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Résumé Un FPGA ('Field Programmable Gate Array’) est un circuit intégré
comprenant un grand nombre de ressources logiques programmables et intercon-
nectables, qui permettent de mettre en ceuvre, par programmation, un circuit
électronique numeérique tel qu’un microprocesseur, un accélérateur de calcul ou
un systéme hybride complexe sur puce. Les FPGA sont largement utilisés dans
le domaine de la conception de circuits intégrés, car ils permettent d’obtenir trés
rapidement des circuits prototypes, sans avoir a fabriquer la puce sur silicium.
Cependant, certains circuits sont trop grands pour étre mis en ceuvre sur un seul
FPGA. Pour résoudre ce probléme, il est possible d’utiliser une plate-forme com-
posée de plusieurs FPGA fortement interconnectés, qui peut étre considérée comme
un seul FPGA virtuel donnant accés a toutes les ressources de la plate-forme. Cette
solution, bien qu’élégante, pose plusieurs problémes. En particulier, les outils ex-
istants ne tiennent pas compte de toutes les contraintes du probléme de placement
a résoudre pour cartographier efficacement un circuit sur une plate-forme multi-
FPGA. Par exemple, les fonctions de coiit actuelles ne sont pas congues pour
minimiser les temps de propagation du signal entre les registres du FPGA, ni pour
prendre en compte les contraintes de capacité induites par le routage des connex-
ions. L’objectif de ce travail de doctorat est de concevoir des modéles de par-
titionnement et de placement d’hypergraphes adaptés au probléme de placement
des circuits sur une plate-forme multi-FPGA. Ces modéles seront spécifiquement
congus pour répondre aux objectifs et aux critéres de performance définis par les
concepteurs de circuits.

Mots-clés partitionnement, hypergraphe

Laboratoire d’accueil Centre d’intégration Nano-INNOV - CEA-LIST - Uni-
versité Paris-Saclay, 2 Bd Thomas Gobert, 91120 Palaiseau
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Title Circuit partitioning for multi-FPGA platforms

Abstract An FPGA (’Field Programmable Gate Array’) is an integrated circuit
comprising a large number of programmable and interconnectable logic resources,
which allow one to implement, by programming, a digital electronic circuit such
as a microprocessor, a compute accelerator or a complex hybrid system-on-chip.
FPGAs are widely used in the field of integrated circuits design, because they
allow one to obtain prototype circuits very quickly, without having to manufacture
the chip on silicon. However, some circuits are too big to be implemented on a
single FPGA. To address this issue, it is possible to use a platform consisting
of several highly interconnected FPGAs, which can be seen as a single virtual
FPGA giving access to all the resources of the platform. This solution, although
elegant, poses several problems. In particular, the existing tools do not account
for all the constraints of the placement problem to be solved in order to efficiently
map a circuit onto a multi-FPGA platform. For example, current cost functions
are not designed to minimize signal propagation times between FPGA registers,
nor do they take into account the capacity constraints induced by the routing
of connections. The aim of this PhD work is to design hypergraph partitioning
and placement models adapted to the problem of circuit layout on a multi-FPGA
platform. These models will be specifically designed to meet the objectives and
performance criteria defined by circuit designers.

Keywords partitioning, hypergraph

Hosting Laboratory Centre d’intégration Nano-INNOV - CEA-LIST - Univer-
sité Paris-Saclay, 2 Bd Thomas Gobert, 91120 Palaiseau
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Résumé étendu en francais



Un FPGA ("Field Programmable Gate Array") est un circuit intégré com-
prenant un grand nombre de ressources logiques programmables et interconnecta-
bles. Ces ressources permettent d’implémenter, par programmation, un circuit
électronique numérique tel qu’un microprocesseur, un accélérateur de calculs ou
un systéme hybride complexe sur puce. Les FPGA sont largement utilisés dans
le domaine de la conception de circuits intégrés, car ils permettent d’obtenir des
circuits prototypes trés rapidement, sans devoir fabriquer la puce sur silicium.
Cependant, certains circuits sont trop grands pour étre implantés sur un seul
FPGA. Pour résoudre ce probléme, il est possible d’utiliser une plate-forme com-
posée de plusieurs FPGA fortement interconnectés, qui peuvent étre considérés
comme un seul FPGA virtuel donnant accés & toutes les ressources de la plate-
forme. Cette solution, bien qu’élégante, pose plusieurs problémes. En particulier,
les outils existants ne tiennent pas compte de toutes les contraintes du probléme
de placement a résoudre pour placer efficacement un circuit sur une plate-forme
multi-FPGA. Par exemple, les fonctions de cotit actuelles ne sont pas congues pour
minimiser le temps de propagation des signaux entre les registres, qui est pourtant
crucial pour la performance du prototype résultant, ni ne prennent en compte les
contraintes de capacité induites par le routage des connexions.

Le processus typique de conception de matériel électronique numérique com-
prend plusieurs étapes, incluant le prototypage, la vérification, le placement et
le routage, qui peuvent concerner de trés grands circuits logiques. Les méthodes
mises en oeuvre au cours de ces étapes tirent souvent parti d’approches de type
« diviser pour régner », afin de séparer les circuits en sous-circuits de plus petites
tailles. Ces sous-systémes sont plus faciles & manipuler et visent a réduire le travail
sur le circuit global.

Pour prototyper de grands circuits qui ne peuvent étre implantés dans un seul
FPGA, une plate-forme multi-FPGA est nécessaire. Dans ce cas, 'approche « di-
viser pour régner » est utilisée pour diviser les circuits en plusieurs morceaux, un
pour chaque FPGA. Pour produire des partitions valables, il faut tenir compte
des limites de capacité de chaque FPGA et des liens d’interconnexion. En outre,
les partitions doivent éviter d’augmenter la longueur du chemin le plus long, ap-
pelé chemin critique. FEn effet, pour les circuits VLSI, la longueur du chemin
critique détermine la fréquence maximale a laquelle le circuit peut fonctionner, et
le placement de longs chemins sur plusieurs FPGA est susceptible de dégrader le
chemin critique, du fait du temps de traversée plus long entre les deux composants.

L’objectif de cette thése est de concevoir des modéles de partitionnement et de
placement d’hypergraphes adaptés au probléme de 'implantation de circuits sur
une plate-forme composée de plusieurs FPGA. Ces modéles seront spécifiquement
congus pour répondre aux objectifs et aux critéres de performance définis par les
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concepteurs de circuits.

Le partitionnement d’hypergraphe multi-contraintes (MCHP) est couramment
utilisé pour résoudre le probléme de partitionnement de circuits et de prototy-
page. Dans ce contexte, les sommets de I'’hypergraphe modélisent les broches des
composants logiques et les hyperarétes de ’hypergraphe représentent les fils qui les
relient. Le probléme de partitionnement équilibré des graphes est un probléme NP-
Difficile [125] pour lequel il n’existe pas de facteur d’approximation constant [11]
a moins que P = NP.

Au cours des 30 derniéres années, plusieurs outils de partitionnement d’hyper-
graphes ont été développés, tels que HMETIS et son dérivé KHMETIS, PATOH
et KAHYPAR. Ces outils cherchent & minimiser la coupe (ou min-cut) entre les
différentes parties calculées, cette coupe pouvant étre mesurée selon différentes
métriques.

Pour répartir les sommets entre les différentes parties, ces outils utilisent un
schéma multi-niveaux, qui se compose de trois phases: contraction, partitionnement
initial, et raffinement. La phase de contraction utilise récursivement une méth-
ode de regroupement pour transformer le probléme en un probléme plus petit, qui
posséde les mémes propriétés topologiques. Ensuite, un partitionnement initial est
calculé sur le plus petit probléme. Enfin, pour chaque niveau, la solution du niveau
le plus grossier est prolongée jusqu’au niveau le plus fin, puis affinée a ’aide d’'un
algorithme d’optimisation locale. L’utilisation du schéma multi-niveaux permet de
réduire le temps de calcul par rapport a une approche de partitionnement directe,
les algorithmes de partitionnement les plus cotiteux n’étant appliqués qu’aux hy-
pergraphes les plus petits, alors que les algorithmes d’otimisation locale sont moins
gourmands en ressources du fait qu’ils n’opérent que sur une zone réduite des hy-
pergraphes, a savoir la frontiére entre les parties déja trouvées.

Etat de Dart

De nombreuses approches ont été tentées pour améliorer les performances du par-
titionnement de circuits. Nous présentons ici quelques travaux récents sur le parti-
tionnement de circuits pour le prototypage rapide qui prennent en compte les con-
traintes de performance. Beaucoup de ces travaux utilisent des outils de partition-
nement min-cut existants, utilisés comme des boites noires, au sein d’algorithmes
plus complexes, en pondérant les sommets et arétes des hypergraphes afin de pren-
dre en compte des contraintes supplémentaires que le partitionneur doit respecter.

Par exemple, dans [4], les auteurs présentent une approche multi-objectif basée
sur HMETIS. Les auteurs déterminent un ensemble fini de chemins les plus cri-
tiques a chaque étape de partitionnement, en utilisant un cotit tenant compte de
trois facteurs : la longueur du chemin critique, le nombre de fois ol les chemins
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de longueur critique sont coupés et le poids des hyperarcs associés aux chemins
critiques.

Dans [38], les auteurs comparent une méthode classique utilisant HMETIS pour
le partitionnement, suivie d’'un algorithme de placement, & une approche dérivée
qui effectue du placement et du routage pendant 1’étape de partitionnement.
Les résultats produisent de meilleures valeurs de chemin critique par rapport a
lapproche en deux étapes. Plus récemment, dans [127], les auteurs effectuent
un pré-traitement et un post-traitement de I’hypergraphe considéré afin d’intégrer
I’objectif de minimisation du chemin critique dans la métrique de la taille de coupe,
en utilisant HMETIS comme outil de partitionnement. Cependant, la minimisation
de la taille des coupes n’est souvent pas 1’objectif le plus pertinent. En outre, le fait
de biaiser les fonctions de cott min-cut pour prendre en compte la minimisation
du cotit de chemins est insuffisant.

Contributions

Nos travaux portent sur le calcul du partitionnement équilibré d’hypergraphes
avec minimisation de codt du chemin critique, en plus de I'objectif classique de
la minimisation de coupe, qui est toujours pertinent pour nous car il contribue a
réduire les contraintes de capacité de communication entre FPGA.

La premiére contribution de cette thése est la définition d’une représenta-
tion spécifique des circuits électroniques numériques qui consiste en une union
d’hypergraphes acycliques orientés (ou DAH, pour directed acyclic hypergraph) [160].
L’hypergraphe global représentant 1’ensemble du circuit est supposé étre connexe ;
dans le cas contraire, ses composantes connexes peuvent étre traitées indépendam-
ment, aux capacités des FPGA prés. Les sommets source et puits de chaque DAH
sont étiquetés en rouge, tandis que les autres sommets sont en noir. Les sommets
rouges représentent généralement des registres et des ports d’entrée sortie (E/S)
et peuvent étre partagés entre plusieurs DAH, ce qui rend connexe I’hypergraphe
global. Les sommets noirs représentent des circuits combinatoires. Une fonction de
colit des chemins modélise 'impact d’une coupe sur les chemins des DAHs pendant
le partitionnement. Chaque partition d’un hypergraphe entrainera des coupures
le long de certains chemins, induisant un cotit de traversée supplémentaire. Notre
objectif est de trouver une partition qui réduise la longueur maximale du chemin
entre deux sommets rouges, qui correspond au temps minimum nécessaire pour
calculer et sauvegarder les données de 1’état du circuit dans les registres, et qui
minimise également la taille de la coupe. Dans notre contexte, nous supposons
que le cotit de routage entre les parties puisse étre non uniforme.

La plupart des méthodes actuelles de partitionnement de circuits sont basées
sur des outils de partitionnement de graphes a usage général disponibles publique-
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ment. Cependant, les outils de partitionnement actuels utilisent un modéle de cofit
qui n’est pas adapté au probléme traité dans cette thése. De plus amples détails
sur les méthodes actuelles et leurs limites peuvent étre trouvés dans le chapitre 2.

L’accent est d’abord mis sur les algorithmes de regroupement, c’est-a-dire les
algorithmes dont l'objectif est de réduire la taille du probléme. Ces algorithmes
procédent par fusion de sommets, c’est-a-dire que deux sommets deviennent un
seul sommet ayant un poids égal a la somme des deux sommets regroupés. A
ce titre, cette thése propose une étude sur la pertinence du choix des sommets
a fusionner. Dans cette étude, nous proposons de pondérer un couple de som-
mets en fonction du chemin critique local qui les traverse. Sur la base de cette
stratégie de pondération, nous proposons une adaptation de ’algorithme de con-
traction d’hypergraphes Heavy Edge Matching (HEM), ainsi qu’un algorithme de
regroupement de sommets (clustering), appelé Binary Search Clustering (BSC).
Les résultats expérimentaux démontrent que ’algorithme BSC est plus performant
que I'algorithme HEM sur notre modéle de pondération précité. La poursuite de
nos travaux sur ce probléme de regroupement concerne le rapport d’approximation
paramétré par la taille maximum dun groupe (cluster). Nous démontrons sous
certaines hypothéses, une amélioration du rapport d’approximation, c’est-a-dire,
le rapport entre le cout de la pire solution et la meilleure solution.

D’autres contributions de cette thése concernent des algorithmes de parti-
tionnement gloutons, présentés pour la premiére fois dans notre travail [160],
et une approche de programmation en nombres entiers basée sur des contraintes
d’ordonnancement tirées de notre travail [161]. Les algorithmes gloutons sont basés
sur des algorithmes de parcours d’hypergraphe tels que le parcours en largeur et le
parcours en profondeur. Nous avons aussi étudié un algorithme basé sur le calcule
des composantes connexes. Afin de créer plusieurs composantes, nous fixons une
taille & ne pas dépasser pour chaque composante. Dans nos travaux, nous tirons
profit de notre schéma de pondération afin de guider I'algorithme de calcul des
composantes connexes dans I'’hypergraphes. Notons que ces algorithmes ne tien-
nent pas compte de la topologie cible. De fait, les résultats obtenus nous montrent
que ces algorithmes sont performants vis-a-vis de ’état de 'art sur des topolo-
gies totalement connectées (graphe complet), mais moins efficaces pour d’autres
topologies.

La suite de nos travaux s’est concentrée sur une extension de l'algorithme de
recherche locale proposé par C. Fidducia et R. Mattheyses [75]. Notre algorithme
étendu, appelé DKFM, permet d’optimiser la dégradation du chemin critique d’'un
circuit pour une partition passée en parameétre. Nous avons remarqué lors de nos
expérimentations que notre algorithme DKFM permet de réduire la dégradation
du chemin critique. Cependant, comme DKFM est un algorithme de recherche
local, I'optimisation reste limitée vis-a-vis de partitions initiales calculées sans
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tenir compte de la topologie cible.

Perspectives

Tous nos algorithmes ont été mis en ceuvre en langage C, dans un cadre logiciel
composé de structures de données pour représenter notre modéle d’hypergraphe
rouge-noir, ainsi que des routines de service auxiliaires. Le probléme de parti-
tionnement adressé dans cette thése différe du probléme de partitionnement traité
par les outils HMETIS, KHMETIS, KAHYPAR et PATOH et, & notre connaissance,
il n’existe pas d’outil public dédié a notre probléme de partitionnement. Nous
avons donc décidé de formaliser notre travail dans le logiciel RAISIN. Cet outil
comprend un schéma de partitionnement composé des algorithmes présentés dans
cette thése, y compris une adaptation de notre algorithme de raffinement appelé
DKFM. Notre algorithme de raffinement tient compte de la topologie mais peut
ne pas étre en mesure de fixer un partitionnement initial ne tenant pas compte de
la topologie, car un algorithme de raffinement local n’est pas cong¢u pour recon-
sidérer les décisions globales. Par conséquent, la prise en compte de la topologie
cible devrait étre intégrée dans les algorithmes de partitionnement initial.

Notons également qu’il existe des biais d’approximation sur les chemins, crées
pendant la phase de contraction. En effet, lorsque des sommets sont fusionnés
ensemble, des faux chemins peuvent étre crée et pris en compte. Par conséquent le
maintient d’un cohérence sur chemins combinatoire doivent étre étudiés et ajoutés
au sein des algorithmes de contractions afin de faciliter le travail pour les algo-
rithmes de partitionnement initiaux et de raffinement.
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Digital electronic circuits

In the context of prototyping digital circuits on a multiple Field Programmable
Gate Array (FPGA), the circuit may be divided into smaller, manageable sections
that can be implemented on separate Field-Programmable Gate Arrays (FPGAs)
for testing and validation. This process is a crucial step in designing and testing
large, complex digital systems.

Digital electronic circuits

A digital electronic circuit is a system of interconnected electronic components
that manipulate discrete, binary signals to perform specific functions. Unlike ana-
log circuits, which deal with continuous, varying signals, digital circuits operate
using two discrete states: 0 (low) and 1 (high). These states represent binary
logic levels and are used to represent information in a form that can be easily
processed, stored, and transmitted by digital systems like computers. A digital
circuit consists of several key components that collectively process binary signals,
enabling boolean manipulation of information in electronic devices. Logic gates
are the basic building blocks that perform basic boolean operations such as AND,
OR and NOT, based on input signal values. Flip-flops, also denoted as registers,
are used to store temporary data at fixed moments in time, determined by a global
clock signal that periodically oscillates between 0 and 1. This is useful for both
temporary storage and global synchronization between parts of the circuit. There-
fore, digital electronic circuits are globally synchronized by the clock signal. Logic
gates and flip-flops are the elementary blocks for constructing more complex struc-
tures: counters generate sequences of binary numbers, essential for applications
such as timing and event counting. Multiplexers and demultiplexers make it easier
to route signals to different destinations. Arithmetic and Logic Units (ALUs) per-
form arithmetic and logic operations. Memory units store data and instructions,
distinguishing between volatile (such as RAM) and non-volatile (such as ROM)
types. Microprocessors and controllers act as central processing units, executing
instructions in digital systems. Together, these components enable electronic de-
vices to process information with precision and reliability. A microprocessor or
controller is an assembly of different types of units as described above.

Field-Programmable Gate Arrays

A Field Programmable Gate Array (FPGA) is a versatile electronic device that
primarily consists of a matrix of programmable logic gates, a configurable in-
terconnect network, programmable memories, clock management, input/output
interfaces, a power management system. The logic gate array is the heart of the
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FPGA, providing configurable blocks to perform various logic operations. De-
pending on the FPGA used, other elements may be present, such as hardwired
multipliers or accelerators for neural network inference. Interconnects are used to
link these elements and provide the necessary connections. Programmable memory
resources are used to store data. The device also contains mechanisms for man-
aging the clock signal, pins for I/O, a configuration block for storing parameters,
and a power management system to ensure proper operation. Depending on the
specific design, additional features such as specialized interfaces may be present
for specific applications. These specific resources enable the implementation of
complex digital electronic circuits by interconnecting them. FPGAs are repro-
grammable after fabrication, allowing rapid design iterations and customization
for specific tasks [28]. Their parallel processing capability, derived from an array
of programmable logic devices connected by configurable routing resources, makes
them exceptionally efficient for tasks requiring simultaneous operations. This fea-
ture is critical for accelerating computations in scientific applications, such as
high-performance computing for simulation and scientific modeling. Their adapt-
ability and programmability are essential in scientific research and development,
enabling rapid prototyping and testing of novel algorithms and hardware designs.
Overall, FPGAs are a cornerstone technology in modern digital electronics, with
far-reaching implications for scientific and technological progress.

Circuit partitioning for rapid prototyping

Circuit partitioning consist in dividing the circuit into different parts. In the con-
text of circuit prototyping, a circuit is synthesized and implemented on an FPGA.
When a circuit is too large to fit into a single FPGA, a multi-FPGA platform may
be used. The step of partitioning a digital circuit for a multi-FPGA platform for
rapid prototyping is a critical methodology in digital system design. It involves
breaking down a complex electronic circuit into smaller, manageable sections that
can then be implemented on separate FPGAs for testing and validation. This
process allows designers to distribute the computational load across multiple FP-
GAs, enabling the system to handle more complex tasks than a single FPGA could
handle alone.

Partitioning must aim to optimize performance, resource utilization, and com-
munication between FPGAs. Partitioning can potentially reduce circuit perfor-
mance because communication between two FPGAs adds some amount of delay.
Moreover, multi-FPGA platforms cannot be fully interconnected, so additional
routing delay can also affect circuit performance. By carefully assigning specific
modules or functions to different FPGAs, engineers can strike a balance between
minimizing inter-FPGA communication and ensuring that each FPGA has suffi-
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cient resources to perform its designated tasks effectively. This approach is particu-
larly valuable when designing large-scale digital systems, such as high-performance
computing applications, where the complexity and computational demands require
the use of multiple FPGAs working together.

The effectiveness of the partitioning strategy will greatly influence the success
of the multi-FPGA prototype.

A formal definition for the problem of circuit partitioning for multi-FPGAs
platform can be found in Chapter 1, section 1.3.

Contributions

The first contribution of this thesis is the definition of the red-black hypergraph
model, which is an extension of hypergraphs dedicated to the representation of
digital electronic circuits. This representation allows us to better model physical
constraints such as how partitioning affects performance, which is one of the main
objectives addressed in this thesis. Based on this abstraction, we design a cost
model and specific algorithms to solve the circuit partitioning problem for multi-
FPGA platforms. Most current circuit partitioning methods are based on publicly
available general-purpose graph partitioning tools. However, current partitioning
tools use a cost model that is not suited for the problem addressed in this thesis.
More details on current methods and their limitations can be found in Chapter 2.

Existing tools take advantage of the multilevel framework, which consists of
three phases: coarsening, initial partitioning and refinement. The coarsening phase
recursively uses a clustering method to transform the circuit model into a smaller
one. During the second phase, an initial partitioning is computed on the resulting
smaller circuit. Then, in the third phase, an algorithm is applied at each recursion
level to prolong the computed circuit partition to the upper level and subsequently
refine it. The multilevel framework reduces computation time compared to a direct
partitioning approach. Computation time is important because partitioning a large
circuit is a difficult and time-consuming problem. This is why this thesis presents
algorithms for each stage of the multilevel framework.

The initial focus is on clustering algorithms, i.e., algorithms whose goal is to
reduce problem size. These algorithms proceed by merging elements, i.e., two ele-
ments become a single element with a weight equal to the sum of the weights of the
merged elements. For that matter, this thesis proposes a study on the relevance
of the choice of the elements to be merged. Based on this study, an adaptation of
the Heavy Edge Matching (HEM) algorithm is proposed, as well as a clustering
algorithm with variable cluster size, called Binary Search Clustering (BSC). Ex-
perimental results demonstrate that BSC performs better than HEM on our circuit
model. An improved result for the approximation complexity parameterized by
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cluster size is also presented in this study on clustering algorithms [162].

Other contributions of this thesis concern greedy partitioning algorithms, De-
rived Breadth-First Search (DBFS) and Derived Depth-First Search (DDFS), both
first introduced in our work [160]. DBFS and DDFS specialize the breadth-first
search and depth-first search by adapting the traversal rules in order to tackle the
purpose of this thesis. Alongside the study of greedy algorithms, we explore an
integer programming approach based on scheduling constraints [161]. Later, we
evidence that integer programming is difficult to implement on large instances.
Finally, an extension of the Fidducia and Mattheyses refinement algorithm [75]
for the problem addressed in this thesis is proposed in our work [160].

Outline

The following chapters present the main contributions of the thesis. Chapter 1
introduces the notations and definitions used in this dissertation. Our cost model
and hypergraph structure are defined in this Chapter. Chapter 2 presents the cur-
rent state-of-the-art in circuit partitioning. Chapter 3 introduces the experimental
setup and the methodology to evaluate and compare our algorithms to the state-of-
the-art. Chapter 4 introduces a weighting scheme and two clustering algorithms:
an extension of heavy edge matching and the binary search clustering algorithm,
and an approximation algorithm parameterized by cluster size. Chapter 5 presents
greedy partitioning methods based on path algorithms, as well as an integer pro-
gramming approach. Chapter 6 presents a solution refinement algorithm for the
path length-aware partitioning problem.

Finally, a conclusion and perspectives for this work are presented in the last
chapter of this thesis.

Appendix A.1 presents detailed experimental results obtained using the algo-
rithms presented in the previous chapters and implemented in the open source
RAISIN software. I have written RAISIN during my PhD studies and it is the
testing ground for all of the algorithms that are presented in this thesis.

Red-Black Hypergraph Partitioning 11
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1.1. Graphs and Hypergraphs

This chapter presents notations and definitions concerning graphs and hyper-
graphs, and operations attached to them. In Section 1.1 graphs, hypergraphs and
the red-black hypergraph are defined.

The notion of criticality is presented in Section 1.2, and the problem of parti-
tioning for path-length minimization to a target topology is defined in Section 1.3.
A conclusion of this chapter can be found in Section 1.4.

1.1 Graphs and Hypergraphs

In this section, we define graphs, hypergraphs and notions attached to them. These
mathematical objects will be used throughout this thesis, as support for proofs.
The first paper on the use of graphs in a mathematical context is an article by the
Swiss mathematician Leonhard Euler, published in 1741 [70]. This article deals
with the famous problem of the "seven bridges of Konigsberg". The problem was
to find a way for a traveler to return to their starting point, by crossing each
bridge exactly once. Hypergraphs are a generalization of graphs. They were first
introduced by Claude Berge in his book Graphes et Hypergraphes, published in
1970 [21].

1.1.1 Graphs

Definition 1.1.1. A graph G e (V, E) is defined as a set of vertices V', and a set
of edges EI. An edge is an unordered set of vertexr duplets.

In this thesis, we consider the sets V' and E to be finite. Given some graph G,
we denote the set of vertices by V(G) and the set of edges by E(G). The number
of vertices in a graph is called the order of the graph, noted |V (G)|. As V(G) and
E(G) can be weighted, we will denote by Wy the set of vertex weights, and Wg
the set of the edge weights. The weights can be multivalued.

Definition 1.1.2. A directed graph G i (V, A) is defined as a set of vertices V,
and a set of arcs A. An arc is an ordered set composed of two vertices. The first
vertex is the source and the second one is the sink.

In this thesis, we consider the sets V' and A to be finite. We denote by A(G)
the set of arcs of a directed graph G. As V(G) and A(G) can be weighted, we
will define by Wy, the set of vertex weights, and W, the set of the arc weights. In
the general case, we consider multivalued arc and vertex weights. Examples of a
graph and a directed graph can be found in Figure 1.1.

An edge or an arc of the form {u,u} is called a loop. Whenever an edge exists
in several instances in the set of edges F, it is called a multiple edge. For an arc
that exists in several instances in the set of arcs A, it is called a multiple arc.
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1. Definitions

Figure 1.1: Examples of a graph and a directed graph.

For a vertex u, the set of its neighboring vertices I'(u) is defined as follows:

['(u) oo {v|u # v, {u,v} € E} . (1.1)

An edge or an arc {u,v}, is said to be incident to vertex u and vertex v.
Vertices u and v are the ends of edge or an arc, and are called neighbors.

According to the definition of an arc a = {u,v}, vertex u is considered to be
an incoming neighbor of v, and v is considered to be an outgoing neighbor of u.
Let u be a vertex; the set of its incoming neighbor vertices I' ™ (u) is defined as:

I (u) &f {v|v # u, {v,u} € A} , (1.2)

and; the set of its outgoing neighbor vertices I't (u) is defined as:

It (u) oo {v|v # u, {u,v} € A} . (1.3)

@ @

d) e)

Figure 1.2: Examples of loops and multiple arcs and edges.

Figure 1.2 shows several examples of loops and multiple edges or arcs. Example
a shows a multiple edge {u, v}, that appears twice. A similar version is shown for
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arcs in Example b, in which vertex u is the source of the two arcs {u,v}, with
vertex v as their sink. Example ¢, however, does not show a multiple arc because
the orientation is different: {u,v} and {v,u}. Finally, examples d and e are loops
of the form {u,u} for edges and arcs.

All graphs considered in this work are graphs without loops or multiple edges.
This type of graph is called a simple graph.

Let v be a vertex of a graph G. The degree of vertex v, denoted by d§(v), is
the number of edges (resp. arcs) connected to v, that is, §(v) = |['(v)|. In the
directed case, the indegree 6~ (v) is the number of arcs of A(G) of which v is the
sink, that is, 6~ (v) = [T~ (v)|. The outdegree §*(v) is the number of arcs of A(G)
whose source is v, that is, 67 (v) = |I'"(v)|. This notion is extended to the entire
graph as follows: the minimal degree of G, §(G), is the minimum over all vertices
of V(G) of 6(v):

3(G) & min{d(v)|v € V(Q)} . (1.4)

Similarly, the maximum degree of G, denoted A(G), is the maximum of §(v)
over all vertices v of V(G):

A(G) € max{s(v)jv € V(G)} . (L.5)

A path between two vertices v and v of a graph G is a sequence of edges (resp.
arcs), {{vo,v1}, {v1,v2}, ..., {vk_1,vx}} in E(G) (resp. A(G)) such that u = vy and
v = vg. The set of vertices in a path p is noted by V(p). The number of vertices in
a path p is defined as |V (p)|. Let P(G) the set of paths for a graph G. The length
of a path p is commonly defined as the sum of the weights of the edges (resp. arcs)
in p. In the unweighted case, the length correspond to the number of edges (resp.
arcs). From the definition of path, we can define a cycle as a path in which the
start and end vertices are identical.

A graph G is said to be connected if there exists a path between any pair of
vertices in the graph. In a graph G, a shortest path between two vertices u and v is
a path of minimal length between u and v. Therefore, the distance between u and
v is the length of a shortest path between them. From the previous definitions, we
define the diameter of a connected graph G, denoted diam(G), by a maximum, for
any pair of vertices u and v of V(G), of the distance between v and v. Let u be
a vertex of a connected graph G u is said to be peripheral if there exists a vertex
v in G such that the distance between u and v is equal to the diameter of GG. For
more details on the definitions of graphs, please refer to [21].

1.1.2 Hypergraphs

First introduced by Claude Berge [|21], hypergraphs (resp., directed hypergraphs)
are a generalization of graphs (resp. directed graphs) in which the notion of edge
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(resp. arc) is extended to that of hyperedge (resp. hyperarc), which can connect one
or more vertices (resp., one or more source vertices to one or more sink vertices).
In the general case, a hyperarc can have a source equal to its sink.

Definition 1.1.3. A hypergraph H ) (V, E) is defined as a set of vertices V', and
a set of hyperedges E. A hyperedge is an unordered subset of two or more vertices.

In this thesis, the sets V and E are considered to be finite. To denote the
sets of vertices and hyperedges of a hypergraph H, we can use a similar notation
V(H) and E(H) as the ones defined for graphs. We denote by Wy, the set of vertex
weights, and by Wg the set of hyperedge weights. The weights can be multivalued.

Figure 1.3: An example of hyperedge (e) and hyperarc (a).

Definition 1.1.4. A directed hypergraph H i (V, A) is defined as a set of vertices
V and a set of hyperarcs A. A hyperarc a is a set composed of two subsets of
vertices such that a = {s~,sT}. These sets are s~ (a) C V and s™(a) C V, with
s (a) the set of sources of the hyperarc, and s*(a) the set of its sinks.

In this thesis, the sets V' and A are considered to be finite. A(H) denotes the
set of hyperarcs of a directed hypergraph H. We denote by Wy, the set of vertex
weights, and by Wy, the set of hyperarc weights. Weights can be multivalued.
Figure 1.3 shows examples of hyperedges and hyperarcs.

Figure 1.4 shows several examples of loops and multiple hyperedges and hyper-
arcs. Example a shows a multiple hyperedge in which eq = {vg, vy, v2,v3} = €1 =
{vo,v1,v2,v3}. A similar version is shown for hyperarcs in Example b, in which
vertices vy and vy are the sources of the two hyperarcs {{vg, vo}, {v1,v3}} with
vertices v; and vs being their sinks. However, in Example ¢, there is no multiple
hyperarc because the orientation is different. The sources s~ (ag) = {wvo,v2} are
different from s~ (a;) = {vy,v3}. Finally, Examples d and e are loops of the form
{vo} for hyperedges and, {{vo}, {vo}} for hyperarcs.

As with the graphs defined in the previous subsection, we will not consider
hyperloops, multiple hyperedges and multiple hyperarcs.
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1.1. Graphs and Hypergraphs

Figure 1.4: Examples of hyperloop and multiple hyperarcs and hyperedges. We
dotted hyperedge (resp., hyperarc) to avoid confusion.

The set of neighbors can be extended to the hyperedges and the hyperarcs as
follows:
[(u) & {v|Fde € E(H) s.t. u,v € e,v # u} . (1.6)

In the case of directed hypergraphs, we have to consider the pairs of source and
sink vertices in hyperarcs. Hence, the incoming neighbor set of vertex u is defined
as:

I (u) € {vjv # u,3a € A(H),u € s*(a),v € s (a)} . (1.7)

Let u be a vertex; the set of its outgoing neighbor vertices I'" (u) is defined as:
I (u) & {ofv £ u,3a € A(H),v € s7(a),u € s (a)} . (1.8)

Neighbor relationships of a hypergraph H = (V| E) can be modeled as a graph
G = (V, E’) whose edges are the results of the transformation of each hyperedge
into a clique, also known as clique-net graph in the literature [7]:

= U Afuv}. (1.9)
e€E uce,v€e,u#v

In the directed case, neighbor relationships of a directed hypergraph H = (V, A)
can be modeled as a directed graph G = (V, A’). The arcs of this graph are the
results of the cartesian product of subsets s~ and s*:

A =]Js(a) xs7(a) . (1.10)

As multiple edges and loops are not considered in this work, we assume that £’
and A" do not contain any of them, that is, the graph G that models the neighbor
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1. Definitions

s~(a) X s*(a)

Figure 1.5: An example of a hyperedge and a hyperarc and their respective associ-
ated graph representation. Hyperedge e connects all the vertices and the associated
subgraph is a clique connecting all vertices in e. In the example below, which con-
cerns a hyperarc a, the cartesian product is obtained between the sources of a and
its sinks. We only get the edges that connect the sources with the sinks.

relationship is simple. Figure 1.5 shows an example of a graph model associated
with a hyperedge or hyperarc.

This representation is also called the 2-section, clique graph or primal graph
of some hypergraph H and the directed graph-based representation for directed
hypergraph.

Let v be a vertex of some hypergraph H. The degree of vertex v, denoted by
d(v), is the number of hyperedges of F(H) connected to v. This notion is extended
to the entire hypergraph as: the minimal degree of H, 6(H ), is the minimum, over
all vertices of V(H), of §(v):

§(H) ¥ min{5(v)|v € V(H)} . (1.11)

Similarly, the mazimum degree of H, denoted A(H), is the maximum of §(v)
over all vertices v of V(H):

A(H) € max{6(v)|jv € V(H)} . (1.12)

A hyperpath, or path, between two vertices u and v of a hypergraph H is a
sequence of hyperedges {eg, €1, ..., ex_1,ex} in E(H), or A(H) in the directed case,
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such that u € ey and v € ¢, and Vi € {1,....,k}, Jv; € ¢;_1 Ne;. In the directed
case, u must be a source of eg, i.e., u € s~ (eg) and v must be a sink of e, i.e.,
v € st(ex) and Vi € {1,....k}, Jv; € sT(e;—1) Ns™(e;). In other words, the path
set of a hypergraph is defined by the path set of its 2-section. We denote P(H)
the set of paths of some hypergraph H. Let graph G be the 2-section of H; we
assume that P(H) = P(G). The set of vertices in a path p is defined by V(p).
The number of vertices in a path is defined as |V (p)|.

In a directed graph or hypergraph, if a path exists between two vertices u and
v, then v is said to be reachable from wu.

A hypergraph H is said to be connected if there exists a path between any pair
of vertices in the hypergraph.

A topological sort or a topological order, is a strict total order of the vertices of
a directed graph or hypergraph, such that the index of any vertex v is higher than
those of all its in-neighbors. A topological sort of the vertices exists if and only if
the directed graph or hypergraph has no cycles, that is, if it is a directed acyclic
graph (DAG) or hypergraph (DAH). A topological sort allows one to traverse an
acyclic dependency graph or hypergraph so that a vertex is traversed only after
all its dependencies have been traversed.

For more details on the definitions related to hypergraphs, please refer to [21].

In the above, have introduced the hypergraph structures that exist in the lit-
erature. In this thesis, we are going to use these structures to model circuits, in
order to partition them. However, these structures have some limitations, which
we are going to explain in more detail in the following subsection.

1.1.3 Red-Black Hypergraph

In this thesis, we introduce the notion of red-black hypergraphs. This contribution
has been presented in [160]. This structure is specifically designed to model the
properties of digital electronic circuits more accurately. Let us recall some of the
properties of circuits, presented in the introduction section. A digital circuit is
an object consisting of cells interconnected by wires. Hypergraphs seem to be
a suitable abstraction for modeling such a group of multi-cell interconnections,
with wires connecting two or more cells. Each wire, also called net, propagates
a logic state from a driver (source cell) to receiver cells. This property can be
modeled by specific hyperarcs, in which the number of sources (vertices) is limited
to one for each hyperarc. Each logic state is emitted by a synchronous cell called
a register. A clock signal is used to synchronize the operations of all logic parts
of the circuit, that are performed simultaneously. A clock signal is a logic signal
that periodically activates the register cells at a constant global frequency. The
frequency is the number of clock events, i.e., clock ticks, per second. Synchronicity
ensures that a result calculated by one part of the circuit is available at the end
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of the clock period for use as an input value in another part of the circuit for the
next clock period.

Another main type of cells is the combinatorial cells. Fach combinatorial cell
performs a logical operation from its input logic states and produces one or more
logic states as output. Examples of combinatorial cells can vary from a simple
logic gate to a complex arithmetic compute block. Each combinatorial cell has a
processing time associated with it, which depends on the operations performed.
The difference between these two types of cells is that a register updates its state
synchronously at each clock tick, and a combinatorial cell propagates a logic state
immediately after that logic state has been received and processed.

Some works refer to a netlist to model a digital electronic circuit. A netlist is
a list of nets (or wires) and cells, with possible additional data of the represented
digital electronic circuit. As a model of digital electronic circuit, a netlist can
also be represented by a hypergraph. Consequently, we will also refer to digital
electronic circuit, netlist, and hypergraph to denote the same object in the sense
of a list of vertices connected by hyperedges.

Red-black hypergraphs are a subclass of directed hypergraphs in which each
hyperarc contains exactly one source vertex, i.e., |s~(a)| = 1,Va € A, so that each
signal has one source cell. Moreover, each vertex is assigned a color, red or black.
Red vertices (resp., black vertices) form a subset of vertex set V, V® C V (resp.,
VB C V), such that VENVPE = (. Red vertices model the register cells, and black
vertices model the combinatorial cells. By definition, for v € V/(H)

o if [ (u) =0, then u € VE . u is a global input (source) of the circuit;
o if " (u) =10, then u € VE . u is a global output (sink) of the circuit.

These conditions are necessary but not sufficient, i.e., a vertex can be red even
if it does not satisfy the two conditions defined above.

As hypergraphs can be multivalued, red-black hypergraph vertices can also
be multivalued. Let Wy (u) be a weight vector associated with vertex u. In the
unweighted case, Wy (u) = {1}. Multivalued vertex weights can be used to model
the multi-resource aspect of the circuits and of the FPGA components.

Figure 1.6 shows an example of a red-black hypergraph modeling a combina-
torial circuit. A combinatorial block is a sub-circuit bounded by the cells that are
registers or circuit inputs and outputs. Figure 1.7 shows an example of a circuit
with two combinatorial blocks. In this example, registers stabilize and forward a
logic state. One of the properties of the circuits is that all registers output values
are modified simultaneously on each clock tick. The time that elapses between two
clock ticks is called the clock delay. The processing time of a combinatorial path
is defined as the sum of the processing times of the cells belonging to the path.
The longest path in a block is called a critical path. The critical paths within the

Red-Black Hypergraph Partitioning 21



1.1. Graphs and Hypergraphs

Figure 1.6: The circuit in a) consists of two inputs, two outputs, and 7 combina-
torial cells. The red-black hypergraph b) models the circuit above. It consists of
4 red vertices corresponding to the sources and sinks of the circuit, and 7 black
vertices corresponding to the combinatorial cells.

combinatorial blocks constrain the clock delay because the computed logic state
values must stabilize at the output registers of each combinatorial block before
the next clock tick. If this constraint is not satisfied, the circuit will behave in an
unexpected manner.

In this thesis, we focus on minimizing the length of the critical path of com-
binatorial circuits. Since we are only interested in minimizing the propagation
times of combinatorial logic between two registers, it makes no sense to consider
the length of paths that comprise any additional register different from the start
and end registers. The red-black hypergraph model enables the extraction of all
combinatorial paths, by considering only paths whose start and end vertices are
red.

Since we are working exclusively on synchronous circuits that are designed
for implementation on FPGA, we are guaranteed that there are no combinatorial
loops, i.e., infinite paths that are made of an infinite repeated pattern of combi-
natorial cells. That is, a cycle in a red-black hypergraph contains at least one red
vertex. As a result, a combinatorial block, such as the one shown in Figure 1.6,

22 J. RODRIGUEZ



1. Definitions
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Figure 1.7: Circuit composed of two combinatorial blocks. The OI, cells are both
outputs of block A and inputs of block B.

forms a red-black directed acyclic hypergraph (DAH). Since, a circuit is made up
of several such combinatorial blocks, a red-black hypergraph is composed of multi-
ple DAHs interconnected by their red vertices. Finally, the paths to be considered
within the red-black hypergraph are red-red paths that are the set of all paths of
each DAH, starting from a red vertex and ending to a red vertex. A red-red path
p for a DAH h is defined as:

p={(vo,v1), s (Vn—2,Un_1)} , (1.13)

with vg,v,_1 € VE(h) and v; € VE(h),i € {1,...n —2}. Let H = {hg, ..., h._1}
be a red-black hypergraph composed of k¥ DAHs; the set of red-red paths PR(H)
is defined as:

PR(H) = ] PR(h) . (1.14)

hiEH

If not specified, we will assume that H defines a red-black hypergraph and H a
directed acyclic hypergraph.

Note that PR(H) is a subset of the paths in H. Hence, PE(H) C P(H).
Each path has a length, or cost, which models the distance between two vertices.
Classically, the length of a path equals the number of arcs along the path, i.e., the
number of vertices in p minus one for the unweighted case. In a digital electronic
circuit, wires and cells have a delay associated with them. In this case, vertices
and hyperarcs should be weighted: the length of a path is the sum of the weights
of the arcs. The arc weights are defined by d(u,v), and the weights associated
with the vertices, by d(u). The length, or traversal cost, d, can be extended to a
path p as follows:
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dp) = > d(u)+ > d(u,v) . (1.15)
)

ueV(p ues~(a),vest(a),a€p

In the remainder of this document, in the absence of precision, for any path p, we
will use the terms path length or path cost to refer to the quantity d(p).
By extension, dp.x(u, v) can be defined as the value of the longest path between
vertices u and v:
Aimax (1, v) = max{d(p),p € Pu.} , (1.16)

were P, , is the set of paths between u and v. Furthermore, in circuit prototyping
on a multi-FPGA platform, the routing process is generally performed after the
partitioning. This thesis only focuses on the partitioning step. As a result, there
is no specific cost associated with connected pair of vertices because, at this step,
there is no routing cost (arc weight). In the absence of precision, we will assume
that the weight of each arc is zero when calculating the length of a path d(p).

Using the above definitions, we can define the critical path of a red-black hy-
pergraph H as:

Aax (H) = max{d(p)|p € P*(H)} . (1.17)

Note that, with a topological sorting of DAH in H, it is possible to compute
dpmax(H) in polynomial time.

1.2 Criticality

In this section, the concept of criticality is defined. This notion is the basis of sev-
eral circuit partitioning methods. Criticality is used to model the timing associated
with the cells in a circuit.

1.2.1 Circuit cell criticality

Criticality is a metric used in [4, 35] and our work [160], to classify the cells of a
circuit according to the cost of the combinatorial path they traverse. The criticality
of a vertex v is equal to the length of the longest path traversing v.

Figure 1.8 shows an example of a critical path in a circuit. Note that the paths
considered are only combinatorial, i.e., paths whose start and end are a register.

Different weighting schemes and methods to compute the criticality are detailed
in Chapter 4. One such method is to compute the criticality for each vertex by
calculating the cost of the longest path traversing it. The longest path can be
estimated by first, propagating the accumulated delays across each DAH, from the
sources to all other vertices. At the end of the propagation, each sink register at
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Figure 1.8: In this example, delays are propagated from source registers to sink
registers. Only locally maximal value are propagated along paths. This yields a
critical path equal to 7 for the circuit.
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Figure 1.9: In this example, critical path lengths are computed by back-
propagation from the sink registers to the source registers. Only maximum critical
value are back-propagated. Then, criticalities for each vertex is equal to the length
of the critical path (7) and the length of the second path (5).

the end of a path is assigned a total propagation time equal to the longest path
between that register and any of its predecessor vertices belonging to the path.
If we back-propagate the maximum path value from the sinks back to the source
registers, we obtain for each vertex a criticality value that is an upper bound on
the value of the longest path traversing it. Figure 1.9 shows an example of critical
path value back-propagation. This process labels cells with a value defined as the
cell’s criticality.

The criticality of a cell is equal to the upper bound of the longest path back-
propagated from the output/sink registers.

1.2.2 Vertex and path criticality

The notion of criticality can be extended to the red-black hypergraph. The proce-
dure for calculating critical paths by delay propagation from source to sink registers
is identical, as they are identified as red vertices. Since there are no combinato-
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rial loops within circuits, red-black hypergraphs have this property, specifically for
any directed acyclic sub-hypergraph. As a result, it is possible to propagate delays
associated with vertices in polynomial time, e.g., using topological sorting, in any
DAH. The back-propagation is performed in reverse topological order.

1.3 Partitioning and Clustering

In this section, a vertex set partition, or equivalently a set of clusters, i.e., a subset
of vertices, is defined. A partition is a set of subsets of vertices, disjoint or not,
depending on the nature of the problem. Several objective functions are available
for different applications, such as static process placement [151] or domain decom-
position. In this thesis, we focus on circuit partitioning for rapid prototyping.

1.3.1 Partitions and cut metrics

A k-partition or a k-way partition I of H = (V, A) is the splitting of V into k
vertex subsets m;..7mg, called parts, such that:

(i) all parts 7;, given a capacity bound M; on vertex weights, respect the capacity
constraint: y_ _ Wy (v) < M; ;

veT;
(ii) all parts are pairwise disjoint: Vi # j,m N =0 ;
(ili) the union of all parts is equal to V: |J,m =V .

A bipartition is a partition of vertices composed of two parts. For a given
partition II of H, the connectivity Aj(a) of some hyperarc a € A is the number of
parts connected by a. If Aij(a) > 1, then a is said to be cut; otherwise, it is entirely
contained in a single part and is not cut [155, 55]. The cut of some partition II is
the set w(II) of cut hyperarcs, defined as:

wI) & {a € A Anla) > 1} . (1.18)

It is also possible to define the set of vertices that belong to the cut hyperarcs.
This subset of vertices is commonly referred to as the frontier, or halo:

A(IT) < {v]Fa € w(Il),v € a} . (1.19)

One possible metric to evaluate a partition is to sum the weight of cut hyper-
arcs. If at least two parts share some hyperarc, then this hyperarc is cut. The cut
size f. is defined as:

2 Wala) (1.20)

acw(II)
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with W (a) the weight of hyperarc a. If all hyperarcs have the same weight (equal
to 1), the cut size is equal to |w(II)|. Another metric used in some partitioning
problems to measure the quality of partitions is called connectivity-minus-one. The
connectivity-minus-one cost function f) of some partition II of a hypergraph H is

defined as:
AEY Onla)—1) (1.21)

acA

Figure 1.10 shows an example of a partition and its cut and connectivity costs.

In contrast to the min-cut function f., which counts the cut hyperedges, the
connectivity cost function counts the number of parts in which the vertices of each
hyper-edge are located. This makes it possible to model the communication cost
for a task-to-process mapping problem.

Figure 1.10: In this example, each vertex is placed in a different part. The hy-
peredge eq is therefore considered to be cut. The size of the cut, f., is 1. The
connectivity-minus-one cost, f\, which measures the number of shared parts for
each hyperedge, is 3, because there are 4 different parts connected by eg.

1.3.2 Problem statement

This subsection defines the problem addressed in this thesis. The problem of parti-
tioning red-black hypergraphs, considering the path length and a target topology,
consists in finding a partition of the vertex set V' of H that minimizes the degra-
dation of the length of the critical path.

A partition Il degrades the path length by adding a cut penalty for each cut
hyperarcs along that path. The cut penalty model embeds a notion of distance
that represents the cost of signal propagation between two distant elements on the
target platform. This makes it possible to roughly take into account routing times
on a multi-FPGA platform for which not all pairs of FPGAs would be directly
connected. Figure 1.11 shows an example of a cut path. The cut cost may depend
on the involved pairs of parts. Based on Figure 1.12 example, we can consider for
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Figure 1.11: In this example, the path is cut between vertices v; and v;1;. The
length of this path is therefore increased by D, associated with the cut.

a 4-partition, the cut cost between parts my and m; is 10, and the cost between
mo and 7o is 200. In this specific case, avoiding spreading a critical path between
parts my and 7w, may make more sense. This heterogeneity is most often due to
the fact that the topology is not fully connected, so that additional FPGAs have
to be traversed for certain routes.

oo o—>e-|
v oy, B— -o\g.m T CONEN — " T
0 1 \ 1

/ \

T(o / T(o |

Up-1 U.l‘\‘. -E —Up-1

Uy Vit1 Uy
73 Uy 73 Uy
a) b)

Figure 1.12: Example of paths that are placed on a not fully connected target
topology. Placement a) generates two routing (cut) costs, while placement b)
generates two cut costs plus two additional routing costs. Placement a) is therefore
less costly than b).

In these examples, individual routing costs must be evaluated if critical path
degradation is to be minimized. It is therefore possible to extend the definition of
the path length for a path p on a red-black hypergraph H = (V, A) according to a
partition of its vertices I, as follows:

d"(p) = d(p) + Z Dr(uy r(w) (1.22)

u€s™(a),vest(a),a€p
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with 7(u) being the part containing u and Dr(u),=(v) the cut penalty between part
7(u) and part 7(v). If v and v belong to the same part, the cut cost Dy~ is
equal to zero.

The problem of partitioning red-black hypergraphs, considering the path length
and the target topology, consists in finding a partition of the vertex set H(V') that
minimizes also the objective function f,, and that respects the capacities of each
part. Let H be a red-black hypergraph and II a partition of its vertex set; the
function f, is defined by:

£ & max{d"(p)|p € PR(H)} . (1.23)

In this thesis, we will focus on the function f,, which is the main objective of
our work. Since the number of connections between parts is limited due to physical
constraints, the cut size does have to be taken into account. However, more than
the cut size metric is needed to correctly model the effects of multiplexing on the
final delay. Signal multiplexing is a technique allowing to transfer a set of signals
between two logic elements, even if the transfer capacity per cycle is limited. This
technique results in subsequent delays, to have time to transfer all the signals. For
example, consider a capacity ¢ between two parts. An extra delay must be used
if the number of signals between the two parts exceeds the capacity c. If an extra
delay is used, the capacity is no longer ¢, but at least 2c. Hence, a cut size of 2c¢ is
as good as ¢+ 1, while from the point of view of the functions f. and f), it is not.

1.3.3 Graph and hypergraph circuit models

In the previous sections, we presented some limitations of graphs and hypergraphs
for representing certain properties of a digital electronic circuit. These properties
are important for the partitioning problem addressed in this thesis. In addition,
this subsection introduces representations, and their limitations, for modeling a
digital electronic circuit'. Some works [8, 37, 102, 125] introduce their circuit
model and associated approach to partition a circuit. There are several ways
to model directed hypergraphs as graphs; H. R. Charney et al. [37] present a
transformation of each hyperedge into a clique. This model is called the clique
model because an edge is created for each pair of vertices in each hyperarc a. For
a directed hypergraph H = (V, A), the graph associated with H using the clique
model is the graph G = (V| E) such that F = {{u,v}|Ja € A,u,v € a} [37]. The
consequence of this model is to create many edges. In the clique model, several
methods of edge weighting are used to best reflect the hyperedge cut cost. The
goal is to get a similar cost for the same partition of vertices in H and in GG. For

'Readers interested in other, more general, models, particularly for non-directed hypergraphs,
may consult [8].
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example, if a hyperedge e is cut in H, then the set of edges that model e in G is
cut, and the total cost for cutting them should be 1. However, E. Ihler et al. [102]
prove that such a “perfect” clique network model is impossible. Furthermore, T.
Lengauer [125] shows an O(y/]e|) deviation for bi-partitioning the hyperedge e,
regardless of the cost function used.

i
v, ¢ 2 @
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UQd Uy @
h
a)

I

02

Figure 1.13: Representations of a circuit with 7 modules, 2 inputs, 2 outputs and
10 signal nets (or wires): (a) circuit diagram with all modules’ inputs on their
left side and all their outputs on their right side; (b) the associated hypergraph
representation; (c) the directed graph, assuming a directed-tree hyperedge model;
(d) the red-black hypergraph model, in which nets are modeled as hyperarcs,
registers by red vertices, and combinatorial cells by black vertices; (e) the clique
model.

In the case of the directed graph model [8], only edges between the source
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of the hyperedge and its sinks are created. The directed graph model allows
one to represent the relationships between the components of a circuit as well as
the combinatorial paths associated with the circuit. For a directed hypergraph
H = (V, A), the graph associated with H using the directed graph model will be
the graph G = (V, E) such that: F = {{u,v}|3a € A,u € s7(a),v € sT(a),a €
A}. Figure 1.13 shows an example hypergraph and the corresponding clique and
directed graphs.

netl
netz o net3

195

Figure 1.14: An example of the limitations of the graph-based model for parti-
tioning a circuit to minimize cut size. In this example, (a) the circuit is composed
of 5 cells connected by 3 wires; (b) in this specific case, an optimal graph-based
partition would place cell v5 in one part and all the other cells in the other, as
this is the only two-part partition that results in only two cut edges; (c) however,
by placing cells v, and v3 of the circuit in one part and cells vy, vy, and v in the
other, we obtain a partition in two parts, which requires only a single wire crossing
the cut. The example is taken from [176].

Models should be adapted to represents all the properties needed by a objec-
tive function for partitioning. One of the objective of circuit partitioning is to
partition a circuit into two or more parts, while minimizing the number of wires
connecting the circuit elements between different parts. In practice, minimizing
the number of wires is crucial because it reduces the wiring cost and the config-
uration’s total area [192, 8]. In the context of circuit partitioning in Very Large
Scale Integration (VLSI) design, R. A. Rutman [164] and D. G. Schweikert and B.
W. Kernighan [176] have shown that graphs are a limited representation of a cir-
cuit. Figure 1.14 shows an example of the limitations of the graph-based model for
partitioning a circuit to minimize the cut size. In graph modeling, each cell of the
circuit corresponds to a vertex, and a wire connecting several circuit elements is
represented by adding a clique of edges connecting all pairs of connected vertices.
A significant difference between the circuit partitioning solution and the graph
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partition arises because graphs cannot accurately represent relationships between
more than two objects. That is, if a hyperedge is cut, many edges would be cut
in the graph-based partition. As a result, a hypergraph-based partition is more
accurate in modeling the partitioning of a circuit while minimizing the size of the
cut.

In addition, the plain hypergraph model does not contain any information
about the combinatorial paths. Consequently, hypergraphs must be extended to
contain properties that are relevant to the problem addressed in this thesis. Thus,
the red-black hypergraphs introduced in this thesis are specifically designed to
model the properties of digital electronic circuits that are missing in hypergraphs,
for partitioning circuits with the cost function f,.

1.4 Conclusion

In this chapter, the notations and definitions used in this thesis have been intro-
duced. Table 1.1 summarizes the most important notations defined above, which
will be used throughout the document. However, not all notations are listed here,
only a summary of the most important ones.

We have introduced the new concept of red-black hypergraphs, which are an
extension of hypergraphs. This enriched model is necessary to consider all the
relevant properties associated with digital electronic circuits, to provide metrics
and data that are closer to reality. The ability to calculate the length of a path and
its degradation during a partitioning operation is an essential issue for minimizing
the degradation of the critical path. We have shown that previous state-of-the-art
circuit representations cannot be used to model such paths adequately.
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Table 1.1: Notation summary

Variable | Definition
G = (V,E) | Graph
H = (V, A) | Red-black directed hypergraph
Vi Set of red vertices
VB Set of black vertices
v Some vertex v € V'
a Some hyperarc a C V
I'(v) Vertex set of neighbors of v
A(H) The maximum vertex degree in H
I1 Partition, with II[v] the part of v
e Part i, with m;[v] = 1 iff v € 7; and 0 else
M; Capacity of part ¢
P Some path p € P
dmax(u,v) | Maximum distance between u and v
dmax(H) | Longest path distance for H
d (H) | Longest path distance for a partitioned H™
D;; The path cost between parts ¢ and j
w(II) Cut of a partition II
A(TT) Halo of a partition IT
Ao Connectivity of hyperarc a € A
A(H) The maximum connectivity in H
Ao Connectivity of vertex v € V
Av(H) The maximum connectivity of vertices in H
fa Connectivity-minus-one cost function
fe Cut cost function
Ip Longest-path cost function

Red-Black Hypergraph Partitioning
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2.1. Partitioning methods and applications

Circuit partitioning is helpful in some main practical applications for VLSI
design as circuit prototyping or circuit layout. In the case of circuit prototyping,
circuits are partitioned so as to map them onto elements of the FPGA, in order
to not exceed their capacities and not to degrade the critical paths. In the case
of circuit layout, circuits are partitioned so as to map them onto a 2D layout
i.e., on the silicon surface of the integrated circuit (IC), in order not to degrade
the critical paths. However, differences exists in the weighting and evaluation
of path criticality. For circuit placement on multi-FPGA platforms, a synthesis
step is mandatory, and the target FPGA technology constrains each cell’s time.
In addition, the target platform may not be fully connected, creating additional
routing constraints. 2D placement imposes different constraints.

Each of the works on critical path modeling has been of interest. Even if the
objective is not for placement on a multi-FPGA platform, the problem of partition-
ing a circuit while minimizing the impact on the critical path is an approach worth
studying. The subject of this thesis needs to be placement within the FPGA. As
a result, the subject is sufficiently high-level to take advantage of work relating
to circuit partitioning with path minimization while maintaining consistency with
the practical problem. This objective remains essential for both problems.

This chapter presents a broad overview of the state-of-the-art related to the
graph and hypergraph partitioning problem for VLSI design. Some of these refer-
ence works deal with minimizing the cut size, minimizing the critical path degra-
dation, or both. A more detailed explanation of some of these works can be found
in the dedicated sections.

2.1 Partitioning methods and applications

This section presents different approaches from direct hypergraph partitioning.
Due to the size of the instance, it is sometimes useful to reduce the hypergraph
and partition its reduced version, especially to reduce complexity and computation
time. For example, recursive bipartitioning is very effective at reducing computa-
tion time.

2.1.1 Hypergraph bipartitioning

There are two main approaches to computing a k-way partition of a hypergraph.
The first one is to perform a recursive bipartition (RB), i.e., to first compute a
bipartition of the initial hypergraph, then by recurring on each of the two parts, we
end up with a k-partition. To obtain k parts, O(k) bipartitioning steps are required
to partition the hypergraph. The bipartitions computed in the RB approach form
a binary tree called a bipartition tree [180]. In k-way direct partitioning, the
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hypergraph is directly partitioned into £ parts without going through the 2-way
recursive approach. Note that there are strategies that combine both, RB and
k-way partitioning.

2.1.2 Graph-based hypergraph partitioning

Several works have addressed the problem of partitioning hypergraphs by using
graph partitioning algorithms, via graph models of hypergraphs. However, E. Ilhler
et al. [102] showed that it is not possible to model a hypergraph H as a graph G
such that, for any bipartitioning of the vertex set, the result for the functions
fr and f. of the cut in H is the same as for G. The result remains similar even
with the addition of dummy vertices, unless negative weights on edges are allowed.
Regarding the clique model presented by T. Lengauer in [125], it is shown that
there is always a bipartition with a deviation of Q(y/]e]) from the desired unit
cost, regardless of the weighting scheme.

2.1.3 Static mapping

Static graph mapping is the problem of finding a mapping between two graphs:
the source graph G4 and the target graph G;. The number of vertices in G; defines
the number of parts with a possible bounded capacity for each part depending on
G, vertices. A practical application of the static mapping problem is the mapping
of the processes of a parallel program onto a parallel machine. One of objective for
the static mapping problem is to minimize the global communication bandwidth.
M. R. Garey et al. [78] have shown that static mapping is an NP-complete problem
in the general case. F. Pellegrini [152, 148] proposed an algorithm based on the
recursive bipartition of the graph G4 and G;. All his algorithms are implemented
in the SCOTCH [149] tool. The reader can refer to several papers dealing with
static graph mapping [24, 41, 5, 97, 150, 116, 54, 22|.

Mapping is an important notion for our study, since the target topology can
be a factor affecting the critical path. Modeling static mapping from the source
graph onto a target graph will help the algorithm assign vertices to parts in a way
that provides lower routing costs. In this thesis, we are not working on detailed
placement /routing on the FPGA, but on the partitioning step that precedes it.
However, a coarse-grained, platform-scale placement may allow more optimal pre-
placement of vertices in parts, with respect to algorithms agnostic to the target
topology.
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2.2 Computational complexity

A circuit can be modeled as a graph or hypergaph, that is, graph and hypergraph
partitioning is commonly used to obtain a partition of a circuit. Hence, the com-
plexity of circuit partitioning is close to the complexity of graph and hypergraph
partitioning. There exist several ways to measure the quality of a partition. Mul-
tiple cost functions have been defined in the state-of-the-art, such as f. or f,.
Additional constraints can complete costs functions for the partitioning problem,
such as capacity limits for each part. During a partitioning process, both cost
function and constraints have to be evaluated, that is, the complexity of the pro-
cess depends on the number of constraints and the complexity of the cost function.
This section will look at different complexity results for the graph and hypergraph
partitioning problem.

2.2.1 Complexity of partitioning

A partition of a graph creates a cocycle, i.e., the set of edges (resp., hyperedges)
across multiple parts. The cocycle of a partition defines a cut, and its size define
the cut size. However, finding a minimal cut in a graph is equivalent to finding a
minimal (s-t)-cut in G. An s-t-cut in a graph G is a minimum edge separator of a
source vertex s and terminal vertex ¢ in GG. Note that an s-t-cut does not guarantee
a balanced number of vertices on both sides of the cut. Using Ford and Fulkerson’s
max-flow /min-cut theorem [77], we can solve this problem in polynomial time.
Some algorithms with an improved time complexity have been proposed to find
a minimum cut in a graph and multi-graphs [138, 90]. E. L. Lawler [121] and
J. Li et al. [126] proposed to compute an (s-t)-flow for hypergraphs to compute
the minimum cut. In the case of hypergraph partitioning, the hypergraph can be
transformed into a polynomial larger graph. When k& > 2, the problem becomes
NP-hard if & is part of the input [83]. However, if k is part of the algorithm’s input
data, there is an algorithm with complexity O(n**T'(n,m)) [83], where T(n,m) is
the computation time of an (s-t)-cut.

K. Fox et al. found an algorithm to compute the minimum k-cut of a hyper-

graph with complexity O(mn?~2) for any rank and an algorithm with complexity
O(n™>{r2k=2}) for a fixed rank.

In the case of balanced partitioning, the problem is NP-hard [78, 125] for both
graphs and hypergraphs, and there is no constant approximation factor [11], unless
P=NP.
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2.2.2 Complexity of clustering

Z. Donovan et al. [60, 61] addressed combinatorial circuit clustering problems when
cell replication is allowed (CA) and when cell replication not allowed (CN). In the
rest of this dissertation, we use CA and CN to refer to these clustering problems.
The objective function is to minimize the degradation of the critical path induced
by edge cuts. The problem is NP-hard and has no constant approximation factor.
The version of the problem where the number of clusters is fixed with a balancing
constraint is at least as hard as clustering. The problem of balanced partitioning of
a red-black hypergraph with minimization of critical path degradation and cutting
is at least as hard as these previous problems. However, A. A. Diwan et al. [57]
presented a polynomial algorithm for trees. Z. Donovan et al. [60] have also pre-
sented an approximation algorithm parameterized by the cluster size M, with the
approximation ratio M? 4+ M. In Chapter 4, we introduce a polynomial algorithm
with the approximation ratio parameterized in M under restricted hypothesis.

2.3 Partitioning and mapping tools

Over the last 30 years, several graph and hypergraph partitioning software tools
have been developed and made publicly available.

2.3.1 METIS, HMETIS and KHMETIS

G. Karypis et al. [106, 109] introduced the tool METIS for partitioning graphs, with
an objective function that minimizes the cut size, f.. Due to the more general-
ized aspect of hypergraphs, hypergraph partitioning has become a necessity in the
scientific community. George Karypis and Vipin Kumar created a hypergraph ver-
sion, based on recursive bipartitioning, called HMETIS [111]. However, as HMETIS
showed difficulty meeting the part-balancing constraint, the authors introduced a
new tool for k-partitioning, called KHMETIS [112]. The tool authors claim that
for many circuits, particularly those with cell counts greater than 100k and non-
uniform cell weighting, HMETIS produces bisections that cut 10% to 300% fewer
hyperedges than those cut by other popular algorithms such as PARABOLI [158],
PROP [66], and CLIP-PROP [67].

2.3.2 PAToH and kPATOH

Umit V. Catalyiirek, and Cevdet Aykanat [34] then released the PATOH partition-
ing tool. This tool allows the partitioning of multi-constrained hypergraphs, by
minimizing the connectivity between the different parts, f\. Partitioning for VLSI
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design or prototyping on multi-FPGA platforms requires consideration of multi-
ple resources due to the different resources available on an FPGA, such as LUTS,
RAM, DSPs, and so on. These resources are constrained within each FPGA (part).
Since PATOH allows the definition of several resource capacity constraints during
the partitioning process, it seems appropriate for these cases. The authors also
introduced a partitioning strategy based on vertex replication, referenced in [178§]
and an extension of PATOH for k-partitioning, called KPATOH [16] .

2.3.3 KASPAR, KAHIP and KAHYPAR

More recently, in 2010, V. Osipov et al. [141] released the graph partitioning tool
KASPAR, followed by the partitioning framework KAHIP in 2013, by P. Senders
et al. [169]. S. Shlag [173| presented in his thesis the hypergraph partitioning
framework KAHYPAR, which embeds several partitioning algorithms. These tools
focus more on partition quality than on computation time. KASPAR, KAHIP, and
KAHYPAR achieve better results in minimizing the cut size than other partitioning
tools [85, 10, 94, 93, 95, 6, 174, 175].

2.3.4 ToPOPART and TRITONPART

D. Zheng et al. [193] introduce TOPOPART, a topology driven hypergraph parti-
tioner designed for targeting multi-FPGA platform. Like modern hypergraph par-
titioners, TOPOPART uses a multilevel framework to tackle large circuits. TOPOPART
aim at partitioning a circuit while minimizing the distance between vertices within
the topology.

TRITONPART is a new hypergraph partitioner introduced in November 2023 by
I. Bustany et al. in [31]. TRITONPART incorporates multiple costs, e.g., cut size,
timing, and embedding. TRITONPART is also based on a multilevel framework.

2.3.5 SCOTCH and PT-SCOTCH

Graph static mapping consist of map a source graph G, onto a target graph G,.
In Gy, edges represent connections, and weights on edges represent, for example,
transmission capacity or traversal cost. In 1994, F. Pellegrini introduced an al-
gorithm [152] based on dual recursive bipartitioning for static mapping problem
and released in 1996, SCOTCH [151], a graph partitioning and mapping tool that
considers a target topology. The function to be minimized is different from that of
the previous tools. The goal of SCOTCH is to place graph G on a target graph
G so that the expansion of the edges between the vertices of G4 placed on G
is minimized and the placement of the vertices is balanced. A parallel version of
SCOTCH exists since 1996, under the name PT-SCOTCH [40].
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Figure 2.1: An example of a red-black hypergraph with two cones.

2.3.6 Conclusion

In this section, we presented some popular partitioning tools. We presented only
the most common and publicly available tools probably used in circuit partitioning.
However, each tool is designed for a specific cost function, such as f., f\, and so
on. There are practical problems for which it is necessary to specialize the cost
function. This is the case of the problem treated in this thesis with the function

Jo-

2.4 Algorithmic approaches to hypergraph parti-
tioning and placement

This section presents the various approaches that have been developed to partition
circuits for different practical purposes, such as circuit placement on a 2D surface
with critical path minimization, or circuit prototyping on a multi-FPGA platform.
Some approaches use the tools presented in the previous section in conjunction with
pre- and post-processing to drive the tool with practical constraints, such as cell
spacing for 2D placement or wire length. Other approaches use exact optimization
algorithms or metaheuristics.
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2.4.1 Deterministic approaches
Cone partitioning

Cone partitioning is a method dedicated to combinatorial circuits, defined for the
first time by G. Saucier et al. [172]|. In cone partitioning, a combinatorial circuit
is represented as a graph and it can be extended to that hypergraph or red-black
hypergraph.

A cone is the subset of all vertices from which a specified sink vertex is reach-
able. A cone is a structure emanating from combinatorial circuits representing a
connected subcircuit from an output of the circuit to the accessible inputs. An
example is shown in Figure 2.1. One way to identify a cone in a circuit is to
compute the set of vertices reachable from a sink vertex. In this way, all source
vertices reachable from the sink vertex are in the same cone, as are all vertices
between the source vertices and the sink vertex. That is, the number of cones is
equal to the number of outputs in the circuit.

This approach makes it possible to embed critical paths that end in the sink
vertex associated with the cone. However, cones can share multiple vertices, e.g.
in Figure 2.1, both cones share a common source vertex. If two cones share at
least one vertex, then they share at least one source. In fact, since a cone is a set
of vertices that can be reached from a sink vertex by traversing the vertices back
to the source in the opposite direction of the arcs, the only way to get one or more
shared vertices for at least two cones is to have a source vertex that reaches at least
two sink vertices. In the context of cone partitioning, each cone defines a part.
However, when two cones share vertices, we need to define a selection strategy to
determine which cone will be cut or not. A cone is cut if some of its vertices are
in another part.

In [172], the authors define several criteria for cutting cones. For example, if
two cones have a non-empty intersection, the cone with the highest criticality is
not cut. The authors extends their work for partitioning circuit for multi-FPGA
platform as in [26, 27].

Integer Programming

Linear programming was developed in the 1940s and 1950s by researchers such as
G. Dantzig [52] and L. Kantorovich et al. [53]. It has become a powerful tool for
solving optimization problems where a linear function needs to be maximized or
minimized under linear constraints.

However, in many cases, the optimal solutions to linear programming problems
are fractional numbers [84]. This was often impractical or unacceptable in domains
where variables had to represent discrete or integer values, such as resource allo-
cation, scheduling, and network design. Thus, integer linear programming became
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a natural extension of classical linear programming.

Over the following decades, several advances have been made in integer linear
programming. In the 1960s, A. H. Land et al. presented the branch-and-bound
method [120], which divides fractional solutions into smaller subproblems so as
to explore possible integer solutions. In the 1970s, Richard M. Karp proved that
integer linear programming is an NP-hard problem [105], meaning that there is
currently no polynomial algorithm that can optimally solve all cases efficiently.
Despite the inherent complexity of integer linear programming, many researchers
have continued to develop efficient methods and algorithms to solve it. Techniques
such as dynamic programming [105], branch-and-cut methods [144, 98], and genetic
algorithms [100, 99], have been successfully developed and applied. A. Henzinger et
al. [89] presented in their work an algorithm for graph partitioning based on integer
linear programs. Since those programs cannot scale well to large graphs, they
proposed an adaptation of integer programs to heuristically improve partitions.
Recently, I. Bustany et al. [31] used an integer linear program as initial partitioning
step inside a multilevel scheme. The objective function is to minimize the cut size.

Clustering approaches

Clustering is a form of partitioning where the number of parts is not fixed; only
the capacity for each part is limited. However, it is possible to translate from a
partitioning formulation to a clustering formulation. The only difference between
the two formulations concerns the balancing factor. In the case of partitioning,
the number of parts is associated with a maximum capacity per part, assuming
that each part is filled as evenly as possible, according to a balancing factor. In
clustering, however, only the maximum capacity of the parts is limited, but the
number of parts is not. It is therefore possible for a cluster to consist of a single
element. As electronic circuits have grown in size, they have become increasingly
challenging to manage in practice. As a result, reducing the apparent size of
instances has become a major goal for VLSI design. Clustering algorithms are one
of the approaches that have been studied to reduce the apparent size of circuits to
make them more practical for automatic processing.

E. L. Lawler et al. [122] have presented a polynomial algorithm for grouping
the vertices of a circuit so that the resulting delay is optimal. The authors use
vertex replication to reduce the number of cut paths in the circuit. A trivial way is
to replicate the circuit in each part if capacity permits, thus avoiding cutting the
critical path. Node replication makes the problem solvable in polynomial time. C.
Sze et al. [185] presented an extension the clustering algorithm to a more general
delay model. Other works have proposed clustering approaches that also take
advantage of vertex replication [157, 190].

More recently, Z. Donovan et al. |60, 61, 62] have studied the combinatorial
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circuit clustering problem with and without vertex replication. They propose sev-
eral algorithms to solve this problem. The authors present NP-hardness proofs for
the DAG circuit clustering problem with minimization of critical path degradation
during the clustering step, e.g., minimization of the number of clusters along the
most critical paths. They propose exact exponential algorithms and approxima-
tion algorithms parameterized by cluster size. Further details of this work can be
found in Z. Donovan’s thesis [59].

Other work on combinatorial circuit clustering is available in these papers [145,
47]. More details about clustering methods for circuit partitioning can be found
in Chapter 4.

Multilevel scheme

2\ s
w ) G
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Initial
partitioning

Figure 2.2: The multilevel scheme which consists of three phases: coarsening,
initial partitioning, and refinement.

The multilevel scheme has proven to be a very efficient methodology for par-
titioning graphs and hypergraphs. The multilevel scheme was first introduced by
S. T. Barnard and H. D. Simon [19] in 1994 for the graph bisection problem.
Independently, T. N. Bui et al. [29] used a multilevel heuristic for sparse matrix
factorization. B. Hendrickson et al. [88] developed a multilevel algorithm for graph
partitioning, and S. Hauck et al. [87] for partitioning logic circuits for VLSI de-
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sign. J. Cong et al. [46] have also proposed a multilevel method for VLSI design in
which circuits are represented by graphs and a clique-oriented clustering algorithm
is designed for the thickening stage. The clique-oriented clustering algorithm fa-
vors the clustering of vertices that form cliques or semi-cliques in the graph. An
illustration of the multilevel scheme can be found in Figure 2.2.

The multilevel framework consists of three phases: coarsening, initial partition-
ing and refinement. The coarsening phase recursively uses a clustering method to
transform the considered hypergraph into a smaller one. The aim of good cluster-
ing algorithms is to try to preserve the same global structure at each clustering
level, but it is hard to achieve it in practice. During the second phase, an initial
partitioning is computed on the smallest, or coarsest, hypergraph. Then, in the
third phase, an algorithm is applied at each recursion level to prolong the com-
puted partition to the upper level, and subsequently refine it. Let us recall that
the most common algorithms used for the refinement phase are the Kernighan-Lin
(KL) [114] and Fiduccia-Mattheyses (FM) [75] algorithms. As described in the
previous Chapter, these two heuristics are based on local search to move vertices
across parts, so as to reduce the cut of balanced hypergraph bipartitions. KL se-
lects a pair of vertices from each part of a given bipartition which maximize swap
gain. Here, swap gain refers to the reduction in the number of cut edges. FM com-
putes a move gain for each vertex, and performs a single move at each iteration.
More details about algorithms integrated in multilevel schemes can be consulted
in a survey on hypergraph partitioning which has been recently produced [35].

The netlists produced by synthesis tools can be organized hierarchically, with
the overall circuit being organized as a set of functional blocks, which in turn are
recursively made up of sub-blocks. The lowest blocks in the hierarchy consist only
of basic blocks. Another strategy is to use the circuit hierarchy to define the dif-
ferent levels. Hierarchical partitioning starts with the specification of the overall
circuit, which is divided into smaller sub-circuits that can be individually designed
and optimized. The efficiency of the decomposition methods depends on the ap-
plications. H. Krupnova et al. [118] presented in their work a hierarchy-driven
circuit partitioning for large ASICs prototyping. D. Behrens et al. [20] used the
circuit hierarchy as the clustering criterion. As the circuit hierarchy is part of the
input data, the computation time of the partitioning flow is reduced compared
to k-way partitioning tools. Y. Cheon et al. [39] introduced a multilevel parti-
tioning algorithm guided by the circuit hierarchy and obtains better results than
HMETIS. More recently, U. Farooq et al. |73] presented hierarchy-based circuit
partitioning for a multi-FPGA platform. Their experiments compare mono and
multi-cluster CPU circuits generated with the open source tool DSX [154]. Mono-
cluster benchmarks are mainly characterized by non-hierarchical interconnection.
Multi-cluster benchmarks are hierarchical in nature, with different clusters inter-
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connected in a hierarchy. The results show that the multilevel approach produces
better results than the hierarchical approach for the mono-cluster benchmark than
for the multi-cluster benchmark. On the opposite, in their results, the hierarchical
method performs better for the multi-cluster benchmark.

Other works also use hierarchical circuit properties to partition circuits such
as those of W. J. Fang et al. [72| and, more recently, U. Farooq et al. [74].

min-cut based approach

The partitioning of graphs and hypergraphs has been a well-studied topic in
recent years and remains so today. Several tools have been developed, each
with its specific focus, such as computational speed [106, 109, 34|, quality of
results [141, 169, 173|, or the specificity of the problem [149]. For most hyper-
graph partitioning tools, the cost function to minimize is the cut size. However,
C. Ababei et al. [4] have shown that this function does not model properly the
side effects associated with critical path degradation. In the previous chapter, we
evidenced that partitioning, which does not consider the target topology, cannot
model either the critical path degradation associated with routing costs.

This is why, several works have coupled pre- and post-processing algorithms
with min-cut tools to take into account critical path degradation during the par-
titioning phase.

J. Cong et al. [45] introduced an algorithm called Hierarchical Performance
driven Multilevel Partitioning (HPM), which addresses two objectives simultane-
ously: cut size and delay minimization. To achieve delay minimization, the authors
also use retiming methods. Retiming is a method that allows the petitioner to mod-
ify the circuit structure. The results of the HPM algorithm provides better delays
than those of HMETIS and FLARE [45]. FLARE is a performance-oriented circuit
k-partitioning algorithm with acyclicity constraints. The acyclicity constraints
are interesting, e.g., to avoid a path that traverses more than k parts. Readers
interested in acyclic partitioning can refer to [44, 140, 91, 92, 153]. An approach
similar to bipartitioning is proposed in a paper by A. B. Kahng et al. [104], in
which they define the notion of a V-shaped vertex. Given a vertex v along a path,
if its predecessors and successors are in the same part, which differs from that of v,
then v is V-shaped. The goal is to minimize this type of situation, which increases
the path’s criticality because of cut costs.

S. Ou et al. [143] presented an algorithm for circuit bipartitioning with timing
constraints and node replication, using iterative quadratic programming (TPIQ).
TPIQ P, an extension of TPIQ which include placement constraints, is proposed
in [142].

C. Ababei et al. [4] devised an algorithm, based on HMETIS, to minimize cut
size and critical path degradation. The authors use Elmore’s model to extract

46 J. RODRIGUEZ



2. State of the art in circuit and hypergraph partitioning

the timing associated with the circuit. The Elmore delay for an arc a, from a net
source to one of its sinks, is defined as:

Delay(a) = R, % (% + C’t> , (2.1)
with R, is the wire lumped resistance, C, is the wire lumped capacitance, and C}
is the total lumped capacitance of the source node of each net. From this timing,
they evaluate a subset of critical paths that are the most critical of the circuit.
The length of the critical paths is used as an hyperedge weight, to prevent these
hyperedges from being cut. The set of most critical paths is regularly re-evaluated
because it can be modified when adding cutting penalties.

S. H. Liou et al. [127], presented a partitioning flow with post-processing
and pre-processing around the HMETIS algorithm to account for the performance
degradation associated with the partitioning step. The pre-processing consists in
placing the circuit on a 2D surface. The distance between vertices is used as a
weight for each hyperedge during the partitioning stage with HMETIS. The aim is
to avoid cutting a pre-evaluated set of paths that are considered critical. Finally,
a post-processing step is applied to optimize the assignment of the parts on the
multi-FPGA platform. The authors also perform an optimization pass for signal
multiplexing. U. Farooq et al. [73] compared two circuit partitioning methods for
multi-FPGA platform prototyping; one is based on a multilevel approach, and the
other on a circuit hierarchy.

M. H. Chen et al. [38] proposed a partitioning algorithm, similar to HMETIS,
which considers a metric associated with the distance of the vertex distance in the
hypergraph. This metric can be approximated by the eccentricity, i.e., the greatest
distance between a node and other nodes in the hypergraph. Eccentricity is used
for the coarsening step. The authors proposed a routing indicator, by calculating a
route between vertices, using an A* algorithm. From these indicators, the authors
propose a partitioning flow, trying to minimize the impact of partitioning on the
circuit’s performance.

D. Zheng et al. [193] presented TOPOPART, a topology driven hypergraph par-
titioner designed for targeting multi-FPGA platform. TOPOPART first applies an
algorithm which find candidate FPGAs for each vertex while respecting topology
and fixed vertex constraints. The coarsening step is then performed by merging
different vertices that not only have high connectivity but also share a higher
number of FPGA candidates. Next, an initial partitioning is performed on the
coarsest hypergraph to obtain a feasible initial solution. The initial partitioning
assigns first fixed vertices, if exists. Then it assigns neighbors of fixed vertices and
vertices with the lowest number of FPGA candidates. Finally, uncoarsening and
refinement steps are applied to minimize the cut size while maintaining topology
and resource constraints.
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TOPOPART is designed to take topology into account when partitioning a cir-
cuit for a multi-FPGA platform. TOPOPART partitions a circuit while minimizing
the distance between vertices within the topology and the size of the cut.

I. Bustany et al. [31] introduced TRITONPART, a recent hypergraph partitioner.
TRITONPART also used a multilevel scheme to tackle large hypergraphs. In the
coarsening step, TRITONPART uses the First Choice algorithm [112] with a merge
weighting function which combines the heavy edge evaluation defined in [173] and
the sum of the hyperedge timing costs divided by their size. Timing cost is ex-
tracted from a set of finite paths of the circuit. After coarsening, TRITONPART
applies an integer linear program to the coarsest hypergraph which optimize the
cut size. A starting solution is computed before by applying a random partitioning
as in [107] followed by VILE algorithm [32|. An additional delay is added when
two adjacent vertices in a path are not in the same part. This delay is constant
and does not take into account the part connectivity of the target topology. Fi-
nally, TRITONPART performs uncoarsening and refinement steps. The refinement
applies a local search algorithm based on FM [75], which optimizes a cost function
which is a combination of cut cost and path cost. Path cost is updated during
each refinement process. The authors also introduced a greedy refinement algo-
rithm that randomly visits all hyperedges and tries to move a hyperedge’s subset
of vertices, from one part to another, without violating the balance constraint.

TRITONPART tackles timing cost degradation during partitioning by incorpo-
rating timing cost, in addition to cut cost, in their objective function.

Other works that deal with the partitioning problem, taking into account the
criticality of the paths, are [58, 158, 163, 66, 67, 134, 43, 2, 3, 182, 184, 188|.

2.4.2 Probabilistic approaches

Probabilistic approaches such as simulated annealing and tabu search have also
been studied for graph and hypergraph partitioning. Some of these approaches
are especially concerned with critical paths. The function to be minimized is not
exactly the function f, defined in the previous chapter, since the target topology
is not always taken into account and the model is a classical hypergraph. This
subsection describes and details state-of-the-art probabilistic approaches to circuit
partitioning.

Simulated annealing

Simulated annealing is a local search-based metaheuristic introduced in 1983 by S.
Kirkpatrick et al. [115] in 1983. The physical process of annealing in metallurgy
inspires this algorithm.
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Some parameters are required to simulate the physical process and address the
problem to be optimized. These parameters are listed below:

e T the temperature
e S the solution
e [ energy of the system

e Apg energy variation

Simulated Annealing algorithm simulates the annealing process at a temper-
ature of T'. The process starts from an initial state Sy at a corresponding tem-
perature Ty. For each state correspond a energy cost E. During the process, the
temperature is slowly reduced in a geometric progression or step by step. The
process consists of successive epochs in which the temperature is fixed and a fixed,
large enough number of solutions are evaluated. At the end of an epoch a new,
lower temperature is determined, following an exponential reduction factor or by
a fixed decrease value. Hence, at each temperature level T;, a new state .S; is
explored.

When a new candidate solution is produced, the energy variation Ag, compared
to the current solution is evaluated. The acceptance of the candidate as the new
current solution is decided by the condition:

r<e BE/M (2.2)

With r € [0, 1] a pseudo-random number uniformly chosen. If the condition is
valid, S; becomes the new current solution. Note that accepting a state of higher
energy allows the algorithm to explore a more significant part of the space states.
However, if S; has a lower energy than the precedent current solution S;, then
Ap < 0, thus, e 2#/T > 1, and S; is the new current solution. In this case, the
new solution improves the criterion and the algorithm moves towards the optimum
in the neighborhood of the precedent state.

Note that at the beginning of the process, the temperature T is high, that is,
the value of e=2#/T tends to 1. This favors diversification in the exploration of
the states space. Then, as the annealing process progresses, the algorithm tends
to intensify the search within the most promising areas of the search space.

K. Roy-Neogi et al. [163] presented an optimization algorithm for circuit parti-
tioning based on the principle of simulated annealing. In the context of their work,
circuits are partitioned for prototyping on multi-FPGAs platforms. The authors
adopt a dynamic weighting process to estimate the effect of partitioning on the cir-
cuit delays. Other works based on simulated annealing approaches have addressed
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the problem of partitioning and circuit placement [132, 79, 131]. Simulated anneal-
ing is often used for the placement and routing when the circuit is partitioned. For
example, in their paper, P. Maidee et al. [130] presented a partitioning-based algo-
rithm for placement on multi-FPGAs platform. This algorithm first partitions the
circuit using HMETIS [107], and then uses the VPR [23] simulated annealing-based
tool to refine the placement.

Tabu Search

Formalized in 1986 by F. Glover [81], tabu search is a local search algorithm that
maintains a FIFO queue, called tabu list, of solutions ()5 that have already been
explored. Starting from a solution S, the algorithm explores the neighborhood of
S, while excluding the solutions in the queue (). This method avoids returning too
quickly to a solution that has already been explored. For minimization algorithms,
if there is no better local minimum cost solutions in the neighborhood of S, the
search continues by exploring higher cost solutions. This makes it possible to
escape from a local minimum.

The tabu list size must be adapted to the objective, the nature of the problem,
and the expected performance. The size of the queue has significant impact on the
computation time of the algorithm. However, it is possible to re-explore solutions
in the tabu list using the “aspiration” value. This value is an acceptance metric
based on the cost or properties of the solution. Aspiration can be used, for example,
to encourage the exploration of desired type of solutions.

S. Areibi et al. |13, 14] applied the tabu search strategy to a simulated annealing
algorithm in their papers. J. M. Emmert et al. [69] presented a two steps approach,
partitioning and placement, both using tabu search algorithm. For the partitioning
step, the algorithm minimizes the cut size. Then, for the following placement step,
the algorithm minimizes the total Manhattan distance by placing the circuit on a
grid. Other works on tabu search addressed the problem of partitioning circuits
with or without considering the target topology [128, 68, 166].

Ant colonies

M. Dorigo et al. first introduced an ant colony optimization (ACO) algorithm
[63, 42] in 1991. An ant colony algorithm is inspired from real ants’ behavior
as they forage for food sources and communicate with each other by depositing
pheromones.

The first step consists in building the solutions: the ants move along a graph
representing the problem to be solved. The ants build solutions sequentially, fol-
lowing specific rules, moving from one node to another.

An important aspect in ACO is the pheromone deposition strategy. Once
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a solution has been constructed, the ants deposit pheromones on the borrowed
edges. Pheromone levels are adjusted according to the quality of the solution,
usually measured by a dedicated objective function and constraints.

Pheromone levels on edges are updated according to specific rules. For example,
edges taken by ants that have built good solutions can increase their pheromone
levels, while edges taken by ants that have built bad solutions can decrease their
pheromone levels. The steps of building solutions, depositing pheromones, and
updating are repeated over several iterations. As the iterations progress, the
pheromone levels guide the ants to favor the best-quality solutions. The algo-
rithm gradually converges to one or more local minimum solutions.

ACO is a heuristic method for combinatorial optimization problems, such as
the Traveling Salesman Problem (TSP) studied in the work of M. Dorigo et al. [64].
An ACO approach for graph bipartitioning can be found in a work done by M.
Leng et al. [124]. A k-way graph partitioning approach using ACO is studied in
work by K. Tashkova Korosec et al. [187|. There exist studies for netlist and hyper-
graph partitioning. For instance, the work by P. Danassis et al. [51] introduced a
novel netlist partitioning and placement algorithm named ANT3D, targeting 3-D
reconfigurable architectures based on ACO. More recently, R. Guru Pavithra et
al. [147] presented an ACO-based partition model for VLSI physical design.

Applying an ant colony algorithm to partition digital electronic circuits for
VLSI design permits problem-specific adaptations and custom parameters to ac-
count for domain constraints and objectives compared to min-cut tools. Comple-
mentary techniques can also be used with the ant colony algorithm to improve
partitioning performance and results [51, 147].

Evolutionary Algorithms

One subset of evolutionary algorithms are genetic algorithms (GA) [100, 99| that
were originally developed in the 1960s by John Hollande and his colleagues at
the University of Michigan. The principle of the algorithm is an iterative process
that maintains a population of solutions. Each solution is represented by a string
of digits, or chromosome. Each string is made up of characters and genes which
correspond to the digits in the string. From these digits, each solution has a
corresponding cost according to a cost function to optimize.

The heart of the algorithm is to produce multiple generations of populations,
i.e., sets of solutions. Each generation corresponds to one iteration of the al-
gorithm. During each generation, the solutions in the current population are
evaluated by a cost function dedicated to the optimization problem. Based on
these evaluations, a new population of candidate solutions is formed using specific
genetic operators: crossover and mutation. Crossover consist of combining the ge-
netic information (binary string) of two parent strings to generate new offspring.
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The mutation flip an arbitrary bit of chromosome from its original state. Mutation
introduce diversity into the sampled population and it is used in an attempt to
avoid local minima.

S. M. Sait et al. [165] addressed the problem of optimizing delay, power and
cutset in the partitioning step at the physical level. In their works, the authors
presented three iterative approaches based respectively on a genetic algorithm, a
tabu search and a simulated evolution to solve the multi-objective optimization
problem of partitioning. S. S. Gill et al. [80] addressed the k-way circuit partition-
ing using genetic algorithms. J. I. Hidalgo et al. [96] proposed a genetic algorithm
for partitioning and circuit placement for multi-FPGA platforms. Their work
models the circuit as a graph and targets a mesh topology of size 4, made up of 4
FPGAs. The algorithm minimizes the number of inputs and outputs connecting
each FPGA, while preserving the circuit structure, i.e., connections and cells.

Another type of evolutionary algorithms are memetic algorithms. Memetic
algorithms combine a genetic algorithm with a local search algorithm to improve
convergence. For example, S. Areibi’s papers [12, 15] presented a genetic algorithm
coupled with two local search methods. The first local search method extends the
Fiduccia and Mattheyses algorithm [75] to k-way partitioning. The second method
is an extension of the Sanchis KFM implementation [167] that apply movement
when no further improvement exists. This improvement avoids getting stuck in
a local minimum, improving the convergence of the algorithm. Other works on
the circuit partitioning problem, based on evolutionary algorithms, can be found
in [17, 170, 18, 117, 181].

2.5 Conclusion

This chapter overviewed the current state of the art in circuit partitioning with
path length minimization. The complexity section introduced the fact that the
partitioning process is NP-hard. This means that effort must be made to develop
efficient heuristics to compute a good partition in an acceptable computation time.
Some publicly available tools have been developed, which are presented in Sec-
tion 2.3. However, these tools are dedicated to the problem of cut minimization.
This problem is relevant to us, but it is not our main objective. Relevant works are
presented in Section 2.4.1. These works are based on min-cut tools for circuit par-
titioning, that is, the authors presented kind of processing to try to model the path
costs to drive the min-cut tool. Moreover, other works presented in Section 2.4.2
are based meta-heuristics algorithms. These algorithms requires to specify good
parameters and an extra effort to find a good embedding of the problem. Hence,
these processes for using min-cut tools or meta-heuristics, are an extra effort that
is not necessary if you use a dedicated algorithm. As Abraham Maslow said:
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‘If the only tool you have is a hammer, it is tempting to treat everything
as if it were a nail.”

For these reasons, in this thesis we propose a dedicated hypergraph structure to
model circuit properties such as register and combinatorial cells, register-register
paths, and acyclicity in combinatorial blocks. Dedicated clustering, partitioning,
and refinement algorithms based on this new hypergraph structure will also be
presented in the following chapters.

Red-Black Hypergraph Partitioning 53



2.5. Conclusion

o4

J. RODRIGUEZ



Chapter 3

Experimental setup and
methodology

95



3.1. Critical path in red-black hypergraphs

This chapter presents the methodology used to evaluate the path cost function
fp of partitions of the red-black hypergraphs.

Measuring f, means computing the critical path in some red-black hyper-
graph. The problem of computing the longest path in a hypergraph is generally
intractable, due to its NP-hardness. However, because of the properties of red-
black hypergraphs, such as the acyclicity within the DAHs that compose them,
one can compute the cost function f, in polynomial time. The algorithms needed
to compute f, are presented in Section 3.1.

In Section 3.2, we will present the digital circuits we used to compare our
proposed partitioning strategies with solutions based on min-cut partitioning tools.
We will use two sets of publicly available benchmarks and two sets created by us.
These third and fourth sets of benchmarks have been designed to contain topologies
of circuit with characteristics that differ significantly from those of the first two
sets of benchmarks.

In this thesis, we are interested not only in preventing degradation of the critical
path during partitioning, but also in the cost associated with routing signals across
parts. Therefore, it is necessary to evaluate partitioning strategies on different
multi-FPGA platform topologies. To this end, in Section 3.3, we will uses four
platforms, two of which consist of four parts, and the other two of eight parts.

3.1 Critical path in red-black hypergraphs

In this section, we present the problem of computing the critical path in a red-
black hypergraph. Note that when modeling digital electronic circuits, vertices are
associated with a traversal time. As presented in Section 1.2, this time represents
the delay of a cell in a digital electronic circuit. By adding up these delays along a
path between two registers, i.e., red vertices, we obtain the maximum total traver-
sal time, ¢.e., the path cost f,. This computation time is generally determined by
the technology available on the target FPGA board. Sometimes, the logical depth
is used to evaluate the path cost, as in [127, 38|. In this dissertation, we do not
deal with specific industrial topologies. Therefore, we set an equal computation
time per cell for all vertices. This weighting brings us closer to the logical depth
metric. Logical depth is equivalent to the length of a path, i.e., the number of
vertices traversed along the path.

Counting the number of traversed vertices is also known as the longest path
problem. In Subsection 3.1.1, we will define the general longest path problem for
graphs and hypergraphs, which is NP-hard in the general case. In this thesis,
we address the problem of mapping a red-black hypergraph onto a non-uniform
topology. Consequently, extra-cost due to routing has to be integrated in the cost
function f, defined in Chapter 1. In Subsection 3.1.2, we will prove that the longest
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path problem for red-black hypergraphs can be solved in polynomial time. Hence,
we will define an algorithm to compute the cost function f, of a partition of a
red-black hypergraph. This algorithm will be used to evaluate all the partitioning
results presented in this dissertation.

3.1.1 Hypergraphs

Computing the critical path of a hypergraph amounts to computing its longest
path. A longest path between two vertices u and v is a simple path of maximum
length between u and v. Formerly, we defined dy. (u,v) as the length of the
longest path between u and v. Given a hypergraph H = (V| E), the longest path
problem consists in finding a path p in H such that:

A(p) = M {dpa(u,0)} (3.1)
The longest path problem is known to be NP-hard in the general case [78].
Consequently, f, cannot be computed in polynomial time, nor can it be solved for
any cost model that operates on hypergraphs or graph representations.
However, in the next subsection, we will show that, for red-black hypergraphs,
the longest path problem can be solved in polynomial time.

3.1.2 Red-black hypergraphs

In [177], R. Sedgewick and K. Wayne presented an algorithm for computing a
critical path in polynomial time on acyclic graphs based on Kahn’s algorithm [103].
Since a red-black hypergraph is composed of one or more DAHs, the longest path
problem can be solved in polynomial time in a DAH, by applying the algorithm
in [177], which topologically sorts the DAH vertices. We propose an adaptation of
this algorithm to red-black hypergraphs in order to process each DAH separately.
We will use this new algorithm, called Algorithm 1, to compute the value of f, for
any red-black hypergraph.

In this dissertation, we are interested in the set of red-red paths, P®, of red-
black hypergraphs. Algorithm 1 computes path lengths by propagating the traver-
sal times from each vertex to its neighbors. Each vertex is processed by traversing
the topological sorting of vertices, to ensure that a vertex propagating its maxi-
mum local path length has already been updated by all of its incoming neighbors.
At the end of the algorithm, red vertices have the value of the longest path ending
in them. This data can be used to analyze the number of critical, quasi-critical,
and non-critical paths. We denote a path as quasi-critical if its length is close
to the length of the critical path. Formally, a quasi-critical path p is defined as
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Algorithm 1 Compute the longest path in a partitioned /mapped red-black hy-
pergraph

Require: H = (V,E), d: V — N, a vertex delay function, sort, an array which
stores a topological sort of V', is _red, a boolean array indicating if a vertex is
red, 7 : V — N, a partition of H, D : (m,7") — N, a partition delay function.

Ensure: p,.. maximal length of path in DAHs of H according to a partition.

1: Pmax < 0

2: Q «+ {}
3: length fwd < {}
4: for u € V do
5: length fwd[u] < d[u] > The initial length of a vertex is equal to its
traversal time
6: end for
7. for i € {0,|V| -1} do
8: u <— sort|i] > Process each vertex following a topological sort
9: for v € Tt (u) do > For each successor of u, spread its delay
10: if is red[u| then > If u is red, only spread its base delay d(u)
11: length fwd[v] < max(d[u] + d[v] + D(7(u), 7(v)),length fwd[v])
12: else
13: length fwd[v] +
max(length fwd[u] + d[v] + D(7(u), 7(v)),length fwd[v])
14: end if
15: if prax < length fwd[v] then
16: Pmax < length  fwd[v]
17: end if
18: end for
19: end for

20: return pyax
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follow:
d<p> > d(pmax) - D ) (32)

with pnax, the critical path and D a delay.

A hypergraph with few critical paths or no quasi-critical paths is unlikely to
be degraded too much if the few existing critical paths are preserved from being
cut.

Algorithm 2 is an extension of Kahn’s algorithm (topological sort) for red-
black hypergraphs. It provides the vertex sorting needed for the critical path
computation implemented in Algorithm 1.

3.2 Benchmarks

The hypergraphs of our benchmarks are taken from the I'TC99 benchmark [50]
presented in Subsection 3.2.1, the Titan23 benchmark [137] presented in Subsec-
tion 3.2.2, and the Chipyard benchmark [9] presented in Subsection 3.2.3. To rep-
resent different circuit topologies, we selected a representative subset of instances
of each benchmark.

For each instance, we use topology data to define a traversal cost d(v) for each
vertex v, corresponding to the traversal time of a logic element. In order to get
realistic results, we set the cut cost to be at least one order of magnitude higher
than the propagation delay of a combinatorial cell.

3.2.1 ITC99

The ITC99 digital circuits are designed to evaluate the effectiveness of circuit
testing methods such as Automatic Test Pattern Generation (ATPG) and Design
for Testing (DFT). ATPG is a method of automating electronic design for finding
an input sequence that distinguishes a correct circuit from a faulty one. DFT
consists of integrated circuit design techniques that add testability features to the
design of a digital circuit product. The added features facilitate manufacturing
testing of the designed digital circuit. More details about this benchmark are
available in [50].
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Algorithm 2 Topological sort of a red-black hypergraph

Require: H = (V| E), is_red, a boolean array indicating if a vertex is red.
Ensure: sort, an array of topological sort of vertices in V'

10:
11:
12:
13:
14:
15:
16:

17:

18:
19:

20:
21:
22:
23:
24:
25:

queue < {}
is_ visited < {}
sort < {}
in_deg + {}
for u € V do
in_deglu] + § (u)
is_visited <— False
if is_red[u] A 0% (u) > 0 then > If a red vertex u has out-neighbors, then
u is a source of at least one DAH
queue < queue + [u]
is_ visited[u] < True
end if
end for
while |queue| > 0 do > While a vertex is not been processed
u < queue.pop()
is_ visited[v] < True

sort < sort + [u] > As u is placed in sort, each of its in neighbors is
processed, or u is a source of at least one DAH
for v € I'" (u) do > As u is placed in sort, each in-degree of its

out-neighbors is updated
in_deg[v] «+ in_deg[v] — 1
if in_deg[v] == 0 then © If all of in-neighbors of v are processed, v is
inserted into the queue
queue + queue + [v]
is_ visited[v] < True
end if
end for
end while
return sort
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Table 3.1 presents some characteristics of our subset of ITC99 benchmarks.
This subset consists of representative circuits with small sizes (B01 to B13), medium
sizes (B14, B17, and B20 to B22), and very large sizes (B18 and B19).

In this set of benchmarks, we focus on circuits of different sizes and different
characteristics to evaluate the impact of algorithms on these circuits. For example,
when partitioning small circuits, paths are more likely to be cut multiple times
than when partitioning large circuits, because circuits are sparse. This can be
inferred from the ratio between the number of vertices in the longest path and
the total number of vertices, see, e.g., B01(8/51) and B19(170/233685). However,
in practice, small circuits are not placed on multiple FPGAs. These circuits can
therefore be considered critical cases for analyzing the behavior of partitioning
methods in extreme cases.

Table 3.2 shows the characteristics of the paths of the red-black hypergraph
circuits in this benchmark set. Since the number of paths in a circuit can be
exponential, we do not evaluate all paths. Instead, we propagate the delay along
a topological order using Algorithm 2 described in the previous section. Then,
we examine the maximum propagated delay, to calculate the length of the critical
path, pnax, and to approximate the number of critical paths. Path criticalities give
us information about the possible degradation of the hypergraph critical path.
Typically, a hypergraph exhibiting homogeneous path criticality indicates that
there are no paths way less critical than others. On the contrary, a hypergraph
with heterogeneous path criticalities tells us that there are paths that are much
less critical than others. Hence, there is a significant probability that some of these
paths may be cut without their cost exceeding that of an uncut critical path. A
second metric is the path length. As paths are composed of vertices, if the number
of vertices along paths is small, it is easy to place them entirely in one part. On
the opposite, it is more difficult to place paths made of many vertices in one part.
To evaluate the length of paths, we use the same methodology as for the critical
path calculation, and propagate the vertex depth as the vertex delay.

Some circuits have fewer critical paths than their number of vertices. For
example, circuits B17, B21, and B22 have ~ #pn.x = 1. In other words, there is
only one red vertex bearing the critical path value, at the end of Algorithm 1. In
these hypergraphs, all black vertices have an equal constant delay, that is, only the
length of paths is relevant for analysis. The difference between the length of the
longest path and the average path length provides an indication of the existence
of paths that can be cut without impacting the critical path of the circuit. Note
that this argument is also valid when the cut penalty is less than the difference
between the cost of the critical path and that of a given non-critical path. For
example, circuit B19 has a critical path cost, 7.e., maximum vertex criticality,
equal to: 97.82 = 0.58 x 168 4+ 0.19 x 2 and a median vertex criticality, equal to:
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Table 3.2: Paths statistics for the ITC99 benchmark, with p.., the critical path,

A #Pmax a lower bound on the number of critical paths, d(p) the median max-
imum delay of paths traversing vertices, max length(p) the longest red-red path,
i.e., the maximum number of vertices within red-red paths, and ~ length(p) the
approximated average length of red-red paths =+ its standard deviation.

Instance | Pmax | & #Pmax | d(p) | maxlength(p) | ~ length(p) + std. dev.
BO1 3.86 11 3.29 8 3.78+ 1.9
B02 3.28 2| 271 7 3.33 + 1.89
B0O3 6.18 12| 2.71 12 6.07 £3.73
B04 16.62 11 9.09 30 9.48 £6.91
B05 31.7 21 16.05 56 17.84 +£14.29
B06 3.28 31 271 7 3.57 £ 1.86
BO7 18.36 3| 851 33 12.17 £ 8.01
BO8 9.66 4| 5.61 18 6.86 + 4.38
B09 5.6 8| 3.87 11 5.77 £ 2.89
B10 7.34 31 5.03 14 5.9 4 3.49
B11 20.1 1] 8.51 36 9.46 £ 7.17
B12 11.4 2| 445 21 7.54+3.93
B13 11.98 11 3.29 22 6.09 £+ 4.32
B14 35.18 2| 23.59 62 25.94 +10.96
B17 53.74 11 23.59 94 27.72 + 20.63
B18 95.5 16 | 22.43 166 28.11 +24.91
B19 97.82 32 | 22.43 170 29.11 + 26.04
B20 39.24 2| 26.49 69 29.88 + 14.68
B21 39.82 1|27.07 70 29.444+14.9
B22 39.82 112591 70 28.83 +14.47

22.42 = 0.58 x 38+ 0.19 x 2. Therefore, if the cut penalty is set to 10 nanoseconds,
we can cut 7 times paths traversing half of the vertices without exceeding its
critical path of length 97.82. On the opposite, BO1, B02, B06, B09, and B10 have
their median path cost close to the critical path length, that is, in these circuits,
a majority of paths are critical.
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3.2.2 Titan

The Titan benchmark consists of 23 digital circuits taken from a variety of real-
world applications. They reflect modern designs of large-scale systems and use
heterogeneous resources. The Titan benchmark was created to compare two CAD
tools, VPR [23] and Quartus II from Altera (now Intel). More details about the
Titan benchmarks can be found in [137].

In our research team, at CEA LIST, the tool used for logic synthesis is Vivado
from Xilinx (now AMD). Logic synthesis is a process that translates the behavioral
specification of a circuit, written in a hardware description language (typically,
Verilog or VHDL) into a netlist that can be implemented on an FPGA or an
ASIC. The netlist instantiates logic elements that are available on the desired
target technology; in this case, our FPGA model. It is therefore technology-
dependent. A netlist synthesized for an Altera platform cannot be implemented
on a Xilinx FPGA. Furthermore, there are several non-compatible generations of
technologies available from the same vendor. As a result, in this dissertation, we
chose to use the Virtex-7 FPGA technology from Xilinx to transform abstract
circuits of the Titan benchmark into an synthesized circuit. To define the vertex
delay, we use an approach similar to that of [127]. In this paper, S. Liou et al.
evaluated the topological depth of paths, i.e., they assigned a unit delay to each
vertex. In this dissertation, we assign a delay of 0.58 to each black vertex, which
corresponds to LUT! traversal time for the Xilinx Virtex-7 speed grade 3. As
said previously, delays can be inferred from the targeted technology. However, in
this dissertation, we restricted our benchmark to six target topologies described
in Section 3.3.

Table 3.3: Applications of the Titan benchmark instances.

Instance Application
bitonic_mesh Sorting
cholesky_bdti Matrix Decomposition
dart On Chip Network Simulator
cholesky_mc Matrix Decomposition
des90 Multi puP system
Xge_mac 10GE MAC Core
denoise Image Processing

LA Lookup Table (LUT) is a base element on a FPGA that contains a programmable truth
table, and is used to implement combinatorial logic. LUTs can be seen as programmable (sets
of) logic gates.
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Table 3.4 displays some characteristics of a representative subset of Titan
benchmarks used to evaluate the algorithms proposed in this thesis. This sub-
set consists of circuits with practical applications and sizes that differ from those
selected in our subset of the I'TC benchmark. The average degree ¢ of the vertices
is not high. In other words, the circuits are sparse hypergraphs.

Table 3.5: Paths statistics for the Titan benchmark, with p.., the critical path,

A #Pmax @ lower bound on the number of critical paths, d(p) the median maxi-
mum delay of paths traversing vertices, maxlength(p), the longest red-red path,
i.e., the maximum number of vertices within red-red paths, and ~ length(p) the
approximated average length of red-red paths =+ its standard deviation.

Instance Pmax | & #Pmax | d(p) | maxlength(p) | =~ length(p) £ std. dev.
bitonic_mesh 13.14 32| 271 24 6.85 + 6.44
cholesky_bdti 10.82 6| 0.39 20 3.72+£2.84
dart 35.76 8| 1.55 63 7.5+£6.42
cholesky_mc 10.82 18| 0.39 20 3.71£2.92
des90 13.14 544 | 2.71 24 6.95 + 6.67
xge_mac 6.76 41 097 13 3.61 £2.17
denoise 2304.14 8 120.69 3974 540.71 £ 1047.49

These instances have a low proportion of their red vertices ending a critical
path. The circuit with the highest number of red vertices in which a critical path
ends is des90. The Titan instances, like the big ITC instances, exhibit a significant
discrepancy between the number of vertices in the longest path and the average
path size. This indicates that there is a low proportion of critical and quasi-critical
paths in these circuits. Note that circuit denoise has the highest critical path and
path length, among all circuits.

3.2.3 Chipyard and neural networks circuits

Chipyard is an open-source generator that can be used, for example, to generate
RISC-V Rocket chip SOCs. Chipyard was used to generate four digital circuit
benchmarks, listed in the following tables. These benchmarks were chosen to
assess the behavior of partitioning strategies on these specific topologies, in order
to broaden the scope of our study. To enrich the diversity of this benchmark, we
add two circuits, MNIST and MOBILENET1, both of which being neural network
inference circuits. These circuits have been generated by the N2D2 deep-learning
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tool from CEA LIST [36], which allows to export a VHDL description of a data-
flow hardware circuit implementing a chosen neural network description.
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Table 3.6 presents some of the characteristics of the subset of our Chipyard
benchmarks used to evaluate the algorithms proposed in this thesis as well as
third-party partitioning tools. This benchmark is composed of several basic circuits
whose sizes are comparable to those of the circuits selected from the ITC and Titan
benchmarks. Note that WasgaServer is the biggest circuit of all benchmarks, with
1622238 vertices, 403886 red vertices, and 1675291 hyperarcs. Its average degree
0 is higher than that of the ITC benchmark circuits and similar to that of Titan.
Like the digital circuits in the previous benchmark sets, these circuits are sparse.

Table 3.7: Paths statistics for the Chipyard benchmark instances, with p., the

critical path, & #pnax a lower bound on the number of critical paths, d(p) the
median maximum delay of paths traversing vertices, maxlength(p) the longest
red-red path, i.e., the maximum number of vertices within red-red paths, and
~ length(p) the approximated average length of red-red paths + its standard
deviation.

Instance Pmax | ~ #Pmax | d(p) | maxlength(p) | = length(p) £ std. dev.
EightCore 47.94 48 | 5.03 84 12.08 £12.56
mnist 6.18 524 | 2.71 12 4.09 £ 3.21
mobilnetl 16.04 71097 29 4.25 + 3.76
OneCore 47.94 6| 5.03 84 12.71 £ 12.46
PuLSAR 48.52 118 | 8.51 85 15.72 £ 10.68
WasgaServer | 48.52 708 | 8.51 85 15.62 £11.14

The path statistics in Table 3.7 exhibit similar average path lengths and critical
path costs for all the selected circuits. However, the median path cost is still quite
small, with respect to the cost of the critical path.

3.2.4 File formats for the red-black hypergraph

In this subsection, we introduce a new file format tailored to represent red-black
hypergraphs. Currently, hypergraphs are commonly encoded in the HGR and HYGR
formats that are used in HMETIS and PATOH, respectively. The difference between
these two formats is that the HGR format can only encode one weight per vertex,
while the HYGR format can encode multiple weights.

In a red-black hypergraph, a vertex should be identified as red or black. In
addition, information about delay and criticality should be stored. The HYGR
format can be adapted by using the vertex weight vector to store the color, the
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delay and the criticality of vertices. To identify the source of each hyperarc, we
consider the first vertex in the hyperarc description to be its source. Hence, we
propose to adapt the HYGR format file format to represent red-black hypergraphs.

In the file format used in TOPOPART [193], the target topology and the circuit
are described. Therefore, testing IV circuits onto 1" target topologies need N x T
files. As a consequence, we prefer to separate the description of the circuit and
the target topology in our algorithms to avoid multiplying files.

To compare our algorithms with min-cut partitioning tools, we set a single
weight for the vertices, representing resource consumption (e.g., register width),
because the HGR file format can record only a single weight per vertex. In order
to refrain min-cut partitioning tools from cutting critical hyperarcs, each hyperarc
is also weighted with the maximum criticality value of the vertices of the hyperarc
(see Section 4.2 about the r* weighting scheme). These values are computed using
the algorithms presented in the previous section.

3.3 Target topologies

This section presents the target topologies used in this dissertation for our circuit
mapping evaluations. These target topologies were chosen to evaluate the impact
of routing cost in circuit prototyping on multi-FPGA platforms. Each circuit is
partitioned into the number of FPGAs available on each platform, and placed onto
the platform. For example, if a subset of vertices is placed in part 1, then these
vertices are considered to be implanted on FPGA 1 on the platform.

Topology-unaware assignments of vertex subsets to parts can result in higher
additional routing costs. These additional costs occur when adjacent vertices are
mapped onto different FPGAs which are not direct neighbors in the communication
network of the platform. In other words, signals exchanged between these two
FPGAs must pass through other FPGAs on the platform to reach their destination.
To obtain realistic results, we set the cut cost between two connected parts to be at
least one order of magnitude higher than the propagation delay of a combinatorial
cell.

3.3.1 4-FPGA topologies

In this dissertation, we designed three topologies composed of 4 FPGAs. The first
topology, T'1, consists of a cycle graph, as shown in Figure 3.1a. The second one,
T2, shown in Figure 3.1b, is a path composed of 4 FPGAs. This topology was
created to evidence the impact of a partitioner that would not take into account
the target topology and the resulting routing costs.
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Tto Usi Tto Us
T(3 (%) T(3 (%)
(a) Target topology T1. (b) Target topology T2.

Figure 3.1: Two target topologies T1 (a) and T2 (b) composed of 4 nodes.

Our third target topology, T3, is the complete 4-FPGA graph. It will be used
to evaluate critical path degradation, irrespective of additional routing costs due
to topology constraints. In this target topology, each FPGA is connected to each
other.

3.3.2 8-FPGA topologies

This subsection presents two 8-FPGA topologies, T4 and, T5, that come from the
ICCAD 2019 competition [183]. Topology T4 is presented in Figure 3.2. Both
topologies have a similar structure. In order to evaluate the impact, on the critical
path, of a partitioning strategy that does not take topology into account, we
modified the IDs of the parts of T4 to generate T5.

The longest path between two parts of this platform is equal to 7, i.e., the
maximum possible routing cost between two vertices is 7 X D, where D represents
the additional delay for transmitting a signal between two parts.

Like for 4-FPGA topologies, we defined a third topology composed of 8 FPGAs,
called T6, in which each FPGA is connected to all the others.
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U T(1 U] Uk

U Tts Tle Tty

Figure 3.2: T4: the ICCAD 2019 contest target topology for problem B.

3.4 Conclusion

In the first section of this chapter, we presented our method for measuring the
quality of a partition for the problem of mapping a red-black hypergraph onto a
non-uniform topology. This measure is based on the computation of the longest
path within the DAHs that form the hypergraph, including cross-FPGA routing
cost. This problem is NP-hard in the general case, but, due to the acyclicity of
digital circuit combinatorial blocks, in our case, the computation can be performed
in polynomial time.

Since the red-black hypergraph partitioning problem plays an important role in
circuit partitioning, we need to evaluate different partitioning strategies on publicly
available benchmarks.

As the red-black hypergraph is a new model, defined in Chapter 1 of this
thesis, we presented in this chapter an adaptation of the HYGR file format which
can encode a multi-valued red-black hypergraph. This file format is used for our
experimentations.

To perform our experimentations, we proposed six FPGA platforms, presented
in the final section. These platforms consist of three platforms comprising four
FPGAs, and three others comprising eight FPGAs.
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4.1. Clustering

Coarsening methods are part of the multilevel partitioning scheme. As we have
shown in Chapter 2, the multilevel scheme is the most efficient and widely used
approach for clustering large hypergraphs. As a result, all modern partitioning
tools implement methods based on the multilevel scheme. The general coarsening
process consists of a sequence of (hyper)graph shrinking steps, each of which is
performed using a clustering method. The aim of a good clustering algorithm is
to try to preserve the same global structure at each coarsening level, yet this is
hard to achieve in practice.

Clustering also plays an essential role when partitioning electronic circuits,
particularly in designing Systems-on-Chip (SoCs) and Integrated Circuits (ICs).
Modern electronic circuits are becoming increasingly complex, comprising millions
or even billions of transistors. Clustering may be used to reduce the size of a
circuit problem by creating blocks of cells. This reduction in size makes circuit
problems easier to manage.

This chapter is structured as follows: existing works on clustering for circuits
and hypergraphs are presented in Section 4.1. Weighting schemes to measure
the attractiveness between nodes for the clustering objective are introduced in
Section 4.2. Polynomial algorithms for clustering are presented in Section 4.3;
these algorithms are designed for a specific class of hypergraphs. Since the problem
is NP-hard, parameterized algorithms are studied in Section 4.4.

Some sections of this chapter are based on our published work [162].

4.1 Clustering

In this section, we present some clustering approaches for graph, hypergraph,
and circuit partitioning. The algorithms associated with graph and hypergraph
partitioning are generally tailored to optimize cut minimization functions. In the
context of circuit partitioning, algorithms should consider additional constraints,
as well as an additional objective function aiming at minimizing the degradation
of the critical path.

4.1.1 Hypergraph Clustering

Coarsening algorithms are essential for partitioning large hypergraphs. At their
core, clustering algorithms reduce the size of the hypergraph partitioning problem
by merging vertices according to a matching function. Several functions have been
developed to evaluate the quality of vertex merging.

B. Hendrickson and R. Leland [88] propose a randomized matching algorithm.
This algorithm randomly traverses the vertices, and if the visited vertex is not
already matched, a neighbor is randomly selected for merging. The random as-
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pect of the algorithm allows it to compute a solution quickly, making it practical
for large instances. Another clustering algorithm used for the coarsening phase
is called heavy edge matching. Like the previous one, this algorithm randomly
visits the graph vertices, and if the visited vertex is not already coupled, the algo-
rithm selects a not yet selected neighbor connected by an edge of heaviest weight.
G. Karypis and V. Kumar [109] compare randomized matching and heavy edge
matching for coarsening algorithms and conclude that the heavy edge matching
algorithm provides partitions with better quality and reduces computation time
during the refinement stage. U. Catalyiirek and C. Aykanat [33] proposed an al-
gorithm based on heavy-connectivity matching, that favors merging vertices with
highest connectivity. The connectivity metric used is also known as the inner prod-
uct. The inner product between two vertices is defined as the number of hyperedges
shared by these two vertices. T. Heuer and S. Schlag |95] propose a framework
for hypergraph coarsening based on the exploitation of community structures in
graphs. Their experimental results show that their coarsening method improves
the initial partitioning results as well as the final result. Readers can consult
the recent survey published by U. Catalyiirek et al. [35] for more information on
clustering methods applied to graphs and hypergraphs.

4.1.2 Circuit clustering when replication is allowed

Combinatorial circuit clustering, when logic replication is allowed, optimises par-
titioning by duplicating parts of the combinatorial circuit. Let us recall that CA,
first defined in Chapter 2.2, is associated with the clustering problem when repli-
cation is allowed.

E. L. Lawler, et al. [122] have presented a polynomial algorithm for grouping
the vertices of a circuit so that the final delay is optimal. The authors use vertex
replication to avoid cutting specific paths in the circuit. Other works have proposed
clustering approaches that allow vertex replication [157, 190, 185]. A trivial way is
to duplicate the circuit in each part if capacity permits, thus avoiding cutting the
critical path. Node replication makes the problem polynomially solvable but, if
the number of replications is limited, the problem remains NP-hard. A trivial way
to prove the hardness of clustering is to study the complexity when replications
are limited to 0. However, replication provides a means for reducing the cut cost
and delay. An example of replication is shown in Figure 4.1.

In the context of circuit partitioning for multi-FPGA platforms, the capacity
is limited by the resource capacity of the FPGAs. If the circuit is small enough,
pre-processing can be applied to define a margin based on the capacity of the
target platform. Post-processing could then be applied to determine if the circuit
has replicable areas, allowing the objective function to be optimized. Critical
paths are often so because they contain an important amount of logic, resulting in
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significant replication of vertices. As partitioning with replication can be seen as
a separate problem, we do not deal with it in this thesis.

4.1.3 Circuit clustering when replication is not allowed

Clustering a combinatorial circuit when logical replication is not allowed aims at
optimizing partitioning minimizing f, under the condition that each cluster is a
disjoint subset of vertices. In this thesis, we associate CN with the clustering
problem when replication is not allowed. As said, a clustering C of H = (V, A) is
the splitting of V' into vertex subsets C;, called clusters, such that:

(i) all clusters C; are given a capacity limit M;, such that: > . Wy (v) < M; ;
(ii) all clusters are pairwise disjoint: Vi # j,C; NC; =0 ;
(iii) the union of all clusters is equal to the vertex set V: |J,C; =V .

A. A. Diwan et al. |[57] addressed a similar problem, consisting in placing nodes
of a memory access structure on disk pages such that a path through several
nodes traverses as few disks as possible. Their data structure is a DAG, and their
objective is to cluster the DAG such that the number of shared edges per cluster
along a path is minimized. This problem is similar to the unweighted case of the
CN problem. The authors also presented a polynomial-time algorithm for trees,
and showed that the problem is NP-hard for unweighted DAGs.

More recently, Z. Donovan et al. [60, 61, 62] have studied the combinatorial cir-
cuit clustering problem, with and without vertex replication. They proposed sev-
eral algorithms to solve this problem. The authors presented NP-hardness proofs
for the DAG circuit clustering problem with minimization of critical path degrada-
tion during the clustering step, e.g., minimization of the number of cut penalties
along the most critical paths. They proposed exact exponential algorithms and
approximation algorithms parameterized by cluster size. Further details of this
work can be found in Z. Donovan’s thesis [59].

Other work on combinatorial circuit clustering to minimize critical path degra-
dation by placing neighboring vertex pairs in different clusters are available [145,

47).

4.1.4 Conclusion

In this section, we discussed the two clustering problems known as CA when repli-
cation is allowed, and CN when replication is not allowed, defined in Chapter 2.2.
In the rest of this chapter, we will only consider the CN problem.
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b) Partition where H) is a replication of Hy and, DAHs H} and Hj are cut.

Figure 4.1: This figure presents an example of the use of replication to avoid cut
a critical DAH. In this example, we have two partitions of a red-black hypergraph
composed of seven DAHs in which, the hatched DAH Hj represents a DAH that
contain the critical path. Partition a cuts Hz and Hs. In partition b, Hy is
replicated in HJ, to avoid the cut of critical path in Hs. Hence, in partition b, H)
and Hj are cut and Hj is fully contained in part ;.
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4.2 Model and weighting schemes

Vertex criticality defined in Chapter 1.2, is used to guide clustering algorithms so
as to minimize the impact of partitioning on critical paths [4, 35]. In this section,
we will present the various state-of-the-art weighting schemes used to measure
vertex criticality. We propose a new weighting scheme that models more finely the
criticality which we use to cluster red-black hypergraphs.

4.2.1 Clustering problem model

In the CN problem, an additional constant cost D is added between two neigh-
boring vertices placed in different clusters. However, in our model, the distance
between any two vertices u and v (i.e., path cost) may increase during clustering,
due to the additional cost that paths have to incur across clusters. Let us recall
that the distance function between two vertices in a red-black hypergraph is de-
fined by dpmax(u,v), which is equal to the longest path between v and v. Let D be
the penalty associated with the distance between two vertices v and v placed in
different clusters; the distance function for some clustering C, is thus:

dC.. (u,v) > dpax(u,v) + D . (4.1)

max

The objective function f, can therefore be defined as the minimization of the
longest path of H subject to clustering C: f, = mindy.(H¢). We extend
the definition of the CN<w, M, A> problem defined by Z. Donovan et al. [59] to
red-black hypergraphs as follows:

Given a red-black hypergraph H = (V, A), with a vertez-weight func-
tion w : V. — RT, delay function d : V — R*, maximum degree A,
constant D, and a cluster capacity M, the goal is to partition V into
clusters such that: (i) the weight of each cluster is bounded by M ; and
(1i) the mazimum delay-length of any red-red path of H is minimized.

To be consistent with previous definitions of the CN problem, we will keep the A
parameter, even though we will not use it in the following.

4.2.2 Weighting schemes

As we exposed in Chapter 1.2, the criticality of some vertex v measures the value of
the longest path passing through v. Consequently, criticality seems to be an inter-
esting weighting scheme for measuring the attractiveness between two connected
vertices. In this subsection, we present three weighting schemes used to guide a
clustering algorithm in the context of circuit partitioning with path cost minimiza-
tion. First, we present the state of the art with respect to weighting schemes, and
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show their limitations. Then, we present our weighting scheme based on vertex
criticality.

Delay propagation

Several previous works have proposed metrics for clustering, with the objective of
path minimization [4, 35]. For example, C. Ababei et al. [4] presented a weighting
scheme based on delay propagation to drive min-cut tools; the weight between two
vertices u and v is equal to the longest path from any red source vertex to vertices
u and v. This method calculates local weights along subpaths from red source
vertices to any vertex. Thus, within each DAH, H = (V, A):

d(u) I~ (u) =10,

u) = d(u) + max [(v) otherwise . (4.2)

For any vertex u € V, the value [(u) corresponds to the maximum path cost
from any source vertex to u. Therefore, the maximum path cost within some DAH
will be found at the level of its sink vertices. A calculation on the subpath does
not indicate whether their subpath is on the critical path. Cutting anywhere along
a path has the same detrimental effect as adding a penalty to the total path cost.
It is to alleviate these issues that the next metric has been devised.

Delay back-propagation

As all critical vertices must be labeled with the same weight, the delay propagation
scheme is not adequate. Hence, we have first devised a new weighting scheme based
on the back-propagation of path cost:

l(u) It (u) =10,
T =1 max r(v) otherwise . (43)
vel* (u)

For any w € V/, the value r(u) represents an upper bound for the path cost of the
longest red-red path traversing u. If u belongs to a path of maximum path cost,
then r(u) is equal to that path cost.

This weighting scheme accounts better for the overall impact of the cut along a
path because, unlike the previous method, the information is back-propagated to
all predecessors. However, it may include heavy vertices that do not belong to a
longest red-red path, as shown in Figure 4.2. To overcome this problem, we need
to define the value of the local critical path through each pair of vertices. For this
reason, we have proposed a third weighting system, in the next subsection.
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Weighting scheme | Weighting scheme r Weighting scheme 7~

Figure 4.2: An example of the three weighting schemes [ [4], r, and r*. We
consider a unit delay for each vertex and a delay equal to zero for each arc. In
this example, we can clearly see that scheme [ does not effectively weight critical
vertices. Scheme r weights critical vertices correctly, but wrongly labels non-
critical vertices. Scheme r* is more relevant in its weighting, with respect to our
goal.

Refined delay back-propagation

In this subsection, we present a weighting scheme based on the cost of the local
critical path. This scheme retro-propagates critical information throughout the
red-black hypergraph and avoids non-critical heavy vertices. The [, r, and r*
metrics are used as weighting schemes, as illustrated in Figure 4.2.

Let 7*(u, v) be the criticality value between connected vertices u and v, defined
as follows:

I(w) ifu=wv,

ruv) =9 v) _( max (') —l(u)) otherwise .

uw'el—(v)

(4.4)

—~

In equation 4.4, max,/cp- () [(u') represents the value of the arcs along the local
critical path, which is the longest red-red path traversing v such that, for every
other [(u) < maxyyer-(y) [(u'), arcs (u,v) are not in the local critical path. It is a
more accurate metric for improving the behavior of clustering algorithms because,
in the context of circuit clustering, the aim is to group critical vertices together. If
the relationships between vertices correctly reflect criticality, then the clustering
algorithm can take advantage of this. An example of the computation of r* is
represented in Figure 4.3.

For each combinatorial sub-circuit modeled with a DAH, the r* vertex-vertex
criticality relation defines a criticality DAG. Every hyperarc in the DAH defines a
group of arcs in the criticality DAG, in which each arc connects the source vertex
to a sink vertex. An example is presented in Figure 4.4. The cut weight of arcs
corresponds to the r* value between source and sink in arcs. Hence, the cut weight
of this hyperarc is the maximum of the r* values between its source and sinks. We
will use the criticality DAG in the next section as support for proofs.

80 J. RODRIGUEZ



4. Algorithms for coarsening

Figure 4.3: This figure exhibits an example of the r* weighting scheme and how it
is computed. 7*(u;, ) and r*(z, v;) are the values of the local critical path between
pairs of vertices (u;, ) and (v;, ) in this subgraph. There is a maximum value for
each [(u;), w. For each u;, W — l(u;) represents the contribution of u; to the local

critical path value r(z) = max r*(z,v;).
v;elt ()

Figure 4.4: This sketch presents an example of vertex-vertex relations within a
hyperarc. These relations can be computed in each hyperarc of the hypergraph,
and define its corresponding DAG. For any given pair of vertices, multiple arcs
resulting from the transformation of multiple hyperedges connecting those two
vertices are merged into a single arc whose delay is the maximum of the arc delays.
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4.2.3 Conclusion

In this section, three weighting schemes have been defined and compared: [, r,
r*. As a cut anywhere along a path has the same detrimental effect of adding a
penalty to the total path cost, critical vertices must have the same criticality. The
r scheme back-propagates criticality values to the predecessors, compared to the [
scheme, which only propagates delay. Hence, in the [ scheme, critical vertices do
not have the same criticality compared to the r scheme; that is, the r scheme is
better than the [ scheme at identifying critical vertices. However, the r scheme can
back-propagate the critical value to non-critical vertices, while 7* does not. Indeed,
the r* scheme computes each vertex’s local critical path value. In the context of
our circuit clustering problem with objective to avoid cuts along critical paths,
that is, clustering critical vertices together to avoid possible cuts along critical
paths. Consequently, the r* value appears to be a better model to cluster critical
vertices than [ and r. The DAH clustering algorithms presented in the following
sections use the r* weighting scheme. We also modeled the critical relation of a
red-black hypergraph for the r* by a DAG. This critical DAG will be used as a
support for proofs and explanations to represent the path graph of a DAH with
its r* vertex-vertex criticality relationship.

4.3 Polynomial algorithms for a specific class of
DAHs

In this section, we study some classes of hypergraphs for which the CN problem
is polynomial. We propose a metric based on the number of intersections between
paths, that allows us to identify classes of red-black hypergraphs. We also present
an algorithm that solves the problem in polynomial time for critical DAG that
does not contain K3 as a subgraph. Here K3 refers to the complete graph of 3
vertices. In a complete graph, each pair of vertices is connected.

4.3.1 Path intersection

Z. Donovan et al. [61] have shown that, in the general case, the clustering problem
CN is NP-hard, and K. Andreev et al. [11] have shown that unless P = NP, there
is no constant approximation factor for balanced graph partitioning in the general
case. In this section, we present polynomial algorithms for a specific class of red-
black hypergraphs. This class is characterized by the existence of a bound on the
number of distinct hyperarcs between two paths sharing at least one vertex. Let
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us define two boolean functions f, and f, applying to a DAH H = (V, A):

true ifuepnpvep \p,
fa(u7 Uapap/) = . \ (45>
false otherwise ,
with u,v € V and p,p" a red-red paths in H. Similarly:
true ifuep \pvepny ,
fb(uavapap/) = : \ (46>
false otherwise .

If these functions are applied to vertices in hyperarcs a € A, such that u € s~ (a)
and v € s™(a), f, and f, are valid for each intersection u,v between two different
paths, p and p’. An intersection between two different paths is defined by a couple
of vertices u, v, such that, either u is in both paths and v is in p’ and not in p (f,),
or v is in both paths and w is in p’ and not in p (f).

Let p be a red-red path in H = (V, A). Let «(p), spelled “iota”, be the maximum
number of distinct hyperarcs, i.e., counted only once, between a path p and paths
sharing at least one vertex with it:

t(p) = max [{a€ A:TFue s (a),Ive st (a), falu,v,p,p") V folu,v,p,0)}| -

p'€P(H)
(4.7)
An example of the calculation of the above formula is illustrated in Figure 4.5.

ues(a),vesta), wepnp,vep’\p) ues(a),vest(a), wep \pvepny)

Figure 4.5: In this example, the maximum number of arcs that intersect two
different paths is 2. If p is the grey path and p’ is the black dashed path, we see
that there are two arcs that validate the (u € pNp',v € p'\p)V(u € p'\p,v € pNp’)
¢ condition, see Section 4.7. Hence, the size of the set is 2, i.e., 1(G) = 2.

Note that, if Vp € P(H), |P(H)| > 1, and «(p) < 1, then its associated
criticality DAG G, in undirected representation, does not have a K3 minor [159],
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i.e., G is a tree. The condition |P(H)| > 1 is necessary to overcome the case of
the cycle graph €, which contains one red-red path with a single red vertex. This
also holds for directed trees. If ¢(p) = 0, the associated weighted DAG is a path
graph, a stable graph or cycle graph. Two DAHs H and H' are called t— equivalent

iff max «(p) = max «(p'). Note that the set of paths in a DAH is the same as
pEP(H) p'EP(H’)

in the corresponding criticality DAG. An example of the type of graph structure
as a function of ¢ is shown in Figure 4.6.

4.3.2 A polynomial algorithm for red-black hypergraph clus-
tering

In previous works, M. Goldberg et al. [82] and R. M. MacGregor [129] have studied
the bisection problem for trees and have proposed algorithms based on dynamic
programming. A dynamic programming approach could be interesting in the case
where «(p) < 1, Vp € P(H). However, since computation time and memory
footprint are important aspects in a VLSI context where instances are of large
size, we opted for algorithms based on traversal algorithms, such as breadth-first
search and depth-first search. A. A. Diwan et al. [57] presented a polynomial
algorithm to solve the CN problem for trees. Their algorithm traverses the tree
from the leaves to the root, creating a cluster for each leaf. If the visited node
is an internal node (not a leaf), the algorithm tries to merge this node with its
children. A new cluster is created when a processed node cannot be merged with
its child cluster without exceeding the maximum cluster size. However, they do
not explain how the algorithm optimizes the clusters along the longest path when
a vertex cannot be merged with its children. For example, let us consider the case
where a vertex vy cannot be merged into the cluster containing its children v; and
v such that vy and v; belong to the longest path and v, does not. In this case,
the algorithm creates a cluster containing only vy, but it would be more optimal
here to swap v, and vy to reduce the number of clusters along the critical path.

The algorithms we propose in this section take advantage of the weighting
scheme presented previously. Our r* weighting scheme allows us to prioritize the
clustering of vertices along the critical path, thus minimizing the number of clusters
and the number of cuts.

We present below polynomial algorithms based on graph traversal, using the
r* weighting scheme, to solve the CN problem for graphs such that «(p) < 1 Vp.

Theorem 4.3.1. Let H be a DAH and G = (V, A) be its corresponding criticality
DAG, such that ¥p € P(H), |P(H)| > 1, «(p) < 1. There exists a polynomial
algorithm to solve the problem CN<[1], M, A>.

Proof. From Lemma 4.3.2, we show that a DAH and its corresponding criticality
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Figure 4.6: This figure shows non-exhaustive examples of graph structures as a
function of the ¢ metric. For any DAG such that ¢ > 2, the CN problem becomes
NP-hard.
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DAG are t-equivalent. We show in Lemmas 4.3.3 and 4.3.4 that is it possible to
build a polynomial algorithm by calling the procedure associated with Lemma 4.3.3
if |Pmax| = M (Pmas cannot be in one cluster); otherwise, the procedure is associ-
ated with Lemma 4.3.4. O

Lemma 4.3.2. Let H = (V, A) be a DAH and G = (V, A’) be its corresponding
criticality DAG; H and G are v-equivalent.

Proof. Let H = (V,A) be a DAH and G = (V, A’) its corresponding criticality

DAG. Let p € P(G) be a red-red path defined as a sequence of vertices. For

each pair of consecutive vertices (u,v) in a path p, u and v are in a hyperarc

a € A, with u € s (a) and v € s™(a). By construction of G, V(G) = V(H),

and A" = |J {(u,v),u € s™(a),v € s(a) }. Consequently, all paths defined by a
acA

succession of vertices in H are in G and, conversely, all paths in G are in H. [J

Lemma 4.3.3. Let G = (V,A) be a criticality DAG associated with a DAH,
P(G) the set of paths of G starting from a source and ending in a sink, such as
Vp € P(G), |P(G)] > 1, «(p) <1, and pmax be the longest path in P(G). There
exists a polynomial algorithm for the problem C'N<[1], M, A> for M > |pmax|-

Proof. Since all «(p) < 1, and |P(G)| > 1, G does not have a K3 minor in an
undirected representation of G [159]. Let Algorithm A; (displayed as Algorithm 3)
be the algorithm working as follows: Create clusters by successively traversing the
vertices in a predecessor-successor order. The next chosen successor is a vertex
which is not already in a cluster, and which is connected to the current vertex
with a heaviest arc. Successors that are not chosen are placed in a FIFO queue
in decreasing order of connecting arc weights. The first vertex to be chosen is a
source with the highest outbound arc weight, and the other sources are placed
in the queue by decreasing order of their highest outbound arc weight. When a
visited vertex has no successors or all of its successors are in a cluster, the next
vertex is taken from the queue and a new cluster is created. As long as the size
constraint M 1is respected, the visited vertices are placed in the cluster of the
current neighbor. When the current cluster is full, a new cluster is created. The
process ends when all vertices have been placed in a cluster.

Note that Algorithm A; works in polynomial time. Let py.x be the longest
path in P(G). Let D > 1 be the inter-cluster delay, and d > 1 the intra-cluster
delay. Since M > |pmax|, the vertices in the longest path can be grouped into the
same cluster. Possible paths p intersecting pn.x can include a subset of vertices
placed into a different cluster. In the worst case, there exists a path p in a different
cluster from the pyay cluster, such that |p| = |pmax|, and p intersects ppax. This
case appears when there are enough longest paths p so that the sum of all of their

86 J. RODRIGUEZ



4. Algorithms for coarsening

Algorithm 3 A; : hypergraph clustering algorithm

Require: H, M, D, d
Ensure: C a clustering of H

1:
2:

10:
11:
12:
13:
14:
15:

16:
17:
18:
19:

r* < compute criticality(H) > Vertex criticality-ordered priority queue
Q < sort by criticality(r*, H) > Red source vertex criticality-ordered

priority queue. We use max, = max r*(u,v) to compare vertices
vel'* (u)

Vi > Initialize flag array of visited vertices

flag < [false]
10
C« 10
while @Q # () do
u < @Q.dequeue() > Get the most critical vertex
flagu] + true
if |C;| > M then
11+ 1
end if
for v € ' (u) do
if —flag[v] then
insert by criticality left(Q,v, ) > v is
necessarily a vertex of higher criticality, by propagation. When vertices have
same criticality, insertion is performed to the left, to ensure grouping along
the path
end if
end for
end while
return C
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vertices is greater than M. Since M > |pmax|, VP # Pmax € P(G), [P\ Pmax| < M,
then p\ pmax is a cluster. The traversal order of the algorithm favors the clustering
of long paths. In the worst case, its cost would equate |pmax| + D, because G does
not have a K3 minor (¢(p) < 1). Hence, algorithm A; produces a maximum path
solution value bounded by: |pmax| X d < Sola, (H) < |[pmax| X d + D for all G, and
returns the optimal solution. O

Lemma 4.3.4. Let G = (V, A) be a criticality DAG from a DAH, P(G) the
set of paths of G starting from a source and ending in a sink, such as Vp €
P(G), |P(G)| > 1, «(p) <1, and pmax be the longest path in P(G). There ezists
a polynomial algorithm for the problem CN<[1], M, A> for M <|pmax|-

Algorithm 4 A, : hypergraph clustering algorithm
Require: H, M, D, d
Ensure: C a clustering of H

1. C«+ Ay(H,M,D,d)

2: ( < sort_by criticality(r*, H) > Red source vertex criticality-ordered
priority queue. We use max, = grlﬁic : r*(u,v) to compare vertices

3: flag < [false]V > Initialize flag array of visited vertices

4: while Q # 0 do

5: u < @Q.dequeue() > Get the most critical vertex

6: flagu] < true

7 for v € 't (u) do

8: if —flag[v] then

9: insert by criticality left(Q, v, r*)

10: end if

11: if (C(pu) +C(pv)) X M > |pu| + |py| + M then

12: merge cluster(p,, p,,C) > Merge clusters along p, and p, to reduce
the number of clusters by at least 1

13: end if

14: end for
15: end while
16: return C

Proof. Let Algorithm A, (displayed as Algorithm 4) be the algorithm operating
as follows:

1. Execute Algorithm A; on H. Since M < |pmax|, a number of paths inter-
secting pmax Will be split into several clusters, leaving some leeway for cluster
merging.
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Figure 4.7: Example of cluster reduction for two neighbor paths p, and p, with
M = 4. Two paths are considered to be neighbors iff they share at least one
vertex. Algorithm A; produces the clustering in the left of the figure, in which:
(C(pu) + C(ps)) X M>|pu| + |po] + M = (3+3) x 4(=24)>9 + 7 + 4(=20).
The procedure merge_cluster transform the cluster in the left of the figure to a
clustering in the right, and decreases by 1 the number of clusters along p,.

2. In a visit order similar to that of Algorithm A;, for each vertex v, if the
leeway for the cluster including v and that of an adjacent cluster enables
merging, include the adjacent cluster into the cluster comprising v.

Let D > 1 be the inter-cluster delay and d > 1 the intra-cluster delay. As
M <|pmax|, the longest paths will create at most L%J clusters. Possible paths
intersecting pna. can have part of their vertices contained in clusters that do not
contain vertices of ppax. In the worst case, there is a path p such that |p| = |pmax|
with the vertices of p in a different cluster from the clusters of p..x, save for at
least one vertex, since p intersects pmay. For this case, the cost would be equal to
L%J x D+ D. Let C(p) be the number of clusters along a path p such that
Ip| = |Pmax|; p intersects pmax and (C(p) + C(Pmax)) X M>|pmax| + [p| + M. In
this case, we can reduce the number of clusters by moving |p| — L%J X M vertices
from p to a neighboring cluster. The number of clusters along p,,.x Will not change,
but the number of cluster along p can decreased by one. The second part of the
algorithm corresponds to this case, an example of which can be found in Figure 4.7.
Note that we only move what is necessary to allow the reduction of the number of
clusters for possible other paths close to ppax.

After each move, the number of vertex moves is decremented. If this value
reaches 0, reducing the number of clusters without degrading previous optimiza-
tions is no longer possible. Note that Algorithm A, works in polynomial time and
can be bounded by: L%j x D < Solu,(H) < L%j x D+ D, and returns the
optimal solution for ¢(p) < 1,Vp € H. ]

4.3.3 NP-Completeness

In this subsection, we extend the proof of NP-Completeness of the CN problem
to red-black hypergraphs. Z. Donovan presented a reduction of the integer set
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partitioning problem to the CN problem for DAGs [59]. Based on this strategy,
we propose a similar reduction based on the structure of red-black hypergraphs.

Theorem 4.3.5. Let H be a DAH and G = (V, A’) be its corresponding criticality
DAG, such that Vp € P(H), u(p) > 2. Unless P = NP, there is no polynomial
algorithm to solve the problem CN<[1], M, A>.

Proof. Let us define and extend to red-black hypergraphs the definition of the
decision version of the CN problem previously defined by Z. Donovan, as CNe,:

Given a red-black Hypergraph H = (V, A), with a vertex weighting
function w : V. — R*Y, a delay function d : V. — R, a mazimum
degree A, a constant D, and a cluster capacity M, and a positive integer
d*, decide whether we can partition V' into clusters such that:

(1) the weight of each cluster is bounded by M
(ii) the mazimum delay-length of any red-red path of H is at most d*.

The CNy.. problem belongs to the NP class because it is possible to find the
critical path in a red-black hypergraph with a polynomial time algorithm [49].
Since there is no cycle within red-red paths, we can use an algorithm based on
topological sorting.

As presented in the work of Z. Donovan, we will use the same reduction strategy
from the red-black hypergraph structure, i.e., a reduction from the PARTITION
problem. Let PARTITION be the problem defined as follows: given a set of
integers I = {i1,...,1,}, the goal is to find a partition of I into two subsets I; C I
and I, C I, such that:

din=> iy . (4.8)
i€l i€l

Let us create an instance of CNy.. as shown in Figure 4.8. It contains a source
red vertex connected to a sink red vertex through n vertices with weights 71, ..., 7.
The two red vertices have weight % = B. We assume that ) ., i is even;
otherwise, the problem is trivially unsolvable. We set the parameters of CNg.. to
=0 and D > 0. For each vertex v, the delay of v is 0. The cluster capacity is

set to 2 X B, and we set d* = D to ensure only one cut along all paths.
Note that the translation of this problem to an instance X* for the PARTI-
TION problem can be done in polynomial time. To complete the proof, we will
show that an instance X* of PARTITION is valid if and only if its analogous

instance XV is valid for the problem CNy..
Suppose X T is an instance such that PARTITION(X?) = True. Then, there

exists a partition of I into I; and I, such that Zieh 1 = Zieb lg = % = B.
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2)

IIRIZ

b)

Figure 4.8: a) Example of a partition problem instance for the CNg.. problem.
b) Example of a valid solution for the CNy.. problem with d* = D, i.e., only one
cut per path is allowed.
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Suppose we group the vertices of Iy with the red source vertex and those of I
with the red sink vertex. In that case, we obtain two clusters of capacity 2 x B,
the maximum capacity associated with each cluster. Note that the value of the
critical path is equal to D = d*. Hence, XY is also a valid instance of the CNy.,
problem.

Now, we will demonstrate the other way, i.e., if XV is a valid instance for
the problem CNg., then the analogous instance X?* is valid for the PARTITION
problem. If X¢V is a valid instance for the problem CNg.,, then a partition of
vertices exists such that the critical path is equal to d* = D. Note that the red
vertices cannot form a cluster. Otherwise, the critical path would be cut twice and
its cost would equal 2 x D > d*. Without loss of generality, let C; be the cluster
with the source vertex and Cy be the cluster with the sink vertex, and W (C}) and
W (C%) be the sum of the weights of the vertices in clusters 1 and 2. We have:

W(Cy) = W(vft) + Y vecnpry = B+ B =2xB,

(4.9)

Therefore:

>ooo= > :B:—Z;@i. (4.10)

veCr\{vl} veCo\{vt}

An illustration can be found in Figure 4.8.
Consequently, we have a valid partition for I, and X* is a valid instance of
PARTITION.
O

The proof of Theorem 4.3.5, originally written for DAGs, can be found in [59].
Indeed, ¢(p) > 2 is a necessary condition to construct the reduction to the partition
set problem.

4.3.4 Conclusion

In this section, the iota metric ¢ has been introduced. This metric models a con-
nectivity cost for paths. Paths are an essential aspect for a critical path clustering
problem. We showed that when paths are strongly interconnected, it is more
complicated to cluster critical paths. However, a polynomial-time algorithm is
introduced for the case + < 1. In practice, this algorithm cannot be applied on
circuits with ¢ > 1 without a pre-processing modeling them by circuits with ¢ < 1.

We showed again that the problem is NP-Complete for ¢ > 1, and adapted this
proof to our red-black hypergraph model. This result implies that circuits with
t <1 cannot exactly model circuits with ¢ > 1.
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4.4 A parameterized M-approximation algorithm
for red-black hypergraph clustering

Since the clustering problem is NP-hard and there is no approximation algorithm
with a constant factor in the general case, approximation algorithms have been
proposed to provide acceptable solutions in reasonable time, such as the parame-
terized M? + M approximation algorithm presented by Z. Donovan et al. [62]. We
propose an improved approximate algorithm of the latter, based on binary search.

4.4.1 Binary Search Clustering (BSC)

Let H = (V, A) be a DAH, and pyay its critical path. Let ¢ be a feasible minimum
cost, ¢ € [|pmax| X d, |A| x D], with D the inter-cluster delay and d the intra-cluster
delay. Given a fixed value ¢, we can define a cut capacity for each pair of vertices
(u,v) as:
max (0, ¢ — r*(u,v))
o) .
Suppose the cut capacity between two vertices u and v equals zero. Then, u and
v should be placed in the same cluster. As the size of the cluster is constrained by
the parameter M, it is possible to know whether some ¢ is unfeasible, by exceeding
some cluster size.

(4.11)

cut_cap(u,v) =

Lemma 4.4.1. The binary search clustering runs in O(m - logy,(m)), with m being
the number of arcs in the associated critical DAG.

Proof. Algorithm 5 contains a while loop that will perform at most log,(m) iter-
ations. Lines 1 and 2 of the algorithm define the lower and upper bounds of the
binary search. Even if the hypergraph is a path, i.e., if the lower bound is equal
to m and the upper bound is equal to m?, the number of iterations of the while
loop will be in O(log,(m?)), which does not change the order of complexity.

Line 6 calls a procedure that works in O(m) time. Indeed, the procedure com-
putes the cut capacity of every arc and merges every pair of vertices with a cut
capacity equal to zero. In line 10, to cluster the remaining unclustered vertices
connected by arcs with non-negative cutting capacity, BSC calls the O(m) algo-
rithm A;, presented as Algorithm 3 in Section 4.3.3. Hence, the time complexity
of this algorithm is in O(m - logy(m)). O

The algorithm presented by Z. Donovan [59] has a complexity in O(2%M +
[V|°M) time. For a sufficiently large M, this algorithm can become impractical.
The BSC algorithm has a complexity time in O(m - log,(m)), which is better in
practice. The typical sparsity of circuits is relatively low, m remains small with
respect to |V].
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clustering
Algorithm 5 Binary Search Clustering
Require: H, M, D,d
Ensure: C a clustering of H
1: a — |A| X D
2: ¢ ¢ |Pmax| X d, Pmax € H
3. while ¢ > ¢ do
4 gbtm‘get — #
5. > Compute the cut capacity for every pair (uv) = max(o’r*(“]’; J=$raret) and for
all pairs with cut capacity equal to zero, place u and v into the same cluster
6: C «+tusion_cut_ cap(H, Prarget, max_ size)
7 if max|c| < M then
ceC
8: gb <~ ¢target
9: else
10: ? — ¢target
11: end if

12: end while
13: Call A; to cluster yet unclustered vertices
14: return C

Theorem 4.4.2. The binary search clustering is an M -approximation algorithm
for CN<[w], M, A> when |pmax| X d > D, D > d and % < M, with pmax the
critical path, d an intra-cluster delay, D an inter-cluster delay and M the maximum
size of clusters.

Proof. Let H = (V, A) be a DAH, and G = (V, A) be its corresponding criticality
DAG. Let |pmax| be the longest path in H. As each vertex has a weight w, we
will consider that w = 1. Let Sol*(H) be the optimal solution for a vertex-set
clustering of H, an intra-cluster delay d, and an inter-cluster delay D, such that

D> dand & <M.

Sol*(H) > (['pﬁﬂ - 1) x D+ <|pmax\ —1- (PPEXW - 1)) xd . (4.12)

Let pmax the critical path; we suppose |pmax| X d > D. Hence, we obtain:

Prnax| X d— D >0 . (4.13)

In many cases, the propagation time of a circuit’s critical path is longer than the
time it takes to transfer a signal from one FPGA to another. However, there are
circuits for which this is not true, although they are very few. Therefore, this proof
applies only to circuits that satisfy Equation 4.4.1.
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The BSC algorithm groups vertices using a direct approach based on cut capac-
ity. This makes it more practical than a recursive coupling approach. Let Solys.(H)
be the solution produced by our BSC algorithm, presented as Algorithm 5. It can
be bounded by the worst solution. A worst-case solution is one in which each
vertex forms a cluster. Hence, we have:

Solpse < (|pmax| —1) x D . (4.14)

Then, the approximation ratio is defined by:

Solpse(H) (|Pmax| — 1) x D

Sol () = (Tlezeel] —1) x D + (Jpud — 1 — ([E2l] = 1)) xa

Let us calculate the approximation ratio for |pmax| > M and |pmax| < M.
In the case when |ppax| > M :

(4.15)

SOlbsc(H) (|pmax| - 1) x D

SoF ()= (gl 1) D + (sl — 1 (| 25] ~ 1)) %

AS |pmax| > M, we have:

{Ipmaxlw _ Pma] + (M £ 1) (4.16)
M M
By applying Equation 4.16, we obtain:
Solal)  (pwwlxD
ol*(H) IpmaXHSw ) x D+ X|pmax| |]il\7/;nax| ( )><d
- M (|Pmax|=1)x D

(Ipmax|—7) X D4+ (M —1) X |pmax|xd— (M —r)xd *

By applying Equation 4.4.1, we obtain:

Sol sc(H) (‘ max|_1) D
sooT*(H) < M (|pmax|—r)><Dp+(M—1)>><<D—(M—r)><d
— M (|pmax|71)XD

(IPmax|—r+M—1)x D—(M—r)xd *
Let us study the positivity of the expression DM — Dr — (M — r)d:

DM —r) > (M—r)d, (D>d)

= DM —Dr > (M —r)d .
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Hence, we obtain:
DM — Dr> (M —r)d=DM —Dr— (M —r)d>0 . (4.17)

By applying Equation 4.17, we obtain:

SOleC(H)

PY%bsc\ L~ ) M(‘pmax|_1)XD+DM—DT—(M—T)Xd
Sol* (H)

< (Ipmax|—r+M—1)x D—(M —7r)xd

M (|pmax|+M—r—1)x D—(M —r)xd
([Pmax| M —r—1)x D—(M—7r)xd

= M .

In the case when |ppax| < M :

Solpse (H) (|pmax| — 1) x D
S5 ([T =1) (2= (] <

AS |pmax| < M, we have:

PPLMW _1 (4.18)

By applying Equation 4.18, we obtain:

SOleC(H) (’pmax| - 1) X D

SOI*<H) (|pmax| - 1) xd .

Since % < M, we obtain:

<M .

Solpse(H)  (|pmax| —1) x D D
Sol*(H)  (|pmax| —1) xd  d

Hence, the parameterized approximation ratio is M for C N <[w], M, A> under
the condition specified in Theorem 4.4.2. In the general case, the ratio remains
M? + M. O
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SN/ A S

a) Recursive matching b) Direct K-clustering

Figure 4.9: This figure presents the effects of recursive matching vs. direct k-way
clustering. On the left is a solution produced by a recursive matching algorithm
for clustering with M = 3. On the right is the result of a direct clustering. This
example evidence that direct clustering produces less clusters, hence possibly less
cuts, than the recursive matching approach.

4.4.2 Heavy-edge matching

The heavy-edge matching (HEM) approach for graph clustering, presented by G.
Karypis et al. [108], is widely used in state-of-the-art (hyper)graph partitioning
tools [110, 149] and yields efficient results in many cases. The advantage of this
algorithm is that, in the unconstrained case, it almost halves the size of the in-
stance during each of the first stages of the multilevel framework, which makes
its complexity more interesting than that of our Algorithm 5. However, we will
show in this subsection that HEM, as well as other algorithms dedicated to 2-
matching introduced by Z. Donovan et al. [59, 61], do not capture path topology
adequately. An example is presented in Figure 4.9 for a clustering with M > 2. We
will also show that HEM, applied to some criticality DAG (weighted with the r*
scheme), yields an approximation ratio of 2 for the C N<[1],2, A> problem. This
algorithm differs from the two algorithms presented by Z. Donovan et al. [59, 61]:
one of them looks for a dominant matching, and otherwise returns an arbitrary
clustering, while the other is based on a linear programming rounding algorithm.

In the example shown in Figure 4.9, the recursive methods will match vertices
only once and cannot match them at the next level, because new vertices have a
weight equal to 2. A direct clustering algorithm like our Algorithm 5 will produce
in this case a result as good as recursive matching methods. This suggests that
a direct clustering algorithm will be more interesting than a recursive coupling
algorithm when M is large.

Theorem 4.4.3. Let H be a DAH and G = (V,A) be its corresponding crit-
icality DAG. The HEM algorithm applied to the DAG for CN<[1],2,A> is a
2-approximation algorithm.

Proof. Let d be the intra-cluster delay and D be the inter-cluster delay, such that
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D > d. Let ppax be the critical path, with [pnax| X d > D. Hence:
|Pmax| X d— D >0 . (4.19)

Let Sol*(H) be the optimal solution for a vertex set clustering of H. In the
best case, for a cluster size bounded by 2, the critical path will be coupled %
times, which will yield the following lower bound for Solj(H):

Sol*(H) > (PPH;XW - 1) x D+ <|pmax| 11— (Pp“;ﬂ - 1)) xd . (4.20)

Let Solgpm(H ) be the solution produced by the HEM scheme on our proposed
criticality DAG model. It can be bounded by the worst possible solution, in which
every vertex forms a cluster. Hence:

Soluevi(H) < (|pmas] — 1) x D . (4.21)

Then, the approximation ratio is defined by:

Sol"(H) = (Tl ~1) 5 D+ (Ipued — 1 — ([250] 1))

Let us calculate the approximation ratio for the even and odd cases of |pax|-
When [ppax| is even:

(4.22)

Solprm (H) < (|Pmax|—1)x D
I (s R (AR (S BN
— (|pmax|_1)><D

[Pmax| _ 2D |pmax| 2d
5o X D— =2 S X d -5

|Pmax| D—D+D—D

= 2 X o DDt A2 -

By applying Equation 4.19, we obtain:

Solgem (H) < 2 % |pmax|D_2D+|pmax|d+2d_D + 2D
Sol*(H) — [Pmax|D—2D+|pmax |d+2d |Pmax|D—2D+|pmax|d+2d

2 X |pmax‘D*2D+‘pmax|d+2d
|pmax‘D_2D+‘pmax|d+2d

Solprm (H)
S () = 2

98 J. RODRIGUEZ



4. Algorithms for coarsening

When |ppax| is odd:

SO]HEM (H) < (|pmax|*1) xD
S )= (TEET )0 (-1~ (TP )
([Pmax|—1)xD

(%—1)XD+(|pmaX|_l_(‘pma%_l))Xd

(|Pmax|—1)xD
(lemaxl 4 11 ) % Dt (Jpmax] —1— 2225l 14 1) xd

(|pmax|_1)XD
(BT 0 (BT

D—-D
— 2 X |pmax| .
|pmax|D*D+|pmax|d*d

Note that the critical path contains at least 2 vertices, such that |pmax| > 2.
Hence:

SOIHEM(H) < 2 X |pmax‘D_D+‘pmax|d_d _ 2

Sol* (H) - |pmax‘D_D+‘pmax|d_d o
Sol*(H) < 2.

Hence, the HEM algorithm, applied to our local critical path model represented
by the corresponding DAG, has an approximation ratio of 2 for the CN<[1], 2, A>
problem. O

For M = 2, the matching algorithm behaves in the same way as the BSC
algorithm with our r* weighting. They have the same approximation ratio for
M =2.

4.4.3 Conclusion

In this section, a parameterized approximation algorithm is presented. Its param-
eter is M, the cluster capacity. We prove that BSC, presented as Algorithm 5 has
an approximation ratio of M. We also prove that HEM, used with our r* weighting
scheme, has a 2-approximation ratio.

The BSC Algorithm 5 improves existing parameterized approximation ratios
of algorithms for clustering with path-length minimization.
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4.5 Experimental Results

To validate our models and algorithms, we have performed experiments on bench-
marks of the logic circuits presented in Chapter 3, which consist of acyclic combi-
natorial blocks bounded by their input and output registers. Every combinatorial
block can therefore be modeled as a DAH. Their computation time is conditioned
by their critical path, defined as the longest path between two registers (i.e., two
red vertices).

Remember that we want to minimize the number of cuts on the critical path.
In fact, in our problem, a cut on a path means an additional delay in the path
cost. Thus, the compared algorithms aim to group the red-black hypergraphs by
minimizing path length, i.e., the maximum path cost ppna.x. Since the execution
time and the number of clusters are important indicators, we measure and compare
them. Note that clustering minimizing the number of clusters refers to the bin-
packing problem, which is known to be NP-hard.

To compare BSC and HEM, we measured the ratio of average BSC results to
average HEM results for M values ranging from 2 to 4096. Each algorithm was
run 10 times for each circuit and for each size. The average of these 10 runs was
used to calculate the averages for all instances per size. More details about the
results, such as the standard deviation, can be found in Appendix A.1.

We measured the degradation of the critical path produced by algorithm A for
each instance I, calculated by:

(Solu (1) = Pliax)/Phax - (4.23)

The results in Figure 4.10 show that our BSC clustering algorithm, applied to
circuit hypergraph, outperforms the HEM algorithm for critical path degradation.
It can be shown that HEM points are more on the left side than BSC plots. This
relies on the fact that HEM takes less execution time than BSC. However, the
execution time of HEM increases along with cluster size, that is, some HEM points
moves from left to right. Indeed, as we increase the size of the clusters, we notice
that HEM makes more recursive calls. Even if these recursive calls are executed on
reduced hypergraphs, this increases run time. As a result, the complexity of HEM
can be described by an additional factor of log,(M ), while the time complexity of
the BSC algorithm admits a time complexity that depends only on the number
of hyperedges. In practice, however, we find that the execution time of the BSC
algorithm varies slightly as a function of M during the grouping phase, since this
phase differs for each M. For BSC, however, these variations remain negligible,
which explains why the plots of BSC do not change on abscissa of Figure 4.10 for
each cluster size M.

The results in Figure 4.11 show that each BSC curve is under the HEM curve,
that is, our BSC clustering algorithm produces fewer clusters compared with the
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Figure 4.10: Results of BSC and HEM on each circuit (plot) for M values ranging
from 2 to 4096. Each “ + 7 plot is a clustering result calculated by the HEM
algorithm and each “ x 7 plot is for BSC. Each plot is defined by the degrada-
tion of the critical path (ordinate) as a function of its logarithmic execution time
(abscissa). As shown in all sub-figures, the “x” plot are positioned below the “4”
plot, which indicates a lower critical path degradation for BSC. In addition, each
plot positioned to the left is based on a lower execution time. For two circuits,

BSC takes

more time than HEM.
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Figure 4.11: Comparison between the number of clusters produced by BSC and
HEM on a subset of the largest circuits, for M values ranging from 2 to 4096.
The subset is composed of Chipyard, TITAN and B14-22, all instances with |V| >
10000. Each plain line corresponds to the number of clusters produced by HEM,
and hatched lines to the number of clusters produced by BSC. Results show that
BSC produces fewer clusters than HEM. The subfigure is a zoom of B14, B20, B21,
and B22, for M values ranging from 2 to 32.
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HEM algorithm. This can be explained by the fact that BSC directly groups sets of
related vertices and applies a final clustering step that tends to reduce the number
of clusters. In contrast, the HEM algorithm recursively groups vertices in pairs,
which can more easily lead to situations where there are several adjacent clusters
of size M /2 + 1 that cannot be merged.

4.6 Conclusion

In this chapter, we studied the combinatorial circuit clustering problem for delay
minimization (CN). We presented a brief state of the art in Section 4.1. The
central aspect of clustering algorithms is to select vertices to merge. Thus, the key
is to establish a good attractiveness metric between the vertices that best suits
the objective. In Section 4.2 we presented the r* weighting scheme, specifically
designed for this purpose.

Since the problem is NP-hard in the general case, polynomial algorithms have
been presented in Section 4.3 for a specific class of red-black hypergraphs the crit-
icality DAG representation of which is a tree. A new M-approximation algorithm
that runs in O(m -log,(m)) time, with M being the maximum size of clusters and
m the number of hyperarcs, is introduced in Section 4.4.

Section 4.5 shows a comparison between the classic HEM algorithm, improved
with our weighting scheme r*, and our BSC algorithm also using r*. Experimental
results show that BSC improves delay length by 20% to 50% on average, on all
circuits, for many cluster sizes.
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5.1. Graph and hypergraph partitioning

The second stage of the multilevel partitioning scheme is initial partitioning.
It consists in applying a partitioning method to a coarsened graph or hypergraph.

This chapter presents a brief state of the art on greedy partitioning algorithms
in the context of red-black (circuit) hypergraph partitioning. Most of the algo-
rithms presented in this state of the art have been developed to minimize different
costs, particularly the cut size. As we have shown in previous chapters, cut mini-
mization cannot minimize path-cost; hence, in Section 5.2, we designed dedicated
greedy algorithms based on traversal algorithms. Section 5.3 introduces an integer
programming approach based on cut and path-length minimization.

In the context of circuit partitioning, a multilevel scheme typically uses such

algorithms for its initial partitioning phase. This chapter is based on some of our
published works [160, 161].

5.1 Graph and hypergraph partitioning

The problem of partitioning graphs and hypergraphs is known to be NP-hard
unless P = NP [78, 125]. We have proved in Theorem 4.3.5 that the problem
of partitioning a red-black hypergraph to minimize critical path degradation is
also NP-hard. Consequently, to provide good solutions in reasonable time, the
scientific community has developed approximated algorithms with polynomial time
complexity. One of them is the multilevel scheme introduced in Chapter 2. The
multilevel scheme reduces first the size of partitioning problem before computing
an initial partition, followed by a refinement algorithm.

The initial partitioning phase involves algorithms, which mostly are greedy
algorithms, that aim to compute an initial partition.

Most partitioning algorithms, are designed to minimize the size of the cut.
However, various works [4, 127| have shown that an algorithm that minimizes
the cut cannot minimize the path cost. Furthermore, most of these algorithms,
including those presented in this chapter, do not take into account the target
topology during the partitioning procedure.

The first approach studied in this chapter refers to adapting traversal algo-
rithms which can provide contiguous partitions, i.e., grouping neighbor vertices in
the same part while satisfying the capacity constraint. Contiguous partitions are
interesting in red-black hypergraph partitioning, particularly along critical paths,
because they favor grouping neighbor vertices in the same part. However, one has
to modify the classical traversal algorithm to define different strategies of contigu-
ity that take into account the criticality of the vertices. Indeed, vertex criticality
is a relevant metric for evidencing the potential impact of a vertex on the cost
function.

In the multilevel scheme, initial partitioning algorithms are applied to the
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smallest hypergraph, obtained by multiple clustering steps. Since these hyper-
graphs can be arbitrarily small, we studied the use of an integer programming ap-
proach as initial partitioning. This integer program is defined as a multi-objective
for cut and path-cost minimization.

Other works are based on label propagation algorithms. These algorithms were
first developed to detect communities in large graphs [156, 194]|. H. Meyerhenke et
al. |133] presented a label propagation algorithm applied to partitioning. The prin-
ciple of this approach is to define a label for each vertex that represents its group.
The group can be a part or a cluster. In the initial stage of the algorithm, each
vertex has a label L(u) = u. The processing of the vertices consists in calculating
a new label value corresponding to the most present label in the neighborhood
of the vertex. In case of a tie, a random choice is made. Even though the visit
order is based on the criticality of the vertices, the groups computed via the label
propagation algorithm can reach the capacity constraint while cutting a critical
path. The label propagation algorithm favors grouping communities, whereas, in
our case, the objective is to group vertices along critical paths.

Another approach is to apply acyclic partitioning to a DAG or DAH. Acyclic
partitioning was first defined by J. Cong et al. [44]. J. Hermann et al. [91, 92]
presented an algorithm for acyclic graph partitioning, and M. Popp et al. [153]
extended it to hypergraph partitioning. J. Nossack et al. [140] introduced an
exact algorithm based on a branch-and-bound method for the acyclic partitioning
problem. Their aim was to minimize the number of parts traversed by a path
in the DAG/DAH. In our context, non-critical paths can traverse the same part
several times without affecting the value of the partitioned critical path, so it is
not mandatory to apply this constraint to all paths.

The following works are available to readers willing to learn more about acyclic
partitioning [44, 91, 92, 136, 140, 153, 189], and a recent survey on hypergraph
partitioning can be found in [35].

5.2 'Traversal algorithms

Traversal algorithms use vertex neighborhood to explore the hypergraph. Traversal
algorithms have a linear complexity with respect to the number of vertices and
hyperedges, hence in O(|V| + |A]) time. For example, a breadth-first traversal
algorithm groups vertices using their neighborhood, creating at least a contiguous
partition for the first part. Depending on the topology of the red-black hypergraph,
the critical path can be minimized by taking advantage of contiguous partitions.
One way to improve the length of the path during partitioning is to modify the
processing order of vertices, hence only the most critical vertices are explored,
rather than a random neighbor. This allows all vertices of a critical path to be
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Figure 5.1: In this example, two connected DAHs are represented. DAH; and
DAH, are connected since they share red vertices. Each striped vertex is critical.
Specifically, the red vertex in DAH; and DAHj; is critical in both DAHs. To avoid
cutting this vertex, the exploration should continue in DAH, even if all vertices
in DAH; have not all been visited. Finally, this example highlights the use of
exploration through each DAH when a critical path shares a red vertex in two
DAHs.

grouped in the same part, if the capacity constraint allows for it. More details
on this approach are given in Subsection 5.2.1. Critical paths sometimes share a
red vertex, which constitutes a sink in one DAH and a source in another DAH,
as shown in Figure 5.1. In this case, continuing exploration beyond the currently
explored DAH is advantageous. For this reason, we have investigated an approach
using a dedicated depth-first search algorithm. More details on this approach are
provided in Subsection 5.2.2.

5.2.1 Initial partitioning based on breadth-first search
driven by vertex criticality

The breadth-first search algorithm was first introduced in 1945 in the rejected
doctoral thesis of Konrad Zuse. This algorithm, which was designed for the search
for connected components in graphs, was finally published in 1972 [195]. However,
Edward F. Moore [135] had rediscovered the algorithm in 1959, for finding the
shortest path in a maze. C. Y. Lee [123] also developed it in 1961, in a wire
routing algorithm for electronic circuits.
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Contiguous partitioning has been studied for graphs by B. W. Kernighan [113],
and extended to hypergraphs by A. Grandjean et al. [86]. One instance of this
problem is program partitioning. In the problem defined by B. W. Kernighan [113],
a program is modeled as a graph in which the vertices represent instructions and
the edges represent possible successors. Each edge weight models the relative
frequencies of transitions. Hence, partitioning the instruction graph is equivalent
of dividing the program into pages of fixed size while minimizing the frequency of
interpage transitions. A. Grandjean et al. [86] presented the problem in matrix
partitioning such that if columns ¢ and j are in a same part k, all columns between
¢ and j are in part k.

Contiguity along critical paths in a DAH is an interesting approach for red-
black hypergraph partitioning, because it limits the cuts along critical paths.

Following these lines of thought, we designed an algorithm based on a breadth-
first search algorithm and driven by the criticality of the vertices. The formulas
for calculating the criticality of the vertices have been defined in Subsection 4.2.2.
The strategy proposed here is to use vertex criticality to prioritize visits to critical
neighbors, in contrast to traversal algorithms that do not prioritize neighbors. This
strategy makes it possible to go deeper into the DAH, to group vertices along a
locally critical path. Grouping by vertex criticality increases the likelihood that
the vertices along this path will be placed in the same part.

Algorithm 6, which we called the Derived Breadth-First-Search (DBFS) algo-
rithm, is an initial partitioning algorithm which is based on a search along the
vertices of H, driven by criticality. It considers neighbor vertices of each vertex v
according to their criticality value r(v), so as to avoid multiple cuts along critical
paths. In our context, the multiple cuts constraint is also important, because we
must avoid cutting the same path multiple times. Indeed, the cut cost D;; is often
larger than the path length. Our algorithm considers the criticality of each vertex
v, and of its neighbors. Each vertex is inserted in a priority queue ordered by ver-
tex criticality. To select vertices to consider, we use the value of their in-degrees
0~ (v), which is decremented for all outgoing neighbors of v when v is visited. This
allows one to obtain a topology-driven hypergraph traversal, considering the crit-
icality of the vertices. The exploration starts from the red vertices which are the
sources of the DAH. The algorithm explores the vertices in each DAH and inserts
the visited vertices into an array that records the current state of the partition.
To explore each DAH, our algorithm manages two priority queues: p_queue and
p_queue’. The queue p_queue’ processes the source and black vertices of the DAH
to be explored, and p_queue, considered as the main queue, processes the red
vertices that are the sinks of the explored DAH and sources of subsequent DAHs
to explore. This main queue ensures that the algorithm does not start exploring
another DAH while there are still vertices to visit in the current DAH. The two
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priority queues store vertices according to their criticality value, by inserting the
most critical vertices at first. When a vertex v is processed, r(v) is the maximum
criticality of all the queues’ vertices. The queues are empty at the beginning of
the algorithm, and every insertion is performed in O(logs(|V])) time by using a
heap data structure.

Lemma 5.2.1. Let p € P% be a red-red path, and a path order <,. For allu,v € p,
if u <, v, then r(u) > r(v).

Theorem 5.2.1. Let H = (V, A) be a DAH, and ov, a visit order computed by
DBFS. According to the derived breadth-first-search, it is not possible to have a
pattern vy, vy, Ve, With va, vy, ve € VB, such that r(vy) > r(vy) and r(v.) > r(v,).

Proof. The traversal starts from at least one source of the DAH H, so Jvp € VF
such that vg <,, v,. According to Lemma 5.2.1, we have r(vg) > r(v,). Let us
assume a pattern v,, vy, ve, with vg, vy, v, € VB, 1r(v,) > r(vy) and r(v.) > 7(v,).
As the vertices are black vertices of the same DAH, each of them will be inserted
in the secondary priority queue according to their criticality value, which is a
contradiction. O]

Theorem 5.2.1 states that the DBFS algorithm allows one to perform a walk
following the local topological order by selecting, at each step, a neighbor of max-
imum criticality. This choice allows one to favor the grouping, within the same
part, of neighboring vertices with high criticality. As long as the size constraint is
respected, every selected vertex will be placed in the same part. An example can
be found in Figure 5.2.

Lemma 5.2.2. The Derived Breadth-First Search Algorithm 6 runs in
O(|V|logs(IV]) + A|A|) time, with |V| the number of vertices, |A| the number of

hyperarcs, and A the mazimum size of hyperarcs.

Proof. The algorithm performs a breadth-first search, such that vertices are visited
only once. The is_visited array ensures the following invariant: when some
vertex is visited, it is marked with the value True and is no longer processed,
as indicated by the condition at line 25. However, the algorithm has two while
loops at lines 11 and 14, which depend on two queues. The array is_visited
ensures that the vertices are only processed once, and the whole of these two loops
is executed in O(|V|) time. In the second while loop, there is a for loop at line
23. This for loop iterates over the hyperarcs of which v is a source. We assume
that each hyperarc is visited only once because there is exactly one source per
hyperarc. Every non-visited vertex in the current hyperarc is inserted in a priority
queue encoded by a heap data structure. The time complexity for each insertion is
in O(log,(|V|)). Each vertex is inserted and processed only once in the while loop
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Algorithm 6 Initial partitioning algorithm based on Derived Breadth-First-
Search driven by node criticality (DBFS)

Require: H = (V, A, W,, W,) a red-black hypergraph, r(), vertex criticality func-

tion, k, the number of parts, M, the capacity constraint

Ensure: II a k-partition of H

1:

10:
11:
12:
13:
14:

15:
16:
17:

18:
19:
20:
21:
22:
23:
24:
25:
26:

p_queue <[] > p_queue is a priority queue ordered by vertex criticality in
decreasing order
is_ visited < ||
for v € V do
if 0~ (v) =0 then
insert by criticality(p queue, v, r(v)) > v is a source and v is
inserted in p_queue according to its criticality r(v)
end if
is_visited[v] < False > v is marked as visited to avoid visiting v twice
end for
size <— 0
10
while |p_queue| > 0 do
p_queue’ < p_ queue
p_queue < ||
while |p_queue’| > 0 do > Exploring while a v € VB is queued. Red
vertices are queued in p__queue
v <= p_queue’.pop() > Pop the first vertex with highest criticality
is_ visited[v] < True
if size + W,(v) > M then > When the constraint size is reached, the
algorithm places the next vertices in the next empty part

size < 0

1 1+1
end if
[v] « i > v is in part @
size < size + W, (v) > The weight of v is added to the weight of part 4
for a € A(v) do > Visit the neighborhood of v

for v' € a do
if —is_visited[v'] then
is_ visited[v] < True
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27: if —is_red[v'] then

28: insert by criticality(p_queue’,v', r(v')) >
If v" is black, its I'" neighbors are in the current DAH. Hence, v’ is placed in
the current queue to continue exploring the current DAH

29: else

30: insert by criticality(p_queue,v’,r(v")) > If v is red,
its I't neighbors are in different DAHs and will be explored next

31: end if

32: end if
33: end for
34: end for

35: end while
36: end while
37: return II

at line 11. Moreover, to explore the neighborhood of each vertex, each hyperarc
containing this vertex is visited. Let A = max{|a|, Va € A} be the maximum
size of hyperarcs; then, the total time complexity is O(|V|log,(|V]) + A|A|), with
the term |V'|log,(]V|) corresponding to the processing and insertion of vertices,
and the term A|A| corresponding to neighborhood exploration. Note that the
Derived-Breadth-First algorithm has an additional factor of log,(|V|) compared
to the complexity of the Breadth-First search algorithm. This additional factor
corresponds to the management of the priority queue in DBFS, which characterizes
our algorithm, which aims to process critical vertices first.

O

5.2.2 Initial partitioning based on Depth-First Search
driven by vertex criticality

C. P. Trémaux introduced one of the first versions of the depth-first search al-
gorithm in the 19th century, as a strategy for solving mazes [71]. The maze is
modeled as a graph, and the algorithm tries to find a sink, that is, the exit from
the maze. The depth-first traversal algorithm processes vertices from neighbor to
neighbor until it finds a sink or a previously visited vertex. If the sink is found,
then the exit is found. Otherwise, the algorithm treats the unprocessed neighbors
as a backward step in the maze. As pointed out in the previous chapters, digital
electronic circuits are also objects that can be modeled by graphs and hypergraphs
for partitioning. Therefore, the literature naturally contains works that take ad-
vantage of graph algorithms [30, 101], such as traversal algorithms. R. Burra et
al. [30] presented a clustering approach based on a depth-first search, where ver-
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tices are grouped according to their attractiveness. The attractiveness of vertices
is defined by the Scaled Cost plus Min Perimeter (SCMP) ordering metric pro-
posed by Kahng et al. [101]. In order to favor nodes with higher cumulative delay
values, the authors proposed a combination of SCMP and delay objectives. As
said in Kahng et al. [101]:

“[...] Note also that our particular SCMP ordering is designed with
respect to the stated problem formulation. For specific multi-FPGA
system designs, other objectives may prevail |...|.”

Indeed, we have chosen vertex criticality as our measure of attractiveness. Our
primary goal is to minimize the degradation of critical paths when partitioning
the associated red-black hypergraph.

For red-black hypergraphs composed of multiple DAHs, some paths may share a
red vertex which constitutes the sink of one DAH and the source of another. When
two critical red-red paths share a red vertex present in two or more DAHs, it may
be more advantageous to group the vertices along these paths. Our Algorithm 7
takes advantage of the deep exploration of DAHs by vertex criticality, to group
critical vertices within the same part.

The Derived Depth-First Search (DDFS) initial partitioning method, presented
as Algorithm 7, performs a depth-first traversal driven by the criticality of the
vertices. The main difference with the previous method is that all vertices will be
inserted in the same priority queue, regardless of whether they are red or black.
It enables a visit order concerning the criticality value, but does not consider the
topological structure of the DAHs in H. The main idea behind this method is to be
able to pack interconnected critical paths of several DAHs in the traversal order.
The most critical neighboring path will be placed in the same part, as long as
the capacity constraint is respected. However, DDFS may induce cuts within the
DAHs, and yield a possible path cost degradation for paths of smaller criticality.
The relative efficiency of DBFS and DDFS is likely to vary, depending on circuit
topologies and on the distributions of path lengths.

A hint on the respective merits and drawbacks of DDFS and DBF'S is presented
in Figure 5.2.

Theorem 5.2.2. Let p and p’ be the connected longest paths of two DAHs H and
H', with pNp' = {vg}, vg € VENV'E. Let v be the last black vertex along p and
V' be the first black vertex along p’', with r(v) < r(v'). Let ov be a visiting order
computed by DDFS. According to the derived depth-first search, it is not possible
to have a pattern {v,vg,v", ..., v'} with r(v") > r(v') iff p’ is a local mazimall.

Proof. = Suppose that there exists a path {v,vg,v”, ... v'} with r(v") > r(v').
Let p and p’ be connected paths with pNp’ = {vr}, vg € VENV'E and p’ being
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Algorithm 7 Initial partitioning algorithm based on Derived Depth-First-Search
driven by vertex criticality (DDFS)

Require: H = (V, A, W,,W.,) a red-black hypergraph, r(), the vertex criticality

function, k, the number of parts, M, the capacity constraint

Ensure: II a k-partition of H

1:
2:
3:
4:
5:

10:
11:
12:
13:
14:

15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

25:
26:
27:
28:
29:

p_queue < ||
is_ visited < ||
for v € V do

if 7 (v) =0 then

insert by criticality(p_queue, v, 7(v)) > v is a source and v is

inserted in p_queue according to its criticality r(v)

end if

is_ visited[v] < False > v is marked as visited to avoid visiting v twice
end for
size < 0
1< 0
while |[p_queue| > 0 do

v < p_queue.pop() > Pop the first vertex in the queue

is_ visited[v] - True

if size + W,(v) > M then > When the constraint size is reached, the
algorithm places the next vertices in the next part

size < 0

1 1+1
end if
Mv] « i > v is in part @
size < size + W,(v) > The weight of v is added to the weight of part i
for a € A(v) do > Visit the neighborhood of v

for v' € a do
if —is_visited[v] then
is_ visited[v'] < True
insert by criticality(p_queue,?’,r(v")) > If v/ is not visited,
v’ is placed in the current queue to continue to explore H
end if
end for
end for
end while
return II
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Figure 5.2: Examples of specific cut penalties for the DBF'S and DDFS algorithms.
Penalties are represented inside boxes. All hatched nodes will be placed in the
same part. Fach traversal starts from the “root” vertex. DBFS avoids multiple
cuts along paths within a DAH, while DDFS does not (see the frame in the DDFS
example). However, if a critical path starts in DAH, from a sink of DAH,, DBFS
can produce a cut along this critical path, while DDFS cannot (see the frame in
the DBFS example).

a local critical path. A local critical path is a path with a maximal criticality
value in a sub-hypergraph. According to Algorithm 7, each vertex of p' is inserted
into the priority queue. However, the insertion is driven by vertex criticality. If
Fv” such that r(v”) > r(v') then, Ip” # p’ with v” € p” such that p” is a local
maximum and p’ is not a local maximum. That is a contradiction.

< Suppose that there exists a path p’, which is a local critical path. As v’ is
the first black vertex in p/, r(v’) is equal to the local maximal criticality. That is,
0" such that r(v”) > r(v'). That is a contradiction, because r(v") > r(v').

As the derived depth-first search visits the vertices with higher criticality first,
v" will be visited after vg. That is, a path {v,vg,v”,...,v'} with r(v”) > r(v')
cannot exist.

]
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Lemma 5.2.3. The Derived Depth-First Search Algorithm 7 runs in
O(|V |logy(|V']) + A|A|) time, with |V| being the number of vertices, |A| the number
of hyperarcs, and A the maximum size of hyperarcs.

Proof. The algorithm performs a depth-first search, hence vertices are visited only
once. The is_visited array ensures the following invariant: if some vertex is
visited, it is flagged as True and is no longer processed, as prescribed by the
condition at line 22. However, the algorithm has a while loop at line 11, which
depend on p_queue. The while loop contains a for loop at line 20. This for loop
iterates over the hyperarcs of which v is a source. We assume that each hyperarc
is visited only once, because there is exactly one source per hyperarc. Each non-
visited vertex in the hyperarcs is inserted in a priority queue, encoded by a heap
data structure. The complexity for each insertion is in O(log,(|V])) time.

Each vertex is inserted and processed only once in the while loop at line 11.
Moreover, to explore the neighborhood of each vertex, each hyperarc is visited.
Let A = max{|a|, Va € A} be the maximum size of hyperarcs; then, the to-
tal time complexity is O(|V |logy(|V]) + A|A|), with |V|logy(|V'|) corresponding to
the processing and insertion of vertices, and A|A| corresponding to neighborhood
exploration.

Note that the Derived-Depth-First algorithm has an additional factor of log,(|V])
compared to the complexity of the Depth-First search algorithm. This additional
factor corresponds to the management of the priority queue in DDFS, which char-
acterizes our algorithm, which aims to process critical vertices first.

O

5.2.3 Critical Connected Components/Cone Partitioning

G. Saucier et al. [171, 172], and D. Brasen et al. [26, 27| introduced cone par-
titioning for circuit partitioning. Circuits are modeled by DAGs, whose sources
and sinks correspond to the inputs/outputs of the circuit, i.e., red vertices. Note
that a DAG corresponds to one combinatorial component, i.e., a DAH in that
red-black hypergraph. In order to handle circuits composed of multiple connected
components, the algorithms must be adapted.

A cone defines a connected component made up of vertices that are reached by
traversing the vertices of the hypergraph from a sink to the sources in the reversed
hypergraph, as shown in Figure 5.3. For hypergraphs, a reversed hyperarcs is one in
which the source becomes the sink and the sinks become the sources. Note that all
paths between the sources and a given sink are contained within the cone formed
by the sink. Therefore, placing a cone in a part ensures that the paths in the
cone are not cut. However, there may be paths between multiple cones that are
not in the same parts, hence these paths have been cut. A cone is used to capture
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Figure 5.3: Example of a sub-DAH in which the sources are at the top, and the
sinks, at the bottom. This example displays two cone components. A cone con-
sists of a sink and all the vertices that can be reached from that sink in the
reversed hypergraph, i.e., the hypergraph whose arcs are reversed. In other words,
a cone contains all paths that end in the sink of the cone. Note that a vertex
which is not a sink can appear in several cones, as it is the case for the vertices in
the middle of this figure.
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a connected subset of the circuit. Because of these properties, cone partitioning
seems worth exploiting. In addition, the number of cones may exceed the number
of parts, because the number of cones depends on the number of sinks, whereas
the number of parts is fixed. A merging process of cones must therefore by applied
to obtain the desired number of parts.

In their work, G. Saucier et al. [171] present several algorithms for circuit
partitioning based on cone structure. Each of these algorithms starts by calculating
the cones in the DAG. Each component (cone) is evaluated as a function of the
ratio between the number of vertices in the component, divided by the number
of arcs between the component and the rest of the graph, i.e., the size of the
cocycle between the component and the rest of the graph. Let C; and C; be two
cone components; the associated cost cost(C;, C;), defined in [171], is:

(G \ V[ +]C5 \ VE]
w(Ci)l + [w(C))] = 2 x |w(C) Nw(C)[ +1

cost(Cy, Cj) = (5.1)

Note that in the original formula in [171], the denominator is set to: |w(C;)| 4+
lw(C;)| =2 x |w(C;) Nw(C;)|. Hence, if there are only two sinks, i.e., two cones, in
the graph, the formula cannot be computed because the denominator would be
equal to 0. It is for this reason that we changed the denominator to |w(C;)| +
lw(C;)|—2% |w(C;)Nw(C;)|+1. This cost is used in [171] to measure the attraction
between two components during a cone merging process. Indeed, as we have shown
before, cones can share arcs. Hence, unmerged cones which share arcs result in
cut arcs and thus cut paths. The selection of the cones to merge must therefore be
optimized to satisfy the partitioning objective function. The authors also suggest
grouping components that share a critical path if the capacity constraint allows
for it. If a cone component is too large, the authors suggest partitioning the cone
using the minimum cut metric.

Since, in this thesis, we are interested in the objective function f,, we propose
to extend the definition of cone connected component to that of critical connected
components, according to the vertex criticality value r(v) defined in Section 1.2. A
critical cone is a cone whose size is fixed and whose vertices maximize criticality.
Hence, let ¢ be a cone and ¢ a critical cone, both originating from the same sink
v. We have the following properties:

dCec,
Yo ec, YW ed
r(v) <r) .

These properties ensure that, when a critical cone is computed, the critical
cone contains the vertices of the cone of highest criticality, thus maximizing the
grouping of critical paths.
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For this purpose, we propose the Connected Component Partitioning (CCP)
Algorithm 8, in which we extend the computation of cone components according
to the criticality of the vertices and a constraint size. As cone components can be
large and group non-critical vertices together with critical vertices, the capacity
limit is quickly reached, and it is no longer possible to continue grouping vertices.
To tackle this problem, in Algorithm 8, we first process only the vertices with a
criticality ranging between max,cy 7(v) —bD and max,cy r(v), where D is the cost
of a cut and b is an integer equal to one by default. This restriction, implemented
in the condition at line 13, allows critical-related components to be calculated
first. To compute the components, we use the union-find structure defined by R.
E. Tarjan [186]. We then run the procedure a second time at line 26, without
filtering the vertices.

The final number of components may not match the expected number of parts,
because each cone corresponds to one sink. Consequently, if the number of sinks is
greater than the number of parts, the number of components will be greater than
the number of parts. To tackle this case, we defined a new reduced hypergraph
such that each vertex of this new hypergraph represents a cone in the original
hypergraph. Then, we partition this hypergraph. During the refinement phase,
the partition is adjusted by swapping vertices across parts.

Lemma 5.2.4. The Critical Connected Component Partitioning Algorithm 8 runs
in O(|V|?), with |V| the number of vertices, |A| the number of hyperarcs, and A
the mazimum size of hyperarcs.

Proof. For this complexity analysis, we will assume that bound is equal to 0. The
algorithm performs a critical connected component search, so that vertices are
visited only once. This process is repeated twice. The first pass considers vertices
with a criticality greater than the value of the variable bound. The is_visited
array ensures the following invariant: if the vertex is visited, it is flagged and is
no longer processed, as prescribed by the condition at line 14. The algorithm has
a while loop at line 10, which iterates over the queue. The while loop contains
a for loop at line 12. This for loop iterates over the in-neighbors of the vertex
being processed, and executes the union between two components, in O(|V]) time.
As Y o [T (v)] is in O(V), the time complexity of the for loop is in O(|V[?).
Therefore, the while loop operates in O(|V[?) time.

The for loop at line 4 runs in O(|V#|) time. Without loss of generality, we agree
that the partitioning algorithm of the reduced red-black hypergraph is executed
in at most O(|V]) time. This gives a total complexity of O(|V| + |[V]3) for the
Critical Connected Component Partitioning Algorithm 8. Note that in the case
of amortized complexity, the union operation at line 19 is performed in O(a(|V]))
time [186], where « is the functional inverse of Ackermann’s function and is very
slow-growing. In practice, the integer a(|V|) is less than 5 for every value of
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Algorithm 8 Initial partitioning algorithm based on Critical Connected Compo-
nents/Cone Partitioning driven by vertex criticality

Require: H = (V, A,W,,W,) a red-black hypergraph, k, the number of parts,

bound, the cluster bound, €, the balanced factor, M, the capacity constraint

Ensure: II a k-partition of H

H
@

—_
—_

—
N

,_.
w

14:

15:
16:
17:
18:
19:

20:
21:
22:
23:
24:
25:

26:
27:
28:
29:

Cy [v], VoeV > Union-find set structure
queue <— ||
is_ visited < ||
for vp € VE do
if 7(vg) > bound A |I'~(vg)| > 0 then > Each critical sink is queued
queue < queue + v

end if
is_ visited[v] < False
end for
while |queue| > 0 do
v < p_queue.pop() > Pop the first vertex in the queue
for v/ € I'"(v) do > Incoming neighbors are processed to compute the
cone

if 7(v') > bound then > Only critical vertices are processed unless
the bound is equal to 0
if —is_visited[v] then > If v’ is not visited, v is queued to visit its
incoming neighbors in the next steps
is_ visited[v'] < True
queue + queue + [v']
end if
if size(C,) + size(Cy) < M then
union(C,, Cyy) > If the constraint size is respected, we can
merge C, with Cy
end if
end if
end for
end while
if bound > 0 then
bound <~ 0 > For the second pass, we set the bound to 0 to process all
not yet visited vertices
“go to” line 3
end if
IT < partition(C)
return II
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V| [48]. We can therefore assume that the amortized complexity of the union
operation is performed in constant time. Considering the complexity of the union,
the final time complexity of the algorithm is in O(|V|+a(|V])|V]?) = O(|V]?). O

5.2.4 Conclusion

In this Section, traversal algorithms have been adapted to the problem of partition-
ing with path cost minimization. Each of these algorithms has its own character-
istics. DBFS explores the red-black hypergraph across DAHs, which is interesting
for circuits made of large, highly connected DAHs. However, for very tightly
connected circuits, DBFS is less interesting than DDFS, which explores the hy-
pergraph in depth. In addition, DDFS traverses DAHs, making it effective when
the critical paths of multiple DAHs share a red vertex.

Finally, we propose an extension of the cone partitioning algorithm that takes
advantage of the criticality functions defined in the previous chapter. The structure
of cones provides path grouping properties that are of interest for optimizing the
fp function. In addition, this algorithm locally groups critical components, making
it more adaptable to different hypergraph than the more specific DBF'S and DDFS
algorithms. However, CCP does not produce the exact expected number of parts.
To obtain the expected number of parts, CCP must be coupled with a partitioning
algorithm.

5.3 Integer programming

Integer programming is often used to model problems before using exact integer
program solvers. Several authors have used integer programming to tackle the
problem of partitioning graphs [25, 76, 89, 139, 191], hypergraphs [119] and cir-
cuits [179]. Digital electronic circuits are usually of very large sizes, which means
that partitions cannot be computed directly by way of exact solvers. However, we
can reduce the size of the hypergraph, as in the multilevel scheme, to compute
subsequently an initial partitioning of the smaller problem using an exact solver.
In this section, we introduce an integer programming approach to the red-black
hypergraph partitioning problem. This model considers the minimization of both
the cut and the degradation of critical path length during the partitioning step.

5.3.1 Model

The objective of the integer programming model is to minimize the degradation
of the critical path. Therefore, one needs to compute the maximum degradation
among all possible degradations. One also needs to model the target topology, to
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o—>0
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Figure 5.4: In this example, the red-red path [ in a red-black hypergraph is defined
as an ordered sequence of vertices. A set of tasks O, is created from the path [. The
scheduling constraint models the total completion time z; of the task set Oy, i.e.,
Zieol d;, with an additional routing cost. This routing cost models the impact of
the partitioning/mapping solution on the completion time of path [.

consider the potentially different delays between parts. Existing cut minimization
tools do not address these two aspects of path length and target topology, since
these tools only aim at reducing the connections between parts. As this objective
is still essential in practice, we add a secondary objective to our model: minimizing
the connectivity minus one.

Also, since the paths between two red vertices do not contain any cycle, it is
possible to see the chain of black vertices in a path as a sequence of operations/tasks
1 associated with some job [. Consequently, we consider scheduling constraints in
our model to minimize the impact of partitioning on the critical path. Given a path
(job) p = {vo, v1,v2}, the critical time associated with the path equals >, d,. If
vertices (tasks) belonging to p are placed in different parts, then a time penalty
must be added to the total time of p. An example can be found in Figure 5.4.
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Specifying formally our problem requires a lot of definitions, which are given
in the following tables: sets can be found in Table 5.1, parameters in Table 5.2,
and variables in Table 5.3.

Set | Definition

V | Set of vertices.

E Set of hyperedges.

J Set of jobs.

O, | Ordered set of operations of job I, (i € O;), where Oy and Oy,
are the first and the last elements of O;.

i,¢' | Vertices/operation index (7, i' € V).

J,7' | Hyperedges index (j,j" € E).

l Job index (I € J).

k Part index.

Table 5.1: Definitions of indices and sets for specifying our integer programming
problem.

Parameter | Definition

n Number of vertices.

m Number of hyperedges.

hij 1 if vertex ¢ is connected to hyperedge 7, 0 otherwise.
Chr Capacity of part k for resource r.

Gir Quantity of resource r, required by 1.

d; Propagation time of vertices (operation) i.

Dy jr Delay between part k and £'.

W, Vertex weight.

W, Hyperedge weight.

Table 5.2: Definitions of parameters for specifying our integer programming prob-
lem.

The specification of our integer program, which is presented below, aims at ful-
filling two objectives: 5.2a for critical path minimization, and 5.2b for connectivity
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Variable | Definition

Tik 1 iff vertex 7 is mapped onto part k, 0 otherwise.
Yik 1 iff hyperedge j has a vertex placed on part k.
21 Completion time of job [.

Zmax Maximum completion time of jobs.

Table 5.3: Definitions of variables for specifying our integer programming problem.

cost minimization:

minzmax 3 (52&)
min » W) (Z Yk — 1) , (5.2b)
7 k
subject to : (5.2¢)
k

Z QirTik S Ckr, Vk'a T, (52f)

Zdi + Z TipTig D < 21, VK1 (5.2g)

1€0; 1,3’ €0y

21 < Zmax, VI, (5.2h)
(5.2))

Constraint 5.2d states that each vertex is mapped onto one part. Constraint
5.2e guarantees that y;, equals the connectivity cost associated with hyperedge j.
Constraint 5.2f ensures the capacity constraint is respected. Constraints 5.2g and
5.2h determine the value of the delay of the job (path) and the maximum delay
(critical path). Constraint 5.2i enforces the non-negativity and integrity conditions
on the variable.

5.3.2 Symmetries

There are symmetries in the solution space of hypergraph partitioning for cut size
minimization. Indeed, in the plain partitioning case, if w hyperedges span across
parts, w remains unchanged regardless of the labels of the parts. However, in our
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Figure 5.5: Path p = {vg, v, v2,v3,v4,v5} is mapped across 4 parts. For partition
a, the path admits a routing penalty of 3D, where D is the traversal time across
parts. For partition b, the routing penalty is 5. Since there is no route between
mp and 7y, we must necessarily pass through 7, which yields a cost of 2D to go
from 7y to my. The same holds from m; to 3. From the point of view of the size
of the cut, partition a brings a cost of 3 cut edges, as does partition b. If we only
consider the cut minimization objective, partitions a and b are symmetric.

problem, we are trying to minimize the path cost, which is degraded by routing
paths across parts that are not always fully connected. An important point in
modeling the partitioning problem is to break the symmetries. For example, P.
Bonami et al. [25] propose models for the partitioning problem without symmetries.
However, these constraints are too restrictive for the solution space associated
with path cost, because, in our problem, the penalty between two parts is not
homogeneous. Indeed, the target topology defines a time penalty associated with
path routing. From a routing point of view, we cannot consider all partitions
with the same subset of vertices but different labels, as a symmetry, an example
is provided in Figure 5.5. Note that some symmetries still exist. For example, if
we take the partition a shown in Figure 5.5, it is possible to create a partition a’
by swapping the vertices of 7y and 73 and those of m; and .

5.3.3 Path degradation

Using an exact solver is relevant only when the size of the instance is small. In
the VLSI context, circuit sizes can be small or reduced by way of clustering.
This is why we took the time to study the integer programming approach as an
initial partitioning step. Before this step, a coarsening method is used to reduce
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the instance size. During the coarsening phase, the structure of the red-black
hypergraph can change, i.e., extra connections between vertices can be created.
As a result, the coarsened red-black hypergraph may have a modified critical path
that does not exist in the original red-black hypergraph.

max(wor, W13)

T e

U3

max(wgz, Wa4)

max(was, Was)

Wse

Ue

Initial Coarsened

a) The merging of vs and v7 reduces the length of path {vg,ve, vs, v7}.

*

\
\

»

\ ’
/
v \
\

*

Ty

Initial Coarsened

b) The merging of u and v creates an erroneous path.

Figure 5.6: Two examples of possible path degradation during coarsening. In
example a), each arc models the path relationship between the vertices. Dashed
arcs are then merged. After merging, new paths are created, and some paths are
deleted. For example, all paths ending in vg now end in vs; because vs; becomes
a red vertex and v; is a red vertex (sink). In example b), merging the vertices u
and v creates the dashed path that did not exist in the original instance.

Figure 5.6, presents such an example in which the value of the critical path
in the coarsened red-black hypergraph is at least equal to the critical path in the

126 J. RODRIGUEZ



5. Initial partitioning

original hypergraph. In other words, the criticality of the paths in the coarsened
red-black hypergraph is an upper bound of that in the initial hypergraph.

However, the new paths can be extremely approximated and may disrupt the
initial partitioning step because integer programming optimizes job sequences
which are biased by coarsening. There are several ways to overcome this prob-
lem. The first one is to create a new data structure based on the routing table.
This solution creates a model with a much larger memory footprint. Another so-
lution is to calculate a degradation tolerance factor for paths during the clustering
phase. The tolerance factor may be used to model the additional cost of creating
new paths. It might be interesting to experiment and measure the effectiveness
of these two strategies in combination with our integer program as the first par-
titioning step. Maintaining the correctness of the path information during the
initial partitioning would allow one to take advantage of an exact solver of a linear
programming model.

5.3.4 Conclusion

In this section, we introduced an integer programming model, integrated into an
exact approach, for solving concurrently the two problems of cut and path length
minimization. Since circuits can be large, a coarsening step must be performed
upstream to reduce the number of variables in the model. However, we have
shown that the coarsening step can create erroneous paths when the vertices are
merged. We have proposed strategies that may overcome this issue, but path
modeling remains complex. Because digital electronic circuits can be very large,
path information can be very degraded by the coarsening process. As a result, the
initial solution produced by the linear program is likely to be approximate, which
some how contradicts the purpose of this tool.

5.4 Mapping the initial partition

This section presents some approaches to map initial red-black hypergraph par-
titions onto a non-uniform topology. During this thesis, we did not have time to
explore algorithms for optimizing the placement of a hypergraph partition onto a
target topology. However, we have had some thoughts on the subject, which we
summarize in this section.

Since many initial partitioning algorithms do not consider the target topology,
an additional placement step is required, as shown in Figure 5.7. In various ap-
proaches to circuit partitioning, the partition is placed onto the target topology
to minimize the impact on the partitioned critical path. S. Liou et al. [127] pre-
sented an algorithm for optimizing partition placement by considering the delay
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Figure 5.7: In this example, a 4-partition of a hypergraph is already computed.
The original hypergraph is reduced to 4 vertices hypergraph H’, in which each
vertex is a part of the original hypergraph. At this step, the reduced hypergraph
in the left is mapped onto the architecture in the right. Each vertex (part) is
mapped onto a physical part ;.

and signal capacities between FPGAs. Their algorithm swap parts over the FPGA
platform to optimize placement.

It is possible to compute an “exact” solution for placing a partitioned hyper-
graph. First, the partitioned hypergraph is viewed as a graph in which each vertex
correspond to a part. Then, for example, the integer programming model can be
re-used again to move parts on the target topology, according to timing objectives.
Finally, if the number of parts is too large, a heuristic based on the approach pre-
sented by S. Liou et al. or a refinement algorithm based on swapping of parts,
may prove effective. The refinement algorithms then take over to optimize the
placement at each level.

5.5 Experimental results

In this section we present some experimental results that we have achieved. These
results have been made on the circuits and target topologies introduced in Chap-
ter 3. Tables containing results presented in the following plots can been consulted
in Appendix A.2.

In the experiments of this thesis, we decided to compare algorithms on metrics
fp and fy. The metric f, calculates the critical path cost, which indicates at which
frequency the partitioned circuit could operates. The second metric, fy, indicates
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how many signals need to be transmitted across FPGAs. In practice, a large
number of transmitted signals could implies signal multiplexing. Indeed, signal
multiplexing is not a part of this thesis, but it is important to have a look on the
effects of algorithms on f) metric.

To make our experiments on our initial partitioning algorithms DBFS, DDFS,
and CCP, we implemented them in C' programming language and compiled with
gcc with flag -03.

All our experiments were performed on one core of a machine that comprises
4 Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz, 16 GB of main memory, 8 Mib
of L3-Cache, and 1 Mib of L2-Cache.

As the degradation between the parts can be non-homogeneous, we have defined
several topologies composed of four and eight FPGAs. We also considered fully
connected topologies, to highlight the advantage of our algorithms over standard
partitioners. Obtaining the third-party tools to reproduce the results is difficult for
most existing approaches. Since the existing approaches used partitions provided
by cut minimization partitioning tools, we will do the same with our approaches
considering the target topology.

5.5.1 Integer programming results

All of the results presented in this subsection have been published in our work [161].
To validate our models and algorithms, we have performed experiments on the ITC
benchmark of logic circuits [50], detailed in Chapter 3. These circuits consist of
acyclic combinatorial blocks, bounded by their input and output registers. Ev-
ery combinatorial block can therefore be modeled as a DAH. Their computation
time is conditioned by their critical path, defined as the longest path between two
registers (i.e., two red vertices). Our work aims at minimizing the degradation
of the critical path during partitioning, with respect to the target topology. For
instance, we arbitrarily set a unique traversal cost d(v) of 0.58 ns for black vertices
and 0.38 ns for red vertices, corresponding to typical traversal times for standard
cells in common CMOS technologies. As the degradation between the parts can be
non-homogeneous, we have defined a chain topology mg, 71, T2, m3 composed of four
elements. To solve our integer programming problem, we use Gurobi Optimizer
version 9.1.2 with a time limit set to 600s. During the refinement phase, we use
the DKFM algorithm. DKFM is a local search algorithm dedicated to minimiz-
ing path length presented in the next Chapter 6. We used KHMETIS, a k-way
partitioner, rather than HMETIS, because HMETIS is based on recursive biparti-
tioning methods, which often do not respect the balance constraint. We used the
maximum criticality scheme r* as a weight for the hyperedges, to guide KHMETIS
to minimize the number of cuts along the critical path as much as possible. The
coarsening algorithm we used is HEM, introduced in Chapter 4.
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Table 5.4: Results on path-cost (f,) degradation factor of partitions compared to
those of produced by KHMETIS.

Instance | KHMETIS | Multilevel +IP+DKFM
BO1 1.0 0.83
B02 1.0 1.0
B03 1.0 0.8
B04 1.0 1.0
B05 1.0 1.0
B06 1.0 0.75
BO7 1.0 0.67
BOS 1.0 0.77
B09 1.0 1.0
B10 1.0 1.0
B11 1.0 0.875
B12 1.0 1.0
B13 1.0 0.67
B14 1.0 2.5
B17 1.0 1.08

Table 5.4 presents results of the degradation of f, during partitioning in which
our proposed methods seems to be better for a majority of circuits on path cost.
Specifically, results shows that our approach gives better results for B01-13. In-
deed, the first coarsening step allows the grouping of the most critical vertices,
while maintaining a balance in the reduced hypergraph. Since the initial par-
titioning considers the topology, it allows for finding an appropriate placement
before the refinement phase. For instances b14 and b17, the time limit set to 600s
is possibly not sufficient for Gurobi to find a good solution. As we have shown
previously, a method needs to be added during the coarsening step to better re-
duce the size of the instance while retaining sufficient criticality information for
the integer program. Table 5.5 evidences that HMETIS yields better minimum con-
nectivity cost fy for all circuits except B03, B06 and B09. Note that our approach
allows a better solution for both f, and fy for three circuits, and we consider f,
as our first objective.

In this experiment, we measured the feasibility of initial partitioning by integer
programming on a subset of circuits. Despite the path bias caused by the coars-
ening step, the results demonstrate how our methods minimize the f, function
well compared to the min-cut tool. However, as the hypergraph becomes larger,
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Table 5.5: Results on connectivity-minus-one cost degradation factor of partitions
compared to those of produced by KHMETIS.

Instance | KHMETIS | Multilevel +IP+DKFM
BO1 1.0 1.55
B02 1.0 0.78
B03 1.0 1.40
B04 1.0 2.70
B05 1.0 2.28
B06 1.0 0.92
BO7 1.0 3.76
B0O8 1.0 1.58
B09 1.0 0.98
B10 1.0 1.26
B11 1.0 1.14
B12 1.0 3.23
B13 1.0 1.31
B14 1.0 7.35
B17 1.0 3.72

the path information becomes less accurate. Therefore, for this method to be
applicable to larger circuits, the coarsening step needs to be adjusted.

5.5.2 Results for DBFS, DDFS and CCP with min-cut tools

In this subsection we present results on circuits benchmarks I'TC, Chipyard and
Titan, targeting the 6 topologies described in Chapter 3. We compare both DBF'S,
DDFS and CCP with min-cut tools HMETIS, KHMETIS, PATOH, KAHYPAR, and
TOPOPART.

For our experimentations, we set the HMETIS and KHMETIS balance param-
eter to 5% and the number of runs to 10. For coarsening, we chose the heavy
edge strategies to take advantage of our weighting based on vertex criticality. We
chose to use PATOH in its default version to see whether it could produce accept-
able solutions in reasonable time, because computation time is a critical aspect of
industrial-size circuit prototyping. We set the vertex visit order (VO) to mazimum
net size sorted mode and matching type (MT) to heavy connectivity clustering.
This vertex visit order favors the processing of the largest hyperarcs first. In ad-
dition, we set the partitioning algorithm (PA) to greedy hypergraph growing with
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max net. We set KKAHYPAR to use the connectivity-minus-one objective with
the same parameters as indicated on the KAHYPAR webpage [1].

Each algorithm was run 10 times for each circuit, and we computed the relative
degradation to evaluate the quality of a partition. Let H be an instance, dyax(H)
its critical path and d (H) the critical path of the partition II. The relative
degradation is calculated by the following formula:

I\ (dglax(H) - dmax(H)>
T(H >_ dmax(H)

(5.3)

Each figure presents critical path degradation relative to the best degradation
produced. A 7(HY) is equal to 0 when d (H) = dyax(H) and 7(HY) is equal to

max

1 when dl. (H) = 2 X dyax(H). Therefore, 7(H™)+1 is equal to the multiplicative

max

coefficient of the value of the critical path dp.x(H), that is:

i () = (T(H") +1) X dax(H) - (5.4)

Each critical path degradation is sorted from the best to the worst, that is, each
curve shows how much the algorithm is the best and how much it is the worst.

We decided to sort the relative degradation for each algorithm to show how
much these algorithms can produce a small or high critical path degradation. In
addition, the sorted degradation defines a curve that represents the algorithm’s
performance over the entire benchmark. For example, to determine whether an
algorithm produces less degradation than the others, we need to look at the po-
sition of its plot in relation to the others. Thus, the further a plot associated
with an algorithm is below the other plots, the better that algorithm performs.
As a result, we can observe the increasing degradation over the whole benchmark
for each target topology. Results on fully connected T3 and T6, K, and Ky, are
presented in Figures 5.8 and 5.13. However, these plots cannot compare a result
of an algorithm to a specific circuit to another one easily, but detailed results can
are available in Appendix A.2.

In Figure 5.9 and Figure 5.10 allow one to compare critical path degradation
between algorithms DBFS, DDFS and CCP with respect to min-cut petitioners, for
a 4-partitioning. For these two topologies, DDF'S produces fairly high degradation.
However, if we look at Figure 5.8 presenting result for a fully connected target
topology, DDFS produces better results, as at least it does not perform worse
than KAHYPAR, PATOH, and DBFS. We can conclude that the poor results on
topologies T'1 and T2 are due to routing penalties induced by the notion of distance
in the model.

Figure 5.8 allows us to estimate routing-related degradation for other topolo-
gies. Remember that none of these algorithms take the target topology into ac-
count. The results of Figure 5.8, show that CCP produces the least worst-case
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degradation compared to the other algorithms while for both, topologies T1 and
T2, not. We can conclude that CCP groups critical paths into cones and then
merges them to limit the cut of critical or semi-critical paths. However, the degra-
dation suffered on other topologies indicates that the resulting partition is less
robust to routing than other partitions. This problem arises from the order in
which the parts are assigned, from 0 to £ — 1. Indeed, this order does not depend
on the target topology. Note that DBFS and DDF'S have the same part assignment
process.

DBFS and DDEFS provide different results for a part of circuits; for example,
for circuit B05, DBFS produces a degradation close to 1 while DDFS produces
a degradation close to 3, but, for MNIST circuit, DDFS produces a degradation
close to 4, which is better than the one produced by DBFS, close to 6. These
differences highlight the importance of the choice between DBFS and DDFS for
circuit partitioning. Note that for B05, CCP produces a degradation close to 2,
which is between DBFS and DDFS. Hence, when circuit properties are unknown,
we can compute partition from DBFS, DDFS and CCP, and select the best one.

Comparing the results obtained on Figure 5.13 against those of Figure 5.11 and
Figure 5.12, one can see that CCP produces the lowest degradation. In the results
regarding the T4 and T5 topologies, CCP produces the smallest degradation, but
is not the best overall degradations. Whereas CCP is the best for a majority of
circuit instances on the fully connected topology, with a maximum degradation of
about 9 (10 X dyax(H)), one can see that PATOH produces also good results on
topology T3 with a maximum degradation of about 9. In comparison, the next
bests, KEHMETIS and HMETIS, yield a degradation close to 12 (13 X dpax(H)). It
is worth noting that the greatest degradation occurred on the ITC circuits, which
are smaller in size. In fact, since there are few paths, the critical path is very often
cut, resulting in significant critical path degradation.
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Figure 5.8: Results of degradation and execution time, produced by HMETIS,
KHMETIS, PATOH, KAHYPAR, ToPOPART, DBFS, DDFS and CCP when map-
ping onto the fully connected architecture T3. Each point is a circuit degradation
corresponding to its algorithm. Each boxplot presents logarithm of the execution
times in milliseconds of all circuits. For this topology, PATOH and CCP seems
to perform better than others for critical path degradation. DBFS and DDFS are
better for execution times. However, CCP have a good results on execution time
too. Note that DBFS, DDFS, TOPOPART and, KAHYPAR have higher critical
path degradation and KAHYPAR, HMETIS and KHMETIS have higher execution
times.
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The results for DBFS and DDFS presented in Figure 5.13 evidence the same
behavior. It is important to note that DBFS performs better overall than DDF'S.
For example, B10 has a degradation of 6 with DBFS, versus 11 with DDF'S; B12
has a degradation of 5 with DBFS, versus 8 with DDFS. Conversely, the MNIST
circuit has a degradation of 5 with DDFS, versus 7 with DBFS. In line with what
was presented in Section 5.2 on the differences between DBFS and DDFS, these
examples show that, in practice, there are circuit examples where one of these two
strategies is more advantageous than the others.

5.5.3 Results for connectivity cut cost

In this subsection, we focus on the connectivity-minus-one cost results. On multi-
FPGA platforms, the number of wires in a connection between two FPGAs is
limited. If the number of wires of circuit to be prototyped exceeds this limit,
a multiplexing procedure is employed to use the interconnections multiple times.
The effect of multiplexing is to add additional delay to the multiplexed paths. The
subject of multiplexing is beyond the scope of this thesis and is usually dealt with
in post-processing. However, we wanted to present results related to connectivity-
minus-one cost, to show the possible discrepancy between min-cut algorithms and
DBF'S, DDFS, and CCP. To evaluate connectivity-minus-one cost of some partition
I, we compute a relative cost as follows:

w(IT)

3 TTalego ’
algorgplxrﬂGO{w ( ) }

T)\(HH) =

(5.5)

with ALGO being the set of algorithms to compare. We chose to present this
cost on a logarithmic scale because DBFS and DDFS typically produce partitions
whose connectivity-minus-one can be one order of magnitude higher than the best
cost, resulting in large relative costs. As a results, log(m\(H")) = 0 indicates a
relative cut cost close to the best cut cost with 7\(H™) = 1.

In this set of algorithms, only TOPOPART computes a partition while taking
into account the target topology. Algorithms that take the target topology into
account will not produce the same partitions for each topology, unlike the others
mincut tools. For this reason, we decided to evaluate the algorithms on topologies
that are fully connected for connectivity-minus-one cost. Additional results on this
metric on other target topologies can be found in the Appendix A.2.

Figure 5.14 and Figure 5.15, HMETIS, KAHYPAR, and KHMETIS produce par-
titions with best connectivity-minus-one compared to TOPOPART, DBFS, DDFS
and CCP. We note that PATOH yields good connectivity-minus-one costs for
half of the circuit instances. Tables of numerical results can be consulted in Ap-
pendix A.2.
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Figure 5.13: Results of degradation and execution time, produced by HMETIS,
KHMETIS, PATOH, KAHYPAR, DBFS, DDFS and CCP onto the fully connected
topology T6 composed of 8 FPGAs. Each point represents a circuit degradation
for the corresponding algorithm. Each boxplot presents logarithm of the execution
times in milliseconds for all circuits. For this topology, CCP seems to perform bet-
ter than other algorithms with respect to critical path degradation, while DBFS
and DDFS are faster. However, CCP is also quite fast as well. Note that DBF'S,
DDEFS, PATOH and KAHYPAR yield higher critical path degradation and KAHY-
PAR, HMETIS and are slower tha the others.
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5.6 Conclusion

In this chapter, we introduced two initial partitioning algorithms, DBFS and
DDFS, based on graph traversal, for the problem of partitioning with path cost
minimization. The aim of these two algorithms is to favor the grouping of critical
vertices in order to avoid cuts along critical paths. DBFS explores the red-black
hypergraph from DAH to DAH, which is interesting when DAH are highly con-
nected. However, for very sparse DAH, DDFS tends to perform better than DBFS
because DDFS explores the hypergraph in depth.

We also presented the CCP algorithm, which is an extension of the cone par-
titioning algorithm, to tackle the partitioning of red-black hypergraphs with path
cost minimization. The structure of a cone provides path grouping properties that
are of interest for optimizing the f, function. In addition, this algorithm locally
groups critical components throughout the hypergraph, making CCP more adapt-
able to various hypergraph topologies than the more specific DBFS and DDFS.
However, CCP does not produce an expected number of parts. To get the expected
number of parts, CCP must be coupled with a partitioning algorithm.

As integer programming algorithms can be interesting to provide an exact
initial partition, we introduced in the previous section our approach based on an
integer program. This integer program takes advantage of scheduling constraints
to place paths according to the target topology, as opposed to DBFS, DDFS and
CCP.

In order to optimize the partition produced by DBFS, DDFS and CCP, in
Section 5.4, we made some suggestions for mapping the initial partition.

Experimental results show that the DBFS and DDFS algorithms are relevant
and complementary initial partitioning methods, depending on circuit instances
and their underlying topologies. These algorithms seem to be a good approach for
the prototyping of circuits on a multi-FPGA platform. However, these methods
tend to degrade cut size. We presented results of DBFS, DDFS and CCP with
min-cut tools on all circuit benchmarks. These results show that routing costs on
the FPGA platform has an impact on our algorithms. In fact, for fully connected
topologies, CPP yields best results, and DBFS and DDFS produce overall good
results, no worse than min-cut tools. These algorithms do a good job in capturing
critical paths in placing them in a single part whenever possible, unlike min-cut
algorithms that focus solely on cut size.

Results of applying exact solver to our integer program, used as initial parti-
tioning inside a multilevel scheme, show that our approach is better at minimizing
fp than a min-cut partitioning tool, even if it is oriented towards minimizing the
sum of the criticality of hyperarcs cut. However, when the hypergraphs are large,
the coarsening step over-approximates the paths, resulting in an initial partitioning
of lower quality.
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6.1. Refinement algorithms

This chapter discusses the refinement algorithms that we studied in the context
of this thesis. These algorithms are part of the third step of the multilevel scheme:
uncoarsening and refinement. Refinement algorithms aim to improve existing par-
titions. Given a hypergraph H and a partition II, refinement algorithms aim to
improve II by moving vertices of the frontier (or halo), i.e., whose hyperedges do
not have all their vertices in the same part. In general, refinement algorithms
calculate a gain associated with a vertex move. The vertices of highest gain, that
is, those which improve the objective function most, are moved first. Some algo-
rithms also accept vertex moves with a negative gain, that is, which degrade the
current solution, in order to evade from a local minima and improve the search on
the solution space |75, 114]. Other refinement algorithms exist, such as approaches
based on computing a minimum separator from a max-flow algorithm. P. Senders
et al. [168] presented a refinement method based on a max-flow algorithm for
the graph partitioning problem. T. Heuer et al. [94] adapted this algorithm to
hypergraph partitioning. In our hypergraph partitioning context, computing a
separator of minimum cut does not necessarily improve the solution quality. We
are interested in refinement algorithms based on local search, such as KL [114] and
FM [75], because these algorithms have proven their effectiveness and ability to
adapt to different objective functions. KL, introduced by N. W. Kerninghan and
S. Lin, explained in Section 6.1.1, and FM, introduced by C. M. Fiduccia and R.
M. Mattheyses, is described in Section 6.1.2. These two approaches inspired our
Delay K-way FM refinement algorithm, presented in Section 6.1.4. Some sections
of this chapter are based on our published work [160].

6.1 Refinement algorithms

In this section, we outline the methods that inspired our refinement algorithm for
the problem of partitioning a red-black hypergraph. The algorithm presented here
are suited for (hyper)graphs with a single weight on their vertices and hyperarcs,
and can be extended to a vector of weights with minimal adaptations.

6.1.1 The Kerninghan - Lin Algorithm

The algorithm proposed by N. W. Kerninghan and S. Lin [114] (or KL), described
as Algorithm 9, concerns the graph bisection problem. KL aims at improving
a bipartition by moving vertices from one side of the cut to the other. Given
a bipartition of the graph IT = {mg, 71}, as shown in Figure 6.1, the goal of the
algorithm is to find subsets of misplaced vertices A C w9 and B C m, such that, by
swapping A into m; and B into m, we get 7w, = (mo \ A)U B and 7} = (m \ B) U A,
and the updated partition IT" = {7}, 7]} has a better cost than the initial partition

146 J. RODRIGUEZ



6. Refinement algorithms

Figure 6.1: Example of partition status after the refinement process. Here, the
plain and the dotted lines are the current and desired frontier of the partition,
respectively.

I1. In the KL algorithm, each vertex is associated with an integer value gain}.; (u)
which evaluates the impact on the cost function of the movement of the vertex
from its current part to the other part. The gain for moving vertex u from part
o to part 7 is defined by:

gaink () = D We(wv)— Y Welu,v) . (6.1)

vel(u)Nmy vel(u)Nmo

The first term evaluates the sum of the weights of the formerly cut edges that will
no longer be cut after the move, while the second term evaluates the cost of the
edges that will be cut by the move. Since the KL algorithm is applied to the graph
bisection problem, i.e., a balanced bipartition, moving a vertex from part my to
part m; implies the move of another vertex from part 7 to mp, so as to maintain
the balance of the partition. Therefore, one can compute a gain per pair of two
swapped vertices u, v, defined by:

gainy.; (u, v) of gaing; (u) + gaing; (v) — 2 x We(u,v) . (6.2)

The KL Algorithm 9 performs a series of refinement passes on the current bisec-
tion. Each pass computes the gain for each edge in the cocycle of the bisection.
Then, a selection of the best couple of vertices to swap is made. When a pair
of vertices vy and vy is selected, it is “locked”; to avoid looping infinitely on the
same vertices, and the gains of its neighbors are updated, to simulate their move.
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Algorithm 9 Kernighan-Lin Refinement Algorithm (KL)

Require: G = (V, E), W,
Ensure: Bisection II = {mg, m }

1: repeat
2: for (v, v1) € w(Il) do
3: gaing.; (vo, v1) < gaink (vo) + gaing (vi) — 2 x We(vg,v1) > The gain
is set for each pair of neighbor across the cut
4: end for
5: nlock < 0
6: is_locked « [False]l"!
7 moves <— ||
8: while nlock < |V| do
9: vy, V1 4 gain%;.get(0) > Return the first couple of vertices
10: moves.append((vg, v1))
11: is_locked(vg) < True
12: is_locked(vy) < True
13: nlock < nlock + 2
14: for v € I'(vy) do > For each unlocked neighbor, the gain is updated
with its neighbors
15: if —is_locked(v)) then
16: for vf € I'(vy) do
17: if —is_locked(vj) then
15 gain, (v, uh)  gainl, (uf)+gaine, () —~2x W, (th, )
19: end if
20: end for
21: end if
22: end for
23: for vj € I'(v;) do > For each unlocked neighbor, the gain is updated
with its neighbors
24: if —is_locked(v]) then
25: for v/ € T'(v}) do
26: if —is_locked(v]) then
o gaind, (v], ) + gain (o) +gaink, (1) ~2x W, (0}, o)
28: end if
29: end for
30: end if
31: end for
32: end while
33: i* <~ —1 p Initial value for the index of “good” moves, -1 implies no moves
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34: gain® <— —1 o Initial value for the best gain, 7.e., -1 enforce to choose the
first move with a positive gain

35: gain’ < 0

36: for i € |moves| do > Each move is simulated

37: gain’ — gain’ + gain(moves(i))

38: if gain® < gain’ then

39: i1

40: gain® < gain’ > The current best solution is updated

41: end if

42: end for
43: if gain® > 0 then

44: for i € {0,7*} do

45: Vo, V1 4— moves(i)

46: swap(vg, v1) > Each selected moves to obtain the best gain is
applied

47: end for

48: end if
49: until gain* > 0
50: return 11" = {my, 7}

At the end of the loop, all swaps have been simulated, i.e., all vertices of 7y are
now in 7y, and all vertices in 7 are in my. Finally, each swap is processed in the
order in which it was inserted, i.e., by descending order of gain. The gain can be
negative if the swap increases the size of the bisection. Each gain is added to a sum
of gains which measures the quality of the sequence of exchanges between [0, "],
where ¢* is the index of the last swap for which the sum of gains is maximized.
The search continues for all swaps, so as to overcome a local maximum. Finally,
the swaps between [0,7*] are applied, and the procedure is repeated until the cost
of a pass is positive. The worst-case complexity of the algorithm is in O(V?)
time [114]. However, S. Dutt et al. [65] presented an improvement in execution
time, in O(|E|max(log(|V]), A)).

6.1.2 The Fiduccia-Mattheyses Algorithm (FM)

The well-known FM refinement algorithm [75], devised by C. M. Fiduccia and R.
M. Mattheyses, addresses the bipartitioning problem for hypergraphs. Starting
from a bi-partition IT = {7, 71 }, the algorithm performs passes, i.e., sets of vertex
moves from one part to the other. Let us recall that, in this chapter, we are
considering hypergraphs with unit weights. As with the KL algorithm, the FM
algorithm will evaluate a moving gain per vertex. Given a vertex v € 7, the gain
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function gaingy;(v, ;) associated with the moving of v to part m is defined by:

gaing, (v, m) & S W.(e) — 3 W.(e) . (6.3)

e€ E Yu#vEeNm) s.t. vEe e€ E Yu#vEeNmy s.t. vEe

The gain of a move can be negative or positive. Let A(v) = [{e|v € e,e € E}|
be the connectivity of vertex v, i.e., the number of hyperedges connected to this
vertex. In the electrical engineering literature, vertices are called “pins”, hyperedges
are called “nets”; and the connectivity value A(v) is the number of nets containing
some pin. Let Ay = max{\(v),v € V} be the maximum degree in the hypergraph.
It is possible to bound the gain function for any vertex v by [—A(v), +A(v)] and
in the general case, by [—=Ay,+Ay]|. Consider the following example, with all
hyperedges connected to v have all their vertices also in part 7. If v moves to
another part, then A\(v) new hyperedges will be cut. This is the worst case, with
a gain equal to —A(v). In the opposite case, when v is in one part and all its
neighbors, i.e., the vertices contained in hyperedges incident to v, are in another
part m, moving v into part 7 will yield a gain of +\(v). Vertices are chosen each
time by taking the vertex of best gain. If a partition is considered as unbalanced,
moves that rebalance it are allowed, even if their gain is negative. Allowing moves
with negative gain may allow the algorithm to escape from local minima.

At the end of the pass, the balanced partition with the best cost is selected.
As with the KL algorithm, each vertex can only be moved only once during each
refinement pass. In the FM algorithm for non-weighted hypergraphs, a bucket-list
(BL) data structure stores vertex gains. This data structure maintains two arrays
of size 2Ay, in which each cell 7 is linked to a doubly-linked list containing the
vertices of gain ¢. The first array stores the vertices that are susceptible to move
from 7y to 71, and the second array stores the vertices that are susceptible to move
from 7 to mp. If a vertex v is connected to gain x of BL(mp), its gain for moving
to m is . The authors show in their work [75] that the run-time complexity of
the FM algorithm is in O(Ay ) operations per pass using this data structure.

6.1.3 K-way Fiduccia-Mattheyses (KFM)

In their version of the refinement algorithm, C. M. Fiduccia and R. M. Mattheyses
presented an algorithm designed for bipartitioning. In the k-way partitioning con-
text, either recursive bipartitioning must be used, or the FM algorithm must be
adapted to k-way partitioning as in L. A. Sanchis [167]. Recursive bipartitioning
consists in dividing the hypergraph into two parts, and repeating the procedure
until the hypergraph is divided into k parts. Several algorithms based on recursive
bipartitioning have been proposed [33, 34, 56, 107, 110, 149, 174|, mainly because
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of their lower complexity and ease of implementation. The k-way refinement al-
gorithm generally follows the same pattern as the 2-way algorithm described in
the previous section. Several works [6, 16, 112, 167] have proposed extensions
of the FM refinement algorithm to KFM, “K” standing for k-way partitioning.
Readers interested in the different implementations of variants of the Fiduccia and
Mattheyses’ algorithm can e.g., refer to the work of U. Catalyiirek et al. [35].

6.1.4 Delay K-partitioning Fiduccia-Mattheyses (DKFM)

As seen in previous sections, the FM refinement algorithm is widely used in hy-
pergraph partitioning methods. In this subsection, we present our Delay K-FM
(DKFM) algorithm, an extended version of the KFM refinement algorithm for
delay-minimization k-way partitioning. This algorithm is adapted to the red-
black hypergraph partitioning problem and aims at minimizing both the impact
of partitioning and of routing on critical paths.

Let IT be a partition of H; the gain function for some candidate partition II',
in which some vertex may be moved to a different part, is defined as:

gainpypy (1L 1, H) =l (H) — dp, (H) . (6.4)

max max

When calculating the gain, the movement of a vertex from one part to another is
simulated, to calculate the effect of this movement on the value of the critical path.
The recalculation of the critical path has a complexity in O(|V]) time. Indeed,
if the vertex is red, the algorithm computes the critical path in all concerned
DAHs. In the worst case, the red vertex connects to all DAHs, which explains
this maximum complexity in O(|V]). When a vertex is moved from one part to
another, the critical path update can occur throughout the DAH. For example, in
Figure 6.2, the critical path of the II partition is p,. The cost of the II partition is
therefore d, (H) = d(p,). Moving vertex v to part Ty seems to be a good choice,
as it reduces the cost of the critical path. II' is the result of moving v to part
mo. Since p, is no longer routed to m, path p), is such that d(p),) < d(ps). Unless
we calculate the effect of partition IT' on the red-black hypergraph dI (H), one
cannot obtain the value of the new critical path locally, or by a local calculation
on the neighborhood of v, or of p,.

The problem addressed in classical partitioning algorithms is the minimization
of the cut size f., or connectivity cost f). These functions are defined by a sum
of local hyperedges cut/connectivity cost. Hence, if a hyperedge is cut, then, it is
accounted for in the sum of cut hyperedges. Hence, because of the associativity
property of a sum, if a cost of one hyperedge change, f. and f) cost functions do
not need to recompute the cost of each hyperedge to be evaluated.
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dlL (H) = d(p,) dll (H) = d(py)

Figure 6.2: Illustration of what is happening when a vertex is moved from part m;
to mp. In this example, p,, a path in the hypergraph, may become the new critical
path.

Consequently, a refinement algorithm for the problem addressed in this disser-
tation has basically a higher run-time complexity than min-cut refinement algo-
rithms. There are two parts of our algorithm in which we perform the evaluation
of the critical path; when DKFM computes the gains of vertices in the frontier,
and, when DKFM moves a vertex to another part.

For the first case, when calculating gains, a way to reduce the number of critical
path evaluations is to reduce the number of evaluated vertices. Hence, we propose
to compute gains for a subset of randomly selected vertex candidates. Indeed, the
algorithm will perform a parameterized number of insertions before moves. Note
that the probability of processing the same vertex twice is 1/|4|?, with |A| being
the number of vertices in the frontier.

For the second case, when DKFM moves a vertex, we study some ways to avoid
recalculating the propagation of the cut overhead along all impacted paths for each
candidate move. In Chapter 4, we have defined the notion of cut capacity, i.e., a
number of cuts which will not degrade the maximum path cost. Cut capacity is
a local evaluation based on local criticality between two vertices, i.e., the length
of the longest path traversing these two vertices. However, cut capacity can be
used to measure the probability of critical path modification. Hence, the definition
of the cut capacity should be extended to a degradation capacity, accounting for
other parameters in order to tune its importance.

Let ¢ be a degradation capacity associated with path p. This capacity is relative
to the latest computed critical path and the cut cost D;;. We define ¢ for each pair
of connected vertices (u,v), with d_ (u,v), representing the length of the local
critical path traversing v and v. We define ¢ as:

152 J. RODRIGUEZ



6. Refinement algorithms

c(H u,v) € T —d, (u,v))/ D) » (6.5)

max max

with v and v being the source and sink vertices of some hyperarc, and p a cut
tolerance. A cut tolerance is a parameter which tunes the degradation capacity .
Hence, if p is equal to zero, each degradation capacity is equal to zero. In this case,
the critical path is evaluated for each modification of the partition. When p > 0,
dmax(H) will be updated if ¢(H™,u,v) < 0. The value of p drives the quality of
the gain computation during a DKFM pass.

The description of a refinement pass is provided as Algorithm 10. The first step
consists in randomly selecting a part from which a vertex can be moved without
overflowing the part size. Consequently, the algorithm can rebalance unbalanced
partitions at the start of processing, by encouraging the movement of vertices from
overloaded to underloaded partitions, even if the resulting gain is negative.

Once at line 2, part k" is selected and the vertex to move is retrieved from the
list of moves associated with part k’. The vertex with the best gain is selected
using an array that stores the best gain for each part. The following lines, from
line 3 to line 9, move the vertex v from k to &’. The new critical path associated
with the new partition ¢ is calculated at line 9. If the new part &’ exceeds the
maximum capacity My, then part k&’ is removed from the candidate parts, and
no vertex is added to part k&’ until the capacity constraint is met again. Finally,
we update the current best solution if the new critical path length is lower than
the previous best solution. Each vertex that is moved is locked, to avoid multiple
moves or back-and-forth movement.

The for loop at line 21 performs the gain update processing on the neighbor-
hood of v. We only calculate the gain of a move from v’ neighbors to the new part
of v, K. If the neighbors of v are no longer connected to the old part of v, part
k, then k is removed from the set of neighboring parts B(v"). Moves of neighbors
v’ that are no longer connected to part k£ are also removed. Finally, we calculate
the gain of neighboring vertices for a move to k. If vertices were not connected
to part &', then part &' is added to set B(v”) and the gain of a move of v” to
k' is calculated. We will not worry about the other parts, as they have already
been calculated. In the case where the critical path value has changed, i.e., in the
case of a deterioration or an improvement due to the moving of v in part &', the
critical path value has to be updated according to the capacity degradation ¢. It
is assumed that the gains will still be locally accurate and will reduce the local
critical path degradation.

In addition, the DKFM algorithm is called at each level during the uncoarsening
stage. As a result, the gains are recomputed for each level. If a critical path
changes, it will be processed at the next level. The complete algorithm in pseudo-
code is shown as Algorithm 11. The data structure used in the DKFM algorithm
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Algorithm 10 Delay K-way Fiduccia-Mattheyses local search algorithm (one
pass)

Require: H = (V, A, W,,W,) a red-black hypergraph, B(v) a function which

indicates the parts in the neighborhood of a vertex v, £ number of part, ¢ the
degradation capacity, p a cut tolerance, € a imbalance ratio, moves a table that
stores vertex moves, is_locked a boolean array

Ensure: II a k-partition of H
1: ¢ < random(0, |[part_candidat|)
2: k' < part_candidatli]

®

10:

11:
12:
13:
14:
15:

16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

27:
28:
29:
30:

U, Gy <— moves|k’|[best_gain[k’]] > vp is current best vertex to move in part
k/
V4 Uy > Get the index of vertex v
k < TI(v) > Return the current part containing v
IT + H\{’ﬂ'k,ﬂ'k/}
Tk < Tk \ {U}
T — T U {U}
I « H/Uﬂ'k/,H/ (—H/Uﬂ'k
P —dY (H) > Partition II" and the length of the critical path are
updated
if ‘Wk/‘ > M, then

part_candidat.remove(k’)
end if
if k ¢ part_candidat A |m| < My then

part_candidat.add(k) > Each part that does not respect the constraint
size cannot receive another vertex
end if
if P . < Pmax then

/
pmax F pma,x

IT + I > Current best solution is updated
end if
is_locked[v] < True > Each vertex is moved only once per pass

for v/ € I'(v) do
if —is_locked[v'] A, <0 then
for v" #v e I'(v') do
is_connected < False
if I1(v") = k then > If vertex v” is in the old part of v: k, v” is
flagged
is_connected < True
end if
end for
if —is_connected then > If ©" has no neighbors in part k
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31: B(v').remove(k) > The move of v to part k is removed

32: remove(vertex_pointer,v’, k)

33: end if

34: if II(v") # II(v) then

35: k < TI(v") > Here, k is the new part of v

36: H/<—H\{7Tk,7Tk/}

37: 7Tk<—7Tk\{U,}

38: T — T U {U,}

39: H/%H/UFk/,H/%H/Uﬂ'k

40: gain < puax — dib (H)

41: S £ p(pmax) - T<U/)/Dk:k’

42: if |[B(v")] =0A v ¢ mp then > v’ goes to the halo

43: B(v'").add (k') > k' goes to the neighbors parts of v/

44: is_locked[v'].add(v")

45: else

46: remove(vertex_pointer,v’, k) > Delete the old gain of moving
v to K

47: end if

48: moves|k'][gain].insert(v’, ¢,/) > Insert the new gain of moving v’ to
k/

49: end if

50: end if

51: end for

52: return 1I
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Figure 6.3: Implementation of data structures for the DKFM algorithm.
vertex_pointer arrays can be sparse; hence, is it possible to optimize the memory
footprint, which is in O(k x n) space, with k being the number of parts and n the
number of vertices.
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is similar to that used in the FM algorithm. The data structure consists of a gain
array, where each cell represents the value of a gain, bounded by the minimum
gain and the maximum gain. Each cell in the array contains a doubly-linked list of
vertices to be moved to the said part, with a gain corresponding to the cell index
in the array. Such an array is constructed for each part 7. In addition to this
structure, the array vertex_pointer associates the vertices with their pointers in
the doubly-linked list, to find them more efficiently. The best_gain array stores
a pointer to the best gain for each part. The best_gain array gives access to the
best moves in O(1) time. An example of this data structure for some part 7y is
shown in Figure 6.3.

Lemma 6.1.1. One pass of the Delay K-way Fiduccia-Mattheyses local search
Algorithm 10 runs in O(|V|*), with |V| being the number of vertices.

Proof. The algorithm chooses a part in which to make a move. A vertex of best
gain is selected, and a gain update is calculated for its neighborhood. The algo-
rithm performs assignations and reads from lines 1 to 9 in O(1) time. At line 10,
the computation of the new value of the critical path applies to the entire red-black
hypergraph, in the worst case. This results in a computation time in O(|V]). The
for loop at line 22 iterates over the entire neighborhood of the moved vertex, v.
In the worst case, |I'(v)| = |V| — 1. In this loop, we perform a second traversal
of the neighbors of v and a critical path calculation at line 43, evaluating the new
gain of each vertex. Since the calculation of the critical path and the traversal of
the neighbors are, in the worst case, in O(|V|) time, and |I'(v)| = |A| — 1, we get
a complexity in O(A|V]) time. The operations of reading, inserting, and deleting
the structure of the moves are performed in constant time using a doubly-linked
list. O

Lemma 6.1.2. The Delay K-way Fiduccia-Mattheyses local search Algorithm 11
runs in O(|V|?logy(|V])) time, with |V'| being the number of vertices.

Proof. Algorithm 11 applies several refinement steps to an initial partition pro-
vided as a parameter. At line 1, the algorithm calculates the halo A, i.e., the set of
vertices present at the frontier of the partition. In the worst case, this calculation
is done in O(]V|?) time if each vertex is connected to all the other vertices. The
processing between lines 4 and 10 is performed in O(k|Ay| X |[V]) time. Note that
the insertion into the list of moves of part k performed at the index corresponding
to its gain, hence, is performed in constant time, because it is an insertion into a
doubly-linked list. In the worst case, the processing between lines 4 and 10 takes
O(k x |V|?) time. The computation of the best gain for each part at line 11 is com-
pleted in O(k x|V]) time. Candidate parts are computed in O(|V]) time, by adding
the weight of each vertex corresponding to its gain. Finally, the main loop at line
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Algorithm 11 Delay K-way Fiduccia-Mattheyses local search algorithm (pseudo-
code)

Require: H = (V, A) a red-black hypergraph, W, vertex weights, k a part num-

ber, ¢ a capacity degradation, p a tolerance ratio, € a imbalance ratio, N the
number of passes

Ensure: II a k-partition of H

1: Compute the frontier A of partition II
2: Initialize themovesarrays (each for one part)
3: Initialize the is_locked array
4: for v € A\g do
5: Compute the neighbor parts of v, and put them in B(v)
6 for k € B(v) do
7 Compute the gain of moving v to part k
8 Insert the gain in moves[k][gain]
9: end for
10: end for
11: Compute the best move for each part
12: Compute the candidate parts > 1.e., parts that respect the capacity
constraint
13: nb_passes < 0
14: while nb_passes < N do
15: Call DKFM pass
16: end while
17: return II
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13 makes a number of calls to the DKFM pass described as Algorithm 10. The
complexity of this pass is in O(]V|?) time, as seen in Section 6.1.1. Since the while
loop is repeated N times, the complexity for the Delay K-way Fiduccia-Mattheyses
local search Algorithm 11 is in O(|V[* + |[V|*> + N x |V|?) time. When N is set
in O(log,(|V])), the complexity of the while loop at line 13 is in O(|V'|*log,(|V]))
time. Then, for N in O(log,(|V])), the total complexity for the Delay K-way
Fiduccia-Mattheyses local search Algorithm 11 is in O(|V ]2+ |V ]2 +|V |*log, (|V])),
that is, in O(|V[*log,(|V])) time. O

The dedicated data structure, first introduced by C. M. Fiduccia and R. M.
Mattheyses |75] and extended to the DKFM algorithm, can have a high memory
footprint for large red-black hypergraphs. As presented in the thesis of S. Schlag
and previous work [146, 173], priority queues can be used to store best moves for
each part. Consequently, we will also use priority queues to improve the complexity
of our DKFM algorithm. Let us study the complexity of DKFM with priority queue
data structures, instead of the classic FM data structure.

Lemma 6.1.3. The Delay K-way Fiduccia-Mattheyses local search Algorithm 11
runs in O(|V2log,(|V])) time, with |V| being the number of vertices, and k the
number of parts, with a priority queue data structure for vertex gains.

Proof. The algorithm applies several refinement steps to an initial partition given
as a parameter. First, the algorithm computes the halo Ap, ¢.e., the set of vertices
located at the frontier of the partition. In the worst case, this calculation is
performed in O(|V'|?) time, each vertex connected to all the other vertices. Then,
the gain for each vertex in the halo is computed in O(k x |V|) time, because the
computation of the new critical path in O(]V|) time has to be performed for each
connected part. In the worst case, the halo contains all vertices and each vertex is
connected to each part. Then, as a priority queue is used instead of doubly-linked
list, the insertion of a vertex is performed in log,(V') time. A heap data structure
is used to represent the priority queues. Then, the worst time complexity for the
calculation of the vertex gain is in O(kx [V|x (|V]+logy(V))) = O(kx |V |?). At this
step, the complexity is similar to the previous version, because the computation
of the critical path has a higher complexity than gain insertion. Each best move
is present in the head of each priority queues.

The second part of the algorithm consists of N vertex movements across the
frontier of the partition. For each movement, a vertex is dequeued from a selected
candidate part. The selection of a candidate part is made in O(k) time and
the dequeued operation in O(log,(V')) time. Then, after each move, the gains of
neighbor vertices have to be updated. In the worst case, the number of neighbors
is |V|, that is, the worst time complexity for updating gains is in O(|V| x (V +
log,(|V]))). Since the while loop is repeated N times, the complexity for the
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Delay K-way Fiduccia-Mattheyses local search Algorithm 11 is in O(|V|? + |V |* +
N x |V]?) time. When N is in O(log,(|V])), the complexity for the while loop
on line 13 is in O(]V|*log,(|V])) time. Then, since N is in O(log,(|V])), the total
complexity for the Delay K-way Fiduccia-Mattheyses local search Algorithm 11 is
in O(|[V]2 4+ [V]2 + [V 2log,(]V])), that is, in O(]V [*log,(|V])) time when using a
priority queue data structure instead of doubly-linked lists for part moves. O

In the previous Lemma 6.1.3, we show that the use of priority queues instead
of doubly-linked lists does not degrade the complexity of DKFM in the worst case.
This is specific to the problem of path cost minimization, because the computation
of gain forces the evaluation of the critical path for each partition. As the calcu-
lation of the critical path is performed with a higher complexity, the management
of the priority queue is absorbed in the worst case complexity analysis.

6.2 Experimental results

This section presents the results for a version of DKFM in which all possible gains
are computed on the circuits presented in Chapter 3. That is, the parameter p is set
to 0, the critical path is calculated after each movement and the evaluation of f), is
made for each gain. Hence we refer to this version of DKFM as : “DKFM”, and the
version of DKFM with optimization presented previously, as : “DKFMFAST”. We
will present the results of both, DKFM and its fastest version called DKFMFAST.

6.2.1 Methodology

In Chapter 2, we presented existing approaches based on pre- and post-processes
using min-cut solvers as a main algorithm for partitioning. To the best of our
knowledge, there is no publicly available tool to tackle our problem; hence, the
scientific community has developed such procedures in combination with existing
min-cut tools to handle path cost. Following these approaches, we investigated
the efficiency of a refinement algorithm dedicated for our problem, combined with
existing min-cut tools.

Chronologically, the DKFM algorithm is the first we have developed in the
course of this thesis. For this reason, we have created a benchmark in which
DKFM is a post-processing procedure of a mincut tool. However, the pre- and
post-processes presented in the state of the art are not publicly available. This
makes it difficult to compare against them. Hence, the aim of this benchmark is
to measure the relevance of using DKFM as a post-processing method.

To test the DKFM refinement algorithm, we first ran HMETIS, PATOH, KHMETIS,
and KKAHYPAR on the weighted hypergraph instances. We use the r* weighting
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scheme introduced in Chapter 4 to drive min-cut to avoid cutting critical hyperarcs.
After this partitioning step, we applied our DKFM algorithm as a post-processing
to these outputs, to study the path-cost improvement. We set a time limit of
400s to our DKFM and DKFMFAST algorithms, the parameter p to 0, and the
maximum number of DKFM moves to 20% of the number of vertices.

We set the HMETIS and KHMETIS balance parameter to 5%, and the number
of runs to 10. For the coarsening step, we chose the heavy edge matching strate-
gies to take advantage of our weighting based on vertex criticality. We chose to
use PATOH in its default setting to see whether it could produce acceptable solu-
tions in combination with DKFM, because computation time is a critical aspect of
industrial-size circuit prototyping. We set the vertex visit order (VO) to mazimum
net size sorted mode and matching type (MT) to heavy connectivity clustering al-
gorithm. This vertex visit order favors the processing of critical hyperarcs first.
In addition, we set the partitioning algorithm (PA) to greedy hypergraph growing
with maz net. We set KKAHYPAR, for a connectivity minus one objective with
same parameters indicated on KAHYPAR webpage [173]'.

6.2.2 Results of DKFM on critical path degradation

This subsection presents results of our DKFM refinement algorithm applied to each
partition computed by oriented min-cut algorithms, on the following six target
topologies defined in Chapter 3.

Figure 6.4 and Figure 6.5 present the results of our DKFM refinement algorithm
and show that the algorithm succeeds in refining the partitions given as parameters
with only 20% of the possible moves made. Since cut minimization algorithms
do not address the problem of minimizing critical path degradation and do not
take into account the target topology, our algorithm has some leeway to optimize
partitions. However, we find that for some partitions, especially those generated
by TorPOPART and PATOH, DKFM has difficulty improving them. As a result,
DKFM may have difficulty escaping a local minimum. Remember that DKFM is
applied only once and performs a maximum number of moves less than of 20% of
the number of vertices. Note that in the T2 topology, the partitions created by
the cut minimization algorithms suffer a much higher routing penalty than in T1.
In fact, T2 has no connection between parts 0 and 3, which can result in a very
high routing penalty for paths between parts 0 and 3.

Results on target topologies T4 and T5 composed by 8 parts can be consulted
in Figure 6.7 and Figure 6.8. Results on fully target topologies T3 and T6 can be
consulted in Figure 6.6 and Figure 6.9.

Thttps:/ /kahypar.org
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Figure 6.6: Results of improvement produced by DKFM applied to partition com-
puted by HMETIS, KHMETIS, PATOH, KAHYPAR, and TOPOPART onto fully
connected T3 composed of 4 parts. Each point is a circuit degradation corre-
sponding to its algorithm. Each boxplot presents the logarithmic execution times
in milliseconds for all circuits. The total DKFM execution time equals the sum of
the execution time of the min-cut algorithm plus the DKFM execution time. For
this topology, KAHYPAR+DKFM and HMETIS+DKFM seems to be better than
other for critical path degradation. However, we point out that PATOH produced
less maximal degradation than the others. KHMETIS+DKFM is the third best
algorithm here. Hence, we show limitations on DKFM improvement for PATOH.
Note that DKFM’s execution time is longer, but remember that a time limit for
DKFM is set at 400 seconds, which is still reasonable for the circuit sizes processed
and the results delivered.
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6.2.3 Results of DKFMFAST on critical path degradation

The DKFMFAST algorithm presented as Algorithm 10 is a version of DKFM in
which fewer vertices are moved and the number of cost function evaluations is
reduced. Note that the cost function has O(n) time complexity because the entire
hypergraph must be evaluated. As a result, updating the critical path after a move
or when calculating gains can be very expensive. In this subsection, we evaluate
the practicality and quality of DKFMFAST compared to DKFM.

Figure 6.10 and Figure 6.11 present the results of our DKFMFAST refinement
algorithm and show that the algorithm succeeds in refining partitions first com-
puted by a min-cut algorithm. In contrast to DKFM, the DKFMFAST algorithm
experiences more difficulty improving partitions. In fact, the algorithm was defined
to be less accurate and faster. However, in certain cases, such as the results of
KAHYPAR+DKFMFAST on T1, DKFMFAST produces improvements, for exam-
ple for OneCore and Pulsar, which are large circuits. Figure 6.12 presents results
on fully target topology composed by 4 parts.

Figure 6.13 and Figure 6.14 present the results of our DKFMFAST refinement
algorithm and show that the algorithm succeeds in refining partitions first com-
puted by an oriented min-cut algorithm. However, similarly to previous results,
DKFMFAST shows difficulties to improve partitions produced by PATOH and
TorPOPART. The combination of our DKFMFAST with KAHYPAR seems to be
preferable to obtain smaller degradation for circuits partitions. Figure 6.15 shows
execution times for each algorithm, and KAHYPAR appears to take longer than
the others. Indeed, KAHYPAR favors the computation of high quality partitions
over fast execution. Consequently, if execution time is important, other tools like
KHMETIS can be combined with DKFMFAST. Note that PATOH has a smaller
execution time than other min-cut algorithms, and PATOH+DKFMFAST can pro-
duce good results with a maximum degradation close to that of HMETIS+DKFMFAST
and KHMETIS+DKFMFAST, as illustrated in Figure 6.15.

All the results associated with the figures in this section can be consulted in
Appendix A.3.
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Figure 6.9: Results of improvement produced by DKFM applied to partitions
computed by HMETIS, KHMETIS, PATOH, KAHYPAR, and TOPOPART onto fully
connected T6 composed of 8 parts. Each point is a circuit degradation correspond-
ing to its algorithm. Each boxplot presents the logarithm of the execution times
in milliseconds for all circuits. The total DKFM execution time equals the sum of
the execution time of the min-cut algorithm plus the DKFM execution time. For
this topology, KAHYPAR+DKFM seems to be better than the others for critical
path degradation. HMETIS+DKFM is the second best algorithm here. Hence, we
evidence limitations on DKFM improvement for PATOH.
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Figure 6.12: Results of improvement produced by DKFMFAST applied to par-
titions computed by HMETIS, KHMETIS, PATOH, KAHYPAR, and TOPOPART
onto fully connected T3 composed of 4 parts. Each point is a circuit degrada-
tion corresponding to its algorithm. Each boxplot presents the logarithm of the
execution times in milliseconds for all circuits. The total DKFMFAST execu-
tion time equals the sum of the execution time of the min-cut algorithm plus
the DKFMFAST execution time. For this topology, KHMETIS+DKFMFAST
results on critical path degradation seems to be better than the others. We
point out that PATOH produced less possible critical path degradation than
the others. HMETIS+DKFMFAST is the second algorithm with better results.
Hence, in contrary to previous Figures, we show DKFMFAST improvement lim-
itations for HMETIS partitions. Note that the total execution times of PA-
ToH-+DKFMFAST and ToPOPART +DKFMFAST, increase significantly because
PATOH and TOPOPART execution times are fast compared to the DKFMFAST
execution time. For the other tools, DKFMFAST slightly increases the execution
time compared to the total procedure.
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6.2.4 Results of connectivity cost degradation with DKFM

In this subsection, we measure the effect of DKFM on connectivity cost for similar
reasons exposed in Chapter 5. Indeed, this refinement algorithm only focuses
on path cost, that is, vertex moves can degrade the cut size. However, as the
hyperarc weight is driven by criticality, DKFM could improve connectivity cost
for some partitions.

Furthermore, topology structure can have different effects on critical path
degradation. Hence, each target topology induce implies a different movement
strategy for DKFM. However, we noticed that results on connectivity cost evi-
dence little variation on each topology. In addition, DKFMFAST produced similar
results on connectivity cost as DKFM. For these reasons, we present the connec-
tivity cost results for target topologies T3 in Figure 6.16 and T6 in Figure 6.16 of
DKFM in the following figures. To illustrate results on each topology with DKFM
and DKFMFAST, the interested reader can consult the figures in Appendix A.3.
To compare connectivity cost of each partition II, we compute a relative cost as
in Equation 5.5 defined in Chapter 5.
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Figure 6.15: Results of improvement produced by DKFMFAST applied to parti-
tions computed by HMETIS, KHMETIS, PATOH, KAHYPAR, and TOPOPART onto
fully connected T6 composed of 8 parts. Each point is a circuit degradation cor-
responding to its algorithm. Each boxplot presents the logarithm of the execution
times in milliseconds for all circuits. The total DKFMFAST execution time equals
the sum of the execution time of the min-cut algorithm plus the DKFMFAST
execution time. For this topology, KAHYPAR+DKFMFAST seems to produced
better critical path degradation results than the others. KHMETIS+DKFMFAST
produced the second best results here. Hence, we show DKFMFAST improvement
except for HMETIS, PATOH and TOPOPART. The analysis of execution times is
similar to previous figures.
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6.3 Conclusion

In this chapter, we presented an extension of the FM refinement algorithm to the
problem of partitioning red-black hypergraphs, aiming at minimizing critical path
degradation. This algorithm, called DKFM, considers routing costs to optimize
path allocation within the partition. The calculation of the critical path when
updating the gains is expensive, because all vertices must be processed. Indeed, as
shown in Figure 6.2, a move can change the critical path, which can arise anywhere
in the DAH. This aspect is an essential difference between the cut minimization
problem and the path minimization problem. Indeed, when a vertex is moved
across parts, cut costs change only for connected hyperarcs. In contrast, when
minimizing f,, moving a vertex locally has a global effect on the whole hypergraph.
This property makes this problem more difficult than min-cut for FM-type local
improvement algorithms.

In VLSI design, execution time is an important issue for tools. As f, mini-
mization involves to update the critical path after each move, DKFM is inevitably
slow. Therefore, we presented DKFMFAST, a faster version of our DKFM algo-
rithm that limits the evaluation of the critical path. DKFMFAST computes a
subset of gains in addition to the cut capacity ¢, which reduces the number of
evaluations of the critical path during the moves.

In Section 6.2, we presented experimental results on some circuits and target
topologies, both introduced in Chapter 3. The results show that, in most cases,
DKFM succeeds in refining the partitions created by the min-cut tools. In this
setting, DKFM only performs a maximum of 20% of the moves (p = 20%), and
the run time limit setting, is set to 400s.

We observed that DKFM experienced some trouble to improve some of the
partitions derived from PATOH. Among all min-cut algorithms, the combination
of KAHYPAR with DKFM and DKFMFAST generally gives the best refinement
outcome.
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Summary of the dissertation

Prototyping digital electronic circuits on multi-FPGA platforms is a challeng-
ing optimization problem, which can be modeled as a constrained hypergraph
partitioning problem. In this thesis, we focused on practical hypergraph partition-
ing with path-length degradation minimization. In this last chapter, we briefly
summarize the results we obtained, and present some perspectives. We will also
present a by-product of our research work, in the form of the open-source hyper-
graph partitioning tool RAISIN, which provides an opportunity for any researcher
wishing to contribute to the red-black hypergraph partitioning problem.

Summary of the dissertation

The partitioning and mapping of digital circuits is a problem that has been studied
extensively in the scientific literature over the past 40 years. After an introduction
and setting the notations and definitions in Chapter 1, we presented a state of the
art on circuit partitioning in Chapter 2. These research all deal with solving some
form of hypergraph partitioning optimization problem. We made the point that
the functions optimized by the existing algorithms do not minimize the critical
path degradation during partitioning, whereas in this thesis we focused on this
metric.

In addition, most of existing techniques do not take into account the target
topology in which the paths are to be routed. This is due to the fact that these
studies use, most often as a blackbox, a partitioning algorithm designed to mini-
mize cut size only. Therefore, our first task, described in Chapter 1, was to model
the cost function associated with our thesis problem.

We know that there is a polynomial-time algorithm for computing a critical
path in a digital electronic circuit, due to wire acyclicity between two registers.
However, the plain hypergraph model did not allow us to distinguish a register
from a combinatorial cell. Therefore, we have defined a new enriched hypergraph
model, that provides a more accurate representation of a digital electronic circuit.
This model includes vertex coloring, to distinguish register cells from combinato-
rial ones. On this basis, we were able to define an algorithm for measuring the
quality of a partition, presented in Chapter 3, as well as several algorithms for
clustering, direct partitioning, and refinement, discussed in Chapters 4, 5, and 6,
respectively.

Clustering algorithms reduce problem size by merging vertices of a hypergraph
to partition. The clustering strategy depends on the objective function. In our
case, the related clustering problem is still being studied, with results as recent
as 2020. We pursued this thread by using our hypergraph model to define new
clustering algorithms. Based on our hypergraph model, we improved existing
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weighting schemes to identify critical vertices, i.e., vertices along a critical or
quasi-critical path.

The binary search clustering (BSC) Algorithm 5 presented in Chapter 4 takes
profit from this weighting scheme. We compared our algorithm with the well-
known Heavy Edge Matching (HEM) algorithm, and showed that our algorithm
performs better for the path cost metric. In particular, we evidenced that, in
order to cluster efficiently critical and quasi-critical paths, it is more interesting
to perform direct clustering, as our BSC algorithm does, rather than recursive
clustering, as HEM does. However, we noticed the importance of approximation
biases on the paths created during the contraction phase. Indeed, when vertices
are merged, false paths can be created and incorrectly considered. Consequently,
maintaining consistency on combinatorial paths needs to be studied and added to
contraction algorithms in order to facilitate the work of initial partitioning and
refinement algorithms.

Approximation algorithms are algorithms designed to find approximate solu-
tions to optimization problems in reasonable time. In many cases, an approxi-
mation ratio can be associated with these algorithms, which defines a provable
guarantee of the distance of a solution from the optimal solution. Alongside our
study of disjoint clustering, we investigated the approximation ratio between the
path cost of a worst case clustering to the best one. Under some assumptions, we
demonstrated that the approximation ratio can decrease from M2+ M to M, with
M being the maximum cluster size.

In the context of our thesis, the number of parts should be less than or equal to
the number of FPGAs of the platform. Since clustering algorithms do not prescribe
the number of parts, we focused our attention to partitioning algorithms.

Due to the large size of the circuits, we first opted for greedy direct partitioning
algorithms. We explored traversal algorithms such as breadth-first search and
depth-first search. Subsequently, we investigated cone partitioning. Afterwards,
we adapted these algorithms to favor the placement of neighbors critical vertices in
the same part. Each of these adaptations is integrated into an algorithm, namely
DBFS Algorithm 6, DDFS Algorithm 7, and CCP Algorithm 8. Results presented
in Chapter 5 evidenced their ability to produce good solutions, especially for fully
connected topologies.

Because these algorithms do not take into account target topology, the part
mapping phase that take place after partitioning would not be able to reconsider
vertex placement, resulting in reduced mapping efficiency. In the context of a mul-
tilevel scheme, topology-aware refinement algorithms may not be able to improve a
topology-unaware initial partitioning, because a local refinement algorithm is not
designed to reconsider global decisions. Consequently, target topology awareness
should be integrated into these algorithms. In fact, considering the target topology
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from the initial partitioning step is a main part of the perspectives of this thesis.

To broaden our spectrum of hypergraph partitioning methods, we have also
experimented with an integer programming algorithm, presented in Chapter 5,
and designed a model that takes into account target topologies and routing costs.
Since the circuits that we consider are very large, we used our integer program
only during the initial partitioning phase of a multilevel scheme.

In practice, solving the problem with integer programming is time-consuming
and seems impractical. Nevertheless, obtaining solutions for some instances may
allow us to compare the quality of the solutions yielded respectively by the ap-
proximation, greedy, and multilevel algorithms, with that of the exact one.

In the context of the multilevel scheme, we then logically turned our attention
to refinement algorithms. In Chapter 6, we have proposed an extension of the FM
algorithm, the DKFM Algorithm 11, which minimizes the critical path degrada-
tion of a partition. Because the DKFM algorithm takes into account the target
topology and reduces the cost associated with routing, it significantly reduces the
routing cost of a partition. For strategies using min-cut as a pre-procedure, results
evidence the efficiency of DKFM as a post-procedure for minimizing routing costs.

In this thesis, we have proposed algorithms for each phase of the multilevel
scheme. The combination of these algorithms creates a multilevel scheme for par-
titioning red-black hypergraphs. Since the multilevel scheme has proven its effi-
ciency in partitioning hypergraphs, future algorithms aimed at minimizing path
cost in partitioning red-black hypergraphs should take advantage of the multilevel
scheme, combined with the proposed algorithms.

The RAISIN software

The research strategy adopted during this thesis was an empirical one: our anal-
ysis and modeling of the problem resulted in a set of ideas that were expressed
as algorithms and turned into software, which allowed us to make experimental
measurements of their effectiveness. All of our algorithms were implemented in the
C language, within a software framework consisting of data structures to represent
our red-black hypergraph model, as well as auxiliary, service routines.

The set of algorithms that we have implemented consists of HEM and BSC for
coarsening, DBFS, DDFS, and CCP for partitioning, and DKFM for refinement.
Each of these algorithms addresses the red-black hypergraph partitioning problem,
to minimize the degradation of the critical path. This partitioning problem dif-
fers from the min-cut partitioning problem addressed by the HMETIS, KHMETIS,
KAHYPAR and PATOH tools and, to our knowledge, there is no publicly avail-
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able tool dedicated to our partitioning problem. Hence, we decided to formalize
our work into the RAISIN software package. This tool is a by-product of this
thesis, which comprises all the algorithms that we studied and developed, the var-
ious weighting schemes, routines to perform statistical analyses of hypergraphs,
etc. RAISIN can be considered as the end work of this thesis, but constitutes as
well a starting point to the development of algorithms for red-black hypergraph
partitioning.
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A.1. Numerical results of clustering algorithms

A.1 Numerical results of clustering algorithms

This section presents detailed results on clustering algorithms presented in Chap-
ter 4. Each table shows results on metric pn., the critical path. In order to
compare each algorithm, we presents results per benchmark sets introduced in
Chapter 3. Then, we recall the results presented in Chapter 4. Each result is com-
posed of a resulting critical path of each circuit. Hence, we obtain a comparison
critical path obtained between heavy edge matching (HEM) algorithm 4.4.2 and
binary search clustering (BSC) algorithm 5.
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A. Experimental results

A.2 Numerical results of initial partitioning algo-
rithms

In this section we introduces all numeric results used to generate all figures pre-
sented in Chapter 5.

A.2.1 Ciritical path evaluation

In this subsection we presents all critical path obtained for each partition computed
by algorithms compared in Chapter 5. These results have been used to compute
the critical path degradation: 7(H™W).
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A.2. Numerical results of initial partitioning algorithms

A.2.2 Connectivity cost results

Results on connectivity cost presented in Chapter 5 are based on tables introduced
in this subsection. Each table shows us connectivity cost of partition produced
by min-cut algorithms and greedy direct partitioning algorithms DBFS, DDFS,
and CCP. These results have been used to make the figures presenting the relative
connectivity cost of each partition in Chapter 5.
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A. Experimental results

A.2.3 Balance cost of partition

In Chapter 5, we presented a comparison on vertex weight balance of partition.
For this purpose, we use the results presented in the following tables.
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A.2. Numerical results of initial partitioning algorithms
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A.3. Numerical results of refinement algorithms: DKFM and DKFMFAST

A.3 Numerical results of refinement algorithms:
DKFM and DKFMFAST

In this section we introduces all numeric results used to generate all figures pre-
sented in Chapter 6.

A.3.1 Numerical results of DKFM
Critical path results

Results on critical path degradation presented in Chapter 6 are based on tables
introduced in this subsection. Fach table shows us effect of DKFMFAST on critical
path degradation of partition produced by min-cut algorithms.
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A.3. Numerical results of refinement algorithms: DKFM and DKFMFAST
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A.3. Numerical results of refinement algorithms: DKFM and DKFMFAST
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A.3. Numerical results of refinement algorithms: DKFM and DKFMFAST
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A.3. Numerical results of refinement algorithms: DKFM and DKFMFAST
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A.3. Numerical results of refinement algorithms: DKFM and DKFMFAST
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A. Experimental results

Connectivity cost

Results on connectivity cost presented in Chapter 6 are based on tables introduced
in this subsection. Each table shows us effect of DKFM on connectivity cost of
partition produced by min-cut algorithms. These results have been used to make
the figures presenting the relative connectivity cost of each partition. The following
figures corresponds to the complementary results of the one presented in Chapter 6.
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A.3. Numerical results of refinement algorithms: DKFM and DKFMFAST
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A.3. Numerical results of refinement algorithms: DKFM and DKFMFAST
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A.3. Numerical results of refinement algorithms: DKFM and DKFMFAST
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A.3. Numerical results of refinement algorithms: DKFM and DKFMFAST
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A.3. Numerical results of refinement algorithms: DKFM and DKFMFAST

Balance cost

In Chapter 6, we presented a comparison on vertex weight balance of partition.
For this purpose, we use the results presented in the following tables. Each table
shows us effect of DKFM on balance cost of partition produced by min-cut algo-
rithms. The following figures corresponds to the complementary results of the one
presented in Chapter 6.
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A.3. Numerical results of refinement algorithms: DKFM and DKFMFAST
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A.3. Numerical results of refinement algorithms: DKFM and DKFMFAST
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A.3. Numerical results of refinement algorithms: DKFM and DKFMFAST
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A.3. Numerical results of refinement algorithms: DKFM and DKFMFAST

€91 €91 S 6S°T 9T'T1 91’1 68T 68T 91 L9°T ¢cd
¢9'1 91 94T 091 ITT ITT 1971 19T 84T 8G'T Icd
€91 €91 4N 68T LTT LT°T 8G°T 8G°T €91 8G°T 0cd
4N 91 8CT 9¢'1 €l'T ! 6€°T 6€°T 0r'T1 0¥'T1 614d
91 91 8C°T 191 GC'1 T4 8V'1 8V'1 ! 671 81d
€91 €91 68T 91 LT LT'T €91 0S'T €91 19T L1d
91 191 191 191 91 70T LET LET L0¥ 80V vid
G681 81 [N PaT ¢8'1 00T LCT LT LSV LSV erd
94T 991 LET PaT 60T 60T 9¢'T1 9¢'T1 L9¢ €re ¢ld
V9T 791 19T Lyl 19T 00T 8€T 8ET SRS RS I1d
96°1 96T 87’1 87’1 00T 00T 87’1 87T 88°€ 88°€ ord
8C'T 8C'T 00T 8C'T 00T 00T 00T 00T €ee €ee 604
[N PaT [N 8€'T 00T 00T 00T 00T 91°€¢ 9T'€ 8049
891 891 S ! 891 00T €C1 €C1 8Y'€ 09v L04d
00T 00T 00T 00T 00T 00T 00T 00T GL'G v 904
891 891 6€°T 19T 00T 00T 00T 00T v6°¢ 16°€ q0d
L91 L9T ! 0S'T 00T 00T 291 LCT €LC 98¢ yod
9’1 91 91 91 9’1 00T 00T 00T 9’1 €C'C €0d
00T 00T 00T 00T 00T 00T 00T 00T eev €ev ¢0d
00T 00T 00T 00T 00T 00T 00T 00T o617 6V 104
WA+ | VJodoL | WA+ | ¥VIAHYM | WA+ | HOLVd | WAMA+ | SIas | WAMd+ | SIEWNH | 9DUR)SUJ

"JOs DI UL SHNOID 10§ 9T, 10818} U0 ‘()¢ 1800 9duR[Rq 10§ SHNSOY 79"V O R,

J. RODRIGUEZ

262



A. Experimental results

Gc’e 06T 96'1 G¢l'e ac'l @'l Vel 611 84Y 84Y ow” Asa10yd
4c’c Gc’c 4c’c Gc’c vl vl ¢Sl ¢Sl L0°G L0°G orwe3x
4c’e Gc’c 6¢'1 68T 00T 00T 00T 00T gee 0s€ 06sep
v<¢'¢ v¢'¢ G0°¢ LT°C Gc'l @'l Ll €L G6°¢ 96°C esSTOUsSp
Gc’c Gc’c I1T°¢ 1¢°¢ Gl @1 00T 00T 18T I8°T +1ep
I1°¢ 11°¢ va'l 16°T 00T 00T (4! 1 ay'e 107 | Tapq £gsaToyd
jANE vi'c Ge'l1 VLT ac'l @'l 00T 00T 8€'€ 8€€ Usew d5TU03Iq
vé'e Ve 991 90°¢ 04T 04T 8T°¢C 8T°C 694 ¢9'¢ TonToge3Sep
4c’c 4c’c 08T €l'e 0€'T 0€'T 781 781 6% 167 yvsnd
Gc’e €61 G6°1 61°C Gc’e 00T IT°¢ IT°¢ 86°G 86°¢ 8I0p3uQ
Gc’c Gc’c eLl 61°C a1 @1 44! Vel 99°¢ 99°€ TasutrTqou
9¢'C 9¢'¢c ¢Sl LLT 9¢'¢ 671 6ET 00T L0°€ ar'e IsSTum
60°C 60°C 0T°¢ €¢¢C Gl @1 4c’c v1i'¢ v0°S L0°G 010)1Y31y
WA+ | MVdodoL, | WAMA+ | MVJAHVM | WAMA+ | HOLV | WAMA+ | SHEN® | WAMA+ | SIapH ooue)suy
'$308 URYLT, pue preddryy) Ul s}mom 10§ 1,1, 10818} U0 ()¢ 3800 vour[Rq I0f SHNMSNY €9y SR,

263

Red-Black Hypergraph Partitioning



A.3. Numerical results of refinement algorithms: DKFM and DKFMFAST
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A.3. Numerical results of refinement algorithms: DKFM and DKFMFAST

€91 €91 o'l 6V'T 80°T 80T |¢l'l 9¢'1T 0¥ 0¥ ow” £gsaT0Yd
191 191 69T 191 191 91'T | 0€'1 0€'T gr’e gr°e oew~ 93X
€91 €91 8¢'1T (4! 80°T 80T | 6T'T 61T L0°€ L0°€ 06sep
€91 €91 84T 191 LT'T LT'T 08T 06T 0L°¢ 0L°¢ 9STOUSP
€91 €91 091 9’1 80°T 80T 1001 00T €9°¢ €9°C 31ep
&9l €91 Ly'1 Gae'1 80T 80T e R ¢9'¢ ¢9¢ | Tapa £gsaToyd
91 91 Gl 6V'1 el'l el't 00T 00T 81°¢ 8T°C ysew 5Tuo3Tq
€91 €91 0S'1T LGT LT'T LT'T 651 65T iy Vv TonTogegSEN
€91 €9l 84T 91 LT'T LT'T | SP'T a1 70" 709 HvsTnd
9’1 91 ga't 191 9’1 9T'T 1941 941 L8V L8V 810p9uQ
9’1 9’1 ge't 65T 91’1 9I'T |1 6C1 6¢°T 69°€ 69°¢ Tasurtqou
€91 €91 Lyl 191 €91 ve1T | 0€°1T 0€'T 96°1T 96°1 istTum
€91 €91 9¢'1 191 80T 80T | LS'T LG7T 8V'¥ i ©1003Y313
WAMA+ | WWVdOdOL | WAMA+ | MVIAHVM | WA+ | HOLVA | WAMA+ | SIANHI | WAMd+ | SUEpH QouRr)sU|
'$308 weL], pue prefdiy)) ur s}mnoIo 10§ .1, 19818} U0 ‘()¢ 3800 doue[e( I10J SHNSOY :99'Y O[qR],

J. RODRIGUEZ

266



A. Experimental results

€91 €91 9¢'1 671 80T 80T L'l 9¢'1 0¥ 0¥ ow” Asa10yd
191 191 64T 191 19T 91’1 191 0€'T 9r'e gr'e orwe3x
€91 €91 8C'1T ¢Sl €91 80T 61T 61T L0°€ L0°€ 06sep
91 €91 84T 191 LTT LT'T 05T 0s'T 0L°¢ 0L°¢ esSTOUsSp
91 €91 091 91 80T 80T 00T 00T €9¢ €9°C +1ep
€91 €91 07’1 qa't 80°T 80T 0€'T1 1eT 6S°C ¢9¢ | TapqAgsaToyd
91 9’1 @'l 671 e€r'l €r'l 00T 00T 81°C 8T°C Usew d5TU03Iq
€91 €91 04T LG LT T LT'T 69T 69T iy vy TonToge3Sep
€91 €91 84T 4*A! LTT LT'T a1 vl 70°S 70°S yvsnd
91 9’1 qq'1 19T 91’1 91’1 941 941 L8V L8V 8I0p3uQ
91 9’1 871 65T 91’1 91’1 6C'1 6¢°1 69°€ 69°€ TasutrTqou
€91 €91 191 191 €91 Vel 0€T 0€T 961 96T IsSTum
91 €91 941 191 80T 80T | 297 L9°T 8V 8V 010)1Y31y
WA+ | MVdodoL, | WAMA+ | MVJAHVM | WAMA+ | HOLV | WAMA+ | SHEN® | WAMA+ | SIapH ooue)suy
'$308 URYLT, pue preddry)) Ul s}moIm 10§ G, 10818} uo ([)g 3800 vour[Rq 10§ SHMSNY L9V SR,

267

Red-Black Hypergraph Partitioning



A.3. Numerical results of refinement algorithms: DKFM and DKFMFAST
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A. Experimental results

A.3.2 Numerical results of DKFMFAST
Critical path results

Results on critical path degradation presented in Chapter 6 are based on tables
introduced in this subsection. Each table shows us effect of DKFMFAST on critical
path degradation of partition produced by min-cut algorithms.
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A.3. Numerical results of refinement algorithms: DKFM and DKFMFAST
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A.3. Numerical results of refinement algorithms: DKFM and DKFMFAST
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A. Experimental results
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A.3. Numerical results of refinement algorithms: DKFM and DKFMFAST
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A. Experimental results
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A.3. Numerical results of refinement algorithms: DKFM and DKFMFAST
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A. Experimental results
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A.3. Numerical results of refinement algorithms: DKFM and DKFMFAST
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A.3. Numerical results of refinement algorithms: DKFM and DKFMFAST

Connectivity cost

Results on connectivity cost presented in Chapter 6 are based on tables introduced
in this subsection. Each table shows us effect of DKFMFAST on connectivity cost
of partition produced by min-cut algorithms. These results have been used to
make the figures presenting the relative connectivity cost of each partition. The
following figures corresponds to the complementary results of the one presented in

Chapter 6.
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A.3. Numerical results of refinement algorithms: DKFM and DKFMFAST
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A.3. Numerical results of refinement algorithms: DKFM and DKFMFAST
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A.3. Numerical results of refinement algorithms: DKFM and DKFMFAST
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A.3. Numerical results of refinement algorithms: DKFM and DKFMFAST
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A. Experimental results

Balance cost

In Chapter 6, we presented a comparison on vertex weight balance of partition.
For this purpose, we use the results presented in the following tables. Each table
shows us effect of DKFMFAST on balance cost of partition produced by min-cut
algorithms. The following figures corresponds to the complementary results of the
one presented in Chapter 6.
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A.3. Numerical results of refinement algorithms: DKFM and DKFMFAST
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A. Experimental results
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A.3. Numerical results of refinement algorithms: DKFM and DKFMFAST
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A. Experimental results
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A.3. Numerical results of refinement algorithms: DKFM and DKFMFAST
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A.3. Numerical results of refinement algorithms: DKFM and DKFMFAST
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A.3. Numerical results of refinement algorithms: DKFM and DKFMFAST
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A.3. Numerical results of refinement algorithms: DKFM and DKFMFAST
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A. Experimental results
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A.3. Numerical results of refinement algorithms: DKFM and DKFMFAST
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