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Abstract

This thesis tackles the question of cybersecurity through network intrusion detection for Indus-
trial Control Systems (ICSs). Our interest arises from the increasing number of cybersecurity
incidents targeting ICSs and the need to detect attacks that manipulate the physical process.
Such attacks are called process aware attacks: they are sophisticated cyberattacks aiming at
disrupting the physical process and inducing incorrect behaviors of the system.

In this manuscript, we propose a signi�cant contribution by developing a speci�cation-
based, process aware, Intrusion Detection System (IDS) for ICSs. ICSs are distributed and
hierarchical control systems, built on top of local control loops which are the system's ele-
mentary building blocks.

Our approach aims to link safety speci�cations and security properties. Thus, we use
international and industry standards speci�cations concerning local safety, global safety and
networks of the industrial process, in order to systematically obtain security properties. The
obtained security properties are cybersecurity related requirements. They are translated into
security patterns in order to be runtime monitored by our network IDS. We rely on spec-
i�cation language formalism such as Linear Temporal Logic (LTL), Metric Temporal Logic
(MTL) and Signal Temporal Logic (STL) to express temporal properties and tackle the hybrid
dynamics of ICSs. Our approach relies on a monitoring framework, capturing network tra�c
between the local loops and the distributed control level (i.e. on �eldbuses notably), as well
as between distributed control and supervisory control.

In our work, we also explore a distributed deployment framework for our IDS. This is
motivated by the necessity to deploy multiple IDS instances when more detection capacities
are required, in order to monitor larger industrial systems in spread out environments. Our
distributed framework consists in structurally identical IDS instances deployed across the
system and coordinated in a way that they can monitor system's local and global security
properties.

We implemented and evaluated our IDSs on physical ICS testbeds. We experimentally
show that our IDS detects a large spectrum of attacks. We showed the detection capacities
of our distributed deployment. We show that our approach is scalable since its detection
response time as a function of the number of monitored security patterns, is linear. Finally,
we illustrated our approach's extensibility by deploying it on two distinct ICS testbeds.

Keywords: Network intrusion detection, industrial control system, cybersecurity, anomaly
detection, behavioral detection, runtime veri�cation, distributed detection.
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Résumé

Cette thèse apporte une contribution au domaine de la cybersécurité, en particulier la détec-
tion d'intrusions réseau pour les systèmes de contrôle-commande industriels (ICSs en anglais).
Notre intérêt découle de l'augmentation des incidents de cybersécurité ciblant les ICS et de
la nécessité d'identi�er les attaques qui manipulent les processus physiques de ces systèmes
(process aware en anglais). Ces attaques sont des cyberattaques sophistiquées conçues pour
cibler les processus physiques et provoquer des comportements incorrects du système.

Dans ce manuscrit, nous développons un système de détection d'intrusions (IDS) adapté
aux ICSs. Notre approche est basée sur des spéci�cations et prend en compte la connaissance
des processus physiques des systèmes. Les ICSs sont des systèmes de contrôle distribués
et hiérarchiques construits à partir de boucles de contrôle locales, qui constituent les blocs
élémentaires de ces systèmes.

Notre méthodologie vise à établir un lien entre les spéci�cations de sécurité et les pro-
priétés de sûreté d'un système. Pour cela, nous utilisons des spéci�cations issues de normes
internationales et de standards industriels concernant la sécurité locale et globale, ainsi que
les spéci�cations des protocoles réseau, dans les processus industriels. L'extraction de ces spé-
ci�cations est réalisée de manière systématique et permet l'obtention de propriétés de sûreté
(security properties en anglais). Ces propriétés de sûreté forment des exigences ayant une sig-
ni�cation au niveau du réseau et peuvent être évaluées pendant l'exécution du système. Nous
utilisons des formalismes tels que la logique temporelle linéaire (LTL), la logique temporelle
métrique (MTL) et la logique temporelle pour les signaux (STL) permettant de formaliser des
propriétés temporelles et de prendre en compte les dynamiques hybrides propres aux ICSs.
Notre approche est réalisée à l'aide de captures de tra�c réseau entre les boucles locales et
le niveau de contrôle distribué (sur les bus de terrain notamment), ainsi qu'entre le contrôle
distribué et la supervision.

Dans un second temps, nos travaux explorent une con�guration distribuée pour le dé-
ploiement de notre IDS. Cette architecture est motivée par la nécessité de déployer plusieurs
instances d'IDS lorsque des capacités de détection accrues sont requises, par exemple pour une
détection sur des systèmes industriels de plus grande dimension. Notre approche distribuée
se compose de plusieurs instances de notre IDS, structurellement identiques, déployées dans
l'ensemble du système et coordonnées pour surveiller des propriétés de sûreté locales et glob-
ales du système.

Nous avons mis en ÷uvre et évalué notre approche sur des plateformes expérimentales de
systèmes industriels, démontrant expérimentalement sa capacité à détecter un large spectre
d'attaques. Nous avons présenté les capacités de détection de notre déploiement distribué.
Nous avons montré la scalabilité de notre approche, puisque la relation entre le temps de
détection et le nombre de propriétés de sûreté évaluées est linéaire. En�n, nous avons illustré
son adaptabilité lorsque notre approche est déployée sur di�érents systèmes.

Mots-clés: Détection d'intrusions réseau, système de contrôle-commande industriel, cyber-
sécurité, détection d'anomalies, détection comportementale, véri�cation à l'exécution, détec-
tion distribuée.
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Résumé Général

Le présent manuscrit étant rédigé en anglais, voici un résumé des contenus de chacun des
chapitres, en français.

PARTIE I

Chapitre 1. Systèmes de contrôle-commande industriels (ICS)

Ce premier chapitre introduit la notion de système de contrôle-commande industriel (ICS).
Tout d'abord, une dé�nition et les éléments nécessaires au contexte sont présentés. L'architecture
générale d'un ICS est détaillée et les di�érences entre les technologies opérationnelles (OT) �
constituant principalement les ICSs � et les technologies de l'information (IT) sont discutées.
Nous donnons les motivations qui nous ont poussés à réaliser ces travaux et soulignons la
nécessité de sécuriser les ICSs. Ensuite, quelques exemples d'attaques récentes sont détaillés
avec une mise en évidence des conséquences désastreuses que ces attaques peuvent avoir sur
les processus physiques. En�n, nous discutons des aspects de la sécurité dans les ICSs, en
dé�nissant les concepts et en donnant des mesures de sécurité générales.

Chapitre 2. Etat de l'art

Ce chapitre commence par dé�nir et caractériser le concept de système de détection
d'intrusion (IDS) en mettant l'accent sur les IDSs basés sur les anomalies puisque c'est le
type d'IDS que nous avons développée dans notre approche.

Puisque nos travaux utilisent des principes de la véri�cation à l'exécution des systèmes
(runtime veri�cation ou runtime monitoring en anglais), nous présentons l'état de l'art de ce
domaine pour permettre une meilleure compréhension de nos contributions.

En�n, le thème de la détection d'intrusion distribuée est étudié car il concerne une de nos
contributions.

Tout au long du chapitre, les travaux existants dans la littérature sont présentés et dis-
cutés. Finalement, les lacunes et points encore inexplorés de la littérature sont identi�és. Cela
nous permet de positionner nos travaux et de répondre à ces verrous scienti�ques et techniques.
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PARTIE II

Chapitre 3. Plateformes expérimentales d'ICSs

La recherche en matière de cybersécurité permet d'anticiper les attaques futures. La
validation de nouvelles mesures de sécurité doit être menée sur des plateformes expérimen-
tales réalistes a�n d'obtenir un retour d'information précis et fructueux pour la cyberdéfense.
C'est la raison pour laquelle ce chapitre est dédié aux plateformes expérimentales (testbeds en
anglais) représentant des systèmes de contrôle-commande industriels. Dans ce chapitre, deux
plateformes expérimentales de systèmes industriels sont présentées en détail puisqu'elles sont
utilisées pour l'application et l'évaluation de nos contributions.

Chapitre 4. Approche de détection

Ce chapitre apporte des contributions aux principales faiblesses identi�ées dans la littéra-
ture concernant les systèmes de détection des intrusions pour les ICSs. Il présente notre
approche de détection des intrusions.

Par conséquent, le but de ce chapitre est d'exposer la méthodologie à suivre pour obtenir
une approche de détection d'intrusions comportementale qui : (i) prend en compte la con-
naissance du processus physique et peut s'appliquer au niveau du bus de terrain (tirant ainsi
parti de la surveillance de l'état des actionneurs/capteurs et de certains états/contextes des
composants) ; (ii) présente une construction systématique du modèle de détection, basée sur
les spéci�cations présentes dans les normes internationales et standards industriels (réduisant
ainsi le coût de la construction du modèle de détection) ; (iii) repose sur des formalismes
de logique temporelle qui couvrent la dynamique hybride des ICSs et (iv) présente une large
plage d'observation grâce à un déploiement distribué de détection dans di�érentes boucles
locales du système, couvrant ainsi un plus grand nombre d'attaques.

Ce chapitre présente également le modèle de la menace. Il donne ensuite la vue d'ensemble
de notre approche avant de détailler sa méthodologie de déploiement.

Chapitre 5. Détection sur un système industriel hiérarchique simple

Ce chapitre vise à structurer l'approche sur un système industriel hiérarchique simple.
Le cas d'usage sur lequel nous nous appuyons est un robot cartésien (qui est un système
hiérarchique simple). Il fait partie d'une des plateformes expérimentales décrites dans le
Chapitre 3.

Ainsi, nous détaillons étape par étape la méthodologie pour déployer notre système de
détection. Nous fournissons des exemples concrets pour le déploiement des propriétés de
sécurité du modèle de détection. Par ailleurs, nous donnons des détails sur la mise en ÷uvre
de la véri�cation des propriétés de sécurité pendant l'exécution du système. Ensuite, nous
présentons le déploiement logiciel de notre architecture. En�n, nous évaluons notre approche
et discutons les résultats obtenus.

Chapitre 6. Détection distribuée

Dans le chapitre précédent, nous avons présenté notre IDS réseau pour des systèmes hiérar-
chiques simples. Nous avons évalué notre approche pour une unique instance du système de
détection. Toutefois, si des capacités de détection plus importantes sont nécessaires (pour
un cas d'utilisation plus large par exemple), l'approche peut être distribuée sur plusieurs
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machines a�n d'équilibrer la charge de détection des intrusions. Cependant, cela conduit in-
évitablement à des vues restreintes du système (c'est-à-dire des vues locales). Le dé� consiste
à gérer ces vues locales a�n d'être capable de véri�er des propriétés de sécurité globales du
système ; c'est le sujet du sixième chapitre.

Comme dans le chapitre précédent, des exemples concrets sont fournis pour le déploiement
distribué de notre méthodologie de détection en s'appuyant notamment sur une plateforme
expérimentale de plus grande échelle. Nous décrivons le déploiement logiciel de notre archi-
tecture. En�n, nous évaluons notre approche et discutons les résultats obtenus.

ix



x



Contents

Abstract iii

Contents xi

List of Figures xv

List of Tables xvii

Introduction 1

I BACKGROUND AND STATE OF THE ART 5

1 Introduction to Industrial Control Systems 7

1.1 Industrial Control Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.2 Architecture and Characteristic . . . . . . . . . . . . . . . . . . . . . . 8
1.1.3 IT vs. OT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Attacks on ICSs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.1 De�nitions and Context . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.2 Poisoned Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.3 INDUSTROYER.V2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Security in ICSs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.1 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.2 Risk Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.3 Security Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 State of the Art 23

2.1 State of the Art of Intrusion Detection Systems . . . . . . . . . . . . . . . . . 23
2.1.1 General Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.2 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.3 Taxonomy of Behavior-based IDS for Industrial Systems . . . . . . . . 27
2.1.4 Related Work on ICS Behavior-based IDS . . . . . . . . . . . . . . . . 29
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2 Runtime Veri�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2.1 De�nition and Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2.2 Speci�cation Languages for Runtime Veri�cation . . . . . . . . . . . . 43
2.2.3 Monitoring Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.2.4 Speci�cation Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.3 Distributed Detection Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.3.1 De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

xi



2.3.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.3 Challenges of Distributed Deployments . . . . . . . . . . . . . . . . . . 57
2.3.4 Related Work on Distributed Intrusion Detection . . . . . . . . . . . . 59
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.4 Conclusion and Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

II CONTRIBUTIONS 65

3 Industrial Physical Testbed 67

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2 De�nition and Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3 ICS Physical Testbeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.4 Testbeds used in our Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4.1 G-ICS Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.4.2 Naval Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5 Monitoring Network Tra�c . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 Detection Framework 77

4.1 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 Overview of our Detection Approach . . . . . . . . . . . . . . . . . . . . . . . 80
4.3 Security Properties Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4 Security Patterns Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.5 Runtime Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5.1 Overall Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5.2 Monitor Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Detection for a Simple Hierarchical System 89

5.1 Use case Presentation - Cartesian Robot . . . . . . . . . . . . . . . . . . . . . 89
5.2 Security Patterns Synthesis Process . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3 Runtime Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.1 Data Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3.2 Scope Recognizer and Monitors . . . . . . . . . . . . . . . . . . . . . . 97
5.3.3 Software Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.4.1 Detection Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.4.2 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.4.3 Extensibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6 Distributed Detection 109

6.1 Concept of the Distributed Intrusion Detection Approach . . . . . . . . . . . 110
6.2 Use case Presentation � Manufacturing Plant . . . . . . . . . . . . . . . . . . 112
6.3 Security Patterns Synthesis Process . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3.1 Global Security Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.3.2 IDN for Global Properties . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4 Runtime Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.4.1 Data Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.4.2 Scope Recognizer and Monitors . . . . . . . . . . . . . . . . . . . . . . 116
6.4.3 Software Deployment Engineering . . . . . . . . . . . . . . . . . . . . . 117

6.5 Attack Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

xii



Contents Contents

6.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.6.1 Detection Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.6.2 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.6.3 Extensibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Conclusion and Perspectives 125

Appendixes I
A Programmable Logic Controllers (PLCs) . . . . . . . . . . . . . . . . . . . . . I
B Routing sheets for the manufacturing plant use case . . . . . . . . . . . . . . II

Glossary III

Acronyms V

Bibliography VII

Scienti�c Publications XIX

xiii



Contents Contents

xiv



List of Figures

1 Illustration of Purdue Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Typical architecture of a complex ICS . . . . . . . . . . . . . . . . . . . . . . 10
3 Chronological occurrence of some ICSs attacks since 1988 . . . . . . . . . . . 15
4 MITRE ATT&CK for ICS © 2024 The MITRE Corporation. This work is

reproduced and distributed with the permission of The MITRE Corporation. . 16

5 IDS approaches depending on the aspect of the industrial process they consider 28
6 Overview of the runtime veri�cation process applied to an ICS . . . . . . . . . 44
7 Diagrams of common LTL temporal operators . . . . . . . . . . . . . . . . . . 46
8 Example of LTL, MTL and STL properties . . . . . . . . . . . . . . . . . . . 48
9 Büchi automaton for the formula □(Targetreached → #Motorstopped) . . . . . 51
10 FSM generated by LTL3 Tools for the formula □(Targetreached → #Motorstopped) 52
11 Qualitative temporal patterns introduced by Dwyer . . . . . . . . . . . . . . . 53
12 Quantitative temporal patterns introduced by Konrad . . . . . . . . . . . . . 54
13 Centralized, decentralized and distributed communication networks . . . . . . 55
14 An example of a system's global security property . . . . . . . . . . . . . . . . 59
15 Global positioning of our contributions - Chapters 4 and 5 . . . . . . . . . . . 62
16 Global positioning of our contributions - Chapter 6 . . . . . . . . . . . . . . . 62

17 Overview of the HIL system of G-ICS testbed . . . . . . . . . . . . . . . . . . 71
18 Overview of G-ICS testbed © All rights reserved . . . . . . . . . . . . . . . . 72
19 Overview of the warship − HMIs and Physical view (top) and Industrial control

devices view (bottom) © Naval Group SA in Sicard Franck, Hotellier Estelle,
and Francq Julien. An Industrial Control System Physical Testbed for Naval
Defense Cybersecurity Research. In : IEEE European Symposium on Security
and Privacy Workshops (Euro S & P W). IEEE, 2022. p. 413-422. . . . . . . 73

20 Architecture of the warship . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

21 Threat model's scope of action and detection capabilities of our approach
© 2024 The MITRE Corporation. This work is reproduced and distributed
with the permission of The MITRE Corporation. . . . . . . . . . . . . . . . . 80

22 Continuous and discrete time representations of the same signal . . . . . . . . 81
23 Example of continuous-state and discrete-state behaviors in a physical process 81
24 Overview of our approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
25 Main steps of a detection monitor synthesis . . . . . . . . . . . . . . . . . . . 82
26 Finite-State Machine (FSM) for local controller speci�cations � Servo drive

FSM from IEC 61800 standard . . . . . . . . . . . . . . . . . . . . . . . . . . 84
27 Runtime monitoring with the Scope Recognizer and monitors . . . . . . . . . 86
28 Generic Finite State Machine (FSM) for the Absence Dwyer pattern . . . . . 87
29 FSM generated by LTL3 Tools for the formula □(Targetreached → #Motorstopped) 88
30 Verdict depending on the current state at the end of the trace, for the formula

□(Targetreached → #Motorstop) . . . . . . . . . . . . . . . . . . . . . . . . . . 88

xv



List of Figures List of Figures

31 Two axis positioning system overview© All rights reserved . . . . . . . . . . 90
32 Two axis positioning system: Process view (left) and control system view (right)

© All rights reserved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
33 Use case hierarchical control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
34 Servo drive FSM from IEC 61800 standard . . . . . . . . . . . . . . . . . . . . 92
35 FSM for network protocol speci�cations: CANopen nodes FSM (NMT) from

CiA standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
36 Coherence between inputs and outputs commands of a PLC . . . . . . . . . . 95
37 Tra�c capture points of the use case . . . . . . . . . . . . . . . . . . . . . . . 96
38 FSM of servo drive allowed operating modes . . . . . . . . . . . . . . . . . . . 97
39 Architecture of our Standard Speci�cations-based Intrusion Detection System

(IDS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
40 Worst Case Execution Time (WCET) and Average Execution Time (AvET) of

the detection loop depending on the number of active monitors . . . . . . . . 103
41 Maximal number of local loops . . . . . . . . . . . . . . . . . . . . . . . . . . 104
42 Naval testbed and tra�c capture points . . . . . . . . . . . . . . . . . . . . . 105
43 Set up for �eldbus tra�c capture . . . . . . . . . . . . . . . . . . . . . . . . . 105
44 Execution time of the detection loop depending on the number of active mon-

itors � Evaluation for 3 security patterns . . . . . . . . . . . . . . . . . . . . . 106

45 Structure of the layered IDN . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
46 Identi�cation of the layers in the previously introduced framework (see Chapter 4)111
47 Example of a distributed deployment of several IDNs . . . . . . . . . . . . . . 112
48 Manufacturing plant overview © All rights reserved . . . . . . . . . . . . . . 113
49 Structure of the manufacturing plant, seen from above . . . . . . . . . . . . . 113
50 Manufacturing plant network architecture . . . . . . . . . . . . . . . . . . . . 114
51 Tra�c capture points of the use case for a distributed deployment . . . . . . . 116
52 Managing Zeek over the IDNs using ZeekControl . . . . . . . . . . . . . . . . 117
53 Illustration of the normal scenario (left) and attack scenario (right) . . . . . . 118
54 Workstation synchronisation for the normal scenario (left) and attack scenario

(right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
55 Visual e�ect of an attack disrupting the sequence of workstations' operations

© All rights reserved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
56 Distribution of the response time for the detection of the attacks . . . . . . . 122

xvi



List of Tables

1 IDS verdict depending on prediction and actual activities . . . . . . . . . . . 26
2 IDS approaches presented in this state of the art . . . . . . . . . . . . . . . . 40
3 Global characteristics of our contributions . . . . . . . . . . . . . . . . . . . . 63

4 Comparison of open source Network-based Intrusion Detection Systems (NIDSs) 76

5 Threat Model in correspondence with the MITRE ATT&CK ICS Framework 79
6 Security properties extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7 Security patterns and formalism . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8 Implemented attacks and their e�ect on the system . . . . . . . . . . . . . . . 101
9 Impact of the number of active monitors on the execution time of the detection

loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

10 Implemented attacks and their e�ect on the system . . . . . . . . . . . . . . . 121
11 Transmission time of an event between IDNs . . . . . . . . . . . . . . . . . . . 122
12 Routing Sheet - Metal part . . . . . . . . . . . . . . . . . . . . . . . . . . . . II
13 Routing Sheet - Green part . . . . . . . . . . . . . . . . . . . . . . . . . . . . II
14 Routing Sheet - Blue part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II

xvii



List of Tables List of Tables

xviii



Introduction

This thesis concerns intrusion detection in Industrial Control Systems (ICSs). An ICS con-
sists of combinations of control components (e.g., electrical, mechanical, hydraulic, pneumatic)
acting together to control physical processes in order to achieve an industrial objective. ICSs
form the backbone of critical infrastructures whose role extends across vital sectors including
energy production and distribution, water treatment and supply, transportation, and diverse
manufacturing applications. Sometimes, ICSs are designed as OT (Operational Technology)
� as they control physical system, in contrast with classical IT (Information Technology)
systems.

The evolution of ICSs unfolds against the backdrop of an increasingly integration with
classical IT systems. If ICSs used to historically operate as isolated systems, it is no longer the
case and they are now interconnected with Internet and have adopted standardized protocols,
TCP/IP networking, common operating systems, etc. This convergence between OT and IT
has propelled new services and capabilities in terms of local and global control of physical
processes, but it had also exposed ICSs to unprecedented cybersecurity risks. Therefore,
this interconnection technology introduces its own failure vectors and vulnerabilities. Such
vulnerabilities, if exploited, can result in substantial damage impacting humans, systems and
environment.

A de�ning characteristic setting ICS apart from IT systems lies in the presence of a physical
process. Hence, in an ICS, the manipulated data has a physical meaning. In recent years,
this observation has led to the development of a novel category of attacks which speci�cally
targets the physical process. We refer to them as process aware attacks. They require a deep
knowledge of the physical process and they aim at provoking incorrect behaviors of physical
processes. Among examples of such attacks, it is worth citing the well-known Stuxnet worm
directed against Iranian Natanz Nuclear facility in 2010. This attack was the �rst one with
high media coverage and it emphasized, for the �rst time, the need for cybersecurity within
ICSs. Industroyer attack in 2016 has successfully a�ected the Ukrainian electric power grid for
a few hours, depriving over 230,000 people of electricity. In 2021, Oldsmar water treatment
facility in Florida was victim of a poisoning attempt in the city water supply. A variant
of Industroyer attack, called INDUSTROYER.V2 was launched in 2022, with less success,
probably due to improved Ukrainian cyberdefense practices since 2016.

The rise of process aware attacks on ICSs has underscored the necessity for security con-
trols tailored to the unique characteristics of these systems. Due to very strict constraints
on the response time needed by control functions and scarce computing resources, classical
security controls like anti-viruses or �rewalls are di�cult to deploy on ICSs devices. Also,
ICSs network communications are submitted to bounded transmission delays in order to en-
sure the timely realisation of control functions. In all cases, security controls in ICSs must
not disrupt the normal functioning of the systems by introducing time latencies. In order
to address these challenges and secure ICSs against process aware attacks, we identify in
this manuscript Intrusion Detection Systems (IDSs) as a promising solution in the context
of in-depth cyberdefense strategy. IDSs divide in two major categories: misuse-based and
anomaly-based. The �rst category relies on speci�c recognition of malicious actions, whereas
the second consists in building a reference model of the usual behavior of the system and
detecting deviations from it. To go a step further, we identi�ed in our work behavior-based
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approaches to be very e�ective for intrusion detection in industrial systems and we adopt
a speci�cation-based approach. This consists in using a set of speci�cations and constraints
describing the correct operation of the system being monitored.

Several ICS-speci�c behavior-based IDS approaches are explored within the research com-
munity. However, the state of the art of intrusion detection for ICSs reveals signi�cant gaps.
Approaches that attempt to detect process aware attacks by relying solely on the commu-
nication aspect of ICS networks with no comprehension of the physical process, have few
conclusive detection results. On the contrary, some approaches encompass signi�cant knowl-
edge about the physical process but generally su�er from a manual characterization process
for the creation of the detection model (this is particularly true for speci�cation-based ap-
proaches). Moreover, many approaches rely on a limited model expressiveness and do not
fully comprehend both the operational contexts and dynamics of the underlying industrial
processes. Finally, few research e�ort tackles distributed deployments of the intrusion detec-
tion task, which results in poor scalability to spread out industrial environments. On the
practical aspect, many approaches do not implement data collection at the closest to the
physical process: data collection is often executed on TCP/IP networks that are easier to
instrument than �eldbuses for instance. This results in a lower �delity in the monitored data,
since the latter may have been propagated across di�erent communication medium. This
thesis aims at addressing these gaps.

Contributions.

In this work, we present the following contributions:

� We propose a speci�cation-based intrusion detection approach for hierarchical industrial
control systems with hybrid dynamics. The main paradigm of our approach is to link
safety speci�cations and security properties. Our approach aims at detecting security
properties violations speci�c to OT, which lead to safety speci�cation violations. The
speci�cations are extracted from international and industry standards, in a systematical
manner. Then, they are synthesized as monitors that evaluate execution traces of the
system and raise alerts when a security property is violated.

� We extend the detection capabilities of Ethernet-based IDSs to �eldbus monitoring,
namely Controller Area Network − CAN, and Modbus Remote Terminal Unit − RTU.

� We present a distributed deployment for our intrusion detection approach with the
evaluation of local security properties and global security properties of the system. The
distributed framework is constituted of several instances of our speci�cation-based IDS.

� We conduct experimentation on two ICS testbeds, and provide extensive evaluation of
our detection framework in terms of detection response time and detection capabilities.
We evaluate the scalability of our solution by discussing the number of monitors and
we provide details regarding extensibility.

Manuscript outline

The remainder of this manuscript is organized in two Parts. The �rst Part, divided in two
chapters, sets the background and state of the art. The second Part presents our contributions
in four Chapters.

Chapter 1 de�nes the main concepts, and the background necessary to understand and
position our contributions. The characteristics of ICSs are provided, we give examples of
major security incidents and the concept of securing ICSs is discussed. In Chapter 2, we
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�rst provide a state of the art of intrusion detection systems for ICSs and discuss current
limitations observed in the literature. Secondly, we introduce work on runtime veri�cation
that is a lightweight veri�cation methodology we rely on for our contributions. Finally, we
discuss distributed detection systems for ICSs.

The second Part is dedicated to our contributions. Chapter 3 presents the advantages
of working on a physical testbed when investigating industrial system intrusion detection.
This chapter presents the two testbeds used for the experimental application of our work.
Chapter 4 details our detection framework. We �rst present our threat model, then we give
the motivations for our framework and detail the methodology to deploy our approach. In
Chapter 5, we provide step by step implementation of our IDS approach on a physical ICS
testbed (presented in Chapter 3). This allows to evaluate our methodology, present the results
and discuss them. In Chapter 6, we present the distributed deployment for our intrusion
detection approach, we evaluate it on a physical ICS testbed and discuss the results.
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Introduction

This �rst Chapter introduces the important notion of Industrial Control System (ICS)
which is the subject of this work. First, a de�nition and necessary elements of context are
provided. The general architecture of ICSs is detailed and the di�erences between Opera-
tional Technology (OT) � mostly constituting ICSs � and Information Technology (IT) is
discussed. Next, we provide the motivation of our work and we highlight the need for cyber-
security in ICS. Important de�nitions are given and examples of famous recent attacks are
provided. Finally, we discuss security aspects in ICSs, de�ning concepts, and giving general
security measures.

1.1 Industrial Control Systems

1.1.1 Terminology

An ICS consists of combinations of control components (e.g., electrical, mechanical, hy-
draulic, pneumatic) acting together to achieve an industrial objective [147] (e.g., manufac-
turing, transportation of matter, energy). This de�nition given by the National Institute of
Standards and Technology (NIST) highlights the importance of the physical aspect of such
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systems. The aim of an ICS is to produce an output, generally referred to as the process (or
physical process). The French Network and Security Agency, Agence Nationale de la sécurité
des systèmes d'information (ANSSI), gives a similar de�nition and adds the notion of human
interaction with such systems. The ANSSI state that an ICS is the set of human and material
resources designed to control or operate a group of sensors and actuators [38]. ICSs cover a
wide range of activity sectors such as electrical, water and wastewater, oil and natural gas,
chemical, transportation, pharmaceutical, pulp and paper, food and beverage, and discrete
manufacturing (e.g., automotive, aerospace, durable goods) industries [147].

Moreover, ICSs are sometimes designed as OT in contrast with classical IT systems. As
a matter of fact, NIST even revised the title of its reference technical report from Guide to
Industrial Control Systems (ICS) Security [146] in 2015 to Guide to Operational Technology
(OT) Security [147] in 2022. The authors de�ne OT as a broad range of programmable systems
and devices that interact with the physical environment (or manage devices that interact with
the physical environment). These systems and devices detect or cause a direct change through
monitoring and/or control of devices, processes, and events. Examples include industrial
control systems, building automation systems, transportation systems, physical access control
systems, physical environment monitoring systems, and physical environment measurement
systems.

There is a common ground in these de�nitions, however the notion of ICS remains a broad
concept and several variants exist such as Cyber Physical Systems (CPSs). A CPS [46, 105,
101] consists of a physical system and a cyber system. It results from an integration of physical
processing, sensing, computation, communication and control. According to NIST de�nition,
a CPS regroups interacting digital, analog, physical, and human components engineered for
function through integrated physics and logic. According to this de�nition, an ICS is nothing
less than a CPS applied to the industrial world.

Finally, alternative denominations for ICS can be observed in the literature such as Su-
pervisory Control And Data Acquisition (SCADA) or Distributed Control System (DCS).
According to the NIST [147], SCADA and DCS are di�erent types of control systems. A DCS
refers to control achieved by intelligence that is distributed around the process to be controlled,
rather than by a centrally located single unit. A SCADA designates a computerized system
that is capable of gathering and processing data and applying operational controls over long
distances. Although quite close in their de�nitions, the di�erence between these two notions
lies in their geographical distribution. A DCS is used to control production systems within the
same geographic location for industries, whereas a SCADA system supports multiple remote
stations and control centers based in several geographic locations [147]. Furthermore, it is
worth mentioning the fact that SCADA is an ambiguous notion since it can either designate
a control center, the software used for the supervisory control or the overall industrial con-
trol/command system. The various uses depends on the culture and the context on which
they are employed.

However, the limits between aforementioned denominations are not always straightfor-
ward, especially as the technologies deployed in all these systems are increasingly converging.
In this manuscript, we will only use the term ICS and introduce general characteristics com-
mon to every variant.

1.1.2 Architecture and Characteristic

The typical architecture of an industrial information system was synthesized for the
�rst time around the 80s with a Reference Model for Computer Integrated Manufacturing
(CIM) [155]. This major standardization e�ort was created during the International Purdue
Workshop on Industrial Computer Systems, organized by The Purdue Laboratory for Applied
Industrial Control of Purdue University, West Lafayette, Indiana. Its full name, according
to its authors is The Purdue Reference Model for CIM but it is commonly known as Purdue
Model. This model is used in ISA95 and ISA99 series of standards, and then recalled in
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IEC 62264 [88]. Purdue Model is hierarchical and shows distributed control functions. It is
structured in 6 levels: (i) Level 5: Corporate Strategy (strategy, direction), (ii) Level 4: Op-
erational Management (planning), (iii) Level 3: Process Management (scheduling, inter-unit
management), (iv) Level 2: Supervisory Control (unit management), (v) Level 1: Basic Con-
trol and (vi) Level 0: Operative Part. The reference architecture for enterprise is illustrated
in Figure 1.

Figure 1: Illustration of Purdue Model

Each level exchanges information with its upper and lower levels. The higher the level,
the greater the volume of data to be processed. As a consequence, the reaction time increases
along with the understanding of the context. Each level is composed of characteristic elements
that are indicated on the right side of Figure 1. On the higher levels (Levels 3 to 5), the Cor-
porate Strategy relies on a Corporate Network, the Operational Management uses Enterprise
Resource Planning (ERP) tools and the Process Management can be implemented with Man-
ufacturing Execution System (MES) or other process scheduling tools. These three levels
constitute the Management Information System (MIS) of the organization. Concurrently, the
lower levels of the architecture form the ICS. The Supervisory Control (Level 2) uses SCADA
equipment. The Basic Control (Level 1) is made through Programmable Logic Controllers
(PLCs). And the Process and Operative Part (Level 0) is composed of �eld devices such as
sensors and actuators.

ICS architecture
While Purdue Model describes the full enterprise architecture, we mainly focus on the ICS

in the present work which represents Levels 0 to 2 of Purdue Model. Following the whole
model, an ICS shows a hierarchical and distributed control strategy. Indeed, control and
monitoring parts are distributed both vertically and horizontally across the system. Such
a complex process is composed of elementary sub-processes which can be locally controlled.
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Figure 2 details the typical architecture of an ICS.

Figure 2: Typical architecture of a complex ICS

Level 0. The elementary building block of the ICS is the local loop, which is an au-
tonomous sub-process together with its local controller. This local controller is directly inter-
acting with the physical process via sensors and actuators. Typically, sensors and actuators
are directly wired to the controller although some networked solutions may exist. The con-
troller periodically acquires data from sensors and applies computed controls on actuators.

Level 1. Higher level controllers compute setpoints for the local controllers in order to
achieve more global control objectives like synchronization of local loops. These higher level
controllers are usually PLCs (Programmable Logic Controllers). More details on the func-
tioning of PLCs are provided in Appendix A.

Level 2. At the highest level, the SCADA system is providing a global view of the sys-
tem's state and activities. It is responsible of the monitoring and coordination between PLCs.
The information from lower levels is presented to human operators in a visual way through
Human Machine Interfaces (HMIs). An HMI displays graphical indicators or alarm noti�ca-
tions; it also allows the human operator to act on the physical process. Note that HMIs are
used to provide a global view of the system at Level 2 but it can also give a local view of the
local loop at Level 1.

To give an example of such a complex ICS, consider a two axis positioning system. Two
local loops are in charge of controlling speed and position for the two motion axis, while a
PLC is in charge of the trajectory control. An HMI allows the operator to change the target
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position or trajectory.

Industrial communication protocols

At the di�erent layers, the communication between devices requires di�erent real-time
performance levels. Actuators and sensors (Level 0) exchange data with their local controller,
either through direct connections (using point to point or star topologies for example), or
through broadcasting (using a bus topology for example). Examples of �eld-level communi-
cation protocols include AS-i bus1, or Pro�bus DP2. At this level, the volume of exchanged
data is low, and exchanges are mostly cyclic. The communication meets hard real-time per-
formances and transfer time is usually of the order of milliseconds (ms). The communication
between local loops (Level 0) and PLCs (Level 1) also meets hard real-time performance and
uses specialized network solutions such as �eldbuses. Examples of �eldbuses are Modbus
Remote Terminal Unit (RTU)3 or Controller Area Network (CAN)4. At Level 1, the commu-
nication between PLCs for distributed control applications meets soft real-time requirements.
Tra�c is characterized, albeit in a lesser extent compared to Level 0, by its periodicity and low
data volume. The transfer time is usually of the order of 100 ms. The communication between
PLCs (Level 1) and supervisory control (Level 2) generally meets soft real-time performance
as well, TCP/IP-based solutions can be used. At the higher level, SCADA communications
(Level 2) begin to resemble classical IT systems communication. The volume of data ex-
changes is signi�cant and time requirements are low. Consequently, no real-time is required
and the transfer time is usually of the order of the second.

Hybrid dynamic of ICSs

A real-life industrial control system exposes �mixed� (also called hybrid) dynamics. Indeed,
any system evolves through time. This evolution can be event-driven (by the occurrence
of discrete instantaneous actions) or time-driven (by time elapsing) [28]. In the case of
event-driven dynamics, it is only the occurrence of asynchronously generated discrete events
that forces an instantaneous change of the system state (e.g., starting a motor or reaching
a target position). For time-driven dynamics, the system's state continuously changes as
time changes (e.g., a position and velocity values changing during a movement). In real-
life ICSs, both event-driven and time-driven components are interacting for the operation of
such systems. Taking the example of a positioning system, the position and velocity values
follow time-driven dynamics, while changes in operating modes like �start� and �stop� of the
movement are event-driven. In order to control industrial systems with hybrid dynamics,
continuous and sequential process control are to be distinguished. Continuous control aims at
maintaining a physical value at a desired setpoint typically through a Proportional Integral
Derivative (PID) (Proportional�Integral�Derivative) controller. This is the well-known closed-
loop control mechanism. Whereas in sequential control, sequences of commands are sent to
switch the physical process from a state to another, therefore changing the context.

1.1.3 IT vs. OT

ICSs historically operated as isolated systems, with proprietary communication proto-
cols. Therefore, they were considered protected from cyberthreats (the �security by isolation
and obscurity� myth). This paradigm is far from reality and no longer supported. Due to
the lack of security-by-design of legacy communication protocols, security concerns for ICSs
have risen with the pervasive deployment of IT into the OT world, especially Internet-related
technologies. Despite this increasing interconnection between IT and OT, ICSs have spe-
ci�c characteristics dependent on the context within which they are used. Such remaining

1https://www.as-interface.net/
2https://www.profibus.com/
3https://modbus.org/
4https://www.can-cia.org/
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di�erences have to be taken into consideration when thinking about security. Consequently,
traditional MISs and ICSs di�er in the following ways:

Purpose of systems

ICSs stand out by the fact that they run physical processes (production units and chains,
water and energy distribution networks, road and rail infrastructures, etc.); some of these
also carry out protective functions for assets and individuals or for the environment [37]. As
a consequence, in an ICS, the manipulated data has a physical meaning whereas it is not the
case in a traditional MIS.

Performance requirements

The performance requirements in ICSs meet real-time constraints. This means that de-
lays have to be controlled; high response times of signals and jitter are not acceptable. Such
performance requirements can be explained by the fact that delays in data processing or
transmission can deteriorate the performance and integrity of the physical process. On the
contrary, MISs response times and delays are not time critical.

Lifespan

Whereas in the IT domain, the lifespan is of the order of 3 to 5 years, the OT world has an
extremely long lifespan of more than 10 years (sometimes 30 or 40 years). The very fast lifecy-
cle of IT components is due to rapid technological advances and the fact that compatibility is
a technical requirement leading to homogeneity and interoperability. Furthermore, upgrades
are straightforward with the availability of automated deployment tools. In contrast, it is
more di�cult to test the compatibility of components in ICSs mostly because of proprietary
Operating Systems (OSs) (no homogeneity between components) and also due to the di�culty
to interrupt an industrial system under operation. Hardware and software changes must be
carefully made and even avoided when possible. Moreover, within industries, investments for
OT are generally scarce with big �nancial expenses. This long lifespan results in an overlay
of successive waves of technologies resulting in the phenomenon of equipment and software
obsolescence.

Components

Most ICS components have limited computing capabilities, with tailored memory. Com-
ponents follow very strict constraints on the response time needed by control functions; also,
ICSs network communications are submitted to bounded transmission delays in order to en-
sure the timely realisation of control functions. Such time critically does not apply in the
IT domain as delays are generally accepted especially with communication protocols for mul-
timedia services. For example, requirements for transmission delay in Voice Over Internet
Protocol is to be inferior to 400 ms (human hearing has a tolerance for speech delays of
up to 250 ms) [69]. On the security aspect, ICSs' components are designed to support the
physical process only and may not have enough memory and computing resources to sup-
port the addition of security capabilities. In opposition, IT-based systems are speci�ed with
enough resources to support the addition of third-party applications such as security solutions.

Post mortem incident analysis

Following this idea, due to a unique and uncommon architecture, the reproducibility of
an incident in ICSs is hard if not impossible. The number of parameters to compute is very
large and the environment very complex. Additionally, depending on the application domain,
some systems have to be able to maintain their activities (thanks to redundancies) or operate
in degraded mode.

Physical environment
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MISs show a climate-controlled environment such as a home or an o�ce, whereas ICSs are
deployed in a harsh environment with possible dust, high amplitudes of temperature, vibra-
tion, humidity, electromagnetism and/or proximity of dangerous materials. Generally, they
are also distributed over geographical space on the scale of several kilometers. As an example,
the Large Hadron Collider5 which is a particle collider located beneath the France�Switzerland
border is a 27 kilometers circumference industrial system. It has more than 1500 actuators
and tens of thousands of sensors distributed along the structure.

From the above discussion, one can see that IT and OT present intrinsically di�erent
characteristics. A transposition of security measures of IT systems to OT systems would not
be adequate. However, ICSs are the witness of a convergence between OT and IT in their
composition. This is a rising concern, as ICSs were historically designed to operate in an
isolated manner. At that time, a cybersecurity incident was not a risk worth considering.
This has repercussions on current systems, mostly due to the very long lifespan of ICSs.
Therefore, security concerns are more topical than ever.

1.2 Attacks on ICSs

From their typical architecture and the speci�c characteristics they meet as previously
discussed, ICSs present a large attack surface. As a matter of fact, they are victims of a rising
number of cyberattacks. The following Section gives the context of attacks targeting ICSs.

1.2.1 De�nitions and Context

IEC 62443 standard gives the following de�nition for an attack: it is an �assault on a sys-
tem that derives from an intelligent threat � i.e., an intelligent act that is a deliberate attempt
(especially in the sense of a method or technique) to evade security services and violate the
security policy of a system.� [89]. To go a step further, an intrusion is the success of the attack
into a system. Both attacks and intrusions stem from threats and vulnerabilities. If threats
are external to the system, vulnerabilities are internal and can be studied and signi�cantly
reduced. A vulnerability is a security exposure that results from a weakness of the system
that could allow an attacker to compromise its integrity, availability, or con�dentiality [10].
The triad integrity � availability � con�dentiality is the guiding principle of security within an
information system, and is detailed in Section 1.3. To the question �Why are intrusions pos-
sible?", one could answer that any system has security breaches: vulnerabilities. Even if they
can be reduced to a minimum, vulnerabilities are di�cult to totally eradicate. Vulnerabilities
have various origins, here are some common examples:

� Related to the components: software, hardware.

� Related to the overall system: speci�cation, architecture, codes, etc.

� Related to the usage: con�guration, administration, deployment, etc.

� Related to the user: password, best cybersecurity practices, etc.

From these de�nitions, the context in which ICSs operates can be set. Another piece
of context concerns the measures taken against vulnerabilities. While in the IT domain,
vulnerabilities are corrected through software patches and �xes are published regularly and
easily deployed, industrial systems cannot employ the same protective measures. This can be
explained �rstly by limited memory and computing resources that cannot execute other tasks
than process control relative ones, secondly by the great heterogeneity in the components and
technologies composing an ICS which makes automatic deployments di�cult and thirdly the

5https://home.cern/science/accelerators/large-hadron-collider
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fear to disturb the normal functioning of the system. For instance, in a manufacturing system,
it is generally highly undesirable and costly to interrupt production. Furthermore, in ICSs,
cybersecurity concerns are quite recent (less than 15 years) compared to the IT world where
awareness of cybersecurity risk is high. Even though, generic passwords (the well-known
�admin admin�) in industrial devices or unused ports kept open by default are becoming less
common, vigilance is the watchword since the lack of awareness about ICS cybersecurity risks
remains.

Consequently, it is not surprising to observe a rising number of attacks targeting industrial
systems [91]. Of course, it is worth citing the well-known Stuxnet attack directed against Ira-
nian Natanz Nuclear facility in 2010 [53]. This attack emphasized, for the �rst time, the need
for ICS security. Stuxnet was the �rst attack with high media coverage. However, Stuxnet
was not the �rst ICS attack, and security incidents were already reported years before. The
�rst ones were identi�ed around the years 1980 and 2000. At this time, attacks were sporadic
and not sophisticated such as password change on a PLC6, operation workstation sabotage
by introducing a virus to sabotage a nuclear plant7, wrong code downloaded on a PLC8, etc.
Although very impacting on the physical processes, reported cyberattacks at their beginnings
remain simple. These attacks are generally initiated by insiders acting with malicious intent.
They are carried out by opportunity and do not require sophisticated techniques. In 2000,
the �rst sophisticated and remote attack occurred as an attacker successfully broke into a
control system. It is known as the Maroochy Shire attack [1]. The attacker was able to use
radio equipment to issue commands that lead to the spillage of 800,000 liters of raw sewage
into local parks and rivers. In this cyber incident, the insider had a great level of familiarity
and knowledge of the industrial system (since it was his previous job) which permitted to
create the �rst sophisticated attack that ever occurred against ICSs. Then, in the next years,
many di�erent kinds of attacks emerged. Some attacks aim at propagating extensively and
massively. These viruses or worms can end up disrupting an ICS even if they generally have
not been designed to target a speci�c organization. For instance in 2005, the Zotob9 worm
used vulnerabilities on Windows 2000 version. The exploit massively scanned for vulnerable
systems and impacted more than 700 companies. From 2010 (inherited from Stuxnet), indus-
trial systems are speci�cally targeted by Advanced Persistent Threats (APTs) with a special
attention given to PLCs. Emerging risks are posed by APTs since they are specialized types
of attacks designed to exploit a speci�c organization. This highlights the rising complexity
and sophistication of attacks in recent years. Supply chain attacks also have to be mentioned
since they are also recently multiplying. These attacks consist in gaining access to the control
system environment by means of infected products (hardware, �rmware or software). Two
cases can occur: (i) the manipulation of products is done before their delivering to the end
consumer (namely the targeted organization) or (ii) the manipulation operates during the
products' update process, via a corrupted update software for instance. Recently, the X_-
Trader software supply chain attack a�ected two critical infrastructures in the energy sector,
one in the U.S. and the other in Europe. The infected software was a voice and video calling
software used by the two organizations10. Aforementioned attacks are shown in the timeline
Figure 3. Two recent attacks, Poisoned Water and INDUSTROYER.V2 are further detailed
in next Sections.

The techniques employed in cyberattacks have diversi�ed (with technical advances) and
become more complex. As a response to this phenomenon, a heavy classi�cation work has

6PLC Password Change, Canada, 1988 https://www.risidata.com/Database/Detail/plc-password-

change
7Computer Sabotage at Ignalina Nuclear Power Plant, Lithuania, 1992 https://www.risidata.com/

Database/Detail/computer_sabotage_at_nuclear_power_plant
8Wrong Code Downloaded to PLC Causes Plant to Shutdown, United Kingdom, 1997 https://www.

risidata.com/Database/Detail/Wrong_Code_Downloaded_to_PLC_Causes_Plant_to_Shutdown
9Zotob worm, Worldwide, 2005 https://www.f-secure.com/v-descs/zotob-a.shtml
10Supply chain attack a�ecting Critical Infrastructure, U.S. and Europe, 2023, https://symantec-

enterprise-blogs.security.com/blogs/threat-intelligence/xtrader-3cx-supply-chain
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Figure 3: Chronological occurrence of some ICSs attacks since 1988

been done by the MITRE Corporation. MITRE, among other tools, created a Matrix for ICSs
attacks. The MITRE ATT&CK (Adversarial Tactics, Techniques and Common Knowledge)
Matrix [116] for ICSs is a framework for understanding and categorizing the various Tactics,
Techniques and Procedures (TTPs) used by attackers during an ICS cyberattack. This Matrix
is showed in Figure 4 and presents 12 tactics (columns) each of which encompasses several
techniques. This MITRE framework helps to re�ect the various phases of an attack from the
initial access to the impact of the attack (each tactics from left to right in the matrix). This
framework also provides mitigations and countermeasures. However, it is important to note
that relying on the MITRE framework can present some limitations. A technique coverage is
rarely complete as a technique can be broken down into several expressions. In other words,
saying that a solution/product covers a technique does not mean that this solution/product
detects all the operating modes associated with that technique. Furthermore, the MITRE
framework would require frequent updates to tackle recent attacks. And this framework is
by no means a security certi�cation tool. All in all, this framework is a de facto reference for
attack classi�cation but has to be used wisely.

In the following, we are going to discuss recent attacks whose analysis is relevant for our
work. We focus on attacks speci�cally tailored for ICSs and aiming to disrupt the physical
process. Therefore, we will not detail any attacks that disrupt industrial systems by ricochet
(e.g. ransomwares), as such attacks are not speci�cally dedicated to industrial systems. We
are going to brie�y detail an attack that was an attempt of poisoning a water treatment
facility in Florida and an attack that resulted in a power outage in Ukraine. These examples
will help to set the context and the deployment of an industrial attack targeting the physical
process of an organization.

1.2.2 Poisoned Water

In 2021, Oldsmar water treatment facility in Florida was victim of a poisoning attempt in
the city water supply [138]. This attack consisted in accessing remotely an operator computer
of the water treatment facility. The cyberattack was instigated by the attacker using stolen
credentials in order to access a machine running a remote access software package installed on
it (called TeamViewer). The vulnerability partly originated from the fact that the operator
machine had an outdated operation system no longer supported, and the fact that TeamViewer
is accessible from the Internet since it is a remote control software used for maintenance
purposes. Then, the attacker was able to manipulate the control setpoint for the dosing rate
of sodium hydroxide into the water. This is a chemical often used in drinking water treatment
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Figure 4: MITRE ATT&CK for ICS © 2024 The MITRE Corporation. This work is reproduced and
distributed with the permission of The MITRE Corporation.

used to adjust pH and alkalinity. Although important as a treatment for drinkable water, this
chemical can be dangerous for human beings if its concentration exists in excess into the water
they drink. Here, the cyberattacker was able to increase the amount of sodium hydroxide into
the water from 100 parts per million to 11,100 to poison the water supply. It was reported that
the human operator observed on his screen the mouse moving, making changes, and exiting
the system. The human operator immediately restored the normal operating parameters and
the incident was closed.

This cyber incident shows that unsecured remote access can have serious consequences
for the population. Remote access should be managed and architected safely; for example,
best practices would determine which IP addresses are allowed in the network tra�c, which
communication types are allowed, and what processes can be monitored. Also, best practices
should impose a limit on the setpoint value into a �safe� range of values. Organizations should
also consider utilizing distinct networks, in order to isolate the control network to prevent
such incidents. On the monitoring side, nothing can tell if an adequate system monitoring
was deployed in this facility and could have detected the intrusion. Monitoring systems indeed
helps to monitor key events within the control system including changes in setpoints of critical
process parameters, changes in the control logic, etc. Luckily, the operator stopped the attack
immediately. However, this incident emphasizes the importance of security measures, and an
intrusion detection system approach focused on process data would have detected the
intrusion with a very high probability.

1.2.3 INDUSTROYER.V2

The ongoing Russia-Ukraine con�ict had resulted in an increase of cyberattacks in Ukraine,
as well as in Russia. On April 2022, a cyberattack was reported against the Ukrainian power
grid11. The attack leveraged di�erent pieces of malware including a variant of Industroyer [144]
(also referred to as CRASHOVERRIDE), a well-known malware that stroke Ukraine back in
2016, creating a blackout in the country for 6 hours. INDUSTROYER.V2, as its predecessor,
is speci�cally targeting electric grids. This variant implements only the IEC 60870-5-104 (IEC-
104) communications protocol which is used for power system monitoring and control over

11https://www.mandiant.com/resources/blog/industroyer-v2-old-malware-new-tricks
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TCP/IP in Europe mainly (whereas its predecessor supported additional protocol modules
to extend its reach to other geographical regions). However, the new version enables the
embedding of customized con�gurations to adapt to speci�c Intelligent Electronic Devices
(IEDs) making this attack extremely extensible and sophisticated.

The attack consists in: (i) an initial backdoor, (ii) the payload module, and (iii) a wiper
to hide the attacker's activities. The initial backdoor is the entry point for the malware into
the targeted system. It allows the attackers to gain access to the ICS network and enables
sending and receiving commands from it. The payload implements the IEC-104 protocol
in order to manipulate the ICS. It has the ability to: enumerate and create new processes,
initiate communications and collect information, execute commands, manipulate �les and
services. Therefore, remote stations were targeted and actions involving opening and closing
circuit breakers were performed. Then, a data wiper clears registry keys, erases �les and kills
processes to hide any suspicious activities. The data wiper also overwrites some �les in order
to make the system unbootable and harder to recover from the attack. Finally, the attack was
successfully detected in progress and stopped before any actual blackout could be initiated.

Beyond implementing protective control measures such as network segmentation of the
various sub-systems comprising the ICS, detecting such tailored attacks would require an in-
trusion detection approach able to monitor the state of sensors and actuators, and detect any
deviation from normal behavior. Indeed, the data collected for detection means should be as
close as possible to the physical process since the targeted equipment are IEDs. Additionally,
the multiplicity of targeted equipment in a geographically spread out environment
calls for a distributed intrusion detection approach that could handle local detection
at certain critical local loops alongside a more global detection.

Through these few examples of recent ICS tailored attacks, one can witness the disastrous
consequences of ICS attacks. They can be dramatic and far-reaching, including having an
impact on the physical process, the �nancial aspect, the environment, interrupting essential
services of a country (water, electricity, etc.) or even originating human costs. This highlights
the clear need for cybersecurity solutions that considers the physical process of ICSs. Next
Section sets the scene for ICS cybersecurity.

1.3 Security in ICSs

As previously discussed, the modern ICS is a wide range of OT and IT components.
Despite this growing interconnection, the speci�c features of ICSs make the deployment of
classical security controls (like anti-viruses or �rewalls) not su�cient or even impossible (an-
tivirus on a PLC would abolish real time, for instance). Security measures have to be adapted
to the system they intend to protect and additional security controls have to be implemented.
In order to deploy relevant security measures, it is important to understand the fundamental
security properties of the system to be protected and the risk it encounters.

1.3.1 Concepts

Cybersecurity aims at analysing system vulnerabilities in order to deploy protective mea-
sures to limit them and be in a position to safeguard the continuity of core business functions
to an acceptable extent [37]. In order to ensure good functioning, an industrial system respects
some fundamental security properties12 (in priority order):

Availability. It must always be possible for an authorized entity, user or process to
access the system services. Operations intended to illegally take up processing time must be
detected.

12Usually the triad Availability � Integrity � Con�dentially is presented. However, sometimes other security
objectives are added such as Authenticity or Traceability.
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Integrity. The information must not be altered or destroyed, in an unauthorized manner.
This refers to the protection of data sent by sensors as well as any commands issued into the
system. The objective is to ensure that the data is preserved.

Con�dentiality. The information has to be inaccessible to any unauthorized user, entity
or process. In ICSs, the information concerns any sensitive parameters and data such as man-
ufacturing formulae, quantities of substances used, data relative to performance or planning,
PLCs or other equipment programs, devices con�gurations, passwords, and so on. These can
be exploited by malicious actors in order to create a targeted attack.

Note that in the IT domain, there is a reversion in the priority order of these security at-
tributes: Con�dentiality is the highest priority and Availability is usually the lowest priority.

Other concepts are crucial to our work and need to be de�ned: the notions of safety and
security. IEC 62443 standard de�nes the safety of a system as the property to be �free of
unacceptable risk� [89]. Security, on the other hand, relates to risks from malevolent actions
(e.g., cyberattacks) that can impact the system itself in addition to its environment [100].
Therefore, security considers potential threats due to attacks while safety considers hazards
and faults.

Security and safety share common characteristics: even if the nature of the risk is di�erent,
the observed consequences may be the same especially on the physical process. Therefore,
there is a strong interdependence of the e�ects of safety and security. To cite an example,
in [77], the authors investigate how six di�erent stakeholders in industrial automation address
safety and security risks. In this case study, one third of the stakeholders were victim of a
cybersecurity incident that led to a safety-related incident.

Every organization deals with risks every day. It is therefore necessary to work on risk
management and assessment in order to provide su�cient knowledge and awareness as well
as relevant control mechanisms with the general objective of minimizing the risks.

1.3.2 Risk Management

Risk management and assessment are processes de�ned in the ISO/IEC 27005 stan-
dard [83]. They are also described and developed in many national security organizations
such as the NIST or ANSSI as guidelines for industries. The risk management process con-
sists in addressing and attempting to anticipate and manage the e�ect of unfortunate events.
Risk management process requires continuous e�orts throughout system's lifetime. Risk as-
sessment process is a subset of risk management. It focuses on detecting hazards and analysing
all potential risks in a workplace.

Risk management can be decomposed into four steps: framing, assessing, responding and
monitoring. These components apply to risk management for any risk related to information
security, physical security, safety or �nance [58].

Phase 1 � Framing. This phase consists in developing a framework for the risk man-
agement decisions to be made. These steps de�ne how to conduct risk management activities
and state the assumptions that has to be taken into account (including legal or �nancial
constraints or expectations for example). In the case of ICSs, major considerations concern
availability of services provided by the ICS, safety and security.

Phase 2 � Assessing. This phase consists in identifying critical resources to protect and
identifying threats and vulnerabilities to these resources, with the underlying hypothesis from
the framing phase. The analysis of the potential impact from an incident must incorporate
the e�ect on the physical process, impact on dependent processes, and impact on the physical
environment among other possibilities. For instance, an incident that would a�ect the ability
to control or monitor operations could have a deep impact on the physical process by failing
to provide commands when needed, sending incorrect commands, sending commands with
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undesirable delays, etc. If this occurs, necessary response/control actions may not occur to
prevent undesirable physical events from occurring. The �nal part of assessing risk is deter-
mining the likelihood that a particular incident will actually occur.

Phase 3 � Responding. This phase concerns de�ning a security policy. The security
policy explicitly speci�es rules that distinguish authorized from unauthorized behavior. This
step de�nes who is authorized to use a resource and how, who is authorized to grant rights
on the resource and who has administrator privileges.

Phase 4 � Monitoring. This phase is about maintaining an ongoing situational aware-
ness about the security and privacy posture of the considered system and the organization
in support of risk management decisions. This monitoring step measures the e�ectiveness of
controls and environment changes that impact the security and privacy posture of the system.

Note that, in line with the principle of risk management, threat modeling can be carried
out by organizations. A threat model de�nes which parts of the system are targeted, what
is the goal of the attacker and which class of attacks are to be considered in order to deploy
relevant controls.

1.3.3 Security Controls

The implementation of the security policy in a system, consists in selecting the set of
security controls (or countermeasures) able to enforce the security policy. Three types of
security controls have to be distinguished:

� Preventive security controls which try to prevent the occurrence of a security incident.

� Detective security controls which act when a security incident occurs.

� Corrective security controls which act after a security incident occurs.

IEC 27001 standard [81] sets a framework for an organization to establish, implement,
maintain, and continually improve information security. The Appendix A of IEC 27001 stan-
dard lists security controls and IEC 27002 [82] standard provides a set of guidelines and best
practices for implementing these security controls. This set of security controls can be used as
a reference. Therefore, an organization should select and implement security controls based
on their own risk assessments and needs. An organization might not need to implement every
single security control but rather choose the ones most relevant to their situation.

The security controls provided in the standards, are categorized into the following themes:
(i) Organizational controls, (ii) People controls, (iii) Physical controls and (iv) Technological
controls. Each theme, encompass many controls. We are going to provide some examples for
each theme.

Organizational controls (i) are related to establishing clear rules and guidelines for
security, de�ning roles, responsibilities and accountabilities. It also concerns the classi�ca-
tion and labelling of information, access control, but also compliance with policies, rules and
standards. This theme also deals with information security in supplier relationships and in-
formation security incident management. Threat Intelligence is also concerned by this theme.
This theme needs to be supported by appropriate technological controls such as logging, re-
strictions to privileged access, secure authentication, etc.

People controls (ii) are related to terms and conditions of employment, awareness, ed-
ucation and training. All in all, this theme addresses security concerns in employees lifecycle
processes.
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Physical controls (iii) deals with preventing any unauthorized physical access to sen-
sitive locations. It also applies to the intentional introduction of new devices designed for
malicious activities, or to unauthorized observations (visual observations, note taking, pho-
tographs, etc.). Note that physical access is often reported to be the initial access to a system
in many cyber incidents. Physical security controls can be obtained by physical protection
(cameras, sensors and access limiting systems) or by personnel security.

Technological controls (iv) concerns, among others: privileged access rights, secure
authentication, protection against malware, logging, monitoring activities, network security,
segregation of networks, use of cryptography, secure coding. Among all these security con-
trols, the majority are preventive. For example, it is the case for segregation of networks.
The perimeter of each domain should be well-de�ned. If access between network domains
is allowed, it should be controlled at the perimeter using a gateway (e.g. �rewall, �ltering
router). While it is important to separate the organization's network from the Internet, it
is even more important to have �rewalls between the ICS network and the rest of the orga-
nization's network. A good practice is to implement a Demilitarized Zone (DMZ) which is
an arrangement of �rewalls used to isolate a subnetwork from other networks. It works as a
bu�er zone.

Remaining security controls are detective and/or corrective. For instance, it is the case for
monitoring activities. The purpose of this security control is to detect anomalous behaviour
and potential security incidents. Monitoring activities are often conducted using specialized
software, such as Intrusion Detection Systems. An IDS is a Security service that monitors and
analyzes system events for the purpose of �nding, and providing real-time warning of attempts
to access system resources in an unauthorized manner [89]. This type of control is partic-
ularly interesting as it can operate in a completely passive manner to avoid disturbing the
functioning of the ICS (note that active approaches exist as well). It seems to be a promising
security measure, adapted to ICSs with possible detection at lower architecture levels without
impacting the system.

From the aforementioned discussions, IT security policies may require changes to suit the
needs of control systems. As stated previously, in contrast to IT, in industrial systems it is
generally critical to provide immediate access to systems and applications. As an example,
security policies that lockout user accounts after a certain number of failed passwords is com-
pletely unsuitable to ICSs. Security controls must not introduce time latency which might
disturb the control loops. Many countermeasures are not compatible with this constraint,
nor to the limited computing and memory resources of industrial components. Indeed, many
security controls are only relevant for IT networks/components. Therefore, they can be de-
ployed on high levels of ICSs, but few countermeasures focus on components and networks
closest to the physical process, which are the most critical. Among the few methodologies
that can tackle this aspect, stand out IDSs which are going to be the subject of this manuscript.

Conclusion

In this �rst Chapter, we introduced the typical architecture and characteristics of Indus-
trial Control Systems. ICSs are complex systems, with hierarchical and distributed control
functions, they encompass hybrid dynamics and they can be geographically spread out. From
their typical features, industrial systems present vulnerabilities and a large attack surface.
Many recent attacks showed the disastrous consequences they can have on physical processes.
We pointed out how crucial it is to ensure the correct functioning of these critical infrastruc-
tures. It was discussed that due to the di�erences between IT and OT, most IT security
countermeasures are not quite adapted for ICSs. From both the level of sophistication in
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recent attacks, and the typical features of ICS components, we highlighted the value of in-
trusion detection systems, based on physical process monitoring. Additionally, we mentioned
that distributed detection could tackle the spread out aspect of ICSs. In the next Chapter,
we explore the state of the art of Intrusion Detection Systems within ICSs.
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Introduction

This chapter is dedicated to a state of the art related to our contributions on the intru-
sion detection task for ICSs. Section 2.1 de�nes and characterizes the concept of Intrusion
Detection System (IDS) with a focus on anomaly-based IDS since this is the category of IDS
we developed in our approach. As our work uses results from runtime veri�cation for our
detection approach, Section 2.2 gives an overview and state of the art of runtime veri�cation
for a better comprehension of our contributions. Finally, the topic of distributed intrusion
detection in the literature is investigated in Section 2.3, as it constitutes another contribution
of our work.

2.1 State of the Art of Intrusion Detection Systems

Intrusion Detection System was introduced in Chapter 1 as one possible security measure
for an ICS. This Section reviews existing work on intrusion detection approaches.
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2.1.1 General Concepts

IDSs were �rst introduced in 1987, in the work of Denning [42]. The concept was then
systematized in the years 1999 and 2000, by Debar et al. who proposed a taxonomy [39],
later revised in [41]. An IDS would present �ve distinct characteristics: behavior on detec-
tion, detection paradigm, usage frequency, audit source location and detection method. In the
speci�c case of ICSs, some characteristics of this initial taxonomy are preferred than others.
Some characteristics are still topical but almost not explored in the research �eld, leading
to a consensus in the scienti�c community. For instance, the desired behavior on detection
is usually preferred to be passive alerting for industrial systems. It means that the reaction
of the IDS is to raise an alert without taking any active actions. Indeed, due to the nature
of the manipulated data in ICSs, it could be extremely dangerous to take actions having a
direct impact on the physical process. Furthermore, it becomes a new vulnerability for the
system considering the fact that an attacker could trigger that active response on purpose in
order to disrupt the system. Concerning the detection paradigm, the authors distinguish IDSs
working on states and those working on transitions between states. The �states� mentioned
are the following: �normal�, �error� or �failure�. This concept has been enriched by other
authors and the detection mechanisms can be further detailed. Section 2.1.3 presents various
detection mechanisms for behavior-based IDSs. Furthermore, the usage frequency concerns
the monitoring capabilities; while some IDSs monitor in a real-time continuous way, others
run periodically. On this aspect, the actual trend is to, as closely as possible, provide real-
time information on the monitored system. Finally, the remaining two taxonomy dimensions
are the more relevant for our research �eld and are discussed below. Industrial IDSs can be
classi�ed depending on the audit source location (sometimes called data source) and on their
detection method.

A) Data source

An IDS can either be Host-based (Host-based Intrusion Detection System (HIDS)) or
Network-based (NIDS). In the �rst case, the intrusion detection runs directly on host and
it can access internal data of the host that it intends to protect. The second case captures
network tra�c without disturbing the communication. It requires the use of sensors in the
network to catch tra�c and analyze it.

An HIDS gives access to some data that is not visible into the network tra�c such as inter-
nal variables or historical logs. However, an HIDS is extremely complicated to implement in
the speci�c case of industrial environments. Indeed, as already discussed in the �rst Chapter,
ICS components are usually embedding proprietary OS and are submitted to hard real-time
constraints, they are therefore not including other software components than process control
related ones. They present limited resources (computational power and memory) tailored for
their industrial task and an HIDS would inevitably impact these resources.

A NIDS does not impact any equipment performance. And even if some of the internal
variables of equipment are not accessible, a wider application area is available for NIDS. In
other words, if an HIDS has a view only of its immediate surroundings, an NIDS has a view
on every part of the network as soon as sensors are deployed. Packets can be captured after
or before reaching an host which gives a better general view. For instance, analyzing packets
on a �eldbus could be more e�cient than monitoring host data in a PLC. Indeed, in addition
to the di�culty of setting up such HIDS, its scope of action is restricted, whereas �eldbus
monitoring is closer to the physical process and gives visibility of every equipment on the
�eldbus.

In view of these characteristics, we directed our work towards NIDSs that seem a more
adapted solution, nowadays, for the speci�c case of industrial systems.
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B) Detection method

Two major detection approaches exist for IDSs: knowledge-based and behavior-based (also
known respectively as misuse-based and anomaly-based). The �rst category uses the knowl-
edge accumulated about attacks. They rely on speci�c recognition of malicious actions and
are therefore able to detect patterns of previously known attacks. The second category con-
sists in building a reference model of the usual behavior of the system being monitored. It
relies on the de�nition of the �normal� behavior of a system and detects deviations from it.

The category of knowledge-based IDS stands alone in the IT world. Their main asset is
that they generate few false positives, since the attacks are targeted in a precise manner. Yet
their major disadvantage is that they are unable to detect unknown attacks.

Concerning behavior-based IDS, the main di�culty is to characterize the system's normal
behavior. Generally there are two distinct phases: (i) the construction of the model, which
represents the normal functioning of the system (ii) and the actual use of the model, consisting
in comparing its information with data of the system during its execution. Creating an ex-
haustive model is a complicated task since the normal behavior can vary over time or over the
system context of use. Therefore, behavioral methodologies usually generate a high number
of false positives. But the real strength of these approaches is their ability to leverage the de-
tection of unknown attacks. Various implementation techniques exist within behavior-based
IDS to build the model, such as Machine Learning (ML), statistics, etc. Various approaches
of the literature are discussed in Section 2.1.3.

A third detection method is identi�ed by some authors as Speci�cation-based intrusion de-
tection [95, 135, 123]. Speci�cation-based approaches combine the advantages of both knowl-
edge and behavior-based detection techniques. As for behavior-based approaches, Speci�ca-
tion-based methodologies use a set of speci�cations and constraints describing the correct
operation of the system being monitored. But since speci�cation-based detection techniques
usually rely on manually developed speci�cations and constraints, they have a low false alarm
rate compared to the high false alarm rate of behavior-based detection techniques. On the
other hand, the cost to reach that low false alarm rate is that deriving speci�cations manually
can be time consuming and hard to implement. Few work address this drawback and the
state of the art is lacking systematic methodologies for the speci�cations extraction.

If some authors make a clear distinction between speci�cation-based techniques and beha-
vior-based ones, we prefer considering that speci�cation-based approaches are a subcategory
of behavior-based approaches as in [64, 113], since they share a common paradigm: charac-
terizing the legitimate system behavior and raising alerts on deviations from a normal pro�le.
Our work favors behavior-based detection and we direct towards speci�cation-based intrusion
detection. This choice of behavior-based detection is motivated by the necessity to detect
unknown attacks in critical environments. Therefore such approaches have, according to us,
potential to be very e�ective for intrusion detection in industrial systems.

2.1.2 Performance Evaluation

Performance evaluation aims at evaluating an approach through intrusion detection met-
rics or other key factors. Some measures, inherited from the IT world, exist for IDS perfor-
mance evaluation:

� True Positive (TP) � Number of successfully detected abnormal activities.

� False Positives (FP) � Number of normal activities classi�ed as abnormal. They are
false alarms.

� False Negative (FN) � Number of abnormal activities classi�ed as normal ones. They
are undetected intrusions.
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� True Negative (TN) � Number of normal activities that are successfully classi�ed as
normal.

Prediction
Actual

Positive Negative

Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

Table 1: IDS verdict depending on prediction and actual activities

These metrics are synthesized in the confusion matrix depicted in Table 1. Using the four
previously established metrics, some derived evaluation indicators can be de�ned:

� False Positive Rate (FPR) where FPR = FP
FP+TN

Ratio between the number of normal activities detected as attacks and the total number
of normal activities.

� False Negative Rate (FNR) where FNR = FN
TP+FN

Ratio between the number of abnormal activities that are not detected and the total
number of abnormal activities.

� True Positive Rate (TPR) where TPR = DR = TP
TP+FN

Fraction of abnormal activities that are successfully identi�ed. It is also called the
Detection Rate (DR) or Recall.

� True Negative Rate (TNR) where TNR = TN
FP+TN

Fraction of normal activities successfully classi�ed as normal.

In the context of ML-based methodologies, the three following indicators are generally
used: (i) Accuracy � fraction of activities that are correctly classi�ed1; (ii) Precision � frac-
tion of activities classi�ed as true that are relevant2; (iii) F-measure (or F-score) � weighted
harmonic mean of Precision and Recall3.

In addition to these metrics, others can be found in the literature, such as Central Pro-
cessing Unit (CPU) usage, detection decision velocity (or detection response time) which is
the elapsed time between the launching of the attack and its actual detection. Also, Receiver
Operating Characteristics (ROC) curves can be used to assess performance by visualizing the
relation between TPR and FPR metrics.

It is important to note that these measures were historically applied for IT applications
dealing with important volumes of data. There are less relevant for ICS-speci�c IDSs and
authors in the literature arbitrary use few of them, if they use some at all. In [152], the
authors emphasize the lack of a uni�ed framework for IDS performance evaluation, despite
the large quantity of research on the domain. This can be explained by the diversity of
sectors IDSs are developed for (industrial systems, IT systems, theoretical studies, etc.) and
the diversity of involved research communities (security, control theory, automatics, computer
science, mathematics, etc.). In [106], the authors also point out that network-security oriented
performance measures are not adapted to ICSs. According to the authors, packet-based ratios
are less expressive than operational characteristics such as detection response time.

1Accuracy = TP+TN
TP+FP+FN+TN

2Precision = TP
TP+FP

3F −measure = 2
1

Precision
+ 1

Recall

= 2TP
2TP+FP+FN

26



Chapter 2 State of the Art 2.1 State of the Art of Intrusion Detection Systems

2.1.3 Taxonomy of Behavior-based IDS for Industrial Systems

In subsection 2.1.1, we de�ned the major classi�cation dimensions for IDSs. Due to the
presence of the physical process, IDSs approaches can be further detailed with ICS speci�c
characteristics, such as the nature and meaning of process data, the control logic executed by
components, or the context of operation of the system, to mention a few.

As a matter of fact, various surveys propose to enrich the classi�cation of IDSs with
ICS-oriented taxonomies [160, 113, 159, 123]. In [160], the authors explicitly compare how
SCADA's special needs are addressed in the reviewed work (they call this the �degree of
SCADA-speci�c-ness�). This is an important characteristic because it permits to fully cap-
ture the characteristics of an industrial system with full situational awareness, including the
system dynamic, its communication patterns, system architecture, and the data that is ex-
changed between equipment. In [113], the authors reviewed 28 articles. The survey discusses
the di�erences between intrusion detection for IT systems and intrusion detection for ICSs.
According to them, the main characteristics of ICS-oriented IDSs are the following: (i) Phys-
ical process monitoring, (ii) making use of the regularity and predictability of closed control
loops, (iii) attack sophistication and extensive use of zero-day attacks, and (iv) dealing with
legacy technology. Similarly, in the classi�cation established in [159], the authors de�ne gen-
eral attributes to consider in ICSs. There are two main attributes: (i) the physical process,
which is organized by the critical states of the system, and (ii) the intelligent control system.
This latter, is built from multiple views: (a) communication (communication state, commu-
nication schedule, industrial network structure, and communication protocol), (b) task (task
schedule and task state), (c) resource (network tra�c, CPU utilization, and memory uti-
lization), and (d) control data �ow (timestamp and range of values). The authors in [123]
address the case of speci�cation-based IDSs for industrial systems. The taxonomy comprises:
speci�cation source, speci�cation extraction, speci�cation modelling, detection mechanism,
detector placement and validation strategy.

Note that another way to further classify behavior-based IDSs is to categorize them by the
methods used for building their detection model [64, 135, 93]. From these surveys, three main
categories can be identi�ed: (i) Statistics-based where the system is considered from a random
viewpoint (using tools such as time series model, multivariate analysis, cumulative sums, etc.),
(ii) (system) knowledge-based where the detection model is constructed with available system
knowledge/data such as protocol speci�cations or network tra�c instances (using tools such
as FSMs or description languages, etc.), and (iii) ML-based where the model is constructed
with samples of normal functioning of the system and allows the analyzed data to be cat-
egorized (using tools such as Bayesian networks, neural networks, fuzzy logic, clustering, etc.).

To review behavior-based IDSs from the literature, we propose a classi�cation inspired by
the previously presented taxonomies. We reviewed 39 papers; a detailed analysis is presented
in Section 2.1.4 and all approaches are synthesized in Table 2. In the table, the approaches are
presented alphabetically by author's names and they are classi�ed according to the following
characteristics:

� Approach
This characteristic is inspired from the classi�cation proposed in [159] to de�ne the
general knowledge of industrial systems. We argue that behavior-based detection re-
quires at least a minimal process knowledge for its model construction. Therefore, this
category concerns the part of the process that is taken into account for the detection
model:

1. Communication between equipment; This approach deals with the transmis-
sion of data into the ICS. In other words, this approach focuses on communication
protocol dependant properties (such as the syntax and semantics) and communi-
cation �ow (e.g. properties of packets belonging to the same �ow, periodicity of
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tra�c, order in sequence of messages).

2. Task and resources of equipment; This approach deals with internal state of
an equipment, its CPU utilization and memory utilization.

3. Control data and control logic; Control data concerns measurements status,
i.e. data manipulated by actuators, sensors, but also data exchanged between con-
trollers, supervisory control, HMIs, etc. Control logic represents the way commands
are executed by controllers.

Among the di�erent approaches identi�ed, Communication between equipment
and Task and resources of equipment correspond to the traditional distinction be-
tween NIDS and HIDS, whereas Control data and control logic is a wider concept
that can encompass features of both communication and equipment (i.e. the transmis-
sion and the processing of data). The scopes of the three approaches are illustrated in
Figure 5.

Figure 5: IDS approaches depending on the aspect of the industrial process they consider

� Degree of physical process knowledge
It can go from �Low� to �High�. This category is linked to the previous one (Approach)
and, depending on what is modeled, di�erent degrees of process knowledge is required.
Consequently, modeling the communication between equipment, task or resources of
equipment requires only a low degree of physical process knowledge. But taking into
account control data and control logic shows a high knowledge of physical process knowl-
edge.

Intrusion detection approaches having a high level of physical process knowledge are of-
ten referred to as process aware. Similarly, we use the expression: process aware attacks.
In the literature, the terms physics-based [67] and sequence attacks [27] appear and
they are in the same vein. Both refer to the �physics� of an ICS or the semantics of the
manipulated data. The authors in [27] divide sequence attacks into two di�erent sub-
sets: ordered-based and time-based. The former concerns attacks in which commands
are sent with an incorrect order and the latter are attacks in which commands are sent
with an incorrect timing. Hence, in both cases temporality of commands is implied in
the malicious action.
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� Implementation technique
This category concerns the techniques that are used to build the detection model to-
gether with the formalism of the model.

� Data source
This category gives precision of what type of data is used and its position in an industrial
system. We distinguish network data source level which can be between supervisory
and distributed control (i.e. between Level 2 and 1 of Purdue model, see Figure 1) and
network data source at local loop level (i.e. between Level 1 and 0 of Purdue model).

� Deployment
The deployment can either be centralized, decentralized or distributed. A centralized
deployment refers to the concentration of processing and decision-making at a central
point for the purpose of coordinating all the resources. In the context of IDSs, it means
that even if the data source is multiple, the detection algorithm is unique and central.
A decentralized deployment dispatches processing and decision-making across multiple
points without any central concentration. In the context of IDS, it means that there are
multiple detection algorithms, each establishing their own verdict. Finally, a distributed
deployment also dispatches processing and decision-making across multiple points but
with shared resources. In the context of IDS, it means that there are multiple detection
algorithms that communicate and synchronize over a common network to achieve a
common shared goal.

� Hypothesis
This category states the hypothesis that are necessary to the approach.

� Attack Typology
This category gives the type of attacks concerned by the approach.

� Experiment
This category gives the experimental setup on which the approach was tested (physical
testbed, simulation, etc.).

� Evaluation Methodology
This category states the evaluation metrics used by the approach.

2.1.4 Related Work on ICS Behavior-based IDS

Since the IDS awareness level of the physical process is a driving notion for our work,
we detail the previously introduced work by their Approach: (i) Communication between
equipment, (ii) Task and resources of equipment, and (iii) Control data and control logic.
There is also a Section dedicated to work combining multiple approaches.

A) Communication between equipment

Among the approaches about communication-oriented intrusion detection for ICSs, vari-
ous aspects of the communication between equipment are considered:

Communication protocol

Communication protocol-oriented approaches are interested in protocol dependant prop-
erties such as the syntax or semantics of a communication protocol. The syntax de�nes how
the data is structured, in other words, the order in which pieces of information are packaged.
Whereas the semantics determine the meaning of individual pieces of information.

For instance, the authors in [29] were among the �rst authors to highlight the importance of
using model-based approaches to leverage the detection of unknown attacks. They proposed a
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rule-based model which constraints the values taken by the �elds of a Modbus message. The
model uses expected characteristics of Modbus TCP protocol by specifying function codes
supported by a device, permitted lengths of certain data �elds, exception codes and protocol
identi�ers. The work in [7] adopts a similar approach by opening the methodology to several
protocols: DNP3, IEEE C37.118 and IEC 61850. The approach aims at detecting network
packets that violate the formal protocol speci�cations, in other words the methodology is
to �lter invalid and malformed packets. The approach permits to detect e�ciently bu�er
over�ow attacks or any attack using invalid commands. Furthermore, it adopts a distributed
methodology in order to reduce to a maximum network overhead during operations. However,
these previously discussed detection approaches [29, 7] are limited to individual and isolated
network packets.

In response to this issue, other works go further by building models of message exchanges.
For instance the approach described in [68] relies on a Deterministic Finite Automaton (DFA)
representing an HMI-PLC communication pattern. The DFA is automatically constructed
based on about 100 messages, and characterizes Modbus exchanges. Two relevant Modbus
�elds are used to build the model: (i) the transaction identi�er � a two-byte integer that pairs
request (from the master) and response (from the slave) corresponding to a unique transaction
and (ii) the unit identi�er � a single-bit integer that identi�es the Modbus slave associated
with the transaction. This approach relies on the assumption that industrial network tra�c
is highly periodic and present �xed and repeated patterns. However, experimentation and
future works showed that such a highly periodic hypothesis is closer to myth than reality and
this kind of approach su�ers from many false positives. In [94], the authors address this issue
which can be explained by the multiplexed ICS stream. In ICSs, it is typical to observe a
device sending multiple signals, over a communication medium, at the same time in the form
of a single, complex signal. For instance, it is the case for read and write commands on a
range of process variables, issued on a single network packet. Consequently, the authors in [94]
propose to use multiple DFAs (�one per cyclic pattern�) instead of one �very large DFA�. Yet,
this approach is more e�cient when the patterns of multiplexed cycles are known, i.e. expert
knowledge is recommended for the model construction.

All in all, deterministic approaches su�er from a substantial false positives rate and they
respond to strong hypothesis such as high periodicity and regularity of industrial network
tra�c. Furthermore, they are not resilient to manual interventions of human operators �
typically detected as false positives.

In response to deterministic approaches drawbacks, some other works focused on proba-
bilistic approaches. Probabilistic methodologies permit to better deal with uncertainties in
industrial network tra�c. In [27], the authors rely on Discrete-Time Markov Chains (DTMCs)
to model sequences of protocol messages. The approach aims at detecting sequence attacks
and therefore built the model according to an ordered list of events. In this approach, the
events consist of tuples with relevant �elds and properties from network packets. In the
DTMC, a state aggregates events with similar semantic meaning (e.g. a state that gathers
together all the �write� commands that change a speci�c variable), whereas transitions be-
tween two states indicate order relations between them (e.g. an event from state B comes
before an event from state A, in the sequence under analysis). During the training phase,
probability functions are computed for states and transitions. During the detection phase, the
current state is identi�ed as well as transitions and their related probabilities from network
tra�c observations. Alerts are triggered by unknown states, unknown transitions or unknown
transition probabilities. Based on dataset experiments, the authors found a high number of
unknown transitions, causing false positives, that can be partly explained by network de-
lays. The authors also propose to de�ne �importance� in some speci�c events such as write
operations that would be favored by attackers. This would allow to direct the detection on
important aspects by adapting thresholds. The work in [55] extends the previous approach
with a substantial model reduction. The authors change the generation algorithm, allowing to
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combine states with overlapping information without impacting the accuracy of the models.
This results in smaller models with lower computation times. However, this approach still
su�ers from a high number of false positives.

Similarly, the work in [157] uses Probabilistic Su�x Trees (PSTs) to model message se-
quences. An event is considered an anomaly if the probability of occurrence of this message,
given a history of previous messages, is below a threshold. The main subtlety in this method-
ology is to consider multiple previous messages, whereas the approach presented in [27] only
considered the previous message. The approach in [157] is therefore more resilient to noise,
i.e. legitimate variations from the model tra�c pattern, due to missing, out-of-order and/or
sporadic events observed in industrial networks.

Another probabilistic approach is the one presented in [75]. The authors also mention
the excessive number of false positives, they mention �hundreds or thousands, daily in [their]
experiments�. To overcome this drawback, they rely on multiple models for the detection.
In other words, multiple Deterministic Probabilistic Automatons (DPAs) are built from traf-
�c observations, corresponding to variations of a �conversation� between two ICS equipment.
The model relies on information extracted from communication protocols, in particular packet
headers containing message types and other relevant attributes. Building multiple models al-
lows to capture subtle di�erences due to spontaneous events in the network tra�c. Therefore,
this approach addresses the issue of noise in industrial network tra�c. Additionally, this
approach incorporates delayed or re-transmitted packets into the training dataset to ensure
the model is able to cope with such events without raising an alert.

As a matter of fact, most deterministic and probabilistic protocol-approaches rely on the
heavy hypothesis of periodicity in network tra�c. Furthermore, these approaches generally
do not take into account the meaning of the network packet payload (i.e. physical process
meaning): only the type of message is considered (such as read or write) and not the asso-
ciated data. This can be explained by the necessity to keep state-models manageable, since
considering every process variable could lead to an explosion of the number of states.

Communication �ow

Flow-based approaches focus on the structure of exchanges between equipment within an
ICS. The detection relies on observation of properties of packets belonging to the same �ow,
tra�c periodicity and tra�c regularity.

In the approach described in [5], the authors present a detection framework composed of
three modules relying on di�erent methodologies. One of them relies on a �rule-based �ow
behavior analysis�, which uses ML to determine network tra�c �ow properties. Such rules are
e�cient against �ooding attacks for instance, as they modify the usual regularity of network
tra�c.

The authors in [14] also propose a �ow-based methodology. They de�ne �periodic bursts�
as a �xed number of packets being transmitted at �xed intervals. The approach therefore
relies on period (or frequency) and size (number of packets) of these periodic bursts. The
methodology consists in aggregating meaningful packets to create network �ows (using server
transport port, for instance) and to translate them into time series. That is, for every �xed in-
terval, the number of packets belonging to a speci�c �ow is stored and constitutes a �frequency
�ngerprint�. This model is then used for online detection using signal processing techniques,
namely Fourier transforms. The same authors went further in [15] by identifying di�erent
levels of periodic patterns. They de�ne two types of connections: long-lived and short-lived
network connections. Long-lived connections can persist for several minutes or hours, whereas
short-lived ones are below few seconds. Compared to the previous work, the learned model
encompasses a whitelist of valid commands together with the frequencies at which they are
sent.

The work in [103] also characterizes ICS tra�c periodicity and speci�cally focuses on
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spontaneous events, i.e. tra�c caused by non-polling mechanisms. The methodology relies
on a PST, to model the diverse timing-patterns of spontaneous events. To do so, inter-arrival
times are calculated from spontaneous events timestamps. These inter-arrival times are then
categorized and used to build the PST. This work is extended in [104] with more experiments
and datasets comprising new protocols (S7, S7-plus4, MMS5). The same method is applied
to observe communication �ows, but this work addresses more generally server-driven tra�c
and their periodicity. The authors de�ne server-driven tra�c as the �tra�c initiated by the
servers in the client�server architecture without a paired request�. The approach identi�es
server-driven packets and extracts from them relevant information to group them by �ows.
For each �ow, timestamps of server-driven event arrival times are categorized and transformed
into time series by calculating the number of server-driven events per some con�gurable inter-
val of time. From these time series, a Multivariate Correlation Anomaly Detection (MCAD)
approach is proposed and the output is a distribution of Generalized Variance (GV) of these
time series. The idea is that the correlation measures and the inferred dispersion of data
points from di�erent �ows (i.e., tra�c from di�erent monitored points) should stay within an
expected range in a normal situation. If it is not the case, an alert is raised.

Flow-based approaches generally do not contain information on the physical process of in-
dustrial systems and periodic activities are learned, based on their periodicity. Consequently,
when an alert is raised, little insight is provided to explain it. Moreover, an attack that would
respect periodicity of tra�c would appear as a legitimate �ow leading to a false negative.

B) Tasks and resources of equipment

This category of approaches deals with internal state of an equipment, its CPU utilization
and memory utilization. Few research work were conducted on this aspect due to the scarce
computing resources and limited memory of components in industrial systems. Furthermore,
instrumenting a component without impacting the real-time performance requirements of con-
trol loops is extremely challenging.

One area of development focuses on PLCs. The authors in [110, 111] deploy a rule-based
model using temporal logic for o�ine PLC program check. Therefore, security constraints are
checked at local loop level, before execution of the system. This approach relies on the strong
assumption that the command law is correctly programmed into the PLC. During the online
execution of the system, this approach also encompasses a rule-based monitoring of sensor
values from physical observations, and control signals sent to actuators. For online execution,
the model uses a state space language. The approach is able to actively react to anomalies:
PLC code is instrumented (using Instruction List IEC standard). Instrumenting PLC code
can lead to an increase in the scan cycle time. However, the authors proved that in the case
of a denied operation, the scan cycle only presents a 1% overhead.

Another work [63] proposes an approach instrumenting PLCs. The approach uses PLCs
coupled with embedded hypervisors. This way, the online detection is directly enforced within
the PLC. The main advantage of using an hypervisor lies in the fact it runs an operating sys-
tem with much more computation power than the actual PLC. The authors propose to develop
a protection mechanism, integrated into the scan cycle of the PLC. The idea is to prevent
PLC's clients to write in some memory zones before veri�cation of the value of corresponding
variables. To do so, the writes are restricted to a temporary bu�er zone in memory, the
written values are then veri�ed and forwarded to the destination memory bu�er if no safety
or security constraints are violated. Such a methodology is hard to implement in real life
industrial systems because deploying an approach into a resource-constrained equipment is a

4S7 and S7-plus are Siemens proprietary protocols.
5MMS (Manufacturing Message Speci�cation) is a protocol de�ned by ISO 9506 and used in IEC 61850.
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di�cult task and inevitably impacts real-time performances.

Some approaches take a slightly di�erent angle and enlarge tasks and resource-oriented
detection to SCADA level. In [119], the approach uses process mining to build a Petri net
model from device logs stored in a historian. The historian is a server, responsible for storing
and logging all of the data that the SCADA system aggregates. And more recently in [90],
the authors focus on SCADA Application programming interface (API) calls. A graph model
is created where each state is a SCADA phase allowing speci�c API calls. The detection
methodology operates via an hypervisor. This work relies on the assumption that the hy-
pervisor is trusted and cannot be compromised. So far, the approach is adapted for Open
Platform Communications (OPC)-based ICS deployment only and Windows-based SCADA.
The novelty of this work lies in the fact it considers SCADA execution context and identi�es
execution phase-speci�c behaviors.

C) Control data and control logic

As discussed above, communication-oriented and tasks/resource-oriented detection are in-
e�ective against stealthy and sophisticated attacks using deep knowledge of physical processes.
Indeed, some attacks impact the physical process without inducing communication-related nor
equipment's tasks/resources-related anomalies. Consequently, some approaches incorporate
deeper physical process knowledge to develop their model. Process-oriented detection ap-
proaches generally rely on the monitoring of control loop events such as the evolution of
sensors and actuators states. Monitoring measurable variables permits to estimate if the sys-
tem is converging towards some critical state.

Some approaches focus on modeling the system's dynamic. The idea is to model physical
properties of the system using laws of physics in corresponding domains such as �uid dynam-
ics, electromagnetics, etc. Generally, the system is described through di�erential equations,
forming a model to predict the future outputs of ICS at local loop level [127, 152, 92, 80, 112].
Equivalent approach works in the frequency domain as well, instead of the time domain, using
Laplace transforms instead of algebraic equations. Therefore, a system can also be described
with transfer functions [126]. These approaches come from control systems diagnostic theory,
they rely on the assumption that the entire system can be described with di�erential equa-
tions which is possible only for time-invariant systems (i.e. which does not depend on time).
In control theory, a time-invariant system has a time-dependent system function that is not a
direct function of time. Depending on the physical process, it may not be possible to model
the system's dynamic. Although encompassing deep knowledge of ICSs physical process in
their model, these approaches are di�cult to deploy as it can be challenging to collect data at
sensors/actuators level. Furthermore, these approaches are not suitable for network detection
as the models may require access to internal variables of controllers which are not available
from the network tra�c. Therefore, they would tend towards host-based intrusion detection
approaches.

Another common approach is to test if sensor reading and actuators settings are following
a prediction model, learned from network tra�c. Therefore, the common methodology is
to survey some memory variables of a PLC and reconstruct the image of process variables.
The approaches in [73, 50] built auto-regressive models allowing to detect deviations and
predict a range for future values. In [73], process variables are automatically classi�ed into
three categories: (i) continuous variables (such as sensor measures), (ii) discrete variables
which can take a �nite set of values (control program's states), and (iii) constants (such as
con�guration parameters). Then, a model is associated to every variable depending on its
type in order to predict its next value. The work from [50] follows the same direction of
research. PLC registers are classi�ed into three classes: sensor registers, counter registers and
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constant registers. Then, the detection is able to raise alerts when registers' values deviate
from the learned models. These approaches does not consider correlation between variables
which may be the case for variables in real life systems. Furthermore, this type of models
reacts poorly to external disturbances that they would detect as deviations from standard
behaviors.

Other approaches focus on critical process variables while relying on learning-based method-
ologies [62, 156]. In [62], the authors propose a neural network-based NIDS that classi�es
network tra�c, including input features derived from physical knowledge of the system. This
supervised learning approach takes as input a set of process variables to consider. This step
requires expert knowledge on the physical process to determine the set of variables to consider.
In [156], the authors introduce a SIMPLE IDS model. If SIMPLE stands for �Su�cient, In-
dependent, Meaningful, Portable, Local & E�cient�, it also emphasizes the desire to propose
a simple detection approach, in contrast with recent literature works tending to be more and
more complex. Su�cient refers to the ability of SIMPLE approach to detect most attacks
while emitting few false alarms (compared to complex approaches). The approach is indepen-
dent of parameters or specialist's knowledge, when a trained-model is re-evaluated or modi�ed
(indeed, especially in the context of ML, hyperparameters can in�uence the training process).
Meaningful refers to the alerts that should permit to take appropriate measures in a timely
manner. The approach is portable to di�erent ICS processes. The approach is local in the
sense that it is adjusted to particular sensors/actuators and their speci�c behaviors. To �nish,
e�cient refers to the computational process required for training and detection phases. In
this work, the authors focus on sensor and actuators values. They propose four independent
modules: (i) MinMax approach which consists in detecting if actuators/sensors values got out
of �xed limits, (ii) Gradient Approach which consists in detecting abrupt change in actua-
tors/sensors values (i.e. speed of change), (iii) Steadytime approach which focuses on the time
sensors/actuators do not change their values, and (iv) Histogram approach which focuses on
occurrence of values through their distribution in a �xed time window. The authors prove
their approach to be e�cient against many attacks. However, learning-based approaches fo-
cusing on critical process values [62, 156] �rst need to identify the values of interest, which
can be very challenging.

At the di�erence of the above methodologies, another line of work manually speci�es their
system for critical state detection. To do so, they identify forbidden states or allowed behavior
within the system, using a priori knowledge of the system to build the model. In [59, 60],
the authors develop a state-based IDS and they use systems' speci�cations to extract security
properties for discrete and continuous variables. The state of the physical process corresponds
to actuators/sensors values. The authors take the assumption that the critical states (i.e. the
set of system con�gurations which damage the system) are well known, and they attempt to
fully characterize the critical states. Then, the detection aims at predicting if the current
evolution of the system will reach a critical state or not. The notion of distance from the cur-
rent state to a set of possible critical states is de�ned to express criticality. The current state
is obtained during the execution of the system by inspecting the content of network packets
and retrieving relevant information. Another complementary approach is the one described
in [26]. The approach also relies on monitoring the evolution of the process states and tracks
down when the process is entering a critical state. In this work, the representation of critical
states is made through a language called Industrial State Modeling Language (ISML). This
language allows to express a condition leading to an action. A condition is a boolean formula
(composed of conjunctions of predicates) describing values taken by process variables present
in PLC registers; an action is a log (i.e. an alert). The conditions remain simple with no use
of temporality speci�cations such as order of events or timing in the occurrence of events. In
the same vein, [115] developed a similar distance-based approach for medical systems. The
behavior rules are transformed to a FSM with three type of states: safe, warning and unsafe
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states. The approach is further re�ned for discrete systems only, in [142]. A FSM is also
constructed and each state represents the state of actuators and sensors. In this approach,
a risk analysis is a prerequisite and highlights the feared events for the system (prohibited
states list). Based on this, all the states are created and critical states are identi�ed. The
distance-based approach is enriched with the notion of trajectory which studies the evolution
of distance through time. And a novelty in this approach is the implementation of temporal
constraints; a characteristic execution time is assigned to each action (i.e a command and its
consequence) and is used in the detection model. Concerning the detection during the execu-
tion of the system, a ��lter-based� approach is used. There are two �lters: (i) a control �lter
that checks orders exchanged between the PLC and actuators and (ii) the reports �lter that
veri�es data sent from sensors to the PLC. The two �lters cooperate and exchange informa-
tion in order to feed detection mechanisms. If most approaches consider attacks on the action
chain only (i.e. on actuators) taking as main hypothesis con�dence in the data provided by
sensors, it is not the case in this approach, because of these two �lters. Finally, the approach
is situated at local loop level (between PLC and sensors/actuators), but the experimentation
relies on a simulation which makes data retrieval simple. Furthermore, simulated data may
lack �delity compared to real ICS data.

In graph-based representations (such as FSM, as in [115, 142]), where states are de�ned
by combinations of sensors and actuators values, scalability is a critical issue. Indeed, for
large-scale systems, considering every process variables would lead to an explosion of the
number of states. The modeling phase would present an exponential complexity as the model
describes all combinations of sensors and actuators states. A solution would be to sacri�ce
exhaustiveness and not consider every process variables. But the choice of which variables
to consider would be arbitrary and dependant of a human expert, possibly leading to errors,
false positives or false negatives.

The above approaches require, for the model construction, knowledge about the entire set
of critical states. This requirement may be di�cult to satisfy on large scale systems, and
the exhaustiveness cannot be guaranteed. As a response to this issue, some work focused on
automating the speci�cation extraction phase.

The main drawback of speci�cation extraction, is the manual aspect implied in the rule
generation process. The set of rules depends on expert knowledge (making the model,
assumption-based). However, some approaches are emerging with automated speci�cation
extraction. This is the case in [139], where the authors propose to automatically derive rules
from IoT device's operational pro�le speci�cations. The operation pro�les de�ne the mission
statement of speci�c equipment, allowing to derive the security requirements for this equip-
ment. In [124], the authors follow the same direction by showing that partial protocol FSMs
can be automatically extracted from Requests from Comments (RFCs) written in textual
format. In a similar manner, the authors in [57] automatically translate common RTU con-
�guration �les into Zeek6 scripts in order to deploy rules to monitor IEC-104 tra�c. Note
that Zeek is an open source IDS that allows sophisticated custom scripting. This allows to
automatically generate dynamic rules, encompassing requirements on process values while
adding simple temporal constraints.

The majority of the aforementioned approaches does not encompass time requirements into
their detection model. For the few who does [142, 57], the rules remain simple and without
correlating variables, such as holding an event for a speci�c time, for instance. Characterizing
more complex time properties of ICSs would allow to better capture the dynamic of such
systems. Adding the notion of time into a model allows to monitor actuators/sensors states
over temporal behaviors. One could monitor the occurrence order of several events (more
than two) together with timing properties (e.g., �After the occurrence of Event A, Event B
has to occur in the next 10 seconds, whereupon Event C has to hold between range of values,

6https://zeek.org/
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for a maximum of 30 seconds�).
Consequently, another line of work chooses to use more expressive languages such as

Temporal Logic (TL) languages. TL is a common family of speci�cation languages that can
be used to specify temporal patterns over the behavior of a system. Among TL speci�cation
languages, there are various formalisms with di�erent levels of expressiveness, such as Linear
Temporal Logic (LTL), Metric Temporal Logic (MTL) or Signal Temporal Logic (STL) for
instance. Hence, in [54], the authors propose a speci�cation-based IDS relying on speci�cations
inspired from LTL. The model is built by observing the values of process variables (sensors and
actuators values) over time in order to obtain temporal patterns. This process is automated
but requires insight from a human expert to tune the model. The authors in [120] adopt the
same methodology and propose a temporal rule-based model. At the di�erence of the previous
approach, the model construction is entirely learned-based. Hence, identi�cation of critical
process values and extraction of time patterns from normal network tra�c is automated. As
a consequence, this approach is adapted for recurrent variables with critical values only.

Similar approaches, developed the methodology for the Internet of Things [71, 150]. Both
approaches rely on a rule-based model using MTL. These approaches are adapted to discrete-
state, event-driven systems only and they require expert knowledge to establish the set of
speci�cations.

The work presented in [98] also emphasizes the need to leverage the temporal character-
istics of system states. However, the approach goes a step further than the previous ones. As
in [120], the speci�cations are also extracted automatically from network tra�c using a spec-
i�cation mining algorithm. The detection level is based on the observation of network tra�c
between HMIs and PLCs. The detection requires knowledge of PLC programs and is limited
to sequential programs. Hence, the notion of activity is introduced, which captures the di�er-
ent subprocesses and functioning modes of a sequential system. For instance, using activities
allow to distinguish between manual or automatic modes of functioning, or between di�erent
phases such as start phase or shutdown phase of an operation system. In this approach, the
activities are recognized from PLC control logic expressed as a Sequential Function Chart
(SFC). These activities are used as context to delimit the rules, and sets of rules are assigned
to certain activities. Furthermore, it gives insight on the actual state of PLC program relying
on network tra�c observations, without requiring physical access to the PLC. The generated
rules are expressed through LTL and MTL properties.
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Authors Year Approach Physical
Process
Knowl-
edge

Implementation
Technique

Data Source Deployment Hypothesis Attack Typology Experiment Evaluation
Methodology

Y. Al-Nashif
et al. [5]

2008 Communication
between equip-
ment

Low ML; supervised
learning

Network: tra�c
between Supervi-
sory Control and
Distributed Control

Centralized Periodicity and reg-
ularity of industrial
network tra�c

IT-oriented attacks
(Scanning, R2L, DoS
attacks, worms);
Does not work on
attacks using �legal�
commands

Testbed Detection Rate
(DR)

P. Ananthara-
man et al. [7]

2022 Communication
between equip-
ment

Low Rule-based model;
communication pro-
tocol semantics and
syntax

Network: tra�c
between Supervi-
sory Control and
Distributed Control

Distributed Correctness of the de-
ployed rules (in ac-
cordance with proto-
col standards)

Attack that do
not respect syntax
of communication
protocols

Dataset Correctness of
security parser,
detection, abil-
ity to handle
high tra�c
rates

R. R. R. Bar-
bosa et al. [14,
15]

2016 Communication
between equip-
ment

Low Signal Treatment;
time series model

Network: tra�c
between Supervi-
sory Control and
Distributed Control

Non Avail-
able (N.A.)

Periodicity and reg-
ularity of industrial
network tra�c

Attacks that are not
respecting periodic-
ity, size or number of
exchanged packets

Dataset
from real
life ICS

N.A.

A. Baláº et
al. [12]

2010 Communication
between equip-
ment

Low Statistical approach Network Distributed;
two layers:
(i) basic
process-
ing and
(ii) central
evaluation
module

Dedicated to commu-
nication technology
(does not speci�cally
focus on ICS)

IT-oriented attacks Testbed E�ciency, ac-
celeration and
overbalance

A. Carcano et
al. [26]

2011 Control data
and control
logic

High Rule-based model
for critical state
construction; ISML
(Industrial State
Modeling Language)

Network: tra�c
between Supervi-
sory Control and
Distributed Control

Centralized Knowledge of the en-
tire set of critical
states of the system

Attacks manipulat-
ing actuators (orders
coming from Su-
pervisory control or
HMIs)

Testbed (3
PLCs)

FP, FN, DR,
time elapsed for
distance calcu-
lation

M. Caselli et
al. [27]

2015 Communication
between equip-
ment

Medium Discrete-time
Markov Chain
(DTMCs)

Network: tra�c
between Supervi-
sory Control and
Distributed Control

N.A. No attack during
learning phase; Re-
quires a large volume
of data; Periodicity
and regularity of
industrial network
tra�c

Sequence attacks
(playing with or-
der and timing of
commands)

Real sys-
tem (water
treatment
facility)

TPR, FPR

S. Cheung et
al. [29]

2007 Communication
between equip-
ment

Low Bayesian network +
Rule-based model ;

Network: tra�c
between Supervi-
sory Control and
Distributed Control

Centralized Protocol dependant
(Modbus/TCP); Peri-
odicity and regularity
of industrial network
tra�c

IT-oriented attacks,
attacks that are not
respecting the stan-
dard communication
protocol structure

Testbed
(Sandia
National
Laborato-
ries)

Analyze on the
number of rules

J. J. Chromik
et al. [31]

2018 Control data
and control
logic

High Rule-based model on
process variables

Network: tra�c
between Supervi-
sory Control and
Distributed Control

Decentralized Expert knowledge for
the set of rules

Process aware at-
tacks

Dataset Detection

N. Erez et
al. [50]

2015 Control data
and control
logic

Medium Automatic classi�er
for SCADA control
register values (three
classes)

Network: tra�c
between Supervi-
sory Control and
Distributed Control

Centralized Periodicity and reg-
ularity of industrial
network tra�c; Ex-
pert knowledge for
system's variables
used in the classes

Attacks targeting
variables from the
training set

Dataset
composed of
131 hours
of SCADA
tra�c (7
PLCs, 449
registers)

Accuracy, false
alarm rate
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D. Fauri et
al. [54]

2017 Control data
and control
logic

High Rule-based model;
Speci�cations in-
spired from LTL

Network: tra�c
between Supervi-
sory Control and
Distributed Control

Centralized Knowledge about crit-
ical states/variables
to watch

Attacks manipulat-
ing actuators (orders
coming from Super-
visory crontrol or
HMIs)

HIL with 1
functional
chain only

N.A.

I. N. Fovino et
al. [59, 60]

2010
−
2012

Control data
and control
logic + Com-
munication
between equip-
ment

High Rule-based model for
critical state detec-
tion

Network: tra�c
between Supervi-
sory Control and
Distributed Control

Centralized
in a module
for a �rewall

Protocol depen-
dant (Modbus/TCP,
DNP3); Knowledge
about the entire set of
critical states

Single packet de-
tection based on
protocol speci�ca-
tions; Process aware
attacks

Testbed (6
PLCs)

Number of
raised alerts,
expected alerts

B. Ferling et
al. [55]

2018 Communication
between equip-
ment

Low Discrete time markov
chains

Network: tra�c
between Supervi-
sory Control and
Distributed Control

Centralized Periodicity and reg-
ularity of industrial
network tra�c

Sequence-attacks Dataset (10
days of traf-
�c of a gas
facility)

False positives,
detection accu-
racy

R. Flosbach et
al. [57]

2019 Control data
and control
logic

High Rule-based model;
speci�cations ex-
tracted from RTU
con�guration �les
and converted into
Zeek scripts

Network: tra�c
between Supervi-
sory Control and
Distributed Control

N.A. Expert knowledge
needed to characterize
the system (de-
scription of physical
topology)

Process aware SCADA
tra�c of
distribution
substation

False positives,
false negatives

N. Gold-
enberg et
al. [68]

2013 Communication
between equip-
ment

Low DFAs Network: tra�c
between Supervi-
sory Control and
Distributed Control

N.A. Protocol dependant
(Modbus/TCP); Peri-
odicity and regularity
of industrial network
tra�c

Attacks that are not
respecting usual pro-
tocol tra�c pattern

Reel system
(campus
power-grid)

Pourcentage of
di�erent types
of transitions

W. Gao et
al. [62]

2010 Control data
and control
logic

Medium Neural Network
backpropagation;
(supervised)

Network: tra�c
between Supervi-
sory Control and
Distributed Control

N.A. Periodicity and
regularity of indus-
trial network tra�c;
Expert knowledge
needed about the
physical process.

IT-oriented attacks;
Process aware at-
tacks targeting
variables from the
training set

Testbed FPR, FNR, ac-
curacy

L. Garcia et
al. [63]

2016 Tasks and
resources of
equipment

Low DFAs Host: PLC + tra�c
entering PLC (PLC
coupled with embed-
ded hypervisor)

N.A. PLC not corrupted;
Periodicity and reg-
ularity of industrial
network tra�c

Attacks that modify
PLC registers while
respecting structure
and periodicity of
communication

Testbed N.A.

M. Gro-
chowski et
al. [71]

2019 Control data
and control
logic

High Rule-based model us-
ing Metric Temporal
Logic (MTL); Run-
time veri�cation

Network: AWS IoT
Core ; IoT cloud
technology (Message
Queuing Telemetry
Transport (MQTT))
messages sent in
cloud)

Centralized Adapted to discrete-
state, event-driven
systems only; Tem-
poral formulas given
during the operating
phase of the sys-
tem (for the set of
speci�cations)

Process aware Cleaner
robot (a
proximity
sensor, a
camera, a
pneumatic
actuator
and a robot
arm)

Detection re-
sponse time
(time beween
occurrence of
events and
processing)

D. Hadzios-
manovic et
al. [73]

2014 Control data
and control
logic

High Autoregressive model
(heuristics) for every
variable in the PLC
memory

Network: tra�c
between Supervi-
sory Control and
Distributed Control

Centralized PLC not corrupted;
Expet knowledge for
the data characteriza-
tion (classifying sys-
tem variables)

Process aware at-
tacks

2 real-
life water
treatment
plants

Evaluation of
the characteri-
zation heuristic
(matched pro-
cess variables)

Y. Hu et
al. [80]

2019 Control data
and control
logic

High Auto-Regressive
Integrated Moving
Average (ARIMA)
state-space and
linear dynamical
(LDS)

Not speci�ed N.A. Describe entire sys-
tem with di�erential
equations, i.e. time-
invariant system; Ex-
pert knowledge of the
system for correlation
of system variables

Process aware at-
tacks

Matlab
simulink

N.A.
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V. Havlena et
al. [75]

2023 Communication
between equip-
ment

Low DPAs Network: tra�c
between Supervi-
sory Control and
Distributed Control

N.A. Representative and
su�cient data for
the learning phase
(attack-free)

Process aware (se-
quence attacks) −
MITRE coverage
provided

Datasets of
smartgrids
(3 days of
tra�c)

TP, FN

M. Ike et
al. [90]

2023 Tasks and
resources of
equipment +
Control data
and control
logic

High State-based model
where each state
is a SCADA phase
allowing speci�c API
calls

Host: SCADA via an
hypervisor

Centralized Adapted for OPC-
based ICS deployment
only ; Windows-based
SCADA; Hypervisor
is trusted and cannot
be compromised

Process aware at-
tacks

Sandia
National
Laboratory
testbed

TP, FP

F. Khorrami
et al. [92]

2016 Control data
and control
logic

High Modelization of sys-
tem's dynamic; Dif-
ferential Equations

Not speci�ed � actua-
tors and sensors' sig-
nals

N.A. Describe entire sys-
tem with di�erential
equations, i.e. time-
invariant system

Process aware at-
tacks, mainly data
injection on actua-
tors

HIL N.A.

O. Koucham
et al. [97, 98]

2016
−
2018

Control data
and control
logic

High Set of rules expressed
with Temporal Logic
(LTL, MTL) ob-
tained by data
mining − Runtime
veri�cation

Network: tra�c
between Supervi-
sory Control and
Distributed Control

Centralized Adapted for sequen-
tial systems only

Process aware at-
tacks

HIL Mining time
for the spec-
i�cations;
monitors over-
head, number
of properties

A. Kleinmann
et al. [94]

2016 Communication
between equip-
ment

Low DFAs Network: tra�c
between Supervi-
sory Control and
Distributed Control

N.A. Periodicity and reg-
ularity of industrial
network tra�c

Attack that do not
respect communica-
tion patterns

Dataset False alarms

C.-Y. Lin et
al. [103, 104]

2018 Communication
between equip-
ment

Low Learning-based ap-
proach - pattern
mining based on
Probabilistic Su�x
Tree (PST) to model
timing patterns of
spontaneous events

Network: tra�c
between Supervi-
sory Control and
Distributed Control

N.A. Representative and
su�cient data for the
learning phase (attack
free)

Attack containing
spontaneous events

Testbed Length of
dataset, aver-
age accuracy,
prediction accu-
racy and Kappa
value

D. Myers et
al. [119]

2017 Task and re-
sources of
equipment

Low Petri net generated
by process discovery

Host: use of log �les N.A. Data describing com-
plete execution of the
system; Requires a
large volume of data

Attacks manipulat-
ing actuators (orders
coming from Su-
pervisory control or
HMIs)

Testbed (4
Siemens
PLC S7-
1200)

Time measures

R. Mitchell et
al. [114, 115]

2013
-
2015

Control data
and control
logic

High Rule-based model;
Finite state au-
tomata

Host N.A. Knowledge about the
entire set of critical
states

Process aware at-
tacks, mainly data
injection on actua-
tors

Simulation FPR, FNR

K. Miao et
al. [112]

2020 Control data
and control
logic

High Modelization of sys-
tem's dynamic; Dif-
ferential Equations

Network: tra�c
at local loop level
(between a com-
puter and an ARM
microprocessor)

Centralized Continuous-time lin-
ear systems; Ability
to describe entire sys-
tem with di�erential
equations (knowledge
of system physics)

Process aware espe-
cially actuator false
data injection

Computer,
ARM micro-
processor,
servo dive
and motor
(presence of
a CAN bus)

FPR, FNR, Re-
call, Precision,
FPR, FNR and
F1-score

S. McLaugh-
lin [110, 111]

2013
−
2015

Tasks and
resources of
equipment +
Control data
and control
logic

High Rule based model
using a state space
language (sslang)
for online execution
and Linear Temporal
Logic (LTL) for
o�ine PLC program
check ; PLC code
instrumentation

Network: tra�c
between Supervisory
Control and Dis-
tributed Control and
at local loop level

Centralized Knowledge about the
entire set of critical
states

False data injection
on actuators

Simulation
platform
(TrymSim)

Policy check
times, overhead

J. Nivethan et
al. [122]

2016 Control data
and control
logic

High Rule-based model;
using Zeek

Network: tra�c
between Supervi-
sory Control and
Distributed Control

Centralized Expert knowledge of
systems' variables

Process aware N.A. N.A.
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G. K. Ndonda
et al. [120]

2022 Control data
and control
logic

High Temporal rule-based
model obtained from
learning algorithm
(identi�cation of
critical process val-
ues and extraction
of time patterns
from normal network
tra�c)

Network N.A. Representative and
su�cient data for
the learning phase
(attack-free)

Process aware Testbed and
simulation

DR, FPR, time
to detection

S. Papa et
al. [126]

2012 Control data
and control
logic

High Transfer function;
built with combina-
tion of actuators/
sensors measures

Network: tra�c
between Supervi-
sory Control and
Distributed Control

Centralized Ability to descibe the
entire system with
transfer functions,
i.e. only applicable to
time-invariant system

Attacks targeting
process data

Matlab Sim-
ulation

Time elapsed
between the
attack and its
detection

F. Pasqualetti
et al. [127]

2013 Control data
and control
logic

High Modelization of
system's dynamic;
Di�erential Equa-
tions and graph
theory

N.A. Centralized
and dis-
tributed
detection

Continuous-time lin-
ear systems; Ability
to describe entire sys-
tem with di�erential
equations (knowledge
of system physics)

DoS attacks, stealth,
(dynamic) false data
injection, replay at-
tacks

Simulation
(IEEE 118
bus system)

Detection resid-
ual curves

F. Sicard et
al. [141, 142]

2018
−
2019

Control data
and control
logic

High DFAs and Petri nets;
shortest path calcula-
tions to calculate dis-
tance from forbidden
states

Network: tra�c at
local loop level ide-
ally or data from sen-
sors and actuators

Centralized Adapted to discrete-
event system only;
Knowledge about the
entire set of critical
states.

Process aware; 4
types of attacks
de�ned: direct, se-
quential, temporal
and over soliciting
attacks

Simulation
of di�erent
systems

Complexity of
the state space

V. Sharma et
al. [139]

2019 Control data
and control
logic

High Rule-based model;
Set of rules ob-
tained via device's
operational pro�le

Host: embedded IoT
equipment

N.A. Expert knowledge
needed for specifying
operation pro�le of
embedded IoT device

Process aware at-
tacks

Simulation
of a UAV
(Unmanned
Aerial Vehi-
cle)

FNR, FPR,
TPR, Compli-
ance degree

C. Tsigkanos
et al. [150]

2021 Control data
and control
logic

High Rule-based model
using Metric First-
Order Temporal
Logic (MFOTL);
Runtime veri�cation

Network: IoT Cloud
Technology

Distributed Expert knowledge
needed to establish
the set of speci�ca-
tions

Process aware at-
tacks

Testbed Event process-
ing throughput,
end-to-end
latency

D.
Urbina [152]

2016 Control data
and control
logic

High Modelization of
system's dynamic;
Auto-Regressive
(AR) models or
Linear Dynamical
State-space (LDS)
models

Network: tra�c
between Supervi-
sory Control and
Distributed Control

Centralized Describe entire sys-
tem with di�erential
equations, i.e. time-
invariant system; Ex-
pert knowledge of the
system for correlation
of system variables

Process aware at-
tacks, mainly data
injection on sensors
and actuators

Reel sys-
tem (>100
controllers;
Testbed (6
PLCs +
6 backup
PLCs)

FPR, TPR,
New perfor-
mance indica-
tors (Stateful
vs. stateless,
max deviation,
etc.)

K. Wolsing et
al. [156]

2022 Control data
and control
logic

High Learning-based ap-
proach proposing 4
independent IDSs:
MinMax, Gradient,
Steadytime and
Histogram.

Network: tra�c
between Supervi-
sory Control and
Distributed Control

N.A. Representative and
su�cient data for
the learning phase
(attack-free)

Process aware at-
tacks

Dataset Detected at-
tacks, FP,
Accuracy, Pre-
cision, Recall,
F1-score

M-K. Yoon et
al. [157]

2014 Communication
between equip-
ment

Low Bayesian Network +
Probabilistic Su�x
Tree

Network: tra�c
between Supervi-
sory Control and
Distributed Control

N.A. Protocol dependant
(Modbus/TCP); Peri-
odicity and regularity
of industrial network
tra�c

Sequence attacks
(playing with or-
der and timing of
commands)

Dataset ob-
tained from
a Modbus
network
testbed

FPR, Receiver
Operating
Characterisitc
(ROC) curve

Table 2: IDS approaches presented in this state of the art
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D) Summary and discussion

Note that Table 2 is not exhaustive but aims at representing a global view of the di�erent
trends in the literature concerning behavioral intrusion detection. As shown in this table,
most of the works combine multiple of the previously introduced approaches: communica-
tion between equipment, task and resources of equipment, control data and control logic.
Combination of multiple approaches is motivated by the necessity to detect a broader set of
attacks.

Chronologically, the �rst papers mostly focus on the communication between equipment.
Approaches relying on task and resources of equipment or control data and control logic
started to become more frequent after the years 2010. The approaches focusing on tasks
and resources of components quickly appeared to be limited because of their di�culty of
deployment due to resource-constrained equipment. And only few works are dedicated to this
�eld of research.

On the other side, detection approaches based on control data and control logic are the
main focus in recent years. The necessity of process aware intrusion detection is motivated
by recent attacks getting more and more sophisticated and targeting physical processes of
ICSs. Therefore, many process aware approaches appeared in recent years. Some hybrid
approaches started to raise as well, connecting communication-based detection together with
process aware detection.

From this state of the art of behavioral intrusion detection, various observations can be
made. All approaches combined, diverse trends exist concerning: implementation techniques
for the model construction, data source location, and context aware detection. These aspects
are discussed below:

Implementation techniques

Diverse implementation techniques are employed for characterizing a system's behavior,
such as time series, DFAs, DPAs, auto-regressive models, modelization of laws of physics, etc.
According to the previously introduced taxonomy [64], these implementation techniques can
be grouped into three main categories: (i) statistical-based, (ii) (system) knowledge based
and (iii) ML-based approaches.

Statistical-based and ML-based approaches do not require a priori knowledge about the
normal activity of a system; instead, they have the ability to learn the expected behaviors
from observations (usually network tra�c). This is a good asset but it also leads to inevitable
drawbacks. Large attack-free datasets are therefore needed. First of all, proving that a dataset
is free of attacks with representative and su�cient data is not straightforward. Secondly, real
ICS data for training learning-based model is often missing. And when it is not, the quality of
training data is often lacking. Moreover, few learning-based approaches encompass physical
process meaning (i.e. process variables) into their model, and when they do they usually need a
human expert to tune the model by identifying critical process values. Finally, learning-based
approaches generally do not consider operating modes or states of system's components.

In regard with the previously stated characteristics, (system) knowledge based approaches
seem promising for ICS intrusion detection. In these approaches, the model is constructed
with available system knowledge/data (i.e. it encompasses physical process meaning). On the
one side, models may be manually constructed by a human expert (�expert knowledge� in Ta-
ble 2) which is a time consuming task, and it makes models' updates/modi�cations di�cult.
On the other side, recent line of works seek to automate the speci�cation of system's behav-
ior. But automatically obtaining high-quality knowledge is often di�cult and time-consuming.

Data source location

Most approaches rely on the observation of network tra�c between supervisory control
and PLCs. This is explained by the lack of tools allowing tra�c observation at �eldbus
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level. Among the approaches that claim performing intrusion detection at the local loop level
(i.e. below PLC level), few have implemented their methodology on physical ICS testbeds.
Most of these approaches use simulations, allowing easy instrumentation of sensors/actuators
data [111, 142, 80]. Some approaches use process data to construct their detection model and
more speci�cally information of sensors/actuators, but they retrieve the information on TCP/
IP networks [60, 122, 54]. Once again, this is due to the di�culty to instrument the tra�c
capture at lower levels. Consequently, these methodologies su�er from imprecise data that
have crossed several networks and may have been denatured along the way. For instance, the
detection will be ine�cient if the sensors are targeted or PLCs corrupted. Therefore, methods
would usefully complement the state of the art by addressing this issue using instrumented
tools to capture data at �eldbus level.

Context aware detection

Most of existing work focus on analyzing tra�c and/or sensor data in isolation without
taking the execution context of the system, into account. To our knowledge, [90] is one
among few approaches that encompasses the notion of context into their detection methodol-
ogy. Indeed, the authors di�erentiate SCADA contexts in two categories: �initialization� and
�process-control�. The latter comprises two sub-phases: �process-monitoring� and �process-
altering�. For instance, if an attacker needs to setup and connect its tools to the system,
it will propagate �initialization� types of commands into the network. If at that time, the
system is in �process-control� phase, this will be reported as an abnormal behavior. The main
drawback for this approach remains the fact that it leverages SCADA level information solely.
The work in [103] focuses on SCADA spontaneous events and how the tra�c changes over
time. The authors analyze the tra�c regarding its phase transitions which are de�ned as pe-
riods of time that the distribution of inter-arrival times is stable. A phase transition happens
when the changes of the distribution falls outside a certain range. This is an interesting work
that permits to soften the ubiquitous hypothesis of periodicity and regularity of industrial
network tra�c. But on the other side, it relies on the necessity of having representative and
su�cient data for the learning phase which is also a strong and binding assumption. The
authors adopted a two-hours learning phase which they admitted was too short for capturing
timing patterns of their industrial systems. Moreover, this approach lacks physical process
knowledge and is located at SCADA level only. In the same vein, the work [158] does not
focus on ICSs but concerns automotive intrusion detection. This time the intrusion detection
concerns a communication protocol used at �eldbus level in ICS: CAN protocol. The authors
point out the existence of di�erent vehicle driving modes and the fact that approaches rely-
ing on constant intervals between messages will fail during transitions of such modes. They
propose an approach based on message frequency analysis that they prove remains consis-
tent even when the vehicle operating mode of operation changes. Although di�erent in their
methodologies, the three aforementioned approaches share a common characteristic: they are
able to tackle context change in a system. They built a model that takes into account di�erent
operating modes, whether on a small scale (speci�c equipment mode at �eldbus level) or big
scale (operating modes of SCADA system). Such a notion of context makes it possible to
signi�cantly reduce the number of false positives, as unanticipated transitions in operating
modes or manual interventions on a system are often detected as attacks. Therefore, this
notion of context within systems is primordial. It permits to divide a system into di�erent
functioning phases and better address the special characteristics of each. Thus, context-aware
detection seems to be a promising direction of research.

Summary

Intrusion detection is a growing �eld of research and it attracts both the research and
industry communities. In this Section, we gave an overview of the current state of the art
concerning intrusion detection. We started with general concept of IDS, we then described
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in details the properties of behavior-based IDS which is the direction we chose for our work.
Indeed behavior-based approaches are the most suitable for ICS-speci�c case mainly because
of their ability to detect unknown attacks. Concerning the data source, we argue that instan-
tiating HIDSs is rarely possible to implement in a real industrial system. Additionally, NIDSs
o�er a wider scope, therefore our work concerns NIDSs.

From the state of the art of behavioral intrusion detection, we discussed many approaches
among three categories: communication between equipment, task and resources of equipment,
control data and control logic. This last category is the one that has the highest knowledge of
the physical process of a system. We consider that this is an important aspect for intrusion
detection against novel sophisticated attacks. Moreover, approaches that take into account
the notion of time, and characterize the temporal dynamics of ICSs, seem very promising to
us. Furthermore, we highlighted the di�culty to collect data at local loop level, and the fact
that very few works have put it into practice.

2.2 Runtime Veri�cation

In this Section, we focus on runtime veri�cation (also known as runtime monitoring) which
we identi�ed as a suitable formal veri�cation technique for our intrusion detection approach.
Indeed, it is a lightweight veri�cation method that can be deployed during the execution of a
running system.

2.2.1 De�nition and Concepts

Runtime veri�cation or runtime monitoring is the study of methods to analyze the dynamic
behavior of a computational system. The term veri�cation implies the notion of correctness,
whereas the term monitoring refers to the act of observing and evaluating the behavior of
a system over time [16]. Runtime veri�cation approaches are based on extracting informa-
tion from a running system and using it to detect observed behaviours satisfying or violating
certain properties. The central object of this approach is called a monitor which constitutes
the decision procedure for a given property [17]. It veri�es violations in system executions by
checking the satisfaction of this property. The action of generating a monitor from a property
is called the monitor synthesis.

To be more precise, in our case, we refer to the properties as �security properties�. The
monitored system is an ICS and it is instrumented by means of network taps. A network
tap (or sensor, or probe) is a network device able to duplicate tra�c from a single physical
link [147]. Details on the implementation of our approach is provided in Part II.

Therefore, a monitor takes as inputs execution traces [136] which are sequences of observa-
tions that represent the behavior of interest in the monitored system. These observations can
be events or sampled signals indexed or time-stamped. The monitor is capable of analyzing
the execution traces (during online execution) and to emit verdicts according to the current
satisfaction of a security property. This verdict takes the form of a truth value (generally
true or false) from a truth domain that indicates whether or not the run complies with the
speci�cation. The overview of the runtime veri�cation process is illustrated in Figure 6. In
the context of ICS intrusion detection, we take the assumption that an intrusion targets the
physical process leading to violation of at least one security property (which leads to safety
violations). Then, intrusion detection is performed by getting verdicts from a set of monitors.

2.2.2 Speci�cation Languages for Runtime Veri�cation

In order to describe the security properties, speci�cation languages are used. A speci-
�cation language is a formal language used to describe a system at a higher level than a
programming language. If the speci�cation language is ambiguous (e.g. a natural language
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Figure 6: Overview of the runtime veri�cation process applied to an ICS

such as English or French) then the speci�c property being described may not be clear. Gen-
erally, a speci�cation language is expected to be unambiguous and formally structured (i.e.
encompassing a syntax and semantics). Some general features are discussed followed by a pre-
sentation of Temporal Logic (TL) which is the most common family of speci�cation languages
for runtime veri�cation.

A) General speci�cation languages features

Some general concepts concerning such languages are provided in [17] which we are going
to rely on to put our work into context.

� Executable/Declarative. Some speci�cation languages are executable (e.g. state ma-
chines) and others are declarative (e.g. TL). Executable speci�cation languages tend to
be more low-level and can therefore be more straightforward to use. On the other hand,
declarative speci�cation languages capture properties at a higher level of abstraction.
Yet, declarative languages can be translated to executable objects (monitors) through
an automated procedure.

� Finite/In�nite. Some speci�cation languages are more adapted to specifying sets of
�nite traces (such as state machines), whereas others are more adapted to specifying
sets of in�nite traces (such as TL). However, when verifying a system at runtime, the
observations are necessarily (ever-increasing) �nite traces. This often leads to a mapping
from in�nite to �nite semantics.

� Time. There is a distinction between qualitative and quantitative time. Some speci�-
cation languages can only denote the relative order of states/events on a trace: this is
qualitative time. Others include a notion of time distance between states/events or range
over time intervals: this is quantitative time. For instance, speci�cation languages sup-
porting qualitative time can check whether Event A occurred before Event B. Whereas
speci�cation languages supporting quantitative time could check if A occurred less than
10 seconds before B.

� Data. A speci�cation language may view events as atomic symbols or as structures
containing data. Generally, speci�cation languages consider data in various ways, de-
pending on the underlying formalism.
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Using runtime veri�cation for ICS intrusion detection guides our choices in the features de-
scribed above. As we need to monitor security properties, if a declarative language is chosen,
there must exist a related procedure to generate executable monitors. Then, a speci�cation
language suited for a set of �nite traces is required, since in ICS execution traces are (ever
increasing) �nite traces. Moreover, we need to be able to express both qualitative and quan-
titative time properties, in order to cover the hybrid dynamics of industrial systems. Finally,
the considered events are of various types from logical states, to process variables evolving
through time (i.e. functions of time). Once again, this requirement is necessary for capturing
the dynamic of ICSs.

B) Temporal Logic

TL is the most common family of speci�cation languages for runtime veri�cation. It is
a declarative speci�cation language usually interpreted over in�nite traces with adaptions to
�nite traces. The family includes variants supporting both qualitative and quantitative time.
In our work, we focus on three variants of TL: (i) LTL, (ii) MTL and (iii) STL which together
cover the variety of temporal behaviors of hybrid systems required for our intrusion detection.

Linear Temporal Logic (LTL)
Let us start with an informal description of LTL. LTL [130] augments propositional logic

with logical and temporal operators. It permits to express occurrence and ordering in events
in qualitative time.

Usual propositional logic uses propositional formulas constructed from atomic propositions
combined by logical connectives. An Atomic Proposition (AP) is a statement or assertion that
must be true or false and that cannot be broken down into smaller sentences. Usual connec-
tives are: not (¬), and (∧), or (∨), conditional/implies (→) and biconditional/equivalent (≡).
Hence, propositional logic deals with propositions (which can be true or false) and relations
between propositions.

Now, LTL extends propositional logic, with temporal operators:

1. Always operator (also known as Globally), denoted □ (or G). If φ and ψ are proposi-
tional formulas evaluated at a position in a trace then □φ is satis�ed (is true) if φ is
true at all the subsequent positions.

2. Eventually (or Finally), denoted ♢ (or F ). ♢φ is true if there exists a subsequent
position where φ is true.

3. Next, denoted # (or X). #φ is satis�ed if φ is true at the next position.

4. Until denoted U . φ Uψ is true if φ is true until ψ becomes true.

Note that in some works, additional temporal operators may be used such as Release (R),
Weak until (W) and Strong release (M).

The main temporal operators, previously introduced, are graphically represented in Fig-
ure 7. In the diagrams, black dots represent chronological states of the system at various
points in time (only qualitative time is described with LTL). These states are labeled with
LTL formulas (φ,ψ, etc.). In other words, the diagrams represent in�nite sequences; which
are of the form w : {ψ}{ψ, ϕ}{ϕ}... . For example, in the �rst diagram representing the
sequence

w : {arbitrary}{ϕ}...{arbitrary}{arbitrary}...,

the formula #φ is satis�ed at the �rst position since φ is true at the next position.

Now, we give the formal de�nition of LTL's syntax and semantics. In the following, the
symbol :: means �is de�ned as� following [130] notation. |= is the satisfaction and ̸|= its
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Figure 7: Diagrams of common LTL temporal operators

negation. The symbol | either means �such that (s.t.)� or is a set-builder notation, as in usual
propositional logic.

With AP a set of atomic propositions, Σ = 2AP a language and LTL formulas φ,φ1, φ2,
the syntax of LTL is de�ned as:

φ :: true | a | ¬φ | φ1 ∧ φ2 | φ1 U φ2 | #φ where a ∈ AP.

With Σω the set of in�nite sequences over the alphabet Σ, φ,φ1, φ2 LTL formulas, i ∈ N a
position and w(i) the ith element of the in�nite sequence w ∈ Σω, LTL formulas are interpreted
using the rules:

w, i |= true

w, i |= a ∈ AP ⇐⇒ a ∈ w(i)
w, i |= ¬φ ⇐⇒ w, i ̸|= φ

w, i |= φ1 ∧ φ2 ⇐⇒ w, i ⊨ φ1 ∧ w, i ⊨ φ2

w, i |= φ1 U φ2 ⇐⇒ ∃k ∈ N, k ≥ i w, k |= φ2 ∧ ∀j, i ≤ j < k w, j |= φ1

w, i |= #φ ⇐⇒ w, i+ 1 |= φ

We also de�ne

♢φ ≡ true U φ
□φ ≡ ¬♢¬φ

The remaining operators (∨, →, ♢, □) can be derived from the rules above.

Metric Temporal Logic (MTL)
If the notion of range over time intervals is needed, MTL [18] is more adapted. MTL

extends LTL with time measurements over boolean signals. It allows to specify qualitative
temporal behaviors by adding the notion of range over time intervals. For instance, the
formula □[0,3]a asserts that a should hold between 0 and 3 time points from now.

Contrary to LTL, MTL formulas are interpreted over timed sequences which associate
every time point with a set of true propositional variables. Timed sequences are of the form
ρ : {τ0, E0}{τ1, E1}...{τn, En} where τi ∈ R+ and is strictly increasing, and Ei is a set of
boolean variables which are true at τi.

Formally, the syntax of MTL over the alphabet Σ = 2AP , with φ,φ1, φ2 MTL formulas,
is de�ned as follows:
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φ :: true | a | ¬φ | φ1 ∧ φ2 | φ1 UI φ2 | #Iφ where a ∈ AP

with I ⊆ (0,∞) a non-empty interval over N.

Given a timed sequence ρ, MTL formulas φ,φ1, φ2, interpretation rules are derived from
LTL:

ρ, i |= true

ρ, i |= a ∈ AP ⇐⇒ a ∈ Ei

ρ, i |= ¬φ ⇐⇒ ρ, i ̸|= φ

ρ, i |= φ1 ∧ φ2 ⇐⇒ ρ, i |= φ1 ∧ ρ, i |= φ2

ρ, i |= φ1UIφ2 ⇐⇒ ∃k ≥ i, τk − τi ∈ I ∧ ρ, k |= φ2 ∧ ∀j, i ≤ j < k ρ, j |= φ1

ρ, i |= #Iφ ⇐⇒ ρ, i+ 1 |= φ ∧ τi+1 − τi ∈ I

Signal Temporal Logic (STL)

Signal Temporal Logic [108] is to be used when real-valued (continuous) signals need to
be described. STL extends MTL over signal predicates. Signal predicates are used as atomic
formulas: {x1(t), . . . , xn(t)} together with threshold predicates of the form xi ≥ 0 where a
signal xi(t) is a function from a time domain to a value domain. Hence, atomic predicates
are of the form: µ = f(x1(t), . . . , xn(t)) > 0.

In the same way as MTL, STL formulas are interpreted over timed real-valued traces of the
form (time, value). Therefore, timed sequences are of the form ρ : {t0, S0}{t1, S1}...{tn, Sn}
where ti ∈ R+ and is strictly increasing, and Si is a set of signal predicates which are true at ti.

STL syntax modi�es MTL as follows:

φ :: true | µ | ¬φ | φ1 ∧ φ2 | φ1 UI φ2, where µ ∈ Si, µ = f(x1(t), . . . , xn(t)) > 0

STL interpretation rules are derived from MTL rules. A supplementary rule is added:

ρ, t |= µ ⇐⇒ µ = f(x1(t), . . . , xn(t)) > 0

As it is the case for MTL and LTL, the veri�cation of a property allows to determine a
binary (true/false) correctness answer. Sometimes this type of answer may not be su�cient,
and some quantitative degree of satisfaction/violation would be preferable. To tackle this
issue, some authors [51] introduced a robustness degree function for STL. This function of
time computes the distance to violation of a given STL formula. For instance, if we take the
signal predicate x > c, the robustness gives the relative position of x to c instead of only
indicating whether x is above or below the threshold.

Example of properties expressed through LTL, MTL and STL

Let us consider a motor allowing a part to move on an axis. We are going to express
some temporal properties relative to this system. The set of atomic proposition AP might for
instance contain propositions about the state of actuators or sensors (such as the motor state
or the position of the part on the axis). For instance Targetreached and Motorstopped could be
the names of two atomic propositions that are respectively true if the target is reached and
the motor at standstill, and false otherwise.

Temporal logic formulas can be constructed now with these APs to specify properties of
the system. Depending on the need to use qualitative or quantitative time and depending on
the nature of the atomic predicate to specify, di�erent TL formalisms may be chosen. The
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constraint that the motor has to stop at the next time position whenever the target is reached
can be expressed as the LTL formula:

□(Targetreached → #Motorstopped) (1)

The constraint that the motor must run at least once each hour can be expressed as the
following MTL formula:

□(♢[0,3600s]Motorrun) (2)

The constraint that the motor speed takes between 100 and 200 milliseconds to reach its �nal
value which is bounded between 290 and 310 radians per second can be expressed as the
following STL formula:

♢[100,200ms](□ (290 < s(t) < 310)) (3)

with s(t) a function of the motor speed (rad.s−1) depending on time (ms)

These three properties, numbered from (1) to (3), are graphically depicted in Figure 8.

Figure 8: Example of LTL, MTL and STL properties

2.2.3 Monitoring Techniques

Speci�cation formalisms using future temporal operators (Always, Until, Eventually and
Next) are typically interpreted over in�nite traces. This the case for the formalisms presented
above: LTL, MTL and STL. However, the application of these formalisms to the observation
of ICS behaviors has to cope with �nite (expanding) sequences. Consequently, observing a
�nite sequence may not be su�cient to determine the satisfaction or the violation of a tem-
poral property according to its formal semantics. Therefore, it is necessary to provide an
alternative TL semantics to adapt to �nite traces. The problem of interpreting TL over �nite
or truncated behaviors may be referred as the �nitary interpretation [16].
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A) Finitary interpretation

First of all, we have to mention that some TL variants may be directly interpreted over
�nite traces, contrary to standard TL. The temporal operators previously introduced are fu-
ture operators: Always, Until, Eventually and Next. Variant formalisms may introduce Past
operators which are analogous to future ones, but looking into the past: respectively his-
torically noted ■, since noted S, once noted ♦ and previous noted  . The satisfaction of
a future operator at position t depends on the values of the sequence w at some or all the
positions from t onward. The part of the sequence that is considered is called the su�x of
w from t to |w|. For example □p is true at any t if and only if p holds at every t′ ≥ t. The
symmetrical past formula ■p is true at t if and only if p holds at any position t′ ≤ t, in other
words, along the pre�x of w from 0 to t. The motivation to use past operators is that they are
straightforward to use and they can provide more natural and convenient speci�cations [161].
Using only past operators interpreted over �nite trace permits to be free from the �nitarity
interpretation issue. However, past-time Temporal Logic (ptTL) does not yield the expressive
power of full temporal logic [49].

Many other works propose to adapt or rede�ne the semantics of standard TL over �nite
(and possibly truncated) traces [21, 48].

In [48], the authors introduce weak and strong views of the �nitary semantics for LTL.
This work tackles situation when a trace is truncated before the evaluation of a formula was
completed, i.e. when there is a doubt regarding what would have been the truth value if the
trace had not been truncated. For instance, taking the formula ♢φ on a truncated path such
that φ does not hold for any state or the formula □φ on a truncated path, such that φ holds
for every state: in both cases, we cannot be sure whether or not the formula holds on the
original untruncated trace. The strong and weak interpretation of temporal operators allow
to express a verdict for such cases. Therefore in the weak view, the formula ♢φ holds for any
�nite path while □φ is satis�ed if and only if φ is not violated during the duration of the
trace. In the strong view, the property ♢φ is satis�ed if and only if φ holds at any time before
the trace ends, while □φ does not hold for any �nite path.

Concerning the verdict, a common approach is to use a 2-valued verdict (either true or
false), as presented in the above sections. But typically the 2-valued approach does not
allow to provide a truth value for every formula in the speci�c case of �nite traces. Indeed,
in monitoring a property over �nite sequences, three di�erent situations can occur: (i) the
property is satis�ed after a �nite number of steps, independently of the future continuation;
(ii) the property is refuted for every possible continuation, and (iii) the �nite, already observed
pre�x still allows di�erent continuations leading to either satisfaction or falsi�cation.

This is why many works proposed a 3-valued verdict domain instead of a 2-valued one.
For instance, the authors in [20], propose the following 3-valued semantics: true, false and
inconclusive. The three di�erent truth values permit to emit a verdict regarding the satis-
faction/violation of a formula when the truncation of the trace occurs. In this work, given
a �nite sequence u and a formula φ, the truth values are de�ned as expected: if there is no
continuation of u satisfying φ, the verdict returns false. If every continuation of u satis�es φ,
the verdict is true. Otherwise, it is inconclusive, since the observations so far do not permit
to either return true or false. The authors call their logic LTL3 and also construct a deter-
ministic FSM with three output colors corresponding to this 3-valued logic7. The authors
prove that their monitor generation procedure is optimal in two things: �rst, the size of the
generated deterministic monitor is minimal, and second, the monitor is able to execute online
monitoring as traces are monitored continuously. The approach permits to identify satisfy-
ing or falsifying properties as soon as a decisive event occurs. Hence, a violation is detected
exactly when it occurs.

7https://ltl3tools.sourceforge.net/
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However, behind the inconclusive verdict, lies the fact that some properties remain non-
monitorable. This means that some formulas can never be satis�ed (e.g. □♢φ), i.e. there are
always bad extensions.

B) Monitorability

Monitorability refers to the capacity of a monitor, after any �nite number of observations,
to detect the violation or satisfaction of a property. That is, a monitor should run only if it
has the possibility to reach a verdict (with a possible continuation of the observed sequence).
To give an example, let us consider the property ♢φ. This property cannot be refuted since
φ may appear at any time in the future; and once φ happens, we know that the property is
satis�ed, independent on any continuation. It means that the property is monitorable. Now,
if you consider the property □♢φ, we can never hope to reach a point where it is possible to
decide whether this property is violated or not. For whatever happens, we cannot guarantee
or refute that φ will still appear an in�nite number of times. Thus, the monitor still needs to
look up for occurrences of φ in future points in time. This state of indecision of the monitor
is caused by a non-monitorable property.

Several works characterize monitorable properties [22, 2]. Namely, the notions of safety
(□φ) and co-safety (♢φ) properties are introduced. Informally, a safety property states that
�something bad should never happen� and a co-safety �something good happens�. The union
of safety and co-safety properties forms a strict subset of the monitorable properties [21].
However, there remains many non-monitorable properties. The work [21] extends the previ-
ously introduced work [20] with the 3-valued semantics [true, false, inconclusive]. In [21], a
4-valued semantics is proposed by giving a more detailed evaluation of the inconclusive ver-
dict. Informally consider the following example: the property □(a→ ♢b) is non-monitorable
and is therefore always evaluated to an inconclusive verdict. For such a property, the authors
propose the following semantics:

� If the trace ends with the occurrence of b, then the property is evaluated to a truth
value that indicates that it is probably satis�ed. This verdict is called presumably true.

� If the trace ends with the occurrence of a, the property is evaluated to a truth value
that indicates that it is likely to remain unsatis�ed. This verdict is called presumably
false.

This new formalism allows to enlarge the set of monitorable properties [22].

In the remainder, we adopt the strong and weak views [48]. More speci�cally, we use the
strong interpretation of the eventually (♢) operator: the property ♢φ is satis�ed if and only if
φ holds at any time before the trace end. And similarly the weak interpretation of the always
(□) operator: the property □φ is satis�ed if and only if φ is not violated during the duration
of the trace. Furthermore, we only use monitorable properties. Based on the work in [21],
we are able to evaluate properties of the form □(a→ ♢b). Indeed, in real-life control system,
many properties of this type are used, with a being a request/command and b the answer.

C) Implementation of the decision procedure

Two main techniques exist for the implementation of the operational decision procedure
when a property is veri�ed by a monitor: rewriting-based techniques and automata-based tech-
niques.

Rewriting-based technique. A rewriting system does not need any prior processing
and operates directly on the sequence of observations in an event-by-event manner [74]. After
each processed state, the monitored property is rewritten into a new property that has to
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hold in the next state. Then, this newly generated property is evaluated on the remaining
sequence. This rewriting process continues until a truth value for the rewritten property is
reached.

Consider for example the property expressed earlier as Formula 1: □(Targetreached →
#Motorstopped). This property is violated if and only if a Motorstopped event is not observed
at the next position after the occurrence of a Targetreached event. The monitoring require-
ment of the monitor (the formula itself) will not change unless a Targetreached event happens.
In such case, the formula will change to #Motorstopped ∧□(Targetreached → #Motorstopped).
A Motorstopped event at the following step will turn it back into the initial formula, whereas
any other event will turn it into false. Note that this process is immediate and a violation is
detected as soon as it occurs. In practice, evaluating a state predicate and rewriting a formula
is a time consuming task. Thus, even though rewriting-based techniques are typically more
straightforward to implement, they may su�er from worse runtime performance due to the
number of rewrites that have to be processed.

Automata-based technique. Contrary to rewriting-based techniques, automata-based
techniques require prior processing before any observations of the system to monitor. During
this o�ine step, monitors are synthesized as FSMs. Constructing a monitor usually requires
translating a TL formula into a Büchi automaton [153] which accepts pre�xes of in�nite
sequences. The pre�x allows deciding the satisfaction or violation of the given temporal
formula. Hence, a �nite state automaton permits to recognize as early as possible bad pre�xes
and reports violation. In Büchi automaton, since the automaton represents in�nite sequences
(i.e. in�nite words in automata theory), the notion of �nal state does not exist, and is replaced
by the notion of acceptance condition. Therefore, a run of the automaton is accepting if and
only if accepting states (often denoted by a double circle) are visited in�nitely often. In [153],
a formal de�nition of Büchi automaton applied to LTL is given. For quantitative speci�cation
languages, explicit clocks are added and monitors can be synthesized as timed-automata [121].

If we take again the example formula: □(Targetreached → #Motorstopped) with the set of
atomic propositions AP = {Targetreached,Motorstopped}, in�nite sequences are constructed
over subsets of AP and the corresponding automaton represents these sequences. Figure 9
shows a complete Büchi automaton for the above LTL formula. Complete, means that any
possible sequence over AP is recognized by some run, i.e. from each state a transition exists
for each input symbol. In this example, not all runs are accepting: only runs that loop and
continuously visit State 0. The small arrow next to State 0 identi�es the initial state. A
transition labelled 1 should be read as true, i.e. the boolean formula accepts any valuation of
the atomic propositions.

Figure 9: Büchi automaton for the formula □(Targetreached → #Motorstopped)

Note that the previous Büchi automaton can be used for the veri�cation of in�nite se-
quences. As already discussed, the typical obstacle in runtime veri�cation for ICS is that
only �nite traces are manipulated. Therefore, the automaton can be adapted for TL on �nite
sequences. Hence, the FSM in Figure 10 is generated from the LTL3 tools already discussed
previously, created by the authors in [20] and following their three-valued logic LTL3. One of
their tools automatically generates a monitor under the form of a FSM with 3 possible state
categories. Red states are �bad states� (i.e. if a transition leads to that state, the formula was
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violated), green are �good states� (i.e. the formula was satis�ed), and yellow are �inconclusive
states� (i.e. the formula was neither satis�ed nor violated). With this model, a transition can
possibly be an empty set of propositions taken from AP (noted �Empty� on the Figure). On
Figure 10, there are no accepting states. States 0 and 1 are inconclusive and State 2 is a bad
state which would immediately trigger an alert when entered during online monitoring.

Figure 10: FSM generated by LTL3 Tools for the formula □(Targetreached → #Motorstopped)

In our work, we use this tool to generate our monitors, by further re�ning the inconclusive
states, using ideas from the work of the same authors in [21]. Hence, the inconclusive states
are divided into �presumably true� and �presumably false� following a 4-valued logic. Details
on our implementation are given in Part II.

This technique permits the generation of optimal FSMs statically, i.e. before the moni-
toring of the system. Hence, this creates a minimal runtime overhead since monitor synthesis
is done o�ine. The only drawback is the memory space required for the o�ine generation
process. However, during the online monitoring process, the time performances are typically
better for automata-based techniques. Since runtime performance is critical in the case of
ICS intrusion detection, we favor automata-based techniques in our work. Concerning the
�reusability of monitor's code� requirement, and for optimization purposes, we also use in our
work speci�cation patterns.

2.2.4 Speci�cation Patterns

While TL provides suitable formalisms to specify temporal behaviors of system, expressing
properties as formulas can be a tedious task. Properties may grow in size and complexity and
the task of writing a correct formula appears to be challenging. To overcome this issue,
the authors in [47] introduced speci�cation patterns. Speci�cation patterns are generalized
descriptions of requirements on the permissible state/event sequences in a �nite-state system.
They represent a (�nite) set of patterns that occur commonly in the speci�cation of systems.
The authors proved that giving a dataset of 555 property speci�cations (from more than
35 sources and diverse application domains), they could derive almost all of them as their
proposed patterns system. These patterns are generic and highly facilitate the speci�cation of
critical properties for industrial systems. This is a very good asset for our intrusion detection
task, and we can rely on speci�cation patterns to express our security properties.

Several classes of speci�cation patterns were proposed in the literature corresponding to
di�erent types of temporal properties. They can be divided into two categories: qualitative
speci�cation patterns which represent qualitative time properties, and quantitative speci�ca-
tion patterns which represent quantitative time properties. The distinction between qualita-
tive and quantitative time has already been discussed previously.

In our work, we consider complex processes exposing both time-based and event-based
dynamics. In order to describe the variety of temporal behaviors of hybrid systems, we use
di�erent categories of patterns. For example, in a system, the properties to be respected
can be of di�erent types: (i) sequences of events (e.g. Event A has to follow Event B), (ii)
periodicity of sensors reading (iii) or process values that have to stay within a given range.

Each one of the previous examples belongs respectively to a di�erent category of patterns:
(i) events order from the qualitative temporal patterns studied by Dwyer et al. [47], (ii) time
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measurement related patterns from the quantitative patterns proposed by Konrad et al. [96]
and (iii) continuous signals constraints from the extended quantitative patterns proposed by
Maler et al. [107].

Patterns are high-level abstractions of temporal speci�cations and they have to be mapped
onto an adequate formalism in order to be evaluated. Dwyer patterns, may be mapped, for
instance to Linear Temporal Logic (LTL) formulas. Konrad patterns, are expressed in Metric
Temporal Logic (MTL), while Maler patterns rely on Signal Temporal Logic (STL). Each
category of patterns is described below.

Dwyer patterns [47]. Dwyer de�nes two categories of patterns: Occurrence of events
patterns and relative Order of events patterns. Occurrence patterns are: Absence (an event
never occurs), Universality (an event is permanently present), Existence (an event eventually
occurs) and Bounded Existence (an event must occur k-times). Order patterns are: Prece-
dence (Event A must occur before B), Response (Event A must be followed by B); with two
variations for sequences of events: Chain Precedence and Chain Response. These patterns are
represented in Figure 11.

Figure 11: Qualitative temporal patterns introduced by Dwyer

In order to specify the portion of the execution where a speci�cation should hold, the
authors introduce the notion of scope. All the patterns hold within a scope. There are �ve
kinds of scopes: (i) Global (always), (ii) Before an event, (iii) After an event, (iv) Between
two events, and (v) After an event − Until another one. In our work, scopes will permit us
to express local constraints and bound security properties to certain contexts of execution of
the system.

Konrad patterns [96]. Konrad considers time measurements within the patterns. The
scopes remain the same as for qualitative patterns. There are three categories of patterns:
Duration, Periodic and Real-time Order. In the category of Duration, the patterns are: Mini-
mum Duration and Maximum Duration. The Periodic contains only the Bounded Recurrence
pattern (an event must occur at least a given number of times within a period). Patterns in
Real-time Order category are: Bounded Response (timeout) and Bounded Invariance (mini-
mal holding time). These patterns are represented in Figure 12.

Maler patterns [107]. For continuous process variables, Maler proposed a variant of
quantitative patterns speci�cally designed for continuous signals. No explicit classi�cation of
patterns exists as it is the case in Dwyer and Konrad studies. However, from a control system
theory point of view, some basic safety properties can be straightforwardly expressed in Maler
formalism. In that way, in [108], formulas were de�ned for Stabilization (a continuous signal
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Figure 12: Quantitative temporal patterns introduced by Konrad

value will stay within an interval after a given time), Bounded (a continuous signal value will
stay inferior to a given limit value) and Response_Time (a signal will reach a given interval
within a speci�ed time interval). A generic name for continuous signals properties is not de-
�ned yet in the literature. We call these patterns Maler patterns as a tribute to Oded Maler,
author of the formalism.

Summary

In this Section, we have presented the concept of runtime veri�cation which is an e�ective
formal veri�cation technique. If the research community working on runtime veri�cation is
active, the related works applied to the �eld of industrial systems are not abundant. It is a
technique that we consider to be very suitable for our work as it enables online monitoring of
temporal properties, allowing to capture the complex dynamics of industrial systems. This
technique makes use of monitors which are capable of analyzing traces during the execution
of the observed system. Each monitor veri�es the satisfaction of a security property and emits
a verdict accordingly, i.e. a truth value (either true or false).

We presented three variants of temporal logic � which is the most common family of
speci�cation language for runtime veri�cation: LTL, MTL and STL. Using these three for-
malisms, we are able to cover the variety of temporal behaviors of hybrid systems for the
purpose of our intrusion detection task. We then discussed practical aspects of the imple-
mentation of runtime monitoring with the notions of the �nitary interpretation of sequences
of events, monitorability, and operational decision procedure (rewriting-based techniques vs.
automata-based ones). Finally, we presented the notion of speci�cation patterns that are gen-
eralized sets of temporal patterns that could be useful to facilitate system's speci�cation. We
identi�ed three pattern systems of interest: Dwyer patterns (qualitative temporal patterns),
Konrad patterns (quantitative temporal patterns), and Maler patterns (extended quantitative
patterns for continuous signals).

As this Section discussed the theoretical solutions for the online monitoring task, we will
discuss in the next Section its possible deployment on large scale ICSs. Such geographically
spread out environments call for a distributed intrusion detection approach that could handle
local detection alongside global detection.

2.3 Distributed Detection Systems

When discussing practical implementation of an intrusion detection system, the question
of its deployment comes up. While the research e�ort is concentrated on centralized intrusion
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detection, we argue that distributed intrusion detection would be more adapted to real-life
ICSs presenting geographically spread-out equipment.

2.3.1 De�nitions

First of all, we are going to provide de�nitions of centralized, decentralized and distributed
systems. These notions refer to the process by which the activities of an entity are structured
in terms of levels of authority and/or decision. These terms are very general and have a variety
of meanings depending on the �eld of application (political science, strategy, planning, control
theory, computer networks, etc.). We adopt the communication network view. The terms of
nodes are used to refer to the processing entity in the di�erent deployments. Depending on
each deployment, the nodes have di�erent roles and con�gurations, detailed below.

We also have to mention the term Collaborative IDSs (CIDSs) that appears in the lit-
erature, as opposition to isolated or stand-alone IDSs [154, 102]. The authors in [154] give
the following de�nition: CIDSs consist of several entities (the nodes) that act as sensors and
collect data. These entities usually contain one or several analysis units carrying out the ac-
tual intrusion detection on the data obtained from the sensors. The concept of CIDSs was
introduced to designate sophisticated IDSs frameworks, able to correlate events happening in
di�erent places or di�erent networks. A CIDS is therefore able to detect sophisticated attacks
involving multiple hosts (sometimes these attacks are called �distributed attacks�) on a large
part of the network [102]. Depending on their collaboration topology, CIDSs adopt central-
ized, decentralized or distributed architecture. However, these works do not directly relate to
ICS environments. In what follows, we will continue to simply refer to our contribution as an
IDS.

The three typical deployments were �rst introduced in [13] for communication networks
and they are represented in Figure 13. Their application to IDSs are detailed below.

Figure 13: Centralized, decentralized and distributed communication networks

Centralized system. In a centralized system, all nodes are connected to a central pro-
cessing node. This centralized node takes the advantage of full knowledge of the system [65].
In the case of intrusion detection, the central node is the detection algorithm whereas the
other nodes are sensors. Most of the time, sensor nodes are directly forwarding data to the
central node which is in charge of storage and processing every data for the detection task.
A centralized system is generally easy to set up and can be developed quickly.

Here are the main characteristics of a centralized system:

� Single intrusion detection entity : a central node that does all the processing task while
every sensor nodes forward the data. This central node is generally a computer running
the detection algorithms, to which network taps are directly linked.

55



2.3 Distributed Detection Systems Chapter 2 State of the Art

� Global clock : the synchronization between nodes is easy since the sensor nodes only pass
on timestamped data without prior processing. All sensors synchronize with the global
clock, i.e. the clock of the central node.

� Single point of failure: due to the inherent architecture of centralized communication
networks, the whole system is vulnerable to failure. The failure of some sensors would
perturb the central node and, reciprocally, a failure of the central node would annihilate
the detection task.

� Di�cult scalability : centralized architecture are di�cult to scale up. This is mainly due
to the limit in the number of central node connections allowed at a time.

Decentralized system. In a decentralized system, there are multiple processing nodes,
each of them making its own decisions. The �nal behavior of the system is the aggregate of the
decisions of the individual nodes. In the case of intrusion detection, there would be multiple
detection algorithm nodes, each one linked to sensor nodes. Each detection algorithm node
would exercise the detection task locally where it is based, without cooperating with other
detection nodes. A major concern on such con�guration lies in that the detection perfor-
mance may be sub-optimal due to individual detection nodes not having as much information
regarding the state of the system, as in a centralized con�guration [65].

Here are the main characteristics of a decentralized system:

� Multiple intrusion detection entities: more than one central entity exercises the process-
ing task. Therefore, connections with sensor nodes can be shared, allowing to divide
the intrusion detection task into several strategic points in space.

� Lack of global clock : since every node is independent of each other, they have di�erent
clocks that they run and follow.

� Dependent failure of components: only a part of the system is vulnerable to failure, not
the whole system. If some nodes are not operating correctly, the intrusion detection
task would still operate on the una�ected global nodes.

� Improved scalability : decentralized architecture are more easy to scale up than central-
ized systems. New intrusion detection algorithm nodes can be added with respective
sensor nodes which helps to distribute the workload and increase the detection capacity.

Distributed system. In a distributed system, there are multiple processing nodes shar-
ing resources in a synchronized manner in order to achieve a common objective. In the case
of intrusion detection, each node is a detection algorithm node (together with its sensors).
The main di�erence with decentralized intrusion detection lies in the fact that the detection
algorithm nodes are synchronized and share useful data. Thus, it allows detection at the
vicinity of each detection node independently, but it also enables a more high level detection
with aggregated information from every detection nodes.

Here are the main characteristics of a distributed system:

� Multiple intrusion detection entities: the intrusion detection task can be geographically
spread in space.

� Synchronization of clocks: the lack of a common computer clock can cause di�culty in
the temporal ordering of events, since each node needs to communicate for the intrusion
detection purposes. Hence, a synchronization between nodes is required. This can be
performed through Network Time Protocol (NTP)8 or Precision Time Protocol (PTP)9

which are networking protocols for clock synchronization over a computer network.
8https://datatracker.ietf.org/doc/html/rfc5905
9https://standards.ieee.org/ieee/1588/4355/
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� Tolerant to failure: due to their architecture, distributed systems tend to remove bot-
tlenecks or central points of failure from a system.

� Good scalability : distributed systems are highly scalable as they can be easily expanded
by adding new nodes to the network. This would allow the intrusion detection system
to handle a large amount of data and tra�c without compromising on performance,
which is particularly useful for large, complex systems.

2.3.2 Motivations

In the context of intrusion detection for industrial systems, our choice is oriented towards
a distributed deployment of the intrusion detection task.

First of all, a distributed deployment appears to be particularly adapted to large-scale
industrial systems. Indeed, large-scale ICSs are typically geographically spread out and they
operate in a distributed manner (see Section 1.1.2). It appears to be more intuitive to perform
intrusion detection in a decentralized manner onto a system that is itself controlled in a
distributed way. Indeed, it allows to monitor a larger portion of the network (compared
to isolated detection) since the processing tasks are shared. Hence, the respective sets of
observable events are not the same for every detection algorithm node. In other words,
due to the distributed nature of the system, the di�erent detection algorithms process data
from di�erent local loops allowing to divide the detection task, by processing locally the
e�ect of di�erent sets of sensors and actuators. Furthermore, processing events locally allows
to propagate only crucial information generally resulting from aggregation of local data or
local verdicts while avoiding the propagation of useless information on potentially several
kilometers. Therefore, a more high level detection based on such aggregated events (such as
the termination state of a machine for example) is made possible with a synchronization of
each detection algorithm node.

From a performance point of view, distributed deployment permits to distribute the com-
putational load required for the detection task and keep processing and memory overhead as
low as possible without impacting the monitoring capabilities. Advantages of a distributed
con�guration include modularity, scalability and robustness [65].

Another motivation for using a distributed deployment for intrusion detection is the ability
to detect wider categories of attacks. In a distributed intrusion detection system, knowledge
about current local states can be aggregated and exchanged in a cooperative manner. Hence,
multiple local information may be required for the monitoring of a more high level security
property. This allows to detect global system violation that would not have been detectable
from any local view solely. This point is demonstrated in [56], where the authors present a
�one-to-many� attack scenario, i.e. a single attacker launching attacks against several com-
ponents. It is shown that a single intrusion detection node is not aware of the entire attack
scenario since its knowledge is limited to local events. Therefore, detecting this scenario
requires collaboration between concerned detection nodes.

2.3.3 Challenges of Distributed Deployments

A) Communication

One of the main challenges in distributed system deployment is the communication be-
tween nodes, since node cooperation heavily relies on the communication network medium
that connects spatially distributed entities. The authors in [65] state that this issue is of-
ten the main factor to cause system performance degradation. As de�ned by the authors in
their work, the communication issue may include (but are not limited to): network-induced
delays, data packet dropouts, data packet disorder, quantization error, time-varying network
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topology, network channel fading and time-varying network throughput. In our work, we face
primarily:

Network-induced delays. We face more speci�cally transmission delays in the commu-
nication network which are dependant on network conditions such as network channel quality
and network tra�c congestion due to a limited bandwidth of a communication network. Such
constraints in the communication resources are to be asserted during the design and imple-
mentation of the distributed intrusion detection system. Indeed communication networks
may possess limited bandwidth and restricted transmission rates. For instance, Ethernet
communication network features are de�ned in the IEEE 802 family of standards10.

Data packet disorder. This issue occurs when timestamped data transmitted by some
nodes arrives at the destination node in a di�erent temporal order. This situation usually
occurs because of network-induced delays, and especially when the delay is greater than the
prescribed sampling period of the received events.

B) Runtime Veri�cation

Another challenge concerns the practical implementation of monitoring a global system
requirement, i.e. a requirement that includes several local nodes information. In the context
of runtime veri�cation, these requirements translate as properties, that we will call global
properties in the sequel (in opposition to local properties).

Due to the distributed nature of industrial systems, monitoring a global property requires
to gather data from many distinct traces from di�erent local views of the system. In the case
of a distributed deployment for the intrusion detection task, no (virtual) global trace of the
system is directly available, as it would be the case in a centralized/decentralized deployment.
Indeed, in the latter, a global trace could easily be reconstructed from local traces to simplify
the evaluation of global properties. In distributed deployments, by nature, there are no central
data collection point where all the component's behavior would be observable. Therefore, the
question of monitoring such global properties need to be addressed.

Let us provide an example of such a global property. Take a system S composed of two
subsystems S = {A,B}. The subsystems A and B are industrial tanks containing liquids.
These tanks are equipped with sensors that give indication on the liquid level (for tank A, a0
means low and a1 means high whereas for tank B, b0 means low and b1 means high). For each
subsystem we de�ne the set of atomic propositions: APA = {a0, a1} and APB = {b0, b1}.
These two subsystems are monitored locally in an autonomous manner. Local intrusion detec-
tion nodes are able to monitor local security properties including local predicates. However,
monitoring a global security property is not straightforward since it includes predicates from
both subsystems. For example, one requirement of the system S could be that �Tank A and
B must not be empty at the same time�. This is an Absence pattern that can be written
in LTL as the following property φ = □(¬(a0 ∧ b0)). Each tank has information on its own
liquid level but has no way of knowing the level of the other. Thus, this is a global security
property. This example is illustrated in Figure 14.

The challenge is therefore to de�ne an e�cient methodology to monitor such properties.
Generally, either (i) a global point of observation is introduced, in which case the monitoring
falls back into the classical TL monitoring problem, or (ii) no global point of observations is
introduced. In that case, monitors have to communicate with each other and the monitoring
process can take several steps before reaching a verdict. In [19], the authors propose an
approach using the rewriting-based technique whereas a similar work is done for automata-
based techniques in [118].

To answer the same challenge of monitoring global properties, the authors in [34] propose
three possible settings:

� Orchestration, where a single monitor conducts all the monitoring process while receiving

10https://ieee802.org/
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Figure 14: An example of a system's global security property

local events from other local monitors. Note that the processing monitor may either be
one of the monitors attached to local components or an additional monitor introduced
into the system.

� Migration, where the monitoring entity transports itself across the network, gathering
required information through the process.

� Choreography, where monitors are organized into a network, each of them in charge of
monitoring a �projection� of the formula.

Our contribution adopts a setting close to Orchestration, in order to address the special
case of global security properties. An adaptation is proposed to match both the distributed
IDS deployment and the ICS use case. Details are provided in next Part.

2.3.4 Related Work on Distributed Intrusion Detection

In the literature, most of the works deploy a centralized intrusion detection system. This is
mostly explained by the straightforward implementation of such deployment and the fact that
it is amply su�cient for testbed demonstrations. In such approaches, only locally available
data is monitored. In the majority of distributed IDS from the literature, only the data
collection task is distributed and not the intrusion detection task itself. In such approaches,
the data may be pre-processed locally, and it is in any case forwarded to a more central entity
for the purpose of intrusion detection. For instance, in the prior work in [145], the authors
presented one of the earliest distributed intrusion detection framework for heterogeneous
networked systems. The prototype implements preliminary event analysis at local nodes and
a unique centralized analysis, called the DIDS director (where DIDS stands for Distributed
Intrusion Detection System). The novelty of the presented architecture was to propose a
distributed data collection and pre-processing, performed through individual hosts and Local
Area Network (LAN) monitors. However, the main intrusion detection task is centralized.

Similarly, in [117] the authors deploy a rule-based distributed IDS for large-scale smart
grids. The authors introduce a master node connected to numerous sensors. Each sensor
collects local data in order to forward it to the master node, with no local prepossessing.
In [12], the authors propose a hierarchical architecture with two layers: (i) a basic process-
ing layer for input data based on statistical methods and (ii) a central evaluation module
based on partially ordered events through Petri nets. The authors prove that the distributed
architecture provides better processing balance and accelerates intrusion detection. In this
approach, the workload is distributed due to the basic processing on each local node, but
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there is still a central module doing the main processing. Even though these methodologies
may allow to distribute basic processing tasks and permit to handle heavy network tra�c, we
argue that they still present a centralized detection structure. The various processing nodes
are executing di�erent tasks and they are dependant on each other. Such a deployment is
prone to bottlenecks and have single points of failure.

However, few works present a genuine distributed intrusion detection deployment using
several cooperating detection nodes. The work in [56] presents a framework for distributed
intrusion detection applied to computer networks only. The framework is composed of sev-
eral collaborating intrusion agents and it operates in a completely distributed manner, i.e.,
data acquisition, data analysis, and communication tasks are decentralized. Therefore each
intrusion agent has a layered structure comprising the following modules: sensor, detection
(misuse-based and anomaly-based), alert correlation and reaction. The authors use commu-
nication and synchronisation methods from the research �eld of intelligent agents, but few
details are provided on these topics. Furthermore, the method has not been tested on a
physical system and relies on a simulation. The authors in [7] address the case of power grid
SCADA systems and adopt a distributed methodology that they deem more adapted to the
great amount of data generated at each substation. The authors present a tool detecting
malformed packets in a wide range of SCADA protocols. The tool connects to network tap
interfaces. The approach is distributed as most of the data analysis is performed locally at
substations and only aggregated operations are performed at the control center. Hence, the
control center performs data aggregation and correlation. However, the paper does not indi-
cate whether local substations have autonomous intrusion detection capacity and if alerts can
be raised locally on local events. In [137], the authors propose a distributed intrusion detec-
tion framework, composed of multiple IDSs (called the �SCADA intrusion detectors (SCIDs)�)
placed at every level of the ICS. The authors do not rely on any central components. To our
knowledge, it is the only work mentioning �eld level by placing SCIDs on �eldbuses. Each
SCID is tailored to analyze the speci�c network tra�c at its surroundings and is able to
detect anomalies. Furthermore, it has the ability to propagate the results of its analysis to
other SCIDs in order to identify distributed attacks. The interaction between SCIDs is done
through the �publish/subscribe� paradigm. However, the paper is lacking an experimental
application and no results are provided.

Summary

In this Section, we have presented three typical network communication deployments
for intrusion detection systems: centralized, decentralized and distributed. We focused on
distributed deployment for intrusion detection systems as it appears to be particularly adapted
to large-scale geographically spread out industrial systems. Indeed, distributed deployments
allow to tackle heterogeneous networks with heavy workloads. It also permits to avoid relying
on a central detection entity and prevents from single point of failures.

Concerning implementation details, few (if any) distributed approaches from the literature,
validated a prototype comprising �eldbus data capture. As previously stated, this is an aspect
we tackle in our contribution. Finally, implementing runtime veri�cation in the context of
distributed deployments faces some challenges. Local properties relying on a single local
execution trace are straightforward to evaluate. But global properties relying on multiple
execution traces across the network can be more challenging to evaluate. In the literature,
several approaches exist for the monitoring of such properties.

2.4 Conclusion and Positioning

In this Chapter, we presented a taxonomy and a literature overview of intrusion detection
methodologies for ICSs. We also presented the concept of runtime veri�cation, a lightweight
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veri�cation technique we adopt for our detection task. We �nally discussed typical network
communication deployments for intrusion detection, with a particular interest towards dis-
tributed deployments and its relevance in industrial systems.

The state of the art on IDSs for ICSs shows a great interest in behavior-based approaches.
Such approaches are interesting for industrial systems since they allow to detect novel attacks.
However, they also present some remaining di�culties. From the literature, we have identi�ed
the following weaknesses:

� Limited comprehension of the physical process. Behavior-based IDS approaches
confronted to the rising trend of ICS tailored attacks favor the detection of process
aware attacks. However, many works focus solely on the communication aspects of ICS
networks, with a limited comprehension of the physical process. We argue that such
approaches lack e�ciency against process aware attacks. With respect to such attacks,
accurate and e�cient intrusion detection requires observations and understanding at
the level of the physical process. We also note that physical process knowledge includes
di�erent levels of abstraction: (i) Control data and control logic, but also (ii) functioning
modes and operational contexts. Furthermore, from a technical aspect, the closer to the
physical process is the observation, the better. Industrial �eldbuses observations show
very little implementation in the literature, but would be fruitful to implement.

� Cost of detection model construction. With respect to speci�cation-based ap-
proaches, that we deem promising for behavior-based detection of process aware at-
tacks, the main drawback is the manual characterization of the detection models. Not
only this is a time-consuming speci�cation task, but it also requires a deep and exact
knowledge of the whole physical process. To reduce the cost of designing the models, a
systematical approach for the speci�cation extractions would be more appropriate.

� Limited model expressiveness. Many exploratory research works su�er from insuf-
�ciently expressive models. For instance, few works encompass explicitly the notion
of time into their model. The evolution of real-life ICSs through time presents both
event-driven and time-driven dynamics that require di�erent formalisms to be studied.
In order to capture the full dynamics of industrial systems, adopting a more expressive
formalism is required.

� Limited observation range. The research e�ort is concentrated on centralized in-
trusion detection. Such approaches often generally develop a stand-alone IDS with a
limited observation range (data collected in its immediate vicinity) which gives small
visibility on the system they intend to protect. Even if such approaches are well adapted
to testbed experimentation, they generally su�er from no scalability to spread-out en-
vironments. Consequently, they are not able to detect distributed attacks. Very few
distributed approaches stand out in the literature. We argue that this direction has to
be explored as it would permit to gain observation range and increase the number of
detected attacks.

Positioning

In this manuscript, we aim at answering some of the weaknesses mentioned above. Our
work consists of a speci�cation-based detection framework directed towards the detection of
process aware attacks. We address the main drawback of speci�cation-based approaches (man-
ually derived rules) by presenting a systematic methodology for the speci�cations extraction
from international and industry standards. Moreover, in addition to being systematic, our
approach, once deployed, requires only few updates (compared to most speci�cation-based
approaches) as they mostly depend on changes in standard speci�cations. Another originality
of our approach lies in the fact that data collection is distributed across the system and in-
cludes �eldbus level data collection in addition to Ethernet TCP/IP networks. Our framework
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tackles the monitoring of hybrid dynamic systems by making use of expressive formalism from
the TL family of speci�cation languages. This allows us to characterize the systems' behavior
as security properties over temporal constraints. Our model encompasses physical process
behaviors, with both knowledge about control data/logic and context knowledge. Context
knowledge concerns operating modes of components or more general functioning phases of
the system.

The methodology to design such intrusion detection models is the object of Chapter 4.
The deployment of our methodology is detailed step by step in Chapter 5. This instance of our
IDS enables detection of security property violations occurring at its vicinity. The detection
of a broader category of attacks together with a more scalable framework calls for multiple
instances of our IDS framework. Therefore, Chapter 6 details and answers the challenge of a
distributed deployment of our methodology. We perform a distributed detection task includ-
ing the veri�cation of local security properties and the veri�cation of global system security
properties. Figure 15 and 16 give a global overview of the positioning of our contributions.

Figure 15: Global positioning of our contributions - Chapters 4 and 5

Figure 16: Global positioning of our contributions - Chapter 6

Following the same taxonomy as the one used to review the state of the art of behavioral
IDSs for ICSs (see Table 2), our contribution � which aims at answering the 4 previously
identi�ed weaknesses � is synthesized in Table 3.
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Authors Year Approach Phys.
Proc.
Knowl.

Implem.
Technique

Data Source Deploy. Hypothesis Att.
Typo.

Expe. Evaluation
Methodo-
logy

E. Hotellier
et al. [79]

2024 Control
data and
control
logic

High Set of rules
expressed with
TL (LTL, MTL,
STL) obtained
by safety prop-
erties extraction
from standards
− runtime veri-
�cation

Network: traf-
�c between
Supervisory
Control and
Distributed
Control and
at local loop
level

Centralized
and Dis-
tributed

Systematical
methodology
but not auto-
matic

Process
aware
attacks

Two
phys-
ical ICS
testbeds

Detection
capabilities,
Scalability
and Exten-
sibility

Table 3: Global characteristics of our contributions
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Introduction

Before describing our intrusion detection framework, we want to point out the fact that
the experimental part of our work was conducted on two ICSs testbeds.

Cybersecurity research helps to anticipate future attacks. The validation of new coun-
termeasures has to be led on realistic platforms for getting precise and fruitful feedback for
cyberdefense. This is the reason why we dedicate this Chapter to an introduction on industrial
physical testbeds.

We will start by brie�y presenting our motivation for using testbeds, then we give an
overview of existing work on industrial physical testbeds. Then, we describe the two ICS
physical testbeds we used in our work. Finally, practical details are discussed for capturing
network tra�c on these testbeds.

3.1 Motivation

The use of industrial platforms o�ers many bene�ts to organizations. They provide a
realistic and safe testing environment. They are proven to be the most e�ective tool for
awareness and training [9]. Moreover, they can be used for threat detection evaluation.
However, the asset we are most interested in here is the functional validation of intrusion
detection solutions such as IDSs. The main challenge in industrial systems cybersecurity
research is to create a realistic environment. Obviously, it is not possible to execute attacks
� with potential disastrous consequences, on a real facility. On the other hand, reproducing
a physical process of realistic size is very costly and challenging if not impossible in the case
of a dangerous process (e.g., chemical factory). The present Section is dedicated to industrial
platform initiatives. We will give several de�nitions, present the state of the art of ICS physical
testbeds with a special focus on virtualized physical processes and maritime testbeds since
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these are features of the two testbeds used in our work. Finally, the testbeds used in our
experiments are presented.

3.2 De�nition and Criteria

With the development of the cybersecurity research on industrial systems, more and more
ICS testbeds have been developed for testing intensively the e�ciency of cyberdefense mea-
sures. Related to this topic, the paper [35] deserves particular attention since it is a recent
and complete survey on ICS testbeds for cybersecurity research. The authors de�ne testbed as
a testing infrastructure, consisting of a scaled-down version of a real ICS, created ad hoc to re-
produce real-world systems but in a controlled environment. The authors in [35] classify three
possible types of testbeds: physical, virtual and hybrid ICS platforms. ICS physical testbeds
use real hardware and software to con�gure both the network and physical layers. These
testbeds are the most accurate since they are the nearest to the reality. Real experimental
conditions (noise, latencies, etc.) lead to a precise and detailed understanding of the system,
which will allow more e�cient countermeasures (e.g., low False Positive Rate). Moreover, this
kind of platform allows to exploit the vulnerabilities of a speci�c device or protocol imple-
mentation weakness. On the contrary, virtual ICS testbeds use software simulations, and/or
virtual machines, and/or emulations to replicate a system (networks and components). Even if
they are more �exible and cheaper solutions than ICS physical testbeds, this option generates
data with lower �delity. Indeed, virtual platforms cannot reproduce the behavior of real �eld
devices like PLCs or drives for instance. Therefore, it is not possible to reproduce threats that
exploit vulnerabilities of real devices. On the side of hybrid testbeds, they are a conjunction
point of the other two categories. They use both physical devices (such as PLCs, HMIs, etc.)
and software simulations (of actuators and sensors for example). This solution allows to keep
good �delity due to the physical equipment deployed, but at the same time limits the cost
and development time. They represent a good trade-o� between physical and virtual testbeds.

Testbeds must then be di�erentiated from two other close concepts: Cyber Ranges (CRs)
and Digital Twins (DTs). CRs are mainly virtual testbeds dedicated to train operational
teams to improve their responsive capacity in case of a cyber crisis, and show safely the
consequences of an attack to non-experts (e.g., C-level managers). Clearly, the objectives of
testbeds and CRs are di�erent; in testbeds, cybersecurity experts want to experiment coun-
termeasures on a representative version of their system. On the other side, cybersecurity
analysts, operators and possibly non-experts use CRs to quickly instantiate exercises of cy-
berattacks on a given system (possibly not the one the trainees daily operate), to increase or
assess their cyber awareness level, or their operational experience. A DT can be de�ned as a
digital representation of a physical object, asset or system (here, either a factory or a ship).
The traditional roles of DTs are predictive maintenance, failure analysis and recovery, and
alternative architecture design testing. Since Cyber DTs are mainly virtual platforms, they
also come with additional challenges [78], and are costly to create, maintain and run. With
regard to these de�nitions, the two platforms used in our work are testbeds, and they are
described in Section 3.4.

According to [35], testbeds can be benchmarked and compared through four main criteria:
(i) Fidelity, (ii) Repeatability, (iii) Measurement Accuracy, and (iv) Safe execution. Any
testbed is a trade-o� between all these criteria with respect to various constraints.

(i) Fidelity. A testbed with a high degree of �delity perfectly replicates the devices
and processes from a real-world ICS. The more layers of physical, IT, and OT networks are
implemented in a testbed, the more realistic it is.

(ii) Repeatability. Repeatability of the experiments generally means higher con�dence.
It allows third-parties reproducing attacks and countermeasures under the same conditions
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as originally de�ned, in order to compare �ndings and solutions on the same system.
(iii) Measurement Accuracy. In order to get accurate and reliable data from an ICS

physical testbed, synchronized sensors can be integrated in di�erent places. These passive
probes do not disrupt the underlying physical process.

(iv) Safe execution. According to [35], it is di�cult (if not impossible) to deploy attacks
in a real environment since they can damage the physical process or some devices. Therefore,
a testbed can be viewed as a �sandboxed� environment with safe executions of attacks.

(v) Deployment Cost. One could add this �fth criteria, since deploying a testbed can
be a very costly operation (especially for physical testbeds).

3.3 ICS Physical Testbeds

The work synthesized in [35] constitutes a recent and complete survey about ICS testbeds
and datasets for security research. We do not consider the fully virtual testbeds since they
di�er too much from the testbeds used in our work. On the other side, fully physical testbeds
are most of the time real size processes, built especially for cybersecurity studies. Lots of them
are costly nationwide projects, the best known being the Idaho National Laboratory [43, 24]
which is a massive industrial site. This testbed encompasses di�erent facilities across multi-
disciplinary areas such as an electric power grid, a water treatment system, nuclear facilities,
etc. Compared to many physical testbeds, this one is not a scaled-down version of a real sys-
tem, it is a full-scale site spanning over 2300 km2. However, it is quite di�cult for students or
researchers to have access to such an industrial site. Eventually, there was an intense activity
in construction of physical testbeds recently [4, 3, 70, 109, 30]. Yet, changing the physical
process in these solutions is costly. Therefore, virtualizing the physical process appear to be
a good trade-o� solution.

Let us consider the platforms on which only the physical process is virtualized since it is
the technology of one of the testbed used in our work. Some approaches rely on commercial
interface boards in order to connect the physical process and control devices (Arduino shields,
Raspberry Pi modules or specialized data acquisition modules) [76, 66]. These interface
boards are most of the time limited to digital Input/Output (I/O) and rarely analog I/O.
When available, analog outputs are one or two in number which gives very few opportunities.
Beyond the communication aspect, few details are given about the process simulation in these
approaches.

Many approaches rely on commercial simulation software [61, 99, 3] like Matlab/Simulink1,
OPAL-RT2, LabVIEW3, Power-World4. Several works use software process simulation mod-
eling. These software are dedicated to a certain kind of process (e.g., chemical industry) [25,
143, 8] and they are mainly used for productivity forecasting. They are not designed to com-
municate with other components such as PLCs and thus do not have any network interface
(such as Modbus). Other approaches are sparsely con�gurable and are not meant to repro-
duce an industrial process. Rather, they are used to test and stress SCADA by populating
data [36, 44, 45]. Additionally, new generation 3D simulation softwares, like Home I/O5 or
Factory I/O6 are being developed for technical and professional education. Home I/O is a
virtual house with a lot of automated components, whereas Factory I/O allows the user to
build a virtual factory by assembling subsystems. Both softwares can be interfaced with real
PLCs. Since they are not open source, they remain costly to use for research and/or student

1https://www.mathworks.com/products/simulink
2https://www.opal-rt.com
3https://www.ni.com/labview
4https://www.powerworld.com
5https://realgames.co/home-io/
6https://factoryio.com
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projects [128].

Furthermore, special attention is given to maritime testbeds since one of the testbeds
used to deploy our work is a replica of a warship. Among related work dedicated to the
maritime domain, the authors in [148] proposes a roadmap for the creation of a specialized
maritime-cyber lab, which combines maritime technology and traditional cybersecurity labs.
The proposed Cyber-SHIP Lab (Software, Hardware, Information and Protections) hosts a
range of real, non-simulated, maritime systems. This paper mainly describes the planned
future works on Cyber-SHIP platform, e.g. gathering real maritime equipment that can
be found on a ship's bridge for pentesting, providing signal simulation to test spoo�ng and
jamming, and software tools for vulnerability and risk analysis. Even if it is impossible to
recreate every available bridge setup, the authors in [148] claims that a number of bridge
con�gurations can be achieved with a single lab. The authors admit that the main drawback
of Cyber-SHIP Lab is its prohibitive cost. Moreover, many technical details are lacking in this
paper, e.g., the detailed architecture of the Lab, its IT/OT components and the considered
cyberattacks. It is thus di�cult to compare fairly our warship testbed with this reference.

The continuation of this work is described in [149], where the desired platform depicted in
[148] is still not completed at the publishing time. The authors in [149] provide a conceptual
and generic analysis on how CRs can be used in the maritime context. This article presents a
hybrid approach combining real physical data and simulation, where up to 3 physical testbeds
can be interconnected. The architecture of their CR is simpli�ed into 3 layers: OT part tends
to exist on the physical layers (e.g., propulsion, energy, etc.), while IT part lies on the higher
layers (e.g., network packets, operational data). Even interesting, only a few technical details
on the CR are provided, for example it is not easy to di�erentiate what is really physical from
virtual, and the implemented cyberattacks and detection means are not described.

The work in [134] proposes a virtual port logistics and supply chain cybersecurity training
platform. This CR is built to organize small cyber exercises on speci�c topics. It is hosted
on a rack server, the network side is virtualized, and the computers used in the exercises are
running in Virtual Machines (VMs). It enables the simulation of cyberattacks and defences,
identi�cation of threats and vulnerabilities, tra�c monitoring and in-depth analysis. It con-
sists mainly of customized work�ows for setting up the scenarios with virtualized systems.
Participants use a remote desktop or similar equipment to connect to the environment. Tech-
nical vs. non-technical information can be displayed during the training sessions, depending
on trainees' level of technical skills. This testbed is mainly virtual. OT components can be
optionally included in their CR, while the testbeds we use in our work are mainly dedicated
to this kind of devices. Moreover, the trainees have only visibility (and then, can only act)
on user scenarios, and not on network topology, virtual and hardware environment.

The authors in [132] present a maritime CR environment, combining navigational, infor-
mation and telecommunications systems, networks, and SCADA systems. It supports mar-
itime vulnerability, penetration and exploitation scenarios, tra�c eavesdropping, positional
systems spoo�ng, navigation takeover, signal intelligence scenarios, and others. It combines
simulated and emulated systems to be as realistic as possible. It is made of two main entities:
a single ship or a �eet, and an ashore maritime center. Among all the implemented maritime
CR components, the �Machinery Control System� is the most related to our testbeds, since it
involves PLCs to get information about the ship's machines characteristics (e.g., temperature,
engine speed, fuel supply, etc.). The work presented in [132] is particularly focused on radar
and Automatic Identi�cation System (AIS) attacks. Finally, it is claimed that various hacking
positions are possible, but no precise attack scenario is given, so it is di�cult to both compare
with [132] and assess the feasibility of their attacks.

The work presented in [23] is about a testbed for cyber security awareness in the maritime
domain. Two subsystems are implemented: the propulsion system with the engine control,
and the navigation system with a rudder. Some sensors and actuators (e.g., temperature
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sensing) are simulated with Arduinos. The testbed instantiates Supervisory control with a
SCADA component implemented with a dedicated HMI. IDSs are also deployed to check
some basic safety properties. Three attacks are described: forging a TCP packet with a
speci�c payload to stop the program loop of one automaton, using speci�c messages to write
data to the memory of one automaton, combining two situations that are considered valid
individually, but where their conjunction leads to an unfortunate situation. It appears that
it is a small scale ICS testbed, with a few integrated components, and only two implemented
subsystem loops of a warship.

3.4 Testbeds used in our Work

The �rst testbed we used for the experimental part our work, is GreEn-ER7 Industrial
Control systems Sandbox (G-ICS) [133]. The second is a representative model of a warship
situated in Naval Cyber Laboratory, Naval Group Ollioules, which was presented in our pa-
per [140]. These testbeds were used for the experimental validation of our work as they permit
practical attacks and related countermeasures to be safely benchmarked. Let us describe their
features.

3.4.1 G-ICS Testbed

G-ICS is a �exible testbed used for both research and training. It is based on a Hardware-
In-the-Loop (HIL) technology which combines the advantages of virtualized and physical
testbed. The solution adopted in G-ICS virtualizes only the physical process alongside sensors
and actuators. These virtualized elements are connected to real industrial control devices (like
PLCs, HMIs) using an open source electronic interface system. Figure 17 gives an overview
of the Hardware-In-the-Loop solution adopted in G-ICS testbed.

Figure 17: Overview of the HIL system of G-ICS testbed

All di�erent layers of the Purdue Model are represented through a diversity of real indus-
trial devices and commercial SCADA softwares. Added to the physical components, there is a
simulation of the physical process, sensors and actuators. Because industrial interfaces from
PLCs are not compatible with those of a computer, electronic boards are needed to interface
industrial devices and the computer running the simulation. The simulation is a computer
program. Between the electronic boards and the simulation, there is a software that takes the
information from the virtualized sensors and actuators and passes it on to the analog and/or
digital inputs of the electronic boards. The outputs of the board are then directly wired
to the analog and/or digital inputs of a PLC or other industrial devices with I/O modules

7Grenoble Energie - Enseignement et Recherche
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and interfaces. Boards can also integrate industrial serial interfaces such as Modbus Remote
Terminal Unit and CAN.

Figure 18: Overview of G-ICS testbed © All rights reserved

In terms of surface area, the testbed takes up a whole room, see Figure 18. Concerning
the industrial equipment forming the testbed, there are Commercial-O�-The-Shelf (COTS)
(controllers, protection relays, remote terminal units, industrial HMIs, etc.) from several
vendors and several supervisory control servers. Added to that, three industrial cartesian
robots are also in the room. The robots are called �cartesian� in reference to the Cartesian
coordinate system. In geometry, this coordinate system speci�es uniquely points in space.
Typically in two dimensions (which is the case for our robots), each point is positioned in space
using pairs of numbers (x axis and a y axis). Here, the three robots are drawing robots using
a two axis cartesian positioning system. Thanks to the Hardware-In-the-Loop system, the
testbed is highly con�gurable since any physical process can be simulated and interconnected
with the physical components. The �rst experimental part of our work (Chapter 5) is based
on one of the three cartesian robots, further detailed whereas the second part of our work
(Chapter 6) uses two cartesian robots in addition to a virtualized manufacturing plant.

3.4.2 Naval Testbed

The naval ICS testbed used in our work implements a representative model of a surface
warship. It is composed of a physical part and a device control part, see Figure 19. This
environment is representative of a warship in terms of manufacturing brands of the equipment
(Siemens and Schneider Electric) that compose it and in the general architecture but it is not
similar in terms of complexity and quantity of equipment. The simpli�ed architecture scheme
of the testbed is available in Figure 20. For simplicity, some equipment are not represented
(for example, industrial �rewalls connected to switches).

The architecture implemented in our testbed shows four main functions of the ship: Di-
rection, Energy, Artillery and Propulsion. We call subsystem loop the system comprising the
local network of a speci�c maritime function. Four subsystem loops can be identi�ed:

� Direction subsystem (Schneider Electric PLC M340-20): allowing to control the direc-
tion of the ship. This involves acting on the rudders position in order to vary the ship
direction.
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Figure 19: Overview of the warship−HMIs and Physical view (top) and Industrial control devices view
(bottom) © Naval Group SA in Sicard Franck, Hotellier Estelle, and Francq Julien. An Industrial
Control System Physical Testbed for Naval Defense Cybersecurity Research. In : IEEE European
Symposium on Security and Privacy Workshops (Euro S & P W). IEEE, 2022. p. 413-422.

Figure 20: Architecture of the warship
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� Energy subsystem (Schneider Electric PLC M580-1020): allowing to supply fuel. It is
a functional servitude that operates �lling and emptying the fuel tank.

� Artillery subsystem (Siemens PLC S7-1214): allowing to control the 76mm gun turret
model. It acts on the positioning of the gun turret (azimuth, elevation) and �ring.

� Propulsion subsystem (Siemens PLC S7-315): allowing to control the propulsion of the
ship. The aim is to act on the propulsion propellers to vary the speed of progress of the
ship.

Each subsystem loop is driven by a PLC. The di�erent PLCs communicate with each
other via coordination PLCs (M580-3020 and S7-1516). These coordination PLCs are also
used as data hubs for the Supervisory Control. Each subsystem loop is controlled by au-
thorized human operators, either manually on the equipment, locally from a local HMI or
remotely from the Supervisory Control HMI. It is important to note that these OT systems
(subsystem loops and Supervisory Control) are complemented by an IT level corresponding
to Levels 3 to 5 of the Purdue Model (denoted MIS Network in Figure 20). This IT level,
is composed of VMs either generating tra�c on our ICS physical testbed (�normal� tra�c
with the Trajectory Generator VM and �malicious� tra�c with the Attack Generator VM) or
managing cybersecurity information (Cybersecurity Supervision VM).

Concerning the communication between low-level components, there are �eldbus networks
using Modbus Remote Terminal Unit and Pro�bus, whereas higher level components imple-
ment Modbus Transmission Control Protocol (TCP) communication protocol.

3.5 Monitoring Network Tra�c

From a practical aspect, capturing network tra�c is required in order to implement our
intrusion detection approach on a testbed. Concerning the implementation of our solution,
we decided to rely on an existing open source NIDS since this type of solution is usually
supported by a large community. Consequently, it is expected to be maintained and tested
in di�erent environments, making it safer than a home-made one. In what follows, we give a
rationale for using Zeek in our work compared to some other existing open source IDS.

The considered open source NIDSs are Snort8, Suricata9, and Zeek10.

Community

These three solutions are free and open source. They are supported by a large and active
user community. The contributors can be industrials as well as academics.

Detection rules

Every IDS solution relies on detection rules to monitor the network tra�c. The three
solutions allow users to deploy custom rules.

Snort and Suricata even propose sets of pre-established rules, some available for free and
others that can be purchased. Users can easily create new rules and their integration is quite
simple and easy to implement. On the contrary, implementing rules with Zeek is not as easy,
but o�ers more �exibility.

General framework

Suricata and Snort are comparable in their framework design. They encompass a detection
engine that execute the rules set by the user on the incoming network tra�c. They are more

8https://www.snort.org/
9https://suricata.io/
10https://zeek.org/
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oriented towards signature analysis. On the contrary, Zeek is more of an anomaly detection
system. Its architecture allows users to develop complex rules utilizing scripts to analyze
tra�c. The scripting module enables temporal analysis between di�erent frames, which is not
supported by signature-oriented IDSs.

OSI layers
Most of the IDSs aim to protect companies networks. Therefore, their implementation

makes them able to track protocols over TCP or UDP which are Layer 4 of the Open Systems
Interconnection (OSI) model. They also tackle protocols over IP, which is Layer 3 of the OSI
model. That is the case of the three di�erent IDSs. They also have visibility at the application
layer (Layer 7 of the OSI model) and they can identify HTTP or SSH tra�c for example.
Nevertheless, we have to �nd a way to run the IDS on Layer 2 of the OSI model since we
are going to encompass �eldbuses in our project. On this matter, it is necessary to create a
parser for the services we are going to work with.

Adding a parser
From what has been discussed in the previous paragraph, implementing a new parser is

a feature that needs to be taken into account for our project. Few information is available
about developing a parser for either Suricata or Snort but since the tools are implemented
in C, it should be feasible to come up with a new parser. Zeek ensures the maintenance
and distribution of BinPAC which is a declarative language and compiler designed to create
new parsers [125]. A lot of documents and tutorials are available for using and implementing
BinPAC11 with Zeek.

User experience
Suricata provides a dashboard and is known to be really user friendly. On the contrary, it

is said that Snort graphical interface is not very user friendly but the community has worked
on this issue and provided many GUIs (Graphical User Interfaces). Concerning Zeek, there
is no interface and picking up with the tool can be quite challenging.

Performance
According to the literature, for simple rules and on Linux environment, Suricata shows a

better processing rate than the two others [6, 72].

The aforementioned characteristics are summed up in Table 4.

Eventually, Zeek seems to be the most suitable open source IDS for our approach. The
main motivations being the following:

� Zeek is more oriented towards anomaly detection while Suricata and Snort master
signature-based detection;

� Zeek is highly con�gurable and o�ers the possibility to implement sophisticated rules in
its own scripting language;

� Adding a parser is a well-documented process that will allow us to encompass Level 2
of the OSI model in our contribution.

11https://github.com/zeek/binpac
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Snort Suricata Zeek

Community Active user community
Detection rules Pre-established rules

can be purchased,
Pre-established rules
can be purchased,

More challenging to im-
plement, but o�ers

Easy to implement Easy to implement more �exibility
General frame-
work

More oriented towards
signature analysis

More oriented towards
signature analysis

More suitable for
anomaly detection

OSI layers From 3 to 7
Adding a parser Few information; im-

plementation in C lan-
guage which is quite
popular

Few information; im-
plementation in C lan-
guage which is quite
popular

Well documented;
declarative language
maintained and dis-
tributed by Zeek,
speci�cally designed to
create new parsers

User Graphical interface Dashboard No interface
experience Some projects are im-

plemented by the com-
munity to make it more
user friendly

Really user friendly Di�cult to pick up with

Performance Lesser performance
than Suricata for simple
rules

Better performance
than the two others for
simple rules

Allows sophisticated
rules

Table 4: Comparison of open source NIDSs

Summary

In this Chapter, we explained the notion of testbed by giving its de�nition and criterias
it responds to. Testbeds di�erentiate from CRs and DTs. Testbeds can be physical, virtual
or hybrid. Our work is deployed on two physical ICS testbeds that were presented. We also
investigated the state of the art concerning testbeds. We noticed that only a few notable e�ort
had been made to implement testbeds in the maritime context. In our opinion, the warship
testbed used in our work appears to be one of the most advanced of the maritime state of the
art and has a high level of �exibility and repeatability. All sectors combined, G-ICS physical
testbed is one of the largest testbeds in terms of number of physical components, with a size
close to real industrial cases (over one hundred industrial equipment and over one thousand
simulated sensors and actuators). G-ICS has the advantage of being open source and proposes
customizable industrial processes with the use of the Hardware-In-the-Loop technology.

Finally, using testbeds will allow us to implement our intrusion detection framework,
evaluate our contribution and validate it in safe environments that constitute complete and
realistic ICSs. Testbeds allow precise and intensive study of the e�ects of propagating attacks
and corresponding detection means. From a practical aspect we investigated three open source
NIDSs and we explained why we chose Zeek in our work.

The research work (i.e. detection framework), presented in Chapter 4, has been deployed
on both testbeds. Similar results were obtained and they are discussed in Chapter 5. Aside
from this discussion, the implementations details are given for one testbed solely, for clarity
and con�dentiality matters. Therefore, every implementation examples in Chapter 4, Chap-
ter 5 and Chapter 6 refer to G-ICS testbed.

76



Chapter 4

Detection Framework

Contents

4.1 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Overview of our Detection Approach . . . . . . . . . . . . . . . . 80

4.3 Security Properties Extraction . . . . . . . . . . . . . . . . . . . . 83

4.4 Security Patterns Synthesis . . . . . . . . . . . . . . . . . . . . . . 85

4.5 Runtime Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5.1 Overall Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5.2 Monitor Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Introduction

In Part 1, we have de�ned context on ICSs and we have provided an overview of the state
of the art of process-oriented intrusion detection approaches. We have identi�ed weaknesses
in the literature and this present Part aims at answering some of them in our contribution.

Therefore, our contribution is a framework for ICS intrusion detection. The aim of this
Chapter is to unfold the methodology to be followed to obtain a behavior-based intrusion
detection approach which: (i) has a deep knowledge of the physical process and operates
at �eldbus level (thus, leveraging the monitoring of the state of actuators/sensors and com-
ponent's internal states); (ii) presents a systematical speci�cation-based model construction,
from international and industry standards (thus reducing the cost of detection model con-
struction); (iii) relies on expressive formalisms that covers the hybrid dynamics of ICSs and
(iv) presents a wide observation range due to a distributed detection deployment at di�erent
local loops of the system, thus covering a greater diversity of attacks (e.g. distributed attacks).

Before describing in details our framework, we �rst de�ne our threat model. Secondly,
we give a comprehensive overview of our approach. Then, we set out the model construction
with the security properties extraction followed by the security patterns synthesis. We �nally
expose the runtime monitoring process.

4.1 Threat Model

As mentioned in Section 1.3, a threat model de�nes which parts of the system are targeted,
what is the goal of the attacker and which classes of attacks are in the scope of our intrusion
detection approach.
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First of all, we consider the whole ICS as a potential target. Attackers can target any
components from Level 0 to level 2 (see Figure 2 page 10) or any network link between com-
ponents. In our study, we consider that the threat has already gained access to the system
and has control over one or several high-level controllers. Whatever the target is, we aim at
detecting e�ects of an attack on the system i.e. we look for the system's incorrect behaviors.
In other words, we leverage the detection of security property violations provoked by attacks.
Note that one limitation of our contribution is that we have visibility only on what occurs in
the network tra�c and some components' internal variables may not be visible in the network
tra�c. However, a change in internal variables is likely to induce changes in the system's
behavior, with visible e�ects into network tra�c.

Secondly, we focus on attackers aiming at disrupting the physical process of an ICS. In
other words we focus on process aware attacks. We previously introduced process aware
attacks as attacks having a high level of physical process knowledge (see Part I Section 2.1.3).
We can go further and de�ne these attacks as attacks disrupting the physical process and
inducing incorrect behaviors of the system. Process aware attacks do not violate the syntax
of the communication protocol, i.e. the network frames forged by attackers respect protocol
speci�cations in terms of address �elds or lengths, for example. Instead, these attacks concern
the manipulation of data related to the physical system in order to disrupt it in a stealthy
way. Some examples of process aware attacks are: commands using legitimate orders sent out
of their context (e.g., stopping a movement before a target is reached), forcing out-of-range
values for process variables (e.g., sending a speed setting point out of safe range), inverting
valid commands (e.g., inverting the order of products in a tank �lling, resulting in sabotaging
the recipe), targeting control logic (e.g., forcing transitions or changing internal states of
controllers), etc.

Poisoned Water and INDUSTROYER.V2 (discussed in Part I Section 1.2) are examples
of real process aware attacks targeting respectively the amount of chemicals in a city water
supply and circuit breakers in electric grids. Modifying a control setpoint or opening circuit
breakers, can be both legitimate commands that happen in the absence of an attack. However,
by forcing process variables into unsafe ranges in the �rst case, and modifying the temporal
ordering of commands in the second, the attacker induced incorrect behaviors of the system.
We aim at detecting such attacks whose objective is to disrupt the physical process of ICSs.

Thirdly, we de�ne the threat characteristics (i.e. the class of attacks) with respect to the
MITRE ATT&CK for ICS framework [116] (introduced in Part I Section 1.2). This latter
provides the relevant tactics for our studies: �Execution�, �Collection�, �Command & Control�,
�Inhibit Response Function�, �Impair Process Control� and �Impact�. The other tactics of the
MITRE Matrix are not relevant for our work since they are mostly concerning initial access
and deployment of the threat. Our assumption is that the threat is already inside the system.
With respect to the considered MITRE tactics, the characteristics of our threat model are
the following :

� �Execution�;
The threat is able to change operating modes of controllers and modify controller task-
ing.

� �Collection�;
The threat is able to perform Man-in-the-Middle (MITM) attacks, detect operating
modes, sni� network tra�c, monitor the process, get access to the controller program
and process variables images. Therefore, all the �techniques� of this MITRE tactic
apply, although we do not speci�cally detect them in our approach. That being said,
our methodology is able to detect security property violations provoked by such attacks.

� �Command and Control�;
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The threat is able to use standard application layer protocols. Again, our approach only
detects side-e�ects of such attacks.

� �Inhibit Response Function�;
All of the techniques listed for this tactic may apply. As we focus on process aware
attacks, we do not speci�cally detect network events corresponding to �rmware manip-
ulation. Once again, our detection is able to detect side-e�ects of such attacks.

� �Impair Process Control�;
All the techniques apply. We assume that messages coming from sensors can be trusted.
However, we do handle sensor false data injection attacks in the case of broadcasting
networks. This special case is addressed in Section 5.2.

� �Impact�;
We focus on loss of availability, control, protection, safety and view on the process.
We also consider damage to property, denial of control, denial of view, manipulation of
control and manipulation of view.

This techniques coverage is synthesized in Table 5.

Execution (TA0104) Collection (TA0100) Command and
Control (TA0101)

Inhibit Response Function
(TA0107)

Impair Process Control
(TA0106)

Impact (TA0105)

Change Operating Mode, Adversary-in-the-Middle, Standard Application Activate Firmware Update Mode, Brute Force I/O, Damage to Property,
Modify Controller Tasking. Automated Collection, Layer Protocol. Alarm Suppression, Modify Parameter, Denial of Control,

Data from Information Repositories, Block Command Message, Module Firmware, Denial of View,
Detect Operating Mode, Block Reporting Message, Spoof Reporting Message, Loss of Availability,
I/O Image, Block Serial COM, Unauthorized Command Loss of Control,
Monitor Process State, Data Destruction, Message. Loss of Protection,
Point & Tag Identi�cation, Denial of Service, Loss of Safety,
Program Upload, Device Restart/Shutdown, Loss of View,
Screen Capture, Manipulate I/O Image, Manipulation of Control,
Wireless Sni�ng. Modify Alarm Settings, Manipulation of View.

Rootkit,
Service Stop,
System Firmware.

Table 5: Threat Model in correspondence with the MITRE ATT&CK ICS Framework

Attacks using the aforementioned techniques are the focus of our work and would be
detected by our detection approach (or in certain cases, their e�ect on the physical process).
For a better overview, the threat model's scope of action is identi�ed within the global ICS
MITRE Matrix alongside the techniques directly detected by our approach, in Figure 21.

However, as already mentioned in Part I Section 1.2, it is important to note that relying on
the MITRE framework can present some limitations. A technique coverage is rarely complete
as a technique can be broken down into several expressions. And assuring a technique total
coverage assumes knowing the exact number of its expressions which is an information not
provided by the framework.

As a conclusion, our threat model is directed towards the entire ICS. The attackers uses
process aware attacks which means that they aim at damaging the physical process of the
system. In this kind of attacks, the commands used by attackers cannot be easily di�erentiated
from legitimate commands. Most of the attack detection methods inherited from the IT world
would not be appropriate in that context. Therefore, a di�erent detection approach is required.
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Figure 21: Threat model's scope of action and detection capabilities of our approach © 2024 The
MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE
Corporation.

4.2 Overview of our Detection Approach

A) Context

Here, we want to clarify some notions about the behavior of a dynamical system and the
process variables that can be observed in order to construct the IDS model.

Industrial systems are dynamical systems comprising state variables, either continuous
or discrete that evolve through time. Informally, a trajectory (or sample path) is a possible
sequence of system states and events over time. Therefore, the behavior of an industrial
system corresponds to trajectories in the state space. The state space of a system, is the set
of all possible values that the state may take. Depending on the application or the considered
variables, the state space can be real numbers (subsets of R), but also just values from a
discrete set, such as {S1, S2, S3} or {Open, Closed}. Yet, dynamical systems can be
classi�ed based on the nature of the state space selected for the model.

Similarly, dynamical systems can also be modeled in continuous or in discrete time. Time
is often assumed to be a continuous variable valued over a dense domain (e.g. R) since it
corresponds to our basic notion of time in the physical world. But it is often convenient to
de�ne the variables of a system at discrete instants only. This is due to the control compo-
nents forming the systems that are mainly operating in discrete time (discrete-time clock).
Therefore, the process is only monitored at speci�c moments in time (sampling or sporadic
observations). As a conclusion, state variables can either be described over continuous or
discrete domains, as well as time.

Figure 22 shows the distinction between a continuous-time and discrete-time representa-
tion of the same continuous signal x(t). On the left part of the Figure, the signal is represented
in continuous-time. On the right part, the signal is sampled which leads to a discrete-time
sample path with the sampling period T .

The previously introduced notions have to be di�erentiated from the system's dynamic
that present both time-driven and event-driven behaviors. These notions are de�ned in Part
1 Section 1.1.2, and represent the mechanism based on which a system's state change (i.e.
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Figure 22: Continuous and discrete time representations of the same signal

state transition mechanism). Continuous-state systems are by nature time-driven and can be
represented as continuous trajectories. Whereas discrete-state systems may be either time-
driven or event-driven. Figure 23 synthesizes the di�erent behaviors in a physical process.

Figure 23: Example of continuous-state and discrete-state behaviors in a physical process

In our case, as we rely on a network-based detection, the observation trace is constituted of
network packets containing information on the system's behavior. Therefore, as the network
packets arrive successfully with their relative timestamps, our observation is discrete-time.
As previously said, this discretization of time does not imply a discretization of the state
space. Indeed, if we refer to the Figure 22 again, the signal x(t) can still take any value in
the ensemble R as in the continuous time case. Therefore, in our approach, we are able to
observe process data presenting both continuous and discrete behaviors. Moreover, we are able
to tackle time-driven and event-driven dynamics. The aim of our approach is to determine
whether the behavior of the system is correct, i.e. de�ne what are the correct trajectories for
the process data (e.g. exceed a threshold, or not respecting a sequence of events). This task
consist in characterizing the system's state.

B) General Approach

The overall concept of our intrusion detection approach is depicted in Figure 24. It has
three steps: (1) Security Properties Extraction from international and industry standards in
order to obtain a set of security properties. This step is detailed in Section 4.3; (ii) Security
patterns synthesis which consists in translating security properties into security patterns. This
step is explained in Section 4.4; (iii) Runtime Monitoring with the instantiation of runtime
monitors and the actual monitoring against system's execution. This step is presented in
Section 4.5.

First, we are going to provide de�nitions of some of the terms used in our approach. An
international standard is a speci�cation document. As stated by the International Electrotech-
nical Commission (IEC), international standards de�ne minimum requirements in terms of
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Figure 24: Overview of our approach

safety, reliability, e�ciency and trust. Industry standards are a set of criteria within an in-
dustry relating to the standard functioning and carrying out of operations in their respective
�elds. Thus, international and industry standards provide the core safety speci�cations for a
system.

IEC 61508 standard de�nes the safety of a system as the property to be �free of unac-
ceptable risk� [85]. Security, on the other hand, relates to risks from malevolent actions (e.g.,
cyberattacks) that can impact the system itself in addition to its environment [100]. There-
fore, security considers potential threats due to attacks while safety considers hazards and
faults. Security policies are the rules that specify or regulate how an organization protects
sensitive and critical system resources. Policies unambiguously state what is mandatory [89].
Our work considers only security policies violations speci�c to OT and which lead to safety
violations. General IT intrusions that manifest otherwise (like Distributed Denial of Service
(DDoS) attacks, for instance) are covered by complementary approaches.

Figure 25 summarizes the links between the previously introduced terms and shows the
general idea driving our work. The starting point is a safety speci�cation of the physical
process which cannot be straightforwardly exploited for detection purposes. From this safety
speci�cation, we derive a security property that relates to the cybersecurity domain and has a
meaning at a network level. The security property translates into a pattern that is exploitable
for detection. The �nal step is the implementation of a monitor from this pattern.

Figure 25: Main steps of a detection monitor synthesis

To illustrate the process in Figure 25, let us consider a robot that has two operating
modes: (i) Moving and (ii) Homing. The Homing mode initiates a reference movement i.e.
it generates a reference between a mechanical position and the actual position of the motor.
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The steps from one safety speci�cation to the corresponding monitor are the following:

a. Safety speci�cation. From the standard, we get the following statement: �The oper-
ating mode Moving can only occur when the operating mode Homing ended successfully
(i.e. once the system is referenced).�

b. Security property. In the network tra�c it means: A movement order is observed in
the network tra�c only after observing the con�rmation of the end of Homing.

c. Security pattern. Which translates as the pattern:
Precedence (modehoming ↓, modemovement ↑).

d. Monitor. From the pattern, a monitor is implemented in Python code.

The output of every step, is detailed in next Sections; note that the corresponding Section
numbers are represented in orange in Figure 24 and 25.

4.3 Security Properties Extraction

Concerning the sources for the extraction, three types exist:

a. International and industry standards. Most of the security properties are extracted
from standards directly. The reason is that they contain the common characteristics
of safe behaviors, since controllers and networks in ICSs conform with international
standards.

b. The device con�guration related to the implementation of these standards.
Some security properties, though not directly extracted from standards, express the
implementation of the aforementioned standards. They describe global speci�cations of
the system.

c. Network tra�c observations. The set of security properties is enriched with obser-
vations of the network tra�c. This source of extraction provides use case dependant
speci�cations.

Table 6 summarizes the security properties extraction sources, levels and types. For each
of them, we detail the di�erent types of properties.

Extraction source Speci�cation level Type

International and industry
standards

Local controller Functioning states and modes

Local loop PLCs programming function blocks
Network General industrial protocol communication

Device con�gurations Global system Restrictions of standard functioning states and
modes

Network tra�c observa-
tions

Local controller, local loop,
network or global system

Use case dependent properties

Table 6: Security properties extraction

INTERNATIONAL AND INDUSTRY STANDARDS
Local Controller
Device conformity with standards guarantees a certain level of safety and standard behav-

ior. Manufacturer documentation provides details for speci�c implementations of standards.
For instance, if we consider a servo drive, the IEC 61800 standards [86] specify its functioning
states and operating modes as well as the corresponding mapping to communication proto-
cols. The manufacturer documentation speci�es the instantiation of standard parameters and
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variables to memory addresses. Thus, in Figure 26, the Finite State Machine (FSM) of a IEC
61800 standard servo drive mapped to CANopen protocol, is represented. This FSM speci�es
the allowed transitions and events for each state.

Figure 26: FSM for local controller speci�cations � Servo drive FSM from IEC 61800 standard

Examples are taken here for a servo drive, since it is a commonly used device with complex
functioning. Similar operating speci�cations can be extracted for other devices. For instance,
a pressure transmitter operating with CANopen would have some communication functions
and operating �ow, conforming with CANopen device pro�le DS-404 [33]. In the manufac-
turer manuals, further speci�cations are provided: supported CANopen objects, operating
diagrams with di�erent functioning modes, etc.

Local loop
This category concerns the control interface between PLCs and local loops and more

speci�cally PLCs programming. PLCs are programmed in one of the languages de�ned by
the IEC 61131-3 standard [84], i.e. Structured Text, Sequential Function Charts, Ladder
Logic Diagram, Function Block Diagram and Instruction List. Reverse-engineering speci�ca-
tions from PLC programs is a di�cult task with unreliable results, as implementation di�ers
according to programmers' habits. Hopefully, for some usual tasks in control systems (such as
communication, safety and motion control), standard library functions, based on standards
like PLCopen [129] are used. Therefore, security properties e�ective between the distributed
control layer and the local loop can be extracted.

As a matter of fact, many manufacturers are in compliance with PLCopen. For instance,
standard function blocks libraries like Motion Function Blocks (MFBs) are provided for most
automation platforms.

Network
This category is about network protocols and more speci�cally the application layer. Most

of the time, the following types of networks can be found in ICSs:

◦ Fieldbus networks for the communication between PLCs and the local loops. A �eld-
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bus is a real-time network connecting components through a common communication
medium, also called �common bus� topology.

◦ Ethernet TCP/IP networks for the communication between local loops and the super-
visory control.

DEVICE CONFIGURATIONS

Global system

This category concerns particular implementation of aforementioned standards. They are
related to global system safety.

For instance, controllers can be limited to some functioning modes only. This means that
in a given system, only speci�c operations are needed, and some controllers' operating modes
may never be used. Thus, the extracted set of security properties is implementation depen-
dant and limits the set of possible scenarios.

NETWORK TRAFFIC OBSERVATIONS

Local, global or network speci�cations

Some security properties may be discovered from network tra�c observations. These
properties can either concern local safety, global safety or network speci�cations. They are
related to the speci�c use case and its architecture.

With this tra�c monitoring, we infer all the speci�cations that are not entirely speci�ed
within standards. For instance, if a Homing command has to be issued from a standard
PLCopen function block on two di�erent motion axis, it will appear as two successive com-
mands in the network tra�c. The choice in the ordering (i.e. Homing the x axis �rst and
then the y axis) is not speci�ed by the standard as it relies on a programmer's choice. The
exact property (i.e. order of Homing commands) is extracted from the network tra�c.

4.4 Security Patterns Synthesis

In order to survey the system behavior, we need a formalism for speci�cations. Therefore,
we translate the security properties into security patterns. The patterns are generalized
descriptions [47] of requirements on the permissible state/event sequences in a �nite-state
system.

In Part I Section 2.2.4, we presented di�erent classes of patterns that exist in the litera-
ture. In our work, we will rely on Dwyer patterns for patterns over qualitative time, Konrad
patterns for patterns over quantitative time, and Maler patterns for quantitative time pat-
terns extended to continuous signals. The great majority of the mixed behaviors of industrial
systems can be expressed following such speci�cation pattern systems. This is a great asset
since it provides a �nite number of well-de�ned patterns. Therefore, it facilitates the security
pattern synthesis process and allows to reuse code for a speci�c pattern. Additionally, the
fact that patterns are de�ned over scope eases the system speci�cation process by simplifying
their expression and permitting code reusability as well.

Expressing security properties as speci�cation patterns is manually done in our work.
Although not automatic, the security pattern synthesis process is systematic since we rely on
prede�ned patterns and standards operation modes and requirements (see previous Section
for details). Full automation (from the standards to security patterns) is not yet possible as
standard speci�cations are generally not provided in a suitable format (like .xml) although
some notable exceptions exist like the IEC 61850 standard [87]. Recently, it has been shown
that partial protocol FSMs can be automatically extracted from Requests from Comments
(RFCs) written in textual format [124]. It would be interesting to investigate this direction
of work in order to generate automatically speci�cations as FSMs or security patterns, from
international and industry standards.
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4.5 Runtime Monitoring

4.5.1 Overall Process

To keep the IDS performance as close as possible to real-time, our approach is inspired from
runtime veri�cation, i.e. observing and evaluating the behavior of a system at runtime [17]
(see Part I Section 2.2). Our monitors evaluate the security patterns previously extracted.

In order to be exploitable for detection purposes, the security patterns are mapped onto
adequate formalism. In our work, we use the three previously introduced formalisms: LTL,
MTL and STL to describe the variety of temporal behaviors of hybrid systems. LTL is adapted
to express order or occurrence of events. LTL augments propositional logic with temporal
operators. If the notion of range over time intervals is needed, MTL is more adapted. MTL
extends LTL with time measurements over boolean signals. And for the case where real-valued
(continuous) signals need to be described, STL is to be used. STL extends MTL over signals.

Dwyer patterns, may be mapped, for instance to LTL formulas. Konrad patterns, are ex-
pressed in MTL, while Maler patterns rely on STL (see Part I Section 2.2 for the presentation
of these formalisms).

From the security patterns, monitors can be automatically generated. In runtime veri�ca-
tion, the monitor is the object that constitutes the decision procedure for the property [17]. It
veri�es violations in system executions by checking the satisfaction of a given security prop-
erty. The action of generating a monitor from a property is called the monitor synthesis and
is further detailed below.

Monitors inherit scopes from the patterns, therefore at runtime the monitors shall be
activated only within their scopes. In our approach, we introduce a module called the Scope
Recognizer which activates and deactivates the monitors accordingly.

Figure 27: Runtime monitoring with the Scope Recognizer and monitors

The functioning of the Scope Recognizer is illustrated in Figure 27 (part a.). Scopes are
related to the systems state. For instance, in a local loop composed of a servo drive, security
patterns scopes are de�ned over the states of the FSMs in Figure 26. Operational modes
of system components are taken into account as well. The Scope Recognizer identi�es state
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changes by monitoring status messages in the network tra�c (i.e. in the execution traces).
The Scope Recognizer allows simpli�cation of TL formulas. We take again the example

of the robot having two functioning modes: Homing and Moving. One of the safety spec-
i�cations says �no new movement (denoted m) order can occur while the robot is already
moving�. In other words, it means that �the event m should never occur while the system is in
the functioning mode Moving�. The corresponding security pattern is a Dwyer absence pat-
tern Never(m) within the scope Between(Modemoving ↑,Modemoving ↓). Expressed in LTL
formalism, it gives the following complex formula: □ (((Modemoving ↑) ∧ ¬ (Modemoving ↓
∧♢(Modemoving ↓))→ (¬ m U (Modemoving ↓)).

In this example, the Scope Recognizer would monitor one FSM with two states: �Homing�
and �Moving�. Therefore, whenever the Scope Recognizer identi�es the system as being in the
state �Moving�, the active scope detected is Between(Modemoving ↑,Modemoving ↓). Then,
the previously introduced LTL expression that has to be veri�ed simpli�es as: □(¬m) (which
corresponds to the Dwyer absence pattern Never(m) within a global scope) while the state
�Moving� is active. This example is synthesized in Figure 27 (part b.).

4.5.2 Monitor Synthesis

In our work, we implement most of the monitors as FSMs, relying on an automata-based
evaluation approach. When monitors take the form of a FSM, states are labeled by evaluation
verdicts while transitions are labeled by predicates (events occurring in the systems).

First, �generic� FSMs are built o�ine for required patterns. The world �generic�, here,
implies that a FSM represents the tool able to evaluate a given pattern from the pattern
systems previously described and that no process data is used yet. For instance, from Dwyer's
Occurence patterns, let us consider the Absence pattern with global scope, which translates
the fact that an event A never occurs. This pattern can be mapped onto LTL as the following
formula: □(¬A). The corresponding FSM is shown in Figure 28. In this FSM, the transition
A has no physical meaning yet and could represent any event from the system.

Therefore, instances of generic FSMs are automatically created from the set of previously
obtained security patterns. At runtime, a mapping of real process data is done on FSMs
instances to evaluate corresponding TL formulas.

Figure 28: Generic Finite State Machine (FSM) for the Absence Dwyer pattern

To built generic FSMs, we use LTL3 Tools1, discussed in Part I Section 2.2.3. The tool
identi�es the generated states of the FSM with colors (red for �bad states�, green for �good
states� and yellow for �inconclusive states�) depending on the truth value of the property to
verify. Using this logic, �bad states� and �good states� are immediate and straightforward
to interpret. However, �inconclusive states� are not. In Part I Section 2.2.3, we presented
the FSM (Figure 10) generated from the LTL formula: □(Targetreached → #Motorstop). For
easier reading, the FSM is shown here again in Figure 29. If state 2 is entered, an alert
is immediately triggered, but if states 0 and 1 are entered, nothing happens since they are
inconclusive states.

In our case, since we use the Scope Recognizer to detect context change, some monitors
are activated and deactivated accordingly. Consequently, if a monitor is deactivated while its
current state is an �inconclusive state�, the verdict has to be interpreted. For this purpose, we

1https://ltl3tools.sourceforge.net/
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Figure 29: FSM generated by LTL3 Tools for the formula □(Targetreached → #Motorstopped)

use the notion of presumably true and presumably false truth values of the 4-valued logic [21]
presented in Section 2.2.3. When a monitor is deactivated, the trace ends for this monitor.
Therefore, whenever a monitor is deactivated, we evaluate the formula depending on the
current state at the end of the trace. For instance, in our example displayed in Figure 30, if at
deactivation, the current state is state 0, then the truth value is presumably true and no alert
is triggered. Whereas, if the current state is state 1, the truth value is presumably false and
an alert is triggered. This decision is based on the hypothesis that in the context of industrial
systems, each formula is bounded by a speci�c context. For instance, in a given operating
mode of a component, a request leads to an answer within the same operating mode.

Figure 30: Verdict depending on the current state at the end of the trace, for the formula
□(Targetreached → #Motorstop)

Conclusion

Detecting process aware attacks in ICS requires to develop an intrusion detection method-
ology which takes into account the physical process. In our work, we consider process aware
attacks aiming at damaging the physical process. In this Chapter, we presented a detection
approach to e�ciently monitor safety speci�cations of the system. The approach enables secu-
rity properties extraction from international and industry standards. These security properties
are translated into security patterns and monitored on execution traces of the physical pro-
cess. The next Chapter details the implementation of the approach on an ICS. The approach
is deployed and evaluated on a local loop.
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Introduction

In the previous Chapter, we presented an intrusion detection approach for process aware
attacks relying on monitoring temporal speci�cations of system's physical processes. This
Chapter aims at implementing the approach on a ICS testbed and evaluating it.

First, we present the use case setup for the experimental part of our work. The testbed
we rely on is a cartesian robot which is a simple hierarchical system. Thus, we detail step by
step the methodology to obtain the detection framework, as shown in Figure 25. Therefore,
we provide concrete examples for the process from safety speci�cations to security patterns.
We provide details about the corresponding monitors and implementation of our work. We
also describe the software deployment of our architecture.

5.1 Use case Presentation - Cartesian Robot

In our work, we use a Schneider Electric industrial Cartesian robot, Figure 31, from G-ICS
testbed (cf Section 3.4). Cartesian robots represent 40% of automatic handling solutions (Pick
& Place). Such systems can be used to position raw material for a laser cutting machine for
example. In our case, this robot is used to move a board below a pen. The overall system is
a hierarchical and distributed ICS, composed of:
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� A two axis positioning system MAXR12 Bergerlahr1

� Two actuators (motors) and two sensors (encoders), BSH2 servo motors, used for each
axis to control and detect limit positions.

� Two industrial servo-variable speed controllers, Lexium 32M3.

� A PLC Modicon M3404.

� A HMI Magelis XBTGT 23305.

Figure 31: Two axis positioning system overview© All rights reserved

Figure 32: Two axis positioning system: Process view (left) and control system view (right) © All
rights reserved

Two local loops are controlling the two motion axis. Each loop is controlled by the servo-
variable speed controller. On each loop, the actuator and the sensor are directly wired to
the servo drive analog inputs/outputs. The robot trajectory is controlled by the PLC either
following a pre-de�ned trajectory or is manually driven by a human operator via the HMI.

1https://www.se.com/ww/en/product/MAXR12/portal-robot-lexium-max-2-directions-toothed-

belt-roller-guide/
2https://www.se.com/ww/en/download/document/0198441113837-EN/
3https://www.se.com/ww/en/download/document/0198441113767-EN/
4https://www.se.com/ww/en/product-range/1468-modicon-m340/
5https://www.se.com/ww/en/download/document/35010372K01000/
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The control components are identi�ed in Figure 32. Communication between the PLC and
the servo drives uses a CANopen �eldbus, while the HMI and the PLC are connected through
a Modbus TCP/IP network. The overall hierarchical control of the use case is presented in
Figure 33.

Figure 33: Use case hierarchical control

We consider this use case representative of hierarchical, distributed control, hybrid systems
since the positioning control local loop is one of the most complex examples for local loops.
Positioning control includes PID regulation with fast dynamics and event-driven control with
several operating modes. Other types of local loops like temperature or pressure control will
expose similar or simpler behaviors (less operating modes or slower dynamics). The trajectory
control implies synchronization conditions between the di�erent local loops. All the embedded
control programs (HMI, PLC, local controllers) are provided by the manufacturer and certi�ed
to be conform with industrial standards.

5.2 Security Patterns Synthesis Process

In this Section, we detail the security patterns synthesis process, i.e. going from safety
speci�cations to security patterns. For every safety speci�cation source, detailed in Sec-
tion 4.3, we give examples of some identi�ed security patterns for our use case.

INTERNATIONAL AND INDUSTRY STANDARDS

Local Controller
Some safety speci�cations are directly related to the servo drive FSM previously presented in
page 84 Figure 26. For easier reading, the FSM is shown here again in Figure 34. The only
operational state from it is State 6: �Operation Enabled�. As previously stated, the states
are observable from network tra�c monitoring and used for the construction of the Scope
Recognizer. The transitions are observable from network tra�c monitoring as well, except for
internally triggered transitions T0 and T14. The safety speci�cations with regard to the FSM
are simple: within each state, only the transitions present in Figure 34 shall occur.
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That gives a set of Dwyer occurrence patterns Never(Tx) within the scopeBetween(state ↑
, state ↓), where Tx is a forbidden transition in state and ↑ (resp. ↓) denotes the (de)activation
of a state.

Figure 34: Servo drive FSM from IEC 61800 standard

Several operating modes are available when the servo drive is in �Operation Enabled� state
(State 6 of Figure 34. As de�ned in [86], these modes include: (i) Jog (continuous movement),
(ii) Homing (reference position), (iii) Pro�le Position (absolute or relative positioning), (iv)
Pro�le Torque, (v) Pro�le Velocity, and so on.

Each operating mode has its own speci�c safety speci�cations. The exact list of operat-
ing modes supported by a speci�c servo drive is retrieved from manufacturer documentation.
Our servo drive supports eight operating modes. In some modes, if the motor is running,
changing mode is not allowed, e.g. in Homing mode, the corresponding security pattern is
Response(starthoming → endhoming) within the scope Between (modehoming ↑,modehoming ↓).
In Jog mode (continuous movement, i.e. driven by human operators), the end of a movement is
signaled by two events: end of movement request and target reached. Then, the correspond-
ing security pattern is Response Chain(startJog → endJog → Target ↑) within the scope
Between(modeJog ↑,modeJog ↓). Still in Jog mode, a Response Time and a Stabilization
Maler pattern for the movement speed can be identi�ed. Similar patterns can be established
for the other operating modes.

Local Loop
From PLCopen [129] standards, we extract security properties related to the function blocks
used in the PLC programming. For instance, the MC_Jog function block timing diagram
speci�es the safe behavior of the continuous movement of an axis [129]. From this description,
safety speci�cations can be deduced, e.g. �a new Jog command cannot occur while a Jog move-
ment is active, or a Jog command specifying a movement simultaneously in forward (denoted
fw) and backward (denoted bw) directions shall not be issued�. This respectively translates
into the security patterns Bounded Existence(startJog,1) with the scope Until(Target ↑) and
Never(Jogfw ∧ Jogbw) with scope Between(modeJog ↑,modeJog ↓). Again, similar patterns
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are deduced from the speci�cations of MC_MOVERELATIVE, MC_ MOVEVELOCITY
and other function blocks described in the PLCopen standard.

Network
In our use case, the communication between the PLC and the local loops is made through
CAN with a CANopen application protocol. The communicators in a CAN are called nodes.
Distribution-wise broadcast is used with a publisher/subscriber model. That means that the
communication between the PLC and the servo drives is not master/slave based like it is the
case in most architectures (Modbus RTU for instance).

One of the speci�cities of CAN is that the frames do not contain the emitter address,
but an identi�er (CAN-ID) which indicates the priority of a frame. A node may use di�erent
CAN-IDs according to the criticality of the messages.

CANopen application layer adds an interpretation of the CAN frame �elds (including
the CAN-ID) suitable for control applications. CANopen de�nes messages (called objects)
and priorities (CAN-IDs) for: network management (NMT), real-time data transfer (Process
Data Objects � PDOs), con�guration (Service Data Objects � SDOs), time synchronisation,
time stamping, and device diagnostic. Numerous communication pro�les were de�ned over
CANopen objects in order to specify the behavior of common industrial control devices by
the standard collection CAN in Automation (CiA). CiA 301 [32] gives the general NMT FSM
specifying a CANopen node safe behavior, see Figure 35.

Figure 35: FSM for network protocol speci�cations: CANopen nodes FSM (NMT) from CiA standard

This NMT FSM (Figure 35) is independent of the servo drive FSM (Figure 34). This
FSM adds new safety speci�cations, therefore new security patterns. The states Initializing,
Application Reset and Communication Reset precede the CAN communication activation,
therefore transitions between these states are not visible in the network tra�c. All the other
transitions in Figure 35 correspond to observable NMT messages. The security patterns
corresponding to the safety behavior on the NMT FSM are also Never() patterns as the ones
of the servo drive FSM (Figure 34).

A second category of network protocol-dependent security patterns are the ones concern-
ing the real-time data transfer (PDOs). Although the basic CAN network operations do
not attribute �master� and �slave� roles to speci�c nodes, it is necessary to de�ne the �con-
troller� (usually a PLC) and �controlled� (sensors and actuators) roles. This is achieved in
CANopen using an adequate attribution of CAN-IDs. Seen from a controlled node, the real-
time network tra�c divides into Received PDOs (RPDOs) and Transmitted PDOs (TPDOs).
RPDOs carry controls issued by the controller, whereas TPDOs carry sensors and states
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information issued by a controlled node. TPDOs transmission is periodic. In our frame-
work, the PLC plays the role of the controller and the servo drive the role of the controlled
node. The servo drive will emit at �xed intervals a TPDO carrying the values of the cur-
rent position and speed. A sensor false data injection frame will violate the periodicity of
the samples. We use a variation of the Konrad's Bounded Recurrence Periodic pattern. The
Bounded Recurrence denotes the �amount of time in which a state formula has to hold at
least once� [96]. The new pattern we propose is called Minimal Period and is de�ned as the
�amount of time in which a state formula has to hold at most once�. Its MTL expression
is □(♢(period,2∗period)TPDO ∧□(0,period)¬TPDO). The periodicity value of this TPDO is re-
trieved from the CAN network con�guration �le.

DEVICE CONFIGURATIONS
Global system safety

In our use case, the restrictions of standard functioning states and modes are imposed by the
HMI supervisory software. The corresponding speci�cations are:

◦ Only Homing, Jog and Pro�le Position (absolute and relative) modes are allowed. This
constraint translates to Never() patterns for the occurrence of the other modes with
Global scope.

◦ No movement is allowed if the system is not fully referenced. That means that right
after the robot Powers On, a Homing cycle has to be performed on both axis prior to
switching to any other operating mode. This translates into Precedence(modehoming ↓,
modeJog ↑) and Precedence(modehoming ↓,modePos ↑) with Global scope.

◦ Homing positioning occurs only once, then the pattern Bounded Existence(starthoming,
1) with Global scope is added.

◦ Robot moves shall be contained within a range de�ned at the Supervisory Control
level. This constraint translates into a Maler pattern of Bounded type for each axis
position with scopes Jog and Positioning modes. Homing position is not concerned as
the reference point is outside the robot working area.

◦ Axis operating modes are always synchronized. The easiest way to express this property
in terms of security patterns is to use an Universality pattern, e.g. Always(modeJogy ↑)
within scope Between(modeJogx ↑, modeJogx ↓) to state that axis y has to be in Jog
mode while x is in Jog mode.

The previous constraints are imposed by the embedded HMI software and are not mod-
i�able by human operators. Other constraints like the motion speed, in one of the manual
Positioning mode, may be dynamically modi�ed by the system user. Therefore, such con-
straints cannot be handled by the current approach. However such dynamical variables can
at least be constrained into intervals representing attainable limits.

NETWORK TRAFFIC OBSERVATIONS
Local safety, global safety or network

In our use case, the two servo drives have to obey to synchronization constraints. They are
required to always be in the same functioning state. And in most of operating modes, they
have to be synchronized as well. For example, if a Homing command is issued, it concerns
both servo drives at the same time, which cannot be possible at the network level. Therefore,
this operating mode synchronization constraint is translated into a sequence of two frames,
each frame triggering the operating mode switching on, for each servo drive. The switching
order is �xed by the PLC program speci�cations and can be discovered from network tra�c.
For instance, a Precedence switching order pattern with a Global scope is de�ned for each
operating mode. Another example of speci�cation extracted from tra�c is about the current
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screen displayed on the HMI. The current screen number is a PLC variable that appears in
the tra�c (read and write). Depending on this number, various options are selectable on the
HMI by a human operator. Therefore, for each screen, only speci�c events can occur and
only certain process variables are manipulated. Once again, the security patterns are Never()
patterns within Between() scopes corresponding to the entering and exiting of HMI screens.

Another type of security patterns correspond to the hierarchical architecture of the system
and they concern the comparison between inputs and outputs commands of the PLC. This
means that every command that is addressed to the PLC on the Ethernet network will trigger
several commands sent through the �eldbus. It also means that a command observed on the
�eldbus has to be the consequence of a previous order issued at the Ethernet level. The
corresponding pattern is a Precedence and Response pattern for every command. These types
of security patterns survey the coherence of the PLC input data and its output data. For
example, if a human operator select �Homing� on the HMI, the corresponding order will be
passed on to the PLC which will issue the Homing command to the two servo drives. This
example is represented in Figure 36.

Figure 36: Coherence between inputs and outputs commands of a PLC

Table 7 synthesizes some of the security patterns used in our approach, with their formal-
ism and corresponding formula to monitor. Note that each formula is given with global scope
since the Scope Recognizer allows formula simpli�cation.

Security Pattern Formalism Formula to monitor

[Dwyer] Never(Tx) LTL □(¬ Tx)
[Dwyer] Response(startHoming → endHoming) LTL □(startHoming → ♢endHoming)

[Dwyer] Response Chain(startJog → endJog → Target ↑) LTL □(startJog → ♢(endJog ∧ ◦(♢Target ↑)))
[Maler] Response T ime for movement speed s(t) STL □(startmovement → ♢[0,0+t](|s(t)− sref (t)| < ϵs))

[Maler] Stabilization for movement speed s(t) STL ♢[0,0+t](□(|s(t)− sref (t)| < ϵs))

[Dwyer] Bounded Existence(startJog, 1) LTL (¬startJog W (startJog W □¬startJog))1
[Dwyer] Never(Jogfw ∧ Jogbw) LTL □(¬ (Jogfw ∧ Jogbw))
[Konrad] Minimal Period MTL □(♢(period,2∗period)TPDO ∧□(0,period)¬TPDO)

[Dwyer] Precedence(modehoming ↓,modeJog ↑) LTL (¬modeJog ↑ W modehoming ↓)1
[Maler] Bounded range for movement position x(t) on x axis STL □(x(t) < xmax ∧ x(t) > xmin)

[Dwyer] Globally(modeJogy ↑) LTL □(modeJogy ↑)
1 with W, the weak until operator. p W q = (□p)|(p U q) = ♢(¬p) → (p U q).

Table 7: Security patterns and formalism

5.3 Runtime Monitoring

In this Section, we detail the implementation of the detection approach. First, we present
the way the data is captured, then we provide details on the Scope Recognizer and monitors
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for our use case, and then our software deployment.

5.3.1 Data Capture

In this use case, the detection task relies on tra�c capture between the PLC and the
HMI as well as on the CAN �eldbus, as depicted in Figure 37. These network tra�c capture
points (represented in yellow in the Figure) do not deteriorate network tra�c and they allow
a monitoring of the system at runtime. These capture points allow to passively connect to
the network and observe the tra�c.

Figure 37: Tra�c capture points of the use case

Depending on where the capture is performed, di�erent technologies and equipment are
deployed. They do not appear in Figure 37 since only their positions are indicated.

To capture network tra�c on Ethernet-based networks (Tra�c capture 1 on Figure 37),
many technological solutions exist such as using port mirroring connection to a switch or
Commercial-O�-The-Shelf network taps. Capturing network tra�c on a �eldbus (Tra�c cap-
ture 2 on Figure 37) is a real asset for anomaly detection since it gives access to data closest
to the physical process. However, it is technically not as straightforward to implement as Eth-
ernet level tra�c capture. The architecture of the communication is simpli�ed compared to
traditional Ethernet-based networks. Indeed, considering the Open Systems Interconnection
(OSI) model, only Layers 1 and 2 (sometimes Layer 7) are considered in �eldbuses archi-
tectures. Consequently, common tools used for Ethernet-based capture do not operate on
�eldbuses. To address this issue, we used a PCAN-USB6 adapter connected to the CAN
�eldbus.

6https://www.peak-system.com/
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At each tra�c capture point, there is process data �owing and connecting local compo-
nents. From this data, FSMs are constructed which translates the local context. The set of
these FSMs constitute the Scope Recognizer.

5.3.2 Scope Recognizer and Monitors

At the CAN �eldbus capture level (Tra�c capture 2 on Figure 37), for each servo drive,
the Scope Recognizer encompasses 4 FSMs to activate adequate monitors:

� Servo drive FSM from IEC 61800 standard, represented in Figure 34.

� CANopen nodes FSM (NMT) from CiA 301 standard, represented in Figure 35.

� Servo drive operating modes machine inherited from IEC 61800 standard and Supervi-
sory control speci�cations. In our use case, as stated in Section 5.2 part �Global safety�,
only Homing, Jog and Pro�le Position modes are allowed.

� A FSM with two states: �Movement� or �Motionless� for the physical process.

For simplicity's sake, these two last FSMs can be implemented as a unique FSM, represented
in Figure 38.

Figure 38: FSM of servo drive allowed operating modes

In total, 6 FSMs (3 for each local loop) identify the current behavior of the two servo
drives from the aspect of internal state, network, operating modes and movement. The FSMs
regroup every status information available in the network tra�c.

Two additional FSMs are added to the Scope Recognizer, for Modbus TCP capture, be-
tween the PLC and the HMI:

� HMI screen FSM, which gives the current screen number displayed by the HMI. Such dis-
played screen numbers provide information concerning the supervisory context. There
are 17 screens programmed in the HMI.

� Receipt FSM, which identi�es the current set of operations, chosen by the human oper-
ator: a prede�ned trajectory or manual mode.

In total, the Scope Recognizer relies on 8 FSMs that are updated from tra�c capture, at
runtime.

In the Scope Recognizer, we store only the individual FSMs and we never compute the
product of the FSMs since joint states are not used by the detection rules. Therefore, we
keep CPU process memory usage low. Additionally, the Scope Recognizer permits to evaluate
a state change only once, and store results that will be used for the activation of multiple
monitors.
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Concerning the monitors, the experimentation is performed with 33 monitors in total:
monitors for verifying the correct transitions between states and modes of components, moni-
tors verifying the operating of a state or mode, monitors verifying current position and speed,
and monitors verifying the synchronisation of local loops. The number of monitors depends
on the use case since the number of safety speci�cations is use case dependant. For example,
for another local controller, the number of internal states and functioning modes is di�erent,
therefore the number of extracted security properties is di�erent as well as the number of
security patterns and synthesized monitors. We implement Dwyer, Konrad and Maler tem-
poral patterns. The generalized security patterns allow reusability of the monitors code. For
example, we have a lot of Dwyer Never() patterns to verify: there is only one monitor cor-
responding to this pattern in our detection scripts. We use it multiple times with di�erent
events or signals from the use case.

As previously introduced, in runtime monitoring, the evaluation of the TL formulas can
be executed via two main techniques: automata-based [52] methods or rewriting-based [74]
methods. We rely on automata-based techniques for the implementation of Dwyer and Kon-
rad patterns. Concerning the evaluation of Maler patterns, we use a variant of the rewriting
algorithm (the �incremental marking� procedure from [108]). With an automata-based tech-
nique, a monitor translates as a �nite-state automata. For instance, the transitions of the
automata are labeled by TL formulas; they are triggered by events or signals in the execution
traces. In a rewriting-based monitor, the decision procedure is based on a set of rewriting
rules triggered by a new event or signal. That is, given a TL formula and incoming events or
signals, the monitor formula is rewritten into a new formula until a verdict (true or false) can
be obtained.

Algorithm 1 shows the monitoring process for one monitor. Each time a network packet
is received i.e. for each update of the observed execution trace, Algorithm 1 is executed
for all monitors. This algorithm concerns the case of a monitor with an automata-based
monitoring method. This means that the monitored pattern is used to generate and initialize
a deterministic FSM. To keep the example more general, we do not detail a speci�c pattern
here. Some tools exist to automatically generate the code for the FSM from a TL formula [22,
11]. In Algorithm 1, the variable sm is the state machine synthesized from the TL formula.
Once initialized, this state machine has generic transitions named transition1 · · · transitionn.
These transitions are triggered when an event of interest e1 · · · en appears in the network
tra�c. Note that the algorithm encompass both sequential and event-driven programming.
In the sequential part, sm is updated depending on the �ow of incoming execution traces.
Whereas the event-driven programming depends upon the entering and the exiting of speci�c
states of sm. Therefore, based on the evolution of current states, some methods are called to
check if the pattern is expired or if an invalid transition is triggered inside the state machine.
As soon as the verdict v is set to false, an alert is raised. Note that in the presence of the
timeout variable, the evaluation of time (function sm.check_time()) is always done with the
timestamp of frames. This allows our framework to tackle communication delays and latency
in the arrival of events.

5.3.3 Software Deployment

We rely on the open source NIDS Zeek7 v4.1.0-dev.704 for the deployment of our IDS
framework. The rationale for using Zeek in our work is provided in Section 3.5 page 74. The
main reason for this choice is that Zeek is able to raise not only alerts but also general events
(like a packet arrival) allowing the implementation of security pattern monitors. Unlike most
other open-source IDS, Zeek is highly con�gurable and admits the development of sophisti-
cated rules in its own scripting language.

7https://www.zeek.org
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Algorithm 1: Monitoring process for an automata-based monitor
Data: t: observed execution trace

p: security pattern (TL formula)
e1 · · · en: events of interest into the network tra�c
active: monitor's attribute set by the Scope Recognizer
timeout[optional]: interval timeout for an event

Result: v: verdict

/* SEQUENTIAL - iterate over all monitors */

sm← initialize(p) ; // initialize state machine

v ← True ; // initialize verdict to �satisfied�

while received(t) not null do // new execution trace received

ts← get_ts(t) ; // get observed execution trace's timestamp

if active == 1 then
if is_event(e1, t) == 1 then // update state machine

sm.trigger(transition1)

if is_event(e2, t) == 1 then
sm.trigger(transition2)

· · ·
if is_event(en, t) == 1 then

sm.trigger(transitionn)

/* EVENT-DRIVEN */

if sm.check_time(ts, timeout) then // if pattern is expired

v ← False

if sm.invalid_trigger() then // if invalid transition is triggered

v ← False
return v

Figure 39: Architecture of our Standard Speci�cations-based IDS
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The overall architecture of our detection framework is presented in Figure 39. The Workers
are software agents which intercept the network packets and �lter network tra�c. They
publish messages (alerts or general events) to a Broker agent which centralizes and dispatches
the messages. In our detection scripts, the Scope Recognizer subscribes to di�erent topics
and manages the activation/deactivation of monitors depending on the current state of the
system (i.e. depending on the current scope). Monitors subscribe to certain topics as well
and give verdicts. The publisher/subscriber protocol uses the �Broker� Zeek framework which
extends C++ Actor Framework8.

As explained in Section 3.5 page 74, Zeek is limited to Ethernet-based protocols. The
only industrial protocol parser available in Zeek is Modbus TCP. For our study, we extended
the Zeek framework to �eldbuses. We developed a Zeek CAN module based on SocketCAN9

kernel module for frame capture. We also developed the Broker based on the Zeek broker
framework and implemented the Scope Recognizer together with its FSMs and the diverse
monitors in the detection scripts.

The Broker and detection scripts were implemented in Python 3.8.10. while CAN Worker
is developed in Zeek native language. The framework runs on a Dell Latitude 5414 with a
2.6 GHz Intel Core i7-6600U processor 6GB 2133 MHz memory under Ubuntu 20.04.3 LTS.
Extract of code is made available10.

5.4 Evaluation

We evaluate our approach on di�erent aspects:

� Detection capabilities. (Section 5.4.1) This part veri�es the correctness and e�ec-
tiveness of the approach through time performance evaluations and other key factors
for intrusion detection methodologies.

� Scalability. (Section 5.4.2) This part evaluates the scalability of the approach to large
ICSs.

� Extensibility. (Section 5.4.3) This part discusses the generalisation of the approach
and its usage on other use cases.

5.4.1 Detection Capabilities

As presented in Section 5.3, our detection framework relies on 33 monitors. We evaluate
it against di�erent categories of attacks. To have a full benchmark coverage, all our monitors
are triggered throughout our experiments.

Attack implementation. We deployed attack scripts that send commands on the CAN
�eldbus and Modbus TCP network that attempt to bring the process to an unsafe state. An
attack is implemented as a Python script. On the CAN �eldbus, we use a PCAN-USB11

adapter connected to the �eldbus. On the Modbus TCP network, we implemented attacks
with a Modbus TCP client using PyModbus12 Python tool.

Attack detection and response time. The consequences of attacks can be visualised
on the physical process. Some attacks will disrupt the positioning process but without other
consequences, while other attacks will put the servo drive into a permanent fault condition
requiring a manual reset. We evaluated representative attacks that could occur against our use

8https://www.actor-framework.org/
9https://www.kernel.org/doc/html/latest/networking/can.html
10https://github.com/V3Hr7LnNRu7T/SSIDS
11https://www.peak-system.com/
12https://github.com/riptideio/pymodbus
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case. We grouped attacks by categories, see Table 8. For example, let us take the �rst category
of the table: �Unauthorized transition of NMT states�. This category of attacks concerns
either: (i) sending PDOs during Pre-Operational state (State 4 of Figure 35) or (ii) sending
any other command than NMT related ones during Stopped state (State 6 of Figure 35).
Therefore, in this category, we consider that there are 2 di�erent attacks. In a similar manner,
attacks from the category �Movement command outside authorized positioning zone� can be
performed through the drive mode Pro�le Position using absolute or relative positioning but
attacks can also be done through Jog movement. Table 8 summarizes: an identi�cation
number (ID) for the di�erent categories of attacks, the categories of attacks, the number of
related attacks in each category, the attack entry point, the physical e�ect on the system,
the Worst Case Response Time (WCRT) and the Average Response Time (AvRT) for the
detections. The results in Table 8 were obtained for 100 executions of each attack. In total,
we considered 93 attacks of 22 generic categories. The majority of attacks were implemented
on the �eldbus, as some attacks can only be implemented at a direct proximity to the physical
process (e.g., for sensor false data injection).

Table 8: Implemented attacks and their e�ect on the system

ID Category of attack # Attacks Entry
point

Physical e�ect WCRT (ms) AvRT (ms)

Forcing state transitions
1 Unauthorized transition of NMT states 2 Fieldbus Drive: permanent fault condition 15.5 9.7
2 Unauthorized transition of drive states 16 Fieldbus Depends on states 14.9 9.6
3 Unauthorized drive mode 8 Fieldbus Disrupts the positioning process 19.0 12.2
4 Hijack drive modes (change from one to another) 6 Fieldbus Disrupts the positioning process 13.7 9.4
5 Unauthorized transition of drive states 4 Modbus

TCP
Depends on states 22.0 9.9

Illegal command within a state
6 Unauthorized commands in speci�c NMT state 2 Fieldbus Drive: stopped 16.7 10.4
7 Unauthorized commands in speci�c drive states 6 Fieldbus Depends on state 14.4 8.2
8 Unauthorized commands in speci�c drive states 6 Modbus

TCP
Depends on state 21.9 10.1

Movement command injection
9 Movement command while the system is moving 3 Fieldbus Disrupts the positioning process 14.7 8.3
10 Movement command while the system is motion-

less
3 Fieldbus Disrupts the positioning process 18.0 7.9

11 Movement command when the system is not ref-
erenced

3 Fieldbus Disrupts the positioning process 17.5 8.0

12 Movement command outside authorized posi-
tioning zone

3 Fieldbus Drive: permanent fault condition
and disrupts the positioning process

12.3 6.9

13 Illegal Jog directions 2 Fieldbus Disrupts the positioning process 11.9 7.5
14 Unauthorized speed for movement 3 Fieldbus Disrupts the positioning process 14.9 6.8
15 Movement command while the system is moving 3 Modbus

TCP
Disrupts the positioning process 18.4 9.4

16 Movement command when the system is not ref-
erenced

3 Modbus
TCP

Disrupts the positioning process 14.5 9.4

17 Movement command in multiple directions si-
multaneously

11 Modbus
TCP

Disrupts the positioning process 20.9 10.4

Sensor false data injection
18 Periodicity of TPDOs (system moving and mo-

tionless)
2 Fieldbus Disrupts the positioning process 14.8 7.7

Illegal sequence of operations
19 Homing command on y axis �rst, then x axis 1 Fieldbus Disrupts the positioning process 13.8 8.1
20 Homing command on one position axis only 2 Fieldbus Disrupts the positioning process 12.9 7.5
21 Homing command when the system is already

referenced
2 Fieldbus Disrupts the positioning process 14.7 7.2

Targeting synchronisation of local loops
22 Each drive in a di�erent operating mode 2 Fieldbus Disrupts the positioning process 16.6 7.2

In summary, we detect attacks that aims to: interrupt current operations, move the robot
outside the safe area or with an unsafe speed, force the change of the internal state or op-
erating mode of the speed drive or disrupt �eldbus and Modbus TCP communications. We
detect the side e�ects of attacks on the system. It means that the launching point of the
attack does not matter, whether �eldbus or Modbus TCP network. Thus, an attack triggered
by corrupted code inside a PLC could also be detected. Concerning the response time for the
attack detection, the WCRT is never above 22.0 ms. The mean value for the response time is
around 10 ms. For the attacks using Modbus TCP as entry point, they globally have a higher
response time. This can be explained by the fact that in addition to the time required for
the detection, we need to add one entire cycle of PLC which processes the command of the
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attack. The cycle time of the PLC implied in the attack is 10 ms.

False negatives and false positives. Our IDS detects all the aforementioned attacks
as they were forged to target the security properties previously de�ned. Therefore, we have
no false negatives, con�rming the correctness and e�ectiveness of our monitors synthesis.

Some false positive alerts were observed due to a con�guration issue of the CAN nodes.
During Pre-Operational, Operational and Stopped states of the CANopen FSM depicted in
Figure 35, each node periodically broadcasts its state (�heartbeat� messages). The heartbeat
period is con�gurable by the user. If it is con�gured too long, a node may switch between
several states before broadcasting its state, as heartbeat messages are exclusively periodic and
not triggered by the FSM transitions; e.g. at Power On, a node may go through Initialization,
Pre-Operational, Operational and emit a TPDO before issuing the �rst heartbeat about being
in Operational state. A monitor raises an alert as PDOs are forbidden before Operational
state. Although this alert does not correspond to an attack, it is corresponding to a violation
of the standard speci�cation due to a miscon�guration of the device.

Alert overlapping. A single network packet may trigger several monitors. For instance,
if the robot is moving in Jog mode, a Positioning command with a target outside the safe
area and a speed setpoint superior to the maximal admitted will trigger four alerts: illegal
operating mode change, Jog movement not ended, illegal destination and illegal movement
speed. The four security patterns are clearly not redundant but it is impossible to link the
four alerts to the same attack. The development of an alert correlation methodology would
be needed in order to reconstruct the attack scenario in such cases.

5.4.2 Scalability

In order to assess the scalability of our approach, three performance measures are im-
portant: (i) Response time for various attacks, already evaluated in Section 5.4.1, (ii) the
execution time of the detection loop and (iii) the maximal number of local loops that can be
monitored with a single instance of our detection framework.

Execution time of the detection loop. Having an on-line monitoring approach, the
most important measure is the computational time of a full monitoring step. For every
received network packet, each active monitor has to perform an update step. The addition of
all these update steps is therefore the total execution time of the detection loop. The result
depends on the number of active monitors, and complexity and type of patterns (Dwyer,
Konrad, Maler).

Active monitors 1 5 10 20 30 50 80 130 200 300 450 600 800
WCET (ms) 1.09 1.15 1.19 1.17 1.19 1.30 1.66 1.49 2.06 2.08 2.59 2.98 4.29
AvET (ms) 0.80 0.82 0.84 0.87 0.89 0.95 1.04 1.17 1.36 1.67 2.08 2.50 3.07

Table 9: Impact of the number of active monitors on the execution time of the detection loop

We gradually increased the number of active monitors by duplicating one of the most
complex (in our case, this is the �Absolute Position� monitor). The detection loop computer
program is running with high priority. The Worse Case Execution Time (WCET) of the
detection loop and the average execution time (AvET) of the detection loop are represented
for 1, 5, 10, 20, 30, 50, 80, 130, 200, 300, 450, 600 and 800 active monitors, see Table 9.
Each AvET is the average of the timings of 2000 executions. The WCET and AvET of the
detection loop are represented in Figure 40.

LTL formula evaluation is known to be a polynomial complexity problem [131]. The algo-
rithm for the monitors is of polynomial complexity as well as it is proportional to the number
of local loops. As expected, the curves for WCET and AvET of the detection loop are poly-
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Figure 40: Worst Case Execution Time (WCET) and Average Execution Time (AvET) of the detection
loop depending on the number of active monitors

nomial, more precisely linear.

Maximal number of local loops. As we are doing on-line detection, this limit depends
on the execution time of the detection loop. As the number of monitored loops increases, the
�eldbus tra�c intensi�es and the number of active monitors in the detection loop increases.
On-line detection requires that the detection loop execution time stays inferior to the packets
inter-arrival time. We compare the WCET previously obtained with the expected inter-
packets arrival time.

The network throughput in our experiments is the following:

◦ On the CAN �eldbus, at most 120 packets/second13

◦ On Modbus TCP Network, at most 100 packets/second with mainly �reading� functions.
Indeed, whenever a HMI screen is displayed, some speci�c variables are periodically read.

A monitor may subscribe to both networks (CAN �eldbus and Modbus TCP network),
therefore the total input throughput for this monitor is the addition of the two individual
throughput, i.e. 220 packets/second (inter-packets arrival time of 4.5 ms). This example
constitutes the worst case for the input throughput of a monitor. In our use case, the detection
loop WCET is around 1 ms for 30 monitors (see Figure 40), which is more than four times
inferior to the inter-packets arrival time.

Now, let us compute the maximal number of local loops. We take our use case as a
reference, therefore we consider that 33 monitors correspond to 2 local loops. With this
hypothesis, we evaluate the WCET of the detection loop depending on the number of loops.
Then, in order to calculate the inter-packet arrival time depending on the number of loops,
we consider that every local loop generates 60 packets/second14. The results are represented
in Figure 41.

We can conclude that one instance of the detection scripts can handle the monitoring
of up to 11 position control local loops. Those experiments are achieved with a single Zeek
Broker instance. If more detection capacities are required (more local loops and monitors), the

13The network throughput peak appears during movements with TPDOs every 20 ms (i.e. 50 TPDOs/second
per drive; 100 in total), heartbeats every 500 ms (i.e. 2 heartbeats/second per drive; 4 in total) and other
network protocol functions, such as �Sync�, SDOs, etc.

14120 packets/second for 2 local loops, as aforementioned.
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Figure 41: Maximal number of local loops

approach can be easily extended based on the Zeek framework and our Workers and Broker.
Several Brokers could �lter network tra�c and redirect network packets to di�erent detection
scripts.

5.4.3 Extensibility

Since extensibility is about the generalisation of the approach and its usage on other use
cases, we decided to implement our framework on a second ICS testbed.

A) Deployment of the framework on the naval testbed

Therefore, a similar work to the one described in the present Chapter has been deployed
on the naval testbed presented in Chapter 3.4.

The deployment of our approach on this testbed concerns the �Direction� subsystem loop
of the testbed (see Figure 20). Network tra�c capture is achieved at �eldbus level as well as
between a PLC and an HMI; as illustrated in Figure 42.

The di�erences between this naval use case and the cartesian robot use case are multiple:
the equipment are di�erent and the implemented �eldbus protocol as well. The cartesian
robot's �eldbus relied on CANopen protocol whereas the naval use case implements Modbus
RTU. As for the cartesian robot, we continued the extension of the approach to other �eldbus
protocols. A stand-alone Modbus RTU Worker was developed using C and C++ languages.
Note that it this use case, the two servo drives are not in the same �eldbus.

As for the previous use case, tra�c capture at high levels network (Tra�c capture 1 on
Figure 42) is more straightforward than �eldbus tra�c capture (Tra�c capture 2 and 3 on
Figure 42). To do the latter, we use RS-485 to USB converters15 together with a stand-alone
Modbus RTU worker16 and Zeek. Figure 43 shows the set up we rely on for network tra�c
capture on one �eldbus. The �rst RS-485 to USB converter is used to capture every network
packet that �ows on the �eldbus while the second converter is used for sending attacks on the
bus.

Concerning the implementation of the framework, the Scope Recognizer could be deployed
almost identically as the one developed for the �rst use case. Indeed, the servo drives, al-
though di�erent in brand, follow the same state machine de�ned by the IEC 61800 standard

15https://joy-it.net/en/products/SBC-TTL-RS485
16Codes can be found in the GitHub https://github.com/V3Hr7LnNRu7T/SSIDS
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Figure 42: Naval testbed and tra�c capture points

Figure 43: Set up for �eldbus tra�c capture
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(Figure 34). However, in the Scope Recognizer, an adaptation of this FSM has to be done for
the mapping to Modbus RTU protocol. Additionally, there are no equivalent of the CANopen
FSM for Modbus RTU, therefore the Scope Recognizer encompasses one less FSM. Further-
more, the use case dependant FSMs have to be adapted. For instance, the authorized servo
drives mode are more restricted in this use case as only Pro�le Position functioning mode is
used. Also, the FSM for the HMI pages is quite smaller, since the HMI presents only 3 pages.

In total, 21 monitors were deployed including 2 monitors concerning synchronisation of
the two servo drives. In this use case, only 3 types of security patterns were used: Precedence,
Response and Absence. The monitors where implemented using Reelay17 library [151]. This
library relies on Past-MTL with the temporal logic operators: previously (analogous to next
in the past), once (sometime in the past), historically (always in the past) and since (until
in the past).

Concerning the evaluation, we compute the execution time of the detection loop. Once
again, the idea is to measure the computational time of a full monitoring step. Due to the
few security patterns used in the implementation (3 security patterns), the evaluation was
conducted on each of them (i.e. on a monitor evaluating the pattern). The results are shown
in Figure 44. For each type of pattern, the curves show a similar trend as the one presented
in Figure 40: the execution time of the detection loop depending on the number of active
monitors is linear.

Figure 44: Execution time of the detection loop depending on the number of active monitors �
Evaluation for 3 security patterns

However, if we compare the WCET obtained in the �rst use case (see Figure 40) and
the one from the second use case evaluation, there is almost a 4.5 ratio (for the Absence
Pattern). The fact that the �rst case implementation showed a 4.5 times faster execution
time can be explained by di�erent factors: (i) implementation of the decision procedure (in
the �rst case, it was decomposed with some manual steps, whereas the second was used in a
blackbox manner), (ii) TL formalism considered (LTL, MTL, STL in the �rst case, past-MTL
in the second), (iii) system under observation having di�erent network characteristics and
(iv) characteristics of the computer conducting the evaluation. In conclusion, despite this
di�erence in the execution time of the detection loop, the experimentation has shown that
the framework can be quickly and easily extended to di�erent use cases.

B) Summary on extensibility

Multi-protocol support. The approach can be extended to any �eldbus protocols. In
the �rst use case (cartesian robot) the approach is deployed for CAN protocol whereas in
the second use case (naval testbed) the Modbus RTU Worker allows the deployment of the
framework on serial Modbus lines. The detection patterns are the same except for, of course,

17https://github.com/doganulus/reelay
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the protocol-dependent patterns.

Multi-component support. On the use of di�erent local controllers, the same steps
can be implemented for the approach. We considered one of the most complex use case pos-
sible for a local controller (i.e. servo drives, for both use cases). Similar behaviors could be
extracted from other local controllers.

Reusability. Additionally, we do not have to start over the speci�cation analysis for a
new system. Once extracted from an international or industry standard, the safety speci�ca-
tions are the same for all the controllers from the same category: servo drives, temperature or
pressure regulators, PID controllers, etc. No matter the manufacturer, a controller conforms
with standards. We limit the information extracted from tra�c and control logic to param-
eters of the standard speci�cations. To that extend, we argue that the security properties
extraction process is easily replicable from one system to another.

Conclusion

This Chapter presented the implementation of our approach framework for e�ciently
monitoring security properties. We presented a use case and deployed our framework onto it.
Our approach is deployed on the communication network between the distributed control and
the local loops and between the supervisory control and the distributed control. The security
properties for the monitoring are systematically retrieved from international and industry
standards, or infered from tra�c. We note that the security properties need to be retrieved
from the standards only once for each type of device as they are common among all the
manufacturers compliant with the standard.

There are several original points in our contribution. We are able to handle hybrid process
dynamics with a scalable, low complexity approach. We are able to perform detection at the
lowest network level, i.e. �eldbus level, which is the closest to the physical process. We do not
need large and representative datasets to construct our model and we do not rely on heavy
assumptions such as periodical system behaviors. As a matter of fact, in most of existing
approaches, legitimate operator manual interventions trigger alerts since they are breaking
the supposed periodic behavior of the system. It is not the case of our approach, thus we are
able to handle human-driven systems.

The approach was evaluated on two ICS physical testbeds. The evaluation of the approach
has shown its correctness and e�ectiveness through time performance evaluations. In total,
93 types of attacks were conducted from both �eldbus and TCP networks and successfully
detected. Furthermore, the approach was shown to be scalable and extensible.

The evaluation of the approach has shown promising results on a simple hierarchical
system. The next Chapter investigates a distributed deployment for the approach.
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Introduction

In the previous Chapter, we presented our speci�cation-based IDS based on monitoring
security properties on the network tra�c for simple hierarchical systems. We evaluated our
approach for one instance of the detection scripts. However, if more detection capacities are
required in terms of number of monitors (for a larger use case for instance), the approach
can be distributed on several machines to balance intrusion detection workload. Nevertheless,
this inevitably introduces only local views on the system. The challenge is to manage these
local views in order to monitor global security properties of the system. This is the topic of
the current Chapter.

First of all, we present the concept of our distributed IDS approach. Then, in a similar
manner as the previous Chapter, we provide concrete examples for a distributed deployment
of our intrusion detection methodology. Relying on a bigger use case, we provide details about
the corresponding monitors and implementation of our work. We also describe the software
deployment of our architecture and evaluate the approach.
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6.1 Concept of the Distributed Intrusion Detection Approach

In the previous Chapters of this manuscript, we have assumed that every monitor of our
IDS has access to every event from the network tra�c it requires in order to evaluate a se-
curity pattern. This was possible since a single instance of IDS was running. However, when
more detection capacities are required, the number of monitors may increase and they may
need to be dispatched across the system to better balance the detection task. Hence, security
patterns might be de�ned over events which are distributed over the system and not accessible
for every single monitor, each one having access to only a local subset of the security patterns.
In order to correctly evaluate such global security patterns, some monitors have to cooperate
in some way. This is the situation that motivated a distributed deployment of our intrusion
detection approach. We aim at structuring the monitors in a way that global security patterns
can be correctly evaluated in order to detect attacks violating global system requirements.
Hence, in such distributed deployments, some attacks would go undetected by local monitors
and would only be detected by monitors evaluating global properties. Such attack scenario is
detailed in Section 6.5.

Our distributed intrusion detection approach is composed of multiple IDS nodes. As
de�ned in Section 2.3, nodes are used to refer to the processing entities in the di�erent
deployments (centralized, decentralized and distributed systems). In order to highlight the
di�erence between a node in the current distributed deployment and the single IDS case
presented in the previous Chapters, in the following we call the IDS instances: Intrusion
Detection Nodes (IDNs). Each IDN is structurally similar and encompasses identical modules
in a layered manner. Their structure is presented in Figure 45.

Figure 45: Structure of the layered IDN

At the data collection layer, a Broker collects data from two types of publishers: (i) raw
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data from a network tra�c capture of the system under observation, (ii) events published
by other IDNs. Each IDN is tailored to capture the speci�c network tra�c that �ows at its
vicinity. An IDN can encompass from zero to multiple tra�c capture points. The detection
scripts layer encompasses monitors and the Scope Recognizer. These two modules subscribe
to topics of interest on the Broker, for their detection task. The Noti�cation layer consists
in raising alerts, and publishing events to other IDNs. Alerts are events that violate security
policies. Some events which are not alerts are needed in the case of global security patterns
evaluation. Such global properties include two or more local nodes information.

From the IDS presented in Chapter 4, the only di�erence in the structural architecture is
therefore the ability for IDNs to communicate. Indeed, the previously introduced IDS included
a single instance. Thus, it required the ability to raise alerts only. Figure 46 identi�es the
IDNs layers relatively to the previously introduced framework.

Figure 46: Identi�cation of the layers in the previously introduced framework (see Chapter 4)

Within our framework, there is no central detection unit. Furthermore, there are no hi-
erarchies of IDNs in the sense that they are able to operate independently and raise alerts.
However, there is one IDN involved in the monitoring of global security patterns, that sub-
scribe to the events provided by other IDNs. Each IDN is tailored to collect the speci�c
data of its observation domain. This means that each IDN subscribes to the required topics
(from the Message Broker) for its application. It also means that the Scope Recognizer and
monitors are adapted to where the IDN is deployed. Thus, some IDNs may be positioned
at local loop level (as the one in Chapter 5) and monitor �eldbuses events, whereas others
may monitor global security patterns and monitor only events provided by other IDNs. If
IDNs are structurally identical, they are tailored to their environment and each module has
to be adjusted accordingly. However, there is a certain genericity in the modules' codes: (i)
Workers, once adapted to a certain network protocol can be reused, (ii) Brokers are identical
in each IDN, (iii) Scope Recognizers identify states/events of equipment at their observation
domain; therefore, code reuse is possible for the same type of equipment, (iv) Monitors code
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can be reused because of the generic speci�cation patterns and (v) Event Identi�er is fully
dependant on the use case.

An example of a distributed deployment of our framework is represented in Figure 47.
An IDN does not necessarily capture network tra�c. Some local IDNs can cooperate for the
evaluation of some patterns requiring such synchronisation. In the �gure, this is the case
for the two bottom IDNs. For example, it could be necessary to evaluate if two servo drives
(dispatched in the system, in two distinct local loops) are in the same functioning modes.

Figure 47: Example of a distributed deployment of several IDNs

6.2 Use case Presentation � Manufacturing Plant

In order to execute experiments on distributed intrusion detection, we de�ne a multiple
workstations production line composed of two cartesian robots, one transfer robotic arm (two
axis pick and place), a part optical sorting workstation, and a complex conveyor system.

The two real cartesian robots are identical to the one described in Section 5.1. A Factory
I/O1 simulation reproduces the other components of the physical system (manufacturing
plant) plus a remote I/O unit that we couple to a real PLC using Modbus TCP/IP protocol.

The assembly line is shown in Figure 48. Between workstations, conveyor belts and pres-
ence sensors are used to move the parts. Three types of product exist: metal parts, green parts

1https://factoryio.com/
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and blue parts. Figure 49 shows the organization of the manufacturing plant from above. The
normal �ow of operation follows manufacturing routing sheets, displayed in Appendix B for
each type of part. The routing sheet is a document that describes the sequence of operations
to be executed in the manufacturing process.

Figure 48: Manufacturing plant overview© All rights reserved

Figure 49: Structure of the manufacturing plant, seen from above

This use case is a complex industrial system with various subsystems; its overall network
architecture is depicted in Figure 50. On this Figure, for clarity matters, only one cartesian
robot is represented. In the remainder, the examples will also lie on a single cartesian robot.
There is a PLC running the control program of the simulated part of the factory (optical
sorting machine, pick and place robot and various sensors and actuators like presence sensors
and conveyor belts). All the devices are connected to the same LAN.
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Figure 50: Manufacturing plant network architecture

6.3 Security Patterns Synthesis Process

In our distributed deployment, in addition to local security patterns, there are global
security patterns to evaluate (see Section 2.3.3 for a de�nition and example).

For each IDN, the deployment of the whole detection framework (security properties ex-
traction, security patterns synthesis and runtime monitoring) follows the methodology ex-
plained in Chapter 4 and illustrated in Chapter 5. However, there are also global security
properties. The evaluation of these global security properties relies on the events exchange
between IDNs. We are going to detail next the security patterns synthesis process for global
security patterns.

6.3.1 Global Security Patterns

Best practices require that implementation documents should be available to system users.
Such documents would be useful to obtain system's global requirements. In real life, they
are rarely available (owned by third parties or no back-up available). However, within the
manufacturing industry, the routing sheets of the parts provide speci�cations for the system.
From these documents, we can for example extract sequences of operations for the production
line.

If no documentation can be used to obtain system's global speci�cations, expert knowl-
edge is required and a human specialist has to list the system's global requirements which is
a time-consuming and error-prone task. This is one major di�erence to the speci�cation of
local requirements (used in the previous Chapters), where the common characteristics of safe
behaviors could be extracted from standards directly. This was possible because controllers
and networks in ICSs conform with international standards. Unfortunately, there are no stan-
dard used in a consensual manner for high level system requirements. Once the speci�cations
are listed, network tra�c observations are required to re�ne the properties, as sometimes they
are not entirely speci�ed from the previous step. For example, ordering in events or timing
information if needed may be retrieved from tra�c observation and analysis.
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In our use case (and in any manufacturing plant), the production �ow is determined by the
routing sheets: each product is going to successively be processed by some of the workstations.
For instance, as shown in the routing sheet, Table 14 (in the Appendix), the blue part is cut
by cartesian robot 1, then moved by the two axis pick and place robot, cut by cartesian
robot 2, and �nally removed from the assembly line. One system safety requirement would
be, for example, for each manufactured part, to respect the order of operations conducted by
workstations. For instance, the two axis pick and place robot should move the blue part only
after cartesian robot 1 has �nished its operation on the part. In terms of security patterns,
it means that: (i) two axis pick and place robot being busy responds to cartesian robot 1
not being busy; (ii) cartesian robot 1 not being busy responds to cartesian robot 1 being
busy; (iii) cartesian robot 1 being busy precedes cartesian robot 1 not being busy; and (iv)
cartesian robot 1 not being busy precedes two axis pick and place robot being busy. Hence, the
corresponding global security patterns are two Response ((i) and (ii)) and two Precedence ((iii)
and (iv)) patterns. From network tra�c observations, information are retrieved concerning
the meaning of such information at network level. Every global security pattern is evaluated
with a global scope.

Optionally, one can also extract time information from network tra�c observations. This
time information can concern the processing time of a workstation or the elapsed time between
two workstations successions. This permits to take into account attacks that aim to slow down
the production process.

Hence, the four global security patterns can be expressed as the following LTL formulas:

□(cartesian_robot_1busy → ♢cartesian_robot_1not_busy) (4)

□(cartesian_robot_1not_busy → ♢pick_and_place_robotbusy) (5)

(¬pick_and_place_robotbusy W cartesian_robot_1not_busy) (6)

(¬cartesian_robot_1not_busy W cartesian_robot_1busy) (7)

The monitoring of the four global security patterns requires information from two distinct
workstations: the cartesian robot 1 and the two axis pick and place robot. Hence, it is
impossible to obtain a verdict locally. Each local IDN has to communicate its local information
to the IDN evaluating the corresponding global security patterns.

6.3.2 IDN for Global Properties

In order to evaluate global security properties, we use a speci�c IDN that conducts
(alone) all the monitoring processes while receiving local events from other IDNs. This is
the orchestration setting presented in [34] from the �eld of runtime veri�cation. This global
IDN does not capture any tra�c. In order to evaluate the global security patterns (4),
(5), (6) and (7), local IDNs have to publish the following events: cartesian_robot_1busy,
cartesian_robot_1not_busy and pick_and_place_robotbusy.

However, these events are abstractions of physical process states seen in the network tra�c.
Reciprocally, physical process states seen in the network tra�c are concretions of these high
level events. While abstraction is the fact of hiding complexity in order to make something
simpler to understand or to use, concretion is the opposite: it is the fact of dealing with
speci�c details. Multiple ways exist to concrete (i.e. to go from abstractions to concretions)
an event: for instance cartesian_robot_1busy abstraction can be obtained both via �eldbus
or Modbus TCP by checking the state of di�erent process variables.

The three abstract events:

115



6.4 Runtime Monitoring Chapter 6 Distributed Detection

cartesian_robot_1busy, cartesian_robot_1not_busy and pick_and_place_robotbusy

can be obtained using the Scope Recognizer. The Scope Recognizer encompasses a FSM with
the functioning modes of the servo drives, including �no movement�. If both servo drives are
in the �no movement� state, then

cartesian_robot_1busy = 1 and cartesian_robot_1not_busy = 0.

A similar process is conducted for every abstract event. Then, the role of the Event Identi�er
(see Figure 45) is to publish such abstract events.

6.4 Runtime Monitoring

6.4.1 Data Capture

In this use case, the detection task relies on three IDNs. IDN 1 and IDN 2 are located at
subsystems and they evaluate local security patterns in order to detect abnormal behaviors
of subsystems. IDN 3 evaluates global security patterns and receives events from IDN 1 and
IDN 2. Figure 51 shows where capture points are located. The capture points and the IDN
deployed at the cartesian robot workstation are identical to the one described in Chapter 5.
On the practical aspect, each IDN is deployed on a computer and passively observes network
tra�c. The communication between IDNs is performed on a dedicated network.

Figure 51: Tra�c capture points of the use case for a distributed deployment

6.4.2 Scope Recognizer and Monitors

The routing sheets are used to de�ne system's states for the Scope Recognizer. The
Scope Recognizer identi�es the workstations changes for each part currently on the production
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line. Therefore, there would be as many FSMs as the number of parts, and the states of each
FSM would indicate workstations.

Concerning the monitors, the experiment is performed with 4 monitors (one for each
pattern) evaluating global security patterns, in addition to the monitors evaluating local
security patterns.

6.4.3 Software Deployment Engineering

As for the previous experiment, we rely on the open source NIDS Zeek for the deployment
of our IDNs. In order to easily operate and manage Zeek accross the multiple IDNs, we
use ZeekControl2. ZeekControl is an interactive shell that allows to manage multiple Zeek
installations in a tra�c-monitoring cluster. A Zeek Cluster is a set of computers (the IDNs
in our use case) jointly analysing tra�c in a coordinated manner. Each IDN is a computer
of the Zeek Cluster; these computers are not part of the industrial system under observation.
The coordinating unit is called the Manager, which is a process able to start/stop/get states
of the rest of the computers in the Cluster. Figure 52 gives a representation of this process.

In our use case, the Manager is on IDN 3. We speci�ed our deployment architecture on
con�guration �les intended for this purpose (containing IP addresses of the remote machines
for instance). Based on these con�guration �les, the manager launches workers on IDN 1 and
IDN 2. The manager also deploys custom Zeek scripts, which are related to the functioning
of workers on each IDN. From a practical aspect, all machines in the Cluster (i.e. all IDNs)
have to run the same version of their operating system and must be con�gured to run Secure
Shell (SSH) in a secure way.

Figure 52: Managing Zeek over the IDNs using ZeekControl

The communication security is provided by Zeek secure communication process. Further-
more, IDNs communicate on a dedicated network, completely separated from the ICS. Thus,
they have no impact on the industrial process. Concerning time synchronization between
IDNs, we use the Simple Network Time Protocol (SNTP)3 of the industrial network. Even
though the IDNs have their own communication network, they need the same synchronisation

2https://github.com/zeek/zeekctl
3https://datatracker.ietf.org/doc/html/rfc5905
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precision than the ICS they intend to monitor. Hence, one limitation of this con�guration is
the vulnerability induced by the use of the ICS SNTP, needeed for time synchronisation of
the IDNs with the industrial network.

6.5 Attack Scenario

This Section develops an attack scenario that would go undetected locally, in order to mo-
tivate the monitoring of global security patterns within our distributed detection framework.

Figure 53: Illustration of the normal scenario (left) and attack scenario (right)

The normal scenario is represented in Figure 53, on the left side. We consider the routing
sheet for the blue part. The parts arrive from a conveyor and stop in front of cartesian robot
1 (position 0). The cartesian robot 1 processes the part (position 1) and put it back to the
conveyor. Then, the pick and place robot moves the part (position 2) to another assembly
line (position 3).

The synchronisation between workstations is implemented via network variables:

Part_Ready_for_Robot1 and Part_Out_of_Robot1.

Part_Ready_for_Robot1 is written by the PLC containing the codes of the simulated
part of the factory. Part_Ready_for_Robot1 switches to 1 when a part is in front of
the Cartesian Robot 1 (i.e. when the part is detected by presence sensors, at position 0).
The network variable Part_Ready_for_Robot1 is periodically read by the cartesian robot's
PLC at each PLC cycle. The cartesian robot's PLC starts processing the part, whenever
Part_Ready_for_Robot1 == 1. Similarly, Part_Out_of_Robot1 is written by the PLC
of the cartesian robot at the end of the blue part's processing. It is periodically read by the
PLC containing the codes of the simulated part of the factory, at each PLC cycle. The pick
and place robot's PLC starts moving the part, whenever Part_Out_Of_Robot1 == 1. The
pseudo code for the cartesian robot's PLC is shown in Algorithm 2.

We deployed an attack whose aim is to bypass the operation of Cartesian Robot 1 on the
part. The attack scenario is represented in Figure 53, on the right side. The attack forces
Part_Ready_for_Robot1 to zero, permanently, on the PLC containing the codes for Factory
I/O. This forbids the cartesian robots to start processing a part, even if one is available. Then,
each time a blue part arrives in front of Cartesian Robot 1, it forces Part_Out_of_Robot1
to 1 on the PLC of the cartesian robot. The workstation synchronisation via network variables
is illustrated in Figure 54 for the normal scenario (left) and the attack scenario (right). The
attack scenario corresponds to a distributed attack as it involves various targeted PLCs, from
di�erent workstations.
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Algorithm 2: Pseudo code for the cartesian robot's PLC
Data: Part_Ready_for_Robot1: shared network variable

start: condition to start processing the part
PLC_FactoryIO: PLC containing codes of the simulated part of the factory

Result: Part_Out_of_Robot1: shared network variable

start← PLC_FactoryIO.read(Part_Ready_for_Robot1) ; // read cyclically

if start == 1 then
process_blue_part;
Part_Out_of_Robot1 ← 1

Figure 54: Workstation synchronisation for the normal scenario (left) and attack scenario (right)
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The consequences of such an attack, can be visualised on the physical process. In our use
case, when an attack is launched, we visually see blue parts on the assembly line go straight
from the conveyor to the pick and place robot. This results in a damaged part as the part is
missing a workstation operation. Visually, such attacks targeting the sequence of workstation
operations can lead to big confusion on the assembly line. Figure 55 shows an important
number of parts that were not processed by Cartesian Robot 2 as a result of one attack on
the sequences of events. All the parts piled up in front of Cartesian Robot 2 before leading
to the whole production to stop.

Figure 55: Visual e�ect of an attack disrupting the sequence of workstations' operations© All rights
reserved

6.6 Evaluation

Our approach being process aware, traditional network-security performance measures
are not su�cient. This is the reason why we consider operational and time-based metrics for
evaluating our distributed detection framework.

Furthermore, we do not focus on monitor-dependent measurements (such as the time it
takes to update monitors, the maximal number of monitors or the actual overhead of monitors)
since these results are already investigated in Chapter 5. We rather focus on metrics related
to the monitoring of global security properties:

� Detection capabilities. This part investigates which type of attacks are detected by
the approach, and time performance evaluation is conducted.

� Scalability. This part evaluates the scalability of the approach.

� Extensibility. This part discusses the generalisation of the approach and its usage on
other cases.

6.6.1 Detection Capabilities

As previously presented, our approach relies on 4 monitors for the evaluation of global
security patterns in addition to monitors for local security patterns. For the evaluation, every
monitors are activated, including the monitors evaluating local security patterns. The latter
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are the one described in the previous Chapters and deployed on the cartesian robot (33 mon-
itors).

Attack implementation and e�ect on the physical process.
The attack scenario described in Section 6.5 is launched through a Python script on

Modbus TCP network using a Modbus TCP client tool. It was launched 361 times.
We also implemented a variation of the previously described attack by launching it from

�eldbus level. The �rst step of the attack remains identical: Part_Ready_for_Robot1 is
forced to zero permanently, on the PLC containing the codes for Factory I/O. This step is
done through Modbus TCP network. Then, instead of forcing Part_Out_of_Robot1 to
1 on the PLC of the cartesian robot when a part is available, we trigger a command that
has the same e�ect at �eldbus level. On the cartesian robot PLC, if an attacker reverse-
engineers the programs for the processing cycle of the blue part, the attacker can deduce
which command validates the end of the processing cycle in order to automatically switch
Part_Out_of_Robot1 to 1. This way of implementing the attack is dependent on the way
PLCs are programmed, and the use case. However, it highlights the fact that our distributed
detection framework can detect violation of global safety policies, triggered from a �eldbus.

Attack detection and response time.
We are able to detect global security patterns disrupting sequences of events, or optionally

impacting timing of events (if speci�cations on timings are available in the use case). Fur-
thermore, we are able to detect attacks launched from �eldbus level, triggering global security
patterns.

The results in Table 10 show the characteristics of the conducted attacks. The attack
disrupts the sequence of operations in the shop�oor. For 361 repetitions, the Average Re-
sponse Time (AvRT) is 91.0 ms, the Worst Case Response Time (WCRT) is 96.2 ms and the
standard deviation (σ) is 1.58 ms. The experimentation follows a unimodal, positively skewed
distribution with a mode at 90.5 ms, represented in Figure 56. The AvRT being close to 90
ms is a satisfactory result. It can be explained by the fact that from the time the attack is
launched to the time it is detected, variables are read from both the PLC containing codes
of the simulated physical process and the PLC of the cartesian robot. Thus, at worse, one
entire cycle for each PLC occurs. The cycle time of PLC containing codes of the simulated
physical process is 80 ms, whereas the cycle time for the PLC of the cartesian robot is 10 ms.

Table 10: Implemented attacks and their e�ect on the system

Category of attack # Attacks Entry
point

Physical e�ect WCRT (ms) AvRT (ms) σ (ms)

Disrupt sequence and timing of operations in the
shop�oor

2 Modbus
RTU

Damage parts 96.2 91.0 1.58

Our speci�cation-based approach permits to de�ne correct behavior of the system in order
to detect any deviation from it. Therefore, an attacker can avoid being detected if he does
not trigger a misbehavior (i.e. misbehaving state of the IDSs). We argue that in this case, no
harm will be caused on the ICS nor its environment since no security properties are violated.

6.6.2 Scalability

The distributed deployment is by nature a solution to make our framework scalable. In
our contribution, we did not face any network-induced delays nor data packet disorder.

We evaluated the bandwidth of the communication channel between IDNs. The bandwidth
according to IEC 62443 [89] standard is the capacity of a communication channel to pass data
through the channel in a given amount of time. Bandwidth is usually expressed in bits per
second. We evaluated the time it takes to pass on an event from an IDN (Publisher) to
another (Subscriber). The results are shown in Table 11, for 100 executions. The average
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Figure 56: Distribution of the response time for the detection of the attacks

transmission delays are way inferior to the sampling period of the events of interest. Indeed,
the events published by Event Identi�ers are updated at every cycle of PLCs (cycle times of
10 and 80 ms).

Publisher Subscriber Average transmission delay (ms)

IDN 1 IDN 3 0.0086
IDN 2 IDN 3 0.0068

Table 11: Transmission time of an event between IDNs

Due to the publisher/subscriber used in our framework, we have a limited latency in the
communication of events from the Event Identi�er to the Broker of a given IDN. Hence, the
messages are delivered in a push-based manner, which means that the publishers initiate
requests to subscribers to deliver the message whenever they have a message to deliver. It
prevents monitors to periodically check for new information or updates. This promotes faster
response time and reduces the delivery latency, which is an important asset in systems meeting
real-time constraints.

Once deployed, industrial systems are unlikely to be heavily modi�ed. However, they can
evolve with sparse addition of components or operating requirement changes. The architecture
of our distributed intrusion detection framework allows such evolution to happen. Indeed, it
is a �exible architecture since IDNs can operate independently. For instance, adding one IDN
monitoring local security patterns will not have any impact on other IDNs. However, adding
new global security patterns is a more timely task as the choice of events to propagate to
global detection nodes will have to be discussed together.

6.6.3 Extensibility

The generalisation of the approach and its usage to other use cases has been already
discussed for local IDNs. Concerning IDNs monitoring global security properties, the main
challenge is on obtaining the speci�cations. This aspect depends on the availability of system
speci�cations. Our use case relied on the routing sheets for both the speci�cations extrac-
tion and the Scope Recognizer. One limitation of the methodology is that the speci�cation
extraction for global security properties is use case dependant.

Conclusion

In this Chapter, we have presented a distributed deployment for our intrusion detection
approach. The intrusion detection task is performed by several IDNs presenting a three layers
architecture: data collection layer, detection scripts layer and noti�cation layer. Each IDN
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is structurally identical. Some IDNs evaluate local security patterns and one IDN evaluates
global security patterns. IDNs monitoring local security patterns are able to raise alerts
and publish local events required for the evaluation of global security patterns. The IDN
monitoring global security patterns subscribe to local events in order to evaluate properties
that could not be evaluated locally solely.

Regarding our use case, we presented a distributed attack scenario, disrupting the work-
stations' sequence of operations in a production line. We evaluated our distributed approach
and showed its detection capabilities regarding global security patterns. It has good response
time results for detection, that is under 100 ms for global security properties. Furthermore,
we show that our approach is scalable and extensible.

123



6.6 Evaluation Chapter 6 Distributed Detection

124



Conclusion and Perspectives

In this thesis, we have presented a speci�cation-based, process aware, intrusion detection
system, monitoring security properties on the network tra�c for complex hierarchical indus-
trial control systems presenting hybrid dynamics. We �rst detailed the methodology for our
intrusion detection approach on a simple hierarchical ICS testbed. Secondly, we investigated
a distributed deployment for our IDS approach for larger testbeds.

The motivation for this contribution arises from the context and the speci�c properties
that de�ne ICSs. This is the topic of Chapter 1. The question of ICS cybersecurity is at most
a few decade old and is characterized by the integration of IT within OT networks. The cy-
bersecurity landscape of ICSs has expanded to include vulnerabilities that were not previously
considered. Securing ICSs is now a major concern, taken very seriously by organizations and
governments. However, ICSs have to deal with strict time constraints especially in their lower
levels, they encompass heterogeneous networks and resource-constrained equipment. Due to
these particular features, we have identi�ed behavior-based intrusion detection as a promising
security control since it is able to passively monitor network tra�c and it can be positioned at
multiple network levels. Another important characteristic of ICSs is the presence of a phys-
ical process. Recent years have witnessed the appearance of sophisticated attacks aiming at
disrupting the physical process of ICSs. We call these attacks process aware and we address
their detection in our contributions.

Through an extensive review of the literature concerning behavior-based intrusion detec-
tion, we have discussed several approaches. This is the topic of Chapter 2. We have identi�ed
three main categories relatively to which part of the ICS is considered to design the model:
communications between equipment, task and resources of equipment, control data and con-
trol logic. This last category appeared to be the most adapted to answer the challenge of
detecting process aware attacks, since it includes knowledge of the physical process when
designing intrusion detection models for ICSs. Even though this category of approach seems
promising, they present several di�culties that we identi�ed in order to address them. First,
many approaches have a limited comprehension of the physical process. We highlight the
granularity in physical process knowledge and the importance of considering control data and
control logic but also functioning modes of equipment and operational contexts. Furthermore,
through this review of work, we highlighted the di�culty to collect data at local loop level,
and the fact that very few works have put it into practice. Second, many approaches rely on a
costly construction of their detection model. Many approaches rely on human expert knowl-
edge and they present manually derived models. Third, few approaches take into account the
notion of time, and characterize the full temporal dynamics of ICSs. Fourth, few approaches
have evaluated their scalability by adopting a distributed deployment. Centralized intrusion
detection may su�er from limited detection possibilities when deployed on larger systems.

Throughout this work, we aimed at answering the previously identi�ed di�culties. Our
contributions are detailed in Chapters 3, 4, 5, and 6. Our contributions present the following
original points:

� The development and deployment of a speci�cation-based intrusion detection approach
relying on the monitoring of security properties against the system execution. Our
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approach encompasses high physical process knowledge including control data, control
logic, as well as functioning states and modes of components. Our approach is deployed
on the communication network between the distributed control and the local loops and
between the supervisory control and the distributed control of the system. Therefore,
we are able to perform detection at the lowest network level, i.e. �eldbus level, which
is the closest to the physical process.

� The security properties for the monitoring are systematically retrieved from interna-
tional and industry standards, and may be re�ned with network tra�c observation.
The security properties need to be retrieved from the standards only once for each type
of device as they are common among all the manufacturers compliant with the standard.

� We use expressive formalism from TL family of speci�cation language in order to evalu-
ate our security properties and tackle the hybrid dynamics of ICSs. Using results from
runtime veri�cation, we were able to develop a lightweight and low complexity approach.

� We investigated a distributed deployment which reduces dependence on a single detec-
tion unit and helps to balance the intrusion detection task across multiple detection
nodes. Each detection node is structurally identical. This structure permits to evalu-
ate local security properties at some nodes, but also global security properties at other
nodes. Hence, local information a�ecting global security properties are propagated ac-
cordingly.

The above propositions are implemented on two ICS testbeds: G-ICS testbed and Naval
Group testbed. These testbeds provide realistic and safe environment to evaluate our contri-
butions. The results are promising and show that the proposed approach has good detection
capacities, is scalable and extensible. This work could be expanded upon in the future, and
we present research directions below.

Perspectives

We now discuss the possible extensions of our contributions, in the short, medium and long
term. In the short term, perspectives are based on the application and further development
of our contributions:

� Creating a tool for the monitor synthesis. In Section 4.5, we presented the monitor
synthesis used in our approach. In our work, an automata-based approach was applied
for Dwyer and Maler patterns, whereas a variant of rewriting was used for Maler pat-
terns. It could be interesting to investigate the choice in the decision procedure for
the monitors synthesis by conducting a comparative study on the numerous library and
tools that already exist (e.g. Reelay4 for past-MTL and LTL, Breach5 for o�ine STL
monitoring, TeSSLa6 which brings its own temporal speci�cation language, etc.). To
our knowledge, no library nor tool tackles all three speci�cation formalisms used in our
work: STL, MTL and STL. Hence, one direct application of our work would be to create
a library (preferably using a programming language compliant with real-time constraints
such as C or C++) that would generalize and optimize the monitor synthesis for the
TL formalisms used in our work.

� Adding quantitative estimation of the deviation from normal behavior. It
would be bene�cial for a human operator to have a quantitative estimation of the de-
viation from the system's normal behavior instead of a binary verdict when a security

4https://github.com/doganulus/reelay
5https://github.com/decyphir/breach
6https://tessla.io/documentation/
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property is violated. As mentioned in the state of the art Chapter 2, such kind of quan-
titative metric has already been studied in the literature, it is the robustness degree [51].
It allows to add a degree of satisfaction/violation. This function of time computes the
distance to violation of a given STL formula. For instance, if we take the signal predi-
cate x > c, the robustness gives the relative position of x to c instead of only indicating
whether x is above or below the threshold. While it is particularly well adapted for STL,
it could be interesting to derive a similar indicator for LTL and MTL. For this research
track, it is worth to consider the notion of distance from the works in [26] and [142].

� Extending the framework to other �eldbus protocols. So far, the implementation
tackles CAN and Modbus Remote Terminal Unit tra�c capture. It could be interesting
to extend the detection capacities to other common industrial �eldbuses protocols such
as Pro�bus7, EtherCAT8, ControlNet9, etc.

� Implementing the distributed deployment on a large scale physical testbed.
In order to be fully realistic and avoid any loss of data �delity, it would be necessary to
evaluate the distributed deployment of our approach on a 100% physical testbed instead
of having the physical process simulated.

In the medium term, perspectives could be the following research topics:

� Automating the security patterns synthesis. A future extension of our work
concerns a complete automation of the security patterns synthesis process. In this
manuscript, this latter is systematic, since we rely on prede�ned patterns and stan-
dards operation modes of components. Full automation is not yet possible as standard
speci�cations are generally not provided in a suitable format (like .xml), although some
notable exceptions exist like the IEC 61850 standard [87]. It would be interesting to
investigate the �elds of ML, and more speci�cally Generative Arti�cial Intelligence,
in order to automatically generate security patterns from standards through adapted
prompt engineering.

� Deploying alert correlation. It would be necessary to deploy a supplementary mod-
ule to our contribution that would conduct alert correlation. This could, on the one
hand, solve the alert overlapping issue that is a limitation of our work discussed in Chap-
ter 5. Currently, a single attack may violate several security properties, and, potentially,
raise a substantial number of alerts, which is challenging to analyze for a human oper-
ator. Furthermore, the distributed deployment adds even more instances of IDSs with
even more possible alerts. On the other hand, developing an alert correlation module
would permit to reconstruct attack scenarios. Alert correlation is a topic of interest
in the literature [40] and should be adapted to our contribution. It would be highly
bene�cial for such alert correlation module to be supplied with our process aware alerts.

� Monitoring global security properties. In our distributed deployment, presented
in Chapter 6, we detail the evaluation of global security properties. In order to evaluate
such global properties, we use a global ICS instance that conducts all the monitoring
process while receiving local events from other ICS instances. However, many other
techniques exist, from the �eld of runtime veri�cation, to manage the distributed detec-
tion framework [34]. Research would be necessary to decide on the most e�cient way to
evaluate such properties in order to optimize the detection response time and minimize
network delays.

7https://www.profibus.com/
8https://www.ethercat.org/
9https://www.odva.org/
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In the long term, one could work on adapting our approach to the Industry of the Fu-
ture with challenges on interoperability, heterogeneity of protocols, wireless protocols, and
adapting our distributed intrusion detection methodology to the Internet of Things (IoT). In
this context it could be necessary to investigate the development of a standard document for
global system requirements. In our approach, we relied on routing sheets, which are neither
a standard document, nor extendable to other industrial sectors. Investigating a high level
requirement framework for industrial systems would allow to generalize our approach to any
system, from any sector.
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Appendixes

A) Programmable Logic Controllers (PLCs)

Programmable Logic Controllers (PLCs) are at the heart of modern ICSs. It is a real-time,
modular computing system, with tailored memory and computing resources, adapted to harsh
industrial environments. A PLC includes the following components:

� Rack. It is the support between modules. It encompasses a communication bus in order
to allow communication between all the modules.

� Power supply module.

� Processing module (Central Processing Unit).

� Memory module (Random-Access Memory (RAM) unit).

� Input module (digital or analog).

� Output module (digital or analog).

� Mixed I/O modules.

The functioning of a PLC consists in a processing cycle that includes four activities:
(i) inputs reading (sensors), (ii) calculations (execute control logic), (iii) outputs writing
(actuators) and (iv) communication (use of communication protocols). Step (ii) corresponds
to calculations of the users' program that can be written in various languages. IEC 61131-3
standard [84] identi�ed �ve languages for programming PLCs, namely Structured Text (ST),
Sequential Function Charts (SFC), Ladder Logic Diagram (LLD), Function Block Diagram
(FBD) and Instruction List (IL). The choice in the language depends on the company culture,
the application domain and the programmers' habits.
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Routing sheets for the manufacturing plant use case Appendixes

B) Routing sheets for the manufacturing plant use case

Routing Sheet
Part

Color METAL

No Operation Workstation

01 Remove Remover 1

Table 12: Routing Sheet - Metal part

Routing Sheet
Part

Color GREEN

No Operation Workstation

01 Cut a circle on part Cartesian Robot 1
02 Remove Remover 2

Table 13: Routing Sheet - Green part

Routing Sheet
Part

Color BLUE

No Operation Workstation

01 Cut a circle on part Cartesian Robot 1
02 Move part from cartesian robot 1 to cartesian robot 2 Two axis Pick&Place robot
03 Cut a square on part Cartesian Robot 2
04 Remove Remover 2

Table 14: Routing Sheet - Blue part

II



Glossary

Automatic Identi�cation System Self-reporting system that uses the VHF (Very High
Frequency) radio link for unique identi�cation of a ship. 70

Commercial-O�-The-Shelf Equipment ready-to-use upon installation, usually delivered
from a third party vendor. 72, 96

Computer Integrated Manufacturing The Purdue Reference Model for CIM, as it is
commonly referred to, is designed to discuss the overall generic functional requirements
of any manufacturing facility, regardless of industry, that are amenable to computeriza-
tion within the foreseeable future and to de�ne the viable relationships between these
"automatable" functions and the other many functions of a manufacturing system. [def-
inition from [155]]. 8

Hardware-In-the-Loop System that allows to virtualize the physical process. Electronic
cards are used to connect a software process simulator to PLCs. 71, 72, 76

Local loop Elementary building block of a complex system (generally composed of sensors,
actuators and a local controller). 10, 11

Remote Terminal Unit Any slave equipment in a Master/Slave architecture (PLC, �eld
equipment, HMI, etc.). 11, 72, 74, 127

Runtime veri�cation (also known as runtime monitoring) � Formal veri�cation technique
based on extracting information from a running system and using it to detect observed
behaviours satisfying or violating certain properties. 23, 43�45, 54, 58, 60, 63, 86, 115,
126, 127

TCP/IP Set of communication protocols used in the internet or similar computer networks.
TCP stands for Transmission Control Protocol and IP for Internet Protocol. 11, 17, 61
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Acronyms

ANSSI Agence Nationale de la sécurité des systèmes d'information. 8

AP Atomic Proposition. 45

API Application programming interface. 33

APT Advanced Persistent Threat. 14

CAN Controller Area Network. 11, 42, 72, 93, 94, 96, 97, 100, 102, 103, 106, 127

CPS Cyber Physical System. 8

CPU Central Processing Unit. 26, 28, 32

CR Cyber Range. 68, 70, 76

DCS Distributed Control System. 8

DFA Deterministic Finite Automaton. 30, 38�41

DMZ Demilitarized Zone. 20

DPA Deterministic Probabilistic Automaton. 31, 39, 41

DT Digital Twin. 68, 76

DTMC Discrete-Time Markov Chain. 30

FSM Finite-State Machine. xv, xvi, 27, 34, 35, 49, 51, 52, 84�87, 91�93, 97, 100, 106, 116,
117

HIDS Host-based Intrusion Detection System. 24, 28, 43

HMI Human Machine Interface. 10, 30, 36, 68, 71, 72, 74, 90, 91, 94�97, 103, 104, 106, III

I/O Input/Output. 69, 71, I

ICS Industrial Control System. 7�15, 17, 18, 20, 21, 23, 24, 26�31, 33�35, 41�43, 45, 48, 51,
52, 54, 55, 57, 59�63, 67�69, 71, 72, 76�79, 88, 89, 100, 104, 107, 117, 118, 121, 125�127,
I

IDN Intrusion Detection Node. 110�112, 114�118, 121�123

IDS Intrusion Detection System. xvi, 20, 23�27, 29, 34�36, 42, 43, 55, 59�62, 67, 71, 74, 75,
80, 98, 99, 102, 109�111, 121, 127

IoT Internet of Things. 128

IT Information Technology. 7, 8, 11�14, 17, 18, 20, 25�27, 68, 70, 125

V



Acronyms Acronyms

LAN Local Area Network. 59, 113

LTL Linear Temporal Logic. 36, 45�49, 51, 53, 54, 58, 63, 86, 87, 106, 115, 126, 127

MIS Management Information System. 9, 12, 13, 74

ML Machine Learning. 25�27, 31, 34, 37, 41, 127

MTL Metric Temporal Logic. 36, 45�48, 53, 54, 63, 86, 106, 126, 127

NIDS Network-based Intrusion Detection System. xvii, 24, 28, 34, 43, 74, 76, 117

NIST National Institute of Standards and Technology. 7, 8

NTP Network Time Protocol. 56

OPC Open Platform Communications. 33, 39

OS Operating System. 12

OSI Open Systems Interconnection. 75, 76

OT Operational Technology. 7, 8, 11�13, 17, 20, 68, 70, 125

PID Proportional Integral Derivative. 11, 91

PLC Programmable Logic Controller. 9�11, 14, 17, 18, 24, 30, 32�36, 41, 42, 68�72, 74, 90,
91, 93�97, 101, 102, 104, 112, 113, 118, 121, 122, I, III

PST Probabilistic Su�x Tree. 31, 32

PTP Precision Time Protocol. 56

SCADA Supervisory Control And Data Acquisition. 8�11, 27, 33, 37�39, 42, 60, 69�71

SNTP Simple Network Time Protocol. 117, 118

SSH Secure Shell. 117

STL Signal Temporal Logic. 36, 45, 47, 48, 53, 54, 63, 86, 106, 126, 127

TCP Transmission Control Protocol. 74, 107, 121

TL Temporal Logic. 36, 44, 45, 47�49, 51, 52, 58, 62, 63, 87, 98, 106, 126

VM Virtual Machine. 70, 74
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