
HAL Id: tel-04731837
https://theses.hal.science/tel-04731837v1

Submitted on 11 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High performance analysis for road traffic control
Sara Moukir

To cite this version:
Sara Moukir. High performance analysis for road traffic control. Distributed, Parallel, and Cluster
Computing [cs.DC]. Université Paris-Saclay, 2024. English. �NNT : 2024UPASG039�. �tel-04731837�

https://theses.hal.science/tel-04731837v1
https://hal.archives-ouvertes.fr

TH
ES
E
D
E
D
O
CT
O
RA

T
N
N
T
:2
02
4U

PA
SG

03
9

High performance analysis for road
traffic control

Analyse haute performance pour le contrôle de trafic
routier

Thèse de doctorat de l’Université Paris-Saclay

École doctorale n◦ 580 : Sciences et Technologies de l’Information et de la
Communication (STIC)

Spécialité de doctorat : Informatique et Mathématiques
Graduate School : Informatique et sciences du numérique
Référent : Université Versailles Saint-Quentin-en-Yvelines

Thèse préparée dans les unités de recherche Li-Parad (Université Paris-Saclay, UVSQ) et
Maison de la Simulation (Université Paris-Saclay, UVSQ, Inria, CNRS, CEA), sous la

direction de Nahid EMAD, Professeure, et du co-encadrant de Loïc DORBEC, Directeur
chez Eiffage Energie Systèmes

Thèse soutenue à Paris-Saclay, le 26 août 2024, par

Sara MOUKIR

Composition du jury
Membres du jury avec voix délibérative

Edouard AUDIT Président
Directeur de Recherche, Université Paris Saclay, France
Taisuke BOKU Rapporteur & Examinateur
Professeur, University of Tsukuba, Japon
Ewa DEELMAN Rapporteuse & Examinatrice
Professeure, University of South California, USA
Marc BUI Examinateur
Professeur, Université Paris 8 et Ecole Pratique des
Hautes Etudes
Alex FENDER Examinateur
PhD, Sr. Engineering Manager, NVIDIA, USA

Titre : Analyse haute performance pour le contrôle de trafic routier
Mots clés : Analyse de données massives, Simulation de trafic routier, Intelligence artificielle dis-
tribuée et systèmes multi-agents, Système dynamique complexe et hétérogène, Programmation
parallèle et distribuée multi-niveaux, Calcul haute performance

Résumé : La réduction des temps de trajet
et de la consommation d’énergie dans les ré-
seaux routiers urbains est cruciale pour le bien-
être collectif et la durabilité environnemen-
tale. Depuis les années 1950, la modélisation
du trafic a été un axe central de la recherche.
Avec l’évolution des capacités informatiques,
des simulations sophistiquées représentant fi-
dèlement les complexités du trafic routier ont
émergé, essentielles pour évaluer les technolo-
gies sans perturber le trafic réel. Les systèmes
de transport deviennent plus complexes avec
des informations en temps réel, nécessitant
des modèles de simulation adaptés. Les simu-
lations multi-agents, analysant les comporte-
ments individuels dans un environnement dy-
namique, sont particulièrement efficaces pour
cette tâche, permettant de comprendre et de
gérer le trafic urbain en représentant les in-
teractions entre les voyageurs et leur environ-
nement. Simuler de grandes populations de
voyageurs dans les villes a longtemps été une
tâche exigeante en termes de ressources in-
formatiques. Les technologies avancées per-
mettant la distribution des calculs sur plu-
sieurs ordinateurs ont ouvert de nouvelles
possibilités. Cependant, de nombreux simula-
teurs de mobilité urbaine n’exploitent pas plei-
nement ces architectures distribuées, limitant
leur capacité à modéliser des scénarios com-
plexes. L’objectif principal de cette recherche
est d’améliorer la performance algorithmique
et computationnelle des simulateurs de mo-
bilité. Nous développons et validons des mo-
dèles de distribution génériques et reproduc-
tibles pouvant être adoptés par divers simu-
lateurs de mobilité multi-agents, surmontant
ainsi les barrières techniques pour analyser les
systèmes de transport complexes dans des en-
vironnements urbains dynamiques. Nous utili-
sons le simulateur de trafic MATSim, reconnu

pour la simulation de trafic multi-agents, pour
tester nos méthodes génériques. Notre pre-
mière contribution applique l’approche "Unite
and Conquer" à MATSim. Cette méthode ac-
célère les simulations en exploitant les archi-
tectures informatiques modernes. L’approche
multiMATSim réplique plusieurs instances de
MATSim sur plusieurs nœuds de calcul avec
des communications périodiques, chaque ins-
tance fonctionnant sur un nœud séparé, utili-
sant les capacités de multithreading de MAT-
Sim pour améliorer le parallélisme. La synchro-
nisation périodique assure la cohérence des
données, tandis que les mécanismes de to-
lérance aux pannes permettent à la simula-
tion de se poursuivre même en cas d’échec de
certaines instances. Cette approche optimise
l’utilisation des ressources informatiques selon
les capacités spécifiques de chaque nœud. La
deuxième contribution explore les techniques
d’intelligence artificielle pour accélérer l’obten-
tion des résultats de la simulation. Nous utili-
sons des réseaux de neurones profonds pour
prédire les résultats des simulations MATSim.
Les réseaux de neurones sont entraînés sur
des données de simulations précédentes pour
prédire les différentes sorties de la simulation.
Les résultats sont comparés à ceux de MAT-
Sim pour évaluer leur précision. En résumé,
nos contributions fournissent de nouvelles va-
riantes algorithmiques et explorent l’intégra-
tion du calcul haute performance et de l’IA dans
les simulateurs de trafic multi-agents. Nous dé-
montrons l’impact de ces modèles et technolo-
gies sur la simulation de trafic, en abordant les
défis et les limites de leurmise enœuvre. Notre
travail met en évidence les avantages des archi-
tectures émergentes et des nouveaux concepts
algorithmiques pour améliorer la robustesse et
la performance des simulateurs de trafic, avec
des résultats prometteurs.

Title : High performance analysis for road traffic control
Keywords : Big data analysis, Road traffic simulation, Distributed artificial intelligence and Multi-
agent systems, Complex and heterogeneous dynamic system, Multi-level parallel and distributed
programming, High-performance computing

Abstract : The need to reduce travel times and
energy consumption in urban road networks is
critical for improving collective well-being and
environmental sustainability. Since the 1950s,
traffic modeling has been a central research
focus. With the rapid evolution of computing
capabilities in the 21st century, sophisticated
digital simulations have emerged, accurately
depicting road traffic complexities. Mobility si-
mulations are essential for assessing emerging
technologies like cooperative systems and dy-
namic GPS navigation without disrupting real
traffic. As transport systems become more
complex with real-time information, simulation
models must adapt. Multi-agent simulations,
which analyze individual behaviors within a dy-
namic environment, are particularly suited for
this task. These simulations help understand
and manage urban traffic by representing in-
teractions between travelers and their envi-
ronment. Simulating large populations of tra-
velers in cities, potentially millions of indivi-
duals, has historically been computationally de-
manding. Advanced computer technologies al-
lowing distributed calculations across multiple
computers have opened new possibilities. Ho-
wever, many urban mobility simulators do not
fully exploit these distributed architectures, li-
miting their ability to model complex scena-
rios involvingmany travelers and extensive net-
works. The main objective of this research is
to improve the algorithmic and computational
performance of mobility simulators. We aim
to develop and validate generic and reprodu-
cible distribution models that can be adop-
ted by various multi-agent mobility simulators.
This approach seeks to overcome technical bar-
riers and provide a solid foundation for ana-
lyzing complex transport systems in dynamic
urban environments. Our research leverages

the MATSim traffic simulator due to its flexibi-
lity and open structure. MATSim is widely re-
cognized in the literature for multi-agent traf-
fic simulation, making it an ideal candidate
to test our generic methods. Our first contri-
bution applies the "Unite and Conquer" ap-
proach to MATSim. This method accelerates si-
mulation speed by leveraging modern compu-
ting architectures. The multiMATSim approach
involves replicating several MATSim instances
across multiple computing nodes with periodic
communications. Each instance runs on a sepa-
rate node, utilizing MATSim’s nativemultithrea-
ding capabilities to enhance parallelism. Perio-
dic synchronization ensures data consistency,
while fault tolerance mechanisms allow the si-
mulation to continue smoothly even if some
instances fail. This approach efficiently uses di-
verse computational resources based on each
node’s specific capabilities. The second contri-
bution leverages artificial intelligence to acce-
lerate the process of obtaining simulation re-
sults. Specifically, we use deep neural networks
to predict MATSim simulation outcomes. Neu-
ral networks are trained on data from previous
simulations to predict simulation’s outputs. The
outputs are compared to MATSim results to as-
sess accuracy. In summary, our contributions
provide new algorithmic variants and explore
integrating high-performance computing and
AI into multi-agent traffic simulators. We aim
to demonstrate the impact of these models
and technologies on traffic simulation, addres-
sing the challenges and limitations of their im-
plementation. Our work highlights the bene-
fits of emerging architectures and new algorith-
mic concepts for enhancing the robustness and
performance of traffic simulators, presenting
promising results.

Dedication and Thanks

My thoughts first turn to my parents. To my father, who instilled in me the values of

self-improvement, integrity, and hard work. Your example has always been a source of

inspiration, pushing me to give my best. Thank you for being such an exceptional

man. To my mother, for all the love, patience, rigor, and discipline she has shown.

You have always encouraged me to follow my passions and believe in myself.

Thanks to your values and all the support you have given me, I am where I am today.

I am deeply grateful to have had you as role models. I dedicate this work to you with

endless gratitude. May you be proud of me and rest in peace.

To my big sisters and my wonderful nephews, this work is also dedicated to you. Your

support and daily encouragement are invaluable. You have been a constant source of

motivation and comfort. Thank you for being there for me.

To Professor Nahid Emad, who offered me this invaluable opportunity, guided this

thesis with wisdom, and accompanied me with kindness throughout its duration.

Thank you for all the knowledge you have imparted to me, your patience, and your

unwavering support. I am honored to have worked under your direction and to have

benefited from your experience. Thank you for this exceptional experience.

To Jean-Michel Batto, my mentor and friend, who helped me grow both professionally

and scientifically. It is also thanks to you that I had the chance to complete this

thesis. Your support, your wise advice, and your friendship have been invaluable. I

can never thank you enough for all you have done for me.

To my circle of friends, for their encouragement during difficult times and their

support, and for always believing in me throughout this journey.

Finally, to all those who contributed in one way or another to this journey, I express

my deepest gratitude.

Contents

1 Introduction 7

1.1 Motivations . 7

1.2 Problem Statement . 8

1.3 Contributions . 9

1.4 Organization . 13

2 State of the Art 15

2.1 Introduction . 15

2.2 Multi-Agent Traffic Simulators . 16

2.2.1 History and Development 16

2.2.2 Principles and Operation . 19

2.2.3 Key Examples . 20

2.3 Challenges and Limitations of Multi-Agent Simulators 25

2.3.1 Performance Issues . 26

2.3.2 Complexity and Realism vs Computational Performance . . 27

2.4 HPC-Oriented Design of Multi-Agent Traffic Simulator 29

2.4.1 HPC-Oriented Design for Traffic Simulators 29

2.4.2 HPC Applied to Traffic Simulators 31

2.5 AI and Road Traffic Simulation . 42

2.5.1 Integration of Autonomous Vehicles 43

3

CONTENTS 4

2.5.2 Real-time Traffic Optimization 46

2.6 Conclusion . 52

3 Unite and Conquer Approach 55

3.1 Contextualization and Justification of the Approach 55

3.2 Fundamental Principles . 57

3.2.1 Optimization of Communications 57

3.2.2 Fault Tolerance . 58

3.2.3 Diversity of Parallelism and Load Balancing 58

3.2.4 Collaboration and Dynamic Selection 59

3.3 Examples of UC methods . 60

3.3.1 Hybrid LS-Arnoldi/GMRES Method 61

3.3.2 Multiple Explicitly Arnoldi Method (MERAM) 61

3.4 UC Application to Traffic Simulation 62

4 HPC for Multi-agent Simulation 65

4.1 Parallel Architectural Fundamentals 67

4.2 High Performance Architectures . 72

4.2.1 Fugaku Supercomputer . 72

4.2.2 Cygnus Supercomputer . 76

4.2.3 Pegasus Supercomputer . 78

4.2.4 Ruche HPC Cluster . 80

4.3 Parallel Programming Models and Software Support Frameworks . . 82

4.3.1 Pegasus . 82

4.3.2 YML: A Framework for Global Computing Environments . . 86

4.4 Convergence of HPC and AI . 90

4.5 Conclusion . 93

CONTENTS 5

5 Contribution to the Modeling of Multi-agent Traffic Simulators 95

5.1 MATSim as a Case Study . 96

5.1.1 MATSim Overall Functioning 97

5.1.2 Operational Modules . 99

5.1.3 Replanning Module in MATSim 101

5.2 multiMATSim : A Unite and Conquer-based Approach 104

5.2.1 Description . 104

5.2.2 Methodology . 112

5.3 AI-based Approach . 117

5.3.1 Data Preparation . 119

5.3.2 Model Architecture . 122

5.3.3 Model Configuration . 124

5.3.4 Loss Functions and Metrics 128

5.3.5 Optimization and Adjustments 131

6 High Performance multiMATSim 135

6.1 Parallel Programming Model for multiMATSim 135

6.2 Parallel Implementation of multiMATSim 137

6.2.1 Shared Memory Computing 137

6.2.2 Distributed Computing . 138

6.2.3 Communications . 139

6.2.4 Transition to Other Potential Models 140

7 Experimental Results and Performance Analysis 147

7.1 multiMATSim . 147

7.1.1 Results: Scalability . 149

7.1.2 Discussion: Scalability and Performance Insights 153

7.1.3 Results and Influence of step Value Variation 157

CONTENTS 6

7.1.4 Performance Comparison between A64FX and Intel Xeon

Gold 6230 for MATSim . 159

7.1.5 Discussion on Performance Differences 161

7.1.6 Conceptual and Empirical Analysis of multiMATSim 168

7.1.7 Conceptual hypotheses explaining the effectiveness of mul-

tiMATSim . 176

7.2 AI-based Approach . 178

7.2.1 Model Performance Metrics 179

7.2.2 Error Analysis . 182

7.2.3 Comparison of Loss Functions and Their Impact on Predictions183

7.2.4 Impact of Hyperparameters 184

7.2.5 Discussion on the Benefits of the AI-based Approach 185

7.2.6 Scalability and Limitations of MLP 188

7.2.7 Reproduction of Heuristic Results by AI 193

8 Conclusion 197

8.1 Summary of Contributions . 197

8.2 Discussion and Perspectives . 199

8.2.1 Challenges and Limitations 199

8.2.2 Future Research Directions 203

8.2.3 Conclusion . 208

Chapter 1

Introduction

1.1 Motivations

The need to reduce travel times and energy consumption in urban road networks

has become a major issue for improving collective well-being and environmental

sustainability. Initiated in the 1950s with methods based on fluid mechanics, traffic

modeling has long been at the heart of research in this field. With the advent of the

21st century, the rapid evolution of computing capabilities has paved the way for

the detailed representation of multiple simple phenomena, allowing their assembly

into sophisticated digital simulations to accurately describe the complexities of

road traffic.

The advancement of mobility simulations proves essential in various applica-

tions, particularly facilitating the assessment of the impact of emerging technolo-

gies such as cooperative systems, the adoption of new mobility services like car-

pooling, and the use of dynamic GPS navigation systems. The main asset of these

simulations lies in their ability to exhaustively model a variety of scenarios without

disrupting real traffic flow.

However, as transport systems become enriched with a multitude of connected

7

1.2 Problem Statement 8

entities and access to real-time information becomes widespread, simulation mod-

els must adapt to this new complexity. The predictability of behaviors within

modern transport networks thus becomes increasingly difficult. Faced with this

reality, multi-agent simulations, centered on the analysis of individual behaviors

within a partially perceived and constantly changing environment, emerge as an

appropriate approach for the design of advanced simulation systems. These sim-

ulations facilitate the faithful representation of interactions between travelers and

their environment, playing an essential role in understanding and improving the

management of urban traffic.

1.2 Problem Statement

Simulating real populations of travelers in a large city, potentially numbering sev-

eral million individuals, has long been seen as an excessively demanding task in

terms of computational resources, bordering on impossibility until recently. Nev-

ertheless, the advent of advanced computer technologies, allowing the distribution

of calculations across a vast network of computers, has marked a turning point,

opening the door to previously unexplored possibilities. Despite these advances,

a large number of current urban mobility simulators do not fully exploit these

distributed architectures, which limits their ability to model scenarios involving a

large number of travelers, modes of transport, and networks of considerable size.

This limitation directly impacts the ability of researchers and urban planners

to predict the consequences of regulatory policies and information dissemination

strategies in extensive networks, especially in contexts where travelers are con-

nected and receive information in real time. Faced with this challenge, the main

objective of this research is to contribute to improve algorithms and computational

performance of these mobility simulators. In this end, we strive to develop and

1.3 Contributions 9

validate generic and reproducible distribution models that could be adopted by a

variety of multi-agent mobility simulators, or more broadly, by any agent-based

simulation system. This approach aims to overcome current technical barriers and

provide a solid foundation for analyzing complex transport systems in dense and

dynamic urban environments.

1.3 Contributions

Within the context of this thesis, we have made two main contributions by leverag-

ing the MATSim traffic simulator[31]. The choice of MATSim as the foundational

platform is motivated by its flexibility and open structure, making it suitable for

the integration of new approaches. MATSim is recognized for its applicability to

a variety of mobility simulation contexts, rendering it an appropriate candidate to

test the effectiveness of generic methods in the domain of traffic simulation.

The first contribution is based on the application of a technique for accelerating

the convergence of iterative methods, called ’Unite and Conquer’ (UC) [22] and

used in high-performance linear algebra, to the MATSim simulator. The important

characteristics of UC (such as intrinsic multi-level parallelism, heterogeneity, fault

tolerance etc.) are all elements that bring their share of potential performance

improvements to the adaptation of the approach in our case. This method aims to

enhance the speed of simulations by leveraging the capabilities offered by modern

computing architectures. This research approach emphasizes a high-performance-

oriented design to optimize the temporal efficiency of simulations, particularly for

scenarios involving extensive urban networks.

The second contribution delves into the application of artificial intelligence

techniques, primarily, to expedite the simulation process. The idea is to use AI

to predict certain simulation outcomes without necessitating the full execution of

1.3 Contributions 10

these simulations, thus offering a pathway to accelerate the attainment of prelimi-

nary results. Although this approach is exploratory and new, it aims to assess the

extent to which AI can complement or potentially simplify traditional simulation

steps, particularly for repetitive or well-defined scenarios.

In summary, these contributions provide new efficient algorithmic variants and

explore and measure how advances in HPC and AI can be integrated into multi-

agent traffic simulators. They aim to provide concrete examples of the impact of

these models and technologies on traffic simulation, while recognizing the chal-

lenges and limitations associated with their implementation.

To provide a more detailed comprehensive understanding of our contributions,

we describe in the following the parallel programming model and implementation

strategies employed in this thesis.

The Unite and Conquer approach was applied into MATSim by leveraging

its inherent multi-level parallelism, fault tolerance, and ability to handle hetero-

geneous workloads. This approach, termed multiMATSim, involves replicating

several instances of MATSim across multiple computing nodes with periodic com-

munications. MATSim natively supports multithreading[31], and in the imple-

mentation of multiMATSim on a multi-node parallel machine, each instance cor-

responds to a single computing node. The following explains the architectural and

algorithmic elements of this approach, highlighting the correspondence between

them.

The process involved several key steps:

• Distributed instances: The approach involves deploying multiple instances

of MATSim, with each instance running on a separate computing node. This

setup enables parallel execution of the simulation tasks across different nodes.

Each node handles a portion of the overall workload, utilizing MATSim’s na-

tive multithreading capabilities to further enhance parallelism. This multi-

1.3 Contributions 11

level parallelism allows both inter-node and intra-node concurrency, maxi-

mizing computational efficiency.

• Synchronous and Asynchronous periodic communication: Periodic

synchronous communication between instances is implemented to ensure con-

sistency and coherence in the simulation data. This periodic synchronization

helps maintain the accuracy of the distributed simulation by regularly up-

dating and coordinating the state of each instance. Nontheless, an important

feature of UC approach is the ability to perform these communications asyn-

chronously. The implementation corresponding to this case is more complex

and will be presented in a later chapter.

• Fault tolerance: Mechanisms are in place to ensure fault tolerance in the

system. If an instance of MATSim fails, its tasks are not redistributed; in-

stead, the other instances continue to operate without interruption, ensuring

that the simulation does not crash entirely. This design allows the simulation

to continue smoothly even if one or more instances stop working.

• Heterogeneity: The approach allows for different workloads to be assigned

to different computing nodes. This enables the efficient use of diverse com-

putational resources and optimizes performance based on the specific capa-

bilities of each node, ensuring that each node is utilized to its full potential.

Artificial intelligence and multi-agents simulators

Our second approach consists of using AI for modeling road traffic simulators.

More specifically, we use deep neural networks to predict the results of the MATSim

simulation. The process involved:

• Parallel implementation on a single node: The training of neural net-

works was initially implemented in parallel on a single computing node. This

1.3 Contributions 12

proof-of-concept approach utilizes the available CPU resources to train the

models efficiently.

• Neural network training: Using machine learning algorithms, neural net-

works are trained on data collected from previous simulation runs. This

training process aims to create models that could predict key metrics such

as travel times and congestion levels.

• Evaluation: The outputs of the trained neural network are evaluated by

comparing them to the outputs generated by MATSim. This comparison

helps assess the accuracy and reliability of the artificial intelligence models.

• Future expansion: While the current implementation is a proof-of-concept

running on a single node, the approach is designed to scale. Large-scale

experimental results will be available soon. This implementation could be

extended to a distributed neural network training setup, leveraging multiple

nodes to handle larger datasets and more complex models.

These programming and implementation strategies highlight the practical steps

taken to realize the theoretical contributions of this thesis. By detailing the tech-

nical aspects, we aim to provide a clear understanding of the methodologies used

to achieve the reported performance improvements and the potential applications

of these techniques in real-world traffic simulation scenarios.

Finally, these contributions provide new efficient algorithmic variants and ex-

plore and measure how advances in HPC and AI can be integrated into multi-agent

traffic simulators. They aim to provide concrete examples of the impact of these

models and technologies on traffic simulation, while recognizing the challenges and

limitations associated with their implementations.

1.4 Organization 13

1.4 Organization

State of the Art

We begin with a detailed state of the art, tracing the evolution of multi-agent traffic

simulators and discussing recent advances in this field. This includes an analysis

of the underlying principles, the challenges encountered, and how HPC concepts

contribute to overcoming these limitations. We also evaluate current trends and

anticipate future developments.

Unite and Conquer Approach

The core of this thesis is the introduction and application of the Unite and Conquer

approach to multi-agent traffic simulators. We justify the choice of this method,

explain its fundamental principles, and present the results obtained through spe-

cific case studies. The potential impact and future prospects of this approach are

also examined.

High-Performance Hardware and Software Architectures

This chapter focuses on the hardware and software architectures underlying the

study and effective development of traffic simulations. We explore the fundamen-

tals of targeted hardware architectures, including the Fugaku Supercomputer, and

discuss the growing importance of specialized software support.

Modeling of Multi-Agent Traffic Simulators

We then detail our specific contribution to the modeling of multi-agent traffic

simulators, presenting two main approaches: one based on the UC method, mul-

1.4 Organization 14

tiMATSim, and the other on AI.

Parallel Programming Models for multiMATSim

The discussion continues with an analysis of parallel programming models ap-

plied to multiMATSim, highlighting the algorithmic choices and implementation

considerations.

Experimental Results

Experiments conducted on the Ruche [54] (a french cluster of heterogeneous CPU

with 232 nodes, 9000 cores and GPU nodes with 28 nodes, 68 GPUs) and the

Fugaku Supercomputer architectures are described, presenting the results obtained

and offering a comparative evaluation of the effectiveness of our methods.

Chapter 2

State of the Art

2.1 Introduction

In the context of urban infrastructure planning and management, road traffic sim-

ulation plays a pivotal role. This field has seen significant evolution with the

advent of multi-agent traffic simulators, marking a paradigm shift in how trans-

port systems are modeled. By focusing on individual behaviors and interactions,

these tools provide a deep understanding of traffic flows, proving vital for de-

veloping smart and environmentally friendly mobility solutions. However, these

simulators face major challenges, particularly in terms of computational time effi-

ciency. This limitation is a significant obstacle, especially for modeling large-scale

or high-resolution scenarios. The primary goal of this chapter is to provide a

comprehensive overview of the progress made in the field of multi-agent traffic

simulators, highlighting the challenges related to their performance and exploring

potential improvement strategie.

This chapter begins with a detailed examination of the evolution of multi-

agent traffic simulators, from their macroscopic beginnings to the current, highly

sophisticated models. The analysis highlights how these systems have gradually

15

2.2 Multi-Agent Traffic Simulators 16

integrated increasing levels of complexity and realism, more accurately reflecting

the dynamics inherent in urban traffic. It then addresses the current challenges and

limitations, focusing on computational time performance issues, and underscores

the need for advanced computing solutions. This study aims to investigate the

contributions of HPC concepts to the advancement of multi-agent traffic simulation

models. This section discusses how HPC, which provides the ability to rapidly

execute complex calculations and process vast volumes of data, can help overcome

performance-related obstacles. Specific case studies are presented to illustrate the

impact of applying HPC principles to different simulators, especially in terms of

improving computational time, efficiency, and the ability to handle more complex

and extensive scenarios. Finally, this state of the art proposes a discussion on

current and future trends in the field of multi-agent traffic simulators, particularly

related to artificial intelligence, highlighting the most recent innovations. It also

identifies emerging research opportunities, based on current gaps and developing

trends, thus opening new perspectives for future advancements in this critical field.

2.2 Multi-Agent Traffic Simulators

2.2.1 History and Development

Understanding the evolution of multi-agent traffic simulators is essential to fully

appreciate the complexity and usefulness of these tools in modeling our transport

networks. The development of these simulators reflects a constant quest for ac-

curacy and efficiency, evolving with technological advances and urban planning

needs. This section traces the journey from the initial conceptualizations of traf-

fic flow to today’s sophisticated simulators, capable of faithfully representing the

dynamic interactions between drivers, vehicles, and infrastructure.

2.2 Multi-Agent Traffic Simulators 17

The Beginnings: Macroscopic and Microscopic Models, and the Advent

of Computers

The history of traffic simulators took off in the early 1950s[40][63], a period dur-

ing which macroscopic models were introduced alongside the advent of computers.

These initial models viewed traffic as a homogeneous and continuous flow, offering

a very simplified but global view of urban movements. Although they marked a sig-

nificant advance, their ability to capture the subtleties and individual interactions

was nevertheless limited.

With the increase in computer processing power in the 1980s, a new era of

modeling emerged with the advent of microscopic models. Benefiting from techno-

logical advances in computing, these models represented a significant progress in

traffic simulation thanks to their ability to simulate the behavior of each vehicle in-

dividually. They allowed for the capture of complex vehicle-to-vehicle interactions,

greatly enriching our understanding of traffic dynamics[26].

The Era of Agent-Based Simulators

First and foremost, it is essential to define what an "agent" is in the context of

traffic simulators. An agent is an autonomous entity capable of perceiving its

environment through sensors and acting upon that environment via effectors. In

the context of traffic simulation, an agent typically represents an individual vehicle,

pedestrian, or any other actor in the transport system, endowed with the ability

to make decisions and execute actions based on its objectives, internal state, and

environmental conditions.

A multi-agent system, in turn, is a collection of agents interacting within a

shared environment. These interactions can be cooperative, competitive, or neu-

tral, but they are highly relevant for modeling the complexity of real traffic systems.

In these systems, each agent operates independently while concurrently consider-

2.2 Multi-Agent Traffic Simulators 18

ing the actions and states of other agents. This approach enables a dynamic and

faithful simulation of traffic phenomena at both the microscopic and macroscopic

levels. Moreover, these methodologies facilitate the observation of the emergence

of macro-level phenomena from micro-level interactions. Such insights underscore

the utility of agent-based modeling in comprehending complex dynamics across

various contexts. For a comprehensive exploration of this topic, readers are en-

couraged to consult "Agent-Based and Individual-Based Modeling" by Railsback

and Grimm[60], which is regarded as a seminal text in the field of agent-based

systems and simulations.

The 1990s and 2000s represented a period of profound transformation with

the introduction of agent-based simulators. Platforms such as MATSim, SUMO

[4], and VISSIM [24], along with others [51], have outperformed previous models

by incorporating multi-agent elements. This evolution enabled more detailed and

accurate modeling of individual decisions and behaviors. This era was also marked

by the increasing integration of artificial intelligence technologies, opening new

avenues for the simulation and prediction of traffic behaviors.

Integrating Advanced Technologies

Entering the new millennium has been characterized by a remarkable synergy be-

tween traffic simulators and cutting-edge technologies. The adoption of data from

intelligent transportation systems and urban sensors has enriched simulators with

real data, significantly improving their accuracy and relevance. This period is also

dedicated to exploring the potential of high-performance computing in research,

which significantly enhances the ability to process large volumes of data, mak-

ing simulators faster and more capable of handling increasingly complex traffic

scenarios. This historical evolution of multi-agent traffic simulators illustrates a

convergence between technological progress and the growing need to understand

2.2 Multi-Agent Traffic Simulators 19

and manage increasingly complex urban transport systems. As such, it acts as

the cornerstone for our investigation into incorporating HPC concepts into these

simulators, a step we recognize as vital for tackling modern traffic modeling chal-

lenges.

2.2.2 Principles and Operation

Multi-agent traffic simulators are an important tool in the study of transporta-

tion systems. They rely on sophisticated modeling principles, enabling detailed

analysis of behaviors and interactions within traffic systems. By considering each

driver, pedestrian, or vehicle as an autonomous agent, these simulators offer an

in-depth representation of traffic dynamics, thus facilitating the study of urban

and interurban flows.

At the heart of these simulators is the concept of the agent, which, as previously

mentioned, is an autonomous entity characterized by specific attributes, goals, and

behaviors. This tailored approach is indispensable for accurately modeling the

decisions and behaviors of different traffic elements, be it routine maneuvers or

reactions to evolving traffic conditions. The interactions between agents, steered

by algorithms, emulate a plethora of human behaviors and diverse traffic scenarios.

These interactions are essential for multi-agent simulation. They allow agents

to react and adapt based on the actions of others and environmental changes,

thus offering the possibility to reproduce a wide range of traffic phenomena. This

adaptability is an asset for analyzing the effects of different traffic scenarios and

for strategic planning.

The validation and calibration of simulators with real traffic data is a key step

to ensure the accuracy of the modeling. This process aims to align simulations

with empirical data to improve the reliability of the generated predictions. By

adjusting the model parameters, researchers seek to ensure that the simulation

2.2 Multi-Agent Traffic Simulators 20

faithfully represents real traffic conditions.

Finally, flexibility and scalability are important characteristics of multi-agent

traffic simulators. They can be adapted to different traffic scenarios and incor-

porate new forms of agents or behaviors, thus meeting the changing needs in the

transportation field.

In conclusion, multi-agent traffic simulators offer a unique perspective on the

dynamics of transportation systems. They combine advanced modeling methods

with detailed analysis of human behavior, proving useful for studying, forecasting,

and optimizing traffic flows in current and future urban environments. To illustrate

the advancements and applications of multi-agent traffic simulators, we now turn

our attention to some key examples in the field. These examples highlight the

evolution and sophistication of traffic simulation tools over time, demonstrating

their capabilities in modeling and analyzing traffic dynamics.

2.2.3 Key Examples

Multi-agent traffic simulators have evolved over time, gaining sophistication in

modeling and analyzing traffic dynamics. Notable tools in this domain include

SUMO, VISSIM, and MATSim. Each of these simulators has specific features and

meets various needs in research and urban planning.

SUMO (Simulation of Urban MObility)

Developed by the German Aerospace Center (Deutsches Zentrum für Luft- und

Raumfahrt, DLR), SUMO is an open-source multi-agent traffic simulator. Written

in C++, it is characterized by its ability to model urban transport networks of

various scales, from neighborhoods to entire cities, with particular attention to

traffic flow details.

2.2 Multi-Agent Traffic Simulators 21

SUMO’s modular architecture allows the integration of custom modules, of-

fering users flexibility in creating and managing complex simulations. Its ability

to simulate various types of traffic interactions, including driving behaviors and

vehicle-pedestrian interactions, is a major asset.

However, SUMO also has its limitations. As an open-source simulator, its

performance may vary depending on the quality and frequency of community con-

tributions. Although capable of handling complex scenarios, managing large urban

simulations can be demanding in terms of computational resources, particularly

memory and processing time.

Moreover, SUMO requires specific technical expertise for its efficient configu-

ration and use, which can pose a barrier for less experienced users. The reliance

on precise and detailed traffic data for model calibration and validation can also

be a challenge, especially in areas where such data are not readily available.

Ultimately, while SUMO stands out for its flexibility and accessibility as open-

source software, facilitating adaptation and customization for various simulation

scenarios, it presents certain limitations in terms of driver behavior modeling and

detailed traffic visualization. These aspects are pivotal for conducting a thorough

analysis of vehicle-to-vehicle and vehicle-environment interactions. Here, VISSIM

comes into play, offering a more sophisticated approach with refined driver behavior

models and superior visualization capabilities, thus addressing some of the needs

unmet by SUMO.

VISSIM (Verkehr In Städten - SIMulationsmodell)

Developed by PTV Group, VISSIM is a multi-agent traffic simulator specialized

in microscopic traffic modeling. PTV Group, a company known for its innovative

solutions in traffic and transportation planning, has created VISSIM to simulate

the individual behaviors of drivers and pedestrians in a variety of urban and in-

2.2 Multi-Agent Traffic Simulators 22

terurban environments. It is used for scenarios ranging from isolated streets to

city-scale transport networks.

VISSIM stands out for its ability to model complex traffic interactions, in-

cluding a variety of vehicles, cyclists, and pedestrians. It uses physical behavioral

models and heuristic rules to simulate dynamic interactions between agents in a

traffic environment.

However, VISSIM has its limitations. Its microscopic modeling nature, while

beneficial for detail accuracy, can lead to increased complexity and computational

time for large networks. Furthermore, the quality and accuracy of VISSIM simu-

lations heavily depend on the availability and precision of input data, which can

be an obstacle in contexts where traffic data are limited or outdated.

Another consideration is the cost of the license, potentially prohibitive for some

users, especially in academic settings or for small municipalities. Additionally,

although VISSIM offers a detailed graphical interface, its learning curve can be

steep for new users, particularly those unfamiliar with advanced traffic simulation

tools.

In summary, VISSIM, with its advanced simulation models and detailed vi-

sualizations, excels in accurately representing traffic flows and individual driver

behaviors. However, when it comes to addressing the simulation of large networks

over long periods or modeling the travel choices and traffic patterns of an entire

population, VISSIM may encounter limits in terms of scale and data management

complexity. At this juncture, MATSim proves to be an essential complement, as

it is specifically designed to handle large-scale simulations with a focus on model-

ing travel behaviors and optimizing routes at the population level, thus offering a

complementary perspective to that of VISSIM.

2.2 Multi-Agent Traffic Simulators 23

MATSim (Multi-Agent Transport Simulation)

Developed in Java, MATSim is a multi-agent traffic simulator, resulting from col-

laboration among several renowned research institutes, including ETH Zurich and

the Technical University of Berlin. This simulator stands out for its ability to

simulate individual mobility behaviors within extensive transport networks, with

a particular focus on details and complex interactions.

MATSim’s use of multithreading[30] allows it to handle large and complex

traffic simulations, an asset for analyzing urban scenarios involving a significant

number of agents. This functionality makes MATSim a relatively powerful tool

for large-scale studies.

The modularity of MATSim is another strength, allowing for considerable

adaptability for specific research and planning needs. Its ability to integrate and

calibrate models based on real transport data improves the accuracy and relevance

of simulations.

However, MATSim presents certain challenges. The complexity of its config-

uration and use is one such example, requiring in-depth technical expertise. Fur-

thermore, the detailed simulations provided by MATSim require significant com-

putational resources, potentially limiting its applicability in environments with

constrained computing capabilities.

MATSim’s reliance on precise and comprehensive traffic data for model valida-

tion is also a factor to consider. Where such data are not available, the reliability

of simulation results could be impacted.

MATSim is an advanced multi-agent traffic simulator, designed for precise mod-

eling of complex urban transport systems. Its advanced processing capabilities,

flexibility, and integration of real data make it a valuable tool, despite the chal-

lenges related to its technical complexity and the need for significant computa-

tional resources. While these tools showcase the capabilities and advancements

2.2 Multi-Agent Traffic Simulators 24

in traffic simulation, they also highlight the inherent challenges and limitations of

multi-agent traffic simulators.

The main features of SUMO, VISSIM, and MATSim are presented in Table

2.1.

Feature SUMO VISSIM MATSim

Type of

simulator

Multi-agent

traffic sim

Multi-agent

traffic sim

Multi-agent

traffic sim

Prog.

language

C++ C++ Java

Open

source

Yes No Yes

Year of dev. 2001 1992 2006

Dev.

institution

Deutsches

Zentrum für

Luft- und

Raumfahrt

(DLR)

PTV Group ETH Zurich

Modeling

capabilities

Vehicles,

pedestrians,

public transport

Vehicles,

pedestrians,

public transport

Vehicles,

pedestrians,

bicycles, public

transport

Scenario

types

Urban,

interurban,

pedestrian,

public transport

Urban,

interurban,

pedestrian,

public transport

Urban,

interurban,

regional, public

transport

Table 2.1: Comparison of Multi-Agent Traffic Simulators

2.3 Challenges and Limitations of Multi-Agent Simulators 25

Feature SUMO VISSIM MATSim

User

community

Large, active Commercial Large, academic

Vis. tools SUMO-GUI,

SUMO-web

VISSIM-GUI Via plug-ins

(JOSM, QGIS)

Common

applications

Urban planning,

traffic

management,

public transport

studies

Urban planning,

traffic

management,

public transport

studies

Urban planning,

academic

research, public

transport

studies

Integration

support

Traci (API),

OSM, NetEdit

API, OSM,

integration with

other PTV tools

Plug-ins, OSM,

NetEdit

Doc. and

support

Comprehensive

and active doc.

Commercial

support and

doc.

Comprehensive

and active doc.

2.3 Challenges and Limitations of Multi-Agent Sim-

ulators

Multi-agent traffic simulators, while essential in modeling complex transportation

systems, face intrinsic constraints that can limit their efficiency and applicability.

Major issues lie in performance challenges and the balance between complexity,

realism, and computational capacity. Simulating realistic traffic environments on a

large scale raises questions of computing power, marked by prolonged computation

times and intensive use of resources. Furthermore, the aspiration for increased

2.3 Challenges and Limitations of Multi-Agent Simulators 26

realism in modeling the behaviors and interactions of agents highlights a dilemma

between enhancing model sophistication and preserving acceptable computational

performance. This introduction sets the stage for an in-depth exploration of these

issues, shedding light on problems related to optimizing performance and managing

the inherent complexity of multi-agent traffic simulators.

2.3.1 Performance Issues

Performance is a paramount issue in the field of multi-agent traffic simulators.

These tools, designed to faithfully represent the complexity and dynamics of ur-

ban transport systems, face significant computational constraints that directly

affect their efficiency and practical applicability. In this section, we explore var-

ious aspects of performance problems, examining the implications of large-scale

traffic modeling and highlighting the difficulties related to managing processing

capacities.

Simulating multi-agent traffic requires detailed modeling of thousands or even

millions of individual agents, each with its characteristics, behaviors, and inter-

actions. This microscopic approach, advantageous for capturing the complexity

of traffic systems, results in a significant computational load. The computation

time required for these simulations can be substantial, especially for large-scale

scenarios or those requiring high resolution. Researchers and planners are often

faced with a difficult choice: how to balance the need for detailed and realistic

modeling with the constraints of available computational resources?

Moreover, performance issues are not limited to computation time. The effi-

ciency of memory management, data storage, and communication between com-

puting units are also critical factors. In a simulation environment, where each

agent can interact with many other agents and elements, the volume of data to

process and store can become considerable. This poses difficulties not only in terms

2.3 Challenges and Limitations of Multi-Agent Simulators 27

of computational efficiency but also in terms of the reliability and robustness of

simulations.

Optimizing the performance of multi-agent traffic simulators thus becomes a

multidimensional goal. It requires improvements both at the level of algorithms

and data structures and in the software and hardware architecture used for sim-

ulations. Integrating concepts related to parallel and distributed computing, ex-

ploiting the capabilities of high-performance computing systems, and optimizing

communication protocols between processes are among the strategies that can be

adopted to meet these challenges.

These optimization strategies, while essential, often lead to a fundamental

dilemma in the development of multi-agent traffic simulators: the balance be-

tween the complexity and realism of models on one hand, and their performance

in terms of execution time on the other.

2.3.2 Complexity and Realism vs Computational Perfor-

mance

In the development of multi-agent traffic simulators, a fundamental dilemma arises:

the balance between the complexity and realism of models on one hand, and

their performance in terms of execution time on the other. Here we examine

this dilemma, assessing the repercussions of an increased quest for realism on the

performance of simulators, as well as its impact on their practical utility. Multi-

agent traffic models present inherent complexity at several levels. Behaviorally,

the need to accurately model the decisions and interactions of each agent - drivers,

pedestrians, or autonomous vehicles - requires advanced and nuanced algorithms.

These algorithms must not only reflect individual behaviors but also contextual-

ize these behaviors within the entire traffic system. The realism of simulations

is also dependent on the ability to integrate a wide range of variables, including

2.3 Challenges and Limitations of Multi-Agent Simulators 28

environmental conditions, human factors, and unforeseen events. However, an in-

crease in the complexity and realism of simulations can translate into a decrease

in computational performance. Exhaustive models and dynamic traffic scenarios

demand considerable computational resources, leading to prolonged computation

times, intensive memory usage, and a strong need for storage capacity. This re-

quirement becomes particularly problematic in the simulation of vast transport

networks or over long periods, where the volume of data and the number of inter-

actions to process increase exponentially. The main challenge, therefore, is to find

an optimal balance between model complexity and computational performance.

In this regard, the introduction of new algorithmic concepts, optimization of data

structures, and improvement of simulator architecture becomes imperative. The

goal is to optimize simulators capable of handling complexity without sacrificing

performance, thus facilitating more realistic, accurate, and useful traffic simula-

tions for understanding and improving transport systems.

To address these challenges and push the boundaries of what multi-agent traffic

simulators can achieve, the integration of HPC concepts becomes essential. By

leveraging HPC, we can enhance the processing capabilities of these simulators,

enabling them to handle more complex scenarios and larger datasets with greater

efficiency and accuracy. The following section delves into how HPC principles

contribute to the advancement of multi-agent traffic simulators, highlighting their

impact on simulation and analytical capabilities.

2.4 HPC-Oriented Design of Multi-Agent Traffic Simulator 29

2.4 HPC-Oriented Design of Multi-Agent Traffic

Simulator

2.4.1 HPC and its Impact on Traffic Simulation

The development of High Performance Computing represents a significant advance-

ment in the processing and analysis of vast data sets, offering solutions to problems

related to calculations of unprecedented complexity. This section provides an in-

troduction to the fundamental principles of HPC, specifically exploring its impact

on enhancing analytical and simulation capabilities in the context of multi-agent

traffic simulators.

HPC involves not only the joint use of computing resources, typically beyond

the capabilities of individual computers or standard servers, to provide significantly

higher processing power but also the implementation of advanced algorithms op-

timized for parallel computation. This power is often achieved through clusters

of processors, high-speed communication networks, and advanced storage systems,

allowing for the parallel and efficient processing of large quantities of data.

In the realm of traffic simulators, HPC broadens the possibilities for simulations

and facilitates the management of complex interactions among numerous agents

and the modeling of extensive traffic scenarios. However, it is crucial to distinguish

between two primary approaches: applying HPC techniques to existing simulators

and designing new simulators specifically optimized for HPC.

• Applying HPC to existing simulators: This approach involves par-

allelizing existing traffic simulation models to leverage the computational

power of HPC. By doing so, it addresses performance constraints, drastically

reducing the time required for simulation calculations. This improvement is

particularly relevant for traffic models demanding high computational power

2.4 HPC-Oriented Design of Multi-Agent Traffic Simulator 30

to faithfully simulate interactions among hundreds of thousands or even mil-

lions of agents.

• Designing HPC-optimized simulators: In contrast, designing simula-

tors specifically oriented HPC entails creating new algorithms and system

architectures that are inherently optimized for parallel processing.

In the context of our research, we adopt a hybrid solution consisting of using

a mix of these two approaches. Indeed, we apply a parallelization technique to

MATSim, our case study of multi-agent simulators for road traffic. This paral-

lelization is essentially applied to the MATSim core. However, our approach does

not consist of simply parallelizing the existing program of this kernel but of mod-

ifying its design in order to improve not only its computational performance but

also its algorithmic performance. For this, we apply the UC approach to MATSim

to produce multiMATSim.

HPC-oriented design of multi-agent traffic simulators has multiple and signif-

icant implications. Firstly, HPC facilitates the processing and analysis of large

quantities of traffic data, allowing for a deeper understanding and more accurate

forecasts of traffic dynamics. Secondly, it enables the handling of more complex

and realistic traffic scenarios, thus contributing to more effective planning and

decision-making in urban transport. Consequently, HPC is not merely a response

to existing computational challenges but also a driver of progress in traffic simula-

tion, heralding a new era of traffic modeling and transport planning characterized

by levels of precision, efficiency, and scope previously unattainable.

The following sections will examine in more detail how HPC principles have

been integrated into traffic simulators, the performance improvements that have

resulted, and the future prospects they open for the evolution of traffic modeling

and transport management.

2.4 HPC-Oriented Design of Multi-Agent Traffic Simulator 31

2.4.2 HPC Applied to Traffic Simulators

Optimization of Multi-Agent Traffic Simulators through Division and

Distribution

A key strategy frequently cited in the enhancement of multi-agent traffic simulators

is the efficient division and distribution of the network and agents, especially when

incorporating HPC-related concepts. This approach is essential for managing the

complexity and high computational load of simulations. It involves breaking down

the transport network into smaller segments and distributing these segments, as

well as the agents, across multiple computing units. This method is particularly

relevant for simulations encompassing vast networks and a large number of agents,

due to the high demand for computational resources they entail. The use of di-

vision and distribution leverages parallel computing to reduce computation times

by simultaneously executing multiple operations. However, the efficiency of this

approach depends on strategic implementation, taking into account the specific

configuration of the transport network and traffic models. One of the challenges is

to minimize interdependencies between the distributed sub-networks to limit the

need for frequent and costly communications between computing units. The goal

is to find a balance that promotes data localization and reduces the amount of

communication, thus optimizing the overall performance of the simulation.

Various methods have been explored to further enhance the efficiency of these

simulations by integrating advanced HPC concepts. Significant advancements have

been made in this area, offering new perspectives for improving performance. Po-

tuzak et al. introduced two communication protocols suitable for networks seg-

mented into sub-networks[58]. The first protocol, SC-SV, semi-centralized, main-

tains data integrity without reducing inter-process communications. The second,

named Long Step, effectively reduces the number of messages by spatially and

2.4 HPC-Oriented Design of Multi-Agent Traffic Simulator 32

temporally combining data related to vehicles and roadways. Further studies

by Potuzak et al. examine the advantages of traffic simulation on a multi-core

computer cluster[57], demonstrating that the parallel/distributed version reduces

inter-process communications and accelerates performance. Ramamohanarao et

al. developed a spatial workload balancing strategy using the SMARTS simula-

tor[62]. This method aims to decrease the number of communication channels

between processes to reduce communication costs, while facilitating rapid and

large-scale simulations. Xu et al. focused on temporal synchronization issues in

parallel traffic simulations[74], proposing heuristics to increase lookahead values,

thus reducing the time spent on synchronization and speeding up the pace of par-

allel simulations without sacrificing the statistical accuracy of results. Finally, the

Neighbour-Restricting Graph-Growing (NRGG) algorithm developed by Xu and

colleagues[73] optimizes the partitioning of networks in traffic simulations to min-

imize communications between logical processes (LP) of different sub-networks,

providing an efficient solution to enhance the performance of parallel road traffic

simulations.

The study by Whitanage et al.[70] presents a method for dividing road traffic

networks into optimal connected sub-networks with uniform traffic flow patterns

using taxi trip data to calculate edge weights. The method follows a multilevel

scheme: graph coarsening with random matching, initial partitioning with re-

cursive bisection, and refining with the KL algorithm. The algorithm runs 10

times, selecting the best division. Applied to Colombo city’s road network (33,979

crossroads and 100,000 edges over 2,654 km²), this method showed fewer border

edges compared to the METIS partitioning algorithm[35] (a software package for

partitioning large-scale graphs and optimizing fill-reducing orderings of sparse ma-

trices). However, it does not consider load balancing among sub-networks, as it is

not intended for parallel or distributed traffic simulation.

2.4 HPC-Oriented Design of Multi-Agent Traffic Simulator 33

Anwar et al.[5] introduce a method for dynamically dividing road traffic net-

works to optimize traffic control by maintaining homogeneous sub-networks despite

changing congestion levels. This approach was validated using Melbourne’s traffic

network, which includes 2,928 crossroads and 7,245 roads, and further tested on

larger semi-synthetic networks with up to 28,465 crossroads and 53,494 roads.

Acosta et al.[2] leveraged the traffic simulator SUMO for a parallel/distributed

approach to road traffic network division. Their work focuses on managing bor-

der edges to minimize their impact on vehicle movement, rather than detailing a

specific division algorithm. This approach is demonstrated on a small regular grid

with 4 nodes (crossroads) and 12 edges (roads).

Chang Liu et al.[41] propose a dynamic method for dividing road traffic net-

works to improve real-time management and control. The approach aims to create

sub-networks with uniform density by clustering road segments with similar traffic

characteristics. Starting with a static division to minimize cutting costs and en-

hance intra-subnetwork correlation, the method dynamically refines the structure

through merging, cutting, and adjusting boundaries. This method was demon-

strated on the road traffic network of Farmers Branch city, near Dallas, proving

its effectiveness.

Xu et al.[75] present a method for dividing road traffic networks to enhance dis-

tributed simulation, utilizing a hypergraph representation and the hMETIS algo-

rithm[36] (hMETIS is an extension of the METIS software package[35] specifically

designed for hypergraph partitioning, which is useful for more complex scenarios

where relationships between data points are not limited to pairs.). The focus of

this approach is to reduce inter-process communication. The method is demon-

strated on the Singapore road network, which comprises 10,702 crossroads, 21,333

roads (approximately 3,200 km in length), and about 950,000 vehicles.

Qiang Liu et al.[42] developed a method to enhance traffic management by

2.4 HPC-Oriented Design of Multi-Agent Traffic Simulator 34

dividing road networks into sub-networks using an improved Newman Fast Clus-

tering Algorithm (NFCA)[50]. This approach employs a weighted graph, with

static weights representing distances between crossroads and dynamic weights in-

dicating traffic flow. The method’s efficiency, measured by modularity (the ratio

of border roads to inner roads), was tested on a small network of 18 crossroads and

26 bidirectional roads. The improved NFCA showed better performance compared

to the original algorithm.

Finally, Potuzak[56] conducted an extensive review of methods for dividing

road traffic networks for distributed or parallel traffic simulations, identifying sev-

eral key trends in the field. He highlighted the frequent use of real road networks

and regular square grids for testing proposed methods. Many of these methods

are compared to existing algorithms like METIS[35] to evaluate their relative per-

formance. Most methods employ static load-balancing, though some use dynamic

load-balancing to enhance real-time management. Additionally, many approaches

leverage real traffic data, obtained from GPS, cell phones, or stationary sensors,

to refine their models. Finally, Potuzak noted the common use of techniques such

as K-means clustering, hierarchical clustering, and graph growing to effectively

divide road networks.

Agent Distribution: An Alternative Perspective

In addition to conventional methods of dividing and distributing networks in multi-

agent traffic simulators, an alternative perspective warrants attention: that of

distributing the agents themselves. This approach, highlighted by Mastio et al.[43],

delves into the mechanisms and implications of distributing agents within multi-

agent traffic simulators. Mastio et al. explored two methods of distribution in a

multi-agent environment, focusing on the balance and efficiency of simulations.

The first method, referred to as centralized synchronization, proposes divid-

2.4 HPC-Oriented Design of Multi-Agent Traffic Simulator 35

ing the entire set of agents into distinct subsets, with each subset allocated to

different servers. This strategy involves constant communication between servers

to ensure each unit has access to up-to-date information on the overall network

state. Although this method aims to minimize the necessary communication by

keeping agents on their original server, it requires rigorous synchronization. This

synchronization is crucial for reliably modeling the network dynamics, which are

influenced by the movements of agents managed by different hosts. The primary

focus is on maintaining a balance in computational load across servers while en-

suring consistent network-wide information.

In contrast, the second method, known as environmental distribution, focuses

on grouping agents on a server based on their geographic proximity within the net-

work. Unlike the first method, which distributes agents somewhat independently

of their physical locations, environmental distribution aligns the network’s con-

stituent elements, such as vertices and edges, with specific servers. Consequently,

the agents located on these elements are grouped together, which facilitates more

localized handling of interactions and movements. This method generates two

main types of communications: the synchronization of information related to the

weights of edges between servers and the transfer of agents from one server to

another when they move to a vertex managed by a different server. The aim here

is to reduce overall communication overhead by maximizing the local processing

of interactions and minimizing cross-server data transfers, which is particularly

beneficial in simulations where agent movements are frequent and geographically

coherent.

Mastio et al.’s analysis concludes that, for their specific multi-agent mobil-

ity simulator model, the agent distribution method offers superior performance

to environmental distribution. However, this study also highlights a critical is-

sue: balancing the computational load between computing units. This finding

2.4 HPC-Oriented Design of Multi-Agent Traffic Simulator 36

underscores the importance of considering dynamic load balancing mechanisms to

further improve the performance of simulations. The figures 2.1 and 2.2 illustrate

the differences in distribution. In the first, the color correspondences are shown

on the agents (colored points), whereas in the second, the color correspondences

with the nodes are depicted on the subnetworks (colored areas).

Another study conducted by Yadong Xu et al.[72] addresses city-scale nanoscopic

traffic simulation to tackle increasing issues of congestion, collisions, and emis-

sions. The architecture of the SEMSim traffic simulator is described, emphasizing

the importance of parallelization and reducing dependencies between logical pro-

cesses (LPs). Nano-agents, consisting of a driver and a vehicle, are modeled using

behavioral and vehicle components. A discrete-event approach is favored to man-

age varied time scales effectively. A multi-objective optimization for the dynamic

allocation of agents to clusters is proposed, incorporating knowledge of the road

network topology. Future work will focus on implementing this simulation and

developing dynamic methods to tackle this complex problem.

Impact of Inter-Node Communications and Future Research Directions

Efficient management of inter-node communications remains a major challenge in

optimizing multi-agent traffic simulators. While division and distribution methods

bring significant benefits in terms of complexity and computational load manage-

ment, they often introduce an overhead related to the need to synchronize and

communicate information across the computing network. The continuous data

transmission between servers to maintain the integrity of simulations generates an

overhead that can affect overall performance. Data exchanges, especially when

frequent or voluminous, can cause significant latency and reduce the efficiency of

parallel computing.

By analogy, we can consider these methods as Divide & Conquer techniques,

2.4 HPC-Oriented Design of Multi-Agent Traffic Simulator 37

Figure 2.1: Distribution of agents

Figure 2.2: Distribution of subnetworks

2.4 HPC-Oriented Design of Multi-Agent Traffic Simulator 38

which consist of dividing a problem that is difficult to solve into sub-problems

that are easier to solve. In the next chapter, we propose an opposite technique to

Divide & Conquer, called Unite & Conquer. This approach aims to improve the

performance of these types of simulators by applying a unified strategy to address

the challenges posed by complex simulations.

The challenge, therefore, lies in developing more efficient communication pro-

tocols and synchronization methods capable of minimizing communication costs

while ensuring the accuracy and reliability of simulations. This issue represents a

critical research domain for the future: developing solutions to mitigate the im-

pact of inter-node communications. Advances in this area could lead to a new

generation of multi-agent traffic simulators, capable of managing vast networks

and a large number of agents with unprecedented efficiency and precision, thus

transforming current constraints into opportunities for future breakthroughs.

Advantages of the Event-Driven Approach in Distributed Computing

Identifying the reduction of inter-node communications as a future research axis

invites consideration of the event-driven approach as a potentially fruitful strategy.

Adopting this event-based model marks a notable evolution in the design of multi-

agent traffic simulators and offers an effective alternative to traditional models

based on regular time intervals. Event-driven simulators operate by focusing on

moments when significant changes occur in the system, rather than constantly

updating the state of each agent at fixed intervals.

This specificity gives the event-driven approach remarkable potential to reduce

unnecessary calculations and optimize the use of computing resources. In a dis-

tributed computing context, it minimizes the need for frequent and voluminous

communications between computing nodes, as data exchanges occur in response

to specific events, thus mitigating latency and communication costs.

2.4 HPC-Oriented Design of Multi-Agent Traffic Simulator 39

Simulators such as MATSim[31] and SUMO[4] incorporate event-driven ele-

ments to efficiently manage various aspects of traffic simulations. These tools

illustrate how reacting to events, rather than a fixed time sequence, can reduce

interactions between nodes while providing accurate and detailed simulation of

traffic dynamics.

However, it’s important to recognize that the efficiency of the event-driven

approach may vary, and depending on the context. In some scenarios, such as

those with complex interactions or frequent and unpredictable state changes, this

method can significantly reduce unnecessary calculations and communications.

Conversely, in situations where high temporal precision is required, the time-based

method may prove more adequate.

The choice between event-driven models and those based on time intervals

should be guided by the specifics of the traffic scenario to be simulated and

the objectives of the simulation. Incorporating the event-driven approach into

multi-agent traffic simulators represents a notable advancement, particularly in

distributed computing systems where minimizing inter-node communications is of

paramount importance. Nonetheless, a careful evaluation of the benefits and lim-

itations of each approach is necessary to optimize the performance of simulations

and continue to innovate in the field of multi-agent traffic simulators.

GPU Computing in Multi-Agent Traffic Simulators

The GPU (Graphic Processing Unit), originally developed for graphics processing,

has become a major component in the field of HPC due to its ability to execute

a large number of threads simultaneously. This capability makes it particularly

suited to parallelizable tasks, where a multitude of calculations can be performed in

parallel. GPUs excel in parallel processing of simple repeated tasks across a large

data set. This ability stems partly from their SIMD (Single Instruction, Multiple

2.4 HPC-Oriented Design of Multi-Agent Traffic Simulator 40

Data) architecture, which allows a single instruction type to simultaneously process

multiple data.

In the context of multi-agent traffic simulation, the SIMD approach integrated

into GPUs finds an efficient application as it allows managing and executing cal-

culations for many agents (vehicles, pedestrians, etc.) in parallel. Each agent can

be considered as a set of data on which the same operations need to be performed

(e.g., calculating position, speed, or detecting collisions). Therefore, the use of

GPUs and the SIMD architecture significantly accelerates these simulations by re-

ducing the time needed to process all agents in the simulated environment, making

multi-agent road traffic simulations both faster and more realistic.

GPU Suitability for the Multi-Agent Paradigm As a reminder, in a multi-

agent system, each agent can be considered an independent entity with its own

rules and behaviors. The parallel processing capabilities of GPUs efficiently simu-

late many agents simultaneously, which is essential for reproducing the complexity

and dynamics of real transport systems. GPUs facilitate the modeling of individ-

ual behaviors and interactions between agents on a scale and speed that would be

difficult to achieve with conventional CPUs.

Studies such as those by Hermelin et al.[27] and Rajf and Potuzak[61] have

explored the use of GPGPU (General-Purpose processing on Graphics Process-

ing Units) in traffic simulators. Hermelin et al. highlight the benefits of hybrid

solutions, which combine the modeling flexibility of agents and the efficiency of

parallel GPU processing. Rajf and Potuzak, on the other hand, compared the per-

formance of traffic simulations on GPUs and CPUs, demonstrating the significant

acceleration potential offered by GPUs.

In the research conducted by David Strippgen and Kai Nagel[68], the authors

delve into the efficiency of GPUs in accelerating road traffic simulation. They

2.4 HPC-Oriented Design of Multi-Agent Traffic Simulator 41

implemented a specific data structure, known as the "circular buffer", for optimally

storing data on GPU memory.

The "circular buffer" is a storage technique where data is organized in a fixed-

size array, and when this array is filled, new data replaces the old in a cyclic

manner. This approach avoids the overhead associated with dynamic memory

allocation, facilitating efficient use of GPU memory.

By utilizing this optimized data structure, the authors fully leveraged the com-

puting capabilities of GPUs to simulate complex traffic networks. The results

demonstrated a significant improvement in performance compared to traditional

methods, with a speed gain of up to 67 times compared to a highly optimized Java

version for the MATSim traffic simulator.

These studies underscore that, while GPUs offer considerable parallel comput-

ing power, the performance gain varies depending on various factors, such as the

traffic network structure and hardware specifics. Optimal management of these

factors is key for maximizing the benefits of parallel GPU computing in multi-agent

traffic simulations.

Another study conducted by Aleksandr et al. describes the development of

GEMSim, a GPU-based mobility simulator designed for large-scale networks and

generic population samples[64]. This simulator aims to efficiently exploit the mas-

sively parallel architecture of GPUs to accelerate mobility simulations. Adjust-

ments to the simulation loop structure, organization of memory transactions on

the GPU, and data structures are detailed to maximize performance.

Preliminary results for a large-scale scenario in Switzerland demonstrate sig-

nificant acceleration of mobility simulations with GEMSim compared to MATSim,

which is CPU-only. Indeed, GEMSim proves to be more than 12 times faster than

MATSim in certain configurations, and up to 58 times faster for mobility simu-

lations. This approach thus provides more accessible and faster traffic simulation

2.5 AI and Road Traffic Simulation 42

and forecasting tools for industry professionals.

Z. Chen et al.[67] developed a dynamic method for dividing road traffic net-

works, achieving a speedup of up to 110 times by leveraging GPU capabilities.

This method, based on a parallel genetic algorithm, is designed for traffic man-

agement and microscopic simulations. It was tested on a grid with 25 crossroads

and a small road network in Zhongguancun, Beijing, demonstrating significant

performance improvements over the CPU version.

As we continue to explore the advancements in HPC applied to traffic simula-

tors, it becomes evident that integrating cutting-edge technologies can significantly

enhance simulation capabilities. Among these technologies, artificial intelligence

is poised to play a pivotal role in the future of traffic modeling, offering unprece-

dented accuracy and predictive power.

2.5 AI and Road Traffic Simulation

Road traffic simulation is on the cusp of a radical transformation, driven by rapid

advancements in AI, HPC, and digital technologies. This section explores the ma-

jor innovations that are redefining traffic simulation, with a particular emphasis on

distributed artificial intelligence, and examines how these technologies are shaping

the future of urban transportation systems. Distributed AI plays a key role in the

evolution of traffic simulations, enabling more complex analyses and more precise

modeling of road user behaviors. Thanks to distributed AI, simulations can now

manage complex multi-agent systems, where each agent (vehicle, pedestrian, cy-

clist) operates autonomously but is capable of interacting with and adapting to

the actions of others, thus offering a dynamic and realistic representation of urban

traffic.

2.5 AI and Road Traffic Simulation 43

2.5.1 Integration of Autonomous Vehicles

A specific application of distributed AI is the integration of autonomous vehi-

cles into existing traffic. The advent of autonomous vehicles represents a gradual

evolution of mobility technologies, marking a significant milestone in how trans-

portation systems are conceptualized, developed, and managed. This transition

towards greater vehicle autonomy holds the potential to transform traffic dynam-

ics, offering new avenues for improving the safety, efficiency, and sustainability

of urban transport networks while adding another element of complexity to the

system.

Autonomous vehicles, through their ability to communicate with each other

and with infrastructure via V2X technology, introduce an additional dimension

to road traffic simulation. This interaction allows for more precise modeling of

traffic flows, providing real-time data on traffic conditions, vehicle behaviors, and

responses to various environmental stimuli.

At the heart of this evolution, the capability of autonomous vehicles to oper-

ate without direct human intervention relies on advanced systems of sensors, AI

algorithms, and data processing technologies. These technologies enable vehicles

to make safe and efficient navigation decisions, respond to unexpected changes in

the traffic environment, and adapt to real-time traffic management strategies.

The integration of autonomous vehicles into road traffic simulations thus of-

fers the possibility to explore new mobility scenarios, assess the impact of traf-

fic interventions, and design more resilient transportation systems. For example,

by simulating interactions between autonomous and non-autonomous vehicles, re-

searchers can identify strategies to minimize congestion, reduce accident risks, and

optimize travel times. V2X communication, which encompasses vehicle-to-vehicle

(V2V), vehicle-to-infrastructure (V2I), vehicle-to-pedestrian (V2P), and vehicle-

2.5 AI and Road Traffic Simulation 44

to-network (V2N), represents a key technological advancement in the evolution of

traffic simulation. This technology facilitates a continuous and multidirectional

exchange of information, essential for improving traffic flow and safety. Its imple-

mentation opens up significant possibilities for more accurately modeling complex

interactions within the transport system.

The integration of V2X communication into traffic simulation models implicitly

relies on the use of AI and HPC. AI, with its advanced analytical and predictive

capabilities, enables the interpretation of data exchanged via V2X to anticipate

traffic conditions, detect potential incidents before they occur, and suggest real-

time adjustments to optimize traffic flows. This analysis is made possible by the

computing power provided by HPC, which efficiently processes the large volumes

of data generated by V2X systems, ensuring a dynamic and responsive simulation

of traffic scenarios.

The convergence of V2X communication with AI and HPC opens new horizons

for road traffic simulation, enabling a more faithful and adaptive representation

of urban dynamics. This integrated approach promises not only better traffic

management but also a significant reduction in accident risks, an enhanced driving

experience, and optimized urban planning strategies.

However, realizing this potential requires careful attention to challenges related

to data security, privacy protection, and system reliability. The successful imple-

mentation of these advanced technologies in road traffic simulation will depend on

the ability to navigate these ethical and technical considerations, highlighting the

importance of ongoing collaboration among researchers, engineers, and policymak-

ers.

To assess the effectiveness of traffic simulations using V2X (Vehicle-to-Everything)

technology, Schünemann implemented his innovative infrastructure, the V2X Sim-

ulation Runtime Infrastructure (VSimRTI)[66]. In their study, they explored how

2.5 AI and Road Traffic Simulation 45

this infrastructure could be utilized to couple two well-known traffic simulators,

VISSIM and SUMO. The goal was to understand how the use of V2X technol-

ogy could influence the simulation process in terms of the total time required.

They found that coupling these simulators effectively reduced the simulation time

compared to using VISSIM alone. This reduction in simulation time is crucial in

the context of V2X simulation, as it allows for accurate results within reasonable

timeframes, which is critical for facilitating the analysis of intelligent transporta-

tion system performances. Thus, this study highlights the importance of V2X

technology in optimizing traffic simulations, offering promising prospects for more

effective and realistic applications in this rapidly expanding field.

Another study conducted by Lejun Jiang et al. [34] aimed to assess the effec-

tiveness of V2X communications in predicting road traffic. Their findings indicated

that even with a low penetration rate of connected vehicles, significant traffic pre-

dictions could be achieved. Utilizing a communication range of several hundred

meters for roadside units, they observed a consistent coverage rate of about 90%.

They also demonstrated that a strategic deployment of roadside units could max-

imize the efficiency of traffic predictions. Their work highlighted the potential of

V2X communications to enhance road traffic prediction and, by extension, traffic

management and road safety.

Lastly, Ali R. Abdellah et al. proposed the use of a unidirectional Long Short-

Term Memory (LSTM) neural network model for traffic forecasting in Vehicle-

to-Everything (V2X) networks[1]. This model improves prediction accuracy by

leveraging past temporal data, facilitating more informed decision-making. The

simulation results showed that the model achieved its highest level of accuracy

when the transmission rate was 4 packets/s, thereby surpassing competing meth-

ods. However, performance declined as the transmission rate increased, with lower

accuracy and longer processing times for models predicting at 14 packets/s.

2.5 AI and Road Traffic Simulation 46

These conclusions underscore the effectiveness of the proposed model for V2X

traffic prediction and highlight the importance of judiciously choosing transmission

parameters to optimize system performance.

2.5.2 Real-time Traffic Optimization

Beyond advancements related to autonomous vehicles and V2X communication,

real-time traffic optimization relies on a wide range of technologies and strategies.

These complementary approaches play a very important role in dynamic traffic

management, enabling agile responses to fluctuating road conditions. This sec-

tion explores how systems based on distributed artificial intelligence and other

technologies contribute to more effective traffic management.

Predictive Analysis and Traffic Modeling

The use of advanced predictive models, powered by the analysis of historical and

real-time data, allows traffic managers to anticipate flow variations and prepare

appropriate responses. These models can predict congestion before it occurs, based

on variables such as usual traffic volumes, special events, or seasonal changes. The

Internet of Things (IoT), through the deployment of sensors and connected devices,

provides continuous data on traffic, weather conditions, and various environmen-

tal factors influencing circulation. Once collected, this information feeds predictive

models to anticipate congestions and other traffic variations. Edge Computing fa-

cilitates data processing close to its source, minimizing latency and speeding up

the availability of analyses necessary for reactive traffic management. This prox-

imity allows for quick updates and the application of predictive models, essential

for adaptive and real-time traffic management.

Shilpa P. Khedkar and colleagues focused on real-time traffic prediction of

IoT using machine learning, deep learning, and time-series forecasting methods

2.5 AI and Road Traffic Simulation 47

[37]. They compared several prediction models, including Long Short-Term Mem-

ory (LSTM), AutoRegressive Integrated Moving Average (ARIMA), and Vector

AutoRegressive Moving-Average (VARMA), and Feedforward Neural Networks

(FNN), across different traffic intervals and architectural parameters. Their ex-

perimental results showed that LSTM and FNN models provide more accurate

real-time predictions compared to conventional models like VARMA and ARIMA,

based on statistical parameters such as RMSE score, MAE score, and R-squared

values. They also plan to design future algorithms capable of considering all dy-

namic parameters of the IoT environment to predict upcoming traffic in real-time

with greater accuracy. Fei Dai and colleagues propose a deep learning spatio-

temporal framework for traffic speed forecasting[17]. This framework combines

two deep learning models, Convolutional Long Short-Term Memory (ConvLSTM)

and Graph Convolutional Network (GCN), to extract the temporal and spatial

features of traffic data. Specifically, the ConvLSTM model is used to capture

the temporal dynamics of traffic speed data, while the GCN model is utilized to

analyze the spatial complexity of the traffic network. Compared to three other

deep learning approaches, the framework proposed by the authors demonstrates

an ability to grasp the temporal dynamics and spatial complexity of traffic data,

resulting in the best performance in terms of traffic speed forecasting.

Adaptive Traffic Management Systems

Adaptive traffic management systems adjust traffic control parameters, such as

signal light durations, based on current traffic conditions. These systems rely on

sensors and cameras to collect real-time data, thus enabling dynamic traffic regu-

lation that reduces congestion and improves the smoothness of movements. P.G.

Balaji and colleagues present a new approach to optimize traffic signal timing[8].

By leveraging the advantages of multi-agent systems and autonomous decision-

2.5 AI and Road Traffic Simulation 48

making, the authors examined two types of traffic signal control agent architec-

tures implemented on a complex simulated traffic network. In these architectures,

traffic signal control agents are software entities capable of making decisions au-

tonomously to regulate traffic flow at intersections. They use real-time traffic data

to adjust signal timing and optimize traffic flow. Simulation results showed that

traffic signal controllers based on multi-agent systems outperformed currently used

conventional signal control methods. This suggests that multi-agent approaches

offer a promising solution for optimizing traffic signal timing in complex traffic

environments. Damadam et al. explored the application of deep reinforcement

learning combined with the IoT for traffic light management systems[18]. The

system uses real-time data from sensors and cameras to efficiently manage traffic

signals. Simulation results from Shiraz City showed significant improvements in

traffic flow and reductions in vehicle queue lengths and waiting times compared to

traditional fixed-time traffic signal systems.

Mobile Applications and Data Sharing Platforms

In developing strategies for real-time traffic optimization, navigation mobile ap-

plications and data-sharing platforms stand out for their ability to significantly

improve the fluidity and safety of urban travel. Among these technologies, Waze

and Google Maps emerge as leaders, thanks to their innovative approach to col-

lecting and analyzing traffic data. These applications rely on user participation,

who, through their smartphones, continuously feed the database with real-time

information on traffic conditions[39][44]. The operation principle of these applica-

tions is based on collecting GPS data from user devices on the move. This massive

data collection allows for precise mapping of travel speeds on roads, identifying

congestion zones, and reporting various incidents such as accidents, roadworks, or

road closures. Then, through advanced data processing algorithms and predic-

2.5 AI and Road Traffic Simulation 49

tive analysis, these applications assess the fastest and least congested routes, thus

offering users alternatives to avoid congested areas. Waze, in particular, adopts

a biomimicry-inspired approach, similar to the behavior of ants when exploring

their environment and communicating with each other to find the most efficient

path to a food source. In the context of Waze, each user acts as a "digital ant",

sending signals about real-time traffic conditions, which are then analyzed by the

application to guide other users. This crowdsourcing method not only allows for

dynamic and real-time updates of traffic conditions but also encourages a form

of cooperation and collective communication among road users, thus organically

optimizing routes in an efficient manner. Thanks to this real-time collaboration

and the application of collective intelligence principles, Waze and Google Maps

facilitate more proactive traffic management, reducing travel times and contribut-

ing to smoother traffic flow. Additionally, these applications play a major role

in promoting road safety by alerting drivers to incidents and providing updated

information on road conditions. However, dependence on these technologies also

raises questions about data privacy and information security. The need for con-

stant internet connection and the accuracy of data in less densely populated areas

represent other challenges to consider.

Data Capturing : Traffic Detector Technologies

Advanced detection technologies such as inductive loops, traffic radars, acoustic

sensors, and under-pavement weigh-in-motion systems serve as effective tools for

collecting accurate data essential for developing reliable and realistic simulation

models. These devices are instrumental in capturing dynamic traffic parameters,

such as vehicle speeds, traffic volumes, and densities, which feed the simulations

to reflect current road conditions.

2.5 AI and Road Traffic Simulation 50

Inductive Loops Inductive loops measure vehicle presence and movement through

changes in the magnetic field induced by the metallic mass of vehicles. This tech-

nology is particularly useful for assessing traffic flow and frequency of crossings

at intersections, providing essential data for modeling traffic behavior at critical

points. Bhaskar et al.[9] explored the use of inductive loops combined with mi-

crocontrollers to measure vehicle density and manage traffic signals. Their study

demonstrates how data collected from inductive loops embedded in the road sur-

face can be used to dynamically adjust traffic light durations based on real-time

traffic conditions. This adaptive approach helps reduce congestion and improve

the overall flow of traffic. Similarly, Lamas-Seco et al.[38] introduced a system

called SiDIVS, which utilizes inductive loops to detect vehicle signatures through

Time-Division Multiplexing, providing accurate vehicle identification and classi-

fication for traffic monitoring. These technologies exemplify the potential of in-

ductive loops in enhancing intelligent transportation systems by providing crucial

real-time traffic data for adaptive traffic management.

Traffic Radars While often associated with speed monitoring, traffic radars also

collect information on vehicle movement. This data is indispensable for simulat-

ing average speeds and flow patterns on various road segments, helping to identify

potential congestion points. The study by Chetouane et al.[12] explores the use of

radar sensors in combination with other technologies to detect and manage traf-

fic congestion. The research discusses how radar data aids in identifying traffic

patterns and potential bottlenecks, enabling dynamic adjustments to traffic man-

agement strategies. This approach helps in real-time congestion detection and

provides actionable insights for traffic planners to mitigate congestion effectively.

The integration of radar data with other sensor data forms a robust framework for

addressing the challenges of urban traffic congestion.

2.5 AI and Road Traffic Simulation 51

Under-pavement Weigh-in-motion Systems Under-pavement weigh-in-motion

(WIM) systems, which measure the weight of moving vehicles, add an additional

dimension to traffic simulations by allowing the assessment of the impact of heavy

vehicles on traffic flows and infrastructure wear. This information is indispensable

for modeling interactions between different vehicle types and for planning road

maintenance. The use of these detection technologies enriches the database used

to construct and refine road traffic simulation models, offering a more faithful

and nuanced representation of actual traffic conditions. The accuracy and di-

versity of collected data enable simulations to more precisely simulate the traffic

system’s responses to various variables, thereby facilitating the search for solu-

tions to improve traffic flow and reduce congestion. Alsaawy et al.[3] proposed

an integrated framework for traffic congestion management, combining IoT, fog

computing, cloud computing, and data analytics. WIM systems were used in the

sensing layer of this framework to provide accurate measurements of traffic status.

The data collected was processed to make efficient decisions and stored for further

analysis, enhancing the overall effectiveness of traffic simulations and congestion

management. Zadobrischi[76] explored the integration of various sensor networks,

including WIM systems, for intelligent traffic monitoring. The study highlighted

how real-time data from WIM systems can be used to model traffic flow, classify

vehicles, and predict congestion. This data is vital for creating dynamic traffic sim-

ulation models that can respond to real-time changes in traffic conditions, thereby

improving traffic flow and reducing congestion.

In the evolution of road traffic simulation, the adoption of technologies such

as distributed artificial intelligence, autonomous vehicles, vehicle-to-everything

(V2X) communication, the Internet of Things, and edge computing is essential.

These innovations enable real-time data collection and analysis, thus improving the

accuracy of traffic simulations and adaptive traffic management. Real-time mod-

2.6 Conclusion 52

eling, supported by data from sensors and road metrology, as well as collaborative

navigation platforms like Waze, facilitates congestion prediction and optimizes

traffic flow. However, implementing these advanced technologies requires careful

management of data privacy and system security challenges.

In conclusion, while emerging technologies offer significant possibilities for im-

proving traffic simulation and management, their effective integration into trans-

portation systems requires ongoing attention to technical and regulatory implica-

tions. Continued research in this area is essential for fully realizing the potential

of these innovations in creating more efficient and adaptive transport networks.

2.6 Conclusion

This study has undertaken a fairly comprehensive review of multi-agent traffic

simulators, addressing their historical development, the challenges they face, and

the technological advancements influencing them. It highlights the persistent dif-

ficulties and emerging opportunities at the intersection of technology and urban

mobility.

Our study reveals that, despite notable progress, multi-agent traffic simulators

continue to encounter significant obstacles, particularly in terms of computational

efficiency and simulation accuracy. In response to these challenges, we have iden-

tified two potential avenues for improvement to enhance the performance and

flexibility of these simulators.

Firstly, the HPC-oriented design of existing simulators is considered. This de-

sign can operate at the level of parallel implementation or at the simulator model-

ing level, thus defining an intrinsic parallelism in the algorithm resulting from the

model. This approach underscores HPC’s capability to address the performance

challenges associated with complex simulations.

2.6 Conclusion 53

Secondly, using AI modelling is suggested to enrich the simulators’ capacity

to model and analyze traffic behaviors. While these avenues are still under devel-

opment, they present promising prospects for faster, more accurate, and adaptive

simulations, meeting the evolving demands of urban transport systems.

In summary, this state-of-the-art review provides an overview of the current

field and lays the groundwork for future research. It indicates directions for inno-

vation and development likely to positively influence not only multi-agent traffic

simulators but also urban mobility planning and management. Our contribution,

by leveraging HPC and AI, aims to participate in the evolution of this rapidly

transforming field.

Having explored the current state-of-the-art in traffic simulation, we now turn

to our first contribution: the application of the Unite and Conquer method to

the MATSim simulator. UC, a technique used in high-performance linear algebra,

offering intrinsic multi-level parallelism, heterogeneity, and fault tolerance. The

following chapter details how this method can be adapted to enhance the speed

and efficiency of traffic simulations, particularly for extensive urban networks.

Chapter 3

Unite and Conquer Approach

3.1 Contextualization and Justification of the Ap-

proach

Faced with the challenges posed by multi-agent traffic simulation, particularly due

to the considerable volumes of data to be processed and emerging computer ar-

chitectures, it becomes essential to examine algorithmic concepts adapted to these

complex environments. To this end, we are interested in the Unite and Conquer

approach[22]; used in high-performance linear algebra to accelerate the conver-

gence of iterative methods. Studies carried out on the application of this approach

to the resolution of large linear systems and large eigenvalue problems show[71]

great efficiency, particularly when the convergence conditions of classical methods

are difficult. This approach is based on the integration and reorganization of tradi-

tional iterative numerical algorithms so that they can, in addition to accelerating

global convergence, fully exploit the multilevel concurrency, hierarchical memory

structures and heterogeneous processing units characteristic of modern computing

platforms.

55

3.1 Contextualization and Justification of the Approach 56

At the heart of the UC approach is the idea of bringing together multiple

iterative methods, called co-methods, to accelerate overall convergence toward

the solution. Unlike classic iterative methods, which aim to improve the starting

condition of an iteration based on the result of the previous iteration, UC calculates

this condition in "function" of the results of the previous iteration of all co-methods

participating in this collaboration. The definition of this function is a key element

of UC methods and allows defining many new methods based on existing iterative

ones.

The collaborative strategy between co-methods contrasts with traditional iter-

ative methods that operate in isolation. The communications in (a)synchronous-

mode between co-methods orchestrate a joint effort of several algorithms reflecting

a synergy that allows more efficient use of available computing resources and of-

fering increased adaptability to the complexities of today’s computing systems,

whether parallel, distributed or heterogeneous.

Meanwhile, the well-known Divide and Conquer (DC) method is based on a

different principle: it divides a problem into smaller sub-problems, solves these sub-

problems independently, and then combines their solutions to obtain the overall

solution. Although DC is effective in reducing the complexity of problems by

fragmenting them, it does not implement active collaboration between the different

methods or algorithms working on the sub-problems.

Unlike DC, the UC approach does not simply seek to divide the initial problem

into more manageable parts but aims to create a dynamic of collaboration between

different co-methods participating in this "competition". In inter-co-method com-

munications, each co-method shares and benefits from the progress made by the

others, thus continually improving the quality of the overall solution. This con-

tinuous interaction between co-methods not only accelerates convergence but also

increases the robustness of the solution in the face of variability and complexity of

3.2 Fundamental Principles 57

the data or models involved. In summary, while Divide and Conquer focuses on

structural simplification of problems, Unite and Conquer harnesses the power of

interaction and collaboration between different co-methods to optimize the solu-

tion process. This fundamental distinction between the two approaches highlights

the potential of unified communications to take advantage of advanced IT archi-

tectures and address the challenges posed by big technologies.

3.2 Fundamental Principles

As previously mentioned, the fundamental principles of the UC approach revolve

around the collaboration between several iterative methods, referred to as co-

methods, to solve linear systems of equations and eigenvalue problems in the con-

text of large-scale simulations. This strategy is based on key concepts definining

this collaboration that allow for significant optimization of the resolution process,

adapted to today’s complex computational architectures.

3.2.1 Optimization of Communications

One of the cornerstones of the UC approach from the point of view of the ef-

ficiency of parallel calculations; is the optimization of communications between

co-methods. In parallel and distributed computing architectures, operations re-

quiring (a)synchronous communications between a large number of cores or nodes

can become a significant bottleneck. The UC approach minimizes these operations

by favoring, whenever possible, asynchronous communications that can overlap

with calculations. This method reduces latency and improves the utilization of

computing resources.

3.2 Fundamental Principles 58

3.2.2 Fault Tolerance

The UC brings together several iterative co-methods in order to improve the be-

havior of the overall collaborative method. The number of these co-methods can

be ℓ (with ℓ a number greater than or equal to 1). So, if for any reason one or more

of the co-methods disappears, as long as one of the co-methods is active the overall

method will work. This important characteristic indicates the fault tolerance of

the UC methods.

3.2.3 Diversity of Parallelism and Load Balancing

The co-methods of a UC method can present an intrinsic parallelism of a differ-

ent nature compared to each other. Thus, a parallel programming model well

suited to one does not necessarily suit others. We are therefore in the presence

of heterogeneous parallelism between the high granularity tasks corresponding to

the co-methods. It is clear that this parallelism added to that intra-co-method

indicates that in UC methods a minimum of two levels of parallelism is always

present.

Furthermore, a special case of UC methods is when the co-methods are in-

stances of the same iterative method. In other words, co-methods are examples

of the same method parameterized differently. In this case, the associated UC

method is called MultipleX where X designates the iterative method used. The

heterogeneity of CPU in this particular case is essentially expressed by the need

for calculation/memory resources of each of the instances requiring more or less

powerful nodes/processors.

The diversity of parallelism inherent in UC methods and their adaptability

to heterogeneous architectures impose load balancing on the components of these

architectures. That is, during implementation, co-methods must be assigned to

3.2 Fundamental Principles 59

the nodes of the parallel machine based on their intrinsic parallelism and their

weight. Intra-co-method load balancing with finer-grained parallelism can often be

performed dynamically, thus achieving high operational efficiency on heterogeneous

systems.

3.2.4 Collaboration and Dynamic Selection

The core of the UC approach lies in the collaboration between co-methods which,

at the end of each restart cycle, exchange information to select the best one among

those available. This selection is based on predefined criteria, such as minimiz-

ing the residue or optimizing convergence. This collaborative strategy allows a

significant reduction in the number of cycles needed.

Finally, the fundamental principles of the UC approach represent an interesting

advancement in solving large-scale problems on modern computing architectures.

By focusing on optimizing asynchronous communications, fault tolerance, load

balancing, and efficient collaboration between co-methods, UC methods open new

perspectives for enhancing the performance and efficiency of complex numerical

simulations, such as those required in large-scale multi-agent traffic simulation.

To conclude, let us present the pseudo-algorithm of the UC method: assume

that we need to solve a large linear algebra problem P , such as an eigenvalue

problem or a linear system.

Let L1, L2, . . . , Ll be a set of iterative methods, each capable of solving problem

P . Let Iki be the initial condition (when k = 0) and the restart condition (when

k > 0) for Li and let Sk
i be the approximate solution obtained by Li at the end of

its k-th iteration/cycle with the initial condition Iki (for i = 1, . . . , l). The main

steps of this approach to solving P are presented in Algorithm 1.

The restart strategy of the UC algorithm is a key component of the overall algo-

rithm. It involves updating the restart condition I ik based on the results obtained

3.3 Examples of UC methods 60

Algorithm 1 Unite and Conquer algorithm
1: Start. Choose a starting matrix [I01 , . . . , I

0
ℓ], let k = 0.

2: while for i = 1, . . . , ℓ do in parallel
3: Compute Sk

i by Li with initial condition Iki .
4: if accuracy of Sk

i is good enough then
5: STOP
6: end if
7: Share Sk

i information with all other processes j (j = 1, . . . , ℓ and j ̸= i).
8: Restart. Update starting condition [Ik+1

1 , . . . , Ik+1
ℓ] for restarting by

f(Sk
1 , . . . , S

k
ℓ) and go to 2.

9: end while

S1
k , . . . , S

l
k (step 8 of Algorithm 1). When the l processes in step 2 of Algorithm 1

run asynchronously, step 7 (Share) will be part of "Iterate" (step 2) in the same

way as step 8 (Restart). In this case, the restart condition for each process is a

function of the most recent results available from all the l processes. The success

of the approach strongly depends on the quality of the restart information at the

beginning of each new process cycle. This information is a combination of the re-

sults obtained by all processes in their previous cycle. In other words, defining the

function f , which describes this combination at step 8, is of utmost importance for

the rapid convergence of the UC algorithm. When the co-methods are instances of

the same iterative method, the corresponding UC method is also called multipleX,

where X is the name of the co-method. Remember, an instance of an iterative

method represents the method with a given set of parameters (inputs).

3.3 Examples of UC methods

The case study on the application of the UC approach to solving linear algebra

problems illustrates its effectiveness and relevance in the context of large-scale

computations. This section focuses on the application of the UC approach to

the hybrid LS-Arnoldi/GMRES method, chosen as a representative case study to

3.3 Examples of UC methods 61

demonstrate U&C’s ability to improve convergence and computation efficiency on

parallel and distributed architectures.

Linear algebra problems, such as solving systems of linear equations and deter-

mining eigenvalues, are fundamental in many scientific and engineering fields. The

challenge lies in the ability to solve these problems efficiently on modern computing

architectures, which are characterized by their large scale and heterogeneity.

3.3.1 Hybrid LS-Arnoldi/GMRES Method

We can consider the LS-Arnoldi/GMRES method[71] representing the most gen-

eral case of UC methods. This is a method for solving a very large linear system

using the least squares (LS), Arnoldi and GMRES co-methods. The role of LS

and Arnoldi methods is to help improve the starting conditions of the co-main

method GMRES for the resolution of the targeted linear system. We can see from

the results presented in[71] how the collaboration between these three co-methods

allows good convergence and improve the results of GMRES if it were executed

alone. We thus note the effectiveness of the UC approach and its relevance in the

context of large-scale calculations.

3.3.2 Multiple Explicitly Arnoldi Method (MERAM)

The MERAM method[23] represents the use of the UC approach for solving a large

eigenproblem. It consists of collaboration of several instances of the same ERAM

co-method. As in the case of the previous example by consulting [23], we can see

the effectiveness of this method in terms of convergence acceleration as well as in

terms of calculation performance.

3.4 UC Application to Traffic Simulation 62

3.4 Unite and Conquer Application to Traffic Sim-

ulation

For the simulation of multi-agent traffic, we draw inspiration from the particular

case of the UC approach, namely where the co-methods are instances of the same

method. Rather than mobilizing several different co-methods treating the same

data, we opted for the use of a single method (multipleX, as previously named),

applied to different datasets. This approach was explored through its applicability

to different multi-agent traffic simulators, focusing particularly on MATSim for

its process of converging towards an optimal solution, notoriously demanding in

terms of computational resources.

Unlike the traditional "Divide and Conquer" method, which segments a prob-

lem into independent sub-problems to then consolidate the solutions, UC envisions

a dynamic collaboration between different instances of the same algorithm or be-

tween different algorithms, enriched by distinct data. This symbiosis allows not

only for an acceleration of convergence but also for a more judicious exploitation

of computational capacities, suited to the complex structures of contemporary

computer systems.

Our contribution thus relies on the application of the UC approach to traffic

simulation, by examining how this strategy can be integrated within MATSim.

By differentiating the data processed by the same method, we define instances of

it constituting our co-methods. This approach aims to explore new ways to opti-

mize the convergence process. Consequently, it reduces the overall computational

cost while preserving or enhancing the accuracy of the simulations. This focus

underscores the importance of designing traffic simulators that not only address

computational complexity but also flexibly adapt to the requirements of cutting-

edge computing architectures. The application of UC is concretized here through

3.4 UC Application to Traffic Simulation 63

the study of MATSim, while emphasizing that this strategy is inherently generalist

and therefore applicable to other traffic simulators. The goal is to demonstrate

that, although MATSim serves as the primary framework for our exploration, the

principles and techniques developed can be transposed and adapted to a variety

of simulation platforms.

Having established the benefits of the UC approach in optimizing traffic sim-

ulations, we now turn our attention to the broader context of HPC architectures

that support such advanced techniques.

Chapter 4

High-Performance Computing for

Multi-Agent Simulation

In the era of Big Data and AI, high-performance architectures have become es-

sential components of the technological landscape in research and industry. They

provide the computational power necessary to process massive volumes of data,

solve complex simulation and analysis problems, and accelerate discovery and in-

novation.

In scientific research, supercomputers and HPC clusters enable detailed simu-

lations necessary to advance in fields such as particle physics, genomics, weather

forecasting, and astrophysics. These architectures facilitate computationally inten-

sive simulations that, would otherwise be prohibitively time-consuming or simply

impossible with traditional computers.

In industry, high-performance architectures play a vital role in product design,

engineering, and strategic decision-making. For example, in the automotive sector,

they are used for conducting virtual crash tests, optimizing aerodynamic designs,

and improving vehicles’ energy efficiency. In the financial sector, they enable

modeling complex economic scenarios, analyzing risks in real time, and performing

65

CHAPTER 4. HPC FOR MULTI-AGENT SIMULATION 66

high-frequency trading.

The rise of information and communication technologies has also amplified the

need for platforms capable of handling continuous data streams. High-performance

architectures underpin the data centers that support the Internet’s infrastructure,

offering services such as cloud computing, web hosting, and video streaming plat-

forms.

The convergence of these architectures with advanced technologies like AI and

machine learning opens new possibilities. They not only enhance existing algo-

rithms but also enable the development of new models capable of learning and

adapting by exploiting these systems’ parallel processing capabilities.

Thus, high-performance architectures are both a driver and a catalyst of tech-

nical progress, enabling researchers and professionals to push the boundaries of

knowledge and human capacity. They have become indispensable for addressing

current and future challenges and will undoubtedly play an even more decisive role

in the years to come as data and computation requirements continue to grow.

This chapter aims to explore the foundations of high-performance hardware

and software architectures that underlie supercomputers and advanced computing

systems.

Effective exploitation of the parallelism of multi-agent simulators requires a

good knowledge of the targeted hardware architectures as well as parallel program-

ming models. In this chapter, we first present some key processor kind constituting

parallel systems. Namely, three of the main types of common processors are the

CPU and the hardware accelerators GPU and FPGA. Some representative par-

allel systems, constituted by these elements or a combination of these elements,

are then presented. These are the Fugaku supercomputer on which we carried

out experiments, the Pegasus and Cygnus supercomputers as well as the French

Ruche cluster which was also used for our experiments as part of this thesis. We

4.1 Parallel Architectural Fundamentals 67

then present the main basic programming models for the parallel implementation

of multi-agent simulators. Indeed, the algorithms resulting from the modeling of

these simulators can be seen as a set of autonomous and heterogeneous interacting

objects presenting multi-level parallelism. The distribution of these objects to the

nodes of parallel machines or to the components of a distributed system is a com-

plex task and often requires assistance in programming these systems. This help is

provided by software platforms like YML and Pegasus. Although these platforms

are very well suited to the MATSim simulator case study, we did not use them as

part of this thesis. This is essentially due to the complexity of intervention for the

reorganization of components in the coding of MATSim type software written in

Java. However, the description of parallel and/or distributed programming envi-

ronments of multi-agent simulators for road traffic would be incomplete without

this description.

4.1 Parallel Architectural Fundamentals

HPC computing systems are fundamentally constitued by some type of key proces-

sors such as Central Processing Units (CPU), Graphics Processing Units (GPU),

and Field-Programmable Gate Arrays (FPGA). Each of these components offers

specific parallel processing capabilities and contributes to the advancement of re-

search and industry. In this section, we will examine the fundamental character-

istics of these processors, starting with CPUs.

Central Processing Units

The CPU is the heart of a computer, responsible for executing programs and man-

aging computing tasks. It is designed to handle a wide range of computational

tasks, from simple arithmetic operations to complex decision-making processes.

4.1 Parallel Architectural Fundamentals 68

A CPU’s architecture is typically characterized by its ability to perform sequen-

tial instruction operations, with each CPU core capable of executing a series of

instructions using a set of registers and an Arithmetic Logic Unit (ALU).

However, modern CPUs have evolved to include multiple cores, thereby allow-

ing parallel processing within the same chip. This multicore design enables CPUs

to handle multiple processes simultaneously, significantly increasing overall com-

puting performance. Moreover, with technologies such as hyper-threading, a single

CPU core can execute multiple computation threads, further enhancing parallel

processing efficiency.

CPUs can process a variety of complex instructions, and they can also commu-

nicate effectively with other system components, such as memory and input/output

devices. Additionally, optimizing algorithms to take advantage of CPUs’ multi-

core architecture has become common practice in high-performance applications,

allowing scientists and engineers to achieve unprecedented computational speeds.

In the following sections, we will continue our exploration of architectural fun-

damentals by examining GPUs and FPGAs, analyzing how these technologies

complement CPUs to form the backbone of today’s HPC systems.

Graphics Processing Units

GPUs are specialized in fast parallel processing of large amounts of data, making

them particularly suited to applications requiring intensive graphical processing

and large-scale scientific computations. Unlike CPUs, which are designed for a

wide variety of computing tasks, GPUs are optimized for calculations where a

large set of operations can be performed in parallel on different data.

A GPU’s design is characterized by a SIMD approach, meaning a single instruc-

tion can be executed simultaneously on multiple pieces of data. This translates

to the ability to perform hundreds of thousands of parallel computations, making

4.1 Parallel Architectural Fundamentals 69

GPUs extremely efficient for graphical rendering applications, numerical simula-

tions, and more recently, deep learning and data analytics.

GPUs also have their own dedicated memory, usually GDDR (Graphics Double

Data Rate), designed to support very high data transfer rates between the memory

and the processing cores. This high-bandwidth memory is highly pertinent for

tasks requiring rapid and repeated data access, such as image processing or matrix

calculations.

The use of GPUs has extended beyond graphical applications thanks to pro-

gramming environments such as CUDA and OpenCL, which allow developers to

leverage the computational power of GPUs for general-purpose parallel comput-

ing tasks. As a result, GPUs play an increasingly central role in HPC systems,

especially in areas where parallelism can be extensively exploited.

In summary, GPUs significantly contribute to the expansion of HPC capabili-

ties, offering a specialized and complementary alternative to CPUs for applications

requiring parallel data processing.

Field-Programmable Gate Arrays

Field-Programmable Gate Arrays, or FPGAs, are semiconductor devices based

on a matrix of configurable and reprogrammable logic blocks. Unlike CPUs and

GPUs, which have fixed architectures and predetermined instruction sets, FPGAs

can be programmed to perform specific tasks by reconfiguring their internal struc-

ture.

The reprogrammability of FPGAs allows them to adapt to a variety of differ-

ent computing functions, from simple digital logic to complex signal processing

algorithms. This gives them a significant advantage in terms of flexibility, as they

can be optimized for maximum performance in specific applications.

FPGAs are also known for their energy efficiency, particularly in cases where

4.1 Parallel Architectural Fundamentals 70

customized parallel processing is required. Since their architecture can be adapted

to minimize unnecessary operations, they can often perform tasks with less power

than CPUs or GPUs.

In terms of parallel processing, FPGAs offer a fine granularity level that allows

developers to create custom parallel architectures. This can be particularly bene-

ficial in applications where latency time is critical, as circuits can be designed to

execute tasks in parallel without relying on thread management by an operating

system.

A potential downside of FPGAs is that they require specialized expertise in cir-

cuit design and hardware description languages such as VHDL or Verilog. More-

over, the development phase can be longer and more costly compared to using

CPUs or GPUs, due to the custom nature of FPGA-based solutions.

Despite these challenges, interest in FPGAs as a component of HPC systems

continues to grow, especially for workloads that can benefit from dedicated hard-

ware acceleration. By combining the reconfigurability of FPGAs with the process-

ing capabilities of CPUs and GPUs, it is possible to create powerful and versatile

systems capable of tackling a wide range of intensive computational tasks.

In conclusion, the selection between CPUs, GPUs, and FPGAs for HPC appli-

cations is contingent upon the specific computational requirements and objectives

of a given task. Each processor type offers distinct advantages that cater to differ-

ent aspects of computational workloads. CPUs, with their general-purpose flexi-

bility and capability for complex decision-making tasks, remain the backbone of

computing systems for a wide array of applications. GPUs, through their massively

parallel architecture, provide an efficient solution for data-intensive tasks that can

benefit from parallel processing. FPGAs, offering customizable hardware accel-

eration, present a unique option for optimizing specific computational algorithms

with unparalleled efficiency and adaptability. The strategic integration of these

4.1 Parallel Architectural Fundamentals 71

processing units within computational systems can lead to significant advance-

ments in computing performance, efficiency, and flexibility. As such, the future

of HPC will likely see an increased emphasis on hybrid systems that leverage the

complementary strengths of CPUs, GPUs, and FPGAs to meet the ever-growing

demands of scientific research, data analysis, and technological innovation.

Transition to High-Performance Architectures

The evolving landscape of computational demands, particularly in the domains of

scientific research, big data analytics, and AI, necessitates a continuous reevalua-

tion of processing architectures to meet these challenges effectively. The compara-

tive analysis of CPUs, GPUs, and FPGAs underscores the importance of leveraging

specific strengths of each processor type to optimize computational performance.

This understanding facilitates a natural transition towards high-performance ar-

chitectures that are not only more capable but also more efficient and adaptable

to the complexities of modern computational tasks.

As we pivot towards high-performance architectures, it becomes evident that

the future of computing is intrinsically linked to the harmonious integration of

these diverse processing units. This integration is driven by the need to accommo-

date a broad spectrum of computational workloads, from those requiring the flexi-

ble, general-purpose computing power of CPUs to tasks that benefit from the par-

allel processing capabilities of GPUs, and the customizable, hardware-optimized

efficiency of FPGAs.

HPC architectures are increasingly characterized by their heterogeneity, in-

corporating a mix of processing units to harness the optimal balance of speed,

efficiency, and precision. Such systems are designed to dynamically allocate tasks

to the most suitable processor type, thereby maximizing computational through-

put and minimizing energy consumption. This approach not only enhances the

4.2 High Performance Architectures 72

performance of specific applications but also broadens the scope of computational

problems that can be tackled effectively.

Furthermore, the advancement of software tools and programming models plays

a pivotal role in the accessibility and utilization of high-performance architectures.

These tools enable the seamless orchestration of tasks across CPUs, GPUs, and

FPGAs, abstracting the complexity of the underlying hardware and allowing re-

searchers and developers to focus on solving computational challenges rather than

on hardware intricacies.

In essence, the transition towards high-performance architectures signifies a

paradigm shift in computing, moving from a one-size-fits-all approach to a more

nuanced, application-specific strategy. This shift is essential for pushing the bound-

aries of what is computationally feasible, enabling unprecedented advancements in

scientific discovery, technological innovation, and the analysis of complex data. As

we continue to explore the synergies between CPUs, GPUs, and FPGAs within

high-performance architectures, we pave the way for a future where computational

limitations are continually redefined and overcome.

4.2 High Performance Architectures

In this section, we present the Fugaku, Pegasus, Cygnus and Ruche systems to

illustrate some representative supercomputers of those that can be used as support

for effective multi-agent simulations. Note that the Fugaku supercomputer and the

Ruche cluster served as support for all our experiments in the context of this thesis.

4.2.1 Fugaku Supercomputer

The Fugaku supercomputer[13], named after an alternative name for Mount Fuji,

represents a monumental achievement in the field of HPC. Developed through a

4.2 High Performance Architectures 73

collaborative effort between RIKEN and Fujitsu, Fugaku is situated at the RIKEN

Center for Computational Science (R-CCS) in Kobe, Japan. This supercomputer

has been meticulously designed to address a wide array of complex scientific, in-

dustrial, and societal challenges, marking a significant milestone in computing

technology. This text aims to provide a comprehensive overview of Fugaku, detail-

ing its architecture, capabilities, and the implications of its deployment in various

research fields.

Architecture and Design

Figure 4.1[25] illustrates the intricate node structure of the Fugaku supercom-

puter. Each node is composed of multiple Core Memory Groups (CMG), with

each CMG directly connected to a segment of High Bandwidth Memory (HBM2).

The CMGs are depicted as yellow squares containing a 4x3 grid of smaller squares,

each representing an individual core (C) within the processor. These cores are the

fundamental units of computation, and their arrangement within the CMG sug-

gests a focus on parallel processing capabilities.

Adjacent to each CMG is a green rectangle labeled HBM2, signifying the high-

speed, high-capacity memory designed to keep pace with the computational de-

mands of the cores. The diagram shows a PCIe Controller centrally located be-

tween the CMGs, acting as a bridge for peripheral communication. On one side of

the PCIe Controller, the Tofu Interface is shown, indicating its role in node-to-node

communication within the supercomputer’s network.

This node diagram underscores Fugaku’s architectural commitment to provid-

ing ample memory bandwidth to each core group via HBM2, ensuring rapid data

transfer rates that are essential for HPC tasks. The interplay between the CMGs,

HBM2, PCIe Controller, and Tofu Interface is carefully orchestrated to deliver

a harmonious balance of processing power, memory performance, and network

4.2 High Performance Architectures 74

Figure 4.1: Node Configuration of the Fugaku Supercomputer Highlighting Core
Memory Groups, High Bandwidth Memory, and Interconnectivity[25]

efficiency.

Integrating this description with the preceding text offers a comprehensive

view of Fugaku’s architectural prowess. The supercomputer leverages the A64FX

CPU’s 48-core design and 512-bit vector operations to perform high-throughput

computational tasks effectively. The Tofu interconnect D network enhances this

capability by providing the necessary high-bandwidth, low-latency communication

pathways between over 150,000 nodes. This cohesive design strategy ensures that

Fugaku remains adept at handling complex scientific simulations, AI computations,

and large-scale data analytics, solidifying its position as a powerhouse in the realm

of HPC[65].

4.2 High Performance Architectures 75

Performance and Capabilities

As of June 2024, the Fugaku supercomputer, located at the RIKEN Center for

Computational Science in Kobe, Japan, remains one of the most powerful sys-

tems globally, ranked fourth on the TOP500 list. It has a High Performance

Linpack (HPL) benchmark score of 442.01 petaflops (Rmax) and a Theoretical

Peak (Rpeak) of 537.21 petaflops, highlighting its computational speed and ef-

ficiency. Fugaku is equipped with 7,630,848 cores, demonstrating its extensive

parallel processing capabilities. Initially, Fugaku held the top position from June

2020 to November 2021, indicating its sustained performance over the years. In

June 2024, Fugaku’s configuration achieved the first rank in the HPCG bench-

mark with a performance of 16,004.5 teraflops, reaffirming its status as a leading

supercomputer[69].

Applications and Impact

Fugaku’s deployment is anticipated to revolutionize various research fields, includ-

ing climate science, disaster modeling, healthcare, and energy. Its computational

power enables researchers to perform simulations and analyses at unprecedented

scales and resolutions, providing insights that were previously beyond reach. For

instance, in healthcare, Fugaku is instrumental in drug discovery and understand-

ing complex biological processes, such as protein folding and virus transmission

dynamics.

Moreover, Fugaku plays a pivotal role in disaster prevention and mitigation,

utilizing its computational might to simulate natural disasters like earthquakes and

tsunamis with high accuracy. This capability is imperative for developing more

effective disaster response strategies and minimizing potential impacts on society.

4.2 High Performance Architectures 76

4.2.2 Cygnus Supercomputer

The Cygnus supercomputer at the University of Tsukuba’s Center for Computa-

tional Sciences, which preceded the Pegasus system, marks a significant advance-

ment in HPC. Officially launched in May 2019, Cygnus was designed to support a

wide range of scientific applications, including astrophysics, particle physics, mate-

rial science, and artificial intelligence. It is notable as the world’s first multihybrid

accelerated cluster with GPU and FPGA coupling[10].

Technological Framework of Cygnus

Cygnus distinguishes itself through its unique hybrid architecture, combining CPUs,

GPUs, and FPGAs. This configuration allows Cygnus to leverage the strengths

of each component for different types of computational tasks. It utilizes Mellanox

HDR InfiniBand technology to connect these components, ensuring high-speed

communication and data transfer across its nodes.

Each node in Cygnus includes high-performance CPUs and GPUs, specifi-

cally Nvidia V100 GPUs, and some nodes are also equipped with Intel Stratix

10 FPGAs. This setup enables the system to achieve 30 teraflops of double-

precision floating-point performance per node, with a total system performance

of 2.4 petaflops for FP64 calculations and 5.12 petaflops for FP32 calculations.

Hybrid Architecture and Performance Optimization

Cygnus employs a hybrid architecture that excels in both coarse-grained and fine-

grained parallelism. GPUs in Cygnus provide exceptional performance for SIMD

operations, which are common in many scientific simulations. In contrast, FPGAs

offer fine-grained parallelism, making them suitable for non-SIMD algorithms such

as those used in climate simulations, bioinformatics, and molecular dynamics.

4.2 High Performance Architectures 77

One notable application running on Cygnus is the ARGOT simulation, used

for modeling radiation transfer in the early universe. This application benefits

from the combined use of GPUs and FPGAs, with each type of processor handling

different parts of the simulation based on their computational strengths.

Advanced Networking and Storage Solutions

Cygnus utilizes a high-bandwidth HDR InfiniBand network, with four 100Gbps

channels per node configured in a full-bisection fat tree topology. This network

architecture minimizes latency and maximizes data throughput, which is crucial

for the performance of distributed scientific applications. Additionally, Cygnus is

connected to a 2.5 PB Lustre file system for efficient data storage and retrieval, fur-

ther enhancing its capability to handle large-scale simulations and data-intensive

tasks.

Strategic Orientation and Future Implications

Cygnus is strategically designed to support a diverse range of scientific research

projects. Its multi-hybrid architecture is a significant step forward from its prede-

cessor, COMA, which relied solely on CPU and GPU technology. By incorporating

FPGAs, Cygnus opens new possibilities for accelerating specific algorithms that

are not well-suited to traditional CPU or GPU processing.

The innovative use of HDR InfiniBand and the combination of different pro-

cessing units position Cygnus as a versatile and powerful tool for researchers. This

flexibility allows scientists to optimize their applications, whether they require the

massive parallelism of GPUs or the specialized capabilities of FPGAs.

4.2 High Performance Architectures 78

4.2.3 Pegasus Supercomputer

The Pegasus supercomputer[11] at the University of Tsukuba’s Center for Com-

putational Sciences represents a significant stride in the integration of HPC and

AI, encapsulating the cutting-edge in technological synergy. Officially commenc-

ing operations on April 1st, 2023, Pegasus, also known as PACS-XI, is architected

as a ’Big Memory Supercomputer,’ uniquely tailored to address the expansive

computational demands of modern scientific research.

Technological Framework of Pegasus

Pegasus distinguishes itself through its world-first combination of Nvidia’s H100

Tensor Core GPUs and Intel’s 4th Generation Xeon Scalable processors, known

as Sapphire Rapids, complemented by the latest Intel Optane persistent memory

(PMEM) and Nvidia’s NDR200 InfiniBand networking. This fusion of components

delivers an unprecedented 6.5 petaflops of theoretical double-precision performance

across its 120 compute nodes, each node being a confluence of high-speed pro-

cessing and expansive memory capacity, required for large-scale simulations and

data-intensive AI workloads.

Each node is a marvel of engineering, with an Intel Sapphire Rapids CPU

featuring 48 cores at 2.1 GHz, coupled with 256 GB of PMEM and 16 GB of

DDR5 memory across eight modules, resulting in 26 TFLOPS of FP64 and 51

TFLOPS of FP64-Tensor performance. The nodes are further empowered by 80

GB of HBM3 memory, which provides a staggering 2 TB/s bandwidth. This robust

configuration is designed to facilitate an ad hoc parallel file system, leveraging the

node-local storage to circumvent the performance gap typically observed between

CPU/GPU processing and storage systems.

4.2 High Performance Architectures 79

Ad hoc Parallel File System and PMEM Utilization

In an innovative approach to file management, Pegasus employs the CHFS, which

eschews conventional metadata servers to avoid sequential processing limitations,

thus enhancing performance and scalability. Furthermore, Pegasus leverages PMEM

to serve as a ’fourth cache’ layer behind the DDR memory, harmonizing capac-

ity with speed and obviating the need for extensive reprogramming – a simplicity

afforded by mere job script declarations.

HPC and AI Convergence

The advent of Pegasus embodies the convergence of HPC and AI – a bidirectional

enrichment where HPC advances AI capabilities ("HPC for AI"), and AI, in turn,

streamlines HPC ("AI for HPC"). This symbiosis is meaningful in addressing

the growing discrepancy between computational performance and memory capac-

ity. By utilizing PMEM for both extensive memory needs and as part of a high-

performance, ad hoc file system, Pegasus facilitates efficient in-situ processing, a

method increasingly vital in the era of Big Data.

Strategic Orientation and Future Implications

Pegasus’ strategic orientation diverges from its predecessor Cygnus, which em-

ployed a combination of GPU and FPGA technology. While Cygnus was focused

on performance through the coupling of GPU and FPGA, Pegasus is designed with

a different perspective, aiming to expand HPC and AI applications without the

strict necessity of MPI parallelism, as evidenced by its generous allocation of 2

terabytes of PMEM per node.

Preliminary testing with an astrophysical simulation code named ARGOT has

demonstrated Pegasus’ GPU to run 1.86 times faster than Cygnus’ V100 GPU,

4.2 High Performance Architectures 80

highlighting its potential to enable much larger simulations in disciplines such as

astrophysics, climate science, bioscience, and in the application of AI for drug

discovery.

While the foundational hardware capabilities of systems like Pegasus are unde-

niably critical, it is the accompanying software that truly unlocks and orchestrates

these capabilities. Effective software support is essential for harnessing the full po-

tential of high-performance architectures, facilitating groundbreaking research and

applications across various scientific domains. The development and optimization

of such software form a cornerstone in the advancement of computational sciences.

4.2.4 Ruche HPC Cluster

The Ruche HPC cluster, part of the Fusion/Ruche platform, is a high-performance

computing system hosted at the IDRIS site of CNRS. This platform is the result

of a collaborative project involving the computing centers of CentraleSupélec, the

École Normale Supérieure Paris-Saclay, and the University of Paris-Saclay. It

serves a diverse range of scientific and educational purposes within the University

of Paris-Saclay community.

Technological Framework of Ruche

Ruche’s technological framework includes a variety of high-performance compo-

nents to support its extensive computing capabilities. The system is built around

nodes equipped with Intel Xeon Gold CPUs and multiple types of GPUs, including

Nvidia HGX A100, Tesla V100, and Tesla K80. Specifically, it features:

• CPU Xeon Gold 6230 20C @ 2.1GHz

• CPU Xeon Gold 6148 20C @ 2.4GHz

4.2 High Performance Architectures 81

The platform supports parallel code development using MPI, OpenMP, Ope-

nACC, CUDA, and Kokkos, making it ideal for preparing and testing codes before

transitioning to larger supercomputers. It also facilitates moderate-sized physi-

cal simulations, visualization (using tools like Python and Paraview), continuous

integration, and serves as a computational resource for educational purposes.

Advanced Networking and Storage Solutions

Ruche is connected through a high-speed OPA network operating at 100 Gbits/s.

The storage technology employed is the Spectrum Scale GPFS parallel file system,

offering 380 TiB of usable space and an IO rate of 9 GB/s. Additional technologies

used within the platform include Ceph for distributed storage and OpenStack for

cloud computing capabilities.

Strategic Orientation and Future Implications

Ruche’s infrastructure is strategically designed to meet the evolving computational

needs of the scientific community. It supports a wide array of applications and

provides redundancy between two main sites: IDRIS, which hosts Fusion/Ruche

and LabIA, and Building 206, which hosts the VirtualData cloud. This setup en-

sures reliable data storage and offers robust computational resources to researchers

and educators.

Key Objectives and Benefits

The primary objectives of the Ruche platform include:

• Supporting the development and testing of parallel codes before deployment

on larger systems.

• Facilitating moderate-scale physical simulations and data visualization.

4.3 Parallel Programming Models and Software Support Frameworks 82

• Providing a computational resource for educational purposes and continuous

integration.

• Enhancing the capabilities of the University to contribute to national and

international collaborative projects.

• Promoting eco-responsible practices through shared infrastructure and opti-

mized resource use.

4.3 Parallel Programming Models and Software Sup-

port Frameworks

In this section, we present parallel programming models and some tools to help

with parallel and/or distributed programming. However, in simulation algorithms,

both models are intrinsically present, and we therefore need to apply a combination

of these models. Additionally, these models or their combinations can exist at

multiple levels, making the programming of these simulators quite complex. To

enable the programmer to focus on their application and offload some aspects

of this complex programming, software platforms for parallel programming and

execution assistance are available. Among these, we present YML and Pegasus.

4.3.1 Pegasus

The Pegasus Project[19] [21] offers a comprehensive framework for executing workflow-

based applications across a range of computing environments, including desktops,

campus clusters, computational grids, and cloud infrastructures. Scientific work-

flows streamline the execution of multi-step computational tasks, such as data re-

trieval, reformatting, and analysis, and are represented as Directed Acyclic Graphs

4.3 Parallel Programming Models and Software Support Frameworks 83

(DAGs), where nodes symbolize individual tasks and edges indicate task depen-

dencies. This structure efficiently manages the data flow through tasks that range

from simple serial processes to complex parallel computations, supplemented by

smaller serial tasks for data preprocessing and analysis.

The Pegasus Workflow Management Service translates high-level workflow de-

scriptions into detailed execution plans on distributed resources. This involves de-

termining the required input data, computing resources, and data transfer needs

for workflow execution. This abstraction allows researchers to design workflows

conceptually without focusing on the specific details of the execution environment

or middleware requirements. Pegasus facilitates integration with existing cyberin-

frastructure by efficiently coordinating the use of distributed computing resources.

Pegasus employs several strategies to manage and mitigate errors, including

task retries, re-execution of workflows, workflow-level checkpointing, remapping

segments of the workflow, sourcing alternative data for staging, and generating

rescue workflows to outline pending tasks. Additionally, Pegasus effectively man-

ages storage resources to execute data-intensive workflows on systems with limited

storage capacity. It also maintains comprehensive logs of the execution process,

including data locations, data utilized and produced, and the specifics of the soft-

ware and parameters used.

The Pegasus system architecture, as depicted in Figure 4.2[20], consists of

several key components and interfaces that interact to facilitate the execution of

complex scientific workflows across a variety of distributed computing resources:

• User Interfaces:

– Users interact with Pegasus through various programming languages,

including Python, Java, and Perl.

– Workflow composition tools like Hubzero and Wings offer flexibility in

4.3 Parallel Programming Models and Software Support Frameworks 84

Figure 4.2: Pegasus system architecture[20]

workflow creation.

• Submission Server (Submit Host):

– The submission server is where users prepare and initiate their work-

flows.

• Core Components of Pegasus:

– Mapper: Converts an abstract workflow description into an executable

workflow, optimizing by identifying appropriate resources and planning

task execution.

– Engine: Orchestrates task execution according to workflow dependen-

cies.

– Scheduler: Schedules tasks on computational resources.

• Monitoring and Provenance:

4.3 Parallel Programming Models and Software Support Frameworks 85

– The monitoring system collects logs during workflow execution.

– Collected data is stored in a workflow database to support traceability

and post-execution analysis.

• Clouds:

– Pegasus operates on cloud infrastructures such as OpenStack, Eucalyp-

tus, Nimbus, Amazon EC2, Google Cloud, RackSpace, and Chameleon.

• Storage:

– Manages storage across platforms like Amazon S3, Google Cloud Stor-

age, and OpenStack.

• Distributed Resources:

– Utilizes distributed computing resources, including campus clusters, lo-

cal clusters, Open Science Grid, XSEDE, and job management systems

like HTCondor/GRAM, PBS, LSF, and SGE.

• Middleware:

– Employs protocols and distributed file systems for communication and

data management, such as GridFTP, HTTP, FTP, SRM, iRODS, and

SCP.

In essence, Pegasus provides a platform for executing workflows in varied en-

vironments without requiring modifications to the workflow itself. It supports

performance, scalability, data management, reliability, and error recovery, serving

as a comprehensive solution for managing complex scientific workflows.

4.3 Parallel Programming Models and Software Support Frameworks 86

4.3.2 YML: A Framework for Global Computing Environ-

ments

As part of the broader category of software support for operating high-performance

architecture, the YML framework[59] extends the capabilities for creating and ex-

ecuting parallel applications on supercomputers and/or networks of heterogeneous

and remote machines. YML is based on a dedicated workflow language known as

YvetteML, specifically designed to manage the complexities inherent in large-scale

middleware applications. This section delves into YML, outlining its architecture,

objectives, and the unique features of the YvetteML language.

Architecture and Design

YML’s design abstracts the complexities of underlying middleware, presenting a

two-layered approach for application development. The essence of YML’s archi-

tectural philosophy is encapsulated in its dedicated programming language, Yvet-

teML, which separates the application description into a component definition

language and a graph description language. This delineation facilitates the speci-

fication of computational tasks and their integration within a complex workflow.

YvetteML employs XML for defining components, providing a standardized

mechanism for detailing computational tasks. However, the construction of the

workflow graph, a key element for linking components, diverges from pure XML,

indicating a novel approach in workflow description within YML.

The YML framework is designed as a comprehensive environment for develop-

ing and executing parallel applications on HPC architectures and the networks of

heterogeneous and remote machine middleware. The architecture, illustrated on

Figure 4.3[52] , is comprised of several components, each serving a distinct purpose

within the system.

4.3 Parallel Programming Models and Software Support Frameworks 87

Figure 4.3: YML Framework Architecture[52]

At the user level, the framework is accessed via the Web Portal (YML Client),

which provides an interface for interaction with the underlying components. Cen-

tral to the architecture is the division into middleware-independent and middleware-

specific parts, ensuring flexibility and extensibility across different middleware

platforms.

The Middleware Independent Part features the Development Catalog, which

houses the abstract descriptions of computational components and the graph com-

ponents. These descriptions are written in the YvetteML language, a dedicated

workflow language that enables the design of complex application structures. The

4.3 Parallel Programming Models and Software Support Frameworks 88

YvetteML Compiler processes YvetteML programs, translating them into an Ab-

stract Task Set ready for scheduling and execution.

On the Middleware Specific Part, the Execution Catalog contains the concrete

implementations of the components, tailored to the execution environment. The

Realtime Scheduler is responsible for orchestrating the execution flow of the tasks,

informed by the compiled abstract set.

Communication between the Middleware Independent Part and the Middle-

ware Specific Part occurs through well-defined interfaces, allowing the YvetteML

Compiler to submit tasks to the Realtime Scheduler, which in turn interacts with

the Middleware Backend. This Backend is tasked with managing middleware tasks,

interfacing directly with the middleware itself to handle execution.

The architecture highlights the separation of concerns, where the Development

Catalog and the YvetteML Compiler operate independently of the middleware,

while the Execution Catalog and the Realtime Scheduler adapt to the specific

requirements and functionalities of the underlying middleware.

Middleware Abstraction

A key goal of YML is to offer a middleware-agnostic framework, enabling the de-

velopment and execution of applications without dependency on the runtime envi-

ronment. This objective is realized through a component model that differentiates

between generic information applicable across all middleware and middleware-

specific details. The development catalog contains universally applicable informa-

tion, aiding in the broad description of components and their graphical interac-

tions. Concurrently, an execution catalog, tailored to each runtime environment,

stores specific component implementations, ensuring versatility across different

platforms.

4.3 Parallel Programming Models and Software Support Frameworks 89

Back-end Integration

Incorporating back-ends specific to each middleware, YML’s architecture effec-

tively hides the unique programming and job scheduling nuances from the end-

user. This strategy highlights YML’s commitment to middleware independence,

permitting the seamless transition between runtime environments without the need

for application modifications.

Enhancements and Experiments

Acknowledging the necessity for continued development and experimentation, YML

identifies areas such as graph compilation and workflow engine scheduling as oppor-

tunities for improvement. The full expansion of graphs by the YvetteML compiler

prior to execution is noted for its potential to optimize and validate application

graphs. Moreover, the framework’s adaptability to new scheduling policies signifies

an important direction for enhancing YML’s scheduling capabilities, with a focus

on developing a more sophisticated scheduling infrastructure.

YML offers a structured yet adaptable framework for addressing the diverse

requirements of computational tasks in modern global computing environments.

Through the YvetteML language, YML provides a versatile platform for the devel-

opment and execution of parallel applications, free from middleware constraints.

As YML advances, it underscores the continuous effort to simplify and enhance the

utility of HPC machines and distributed system middleware for the computational

community.

Conclusion

Pegasus and YML frameworks provide quite similar functionalities for the manage-

ment and execution of complex workflows. Pegasus offers a workflow management

4.4 Convergence of HPC and AI 90

system that maps abstract workflow descriptions onto distributed resources, facil-

itating the execution of multi-step computations across various scientific domains.

It emphasizes error recovery and provenance tracking, ensuring that workflows are

executed reliably.

YML, on the other hand, abstracts the middleware layer, offering a framework

that allows users to construct and execute applications over large-scale distributed

systems without the need for in-depth knowledge of the underlying infrastruc-

ture. Its dedicated language, YvetteML, supports the definition and integration of

computational components within a workflow.

Both frameworks play a role in the evolving ecosystem of software support for

HPC architectures. They address the challenges of resource management, scal-

ability, and the efficient execution of data-intensive tasks. By providing tools

that abstract lower-level complexities, Pegasus and YML enable researchers and

developers to focus on the computational aspects of their work, rather than the

intricacies of the execution environment.

As the demands on HPC continue to grow, the importance of frameworks

such as Pegasus and YML becomes more pronounced. They contribute to the

development of flexible, robust, and scalable solutions necessary for advancing

computational research and applications.

4.4 Convergence of HPC and AI

The intersection of HPC and AI represents a pivotal moment in the evolution of

computational architectures, heralding a new era of synergistic innovation. This

fusion is reshaping the foundational principles of computing systems, fostering

the emergence of architectures that are intrinsically tailored to meet the complex

demands of AI-driven applications. The ramifications of this convergence extend

4.4 Convergence of HPC and AI 91

beyond mere technical enhancements, signifying a profound shift in the approach

to computational challenges and the exploration of scientific inquiries.

AI’s integration into HPC environments necessitates a reevaluation of con-

ventional architectural paradigms. Traditional HPC systems, designed for highly

structured, numerical computations, are being reimagined to accommodate the

stochastic and data-intensive nature of AI algorithms. This transformation is char-

acterized by a pronounced emphasis on parallel processing capabilities, facilitated

by the adoption of GPUs and Tensor Processing Units (TPUs). These specialized

accelerators excel in executing the parallelizable tasks inherent in machine learning

and deep learning processes, offering substantial improvements in computational

throughput and efficiency.

Furthermore, the dynamic and often unpredictable computational patterns of

AI workloads compel a reconfiguration of HPC architectures towards greater flex-

ibility and adaptability. The advent of heterogeneous computing environments,

comprising a mix of CPUs, GPUs, and other accelerators, reflects this shift. These

architectures are designed to dynamically allocate resources based on the specific

requirements of each task, ensuring optimal performance across a wide spectrum

of AI and HPC applications. This adaptability is crucial for supporting the it-

erative development cycles of AI models, where computational needs can vary

significantly over time. Systems like Frontier[53], the world’s first exascale com-

puter[69], leverage GPUs alongside CPUs to meet the demands of AI and HPC

workloads, demonstrating the critical role of specialized accelerators in enhancing

computational throughput. Similarly, the Aurora supercomputer[6] is designed

with AI integration in mind, featuring a deep integration of CPUs and GPUs to

facilitate a wide range of AI-driven scientific research.

The deep integration of AI into HPC also necessitates advancements in memory

and storage technologies. AI applications frequently require rapid access to vast

4.4 Convergence of HPC and AI 92

datasets, prompting innovations in high-bandwidth memory (HBM) and storage

solutions that can be closely integrated with processing units. This architectural

evolution aims to reduce the latency and bandwidth bottlenecks that can impede

the performance of data-intensive AI algorithms, facilitating more efficient data

processing and analysis.

On the software front, AI’s ascendancy is catalyzing the development of a

new generation of programming models, libraries, and frameworks optimized for

AI-centric architectures. This software ecosystem is pivotal for unlocking the po-

tential of AI-enhanced HPC systems, providing the tools and abstractions needed

to efficiently map AI algorithms to underlying hardware. Moreover, these software

advancements are democratizing access to HPC-powered AI, enabling a broader

community of researchers and practitioners to leverage these powerful computa-

tional resources for groundbreaking work in fields ranging from genomics to climate

science.

Energy efficiency has also emerged as a critical consideration in the design of

AI-optimized HPC architectures. The intensive computational demands of train-

ing and deploying AI models necessitate innovative approaches to power man-

agement and cooling. Techniques such as dynamic voltage and frequency scaling

(DVFS), alongside more radical approaches like approximate computing, are being

explored to mitigate the energy footprint of these systems without compromising

computational integrity. The Fugaku supercomputer, powered by ARM technol-

ogy, exemplifies the potential for less energy-intensive computing without sacri-

ficing performance. ARM’s architecture, known for its energy efficiency, offers a

sustainable path forward for HPC systems, aligning with the growing concern over

the environmental impact of computing operations.

Finally, AI itself is becoming an instrumental tool in optimizing and managing

HPC infrastructures. Machine learning models are increasingly deployed to pre-

4.5 Conclusion 93

dict system performance, optimize resource allocation, and enhance the reliability

and efficiency of HPC operations. This recursive application of AI underscores

the transformative potential of the HPC-AI nexus, not only as a facilitator of ad-

vanced computational capabilities but also as a self-enhancing mechanism for the

continuous improvement of computing systems.

In essence, the confluence of HPC and AI is engendering a transformative shift

in computational architectures, driven by the need to accommodate the unique

and evolving demands of AI algorithms. This shift is not merely technical but

conceptual, heralding a new paradigm in which computing systems are not only

tools for calculation but also platforms for learning and adaptation. As this conver-

gence progresses, it promises to unlock new frontiers in scientific exploration and

technological innovation, redefining what is possible in the realm of computation.

4.5 Conclusion

In concluding this section, we have traversed the foundational principles of modern

supercomputing, outlined the advanced architectures used in HPC, scrutinized the

associated software ecosystems, and discussed the profound implications of inte-

grating AI with HPC. This strategic amalgamation of HPC and AI has catalyzed

a notable evolution in both hardware and software design, leading to significant

innovations. Systems like Fugaku, Cygnus, and Ruche, with their adoption of

cutting-edge technologies, exemplify the shift towards faster, more efficient, and

more capable systems to meet contemporary computational demands. Fugaku, in

particular, highlights a push towards energy efficiency, demonstrating that peak

performance can also be environmentally conscious.

Furthermore, this section underscored the critical role of a robust software

ecosystem in leveraging the capabilities of underlying architectures. The sym-

4.5 Conclusion 94

biosis between hardware and software is pivotal for maximizing performance and

efficiency in executing complex computational tasks.

Ultimately, the convergence of HPC and AI marks a major milestone in comput-

ing, not only pushing the boundaries of hardware capabilities but also redefining

approaches to scientific and technical problem-solving. This evolution promises

to enable unprecedented scientific breakthroughs and support technological inno-

vations that will have a lasting impact across various fields. In summary, the

integration of HPC and AI opens an exciting chapter in the history of technology,

heralding advancements that were once deemed beyond reach.

Having reviewed the state-of-the-art in traffic simulation, examined the al-

gorithmic approach, and explored emerging high-performance computing archi-

tectures, we now turn to our specific contributions. The following chapter will

discuss our efforts to enhance multi-agent traffic simulators, detailing the methods

and techniques we have employed.

Chapter 5

Contribution to the Modeling of

Multi-agent Traffic Simulators

In this chapter of the thesis, we highlight the specific contributions of our research.

Our investigation stands out for two principal contributions, each born from the

meticulous exploration and tailored adjustment of methods devised to meet some

challenges of the field.

The first contribution concerns the application of the UC approach to algo-

rithms producing multi-agent simulators for road traffic. We will see that the

technique resulting from this algorithmic adaptation represents a new variant of

the targeted simulator algorithm and provides results that not only enrich under-

standing, but also strengthen the ability to effectively solve these problems. Such

results underline the adequacy and relevance of the proposed methodology in the

broader context of simulators having the same characteristics as the one which is

the subject of our experiments.

Our second contribution draws upon the strategic deployment of AI techniques

to discern patterns from the inputs and outputs of specific simulators. The objec-

tive here is to elucidate the behaviors encapsulated by these simulators, thereby

95

5.1 MATSim as a Case Study 96

enabling us to replicate their simulations with greater efficiency and less depen-

dency on their traditionally time-intensive operations. This initiative adopts a

pragmatic stance, intending to harness the potential of AI to streamline the sim-

ulation process, thus sidestepping a commitment to overhaul the foundational use

of AI in the domain. The core advantage of this approach lies in its capacity to

refine and expedite existing simulation methodologies, paving the way for swifter

and more resource-efficient processes.

It is pertinent to mention that for our explorations, we have elected to initially

focus on MATSim as our primary target. This choice is informed by several consid-

erations. Firstly, our approaches are designed to be generic; however, MATSim was

selected due to its prominent stature within the academic literature, attesting to

its widespread acceptance and utility in research. Additionally, as an open-source

simulator, MATSim offers unparalleled accessibility and adaptability, enabling re-

searchers to modify and extend its capabilities to suit their specific investigative

needs. This openness not only fosters a collaborative and innovative research en-

vironment but also ensures that our methodologies, although experimented on

MATSim, offer extensibility to many other multi-agent simulators.

5.1 MATSim as a Case Study

As previously articulated, the methodologies developed within the scope of this

research are not confined to the specificities of any single simulator. Instead, they

are crafted with a versatility that permits their application across various multi-

agent road traffic simulator architectures. The adaptability of our approaches

underscores a foundational principle of this work: to devise strategies that are

as universally applicable as possible, subject only to minor modifications to align

with the distinct architectures of different simulators.

5.1 MATSim as a Case Study 97

In this context, the selection of MATSim as our primary focus serves not only

as a practical application of our methods but also as an exemplar through which

we can demonstrate their broader applicability. MATSim, with its robust presence

in the scientific literature and open-source ethos, represents an ideal platform for

this demonstration. It is imperative, therefore, to delve deeper into the functioning

of MATSim to elucidate the manner in which our methodologies have been applied

and to furnish a comprehensive understanding of the contributions made.

The following, titled "MATSim Overall Functioning" aims to provide a thor-

ough exposition of MATSim’s operational framework. Understanding MATSim’s

comprehensive functionality is crucial for several reasons. First, it allows us to

illustrate the specific adjustments and implementations of our proposed methods

within the MATSim environment. Second, it facilitates a deeper understanding of

how these methods can be extrapolated and adapted to other simulators, highlight-

ing the generalist potential of our contributions. Lastly, this detailed exploration

into MATSim will serve to reinforce the relevance of our research, placing them in

the broader context of contributing to the advancement of multi-agent road traffic

simulation technologies.

By presenting MATSim in this detailed manner, we not only pay homage to its

significance as a tool in our research but also lay the groundwork for a discussion

on the potential for these methodologies to be adapted and applied in alternative

simulation contexts. This exploration into MATSim’s overall functioning is thus

an essential precursor to a full appreciation of the methods introduced and their

impact on the field of road traffic simulation.

5.1.1 MATSim Overall Functioning

MATSim, an open-source framework developed in Java, stands at the forefront

of large-scale, agent-based transport simulation. Within this framework, each

5.1 MATSim as a Case Study 98

agent represents an individual equipped with the capacity to perceive, think, and

act within a complex transportation environment. Initially, agents are assigned

plans derived from various data sources, including census information, enabling

the creation of a synthetic population that accurately mirrors the demographic

and behavioral characteristics of real-world populations in the simulated areas.

A distinctive feature of MATSim is its cyclic process: at the end of each sim-

ulated 24-hour day, the plans of all agents are meticulously evaluated and scored

based on several criteria, such as travel duration, mode of transport selection,

and activity sequences. This evaluation reflects how well the plan adheres to the

agent’s preferences and constraints. Figure 5.1 illustrates this iterative process.

Following this evaluation, a selected group of agents enters the replanning

phase[32]. Equipped with insights gained from previous iterations, these agents

adjust or revise their initial plans, thereby enriching the spectrum of simulated

behaviors. This dynamic ensures continuous improvement and diversification of

the strategies employed by the agents.

The framework operates in repetitive cycles, with each iteration representing

a 24-hour period. Through this iterative mechanism and the adaptive replanning

phase, MATSim gradually progresses towards outcomes that increasingly align

with desired objectives. The primary goal is often to reach a state of user equi-

librium, where agents can no longer improve their situation by changing their

behavior. This state of equilibrium is achieved when the system converges, mean-

ing that the variations in the agents’ plans and scores stabilize. Although the

number of iterations, defined by the user-set variable max, is at the user’s discre-

tion, it is common practice to set max = 300 in many MATSim scenarios. Stop

criteria based on convergence measures are suggested in the literature to guide the

duration of simulations.

MATSim typically does not include an explicit "stop criterion" for several rea-

5.1 MATSim as a Case Study 99

sons. The continuous nature of the simulation, designed to simulate the evolution

of traffic patterns over time, allows the system to reach an equilibrium state where

agents’ behavior stabilizes. The number of iterations needed to reach this equi-

librium can vary greatly depending on the complexity of the scenario and initial

conditions.

Moreover, different scenarios and studies may have varying requirements for

when to stop the simulation. By not enforcing a strict stop criterion, MATSim

provides researchers with the flexibility to define their own stopping conditions

based on their specific study objectives and metrics. Although MATSim does not

include an integrated stop criterion, users can implement their own criteria based

on metrics such as travel time convergence, iteration stability, or satisfaction of

specific performance indicators. This flexibility is crucial for exploratory appli-

cations, allowing researchers to understand the system’s evolution over extended

periods and gain insights into the long-term impacts of various transport policies

and changes.

5.1.2 Operational Modules

With a foundational understanding of MATSim’s general operation established, it

becomes crucial to delve deeper into the framework’s core components. MATSim

operates around five foundational elements: Input, Execution (Mobsim), Scoring,

Replanning, and Output[31]. These components interact in a synergistic cycle,

driving the simulation process from initialization to conclusion. Let’s explore each

module in detail, along with their interactions:

• Input Module: This module processes the essential inputs for the simula-

tion, which include the initial plan of each agent—detailing their intended

daily activities and travel—and the network file, which outlines the road and

public transport networks specific to the simulated area. These inputs are

5.1 MATSim as a Case Study 100

pivotal in setting the stage for the simulation, providing the framework with

a detailed snapshot of the environment and agent intentions.

• Execution Module (Mobsim): The heart of the simulation, Mobsim,

brings the agents’ daily plans to life by simulating their movements and ac-

tivities within the virtual environment. This module captures the dynamics

of travel and activity patterns, modeling how agents interact with the trans-

portation network and each other. The outcomes of this module, including

the locations, times, and modes of travel, feed directly into the Scoring Mod-

ule.

• Scoring Module: Following execution, each agent’s daily plan is assessed

by the Scoring Module. Utilizing a utility function, this module evaluates the

performance of agents’ plans based on criteria such as movement efficiency

and satisfaction derived from activities. The scoring process considers both

the cost of travel (e.g., time, discomfort) and the benefits of completed ac-

tivities, providing a comprehensive measure of plan viability.

• Replanning Module: Armed with feedback from the Scoring Module, the

Replanning Module offers agents the opportunity to adapt their plans for

subsequent iterations. A proportion of agents, typically around 10% (al-

though the user can select the desired rate), are randomly chosen for this

replanning process. These agents may alter aspects of their plans, such as

departure times, routes, or modes of transportation, in response to previous

experiences and traffic conditions. This iterative adjustment process is criti-

cal for evolving the simulation towards more efficient and realistic outcomes.

• Output Module: The final stage in the cycle, the Output Module, consol-

idates and presents the results of the simulation. Outputs include detailed

plan scores, revised plans for agents undergoing replanning, logs of daily

5.1 MATSim as a Case Study 101

events, and comprehensive statistics. These outputs are available in both

textual and graphical formats, facilitating analysis and interpretation of the

simulation results.

An illustrative sequence of MATSim’s core modules in operation is presented

in Algorithm 2, offering a visual guide to their integrated function.

With the operational elements of MATSim outlined, the focus now shifts to

the pivotal Replanning Module. This module’s role in shaping the dynamics and

outcomes of simulations cannot be understated. Through iterative feedback and

adaptation, it enables the simulation to capture the complexity and variability

of real-world transport systems. In the following section, we will unpack the in-

tricacies and strategic importance of the Replanning process, highlighting how

it facilitates the continuous improvement and realism of the simulated transport

scenarios.

Figure 5.1: MATSim Iterative Loop

5.1.3 Replanning Module in MATSim

The Replanning phase in MATSim plays a pivotal role in the iterative process

of transport simulation, offering a mechanism for agents to refine their strategies

based on prior experiences. During this phase, a predetermined fraction of the

agents, denoted as R = 0.1M (where M represents the total number of agents

5.1 MATSim as a Case Study 102

within a scenario), are selected for the opportunity to modify their existing plans.

This selection ratio is not fixed and can be adjusted by the user to suit specific

research needs or simulation objectives.

Each agent is constrained by a maximum number of plans they can hold, in-

dicated by nb_plans. Commonly set to nb_plans = 5, this parameter limits the

diversity of strategies an agent can explore but can be tailored to extend or restrict

the decision-making horizon of the agents.

As agents proceed through the simulation iterations, plans yielding lower scores

are progressively replaced. This ensures that each agent’s repertoire of plans

evolves, ideally increasing the overall utility of the agent within the simulation

environment. New plans are then subjected to the execution and scoring phases,

facilitating a dynamic feedback loop that incrementally drives the system towards

equilibrium. The goal is to iterate until the agents’ plan scores stabilize, indicating

a state of system equilibrium where further adjustments cease to yield significant

improvements.

MATSim introduces several strategies within the Replanning phase to enable

this evolutionary process:

• Plan Selector Strategy: ChangeExpBeta is a notable strategy that se-

lects plans based on a probabilistic model, specifically e∆score , where ∆score

represents the difference in scores between plans. This method facilitates a

preference towards plans that have demonstrated higher utility. For exam-

ple, if Plan A has a score of 10 and Plan B has a score of 8, the difference in

scores ∆score is 2. The probability of selecting Plan A over Plan B is propor-

tional to e2, which is significantly higher than e0 (since e0 = 1) for Plan B.

This means that the strategy naturally tends to favor the better-performing

Plan A, but still allows for the possibility of selecting Plan B, ensuring a

balance between exploration and exploitation.

5.1 MATSim as a Case Study 103

• Route Innovation Strategy: This strategy allows for the adjustment of

routes within a randomly selected plan based on past traffic conditions. It

employs various routing algorithms, such as Dijkstra and A*, to explore

alternative paths that might reduce travel time or cost.

• Time Innovation Strategy: Adjusting the timing of activities within a

plan can significantly impact an agent’s daily schedule. This strategy shifts

activity end times earlier or later, aiming to find more efficient or preferable

schedules.

• Mode Innovation Strategy: Exploring different modes of transportation

for a given journey can lead to substantial benefits. This strategy changes the

transportation mode within a plan, testing the effectiveness of alternatives.

Strategy Weights and Implementation

Each strategy is associated with a relative weight, denoted as ρPlanSelector, ρreroute,

ρtime, and ρmode, which influences the likelihood of its selection during the replan-

ning phase. These weights are crucial for guiding the simulation towards specific

objectives, such as minimizing overall travel time or enhancing the use of public

transportation.

MATSim normalizes the strategy weights if their sum does not equal one, en-

suring that the selection process is balanced. This normalization process is an

essential step in maintaining the integrity of the simulation’s evolutionary dynam-

ics.

Consequently, starting from a certain distribution of weights among the differ-

ent replanning strategies, MATSim operates iteratively until it reaches an equilib-

rium. As previously mentioned, this equilibrium is represented by the convergence

of the average performance scores of the daily plans for each agent. This iterative

5.2 multiMATSim : A Unite and Conquer-based Approach 104

process ensures that the simulated system evolves towards a stable state where

agents’ plans consistently meet their objectives and constraints.

The articulation of strategy weights forms the basis for the multiMATSim

framework, an extension designed to simulate multiple, interconnected transporta-

tion systems. A detailed discussion on multiMATSim and its implementation will

be presented subsequently, highlighting its capabilities and the strategic impor-

tance of replanning within this broader context.

It is important to note that different distributions of strategy weights can lead

to varied results and allow for a broader exploration of solutions. We will now

delve into the specific distinctions and implications of these different distributions

in the implementations of MATSim.

Having delineated the weight distribution of strategies within the Replanning

module, it is imperative to emphasize that this distribution serves as the founda-

tional framework for the implementation of multiMATSim. A detailed exposition

of this implementation will be presented in the subsequent section.

5.2 multiMATSim : A Unite and Conquer-based

Approach

5.2.1 Description

Addressing the convergence challenges observed in MATSim within complex trans-

portation systems—characterized by extended simulation durations and increased

computational demands—this study introduces an approach inspired by the Unite

and Conquer methodology, aimed at improving the efficiency of MATSim’s con-

vergence process. This approach, termed multiMATSim, constitutes an original

contribution of this research.

5.2 multiMATSim : A Unite and Conquer-based Approach 105

Algorithm 2 MATSim Algorithm
Initialize: Set max, the total number of iterations, and nb_plans, the max-
imum number of plans per agent, and M , the total number of agents in the
scenario. Initialize strategy probability weights ρPlanSelector, ρreroute, ρtime, ρmode,
ensuring

∑
ρ = 1. Prepare the simulation environment with agents, the trans-

portation network, and initial plans. Define the fraction R for agent selection
in replanning.
Iterate: For iteration 1 to max and for Agent ak with k = 1 to M do:
1. Mobsim (Mobility Simulation): Execute the simulation of daily routines for
agent ak, capturing its interactions with the transportation network and the
other agents.
2. Scoring: Evaluate the utility of each plan based on their daily activities and
mobility, assigning scores.
3. Replanning:
if agent ak is part of the fraction R selected for replanning then

Route: Change their routes.
Time: Alter their departure times.
Mode: Switch transport modes.
PlanSelector: Adopt new strategies for choosing plans.
The changes are influenced by the weighted probabilities ρ, with each strat-
egy impacting plan utility based on previous iterations’ experiences.

end if
end For
4. Select New R: At the end of each iteration, a new subset of agents equivalent
to the fraction R is randomly chosen for the Replanning phase in the next
iteration, ensuring varied and dynamic adaptation across the agent population.

5.2 multiMATSim : A Unite and Conquer-based Approach 106

As previously mentioned, convergence in MATSim is achieved when the plan

scores for each agent stabilize, indicating a harmonious state in the selection of

travel plans. This signifies that agents have identified their optimal paths, adjusted

according to their interactions within the transportation system.

The essence of our approach involves running several instances of the core

MATSim algorithm simultaneously for each iteration and each agent. The core is

considered as a function composed of Mobsim, Scoring, and Replanning. Although

MATSim exhibits some intrinsic fine-grained parallelism (akin to multi-threading),

our method introduces an additional level of natural parallelism that can be lever-

aged in conjunction with the existing parallelism in MATSim. These concurrent

instances, while aligned in scenarios and parameters, differ in the weights assigned

to their replanning strategies. Consequently, starting from identical initial plans,

the variation in weights across instances promotes the generation of diverse plans

during each replanning phase.

This differential weighting strategy allows for an extensive exploration of possi-

ble solutions, capturing a wide array of plan variations. An integral feature of our

approach is the periodic communication established between instances at every

step iterations, facilitating an exchange of plans. Thus, at the end of an iteration,

an instance i (where i ∈ 1, . . . , N and N is the total number of instances) will be

informed of the performance scores from other instances for a given agent ak (with

k ∈ 1, . . . ,M and M being the total number of agents).

This setup allows instance i to ascertain which instance harbors the plan with

the highest score for agent ak. It then faces the decision to adopt this plan based

on a meticulously defined criterion. This criterion examines the performance of

two instances, α and β (with α, β ∈ [1;N]), for agent ak. Should the score Sk
α

of instance α be less than that of β, Sk
β , and Sk

β surpasses Sk
i for all i ∈ [1;N],

instance α might opt to adopt β’s plan for the next iteration.

5.2 multiMATSim : A Unite and Conquer-based Approach 107

However, if each instance were to consistently select the highest scoring plan

for each agent, it could lead to a scenario where all instances converge on identical

plans for every agent. To circumvent this, a selection criterion based on the score

dispersion among instances for each agent is implemented. This approach limits

plan exchanges to instances that have demonstrated suboptimal performance, thus

ensuring a diverse evolutionary trajectory for travel plans.

The dispersion metric indirectly evaluates the efficacy of plans, guiding the

strategic exchange of plans. By employing this criterion, the methodology leverages

plan performance as a validation tool for plan exchanges, favoring the adoption of

superior plans while maintaining a threshold on exchanges to predominantly occur

between instances showcasing lower performance outcomes.

Utilizing this selection criterion enables the exploitation of plan performance

as an indirect validation mechanism for plan exchanges. It facilitates the adoption

of more favorable plans while establishing a threshold for exchanges, ensuring they

primarily occur between instances exhibiting lower performance levels.

This selection mechanism operates as follows: consider the vector VSk of size

N , encapsulating the scores from all instances for the agent ak.

Should the absolute difference between the score Sk
α from instance α and Sk

β

exceed the standard deviation of VSk , the exchange of plans is deemed advanta-

geous, and instance α will incorporate the plan associated with the score Sk
β from

instance β.

This initial criterion, focusing on the disparity in scoring between two plans,

evaluates suitability based on proximity to the optimal plan. Future research is an-

ticipated to refine this criterion, with the potential integration of machine learning

techniques. Drawing inspiration from the Monte Carlo method, subsequent itera-

tions within MATSim will prioritize plans with higher scores, aiming to enhance

plan quality. This method represents an initial step, with forthcoming efforts di-

5.2 multiMATSim : A Unite and Conquer-based Approach 108

rected towards developing advanced techniques for more effective plan assessment

and selection.

The key parameters integral to this approach are summarized as follows:

• N : Determine the number of MATSim instances to run in parallel.

• max: MATSim concludes after a predefined number of iterations, irrespective

of convergence achievement.

• M : The number of agents in the current MATSim scenario.

• R: The subset of agents undergoing the Replanning module.

• step: Set the iteration interval for inter-instance communication and plan

exchange.

• iter_processing = max
step

, indicating the frequency of processing and commu-

nications.

• Assign varied weights for probabilities associated with Replanning strategies,

ensuring ρPlanSelector + ρreroute + ρtime + ρtransportmode = 1. Each instance i

has a distinct distribution of weights.

• Set nb_plans = 1, focusing each instance on optimizing a singular plan.

This framework underpins the multiMATSim initiative, marking a significant

advancement in the simulation’s strategy for optimizing transportation plans through

parallel processing and strategic plan exchanges.

Consider a scenario with just two MATSim instances (N = 2) and a single

agent (M = 1), as depicted in Figure 5.2. Two MATSim instances, labeled i

and j, operate on separate computational nodes (x and y respectively). Despite

sharing the same scenario, geographic area, and simulated agent, they generate

5.2 multiMATSim : A Unite and Conquer-based Approach 109

Algorithm 3 multiMATSim Algorithm
Initialize: Set max, N , M , R, step, and strategy probability weights for all N
instances, ensuring

∑N
j=1 ρj = 1 for each strategy in each instance. Initialize the

simulation environment for each instance with agents, transportation network,
and initial plans.
Iterate: For each iteration l = 1 to max and for Agent ak with k = 1 to M
for each instance i = 1 to N in parallel do

Mobsim: Simulate ak daily activities and movements.
Scoring: Evaluate ak’s plan.
if ak ∈ R then

Replanning: Adapt ak’s plan using strategies with weights ρi.
end if

end for
if l mod step = 0 then ▷ Communication step at defined intervals

for each instance i = 1 to N do
Exchange scores and plans with all other N − 1 instances.
Compute the best score for each agent from among those calculated by the
N instances.
Calculate the standard deviation stdk of the scores obtained for each agent
ak across the N instances.
for each agent ak do

Identify the instance β with the best score Sk
β .

if |Sk
β − Sk

i | > stdk then
Instance i adopts the plan associated with Sk

β for agent ak.
end if

end for
end for

end if

5.2 multiMATSim : A Unite and Conquer-based Approach 110

Figure 5.2: Illustration of the multiMATSim algorithm with two ranks / instances
and one agent

different plans due to distinct replanning strategies. The elements of Figure 2 are

explained as follows:

• Run MATSim for step iterations: Each instance executes MATSim for

a defined number of iterations (step), which includes a 24-hour simulation,

plan scoring, and replanning to generate optimized plans for the agent.

• STOP: Upon completing these iterations, instances i and j temporarily halt

their executions.

• Send and receive plans: The instances exchange the executed plans and

their associated scores for agent ak. Consequently, i sends its plan and score

Sk
i to j, and reciprocally, j sends its plan and score Sk

j to i.

5.2 multiMATSim : A Unite and Conquer-based Approach 111

• Compute Sk
best and stdk: Having received each other’s data, instances i and

j compute which plan achieved the best score, denoted Sk
best, and determine

the standard deviation stdk among the scores for agent ak.

• Decision Making: The instances make a decision based on a comparison of

the best score Sk
best to their own score Sk

i , factoring in the standard deviation

stdk. If the absolute difference between their score and the best score is

greater than stdk, they adopt the plan associated with Sk
best. Otherwise,

they retain their original plan.

• These steps are iteratively repeated for a predefined number of MATSim

iterations (step), with the aim of optimizing the agent’s travel plans.

While this example simplifies the scenario to a single agent and two instances, it

serves as a foundational model for understanding the process, which can be scaled

up to more complex simulations with a larger number of agents and instances.

Finally, the various instances of MATSim in multiMATSim run in parallel,

communicating intermediate results until the fixed number of iterations, max, is

reached. We did not include a convergence stop criterion initially. At first, we

relied on a "visual" inspection of the curve showing the average scores of the daily

plans for all agents as a function of the number of iterations.

For reference, MATSim does not have a predefined convergence formula. Sev-

eral criteria are proposed in the literature [28] [29]. Drawing from these works, we

adopted the following criterion: ∀p > Q, p ≤ Q+ r,∆p < ϵ. This criterion formal-

izes what we observe visually during simulations: the changes become increasingly

minimal with each iteration. In other words, we noticed that the changes in sim-

ulation results gradually diminish until they reach an insignificant threshold, and

we translated this observation into a mathematical formula.

We also compared the values of ϵ against a MATSim baseline to ensure the

5.2 multiMATSim : A Unite and Conquer-based Approach 112

relevance and reliability of our convergence criterion. This formula states that for

any iteration p greater than Q, and for a set of successive iterations r such that

p ≤ Q+ r, the difference in average agents’ plan scores ∆p between each iteration

and the previous one remains less than an arbitrary threshold ϵ.

In other words, if during r successive iterations the value of ∆p always remains

below this threshold, we consider there is convergence in MATSim.

5.2.2 Methodology

In the present study, an examination of multiMATSim is conducted using the Los

Angeles 0.1% scenario[15] as the initial framework. The primary aim is to evaluate

scalability through the augmentation of instances and, by extension, the number

of computational nodes. This evaluation will involve conducting experiments with

both N = 4 and N = 8.

MATSim operates with different datasets, referred to as scenarios, for each

city. These scenarios include essential data such as infrastructure, population, and

transportation networks. Scenarios for various cities are available on GitHub and

can be easily accessed and utilized for simulations.

Several cities have their scenarios prepared for MATSim, including Berlin[14],

Zurich[14], New York[16], and Los Angeles. Each scenario contains detailed in-

formation about the respective city’s transportation infrastructure and population

data. These datasets allow for realistic and comprehensive simulations of urban

transportation systems.

For this study, we have selected the city of Los Angeles. The Los Angeles

scenario is available in different proportions to cater to various levels of simula-

tion complexity and computational demands. The proportions include 0.1%, 1%,

10%, and 100% of the city’s population and infrastructure data. Each proportion

provides a different level of detail and computational load, making it suitable for

5.2 multiMATSim : A Unite and Conquer-based Approach 113

scalability testing and performance evaluation.

In our experiments, we use the Los Angeles 0.1% scenario as the starting point.

This choice is strategic for initial scalability evaluations as it offers a manageable

dataset size while still providing a realistic simulation environment. The smaller

proportion allows for quicker iterations and adjustments, which are crucial in the

preliminary phases of the study. As the experiments progress, larger proportions

such as 1% or 10% can be utilized to further test and validate the scalability of

multiMATSim across an increased number of computational nodes.

By using these different proportions, we aim to systematically evaluate the

performance and scalability of multiMATSim under varying computational loads.

This approach will help us understand how the system behaves with different

dataset sizes and identify potential bottlenecks or areas for optimization. Ulti-

mately, the goal is to ensure that multiMATSim can efficiently handle large-scale

simulations, providing valuable insights for transportation planning and policy

analysis in urban environments.

Although the current experiments employing 4 and 8 nodes may not yield

an exhaustive assessment of scalability, they represent a preliminary exploration

and contribute insights that lay the groundwork for a more detailed analysis in

subsequent stages of the research.

Furthermore, this study introduces an additional scenario, which also focuses

on Los Angeles but incorporates a higher agent count: Los Angeles 1%. This

scenario involves 191,649 agents, marking a significant increase, approximately

tenfold, from the initial scenario. The objective is to assess the scalability of the

approach as the data volume per node increases, ensuring that no unintended arti-

facts are introduced. This thorough investigation is anticipated to shed light on the

performance of multiMATSim under scenarios that present varying computational

loads.

5.2 multiMATSim : A Unite and Conquer-based Approach 114

Table 5.1: Specifications for a Single Node in Each Supercomputer
Specification Ruche Fugaku
CPU Reference Intel Xeon Gold 6230 Fujitsu A64FX
CPU Architecture x86 (Cascade Lake) Armv8.2-A SVE 512

bit
Total Cores per Node 40 (2 CPUs, 20

cores/CPU)
48 cores (compute) +
2/4 (OS)

Processor Base Frequency 2.10 GHz Normal: 2 GHz,
Boost: 2.2 GHz

Cache L1: 32 KB per core
(instruction) + 32 KB
per core (data), L2: 1
MB per core, L3: Up
to 27.5 MB (shared)

L1 : 64 KB per core
(instruction) + 64 KB
per core (data), L2 :
32 MB (8MB per 12-
core group), L3: -

SIMD Extensions AVX-512 SVE (Scalable Vector
Extension)

Technical Specifications

Thanks to the Franco-Japanese collaborations established for many years between

the Center for Computational Science in Kobe (Japan) and my host team at the

Maison de la Simulation (University of Paris Saclay), the experiments were able

to be carried out on the Fugaku supercomputer. As a reminder, according to

the latest TOP500 ranking in June 2024[69], Fugaku is currently in first position

worldwide with the Benchmark HPCG and in 4th position with the Benchmark

Linpack. Another hardware support used for our experiments is the Ruche com-

puting cluster[45] at the Paris Saclay mesocenter. Ruche platform is equipped

with 232 CPU nodes (9K cores), 18 large memory nodes and 68 GPUs. For more

detailed information on Fugaku and Ruche, please refer to Chapter 4.

Please see Table 5.1 for the node-level specifications of each system, including

both the cluster and the supercomputer.

5.2 multiMATSim : A Unite and Conquer-based Approach 115

Experimental Protocol

This section outlines the experimental protocol utilized in this study, with each

simulation instance operating on a dedicated computing node employing the multi-

MATSim methodology. It is noteworthy to mention that, although multithreading

is an intrinsic feature of MATSim, the system was specifically configured to utilize

20 threads, an increase from the standard default of 8 threads. This configura-

tion choice was made notwithstanding the availability of 40 or more cores on each

node. The decision to employ only 20 threads was informed by empirical obser-

vations indicating enhanced performance on both computational platforms being

investigated.

Several theoretical rationales can be proposed to explain this phenomenon.

Initially, the reduction in the number of threads might diminish resource con-

flicts, thereby optimizing the utilization of computational resources. Additionally,

this setup may lead to improved cache memory usage, as fewer threads could

potentially reduce cache contention among the processing units. Furthermore, a

decrease in thread management overhead might also play a crucial role in the im-

proved performance observed, as managing a lesser number of threads demands

reduced computational resources. Moreover, reducing the number of threads can

also lessen context-switching overhead, thereby decreasing latency and increasing

overall system performance. Additionally, fewer threads can lead to more efficient

use of memory bandwidth, as there is less competition for memory access, result-

ing in lower latency and higher throughput. This setup can also minimize the

thermal load on the processors, leading to more stable and consistent performance

over extended periods. Moreover, by reducing the number of threads, the system

may experience fewer synchronization issues, which can often be a source of signif-

icant performance bottlenecks in highly parallelized environments. Furthermore,

this configuration can enhance the predictability of task execution times, which

5.2 multiMATSim : A Unite and Conquer-based Approach 116

is particularly beneficial in real-time computing environments where deterministic

performance is crucial. By balancing the number of threads with the hardware’s

capabilities, the system can better leverage the strengths of modern processors,

such as advanced branch prediction and out-of-order execution, leading to more

efficient and faster processing. Taken together, these considerations suggest that

the selected configuration successfully achieves a balance between task parallelism

and the native capabilities of the hardware, illustrating a sophisticated trade-off

strategy for maximizing computational efficiency and system performance.

The implementation of a multi-level parallelism strategy, combining distributed

instances and multithreading, highlights the methodological sophistication of this

research. This approach aims to improve the efficiency and scalability of the

simulations by leveraging both task and data parallelism, thus addressing com-

plex computational challenges. Communications between the different computing

nodes, each running an instance, are asynchronous, and overlapping these commu-

nications with computations further optimizes performance in terms of execution

time.

Additionally, to enhance the system’s robustness, fault tolerance mechanisms

have been introduced. These ensure that if one instance crashes or fails, the others

can continue operating normally. That said, there might seem to be a contradic-

tion between fault tolerance and synchronous communications, since synchronous

communications are inherently blocking, which can limit flexibility in the event of

a failure. However, we have overcome this contradiction through specific imple-

mentation strategies that allow fault tolerance to be maintained even with syn-

chronous communications. These strategies ensure that blocking communications

do not impair the system’s ability to handle failures.

Although the number of instances is currently limited, this fault-tolerant design

is crucial for maintaining the system’s overall stability and reliability, balancing

5.3 AI-based Approach 117

the need for synchronous coordination with resilience to failures.

Regarding the operational parameters for multiMATSim, the variables were

established as step = 50 and max = 300. This means that the simulation will

undergo a total of 300 iterations, with exchanges taking place every 50 iterations.

This systematic methodology not only enables a thorough exploration of the sim-

ulation landscape but also ensures a structured approach to data collection and

analysis, thereby providing a solid foundation for the empirical investigations con-

ducted in this study.

5.3 AI-based Approach

In this section, we present our AI-based approach to improve multi-agent traffic

simulations. This approach constitutes our second major contribution, and we have

again chosen to use MATSim due to its flexibility and its capability to simulate

complex traffic behaviors at an urban scale. MATSim is also one of the most cited

multi-agent traffic simulators in the literature and one of the most used in research,

making it an ideal tool for our study.

Our primary objective is to develop a neural network model capable of gener-

ating outputs from MATSim inputs. Given the complexity of this task and the

variability of MATSim inputs and outputs depending on different geographical

areas, we started with a proof of concept. MATSim produces many discrete and

continuous variables as outputs, and for the initial phase of our project, we focused

on generating a discrete variable.

MATSim uses data specific to each geographical area, making it difficult to

generalize models. To manage this complexity, we focused our research on a specific

area, Los Angeles, and limited the simulation to 1000 agents. This allowed us to

simplify the analysis while maintaining the relevance of the results.

5.3 AI-based Approach 118

To enhance multi-agent traffic simulations, we explored the application of ar-

tificial intelligence techniques to provide a faster and more efficient simulation

alternative. The complexity and computational demands of running MATSim are

well-documented. In response to these challenges, our study proposes a neural

network-based approach to accelerate simulations and obtain results more quickly.

Our goal is to create a predictive model capable of replicating the results of

MATSim simulations in a fraction of the time required. We chose to focus on

predicting discrete variables used by agents, which are essential for understanding

travel dynamics. By using features such as the distance traveled and the occur-

rences of different transport modes, our model aims to provide accurate and rapid

predictions.

We opted for the use of multilayer perceptron (MLP) neural networks due to

their capacity to model non-linear relationships and their efficiency in handling

high-dimensional input data. This approach allows for the modeling of complex

agent interactions while maintaining computational efficiency.

To optimize the performance of our model, we conducted a series of experiments

to fine-tune hyperparameters, such as the number of MLP layers, the size of each

layer, dropout rates, and loss functions. We compared different loss functions,

including Mean Squared Error and Huber loss, to determine the most suitable for

our specific data.

Our contribution demonstrates the feasibility of using MLP-based neural net-

works to accelerate multi-agent traffic simulations. By creating a model capable

of quickly predicting one or more discrete variables used by agents, this approach

is intended to be generic and applicable to other multi-agent transport simulators,

offering a flexible and versatile solution for various traffic simulation applications.

This method is a first step and is designed to be extended to predict other vari-

ables, both discrete and continuous, and ideally all outputs of MATSim in this

5.3 AI-based Approach 119

case, as well as for other multi-agent traffic simulators.

5.3.1 Data Preparation

Data Cleaning

We conducted 7,000 MATSim simulations, each involving only 1,000 agents, to

obtain the outputs associated with specific inputs for adequately training our neu-

ral network. This provided us with 7,000 input/output pairs from simulations

with different agents to train and test our neural network. These agents were ex-

tracted from the Los Angeles scenario, which comprises less than 200,000 agents,

representing 1% of the total population.

In MATSim, input data generally include information such as age, gender,

household income, type of housing, and details on daily activities and modes of

transport used by the agents. However, given the limited number of data points

available for training and our initial focus on a discrete variable (the modes of

transport used), we retained only the relevant elements to reduce the complexity

of the neural network model.

As previously described, each agent’s plan is an input in MATSim, which is

adjusted iteratively through replanning to reach an equilibrium among all agents

in the scenario. This initial plan already contains different modes of transport

used by each agent during the day and the geographical coordinates of each of

their activities for the day. Our ultimate goal is to obtain this adjusted plan,

as generated by MATSim, and here we start by obtaining the adjusted transport

modes vector as the first discrete variable. Therefore, we retained these elements,

namely the different modes of transport and the number of times each was used.

We calculated the Euclidean distance traveled by the agent during the day us-

ing the geographical coordinates of each of their activities, as distance can be a

5.3 AI-based Approach 120

significant variable for mode choice.

Thus, we retained the following columns: Distance, car, pt, bike, walk, ride,

ride_taxi, and ride_school_bus. From the geographical coordinates of the various

activities planned for an agent throughout the day, we calculated a total distance

and subsequently normalized it.

In MATSim, an agent can use several modes of transport throughout the day

for different activities. For example, an agent might ride a bike to the station to

take public transport to work and return the same way. Once back from work,

the agent might drive a car to go shopping. This means the agent used public

transport twice, rode a bike twice, and drove a car twice. If we represent this infor-

mation in a vector with the format [car, pt, bike, walk, ride, ride_taxi,

ride_school_bus], the vector would be [2, 2, 2, 0, 0, 0, 0].

It is this vector, showing the choice of transport modes for each agent during

the simulation, that we aim to predict using the neural network in the initial phase,

just as an execution of MATSim would provide this information.

Imagine an agent has this vector in their initial plan. After running MAT-

Sim, meaning the execution of their daily plan together with several other hun-

dreds/thousands of agents, it might turn out that, due to very smooth traffic and

crowded public transport causing delays (as very used by other agents in the sce-

nario, for instance), the agent ends up using only the car to go to work and does

their shopping directly on the way back. We would then have a different vector,

which would be [3, 0, 0, 0, 0, 0, 0]. This change is what our neural network

should be able to capture.[
2 2 2 0 0 0 0

]
Initial Plan

MATSim/NN−−−−−−−→
[
3 0 0 0 0 0 0

]
Adjusted Plan

5.3 AI-based Approach 121

Data Normalization and Training Unit Preparation

After the data cleaning process, we proceeded to normalize and structure the data

for input into the neural network. Given that MATSim simulations involve multi-

ple agents (in this case, 1,000 agents per scenario), it was essential to appropriately

prepare these data to accurately reflect the interactions and dependencies among

the agents within each scenario.

We began by normalizing the distance data, which represents the total distance

traveled by each agent during the day, calculated from the geographic coordinates

of their planned activities. This normalization was performed to ensure that all

input features are on a comparable scale, which is crucial for the effective training

of neural networks.

Next, we organized the data for each scenario, consisting of 1,000 agents and

their respective data, into individual training units. This approach enables the

neural network to capture the relationships and patterns within the same sce-

nario. By structuring the data in this way, the model can learn from the collective

behavior of the agents, which is crucial for accurately predicting the transport

modes used by each agent throughout the day.

Since we ran MATSim 7,000 times, we obtained 7,000 sets of input/output

data to train and test our neural network. This large dataset helps ensure that

the model generalizes well and accurately replicates the behavior observed in the

simulations.

The preparation of the data involved not only cleaning and normalizing the

input features but also carefully organizing the data into training units that reflect

the real-world dynamics of the simulated scenarios. This structured approach is

fundamental for training a neural network that can effectively replicate the outputs

of MATSim simulations.

5.3 AI-based Approach 122

5.3.2 Model Architecture

Here, we detail the architecture of the neural network model used to predict the

modes of transport for agents in the MATSim simulations. The choice of the model

and its configuration are crucial for ensuring optimal performance and good gen-

eralization of predictions. We opted for a model based on multilayer perceptrons

due to their ability to capture complex relationships in data, particularly the inter-

actions between agents within a scenario. The specific configuration of the model,

including layers, units, dropout rates, and hyperparameters such as learning rate

and batch size, will also be discussed in detail.

Choice of MLP Model

The MLP model was chosen for this study due to its capacity to model non-linear

relationships and complex interactions between agents. Although our input data

does not possess a temporal dimension, it consists of interactions between agents

within a scenario. The primary reasons for choosing the MLP model in this context

are:

• Capturing Complex Dependencies: MLP networks are adept at learning

intricate dependencies between data points. In our case, the interactions and

interdependencies between agents within the same scenario are significant.

The MLP model can effectively capture these relationships, which is crucial

for accurately predicting transport modes. For example, an agent using

a bike to reach the train station and then taking public transport could

influence the transport choices of other agents in the same scenario.

• Flexible Structure: MLPs offer a flexible and scalable structure that allows

the modeling of complex interactions among agents, without the overhead

of sequence-based models. This flexibility is useful for capturing the various

5.3 AI-based Approach 123

dynamics that occur within a 24-hour scenario, where agents evolve together

and influence each other’s transport choices.

• Handling Fixed and Variable Input Sizes: In our study, the data con-

sists of a fixed number of 1,000 agents per scenario. The MLP model is

particularly suitable for handling fixed input sizes but can also be adapted

to scenarios of different sizes in future studies. This adaptability enhances

the robustness of the model when dealing with different datasets or scenarios.

• Efficient and Compact Architecture: By using MLPs, we can construct

efficient models without the need for excessive parameters, as is often re-

quired in complex fully connected networks. MLPs allow us to achieve a

balance between model complexity and performance, reducing the risk of

overfitting while maintaining accuracy.

• Comparison with Other Neural Network Types: While convolutional

neural networks (CNNs) are highly effective for structured data like images,

they are less suited to modeling interactions between agents in our con-

text. MLPs, on the other hand, are well-equipped to handle the kind of

multi-dimensional data present in agent-based scenarios, offering better per-

formance in capturing agent interactions compared to simpler models like

logistic regression or more specialized models like CNNs.

• Robustness to Noise and Data Variations: MLPs have shown robust-

ness to noisy data and variations, which is crucial in the context of agent

behavior, where interactions can be unpredictable and highly variable. This

robustness contributes to the reliability of the model when dealing with real-

world data.

The choice of the MLP model for this study is motivated by its ability to cap-

5.3 AI-based Approach 124

ture complex relationships and interactions among agents within a scenario. This

approach improves the accuracy of transport mode predictions by considering the

mutual influences of agents within the same simulated environment. MLPs offer

significant advantages over other types of neural networks in terms of flexibility,

robustness, and the ability to model complex interactions effectively.

5.3.3 Model Configuration

Description of the Architecture

The MLP model architecture used in this study consists of multiple layers designed

to capture the complex interactions among agents within a scenario. The details

of the architecture are as follows:

• MLP Layers: The model comprises two fully connected layers, each with

256 neurons. MLPs are well-suited for learning non-linear relationships in

high-dimensional data. These layers allow the model to capture complex

interactions between agents in the scenario.

• Dropout: To prevent overfitting and improve the generalization of the

model, a dropout rate of 0.1 is applied after each fully connected layer.

Dropout is a regularization technique that randomly disables a fraction of

the neurons during training. This helps the model become less reliant on

specific neurons, improving its generalization capabilities.

• Output Layer: The final layer is a dense layer with a linear activation

function. This layer produces the final predictions in the form of continuous

vectors, corresponding to the transport modes used by the agents.

The complete model architecture is as follows:

5.3 AI-based Approach 125

1. First fully connected layer with 256 neurons

2. Dropout with a rate of 0.1

3. Second fully connected layer with 256 neurons

4. Dropout with a rate of 0.1

5. Dense layer with linear activation to predict the output values

Hyperparameters The selected hyperparameters are essential for ensuring op-

timal convergence and high-quality prediction performance. The key hyperparam-

eters used are:

• Learning Rate: A learning rate of 0.001 was chosen with the Adam opti-

mizer. This learning rate facilitates effective weight updates while maintain-

ing stability in the convergence process. Adam was selected for its adaptive

learning rate feature, improving the model’s convergence speed and stability.

– Adam (Adaptive Moment Estimation): Adam is a gradient-based

optimization algorithm that adapts the learning rate for each parameter

by utilizing estimates of the first and second moments of gradients. This

leads to faster and more stable convergence, particularly in cases where

gradients are sparse or noisy.

• Batch Size: A batch size of 64 was chosen, which determines the number

of samples used for a single weight update. This size strikes a good bal-

ance between training speed and gradient stability. Larger batch sizes could

accelerate training but might also increase gradient variability.

• Loss Function: We selected the Mean Squared Error (MSE) loss function to

measure the error between predicted and actual values, and we also compared

the results with the Huber loss function.

5.3 AI-based Approach 126

– Mean Squared Error (MSE): MSE calculates the average of the

squared differences between predicted and actual values. It penalizes

larger errors more heavily, making it useful when the goal is to mini-

mize significant deviations in predictions. However, MSE is sensitive to

outliers, as larger errors disproportionately affect the loss value.

– Huber Loss: The Huber loss combines the strengths of both MSE

and Mean Absolute Error (MAE). It behaves quadratically for small

errors and linearly for larger ones, reducing sensitivity to outliers while

maintaining robustness for smaller errors. This makes it particularly

useful in datasets with outliers, as it reduces their impact on the model’s

training process.

Our experiments showed that the overall performance using MSE and Hu-

ber loss was comparable, with similar values for MAE and validation accu-

racy. Both loss functions produced reliable results, with the choice depending

largely on the specific characteristics of the dataset and the need to handle

outliers.

• Callbacks: Callbacks are used to monitor the training process and adjust

certain aspects dynamically.

– ReduceLROnPlateau: This callback monitors the validation loss and

reduces the learning rate by a factor of 0.1 if no improvement is observed

for 5 consecutive epochs. This ensures that the model can continue fine-

tuning even when improvements become infrequent.

– EarlyStopping: EarlyStopping halts training when validation loss

fails to improve for 10 consecutive epochs, preventing overfitting. It also

ensures the best model performance is saved without excessive training.

5.3 AI-based Approach 127

Model Training The training process for the MLP model involves several crit-

ical steps:

• Data Preparation: After cleaning and normalizing the data, agent inter-

action data is created for each scenario. Each scenario, consisting of 1,000

agents, is treated as a distinct input for the MLP model.

• Normalization: Input data, particularly the distances traveled by agents,

is normalized to improve model training stability. The mode count data

remains unnormalized, as these are discrete values representing the number

of times each mode of transport is used.

• Data Splitting: The data is split into training and validation sets in an

80/20 ratio, respectively. This split allows for evaluating the model’s gener-

alization ability on unseen data. Due to the limited size of our dataset, no

separate test set was created.

• Training: The model is trained over 50 epochs with a batch size of 64. The

ReduceLROnPlateau and EarlyStopping callbacks dynamically adjust the

learning rate and stop training when the model reaches its best performance.

By combining this architecture and these hyperparameters, the MLP model

is designed to effectively capture the dynamics and interactions among agents

within the same scenario to accurately predict the modes of transport used. This

configuration enables the model to learn complex relationships while maintaining

robustness against overfitting and training data variations.

5.3 AI-based Approach 128

5.3.4 Loss Functions and Metrics

Use of the MSE Loss Function

Throughout our study, we primarily employed the Mean Squared Error (MSE)

loss function to train our model. MSE is a standard choice for regression tasks, as

it calculates the average of the squares of the differences between predicted and

actual values. This choice was motivated by MSE’s ability to penalize larger errors

more heavily, which is often advantageous for minimizing significant deviations in

predictions.

The formula for MSE is:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (5.1)

where yi represents the actual values, ŷi the predicted values, and n the total

number of predictions.

While MSE provided reliable performance overall, we observed that it is sensi-

tive to outliers. This sensitivity can lead to overfitting, particularly when dealing

with counting vectors as outputs, which may contain occasional extreme values.

Comparison with the Huber Loss Function

To address this sensitivity to outliers and evaluate potential improvements in ro-

bustness, we also compared the performance of the model using the Huber loss

function. The Huber loss function offers a balanced approach by combining the

properties of MSE and MAE.

The Huber loss is defined as:

5.3 AI-based Approach 129

Lδ(y, ŷ) =

1
2
(y − ŷ)2 for |y − ŷ| ≤ δ,

δ|y − ŷ| − 1
2
δ2 for |y − ŷ| > δ,

(5.2)

where δ is a threshold that controls the transition between the quadratic be-

havior (similar to MSE) for small errors, and the linear behavior (similar to MAE)

for larger errors.

The main advantage of the Huber loss is its reduced sensitivity to outliers. For

small errors, it behaves like MSE, allowing the model to make precise predictions.

For larger errors, it behaves like MAE, mitigating the impact of extreme values.

Comparison Results After applying the Huber loss function, we found that

the overall performance metrics were comparable to those achieved with MSE.

The choice of loss function ultimately depends on the specific characteristics of the

dataset and the importance of handling outliers. For our dataset, where outliers

were present but not dominant, both MSE and Huber loss produced similar levels of

accuracy, with Huber loss offering slightly better robustness in scenarios involving

extreme values.

Other Metrics Used

In addition to the Huber loss function, chosen for its robustness in handling data

with outliers, several metrics were employed to evaluate the performance of the

model.

Mean Absolute Error (MAE) The MAE is calculated for each mode of trans-

port as well as globally. The MAE measures the average of the absolute differences

between the predicted values and the actual values, providing a direct and inter-

pretable measure of the average error.

5.3 AI-based Approach 130

Mean Squared Error (MSE) The MSE, unlike the MAE, penalizes larger

errors by squaring them. Although the Huber loss function is used during training

for its robustness against outliers, the MSE remains a useful metric for evaluating

the average quadratic error of the predictions.

Coefficient of Determination (R²) The coefficient of determination assesses

the proportion of variance in the data explained by the model. A high R² indicates

that the model captures the variability of the data well. The formula for R² is:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(5.3)

where ȳ is the mean of the actual values.

Cosine Similarity To evaluate the overall similarity between the prediction

vectors and the actual vectors, we used cosine similarity. This measure is particu-

larly useful for comparing vectors in high-dimensional spaces, such as the vectors

of transport modes. The formula for cosine similarity is:

Cosine Similarity =

∑n
i=1 yiŷi√∑n

i=1 y
2
i

√∑n
i=1 ŷ

2
i

(5.4)

This measure ranges from -1 to 1, where 1 indicates that the vectors are per-

fectly aligned, 0 that they are orthogonal, and -1 that they are opposed.

Using these different metrics allows us to have a comprehensive and nuanced

evaluation of our model’s performance. By considering average errors, explained

variances, and vector similarities, we can identify the strengths and weaknesses of

the model from different perspectives, helping us improve our modeling approach.

5.3 AI-based Approach 131

5.3.5 Optimization and Adjustments

Hyperparameter Tuning

To optimize the performance of our neural network, we conducted a systematic

search for hyperparameters. This step is crucial for determining the optimal con-

figuration that will allow the model to generalize well to unseen data. We used

the following method for hyperparameter search:

Search Method : Grid Search This method involves systematically testing

all possible combinations of predefined hyperparameters. Although this approach

is exhaustive and computationally expensive, it allows for a thorough exploration

of the hyperparameter space to find the optimal configuration.

Tested Parameters and Combinations We tested various combinations of

the following hyperparameters:

Hyperparameter Tested Values
Learning Rate 0.01, 0.015, 0.001, 0.0001
Batch Size 16, 32, 64
Number of MLP Layers 1, 2, 3, 4
Neurons per Layer 128, 256
Dropout Rate 0.1, 0.2, 0.3, 0.4

Table 5.2: Hyperparameters and their tested values

Learning Rate We tested several learning rates to identify the one that allows

the model to learn efficiently without diverging or converging too slowly. The

values of 0.01 and 0.001 were particularly scrutinized for their impact on model

performance.

5.3 AI-based Approach 132

Batch Size The batch size influences both the stability and speed of conver-

gence. We tested batch sizes of 16, 32, and 64 to evaluate their impact on the

model’s performance and training stability.

Number of MLP Layers We experimented with architectures ranging from

one to four MLP layers to assess their ability to model the complex interactions

between agents in the scenarios.

Neurons per Layer The number of neurons in each MLP layer affects the

model’s capacity to learn complex patterns. We tested configurations with 128

and 256 neurons per layer to evaluate the balance between model complexity and

performance.

Dropout Rate For each configuration, we applied a dropout rate to prevent

overfitting. We tested rates of 0.1, 0.2, 0.3, and 0.4 to find the best trade-off

between reducing overfitting and maintaining useful information for the model.

These various combinations allowed us to identify the optimal model configu-

ration based on performance criteria such as MAE and Cosine Similarity.

The optimal configuration, as described in the previous section on hyperpa-

rameters, included a learning rate of 0.001, a batch size of 64, two MLP layers

with 256 neurons each, and a dropout rate of 0.1.

Conclusion

In conclusion, the AI-based approach for modeling multi-agent traffic simulations

described in this section outlines a methodology utilizing a multilayer perceptron

neural network to predict an initial discrete variable, specifically transport modes

used by agents. This method aims to reduce computational time and resource

usage compared to traditional simulations with MATSim. The architecture of our

5.3 AI-based Approach 133

MLP neural network, along with its optimized hyperparameters, has been care-

fully designed to meet the specific requirements of our case study. By focusing

on simplified input data and a discrete variable, we have minimized the model’s

complexity, making this approach accessible and potentially applicable to other

multi-agent traffic simulators. This contribution lays the groundwork for future

research to further enhance the accuracy and scalability of multi-agent traffic sim-

ulations.

While promising, this approach also presents certain challenges and limitations,

which will be detailed in Chapter 7, where the results are presented.

Overall, our contribution proposes a pathway to accelerate multi-agent traffic

simulations by combining simplicity and efficiency, paving the way for further

advancements and complementary research.

Chapter 6

High Performance multiMATSim

In this chapter, we describe in more detail parallel programming models pertinent

to the multiMATSim framework. Efficient simulation of such complex systems

necessitates leveraging parallel computing paradigms to distribute computational

tasks across multiple processors,to reduce execution times and improve the scala-

bility of simulations.

6.1 Parallel Programming Model for multiMAT-

Sim

The current implementation of multiMATSim employs a parallel programming

model that intricately combines inherent multithreading within MATSim with an

additional layer of parallelism through distributed computing. This section elab-

orates on the multiMATSim architecture, emphasizing the conceptual framework

of the model. The focus will be on the principles of synchronous communication

via MPI for inter-node coordination and the potential for adopting asynchronous

communication to accommodate an increased number of MATSim instances.

Figure 6.1 illustrates the multiMATSim architecture with six computation

135

6.1 Parallel Programming Model for multiMATSim 136

Figure 6.1: Overview of multiMATSim Architecture: Distributed Nodes with Mul-
tithreading

nodes, each running an instance of MATSim. Each node is labeled (Node 1 to

Node 6) and contains a MATSim instance, which itself utilizes multithreading for

various simulation tasks. The arrows between the nodes represent MPI communi-

cation for synchronizing the simulation state across all nodes.

6.2 Parallel Implementation of multiMATSim 137

6.2 Parallel Implementation of multiMATSim

6.2.1 Shared Memory Computing

QSim, the core mobility simulation engine within MATSim, leverages multithread-

ing to simulate the movements and interactions of agents in parallel. This is crucial

for handling large-scale simulations with thousands of agents.

Principle: QSim processes the activities and movements of agents concur-

rently, utilizing multiple threads to execute these tasks simultaneously. This

reduces the overall simulation time by distributing the workload among several

threads.

Implementation: Within each MATSim instance (as shown in the diagram),

QSim uses threads to manage different aspects of the simulation, such as agent

movement, event handling, and interaction processing. Each thread can handle a

subset of agents or specific types of events, ensuring efficient utilization of CPU

resources.

Additionally, the replanning module in MATSim benefits from multithread-

ing. Replanning involves adjusting agents’ plans based on simulation feedback to

optimize their travel behavior.

Principle: Replanning applies various strategies to agents’ plans in parallel.

This includes route replanning, activity rescheduling, and mode choice adjust-

ments.

Implementation: During the replanning phase, each thread can process a

separate batch of agents. This parallel processing ensures that multiple replan-

ning strategies are applied simultaneously, significantly speeding up the overall

replanning process. In the diagram, this is represented by the threads within each

MATSim instance, which handle different replanning tasks concurrently.

6.2 Parallel Implementation of multiMATSim 138

The use of shared memory computing can be further enhanced by leveraging

multi-core CPUs or GPUs, allowing for more efficient parallel processing and bet-

ter resource utilization. GPUs, in particular, can execute thousands of threads

simultaneously, providing a significant boost to performance for tasks that are

highly parallelizable.

6.2.2 Distributed Computing

The MPI communication layer coordinates the simulation across multiple nodes,

ensuring that each instance of MATSim operates in sync with the others.

Synchronous Communication: Currently, multiMATSim uses synchronous

MPI communication to exchange data between nodes. This ensures that all nodes

progress through the simulation steps together, maintaining a consistent state

across the distributed system. Given the current setup with a relatively small

number of computation nodes, we have chosen to rely on synchronous communi-

cations. This approach ensures that we maximize the amount of data available at

each synchronization point, allowing us to fully evaluate the impact of the task

distribution mechanism and explore the broadest possible range of solutions.

Future Potential: As we plan to scale up and add more instances of MAT-

Sim, there is significant potential to switch to asynchronous communication mech-

anisms. Some instances are more time-consuming than others, leading to idle

times while waiting for synchronization. Asynchronous communication would al-

low nodes to continue processing independently without waiting for slower nodes

to catch up, potentially increasing the overall efficiency of the simulation. This

shift could result in substantial time savings and improved performance as the

system scales.

The distributed computing model in multiMATSim divides the overall simula-

tion workload across multiple computation nodes. Each node runs an independent

6.2 Parallel Implementation of multiMATSim 139

instance of MATSim, and these instances work together to simulate complex trans-

portation networks. This division of labor allows multiMATSim to handle larger

and more detailed simulations than would be possible on a single node. By dis-

tributing the workload, we can leverage the computational power of multiple nodes

to achieve high efficiency and scalability in our simulations.

6.2.3 Communications

In distributed simulations like multiMATSim, communication between nodes is

critical for maintaining the coherence and accuracy of the simulation. However, it

is important to note that data transfer between nodes is often more time-consuming

than computational operations themselves. Efficient communication strategies are

essential to minimize the overhead and ensure that the simulation runs smoothly.

Importance of Communication: Communication between nodes involves

the exchange of critical simulation data, such as the state of agents, transportation

plans, and environmental conditions. This data exchange must be timely and

accurate to maintain the integrity of the simulation.

Cost of Data Transfer: The cost of transferring data between nodes can

be significant. It often outweighs the computational cost of processing the data.

Therefore, optimizing communication strategies is essential. Techniques such as

minimizing data transfer, compressing data before transmission, and overlapping

communication with computation can help mitigate the impact of communication

overhead.

In the state of the art, it has been shown that communication in such multi-

agent simulators is a significant challenge and constitutes a substantial area of

research. Several strategies have been developed to address this problem. For

example, asynchronous communication mechanisms can be employed to reduce

idle times and improve overall system throughput. Additionally, data compression

6.2 Parallel Implementation of multiMATSim 140

techniques can be used to reduce the volume of data transmitted between nodes,

thereby decreasing communication time and bandwidth usage.

Furthermore, overlapping communication with computation is another strategy

that can be employed. This technique involves scheduling data transfers to occur

concurrently with computational tasks, thereby utilizing system resources more

efficiently and reducing the overall simulation time.

Research and Strategies: The field of multi-agent simulation has recog-

nized communication as a crucial bottleneck and has seen significant research ef-

forts aimed at improving communication efficiency. Strategies such as adaptive

communication protocols, which dynamically adjust the frequency and volume of

data exchange based on the simulation state, have been explored. Additionally,

hierarchical communication models, where nodes communicate within subgroups

before synchronizing with the larger network, have shown promise in reducing

communication overhead.

By combining shared memory computing within each node and distributed

computing across multiple nodes, multiMATSim achieves a highly efficient and

scalable simulation environment. This approach allows for the simulation of com-

plex transportation networks and large numbers of agents, providing valuable in-

sights for transportation planning and policy analysis. Efficient communication

strategies ensure that despite the challenges posed by data transfer, the system

remains robust and capable of handling extensive simulations.

6.2.4 Transition to Other Potential Models

Exploring alternative parallel programming models presents an opportunity to fur-

ther optimize multiMATSim simulations. This section introduces potential models

that could address existing challenges and enhance computational efficiency.

6.2 Parallel Implementation of multiMATSim 141

Spatial Decomposition

Principle Spatial Decomposition involves segmenting the simulated geographic

area into smaller sub-regions that can be processed in parallel. This method lever-

ages the inherent spatial locality of transportation simulations, where interactions

are often localized within specific areas. By dividing the simulation space, com-

putational tasks become more manageable and can be distributed across multiple

processing units, significantly enhancing simulation scalability and efficiency.

Application In the context of MATSim, each computing node is responsible

for simulating the movements and interactions of agents within its assigned sub-

region. This localized approach allows for more focused and efficient computation,

as each node deals with a fraction of the total simulation load. A crucial com-

ponent of this model is the mechanism for handling agents as they move across

the boundaries of sub-regions. This requires sophisticated coordination between

nodes to ensure that agent data is accurately transferred and that the simulation

remains consistent across the entire geographic space. By implementing spatial

decomposition, MATSim can more effectively simulate large-scale transportation

networks, making it possible to tackle more complex scenarios with higher fidelity

and in less time.

Agent Parallelization

Principle Agent Parallelization involves the distribution of simulation agents

across different threads or processes, allowing their simulations to be processed in

parallel. This approach leverages the autonomous nature of agents in transporta-

tion simulations, where each agent’s decisions and movements could potentially

be computed independently of others. Parallelizing the processing of agents could

thus spread the computational workload across available hardware resources, po-

6.2 Parallel Implementation of multiMATSim 142

tentially reducing the time required for complex simulations.

Application Applying this model within multiMATSim could involve utilizing

parallel programming models such as OpenMP to facilitate the parallel processing

of agents within a single computing node. This would mean structuring the agent

processing loop in a way that allows for the concurrent execution of computations

related to each agent in separate threads. OpenMP, in particular, offers a con-

venient and efficient mechanism for achieving this, providing the capability for

dynamic allocation of threads based on the workload and the available hardware

capacities.

Such an approach would not only aim to speed up the simulation by taking

advantage of multi-core processors within a computing node but also enhance

the scalability of the simulations with additional hardware resources. Moreover,

parallelizing agents could potentially improve the simulation’s responsiveness to

dynamic changes, as updates to individual agents or small groups of agents could

be processed more quickly.

GPU Utilization for Specific Computations

Principle The utilization of GPUs for specific computational tasks capitalizes

on the GPUs’ ability to execute thousands of threads in parallel. This principle

is particularly advantageous for tasks that are highly parallelizable, where the

execution workload can be distributed across the vast array of processing cores

within a GPU. Such a strategy can significantly accelerate computations, reducing

the overall simulation time for complex models.

Application In a hypothetical enhancement of MATSim, leveraging GPUs could

be considered for accelerating certain computationally intensive parts of the sim-

ulation, such as distance calculations or specific replanning steps. Utilizing pro-

6.2 Parallel Implementation of multiMATSim 143

gramming frameworks like CUDA (for NVIDIA GPUs) or OpenCL (for a wide

range of GPU architectures) would enable this acceleration.

For instance, the calculation of shortest paths for numerous agents or the eval-

uation of complex replanning algorithms could benefit from the parallel processing

capabilities of GPUs. These tasks, when executed on traditional CPU setups,

might constitute bottlenecks due to their computational intensity and the linear

increase in processing time with the number of agents. However, by offloading such

tasks to GPUs, MATSim could potentially see a reduction in simulation times, al-

lowing for more detailed scenarios or larger-scale simulations to be run within

practical time frames.

Tools for Implementing GPU Utilization

Integrating GPU acceleration into MATSim, a Java-based application, presents

certain challenges. Direct utilization of CUDA or OpenCL would require inter-

facing Java with these lower-level programming frameworks, possibly through JNI

(Java Native Interface) or leveraging existing libraries designed to bridge Java

with GPU computing capabilities. The feasibility and efficiency of such integra-

tion would need careful consideration and testing to ensure that the expected

performance gains justify the additional complexity in the simulation framework.

Optimization of Data Structures for Parallelism

Principle The principle of optimizing data structures for parallelism involves

selecting or designing data structures and algorithms that are inherently suited

for parallel computation. This approach aims to minimize the need for lock-

ing mechanisms and waiting periods, which can become significant bottlenecks in

multi-threaded or distributed environments. Optimized data structures enhance

the efficiency and scalability of simulations by allowing more seamless concurrent

6.2 Parallel Implementation of multiMATSim 144

access and manipulation of data.

Application In the context of enhancing multiMATSim, this principle could be

applied through the implementation of concurrent versions of critical data struc-

tures such as agent lists, spatial grids, and transport network graphs. By adopting

or developing data structures that inherently support concurrent operations, mul-

tiMATSim could achieve significant performance improvements, particularly in

areas where high levels of parallel access and updates are required.

• Agent Lists: For the dynamic management of agents within the simulation,

utilizing concurrent lists or arrays could facilitate efficient, lock-free access

and updates to agent states, improving the performance of simulations with

a high number of agents.

• Spatial Grids: Spatial grids are pivotal for numerous queries and operations

within transport simulations, including location-based searches and agent

interactions. Concurrent spatial grids, possibly based on quadtree or other

spatial partitioning techniques, would allow for more efficient querying and

updating of spatial information in a parallelized manner.

• Transport Network Graphs: The transport network, represented as a

graph, is central to routing and simulation of movements. Employing con-

current graph data structures could enable faster computation of routes and

updates to the network state, especially beneficial for simulations involving

dynamic changes to the network.

Tools for Implementing Data Structure Optimization

The transition to such optimized data structures may require a careful assessment

of the specific needs and bottlenecks within multiMATSim and might involve the

6.2 Parallel Implementation of multiMATSim 145

exploration of existing libraries that offer concurrent data structures or the de-

velopment of custom solutions tailored to the simulation’s requirements. Imple-

menting these optimizations would likely necessitate adjustments to the existing

architecture and algorithms of multiMATSim, with a focus on maintaining or im-

proving the accuracy and reliability of the simulation outcomes. However, the

potential for enhanced performance and scalability presents a compelling case for

considering these improvements as part of multiMATSim’s ongoing development.

Chapter 7

Experimental Results and

Performance Analysis

7.1 multiMATSim

This section delineates a detailed analysis of the performance outcomes derived

from the utilization of multiMATSim across two distinct scenarios: a 0.1% and a

1% agent representation of Los Angeles. In an effort to comprehensively evaluate

the scalability and efficiency of the multiMATSim approach, both scenarios were

subjected to tests utilizing 4 and 8 parallel instances. The ensuing results and

performance metrics were primarily run on the Ruche computing cluster, offer-

ing insights into the operational efficacy of the multiMATSim methodology under

varying computational loads. Some results obtained on Fugaku will be presented

and discussed in a subsequent section.

The empirical observations from this investigation are graphically represented

in Figures 7.1, 7.2, and 7.6 for the 0.1% scenario, and Figure 7.3 and 7.4 for

the 1% scenario. These figures illustrate the evolution of average plan scores

executed by all agents within each scenario. The graphical representation utilizes

147

7.1 multiMATSim 148

a black curve to delineate the progression in the MATSim 0.1% and 1% scenarios

(serving as the baseline). This black curve specifically represents the performance

of MATSim running independently, without any influence from multiMATSim or

other configurations. In contrast, the colored curves denote the performance across

various instances of multiMATSim.

It is imperative to acknowledge that the graphical illustrations in Figures 7.1,

7.3, 7.6, 7.2, 7.5, and 7.4 reveal square peaks, which are attributed to the stop-and-

restart procedures inherent in multiMATSim. These peaks emerge after 80% of the

iterations defined by the step parameter, symbolizing the average of the historically

best scores attained during the preceding step iterations for each agent.

It is also important to note that a similar peak or plateau is present on the black

curve representing MATSim alone, appearing around the 240th iteration (which

corresponds to 80% of the total iterations). This peak, however, does not occur

earlier in the process, as MATSim alone lacks the stop-and-restart mechanism

employed by multiMATSim. The occurrence of this peak in MATSim alone reflects

the natural convergence of the simulation as it approaches its optimal solution.

Despite the presence of these artifacts, the critical focus of the analysis is di-

rected towards the overarching trend in the evolution of average scores. Such

a focus provides a more accurate reflection of the continuous improvement and

optimization facilitated by the multiMATSim approach, thereby emphasizing the

system’s adaptability and the effectiveness of the simulation framework in enhanc-

ing urban transportation planning and analysis.

The stop-and-restart mechanism in multiMATSim is designed to periodically

pause the simulation, allowing for a re-evaluation and exchange of agent behav-

iors based on the best historical scores. During these pauses, instances may either

adopt plans from other instances or continue refining their own plans. This mecha-

nism helps prevent the simulation from getting stuck in local optima and promotes

7.1 multiMATSim 149

further exploration of the solution space. As a result, the performance curves of

multiMATSim display more frequent adjustments and recalibrations compared to

MATSim running independently.

By concentrating on the overall trends rather than the individual peaks, we gain

a deeper understanding of the long-term benefits of the multiMATSim framework.

The continuous upward trajectory of the average scores highlights the system’s

capacity to adapt and optimize over time, ultimately leading to more effective and

efficient solutions for urban transportation challenges.

7.1.1 Results: Scalability

Los Angeles 0.1% Scenario

The scalability of the multiMATSim approach is assessed through its application

to the Los Angeles 0.1% scenario, focusing on the total execution time, speedup,

and a comparative evaluation of the 4 and 8 instances configurations.

• Total Execution Time: Observations indicate that the total time required

to complete the full suite of 300 iterations exhibited negligible differences

across the tested configurations. Specifically, the standard MATSim process

concluded within 8 hours, whereas the multiMATSim configuration with 4 in-

stances (7.1) required 8 hours and 40 minutes, and the 8 instances configura-

tion (7.2) completed in approximately 8 hours and 45 minutes. Remarkably,

the configuration utilizing 8 instances demonstrated a rapid achievement of

the convergence score, noticeably soon after the initial data exchange. It

is imperative to note that the primary objective is not the reduction of the

total execution time per se, but rather the acceleration of convergence time,

indicating a more efficient simulation process.

7.1 multiMATSim 150

• Speedup: Preliminary results had shown that the multiMATSim config-

uration with 4 instances facilitated a significant speedup in achieving con-

vergence. Specifically, a convergence score of 105 was attained merely 1.5

hours into the simulation (by iteration 52, immediately following the first

data exchange), presenting a stark contrast to the standard MATSim, which

required 6 hours to reach the same score (yielding a speedup factor of 4.0).

The anticipation surrounding the 8 instances configuration’s performance

was met with an interesting outcome, as the speedup observed was akin to

that achieved with the 4 instances setup.

• Comparison Between 4 and 8 Instances: Reference to Figure 7.2 reveals

a notable surge in the performance of multiMATSim with 8 instances immedi-

ately following the first data exchange at iteration 50. Previous investigations

highlighted the similar outcomes with the 4 instances configuration. The

present analysis substantiates that while the performance with 4 instances

remains exemplary, simply doubling the number of instances to 8 does not

categorically surpass the former setup in terms of speedup. Nonetheless, the

significant performance improvement observed after the initial data exchange

at iteration 50 with 8 instances suggests that an earlier data exchange might

have further enhanced the speedup, potentially rendering the 8 instances

configuration more advantageous than the 4 instances setup.

Los Angeles 1% Scenario

This section presents the scalability assessment of the multiMATSim methodology

when applied to the Los Angeles 1% scenario, focusing on total execution time,

speedup, the comparative performance of the 4 and 8 instances configurations, and

system stability.

7.1 multiMATSim 151

Figure 7.1: Average scores of executed plans of multiMATSim LA 0.1% across
iterations (with number of instances N = 4 and step = 50)

• Total Execution Time: The inherently more data-intensive 1% scenario

exhibited prolonged completion times. Specifically, the baseline MATSim

required a substantial 36 hours to finalize 300 iterations. In contrast, the

multiMATSim configurations, both with 4 and 8 instances, recorded com-

pletion times around 50 hours. Noteworthily, MATSim achieved the conver-

gence score within 29 hours, whereas multiMATSim, under both the 4 and 8

instances configurations, reached this critical benchmark in approximately 6

hours, underscoring the method’s efficacy in rapid convergence achievement.

• Speedup: In the context of the 1% scenario, a speedup factor of 4.8 was

observed, marginally exceeding the 4.0 speedup noted in the 0.1% scenario.

This increment underscores the enhanced efficiency of the multiMATSim ap-

proach with increasing data density, illustrating its scalability and robustness

7.1 multiMATSim 152

Figure 7.2: Average scores of executed plans of multiMATSim LA 0.1% across
iterations (with number of instances N = 8 step = 50)

in data-intensive environments.

• Comparison Between 4 and 8 Instances: Similar to the 0.1% scenario,

the performance comparison between the 4 and 8 instances setups in the

1% scenario, as depicted in Figure 7.3 and 7.4, did not reveal a definitive

speedup advantage upon scaling from 4 to 8 instances. Nonetheless, a recur-

ring observation was the effect of the data exchange at the 50th iteration,

suggesting that an earlier exchange might have fostered faster convergence,

particularly with the 8 instances configuration (7.4). This conjecture is sup-

ported by the behavior of instance 3, which demonstrated a propensity for

swifter convergence, echoing the findings from the 0.1% scenario.

7.1 multiMATSim 153

Figure 7.3: Average scores of executed plans of multiMATSim LA 1% across iter-
ations (with number of instances N = 4 and step = 50)

• System Stability: An intriguing observation in the 1% scenario was the no-

ticeable reduction in score oscillations compared to the 0.1% scenario. This

trend suggests an enhanced system stability with the increased agent count,

pointing towards the multiMATSim method’s adaptability and resilience in

managing higher volumes of data without compromising on performance in-

tegrity.

7.1.2 Discussion: Scalability and Performance Insights

The empirical findings from the application of multiMATSim necessitate a nuanced

evaluation of its performance relative to the conventional MATSim framework.

• Effect of Communication: A pivotal element of multiMATSim’s efficacy is

7.1 multiMATSim 154

Figure 7.4: Average scores of executed plans of multiMATSim LA 1% across iter-
ations (with number of instances N = 8 and step = 50)

the strategic dissemination of information amongst instances. The beneficial

impact is readily apparent with 4 instances; however, the deployment of 8 in-

stances, while not conclusively outperforming the former in this study, unde-

niably demonstrates potential. This is particularly evident in the significant

score improvements from the initial data exchange. An earlier occurrence of

this exchange might have facilitated enhanced scalability with 8 instances,

attributable to a more extensive and prompt exploration of the solution

space. Future endeavors could prioritize implementing asynchronous com-

munication to reduce idle times and enhance overall system efficiency. This

could be complemented by optimizing the granularity, frequency, and timing

of information exchanges, possibly through adaptive strategies tailored to

the observed system dynamics or targeted agent-specific communications.

7.1 multiMATSim 155

• Trade-off Between Duration and Convergence: Despite a potential in-

crease in total execution time, a notably faster convergence rate is observed.

The ability to process a larger data volume within a single node, as evidenced

in the 1% scenario, underscores the scalability of the approach. The propor-

tional increase in resources, from 4 to 8 nodes, alongside the corresponding

instances, does not compromise performance, suggesting a promising scope

for further scalability enhancement with fine-tuned configurations, particu-

larly for scenarios with a step < 50. This hypothesis has led to additional

experimentation adjusting the step value, with detailed outcomes presented

in Section C.

• Influence of Strategy Parametrization on Execution and Simulation

Realism: The parametrization of replanning strategies significantly affects

execution durations and the realism of the simulation. Notably, Instance

2 experienced an execution time up to 1.5 times longer than its counter-

parts. In environments characterized by synchronous communications, such

disparities can impact the overall execution efficiency of multiMATSim.

In MATSim, up to nb_plans (generally 5) are generated for each agent over

iterations using replanning strategies and are selected or discarded through

a specific mechanism. However, in multiMATSim, we have set nb_plans to

1. With this configuration, the planselector strategy, which selects the best

plan from those available for each agent, has a neutral impact as it only

selects one plan without performing complex comparisons between multiple

plans.

In this context, Instance 2 assigns the lowest weight to the planselector strat-

egy, allowing more room for other replanning strategies such as reroute, time

allocation, and mode choice. As a result, these strategies take on a more

7.1 multiMATSim 156

prominent role, which can lead to extended execution times due to the in-

creased complexity of the necessary computations.

Nevertheless, the fact that Instance 2 surpasses sequential execution in terms

of convergence, despite a more favorable configuration for execution speed

in the latter, demonstrates that the multiMATSim strategy outperforms

MATSim even under conditions where MATSim would theoretically be ad-

vantaged. This observation indicates that it is possible to optimize overall

performance by strategically reconfiguring the weights assigned to different

strategies. Moreover, a balanced distribution of weights among replanning

strategies contributes to increased realism in the simulation by allowing for

a diversity of plans, adequate responsiveness to changes, and better consid-

eration of individual agent preferences.

• Stark Difference in Total Execution Times: The observed discrepan-

cies in total execution times between the MATSim and multiMATSim con-

figurations, both for the 0.1% and 1% scenarios, warrant further examina-

tion. These disparities could stem from the influence of replanning strategy

weights, the increased agent count, and the intensive processing of XML files

in the 1% scenario. A recalibration of data exchange frequencies might yield

improvements in data-dense scenarios, optimizing the overall computational

efficiency and effectiveness of the multiMATSim framework.

Furthermore, as previously mentioned, implementing asynchronous commu-

nications should address this issue by reducing idle times and enhancing

overall system performance.

7.1 multiMATSim 157

7.1.3 Results and Influence of step Value Variation

The initial implementation of multiMATSim with a step value of 50, for both

N = 4 and N = 8, yielded promising outcomes. However, the enhancements

observed with N = 8 were relatively modest when juxtaposed against the results

for N = 4, despite a doubling of the computational resources. This discrepancy

prompted a reevaluation of the step value, with the hypothesis that more frequent

data exchanges could potentially amplify the benefits of utilizing a greater number

of instances.

Subsequent experiments were therefore conducted with a reduced step value of

25, while employing N = 8, to facilitate data exchanges every 25 iterations among

the 8 instances of MATSim. Figure 7.5 illustrates the average plan scores achieved

in the multiMATSim framework for the Los Angeles 0.1% scenario with N = 8

and step = 25. Figure 7.6 presents analogous results but for N = 4. Although

the graphical outcomes for the Los Angeles 1% scenario are omitted here, similar

patterns were observed across both scenarios.

Configuration: step = 25; Instances: N = 8 (Figure 7.5):

• Certain exchanges, particularly those originating from Instance 6, not only

achieved but, in some instances, exceeded the benchmark convergence score

of 105 immediately following the first exchange of information.

• Several instances necessitated additional iterations beyond the first exchange

to meet or surpass this benchmark score.

• The convergence score of 105 was consistently reached within approximately

45 minutes.

Encouraged by the outcomes of this configuration, an evaluation of the impact of

a step value of 25 while maintaining N = 4 was undertaken.

7.1 multiMATSim 158

Figure 7.5: Average scores of executed plans of multiMATSim LA 0.1% across
iterations (with number of instances N = 8 and step = 25)

Configuration: step = 25; Instances: N = 4 (Figure 7.6):

• No immediate improvement was discernible subsequent to the initial ex-

change.

• Notwithstanding, marked performance enhancements were observed follow-

ing the second exchange.

Observation Summary: These findings highlight the efficacy of the multi-

MATSim methodology in accelerating convergence relative to the baseline. The

cadence of data exchanges significantly influences overall performance. Moreover,

the incremental execution time associated with an increased number of instances

7.1 multiMATSim 159

Figure 7.6: Average scores of executed plans of multiMATSim LA 0.1% across
iterations (with number of instances N = 4 and step = 25)

is minimal. This observation lays the groundwork for further detailed analysis in

subsequent sections. These results have been published in [48].

7.1.4 Performance Comparison between A64FX and Intel

Xeon Gold 6230 for MATSim

As a reminder, we had the privilege of using the Fugaku supercomputer for our

multiMATSim experiments. During our tests, we observed a significant perfor-

mance difference, primarily attributable to MATSim itself. Our multiMATSim

approach relies on running multiple instances of MATSim, which magnifies the

impact of its performance on our overall results. Although the following observa-

tions are based on the Los Angeles 0.1% scenario, we found the same results for

7.1 multiMATSim 160

the Los Angeles 1% scenario. In this section, we focus on comparing MATSim’s

performance on the A64FX CPU, which powers the Fugaku nodes, against the

Intel Xeon Gold 6230, its counterpart in the Ruche cluster. Understanding these

performance differences is crucial for optimizing our multiMATSim approach. We

will attempt to explain these differences in the following section.

1. Execution Duration:

• A64FX : For a typical MATSim LA 0.1% iteration, the execution time

is 10 minutes.

• Intel Xeon Gold 6230 : Under similar conditions, the Intel Xeon Gold

6230 CPU completed an iteration in just 2/3 minutes.

2. Processing Efficiencies:

• A64FX : Despite being designed for HPC workloads, efficiency for pre-

dominantly sequential programs like MATSim is lower, with notable

observations of pipeline stalls, particularly for loops with a complex

body.

• Intel Xeon Gold 6230 : Demonstrating better adaptability for sequential

or slightly parallel applications, this architecture exhibited a superior

ability to process MATSim efficiently.

Even though MATSim’s performance is lower on Fugaku compared to Ruche,

we wanted to verify if our approach, multiMATSim, offered better results on Fu-

gaku compared to MATSim in terms of convergence.

Results on Fugaku with multiMATSim

We launched multiMATSim LA 0.1% with 4 instances (N = 4) and a reduced

number of iterations (max = 60), exchanging at the 50th iteration (step = 50). On

7.1 multiMATSim 161

Fugaku, multiMATSim LA 0.1% reached a stable state in about 8 hours, whereas

it took about 30 hours for the baseline MATSim LA 0.1% to achieve the same.

As on Ruche, multiMATSim allows the system to reach this stable state, where

changes in agents’ route plans become minimal from one iteration to the next,

indicating that the system reaches an optimal equilibrium much faster compared

to MATSim alone.

Architectural Differences

The profiler revealed differing behaviors of the JVM (Java Virtual Machine), with

JVM settings varying between the CPUs. The number of calls to the garbage

collector remained the same between the two CPUs, but the garbage collector

intervention times were much longer on the A64FX. This might simply be due

to the architectural differences between the two CPUs and may not be related

to the difference in performance. Other differences were noted, such as thread

management or memory management, which can be explained in the same manner.

7.1.5 Discussion on Performance Differences

We observe significant performance differences between the A64FX and Intel Xeon

Gold 6230 architectures when executing MATSim, and we propose several hy-

potheses to explain these differences by examining the interplay of architectural

attributes and MATSim’s inherent software characteristics.

Sequential Nature of MATSim

MATSim’s design leans heavily towards sequential execution, with only intermit-

tent multithreading on specific modules. Such a design paradigm is intrinsically

reliant on stable and robust CPU performance.

7.1 multiMATSim 162

MATSim’s computational framework largely operates on an event-based simu-

lation model, which inherently limits the opportunities for parallel execution. This

model processes events sequentially, simulating the behavior of agents within a

transportation network. The event queue is typically processed by a single thread,

with parallelism only exploited in certain phases, such as route replanning or spe-

cific computational tasks that can be isolated from the main event processing.

• Core Structure and Out-of-Order Execution: The A64FX’s compact

core structure and diminished resources for out-of-order optimization are not

optimally suited for applications that are chiefly sequential. Unlike the Intel

Xeon Gold 6230, which has extensive out-of-order execution capabilities,

the A64FX focuses on energy efficiency and high-bandwidth memory access,

features that do not benefit MATSim’s sequential nature.

• SIMD Instructions: MATSim’s inability to exploit SIMD instructions

means that SVE functionalities within the A64FX are not leveraged. SIMD

instructions are crucial for accelerating parallelizable tasks, but since MAT-

Sim does not inherently support these operations, the advanced vector ca-

pabilities of the A64FX remain underutilized.

• Pipeline Structure: The longer pipeline structure of the A64FX, which is

prone to stalls for loops with intricate bodies, may act as a bottleneck for

MATSim. MATSim’s event processing and agent-based simulations involve

complex looped structures with frequent branching and conditional opera-

tions. The deeper pipeline of the A64FX increases the penalty of branch

mispredictions and pipeline stalls, leading to reduced performance efficiency.

• Memory Access Patterns: MATSim’s performance is also influenced by

memory access patterns. The A64FX’s memory subsystem is optimized for

7.1 multiMATSim 163

high-bandwidth access, suitable for applications with streaming data pat-

terns. However, MATSim’s memory access is more random and irregular,

not fully benefiting from the A64FX’s memory architecture.

• Thermal and Power Considerations: The A64FX is designed with a

focus on power efficiency and thermal management, which can result in re-

duced peak performance for sustained high-load tasks. MATSim, requiring

consistent high performance for extended simulation runs, might not achieve

optimal performance on the A64FX due to these power and thermal con-

straints.

• Parallel Task Management: While MATSim does implement some level

of parallelism, it is primarily in the form of task parallelism rather than

data parallelism. This means that while certain tasks can run in parallel,

the overall speedup is limited by the sequential processing of the main event

queue. The Intel Xeon Gold 6230, with its robust multi-core architecture

and support for efficient parallel task management, can handle these parallel

tasks more effectively.

The architectural design of the A64FX is not fully utilized by MATSim due

to the sequential nature of MATSim and its inability to leverage advanced vector

processing capabilities. MATSim, with its reliance on both single-thread perfor-

mance and limited multithreading, does not take full advantage of the A64FX’s

strengths, such as high memory bandwidth and SVE vector instructions. In con-

trast, the Intel Xeon Gold 6230, with its out-of-order execution, broader SIMD

support, and efficient handling of both single-threaded and multithreaded tasks,

provides an environment better suited to the computational demands of MATSim.

7.1 multiMATSim 164

Java and MATSim

The performance of the JVM can vary significantly between different CPU ar-

chitectures due to the optimizations applied during the compilation and runtime

execution of Java code. Studies have shown that the performance of the A64FX

architecture can be significantly enhanced through the use of libraries specifically

compiled by Fujitsu [55][33]. These optimizations leverage the unique features of

the A64FX architecture, such as its high memory bandwidth and vector processing

capabilities.

However, during our experiments, the only available version of OpenJDK com-

piled by Fujitsu was OpenJDK 11, which is relatively old. Newer versions of

OpenJDK, such as OpenJDK 17, include various performance improvements and

optimizations, particularly for ARM processors. For instance, during an iteration

of MATSim on Los Angeles 0.1% with Fugaku, the execution time reduced from

approximately 15 minutes using OpenJDK 11 (compiled by Fujitsu) to 10 min-

utes using OpenJDK 17 (compiled by GCC). This significant improvement can be

partly attributed to the specific optimizations for ARM processors incorporated

in OpenJDK 17.

The JVM in OpenJDK 17 includes several enhancements over previous versions,

such as:

• Improved Garbage Collection: Enhancements in garbage collection algo-

rithms, such as the Z Garbage Collector (ZGC) and Shenandoah GC, provide

better performance and lower pause times, which are crucial for applications

like MATSim that handle large amounts of data.

• Enhanced Just-In-Time (JIT) Compilation: The JIT compiler in Open-

JDK 17 has been optimized to generate more efficient machine code for ARM

architectures, resulting in better runtime performance.

7.1 multiMATSim 165

• Additional ARM-Specific Optimizations: OpenJDK 17 includes spe-

cific improvements for ARM processors, such as better handling of vector

operations and memory access patterns, which are particularly beneficial for

the A64FX architecture.

Given these improvements, it is plausible that a version of OpenJDK 17 or later,

compiled by Fujitsu, could yield even better results. Fujitsu’s compiler could po-

tentially incorporate additional optimizations tailored specifically for the A64FX

architecture, further enhancing performance. Therefore, utilizing a more recent

version of OpenJDK compiled by Fujitsu may unlock additional performance ben-

efits for MATSim running on the A64FX.

In conclusion, the performance of MATSim on different CPU architectures can

be significantly influenced by the JVM optimizations specific to each architecture.

While OpenJDK 11 compiled by Fujitsu provides a baseline improvement, lever-

aging newer versions of OpenJDK with specific ARM optimizations can lead to

further performance gains.

Intel Xeon Gold 6230’s Affinity

Considering the Intel Xeon Gold 6230 architecture:

• Larger Die Size and Out-of-Order Executions: Its larger die size pro-

vides enhanced resources for out-of-order executions, which can be partic-

ularly beneficial for tasks with a significant sequential component, such as

MATSim. The architecture’s extensive out-of-order execution capabilities

help in reordering instructions to optimize CPU utilization and minimize

idle cycles.

• Versatile Approach for Sequential and Parallel Tasks: This architec-

ture’s versatile approach encompasses optimizations that efficiently handle

7.1 multiMATSim 166

both sequential and parallel tasks. The Intel Xeon Gold 6230 supports a

broad range of optimizations that enhance performance across diverse work-

loads, accommodating the intermittent multithreading nature of MATSim.

This allows the architecture to balance high single-thread performance with

effective parallel processing, ensuring robust performance across different

phases of the simulation.

• Cache Hierarchy: The Intel Xeon Gold 6230 features a robust cache hier-

archy, including large L2 and L3 caches. This is advantageous for MATSim,

as it helps reduce memory latency and improves data access speeds, partic-

ularly for large datasets typical of traffic simulations.

• Hyper-Threading Technology: The support for Hyper-Threading in Intel

Xeon processors allows each core to handle two threads simultaneously. This

can enhance the performance of MATSim during its multithreaded phases

by improving parallel processing efficiency and maximizing CPU core uti-

lization.

• Advanced Vector Extensions (AVX-512): Although MATSim itself

may not heavily rely on SIMD operations, the Intel Xeon Gold 6230 supports

AVX-512, which can significantly boost performance for any underlying li-

braries or modules that do leverage SIMD. However, this advantage may also

be seen in the A64FX’s SVE capabilities. It is possible that MATSim and its

dependent libraries currently leverage AVX-512 more effectively than SVE,

potentially due to broader support and optimization in existing software.

• Power and Thermal Management: Intel’s architecture includes sophis-

ticated power and thermal management features that ensure sustained high

performance without overheating. This is crucial for long-running simula-

tions like MATSim, which require consistent processing power over extended

7.1 multiMATSim 167

periods.

Concluding Thoughts

The A64FX is a notable architecture, recognized for its performance in memory-

focused benchmarks and its power efficiency. Its design is optimized for massively

parallel processing, as evidenced by its use in Fugaku, one of the leading super-

computers in the TOP500 ranking[69]. This makes it ideal for high-performance

computing tasks that demand extensive data parallelism.

MATSim, however, presents a different set of requirements. As a simulation

framework that primarily operates in a sequential manner with limited multi-

threading capabilities, MATSim does not fully leverage the parallel processing

strengths of the A64FX. The core design of MATSim involves sequential event

processing and sporadic multithreading, which does not align perfectly with the

A64FX’s capabilities designed for parallel workloads.

In contrast, the Intel Xeon Gold 6230, with its robust out-of-order execution,

extensive SIMD support through AVX-512, and efficient handling of both sequen-

tial and parallel tasks, appears more suited to MATSim’s operational patterns.

This architecture provides a balanced environment where MATSim’s limited par-

allelism can still benefit from enhanced single-thread performance and occasional

multithreading.

The insights gathered suggest that future codes designed to handle massive

datasets need to be better adapted to modern architectures. This involves re-

thinking core algorithms to increase parallelism, optimizing data structures for

better concurrency, and leveraging advanced vectorization capabilities more effec-

tively. These adaptations would enable applications to fully exploit the capabilities

of architectures like the A64FX, potentially leading to substantial performance im-

provements.

7.1 multiMATSim 168

In summary, while the A64FX represents a powerful architecture with signifi-

cant potential, particularly for applications that can fully utilize its parallel pro-

cessing capabilities, there is a substantial opportunity for the next generation of

software to be designed with these advanced architectures in mind. This approach

will ensure that future computational tasks, especially those involving large-scale

data processing, can fully leverage the capabilities of cutting-edge hardware like

the A64FX. These results have been published in [49].

7.1.6 Conceptual and Empirical Analysis of multiMATSim

Preserving the Integrity of MATSim Results

Here, the primary goal is to demonstrate how multiMATSim, leveraging an ad-

vanced strategy of parallel simulation, maintains the accuracy and reliability of

the results produced by the standard MATSim transportation simulation system.

This section aims to validate the hypothesis that the innovation introduced by

multiMATSim does not compromise the integrity of the foundational simulations

but, instead, enhances their efficiency while preserving their fidelity. To achieve

this objective, a comprehensive comparative analysis is conducted, highlighting key

performance indicators that are essential to assess the correspondence between the

outcomes generated by multiMATSim and those produced by MATSim.

The selected indicators for this comparison include modal shares, road traffic

volumes, and the distribution of trips (leg histogram) across hours of the day.

These parameters are critical as they directly reflect the mobility behaviors of

individuals as well as the utilization of the transportation network, thus providing

a solid foundation for assessing the impact of any new simulation methodology on

urban mobility dynamics.

By meticulously comparing these indicators, the analysis not only seeks to reaf-

7.1 multiMATSim 169

firm the credibility of multiMATSim as a valuable extension of MATSim but also

to ensure that any enhancements introduced by multiMATSim are rooted in the

original system’s robust simulation capabilities. This rigorous evaluation process

involves not just a quantitative assessment of the similarities and discrepancies

in the data but also a qualitative examination of how multiMATSim’s parallel

processing approach potentially leads to more efficient exploration of mobility so-

lutions without deviating from the realistic urban transport scenarios modeled by

MATSim.

Through this detailed examination, the section underscores the importance of

retaining essential characteristics and outcomes of transport simulations when in-

tegrating innovative methodologies. By so doing, it reinforces the premise that

advancements in simulation techniques should complement and extend the an-

alytical precision of existing models, ensuring that the evolution in simulation

technology continues to contribute constructively to the field of urban mobility

studies.

Traffic Volume In our meticulous examination of the road traffic volumes pro-

duced by multiMATSim and MATSim, two critical time intervals were selected for

comparative analysis: the morning peak hour from 8 am to 9 am and the evening

peak hour from 7 pm to 8 pm. These intervals are quintessential for understanding

commuting patterns and the daily rhythms of urban mobility.

Morning Peak Hour (8 AM to 9 AM) presented in Figure 7.7: The his-

tograms for the morning peak period reveal distinct traffic peaks which correspond

to the surge of commuters taking to the roads. This interval is often character-

ized by a significant spike in traffic as individuals begin their daily routines. In

both multiMATSim and MATSim outputs, we observe a consistent distribution

of these peaks across the x-axis, which likely maps to critical transit routes or

7.1 multiMATSim 170

junctions within the city. While some fluctuations in the peak heights are evident

— possibly a reflection of multiMATSim’s parallel simulation approach — the

overall correspondence in the spatial distribution of traffic volume suggests that

multiMATSim preserves the integrity of MATSim’s traffic flow patterns during

this critical morning rush hour.

In Figure 7.7, the graph on the left represents MATSim and the one on the right

represents an instance of multiMATSim, specifically the one that converged the

fastest. Overall, we observed consistency among all instances of multiMATSim,

which is why we chose to present only one here. The same applies to Figure 7.8,

where the graph on the left represents MATSim and the one on the right represents

the fastest converging instance of multiMATSim, and we observed uniform results

across all multiMATSim instances.

Figure 7.7: 8 AM to 9 AM Traffic Volume: Comparison between MATSim (on the
left) and one instance of multiMATSim (on the right, N = 4, step = 50) During a
Single Iteration for the LA 0.1% Scenario

Evening Peak Hour (7 PM to 8 PM) presented in Figure 7.8: The evening

peak hour analysis paints a somewhat different picture. The end of the standard

7.1 multiMATSim 171

workday typically leads to a dispersed exodus from the city center, visible in the

histogram’s distribution of traffic volumes. The comparison of multiMATSim and

MATSim indicates that while there is an overall consistency in traffic distribution,

the evening peaks are generally less pronounced than those in the morning, possibly

reflecting a more staggered and varied return journey for commuters. Despite the

slightly subdued nature of the peaks, the alignment between the histograms during

this period further corroborates the fidelity of multiMATSim’s simulations to real-

world traffic behaviors captured by MATSim.

Figure 7.8: 7 PM to 8 PM Traffic Volume: Comparison between MATSim (on the
left) and one instance of multiMATSim (on the right, N = 4, step = 50) During a
Single Iteration for the LA 0.1% Scenario

Comparative Analysis: When juxtaposing the traffic patterns of these two

peak periods, it’s evident that the morning and evening rush hours have their

unique characteristics, yet multiMATSim’s performance remains steadfastly con-

sistent with MATSim’s established patterns. The peaks in the morning are gener-

ally sharper, reflecting a more concentrated and synchronous start to the day, while

the evening shows a broader spread of traffic volumes, indicative of a more stag-

7.1 multiMATSim 172

gered end to the day. This nuanced replication of different traffic behaviors across

various times of the day demonstrates multiMATSim’s robustness in modeling the

complexities of urban transport dynamics.

The focused examination of these two peak periods — key touchstones for ur-

ban transportation analysis — provides a snapshot of multiMATSim’s capabilities

in terms of accurately simulating traffic patterns. It also illustrates the tool’s po-

tential utility in strategic planning and policy-making, ensuring that even with its

advanced parallel simulation features, multiMATSim does not deviate from the

realistic traffic flows established by the benchmark MATSim model.

Modal Shares: Another way to assess the fidelity of a new simulation method

in comparison with the established MATSim model is to look at modal shares, as a

standard approach. Modal shares provide insights into individuals’ transportation

preferences, indicating how various modes of transport such as cars, bicycles, public

transit, and walking are utilized within the simulations.

A close alignment of modal shares between multiMATSim and MATSim would

suggest that the mobility behavior of agents remains consistent despite the intro-

duction of parallel simulations and the exchange of agent plans. This is crucial as

modal shares are not just statistical outputs; they reflect underlying travel behav-

iors and choices that are influenced by a range of factors including infrastructure,

policy, and personal preference.

In a multiMATSim setup, ensuring that modal shares do not deviate signifi-

cantly from those of MATSim is essential. It confirms that the parallel processing

and iterative refinement of strategies do not distort the travel patterns that the

agents are supposed to emulate. For instance, if the modal share for public trans-

portation within multiMATSim mirrors that of the MATSim output, it can be

inferred that multiMATSim retains the core logic of agents’ modal choice decision-

7.1 multiMATSim 173

making.

Moreover, the reliability of modal shares as a measure of simulation fidelity is

also grounded in their ability to indicate the accuracy of the model’s representation

of the real-world transportation system. If the simulated modal shares are in

agreement with empirical data or expected trends, it demonstrates the model’s

capability to produce realistic outcomes.

In this context, we can analyze the modal share outputs from multiMAT-

Sim to ensure that the enhanced computational strategy enriches the simulation

without compromising the validity of its results. An analysis that reveals similar

modal shares across both multiMATSim and MATSim suggests that the advanced

parallelization technique implemented in multiMATSim successfully captures the

diversity and complexity of travel behaviors in urban settings. Such an outcome

would provide robust evidence supporting the use of multiMATSim in transport

planning and policy development scenarios, leveraging its computational advance-

ments while remaining true to the validated behaviors of the standard MATSim

model.

Figure 7.9 display mode statistics for transportation within a simulation envi-

ronment, from a standard MATSim output. The other on Figure 7.10 is generated

from a multiMATSim instance. These graphs are key to understanding how indi-

viduals within the simulation environment choose different modes of transportation

over the course of the simulation iterations.

Analysis of the Standard MATSim Output: Figure 7.9 shows a stable

selection of modes across iterations, with the most significant proportion being

the ’car’ mode, followed by ’public transport (pt)’ and ’walk’. Other modes such

as ’bike’, ’ride’, and ’freight’ maintain a relatively low but consistent share. The

stability of these shares over the iterations suggests that the simulation has reached

equilibrium, with little change in modal choice as the simulation progresses.

7.1 multiMATSim 174

Figure 7.9: Modal Shares on MATSim LA 0.1% Scenario

Analysis of the multiMATSim Instance Output: Figure 7.10 although

aesthetically different due to its generation from a multiMATSim instance, ex-

hibits a similar trend in the distribution of mode choices. The dominant modes

remain consistent with the ’car’ mode being the most prevalent. One can observe

slight variances in the shares of each mode, which may be attributable to the dif-

ferent dynamics introduced by multiMATSim’s parallel processing and agent plan

exchange features.

Comparative Analysis: When comparing the two images, the overall con-

sistency in mode share distributions indicates that multiMATSim maintains the

behavior patterns inherent in the MATSim model. This is crucial for validating

multiMATSim as a reliable extension that can enhance computational efficiency

without sacrificing the behavioral authenticity of the simulation results. Any minor

discrepancies observed might be due to the enhanced dynamics of multiMATSim,

7.1 multiMATSim 175

Figure 7.10: Modal Shares on one instance of multiMATSim LA 0.1% Scenario
(N = 4, step = 50)

yet they do not signify a fundamental shift in modal choice behavior.

This comparison of mode shares from MATSim and multiMATSim allows us

to confirm that multiMATSim’s parallel simulation approach has not distorted

the inherent transportation preferences of the agents within the simulation. The

congruence of these results with the expected real-world modal preferences further

substantiates multiMATSim’s utility as a tool for accurate and efficient transporta-

7.1 multiMATSim 176

tion modeling. These results have been published in [46].

7.1.7 Conceptual hypotheses explaining the effectiveness of

multiMATSim

In the conceptual elucidation of multiMATSim’s efficiency, the distributed opti-

mization and collaboration among instances conjecturally contribute to a more

robust exploration of the solution space. This distributed approach is philosophi-

cally akin to collective intelligence and swarm optimization, realms where pooling

cognitive resources—here, agents’ plans—purportedly leads to superior problem-

solving.

Hypotheses on Distributed Optimization and Collaboration:

It is hypothesized that multiMATSim’s distributed architecture might facilitate

a form of collective intelligence akin to what is observed in social insect behav-

ior. Each instance operates as an autonomous agent with the potential to probe

disparate sections of the solution space. The parallel, yet interconnected, pro-

cessing could theoretically mitigate the risks of convergence to local optima, a

concern in centralized systems. The collaborative aspect, where instances share

their best-found solutions, is reminiscent of swarm behavior, suggesting that such

inter-instance communication could lead to a collective enhancement in identifying

efficient routes or strategies within the transportation network.

Speculation on Exploration-Exploitation Dynamics:

The trade-off between exploration and exploitation is another area of academic

interest that multiMATSim might navigate with speculative finesse. The system

could hypothetically achieve a balance wherein exploration—identifying new po-

7.1 multiMATSim 177

tential solutions—and exploitation—utilizing known efficient strategies—are dy-

namically harmonized through the iterative process of plan exchanges. Such a

mechanism could allow for broader scanning of new strategies while ensuring that

the cumulative knowledge from all instances is utilized effectively.

Conjectures on Robustness and Adaptability:

As for robustness and adaptability, multiMATSim is presumed to exhibit resilience

across various simulation scenarios and configurations. The system’s architecture,

with its potential for adaptability, hypothetically allows for responsive adjust-

ments to mobility behavior modeling and alterations in simulation parameters.

This adaptability is pivotal in accurately simulating the fluid dynamics of urban

transport systems, where variability is the norm.

These postulations, while theoretically grounded, underscore the potential of

multiMATSim to embody principles of swarm intelligence and distributed problem-

solving within a computational context. They suggest that by harnessing the

collective capabilities of multiple simulation instances, multiMATSim might not

only maintain the integrity of individual agent decisions but also enhance the

overall quality and reliability of the simulation outcomes. However, such claims

remain speculative and must be substantiated through empirical validation.

These results have been the subject of several publications. Notably, the mul-

tiMATSim method was first presented in its initial version in an early publication

[47], before being refined to its current version with results on the Los Angeles

0.1% scenario and an evaluation of the reliability of its results compared to the

baseline [46]. Two other publications described the study of various MATSim vari-

ables and their impact on performance and reliability [48], as well as the scalability

and performance differences between two different CPU architectures [49].

7.2 AI-based Approach 178

7.2 AI-based Approach

This approach leverages machine learning methods to efficiently predict transport

mode choices in a multi-agent traffic simulation environment. By addressing the

computational intensity and time-consuming nature of traditional simulations like

MATSim, it offers a faster and scalable alternative. By training a neural network

on a representative dataset, we aim to develop a model capable of producing

accurate predictions in a fraction of the time required by conventional simulation

methods. All experiments and results presented in this section were obtained using

the high-performance computing nodes on Ruche.

In this section, we evaluate the performance of our model using MSE as the

loss function to establish a baseline for comparison. MSE was chosen due to its

property of penalizing larger errors more heavily, making it a standard choice for

minimizing the difference between predicted and actual values. Additionally, we

tested the model with the Huber Loss function, which offers a balance between

MSE and MAE, providing robustness to outliers while maintaining accuracy for

smaller errors.

Following this, we will delve into various model performance metrics to gain

a comprehensive understanding of the model’s predictive capabilities. This will

include a detailed error analysis to identify patterns and sources of inaccuracies

in the model’s predictions. We will also compare the errors between different loss

functions to highlight their impact on model performance.

The discussion will then shift to the benefits of the AI-based approach, em-

phasizing time and resource savings. We will explore the scalability of the method

and address its limitations, particularly focusing on the MLP networks used in our

approach.

Finally, we will address the challenge of reproducing heuristic results obtained

7.2 AI-based Approach 179

by MATSim with our AI model. This involves comparing the outcomes of our

neural network with those produced by MATSim’s heuristic algorithms to evaluate

the fidelity and reliability of our model in replicating complex agent behaviors.

7.2.1 Model Performance Metrics

We evaluated the overall performance of our model using several key metrics.

These metrics provide a comprehensive view of the model’s effectiveness in pre-

dicting transport modes in a multi-agent traffic simulation:

• Global MAE: The mean absolute error (MAE) for the model was 0.0524.

This metric indicates the average magnitude of errors in the model’s predic-

tions, with a lower MAE suggesting closer alignment with the actual values.

In our context, an MAE of 0.0524 means that, on average, the predicted

count of transport mode usage deviates by 0.0524 from the actual count.

• Global MSE: The mean squared error (MSE) was 0.01. MSE is sensitive

to larger errors due to the squaring of each error term, providing insight into

the presence of larger errors within the predictions. A lower MSE indicates

that large errors are infrequent. In our model, an MSE of 0.0106 suggests

that the deviations between the predicted and actual values are generally

small, and larger errors are rare.

• Global R2: The R-squared (R2) score was 0.945. The R2 metric measures

the proportion of variance in the dependent variable that is predictable from

the independent variables. An R2 value of 0.945 means that 94.5% of the

variance in transport mode usage can be explained by our model, indicating

a strong fit to the data and effective capture of underlying patterns.

• Global Cosine Similarity: The cosine similarity was 0.799. Cosine similar-

7.2 AI-based Approach 180

ity measures the cosine of the angle between two non-zero vectors, assessing

how similar the direction of the predicted vector is to the actual vector of

transport modes used. A cosine similarity of 0.799 indicates that the model’s

predictions are generally well-aligned with the actual usage patterns, even if

there are differences in the magnitude of the counts.

Residual Analysis: To further evaluate the performance of the model and the

distribution of prediction errors, we generated a residual plot (shown in the figure

below). This histogram represents the absolute values of residuals, which are the

differences between the predicted and actual values for transport mode usage.

Figure 7.11: Histogram of Residuals (Absolute Values)

The residuals histogram reveals several key insights:

1. Concentration of Errors Near Zero: The majority of the residuals are

clustered around zero, indicating that the model’s predictions are generally

close to the actual values. This supports the low MAE and MSE values,

confirming that the model performs well in most cases.

7.2 AI-based Approach 181

2. Long Tail for Larger Errors: While most errors are small, there is a

long tail extending toward larger residuals. This suggests that, although

infrequent, the model does make larger prediction errors for some agents.

However, these larger errors do not heavily impact the overall performance,

as shown by the relatively low MSE.

3. Limited Presence of Outliers: The histogram does not show a significant

number of extreme outliers. The few large residuals that exist are relatively

controlled, further validating the model’s robustness in handling outliers and

maintaining generalization across different scenarios.

The residual plot, together with the performance metrics, confirms the reliabil-

ity and effectiveness of our MLP model in predicting transport mode usage within

the multi-agent simulation. The model maintains most errors within a small range,

while larger errors, though present, are rare and do not significantly impact overall

accuracy.

Collectively, these metrics demonstrate the strength of our MLP model us-

ing the MSE loss function. The results, particularly the MAE and the high R2

score, highlight the model’s robustness and reliability in handling complex pre-

diction tasks. Additionally, the strong cosine similarity shows that the predicted

transport mode usage patterns are closely aligned with actual patterns, further

confirming the model’s capacity to generalize across various scenarios. This com-

prehensive analysis emphasizes the potential of AI-based approaches in improving

the efficiency and accuracy of multi-agent traffic simulations, offering a promising

direction for future research and development.

7.2 AI-based Approach 182

7.2.2 Error Analysis

Error Evaluation

Evaluating errors is crucial to understand the performance and limitations of the

model. In this section, we provide a detailed analysis of prediction errors and

compare errors across different loss functions.

Detailed Analysis of Prediction Errors

- Error Distribution: Analysis of prediction errors revealed that most errors

were concentrated around certain transport modes. Commonly used transport

modes, such as car and public transport, had relatively low prediction errors. This

can be attributed to the larger volume of data available for these modes, allowing

the model to learn their patterns more effectively. The abundance of training

examples for these modes provides a more comprehensive representation of their

usage, leading to more accurate predictions.

In contrast, less frequent modes, such as taxi and school bus, showed higher

errors. The increased prediction errors for these modes can be attributed to their

rarity in the training data. With fewer examples to learn from, the model strug-

gles to capture the underlying patterns and variability associated with these less

common modes of transport. This scarcity makes it challenging for the model to

generalize well and accurately predict their occurrences.

- Extreme Behaviors: Scenarios with high variability in agent behaviors also

led to larger errors. For example, agents with atypical behaviors or very specific

transport modes were often mispredicted. These errors might be due to the model’s

limited ability to capture highly diverse behaviors with a limited sample of data.

- Errors by Scenario: Grouping errors by scenario, we observed that certain

scenarios consistently had higher errors. This suggests that specific characteristics

7.2 AI-based Approach 183

of these scenarios pose particular challenges for the model. A deeper analysis of

these scenarios could help identify specific characteristics or behaviors that are

poorly represented in the training data.

7.2.3 Comparison of Loss Functions and Their Impact on

Predictions

In our study, we compared two loss functions — MSE and Huber loss — to evaluate

their respective impacts on model performance. The choice of loss function is

crucial as it affects how errors are penalized, particularly in the presence of outliers.

MSE (Mean Squared Error): MSE was selected for its straightforward ap-

proach to penalizing errors, particularly its sensitivity to larger errors due to the

squaring of residuals. This makes MSE more responsive to outliers, as large errors

can significantly increase the total loss. In our experiments, the MSE loss function

provided consistent results, with the mean absolute error and R2 metrics reflecting

stable performance across both training and validation data.

Huber Loss: The Huber loss function, known for being less sensitive to outliers

by combining the benefits of MSE and MAE, was also evaluated. Huber loss

behaves quadratically for small errors and linearly for larger ones, making it more

robust to outliers while maintaining accuracy for smaller errors. However, when

comparing the results, we found that the overall performance metrics (MAE, MSE,

and R2) were nearly identical to those obtained using MSE.

Conclusion: Despite the theoretical advantages of Huber loss in handling out-

liers, the performance of our MLP model remained comparable whether we used

MSE or Huber loss. Both loss functions resulted in similar prediction accuracy

7.2 AI-based Approach 184

and generalization capability, as indicated by the similar MAE and R2 scores.

Therefore, in this specific case, the choice of loss function had minimal impact on

the model’s overall performance, suggesting that both are suitable for our task.

7.2.4 Impact of Hyperparameters

The choice of hyperparameters had a significant impact on the model’s perfor-

mance. Through a thorough analysis, we experimented with different configura-

tions to optimize learning and generalization. The key hyperparameters studied

include:

• Learning Rate: We tested values of 0.01, 0.015, 0.001, and 0.0001. A

learning rate of 0.001 was found to be optimal, providing a balance between

fast convergence and stability.

• Batch Size: Batch sizes of 16, 32, and 64 were evaluated. A batch size of

64 provided the best results, ensuring both gradient stability and efficient

training.

• Number of MLP Layers and Neurons: Configurations with 1 to 4 layers

and neuron counts of 128 and 256 were tested. The optimal configuration

was two fully connected layers with 256 neurons each, which offered a good

trade-off between model complexity and generalization.

• Dropout: Dropout rates of 0.1, 0.2, 0.3, and 0.4 were evaluated. A dropout

rate of 0.1 was optimal, minimizing overfitting without compromising the

model’s capacity to learn effectively.

Optimal Configuration The optimal configuration identified through these ex-

periments consists of a learning rate of 0.001, a batch size of 64, two MLP layers

7.2 AI-based Approach 185

with 256 neurons each, and a dropout rate of 0.1. This setup achieved the best

performance in terms of prediction accuracy and generalization, as reflected in the

validation metrics. Fine-tuning these hyperparameters significantly improved the

model’s robustness and its ability to capture complex interactions among agents

in the simulation.

7.2.5 Discussion on the Benefits of the AI-based Approach

Gains in Time and Resource Efficiency Compared to MATSim

The use of an AI-based model, specifically MLP neural networks, offers significant

advantages in terms of time savings and resource efficiency compared to the direct

use of MATSim. While MATSim is a powerful tool for multi-agent traffic simula-

tion, it is notoriously resource-intensive and time-consuming. The complexity of

MATSim lies in its ability to simulate thousands of individual agents, considering

numerous variables and parameters such as schedules, costs, transportation mode

preferences, and agent interactions.

The scoring function in MATSim, which evaluates the transport mode choices

of agents, is particularly complex. This function takes into account various fac-

tors such as travel time, cost, comfort, and other context-specific variables. The

mathematical formula for this scoring function is given by:

S =
n∑

i=1

(βi × Vi) +
m∑
j=1

(γj × Pj)

where:

• S is the total score for an agent.

• βi is the weight associated with the i-th activity or transport mode.

• Vi is the value of the i-th activity or transport mode.

7.2 AI-based Approach 186

• γj is the weight associated with the j-th penalty parameter (e.g., waiting

time, cost, etc.).

• Pj is the value of the j-th penalty parameter.

This function evaluates both the positive and negative aspects of agents’ choices,

directly influencing their transport mode decisions. While this allows for precise

simulation, the complexity of this function significantly increases the computa-

tional time and resources required.

In contrast, our AI-based approach significantly simplifies this process. By

training an MLP model on data simulated by MATSim, we can predict simulation

outcomes without needing to rerun lengthy and resource-intensive simulations each

time. Our model utilizes a minimal dataset with only 8 input columns (includ-

ing features such as total distance traveled and occurrences of different transport

modes) and 7 output columns (counts of transport modes used). This reduction

in input complexity allows the model to maintain acceptable accuracy while min-

imizing computational costs.

For instance, our model achieved a MAE of 0.051 on the training data and

0.0524 on the validation data. This MAE indicates the average magnitude of

errors in our predictions, regardless of their direction. An MAE of 0.0524 means

that, on average, our predictions were off by 0.0524 units per transport mode,

which is a relatively small error given the discrete nature of the output values.

These results demonstrate that our model can provide reliable predictions while

being significantly faster and less resource-intensive than running full MATSim

simulations. Additionally, training our MLP neural network took only a few min-

utes in a sequential implementation. At larger scales, it is likely that parallelization

would further enhance performance and significantly reduce training time. Once

trained, the model can generate predictions almost instantaneously.

7.2 AI-based Approach 187

Although our AI-based approach does not entirely replace the need for detailed

simulations like those provided by MATSim, it offers a rapid and efficient solution

for applications where time and resources are limiting factors. Our approach re-

duces computational load while providing reasonably accurate results, offering a

balance between complexity and practicality.

Simplicity of the Approach and Its Implications

This approach presents the advantage of greater simplicity compared to traditional

simulation methods. Unlike MATSim, which requires detailed and complex config-

uration including geography-specific data, infrastructure, and agent behavior, the

use of a neural network model simplifies this process. Once the model is properly

trained, users can make predictions without delving into the intricate details of

simulation configuration and management.

However, this simplification comes with certain limitations. By aiming to sim-

plify the model and reduce computation time, we have deliberately limited the

input data to the most relevant elements for our specific use case. This means

that we do not capture all the nuances of a complex transport system as modeled

by MATSim. Despite this limitation, our AI-based approach offers a quick and

efficient solution for applications where time and resources are limiting factors.

In conclusion, while our current AI-based approach does not capture all the

subtleties of MATSim, it offers promising results. These results suggest that more

elaborate models could potentially match the accuracy of traditional simulations

while retaining the advantages of speed and simplicity, paving the way for more

advanced and detailed applications.

7.2 AI-based Approach 188

7.2.6 Scalability and Limitations of MLP

Challenges of Scalability and Limitations of MLP for Large-Scale Sim-

ulations

As the number of agents increases in multi-agent simulations, the computational

and memory requirements grow exponentially. While MLP neural networks are

effective at modeling structured data, their fully connected architecture presents

significant challenges when scaling up to large-scale simulations. These limitations

are mainly related to computational cost, memory usage, and scalability.

In our study, handling scenarios with 1,000 agents already posed a substantial

computational task. However, when scaling to tens or hundreds of thousands of

agents, three key issues arise:

• Computational and Memory Costs: The increase in agents significantly

raises the computational load, as every neuron in one layer is connected to

all neurons in the next. This leads to an exponential growth in the number of

parameters, making MLPs computationally expensive and memory-intensive,

as storing the weights and activations becomes a challenge.

• Training Bottlenecks: As the complexity of agent interactions grows,

MLPs require deeper architectures and more neurons to capture these dy-

namics, which can result in overfitting and a decline in performance. The

large number of parameters also slows down the training process, creating

bottlenecks in computation.

• Parallelization Limitations: While MLPs are more parallelizable than

other architectures like LSTMs, the dense connections between layers limit

the extent to which parallel processing can be fully leveraged. For large-

scale simulations, optimizing MLPs may require advanced parallelization

7.2 AI-based Approach 189

techniques or specialized hardware to distribute the computational load ef-

fectively.

While MLPs offer a powerful method for modeling agent interactions in multi-

agent scenarios, scaling them up to larger simulations introduces significant chal-

lenges. Addressing these issues may require architectural adjustments and more

sophisticated optimization methods to maintain performance as the simulation

scale increases.

Adaptability to Different Geographic Regions and Numbers of Agents

Challenges of Model Generalization One of the significant challenges in de-

ploying MLP-based neural networks for traffic simulations lies in their adaptability

to different geographic regions and varying numbers of agents. Unlike traditional

simulation tools like MATSim, which are designed to handle diverse scenarios with

detailed configurations, MLP models require careful consideration when general-

izing to new environments.

• Geographic Generalization: Each geographic region has unique charac-

teristics, such as infrastructure, population density, and transportation be-

havior. An MLP model trained on data from one region may not perform

well when applied to another region with different characteristics. Retrain-

ing or fine-tuning with region-specific data is often necessary to maintain

accuracy, which can be resource-intensive.

• Scalability to Different Numbers of Agents: Our current model is

trained on scenarios with a fixed number of 1,000 agents. Scaling the model

to handle varying numbers of agents, especially in much larger simulations,

introduces challenges. The model’s architecture and training process need

7.2 AI-based Approach 190

adjustments to accommodate different scales, which can increase complexity

and computational demands.

• Data Availability and Quality: Generalizing the model relies heavily on

the availability and quality of data from different regions. In regions with

sparse or low-quality data, model performance may degrade. Establishing ro-

bust data collection and preprocessing pipelines is essential for the successful

application of MLP models across diverse geographic areas.

• Transfer Learning and Domain Adaptation: Techniques like transfer

learning and domain adaptation can help mitigate these challenges by lever-

aging pre-trained models and fine-tuning them on new data. However, care-

ful implementation is required to ensure the model captures region-specific

nuances without overfitting.

While MLP models provide powerful capabilities for traffic simulation, their

adaptability to different geographic regions and numbers of agents presents signif-

icant challenges. Addressing these issues involves advanced training techniques,

robust data pipelines, and potential adjustments to the model architecture to en-

sure reliable and accurate performance across various scenarios.

Limitation of Scenario Data

Limited Data for Complete Scenarios One of the main challenges in training

neural network models for traffic simulations is the need for multiple examples of

each complete scenario. In practice, a complete scenario provides only a single data

example, which is insufficient for the demands of deep learning. This limitation

can hinder the model’s ability to generalize and provide accurate predictions across

varied scenarios.

7.2 AI-based Approach 191

Extraction of Thousands of Scenarios from Larger Ones To address this

limitation, we extracted thousands of sub-scenarios from larger scenarios. This

approach creates a more diverse and extensive dataset from existing simulations,

which is crucial for training neural network models. By dividing large scenarios

into many smaller ones, we were able to artificially increase the size of our training

dataset while preserving the essential structure and dynamics of agent interactions.

Evaluation of Data Augmentation Techniques Despite this extraction ap-

proach, the data remains limited, making it essential to evaluate data augmenta-

tion techniques to further enhance the model’s performance. Data augmentation

techniques, such as Variational Autoencoders (VAE) and Generative Adversar-

ial Networks (GAN), can generate new synthetic data based on the distributions

of existing data. This allows the creation of a richer and more varied dataset,

potentially improving the model’s robustness and accuracy.

Potential for Improved Results with Larger Data Volumes With a higher

volume of data, it is likely that the model’s performance would improve signifi-

cantly. A larger and more varied dataset better captures the different dynamics

and interactions in traffic simulations, reducing the risk of overfitting and enhanc-

ing the model’s ability to generalize to new scenarios. By continuing to explore

and implement data augmentation techniques, we could potentially achieve even

more accurate and reliable results, bringing the model’s predictions closer to those

obtained through comprehensive and detailed simulations like MATSim.

Exploration of Other Neural Network Architectures

Transformers Transformers have emerged as a powerful alternative to tradi-

tional neural networks, including MLPs, especially in tasks requiring the manage-

ment of long-term dependencies and enabling parallel processing. Unlike MLPs,

7.2 AI-based Approach 192

which rely on fully connected layers that can become computationally expen-

sive with large inputs, Transformers can handle entire sequences simultaneously

through their self-attention mechanism. This results in improved computational

efficiency and potentially faster training times.

In the context of large-scale traffic simulations, where it is crucial to handle

long-term dependencies and interactions between numerous agents, Transformers

offer a significant advantage. Their ability to model relationships over long dis-

tances within the data provides a more comprehensive understanding of agent

behaviors over extended periods. This makes them particularly well-suited for

complex traffic scenarios, where capturing interactions across a broad temporal or

spatial scale is critical. Additionally, the parallel processing capabilities of Trans-

formers allow them to scale more efficiently than MLPs, making them an attractive

option for simulations involving large datasets or many agents.

Convolutional Neural Networks (CNNs) CNNs, although traditionally used

for image recognition tasks, can be adapted to capture spatial relationships within

traffic data. By treating traffic scenarios as grid-like structures, CNNs can effec-

tively identify and learn spatial patterns and dependencies. This capability makes

CNNs particularly suitable for geographic adaptability, enabling them to model

variations in infrastructure and traffic patterns across different regions. The local

connectivity and weight sharing properties of CNNs allow them to detect and learn

from local dependencies, providing a more nuanced understanding of agent inter-

actions and movement patterns. For instance, CNNs can help model how agents

navigate through different urban layouts, taking into account local infrastructure

details.

Graph Neural Networks (GNNs) GNNs are particularly well-suited for traf-

fic simulation tasks due to their ability to model networks and relationships. In

7.2 AI-based Approach 193

traffic systems, the infrastructure can be naturally represented as a graph, with

intersections as nodes and roads as edges. GNNs can incorporate these infras-

tructure details and model the interactions between agents, making them ideal for

simulating complex transport networks. They excel in representing the connectiv-

ity and dependencies in a traffic system, allowing for a more accurate and detailed

modeling of agent behaviors and interactions. By leveraging the graph structure,

GNNs can capture the dynamics of transportation networks, providing insights into

congestion, route optimization, and other critical aspects of traffic management.

This capability makes GNNs a promising architecture for future research aimed at

enhancing the scalability and accuracy of traffic simulations. Additionally, GNNs

can model the non-Euclidean nature of traffic networks, capturing more complex

relationships and interactions than traditional neural network architectures.

Overall, exploring these advanced neural network architectures can significantly

improve the scalability, accuracy, and efficiency of traffic simulations, paving the

way for more sophisticated and comprehensive models in traffic management and

urban planning.

7.2.7 Reproduction of Heuristic Results by AI

Utilizing artificial intelligence to model multi-agent traffic presents the challenge

of reproducing results obtained by heuristic methods like those used in MATSim.

MATSim relies on heuristic algorithms that consider various constraints and objec-

tives to realistically simulate agent behaviors. In contrast, neural networks learn

directly from data without explicitly following specific rules or heuristics. This

raises several important questions.

7.2 AI-based Approach 194

Fidelity of Predictions

Our results indicate that the MLP model achieved a MAE of 0.051 on the training

data and 0.0524 on the validation data for predicting the transport modes used by

agents. While these results are promising, it is essential to note that predictions

may differ from the heuristic results of MATSim, especially in rare or complex

scenarios. The fidelity of AI predictions relative to heuristics largely depends on

the quality and representativeness of the training data.

Interpretability of Models

Neural networks are often considered "black boxes" making it challenging to inter-

pret predictions. Unlike MATSim, where decisions are based on explicit rules, the

decisions made by a neural network result from a complex and non-transparent

learning process. To improve interpretability, we propose integrating techniques

such as saliency maps, sensitivity analyses, and explainability methods like LIME

or SHAP. These tools can help identify the most influential features in transport

mode decisions and understand model behaviors.

Performance and Robustness

The robustness and performance of neural networks are highly dependent on the

quality and diversity of the training data. Our results show that the MLP model

performs well on validation data, but it is crucial to evaluate its performance across

varied scenarios to ensure general robustness. To enhance this robustness, we plan

to use data augmentation techniques to enrich our dataset. This includes creating

additional synthetic scenarios that simulate varied traffic conditions, enabling the

model to better generalize to real-world situations.

In conclusion, although our initial approach has shown promising results, many

7.2 AI-based Approach 195

challenges remain in fully reproducing the heuristic results of MATSim. Future

work will need to focus on improving the robustness, accuracy, and adaptability

of our models.

Conclusion

The AI-based approach for modeling multi-agent traffic simulations has shown

promising results. By leveraging MLP networks, we have significantly reduced

the complexity and resource requirements compared to traditional methods like

MATSim. Our model, trained on a simplified dataset, achieved a MAE of 0.051

on training data and 0.0524 on validation data, indicating reliable predictive per-

formance.

This approach not only streamlines the simulation process but also provides

near-instantaneous predictions once the model is trained, offering substantial gains

in time and computational efficiency. Despite the simplification, the results sug-

gest that with further refinement and optimization, our model could potentially

approach the precision of detailed simulations provided by MATSim.

However, challenges remain, particularly in scaling the model to handle larger

datasets and more complex scenarios. Additionally, the need for extensive and

diverse training data necessitates further exploration into data augmentation tech-

niques.

An important consideration in this research is the difference between heuristic

approaches and AI-based methods. MATSim relies on heuristic algorithms that

integrate various constraints and objectives to realistically simulate agent behav-

iors. These heuristics are designed to replicate human decision-making processes

and interactions within a transportation network. In contrast, our neural network

model learns patterns directly from the data, raising questions about its ability to

reproduce the nuanced results generated by heuristic approaches.

7.2 AI-based Approach 196

Several conceptual and scientific questions arise from this comparison:

• Can AI-based models fully capture the complexity and variability of human

behavior in transportation networks as heuristics do?

• What are the limitations of AI in terms of interpretability and explainability

compared to heuristic methods?

• How can we ensure that AI models generalize well across different geograph-

ical regions and scales?

• What methods can be employed to combine the strengths of both heuristic

and AI-based approaches for more robust traffic simulations?

Although this research is encouraging, it represents only a first step. The

results obtained open the way for more in-depth investigations and future devel-

opments. The simplicity and efficiency of our approach highlight its potential

as a complementary tool to traditional simulations. With further development,

it is conceivable that AI models could not only reproduce but also enhance the

accuracy and scalability of traffic simulations, providing more sophisticated and

comprehensive solutions in the future.

Chapter 8

Conclusion

8.1 Summary of Contributions

This dissertation explores various approaches to enhance multi-agent traffic simula-

tions by focusing on optimizing computational performance and applying artificial

intelligence techniques. Our work is structured around two major contributions,

each aimed at addressing specific challenges in the field of traffic simulations.

We began with a comprehensive state-of-the-art review of multi-agent traffic

simulators, highlighting historical advancements, persistent challenges, and emerg-

ing technological opportunities. This review identified two primary avenues for

improving the performance and flexibility of these simulators: leveraging high-

performance computing architectures and applying AI techniques.

The first contribution leverages the Unite and Conquer method to provide a

new algorithmic approach for multi-agent traffic simulation, with an initial ap-

plication on MATSim called MultiMATSim. Inspired by high-performance lin-

ear algebra techniques, this approach introduces intrinsic multi-level parallelism,

heterogeneity, and fault tolerance. We demonstrated how this method could be

adapted to enhance the speed and efficiency of traffic simulations, particularly for

197

8.1 Summary of Contributions 198

large urban networks. By applying this approach, we observed a significant reduc-

tion in computational costs while maintaining or even improving the accuracy of

simulations.

Next, we examined the integration of advanced HPC architectures and the as-

sociated software ecosystems. Studying systems like Fugaku, Cygnus, and Ruche

highlighted the advancements towards faster, more efficient, and more capable sys-

tems to meet contemporary computational demands. These systems exemplify a

trend towards better energy efficiency and increased performance, showing that

cutting-edge technology can be both high-performing and environmentally con-

scious. This section also underscored the importance of the symbiosis between

hardware and software to maximize performance and efficiency in executing com-

plex computational tasks for multi-agent traffic simulators.

The second major contribution focused on applying machine learning tech-

niques to accelerate multi-agent traffic simulations. Using Multilayer Perceptron

(MLP) neural networks, we developed a model capable of predicting an initial

discrete variable, specifically the transport modes used by agents. The results

obtained, with a MAE of 0.051 on training data and 0.0524 on validation data,

indicate reliable predictive performance. These findings are encouraging and sug-

gest that AI-based models could potentially complement traditional simulation

methods for certain applications.

We also explored the challenges related to scaling AI models to handle larger

datasets and more complex scenarios. A major limitation of our MLP-based ap-

proach is the fully connected architecture, which can become computationally

expensive as the size of the input data increases. While MLPs allow for greater

parallelization compared to sequential models, efficiently scaling the training pro-

cess still requires advanced techniques and significant computational resources.

Optimizing the parallelization of neural networks remains a promising avenue to

8.2 Discussion and Perspectives 199

overcome these limitations, but it necessitates further exploration of distributed

computing strategies and hardware acceleration.

In conclusion, this dissertation proposes promising approaches to enhance multi-

agent traffic simulations. While challenges remain, particularly in terms of scala-

bility and model generalization, the results obtained open interesting perspectives

for future research. The combination of high-performance computing techniques

and artificial intelligence offers considerable potential for developing more efficient,

accurate, and adaptive traffic simulators. These contributions lay the groundwork

for significant advancements in the field, with potential applications for urban

mobility planning and management.

8.2 Discussion and Perspectives

The research presented in this dissertation proposes new methods for enhancing

multi-agent traffic simulations through the application of high-performance com-

puting techniques and artificial intelligence. While the results are promising, they

also highlight several challenges and areas for future research. This section dis-

cusses these challenges, provides insights into the implications of our findings, and

outlines potential directions for future work.

8.2.1 Challenges and Limitations

Scalability and Computational Efficiency

multiMATSim:

One of the primary challenges identified in this research is the scalability of

the proposed methods. The Unite and Conquer method implemented in mul-

tiMATSim offers a novel algorithmic solution for multi-agent traffic simulation.

8.2 Discussion and Perspectives 200

This approach effectively divides the simulation into smaller, more manageable

sub-problems that can be solved separately and then combined. The initial ap-

plication of multiMATSim on MATSim demonstrated significant improvements in

computational efficiency, making it feasible to simulate larger urban areas. How-

ever, further research is needed to optimize the integration and merging processes

of these sub-problems to ensure accuracy and consistency across the entire simu-

lation.

In our investigation of the multiMATSim method, the outcomes regarding scal-

ability have been heartening. Although limiting our tests to 4 and 8 nodes doesn’t

capture the full essence of scalability, the data offers informative and optimistic

views on how multiMATSim responds with an increasing number of nodes. These

initial outcomes lay the groundwork for deeper dives into how our method scales

as we enhance computational resources.

Additionally, as the per-node load grows, we noticed a reliable enhancement in

performance. Augmenting the computational nodes while simultaneously upping

the MATSim instances for multiMATSim maintains steady performance. Given

the pronounced improvements in average plan scores, it’s plausible that initiating

exchanges earlier might yield a pronounced acceleration. Such outcomes leave us

optimistic about achieving better results with heightened load, alluding to the

potential of augmented horizontal and vertical scalability. For our forthcoming

experiments, the LA 10% scenario emerges as a favorable choice, pressing our

system’s limits with additional instances, nodes, and optimized parameters.

On a distinct note, while running our framework on two varied CPU architec-

tures - x86 and ARM, we detected subtle behavioral variations. Although the ISA

(Instruction Set Architecture) may not be the sole determinant, the differences in

core sizes between these CPUs probably have a role. It’s pertinent to mention

that the A64FX, which is tailored for intensive parallel tasks using innovations

8.2 Discussion and Perspectives 201

like SVE or HBM memory, might not reach its full potential with a primarily se-

quential tool like MATSim. Given the fact that MATSim is optimized more for

the x86 architecture and the opportunities presented by a JVM library recently

launched by Fujitsu, there’s an open avenue for additional inquiry. Still, in terms

of convergence velocity on Fugaku, multiMATSim manages to surpass MATSim.

Our grand vision is to gauge the universality of this Unite and Conquer strat-

egy on alternative multi-agent traffic simulators, such as SUMO or POLARIS[7],

underscoring its extensive relevance.

Future research on multiMATSim should focus on increasing the number of in-

stances to further improve the granularity and accuracy of simulations. By running

a higher number of simulation instances, the model can better capture the variabil-

ity in urban transport systems, leading to more robust predictions and exploring

a larger solution space, which can potentially enhance performance. Additionally,

implementing asynchronous communications between simulation instances could

greatly enhance the efficiency and scalability of multiMATSim. Asynchronous

communication would allow different instances to exchange information and up-

date their states without waiting for a synchronized global state, thus reducing

bottlenecks and improving overall performance.

AI-Based Approach:

The scalability of the AI-based approach also presents challenges. Although

the use of Multilayer Perceptron (MLP) neural networks has shown potential in

reducing computational time and resources, the fully connected nature of MLPs

can become computationally expensive when dealing with large-scale datasets.

This limitation is particularly relevant when aiming to simulate entire urban areas

with hundreds of thousands of agents.

To address this challenge, future research could explore advanced paralleliza-

tion techniques for training neural networks. This would involve distributing the

8.2 Discussion and Perspectives 202

training process across multiple computational nodes, leveraging the capabilities

of modern HPC architectures. Additionally, techniques such as model pruning,

quantization, and the use of more efficient neural network architectures (e.g., trans-

formers) could further enhance scalability and efficiency.

Generalization and Adaptability

multiMATSim:

As for robustness and adaptability, multiMATSim is presumed to exhibit re-

silience across various simulation scenarios and configurations. The system’s ar-

chitecture, with its potential for adaptability, hypothetically allows for responsive

adjustments to mobility behavior modeling and alterations in simulation param-

eters. This adaptability is pivotal in accurately simulating the fluid dynamics of

urban transport systems, where variability is the norm.

These postulations, while theoretically grounded, underscore the potential of

multiMATSim to embody principles of swarm intelligence and distributed problem-

solving within a computational context. They suggest that by harnessing the

collective capabilities of multiple simulation instances, multiMATSim might not

only maintain the integrity of individual agent decisions but also enhance the

overall quality and reliability of the simulation outcomes. However, such claims

remain speculative and must be substantiated through empirical validation.

AI-Based Approach:

Generalization of AI-based models can be improved through the use of di-

verse and extensive training datasets that capture a wide range of scenarios. Data

augmentation techniques, such as Generative Adversarial Networks (GANs) and

Variational Autoencoders (VAEs), could be employed to generate synthetic data

that mimics real-world variability. Moreover, transfer learning approaches, where

models trained on one dataset are fine-tuned on another, could also enhance adapt-

8.2 Discussion and Perspectives 203

ability.

The flexibility of neural networks allows for responsive adjustments to mobility

behavior modeling and alterations in simulation parameters. This adaptability is

crucial in accurately simulating the fluid dynamics of urban transport systems,

where variability is the norm.

Heuristic vs. AI-Based Approaches

The distinction between heuristic-based and AI-based approaches presents both

opportunities and challenges. Heuristic algorithms, like those used in MATSim,

incorporate various constraints and objectives to realistically simulate agent behav-

iors, closely replicating human decision-making processes. In contrast, AI models

learn patterns directly from data, which raises questions about their ability to

capture the nuanced behaviors modeled by heuristics.

Future research should investigate hybrid approaches that combine the strengths

of both heuristic and AI-based methods. For instance, AI models could be used

to approximate heuristic solutions, providing a balance between computational

efficiency and behavioral accuracy. Additionally, explainable AI techniques could

be developed to enhance the interpretability of AI models, making them more

transparent and trustworthy for real-world applications.

8.2.2 Future Research Directions

Future Research Directions for multiMATSim

Future research on multiMATSim should focus on several key areas to further

enhance its scalability, performance, and general applicability:

1. Increasing the Number of Instances: Expanding the number of sim-

ulation instances can significantly improve the granularity and accuracy of

8.2 Discussion and Perspectives 204

simulations. By running more instances, multiMATSim can better capture

the variability inherent in urban transport systems, leading to more robust

predictions. This increased granularity allows for a more detailed exploration

of the solution space, potentially uncovering new insights into urban mobility

patterns and system behaviors.

2. Implementing Asynchronous Communications: Introducing asynchronous

communication between simulation instances could greatly enhance the ef-

ficiency and scalability of multiMATSim. Asynchronous communication al-

lows different instances to exchange information and update their states with-

out waiting for a synchronized global state, thus reducing bottlenecks and

improving overall performance. This approach can make the system more

responsive and capable of handling larger, more complex simulations.

3. Exploring Larger Scenarios: Testing multiMATSim with different and

larger scenarios will push the system’s limits and provide valuable insights

into its performance under increased loads. This involves not only increasing

the number of computational nodes but also optimizing parameters to handle

the added complexity effectively. Exploring larger scenarios can help identify

potential scalability issues and provide a more comprehensive understanding

of the system’s capabilities.

4. Optimizing Integration and Merging Processes: Further research is

needed to refine the processes of integrating and merging sub-problems within

multiMATSim. Ensuring accuracy and consistency across the entire simula-

tion is crucial for reliable outcomes. Enhancing these processes will involve

developing more sophisticated algorithms for combining results from different

instances, thereby improving the overall fidelity of the simulation.

5. Investigating Different CPU Architectures: Running multiMATSim

8.2 Discussion and Perspectives 205

on various CPU architectures, including ARM-based processors like Ama-

zon’s Graviton 3, can provide valuable insights into how different hardware

configurations affect performance. Differences in core sizes and instruction

set architectures, such as those between x86 and ARM, can influence simula-

tion efficiency. By thoroughly understanding these variations, researchers

can optimize multiMATSim’s performance by tailoring its operations to

leverage the strengths of each architecture. This approach can guide the

selection of optimal hardware setups for large-scale simulations and ensure

that the system takes full advantage of specific optimizations for parallel

tasks.

6. Generalizing the Unite and Conquer Strategy: Applying the Unite

and Conquer method to other multi-agent traffic simulators can demonstrate

the versatility and broader applicability of this approach. This will help

in understanding how well the principles of multiMATSim translate across

different simulation platforms. Successful application to multiple platforms

would underscore the robustness of the Unite and Conquer strategy and its

potential for widespread use in traffic simulation.

7. Early Exchange Initiation: Investigating the impact of initiating ex-

changes earlier in the simulation process could yield substantial performance

improvements. By experimenting with different timings for these exchanges,

researchers can determine the most effective strategies for accelerating con-

vergence and improving average plan scores. Early exchanges might facilitate

quicker adjustments and more efficient use of computational resources, en-

hancing the overall speed and accuracy of the simulation.

8. Machine Learning for Plan Exchanges: Currently, the criterion for

daily plan exchanges between instances is based on a mathematical calcula-

8.2 Discussion and Perspectives 206

tion of standard deviation relative to the scores. This method could benefit

from a machine learning-based approach. By leveraging machine learning

algorithms, it may be possible to develop more sophisticated and adaptive

criteria for plan exchanges, enhancing the overall efficiency and accuracy

of the simulation. Machine learning can identify patterns and correlations

that traditional methods might miss, leading to more effective and timely

exchanges.

By addressing these research directions, multiMATSim can be further refined

and optimized, paving the way for more efficient and accurate multi-agent traffic

simulations. These advancements will not only improve the tool’s performance but

also expand its applicability to a wider range of scenarios and simulation platforms,

enhancing its utility for urban planners and researchers.

Future Research Directions for the AI-Based Approach

1. Exploration of Alternative Neural Network Architectures: Beyond

MLP networks, other neural network architectures hold promise for traffic

simulation. Transformers, with their ability to handle long-range dependen-

cies and parallel processing capabilities, could offer significant improvements

in efficiency and scalability. Convolutional Neural Networks (CNNs), known

for capturing spatial relationships, could be adapted to model traffic flow

and interactions within a geographical context. Graph Neural Networks

(GNNs) represent another exciting avenue, as they can model complex re-

lationships and interactions between agents and infrastructure in a trans-

portation network. By representing traffic networks as graphs, GNNs can

naturally capture the connectivity and dependencies between different parts

of the network, potentially leading to more accurate and robust simulations.

8.2 Discussion and Perspectives 207

2. Integration of Real-Time Data and Feedback Mechanisms: Incorpo-

rating real-time data into traffic simulations could significantly enhance their

accuracy and relevance. Future work could explore the integration of data

from various sources, such as traffic sensors, GPS devices, and social media,

to create dynamic and responsive simulation models. Feedback mechanisms

could also be developed to allow simulations to adapt in real-time based on

observed traffic conditions and patterns.

3. Enhanced Data Augmentation and Synthetic Data Generation: As

previously mentioned, data augmentation and synthetic data generation are

crucial for improving model generalization and performance. Future research

could focus on developing more sophisticated techniques for generating realis-

tic synthetic data, ensuring that it captures the complexity and variability of

real-world traffic scenarios. This could involve using GANs, VAEs, and other

advanced generative models to create diverse and representative datasets for

training AI models.

4. Evaluation and Validation Frameworks: Robust evaluation and valida-

tion frameworks are essential for assessing the performance and reliability of

traffic simulation models. Future work should develop standardized bench-

marks and metrics for comparing different models and approaches. These

frameworks should also incorporate uncertainty quantification methods to

provide confidence intervals and probabilistic assessments of model predic-

tions.

5. Policy and Ethical Considerations: The deployment of AI-based traf-

fic simulation models in real-world applications raises important policy and

ethical considerations. Future research should address issues related to data

privacy, algorithmic bias, and the transparency of AI models. Ensuring that

8.2 Discussion and Perspectives 208

these models are used responsibly and ethically will be crucial for gaining

public trust and maximizing their societal benefits.

.

8.2.3 Conclusion

In conclusion, this dissertation proposes new approaches for enhancing multi-agent

traffic simulations through the application of HPC and AI techniques. While the

results are promising, they also highlight several challenges and opportunities for

future research. By addressing these challenges and exploring new directions, we

can develop more efficient, accurate, and adaptable traffic simulation models that

better meet the needs of modern urban mobility systems. Our work lays the

foundation for future advancements in this rapidly evolving field, contributing to

the development of more sustainable and intelligent transportation solutions.

Bibliography

[1] Ali R. Abdellah and Andrey Koucheryavy. “Deep Learning with Long Short-

Term Memory for IoT Traffic Prediction”. In: Internet of Things, Smart

Spaces, and Next Generation Networks and Systems: 20th International Con-

ference, NEW2AN 2020, and 13th Conference, RuSMART 2020, St. Peters-

burg, Russia, August 26–28, 2020, Proceedings, Part I. <conf-loc content-

type="InPerson">St. Petersburg, Russia</conf-loc>: Springer-Verlag, 2020,

pp. 267–280. isbn: 978-3-030-65725-3. doi: 10.1007/978-3-030-65726-

0_24. url: https://doi.org/10.1007/978-3-030-65726-0_24.

[2] Andrés Acosta, Jairo Espinosa Oviedo, and Jorge Espinosa Oviedo. “Dis-

tributed Simulation in SUMO Revisited: Strategies for Network Partitioning

and Border Edges Management”. In: May 2016.

[3] Yazed Alsaawy et al. “A Comprehensive and Effective Framework for Traffic

Congestion Problem Based on the Integration of IoT and Data Analytics”. In:

Applied Sciences 12.4 (2022). issn: 2076-3417. doi: 10.3390/app12042043.

url: https://www.mdpi.com/2076-3417/12/4/2043.

[4] Pablo Alvarez Lopez et al. “Microscopic Traffic Simulation using SUMO”.

In: IEEE Intelligent Transportation Systems Conference (ITSC). 2018.

[5] Tarique Anwar et al. “Tracking the Evolution of Congestion in Dynamic Ur-

ban Road Networks”. In: Proceedings of the 25th ACM International on Con-

209

https://doi.org/10.1007/978-3-030-65726-0_24
https://doi.org/10.1007/978-3-030-65726-0_24
https://doi.org/10.1007/978-3-030-65726-0_24
https://doi.org/10.3390/app12042043
https://www.mdpi.com/2076-3417/12/4/2043

BIBLIOGRAPHY 210

ference on Information and Knowledge Management. CIKM ’16. Indianapo-

lis, Indiana, USA: Association for Computing Machinery, 2016, pp. 2323–

2328. isbn: 9781450340731. doi: 10.1145/2983323.2983688. url: https:

//doi.org/10.1145/2983323.2983688.

[6] Argonne National Laboratory. Aurora Supercomputer. Accessed: 2024-06-17.

2024. url: https://www.anl.gov/aurora.

[7] J. Auld et al. “POLARIS: Agent-based modeling framework development

and implementation for integrated travel demand and network and opera-

tions simulations”. In: Transportation Research Part C: Emerging Technolo-

gies (2016). doi: 10.1016/j.trc.2015.07.017.

[8] P.G. Balaji, X. German, and D. Srinivasan. “Urban traffic signal control

using reinforcement learning agents”. In: IET Intelligent Transport Systems

4.3 (Sept. 2010), pp. 177–188. issn: 1751-956X. doi: 10.1049/iet-its.

2009.0096. url: https://digital- library. theiet.org/ content/

journals/10.1049/iet-its.2009.0096.

[9] Lala Bhaskar et al. “Intelligent traffic light controller using inductive loops for

vehicle detection”. In: 2015 1st International Conference on Next Generation

Computing Technologies (NGCT). 2015, pp. 518–522. doi: 10.1109/NGCT.

2015.7375173.

[10] Taisuke Boku et al. “Cygnus - World First Multihybrid Accelerated Cluster

with GPU and FPGA Coupling”. In: Workshop Proceedings of the 51st In-

ternational Conference on Parallel Processing. ICPP Workshops ’22. <conf-

loc>, <city>Bordeaux</city>, <country>France</country>, </conf-loc>:

Association for Computing Machinery, 2023. isbn: 9781450394451. doi: 10.

1145/3547276.3548629. url: https://doi.org/10.1145/3547276.

3548629.

https://doi.org/10.1145/2983323.2983688
https://doi.org/10.1145/2983323.2983688
https://doi.org/10.1145/2983323.2983688
https://www.anl.gov/aurora
https://doi.org/10.1016/j.trc.2015.07.017
https://doi.org/10.1049/iet-its.2009.0096
https://doi.org/10.1049/iet-its.2009.0096
https://digital-library.theiet.org/content/journals/10.1049/iet-its.2009.0096
https://digital-library.theiet.org/content/journals/10.1049/iet-its.2009.0096
https://doi.org/10.1109/NGCT.2015.7375173
https://doi.org/10.1109/NGCT.2015.7375173
https://doi.org/10.1145/3547276.3548629
https://doi.org/10.1145/3547276.3548629
https://doi.org/10.1145/3547276.3548629
https://doi.org/10.1145/3547276.3548629

BIBLIOGRAPHY 211

[11] Center for Computational Sciences, University of Tsukuba. Pegasus Super-

computer. Accessed: 2024-06-17. 2023. url: https://www.ccs.tsukuba.

ac.jp/wp-content/uploads/sites/14/Pegasus.pdf.

[12] Ameni Chetouane, Sabra Mabrouk, and Mohamed Mosbah. “Traffic Con-

gestion Detection: Solutions, Open Issues and Challenges”. In: Distributed

Computing for Emerging Smart Networks. Ed. by Imen Jemili and Mohamed

Mosbah. Cham: Springer International Publishing, 2020, pp. 3–22. isbn: 978-

3-030-65810-6.

[13] RIKEN Center for Computational Science. Fugaku Supercomputer. Accessed:

2024-06-17. 2024. url: https://www.r-ccs.riken.jp/en/fugaku/.

[14] MATSim Scenarios Contributors. MATSim Berlin Scenario. https://github.

com/matsim-scenarios/matsim-berlin. Accessed: 2024-06-20. 2024.

[15] MATSim Scenarios Contributors. MATSim Los Angeles Scenarios. https:

//github.com/matsim-scenarios/matsim-los-angeles. Accessed: 2024-

06-20. 2024.

[16] MATSim Scenarios Contributors. MATSim NYC Scenario. https://github.

com/matsim-scenarios/matsim-nyc. Accessed: 2024-06-20. 2024.

[17] Fei Dai et al. “Spatio-Temporal Deep Learning Framework for Traffic Speed

Forecasting in IoT”. In: IEEE Internet of Things Magazine 3.4 (2020), pp. 66–

69. doi: 10.1109/IOTM.0001.2000031.

[18] Shima Damadam et al. “An Intelligent IoT Based Traffic Light Manage-

ment System: Deep Reinforcement Learning”. In: Smart Cities 5.4 (2022),

pp. 1293–1311. issn: 2624-6511. doi: 10.3390/smartcities5040066. url:

https://www.mdpi.com/2624-6511/5/4/66.

[19] Ewa Deelman. Pegasus: Workflow Management System. Accessed: 2024-06-

17. 2023. url: https://pegasus.isi.edu/.

https://www.ccs.tsukuba.ac.jp/wp-content/uploads/sites/14/Pegasus.pdf
https://www.ccs.tsukuba.ac.jp/wp-content/uploads/sites/14/Pegasus.pdf
https://www.r-ccs.riken.jp/en/fugaku/
https://github.com/matsim-scenarios/matsim-berlin
https://github.com/matsim-scenarios/matsim-berlin
https://github.com/matsim-scenarios/matsim-los-angeles
https://github.com/matsim-scenarios/matsim-los-angeles
https://github.com/matsim-scenarios/matsim-nyc
https://github.com/matsim-scenarios/matsim-nyc
https://doi.org/10.1109/IOTM.0001.2000031
https://doi.org/10.3390/smartcities5040066
https://www.mdpi.com/2624-6511/5/4/66
https://pegasus.isi.edu/

BIBLIOGRAPHY 212

[20] Ewa Deelman. Pegasus: Workflow Management System. Accessed: 2024-06-

17. 2023. url: https://pegasus.isi.edu/about/.

[21] Ewa Deelman et al. “Pegasus: A Framework for Mapping Complex Scientific

Workflows onto Distributed Systems”. In: Scientific Programming 13 (Jan.

2005), pp. 219–237. doi: 10.1155/2005/128026.

[22] Nahid Emad and Serge Petiton. “Unite and Conquer approach for high scale

numerical computing”. In: International Journal of Computational Science

and Engineering 14 (2016). hal-01609342, pp. 5–14. doi: 10.1016/j.jocs.

2016.01.007.

[23] Nahid Emad, S.-A. Shahzadeh-Fazeli, and Jack Dongarra. “An asynchronous

algorithm on the NetSolve global computing system”. In: Future Generation

Computer Systems 22.3 (2006), pp. 279–290. issn: 0167-739X. doi: https:

//doi.org/10.1016/j.future.2005.10.003. url: https://www.

sciencedirect.com/science/article/pii/S0167739X05001378.

[24] Martin Fellendorf and Peter Vortisch. “Microscopic traffic flow simulator

VISSIM”. In: June 2011, pp. 63–93. isbn: 978-1-4419-6141-9. doi: 10.1007/

978-1-4419-6142-6_2.

[25] Fujitsu. A64FX® Microarchitecture Manual (English). Accessed: 2024-06-

17. 2022. url: https://github.com/fujitsu/A64FX/blob/master/doc/

A64FX_Microarchitecture_Manual_en_1.8.pdf.

[26] P. G. Gipps. “A behavioural car-following model for computer simulation”.

In: Transportation Research Part B: Methodological 15.2 (1981), pp. 105–

111. doi: 10.1016/0191-2615(81)90037-0.

[27] Emmanuel Hermelin, Fabien Michel, and Jacques Ferber. “Etat de l’art sur

les simulations multi-agents et le GPGPU”. In: Revue d’intelligence artifi-

cielle 29 (Aug. 2015), pp. 425–451. doi: 10.3166/ria.29.425-451.

https://pegasus.isi.edu/about/
https://doi.org/10.1155/2005/128026
https://doi.org/10.1016/j.jocs.2016.01.007
https://doi.org/10.1016/j.jocs.2016.01.007
https://doi.org/https://doi.org/10.1016/j.future.2005.10.003
https://doi.org/https://doi.org/10.1016/j.future.2005.10.003
https://www.sciencedirect.com/science/article/pii/S0167739X05001378
https://www.sciencedirect.com/science/article/pii/S0167739X05001378
https://doi.org/10.1007/978-1-4419-6142-6_2
https://doi.org/10.1007/978-1-4419-6142-6_2
https://github.com/fujitsu/A64FX/blob/master/doc/A64FX_Microarchitecture_Manual_en_1.8.pdf
https://github.com/fujitsu/A64FX/blob/master/doc/A64FX_Microarchitecture_Manual_en_1.8.pdf
https://doi.org/10.1016/0191-2615(81)90037-0
https://doi.org/10.3166/ria.29.425-451

BIBLIOGRAPHY 213

[28] Sebastian Hörl. “Exploring accelerated evolutionary parameter search for

iterative large-scale transport simulations in a new calibration testbed”. In:

June 2022.

[29] Sebastian Hörl, Felix Becker, and Kay W. Axhausen. “Simulation of price,

customer behaviour and system impact for a cost-covering automated taxi

system in Zurich”. In: Transportation Research Part C: Emerging Technolo-

gies 123 (2021), p. 102974. issn: 0968-090X. doi: https://doi.org/10.

1016/j.trc.2021.102974. url: https://www.sciencedirect.com/

science/article/pii/S0968090X21000115.

[30] A Horni and K Nagel. “More About Configuring MATSim”. In: The Multi-

Agent Transport Simulation MATSim. Ed. by A Horni, K Nagel, and K W

Axhausen. License: CC-BY 4.0. London: Ubiquity Press, 2016, pp. 35–44.

doi: http://dx.doi.org/10.5334/baw.4.

[31] A Horni, K Nagel, and K W Axhausen. “Introducing MATSim”. In: License:

CC-BY 4.0. London: Ubiquity Press, 2016. Chap. Introducing MATSim,

pp. 3–8. doi: http://dx.doi.org/10.5334/baw.1.

[32] A. Horni and K. Nagel. “More About Configuring MATSim”. In: The Multi-

Agent Transport Simulation MATSim. Ed. by A. Horni, K. Nagel, and K. W.

Axhausen. London: Ubiquity Press, 2016, pp. 35–44. doi: 10.5334/baw.4.

[33] A. Jackson et al. “Investigating Applications on the A64FX”. In: 2020 IEEE

International Conference on Cluster Computing (CLUSTER). Los Alamitos,

CA, USA: IEEE Computer Society, Sept. 2020, pp. 549–558. doi: 10.1109/

CLUSTER49012.2020.00078. url: https://doi.ieeecomputersociety.

org/10.1109/CLUSTER49012.2020.00078.

[34] Lejun Jiang, Tamás G. Molnár, and Gábor Orosz. “On the deployment of

V2X roadside units for traffic prediction”. In: Transportation Research Part

https://doi.org/https://doi.org/10.1016/j.trc.2021.102974
https://doi.org/https://doi.org/10.1016/j.trc.2021.102974
https://www.sciencedirect.com/science/article/pii/S0968090X21000115
https://www.sciencedirect.com/science/article/pii/S0968090X21000115
https://doi.org/http://dx.doi.org/10.5334/baw.4
https://doi.org/http://dx.doi.org/10.5334/baw.1
https://doi.org/10.5334/baw.4
https://doi.org/10.1109/CLUSTER49012.2020.00078
https://doi.org/10.1109/CLUSTER49012.2020.00078
https://doi.ieeecomputersociety.org/10.1109/CLUSTER49012.2020.00078
https://doi.ieeecomputersociety.org/10.1109/CLUSTER49012.2020.00078

BIBLIOGRAPHY 214

C: Emerging Technologies 129 (2021), p. 103238. issn: 0968-090X. doi:

https://doi.org/10.1016/j.trc.2021.103238. url: https://www.

sciencedirect.com/science/article/pii/S0968090X21002515.

[35] George Karypis and Vipin Kumar. A Fast and High Quality Multilevel Scheme

for Partitioning Irregular Graphs. Vol. 20. SIAM Journal on Scientific Com-

puting 1. Philadelphia, PA, USA: Society for Industrial and Applied Math-

ematics, 1998, pp. 359–392. doi: 10.1137/S1064827595287997.

[36] George Karypis and Vipin Kumar. hMETIS 1.5: A Hypergraph Partitioning

Package. Available at http://www-users.cs.umn.edu/~karypis/metis/

hmetis/. 1999.

[37] Shilpa Khedkar, R. Canessane, and Moslem Lari Najafi. “Prediction of Traf-

fic Generated by IoT Devices Using Statistical Learning Time Series Algo-

rithms”. In: Wireless Communications and Mobile Computing 2021 (Aug.

2021). doi: 10.1155/2021/5366222.

[38] Juan J. Lamas-Seco et al. “SiDIVS: Simple Detection of Inductive Vehicle

Signatures with a Multiplex Resonant Sensor”. In: Sensors (Basel) 16.8 (Aug.

2016), p. 1309. doi: 10.3390/s16081309.

[39] Tal Laor and Yair Galily. “In WAZE we trust? GPS-based navigation appli-

cation users’ behavior and patterns of dependency”. In: PLOS ONE 17.11

(Nov. 2022), pp. 1–17. doi: 10.1371/journal.pone.0276449. url: https:

//doi.org/10.1371/journal.pone.0276449.

[40] M. J. Lighthill and G. B. Whitham. “On Kinematic Waves. II. A Theory of

Traffic Flow on Long Crowded Roads”. In: Proceedings of the Royal Society

of London. Series A. Mathematical and Physical Sciences 229.1178 (1955),

pp. 317–345. doi: 10.1098/rspa.1955.0089.

https://doi.org/https://doi.org/10.1016/j.trc.2021.103238
https://www.sciencedirect.com/science/article/pii/S0968090X21002515
https://www.sciencedirect.com/science/article/pii/S0968090X21002515
https://doi.org/10.1137/S1064827595287997
http://www-users.cs.umn.edu/~karypis/metis/hmetis/
http://www-users.cs.umn.edu/~karypis/metis/hmetis/
https://doi.org/10.1155/2021/5366222
https://doi.org/10.3390/s16081309
https://doi.org/10.1371/journal.pone.0276449
https://doi.org/10.1371/journal.pone.0276449
https://doi.org/10.1371/journal.pone.0276449
https://doi.org/10.1098/rspa.1955.0089

BIBLIOGRAPHY 215

[41] Chang Liu et al. “Dynamic Road Traffic Network Division for Real-Time

Management and Control”. In: Journal of Physics: Conference Series 2491.1

(2023), p. 012005. doi: 10.1088/1742-6596/2491/1/012005.

[42] Qiang Liu, Qing Wang, and Shu-an Liu. “An Improved Sub-Networks Parti-

tioning Method for Urban Traffic Networks”. In: 2019 Chinese Control And

Decision Conference (CCDC). 2019, pp. 6405–6410. doi: 10.1109/CCDC.

2019.8833298.

[43] Matthieu Mastio et al. “Distributed Agent-Based Traffic Simulations”. In:

IEEE Intelligent Transportation Systems Magazine 10 (Jan. 2018). doi: 10.

1109/MITS.2017.2776162.

[44] Scott McQuire. “One map to rule them all? Google Maps as digital technical

object”. In: Communication and the Public 4 (June 2019), pp. 150–165. doi:

10.1177/2057047319850192.

[45] Mésocentre de l’Université Paris-Saclay. Plateformes du Mésocentre - Uni-

versité Paris-Saclay. 5th October, 2023. 2020. url: https://mesocentre.

universite-paris-saclay.fr/platforms/platforms.html.

[46] Sara Moukir, Nahid Emad, and Stéphane Baudelocq. “A high performance

algorithmic variant of MATSim road traffic simulator”. In: IPDPSW 2023

- IEEE International Parallel and Distributed Processing Symposium Work-

shops. St. Petersburg, United States, May 2023, pp. 914–922. doi: 10.1109/

IPDPSW59300.2023.00149. url: https://hal.archives-ouvertes.fr/

hal-04496008.

[47] Sara Moukir, Nahid Emad, and Stéphane Baudelocq. “A high performance

approach with MATSim for traffic road simulation”. In: 2022 12th Interna-

tional Congress on Advanced Applied Informatics (IIAI-AAI). Kanazawa,

https://doi.org/10.1088/1742-6596/2491/1/012005
https://doi.org/10.1109/CCDC.2019.8833298
https://doi.org/10.1109/CCDC.2019.8833298
https://doi.org/10.1109/MITS.2017.2776162
https://doi.org/10.1109/MITS.2017.2776162
https://doi.org/10.1177/2057047319850192
https://mesocentre.universite-paris-saclay.fr/platforms/platforms.html
https://mesocentre.universite-paris-saclay.fr/platforms/platforms.html
https://doi.org/10.1109/IPDPSW59300.2023.00149
https://doi.org/10.1109/IPDPSW59300.2023.00149
https://hal.archives-ouvertes.fr/hal-04496008
https://hal.archives-ouvertes.fr/hal-04496008

BIBLIOGRAPHY 216

Japan, July 2022, pp. 679–681. doi: 10.1109/IIAIAAI55812.2022.00140.

url: https://hal.archives-ouvertes.fr/hal-04495989.

[48] Sara Moukir, Nahid Emad, and Stéphane Baudelocq. “From MATSim to

MultiMATSim: Rethinking Traffic Modeling Using the ‘Unite and Conquer’

Approach”. In: 2023 IEEE International Conference on High Performance

Computing Communications, Data Science Systems, Smart City Depend-

ability in Sensor, Cloud Big Data Systems Application (HPCC/DSS/SmartCity/DependSys).

2023, pp. 288–295. doi: 10.1109/HPCC-DSS-SmartCity-DependSys60770.

2023.00047.

[49] Sara Moukir et al. “Advancements in Traffic Simulations with multiMAT-

Sim’s Distributed Framework”. In: Proceedings of the 16th International Con-

ference on Agents and Artificial Intelligence - Volume 1: ICAART. INSTICC.

SciTePress, 2024, pp. 374–385. isbn: 978-989-758-680-4. doi: 10 . 5220 /

0012452600003636.

[50] M. E. J. Newman. “Fast algorithm for detecting community structure in

networks”. In: Physical Review E 69.6 (2004), p. 066133. doi: 10.1103/

PhysRevE.69.066133.

[51] Johannes Nguyen et al. “An overview of agent-based traffic simulators”. In:

Transportation Research Interdisciplinary Perspectives 12 (2021), p. 100486.

issn: 2590-1982. doi: https://doi.org/10.1016/j.trip.2021.100486.

[52] Sébastien Noël et al. “A Multi-level Scheduler for the Grid Computing YML

Framework”. In: vol. 4375. Aug. 2006, pp. 87–100. isbn: 978-3-540-72226-7.

doi: 10.1007/978-3-540-72337-0_9.

[53] Oak Ridge Leadership Computing Facility. Frontier Supercomputer. Accessed:

2024-06-17. 2024. url: https://www.olcf.ornl.gov/frontier/.

https://doi.org/10.1109/IIAIAAI55812.2022.00140
https://hal.archives-ouvertes.fr/hal-04495989
https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys60770.2023.00047
https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys60770.2023.00047
https://doi.org/10.5220/0012452600003636
https://doi.org/10.5220/0012452600003636
https://doi.org/10.1103/PhysRevE.69.066133
https://doi.org/10.1103/PhysRevE.69.066133
https://doi.org/https://doi.org/10.1016/j.trip.2021.100486
https://doi.org/10.1007/978-3-540-72337-0_9
https://www.olcf.ornl.gov/frontier/

BIBLIOGRAPHY 217

[54] University of Paris-Saclay. Mésocentre de l’Université Paris-Saclay. Accessed

on: June, 2024. 2020. url: https://mesocentre.universite- paris-

saclay.fr/platforms/platforms.html.

[55] Andrei Poenaru et al. “An Evaluation of the Fujitsu A64FX for HPC Ap-

plications”. English. In: Cray User Group 2021. Cray User Group 2021 ;

Conference date: 03-05-2021 Through 05-05-2021. May 2021. url: https:

//cug.org/cug-2021/.

[56] Tomas Potuzak. “Current Trends in Road Traffic Network Division for Dis-

tributed or Parallel Road Traffic Simulation”. In: 2022 IEEE/ACM 26th In-

ternational Symposium on Distributed Simulation and Real Time Applica-

tions (DS-RT). 2022, pp. 77–86. doi: 10.1109/DS-RT55542.2022.9932112.

[57] Tomas Potuzak. “Distributed-Parallel Road Traffic Simulator for Clusters of

Multi-core Computers”. In: 2012 IEEE/ACM 16th International Symposium

on Distributed Simulation and Real Time Applications. 2012, pp. 195–201.

doi: 10.1109/DS-RT.2012.36.

[58] Tomas Potuzak. “Reduction of Inter-process Communication in Distributed

Simulation of Road Traffic”. In: 2020 IEEE/ACM 24th International Sympo-

sium on Distributed Simulation and Real Time Applications (DS-RT). 2020,

pp. 1–10. doi: 10.1109/DS-RT50469.2020.9213673.

[59] UVSQ PRiSM Laboratory. YML: Workflow Programming Environment. Ac-

cessed: 2024-06-17. 2023. url: http://yml.prism.uvsq.fr/.

[60] Steven F. Railsback and Volker Grimm. Agent-Based and Individual-Based

Modeling: A Practical Introduction. Princeton, NJ: Princeton University Press,

2011. isbn: 9780691136745.

https://mesocentre.universite-paris-saclay.fr/platforms/platforms.html
https://mesocentre.universite-paris-saclay.fr/platforms/platforms.html
https://cug.org/cug-2021/
https://cug.org/cug-2021/
https://doi.org/10.1109/DS-RT55542.2022.9932112
https://doi.org/10.1109/DS-RT.2012.36
https://doi.org/10.1109/DS-RT50469.2020.9213673
http://yml.prism.uvsq.fr/

BIBLIOGRAPHY 218

[61] Daniel Rajf and Tomas Potuzak. “Comparison of Road Traffic Simulation

Speed on CPU and GPU”. In: 2019 IEEE/ACM 23rd International Sympo-

sium on Distributed Simulation and Real Time Applications (DS-RT). 2019,

pp. 1–8. doi: 10.1109/DS-RT47707.2019.8958702.

[62] Kotagiri Ramamohanarao et al. “SMARTS: Scalable Microscopic Adaptive

Road Traffic Simulator”. In: ACM Transactions on Intelligent Systems and

Technology 8 (Dec. 2016), pp. 1–22. doi: 10.1145/2898363.

[63] P. I. Richards. “Shock Waves on the Highway”. In: Operations Research 4.1

(1956), pp. 42–51. doi: 10.1287/opre.4.1.42.

[64] Aleksandr Saprykin, Ndaona Chokani, and Reza S. Abhari. “GEMSim: A

GPU-accelerated multi-modal mobility simulator for large-scale scenarios”.

In: Simulation Modelling Practice and Theory 94 (2019), pp. 199–214. issn:

1569-190X. doi: https : / / doi . org / 10 . 1016 / j . simpat . 2019 . 03 .

002. url: https://www.sciencedirect.com/science/article/pii/

S1569190X19300267.

[65] M. Sato et al. “Co-Design for A64FX Manycore Processor and ”Fugaku””.

In: SC20: International Conference for High Performance Computing, Net-

working, Storage and Analysis. Atlanta, GA, USA, 2020, pp. 1–15. doi:

10.1109/SC41405.2020.00051.

[66] Björn Schünemann. “V2X simulation runtime infrastructure VSimRTI: An

assessment tool to design smart traffic management systems”. In: Computer

Networks 55.14 (2011). Deploying vehicle-2-x communication, pp. 3189–3198.

issn: 1389-1286. doi: https://doi.org/10.1016/j.comnet.2011.05.

005. url: https://www.sciencedirect.com/science/article/pii/

S1389128611001605.

https://doi.org/10.1109/DS-RT47707.2019.8958702
https://doi.org/10.1145/2898363
https://doi.org/10.1287/opre.4.1.42
https://doi.org/https://doi.org/10.1016/j.simpat.2019.03.002
https://doi.org/https://doi.org/10.1016/j.simpat.2019.03.002
https://www.sciencedirect.com/science/article/pii/S1569190X19300267
https://www.sciencedirect.com/science/article/pii/S1569190X19300267
https://doi.org/10.1109/SC41405.2020.00051
https://doi.org/https://doi.org/10.1016/j.comnet.2011.05.005
https://doi.org/https://doi.org/10.1016/j.comnet.2011.05.005
https://www.sciencedirect.com/science/article/pii/S1389128611001605
https://www.sciencedirect.com/science/article/pii/S1389128611001605

BIBLIOGRAPHY 219

[67] Z. Shen et al. “GPU Based Genetic Algorithms for the Dynamic Sub-area Di-

vision Problem of the Transportation System”. In: IFAC Proceedings Volumes

47.3 (2014). 19th IFAC World Congress, pp. 5115–5120. issn: 1474-6670. doi:

https://doi.org/10.3182/20140824-6-ZA-1003.02693. url: https:

//www.sciencedirect.com/science/article/pii/S1474667016424080.

[68] David Strippgen and Kai Nagel. “Using common graphics hardware for multi-

agent traffic simulation with CUDA”. In: Jan. 2009, p. 62. doi: 10.1145/

1537614.1537693.

[69] TOP500. TOP500 List - June 2024. Accessed: 2024-06-17. 2024. url: https:

//top500.org/lists/top500/2024/06/.

[70] Chanaka Withanage et al. “A modified multilevel k-way partitioning algo-

rithm for trip-based road networks”. In: MATEC Web of Conferences 272

(Jan. 2019), p. 01038. doi: 10.1051/matecconf/201927201038.

[71] Xinzhe Wu and Serge G. Petiton. “A distributed and parallel asynchronous

unite and conquer method to solve large scale non-Hermitian linear sys-

tems with multiple right-hand sides”. In: Parallel Computing 89 (2019),

p. 102551. issn: 0167-8191. doi: https://doi.org/10.1016/j.parco.

2019.102551. url: https://www.sciencedirect.com/science/article/

pii/S0167819119301425.

[72] Yadong Xu, Heiko Aydt, and Michael Lees. “SEMSim: A Distributed Ar-

chitecture for Multi-scale Traffic Simulation”. In: 2012 ACM/IEEE/SCS

26th Workshop on Principles of Advanced and Distributed Simulation. 2012,

pp. 178–180. doi: 10.1109/PADS.2012.40.

[73] Yadong Xu et al. “A Graph Partitioning Algorithm for Parallel Agent-

Based Road Traffic Simulation”. In: May 2017, pp. 209–219. doi: 10.1145/

3064911.3064914.

https://doi.org/https://doi.org/10.3182/20140824-6-ZA-1003.02693
https://www.sciencedirect.com/science/article/pii/S1474667016424080
https://www.sciencedirect.com/science/article/pii/S1474667016424080
https://doi.org/10.1145/1537614.1537693
https://doi.org/10.1145/1537614.1537693
https://top500.org/lists/top500/2024/06/
https://top500.org/lists/top500/2024/06/
https://doi.org/10.1051/matecconf/201927201038
https://doi.org/https://doi.org/10.1016/j.parco.2019.102551
https://doi.org/https://doi.org/10.1016/j.parco.2019.102551
https://www.sciencedirect.com/science/article/pii/S0167819119301425
https://www.sciencedirect.com/science/article/pii/S0167819119301425
https://doi.org/10.1109/PADS.2012.40
https://doi.org/10.1145/3064911.3064914
https://doi.org/10.1145/3064911.3064914

BIBLIOGRAPHY 220

[74] Yadong Xu et al. “Relaxing Synchronization in Parallel Agent-Based Road

Traffic Simulation”. In: ACM Transactions on Modeling and Computer Sim-

ulation 27 (May 2017), pp. 1–24. doi: 10.1145/2994143.

[75] Yan Xu and Gary Tan. “An Offline Road Network Partitioning Solution in

Distributed Transportation Simulation”. In: 2012 IEEE/ACM 16th Interna-

tional Symposium on Distributed Simulation and Real Time Applications.

2012, pp. 210–217. doi: 10.1109/DS-RT.2012.38.

[76] Eduard Zadobrischi. “Intelligent Traffic Monitoring through Heterogeneous

and Autonomous Networks Dedicated to Traffic Automation”. In: Sensors

22.20 (2022). issn: 1424-8220. doi: 10.3390/s22207861. url: https://

www.mdpi.com/1424-8220/22/20/7861.

https://doi.org/10.1145/2994143
https://doi.org/10.1109/DS-RT.2012.38
https://doi.org/10.3390/s22207861
https://www.mdpi.com/1424-8220/22/20/7861
https://www.mdpi.com/1424-8220/22/20/7861

Résumé

1 Introduction et contexte

La modélisation multi-agent appliquée au trafic routier repose sur la simulation du com-

portement individuel de chaque agent (véhicules, piétons, cyclistes, etc.) dans un réseau

de transport. Chaque agent prend des décisions autonomes en fonction de son environ-

nement et de ses interactions avec d’autres agents, reproduisant ainsi des dynamiques

réalistes de flux de trafic. Cette approche rend possible la capture de la complexité des

systèmes de transport en simulant des scénarios à grande échelle, tout en tenant compte

des choix de transport individuels et des activités quotidiennes des usagers. Parmi les

simulateurs de trafic multi-agent, SUMO (Simulation of Urban MObility) est l’un des

plus utilisés. Il permet de simuler le trafic à l’échelle urbaine avec une grande précision,

incluant des modèles pour les véhicules, les transports publics et les piétons. SUMO

est open-source et est conçu pour être extensible, bien que sa conception majoritaire-

ment séquentielle limite ses performances pour les simulations très complexes. Un autre

simulateur populaire est PTV Vissim, un logiciel propriétaire qui offre une modélisation

détaillée des interactions entre différents modes de transport. Il est souvent utilisé dans

la planification urbaine pour simuler l’impact des infrastructures sur le trafic, mais son

architecture essentiellement séquentielle peut également ralentir les simulations à grande

échelle. Enfin, MATSim (Multi-Agent Transport Simulation) est l’un des simulateurs

de trafic multi-agent les plus cités dans la littérature. Il offre la possibilité de simuler

les activités quotidiennes et les choix de transport des agents dans un réseau donné,

tout en étant hautement flexible et extensible. Cependant, comme les autres simulateurs

mentionnés, sa conception essentiellement séquentielle limite ses performances dans les

simulations à très grande échelle.

L’objectif de cette thèse est de répondre à ces limites des simulateurs de trafic multi-

agents actuels, en particulier leur manque de scalabilité et leur incapacité à exploiter

pleinement les architectures HPC (High-Performance Computing) modernes. Ces simu-

lateurs, bien qu’essentiels pour comprendre et gérer les flux de trafic, voient leur utilité

limitée par leurs performances lorsqu’ils sont appliqués à des simulations de très grande

envergure ou nécessitant des temps de réponse courts. À mesure que les infrastructures

urbaines se développent et que les systèmes de transport deviennent plus interconnectés

et dynamiques (notamment avec l’arrivée de véhicules autonomes), il est de plus en

plus nécessaire de disposer d’outils capables de simuler ces environnements complexes

de manière plus rapide et plus efficace. Cette exigence est particulièrement importante

dans des domaines tels que les villes intelligentes, où la prise de décision en temps réel

et l’adaptation rapide aux conditions de trafic sont essentielles. Afin de répondre à ces

enjeux, cette thèse propose deux contributions principales visant à améliorer la perfor-

mance et la scalabilité des simulateurs de trafic multi-agents. La première contribution

repose sur l’adaptation de la méthode Unite and Conquer (UC), une approche initialement

développée pour résoudre des problèmes d’algèbre linéaire à grande échelle, aux simula-

tions de trafic multi-agents. Cette méthode facilite l’exploration efficace de l’espace des

solutions et la répartition de la charge de calcul entre plusieurs unités, et rend possi-

ble une exécution distribuée et parallèle des simulations. En exploitant le parallélisme

multiniveau et des communications synchrones et/ou asynchrones entre nœuds, cette ap-

proche offre une vitesse de convergence plus importante par rapport aux systèmes orig-

inels. La deuxième contribution repose sur l’utilisation de l’intelligence artificielle, et plus

précisément sur l’intégration de réseaux de neurones Multilayer Perceptrons (MLP) pour

compresser le processus de simulation. Cette approche aide à réduire la complexité du

problème en prédisant les résultats d’une simulation à partir d’un ensemble réduit de vari-

ables d’entrée, offrant ainsi une solution plus rapide et efficace, particulièrement adaptée

aux applications nécessitant des réponses en temps réel. Finalement, cette thèse vise à

proposer des solutions combinant des concepts liés au HPC et à l’IA pour surmonter les

limitations des simulateurs de trafic actuels, en introduisant des méthodes capables de

réduire considérablement le temps et les ressources nécessaires pour simuler des systèmes

de transport de plus en plus complexes.

2 Première contribution : multiMATSim

La première contribution de cette thèse porte sur l’adaptation de la méthode Unite and

Conquer pour améliorer les performances des simulations de trafic multi-agents. L’idée

centrale de la méthode UC est d’explorer de manière exhaustive les espaces de solutions

complexes en s’appuyant sur le calcul parallèle distribué. Contrairement à l’approche clas-

sique du Divide and Conquer, qui divise les problèmes en sous-problèmes indépendants,

UC traite le problème dans son ensemble à travers plusieurs instances traitant chacune

une méthode de résolution différente, maximisant ainsi l’utilisation des ressources de cal-

cul disponibles. Cela permet de maintenir un haut niveau de détail dans les simulations

tout en réduisant les temps de calcul grâce à l’exploitation des architectures HPC. Dans

les simulations de trafic multi-agents, l’approche Unite and Conquer se révèle partic-

ulièrement adaptée pour gérer la volumétrie importante de données générée par l’activité

des agents. Chaque agent produit des interactions complexes et dynamiques, qui doivent

être traitées de manière efficace et rigoureuse dans le cadre d’une simulation distribuée.

L’un des points forts de l’approche UC réside dans la coordination des calculs distribués

entre plusieurs nœuds de calcul. Grâce à cette coordination, les différentes instances de la

simulation peuvent échanger des informations, et assurent ainsi la cohérence des résultats à

l’échelle globale. Les communications entre les nœuds de calcul, qu’elles soient synchrones

ou asynchrones, permettent de s’adapter aux besoins spécifiques de chaque scénario, et de

garantir que les dynamiques des agents soient mises à jour de manière continue et précise.

En plus du calcul inter-nœuds évoqués, l’approche UC permet également un calcul

intra-nœud, en exploitant les processeurs multi-cœurs de chaque unité. La combinaison

de calculs inter et intra-nœuds confère à l’approche UC un parallélisme multiniveau, qui

maximise l’efficacité des ressources matérielles. Elle permet de simuler le trafic à grande

échelle, impliquant des milliers, voire des millions d’agents, avec des temps de simulation

optimisés.

Dans l’application à MATSim, chaque instance du simulateur, exécutée sur un nœud,

partage des informations sur les plans des agents pour assurer la cohérence globale. Les

échanges peuvent être faits via des communications synchrones, avec des mises à jour

régulières, ou asynchrones, et offrent ainsi une plus grande flexibilité dans la gestion des

calculs en fonction des besoins du scénario.

Les simulations à grande échelle, notamment sur des systèmes distribués, sont souvent

exposées à des pannes matérielles ou des interruptions de communication. UC intègre donc

des mécanismes de tolérance aux pannes, pour assurer la continuité des calculs même en

cas de défaillance de certains nœuds, sans perte de données ni besoin de redémarrer la

simulation.

La combinaison de ces propriétés favorise l’exploitation quasi-exhaustive de l’ensemble

des solutions possibles.

Les tests effectués avec multiMATSim, une version de MATSim combinée à l’approche

UC, ont montré des gains importants en termes de temps de calcul et de scalabilité. Lors

de simulations impliquant des milliers d’agents dans de vastes réseaux urbains, UC a

permis de réduire les temps de calcul d’un facteur de 4 à 8 selon la taille des ensembles

de données et proportionnellement au nombre de nœuds utilisés. Aussi, cette méthode a

démontré une bonne scalabilité, aussi bien verticale qu’horizontale, avec une amélioration

continue des performances à mesure que la charge de données augmentait. Nous avons

sélectionné le scénario de Los Angeles en utilisant 0,1% et 1 % de la population totale,

correspondant respectivement à environ 19 000 et 191 000 agents. Ces scénarios ont été

choisis pour tester la robustesse et la scalabilité de notre méthode sur des populations de

tailles différentes, tout en maintenant un niveau élevé de détail dans les simulations. Pour

ces tests, nous avons utilisé un nombre variable de nœuds de calcul, à savoir 4 et 8 nœuds,

ce qui correspond à 4 et 8 instances de MATSim exécutées en parallèle. MATSim étant

un programme itératif, il prend en entrée un plan journalier pour chaque agent. Chaque

itération consiste en une simulation de 24 heures pour l’ensemble des agents, après laque-

lle les plans sont ajustés en fonction de leur performance. Le processus continue jusqu’à

ce qu’un équilibre soit atteint, où les plans des agents sont optimisés et stables, reflétant

un usage optimal du réseau de transport. Ces plans journaliers proviennent de diverses

sources, telles que des données d’enquêtes de mobilité ou des modèles synthétiques de pop-

ulation. Il est souvent nécessaire de procéder à plusieurs centaines d’itérations pour que

le modèle commence à converger vers une solution stable. Ce processus est extrêmement

coûteux en termes de temps de calcul, notamment pour les scénarios de grande enver-

gure. Par exemple, pour le scénario de Los Angeles avec 0.1 % de la population totale,

l’approche traditionnelle de MATSim peut nécessiter jusqu’à 6 heures pour commencer à

converger, dans nos conditions expérimentales. Ce temps de convergence élevé est dû à

la nature itérative de MATSim, où chaque itération affine progressivement les plans des

agents en fonction de leurs interactions avec le réseau de transport et les autres agents.

Cependant, en utilisant multiMATSim, avec 8 nœuds de calcul et après seulement un

échange de solutions intermédiaires entre les nœuds, nous avons observé une convergence

après seulement 45 minutes, soit un facteur d’accélération (speed-up) de 8 par rapport à

l’approche traditionnelle. Avec 4 nœuds de calcul, le temps de convergence a été réduit à

environ 90 minutes, ce qui correspond à un speed-up de 4. Bien que ces résultats soient

prometteurs, il est important de noter que nous ne pouvons pas attribuer directement

et systématiquement cette propriété de proportionnalité à l’augmentation du nombre de

nœuds. En effet, une évaluation plus approfondie nécessiterait un plus grand nombre

d’expérimentations avec différentes configurations de calcul et des scénarios plus diver-

sifiés. Néanmoins, ces premiers résultats ont mis en évidence la possibilité d’un speed-up

proportionnel au nombre de nœuds, ouvrant la voie à de futures recherches. De plus, nos

expérimentations ont montré des résultats encore plus encourageants avec le scénario à

1 % de la population totale, soit avec environ 191 000 agents. En effet, nous avons ob-

servé un speed-up légèrement supérieur à celui des simulations avec un plus petit nombre

d’agents. Ces résultats sont particulièrement intéressants car ils démontrent la capacité

de multiMATSim à non seulement gérer un grand nombre d’agents, mais également à

bénéficier d’une amélioration en termes de scalabilité lorsque la taille de la population

simulée augmente. Ces résultats ouvrent de nouvelles perspectives pour l’utilisation de

l’approche Unite and Conquer appliquée à MATSim, et à d’autres simulateurs de trafic

routier multi-agent.

À l’avenir, il serait pertinent d’augmenter encore le nombre de nœuds de calcul et

d’instances de MATSim afin de tester cette méthode avec des scénarios encore plus

conséquents, tels que des simulations à 100 % de la population de Los Angeles ou Berlin.

En augmentant le nombre d’agents et d’instances en parallèle, nous pourrions potentielle-

ment atteindre des niveaux de performance encore plus élevés et explorer des solutions

jusqu’ici inaccessibles avec des méthodes traditionnelles. Cela permettrait aussi d’évaluer

la robustesse de l’approche dans des environnements à très grande échelle, où les inter-

actions entre agents et les ajustements dynamiques du réseau de transport deviendraient

encore plus complexes.

Enfin, cette méthode se veut générique et vise à être applicable à d’autres simulateurs

de trafic multi-agents. MATSim a été choisi comme premier champ d’application en rai-

son de sa pertinence pour les simulations de trafic multi-agent et multimodales à grande

échelle.

3 Deuxième contribution : une méthode basée sur

l’IA pour la simulation de trafic multi-agent

La deuxième contribution de cette thèse repose sur l’utilisation de l’intelligence artifi-

cielle, spécifiquement les réseaux de neurones Multilayer Perceptrons, pour compresser

le processus de simulation de trafic multi-agent et accélérer l’obtention des résultats.

Contrairement à la méthode Unite and Conquer, qui vise à augmenter et paralléliser les

calculs pour explorer de manière exhaustive l’espace des solutions, cette approche repose

sur l’apprentissage automatique pour prédire les résultats d’une simulation à partir d’un

ensemble de données d’entrée. En modélisant les comportements d’agents via des MLP,

l’objectif est de réduire considérablement la complexité et le temps de calcul nécessaire

pour atteindre des résultats suffisamment précis.

Pour cette deuxième approche, nous nous sommes également basés sur MATSim, tout

comme pour la première contribution. L’utilisation répétée de MATSim dans cette thèse

s’explique non seulement par sa large adoption dans la communauté scientifique des sim-

ulations multi-agents, mais aussi par son aptitude à fournir des résultats rigoureux dans

des scénarios complexes. En choisissant MATSim comme premier champ d’application

de nos approches, nous avons pu garantir une certaine continuité dans nos expériences.

Toutefois, tout comme la première contribution, cette approche se veut générique et est

conçue pour être applicable à d’autres simulateurs de trafic multi-agents.

Dans cette deuxième contribution, nous avons mis en place un proof of concept. Pour

ce faire, nous avons extrait des scénarios de 1 000 agents à partir de simulations plus

vastes, impliquant un plus grand nombre d’agents. Ces scénarios réduits permettent

de mener des expérimentations à petite échelle tout en capturant la diversité des com-

portements observés dans des simulations de plus grande envergure. Dans un premier

temps, nous nous sommes concentrés uniquement sur les variables discrètes. Une fois ces

scénarios exécutés sur MATSim, ils ont permis de générer 7 000 ensembles de données

de sortie associés aux 7 000 ensembles de données d’entrée correspondants. Ces ensem-

bles de données ont ensuite servi à l’entrâınement et à la validation du modèle MLP. La

réduction de l’échelle des simulations a été justifiée par la nécessité de tester, dans un

premier temps, l’efficacité du modèle prédictif dans un cadre contrôlé. L’objectif était de

vérifier si un réseau de neurones pouvait capturer les dynamiques d’un groupe d’agents

tout en réduisant drastiquement le temps de calcul. Le modèle MLP développé comprend

plusieurs couches entièrement connectées, avec deux couches cachées de 256 neurones cha-

cune, et utilise la fonction d’activation ReLU (Rectified Linear Unit) pour modéliser les

relations non linéaires entre les variables d’entrée et de sortie. De plus, un mécanisme

de dropout a été intégré avec un taux de 0,1 pour prévenir le surapprentissage. Les sor-

ties du modèle MLP, sous forme de vecteurs continus, ont été arrondies pour générer

des valeurs discrètes représentant les modes de transport empruntés par les agents tout

au long de la journée. Le processus d’entrâınement a été réalisé en minimisant la Mean

Squared Error (MSE) entre les valeurs prédites par le MLP et celles issues des simulations

effectuées par MATSim. Cette fonction de perte a été choisie en raison de sa capacité

à pénaliser fortement les grandes erreurs, afin de garantir une attention particulière aux

écarts significatifs dans les prédictions. Nous avons également expérimenté la fonction

Huber loss pour mieux gérer les valeurs aberrantes. L’entrâınement du modèle s’est ef-

fectué sur 50 époques avec une taille de lot de 64, en utilisant l’optimiseur Adam avec un

taux d’apprentissage de 0,001. Les résultats montrent une Mean Absolute Error (MAE)

de 0,051 sur les données d’entrâınement et 0,0524 sur les données de validation, indiquant

une bonne précision dans la prédiction des modes de transport utilisés par les agents. Ces

résultats confirment que l’approche basée sur les MLP peut offrir des prédictions rapides et

précises, avec des temps de calcul considérablement réduits par rapport à une simulation

complète réalisée avec MATSim. Le caractère proof of concept de cette expérimentation

réside dans la démonstration qu’il est possible d’approximer efficacement une simulation

multi-agents de trafic détaillée grâce à un modèle prédictif beaucoup plus rapide, sans

trop sacrifier la précision des résultats pour certaines variables discrètes. En utilisant un

ensemble conséquent de données d’entrée-sortie, nous avons montré que le modèle MLP

pouvait capturer des dynamiques de trafic complexes et fournir des prédictions en un

temps presque instantané une fois le modèle entrâıné. Les résultats obtenus sont très

prometteurs, et ouvrent la voie à des applications plus larges de l’intelligence artificielle

pour la simulation de trafic multi-agent. Ces résultats suggèrent qu’il serait tout à fait

envisageable de poursuivre sur cette voie en cherchant à générer des variables continues,

en plus des variables discrètes, qui jouent toutes deux un rôle central dans les simula-

tions de trafic multi-agents. L’extension à des variables continues permettrait d’élargir

considérablement le champ d’application de cette approche et d’atteindre une couver-

ture complète des variables de sortie des simulations. Cela inclurait non seulement les

choix de modes de transport des agents, mais aussi d’autres paramètres tels que les dis-

tances parcourues, les durées de trajet, et les interactions complexes entre les agents et

l’infrastructure routière. Une telle extension transformerait notre modèle prédictif en

un outil capable de générer la totalité des plans ajustés des agents dans une simulation

donnée. Ces plans ajustés représentent un résultat clé, car ils décrivent les comportements

quotidiens des individus dans un réseau de transport dynamique, en tenant compte des

ajustements que ces individus font en fonction de leurs expériences passées, des contraintes

temporelles, et des interactions avec les autres agents.

L’étape suivante consisterait à appliquer cette approche à des scénarios de plus grande

envergure, avec des centaines de milliers, voire des millions d’agents, répartis sur des zones

géographiques étendues. Evaluer le modèle sur de tels scénarios permettrait de vérifier

sa robustesse et sa capacité à s’adapter à des environnements plus complexes et variés.

Il s’agirait ici de simuler des métropoles entières, où la dynamique du trafic est plus

imprévisible, impliquant des interactions massives entre les agents et des structures ur-

baines hétérogènes. L’intelligence artificielle pourrait jouer un rôle clé dans la gestion

de ces grands réseaux urbains, facilitant l’anticipation des flux de trafic et le test rapide

des effets de nouvelles infrastructures ou de politiques de transport en un temps record.

Une question fondamentale reste cependant en suspens : dans quelle mesure peut-on

développer un modèle générique, c’est-à-dire un modèle capable de générer des solutions

prédictives fiables indépendamment de la zone géographique simulée, de sa topologie, du

comportement de ses habitants, ou du nombre d’agents impliqués ? Cette problématique

est essentielle car, actuellement, les simulations de trafic sont souvent calibrées pour

des environnements spécifiques, ce qui limite leur portabilité. Le développement d’un

tel modèle pourrait transformer la manière dont les simulations de trafic sont utilisées,

en permettant aux décideurs et aux urbanistes de tester rapidement des scénarios dans

n’importe quelle ville, région ou contexte géographique, sans avoir à passer par des étapes

fastidieuses de recalibrage. Cela soulève également la question de la capacité des modèles

d’IA à s’adapter et à apprendre en continu à partir de nouvelles données. Une des pistes

de recherche prometteuses serait d’introduire des mécanismes d’apprentissage dynamique

dans les modèles d’IA, où le modèle pourrait s’améliorer au fur et à mesure qu’il reçoit de

nouvelles informations provenant de la réalité, par exemple à travers des capteurs ou des

données en temps réel. Cela offrirait la possibilité de créer des simulations adaptatives,

capables de s’ajuster au fur et à mesure que les conditions de trafic évoluent, offrant ainsi

une représentation plus précise et plus réactive des réseaux de transport urbains.

Finalement, l’utilisation de l’intelligence artificielle pour la simulation de trafic multi-

agents, à travers des approches comme les réseaux de neurones MLP, présente un potentiel

considérable pour transformer ce domaine. À mesure que les méthodes d’IA continuent

de se développer, elles pourront aider à surmonter les limitations actuelles des simula-

tions basées sur des modèles heuristiques ou purement déterministes, en apportant des

solutions plus flexibles, rapides et généralisables. Bien que de nombreuses problématiques

techniques et théoriques subsistent, ces premiers résultats constituent une base solide pour

la poursuite de recherches dans cette direction. L’ambition ultime serait de parvenir à un

système de simulation intelligent, capable de prédire et d’optimiser les flux de transport

de manière efficace, pour toute ville ou région, en s’adaptant constamment aux change-

ments dans l’environnement et dans les comportements des utilisateurs.

Comme précisé précedemment, même si cette méthode a été pratiquée principalement avec

MATSim; elle se veut générique et adaptable à d’autres simulateurs multi-agents. MAT-

Sim a servi ici comme plateforme initiale en raison de sa capacité à générer des données

complexes et diversifiées, mais l’ambition à terme est d’étendre cette méthodologie à des

environnements de simulation variés, en démontrant que l’intelligence artificielle peut of-

frir des solutions efficaces pour accélérer et simplifier les simulations de trafic, tout en

maintenant des niveaux élevés de précision et de scalabilité.

4 Conclusions et perspectives

Cette thèse a exploré deux approches complémentaires pour résoudre les problèmes de

scalabilité et d’efficacité dans les simulations de trafic multi-agents. Bien que les deux

approches développées dans cette thèse apportent des résultats prometteurs, certaines

limites subsistent et ouvrent des pistes pour des recherches futures. Dans le cadre de

l’approche basée sur Unite and Conquer, une optimisation plus poussée de la répartition

de charge entre les nœuds et une réduction des surcharges de communication permettraient

d’améliorer encore les performances. Par ailleurs, l’intégration de modèles prédictifs basés

sur l’IA pour anticiper les comportements des agents pourrait alléger davantage la charge

de calcul. Pour l’approche basée sur les MLP, l’enjeu principal reste la généralisation à

de nouveaux scénarios. Des techniques telles que le Transfer Learning ou l’adaptation de

domaine devraient être explorées pour améliorer la capacité du modèle à s’adapter à des

environnements différents de ceux utilisés pour l’entrâınement. Enfin, l’exploration de

modèles neuronaux plus avancés, tels que les Transformers, pourrait offrir une meilleure

capture des interactions entre agents tout en maintenant l’efficacité des calculs. En per-

spectives, une piste de recherche particulièrement prometteuse consisterait à combiner

l’approche Unite and Conquer avec celle basée sur les réseaux de neurones, pour tirer

parti des avantages de chacune et surmonter certaines de leurs limites. L’idée serait

d’explorer le champ des poids possibles pour chaque neurone dans le modèle prédictif,

en utilisant la puissance de calcul distribué inhérente à la méthode Unite and Conquer.

En d’autres termes, il s’agirait de répartir le processus d’apprentissage des réseaux de

neurones sur plusieurs nœuds de calcul, en parallèle, afin d’accélérer considérablement la

convergence du modèle, ceci en explorant efficacement les différents paramètres. Chaque

nœud pourrait explorer une combinaison spécifique de poids et de biais pour les neurones,

tout en communiquant les résultats à intervalles réguliers pour ajuster la direction de

l’apprentissage global du modèle. Cela permettrait de tester simultanément plusieurs con-

figurations de neurones, réduisant ainsi le temps nécessaire pour trouver les paramètres

optimaux. En combinant ces deux méthodes, on pourrait non seulement optimiser le

temps d’apprentissage, mais aussi augmenter la précision du modèle, car l’approche dis-

tribuée faciliterait l’exploration d’un plus large espace de solutions. Cette exploration

distribuée pourrait également s’adapter dynamiquement en fonction des performances

observées dans chaque nœud, ce qui favoriserait un ajustement intelligent des ressources

de calcul vers les configurations les plus prometteuses. De plus, l’intégration de cette ap-

proche hybride permettrait également de résoudre partiellement les problématiques liées

à la généralisation des modèles MLP. En explorant un espace de solutions plus large

et en adaptant les configurations de neurones en temps réel, on pourrait concevoir un

modèle plus robuste, capable de mieux s’adapter à des environnements ou des scénarios

très différents de ceux utilisés lors de l’entrâınement initial. Cela offrirait une capacité de

généralisation bien supérieure, en combinant la flexibilité des réseaux de neurones avec

l’efficacité de la distribution de charge offerte par Unite and Conquer.

En conclusion, cette thèse a démontré que l’utilisation de concepts liés au calcul haute

performance et à l’intelligence artificielle apporte des résultats prometteurs pour améliorer

les performances des simulateurs de trafic multi-agents. L’approche UC offre une solution

robuste pour des simulations à grande échelle nécessitant une exploration détaillée, tan-

dis que l’approche MLP propose une alternative rapide et efficace pour des applications

nécessitant des réponses quasi instantanées. Ces deux approches représentent un pas im-

portant vers des outils de simulation plus performants, adaptés aux besoins croissants des

villes intelligentes et des systèmes de transport modernes.

	Introduction
	Motivations
	Problem Statement
	Contributions
	Organization

	State of the Art
	Introduction
	Multi-Agent Traffic Simulators
	History and Development
	Principles and Operation
	Key Examples

	Challenges and Limitations of Multi-Agent Simulators
	Performance Issues
	Complexity and Realism vs Computational Performance

	HPC-Oriented Design of Multi-Agent Traffic Simulator
	HPC-Oriented Design for Traffic Simulators
	HPC Applied to Traffic Simulators

	AI and Road Traffic Simulation
	Integration of Autonomous Vehicles
	Real-time Traffic Optimization

	Conclusion

	Unite and Conquer Approach
	Contextualization and Justification of the Approach
	Fundamental Principles
	Optimization of Communications
	Fault Tolerance
	Diversity of Parallelism and Load Balancing
	Collaboration and Dynamic Selection

	Examples of UC methods
	Hybrid LS-Arnoldi/GMRES Method
	Multiple Explicitly Arnoldi Method (MERAM)

	UC Application to Traffic Simulation

	HPC for Multi-agent Simulation
	Parallel Architectural Fundamentals
	High Performance Architectures
	Fugaku Supercomputer
	Cygnus Supercomputer
	Pegasus Supercomputer
	Ruche HPC Cluster

	Parallel Programming Models and Software Support Frameworks
	Pegasus
	YML: A Framework for Global Computing Environments

	Convergence of HPC and AI
	Conclusion

	Contribution to the Modeling of Multi-agent Traffic Simulators
	MATSim as a Case Study
	MATSim Overall Functioning
	Operational Modules
	Replanning Module in MATSim

	multiMATSim : A Unite and Conquer-based Approach
	Description
	Methodology

	AI-based Approach
	Data Preparation
	Model Architecture
	Model Configuration
	Loss Functions and Metrics
	Optimization and Adjustments

	High Performance multiMATSim
	Parallel Programming Model for multiMATSim
	Parallel Implementation of multiMATSim
	Shared Memory Computing
	Distributed Computing
	Communications
	Transition to Other Potential Models

	Experimental Results and Performance Analysis
	multiMATSim
	Results: Scalability
	Discussion: Scalability and Performance Insights
	Results and Influence of step Value Variation
	Performance Comparison between A64FX and Intel Xeon Gold 6230 for MATSim
	Discussion on Performance Differences
	Conceptual and Empirical Analysis of multiMATSim
	Conceptual hypotheses explaining the effectiveness of multiMATSim

	AI-based Approach
	Model Performance Metrics
	Error Analysis
	Comparison of Loss Functions and Their Impact on Predictions
	Impact of Hyperparameters
	Discussion on the Benefits of the AI-based Approach
	Scalability and Limitations of MLP
	Reproduction of Heuristic Results by AI

	Conclusion
	Summary of Contributions
	Discussion and Perspectives
	Challenges and Limitations
	Future Research Directions
	Conclusion

