing the root cause and then proposing a remediation action to comeback

to a normal working condition. In [41], the authors proposed a centralized AIML framework making

use of autoencoders to detect anomalies at different infrastructure levels; the ML model learns the

normal state of a given system, then an anomalous state fingerprinting methodology is proposed for

state qualification, and to guide a tailored remediation action.

In [42], authors investigate how AI and edge computing can interwork. Often, AIML is used

in edge network resource allocation problems that make surface at different layers and for different

resources, such as CPU, radio and link resources. In [43], the authors conduct a comprehensive survey

on the usage of AIML solutions for edge computing, focusing on deep learning models. Different

degrees of integration between AI and cloud/edge computing are identified, going from fully cloudified

environments where AI training and inference models run on the remote cloud, to an all-on device

setting where the tasks are carried out on the device.
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This coupling between AIML and networking is being facilitated by edge computing and network

virtualization, standardization bodies are integrating AIML application requirements in system

specifications. Namely, the NetWork Data Analytics Function (NWDAF) [44] has been proposed by

3rd Generation Partnership Project (3GPP) to support AIML in 5G core networks. However, various

challenges are being discussed regarding different integration of training and inference sub-functions

and the pipelining systems to get data to distributed AIFs.

2.3.2 Federated Learning Applications

A largely adopted strategy for geographically distributing AIFs down to network edges is Federated

Learning (FL) [45]: it aims to prevent data collection aggregation at a central cloud, either for privacy

issues or for latency constraints, or even both, by collaboratively training ML models at edge nodes.

Two main steps are to be considered: (i) the local training of the ML model at the FL clients and (ii)

the global aggregation of the updated parameters at the FL server. The FL process, if adequately

configured and designed, can grant higher efficiency in terms of network bandwidth consumption and

latency, besides increasing privacy thanks to data locality. The FL process itself can be repeated with

several learning rounds until the model achieves a desired accuracy.

Mostly used for hand-held devices, FL is also being considered for in-network systems as well.

In [46, 47], the authors propose NWDAF services based on FL; each 5G core NF can have its own

NWDAF instance (NWDAF leaf) collecting data from its corresponding NF, training the ML model

locally and aggregate parameters at a FL-server (root) NWDAF.

Many applications exist also for routing automation. In [48], the authors propose a federated

learning architecture to optimize routing decisions in which SDN controllers cooperate to train an

AIML model. The model takes as input both the network topology and the traffic state. The FL

agents adapt the routing policy according to the predicted peak load and unutilized links.

Similarly, authors in [12] present how to use FL to distribute a centralized anomaly detection

framework from [41]. The main goal is to cope with a set of challenges, mainly to scale with the

increasing amounts of collected data and to reduce the training time for allowing a near-real time re-

orchestration decision. Another work in [49] uses autoencoders-based multi-stackeholder recommender

system for load prediction in cellular network, hence ensuring data privacy while offering the possibility

to use 3rd-party services.
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2.3.3 Stragglers control

A challenge in FL is to ensure clients are delivering meaningful data, i.e. data that can positively

contribute to global learning mode, when the result of learning can change runtime inference tasks as

related to anomaly/fault detection/prediction as in [12,46,47]. While this may not be important in

arbitrary FL applications where corresponding inference results may not be expected to change from

a training round to another, in-network applications can put stringent requirements on synchronous

delivery of data to FL clients so as, for instance, to react to attacks or failures. Edge AIFs that are

lagging beyond other edge AIFs in an FL setting are called ‘stragglers’ [50]. The main reason behind

the appearance of stragglers is the combined heterogeneity of communication and computation delays.

Stragglers slow down the learning process as the aggregation task at the FL server is only triggered

once all the local parameters are received.

Two main approaches are proposed to handle stragglers in FL: careful client selection and adaptive

learning model update.

2.3.3.1 Client selection/placement

In federated learning, performance degradation of the learning process is highly related to client

selection. Several works from the literature consider optimizing both communication and computation

latency. For instance, [51] and [52] consider dynamic client selection in hierarchical FL where both

resource allocation and incentive mechanism are considered. The first step consists of an edge

association task where each FL server offers rewards to FL participants to join its cluster. A second

step considers choosing the model owner for each cluster. The authors consider the same processing

capacity at the FL clients and allocate bandwidth resources (i.e. resource blocks) for a higher uplink

bandwidth.

Similarly, in [53] the authors consider both system and data heterogeneity to minimize the

occurrence of stragglers where the client selection is done for each round. In this work, the selected

clients should have near-iid data where more bandwidth is allocated for clients with low computing

capacity or poor channel conditions. In [54], the authors aim to find a trade-off between energy

consumption and the number of active clients by choosing less clients during the first rounds. The

authors propose an estimation of both computational and propagation latency while considering the
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waiting time in the channel before sending the model parameters for aggregation.

In [55], authors show how FL clients selection can impact the global FL model quality and reduce

training time, in a strategic game-theoretic setting to select FL participants based on the computing

resources they offer: the goal is to achieve a given accuracy in the global model in an edge environment.

A similar work is presented in [56], where a multidimensional procurement auction for FL clients

selection is used to enhance model accuracy using a lower number of rounds.

Another technique to minimize stragglers is to increase the local training efficiency. In [57], the

authors propose a FL policy to improve the training efficiency while considering heterogeneous clients.

Clients with similar computational capacities are selected for training during a given round. Moreover,

HWA can aslo be used to increase the learning efficiency. More precisely, edge computing provides AI

with a convenient platform for models training and inferring, with a potential solution on accelerating

computations on hardware [58]; HWA can be made available pervasively in edge networks, start from

radio access and edge computing nodes. Besides reducing training and inference time depending

on the type of accelerator [59], HWA can also decrease the energy footprint of AIML by up to 20

times [60,61].

2.3.3.2 Adaptive global model update

Another way to control stragglers is to adapt the model update to stragglers occurrence. For

instance, authors in [50] propose a straggler-robust scheme that adapts the node participation to the

aggregation; the fastest subset of clients are selected to start the training, and the resulting parameters

are then produced within a limited amount of time, and serve as a warm start for next rounds that

also include the next fastest clients. In [62], the authors propose a live gradient compensation method

to avoid stragglers for distributed learning tasks: only the gradient update for the k fastest workers

is used, while combining the results from the slowest worker in the next iteration: the main goal is

to reduce the overall training time while producing a near convergence error as fully synchronous

gradient descent.

Enlarging the view to network communications, the authors in [63] consider both communication

bottleneck and straggler delays in large scale distributed learning tasks: they combine a coding approach

with a bandwidth sizing strategy to avoid bottleneck hence reducing stragglers. An enhancement of

the gradient coding is proposed in [64], where the data is assigned to the edge AIFs in a distributed
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manner so that a subset of model updates can be sufficient to compute the full gradient at the server

side; then a dynamic clustering schema is associated to the set of edge AIFs, so that the completion

time is improved. A hierarchical FL mechanism that encompasses both synchronous and asynchronous

training schemes is proposed in [65] to mitigate straggling effect.

Edge computing provides AI with a convenient platform for models training and inferring, with

a potential solution on accelerating computations on hardware [58]; HWA can be made available

pervasively in edge networks, start from radio access and edge computing nodes. Besides reducing

training and inference time depending on the type of accelerator [59], HWA can also decrease the

energy footprint of AIML by up to 20 times [60,61].

2.3.4 Summary

In our work, we aim at going beyond adaptive FL client section, while including the combined

control of both network delay and training delay. In fact, we aim at compensating large deviations

in data arrival from edge AIFs by the activation/disabling of HWA to reduce/increase the edge AIF

training delay.

Many works in the literature investigated on the possible usage of HWA with AIML models. For

example, in [66], authors motivate the use of Field-Programmable Gate Array (FPGA) to accelerate

deep neural networks models where they have evaluated the reduction in the computation time while

comparing it to a software implementation with different numbers of threads. The authors only

consider the acceleration of inference as for the considered use-case training is done off-line. Note that

in some cases, the training task should also be accelerated as the model needs to be updated. For

instance, if we consider real-time anomaly detection, the new state of the system should be learned

after a short period of time. Additionally, the authors in [67] explore different acceleration designs for a

neural network-based model where both Graphics Processing Unit (GPU) and FPGA were considered.

The authors inspected different configurations with the aim of identifying the optimal scenario for

each acceleration approach. Nevertheless, the exploitation of HWA in distributed/federated learning

client selection seems unexplored.

In our work, we propose an approach to control stragglers in in-network federated learning that

combines both FL-AIF selection/placement and HWA enabling. We consider adaptive HWA usage to

reduce the local training time at the FL clients with the goal to minimize variance in the end-to-end
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combined network and training latency, as defined hereafter. Note that we do not address the combined

usage of adaptive global model update, edge AIF placement and HWAs, left for future work.

artificial intelligence functions running in a federated learning setting at the edge of the network.

2.4 Conclusion

In this chapter, we have discussed several research issues related to MEC infrastructure deployment

where both centralized and distributed deployments are considered. The combination of MEC and

NFV is also discussed where we have shown that NFV paradigm is one of the proposed solutions for

MEC application deployment. To shed light on resource orchestration at the application level, we

have discussed the different challenges of the placement of MEC applications in distributed systems.

In the next chapter, we present a first approach for optimizing MEC resource orchestration at the

infrastructure level.
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3.1 Introduction

Edge computing penetration in mobile access networks is the next barrier to break in communication

networks. The virtualization of radio access functions currently under study is expected to trigger

the deployment of edge cloud facilities in telecom operator PoP and CO, to serve the virtualization

of both application servers and network functions. The problem of clustering network access points

for their assignment to edge cloud facilities has been addressed in the literature. Nonetheless, the

inclusion of KPIs such as robustness against traffic variations in the optimization process can increase

its complexity excessively while hindering the achievable performance. Leveraging on a previous work

in this area, in this chapter we explore how to reduce time and spatial complexity while introducing

additionally a robust access point assignment target by using a spatial clustering pre-processing in the

optimization problem, grouping together access points based on their spatio-temporal traffic profile.

Note that in this work, we consider ecosystems supporting non-ideal communication transport

such as microwave [68] between the radio unit deployed at the base station level and the baseband

unit that can be virtualized at the MEC host. In other words, we do not consider the ideal fronthaul

connexions where the base station is statically connected to MEC hosts using optical fiber as in this

case the association of BSs to MEC hosts is pre-established.

MEC orchestration algorithm scalability and result robustness are key concerns to address. The

main contributions of this chapter are as follows1:

• We address the scalability-robustness challenge by extending a problem formulation and re-

lated algorithm in [34]. More precisely, we propose the integration of spatial clustering as a

precomputation step to the algorithm in [34] to reduce the number of variables and constraints;

• We integrate in the spatial clustering optimization an objective that aims at making the access

point to MEC host assignment more robust against traffic variations within a cluster of APs2;

• We evaluate the proposed framework on a real-world dataset and We numerically show for which

MEC network sizes the problem becomes tractable.

1This chapter was published in 2021 17th International Conference on the Design of Reliable Communication
Networks [69].

2we use the terms AP and BS interchangeably.
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3.2 Problem Statement

We describe our optimization framework as an orchestration problem that aims at assigning a

group of BSs belonging to a given geographical area to a set of MEC hosts deployed at the edge

network. The assignment operations come at a cost defined by the access latency for users connected

to these BSs. On the other hand, unlike traditional Cloud datacenters, MEC hosts have limited

capacities, thereby reallocating resources occasionally is requested to cope with traffic variation.

To reduce the spatial and temporal complexity of the orchestration process, we propose to group

together BSs into clusters based on their spatio-temporal behavior so that the likelihood of traffic

variation within the cluster is minimized. These requirements lead us to the adaptation of the

orchestration model in [34] using the clusters in place of BSs, based on a robust assignment in the

clustering process. To minimize the likelihood of cluster traffic variation, we opt for minimizing the

variance of BS traffic volume within each cluster of BSs.

In Figure 3.1, we present an example of the assignment of base stations to MEC hosts.

Figure 3.1: Example of BS-to-MEC assignment.

In Table 3.1 we define all notations used in the model.

3.3 Spatial Clustering Model

In our spatial clustering model, we search to group BSs so that for each time slot, the difference

between their traffic demands is minimized. In order to have a linear and expressive robust clustering
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Notation Explanation

A Set of all base stations (BSs).
K Set of all MEC hosts.
T Ordered set of time slots.
T ′ T ′ ⊂ T subset of T excluding the first time slot in T .
T ′′ T ′′ ⊂ T subset of T excluding the last time slot in T .
C Set of all clusters.
xt

ck Real variable, upper than 0 and less or equal to 1 if cluster c is assigned to
MEC host k at time slot t, 0 otherwise.

yt
cjk Real variable, upper than 0 and less or equal to 1 if traffic demand of cluster c

must be switched from MEC host j to MEC host k at time slot t, 0 otherwise.
Mc Variable computing the maximum BS demand within cluster c.
mc Variable computing the minimum BS demand within cluster c.
dt

c Traffic demand of cluster c at time slot t.
ljk Distance between the two MEC hosts j and k.
mik Distance between the BS i and the MEC host k.

Table 3.1: MEC orchestration model notations.

objective, we express the traffic variance minimization by minimizing the gap between the maximum

and minimum BS demand within the clusters.

For the instrumentation of the spatial cluster, we do as follows. We fix the number of clusters as

corresponding to the number of MEC hosts. Given the collected traffic demands, we calculate the

representative week by averaging demands of the same period of the week; we then aggregate the

traffic demands of successive time periods aiming at reducing the number of intervals of time. In total

we get a set of time slots that compose our training set. For the spatial clustering optimization we aim

at grouping together BSs that have for each time slot t similar traffic demands so that the likelihood to

have traffic fluctuation is reduced or can at least be relatively easy predictable - our tests to evaluate

this assumption revealed to be extremely positive with the available dataset, which confirms that BS

traffic profiles within a not too large time-slot do follow a similar temporal behavior over time [35].

We formulate the clustering task using an Integer Linear Programming (ILP). The mathematical

formulation is as follows.

25



3.4. MEC ORCHESTRATION MODEL

min
∑︂
c∈C

(Mc −mc) (3.1)

s.t. maxt∈T

∑︂
i∈A

dt
ix

c
i ≤ CapMEC ∀c ∈ C (3.2)

∑︂
c∈C

xc
i = 1 ∀i ∈ A (3.3)

∑︂
i∈A

dt
ix

c
i ≤Mc ∀c ∈ C, t ∈ T (3.4)

∑︂
i∈A

dt
ix

c
i ≥ mc ∀c ∈ C, t ∈ T (3.5)

xc
i ∈ {0, 1} ∀i ∈ A, c ∈ C (3.6)

Where T refers to the set of all time slots, C is the set of clusters and A is the set of all BSs. dt
i

represents the traffic demand generated by the BS i at the time slot t. In our dataset, we have the

traffic demands recorded for each BSs separately for each 10 minutes during a given period of time.

To solve our problem we use the binary variable xc
i , it is equal to 1 if the BS i belongs to cluster c, 0

otherwise. We also need to calculate the two real variables Mc and mc where the former represents the

demand traffic of a BS i representing the maximum for a time slot and belonging to cluster c, and the

latter represents the demand traffic of a BS i representing the minimum for a time slot and belonging

to cluster c, and finally CapMEC is the capacity of each MEC host. The objective function in (3.1)

aims at minimizing the difference, for all the clusters, between the maximum and minimum traffic

demands yield by BSs belonging to the same cluster. Constraint (3.2) ensures that the maximum

traffic demands that can be handled by each cluster must not exceed MEC hosts capacity. In (3.3) we

guarantee that a BS belongs to exactly one cluster. (3.4) and (3.5) ensure the Mc and mc computation,

i.e., the maximum and the minimum traffic demand generated by a BS that belongs to cluster c at

time slot t, respectively. (3.6) is an integrality constraint.

3.4 MEC Orchestration Model

Our proposal consists of solving the orchestration problem where we apply the same orchestration

decision on BSs belonging to the same cluster. For this purpose we extended the orchestration model

from [34] to fit with our spatial clustering model. The goal of the orchestration model is to assign a

group of APs belonging to a given geographic area, to a set of MEC hosts. We consider the possibility
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of having a cluster composed of only one AP, in this case, the model represents a single AP assignment

problem, which refers to the baseline algorithm.

Let us consider a user equipment connected to an AP; the assignment operation of its traffic to a

given MEC host yields a cost defined by the access latency. We assume that hosting demands of a

given AP on a MEC host consists of allocating one VM for each UE. On the other hand, and unlike

traditional datacenters, MEC hosts have limited capacity, thus switching AP demands from a MEC

host to another is sometimes requested in order to cope with traffic variation. Given the lower traffic

granularity at MEC hosts, switching operations entails a cost for operators because it could generate

service-level-agreement violations and hence a VM workload variation across MEC hosts to get back

to nominal conditions.

The model is represented by equations from (3.7) to (3.13) (see notations in Table 3.1). The

objective formulated in (3.7) aims to find an assignment plan for each cluster of BSs to the set of

MEC hosts for each period of time, where each cluster can be composed of one or multiple APs. We

aim to minimize both assignment and deployment costs. In (3.8) we ensure that the overall demands

assigned to a MEC host must not exceed its capacity. Constraints (3.9), (3.12) and (3.13) give the

possibility to assign a cluster of APs to one or more MEC hosts for each time slot. In fact, in this case,

the AP demands can be split and assigned to different MEC hosts. If we have the nearest MEC host

with a very small available capacity, the proposed solution allows us to assign the remaining demands

to other MEC hosts.

min
∑︂
t∈T

∑︂
c∈C

∑︂
(j,k)∈
K×K

dt
cljky

t
cjk +

∑︂
t∈T

∑︂
c∈C

∑︂
k∈K

dt
cmckx

t
ck (3.7)

s.t.
∑︂
c∈C

dt
cx

t
ck ≤ CapMEC ∀k ∈ K,∀t ∈ T (3.8)

∑︂
k∈K

xt
ck = 1 ∀c ∈ C,∀t ∈ T (3.9)

xt
ck =

∑︂
j∈K

yt
cjk ∀c ∈ C,∀k ∈ K,∀t ∈ T ′ (3.10)

xt
ck =

∑︂
j∈K

yt+1
cjk ∀c ∈ C,∀k ∈ K,∀t ∈ T ′′ (3.11)

xt
ck ∈ [0, 1] ∀c ∈ C,∀k ∈ K,∀t ∈ T (3.12)

yt
ckj ∈ [0, 1] ∀c ∈ C,∀j, k ∈ K,∀t ∈ T (3.13)

Constraints (3.10) and (3.11) ensure the balancing of demand flows for each cluster, each MEC
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host and each time slot. More precisely, the right-hand side of (3.10) represents the overall fraction of

demands of APs belonging to cluster c incoming to MEC host k at time t, possibly being switched

from other MEC hosts; this needs to be consistent with the value of the corresponding xt
ck variable.

Similarly, the right-hand-side of each (3.11) represents the overall fraction of demands of APs belonging

to cluster c outgoing from MEC host k at time t, possibly being switched to other MEC hosts. Since

the left-hand-sides are identical, (3.10) and (3.11) impose incoming and outgoing demand fractions to

be equal.

3.5 Experimental Setup

3.5.1 Deployment of the MEC orchestration process

Following the algorithm process depicted in Figure 3.2, we evaluate the MEC orchestration

framework proposed in the previous section. We first run the clustering model at the preprocessing

phase then we apply the MEC orchestration model on the resulting clusters. Two types of inputs are

fed to the clustering model, (i) time series data; refers to the user traffic demands aggregated at the

BSs; and (ii) configuration parameters such as BS positions. The orchestration model is then applied

on the clusters to provide the assignment and switching plan for a set of time slots. Note that as a

by-product, an evaluation of the total costs and some other statistics is possible.

3.5.2 Datasets

We used a real traffic dataset from a national mobile network made available in the frame of the

French ANR CANCAN (Content and Context based Adaptation in Mobile Networks) project. The

dataset gives us access points downlink volume information every 10 minutes for a period of three

months in 2019, for Paris and Lyon metropolitan area networks. The collection process takes into

consideration both 3G and 4G connections and records data on a per-user basis that are aggregated at

the AP level. Paris dataset contains a larger amount of demands when compared to Lyon dataset. In

fact, we have chosen 1908 base stations for the area of Paris and 332 for the area of Lyon 3. We split

our datasets into two parts: we used the first two-thirds to train both the clustering and orchestration

models, and the remaining third, i.e., held-out data, to evaluate the quality of the solution.

3The content of the dataset is private, additional details cannot be provided.
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Figure 3.2: MEC orchestration framework - Global view.
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We implemented our model in A Mathematical Programming Language (AMPL) [70] using CPLEX

as the linear solver [71]. We run our algorithms on an Ubuntu Server 14.04 LTS virtual machine with

64 GB of RAM and 8 × 2.5 GHz CPU cores.

3.5.3 Framework evaluation

We assess the results through Cumulative Distribution Function (CDF) of spatial and time

complexity metrics, i.e., maximum memory usage (in GB) and execution time (in seconds), as well as

the optimality gap (%) and the assignment and switching costs. We use up to 50 different locations for

MEC hosts, hence using different numbers of MEC host facilities to generate the training set, for the

cities of Paris and Lyon. MEC locations are generated using a centroid based clustering, i.e., K-means

clustering where the centroids of BS clusters represent MEC hosts locations. For each simulation we

randomly generate the parameter representing the number of time the k-means algorithm is executed,

then the best results are returned based on inertia. We evaluate the following four algorithms to solve

the orchestration problem:

• ‘MECA’: solving the reference orchestration model without spatial clustering, i.e., (3.7)-(3.13)

with C ≡ A;

• ‘MECA-CS’: solving the reference orchestration model with spatial clustering, i.e., (3.1)-(3.13);

• ‘MECA-CG’: solving the reference orchestration model without spatial clustering and using the

dynamic variable generation approach proposed in [34];

• ‘MECA-CG-CS’: as MECA-CG but with spatial clustering precomputation.

In the following, we present simulation results generated by both Lyon and Paris datasets, using

different MEC infrastructure sizes: 10, 20 and 30 MEC facilities, and 20 and 50 MEC facilities

respectively. Due to its high memory consumption, we could not execute the MECA approach for the

two highest MEC infrastructure sizes, i.e., 50 and 30, for Paris and Lyon, respectively.

MECA-CG-CS was the least memory consuming case on single computations. Contrary to expectations,

it increased on average by 4.9 GB (1600%) for Paris dataset using 20 MEC hosts and by 1.3 GB

(540%), 2.7 GB (700%) and 4.9 GB (980%) for Lyon dataset using respectively 10, 20 and 30 MEC
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hosts when post-processing the intermediate solutions to retrieve the variable vectors. The maximum

execution time limit is set to 17000 s for all instances, seldom reached.

3.6 Performance Evaluation

3.6.1 Evaluation using Lyon dataset

Figure 3.3 depicts the numerical results when using 3 different sizes for our infrastructure (10, 20

and 30 facilities) and traffic demands from Lyon dataset. We report the results of the 5 aforementioned

metrics.

Figures 3.3a, 3.3b and 3.3c present the distribution of the optimality gap values using Lyon dataset

and the three different sizes for the MEC infrastructure. We note that: 0% optimality gap was reached

by MECA-CS, MECA and MECA-CG after a finite execution time when using 10 and 20 MEC hosts,

contrary to MECA-CG-CS that reached optimality gaps between 2% and 5% and between 10% and

17% respectively, depending on the MEC hosts locations. This can be explained by the use of large

scales, i.e., aggregated demands of all BSs that belong to the same cluster to get the cluster traffic

demand. For 30 MEC hosts, we reached the 0% optimality gap only with MECA-CS in a finite time.

For MECA-CG, values are between 0% and 20%. Meanwhile, MECA-CG-CS has the highest values

that varies between 28% and 44%.

Figures 3.3d (resp 3.3e and 3.3f) depicts the distribution of the maximum amount of memory

used by the processes run by the proposed approaches in GigaBytes (GB) when using 10 MEC hosts

(resp. 20 and 30 MEC hosts). We note that: for all cardinalities, the best case always corresponds to

MECA-CS with a constant memory consumption for all the 30 MEC hosts locations, i.e. 0.15 GB for

10, 1 GB for 20 and 3.29 GB for 30 MEC hosts, followed by MECA-CG with maximum consumption

of 0.72 GB for 10 MEC hosts, more than 2 GB for 20 and 4.19 GB for 30. MECA has the highest

memory consumption peak for both cases 10 and 20 where it reaches respectively 4 GB and 15.7 GB.

However, when using 30 MEC hosts simulations has stopped before reaching any solution due to its

high memory consumption. Meanwhile, MECA-CG-CS has an intermediate consumption between

MECA and MECA-CG for all cardinalities, i.e. 1.5 GB, 3.2 GB and 5.4 GB.

In Figures 3.3g, 3.3h and 3.3i we present the CDF histograms of the required execution times by the

proposed approaches and for the 30 MEC hosts different locations for each of the three infrastructure
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(a) Optimality Gap (%):10 facilities (b) Optimality Gap (%): 20 facili-
ties

(c) Optimality Gap (%): 30 facili-
ties

(d) Memory Usage: 10 facilities (e) Memory Usage: 20 facilities (f) Memory Usage: 30 facilities

(g) Execution Time (s): 10 facilities (h) Execution Time (s): 20 facili-
ties

(i) Execution Time (s): 30 facilities

(j) Assignment Cost: 10 facilities (k) Assignment Cost: 20 facilities (l) Assignment Cost: 30 facilities

(m) Switching Cost: 10 facilities (n) Switching Cost: 20 facilities (o) Switching Cost: 30 facilities

Figure 3.3: Cumulative distribution function of the evaluated metrics: execution time (s), memory
usage (GB), optimality gap (%) and assignment and switching costs - Lyon dataset.
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sizes. We note that: comparing the two approaches MECA-CS and MECA highlights the contribution

of the spatial clustering: MECA-CS is the fastest approach with an execution time less than 7 s,

between 120 s and 190 s and less than one hour for the three cardinalities. Nevertheless, MECA

reaches 390 s and 2 hours of execution time for the first two infrastructure sizes. For 30 MEC hosts

the algorithm did not get any results. For 10 and 20 MEC hosts, MECA-CG requires between 200 s

and 380 s and 1 hour and a half whereas MECA-CG-CS gives the worst case with an execution time

exceeding 1 hour and 3 hours respectively. Hence, both MECA-CG and MECA-CG-CS reached the

execution time limit which is 17000 s when using 30 MEC hosts.

We present in Figures 3.3j, 3.3k and 3.3l the distribution of the assignment costs values yield

by the proposed approaches. We note that: the assignment costs yield by approaches using spatial

clustering model are higher than costs generated by the approaches spatial clustering-free. For 10 and

20 MEC hosts cases a 0% optimality gap was reached by both MECA and MECA-CG, so the two

assignment costs are equal. We can also notice that the assignment cost decreases when we broaden

the MEC infrastructure size.

We present in Figures 3.3m, 3.3n and 3.3o the distribution of the switching costs values yield by

the proposed approaches when using Lyon dataset. We note that: for 10 and 20 MEC hosts (3.3m

and 3.3n), the switching costs are lower when not using the spatial clustering as explained before.

MECA and MECA-CG have the same and lowest switching cost, followed by MECA-CS (less than

double) and finally MECA-CG-CS. On the other hand, when using 30 MEC hosts (3.3o) we notice that

MECA-CS and MECA-CG have the same switching cost for some MEC hosts locations. MECA-CS

and MECA-CG-CS have different switching costs because this latter could not reach the 0% optimality

gap. The switching cost increases when increasing the MEC infrastructure size from 10 to 20 facilities.

However, increasing it from 20 to 30 has decreased the switching cost for MECA-CS and increased it

for MECA-CG.

3.6.2 Evaluation using Paris dataset

The 0% optimality gap was reached for all the approaches and for all cardinalities, except for

MECA when using 50 MEC hosts. As aforementioned, it stopped before getting any results.

In Figure 3.4 we present the distribution of the maximum memory usage in GigaBytes (GB),

the execution t3ime in seconds (s) and the assignment and switching costs for Paris dataset for two
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different sizes for the MEC infrastructure, i.e, 20 and 50 facilities.

The distribution of the maximum memory used by each of the approaches is depicted in Figures 3.4a

and 3.4b using Paris dataset and respectively 20 and 50 MEC hosts. We notice that: when using 20

MEC hosts, MECA-CS has a constant maximum memory usage through all the proposed MEC hosts

locations and it represents the lowest value (1 GB) compared to all the other approaches, followed by

MECA-CG and MECA-CG-CS (2.5 and 5.25 GB as maximum values respectively). Meanwhile, MECA

is the most memory consuming and it has also a constant consumption through all the proposed

locations (26 GB). For 50 MEC hosts, MECA-CS and MECA-CG have a close maximum memory usage

on average, the former has a constant consumption equal to 13.6 GB while the latter consumption

varies between 10 GB and 14 GB. However, MECA-CG-CS has the highest values that reach 19.4 GB.

MECA has the highest memory consumption and it stopped before reaching the final solution because

of lack of memory. Increasing MEC hosts number from 20 to 50 has increased the maximum amount

of memory used by each of the proposed approaches.

Figure 3.4c (resp. Figure 3.4d) represents the distribution of execution time values required by

each approach when using 20 MEC hosts (resp. 50). We note that: MECA-CS is the fastest approach

when using 20 MEC hosts followed by MECA-CG with execution time values that go from 50 s to

120 s and from 86 s to 360 s respectively. On the other side, when increasing the infrastructure size

to 50 MEC hosts MECA-CG becomes the fastest one reaching 300 s, followed by MECA-CS where

the execution time is between 440 s and 1000 s. MECA needs a higher execution time that reaches

600 s at least and 1000 s at most for 20 MEC hosts. However, MECA-CG-CS represents the highest

execution time and requires around 5000 s for 20 MEC hosts and reaches the execution time limit

with 50 MEC hosts. It is worth mentioning that it was clearly stated in [18] that 20 MEC hosts is

sufficient to satisfy strict requirements in terms of latency and bandwidth.

The distribution of the assignment costs is presented in Figures 3.4e and 3.4f for both 20 and 50

facilities, we can notice that: the approaches without the spatial clustering yield a lower assignment

cost compared to the ones using it. Let us underline that the spatial clustering adds a constraint

to the orchestration problem that produces the same assignment plan to all BSs that belong to the

same cluster. When the 0% optimality gap is reached, MECA-CS and MECA-CG-CS (MECA and

MECA-CG respectively) have roughly the same assignment cost: a little difference can be noticed due

to numeric precision used by the two methods.
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(a) Memory Usage: 20 facilities (b) Memory Usage: 50 facilities

(c) Exec. Time (s): 20 facilities (d) Exec. Time (s): 50 facilities

(e) Assign. Cost: 20 facilities (f) Assign. Cost: 50 facilities

(g) Switching Cost: 20 facilities (h) Switching Cost: 50 facilities

Figure 3.4: Cumulative distributed function of the evaluated metrics: execution time (s), memory
usage (GB) and assignment and switching costs - Paris dataset.
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In Figures 3.4g and 3.4h, we present the distribution of the switching costs. We notice that: there is

a slight cost difference between the two approaches (with vs without spatial clustering precomputing).

As explained, the approaches spatial clustering-based produce additional costs due to proposing

the same switching plan to BSs that belong to the same cluster. Achieving the 0% optimality gap

produces the same switching costs for MECA-CS and MECA-CG-CS (and for MECA and MECA-CG

respectively), and increasing the number of MEC hosts has reduced both the switching and the

assignment costs for all the approaches.

3.7 Conclusion

In this chapter, we focused on the optimization of algorithms that deal with base-station access-

point to MEC hosts assignment orchestration decisions by taking into account an assignment objective

robust against traffic fluctuations. For this purpose, we proposed a spatial clustering model which

consists of grouping together base-station access points into clusters that reveal the same spatio-

temporal traffic through time. Afterwards, a data-driven solution for MEC orchestration was added

to the model. The results from extensive simulation on a real world dataset show that our approach

outperforms existing algorithms while helping reduce time and space complexity especially for small

to medium instances, i.e., 10, 20 and 30 MEC hosts for Lyon city and 20 MEC hosts for Paris city. As

aforementioned, a previous work has evidently demonstrated that using around 20 MEC hosts for the

region of Paris would therefore be more than sufficient for realistic massive MEC service deployment,

even with strict constraints on latency and maximum link utilization.

Despite the fact that the spatial clustering model entails an additional cost due to the constraint

that imposes the same assignment and switching plan for base-station access points belonging to the

same cluster, numerical results have shown that our framework can be carried out in a near-real-time

manner. In the next chapter, we extend the pre-processing phase with the aim of improving both user

and switching costs while including additional parameters to evaluate the degree of controlling MEC

hosts capacity.
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Pairwise Access Point Clustering for MEC
Infrastructure Orchestration
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4.1 Introduction

In this chapter, we extend the framework presented in Chapter 3 to include a more variate set

of clustering fitness functions, comparing them in terms of reliability. Reliability is hereafter meant

as the capacity of not exceeding the allocated computing capacity under varying traffic loads. We

demonstrate how, thanks to the preliminary spatial clustering, we can integrate different orchestration

flavors to make the MEC orchestration decision framework more robust against traffic fluctuations,

while taking into consideration secondary performance indicators. We introduce a set of clustering

models to be deployed at the pre-provisioning phase. We go through extensive simulations on real-world

traffic demands to evaluate the performance of the proposed solutions. In addition, we show how

MEC hosts capacity violation can be decreased when integrating access points clustering into the

orchestration model, by investigating on solution accuracy when applied on held-out users traffic

demands. The obtained results show that our approach outperforms two state-of-the-art algorithms,

reducing both memory usage and execution time, by 46% and 50%, respectively, in comparison to a

baseline algorithm. It surpasses the two methods in gaining control over MEC hosts capacity usage

for different maximum achieved occupancy levels on MEC hosts.

Scalability and robustness are major challenges that arise when dealing with MEC resource

orchestration problems [72]. In this chapter, we shed light on the scalability-robustness challenge by

extending the MEC orchestration framework in Chapter 3. We propose a portfolio of AP clustering

algorithms, to integrate as a preprocessing phase to the actual orchestration problem, scheduling

AP-to-MEC facility assignments over time. Our clustering algorithms are meant to show the flexibility

we can benefit from MEC orchestration, while evaluating the impact in terms of robustness when

considering heterogeneous demand profiles.

The main contributions of this chapter are as follows1:

• We formulate a collection of AP clustering algorithms that we integrate into a MEC orchestration

baseline algorithm [34], with the aim of reducing both execution time and memory usage, while

integrating robustness criteria in the orchestration problem;

• We train the proposed frameworks using a real-world dataset, composed of demands collected at

1This chapter was published in IEEE Transactions on Network and Service Management, vol. 19, no. 3, pp.
2738-2750, Sept. 2022 [73].
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two different regions in France;

• We apply the resulting assignment plans on held-out data, in order to assess how well the

proposed assignment plans can adapt to access point changing demands by evaluating the

violation of servers capacity;

• We finally compare our algorithms to two different approaches from the state-of-the-art. Numer-

ical results show that our algorithms outperform these existing solutions in terms of robustness

and computing performance.

4.2 Problem Statement

The MEC orchestration problem is decomposed into two independent but connected phases: a

pre-processing phase that consists of grouping together APs into clusters based on some criteria, and

a second phase that holds the assignment of the resulting clusters to the MEC hosts with available

capacity. The assignment task takes into consideration the distance between access point to MEC

hosts to which it is assigned to, thus representing the user costs, also called the assignment cost in

the rest of the chapter. We propose to trigger assignment operations for each time period, where the

duration of a time period can go from few seconds up to few hours. Since MEC hosts capacity is

limited, and due to users traffic variations, VM resource migration can be required; these operations

yield a deployment cost of the network, referred to as switching cost. The AP-to-MEC assignment

problem is presented in Section 3.4. In the following, we introduce the pre-proccessing phase with the

clustering approaches. Table 4.1 lists the notations used.

The proposed framework is based on a training process that consists of using historical data i.e.,

access point traffic demands, to identify the parameters of a model. We define two different models,

one model that groups together APs based on a given criterion at the clustering phase, and a second

one that assigns the resulting clusters to the available MEC hosts at the orchestration phase.

4.3 Multi-objective Access Points Clustering

The idea of performing access points spatial clustering as a preprocessing to the optimization

problem is to, from the one hand, take more robust decisions with respect to traffic variations by
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A Set of all access points.
T = {1, . . . , τ} Ordered set of τ time slots.
di

t Parameter, represents the traffic demands of AP i at time slot t.
dc

t Parameter, represents the demands of the cluster c at time slot t.

d′t
i Parameter, represents the variance of demands, of the same period of

each week for AP i (for example, if the number of samples of the dataset
corresponds to w weeks, d′ti is then, the variance of all demands of AP i
at the same time period t over all the w weeks).

dī Parameter, represents the average of traffic demands of access point i
through all the time slots.

cij Parameter, identifier of the pairwise clustering criterion.
Q Parameter, represents the capacity of each MEC host. All MEC hosts

have the same capacity.
δij Parameter, represents the (complete link) distance between the two AP

clusters i and j;

δ̃ Parameter, represents the maximum distance between each couple of
AP that belongs to the same cluster.

zij Binary variable, takes value of 1 if APs cluster i is paired to APs cluster
j to form a cluster, 0 otherwise.

Table 4.1: Notations.

grouping together BSs that satisfy a given performance target and, from the other hand, decrease

both execution time and memory space of the assignment problem (3.7)-(3.13) thanks to variable

aggregation and constraints reduction. We propose an extension of the spatial clustering model

proposed in section 3.3. In order to ease reaching optimal configurations, we set an iterative pairwise

access point clustering instead of grouping an indeterminate number of APs together.

The motivation is to use simpler combinatorial models by merging two APs as an AP pair, based on

a different set of criteria. Depending on the scales of the problem (i.e., number of APs), this pairwise

clustering can be iterated so as to group, at a second stage, two pairs of APs within a cluster; as so

on so forth, if needed, further hierarchical clustering can happen. We then apply the orchestration

decision on the set of resulting clusters. The clustering criterion is meant to allow granting a robustness

flavor to the orchestration model, namely in terms of robustness against load variation in time. The

goal is to reduce MEC host capacity violations.

The generic mathematical formulation of the clustering approach is as follows:
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min or max
∑︂

i∈Ā,j∈Ā

cij ∗ zij (4.1)

s.t.
∑︂
j∈Ā

zij + zji = 1 ∀i ∈ Ā (4.2)

zij = 0 ∀i, j ∈ Ā : δij > δ̃ (4.3)

zij ∈ {0, 1} ∀i, j ∈ Ā

The set Ā contains one element for each AP cluster. The objective function in (4.1) aims at minimizing

(maximizing, respectively) the clustering cost value expressed using the criterion parameter cij which

defines the degree of similarity or difference according to which elements (access points or clusters

of access points) are grouped in the same cluster. More precisely, it is given by the sum of costs for

those pairs of AP clusters which are joined.

Constraints (4.2) ensure that each cluster i ∈ Ā is paired to exactly one other cluster (either i is

paired to some j, or j exists, which is paired to i). Constraints (4.3) ensure that such a pairing is

made only among AP clusters whose distance does not exceed a given threshold. Note that having zij

=1 implies the creation of a cluster that merges APs (resp. groups of APs) i and j together, in which

case all other z variables involving i are set to 0, to technically keep consistency (i.e. all nodes with

degree one) on the directed graph model we employ.

Initially, Ā = A. That is, single APs are paired. Then, single elements of Ā are replaced by the

pairwise clusters which are formed. After all replacements are made, new cluster criterion parameters

and distances are computed for the elements of Ā, and the clustering process is iterated. For each

iteration, we compute the distance between each couple of APs that belongs to different clusters. Only

clusters with distances that are lower than the threshold δ̃ are grouped together. We propose two

classes of criteria as in the following.

4.3.1 Clustering-based on load differences

This class of criteria aims at grouping together access points depending on the demand differences

without taking into consideration AP demand profiles. We propose four different criteria:
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• MIN-MAX. To reduce the absolute value of the difference in demands for each couple of APs

during all the time periods. The goal is to obtain clusters with similar demands for each period

of time. In fact, this criterion represents an enhanced version of the single-one used in Section 3.3

(Chapter 3).

• MIN-SUM. To minimize the average of differences in demands for all the time periods, for

each couple of APs belonging to the same cluster. The goal is to group together APs where the

average of their demands is minimized through all time slots.

• MAX-MAX. To group each couple of access points where the difference between their demands

for each time slot is maximized. This criterion yields clusters of APs with highly different traffic

demands.

• MAX-SUM. To maximize the average of demand differences of each couple of APs and for all

the time periods in order to produce clusters of APs that behave differently through time.

4.3.2 Clustering-based on load correlation

This class of criteria uses different forms of correlation among AP load, taking into consideration

the AP demand profiles. We propose four different criteria:

• MIN-CORR. To find negatively correlated couples of APs to group them together into the

same cluster. To do so, we propose an expression that defines the relationship between demands

of each couple of APs expressed as a ratio. Minimizing this ratio leads to a maximization of the

difference in APs demand profiles.

• MAX-CORR. To search for couples of APs where the correlation between their demands is

maximized through time in order to have positively correlated demands in the same cluster. In

this way, the resulting clusters group together APs with highly similar demand profiles.

• MIN-CORR-VAR. To have couples of APs with negatively correlated variance of demands. In

order to achieve this objective, we minimize the correlation of the variance of demands of APs i

and j. An access point with high demand variance will be then merged with an AP having low

demand variance.
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• MAX-CORR-VAR. To maximize the correlation of demand variance between couples of APs

belonging to the same cluster, with a view to have each couple of AP with demand variance

that are positively correlated grouped into the same cluster. Thus, an AP having high variance

in its demands through time will be merged with an AP of the same demand profile.

BS Traffic Demands

Spatial Clustering Preprocessing

Load Difference-
based Clustering

Load Correlation-
based Clustering

min or max
∑

i∈Ā,j∈Ā:δij
≤δ̃

cij ∗ zij

cij =

∑

t∈T
|dti − dtj|

card(T )
∀i, j ∈ Ā

min or max
∑

i∈Ā,j∈Ā:δij
≤δ̃

cij ∗ zij

cij = maxt∈T |dti−dtj|∀i, j ∈ Ā

Original Traffic Demands Variance of Traffic Demands

min or max
∑

i∈Ā,j∈Ā:δij
≤δ̃

cij ∗ zij

cij = maxt∈T ratioi j∀i, j ∈ Ā

ratioi j =
Rij ∗Rj i√
σi ∗ √σj

∀i, j ∈ Ā

Rij =
∑

t∈T

dti − dtj
2

, Rj i =
∑

t∈T

dtj − dti
2
∀i, j ∈ Ā

σi =

√∑

t∈T
(dti − d̄i)2, σj =

√∑

t∈T
(dtj − d̄j)2∀i, j ∈ Ā

min or max
∑

i∈Ā,j∈Ā:δij
≤δ̃

cij ∗ zij

cij = maxt∈T ratio′i j∀i, j ∈ Ā

ratio′i j =
R′ij ∗R′j i√
σi ∗ √σj

∀i, j ∈ Ā

R′ij =
∑

t∈T

d′i
t − d′tj

2
, R′j i =

∑

t∈T

d′j
t − d′iti

2
∀i, j ∈ Ā
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MEC Orchestration Algorithm

Figure 4.1: MEC Orchestration Framework Options.

We embed in Figure 4.1 the mathematical expression for each criterion. The complete mathematical

formulations are given in the appendix A.

4.4 Experimental Results

In the following, we first describe the parameters used to evaluate our framework, then we provide

a numerical evaluation of the MEC orchestration approaches using different metrics while comparing

them to two approaches from the state-of-the-art.

We solve the resource orchestration problem using the eight clustering variants in Section 4.3 and

the following additional algorithms:

• ‘MECA’: solving the reference orchestration model without spatial clustering, i.e., (3.7) to

(3.13), this refers to the baseline MEC assignment algorithm, which we refer to in the following

as the benchmark;
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• ‘HYPERBOLIC’: solving the reference orchestration model with theHYPERBOLIC-KMEANS

spatial clustering at the state-of-the-art [36];

We also refer to ‘MECA-CS+’ as solving the reference orchestration model with MIN-MAX spatial

clustering in the pre-processing phase (enhancement of the MECA-CS algorithm in Section 3.3);

4.4.1 Dataset and parameter setting

We used a dataset with traffic demands collected at the core and access network of a French mobile

operator, at a national scale and for a period of three months. More details about the dataset and the

system characteristics are available in Section 3.5.2.

For the clustering algorithms described in Section 4.3, we perform (i) for Lyon dataset, only once

the pairwise clustering, so clusters of two APs are formed, while (ii) for Paris dataset, we perform two

pairwise clustering iterations, to decrease the memory usage and execution time otherwise too high

given the higher number of APs. Indeed, the number of hierarchical pairwise clustering iterations

can be customized based on the trade-off between execution time and assignment cost, as discussed

hereafter.

For the simulations, we generate MEC facilities locations using a variant of the K-means clustering

method, called weighted K-means, such that each MEC host location is the centroid of a given group

of APs; the weight is represented using APs demands dispersion. In this way, MEC hosts positions are

generated depending on the access points demands profiles. We fix the number of MEC facilities to 20

servers for both Lyon and Paris datasets. Then, we randomly generate 10 different configurations

for MEC hosts locations with the aim of producing different inputs to train our MEC orchestration

algorithm.

4.4.2 Numerical evaluation

We use for this evaluation Lyon dataset and we analyze the quality of the solution based on the

following metrics:

• the memory usage and execution time: represented by the execution time (s) and maximum

memory usage (GB);

• the assignment and switching costs;
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• the total cost gap convergence in percentage, against the benchmark;

• the distribution of BS-to-MEC distances during the period of the training (refers to a represen-

tative week) in kilometers;

• the number of switching operations.

In Table 4.2, we summarize the average ± standard deviation of the aforementioned metrics results.

Figures 4.2 to 4.6 depicts the distributions for each of the aforementioned metrics. We now draw

our observations on these results as follows.

4.4.2.1 Execution time

Figure 4.2 reports the distribution of execution times experienced with each case. We can remark

that the slowest algorithm is the benchmark (MECA) solution where the average execution time

exceeds half an hour. In fact, applying the clustering algorithm in the preprocessing, as done for the

other cases, helps reduce the execution time as proven in Chapter 3.

We can also notice that the MAX-CORR has the lowest execution time among the eight proposed

algorithms, followed by MECA-CS+. The highest execution times are yield by the algorithms based on

load difference which are MAX-MAX and MAX-SUM, respectively. The HYPERBOLIC clustering

is globally the fastest one with an average of 376 s; due to the fact that the number of APs per cluster

is not fixed, which generates clusters with a higher number of APs compared to the other models,

hence reducing both the memory usage and execution time, as shown in Chapter 3. However, this

gain in the MEC-to-AP assignment phase comes at the expense of a much longer pre-processing phase

time as shown in Table 4.2. This time, moreover, increases with the dataset size: tests with the Paris

dataset show that HYPERBOLIC clustering needs more than 24 hours to be trained versus few

dozen of seconds for the other cases performing iterative pairwise clustering.

2The maximum memory usage metric was the same for each of the MEC hosts configurations, because we do not
change the data size for each of the proposed configurations.
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Figure 4.2: Orchestration execution time.

4.4.2.2 Maximum RAM usage

From Table 4.2, all the clustering-based algorithms are comparable in this respect; we record

a slight difference between the HYPERBOLIC and all the other cases. We can remark that the

benchmark algorithm is the most memory-consuming (almost the double than the others). We can also

notice that the standard deviation is null (therefore omitted), i.e., changing the MEC hosts positions

does not affect the maximum memory usage.
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Figure 4.3: Costs distribution
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4.4.2.3 Assignment and switching costs

Figure 4.3 plots the distribution of both the assignment and the switching costs. Figure 4.3a

shows that the benchmark algorithm (MECA), which is clustering-preprocessing free, has the lowest

assignment cost. Indeed, as shown in Chapter 3, solving the orchestration problem for a set of clusters

of APs forces the algorithms to propose the same orchestration plan for the AP belonging to the

same MEC host, where some APs will not be assigned to the closest MEC host. Regarding the other

algorithms, solutions grouping together APs with different demands through time have the lowest

average assignment costs, i.e., MIN-CORR, MIN-CORR-VAR and MAX-SUM, whereas, the worst

cases refer to the algorithms based on both MIN-SUM and MIN-MAX, which group together similar

AP traffic demands. This shows that assigning APs with complementary demands profiles to the same

MEC hosts reduces the assignment costs.

Figure 4.3b presents the distribution of switching costs. MAX-CORR-VAR and MAX-CORR,

which group together APs with maximized correlation, have the smallest switching costs with an average

of 3.59× e9 ± 0.48× e9 and 3.63× e9 ± 0.61× e9, respectively. On the other hand, HYPERBOLIC

clustering has the highest switching costs values with an average of 4.11× e9 ± 0.51× e9. This shows

that grouping APs with similar demand profiles allows having convenient assignment plans that last

for longer periods of time compared to the other algorithms.

4.4.2.4 Convergence gap

Figure 4.4 shows the distribution of the convergence gap obtained by each of the aforementioned

algorithms. By convergence gap we indicate the relative difference between the best solution (expressed

by the total cost) produced by each of the clustering-based algorithms and the benchmark, within a

given execution time limit.

The orchestration algorithms based on models that maximize the difference in demands (resp. minimize

the correlation coefficient of APs of the same cluster) have the lowest total costs. We can also notice

that these algorithms have the lowest assignment costs but not necessarily the lowest switching cost.

This confirms that assigning APs with complementary demand profiles to the same cluster produces

lower assignment costs.
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4.4.2.5 BS-to-MEC distance

Figure 4.5 presents the distribution of access points to MEC facilities distances aggregated during

a period of 1 week and for all the proposed MEC locations, for each of the algorithms. Benchmark

gets the lowest distances, that is, the number of APs that are assigned to their closest MEC hosts

is bigger compared to the other algorithms. As already explained, finding the closest MEC host to

assign a single AP is easier than assigning a cluster of APs as all these APs should be have the same

assignment plan.
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Figure 4.4: Gap ratio against Benchmark.

The other approaches are comparable, except HYPERBOLIC that gives slightly lower distances.

4.4.2.6 Switching operations

Figure 4.6 shows the number of switching operations on each MEC host during a period of 1 week.

The benchmark gives the lowest number, followed by the algorithms that minimize the difference in

traffic demands, i.e., MIN-MAX and MIN-SUM, while HYPERBOLIC yields the highest number of

switching operations. In fact, this does not imply a lower switching cost, as can be seen in Figure 4.3b

because it depends on the switched traffic demand of each of the base stations.

As a final remark on this part, it is worth stressing that assignment cost and execution time metrics

are negatively correlated: the lower the execution times, the higher the assignment costs. For example,

49



4.4. EXPERIMENTAL RESULTS

103

104

MECA-C
S
+

MIN
-S

UM

MAX-M
AX

MAX-S
UM

MIN
-C

ORR

MAX-C
ORR

MIN
-C

ORR-V
AR

MAX-C
ORR-V

AR
MECA

HYP
ERBOLIC

B
S

-t
o
-M

E
C

 d
is

ta
n
ce

s 
(K

m
)

Figure 4.5: Distribution of the AP-to-MEC hosts distances.

0

50

100

150

200

250

300

MECA-C
S
+

MIN
-S

UM

MAX-M
AX

MAX-S
UM

MIN
-C

ORR

MAX-C
ORR

MIN
-C

ORR-V
AR

MAX-C
ORR-V

AR
MECA

HYP
ERBOLIC

N
u
m

b
e
r 

o
f 

S
w

it
ch

in
g

 O
p

e
ra

ti
o
n
s

Figure 4.6: Distribution of the number of switching operations.
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MAX-MAX requires the highest execution time when compared to the proposed solutions, but it

yields lower assignment costs than MAX-CORR (6.75e+10 vs 7.42e+10), where this latter represents

the fastest approach. We can also notice that solutions generating the lowest switching costs, require

less running time.

4.4.3 Robustness Analysis

In this part, we evaluate the robustness of the proposed solutions over time, i.e., the impact of

applying the resulting orchestration plans on held-out (test) data. For that purpose, we evaluate the

violation of MEC host capacity produced by each solution when applied to both the Lyon and Paris

datasets.

For this purpose, we use the set of parameters initially defined in [34] in order to estimate the

degree of controlling MEC hosts capacities by each algorithm. We assess the performance for different

maximum occupancy rates achieved by MEC hosts, while changing the capacity sizes. We choose high

utilization levels in the interval between 71% to 95.5%. The analyzed parameters are as follows:

Capacity Overload Average

∑︂
t∈T

∑︂
k∈K

max

{︄∑︂
c∈C

dt
c ∗ xt

ck −Q, 0
}︄
/(Q× | T | × | K |) (4.4)

This index (called SUM-SUM in [34]) gives the average of the demands exceeding the MEC host

capacity over all the time periods.

Violation Rate

| {(t, k) :
∑︂
c∈C

dt
c ∗ xt

ck −Q ≥ 0,∀t ∈ T, ∀k ∈ K} | /(| T | × | K |) (4.5)

This index (called SUPPORT in [34]) computes the percentage of number of violations that

occurred over all periods of times.

Excess Demand Average ∑︂
c∈C,k∈K:dt

c∗xt
ck−Q≥0

∑︂
c∈C

(dt
c ∗ xt

ck −Q)/Q

|
{︁
(t, k) :

∑︁
c∈C d

t
c ∗ xt

ck −Q ≥ 0, ∀t ∈ T, ∀k ∈ K
}︁
|

(4.6)

This index (called SUM-SUM-SUPPORT in [34]) is used to show the relationship between the

amount of excess demands and the total number of violations.
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Note that our take-away on this aspect is that, in an operational carrier grade environment, when

the actual assignment operation yields a capacity violation, the service is not interrupted but runs

instead in a degraded mode, given the actual computing scheduler management of peak overloads by

means of resource sharing policies. We represent the obtained results using the percentage gap with

respect to the benchmark, computed as the ratio between the (i) difference between a given algorithm

value and the benchmark value and (ii) the benchmark value.

For the sake of readability, we report only the results for the fastest algorithms from the previous

analysis: MECA-CS+, MIN-SUM, MAX-CORR, MIN-CORR-VAR and HYPERBOLIC.

4.4.3.1 Lyon dataset

Figure 4.7 reports the robustness gaps with respect to the benchmark, as a function of the maximum

MEC host utilization, for the five aforementioned approaches, for the Lyon dataset.

In terms of capacity overload (Figure 4.7a), we can observe that:

• When the maximum utilization is less than 75%, the gap is null: all the algorithms yield the

same overload as the benchmark.

• For a maximum utilization level up to 84%, MIN-CORR-VAR yields the same overload as the

benchmark and then increases it for higher utilization levels, whereas, all the other algorithms

decrease the overload; the highest difference happens with an utilization level equal to 77% with

a decrease of 68% for MAX-CORR algorithm and 34% for the two others (MECA-CS+ and

MIN-SUM).

• For a maximum utilization greater than 84%, cases merging complementary APs profiles (MIN-

CORR-VAR and HYPERBOLIC) increase the capacity overload. This is reduced when

using models that group together APs with similar demands (MECA-CS+, MIN-SUM and

MAX-CORR), i.e., these algorithms give an assignment with better robustness.

• MECA-CS+, MIN-SUM and MAX-CORR lower the capacity overload when compared to the

benchmark for each of the utilization levels greater than 75%. This shows that clustering AP

demands in the preprocessing phase does not necessarily reduce the server capacity overload. In

fact, the solution quality depends on the clustering criterion.
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In terms of violation rate (Figure 4.7b), we can observe that:

• Except for HYPERBOLIC that yield the same number of violations for a maximum occupancy

level equal to 71%, the other algorithms produce fewer violations when compared to the

benchmark for a maximum utilization level less than 75%.

• MIN-CORR-VAR and HYPERBOLIC yield a higher number of capacity violations when the

maximum occupancy ratio is greater than 77% and 81%, respectively, when compared to the

benchmark. On the other hand, MIN-SUM produces less violations when the maximum level of

utilization is less than 87%.

• Both MECA-CS+ and MAX-CORR have a better violation robustness, i.e., they produce less

violations through all the maximum levels of occupancy when compared to the benchmark and

to the other algorithms. This can be justified by the fact that these two approaches propose

assignment patterns for groups of APs with less variations on their total demands through time.
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Figure 4.7: Robustness results as a function of the maximum MEC host utilization - Lyon dataset.

Since it is easier to fit AP demands separately into their closest MEC hosts when training the model,

the likelihood of reaching full MEC hosts capacity increases too when compared to clusters-to-MEC

assignment. However, hosting high outlier demands generated in the test set data will be more difficult

in the latter case above. On the other hand, the assignment of traffic demands using clustering-based

algorithms during the training phase, tend to be more balanced as assignment operations should be

53



4.4. EXPERIMENTAL RESULTS

carried out for the demands of all APs belonging to the same cluster. This can justify the fact that

clustering APs before their assignment to MEC hosts can help in reducing servers capacity violation

when applied on held-out data.

In terms of capacity excess (Figure 4.7c), we can remark that:

• High values of the excess demands average refer to relatively low violation number compared to

the amount of demand overload. Similarly, small values of the excess demands indicate that

there is a relatively large number of capacity violations when compared to capacity overload. For

a maximum capacity utilization between 71% and 75% all the models produce higher capacity

excess on average when compared to the benchmark, except for HYPERBOLIC.

• For a maximum occupancy less than 76% and 79% when using MECA-CS+, and MIN-SUM

and MAX-CORRELATION, respectively, even though the capacity overload and the violation

rate are both reduced compared to the benchmark, they produce higher average of excess of

demands. This can be explained by the fact that these cases are generating relatively high excess

demands, compared to the number of violations which makes the ratio bigger (in contrast to

the benchmark, where the number of violations tend to be relatively low compared to capacity

excess).

• For a level of occupancy greater than 79%, the excess is reduced when using clustering approaches,

except for HYPERBOLIC that produces the same average of excess demands as the benchmark

for the highest maximum utilization level. This can be explained by the fact that the clustering

algorithms yield a proportionally higher number of violations in comparison to the demands

excess (in contrary to the Benchmark that produces relatively high capacity overloads compared

to the its number of violations).

• In fact, applying the resulting assignment on held-out demands shows that training the orches-

tration model with Lyon dataset using clusters built based on the similarity of their traffic

demands produces assignment and switching plans that are more suitable for traffic fluctuations.

Thus, MECA-CS+, MIN-SUM and MAX-CORR outperform both the algorithms from the

state-of-the-art where they reduce the capacity excess of demands for any maximum occupancy

level.
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4.4.3.2 Paris dataset

Figures 4.8 depict the robustness metrics results for the Paris dataset. In terms of capacity overload

(Figure 4.8a) we have the following observations:

• Except for HYPERBOLIC, all other algorithms reduce the capacity overload of the MEC hosts

for each given utilization level.

• The highest reduction occurs at a utilization of 71%, with a decrease of 68% for the observed

approaches. On the other side, the lowest decrease is recorded when the utilization level is

equal to 93.5% with a reduction of 18% for MECA-CS+, 15% for MIN-CORR-VAR, 8% for

MAX-CORR and 5% for MIN-SUM.

• When the maximum utilization is less than 85%, HYPERBOLIC lowers the overload demands

compared to the benchmark and increases it for higher utilization levels, where it achieves the

max growth of 11% when this latter is equal to 93%.

Looking at the violation rate (Figure 4.8b), we can assert that:

• MECA-CS+, MAX-CORR and MIN-CORR-VAR reduce the number of violations for all

the given utilization levels. As already explained, using clustering models at the preprocessing

phase leads to finding the same assignment plan for each group of AP; fitting the total amount

of their demands all together is then more difficult compared to single AP assignment problem.

Thus, proposing solutions that ensure balanced availability on MEC hosts capacity is more likely

to happen with cluster-based assignment. In addition, grouping access points based on their

demands can help to assign groups of AP presenting less variance on their demands through

time, which can justify the fact that some clustering-based algorithms outperform others.

• When the maximum utilization is less than 83%, MIN-SUM decreases the number of violations

in comparison to the benchmark, and increases it for an utilization between 83% and 93%. As

mentioned before, this latter produces less demands excess for such utilization levels. This can

be justified by the fact that this approach generates high violations with low excess of demands.

• HYPERBOLIC decreases the number of violations by at most 30% when the servers maximum

usage level is equal to 71%. On the other hand, for a capacity utilization level greater than 78%,
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the number of violations raises when compared to the Benchmark. When the occupancy level is

greater than 93%, we get a decrease in the number of violations for all the cases when compared

to the benchmark.
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Figure 4.8: Robustness results as a function of the maximum MEC host utilization - Paris dataset.

Finally, the results in Figure 4.8c show that:

• Even though both the capacity overload and the violation number difference percentage values

are monotonously increasing, there is a variability in the average of excess demands. This can

be explained by the fact that this ratio is related to the amount of excess demands per each

violation. Having a high violation number with low demand overload yields a larger average of

excess demands and vice versa.

• All the clustering algorithms decrease the average of excess demands for all maximum utilization

levels, except for HYPERBOLIC when this latter is greater than 87%.

All in all, the results provided in Figure 4.8 show the contribution of iterated pairwise clustering

when integrated to the orchestration algorithm and trained using traces from a highly heterogeneous

metropolitan area network as the Paris one. When the robustness against traffic fluctuations is

higher, the number of violations and the excess of capacity are reduced even for the highest MEC

infrastructure utilization levels. It is worth mentioning that, overall, MECA-CS+ and MAX-CORR

provide the most accurate results when applied to both Lyon and Paris datasets.
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4.5 Conclusion

In this chapter, we proposed a collection of base station clustering models aiming at grouping

base station APs in a robust way with respect to their assignment to edge computing facilities. By

leveraging on state-of-the-art orchestration algorithms for the assignment problem, we have evaluated

the performance of the proposed approaches using real-world traffic demands, while comparing them

to other two state-of-the-art approaches. Through extensive simulations and evaluation in terms of

different performance metrics, we show under which conditions the algorithms we propose reveal

to be the most efficient ones. We further compared the four fastest clustering algorithms with two

state-of-the-art algorithms in terms of robustness against traffic fluctuations, and using two different

city datasets. Among many important observations showing the general superiority of our approaches

with respect to the state-of-the-art ones, a promising finding is that the robustness of the algorithms

is higher with larger traffic source diversity.

Chapters 3 and 4 focused on the resource orchestration of MEC infrastructures, more precisely

on the problem of assigning BSs to MEC hosts. Another interesting perspective related to MEC

orchestration is to consider resource orchestration at the application level in MEC environments. To

this end, we present in the following chapter a placement model for distributed edge-AI applications

in a federated learning environment.
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Optimal Placement of MEC Applications for
In-network Federated Learning
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5.1 Introduction

The integration of artificial intelligence modules in network components is been happening since

less than a decade. Modern network nodes nowadays integrate Neural Processing Units (NPUs),

ranging from mobile devices to core backbone equipment. The community often speculated that in

the beginning of this trend, vendors did not know for which applications these units would be useful,

but gambled on their future usefulness.

Network automation is expected to be one of the applications that could leverage on distributed

AI modules for both learning and inference tasks. New network functions related to analytics tasks

have already appeared in telecommunication standards, as for instance the NetWork Data Analytics

Function has made surface in 3GPP 5G system since Release 16 [74] as a function tailored to the

analysis of monitoring data from the 5G core network functions. Indeed, the 5G core network function

cluster is being increasingly integrated in core networks, with a much higher level of geographical

distribution, mostly led by the need to offer 1 ms access latency performance to 5G services.

Such performance targets are therefore pushing for distribution of network functions and related

monitoring, learning and inference tasks. For this re-architecturing, 5G and beyond-5G solutions are

leveraging on multi-access edge computing (MEC) technologies, with so-called traffic local break-out

gateway to steer some traffic requiring such performance to edge application servers co-located with

distributed 5G core functions [75]. On the other hand, the MEC architecture host servers that, besides

serving end-application needs, could also serve to deploy computing functions for a set of infrastructure

needs. The AI@EDGE H2020 European project [76] delved into the definition of AI Functions meant

for distributed learning and inference functions, serving both application and infrastructure (e.g.,

NWDAF) computing needs, and meeting stringent 5G and beyond-5G performance requirements in

terms of latency, impairment detection and feature prediction.

Few distributed learning frameworks have made their way into commercial computing systems.

Among them, Federated Learning (FL) introduces a form of hierarchical learning where edge nodes

perform learning based on data which stays in the locality of the edge nodes, and send the result

for their local learning to a server, which aggregates the learning parameters of multiple edge nodes

and then updates the edge nodes with its global view parameters. Besides being already used for a

number of mobile device usages by companies as Google and Meta [77], FL is also being considered
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for in-network AI functions as the NWDAF [46,47,74]

In this chapter, we address the problem of placing AIFs running federated learning against

connect-compute network infrastructure monitoring data, for environments where the introduction of

edge computing comes with a heterogeneous and large set of computing and networking elements,

requiring low latency performance. Among the multiple distributed learning techniques proposed in

the literature, federated learning [45] reveals as a good compromise between the need to distribute the

learning and guarantee a centralized view in support of efficient inference, and receives large industry

support and integration, including in 3GPP standards [44].

We rely on a federated learning anomaly detection AIF system proposed in [12], adapted for the

5G infrastructure which makes use of a centralized server AIF and a variable number of edge AIFs

while load-balancing monitoring data among the edge client AIFs. In this domain, our contributions

are as follows1:

• We propose a MILP formulation for the placement of AIFs using a federated learning setting.

The proposed model takes into consideration (i) the FL server location, (ii) the latency budget

covering learning and communication delay components, and (iii) the respect of a target learning

time;

• We assess the impact of using hardware accelerators on a subset of edge nodes in order to reduce

the training time, and how the deriving latency unbalance can be compensated in the placement

outcome;

• We compare the proposed approach to two different variants of the AIF placement model in

terms of achievable learning time and number of deployed AIFs.

We present the reference distributed anomaly detection AIF system in the following.

AI-enabled end-to-end applications

We introduce the novel concept of Artificial Intelligence Functions (AIFs) to refer to the AI-enabled

end-to-end applications sub-components that can be deployed across edge-enabled B5G and 6G

1Part of this work was published in the 2022 18th International Conference on Network and Service Management
(CNSM) [78]
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networks. In such a distributed learning setting, multiple AIFs need to be distributed close to, or at

the place where monitoring data is generated, to run distributed continuous learning in support of low

latency runtime inference.

The functional architecture of an AIF is given in Figure 5.1. To support its operation, we identify

five interfaces:

Figure 5.1: AIF reference representation.

• interface (if)1: used by the orchestration platform for the communication with the AIF, including

its configuration (e.g. for dynamic update of federated learning hyper-parameters) and the

retrieval of inference results (e.g., inference running at the server AIF and/or edge AIFs);

• if2: used for AI model parameter exchange among AIFs (AIF control plane interface), e.g., the

communication between edge AIFs and server AIF in federated learning;

• if3: used for data exchange among different AIFs (AIF data-plane interface) - which may be

used for generic distributed learning, in the case of an AIF forwarding graph;

• if4: hardware acceleration interface with components as GPU and Smart-NICs, for training and

inference tasks;

• if5: for data collection and streaming, to interface with a data-pipe-lining system.

A distributed AIF system making use of FL is depicted in Figure 5.2: via if2, edge AIFs send local

training results and obtain global training parameters back from the FL server AIF. if3 is unused in

FL AIFs. if5 makes use of a data pipelining system for getting data for AIFs. The usage of HWAs as

NPU via if4 is meant to accelerate training and inference tasks, where inference could possibly be
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Figure 5.2: FL-based anomaly detection AIF systems.

taking place at the edge AIF level besides the server one. An example of in-network FL application

is anomaly detection for network automation loops. In this application, outlined in [12], distributed

AIFs make use of Long-Short Term Memory (LSTM) autoencoders against group of metrics related to

network, storage, operating system features, to spot anomalous behavior. The goal in such application

is to support automatic reconfiguration of the infrastructure stack (e.g., rescaling, load-balancing,

rerouting) based on the detected anomaly fingerprint.

5.2 Problem Statement

We define the AIF placement as the problem of finding the optimal number of AIFs and their

location on a given network graph, taking into account the inter-AIF communication patterns, target

learning loop time performance and the presence of hardware acceleration.

More precisely, with respect to the reference AIF model (Figure 5.1) in this work we consider that:

1. communication with the orchestration platform (if1) is possible at any node where AIF can be

placed;

2. AIFs interact using federated learning, hence using the if2 interface for exchanging AI model

parameters;

3. if3 is not used, because in federated learning raw data is not exchanged among nodes;

4. if4 is enabled only at a subset of the candidate AIF location for hardware acceleration;
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5. data pipelining delay (if5) is negligible;

6. the propagation delays over the link between candidate edge AIF locations and server AIF are

not negligible with respect to the learning time;

7. the servers hosting AIFs offer them the same computing capacity.

The optimization goal is the placement of the FL server and clients that are both deployed as

AIFs while respecting the imposed target time.

5.2.1 Empirical federated learning time distributions

In order to build a purpose-built model of the learning time as a function of the number of federated

learning nodes that are used, we run the FL-based anomaly detection framework proposed in [12].

To do so, we run a set of AIFs on a Kubernetes infrastructure [79] where the placement is done

automatically using kubernetes scheduler. In fact, each AIF is an implementation of a LSTM model.

The model is composed of a set of autoencoders that allow to detect anomalies at different system

levels, i.e., physical level, virtual level and access level, using different groups of metrics, e.g. CPU,

memory and radio metrics.

We use the 5G3E dataset from [80], providing few dozens of feature time-series for each resource

group, where groups are CPU, RAM, network link and storage resources, and RAN and UE nodes. We

train the ML model using data batches of 800 samples each, corresponding to 2 minutes of collected

data for each data batch: this is the assumed retraining time of the system, which could vary in

general depending on the sampling rate. The batch size is set to the data size, hence considering all

the samples. The number of epochs is 10 and the model is trained for one round. The rest of the

FL-based anomaly detection AIF hyper-parameters are the same as in [12].

In Figure 5.3, we present the corresponding training time distribution as a function of the number

of active AIFs for four different resource groups features related to CPU, Memory, Network and File

system (collected at the container level).

We can remark that the training time decreases with the increase of the number of AIFs up to a

certain threshold value. A certain variance exists, due to CPU scheduling and storage system systemic

variations at the operating system level. We employ in the model the piece-wise linear function
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Figure 5.3: Training time (in ms) vs number of AIFs. R = 1, E = 10.

64



5.2. PROBLEM STATEMENT

obtained using the first quartile values, indicated in red in the figures. In the following, we show how

we rely on the obtained results to build the AIF placement model.

Sets and parameters

|N | = n set (and number) of physical servers

pk max. distributed training time with k deployed AIFs

p̃k reduction in training time passing from k − 1 to k AIFs

R number of rounds of FL algorithm; i.e. number of times the AIFs exchange
the model parameters with the FL server before the inference phase

T target distributed learning time

di communication latency between the FL server and node i

D maximum accepted latency between the FL server and an AIF

Variables

xi binary variable with value 1 if an AIF is activated on node i

t ≥ 0 distributed training time of an AIF

Table 5.1: Mathematical models notations.

5.2.2 Problem formulation

We consider a set N of physical servers such that an AIF can be hosted by any server. The

communication latency between edge AIFs and the FL server AIF depends on the placement decision.

Whereas, the distributed training time t is a decreasing function of the number of AIFs, and does

not depend on the AIF location, as we suppose the same computing capacity is delivered to AIFs

independently of the location. The main goal is to minimize the number of active AIFs used for

training, while guarantying that the overall training loop time (including distributed edge AIF training

time and edge-server AIF delay) is at most T , or equivalently, that the time of a single FL round is

not longer than T
R .

In fact, the time of a single round depends on the distributed training time t and the transmission

latency. We denote by di the transmission latency of an AIF hosted by the server i ∈ N . Additionally,

pk represents the distributed processing time when k AIFs are installed. This parameter is defined

using a linear approximation on the values given by Figure 5.3. Consequently, for each AIF i ∈ N , the

overall learning time of a single round when k AIFs are active is pk+ maxi∈Ndi. Note that at least

two AIFs are enabled to ensure the distribution of the training task.
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5.2.2.1 Greedy solution

If there exist a feasible solution, an optimal solution can be constructed as follows. At each

iteration, we check if we attain the target time, if not, an AIF is added. The algorithm stops when the

target time is attained or all the AIFs are used (eventually signaling that the problem is unfeasible).

Even if this version of the AIF placement problem can be solved by a greedy algorithm, we present a

MILP formulation. This will allow us to introduce more advanced variants of the problem.

5.3 Artificial Intelligence Function Placement

In the following, we present the mathematical formulation of the AIF placement problem then we

propose two variants of the problem.

5.3.1 Mathematical model

We introduce an auxiliary parameter p̃k representing the gain in processing time passing from

k − 1 to k AIFs: p̃k = pk − pk−1. If, by convention, we set p̃1 = p1, the processing time when k AIFs

are active can be calculated as follows: pk =
∑︁k

i=1 p̃i. In Table 5.1, we recap the necessary notations

used to introduce the mathematical formulation.

Following the greedy algorithm idea, the mathematical model defined by equations (5.1) to (5.5)

assumes that the set N is ordered by increasing latency.

min
∑︂
i∈N

xi (5.1)

xi ≥ xi+1 ∀i ∈ 1..n− 1 (5.2)

x2 = 1 (5.3)

t =
n∑︂

i=1
p̃ixi (5.4)

t+ di ≤
T
R

+ (1− xi)(p1 +D) ∀i ∈ N (5.5)

t ≥ 0

xi ∈ {0, 1} ∀i ∈ N
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The objective in (5.1) minimizes the number of activated AIFs. Constraints (5.2) impose that the

activation of the AIFs is done in increasing latency order, whereas constraint (5.3) imposes that at

least two AIFs are installed to ensure the training task in a federated manner. Constraint (5.4) allows

to calculate the distributed learning time (t can be removed by substitution, but we kept it for the

sake of clarity). Constraints (5.5) guarantee that for each activated AIF the time for a single round is

below T
R . If the AIF is not activated, i.e. xi = 0, the constraint is always valid.

We now extend the model to consider the possibility of using a hardware accelerator to reduce

the distributed learning time of an AIF. We assume that only a set of physical nodes are provided

with hardware accelerator. We introduce three parameters: an indicator parameter hi, its value is 1 if

a hardware accelerator is available on node i, and 0 otherwise; the maximum number of hardware

accelerators H, and the acceleration factor 0 < α < 1. If a hardware accelerator is installed, the

processing time p reduces to αp. In this case, a full ordering cannot be obtained independently from

the number of installed AIFs. Indeed, the processing time is influenced by the possibility of installing

hardware accelerators and their available number (note a polynomial algorithm to solve this problem

can be constructed).

To extend the baseline formulation, it is necessary to decouple the counting variable from the

installation variable. Indeed, we cannot determine an ordering independent from the number of

selected AIFs. From now on, no ordering is imposed on N . We introduce a binary variable zk, with

k = 1..n that counts the number of activated AIFs. Note that there is no correspondence with the

indexing of the two variables z and x. Furthermore, we introduce two additional sets of variables: a

binary variable wi that is equal to 1 if the hardware accelerator installed on node i is activated and

used, 0 otherwise; a non-negative continuous variable δt, that represents the gain in processing time if

the hardware accelerator is used, i.e, δt = (1− α)t. The formulation is as follows:
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min
∑︂
i∈N

xi (5.6)

zk ≥ zk+1 ∀k = 1..n− 1 (5.7)

z2 = 1 (5.8)

t =
n∑︂

k=1
p̃kzk (5.9)

n∑︂
k=1

zk =
∑︂
i∈N

xi (5.10)

t− δti + di ≤
T
R

+ (1− xi)(p1 +D) ∀i ∈ N (5.11)

δti ≤ (1− α)t ∀i ∈ N (5.12)

δti ≥ (1− α)t− (1− wi)(1− α)p1 ∀i ∈ N (5.13)

δti ≤ wi(1− α)p1 ∀i ∈ N (5.14)

wi ≤ hi ∀i ∈ N (5.15)∑︂
i∈N

wi ≤ H (5.16)

t ≥ 0 (5.17)

δti ≥ 0 ∀i ∈ N (5.18)

xi, wi ∈ {0, 1} ∀i ∈ N (5.19)

zk ∈ {0, 1} ∀k = 1..n (5.20)

The objective function in (5.6) is unchanged. Constraints (5.8)-(5.9) use the counting variable zi

and substitute constraints (5.3)-(5.4). Constraint (5.10) allows to count the number of active AIFs,

linking z and x variables. Constraints (5.11) are the updated version of constraints (5.5), where

we take into account the time reduction due to the hardware accelerator, if installed and activated.

The reduction is calculated using the auxiliary variable δti. The value of δti must be (1− α)t if the

hardware accelerator is installed, 0 otherwise. Constraints (5.12)-(5.14) allow to represent it in a linear

form. Finally, constraints (5.15) limit the installation of hardware accelerators to the available nodes,

and constraint (5.16) limits the number of installed hardware accelerators.

The next extension offers the possibility to choose the position of the FL server, which has an

impact on the latency of communication with the active AIFs. The possibility of using hardware
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accelerators (in a limited number), opens the following question: could it be cost effective to increase

the latency of some AIFs to reduce the latency of others? In fact, the answer depends on several

factors, the accelerator factor and the location of possible hardware accelerators, their maximal number

and the impact of the location of the FL server on the transmission latency of the different installed

AIFs.

min
∑︂
i∈N

xi (5.21)

equations (5.8)− (5.10)

t− δti +
∑︂
j∈N

dijξij ≤
T
R

+ (1− xi)(p1 +D) ∀i ∈ N (5.22)

equations (5.12)− (5.16)∑︂
j∈N

yj = 1 (5.23)

yi + xi ≤ 1 ∀i ∈ N (5.24)

ξij ≤ yj ∀i ∈ N, j ∈ N (5.25)∑︂
j∈N

ξij = xi ∀i ∈ N (5.26)

var. domain (5.17)− (5.20)

yi ∈ {0, 1} ∀i ∈ N

ξij ∈ {0, 1} ∀i ∈ N, j ∈ N

We extend the previous formulation adding two sets of variables: a binary variable yj , j ∈ N , that

takes value 1 if the FL server is installed on node j and 0 otherwise, binary variable ξij , i ∈ N, j ∈ N ,

that takes value 1 if an AIF is installed on node i and the FL server is installed on node j, and 0

otherwise. The latency parameter di is then substituted by its extended version dij that depends

on the nodes i and j on which the AIF and the FL server are respectively installed. In equations

from (5.21) to (5.26) we report the extended formulation, highlighting the changes with respect to the

previous one.

Constraints (5.22) take into account the delay due to the location of the FL server. In con-

straints (5.23) we guarantee that only one FL server can be installed on a given physical node. In

fact, the node hosting the FL server cannot host an AIF (see constraint (5.24)). Constraints (5.25)
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ensures that for each node i, the only ξ that can be activated is the one corresponding to the node of

the installed server. Finally, coherence between ξ and x variables is enforced by constraints (5.26)2.

5.3.2 Variants of the AIF placement problem

In the following, we present two different variants for the above placement problem.

5.3.2.1 Minimal FL update arrival time variance

We propose a variant of the placement model in which we minimize the difference between the

highest and the lowest learning loop times, where a learning loop encompasses edge AIF training and

the transmission of the new learning metrics to the FL server. The main objective of this model is

to reduce the straggler effects [81], where the aggregation after each round of training depends on

the slowest AIF: data coming too late at the FL server because of too long propagation delay, or too

long edge AIF training time, or both combined, is not counted at a given round, hence decreasing the

training quality.

We add two variables maxT and minT , representing respectively the highest and the lowest

learning time produced during the training taking into account the communication delay with the FL

server. This relationship is represented by the the following constraints:

maxT ≥ t− δti +
∑︂
j∈N

dijξij ∀i ∈ N (5.27)

minT ≤ t− δti +
∑︂
j∈N

dijξij ∀i ∈ N (5.28)

Then, we introduce a new term in the objective function which represents the difference between the

maximum and the minimum training time. The new objective function is presented by equation (5.29).

min A ·
∑︂
i∈N

xi +B · (maxT −minT ) (5.29)

2using these constraints, variables x can be removed
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5.3.2.2 Minimal target learning time violation

In this variant, we accept solutions even when the target learning time is violated. We introduce a

continuous variable U that represents the fraction of the achieved target learning time for the proposed

placement solution.

The new objective in (5.30) aims to reduce the achieved overall learning time by minimizing the

value of U in order to respect the target learning time.

min U (5.30)

Also, equation (5.22) is replaced by (5.31). This constraint allows us to have feasible placement

solutions even if the target learning time is exceeded.

t− δti +
∑︂
j∈N

dijξij ≤
U · T
R

+ (1− xi)(p1 +D) (5.31)

5.4 Experimental results

In the following, we detail the experimental setting, then we provide an evaluation of our placement

model along with a comparison of the different model variants.

5.4.1 Simulation setting

We use the Mandala topology from [82]: it consists of connecting access nodes through three tiers,

i.e., aggregation, core and application (i.e., egress) nodes. For instance, one may consider the edge

servers as MEC hosts in a MEC system in a Metropolitan Area Network topology or a near edge AIF

deployment (see Figure 5.4). The total number of nodes is equal to 26 including 16 edge nodes.

Figure 5.4: Mandala topology [82].
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We solve the AIF placement problem using the following algorithms

• Baseline: greedy algorithm presented in Section 5.2.2;

• AIF-P: placement MILP algorithm (equations from (5.21) to (5.26)), including hw accelerators;

• AIF-P-nohw: same as AIF-P but without using hardware accelerators;

• AIF-P-var: using the first variant of the placement model presented in Section 5.3.2.1. After

several preliminary tests with different values of A and B, we opted for A = 1 and B = 103.

This in fact makes AIF-P-var behave differently from AIF-P;

• AIF-P-U: using the second variant of the placement model presented in Section 5.3.2.2.

We propose to analyze the impact of the following parameters on the behavior of the five afore-

mentioned algorithms:

• Number of rounds: we test different rounds of FL training, i.e., 1, 5, 10, 15 and 20, before the

inference step. In fact, increasing the number of rounds helps increase the quality of the learning.

• Target learning time: we evaluate the proposed algorithm for different target times, i.e., 2 s,

1.6 s and 1.2 s. This parameter specify the time during which we train the model, before its

exploitation for inference.

In order to evaluate the proposed solutions, we generate 15 different configurations for both the

placement and the number of hardware accelerators, such as the number of available accelerators is

randomly generated within the interval of [10%,60%] of the total number of nodes, in order to analyze

the impact of their availability on the proposed solution.

The latency on the links is randomly chosen such that the highest round-trip time for the shortest

path between the most distant nodes is equal to 7% of the lowest training time, with a small part of

communication delay with respect to the training time. The acceleration factor α is set to 0.5, so that

the training time reduction is not too large nor too small.

5.4.2 Results analysis

In the following, we present the simulation results.
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Figure 5.5: Execution time for the different algorithms.

5.4.2.1 Execution time

In Figure 5.5, we present the distribution of the execution time needed by each of the aforementioned

algorithms for all the modeling settings.

As expected, the baseline greedy algorithm is the fastest one, with an execution time below 1

ms, followed by AIF-P-nohw; this can be explained by the fact that AIF-P-nohw does not decide

on hardware accelerators in addition to the function placement. Even if the two algorithms produce

lower execution times when compared to the other approaches, unfeasible solutions are frequently

generated as soon as the time constraints become a bit tighter. We can also notice that AIF-P-U and

AIF-P-var undergo a similar execution time, and are the slowest ones. AIF-P is in between the latest

three approaches.

5.4.2.2 Edge AIF learning time

In Figure 5.6, we present the average of the maximum edge AIF distributed learning time (maximum

among all the feasible solutions) for the different 15 hardware accelerator configurations, for different

target times (5.6a, 5.6b and 5.6c) and using different numbers of rounds. The error bars represent the

standard deviation. We can notice that:

• The distributed learning time decreases with the increase of the number of rounds for all target

times. as already discussed in Section 5.2.1; this can be explained by the fact that increasing

the number of rounds requires higher number of active AIFs at each round since the increase of

this latter decreases the training time.

• In Figure 5.6a, we can notice that with 15 rounds, and unlike all the other cases, AIF-P suffers
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(a) Target learning time=2 s (b) Target learning time=1.6 s

(c) Target learning time=1.2 s

Figure 5.6: Max learning time vs number of rounds (lines for the baseline and AIF-P-U are omitted
for the sake of clarity).
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a slight increase in the learning time when compared to 10 rounds. This likely happens because

we show the maximum distributed learning time over all the feasible solutions, hence unfeasible

solutions are not taken into account: instances that yield solutions with high learning times

using 10 rounds are not accounted in the case of 15 rounds since the algorithm gives unfeasible

solutions for this specific case.

• AIF-P-U produces the same average learning times for all the cases, regardless of the number of

rounds and the target learning time. In fact, it deploys the same solution with all the nodes

having accelerators, for all the different parameters even if it is not necessary in some cases

(i.e., deployment of more AIFs than needed). However, if the target learning time is violated,

AIF-P-U still leads to a placement solution. This approach yields the lowest (equivalent, in some

cases) distributed training time when compared to all the other algorithms, for all the target

times.

• Table 5.2 shows the violation rates U for all the proposed settings. In fact, with less strict

time constraints U < 1, while U increases with the increase of the number of rounds and the

target learning time. Differently than the other approaches, AIF-P-U yields values higher than 1

instead of unfeasible solutions when the target learning time is violated.

• We can also notice that AIF-P and AIF-P-var have similar behaviors: they can produce a

placement solution for all the proposed numbers of rounds for a target learning time equal to 2 s.

On the other side, both algorithms are not able to find any feasible solution for some stringent

time constraint cases; these unfeasible solutions correspond to a number of rounds higher than

15 (respectively 10) for a target time equal to 1.6 s (respectively 1.2 s).

• For all the proposed target times, AIF-P produces a lower distributed learning time than

AIF-P-var when R = 10 for T = 2s and T = 1.6 s (R = 5 for T = 1.2 s respectively). However,

this is not the case anymore when R increases. Differently than AIF-P-var, in order to respect

the learning time threshold, AIF-P tends to use hardware accelerators instead of increasing the

number of deployed AIFs.

• Both the baseline and the AIF-P-nohw show less performance when compared to the other

methods: any feasible solution is found for a number of rounds that surpasses 10 and 5 when

the target time is equal to 2 s (5.6a), and 1.6 s and 1.2 s respectively (5.6b and 5.6c).
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• For the baseline, a very small variation in the solutions was recorded when the T = 1.2 s using 1

and 5 rounds.

These results confirm the usefulness of hardware accelerators during the training phase. In fact,

the reduction in the distributed learning time in order to achieve 20 rounds (respectively, 15 and 10

rounds) when T = 2 s (T = 1.6 s and T = 1.2 s, respectively) is between 50% and 59% for all the

three approaches using hardware acceleration.

(a) Target learning time=2 s (b) Target learning time=1.6 s

(c) Target learning time=1.2 s

Figure 5.7: Number of active AIFs vs number of rounds (lines for the baseline and AIF-P-U are
omitted for the sake of clarity).
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R=1 R=5 R=10 R=15 R=20

T=2 s 0.7 0.32 0.65 0.97 1.29

T=1.6 s 0.08 0.40 0.81 1.21 1.61

T=1.2 s 0.11 0.54 1.08 1.61 2.15

Table 5.2: Achieved violation rates U .

5.4.2.3 Number of active AIFs

In Figure 5.7, we present the average number of active AIFs using the different algorithms, while

varying both the number of rounds and the target learning time. The length of the error bars represents

the variation in the number of AIFs produced by the different 15 simulations for the same case, i.e,

same number of rounds and the same target learning time.

• As expected, the plots show an inverse relationship between the distributed learning time

(Figure 5.6) and the number of deployed AIFs.

• We can notice that, beside AIF-P-U which has a constant behavior regardless of the changing

in time constraint, all the other algorithms show an increase in the number of AIFs with the

increase of of time constraints, except for the case of 15 rounds with a target time equal to 2 s

using AIF-P and AIF-P-var shown in Figure 5.7a. As already explained, we present the average

of the obtained values from all feasible solutions, and where some configurations with 10 rounds

require a high number of active AIFs to respect the target learning time. However, for these

configurations, no feasible solution was found with 15 rounds, thus not taken into account.

• When T =2 s and T = 1.6 s (respectively T = 1.2 s) for a number of rounds equal to 10

(respectively 5), we can notice that AIF-P deploys a lower number of AIFs than AIF-P-var,

however the distributed learning is lower with AIF-P. This can be explained by the fact that

this latter uses hardware accelerators with the few number of deployed AIFs.

• Figures 5.7b and 5.7c show that the baseline algorithm and AIF-P-nohw cannot find any feasible

placement solution when having more than 5 rounds. This can be explained by the increased

number of exchanges between the AIFs and the FL server which has a direct impact on the

overall learning time. In this case, finding a feasible solution with respect to the imposed target

times is not possible. On the other hand, AIF-P and AIF-P-var show higher performance in
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placing the AIFs with stringent time constraints thanks to the use of hardware accelerators.

• In some cases, even though the number of available nodes that can be used to deploy the

necessary number of AIFs w.r.t the target learning time is sufficient, we can notice that, the

algorithms cannot produce any feasible solution. In fact, after each round the AIF should

exchange the local model parameters with the FL server as our solution takes into consideration

the communication latency in the overall learning time (Section 5.2.2. Even if the communication

delay is insignificant to the training time when performing small number of rounds, it is not

negligible any longer if the desired training quality is higher, hence using more rounds.

• It is worth mentioning that AIF-P-U yields different solutions for each simulation, i.e., when the

placement and the number of accelerators change, which explains the high variance represented

by the error bars. In fact, this approach deploys as many AIFs as the number of installed

accelerators regardless of the number of rounds and the target learning time.

• Although the algorithm AIF-P-U does not lead to globally performing solutions, this type of

algorithms can be suitable for cases where it is not acceptable not to place AIFs while tolerating

marginal violations on the target learning time.

• It is worth mentioning that there exist some configurations where AIF-P and AIF-P-var do

not provide feasible solutions, this happens when we have strict time constraints. For instance,

through the 15 instances, both algorithms provide 30% of unfeasible solution with T = 2 s and

R = 15. This number increases when increasing the number of rounds to 20. This is related to

the placement and the number of hardware accelerators on network nodes provided for each

simulation.

As we can see from the performance of approaches using hardware accelerator, this latter reduces

the per-round learning time, hence offering more flexibility on placing and activating AIFs and

consequently training the model for a higher number of rounds.

5.5 Conclusion

In this chapter, we tackled the problem of artificial intelligence function placement in a federated

learning environment where hardware accelerators can be used to increase the learning time efficiency.
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We proposed a MILP model that takes into consideration several challenges, mainly the location

of FL nodes and the communication and processing delays. We then proposed two different variants

of the model and evaluated the performance of the proposed solutions while comparing them to a

baseline placement solution using a greedy algorithm.

We have shown that even if the greedy algorithm performs better performance in scaling where

it has the lowest execution time, it has inferior performance when compared to AIF-P, AIF-P-var

and AIF-P-U. On the other side, AIF-P and AIF-P-var show similar performance in finding feasible

solutions but with different behaviors, i.e., the former reduces the learning time and increases the

number of active AIFs while the latter behaves the opposite.

Choosing between these two algorithms can be based on time constraints and the overall quality

of learning, which decreases if data is highly distributed, preventing the local model from having a

sufficient view of the system. AIF-P-U is able to provide feasible placement solutions based on a

violation rate, this approach shows its benefit when unfeasible solutions are not acceptable.

The obtained results shows that the proposed models allow to increase the number of rounds

by 200% (respectively 300%) w.r.t to a target time equal to 2 s and 1.2 s (respectively 1.6 s) when

compared to the baseline placement solution thanks to hardware acceleration.

An important finding in the placement of distributed AIF is that strong statement on hw accelerators

and/or influence in the placement. In the next chapter, we will focus on mitigating the straggler effect

in FL while making use of HWAs.
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6.1 Introduction

In Chapter 5, we presented a baseline formulation for the placement of the FL AIF participants to

increase the training efficiency. In this chapter, we rely on the aforementioned problem while considering

synchronization management, one of the most important challenges in FL. Indeed, in FL model updates

arrival at the server from multiple edge AIFs can suffer from a so strong desynchronization that data

may no longer be valuable, hence it may get discarded by the FL server for retraining: these nodes

are called stragglers.

The main reason behind the appearance of stragglers is system and data heterogeneity [83] [53].

System heterogeneity is related to computing capacity (i.e., high computation delays) and channel

conditions (i.e., high communication delays). On the other hand, data heterogeneity refers to the

case where data is not independent and not identically distributed (non-iid) among FL participants.

Stragglers slow down the learning process as the aggregation task at the FL server is only triggered

once all the local parameters are received resulting in long convergence time to achieve the required

accuracy. Mitigating stragglers consists of reducing the overall training time to achieve a desired

accuracy in a timely manner. To do so, different techniques can be adopted. For example, [53]

classified the works in the literature to minimize the convergence time into three categories: (i) data

distribution adjustment, to mitigate the non-iid data, (ii) model compression, to reduce both the

local training time and (iii) client selection to select the FL participant with high computation and

communication performance.

In this chapter, we present the IFLC (In-network Federated Learning Control), that is an adaptive

scheme for the usage of HWAs in distributed -in-network learning systems to compensate for end-to-

end network and learning delays variations leading to stragglers. In the previous chapter, we defined

a preliminary FL-AIF placement framework, using a mathematical programming approach. In this

chapter, we go beyond the existing work, reformulating the model to control stragglers, defining a

refined end-to-end training latency modeling, and proposing a polynomial optimal resolution algorithm

hence supporting near-real-time orchestration of FL-AIFs.

The contributions of this work can be summarized as follows1:

• We present an original end-to-end learning latency model jointly considering learning and

1This work is submitted for publication in the journal of IEEE Transactions on Network and Service Management.
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communication delays. Also, we consider a deterministic scenario where the estimated end-to-

end training time of the selected clients is within the imposed time limit, and stochastic scenarios

where the selected FL clients may generate additional delays resulting in stragglers;

• Based on the FL-based architecture (Figure 5.2, Chapter 5), we formulate a joint optimization

problem of FL server and FL clients placement, and FL straggler minimization using a polynomial

algorithm for resolution in addition to a MILP (Mixed-Integer Linear Programming) formulation;

• We evaluate the IFLC using a real-world FL-based anomaly detection [12] in order to assess how

well the proposed approach can (i) increase the local training time efficiency, (ii) minimize the

occurrences of FL stragglers and (iii) find a trade-off between the number of active FL clients

and CPU utilization;

• We compare our approach to a first-fit algorithm. Numerical results show that our algorithm

helps increase the number of selected FL clients that positively contribute to the learning task

by up to 100%.

6.2 Problem Statement

We first describe the AIF network delay model, the addressed problem and the proposed resolution

algorithm. We refer to our framework as In-network Federated Learning Control (IFLC) to express the

fact that we aim at controlling the latency phenomena arising in in-network FL applications subjected

to stringent training model update targets2. Note that in this work, only system heterogeneity is

considered. We do not consider additional delays related to non-iid data and the time needed to

receive data at the edge AIFs is considered negligible as well.

The notations used are summarized in Table 6.1.

We consider a FL-based AIF system (Figure 5.2) composed of a set N of AIFs running on physical

edge servers with heterogeneous CPU resources. Let ci be the number of available CPU cores on edge

2It is worth noting that placing an AIF can mean copying a function image to a physical node or selecting a pre-fetched
AIF already installed in the physical node, so that its actual instantiation can be a near-real-time operation in a similar
time-scale to that of near-real-time execution algorithms.

82



6.2. PROBLEM STATEMENT

Sets and parameters

N set of edge physical servers, with n = |N |.

Ns set of physical servers for FL server placement.

ci number of available CPU cores on node i

pik training time for i ∈ N with k active edge AIFs.

τ target distributed learning time (one FL round).

dij communication latency between node i and node j.

αik ≥ 1, acceleration factor at node i with k active edge AIF

hi assumes value 1 if a HWA is available on node i

H maximum number of allowed HWAs.

S set of delay scenarios.

qs probability of scenario s.

βs
ik drift of the learning time on scenario s

on node i with k active edge AIFs.

ηs
ij drift of the propagation delay on scenario s

from node i to node j.

∆ maximum tolerated end-to-end delay.

Table 6.1: Notations.
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node i. We denote by Ns the set of physical servers used for the AIF server placement. It is worth

mentioning that Ns ≡ N if the FL server AIF can be installed on the edge servers and Ns ∩N = ∅

otherwise.

Additionally, we consider a set of FL client AIFs that can be deployed on top of each physical node

to run a given FL-based application. An AIF receives data streams from external nodes, triggering

the training task. We consider that an AIF consumes all CPU resources that are made available to it

on the physical node3.

We suppose that each physical node can be equipped with HWA to increase the local training

efficiency. We denote by αik the acceleration factor at node i when k FL client AIFs are active. The

total number of HWAs is limited by a constant H. In the following, we present the modeling of the

end-to-end learning time.

6.2.1 End-to-end training time modeling

The global training time needed to update the AI model at the server AIF is therefore a function

of different training and propagation times and the number of edge AIFs. Figure 6.1 depicts the

training time model components.

Definition 1 (Local Training Time - p). Let pik be the local training time of an AIF on node i when k

AIFs are active.

This parameter depends on (i) the number of available CPU cores at the physical layer, (ii) the

enabling of HWAs, and (iii) the amount of training data. More precisely, the training time is directly

related to the data size, e.g., the training time in neural networks is evaluated by the number of floating

point operations which depends on the data size and the architecture of the neural network [84].

Consequently, the local training time reduces with the number of active AIFs as data is distributed

amongst them. We define p as an upper bound for the overall training time during a given round.

Definition 2 (Propagation Delay - d). Let dij be the communication latency on the link that intercon-

nects nodes i and j.

Transmission delays, negligible due to small volume of data exchanged (if2, Figure 5.2), could also

be incorporated in d.

3This corresponds to the default behavior of container-based services.
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Definition 3 (End-to-End (E2E) Training Time - χ). Let χik be the sum of the local training time at

node i (while k AIFs are active) and the propagation delay between the nodes deploying this client

AIF and the FL server AIF j.

As in real world scenarios stochastic delays may apply on end-to-end training times, we consider

two different behaviors for an AIF: a deterministic behavior where the local training time and the

propagation delay are the same as expected, and a stochastic behavior where additional delays may

apply to the local training time, to the propagation delay or both.

Definition 4 (Training Time Drift - β). Let β be the stochastic delays applied to the local training

time.

This parameter is supposed to be unknown, even if it can be empirically characterized from real

systems. Furthermore, we define a set S of possible scenarios that define the intensity of the stochastic

delays. In such a way, for each scenario s we have a realization of the training time drift β: βs
ik for

each node i and k deployed AIF.

Definition 5 (Propagation Delay Drift - η). Let η be an additional random value applied to the

propagation delay (e.g., it can be traffic dependant following a queuing mode or traffic independent

where it is influenced by the link length).

For each scenario s a drift is applied to the propagation delay η is : ηs
ij for each pair of edges i

and j.

Definition 6 (Target Time - τ). Let τ be the target learning time after which aggregation is triggered

at the server AIF.

Definition 7 (Maximum Tolerated Delay - ∆). Let ∆ be the tolerated elapsed training delay between the

last accepted reception of the parameters from an edge AIF, and the effective start of the parameters

aggregation at the server AIF.

Definition 8 (AIF Straggler or Straggling AIF). An AIF straggler or straggling AIF i is a client AIF

whose E2E training time χ is greater than the threshold but remains within the tolerated additional

time ∆ (i.e., τ ≤ χ ≤ τ + ∆).
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Figure 6.1: E2E training time (χ) model components and threshold.

Note: parameters sent by an AIF straggler are aggregated by the server AIF if χ ≤ τ + ∆. The

values of τ and ∆ depends on the use case specification requirements, with ∆ < τ .

We consider two possible settings for the FL AIFs:

• ‘edge-edge’: both server and edge AIFs are running at the edge nodes: the propagation delays

in that case can be expected to be negligible as compared to the training time, considering the

possible duplication of the FL server instance close to the clients.

• ‘core-edge’: the server is placed at a core location (beyond aggregation nodes) whereas edge

AIFs are placed at the edges: the propagation delays for this setting can be expected to be of

the same magnitude as the training time.

6.2.2 In-Network Federated Learning Control: IFLC

Under the delay model, we can define the IFLC problem as follows. Given a set of physical nodes

N and a defined target time for a specific application, find an optimal placement of the FL server AIF

and the FL client AIFs to ensure that:

• the maximum E2E training time does not exceed the time requirements imposed by the applica-

tion,

• HWA, if available, can be enabled to reduce the local training time,

• the CPU utilization is minimized,
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• the average number of AIFs exceeding the target time is minimized, including the stochastic

scenarios (see definitions 4 and 5).

Indirectly, the number of active AIFs is pushed down towards optimality;

6.3 Mathematical Model

In the following, we present the mathematical programming model that corresponds to the IFLC

scheme. We use a set of binary variables: xi represents the activation state of the AIF on node i,

hence it takes value 1 if node i is used to deploy an AIF. yj provides the position of the FL server

AIF, if it is equal to 1 then the FL server is placed on node j. If an AIF is installed on node i and the

FL server is placed on node j then ξij is equal to 1. ζik and zk are used to count the total number of

active AIF. ψik is equal to 1 if the hardware accelerator is present and used on node i and k AIFs are

active.

On the other hand, real variables are introduced. ti represents the local training time when an AIF

is active on node i, δik represents the amount of reduction in the local training time due to hardware

acceleration, when k AIFs are active on node i and χi represents E2E training time of the client AIF

deployed on node i. Finally, we introduce the real variables tĩ
s
and δik̃

s
which correspond to the

stochastic local training time and the reduction in the stochastic local training time, respectively, for

scenario s. χĩ
s is the E2E training time of the client AIF deployed on node i with scenario s

The mathematical notations are summarized in 6.2.

6.3.1 Core model constraints

6.3.1.1 FL clients and FL server AIFs placement

We need to determine the location of the FL server AIF and the number and location of the client

AIFs in order to guarantee that each AIF can train and send the model parameters to the FL server

on time.

Constraints (6.1) impose that the FL server AIF is installed on one and only one node. (6.2)

impose that the node that hosts the server cannot host an edge client AIF.

We recall that variable ξij is used to represent the fact that a FL client AIF is installed on node i
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Binary variables

xi 1, if a client AIF is active on node i

yj 1, if the FL server AIF is installed on node j

wi 1, if the hardware accelerator is activated on node i

ζik 1, if an AIF is active on node i with k deployed AIFs

ξij 1, if a client AIF is installed on node i and the FL server AIF is installed on node j

σs
i 1 if a client AIF on node i is a straggler in scenario s

ψik 1, if a hardware accelerator is present and used on node i and k AIFs are active.

zk total number of activate AIF

Continuous variables

tĩ
s

distributed training time on node i

χi E2E training time of the client AIF deployed on node i when k AIFs are active

δik time reduction at node i when k AIFs are active

δik̃
s

time reduction at node i when k AIFs are active

χĩ
s E2E training time of the client AIF employed on node i

when k AIFs are active with scenario s

δik̃
s

time reduction at node i when k AIFs are active

Table 6.2: Mathematical notations.
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and the FL server is installed on node j. Therefore, when ξij = 1 the AIF installed on node i yields a

communication latency of dij . Constraints (6.3) and (6.4) are consistency constraints. If the server is

not installed on node j then all the variables ξij must be equal to zero. For a given node i, one and

only one variable ξij can assume value 1 if a client AIF is installed on node i, otherwise they are all

equal to zero.

∑︂
j∈Ns

yj = 1 (6.1)

yi + xi ≤ 1 ∀i ∈ N (6.2)

ξij ≤ yj ∀i ∈ N, j ∈ Ns (6.3)∑︂
j∈Ns

ξij = xi ∀i ∈ N (6.4)

6.3.1.2 Training time characterization

Constraints (6.5) allow to calculate the deterministic training time of node i when k AIFs are

deployed.

Constraints (6.6) and (6.7) are consistency constraints, that is, when variables zk or xi are null,

the corresponding ζik, ti variables for node i are also null.

Constraints (6.8) together with constraints (6.9) allow us to count the number of deployed AIFs.

ti =
n∑︂

k=2
pikζik ∀i ∈ N (6.5)

n∑︂
k=2

ζik = xi ∀i ∈ N (6.6)∑︂
i∈N

ζik ≤ |N |zk ∀k ∈ 2..n (6.7)

n∑︂
k=2

zk = 1 (6.8)

n∑︂
k=2

kzk =
∑︂
i∈N

xi (6.9)
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6.3.1.3 Hardware acceleration for deterministic training

We allow the use of hardware accelerators to reduce the training time. We introduce the necessary

constraints to evaluate the impact of the hardware accelerators on the local training time. Con-

straints (6.10) impose that the hardware accelerator can be used only if available. Constraints (6.11)

impose that a maximum number H of hardware accelerators can be used.

wi ≤ hi ∀i ∈ N (6.10)∑︂
i∈N

wi ≤ H (6.11)

Constraints (6.12)-(6.15) allow to evaluate the gain in the deterministic local training time obtained

using hardware acceleration while associating the two variables δik and wi to keep consistency.

ψik ≤
ζik + wi

2 ∀i ∈ N, k ∈ 2..n (6.12)

δik ≤ ψik

(︃
1− 1

αik

)︃
p ∀i ∈ N, k ∈ 2..n (6.13)

δik ≤
(︃

1− 1
αik

)︃
(pikζik) ∀i ∈ N, k ∈ 2..n (6.14)

δik ≥
(︃

1− 1
αik

)︃
(pikζik)− (1− ψik)p

∀i ∈ N, k ∈ 2..n (6.15)

Note that p represents the maximum deterministic training time and can be calculated as follows:

p = max
k=2..n,i∈N

pik (6.16)

6.3.1.4 Target time

For each node i, constraints (6.17) compute the E2E training time of an active AIF on node

i. Constraints (6.18) ensure that the maximum E2E training time that an active AIF can achieve

does not exceed the accepted target time τ . These constraints are always valid even when no AIF is

installed. In fact, variables ti and δik assume value zero when xi = 0 (see, constraints (6.4), (6.5)-(6.6),

and (6.14)-(6.15)).
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χi = ti −
∑︂

k∈2..n

δik +
∑︂

j∈Ns

dijξij ∀i ∈ N (6.17)

χi ≤ τ ∀i ∈ N (6.18)

6.3.2 Stochastic variant

In the following, we introduce the stochastic variant of the AIF placement model. The goal is to

introduce robustness against different realization scenarios. We add the following constraints to the

aforementioned model.

Constraints (6.19) calculate the stochastic local training time for node i when k AIFs are active

and a delay βs
ik is applied.

˜︁tis =
n∑︂

k=2
(pik + βs

ik)ζik ∀i ∈ N, s ∈ S (6.19)

In the same way as in deterministic model, constraints (6.20)-(6.22) allow to evaluate the gain

in local training time obtained using hardware acceleration while considering the additional delays

applied to the training time.

˜︁δs
ik ≤ ψik

(︃
1− 1

αik

)︃ ˜︁p ∀i ∈ N, k ∈ 2..n

∀s ∈ S (6.20)

˜︁δs
ik ≤

(︃
1− 1

αik

)︃
(pik + βs

ik)ζik ∀i ∈ N, k ∈ 2..n

s ∈ S (6.21)

˜︁δs
ik ≥

(︃
1− 1

αik

)︃
(pik + βs

ik)ζik − (1− ψik)˜︁p
∀i ∈ N, k ∈ 2..n

∀s ∈ S (6.22)

Note that ˜︁p represents the maximum stochastic training time and can be calculated as follows:

˜︁p = max
k=2..n,i∈N,s∈S

(pik + βs
ik) (6.23)
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Finally, constraints (6.24) compute the E2E stochastic time of node i and constraints (6.25) impose

that the E2E training time of an active AIF, including the additional delays applied to both the

training and propagation times, are below the threshold. It is worth noticing that in this case we

accept a maximal response time τ + ∆ with the aim of reducing the number of stragglers.

Also, these constraints are always valid even when no AIF is installed where ˜︁tis
and ˜︁δs

ik assume value

zero when xi = 0 (see, constraints (6.4), (6.5)-(6.6), and (6.21)-(6.22)).

˜︁χi
s = ˜︁tis −

n∑︂
k=2

˜︁δs
ik +

∑︂
j∈A

(dij + ηs
ij)ξij ∀i ∈ N, s ∈ S (6.24)

˜︁χi
s ≤ τ + ∆σs

i ∀i ∈ N, s ∈ S (6.25)

6.3.3 Objectives

The goal is to minimize the number of AIFs that can be in a straggling situation in order to

guarantee a certain level of performance of the learning process with minimum costs. To this end, we

introduce two objectives. We first minimize a measure of the stragglers in the system and then, we

search for solutions with the minimal utilization of resources.

6.3.3.1 Minimizing the number of stragglers

(6.26) allow to minimize the expected number of stragglers associated with a probability for each

scenario qs.

min
∑︂
s∈S

qs

∑︂
i∈N

σs
i (6.26)

6.3.3.2 Minimizing the number of computational resources

After determining the optimal solution of the previous problem, we can further minimize the

number of computational resources while limiting the increase of the expected number of stragglers.

We denote by σ⋆ the minimum number of AIF in a straggling situation provided by (6.26). We

formulate our second phase optimization problem as:

min
∑︂
i∈N

cixi (6.27)
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We introduce the additional constraints (6.28) to limit the increase of the number of stragglers.

∑︂
s∈S

qs

∑︂
i∈N

σs
i ≤ σ⋆ + ϵ (6.28)

Note that the objective in (6.26) along with constraints (6.28) are only used by the stochastic

variant.

Additionally, we introduce the following domain constraints to complete the model:

ti ≥ 0 ∀i ∈ N (6.29)

˜︁tis ≥ 0 ∀i ∈ N, s ∈ S (6.30)

δik ≥ 0 ∀i ∈ N, k ∈ 2..n (6.31)

˜︂δik
s
≥ 0 ∀i ∈ N, k ∈ 2..n, s ∈ S (6.32)

xi, wi, yj , ξij ∈ {0, 1} ∀i ∈ N, j ∈ Ns (6.33)

zk ∈ Z ∀k ∈ 2..n (6.34)

ζik,∈ {0, 1} ∀i ∈ N, k ∈ 2..n (6.35)

6.4 Resolution algorithm

We propose an IFLC resolution algorithm for the deterministic case where the structure is based

on the following observations:

• the possible locations of the FL server AIF is given by |Ns| (or |N | for the edge-edge setting)

• the number of installed AIFs is limited by |N | (or |N | − 1 for the edge-edge setting),

• for each server location and given number of installed AIFs, χ can be pre-calculated.

The proposed algorithm search for the best solution for each given combination (j, k) of AIF server

location (j) and number of installed edge AIFs k and keep the best one, see Algorithm 1. In the

edge-edge setting, the server is chosen from the set N and its location is removed from the available

AIFs location. The decision of activating an AIF is done working on the set of locations ordered

by increasing ci, breaking ties using χ (smallest first). Note that differently than the mathematical
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model presented in the previous section, this algorithm considers that the end-to-end training time

component χ as a parameter, computed for each combination (j, k) of AIF server location (j) and

number of installed edge AIFs k.

Algorithm 1: General IFLC Scheme

output : S⋆: set of active edge AIFs, j: server AIF position

1 best cost = ∞
2 S⋆ = ∅
3 for j ∈ Ns do
4 for k ∈ 1..n do

5 Ñ ← available nodes in decreasing order of ci

6 (feasible, S, cost) = best placement(k,j,Ñ)
7 if cost ≤ best cost and feasible then
8 bestcost = cost
9 FL server = j
10 S⋆ = S

11 return (S⋆, FL server)

To allow a compact representation of the placement procedure, we report here the calculation of χ

for a given couple (j, k). The deterministic E2E training time for a given node i can be calculated as:

χi = pik + dij (6.36)

and when the hardware accelerator is installed:

χha
i = pik − δik + dij (6.37)

Note that if χ > τ , the edge AIF cannot be placed on node i, regardless of whether HWA is

available or not. Therefore, the best placement procedure inspects the list of ordered nodes Ñ

and checks whether is possible to place an edge AIF without exceeding the threshold sequentially.

HWAs are used (if available) only if necessary to reduce χ under the threshold τ . best placement

is presented in Algorithm 24. For ease of presentation, we do not explicitly add the line that save

the location of the HWA (assumed saved by the procedure). Also, note that we only present the

placement procedure for the deterministic case.

We can observe that at each step of the function presented in Algorithm 2, the less expensive

AIF location for which the E2E training time is below the threshold is selected. If at the end of the

4Where no HWA is available the parameter H assumes value zero.
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Algorithm 2: Best placement - deterministic

input : j: server location, k number of active edge AIFs,
Ñ set of available nodes for locating the AIFs

output : feasible: bool, S: set of active edge AIFs,
cost: solution cost

1 kcount = 0, cost = 0, hwa = 0, S = ∅
2 Calculate deterministic E2E training times
/* try to locate k AIFs */

3 while Ñ ̸= ∅ and kcount < k do

4 i=pop(Ñ)
5 if χi ≤ τ then
6 kcount ++, cost += ci, S = S ∪ {i}
7 else if χha

i ≤ τ and hwa < H then
8 kcount ++, cost += ci, hwa ++, S = S ∪ {i}

9 if kcount == k then
10 return (True, S, cost)

11 else
12 return (False, ∅, ∞)

process, the number of selected edge AIFs is lower than k, it means that k AIFs do not allow a viable

E2E training time (with the number of available HWAs).

6.4.1 Time and space complexity

The algorithm repeats the procedure “best placement()” for each couple (j, k) of FL server

location and number of instantiated AIFs, i.e. |N ||Nc| iterations. In addition, the placement procedure

performs a sorting of the AIF locations and an inspection of the resulting list. Thus, the overall time

complexity for the algorithm is of the order of O(|N ||Nc| log(|N |)), ≈ O(n2 log(n)), where n = |N |

and under the assumption that |Nc| = O(n).

6.4.2 FIRST-FIT algorithm

As a lowest-complexity benchmark, we introduce a baseline placement algorithm to compare with

IFLC strategies. It is a first-fit algorithm, of ≈ O(n log(n)) time and space complexity, that prioritizes

the nodes with the highest CPU resources where it increases the number of deployed AIFs until there

is no more decreasing in the E2E training time. FIRST-FIT is given in Algorithm 15.
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Algorithm 3: FIRST-FIT algorithm

output : S: set of active edge AIF, j: server AIF position

1 Ñ ← sort N in decreasing order of CPU resources
2 S ← 0
3 E2E time = 0
4 E2E time final =∞
5 k = 0, number of AIFs

6 j = random(Ñ), Ñ = Ñ \ {j}

7 while Ñ ̸= ∅ do
8 i=pop(Ñ)
9 S = S ∪ i, k+ = 1
10 Update(E2E time, k)
11 if E2E time final ≤ E2E time then
12 S = S − {i}, k− = 1
13 return (S)

14 Update(E2E time final, k)

15 return (S, j)

6.5 Simulated Instances

We report how we set-up the numerical evaluation environment, including simulated scenario and

the used dataset.

6.5.1 AIF application

In order to evaluate IFLC strategies, we consider the FL-based framework proposed in [12]

where each AIF is an implementation of an LSTM autoencoder neural network system to detect

anomalies in a 5G stack. The goal of this framework is to detect anomalies at different system levels,

i.e., physical level, virtual/container level and access level, using thousands of time-series issued

by probes from network functions, physical servers, Eth/IP and radio links. Probes are collected

from a 5G testbed replaying traffic traces of a European operator, from the ANR COCO5G project

(https://coco5g.roc.cnam.fr), in the Lozere region in France for 3 months in 2019.

The data collected from the probes form the 5G3E dataset from [80] provides few dozens of feature

time-series for each resource group, where groups are related to CPU, RAM, storage and link states.

We use data batches of 4000 samples to train the aforementioned AIML model: it corresponds to 10
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minutes of collected data, assumed to be the retraining time of the system and could vary in general

depending on the sampling rate. The batch size is set to the data size, hence considering all the

samples. The number of epochs (E) is 10 and the model is trained for one round (R = 1). The data

is then evenly load-balanced as a function of the number of edge AIFs employed. The rest of the

hyper-parameters are set as explained in [12].

(a) 2 AIFs. (b) 6 AIFs.

Figure 6.2: Training time distribution in function of number of active edge AIFs and available CPU
cores. R = 1, E = 10.

6.5.2 Computation of training and propagation time samples

We generate the training time samples as a function of the number of edge AIFs and the amount of

computation resources using the aforementioned AIF application. Figure 6.2 depicts the distribution

of the maximum local training time for different numbers of edge AIFs and CPU cores. We can remark

that the training time decreases with the increase of the number of AIFs and of available CPU cores

up to a certain threshold.

In contrast to conventional user-device FL-based services, this framework considers an in-network

service where the time scale at which the anomaly detection model is expected to react is on the order

of few seconds, or even sub-second. Nonetheless, it is worth mentioning that our IFLC scheme can be

applied on any FL application.

For the purpose of evaluating IFLC on large instances, we generate a synthetic set of pseudo-random

training times that approximate a pre-specified correlation coefficient between the training time values,

the number of active AIFs and the number of available CPU cores. This correlation coefficient is
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retrieved from the original data. We make available the samples and related scripts for the simulations

in [85]. Note that the generated dataset contains training times for different number of active AIFs

and available CPU cores.

Figures 6.3 depict the distribution of the training times of both the original and synthetic datasets,

based on the total number of CPU cores (i.e., number of CPU cores that are used by all active AIFs).

(a) original dataset (b) synthetic dataset

Figure 6.3: Training time distribution vs the number of CPU cores.

As a function of the AIF positioning setting, we configure the E2E training time components as

follows:

• ‘edge-edge’ setting: we define the maximum one-way latency between the furthest edge AIF and

the server AIF as the 25% quantile value of the training time during one epoch divided by 10.

• ‘core-edge’ setting: the highest value of the one-way latency between the furthest FL client AIF

and the FL server is set equal to the mean value of the training times during 10 epochs.

We consider a combination of deterministic and stochastic behaviors for both propagation and

training times as shown in Table 6.3. Note that ‘S-D’case is not cited because it generates the same

solutions as ‘S-S’. This can be explained by the fact that both cases apply stochastic delays on the

local training time, and since the latter has the highest impact on the E2E training time compared to

the propagation delay, the placement solution is the same for both cases as they have similar strictness

on time constraints. We set the stochastic drifts as proportional to the nominal values of the training

time and propagation delays, respectively.
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cases training time propagation delay

case D-D deterministic deterministic

case D-S deterministic stochastic

case S-S stochastic stochastic

Table 6.3: Training time and propagation delays options.

6.5.3 Simulated network instances

We use the Mandala topology already presented in Chapter 5. Also, we consider that each node

can be equipped with 1, 2, 4, 8 or 16 CPU cores.

We compare four resolution approaches:

• no-HWA: degenerate IFLC with no HWAs employed.

• IFLC-8 : 50% of edge nodes (i.e. 8) equipped with HWAs.

• IFLC-16 : all edge nodes (i.e. 16) equipped with HWAs.

• FIRST-FIT baseline Alg. 6.4.2 (not enabling HWA).

The comparison is done looking at the following features:

• the number of straggling AIFs,

• the E2E training time and its variance,

• the computational overhead related to the number of active AIFs and of CPU cores.

We rely on [66] and [67] to define the acceleration factor of HWAs: accordingly, we consider that

it depends on the number of active AIFs (i.e., data size) and the number of available CPU cores

(i.e., number of threads). More precisely, the experimental evaluation in [66] have shown that the

acceleration factor decreases by 370% when increasing the number of CPU cores from 1 to 16. Based

on this evaluation, we applied a piece-wise linear fitting function [86] to retrieve the acceleration

factor for 2, 4 and 8 CPU cores (see Figure 6.4). We repeated the same operation to generate the

acceleration factors for different numbers of AIFs.
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Figure 6.4: Acceleration factor: data extrapolation.

Moreover, in order to test different levels of strictness on the training time target constraints, we

use different values for the target time τ (i.e., 2 and 4 s) and the number of epochs (i.e., from 60 to

105 with a step of 5 epochs). Considering constant the training times across different FL epochs, we

generated local training times with an increasing number of epochs proportionally with the number of

epochs starting with the baseline with 10 epochs.

Also, we consider that the maximum tolerated delay ∆ is 4 times less than the target time, which

roughly correspond to the maximum lifetime network connections that are not bulk transfers. Then,

we range from loose timing constraint (e.g., τ = 4 s with 60 epochs) to extremely rigorous ones (e.g.,

τ = 2 s with 100 epochs). Also, additional stochastic delays may reach nearly twice the nominal time.

We run 30 instances for each approach and each different setting where the propagation time,

the stochastic delays and the placement of hardware accelerators are randomly generated for each

instance. The number of available CPU cores is fixed for all instances.

6.6 Experimental Results

In this section, we provide a detailed numerical evaluation focused on stragglers, training times

and computation overhead. Overall, Table 6.4 presents the proportion of instances that lead to a

feasible solution (with respect to the target delay bound).

For the two AIF placement settings, no-HWA could produce a solution only at most for 15% of

the instances. This increases to 100% when IFLC is used. On the other side, all the solutions yielded
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Approach edge-edge core-edge

no-HWA 15% 10%

IFLC-8 100% 100%

IFLC-16 100% 100%

FIRST-FIT 0% 0%

Table 6.4: Percentage of feasible instances per approach.

by FIRST-FIT algorithm are unfeasible, as it has no check on the target time. It is worth noting that

if the E2E training time of an AIF exceeds the time threshold, we consider that the local training

parameters cannot be used by the FL aggregation task.

6.6.1 Number of stragglers

In Figures 6.5, we present the distribution of the number of AIF stragglers for both edge and

core-edge settings, and excluding the ‘D-D’case since it does not model the stragglers. We can notice

that:

• With IFLC, the likelihood of being in a straggling situation decreases with the number of

available HWAs when the training time is stochastic. For deterministic cases, the number of

stragglers is null, for all the settings.

• With FIRST-FIT, the number of stragglers is the worst, and it is higher in the core-edge setting:

the placement at the edge gives more flexibility thanks to lower propagation delays, hence leading

to lower E2E training times. This does not happen with IFLC, showing its robustness against

high propagation delays (core-edge setting).

• For all approaches and settings, the number of straggling AIFs increase when the training time is

stochastic, as it can be seen from Figures 6.5b and 6.5d. Specifically, the median value increases

from 4 to 5 for FIRST-FIT with the edge-edge setting, whereas in core-edge the minimum number

of stragglers increases by 2. On the other side, the highest number of stragglers generated by

IFLC-8 and IFLC-16 increases from 0 to 2 for both placement settings. This number increases

from 0 to 4 with no-HWA for both settings.
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(a) case D-S: edge-edge
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(b) S-S: edge-edge
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(c) case D-S: core-edge
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(d) case S-S: core-edge

Figure 6.5: Distribution of the number of straggling AIFs.
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• In the ‘D-S’ case (see Figures 6.5a and 6.5c), our approach significantly outperforms FIRST-FIT,

regardless of the number of HWAs. Under more stringent targets (S-S), FIRST-FIT yields lower

number of stragglers than no-HWA with edge-edge, where the minimum number of stragglers

achieved by no-HWA (i.e., 4 stragglers) corresponds to the first quartile value achieved by

FIRST-FIT in the edge-edge setting, and the minimum value in the core-edge one.

Overall, thanks to time modulation, IFLC always outperforms FIRST-FIT in terms of the number

of stragglers, for all the cases. HWA helps reducing the local training time which allows slow AIFs to

reach lower E2E training times and consequently respect the imposed target time.

6.6.2 Training time
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Figure 6.6: Distribution of the maximum local training time.

Figures 6.6 represent the distribution of the maximum local training times. We can notice that:

• In contrast to FIRST-FIT, IFLC approaches have similar distributions of the training time

for the two placement settings. This can be explained by the fact that the latter leads to
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solutions that are robust against high propagation delays. This can also be seen when comparing

‘D-D’ and ‘D-S’ cases where the training times remain the same.

• The distribution of the training time is very similar for IFLC-8 and IFLC-16 for all cases. This

can be explained by the fact that both IFLC-8 and IFLC-16 yield the same placement solutions

(i.e., same number of active AIFs and active HWAs) as a low number of HWAs can be sufficient

to respect the target time even with very strict targets.

• Both D-D and D-S cases have lower maximum training times compared to S-S for all cases. This

happens because S-S has higher local training times due to additional applied delays.

Overall, IFLC gives lowest training times thanks to HWA, followed by no-HWA and finally FIRST-

FIT which yields the highest training times (which are higher than the imposed target time, hence

discarded by the FL server).

Figures 6.7 report the distribution of the maximum variance in E2E training times (only for the

edge-edge setting, as no major difference appears with the core-edge one). We can notice that:
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Figure 6.7: Distribution of the the variance in E2E training time.

• The lowest variance in E2E training time corresponds to IFLC-16 followed by no-HWA the

IFLC-8. Indeed, IFLC deploys AIFs with close E2E training time with the aim of reducing the

number of stragglers during each round, attempt favored by HWAs that get enabled to accelerate

training for farthest AIFs from the server. The variance is further decreased in deterministic

cases.

• IFLC-16 yields lower variance when compared to IFLC-8 for all cases. This can be explained by

the fact that the former has more control in placing the AIFs on nodes with similar capacities
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as HWA is present on all nodes. On the other hand, IFLC-8 has less flexibility where the

node selection depends on the HWA availability. Moreover, the variance increases with time

constraints as can be seen from ‘D-S’and ‘S-S’cases when comparing IFLC-8 and IFLC-16. In

fact, IFLC-16 allows to activate HWA on nodes with similar processing capacities which results

in equivalent local training times. On the other hand, IFLC-8 may not have available HWAs on

these nodes and thus nodes with different processing capacities are used. This results in higher

variance.

Globally, since the weight of the local training time in the E2E training time is greater compared

to the propagation delay, and that training times get higher if HWA unavailability, this makes finding

solutions with near local training times harder as it turns into finding nodes with higher CPU resources

to respect the target time.

6.6.3 AIF computational overhead

The latter observation can be clarified by Figures 6.8 and 6.9 that depict the distribution of the

number of active AIFs and the total number of CPU cores that are used by the active AIFs. We only

report the cases D-S and S-S in this section as D-D yields the similar distributions as ‘D-S’.

Besides expectable behaviors for FIRST-FIT deriving from the previous analysis, we can highlight

that:

• The number of active AIFs reduces with the number of HWA. More precisely, for no-HWA

feasible solutions refer to instances with less stringent time constraints. The corresponding

number of active AIFs is equal to 4, that is, 4 AIFs are deployed to respect the target time.

This number decreases by up to 50% thanks to HWA: both IFLC-8 and IFLC-16 yield a lower

number of active AIFs (i.e, 2 AIFs) when the same time constraints apply.

• For FIRST-FIT, the minimum number of active AIFs is higher with core-edge setting, as it is

more flexible than edge-edge in placing edge AIFs. In that case, if the stopping point is not yet

achieved (i.e., possibility of decreasing the local training time), FIRST-FIT will keep increasing

the number of AIFs. This confirms the previous results showing that the local training time is

lower with core-edge.
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(d) case S-S: core-edge

Figure 6.8: Distribution of the number of active AIFs.
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• IFLC-8 yields the same number of active AIFs as IFLC-16. This can be explained by the fact

that IFLC promotes using HWA instead of increasing the number of active AIFs to reduce the

local training time. As HWA may not be available on some physical nodes with IFLC-8, the

latter chooses the same number of active AIFs as IFLC-16 but with higher cpu resources.

• higher CPU resources are needed to reduce the local training time and consequently the E2E

training time for FIRST-FIT and no-HWA, which is correlated with the higher number of active

AIFs even with less strict time constraints. Also, FIRST-FIT achieves the same minimum cost

as IFLC for a small number of instances with edge-edge placement:

for theses instances, the stopping point is achieved with a low number of active AIFs w.r.t the

other instances, which results in a lower number of CPU cores.

• The distribution of CPU cores is slightly different when comparing IFLC-8 and IFLC-16. As

already explained, when stringent time constraints apply, IFLC-8 yield the same number of

active AIFs as IFLC-16. However, the former may not have available HWA on nodes with low

cpu resources which leads to solutions with slightly higher processing capacities.

Overall, the advantage of an IFLC scheme is the capability of exploiting HWA, leading to the

lowest computational costs, as less CPU resources are needed.
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(d) case S-S: core-edge

Figure 6.9: Distribution of the total number of CPU cores.
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6.7 Conclusion

In this chapter, we proposed a federated learning system control scheme to permit dynamic selection

of hardware accelerators in artificial intelligence function orchestration for in-network applications.

Our scheme is designed to decrease the number of learning stragglers, while making efficient use of

heterogeneous computing resources.

A major highlight is that we demonstrated how adaptive hardware acceleration can reduce the

number of stragglers up to 100%, when comparing to first-fit scheduling of federated learning clients

across a distributed network, and the cases where hardware accelerators are not used by these clients.

We also avoid with our schemes a random or systemic use of hardware acceleration, which may lead to

either too high variance in the end-to-end training times on the one hand, or avoidable computational

overhead on the other hand.

Our contribution also originally identifies the necessity to combine network delays with distributed

training delays when seeking efficient learning solutions. In our analysis, we also cope with stochastic

variations in both network delays and local training times when designing our in-network federated

learning control scheme.
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7.1 Conclusion

Over the past decade, the number of mobile users has increased exponentially with the proliferation

of 5G multimedia applications that are targeting very low-latency and high reliability. This increasing

demands for data services led to new challenges related to end-to-end latency, computing capabilities,

energy consumption and the number of connected devices. These challenges do not only affect network

operators but also service and application providers. Recently, a distributed network design known as

Multi-access Edge Computing was introduced as one of the 5G key enabler to overcome the above

challenges. In practice, MEC supports low latency as well as intensive computation by running

applications closer to end users. However, several challenges related to resource scheduling can be

encountered in MEC systems due to limited capacities of the physical infrastructure. Throughout this

thesis, we tackled specific challenges in MEC environments that are related to resource orchestration.

Based on the state-of-the art analysis, the central questions for this research addressed the optimization

of resource orchestration in MEC where we considered the minimization of the latency budget to

support QoS requirements in different settings.

• In Chapter 3, we considered the radio access disaggregation where the centralized functions that

can be shared among several base stations are located at the MEC host. In order to optimize

the assignment decision of base stations to a set of MEC hosts. We proposed a data-driven

approach based on a spatial clustering model; formulated using Integer Linear Programming;

that groups together base stations based on their spatio-temporal behavior. Afterwards, we

applied an orchestration model on the resulting clusters to assign them to the available MEC

hosts. The main goal is to minimize the deployment and latency costs. Indeed, we noticed

a trade-off relationship between the framework complexity in terms of time and space (i.e.,

execution time and memory consumption), and its performance in terms of latency cost.

• We then proposed in Chapter 4 an enhancement of the clustering model where we suggested a

collection of pairwise clustering models that group together base stations depending on their

traffic demands variation. The main goal of this framework is not only to reduce the temporal

and spatial complexity but also to provide a higher control over MEC hosts capacity. The most

robust clustering models reduced the violation rate by up to 62% when compared to a baseline

solution. Also, the proposed solutions helps reduce both memory usage and execution time, by
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46% and 50%, respectively, in comparison to this baseline solution.

• With the integration of AI and edge networks towards fulfilling network management tasks in real-

time, and given the high impact of MEC paradigm on meeting the targeted time requirements,

we addressed the resource orchestration problem from an application point of view. More

precisely, we considered a FL-based anomaly detection from the state-of-the-art which consists of

deploying a variable number of FL participants (i.e., FL clients). This study comes in line with

the objective of network reconfiguration automation using AIML techniques in providing efficient

resource management when deploying AIML functions by leveraging MEC paradigm to ensure

low communication delays. Thus, in Chapter 5, we considered the problem of finding the optimal

placement for a set of artificial intelligence functions running federated learning at the edge. The

goal is to respect the targeted end-to-end learning time while considering the possibility of using

hardware acceleration to reduce the local learning time. We mathematically formulated the

placement problem using Mixed-Integer Linear Programming where we considered different time

components such as propagation delays and local training times of the AIF, the placement of

the FL server, the FL client AIFs selection and the local training time efficiency using hardware

acceleration.

• As the local training time highly depends on the available computing resources and the amount of

the data to train, and given that the training time highly contributes to the end-to-end training

time, in Chapter 6 we studied and evaluated the impact of system heterogeneity on end-to-end

learning time. Hence, we mathematically formulated the mentioned problem as a MILP while

increasing the number of FL participants that positively contribute to the FL learning (i.e.,

respect the targeted delays). By extensive simulation we showed how our approach outperforms

a first-fit algorithm where we increased by up to 100% the number of FL clients contributing to

the FL task.

7.2 Future Research Directions

In this thesis, we tackled a set of resource orchestration challenges in MEC. In the following, we

present other research questions that can be tackled in this area.
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7.2.1 Online Resource Orchestration in MEC

Based on the BS-to-MEC orchestration framework presented in Chapters 3 and 4, future works

may further push time-execution requirements barrier for real-time MEC orchestration, integrating

real-time traffic prediction. To do so, one may consider the dynamic arrival of tasks at MEC hosts

where the assignment decision is done based on a previous short amount of time. Reinforcement

learning could also be used in that case to improve the assignment decision over time.

Another research direction in this area can be the usage for combined MEC and vRAN orchestration,

including multiple decision points such as in functional splitting, also addressing different objectives

such as based on additional quality-of-service criteria.

7.2.2 Management of Stragglers in MEC-FL environments

One of the shortcomings of the AIF placement framework we proposed in Chapter 6 is the non

consideration of the data arrival time from nodes where data is collected (i.e., data sources, can be

a mobile application, for example), to the edge servers where the AIML models are trained. Hence,

considering the challenge of interfacing the AIFs with a data pipeline system is an interesting research

direction.

Another future work could cover the refining of the aggregation functions at the federated learning

server level, in order to further increase the quality of the distributed learning. Moreover, we plan to

work on scaling the resulting learning systems by means of split learning to cover multiple heterogeneous

learning domains.

7.2.3 Service Differentiation and Network Reliability Support

Despite the fact that MEC servers can be densely distributed at the edge, resource limitation

remains one of the biggest challenges. As for the telecoms field, NFV and SDN paradigms have been

proposed to efficiently manage the available resources, pushing back the barriers to the design of

virtualized infrastructures on both access and core networks, with a decoupling between the data

plane and the control plane. This led to the emergence of the Network Slicing concept, initially

designed to meet the needs of highly specific, heterogeneous applications such as uRLLC, eMBB and

mMTC from 5G services. An interesting direction is to extend the framework in Chapter 4 to consider
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the placement of both radio access and core networks functions taking into account heterogeneous

requirements for resource orchestration while prioritizing services with stringent requirements.

Reliability is another important challenge to tackle to ensure the requirements of 5G services.

Given the Network Function Set concept from ETSI technical specification [87], an interesting research

direction is to study the reliability guarantee by duplicating the network functions.
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8.1 Paradigme du Multi-access Edge Computing

Le paradigme MEC a été initialement développé pour exécuter des services informatiques près des

terminaux afin de réduire la latence et d’améliorer l’expérience utilisateur. Malgré le fait que les hôtes

d’infrastructure MEC peuvent être densément distribués à la périphérie, la limitation des ressources et

la robustesse contre les fluctuations du trafic sont des défis importants à relever par les fournisseurs de

services réseau. De nouvelles technologies telles que NFV et SDN ont été proposées au cours de la

dernière décennie; leur considération dans la conception de l’architecture de réseau est de pousser les

barrières technologiques vers les infrastructures virtualisées aux sous-systèmes RAN [1], incluant à la

fois la centralisation du contrôle et la virtualisation et la softwarisation de toutes les fonctions réseau

impliquées.

La virtualisation des fonctions radio conduit à une flexibilité supplémentaire dans un segment

historiquement plus rigide que les réseaux centraux, en raison de la moindre importance du routage dans

ces environnements. Cette flexibilité peut aider à répondre aux demandes croissantes et imprévisibles

des utilisateurs mobiles, et permet également l’utilisation de matériel standard pour réduire les coûts

pour MNO et retarder les dépenses en capital. En outre, la technologie MEC permet de faire face à la

variation de la demande des utilisateurs, car la reconfiguration du réseau devient une opération plus

facile à effectuer [2]. En effet, alors que les infrastructures MEC sont reconnues comme un catalyseur

clé de la 5G, l’inverse est également vrai : la 5G peut être considérée comme un catalyseur clé pour les

infrastructures MEC, grâce à la technologie NFV [3]. Le déploiement d’installations de virtualisation

dans le réseau d’accès, pour les fonctions 5G et RAN, peut donc favoriser le déploiement d’éléments

d’infrastructure MEC. Le déploiement des serveurs d’applications à proximité des utilisateurs finaux

peut augmenter les débits binaires des utilisateurs et réduire la latence de bout en bout [4]. Notez

que MEC a besoin d’une plateforme de virtualisation pour déployer ses applications en périphérie.

Dans ce cas, la plateforme NFV peut être utilisée pour déployer des applications VNFs et MEC.

L’emplacement des hôtes MEC est actuellement envisagé par les opérateurs de télécommunications

pour se produire à CO et/ou PoP. La distribution des hôtes MEC horizontalement sur différents

segments de réseau d’accès et verticalement sur différentes couches du réseau de retour est nécessaire

pour répondre aux exigences de latence d’accès et de fiabilité. En règle générale, les hôtes MEC sont

censés être situés entre les stations de base et le réseau central [5]. Une représentation de référence de
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Figure 8.1: Représentation de l’infrastructure MEC de référence.

l’infrastructure MEC se trouve dans la Figure 8.1. À strictement parler [6], un serveur MEC (cloudlet

ou MEC facility) fait référence aux serveurs matériels appartenant à l’infrastructure de virtualisation ;

il peut être générique ou basé sur NFVI, et dans ce cas l’hôte MEC peut être déployé comme un VNF,

prenant éventuellement en charge le découpage du réseau [3]. La plateforme MEC rq est responsable

de la gestion des applications MEC.

Lorsque différents hôtes MEC sont déployés sur le réseau d’accès d’un opérateur, il forme un nuage

distribué appelé ‘MEC system ’.

Afin d’avoir un contrôle complet du déploiement des services sur l’infrastructure MEC, les normes

ETSI nécessitent le développement d’éléments de service d’orchestration, dans le but de gérer effi-

cacement les ressources disponibles sur les hôtes MEC. Par conséquent, l’automatisation de la tâche

susmentionnée est considérée comme l’un des défis importants à relever. En outre, étant donné que

les utilisateurs finaux disposent de la fonctionnalité mobile au sein du réseau mobile, le soutien à la

mobilité est une autre exigence de l’ETSI-MEC pour assurer la continuité des services. Les demandes
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MEC peuvent ensuite être divisées en demandes dépendant de l’État et indépendantes de l’État.

Le premier est spécifique à l’utilisateur où une partie ou la totalité des informations doivent être

conservées alors que le second n’est pas lié à l’activité de l’utilisateur.

En outre, trois grandes catégories de cas d’utilisation de MEC ont été identifiées par ETSI [7]. Les

applications orientées vers le consommateur, elles sont directement liées à l’utilisateur final (équipement

utilisateur) tels que les jeux et la réalité augmentée. Les applications axées sur l’opérateur, qui sont

des services qui ne sont peut-être pas directement liés aux utilisateurs, mais à des tiers, comme les

applications de sécurité et de sûreté, le suivi des dispositifs terminaux, etc. Enfin, le QoE applications

d’amélioration qui visent à améliorer l’expérience utilisateur tout en se concentrant sur l’optimisation

du réseau. Par exemple, on peut citer la mise en cache de contenu, l’optimisation du déploiement des

hôtes MEC et la planification des ressources. Il convient de mentionner que cette thèse se concentre

sur la troisième catégorie de cas d’utilisation. Dans ce qui suit, nous présentons les différents défis

rencontrés dans les environnements MEC.

8.2 Énoncé du Problème et Défis

Les applications MEC ont généralement un ensemble d’exigences telles que la capacité de calcul,

l’efficacité énergétique et la latence. Comme les systèmes MEC sont déployés sur des serveurs dont les

capacités sont limitées (c.-à-d. capacité de stockage et de traitement), la disponibilité des ressources

peut changer au fil du temps, ce qui nécessite la migration des applications MEC d’un hôte MEC

à un autre. Notez que chaque emplacement peut avoir un coût différent en termes de performance,

de déploiement, ou les deux. Ainsi, le déploiement d’une application MEC au meilleur emplacement

(c.-à-d., l’hôte MEC le plus proche avec suffisamment de ressources) peut ne pas toujours être le

meilleur choix. À cette fin, les systèmes MEC devraient pouvoir décider du placement des demandes

MEC tout en tenant compte du fait que la décision de placement peut changer au fil du temps à

mesure que les conditions évoluent.

Dans cette thèse, nous considérons les questions liées à la planification des ressources dans MEC.

En général, la planification des ressources fait référence aux techniques utilisées pour affecter un

ensemble de ressources disponibles aux utilisateurs mobiles afin d’accomplir une tâche spécifique à un

moment donné. La conception de stratégies efficaces de planification des ressources comporte deux
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volets : (i) atteindre la qualité de service souhaitée au niveau de l’utilisateur et (ii) optimiser les coûts

au niveau du fournisseur de services de périphérie. Les problèmes de planification des ressources dans

les environnements périphériques font l’objet d’un grand intérêt dans la littérature. Par exemple, [8]

discute des travaux de recherche qui sont liés à la planification des ressources en informatique de

pointe. Il classe les actions possibles dans la planification des ressources en trois catégories : (i) le

déchargement de calcul [9], (ii) l’orchestration des ressources [10] et (iii) le provisionnement des

ressources [11]. Le délestage de calcul est une solution prometteuse pour libérer UE des tâches de

calcul intensives. La décision de déchargement est prise en fonction de plusieurs exigences telles que la

latence, le coût et la consommation d’énergie. Comme présenté par [8], le délestage de calcul peut

être classé en fonction de la direction de délestage c.-à-d., UE-à-bord, bord-à-nuage, bord-à-bord, ...

etc., ou en fonction de la granularité, c.-à-d., des tâches partiellement ou totalement déchargées.

Un autre problème de recherche dans l’environnement MEC est l’orchestration des ressources. Il

consiste à allouer de manière flexible des ressources de calcul, de communication ou de stockage afin

de garantir un QoS donné et peut également considérer conjointement plusieurs ressources. Notez que

dans cette thèse, l’orchestration des ressources fait référence à l’allocation des ressources, au placement

des services et des applications ou aux deux. Enfin, le provisionnement des ressources consiste à

allouer la quantité appropriée de ressources pour garantir les exigences de QoS. Notez que la différence

entre l’orchestration des ressources et le provisionnement des ressources est que le premier attribue les

ressources disponibles aux utilisateurs pour assurer un service donné tandis que le second assure la

disponibilité des ressources en cas de besoin.

8.3 Questions de Recherche et Contributions

L’émergence de nouvelles applications omniprésentes avec des exigences strictes et hétérogènes en

termes de latence et de bande passante a conduit à l’apparition du paradigme MEC pour faire face à

la limitation du cloud computing traditionnel. D’autre part, des paradigmes de virtualisation tels que

NFV et SDN ont été initialement proposés pour gérer efficacement les ressources disponibles, ce qui a

conduit à l’apparition d’un concept de découpage de réseau pour répondre aux exigences spécifiques et

hétérogènes des applications et des services. Par conséquent, la conception de tranches adaptées aux

applications, les algorithmes efficaces d’allocation des ressources et la gestion résiliente des réseaux

et des systèmes sont désormais considérés comme les nouveaux défis de recherche à relever dans le
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domaine des réseaux et des télécommunications.

L’objectif de cette thèse est d’automatiser et d’optimiser l’allocation des ressources dans un

environnement 5G-MEC en tenant compte des enjeux d’évolutivité. Les contributions de cette thèse

visent à répondre aux questions de recherche suivantes :

1. D’un point de vue de l’infrastructure MEC : dans le RAN désagrégé où les fonctions de traitement

radio sont divisées en CU et DU, comment décider efficacement quel groupe de BSs doit être

desservi par une UC donnée en fonction de la capacité des hôtes MEC, la latence d’accès et les

coûts de déploiement ? En outre, comment MNOs pourrait-il utiliser l’analyse des données pour

optimiser la solution d’orchestration en la rendant évolutive et robuste contre un déploiement en

temps quasi réel ? Ces deux questions sont abordées dans les chapitres 3 et 4.

2. textitD’un point de vue applicatif MEC : lors du déploiement de modèles IA/ML (Intelligence

Artificielle/Machine Learning) distribués à la périphérie, comment contrôler la variation des

temps d’apprentissage de bout en bout en raison de l’hétérogénéité des ressources sur les hôtes

MEC ? Cette question de recherche est détaillée dans les chapitres 5 et 6.

Cette thèse vise à fournir une compréhension approfondie des défis d’orchestration des ressources

dans les environnements MEC tout en proposant plusieurs approches novatrices qui les abordent

efficacement à différents niveaux (c.-à-d., niveau de l’infrastructure et niveau de l’application). Les

principales contributions sont présentées ci-dessous.

8.3.1 Niveau d’infrastructure MEC

8.3.1.1 Clustering spatial pour l’affectation de stations de base aux hôtes MEC

Dans ce travail, nous nous concentrons sur l’optimisation des tâches d’orchestration MEC pour faire

face aux nouvelles applications 5G omniprésentes où nous considérons la complexité et l’évolutivité

des stations de base par rapport aux serveurs MEC problème d’affectation. Nous relevons ce défi pour

inclure des objectifs secondaires aux algorithmes existants pour l’orchestration MEC, et en particulier

pour le problème de trouver des assignations de stations de base aux hôtes MEC. Le cadre proposé

comporte deux étapes. Nous appliquons d’abord un modèle de clustering spatial sur l’ensemble des

BSs à la phase de prétraitement puis nous résolvons le problème d’affectation des clusters de BSs
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résultants aux hôtes MEC disponibles en adaptant le modèle d’orchestration. Notez que l’opération

d’affectation a un coût défini par la latence d’accès. Nous considérons également la réaffectation des

ressources lorsqu’un VM desservant un utilisateur ou un ensemble d’utilisateurs est migré d’un hôte

MEC à un autre.

Le modèle de regroupement spatial regroupe les SR en fonction de leur profil des demandes de

trafic (c.-à-d. le comportement spatio-temporel) afin de minimiser la variance des demandes de trafic

au sein de chaque groupe de SR. L’objectif principal de cette proposition est de réduire la complexité

spatiale et temporelle (c’est-à-dire le temps d’exécution et la consommation de mémoire). Les résultats

obtenus à partir de la simulation étendue contre les demandes réelles de trafic montrent comment

notre proposition réduit la complexité du temps et de l’espace compte tenu de l’algorithme de base.

Même si la technique proposée engendre des coûts supplémentaires, sa robustesse permet d’exécuter le

framework en temps réel. D’autres résultats sont disponibles dans le chapitre 3.

8.3.1.2 Modèles de clustering robustes pour l’affectation des stations de base aux hôtes MEC

Alors que le modèle de clustering BS présenté précédemment augmente les coûts des utilisateurs en

termes de latence et puisque les services 5G visent à assurer utlra-Nous proposons d’étendre le travail

précédent pour améliorer la décision d’orchestration en termes de latence et le degré de contrôle de la

capacité des hôtes MEC en réduisant la violation de capacité qui peut se produire en raison de la

fluctuation du trafic. Pour ce faire, nous proposons de regrouper les BSs par paires en fonction d’un

ensemble de critères. Le travail correspondant est détaillé dans le chapitre 4. Les modèles proposés

sont évalués à l’aide d’un ensemble de données réelles. Notez que le cadre d’orchestration est évalué

dans un paramètre hors ligne sous différents paramètres tout en variant le nombre et la capacité des

hôtes MEC disponibles.

8.3.2 Niveau d’application MEC

8.3.2.1 Placement optimal des applications MEC pour un cadre d’apprentissage fédéré

Comme le paradigme MEC permet d’apporter des ressources pour l’informatique AIML au réseau

périphérique où les données à traiter sont situées, nous proposons d’étendre le travail susmentionné pour

optimiser les décisions d’allocation des ressources au niveau de l’application MEC. Nous considérons

que le modèle AIML est déployé comme une application MEC. Ainsi, nous abordons le problème
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de placer AIFs exécutant l’apprentissage fédéré contre les données de surveillance d’infrastructure

de réseau de calcul connecté, pour les environnements où l’introduction de l’edge computing vient

avec un ensemble hétérogène et important d’éléments de calcul et de mise en réseau, nécessitant de

faibles performances de latence. En particulier, nous utilisons comme cas d’utilisation de référence

le AIF de détection d’anomalie FL proposé dans [12], adapté pour l’infrastructure 5G. Ce cadre

d’apprentissage fédéré utilise un FIA de serveur d’apprentissage fédéré et un nombre variable de

FIA de périphérie: la tâche d’apprentissage est distribuée aux FIA de périphérie par des données de

surveillance d’équilibrage de charge entre eux, où les FIA de périphérie interagissent via le serveur

pour les mises à jour du modèle d’apprentissage.

L’objectif visé est de réduire le temps d’apprentissage de bout en bout afin de respecter le seuil

de temps imposé par la spécification de l’application. Pour ce faire, nous nous concentrons sur le

placement des AIF utilisant HWA. Nous modélisons le comportement de l’apprentissage fédéré et

du point d’inférence associé pour guider la décision de placement, en tenant compte de la contrainte

spécifique et du comportement empirique d’un cas d’utilisation de détection d’anomalies d’infrastructure

virtualisée. En plus de l’accélération matérielle, nous considérons la tendance spécifique du temps

d’entrâınement lors de la distribution de la formation sur un réseau, en utilisant des distributions

linéaires empiriques à la pièce et nous modélisons le problème de placement comme un MILP. Les

résultats de simulation montrent l’impact que l’accélération matérielle peut avoir dans la décision du

nombre de AIF déployés, tout en divisant par un facteur pertinent le temps de formation distribué.

Plus de détails sur cette contribution sont disponibles dans le chapitre 5.

8.3.2.2 Placement d’applications MEC pour contrôler les retardataires dans un environnement
d’apprentissage fédéré

Nous étendons le modèle de placement susmentionné où nous introduisons le IFLC, qui est

un schéma adaptatif pour l’utilisation des HWAs dans les systèmes distribués pour compenser les

variations de bout en bout du réseau et des retards d’apprentissage conduisant à des retardateurs.

Nous allons au-delà des travaux existants, en reformulant le modèle pour contrôler les retardateurs, en

définissant une modélisation affinée de la latence d’entrâınement de bout en bout, et en proposant un

algorithme de résolution optimale polynomiale supportant ainsi l’orchestration en temps quasi réel des

FL-AIF. Grâce à une évaluation approfondie des performances, nous mettons en évidence l’impact
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de l’utilisation d’accélérateurs matériels pour atteindre un ratio plus élevé de participants LF qui

contribuent positivement à l’effort d’apprentissage, tandis que ce ratio est augmenté jusqu’à 100% par

rapport à un algorithme de premier ajustement. Plus de détails sont disponibles dans le chapitre 6.
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MIN-MAX:

min
∑︂

i∈Ā,j∈Ā

cij ∗ zij

cij = maxt∈T |dt
i − dt

j | ∀i, j ∈ Ā∑︂
j∈Ā

zij + zji = 1 ∀i ∈ Ā

zij = 0 ∀i, j ∈ Ā : δij > δ̃

zij ∈ {0, 1} ∀i, j ∈ Ā

MIN-SUM:

min
∑︂

i∈Ā,j∈Ā

cij ∗ zij

cij =

∑︂
t∈T

|dt
i − dt

j |

card(T ) ∀i, j ∈ Ā∑︂
j∈Ā

zij + zji = 1 ∀i ∈ Ā

zij = 0 ∀i, j ∈ Ā : δij > δ̃

zij ∈ {0, 1} ∀i, j ∈ Ā

MAX-MAX:

max
∑︂

i∈Ā,j∈Ā

cij ∗ zij

cij = maxt∈T |dt
i − dt

j | ∀i, j ∈ Ā∑︂
j∈Ā

zij + zji = 1 ∀i ∈ Ā

zij = 0 ∀i, j ∈ Ā : δij > δ̃

zij ∈ {0, 1} ∀i, j ∈ Ā
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MAX-SUM:

max
∑︂

i∈Ā,j∈Ā

cij ∗ zij

cij =

∑︂
t∈T

|dt
i − dt

j |

card(T ) ∀i, j ∈ Ā∑︂
j∈Ā

zij + zji = 1 ∀i ∈ Ā

zij = 0 ∀i, j ∈ Ā : δij > δ̃

zij ∈ {0, 1} ∀i, j ∈ Ā

MIN-CORR:

min
∑︂

i∈Ā,j∈Ā

cij ∗ zij

cij = maxt∈T ratioi j ∀i, j ∈ Ā

ratioi j = Rij ∗Rj i√
σi ∗
√
σj

∀i, j ∈ Ā

Rij =
∑︂
t∈T

dt
i − dt

j

2 , Rj i =
∑︂
t∈T

dt
j − dt

i

2 ∀i, j ∈ Ā

σi =
√︄∑︂

t∈T

(dt
i − dī)2, σj =

√︄∑︂
t∈T

(dt
j − dj̄)2 ∀i, j ∈ Ā

∑︂
j∈Ā

zij + zji = 1 ∀i ∈ Ā

zij = 0 ∀i, j ∈ Ā : δij > δ̃

zij ∈ {0, 1} ∀i, j ∈ Ā
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MAX-CORR:

max
∑︂

i∈Ā,j∈Ā

cij ∗ zij

cij = maxt∈T ratioi j ∀i, j ∈ Ā

ratioi j = Rij ∗Rj i√
σi ∗
√
σj

∀i, j ∈ Ā

Rij =
∑︂
t∈T

dt
i − dt

j

2 , Rj i =
∑︂
t∈T

dt
jd

t
i

2 ∀i, j ∈ Ā

σi =
√︄∑︂

t∈T

(dt
i − dī)2, σj =

√︄∑︂
t∈T

(dt
j − dj̄)2 ∀i, j ∈ Ā

∑︂
j∈Ā

zij + zji = 1 ∀i ∈ Ā

zij = 0 ∀i, j ∈ Ā : δij > δ̃

zij ∈ {0, 1} ∀i, j ∈ Ā

MIN-CORR-VAR:

same as MIN-CORR, where we use d′
i
t instead of dt

i.

MAX-CORR-VAR:

same as MAX-CORR, where we use d′
i
t instead of dt

i.
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Acronyms

3GPP 3rd Generation Partnership Project.

AI Artificial Intelligence.

AIF Artificial Intelligence Function.

AMPL A Mathematical Programming Language.

AP Access Point.

BBU Base Band Unit.

BS Base Station.

CDF Cumulative Distribution Function.

CO Central Offices.

CPU Central Processing Unit.

C-RAN Centralized Radio Access Network.

CU Centralized Unit.

DU Distributed Unit.

FL Federated Learning.

FPGA Field-Programmable Gate Array.

GPU Graphics Processing Unit.
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ACRONYMS

HWA HardWare Acceleration.

if interface.

IFLC In-network Federated Learning Control.

ILP Integer Linear Programming.

KPI Key Performance Indicator.

LSTM Long-Short Term Memory.

MANO Management and Orchestration.

MEC Multi-access Edge Computing.

MILP Mixed-Integer Linear Programming.

ML Machine Learning.

MNO Mobile Network Operator.

NFV Network Function Virtualization.

NPU Neural Processing Unit.

NWDAF NetWork Data Analytics Function.

O-RAN Open RAN.

PoP Points of Presence.

QoE Quality of Experience.

QoS Quality of Service.

RAN Radio Access Network.

RRH Remote Radio Head.
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ACRONYMS

RU Radio Unit.

SDN Software Defined Networking.

SLA Service Level Agreement.

UE User Equipment.

VM Virtual Machine.

VNF Virtual Network Function.

vRAN virtualized Radio Access Network.
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