
HAL Id: tel-04732963
https://theses.hal.science/tel-04732963v1

Submitted on 11 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Neural audio synthesis of realistic piano performances
Lenny Renault

To cite this version:
Lenny Renault. Neural audio synthesis of realistic piano performances. Machine Learning [cs.LG].
Sorbonne Université, 2024. English. �NNT : 2024SORUS196�. �tel-04732963�

https://theses.hal.science/tel-04732963v1
https://hal.archives-ouvertes.fr

Doctoral Thesis from Sorbonne Université

Spécialité Informatique

École Doctorale Informatique, Télécommunications et Électronique de Paris (EDITE - ED130)

Sciences et Technologies de la Musique et du Son (STMS - UMR 9912)

Institut de Recherche et de Coordination Acoustique Musique (IRCAM)

Équipe Analyse et Synthèse des Sons

Neural Audio Synthesis of
Realistic Piano Performances

Author:
Lenny RENAULT

Under the supervision of:
Dr. Rémi MIGNOT (IRCAM)
Dr. Axel ROEBEL (IRCAM)

Defended on the 8th of July 2024 before the Jury composed of:

Reviewers:
Pr. Mark SANDLER Professor, Queen Mary University of London

Dr. Mathieu LAGRANGE HDR Researcher, CNRS, École Centrale de Nantes

Examiners:
Pr. Gaël RICHARD - President of the Jury Professor, Télécom Paris

Dr. Jesse ENGEL Staff Research Scientist, Google DeepMind

Dr. Juliette CHABASSIER Research Scientist, Modartt

Director:
Dr. Axel ROEBEL Research Director, IRCAM

À Yeye, Gros-Père et Granny.

Abstract

Musician and instrument make up a central duo in the musical experience. Inseparable,
they are the key actors of the musical performance, transforming a composition into an
emotional auditory experience. To this end, the instrument is a sound device, that the
musician controls to transcribe and share their understanding of a musical work. Access
to the sound of such instruments, often the result of advanced craftsmanship, and to the
mastery of playing them, can require extensive resources that limit the creative exploration
of composers. This thesis explores the use of deep neural networks to reproduce the
subtleties introduced by the musician’s playing and the sound of the instrument, making
the music realistic and alive. Focusing on piano music, the conducted work has led to
a sound synthesis model for the piano, as well as an expressive performance rendering
model. DDSP-Piano, the piano synthesis model, is built upon the hybrid approach of
Differentiable Digital Signal Processing (DDSP), which enables the inclusion of traditional
signal processing tools into a deep learning model. The model takes symbolic performances
as input and explicitly includes instrument-specific knowledge, such as inharmonicity,
tuning, and polyphony. This modular, lightweight, and interpretable approach synthesizes
sounds of realistic quality while separating the various components that make up the
piano sound. As for the performance rendering model, the proposed approach enables
the transformation of MIDI compositions into symbolic expressive interpretations. In
particular, thanks to an unsupervised adversarial training, it stands out from previous
works by not relying on aligned score-performance training pairs to reproduce expressive
qualities. The combination of the sound synthesis and performance rendering models
would enable the synthesis of expressive audio interpretations of scores, while enabling
modification of the generated interpretations in the symbolic domain.

3

Résumé

Musicien et instrument forment un duo central de l’expérience musicale. Indissociables,
ils sont les acteurs de la performance musicale, transformant une composition en une
expérience auditive émotionnelle. Pour cela, l’instrument est un objet sonore que le
musicien contrôle pour retranscrire et partager sa compréhension d’une oeuvre musicale.
Accéder aux sonorités d’un tel instrument, souvent issu de facture poussée, et à sa mâıtrise
de jeu, requiert des ressources limitant l’exploration créative des compositeurs. Cette
thèse explore l’utilisation des réseaux de neurones profonds pour reproduire les subtilités
introduites par le jeu du musicien et par le son de l’instrument, rendant la musique réaliste
et vivante. En se focalisant sur la musique pour piano, le travail réalisé a donné lieu à
un modèle de synthèse sonore pour piano ainsi qu’à un modèle de rendu de performances
expressives. DDSP-Piano, le modèle de synthèse de piano, est construit sur l’approche
hybride de Traitement du Signal Différentiable (DDSP) permettant d’inclure des outils
de traitement du signal traditionnel dans un modèle d’apprentissage profond. Le modèle
prend des performances symboliques en entrée, et inclut explicitement des connaissance
spécifiques à l’instrument, telles que l’inharmonicité, l’accordage et la polyphonie. Cette
approche modulaire, légère et interprétable synthétise des sons d’une qualité réaliste tout
en séparant les différents éléments constituant le son du piano. Quant au modèle de rendu
de performance, l’approche proposée permet de transformer des compositions MIDI en
interprétations expressives symboliques. En particulier, grâce à un entrâınement adverse
non-supervisé, elle dénote des travaux précédents en ne s’appuyant pas sur des paires
de partitions et d’interprétations alignées pour reproduire des qualités expressives. La
combinaison des deux modèles de synthèse sonore et de rendu de performance permettrait
de synthétiser des interprétations expressives audio de partitions, tout en donnant la
possibilité de modifier, dans le domaine symbolique, l’interprétation générée.

4

Remerciements

Tout d’abord, je tiens à remercier profondément mes encadrants, Axel et Rémi, pour
m’avoir guidé tout au long de ces années avec bienveillance, en me laissant de nombreuses
libertés pour explorer la recherche, tout en étant au rendez-vous lorsque j’avais besoin de
leurs conseils.

Je tiens également à exprimer ma gratitude à tous les chercheurs qui m’ont encadré,
dont l’aide a été précieuse avant, durant, et à la fin de cette thèse : Andea, Romain
et l’équipe de Deezer Research, qui m’ont formé à mes débuts ; Geoffroy et Philippe,
qui m’ont suivi et conseillé pendant ces années ; Mathieu et Mark, qui ont examiné ce
manuscrit en long, en large et en travers ; ainsi que Gaël, Jesse et Juliette, qui ont
généreusement accepté de lire ce manuscrit et d’assister à la soutenance en tant que
membres du jury de thèse.

Un grand merci aux membres de l’équipe Analyse et Synthèse de Sons avec qui j’ai
partagé les serveurs GPU, et surtout d’innombrables discussions passionnantes : Daniel,
Nicolas, Guillaume D., Frédéric, Frederik, Clément, Antoine C., Antoine L., Léane, Gio-
vanni, David, Nils, Sarah, Théodore, Maximino, Théo, Balthazar, Pierre-Hugo et Luc.
Mention spéciale aux meilleurs co-bureaux que je pouvais avoir et qui ont rendu ce périple
inoubliable : Alice, Mathilde et Yann.

Une chaleureuse pensée envers les autres doctorants de l’Ircam avec qui j’ai pu partager
cette aventure : Victor R., Claire, Constance, Valérian, Baptiste, Gonzalo, Nadia, Apolline
et l’inarrêtable Paul. En particulier, Salah, Löıc, Colette, Aliénor, Thomas R., Vincent et
Victor P. pour cette palpitante organisation des JJCAAS. Merci également à la gentillesse
du personnel de l’Ircam : entre autres, Hugues, Deborah, Éric, Léo et Brigitte.

Je remercie également Fred et ADAPTAC Paris 13, ainsi que les Marchands de Groove,
pour m’avoir permis de m’épanouir sportivement et musicalement en dehors du cadre de
la thèse. Merci à Florence d’avoir éveillé ma curiosité musicale et de m’avoir transmis
cette fascination pour ce bel instrument qu’est le piano.

Grosse pensée pour les Télécommiens avec qui j’ai partagé tant de moments précieux :
GJ, Iann, Thierry, Maxime, Guillaume J., Mattias, Dimitri, Thomas B., Louis, Tiphaine,
Bernardo, Lucas, Solène, Louis-André, Salomé et Louison.

Je remercie immensément ma famille, les Renault, les Seneau, les Xu et les Delmas,
pour le soutien qu’ils m’ont apporté toutes ces années. Je ne remercierai jamais assez
mes parents, Patrik et Shaohui, pour m’avoir offert des conditions de vie au-delà de la
perfection pendant toutes mes études.

Enfin, mes remerciements les plus profonds vont à Ginger, qui m’a aidé, soutenu,
secoué, motivé et j’en passe. Ensemble, nous avons traversé l’aventure de la thèse et j’ai
hâte de vivre les prochaines aventures en ta compagnie.

5

Acknowledgements

This work was supported by European Union’s Horizon 2020 research and innovation
programme under grant number 951911 - AI4Media.

6

List of Acronyms

CC Control Change 29, 89

PC Program Change 29

ACPAS Aligned Clasical Piano Audio and Scores 64

AI Artificial Intelligence 20, 22–24

AMT Automatic Music Transcription 62, 64, 77, 126, 129

ASAP Aligned Scores and Performances 64–66, 120, 121, 126

ATEPP Automatically Transcribed Expressive Piano Performance 65, 66, 82, 126, 128

CIPI Can I Play It? 65, 66, 126

CNN Convolutional Neural Network 55–57, 75, 118, 129

CPM Classical Piano MIDI 62, 64

CPU Central Procesing Unit 78

CRNN Convolutional Recurrent Neural Network 118

CV Computer Vision 31, 49, 71

DAW Digital Audio Workstation 17, 21, 29, 31, 78, 116

DDSP Differentiable Digital Signal Processing 67, 73–76, 79, 81, 84–86, 88–98, 100–104,
106, 108–115, 123–126, 128–133

DFT Discrete Fourier Transform 34–37, 74, 77

DL Deep Learning 20, 23, 24, 73, 104, 114, 131, 132

DNN Deep Neural Network 20–24, 89, 92, 104, 114, 131, 132

7

List of Acronyms List of Acronyms

FAD Fréchet Audio Distance 77, 78

FDN Feedback Delay Network 102, 103, 106, 108–111, 113

FiLM Feature-wise Linear Modulation 102

FIR Finite Impulse Response 36–38, 56, 75, 89, 102, 106, 113

GAN Generative Adversarial Network 49, 57, 58, 71–73, 116, 119, 120, 122, 126

GP GiantMIDI-Piano 64–66

GPU Graphical Processor Unit 54, 78

GRU Gated Recurrent Unit 55, 56, 95, 118, 119

IIR Infinite Impulse Response 36, 37, 75, 76

IOI Inter-Onset-Interval 31, 117, 118, 120

JTFS Joint Time-Frequency Scattering 77, 113

LS Least-Square 58, 119, 126

LSTM Long Short-Term Memory 55, 56

LTI Linear Time-Invariant 36–38, 73, 85

LTV Linear Time-Varying 36–38, 73, 89

MAESTRO MIDI and Audio Edited for Synchronous TRacks and Organization 64, 66,
72, 89, 91, 93, 94, 96, 98, 104–108, 114, 120, 121, 126

MAPS MIDI Aligned Piano Sounds 43, 62, 64, 66, 93, 126

MIDI Musical Instrument Digital Interface 24, 27, 29–32, 46, 60, 62, 64–67, 70–73, 75,
79–82, 84–87, 89, 91, 97, 98, 100, 101, 103, 104, 114–118, 120, 121, 123–126, 128,
129, 131–133

MIR Music Information Retrieval 76

MLP Multi-Layer Perceptron 92, 104, 118

MOS Mean Opinion Score 78, 83, 95, 121

MSS Multi-Scale Spectral 73, 76, 77, 89, 93, 94, 101, 103, 104, 108, 113

MUSHRA MUltiple Stimuli with Hidden Reference and Anchor 79, 83

NAS Neural Audio Synthesis 71, 112, 114, 126, 129

8

List of Acronyms List of Acronyms

NLP Natural Language Processing 31, 49

NSF Neural Source Filter 72, 73, 91

RAM Random Access Memory 78

ReLU Rectifier Linear Unit 54

RNN Recurrent Neural Network 55, 56, 75, 81, 87, 88, 103, 125, 129

SMD Saarland Music Data 64

STFT Short-Term Fourier Transform 34–38, 74, 89

TTS Text-to-Speech 71–73, 78, 81, 91, 96, 103, 106, 108, 111, 124

VAE Variational Auto-Encoder 72, 82, 84

VQ Vector Quantized 82

9

List of Symbols

B Inharmonicity coefficient

C Context vector dimension

C Context Network

D Dimension

D Discriminator

D Distance

E Expectancy

F Sampling rate

I Number of recording environments

J Jacobian matrix

K Number of partials

L Loss function

M Monophonic Network

N Number of notes

P Polyphony

P Data distribution

Q Filter order

10

List of Symbols List of Symbols

R Performance Rendering Model

S Audio Synthesis Model

T Number of time frames

W Model weights

X Note-wise symbolic music

Z Embedding dimension

a Global amplitude

b Inharmonicity modifier

c Context vector

d Single note duration

f Frequency

h Partial amplitude distribution

i Recording environment index

j Imaginary number

k Partial index

m Discrete Fourier Transform size

n Note index

o Inter-Onset Interval

p Note pitch OR Polyphony index

t Time frame index

u White noise spectrum

v Note velocity

11

List of Symbols List of Symbols

w Window function

x Frame-wise symbolic music

y Audio signal

z Embedding

α Linear asymptote coefficient

β Linear asymptote bias

δ Deviation

η Noise filter magnitudes

κ Optimization step

λ Loss weighting

ρ Octave tuning

σ Activation function

τ Sub-time frame index

Φ Instantaneous phase

12

Contents

List of Acronyms 7

List of Symbols 10

1 Introduction 16
1.1 Music Generation: a Multi-Stage Process 16

1.1.1 Musical Composition . 17
1.1.2 Musical Performance . 17
1.1.3 Sound Synthesis . 18
1.1.4 Sound Processing . 18
1.1.5 Music Listening . 19

1.2 Automating and Assisting Music Production Frameworks 20
1.2.1 Simulating and Automating Individual Stages 20
1.2.2 Multi-layered Automation . 21
1.2.3 Adoption of the Tools by Practitioners 22

1.3 Research Objectives and Contributions . 23
1.3.1 Main Research Objectives . 23
1.3.2 Contributions . 24
1.3.3 Thesis Structure . 25

2 Technical Background for Music Processing 27
2.1 Symbolic Music Processing . 27

2.1.1 The Music Score . 27
2.1.2 The MIDI Protocol . 29
2.1.3 Efficient Representations of Symbolic Music 29

2.2 Audio Digital Signal Processing basics . 33
2.2.1 Waveform representation . 33
2.2.2 Time-Frequency representation . 34
2.2.3 Linear Filtering . 36
2.2.4 The Spectral Modeling Paradigm 38

2.3 Piano Mechanisms . 40
2.3.1 A Brief History of Piano Craftsmanship 40

13

CONTENTS CONTENTS

2.3.2 A Monophonic String Model . 41

2.3.3 Soundboard . 44

2.3.4 Polyphony . 45

2.4 Deep Learning for Music Processing . 49

2.4.1 Data-driven Optimization with Gradient Descent 49

2.4.2 Neural Networks . 54

2.4.3 Generative Adversarial Networks 57

2.4.4 Domain-knowledge inclusion in Deep Neural Networks 59

2.5 In short . 60

3 State-of-the-Art 61

3.1 Piano Performance Datasets . 61

3.1.1 Synthetic MIDI Performance Datasets 62

3.1.2 MIDI Recorded Performance Datasets 62

3.1.3 MIDI Transcribed Performance Datasets 64

3.1.4 Other Piano Datasets . 65

3.2 Polyphonic Instrument Audio Synthesis . 67

3.2.1 Parametric models . 67

3.2.2 Data-driven models . 70

3.2.3 Differentiable Digital Signal Processing 73

3.2.4 Evaluating Sound Synthesis . 77

3.3 Performance Rendering . 80

3.3.1 Traditional Approaches to Performance Rendering 81

3.3.2 Neural Approaches to Performance Rendering 81

3.3.3 Evaluating Expressivity . 82

3.4 In short . 84

4 DDSP-Piano: a Neural Piano Synthesizer informed by Instrument Knowl-
edge 85

4.1 First Iteration of DDSP-Piano . 85

4.1.1 Model architecture . 85

4.1.2 Model Training . 89

4.1.3 Evaluation . 90

4.1.4 Qualitative Results: Comparison with Known Behaviors 97

4.2 Improving DDSP-Piano . 101

4.2.1 Architectural Changes . 101

4.2.2 Revised Training Procedure . 103

4.2.3 Evaluation . 106

4.3 Discussion . 112

4.3.1 Some Takeaway Lessons . 112

4.3.2 Future works . 113

4.4 In short . 114

14

CONTENTS CONTENTS

5 Piano Performance Rendering from Unpaired Data 115
5.1 Motivation . 115
5.2 Render Performances in the Symbolic Modality 117

5.2.1 Models Architecture . 117
5.2.2 Training Strategy . 119
5.2.3 Results and Analysis . 120

5.3 Cross-Modal Extension . 123
5.3.1 From note-wise to frame-wise Conditioning 124
5.3.2 Training Setup . 125
5.3.3 Qualitative Analysis . 126

5.4 Discussion . 129
5.5 In short . 130

6 Conclusion 131

15

Chapter 1
Introduction

1.1 Music Generation: a Multi-Stage Process

Creating music out of the organization of sounds is an artistic endeavor that involves
multiple stages. The listening experiences can be extremely diverse, from lighthearted
nursery rhymes to shattering contemporary symphonies through contemplative sound-
scapes accompanying pictures. From an imagined musical idea to its emotional reaction
provoked by the perceived sound, the musical experience can be viewed, in a sense, as
a message conveyed from a musician to a listener, following the communication theory
of Shannon (1948). This message can take multiple forms and be handled by different
agents, each of whom can transform the musical idea at various levels, intentionally or
not. Like in any art form, such intermediary transformations are the siege of techniques
derived from a consensus refined by cultural practice, or shaken by groundbreaking and
innovative technologies.

The full process, illustrated in Figure 1.1, is an extended version of the one proposed
by Oore et al. (2020). The remainder of this Section will briefly describe each stage
composing the full music generation process, from their objective, the experts associated
with them, and the challenges they arise.

16

1.1. MUSIC GENERATION: A MULTI-
STAGE PROCESS

CHAPTER 1. INTRODUCTION

Composer Mixing
Engineer

Instrument
controls

Symbolic
Music

Audio
music

Processed
audio
music

Listener

Composition Performance Synthesis Processing Listening

InstrumentMusician

Figure 1.1: The music generation multi-stage process. Each role can be endorsed by the
same or different individuals throughout the process.

1.1.1 Musical Composition

Musical composition consists in the forethought, the planning of what intended music will
be produced. It encompasses the selection of notes, lyrics and/or sound characteristics
that will be played and how they will be played. Such planning can be transmitted
to provide a road-map, which is especially useful for synchronizing multiple individuals
towards a common purpose. The communication of the musical planning can be written
down into symbols, through a music sheet, or transmitted orally by imitation or telling a
chord progression for example.

In the case of writing a musical piece, this stage is traditionally attributed to a com-
poser that follows a global directive from a command, a style exercise or a personal
message and/or story to convey. The creative planning can be supported by music theory
knowledge, such as the harmonic rules of classical western music. Nowadays, most Digital
Audio Workstations (DAWs) and music notation software provide enhanced experiences of
the composition process by synthesizing online audio feedback of the programmed musical
sequences.

The compositions can be planned well ahead of their realisation, as classical pieces
from centuries ago are still played to this day. However, the musical planning can also
be short-termed, especially in the context of improvisation as, for example, jazz soloists
develop musical phrases for what is perceived as “on the spot” based on the immediate
context, but often are aware of the incoming musical structure and repurpose musical
licks and knowledge they have honed.

1.1.2 Musical Performance

Score and audio music share a similar relationship to that of text and speech: both score
and text are a symbolic and compact representation of a particular kind of sound (being
music and speech respectively), that can be restored by a human using appropriate tools
(e.g. a musical instrument or the voice). However, the information contained in the
symbolic representation may not fully convey the intended sound imagined by the writer
or composer: the interpreter thus chooses to produce one of the possible sounds with
respect to the written text or score.

17

1.1. MUSIC GENERATION: A MULTI-
STAGE PROCESS

CHAPTER 1. INTRODUCTION

Palmer (1997) formalized the cognitive process of performing a music piece: the inter-
pretation is the physical execution of the musician’s understanding of the composition
and its structure, eventually guided by a conductor and style-specific actions and con-
straints. The execution is manifested through the controls inputted to the musician’s
instrument. Such controls are exclusive to the instrument at hand, which can be key-
board playing, wind blowing, vocal track, or drum hitting for traditional instrument
playing. But this also includes sound designers and music producer that control
modern instruments through parameterizing hardware and software synthesizers.

However, there can also be differences between the interpretation intended by the
performer and what they actually do during the performance, due to mistakes or lim-
ited mastery of their instrument. To gain such mastery, musicians often practice their
instruments for years before being able to faithfully convert their musical intents into
appropriate instrumental controls.

1.1.3 Sound Synthesis

Upon adequate controls inputted by the musician, the instrument will produce a sound,
leveraging a certain phenomenon. Traditional instruments make use of physical vibratory
phenomenons, such as string vibration (in stringed instruments such as guitars, violins
and harps), air flows for the voice, wind and brass instruments, and resonating objects
(substantially drums and other percussions). Then, in the 20th century, analog synthe-
sizers and even magnetic tapes offered new sonic possibilities by manipulating electrical
signals rather than acoustic signals. They were soon followed by digital synthesizers and
software that leveraged the new capabilities emerging from computers.

Even if it is a non-human object that produces the musical sound (with the exception
of the voice), knowledge and craftsmanship for building such objects have been long
developed by luthiers, manufacturers (both for acoustic and electrical instruments)
and programmers to refine the instrument sound or innovate on new interfaces and
instruments.

1.1.4 Sound Processing

The sound produced by the source instrument is systematically altered by different phe-
nomenons before being perceived by the listener. These alterations can be induced by the
acoustic environment (namely room acoustics) or manually applied in the form of signal
processing. Indeed, as sound propagates in the open air, the environment acoustics can al-
ter it through echoes, filtering and reverb until reaching the listener. Such environmental
settings may be designed by architectural acoustic engineers to conceive “pleasing”
sounding rooms, buildings or landscapes.

On the other hand, musical sounds can also be recorded and processed by a mixing
engineer that try to shape multiple individual tracks together to create a coherent and
harmonious global mix. They chose to apply different technical and creative transfor-
mations to follow an artistic vision, such as selective filtering, dynamic processing and
choice of recording devices (microphones, and recorders). A mastering engineer can

18

1.1. MUSIC GENERATION: A MULTI-
STAGE PROCESS

CHAPTER 1. INTRODUCTION

also be involved in the process to standardize the final mix which can be then stored and
distributed through streaming platforms mostly at this day and age. Afterwards, offline
listening can also be altered by the sound emitting device (by loudspeakers, earphones).

Live mix engineers are located in between these two conditions as they also use sound
capturing, mixing and emitting devices for enhancing the live experience, while accounting
for the natural acoustics.

Professional actors in this stage leverage their technical knowledge, ear training and
artistic vision to enhance and sublime the individual raw sounds in order to deliver a
coherent and harmonious mix to the listener.

1.1.5 Music Listening

The music is ultimately perceived and processed by the listener. They can perceive it
passively, while focusing on another medium such as the pictures while watching a movie.
Passive listening does not mean that the music is completely ignored, as it can enhance
or perturb the main experience. Active listening on the other hand aims to assess and
appreciate the quality of the overall music or one of its characteristics: for example in
music competitions, jury members can evaluate the interpretations of a common piece
proposed by different performers.

However, active listeners can also be any agent from the previous stages. Indeed,
the final audio is the ultimate medium for appreciating the music and every stage along
the process influences the final result. Knowing how their actions influence the final results
and how to adjust them from such feedback is crucial for honing their expertise and use
it to achieve an artistic vision.

Also, although hearing is the main sense with which music is experienced, research
on its haptic perception (Richards, 2023) and links with visual cues (Platz and Kopiez,
2012) suggest that music appreciation can be a multi-sensory experience.

Section Summary - Music Generation

The musical generation process involves multiple intermediary steps that ultimately
leads to the transmission of a sound idea from a composer to a listener. Along this
transmission, several agents and elements can alter the initial musical idea and
imbue it with their own artistic effort. Namely, between the composer and the
listener, performers can interpret the music score, the instrument produces sounds
following the controls inputted by the performer and the sound is modified by the
environment and/or the effects selected by a mix engineer. All these stages involves
appropriate tools and knowledge in order to achieve a final result reflecting the
intentions of each actor.

19

1.2. AUTOMATING AND ASSISTING
MUSIC PRODUCTION FRAMEWORKS

CHAPTER 1. INTRODUCTION

1.2 Automating and Assisting Music Production Frame-

works

As seen previously, music creation is both: an art form and an engineering endeavor, as
eclectic skills and knowledge can be leveraged to achieve an artistic vision. Learning and
applying such knowledge can be tedious, time-consuming and/or resource-intensive, with
dedicated professionals honing and living off such expertise that they have developed. Yet,
having to apply such technical expertise can hinder the creative process of both amateur
and professional artists. For example, amateurs often lack access or understanding of
professional tools, which limits the sound quality of their creations. As for experts, before
tackling the creative aspect of their work, they have to apply non-creative but necessary
operations such as maintenance and tuning of instruments, cleaning audio recordings,
staging of mixer gains, or calibration of live equipment.

Recently, technological progress has led to the democratization and the streamlining
of expert tools, making it possible to produce professional-sounding music from a personal
computer, instead of relying on expensive recording studios. Especially in the era of Arti-
ficial Intelligence (AI) and Deep Learning (DL), more complex and high-level operations
can be automated, alleviating manual actions from the user and simplifying the music
creation process. However, as with other media impacted by the development of AI, there
seems to be a reluctance among a large portion of users to fully adopt and/or accept these
new tools.

The following will present a quick portfolio of musical tasks that automated systems
and DL models can accomplish. Numerous works have used them for simulating or au-
tomating individual stages of the presented music generation process, but others have
also tackled multiple stages at once for higher-level manipulation. These works are more
extensively discussed in the survey of Ji et al. (2020) and Bazin (2023). Then, we will
delve into the reasons why music practitioners may want to adopt or not such systems.

1.2.1 Simulating and Automating Individual Stages

Each stage of the music creation process is characterized by specific properties introduced
by the composers, musicians, instruments, or effects that an automated system should
imitate in order to sound realistic and be usable.

Music composition is often entailed to abstract concepts specific to the art, such as
harmony and rhythm. Western music theories offer frameworks and rules for explaining
and building new compositions: such rules can be formalized and integrated in the form
of algorithmic processes, which fostered the field of algorithmic music composition from
the 80s onward (Nierhaus, 2009). In continuity, Deep Neural Networks (DNNs) have been
applied for accompanying the composition process with various depths of involvement (Ji
et al., 2023; Hernandez-Olivan and Beltrán, 2023): simple melody generation, harmo-
nization from a melody prompt, re-orchestration from a composition draft or even full
multi-track generation from scratch, inpainting or a textual prompt.

However, writing music in the symbolic domain reduces its complexity into a com-
pact form that simplifies certain musical aspects to fit understandable symbols (such as

20

1.2. AUTOMATE & ASSIST MUSIC
PRODUCTION

CHAPTER 1. INTRODUCTION

crescendo and slur markings) and music concepts (such as the music grid, or measures).
As such, direct rendition of a music score lacks the interpretative and subtle nuances
introduced by musicians, through micro and macro displacements of note timings with
regards to the metrical grid, and the variety of loudness levels. Performance rendering
systems that can reproduce such a complex and artistic behavior can find its usage in as-
sisting composers for obtaining musical renditions of their pieces. As such, certain DAWs
and virtual instruments (such as drum samplers) can propose a “humanize” or “swing”
feature to render symbolic music with stochastic micro-displacements from the temporal
and velocity grids.

Instruments and single effect simulations may be the most widespread usage of
automated system in music production: from plates and springs used as proxy for room
reverberation in the first half of the 20th century where, to guitar amplifiers emulated in
today’s personal computers with DNNs, through analog synthesizer presets imitating or-
gans and string ensemble. Emulations of physical instruments and analog music hardware
allows for the democratization of such tools to a wider user group that can not access to
the real versions. Instead, they can be integrated as plug-ins running in real-time in most
DAWs, offering ease of usage and combination. However, faithfully reproducing all the
nuances of the real instrument or effect is a challenging endeavor for the manufacturer,
often restrained by the limited computing capabilities of computers and thus, has to intro-
duce modeling approximations in order to maintain the real-time compatibility. Several
brands have successfully leveraged the modeling capabilities of DNNs into plugins, but
they have also been used for the development of effects and instruments, notably for with
timbre transfer12. Conversely, neural networks have also been employed for the inverse
task of sound matching, which is finding the parameters in order for a given model to
reproduce a (single) target sound (Esling et al., 2020; Han et al., 2023; Masuda and Saito,
2023).

1.2.2 Multi-layered Automation

The sub-stages of music generation are not hermetic to one another, as task-specific
agents can influence each other in order to elaborate on the larger direction of the music
being produced. In that regard, automatic systems have also been developed to deal with
several stages at the same time, especially with DNNs that can model more complex and
non-linear phenomenons, eventually involving multiple modalities.

In the manner of musicians improvising musical pieces, performance generation sys-
tems can produce symbolic performances with expressive qualities without being fed with
an input composition (Huang et al., 2019; Oore et al., 2020). Still, they can also be steered
to complete an input excerpt (composed or improvised) and allow for co-composition
and co-improvisation experiences (Bazin, 2023). Concurrently, performance synthesis
models, such as the one proposed by Wang and Yang (2019), can directly produce the ex-
pressive audio rendition of a score. They merge the musician-instrument duo into a single
entity to model: since musicians do not express their intents as controls in themselves,

1https://magenta.tensorflow.org/ddsp-vst
2https://neutone.ai/

21

https://magenta.tensorflow.org/ddsp-vst
https://neutone.ai/

1.2. AUTOMATE & ASSIST MUSIC
PRODUCTION

CHAPTER 1. INTRODUCTION

but rather aim at a target sound emitted by their instruments, such approach bypasses
the need to predict instrument controls and directly outputs audio performances. Other
works can also handle the task in a hierarchical approach by stacking modules for each
sub-task, and allow for better manipulation of intermediary predictions (Wu et al., 2022b).

Hereafter, automating the mixing and mastering steps represents an opportunity for
composers and musicians to get acceptable sounding quality for their music without learn-
ing and manually applying the underlying technicality. Such tools can help streamline
and democratize music creation by lowering the barrier to accessing high-quality sound.
Various works have proposed such systems that apply a cascade of effects for processing
the sound of one or several audio tracks, in order to match certain audio quality criteria
(De Man et al., 2017) and/or a reference mix (Colonel and Reiss, 2021; Steinmetz et al.,
2022).

Finally, with the ever-increasing capabilities of DNNs, more recent approaches ad-
dress the full audio music generation task by producing complete musical excerpts,
embodying realistic choices and characteristics from all stages. Such large and hierarchical
models can generate coherent musical audio, by jointly selecting and interpreting notes,
generating and singing lyrics, while applying relevant and textured sound design and all
eventually in a multi-track setting. They are mostly conditioned on high-level control
inputs, such as lyrics, artist and genre styles (Dhariwal et al., 2020) or free-form textual
prompts (Agostinelli et al., 2023; Copet et al., 2023). They notably offer a solution for
non-musician content creators to get relevant accompanying music for their main content,
without relying on copyright-protected music (Frid et al., 2020).

1.2.3 Adoption of the Tools by Practitioners

Sai Vanka et al. (2023) have interviewed different user groups regarding their adoption
of automatic AI-based mixing and mastering systems. They have noticed that amateurs
were more inclined to use such systems as they compensate for their lack of expertise in
the mixing and mastering stages and help achieve decent sound quality, without extensive
effort. On the other hand, most professional mixing engineers are skeptical with respect to
the ability of such systems to fully reproduce the emotional intent of a human-made mix.
Therefore, they want to still be able to express their own artistic vision, through intuitive
and/or familiar controls, in order to adopt these systems into their established framework.
In this manner, professional engineers would rather use systems allowing adjustments and
co-creativity in a collaborative setting, rather than an unsteerable “single push button”
replacing their skills and knowledge developed for years.

General remarks from these interviews, specific to the mixing stage, can be transferred
to the other stages of the music generation process. All agents in the process have to
accomplish domain-specific knowledge and workload in order to manifest their creative
intent, such as harmonization, arrangement, instrument practice, or mixing. Automated
systems can alleviate such workload and help streamline the creative process, but only
up to a certain threshold where the user may feel excluded from the decision-making.
Indeed, music being an art form, personal expression is key to the artist making it, and
to an extent, to the audience perceiving it. However, this threshold is user-specific and

22

1.3. RESEARCH OBJECTIVES AND
CONTRIBUTIONS

CHAPTER 1. INTRODUCTION

often correlates with the expertise they already have on the task: amateurs can embrace
high-level AI-automated tools more easily than experts having their own framework and
technical preferences. As such, automated music tools should simplify and/or enhance the
creative process, while accounting for the target users’ framework and needs for control
and customization.

Section Summary - Automating and Assisting Music Production Frame-
works

Since music production often requires applying different technical knowledge at
multiple stages, several automated systems have been proposed to alleviate such
workload and streamline the realization of one’s musical intent. Such systems can
be designed to handle specific tasks, such as single-effect simulation, instrument
synthesis, or melody harmonization. However, with the advent of DL and the in-
crease in computational resources, more complex and sophisticated systems can
tackle multiple stages at once, from automated multi-track mixing and generation
of performances to full audio music generation from high-level descriptors. Yet,
while these advanced systems allow for the democratization of music creation to
non-expert users, their adoption by expert music practitioners trails as the sys-
tems offer limited customization options for re-introducing individual knowledge
and preferences. Instead, expert users would advocate for more transparent intel-
ligent systems with fine-grained controls to allow interactive co-creation through
personal expression accelerated by the capabilities of the models.

1.3 Research Objectives and Contributions

1.3.1 Main Research Objectives

In the context of music generation, the scope of this thesis is to explore novel automated
methods that improve the creative process in the established music production framework.
The focus is set on piano music, with an emphasis towards the audio synthesis and
performance rendering stages.

Both tasks are involved in the physical realisation of a musical composition. Namely,
performance rendering takes a symbolic composition as input and makes an expressive
rendition out of it, as if a musician performed it. Then, instrument audio synthesis
transforms controls inputted by a musician and produces an audio signal, in the manner
of an acoustic musical instrument.

Both the musician and the instrument introduce their specific factors that contribute to
the overall sound quality. Reproducing such realism, in terms of fidelity and expressivity,
is a challenging endeavor in order for automated systems to be worthy of usage in the
musical creation process. To this end, DNNs seem eligible for imitating such qualities,
as they exhibit impressive capabilities for modeling complex and non-linear relationships
between different domains and modalities, directly from data.

One of the key factors that will be considered during this manuscript is the ease with

23

1.3. OBJECTIVES & CONTRIBUTIONS CHAPTER 1. INTRODUCTION

which the DNN-based methods can be integrated into the workflow of music practitioners.
In the context of the AI4Media European project (Tsalakanidou et al., 2021), which has
fully funded this thesis, one of the objectives is the advance of ethical and trustworthy AI
serving the sectors of various media, including music.

In sum, the main research questions surrounding this thesis are:

• How to achieve intelligent musical systems that can reproduce the realistic features
introduced by traditional agents and tools?

• Where to integrate such systems into the global process of musical creation?

• How to design the systems in order for them to be controllable, and ultimately
adopted, by users?

1.3.2 Contributions

Following the research context and in an attempt to address the interrogations, multiple
contributions have been proposed during this thesis.

The main contribution is the development of DDSP-Piano, a neural piano synthe-
sizer that produces realistic piano audio from polyphonic symbolic controls in Musical
Instrument Digital Interface (MIDI). The model is built on top of a hybrid framework
combining signal processing and DL tools. Leveraging the interpretability and modularity
of this framework, the approach further includes high-level knowledge of the instrument
to obtain a lightweight, interpretable, and realistic-sounding piano synthesizer. Conse-
quently, the approach can be evaluated in a targeted manner, to examine the behaviors
it has learned and put them into relation with known properties of the instrument.

The second contribution is the proposal of an unsupervised piano performance
rendering model in a low-informed setting. In the continuity of performance render-
ing models, it enhances symbolic music compositions with expressive qualities, still in the
symbolic modality. However, the model is easier to integrate into modern composition
frameworks as it does not rely on markings specific to music scores, but only on simple
MIDI data. Furthermore, thanks to adversarial training, it can learn to imitate expres-
sive qualities in real symbolic interpretations without seeing how they differ from a source
score. Finally, some preliminary works have been done to extent the model to also learn
expressive features from audio recordings: by bridging the symbolic and audio modali-
ties with the DDSP-Piano synthesizer, this cross-modal extension could render expressive
audio performances while still providing the symbolic transcripts.

Peer-Reviewed Publications

The work conducted during this thesis has led to the following list of peer-reviewed pub-
lications:

• Renault et al. (2022) - Best Paper Award – Lenny Renault, Rémi Mignot,
Axel Roebel, “Differentiable Piano Model for MIDI-to-Audio Performance Synthe-
sis”, Proceedings of the 25th International Conference on Digital Audio Effects
(DAFx20in22), Vienna - Austria, (September 2022).

24

1.3. OBJECTIVES & CONTRIBUTIONS CHAPTER 1. INTRODUCTION

• Renault et al. (2023a) – Lenny Renault, Rémi Mignot, Axel Roebel, “DDSP-Piano:
a Neural Sound Synthesizer Informed by Instrument Knowledge”, Journal of the
Audio Engineering Society, vol. 71, no. 9, pp. 552-565, (September 2023).

• Renault et al. (2023b) (Demo & Late-Breaking Results track) – Lenny Renault,
Rémi Mignot, Axel Roebel, “Expressive Piano Performance Rendering from Un-
paired Data”, Proceedings of the 26th International Conference on Digital Audio
Effects (DAFx23), Copenhagen - Denmark, (September 2023).

Oral presentations were delivered for the conference papers (Renault et al., 2022,
2023b) during their respective conferences.

Notably, the first published work (Renault et al., 2022) was given the Best Paper
Award at the 25th International Conference on Digital Audio Effects (DAFx20in22), and
further extended into a journal article (Renault et al., 2023a) in the Special Issue on New
Trends in Audio Effects II of the Journal of the Audio Engineering Society.

Presentations in Seminars

Presentations of the works accomplished during this thesis was also given in the following
scientific gatherings:

• Deezer Research 10th aniversary DaRe Seminar, Paris - France, (14th April 2022).

• GdR ISIS “Méthode en traitement du signal pour l’écoute artificielle”, Paris -
France, (12th May 2022).

• AI4Media Consortium Meetings: Pisa - Italy, (3rd October 2023); Thessaloniki -
Greece, (21st October 2022).

• Doctoral Day: STMS, Paris - France, (2nd December 2021); STMS Joint with
AI4DM (QMUL), Paris - France, (13th February 2023).

• Journées Jeunes Chercheur·es·s en Audition, Acoustique musical et Signal Audio
(JJCAAS), Paris - France, (5-7 April 2023).

1.3.3 Thesis Structure

After this introductory Chapter, and until the concluding Chapter 6, this manuscript is
organized in a classical bottleneck fashion, by first presenting broad scientific concepts
and methods, from which the specific tasks literature can then be built, paving the scope
and motivating the contributions of this thesis.

Chapter 2 will lay down the scientific background necessary for understanding the tools
and methods mainly employed through this thesis. Namely, the multiple modalities and
the multi-disciplinary approaches for handling piano music call for concise presentations
of symbolic music processing, audio signal processing, piano instrument crafting, and deep
learning through data-driven optimization.

25

1.3. OBJECTIVES & CONTRIBUTIONS CHAPTER 1. INTRODUCTION

Chapter 3 will present the state-of-the-art for each task under study. In particular,
since data-driven methods will be used in this thesis, a survey on piano music datasets will
be conducted. Then, previous works for conceiving and evaluating piano audio synthesis
and performance rendering models are reported, regrouped by their different methodolo-
gies. A particular emphasis will be made towards deep learning-based approaches in order
to better position the thesis contributions.

In Chapter 4, the piano audio synthesis task is addressed with the proposed DDSP-
Piano, a hybrid synthesizer that, in the continuity of DDSP, incorporates high-level model-
ing knowledge of the instrument into a deep learning framework. With dedicated modules
handling specificities of the instrument sound (such as polyphony, partials inharmonicity
and detuning), the model is described, analyzed and evaluated against other synthesis
methods, yielding realistic sounding piano performances from polyphonic symbolic in-
puts. Notably, with significantly less parameters, it surpasses a pure deep learning-based
benchmark. In continuity, the targeted analysis provides several paths for improvement,
motivating a second iteration of the model that is presented and partially evaluated.

Chapter 5 introduces the work conducted on piano performance rendering, by first
highlighting the usual training needs of data-driven methods for the task, being gathering
symbolic performances aligned with compositions with score markings. This motivates
the design of an unsupervised method, inspired by the domain transfer literature, to
make expressive renditions out of symbolic compositions, using an adversarial training on
unaligned datasets of compositions and performances. The subjective evaluation suggests
that the realism of the rendered performances can be improved in order to match those
from a supervised benchmark and real musicians, but the method employed still opens
up interesting research directions. In particular, a cross-modal extension is introduced
by incorporating DDSP-Piano into the approach, in order to also include raw audio data
into the training scheme.

Finally, Chapter 6 concludes the manuscript, summarizing its main content and con-
tributions while also providing several future research directions.

Readers are encouraged to visit the webpage3 accompanying this manuscript in order
to listen to audio examples of the conducted work, and also to some incomplete side
experiments.

3http://renault.gitlab-pages.ircam.fr/thesis-support

26

http://renault.gitlab-pages.ircam.fr/thesis-support

Chapter 2
Technical Background for Music Processing

This chapter aims to introduce the necessary scientific knowledge and tools that are rel-
evant for efficiently building performance rendering and musical audio synthesis systems.
It notably introduces the mathematical notations that will be preserved throughout the
manuscript. While the covered topics may seem eclectic, the main purpose of this chapter
is to lay down the foundations, to be later on connected in the following chapters covering
the state-of-the-art and the thesis contributions.

First, the background is set for manipulating the two main modalities of music: Section
2.1 presents the different symbolic representations of western music, while Section 2.2
introduces the mathematical theories and tools for understanding and reproducing audio
signals. Then, as it is the main object of study in this thesis, the piano and its mechanisms
are laid down in Section 2.3. For tackling the tasks, the methods employed in this thesis
rely on deep learning, the background of which is set out in Section 2.4. Section 2.5,
finally summarizes and concludes the chapter.

2.1 Symbolic Music Processing

Symbolic encoding of music aims to reduce the high-dimensional music signal into a com-
bination of symbols, embodying concepts understandable by practitioners. This section
will cover different symbolic representations of western music that are commonly used,
namely the music score and the MIDI protocol.

2.1.1 The Music Score

Keeping a written trace of musical pieces is an ancestral endeavor, with music-annotated
tablets dating back over a millennium BC (West, 1994). Nowadays, the standard written
music notation is the sheet music, or music score, which is heavily entailed to the
western classical music culture. The piano sheet music illustrated in Figure 2.1 shows
notations and symbols embodying multiple concepts of western musical theories.

Notably, the four main axes chosen for describing music are time (by reading the sheet
from left to right), frequency (low to high pitch notes are arranged from bottom to high

27

2.1. SYMBOLIC MUSIC PROCESSING CHAPTER 2. BACKGROUND

Dynamic
markings

Articulation
markings

Key
signature

Pitch
accidentals

Time
signature

Tempo

Rhythmic
value

Figure 2.1: Extract of a piano music sheet. Notations related the encoding of time are
encircled in orange, while pitch-related notations are in purple and loudness-related ones
are in blue. Green markings can influence both time and timbre features.

along the staff) loudness, and timbre (with the choice of instruments). Each dimension can
be encoded at multiple granularities, ranging from low-level note-wise markings to high-
level markings describing the structural understanding of the piece. For example, a single
note duration can be retrieved from its rhythmic value with regards to the tempo, but the
time signatures and the segmentation of the piece into measures indicate an organization
of the temporal piece structure, through a beat value and a “rhythmic feel”. Similarly,
note pitches are read from their vertical position along the staff, but the pitch accidentals
and key signature markings put them in the context of a musical scale governing the
section. Dynamic markings specify the global loudness and its evolution in a section,
but note-specific indications can be made with articulation markings. Other markings
(through symbols or text), which are not necessarily shown in the given example, can
further specify playing techniques (such as ornaments and pedal marks), aggregate notes
into similar groups (with chords and slurs), or make reading easier (with octave and
repetition signs).

Digital editing and storage of a music score is usually done through the XML protocol,
with the MusicXML file extension (Good, 2001).

Other writable symbolic representations encompass the piano roll (to be played by an
automatic player piano), the lead sheet or chord chart (simply transcribing a melody line
and the accompanying chord progression) and guitar tablatures (more adapted for guitar
pieces, with fingering indications).

28

2.1. SYMBOLIC MUSIC PROCESSING CHAPTER 2. BACKGROUND

2.1.2 The MIDI Protocol

During the advent of electronic-based instrument manufacturing, users felt the lack of
a standardised means to synchronize their musical devices as each synthesizer company
had developed their own standards. To mitigate this issue, the communication protocol
MIDI (Hoffmann, 2004) was elaborated in the early 80s (Smith and Wood, 1981) mainly
by manufacturers Roland and Sequential Circuits. Simple yet flexible, it is now the main
standard for communication between electronic instruments, audio devices and computers.

MIDI allows the transmission of 7-bit messages in real-time from a MIDI-sending
device (such as keyboard, or sequencer) to a MIDI-receiving one (synthesizer, DAW,
digital effects, ...). Note event messages are used for conveying sequences of notes: when
a note is initiated by the sending device, a note on event is transferred, parameterized
by the note number (from 0 to 127) and its velocity (also encoded from 0 to 127). A note

off event is sent when the note previously initiated by a note on event is finished. It
is parameterized by the same note number and velocity as the associated note on event.
Note numbers quantize the note frequencies based on the equal temperament system,
which spaces every semi-tone with a constant frequency ratio. By using the A3 note at
440Hz as reference for the note number 69, a note with frequency f0 can be converted
into its MIDI pitch xpitch as follow:

xpitch = 69 + nint(12 log2(
f0
440

)), (2.1)

with nint the rounding to nearest integer operation. Inversely, the equal-temperament
frequency f0,ET can be retrieved from the MIDI pitch xpitch using the formula:

f0,ET(x
pitch) = 440× 2

1
12

(xpitch−69). (2.2)

The Control Change (CC) messages are sent for updating auxiliary control parameters
of the receiving device. They are parameterized by a control number and a control value,
each from 0 to 127. Most commonly used controls are the modulation control, and most
importantly for this thesis, the piano pedal controls. Pitch bends on the other hand are
not encoded through CC but have their own dedicated message type: they allow for filling
the frequency spectrum in between equal temperament frequencies.

Program Change (PC) messages allow for the receiving device to change its configu-
ration from one of its 128 presets. All messages can be assigned to one or several of the
16 available MIDI channels, which is useful when connecting several devices together (in
chain or parallel) and sending dedicated messages to each of them.

A sequence of MIDI messages can be stored to and read from a MIDI file, recognizable
by their .mid extension and widely used thanks to their compact size. On top of their
parameters, the messages are stored with timestamps and can be organized into channels
(one per instrument for example). In particular, arrangements can be efficiently stored
with tempo, time signatures and keys changes using messages specific to the file format.

2.1.3 Efficient Representations of Symbolic Music

While music scores were designed to be read by musicians and the MIDI protocol by
electronic devices in real-time environments, computers can more efficiently process the

29

2.1. SYMBOLIC MUSIC PROCESSING CHAPTER 2. BACKGROUND

(a) Score.

0 0.5 1 1.5
Time

C3

C4

C5

C6

No
te

(b) Active velocities piano roll.

event(value)

velocity(84)
note on(66)
time shift(31)
note off(66)
velocity(45)
note on(72)
time shift(32)
note off(72)
...

(c) MIDI-like tokenization.

pitch IOI duration vel

66 0.0 0.125 84
72 0.125 0.125 45
76 0.0 0.125 45
68 0.125 0.125 45
64 0.125 0.125 45
56 0.125 0.125 90
56 0.0 0.125 96
64 0.125 0.125 45
...

(d) Note-wise encoding.

Figure 2.2: Visualizations of different symbolic representations for the same piece of music.

contained information with modified encodings that exhibit different relationships em-
bedded in the composition or performance. Different representations of the same music
piece are illustrated in Figure 2.2. More extensive explanations and usages can be found
in the survey conducted by Ji et al. (2023), along with other encodings not presented in
this manuscript.

The closest encoding to the raw MIDI protocol is the MIDI-like tokenization first
introduced by Oore et al. (2020). The data is represented as a sequence of one-hot encoded
tokens in a vocabulary of events, covering MIDI messages with their possible values that
are relevant for a given task. For example, 128 tokens in the vocabulary can be allocated
for indicating a change of property of a note number, followed by one of 2 tokens whether
it is a note-on or note-off event and one of 128 tokens for the velocity. Tokens can also
be assigned for indicating a change of instrument for multi-instrument tasks (Hawthorne
et al., 2022), and time-shift tokens allow to move forward in time and specify the duration
separating two events. While the absolute time representation is convenient for encoding
the fine time-granularity of performances, score-related tasks may prefer a more musically
meaningful encoding of time by using bar and position tokens, as proposed by Huang and
Yang (2020).

This representation of a stream of tokens can create very long sequences and tends to

30

2.1. SYMBOLIC MUSIC PROCESSING CHAPTER 2. BACKGROUND

spread note information apart, as a long sustained note can have its note-on and note-
off tokens separated by lots of tokens of simultaneous short notes. Also, note insertion
or deletion can require the modification of some time-shift events in order to preserve
the timestamps of future events. Overall, the stream of tokens representation can be
difficult to manipulate while maintaining strict coherence, but it benefits tasks and system
architectures relying on discrete representations and has thus found success with models
mostly inspired by Natural Language Processing (NLP), capable of modeling long-term
dependencies (Oore et al., 2020; Huang and Yang, 2020; Gardner et al., 2022; Hawthorne
et al., 2022).

In a compound words manner (Hsiao et al., 2021), the note-wise encoding increases
the abstraction level by grouping events into notes with properties. The most commonly
used properties for a single note are its pitch, onset time, duration and velocity. But
there can be differences between the properties of grid-locked notes in music scores and
those of fine-grained time notes in music performances. For score notes, the onset time
can be represented by the note position in the measure grid, and one can also add note
properties with regard to the environment (Jeong et al., 2019a; Dong et al., 2023; Rhyu
et al., 2022), such as the type of instrument, the position in a chord, the number of other
simultaneous notes, the staff, if it is on a (down-)beat, ... Performance notes on the
other hand can be described solely with pitch, onset, duration and velocity properties: in
particular, onsets are represented by the Inter-Onset-Interval (IOI), which indicates the
time elapsed between the onsets of the current and previous notes, as the notes are sorted
by their onset time. Note-wise representations are particularly efficient for modeling and
manipulating notes individually, which is relevant for performance rendering among other
tasks.

More visually friendly, piano rolls represent symbolic music in a 2D matrix X ∈
[0, 1]T×88 with time and pitch axis. Time is unrolled at a constant frame rate Fframe,
while the pitch axis spans over the effective MIDI pitch range (88 for the piano). The
most commonly used piano roll is the active velocity piano roll, as most DAWs offer
a graphical interface for MIDI edition. A bin X(t, p) in the roll indicates if the note
with pitch p is being played or not at time t (if X(t, p) > 0) and with which initial
velocity. In this representation, one cannot distinguish repeated notes inside sustain
pedal from long pressed notes (Kim et al., 2019) and thus may prefer combining it with
other types of piano rolls, such as the onset velocity roll (non-zero only at onset times)
or the activity roll (similar to the active velocity roll but without velocity information).
Multiple instrument-specific piano rolls can be stacked together for multi-track settings.
The piano roll representations are useful when relying on Computer Vision (CV)-inspired
model architectures (Brunner et al., 2018) and/or when leveraging the constant time step
(e.g. synthesis with upsampling (Kim et al., 2019; Cooper et al., 2021)). However in
practice, the piano roll encodings are often sparse matrices, making them inefficient in
terms of memory usage.

Finally, graph-based methods have also been applied for symbolic music processing by
encoding scores as graphs (Jeong et al., 2019b). Notes are nodes connected with different
types of edges according to their relationship with other elements in the score (following
notes, rests, measures, slurs, voice,...).

31

2.1. SYMBOLIC MUSIC PROCESSING CHAPTER 2. BACKGROUND

Section summary - Symbolic music processing

Western music has long been made, transmitted and analyzed using music scores
between human composers, musicians and musicologists. However, new instruments
leveraging technological progress fostered the creation of low-level machine-readable
representations of music, with the MIDI protocol being their flagship. As such,
different encodings have been proposed for processing these representations, with
different relationship granularities, ranging from the grounded MIDI-like tokeniza-
tion to the graph-based encoding, through the more visual piano rolls. For this
manuscript, note-wise sequences and piano rolls will be preferred as they can
both meaningfully encode piano performances and be extracted from raw MIDI
files.

32

2.2. AUDIO DIGITAL SIGNAL PRO-
CESSING BASICS

CHAPTER 2. BACKGROUND

2.2 Audio Digital Signal Processing basics

Music is essentially consumed by listening to it: like any other sound, it is transmitted
from the source (a voice, an instrument, a loudspeaker,...) to the listener by disturbing the
air molecules due to the propagation of the soundwave. These local variations of pressure
can then be measured and converted to an electrical signal by an electro-mechanical
system (the ear, a microphone, a sensor), to be then further processed and eventually
recorded and understood by the brain or a computer.

Signal processing is the scientific sub-field that has been developing mathematical
properties, theories and operations for explaining and manipulating the information con-
tained in signals. While applicable to many types of signals (text, videos, electrical
currents, stock exchanges, weather data, etc...), the signal processing elements presented
in the following section are of particular interest for audio signals and will serve as a basis
for the remainder of the manuscript. After introducing the waveform and time-frequency
representations of 1D signals, filtering operations for signal manipulation will be defined,
and all will finally be combined for presenting the spectral-modeling paradigm for sound
re-synthesis.

2.2.1 Waveform representation

Sound signals, whether acoustic or electrical, are sequences of measurements of physical
quantities that evolve over time. However, computers can only process and store data
with discrete values, by manipulating binary registers. Thus, physical signals need to be
discretized, or digitalized, by sampling in time and quantization in amplitude. Sampling
and amplitude quantization are commonly parameterized by the sampling rate Faudio

and the bit-depth respectively.
Bit-depth indicates the number of bits, and concurrently the number of possible values,

used for representing amplitudes. Whereas storage of uncompressed digital signals usually
uses quantification with fixed point numbers defined by the bit-depth (typically 16, 24 or
32-bits), computer digital signal processing usually uses floating point numbers, typically
32 or 64-bits. Generally, the larger the size of the encoded numbers, the smaller the
quantification noise will be.

Likewise, the sampling rate defines the number of evenly spaced measurements of
the audio signal per second. The information in between these audio samples is lost
during the process. Thankfully, the Nyquist-Shannon sampling theorem (Shannon, 1949)
provides a mathematical criterion for sampling signals while maintaining informational
integrity. It states that no information is lost in the sampling process if the maximum
frequency contained in the original signal does not exceed Faudio/2, commonly referred as
the Nyquist frequency. If this criterion is not met, aliasing can appear in the digitalized
signal, distorting it through the creation of unwanted frequencies. In that respect, an anti-
aliasing filter can be applied before quantization to remove unwanted frequencies above
the Nyquist frequency. As human auditory is sensible in the 20Hz to 20kHz frequency
range, 44.1 kHz and 48kHz are common sampling frequencies used for faithfully encoding
audio signals in CDs, mp3 files, ... Nonetheless, auditory perception studies (French and
Steinberg, 1947) have shown that information below 4kHz is sufficient for understanding

33

2.2. AUDIO DSP BASICS CHAPTER 2. BACKGROUND

speech. Hence, reduced sample rates of 8kHz or 16kHz are also common practice in
telephone transmissions and in the speech processing literature respectively.

2.2.2 Time-Frequency representation

While the raw waveform representation reflects the way sound is physically measured, it
is not the best for highlighting the properties to which auditory perception is sensitive.
For sounds and especially for music, the audio signal often contains repeating patterns
in the waveform. The number of times these patterns loop per second corresponds to
the frequency of the pattern, and human auditory is particularly responsive in tracking
frequencies. On that account, time-frequency representations based on Fourier analysis
aim to exhibit the main frequency components embedded in audio signals.

Discrete Fourier Transform (DFT)

Here, we are given a digital audio signal {y(t)}t∈Z, sampled at frequency Faudio and with
finite support of size m ∈ N∗, meaning that the signal is zero outside of a finite time
interval of size m. Without loss of generality, the signal can be translated in order to be
non-zero for t ∈ J0,mJ.

The DFT is a mathematical operator aiming to extract the spectral content of the
signal y, by “measuring” the presence of certain frequencies in it. The DFT of y is
expressed as ∀f ∈ J0,mJ:

DFT[y](f) :=
m−1∑
t=0

y(t)e−2jπ f
m
t. (2.3)

A single element DFT[y](f) ∈ C indicates the amplitude and phase of the sinusoidal
component with frequency Faudio × f/m contained in the signal y. It can be seen that
the signal length m directly influences the resolution of the extracted spectral content,
as higher m values project the signal y into a larger basis of exponential frequencies

{e−2jπ f
m t}f∈J0,mJ and reduce the gap Faudio/m between two neighboring frequencies. A

DFT of size larger than m can be computed by means of padding a number of zeros at
t ≥ m after the signal y: this is equivalent to resampling the frequency spectrum.

The DFT of a signal can be used to visualize, analyse and further process its frequency
content. In the latter case, it can be useful to revert back to the audio modality from
a DFT representation, which can be done with the Inverse Discrete Fourier Transform
DFT−1, defined as ∀t ∈ J0,mJ:

DFT−1[DFT[y]](t) :=
1

m

m−1∑
f=0

DFT[y](f)e2jπ
f
m
t = y(t). (2.4)

Short-Term Fourier Transform (STFT)

Signals are usually non-stationary and their frequency content evolves over time. For
examples, the recording of a musical performance includes multiple successive notes and

34

2.2. AUDIO DSP BASICS CHAPTER 2. BACKGROUND

DFT DFT DFT

...

...

...

Figure 2.3: Extraction of the magnitude spectrogram from an audio waveform.

a voice articulates different vowels in sequence. Performing a DFT over such signals would
entangle the contents of each note/word and not provide an informative representation
on the full signal.

To mitigate this issue, the STFT is a classic signal processing tool that performs
multiple DFTs on successive chunks of signal that are supposed to be locally stationary.
The chunks are extracted by multiplying the signal with a sliding window function w :

35

2.2. AUDIO DSP BASICS CHAPTER 2. BACKGROUND

Z→ R that has finite support of size m and is centered around zero. The sliding is done
by successively shifting the window in time by a chosen number of samples hw ∈ J1,mK
called the hop size. By naming the shifted window wτ : t 7→ w(t− hwτ), the STFT can
be defined ∀τ, f ∈ Z× J0,mJ:

STFT[y](τ, f) := DFT[y × wτ](f)

=
∑
t∈Z

y(t)w(t− hwτ)e
−2jπ f

m
t. (2.5)

The simplest window function is the rectangular function (1 for t ∈ J−m/2,m/2K,
0 elsewhere) but it introduces noticeable artifacts in the DFT of the extracted signal
(Gottlieb and Shu, 1997). To mitigate this issue, several window functions have been
proposed in the signal processing literature (Harris, 1978). In particular, the Hann window
function has seen widespread uses:

wHann(t) :=

{
1
2
(1− cos(2π t

m
) if t ∈ J−m

2
, m

2
K

0 elsewhere
(2.6)

On top of the window function choice, the parametrization hw,m determines the time-
frequency resolution of the STFT. The hope size hw sets simultaneously the overlapping
ratio 1− (hw/m) and the temporal precision hw/Faudio between two STFT frames. It
notably determines the ability to reconstruct the original signal y from its STFT, but this
property will not be addressed in this thesis.

On the other hand, m is commonly referred as the DFT size as it extracts a sub-signal
with support of size m from a signal of arbitrary length, thus conditioning the frequency
resolution of the local DFT. The choice of its value is associated with the time-frequency
trade-off of the STFT resolution: a high value of m enables analyzing the signal through
more frequencies, but if m is too large, it can violate the local stationarity hypothesis of
the signal chunk and introduce “blurriness” in time.

Finally, it is more convenient to process real-valued data rather than complex-valued,
and it is common practice to use the magnitude spectrogram |STFT|, which is the
absolute magnitude of the STFT. Even though the absolute phase information is not rele-
vant for auditory perception, the difference of phases is, and retrieving the discarded phase
raises a challenge notably for audio synthesis from/through magnitude spectrograms.

2.2.3 Linear Filtering

While the DFT and STFT serve as valuable tools for analyzing and visualizing the fre-
quency content of a signal, linear filters can be used to shape it. With a view to alter the
audio signals, designing linear filters is a valuable asset as they can enhance or attenuate
the amplitude of certain frequencies without creating nor modifying the frequency values
themselves: they have found usages for numerous tasks, such as mixing (see Section 1.1.4),
sound design, speech enhancement, noise suppression, etc...

Filters have either an Infinite Impulse Response (IIR) or a Finite Impulse Response
(FIR) and are Linear Time-Invariant (LTI) or Linear Time-Varying (LTV), which makes
four possible combinations: each property will be presented in the following.

36

2.2. AUDIO DSP BASICS CHAPTER 2. BACKGROUND

Finite Impulse Response (FIR) vs Infinite Impulse Response (IIR)

Linear filters can be defined in the waveform/audio modality by their impulse response
IR, or in the frequency modality by their frequency response η := DFT[IR].

A FIR filter has coefficients {IR(t)}t∈Z with finite support of size Q, the support size
determining the filter order. Applying such a filter to a signal {y(t)}t∈Z gives ∀t ∈ Z:

ỹ(t) = (y ∗ IR)(t) =
∑
t′∈Z

IR(t′)y(t− t′), (2.7)

with ỹ the filtered audio signal and ∗ the discrete convolution operation. Filtering a
signal with a FIR filter means replacing each sample by a linear combination of it and its
neighboring samples. If ∀t ∈ Z∗

−, IR(t) = 0, the output sample ỹ(t) is computed using only
input samples from the current and previous timesteps: the filter is said to be causal.

The impulse response of an IIR filter has an infinite sized support. Recursive filters are
a practical sub-family of IIR filters where past output samples are also used to compute
the current output sample. A recursive filter can be defined by its coefficients {at}t∈J0,Q1J

and {bt}t∈J0,Q2J, with Q1 and Q2 the feedforward and feedback filter orders respectively.
∀t ∈ Z, the relationship between the input signal y and the filtered output ỹ is given by:

Q1−1∑
t′=0

at′ ỹ(t− t′) =

Q2−1∑
t′=0

bt′y(t− t′) (2.8)

Taking benefit of the convolution theorem of the Fourier Transform, FIR filters can
also be applied in the frequency modality with the product of the respective DFTs:

DFT[y ∗ IR] = DFT[y]×DFT[IR], (2.9)

while ensuring the DFT size is suitable with regards to the support sizes of IR and y to
avoid time aliasing.

Such a formulation facilitates a more intuitive filter design process: a desired frequency
response can be achieved by sampling the frequency range into m linearly spaced bands
and specifying the magnitude and phase of each of them, and then computing the inverse
DFT. The impulse response obtained by such a method is clearly finite with support
of size m. Similarly, frequency sampling can evaluate the frequency response of an
IIR filter at multiple frequencies, yielding a FIR approximation of the IIR filter, with
guaranteed stability at the risk of potential aliasing in the time modality.

Linear Time-Invariant (LTI) vs Linear Time-Varying (LTV)

The FIR and IIR filters presented previously shape the input signal with the same response
through the full signal length: they are called LTI. But similarly to the STFT performing
successive DFTs over a non-stationary signal, they can also be designed as LTV and have
a non-stationary behavior by allowing their coefficients to evolve over time.

A way of applying a LTV-FIR filter for example would be to define a frame rate
Fframe at which the filter coefficients are updated. The hop size between two updates is

37

2.2. AUDIO DSP BASICS CHAPTER 2. BACKGROUND

hw = Faudio/Fframe, which also corresponds to the upsampling ratio from the frame rate to
the audio sampling rate. Here, the LTV filter is a set of LTI filters {IRτ}τ∈Z of common
order Q, applied one after the other ordered by their frame index τ . The filtered audio ỹ
would be ∀t ∈ Z:

ỹ(t) = (y ∗ IR⌊t/hw⌋)(t)

=
∑
t′∈Z

IR⌊t/hw⌋(t
′)y(t− t′), (2.10)

with ⌊.⌋ the floor function. Manipulating Equation 2.9, a LTV-FIR filter can also be
designed and applied in the frequency modality.

2.2.4 The Spectral Modeling Paradigm

An application of audio signal processing is the synthesis-by-analysis of sounds, or sound
matching, which aims to find the parameters of a certain audio synthesis model for repro-
ducing a target sound. By leveraging Fourier theory and analysis tools outlined in Section
2.2.2, a periodic signal can be decomposed into a sum of its elementary frequency com-
ponents. On the other hand, additive synthesizers produce sounds by stacking multiple
sinusoidal signals, parameterized by their evolving amplitudes, frequencies and phases.
Therefore, as vocal and instrumental signals contain periodic phenomenons, such as glot-
tal pulses, vibrating string or air column modes, they are suitable for being reproduced
by additive synthesis.

The sinuses-plus-noise, or spectral modeling synthesis method was formalized by Serra
and Smith (1990). It reproduces an audio signal by summing an additive signal yadditive

with a residual noise signal ynoise:

y(t) ≈ yadditive(t) + ynoise(t)

=
K∑
k=1

Ak(t)(sin(2π
t∑

t′=0

fk(t
′) + Φk(0))) + DFT−1[η⌊t/hw⌋u⌊t/hw⌋](t),

(2.11)

with K ∈ N∗ the number of pure sinuses (or partials) in the additive signal, and Ak

and fk their time-varying amplitude and frequency controls. The instantaneous phase
of the k-th partial can be noted Φk(t) := 2π

∑t
t′=0 fk(t

′) + Φk(0), with Φk(0) the initial
phase. η⌊t/hw⌋ is the instantaneous frequency response at frame τ = t/hw of a LTV filter
shaping a white noise STFT spectrum u in the frequency modality. While the additive
signal reproduces the periodic phenomenons, the residual noise encompasses stochastic
elements in the signal, such as wind, bow or transient noise. An example of sinuses and
noise decomposition of a signal is shown in Figure 2.4.

The partials often have an harmonic relationship, meaning that their frequencies are
integer multiples of a fundamental frequency f0: ∀k ∈ J1, KK, fk(t) = kf0(t). In this
case, the partials are called harmonics and the complexity of the synthesizer is reduced
as only the fundamental frequency needs to be estimated. Pitch is commonly associated
with the fundamental frequency, even if studies (Oxenham, 2012) have demonstrated other
properties responsible for the perception of pitch.

38

2.2. AUDIO DSP BASICS CHAPTER 2. BACKGROUND

1.0
0.5
0.0
0.5
1.0

0

2500

5000

7500

Hz

0

2500

5000

7500

Hz

0 0.5 1 1.5 2 2.5 3 3.5 4
Time

0

2500

5000

7500

Hz

Figure 2.4: Waveform (first row) and spectrogram (second row) of a violin note decom-
posed into its harmonic content (third row) and residual noise (last row).

For sound matching, the analysis process is of utmost importance in order to faithfully
reproduce the target sound. Various methodologies, including peak detection and trajec-
tory tracking, have been devised to accurately estimate synthesizer controls, and will be
briefly discussed in the literature review Section 3.2.2.

Section summary - Audio digital signal processing basics

The scientific field of signal processing has developed mathematical tools and prop-
erties for the analysis and manipulation of notably audio signals. For digital pro-
cessing, the signals have to be quantized in amplitude and time (usually at 16kHz,
24kHz or 48kHz). Through Fourier analysis, time-frequency representations can
exhibit frequency components in the signal and linear filters can shape them locally
or globally in time. The spectral modeling synthesis method leverages these tools to
decompose an audio signal into the sum of a filtered noise and partials with varying
amplitudes and frequencies.

39

2.3. PIANO MECHANISMS CHAPTER 2. BACKGROUND

Figure 2.5: Grand piano structure. Taken from Rigaud (2013), with Figure (a) sourced
from www.pianotreasure.com and Figure from (b) www.bechstein.de

2.3 Piano Mechanisms

The piano is one of the most popular instruments in the western music history, as it
has spawned a large repertoire of solo works since its inception and has been featured in
numerous multi-instrument formations in a broad variety of musical genres (classical, pop,
jazz, funk, etc...). While quite easy to start playing with, professional performances can
be complex: the instrument popularity lies in its flexibility, as its offers both polyphony
and a wide range of pitches and dynamics.

This section will cover the necessary elements to understand the mechanisms behind
the piano. After a quick historical overview of the instrument, the roles of each of its
main component (strings, pedal, soundboard) are presented, eventually with some phys-
ical modeling results. Notably, the large frequency range of the instrument introduces
sizeable challenges for piano makers and tuners. The reader may refer to Figure 2.5 for a
comprehensive illustration of the instrument, and can also find a more in-depth modeling
of the instrument in the thesis of Chabassier (2012).

2.3.1 A Brief History of Piano Craftsmanship

Keyboard instruments traditionally condense a physical sounding phenomenon into a sin-
gle ready-to-be-actioned key, button or lever. Several of these keys are available, with the
same mechanism tuned differently for each. As such, keyboard instruments are defined
by the way they are played, instead of how the sound is produced. The first keyboard
instrument can be tracked back in Ancient Greek times with the hydraulis, an organ

40

www.pianotreasure.com
www.bechstein.de

2.3. PIANO MECHANISMS CHAPTER 2. BACKGROUND

where the pipes are excited by air pressurized by water pumps (Apel, 1997). Since then,
other keyboard instruments have emerged, leveraging different sound sources: aerophones
use air flows (e.g. organs and accordions), idiophones set physical object in vibration
(celesta, xylophone, glasschord or the carillon), chordophones set strings in vibration
(harpischord, clavichord or hurdy-gurdy) and electrophones use electrical waves (mel-
lotron, Ondes Martenot).

The inception of the piano mechanism is commonly associated with the creation of
the pianoforte by Italian manufacturer Bartolomeo Cristofori around 1700. Based on
the harpischord structure, the pianoforte employ buckskin-covered hammers to strike the
strings instead of plectrums plucking them. The proposed action allowed for the hammers
to be “launched” at varying velocities according to the strength of the key pressing,
without the hammers sticking to the strings nor bouncing back at them afterward. Such
mechanism allowed for nuances in dynamics during playing, which was unprecedented
with the harpischord.

From that point on, the evolution of the instrument was intertwined with the evo-
lution of musical stylistic movements. Close collaborations between instrument makers
and renowned composers/musicians were common, as the latter could provide valuable
feedback on the instrument while also being inspired to new composition processes thanks
to technological improvements in instrument making (Grasser, 1995). For example, Ger-
man builder Gottfried Silbermann improved on the key hardness and lack of power of
higher notes following the criticisms of Bach. Johann Andreas Stein proposed a precursor
system to the damping pedal and also improved over the original piano action through
an innovative escapement mechanism that allows to better control the key velocities. He
founded what would be later known as the Viennese school of piano makers, which were
adopted by composers of the classical eras such as Haydn, Mozart and early Beethoven
and Schubert.

Later on, the English craftmanship further pushed the boundaries by incorporating
metal parts into the wooden structure, which could then withstand increased tension of
the strings and make a more powerful instrument overall. Such design would suit the
energetic and dramatic writing style of Beethoven for instance. The further enlargement
of the piano dynamic range was a keystone of the romantic era, notably through the design
of a full iron frame by Alpheus Babcock and the wrapped and tempered steel strings by
Henri Pape in the 1820s. In 1821, Sébastien Érard also developed the double escapement
design, or repetition lever, that allows the fast repetition of notes even if the action is
not fully reset. This was rapidly adopted by Franz Liszt with its 8 Variations piece in
1823, demonstrating the new possibilities offered by such a system. There again, Liszt
and Erard would later share professional and friendly collborations, as would Chopin with
Camille Pleyel, heir to the French manufacturing firm.

2.3.2 A Monophonic String Model

The string is the main vibrating element making up the sound of the piano. For a
single note, the steel string is attached at both ends and is excited by a single strike
of the hammer, launched upon key pressing at note onset time, thanks to the double

41

2.3. PIANO MECHANISMS CHAPTER 2. BACKGROUND

Figure 2.6: Diagram of the successive stages (a, b, c, d) of the double escapement mech-
anism, taken from Askenfelt and Jansson (1990).

escapement mechanism illustrated in Figure 2.6. Upon key release at note offset time,
the damping mechanism returns to its resting state and attenuates the string vibration.

In theory, the transversal motion of an ideally flexible, vibrating string consists of
harmonics featuring frequencies that are integer multiples of its fundamental frequency.
However, piano strings are made of tempered steel that induces a non-negligible stiffness:
that stiffness tends to bring the bent string back to its resting state, even without tension
applying, which violates some hypothesis in the ideally flexible string settings. It has been
demonstrated by Fletcher (1964) that the partials {fk}k∈N∗ of the piano string satisfy
instead the relation ∀k ∈ N∗:

fk = kf0
√
1 +Bk2, (2.12)

with f0 the fundamental frequency and B the inharmonicity coefficient, which depends
on the string properties (tension, length, diameter and Young modulus). As illustrated
in Figure 2.7, the inharmonicity slightly increases the partial frequencies, with more pro-
nounced shifts for higher partials. This particularity greatly contributes to the recognition
of the piano tone.

To ensure uniformity of sound across the pitch range, despite large differences in length
and diameter, higher strings can be doubled or even tripled in number to compensate for
their low output. Strings of such duets or triplets are usually slightly detuned from each
other, leading to the appearance of beatings between neighboring frequencies: for a given
note, this is manifested as amplitude modulations of its partials. According to Weinreich

42

2.3. PIANO MECHANISMS CHAPTER 2. BACKGROUND

Figure 2.7: Spectral content of the ENSTDkCl C5 note from MIDI Aligned Piano Sounds
(MAPS) (Emiya et al., 2010): the inharmonicity shifts the partials higher than pure
harmonic frequencies (in dotted vertical lines).

(1977), the sub-strings being detuned while coupled at the bridge are also responsible of
the distinct “piano aftersound”. Indeed, most physical systems excited by an impulse
have their motion decreases exponentially along a constant decay rate in time. However,
piano notes exhibit a double exponential decay phenomenon: after a certain amount of
time of regular exponentially decaying amplitudes, the sub-strings mutually maintain their
motion through their coupling at the bridge, giving rise to a second, slower, exponential
decay rate.

Additional phenomena occurring within piano string vibration involve:

• the presence of a fast longitudinal wave that can be heard at the very beginning of
the piano tone (Knoblaugh, 1944; Askenfelt and Jansson, 1993).

• the multiple polarizations of the string motion. Even if the hammer strikes vertically,
the string has been observed to move both vertically and horizontally, which can
also explain the double amplitude decay (Weinreich, 1977).

• the resonance of the string portions between the bridge and the attachment point.
As they are not necessarily damped, they can also resonate. In high-end pianos,
they can be tuned with one of the strings harmonics (Askenfelt and Jansson, 1993).

• the presence of the so-called phantom partials in the spectrum, located at certain
sums and differences of the main partials frequencies (e.g. f1 + f2, f2 + f5 + f6,
f14 − f16,...). They result from the combination of the string stiffness, soundboard
coupling and other non-linearities, such as non-uniform tension (Conklin, 1999).

43

2.3. PIANO MECHANISMS CHAPTER 2. BACKGROUND

The piano action is supplemented with pedals that provide further control options.
Pianists manipulate these pedals with their feet, organized from right to left:

• the sustain pedal - also called damper pedal - can lift and disable the damping
mechanism, which allows the string(s) to still vibrate even after note offset. When
pressed, all dampers for all notes are lifted simultaneously.

• the sostenuto pedal (for grand pianos) can be viewed as a selective sustain pedal:
when the pedal is pressed down while a piano key is being played, the associated
damper is lifted and remains disabled as long as the sostenuto pedal in pressed. Its
usage is rarer than the sustain pedal since the note pressed down pre-requisit makes
it more difficult to compose with, but it allows for an overall “cleaner” sound as the
other unwanted notes are still damped.

• the middle pedal for upright piano lowers a muffler between the hammer and the
string, which highly softens the sound and changes the timbre. Its usage is mostly
practical as a pianist can rehearse while less disturbing its surroundings since the
sound is heavily soften.

• the una corda pedal aims to soften and change the note timbre. For grand pianos, it
slightly shifts the whole keyboard so that the hammer only strike one string among
the duets/triplets, reducing the partial beatings notably. For upright pianos, it
instead brings the hammer closer to the string: as the hammer is launched from a
closer point, it reaches the string with an lessen velocity, but does not change the
timbre in the same way as all strings in duets/triplets as still excited.

2.3.3 Soundboard

Because of their small surface area, the piano strings by themselves do not radiate enough
energy to be heard from a reasonable distance. Like other string instruments such as
guitars, violins, and harps, which rely on resonance chambers, the piano strings need to
be coupled with a more radiating element. To this end, the bridge transmits the string
vibration to the soundboard, from which the sound radiates in the air. Coupling with the
strings at the bridge involves a trade-off: a heavy coupling enhances transmission to the
soundboard but increases the decay rate, wheres light coupling allows for longer string
vibration at the expense of a reduced transmission to the soundboard, and thus a reduced
sound output (Conklin, 1996).

As depicted in Figure 2.8, the soundboard exhibits modes, the 2D equivalent of a string
partials. While transmitting the string vibration, these modes highlight certain frequen-
cies: the soundboard thus acts as a filter on the transmitted string sound. Additionally,
the soundboard acts as a sound-emitting element, as it is excited with the whole piano
structure by the key and hammer strikes. Due to its distinctive shape and the presence
of ribs (Boutillon and Ege, 2013), the frequency content of the soundboard’s percussive
sound is dependent of the location of excitation: it tends to be more bass-heavy when
excited towards the low notes range, while showcasing higher frequency content when
excited in the treble range.

44

2.3. PIANO MECHANISMS CHAPTER 2. BACKGROUND

Figure 2.8: Visualization of 2D stationary modes (also called Chladni patterns) of a 2.74m
grand piano soundboard excited by a vibration generator, as observed by Conklin (1996).
(a) mode 1 (49 Hz); (b) mode 2 (66.7 Hz); (c) mode 3 (89.4 Hz); (d) mode 4 (112.8 Hz);
(e) (184 Hz); (f) (306 Hz).

2.3.4 Polyphony

One of the key features of the piano is the ability to play multiple notes simultaneously,
or polyphony. As the notes range from A0 to C8 - corresponding to the 21 to 108

45

2.3. PIANO MECHANISMS CHAPTER 2. BACKGROUND

(a) Default inharmonicity curve and esti-
mated inharmonicity coefficients.

(b) Default detuning curve and estimated
detuning coefficients.

Figure 2.9: Default parametric inharmonicity and detuning models over the pitch
range proposed by Rigaud et al. (2011) (in black dashed line). Individual notes in-
harmonicity and detuning coeffcients estimated on the Iowa piano database (https:
//theremin.music.uiowa.edu/MISpiano.html) are estimated with two methods based
on non-negative matrix factorization proposed by Rigaud (2013) (red and blue dots).
Both plots are taken from the appendix of Rigaud (2013).

MIDI range -, piano makers need to establish a “string plan”, specifying the dimensions
and placements of each string, such that the overall tension can still be compensated by
the iron frame and the soundboard, while maintaining a global timbre coherence. This
results in large differences of length and diameter between the lowest and highest notes,
and consequently the need to adapt individual actions accordingly. The lowest notes have
a single dedicated string with wrapping to further increase their density while keeping
the inharmonicity coefficient to reasonable values. Then, to compensate for the reduced
output level of individual strings, a few low notes have string duets, then all remaining
mid-to-high notes have string triplets. The highest notes are even deprived of a damping
mechanism as they naturally fade quickly.

On top of the manufacturing challenge, the tuning of each note is also non-trivial in
the polyphonic context. Indeed, due to the non-negligible strings inharmonicity, adhering
strictly to the true temperament system (where the frequency ratio between two semitones
remains constant) would result in dissonances, as displaced partials would conflict with the
fundamental frequencies of higher notes. To mitigate this issue, piano tuners would align
the second partial f2(x

pitch) of a note xpitch ∈ J21, 108K with the fundamental frequency
f1(x

pitch + 12) of the note an octave above. For low notes with many audible partials
and high inharmonicity coefficients, the tuner may prefer to match a higher partial with
a higher matching note, for example matching f3(x

pitch) with f1(x
pitch + 18), or f4(x

pitch)
with f1(x

pitch+24). The octave type designates the rank of the partial selected for tuning.
As depicted in Figure 2.9b, lower notes are tuned slightly lower than true temperament
frequencies, while higher notes are tuned slightly higher. This curve is commonly known
as the Railsback curve (Railsback, 1938).

Rigaud et al. (2011) proposed a parametric model for modeling both the inharmoncity
and detuning coefficients along the whole piano pitch range, or tessitura. The inhar-
monicity curve is observed and approximated as the sum of two linear asymptotes in the
exponential scale. For a note with MIDI pitch xpitch ∈ J0, 128J, the associated inhar-
monicity coefficient B is given by:

46

https://theremin.music.uiowa.edu/MISpiano.html
https://theremin.music.uiowa.edu/MISpiano.html

2.3. PIANO MECHANISMS CHAPTER 2. BACKGROUND

B(xpitch) = exp (αTx
pitch + βT) + exp (αBx

pitch + βB), (2.13)

with {αT , βT} (respectively {αB, βB}) the parameters of the linear asymptote in the treble
(respectively bass) range.

Additionally, one can define the detuning of a note xpitch as the ratio between the
fundamental frequency and the corresponding equal temperament frequency δf0(x

pitch) :=
f0(x

pitch)/f0,ET(x
pitch). By taking a reference note xpitch

ref unchanged from the equal

temperament tuning (δf0(x
pitch
ref) = 1) and applying the octave-based tuning strategy

described above, the detuning model proposed by Rigaud et al. (2011) gives:

δf0(x
pitch) =

√√√√1 +B(xpitch
ref)× (

f0,ET(xpitch)

f0,ET(x
pitch
ref)

ρ(xpitch))2

1 +B(xpitch)× ρ(xpitch)2
, (2.14)

with B the inharmonicity model from Equation 2.13 and ρ an octave type model along
the tessitura. ρ is parameterized by the reference note xpitch

ref , a bass asymptote value β
and a decrease slope α:

ρ(xpitch) = 1 + β tanh†−(
xpitch − xpitch

ref

α
), (2.15)

with tanh†− : x ∈ R → (1 − tanh(x))/2 the hyperbolic tangent function reversed and
scaled to the [0, 1] interval. The modeled octave type is not necessarily an integer for all
notes, but it can be interpreted as a compromise between two octave types: for instance,
ρ(xpitch) = 1.6 implies that the note xpitch has been tuned by trying to match both its
partials f1 and f2 with their respective octave notes, with a slight emphasis towards f2.
Note that the asymptotic value in the treble range is set to 1 as only a few partials are
audible.

Finally, during piano performances, simultaneous notes can mutually influence each
other as their neighboring partials interact. This interaction may induce amplitude mod-
ulation of shared partials, caused by slight detuning or phase discrepancies between them.
Additionally, undamped notes, that are either being played, freed by the sostenuto/sustain
pedal or deprived of dampers (for the highest notes), can have certain partials excited
by the vibration of other notes sharing such partials: these are commonly referred as
sympathetic resonances.

47

2.3. PIANO MECHANISMS CHAPTER 2. BACKGROUND

Section summary - Piano mechanisms

At its core, the piano relies on the simple phenomenon of string vibration for pro-
ducing harmonious sounds. However, as the instrument and its practice evolved
with joint craftsmanship and technical progresses, it is the seat of numerous com-
plex phenomenons. For its harmonic component, steel strings are subject to inhar-
monicity that displaces their harmonic frequencies. Coupled through the bridge,
the soundboard further shapes and conveys the string sound while also adding a
percussive element. At last, the polyphony of the instrument allows mutual inter-
action between notes, but also requires a dedicated tuning for each of them in order
to form a cohesive whole.

48

2.4. DEEP LEARNING FOR MUSIC
PROCESSING

CHAPTER 2. BACKGROUND

2.4 Deep Learning for Music Processing

This section briefly covers the theoretical framework underlying the methods employed
during this thesis. Deep learning has emerged in the last decade as one of the most
powerful optimization framework for handling a large variety of tasks, spanning from
classification and regression to complex generation and synthesis. Deep learning-based
models have proven countless times their ability to adapt to various domains and tasks,
while surpassing by an order of magnitude previous methods that were more reliant on
prior knowledge. Hence, numerous research and applications were developed for leveraging
the capability of these models for a large array of domains and modalities, such as texts
with NLP, images with CV, videos, audio, finance, biology, healthcare, robotics, materials
science, etc...

The flexibility of deep neural methods comes from their faculty to extract relevant
information and complex relationships from the data themselves, instead of relying on
hand-crafted features or rules. Methods learning from data are more generally said to
be data-driven and belong to the broader research area of machine learning, which is
presented in the following. Then, the main operations usually employed for building deep
neural networks are introduced and combined in an example of advanced architecture
with Generative Adversarial Network (GAN). Admittedly, even if these models can be
domain-ignorant, several strategies can be used for incorporating domain knowledge into
the framework in order to improve the learning and potentially reach better performances.

2.4.1 Data-driven Optimization with Gradient Descent

Data-driven optimization is a family of optimization techniques aiming to approximate
a probability distributions P that yields pairs (x, y) ∈ X × Y of features and labels, or
inputs and outputs, or conditioning and outputs. For illustrations, P can be the set of all
realistic animal pictures x ∈ Ximages with their labeling y ∈ {cat, nocat} of whether they
contain a cat or not: this is a binary classification task. Or, if P yields all spoken English
utterances x ∈ Xsounds with their written transcript y ∈ Ytext in Latin alphabet, we would
have a transcription task to tackle.

To this end, a differentiable parametric function, or model, FW with trainable pa-
rameters/weights W ∈ W is optimized, or trained, to ideally fit the unknown, underlying
function F : X → Y that explains the distribution P , i.e. ∀(x, y) ∼ P ,F(x) = y.

Loss function

In this setting, quantifying the discrepancy between the ideal function F and the model
FW is made using the risk function of the problem (also called loss, cost, error or objective)
L defined as:

L :

{
W → R+

W 7→ Ex,y∼P D(y,FW (x)) + λregΦ(W)
(2.16)

49

2.4. DEEP LEARNING CHAPTER 2. BACKGROUND

with E the expectancy, D : Y × Y → R+ a differentiable distance-like function of the
output space 1 and Φ :W → R+ an optional regularization term weighted by λreg ∈ R.

The left term of the risk function output in Equation 2.16 is the empirical risk that
can be understood intuitively as the quantification of the “mistakes” made by the model:
it measures the difference between the estimated outputs FW (x) and the ground-truth
examples y = F(x) for (x, y) ∼ P . The right term is the structural risk that penalizes
unnecessary complexity in the model and it is mostly used to avoid overfitting, as it will
be explained later on.

The optimization process aims to find the optimal parameters W ∗ in the parameter
space W that minimize the risk L:

W ∗ := argmin
W∈W

L(W). (2.17)

In practice, deep learning practitioners mostly use the term loss to refer to the distance
function D of the empirical risk. Outside of this chapter, for the sake of consistency with
the field, “loss” will also designate the chosen distance function instead of the overall
risk function of the problem, but the optimizers will still minimize both empirical and
structural risks.

Differentiability

It was previously mentioned that the model FW is differentiable, which is the key
property that is used, in this context of gradient-based optimization2, for adapting the
model parameters to fit the model output to the distribution P . This process is commonly
denoted as the training, or learning phase.

In mathematics, a multivariate function is said to be differentiable with respect to
a variable when it has finite derivatives at every point in the domain of said variable.
Here, FW being differentiable along its weights W means that ∀x ∈ X ,∀W ∈ W ,∀w ∈
W,∂FW (x)/∂w exists and is finite. If the function output is scalar, the derivative vec-
tor along the multi-dimensional variable W is called gradient and notated ∇WFW :=
[∂FW

∂w
]w∈W . By extension, the derivative of a multi-variate and multi-output function is

the jacobian matrix JWFW := [
∂F(i)

W

∂w
]w,i∈W×J1,DoutK, with Dout the output dimension and

F (i)
W the i-th component of FW .

Differentiability is stable by linear combination and by composition, and the chain
rule allows to express the derivative of the composition of several differentiable opera-
tions with their respective derivatives. For example, let the model FW be the compo-
sition of two differentiable functions/layers F2

w(2) and F1
w(1) : FW = F1

w(1) ◦ F2
w(2) . The

derivative of FW with respect to its weights W = (w(1), w(2)) can be obtained through,

1It is not necessarily a distance function in the mathematical sense as for example, cross-entropy is
commonly used for classification tasks but it is not symmetrical.

2Other optimization techniques, such as genetic algorithms, do not rely on differentiability in order to
learn.

50

2.4. DEEP LEARNING CHAPTER 2. BACKGROUND

∀x ∈ X ,∀(w(1), w(2)) ∈ W :

∂FW

∂w(1)
(x) =

∂F1
w(1)

∂w(1)
(F2

w(2)(x))

∂FW

∂w(2)
(x) =

∂F1
w(1)(y)

∂y

∣∣∣(
y=F2

w(2)
(x)

) × ∂F2
w(2)

∂w(2)
(x).

(2.18)

Recursively, the chain rule can be applied to get the derivative along any weight in
a differentiable model of arbitrary depth. This property is of particular interest in deep
learning as neural models can stack multiple differentiable layers one after the other in
order to increase the overall model complexity and capability.

It is worth noting that in the second equality of Equation 2.18, even tho F1
w(1) does

not depend on w(2) and F2
w(2) is not located at the end of the model, it is still possible to

provide a derivative value to the layer F2
w(2) by taking into account the modification of its

output F2
w(2)(x) by the intermediate layer F1

w(1) . This allows us to trace back the influence
of each weight on the final output and it is the core of backpropagation. This efficient
implementation of the chain rule builds a computational graph connecting the different
layers of inputs and outputs and formalizes their influence on each other: in the previous
example, it consists in getting the explicit formula of ∂

(
F1

w(1) ◦ F2
w(2)

)
/∂w(i),∀i ∈ J1, 2K.

Then, during the optimization process that will be explained in the next section, the
derivatives are computed starting from the final layer and progressively transmitted back
to previous layers following the graph.

Parameters optimization

If the loss function provides a measurement of the “mistakes” made by the model, the
“learning process” in itself is still missing in order to conceive a framework that allows
the model to “learn from its mistakes”.

As both the distance function D and the model FW are differentiable, the risk function
L is also differentiable. By applying Fermat’s theorem in the context of convex differen-
tiable functions optimization 3, the risk is minimal when its derivative with regards to
the weights is null, i.e. ∇WL(W ∗) = 0.

To reach this minimal value, the idea is to “run away” from the risk increase by
recursively changing the weights towards the opposite direction of the risk gradient ∇WL.
This process is conducted by what is commonly referred to as the optimizer, an iterative
algorithm that encompasses a risk function L to minimize with a rule for updating the
weights W accordingly. For example, equation 2.19 gives the simple gradient descent
rule for updating the model weights at step κ+ 1 of the optimization/training process:

Wκ+1 ← Wκ − lrκ ×∇WL(Wκ), (2.19)

with lrκ ∈ R+ the learning rate, eventually evolving with κ. Its value is decisive for the
optimization success, as small values raise slower convergence and risks of being stuck in

3In practice, being differentiable almost everywhere is sufficient, by relying on sub-derivatives, local
approximations or optimization tricks on non-differentiable points.

51

2.4. DEEP LEARNING CHAPTER 2. BACKGROUND

Figure 2.10: Optimization landscape (green surface) and optimization trajectory (dark
blue line) of the gradient descent applied on a two-variable (w1,w2) risk function.

local minima, while large values might result in divergence of the optimization. Still in
the case of convex optimization, if lr is set correctly and after iterating through a certain
number of optimization steps, the weights should converge towards an approximation
of the optimal values W ∗. Plotting the risk with regards to the parameter space is
the optimization landscape, which is illustrated in Figure 2.10 with an example of
parameters optimization with gradient descent.

In practice, the optimization of real-world tasks is often non-convex, and more ad-
vanced optimizers are required to increase the success of the training. They are mostly
based on stochastic gradient descent, which samples a batch of data {xn, yn}n≤Nbatch

∼
P at each step instead of covering the full distribution P : this method noises the training
by slightly changing the optimization landscape at each step and thus, avoids getting
stuck in local minima. The Adam optimizer (Kingma and Ba, 2015) makes use of adap-
tive momentum in its update rule to make the training even more robust and has been
widely adopted by the scientific community.

52

2.4. DEEP LEARNING CHAPTER 2. BACKGROUND

Datasets

In practice, it is usually impossible to provide the full distribution P as it is not exhaus-
tively accessible. What is realistically done is the gathering of a finite set of ground
truth data pairs {xn, yn}n≤Ndataset

through independent sampling of the distribution P :
this set is called the dataset. As the finite dataset is supposed to be representative of
the distribution, all previous formulas are implemented using the mean operation over
the dataset instead of the expectancy over the distribution. Training a model by parsing
through the dataset once is commonly referred to as an epoch.

A discrepancy between the collected dataset and the target distribution often results in
underwhelming performances of the trained model on real-world tasks. Such a discrepancy
can emerge from:

• a domain shift: the features x that have been used are mismatched from what
is available in real-world scenarios. The distribution underlying such a dataset is
reduced and/or displaced compared to the target distribution. Models trained on
synthetic data often present this issue.

• noisy data: the correspondence between (some) features x and the collected labels
y is erroneous, creating a different implicit function F from the real-world.

• a lack of data: the quantity of collected data does not fully encompass the full
complexity of the given task, resulting in sparsity in the distribution underlying the
constituted dataset.

An ideal dataset should prevent the aforementioned issues by gathering as much quantity
as possible of perfectly labeled real-world examples, with a representative diversity of
both.

Generalization

An underlying characteristic of deep neural networks is their capacity, coming from the
choice of layers, their parameterization, and their connections. Capacity is synonymous
with expressiveness, as models with high capacities are able to fit more complex distribu-
tions.

The success in building a deep neural network depends on both: constituting a repre-
sentative dataset of the given task and adapting the model capacity to the task complexity.
Following the previously mentioned challenges in gathering the dataset, a mismatch be-
tween the model capacity and the task complexity is expressed by either the underfitting
or overfitting of the model on the data. The former signifies that the neural network
fails to model the distribution while the latter arises when the model fits the dataset “too
well” and cannot generalize on distribution data outside of the sampled dataset.

Underfitting is relatively easy to identify as high loss values and (potential) evaluation
metrics can indicate poor fitting of the model to the data. Overfitting on the other hand
is usually monitored with cross-validation by splitting the dataset into multiple subsets,
namely the training set, the validation set, and eventually the test set. In this setting,
the model is only optimized with gradient descent techniques on the training set, while

53

2.4. DEEP LEARNING CHAPTER 2. BACKGROUND

its loss value and metrics on the validation set are kept track in parallel. During training,
a similar decrease of both loss values on the training and validation sets indicates an
adequate fitting to the data while maintaining generalization: as soon as the validation
loss increases whereas the training loss still decreases, the model can be expected to start
overfitting and it is recommended to stop the training procedure. This stopping criterion
is commonly referred to as validation-based early stopping.

The test set represents a final set of data unseen during training to evaluate the trained
model and it is used to prevent overfitting on the validation set through hyperparameter
choices and to compare different methods trained on the same dataset.

2.4.2 Neural Networks

Artificial neural networks are commonly recognized as universal function approximators,
implying that given sufficient layers and training data, they can approximate any function
regardless of its complexity. Henceforth, deep learning is the sub-field of machine learning
that uses networks comprised of multiple layers to model data distributions. Such layers
are designed to be parallelizable, allowing for efficient utilization of hardware accelerators
such as Graphical Processor Units (GPUs). With the continuous advancements in com-
putational power facilitated by these accelerators, more complex tasks can be tackled by
even deeper neural networks, or neural models as they will be referred to for the rest of
the manuscript. The fundamental neural layers used for building the models presented in
this thesis are explained in the following.

Dense layer

The dense layer, also called fully-connected layer or single-layer perceptron, is a linear
matrix multiplication with an optional bias and a non-linear activation function at its
output. Formally, it takes an input vector x ∈ RDin and outputs a vector FDense(x) ∈ RDout

such that:

FDense(x) = σ(WAx+WB), (2.20)

with WA ∈ RDin×Dout the kernel weights, WB ∈ RDout the bias and σ the non-linear acti-
vation function. WA and WB are trainable with backpropagation as explained previously
and the output dimension Dout is set by the practitioner when designing the overall neural
model.

The activation function is the element that allows neural models to learn non-linear
behaviors and relationships in the data. A wide variety of activation functions has been
proposed in the deep learning literature: those mostly used in this thesis are listed in
Table 2.1.

One can notice that the gradient value through Rectifier Linear Unit (ReLU) for
negative input is zero, which can cause some weights to be “dead”. To accommodate
for this issue, Leaky ReLU is a variation of ReLU with a small non-zero slope α ∈]0, 1[
for negative values, which enables gradient information to always be transmitted during
backpropagation.

54

2.4. DEEP LEARNING CHAPTER 2. BACKGROUND

Name Definition limx→−∞ limx→+∞

ReLU max(0, x) 0 +∞
Leaky ReLU max(αx, x) −∞ +∞
Sigmoid 1/(1 + e−x) 0 1
Hyperbolic tangent (tanh) (ex − e−x)/(ex + e−x) −1 1

Scaled Hyperbolic tangent (tanh†+) (tanh(x) + 1)/2 0 1

Table 2.1: Usual neural networks activation functions notably used in this manuscript.

Recurrent Neural Network (RNN) layers

Time-distributing dense layers allows processing sequential data by applying equation 2.20
sample-wise: FDense[x](t) := FDense(x(t)) for x ∈ RT×Din . However, sequential data, such
as sentences, signals, and videos, contain relationship information between the samples
that time-distributed dense layers cannot model. To address this issue, RNNs reuse the
previously computed output as a side input for computing a new output, which introduces
a time dependency between the sequential elements. The simple RNN extends the dense
layer parameterization with a recurrent kernel WR ∈ RDout×Dout . Given a sequence input
x ∈ RT×Din , the RNN outputs ∀t ∈ J0, T J:

FRNN(x)(t) = σ(WAx(t) +WB +WRFRNN(x)(t− 1)). (2.21)

Computing the gradient for RNNs requires backpropagating the gradient through the
layers and through the time axis: as the sequences can be quite long, vanishing or ex-
ploding gradient issues may arise (Bengio et al., 1993). The Long Short-Term Memory
(LSTM) and Gated Recurrent Unit (GRU) layers employ different mechanisms (a forget
gate and a gating mechanism respectively) to more effectively bypass irrelevant infor-
mation from previous samples and allow for modeling longer sequences than the RNN
layer. Their architectures involve introducing additional weights, with GRU having fewer
total parameters than LSTM for the same input/output dimensions. Both have similar
performances and are illustrated in comparison with the RNN layer in Figure 2.11.

Each previously introduced layer type can be bidirectional by concatenating the
outputs of two recurrent layers, one processing the input sequence forward (from sequence
index 0 to T) while the other processes it backward (from T to 0). This allows for a single
output sample (at index t) to be computed using the information contained in both past
(at indices t′ ≤ t) and future input samples (at indices t′ > t).

Convolutional Neural Network (CNN) layer

Another way of processing multi-dimensional data, including sequences, can be done
leveraging the discrete convolution operation presented in Section 2.2.3. Indeed, CNN
layers (LeCun and Bengio, 1995) have proven to allow detecting structured patterns in
the data by applying learned filters on neighboring elements, being chunks of signals,
image crops, or video excerpts among others.

55

2.4. DEEP LEARNING CHAPTER 2. BACKGROUND

Figure 2.11: RNN, LSTM and GRU cells architectures. The cells process the input sample
x(t) using the previous output sample and by eventually updating their hidden state c.
Filled arrows indicate the transmission of vectors as they are, while round connectors
indicate an affine transformation of the vector by learnable weights at the operation entry
point.

The 1D-convolution layer can be seen as a time-invariant FIR filter applied to a se-
quence of multidimensional features, with bias and non-linear activation. It has the same
parameterization as the dense layer, with the exception of the kernel weights WA ∈
RQ×Din×Dout having an additional axis Q corresponding to the filter order, or kernel size.
Given a sequence x ∈ RT×Din , the output of the CNN is:

FCNN(x)(t) = σ((WA ∗ x)(t) +WB). (2.22)

By adding other axes to the weights and applying the convolution operation along
multiple axes, the CNN layer can be extended to data with higher ranks, such as images
by convolving along the height and width, videos along the time, height and width axis,
or 3D meshes along the height, width and depth axis.

Further parameterizations of the CNN layer can include the stride and dilation rate,

56

2.4. DEEP LEARNING CHAPTER 2. BACKGROUND

which are integer parameters controlling the way discrete convolution is applied. Striding
downsamples the output by applying the CNN operation on frames {n × Tstride}n∈N of
the input, while dilation applies the operation on the input downsampled/decimated by
the chosen rate. Stacking multiple CNNs with striding or dilation allows increasing the
receptive field of the model and learning larger structures in the data.

A common side operation accompanying CNN is pooling, which also downsamples
the time/spatial dimensions output by the layer. It works by aggregating the CNN output
features by only keeping the maximum (max-pooling) or mean value (mean-pooling) of
a local neighborhood: for example, a mean-pooling of 3 along the time axis aggregates
every chunk of 3 output samples into their mean value.

Regularization techniques

As mentioned previously, a discrepancy between the dataset size and the model capacity
can result in a failure to correctly fit the data. To avoid overfitting issues, several regular-
ization techniques and architecture designs have been proposed and have found success in
mitigating the structural discrepancy between the deep neural models and the underlying
ground-truth function, and have helped to stabilize the training process.

Weights regularization simply adds the magnitude of the model weights into the loss
computation as a structural risk, encouraging the model to only use the necessary weights
for the task and thus limiting its complexity. Computing the weights magnitudes is usually
done with the L1 ∥.∥1, L2 ∥.∥2 or Frobenius norm.

Dropout (Srivastava et al., 2014) consists of randomly masking individual model
weights during training, with a probability set by the practitioner. This technique en-
courages the neural model to learn more robust and generalizable features, by preventing
it from being overly reliant on specific neurons or features.

A quick analysis of the formulas in 2.1 shows that the usual activation functions are
centered around zero, meaning that their discriminating power is more efficient when
the input also varies around zero. To ensure this property, normalization techniques
aim to re-center and re-scale the layer outputs before applying the non-linear activation.
The strategy for computing the scaling and centering factors is determined by the choice
between batch normalization (Ioffe and Szegedy, 2015), layer normalization (Ba et al.,
2016) and instance normalization (Ulyanov et al., 2016).

2.4.3 Generative Adversarial Networks

GAN is an advanced training method for generative deep neural networks that was intro-
duced by Goodfellow et al. (2014). It has found success in various generative tasks as it
has proven to be capable of producing high-quality examples compared to other regular
training methods (Karras et al., 2021; Bond-Taylor et al., 2022).

Instead of designing a loss function that directly compares and measures the differences
between the model outputs FW (x) and the ground truth examples y, an auxiliary model
D is jointly trained for this task. In this scheme, the generative model FW is called
generator while the auxiliary model D is the discriminator.

57

2.4. DEEP LEARNING CHAPTER 2. BACKGROUND

Both models are trained simultaneously with opposing objectives: the discriminator is
fed with both outputs from FW and ground-truth examples from F(X) and it is trained to
discern artificially generated examples from real ones. On the other hand, the generator
aims to maximize the errors made by the discriminator, by ideally producing examples
close to those from F(x); or in simpler terms, as “real” as possible.

Formally, two losses LFW ,GAN and LD have to be designed for training each model.
Different formulations of these losses have been proposed in the literature, one of which
being the Least-Square (LS)-GAN variant (Mao et al., 2017):

LD = E
y∼PY

[∥D(y)− 1∥2] + E
x∼PX

[∥D(FW (x))∥2] ,

LFW ,GAN = E
x∼PX

[∥D(FW (x))− 1∥2] .
(2.23)

In this setting, one can notice that input and output data samples are never paired in
the computation of each expectancy, which enables unsupervised training on unpaired
input-output data, and even unlabeled data (by considering the input distribution as a
Gaussian distribution for example). These losses can be interpreted as regression losses by
labeling real examples as 1 and fake ones as 0: the discriminator is trained to output values
close to 1 on provided ground truth examples, and close to 0 on synthesized examples.
Concurrently, the generator reduces its loss value when the discriminator predicts values
close to 1 on its generated outputs. According to Mao et al. (2017), formulating the GAN
objectives as regression losses instead of classification losses helps to stabilize the training
and improves the synthesis quality.

Indeed, the training instability is a well-known issue with GANs as the optimization
landscape changes from one epoch to another. The models’ capacities and their training
dynamics have to be adjusted to avoid ill behaviors, such as mode collapse, where the
generator can only output a poor diversity of samples compared to the full real data
distribution. This phenomenon is an extreme consequence of the mode-seeking capability
of GANs, in contrast with the mode-covering behavior of more traditional methods.

Nonetheless, focusing on modes in the data distribution promotes high-quality gener-
ation, and adversarial losses are now often used in conjunction with classical regular loss
functions to refine the training objectives. From the generator perspective, the discrimi-
nator can be viewed as an adaptive loss that can pinpoint implicit data features that need
to be matched but are not taken (enough) into account by the regular training objective.
In this case, the LS-GAN formulation described in Equation 2.23 can be rewritten in a
supervised learning setting:

LD = E
x,y∼P

[∥D(y)− 1∥2 + ∥D(FW (x))∥2] ,

LFW ,GAN = E
x,y∼P

[∥D(FW (x))− 1∥2] .
(2.24)

Exploiting this property, more complex adversarial training settings have been devel-
oped such as multi-scaling (Wang et al., 2018) that employs multiple discriminators,
each focusing on a different scale of the data. Feature matching (Larsen et al., 2016)
further helps to capture implicit data features by encouraging the synthesized data to
have discriminator intermediate layers features similar to those from real data.

58

2.4. KNOWLEDGE INCLUSION CHAPTER 2. BACKGROUND

2.4.4 Domain-knowledge inclusion in Deep Neural Networks

The impressive modeling capabilities demonstrated by deep learning methods have fos-
tered the development of dedicated hardware and infrastructures, as well as the gathering
of even larger datasets. In turn, more sophisticated and higher-capacity neural mod-
els can be trained for handling complex tasks from raw data. However, building such
large and complex models presents significant challenges concerning data accessibility
and environmental impact during training, alongside ethical considerations in their appli-
cation. Notably, training large models requires adequate infrastructures with high-energy
consumption (Douwes, 2023), along with datasets of equivalent scales, which can be chal-
lenging to gather due to data scarcity and privacy concerns. Plus, naive deep learning
models suffer from the “black-box” apprehension: as their high complexity make them
difficult to understand and interpret their decision process, end-users can be reluctant in
adopting them for sensitive tasks.

This raises the question of whether it is feasible to keep the high-quality modeling of
deep learning methods while mitigating these concerns. An expansive research direction
involves incorporating domain knowledge that was used by traditional methods. The term
hybrid deep learning can be employed for designating this concept, which has helped to
design more robust and interpretable models using limited amounts of data. Hybrid deep
learning strategies can be introduced at various stages in the design of neural approaches
(Dash et al., 2022; Shlezinger et al., 2023):

• with data formatting, known properties and relationships can be more easily ex-
hibited, and thus extracted, through alternative encoding or slight preprocessing
compared to raw data. Using the previous notations, this process reduces the com-
plexity of the target function F , making it simpler to match.

• efficient data selection with active learning (Ren et al., 2021a) and human-in-the-
loop approaches (Wu et al., 2022a) can accelerate the learning process, by adjusting
the data selection as the optimization progresses. This amounts to a knowledge-
informed sampling of the distribution P to change the optimization landscape and
steer the optimization trajectory.

• through optimization constraints, neural models are encouraged to comply to
known behaviors, by designing loss functions L with knowledge-informed distances
and/or differentiable constraints.

• motivated by their structural capacity, the practitioner can select specific neural
layers to capitalize on their inherent advantages or properties, increasing the model
capacity while keeping the same scale of weights number. For example, integrating
attention mechanisms can aid in establishing connections between distant sequence
samples.

• imposing structural constraints with pre-trained or highly structured layers,
through transfer learning techniques and explicit implementation of phenomenons

59

2.5. IN SHORT CHAPTER 2. BACKGROUND

respectively. These techniques reduce the output and the optimization spaces re-
spectively, but bring the model closer to the target minimumW ∗, which can alleviate
the need for large data quantities and enable faster convergence.

Section Summary - Deep Learning for Music Processing

Thanks to the increase in computational power, deep learning has arisen as one
of the most powerful optimization framework for modeling complex phenomenons
and distributions P , based solely on input-output observations (x, y). To minimize
a task-specific loss function L, the parameters W of a deep neural model FW are
optimized using gradient descent algorithms, such as Adam. Neural models can be
designed with a wide variety of differentiable layers with non-linearities: the success
of such an approach lies in the selection, parameterization, and arrangement of
layers, along with problem formulation and motivated regularization to match the
complexity of the task. Such choices can be further guided by domain knowledge
techniques, favoring the development of more reliable, interpretable, and ultimately
trustworthy models.

2.5 Technical Background for Music Processing, in

short

Chapter summary - Technical background for music processing

This chapter introduced the technical and scientific background necessary for han-
dling piano music synthesis tasks with deep neural networks. Music can be rep-
resented both in the symbolic modality, with notably the low-level MIDI protocol
(as piano rolls or note sequences), and in the audio modality in the form of digital
(discrete) signals. The latter encompasses theories and operations for analyzing and
manipulating audio represented as either waveforms y ∈ RNsamples or spectrograms
|STFT(y)|: in particular, the spectral modeling paradigm aims to express a musical
signal y as the sum of an additive signal composed of pure sinuses yadditive with a
filtered noise ynoise. The piano instrument is built upon the principle of string vi-
bration but exhibits specificities such as the displacement of partials {fk}k∈N∗ and
detuning δf0 to account for the inharmonicity B of the strings in the polyphonic
context. Regarding the methods employed in this thesis, deep neural networks show
great capabilities and flexibility in learning from data observations. Parameterized
by trainable weights W ∈ RNweights and built on differentiable layers, a neural model
FW can reproduce phenomenons by minimizing a loss function L with an optimizer.
The neural model design and its training process can be supported with domain
knowledge to increase its efficiency and interpretability while reducing the training
duration.

60

Chapter 3
State-of-the-Art

In order to conceive new methods for tackling a research question, examining previous
works is a fundamental step as they provide valuable knowledge and tools that can serve
as foundations. This chapter aims to present the developed approaches for the tasks of
interest of this thesis, being the polyphonic audio synthesis and the performance rendering
tasks, in the specific case of piano music.

First, a condensed overview of the relevant datasets for either or both tasks is drawn
in Section 3.1. Then, Sections 3.2 and 3.3 will report the musical audio synthesis and
performance rendering tasks respectively. Each will start with a mathematical formaliza-
tion of its task, introducing specific notations and completing those previously introduced
in Chapter 2. In the following, existing methods for tackling them are unveiled and re-
grouped according to their methodology, followed by the proposed evaluation metrics for
measuring their performances.

3.1 Piano Performance Datasets

The previous chapters hinted at the usage of data-driven methods in this thesis, and to
say the least: as their name implies, they need data to be trained on. As explained in
Section 2.4.1, a dataset is a sampling of a distribution that the data-driven methods try
to model. Since it represents the phenomenon under examination, dataset collection is of
utmost importance for the final performances of the models trained on it. An ideal dataset
should be an unending pool of real-world examples, with perfect annotations by experts,
or perfect input-output correspondences (depending on the task at hand). Benchmarking
data-driven methods on a specific task is relevant when they are trained on the same set
of data: publicly available datasets are thus preferred.

In practice, building a dataset often involves making trade-offs between the input
data quality, the annotations/output data quality, and the quantity/diversity of them.
For example, extracting labels from a large set of unlabeled data can be done with an
automatic system to alleviate the need for human annotators, but the obtained pairs
would be as reliable as the chosen system. In particular for music datasets, gathering and
publicly releasing large quantities of data is complicated as copyright issues are all the

61

3.1. DATASETS CHAPTER 3. STATE-OF-THE-ART

more prevalent.
The subject of this thesis is the synthesis of audio piano performances from symbolic

compositions, by tackling both the performance rendering and piano sound synthesis
tasks: we are particularly interested in publicly available datasets that provide piano
music scores, piano performances as audio recordings or as MIDI sequences, or an aligned
combination of them. An overview and comparison of these datasets are depicted in Table
3.1. In particular, they are grouped by the 3 methodologies for getting symbolic piano
performances in MIDI:

• Synthetic MIDI performances are created artificially through manual edition or with
an automatic non-human system, without playing any instrument.

• MIDI Recorded performances are acquired by letting pianists play on a device ca-
pable of recording their inputted controls.

• MIDI Transcribed performances are obtained by retrieving the instrument controls
(by hand or with an automatic system) from audio performance recordings.

3.1.1 Synthetic MIDI Performance Datasets

A common ancestor of piano datasets is the Classical Piano MIDI (CPM) collection, also
known the Piano-Midi.de1 database. It provides synthetic MIDI performances of classical
piano music pieces, with hand-made tempo and velocity curves made by Bernd Krueger
from 1996 to 2018. A digital piano was used for synthesizing the MIDI performances into
audio.

For constituting the MAPS dataset, Emiya et al. (2010) designed a set of MIDI files of
individual notes at different velocities, usual and random combinations of chords, and the
synthetic performances from the CPM collection. Audio rendition of these files was made
with both recorded playbacks on Disklaviers and synthesizers from different commercial
software. As seen in Table 3.1, the data quantity and the performance realism of the
MAPS dataset have been surpassed by other datasets, but the instrument recordings
quality and the targeted and documented individual notes and chords samples make it
still relevant for piano related tasks.

Ycart and Benetos (2018) further enhanced this dataset with A-MAPS, by retrieving
the original annotations of the CPM collection, such as tempo, time and key signatures,
staffs, sustain pedal signal... This update allowed the MAPS dataset to be used for more
Automatic Music Transcription (AMT)-related tasks, such as key and meter estimation,
beat tracking and structure analysis.

3.1.2 MIDI Recorded Performance Datasets

Disklavier refers to the technology developed by the Yamaha piano brand that augments
pianos with electro-mechanical sensors and solenoids. Modernizing the player pianos, or
self-playing pianos, this technology allows for recording and playing back the keys and

1http://piano-midi.de/

62

http://piano-midi.de/

Dataset Sources Composers Performers
Unique

Compositions
Symbolic

Performances
Audio

Performances
Annotations

CPM - 26 1 ? S: 337 (23.2h) S: 337 (23.2h)

MAPS CPM 20 1 30 S: 270 (18h)
S: 210 (14.5h)
R: 60 (4.16h)

A-MAPS MAPS, CPM 20 1 30 S: 266 (17.7h)
Tempo, key and time signatures,
quarter note length, staffs,
pedal and text annotations

SMD - 11 8 50 R: 50 (4.7h) R: 50 (4.7h)
Crest-MusePEDB 2 - 14 12 53* R: 443 (?h) R: 443 (?h) Structure, performer intentions

MAESTRO Piano e-competition 13 205 854 R: 1276 (198.7h) R: 1276 (198.7h)

ASAP
Piano e-competition,
MuseScore

16 ? 222* R: 1586 (138.8h) R: 520 (44.6h)
Beat, downbeat, key
and time signatures

ACPAS ASAP, A-MAPS, CPM 29 ?
497

(222*)
S: 603 (40.1h)
R: 1586 (138.8h)

S: 1611 (130.8h)
R: 578 (49h)

Beat, downbeat, key
and time signatures

GP IMSLP, Youtube 2786 ? 10855 T: 10855 (1237h) R°: 10855 (1237h)
GP-curated GP 1787 ? 7236 T: 7236 (875h) R°: 7236 (875h)

ATEPP
Spotify API, Youtube,
ASAP, MuseScore

25 49
1580
(319*)

T: 11742 (1007h) R°: 11742 (1007h)

MazurkaBL CHARM Project 1 135 44* - R: 2000 (110h)
Score-beat positions, loudness,
dynamics and tempo markings

CIPI Henle Verlag 29 0 652* - - Difficulty level

Table 3.1: Overview of symbolic and audio piano music datasets. Compositions provided with MusicXML scores are notated with
*. The symbolic statistics are sorted out between synthetic (S), recorded (R), and transcribed performances from audio (T). Audio
statistics are also broken down between synthesized audio (S) and recorded audio (R), with ° indicating that the dataset consists of a
collection of Youtube links.

3.1. DATASETS CHAPTER 3. STATE-OF-THE-ART

pedal data on the instruments, enabling the recording of performances in both audio and
MIDI formats.

The first realistic performance dataset leveraging this technology is the Saarland Mu-
sic Data (SMD) dataset (Müller et al., 2011): it gathered 50 unique performances on
Disklavier from piano students, amounting to around 5 hours of MIDI and audio-aligned
classical piano music.

Hashida et al. (2018) created the second edition of the CrestMuse-PEDB dataset by
recording more than 400 professional piano performances on Disklavier, with the majority
of the 53 compositions being interpreted by at least 10 different pianists and with different
playing styles. Supplementary annotations include the scores aligned at note-level with
the performances and the performer intentions recovered from interviews.

The Minnesota International Piano-e-Competition2, or commonly referred as the Ya-
maha Piano e-Competition, is an international piano competition where the performers
play on Disklaviers and the jury evaluates their performances from another room with
another playback Disklavier. All publicly available MIDI and audio performance pairs
were gathered into the MIDI and Audio Edited for Synchronous TRacks and Organiza-
tion (MAESTRO) dataset (Hawthorne et al., 2019), which amounts to around 200h of
professional piano playing, spanning over I = 10 editions of the competition.

A similar endeavor is the Aligned Scores and Performances (ASAP) dataset (Foscarin
et al., 2020) that gathered music scores (in MusicXML format) from the MuseScore Online
library 3 and matched as much MIDI performances from the Yamaha Piano e-competition
as possible. More than a thousand performances have been matched, with half of them
intersecting the MAESTRO performances that have audio recordings. The scores are
used to extract beats, downbeats, and time and key signature annotations. The (n)ASAP
update (Peter et al., 2023) raised the score-to-performance alignment from beat-level to
note-level.

The Aligned Clasical Piano Audio and Scores (ACPAS) dataset (Liu et al., 2021)
compiled the ASAP, A-MAPS, and remaining CPM data into a 180h piano performances
dataset. It has both synthetic (from CPM-based subsets) and real performances (from
Yamaha Piano e-Competition) with either real audio recordings (from MAPS and MAE-
STRO) or rendered audio with a software synthesizer (completing the missing audio from
ASAP). Scores and annotations previously available in ASAP and A-MAPS are kept.

3.1.3 MIDI Transcribed Performance Datasets

Thanks to the quantity and quality of the MIDI-recorded piano datasets, neural audio-to-
MIDI piano performance transcription models (Hawthorne et al., 2018; Kong et al., 2021;
Hawthorne et al., 2021) have achieved such impressive accuracy that they can be deployed
for real-world tasks. New piano datasets are released by gathering large quantities of raw
audio performances and applying such models to get their MIDI transcriptions.

For collecting the GiantMIDI-Piano (GP) dataset, Kong et al. (2022) crawled over
the IMSLP website 4 to find the metadata of 10855 unique piano pieces. One audio
performance per piece was retrieved from YouTube, to be then transcribed into MIDI
using their AMT model (Kong et al., 2021) displaying a 96.72% onset F1-score. The

2https://piano-e-competition.com/
3https://musescore.com/sheetmusic
4https://imslp.org/

64

https://piano-e-competition.com/
https://musescore.com/sheetmusic
https://imslp.org/

3.1. DATASETS CHAPTER 3. STATE-OF-THE-ART

extracted metadata were noisy as some composers were assigned pieces they did not
compose, the authors also designed a curated subset with a more rigorous matching rule,
reducing to 7236 performances. The dataset provides the performances in their MIDI-
transcription: to get the audio, users need to download the files themselves using the
provided list of YouTube links.

The Automatically Transcribed Expressive Piano Performance (ATEPP) dataset (Zhang
et al., 2022) follows a similar methodology, but puts an emphasis towards the performers
instead of the pieces. By collecting the discography metadata of 49 renowned piano per-
formers from the Spotify API, 11742 performances were downloaded from YouTube and
then transcribed into MIDI. The transcription model is an improved version of (Kong
et al., 2021) that also transcribes pedal data: elected through a listening test, it displays
92.1 % onset F1-Score. Finally, 319 out of the 1580 different pieces have their correspond-
ing scores retrieved from ASAP and MuseScore. On the contrary of the GP dataset,
multiple interpretations of the same pieces are available, which allows for modeling per-
former styles to an extent.

3.1.4 Other Piano Datasets

Symbolic performances are the main modality of this thesis scope, as it is both the output
of performance rendering systems and the input to audio synthesizers. The following
datasets unfortunately do not contain performances in the MIDI format, but they provide
interesting data compilation that surpasses certain statistics from the previous datasets.

The MazurkaBL dataset (Kosta et al., 2018) gathered 2000 audio performances from
the CHARM Chopin Mazurka Project and extracted the beat-level loudness and the beat
positions in the performances. The original scores are the 44 Mazurkas of Chopin, each
having on average around 40 performances in the dataset. MazurkaBL is highly interesting
for studying variations in performer styles, with however limited diversity of music pieces
and composers. Also, the beat/loudness annotations are not sufficient for reconstructing
the MIDI performances from the scores as they do not encode the way individual notes
in chords are broken down during the interpretation.

Concurrently, there has been a growing interest in the task of piano score difficulty
assessment. In order to train models for this task, Ramoneda et al. (2024) have constituted
the “Can I Play It? (CIPI)” dataset, which contains 652 piano scores in MusicXML format
(744 when splitting the movements) from different public sources (Mutopia, MuseScore,
Craig Sapp) matched with the catalog of a renowned publisher. The difficulty labels
are also recovered from the catalog, with manual validation by an expert annotator. It
represents, as of writing, the largest dataset of classical piano scores.

65

3.1. DATASETS CHAPTER 3. STATE-OF-THE-ART

Section summary - Piano Performance Datasets

Datasets are crucial for the training and comparison of data-driven methods: per-
formances of the model are linked to the quality and diversity of the data they
have been trained on. For piano audio synthesis, datasets collected using the
Disklavier technology will be preferred as they provide real piano recordings paired
with aligned MIDI inputs. MAPS and MAESTRO will be the go-to datasets for
supplying recordings of individual notes, as well as recordings of polyphonic per-
formances, respectively. Traditionally, performance rendering models would need
aligned scores and symbolic performances for training, leaving (n)ASAP as the best
candidate. However, this thesis aims to tackle performance rendering without align-
ments between the scores, MIDI performances, and audio performances. For each
modality, the largest datasets while being as realistic as possible would be CIPI for
piano scores, ASAP and MAESTRO for recorded MIDI performances, and ATEPP
or non-curated GP for audio performances.

66

3.2. POLYPHONIC INSTRUMENT AU-
DIO SYNTHESIS

CHAPTER 3. STATE-OF-THE-ART

Audio synthesis
model

Performance
(instrument controls) (audio)

Performance

Figure 3.1: The conditional audio synthesis task. For the case of piano, the input instru-
ment controls are usually encoded in MIDI.

3.2 Polyphonic Instrument Audio Synthesis

Figure 3.1 depicts the musical instrument sound synthesis task. That task objective is to
design a digital synthesizer S that, given an input sequence x of notes/controls, generates
an audio signal ŷ ∈ RNsamples that mimics the sound produced by a real musical instrument:

ŷ = S(x). (3.1)

The information and the encoding of the input sequence depends on the chosen instru-
ment to be modeled, and on the design and methodology underlying the synthesis model.
For the case of piano audio synthesis, the usual controls are the sequence of eventually
overlapping notes (parameterized by their onset time, their duration, and their velocity)
and the pedal actions, which all can be encoded in MIDI.

As for the synthesis strategies, numerous methods have been proposed, each with
varying complexity, needs for data, and overall quality. This section will briefly present
them, following the taxonomy of Hayes et al. (2024) shown in Figure 3.2. Methods
are grouped by whether the modeling relies more on finding parameters for a tailor-
made model of the instrument (parametric models), or more on fitting a generic sound
synthesizer to a set of audio examples of the targeted instrument (data-driven models).
These two methodologies are not incompatible and several techniques can blend them:
in particular, a closer look will be given to the Differentiable Digital Signal Processing
(DDSP) framework. Finally, a summary of the proposed metrics for evaluating sound
synthesis models will be given.

3.2.1 Parametric models

Parametric models are synthesis models that incorporate prior knowledge into their math-
ematical formulation. The use of such prior information is expected to have two effects:
on one hand, the number of parameters that have to be adapted to fit a particular instru-
ment is reduced, and on the other hand, the models are specialized for a particular type
of instrument, and therefore can not be used to represent instruments that do not satisfy
the included prior information. Physical models and signal models both belong into the
category of parametric models, differing with respect to the amount of knowledge that is
engaged to build them, and also with respect to their generality.

67

3.2. INSTRUMENT SYNTHESIS CHAPTER 3. STATE-OF-THE-ART

Figure 3.2: High-level taxonomy for popular sound synthesis techniques, updated by Hayes
et al. (2024) from Schwarz (2006) and Bilbao (2009). It illustrates high-level relationships
between the techniques and does not intend to make an exhaustive listing of them.

Physical Modeling

Physical models aim to accurately imitate the physical phenomena happening in a musical
instrument. They require to explicitly formulate and solve, to an extent, some equations
governing the behavior of the instrument being played, such as the displacement and mo-
tion of physical elements, the propagation of the energy, their transmission and radiation

68

3.2. INSTRUMENT SYNTHESIS CHAPTER 3. STATE-OF-THE-ART

as sound, etc... The solving or simulation of these equations can be done through modal
analysis and synthesis, digital waveguides, finite difference schemes, Hamiltonian port
systems, mass-spring networks,... An extensive review of these methods can be found in
Bilbao (2009).

The trade-off in most physical modeling systems is twofold. First, the modeling ac-
curacy improves as the equations are more extensive, taking more physical details into
account and limiting the mathematical approximations. For example, the physical mod-
eling of the piano done in Chabassier (2012) requires explicitly formulating the behavior
and the numerous couplings of all elements in the instrument (from the string to the
soundboard through the hammers), plus the retrieval of all physical properties, such as
the soundboard dimensions and rigidity, the string tensions and dimensions, the crushing
coefficients of the hammers, etc... This endeavor requires a consequent amount of work
from the practitioner that is not easily scalable. Nonetheless, if done correctly, the models
can achieve high synthesis quality with extensive controllability and interpretability.

The other trade-off lies in the numerical solving of the established equations. Sim-
ilar to audio sampling concerns mentioned in Section 2.2.1, discretization of the wave
propagation equations in time and space discards high-frequency information that can be
relevant to the overall quality. Increasing the respective sampling rates can increase the
simulation accuracy but at the cost of a longer duration of the process, and it is prone to
approximation error accumulation. For practical usages, the optimization can be run as
a development step to get the parameters of sound synthesizers that can be less grounded
to the physical reality but are faster and more robust during inference, such as digital
waveguides (Rauhala et al., 2008) and additive synthesis (Bank and Chabassier, 2019).

Signal-based Modeling

Signal-based methods leverage the signal processing operations, partially presented in
Section 2.2, to synthesize audio. As shown in Figure 3.2, a large array of synthesis
operations have been developed, ranging from linear additive and subtractive synthesis
to complex and non-predictable modulation operations. While mostly used as engines in
analog or digital synthesizers for producing sounds from scratch, they can also be employed
for reproducing target sounds and, by extension, replicating a musical instrument. In
the latter case, the choice of synthesis method can be motivated by knowledge of the
instrument to be modeled: for instance, source-filter models have been prevalent for
speech synthesis (Dudley, 1939) as they imitate the filtering of the glottal pulses by the
vocal tract.

More relevant for this thesis, spectral modeling (Serra and Smith, 1990), as presented
in Section 2.2.4, fits the modal behavior of pitched instruments and has thus been widely
investigated for instrument sound synthesis. The underlying sines-plus-noise synthesis is
still highly expressive and flexible, and the challenge lies in finding the correct parameteri-
zation of the synthesizer such that it sounds like the target instrument. Insufficient or too
simplistic parameters often yield a “synthetic” sound that lacks realism. As mentioned
previously, physical models are constructed using an understanding of the physical inter-
actions that are taking place in the instrument. For spectral modeling, the parameters for
a given sound can be obtained through analysis of a few audio recordings of the instru-

69

3.2. INSTRUMENT SYNTHESIS CHAPTER 3. STATE-OF-THE-ART

ment with signal processing tools: this is commonly referred to as the analysis/synthesis
technique.

The time-varying parameters for a sines-plus-noise model can be retrieved from a
time-frequency representation of the sounds (Keiler and Marchand, 2002), as done with
PARSHL (Smith and Serra, 1987), least-squares methods (Stylianou, 1996) or derivatives
methods (Xue and Sandler, 2009). Temporal connection between the estimated partials
can be reinforced using partial tracking methods (Serra, 1990; Lagrange et al., 2007),
while (quasi-)harmonic constraints can be applied for the estimated frequencies (Rigaud
et al., 2011; Hahn and Roebel, 2013). Other parameter extraction methods that do not
rely on time-frequency representations leverage, instead, subspace exploration (Roy and
Kailath, 1989; Badeau, 2005) or atomic prototypes (Mallat and Zhang, 1993).

3.2.2 Data-driven models

While exploited to some extent by signal-based models, data-driven models put a larger
emphasis on reproducing the musical instrument outputs by manipulating a larger set of
audio recordings. Concatenative synthesis and neural synthesis both require such data
quantity for operating, with the benefits of not needing much a priori knowledge and can
thus be highly adaptable to different instruments.

Sample-based Synthesis

Among the different concatenative synthesis techniques, sampling-based synthesis is widely
used in the industry, especially for digital piano. As detailed in the high-level taxonomy of
Hayes et al. (2024) Figure 3.2, the core principle of concatenative synthesis is to organize
an ensemble of audio recordings and to play them back, entirely or in chunks, according
to the user inputs (Schwarz, 2006). The algorithm for sample selection can be a simple
mapping from one button to a stored sample (as it can be found in drum machines), but it
can also integrate more advanced rules based on the sample characteristics (for automatic
granular synthesis notably).

For musical instrument sound synthesis from MIDI, one should gather individual note
recordings across various pitches, velocities and, eventually, playing styles (pertinent for
string instruments for instance). The recordings are segmented and played according to
the sound regimes: the attack part is played during MIDI note onsets, the sustained part
is looped while the note is playing, and the release part is played when the note concludes.
An interpolation algorithm between samples enables the synthesis of pitch-velocity-style
configurations that are not present in the dataset.

The main benefit of sample-based synthesis is its good sound quality, which is due
to the fact that real recordings are played directly. Increasing the number of recordings
evens out the realism across the wide ranges of pitches, velocities, and playing styles.
Notably, swapping between multiple samples for the same pitch-velocity configuration
helps to simulate the stochastic behavior of a real instrument, avoiding the unrealistic
“copy-paste” sound. However, these techniques also entail a proportional increase in
memory usage, which can become significant: professional sound libraries, or sound banks,
often accumulate several gigabytes of audio recordings. Also, in polyphonic contexts, the

70

3.2. INSTRUMENT SYNTHESIS CHAPTER 3. STATE-OF-THE-ART

playback of simultaneous individual notes often fails to incorporate mutual interactions,
such as the sympathetic resonances for piano.

Neural Audio Synthesis

Following their success in modeling and generating images (Van Den Oord et al., 2016)
and texts (Jozefowicz et al., 2016), deep neural networks have been adapted for also syn-
thesizing audio signals. The breakthrough for Neural Audio Synthesis (NAS) was the
WaveNet model (Oord et al., 2016) that can generate speech and music signals with
unprecedented quality. The main principle behind WaveNet is to generate a quantized
waveform sample autoregressively (i.e. by using previous outputs as side inputs for pre-
dicting the next sample) using stacks of dilated convolutional layers (see Section 2.4.2).
This model paved the way for audio synthesis using deep neural networks, mainly through
the design of new approaches that could speed up the training and generation processes,
reduce the necessary amount of model parameters and training data, and/or increase the
model controllability; all while maintaining, or even surpassing, the synthesis quality.

Notable neural models synthesizing raw audio as waveform unconditionally, from lin-
guistic features or from musical attributes, include ParallelWaveNet (Oord et al., 2018),
SampleRNN (Mehri et al., 2017), the WaveNet auto-encoder (Engel et al., 2017), SING
(Défossez et al., 2018) and WaveGAN (Donahue et al., 2019). More recently, the RAVE
model (Caillon and Esling, 2021) addresses the multiple scales of audio modeling by em-
ploying a multi-band decomposition.

Indeed, modeling audio signals directly as raw waveform is a tedious endeavor because
of their very high dimensionality (at least 8000 samples per second for low-quality audio).
To circumvent such complexity, a common approach consists of modeling audio through
a compressed representation: a model is trained for outputting audio in such represen-
tation for a high-level modeling task (such as Text-to-Speech (TTS), MIDI synthesis or
timbre transfer), while a low-level algorithm/model is responsible for decompressing this
representation into a hearable waveform. Widely used representations are time-frequency
representations, such as the amplitude Mel-spectrogram: as seen in Section 2.2.2, they
are easily extractable from waveforms while preserving the most perceptually relevant
features of sounds and reducing the sequence length. As a side benefit, time-frequency
representations can be considered as images, thus facilitating the adaptation of CV models
for audio5.

Remarkable works in the modeling of high and mid-level audio scales through time-
frequency representations include GANSynth (Engel et al., 2019), the perceptually-motivated
variational auto-encoder from Esling et al. (2018) and TTS acoustic models such as the
Tacotron models (Wang et al., 2017; Shen et al., 2018; Elias et al., 2021), FastSpeech
(Ren et al., 2021b) and Transformer-TTS (Li et al., 2019). In almost all these works6, au-
dio is manipulated through the magnitude of a time-frequency representation, discarding
the phase information: therefore, a supplementary vocoder/waveform model is needed

5Images and amplitude spectrograms are similar in being 2D data, but their information distribution
are different: spectrograms time and frequency axis have distinct meanings on the contrary of the two
spatial axes of images.

6With the exception of GANSynth that model both spectrum magnitude and a derivative of the phase.

71

3.2. INSTRUMENT SYNTHESIS CHAPTER 3. STATE-OF-THE-ART

Decoder
block

Encoder
block

Vocoder Model
[NSF / HiFi-GAN]Joint / Separate

training

Synthetized audio

Acoustic Model
 [Transformer / Tacotron]

MIDI-scale
spectrogram

Note conditioning
(Piano roll)

Target audio

Audio Loss

Time-Frequency Loss

Instrument ID

Figure 3.3: Architecture of the Piano-TTS baseline models from Cooper et al. (2021)
and Shi et al. (2023): the first version employs a separate training of a Tacotron and a
NSF model, while the update employs a joint training of a Transformer-TTS and HiFi-
GAN model. MIDI-filter-bank-based spectra are used as an intermediate representation
of audio between the acoustic and vocoder models.

to reconstruct realistic audio signals from the sole magnitude information. The tradi-
tional benchmark is the Griffin-Lim algorithm (Griffin and Lim, 1984), which delivers
underwhelming sound quality. Neural vocoders include MelGAN (Kumar et al., 2019)
and Parallel WaveGAN (Yamamoto et al., 2020), WaveGlow (Prenger et al., 2019), HiFi-
GAN (Kong et al., 2020), WaveGrad (Chen et al., 2021) and source-filter inspired models,
such as Neural Source Filter (NSF) (Wang et al., 2019) and Multi-band Excited WaveNet
(Roebel and Bous, 2022).

Ultimately, neural models themselves have been employed for learning custom rep-
resentations of audio that are more compressive and easily revertible. The forefront of
modern neural codecs are SoundStream (Zeghidour et al., 2021) and EnCodec (Défossez
et al., 2023), which are notably exploited in recent text-to-music generation models (Copet
et al., 2023; Agostinelli et al., 2023).

For the specific task of instrument audio synthesis from MIDI, one can use neural
models trained for single note synthesis, such as SING and GANSynth. Other works have
directly tackled the task in the polyphonic context by adapting TTS models, the first
being Hawthorne et al. (2019) that trained a WaveNet model on the MAESTRO dataset.
The combination of an acoustic model followed by a waveform vocoder has been studied
in PerformanceNet (Wang and Yang, 2019), Mel2Mel (Kim et al., 2019), Deep Performer
(Dong et al., 2022), the Variational Auto-Encoder (VAE) of Tan et al. (2020) and the
multi-instrument diffusion model by Hawthorne et al. (2022).

72

3.2. INSTRUMENT SYNTHESIS CHAPTER 3. STATE-OF-THE-ART

In particular, Cooper et al. (2021), then Shi et al. (2023), adapted many configura-
tions of TTS models for piano audio synthesis from MIDI inputs represented as piano
rolls. They notably proposed a modified time-frequency representation of audio by using
filter banks centered around the MIDI note frequencies instead of the Mel frequencies.
Tested acoustic model architectures were Tacotron-2 (Shen et al., 2018), PerformanceNet
(Wang and Yang, 2019) and Transformer-TTS (Li et al., 2019), while the tested vocoder
model architectures were NSF (Wang et al., 2019), HiFi-GAN (Kong et al., 2020), and
a combination of both. According to the evaluations, the best configuration in the first
study Cooper et al. (2021) was the modified Tacotron-2 acoustic model followed by a
simplified NSF vocoder. In Shi et al. (2023), the best results were achieved using joint
training of the Transformer acoustic model and the HiFi-GAN vocoder. These specific
models will be referred to as Piano-TTS v1 and Piano-TTS v2 and are depicted in
Figure 3.3.

3.2.3 Differentiable Digital Signal Processing

Differentiable Digital Signal Processing (DDSP) is a recent approach to neural audio mod-
eling that integrates traditional signal processing operations into deep neural networks.
The name Differentiable Digital Signal Processing (DDSP) originates from the work of
Engel et al. (2020a) where additive synthesis, subtractive synthesis (with LTV filters),
and reverberation (with a LTI filter) were implemented in a DL framework (Tensorflow)
with automatic differentiation, making these operations differentiable with respect to their
control and signal inputs. As seen in Section 2.4.1, the differentiability allows for gradient
backpropagation from the loss function through the audio output back to the controls and
signal inputs. Hence, a neural network can be trained for audio synthesis by predicting
synthesizer controls, instead of raw waveforms, time-frequency representations, or discrete
tokens to be decoded by neural codecs.

The original work by Engel et al. (2020a) illustrates the possibilities enabled by the
approach that can be understood as a modern variation of the spectral modeling paradigm
(presented in Section 2.2.4) applied to the task of timbre transfer, i.e. changing the
instrument in a recording while preserving the musical content (namely the notes). As
shown in Figure 3.4, fundamental frequency and loudness features are extracted from
the input audio and the decoder model (re-)applies an instrument timbre by outputting
parameters for the differentiable sines-plus-noise synthesizer. Notably, three key elements
within the model set the tone for the following DDSP-based models:

• The neural decoder outputs are scaled into positive-value synthesizer controls by
means of a modified sigmoid function. With the original sigmoid function defined
in Table 2.1, this variant is here notated sigmoid† and defined as:

sigmoid† : x ∈ R 7→ 2× sigmoid(x)log 10 + 10−7 (3.2)

• The model is optimized to reconstruct the audio signal through the Multi-Scale
Spectral (MSS) loss LMSS, defined in Equation 3.3. Since its introduction by Wang
et al. (2019) following the proposition of Défossez et al. (2018), it has been a popular

73

3.2. INSTRUMENT SYNTHESIS CHAPTER 3. STATE-OF-THE-ART

z-Encoder

Harmonic
Additive

Synth

Filtered
Noise

Reverb

Multi-Scale Spectral Loss

Target audio Synthesized audio

Decoder

CREPE

loudness

Figure 3.4: The original Differentiable Digital Signal Processing (DDSP) auto-encoder
proposed by Engel et al. (2020a) for the task of timbre transfer. Fundamental frequency
f0, embedding z, and loudness controls are extracted from the target signal. The neural
decoder processes them to output harmonic amplitudes a,h, and filter coefficients η
controls for the differentiable synthesizers (in yellow). Re-adapted from Engel et al.
(2020a).

loss function for training neural models outputting audio waveform. It compares the
linear and log magnitude spectrograms of the target signal y and the synthesized
signal ŷ at multiple DFT sizes m ∈ {2048, 1024, 512, 256, 128, 64}, as defined in
Equation 2.5. Combining multiple DFT resolutions mitigates the time-frequency
trade-off of STFT, previously mentioned in Section 2.2.2.

LMSS(y, ŷ) =
∑
m

∥|STFTm(y)| − |STFTm(ŷ)|∥1

+∥log |STFTm(y)| − log |STFTm(ŷ)|∥1
(3.3)

• Partials are constrained to be harmonics of the fundamental frequency, which is
suitable for the modeled instruments (violin, saxophone, and flute) and alleviates
the need for estimating their frequencies.

DDSP is located at the crossroads of several research directions. With regards to
the audio synthesis task, it can be viewed as an enhancement of signal-based modeling
(Section 3.2.1) with the neural optimization framework (Section 3.2.2). In particular, it
delegates the parameter estimation task to neural networks that are more expressive and
able to learn complex and non-linear behaviors. Deep learning also broadens the scope
of applications of signal-based modeling to unprecedented tasks that would otherwise
require hand-crafted features, for instance. From the pure deep learning optimization
point of view, following Section 2.4.4, DDSP can be seen as domain-knowledge inclusion
through structural constraints: the DDSP components are designed to exhibit and to

74

3.2. INSTRUMENT SYNTHESIS CHAPTER 3. STATE-OF-THE-ART

take advantage of known properties of audio signals, such as periodicity and harmonicity.
As these strong priors on the sound structure are introduced, the amount of training
data and model parameters can be significantly reduced and the synthesis process is
more interpretable. DDSP-based models can also be more easily integrated into real-
world applications by leveraging the existing efficient implementations of signal-based
modeling7.

The following will give an overview of the applications derived from this principle of in-
tegrating signal processing knowledge as differentiable operations. Note that constraining
the neural model structures also creates new challenges, notably for their optimization.
Both are discussed more extensively in the literature review of Hayes et al. (2024).

Short review of DDSP-based models

Following the release of DDSP, numerous works have been published that revisit tradi-
tional signal-based operations and methods and integrate them as differentiable layers in
neural models.

Early adaptation of the framework expanded the synthesis of harmonic sounds with
methods other than the sines-plus-noise model, namely with frequency modulation (Caspe
et al., 2022), wavetables (Shan et al., 2022) and waveshapers (Hayes et al., 2021). Non-
harmonic and polyphonic instruments were also modeled, such as percussive instruments
(Diaz et al., 2023; Shier et al., 2023), guitars (Wiggins and Kim, 2023; Jonason et al.,
2023) and sound effects (Barahona-Rı́os and Collins, 2024; Liu et al., 2023). Early works
employing an oscillator as the source and neural networks as filters (Wang et al., 2019;
Michelashvili and Wolf, 2020) can also be considered as DDSP methods a posteriori.

Classical audio effects were also revamped by implementing usual signal processing
operations as differentiable functions. Linear filters with IIR filters (Kuznetsov et al.,
2020) can be done by leveraging their similarity (Equation 2.8) with the RNN formu-
lation (Equation 2.21). Comparing Equations 2.7 and 2.22, FIR filters are also clearly
differentiable since CNNs are based on them: notably, FIR approximation of IIR filters
can be done through the frequency sampling method (Nercessian, 2020). Longer filters
also enable the differentiability of artificial reverberation models (Lee et al., 2022; Santo
et al., 2023). Modulation effects can be modeled after the estimation of their LFO control
signal (Mitcheltree et al., 2023; Carson et al., 2023). As for non-linear effects, differen-
tiable distortions (Esqueda et al., 2021; Colonel et al., 2022) and the recording through
tapes (Mikkonen et al., 2023) have also been developed.

Beyond audio synthesis and effect modeling, DDSP-based methods can also be em-
ployed for more complex tasks previously addressed by pure neural models. Several works
made DDSP controllable by MIDI while aiming for a more expressive synthesis (Jonason
et al., 2020; Castellon et al., 2020; Wu et al., 2022b). Furthermore, since DDSP compo-
nents already exhibit typical behaviors found in real audio, they can be used to gather a
rather unlimited amount of control/audio data pairs for self-supervised sound-matching
tasks: re-implemented as differentiable synthesizers/effects, it has been done with spectral
modeling (Engel et al., 2020b), synthesizers (Masuda and Saito, 2023; Uzrad et al., 2024),

7https://github.com/magenta/ddsp-vst

75

https://github.com/magenta/ddsp-vst

3.2. INSTRUMENT SYNTHESIS CHAPTER 3. STATE-OF-THE-ART

physical-based synthesis (Han et al., 2023) and full signal effect chains (Steinmetz et al.,
2022; Colonel and Reiss, 2021). As for Music Information Retrieval (MIR) tasks, differen-
tiable components were used for tackling bandwidth extension (Grumiaux and Lagrange,
2023) and source-separation (Kawamura et al., 2022; Schulze-Forster et al., 2023; Richard
et al., 2024).

In the context of instrument sound synthesis, our work (Renault et al., 2022) was the
first to adapt DDSP for the piano and has served as a basis for Simionato et al. (2024)
and Berendes et al. (2023).

Frequency Estimation in DDSP-based Synthesis

Simply implementing signal processing operations in a framework with auto-differentiation
is not always sufficient for successfully integrating them into the neural optimization
scheme. For example, optimizing IIR filters directly can be slow and even unstable as
the gradient computation has to be computed through time. Truncated backpropagation
(Kuznetsov et al., 2020) and frequency sampling (Nercessian, 2020) help dealing with
both issues.

Arguably the most challenging issue with the hybrid approach, which is still unsolved
at the time of writing, is the estimation of frequencies by gradient descent. As shown
experimentally by Turian and Henry (2020), the optimization of a differentiable oscillator
is non-convex with regards to its frequency parameter: the gradient of usual spectral-
based losses, such as the MSS LMSS, does not provide useful information for retrieving a
target frequency.

This issue has been circumvented by relying on external frequency estimators in multi-
pitch (Schulze-Forster et al., 2023; Richard et al., 2024) and monophonic settings (Engel
et al., 2020b), eventually with the harmonic constraint and by only predicting the funda-
mental frequency with CREPE (Kim et al., 2018), as in the original work of Engel et al.
(2020a). Caspe et al. (2022) have also manually selected pre-configuration schemes to set
the frequencies closer to the target ones.

Recently, several works have explored different paths in order to conceive a robust
optimization configuration that can estimate the frequencies through an unconstrained
additive synthesizer. Hayes et al. (2023) proposed to re-introduce convexity in the opti-
mization landscape by adding an additional parameter to the oscillator: an exponential
damping factor. In single and multiple sinuses cases, they report better frequency esti-
mation than with the default undamped configuration but also acknowledge the difficulty
in estimating low amplitude sinuses. Schwär and Müller (2023) made an extensive ex-
ploration of the different MSS parametrization for the task, namely the choice of window
type and size, the magnitude compression method (linear/log/others), and the distance
norm order. They reveal a sensitivity of the optimization convergence with regards to
these parameters: mainly, choosing a window function that increases the overlapping be-
tween the main frequency lobe and reduces the spectral leakage in side lobes is beneficial.
Finally, Torres et al. (2024) leveraged optimal transport operations (Cazelles et al., 2021;
Latorre et al., 2023) in the spectral domain. By measuring the cost for displacing in
frequency the magnitude spectrum of the estimated audio to the target spectrum, they
would obtain a gradient indicating the frequency shift necessary for matching both spec-

76

3.2. INSTRUMENT SYNTHESIS CHAPTER 3. STATE-OF-THE-ART

tra. In conjunction with the MSS loss, they have better optimization stability than with
the MSS alone, but they still report difficulties when dealing with sounds that also exhibit
non-sinuses components, such as noise, transient, etc...

3.2.4 Evaluating Sound Synthesis

Evaluation metrics are essential in order to compare the results of different methods. For
instrument modeling, the perfect model would be able to reproduce the audio generated
by the target instrument given the same controls: data-driven approaches conveniently
offer sets of recordings to compare to. Concurrently, assessing the audio quality of a
synthesis model is inherently linked to human perception and thus, to subjectivity (Hayes
et al., 2024). Hence, both objective metrics in the form of audio reconstruction measures,
and subjective metrics through listening tests, have been employed for evaluating sound
synthesis results.

Objective Evaluation Metrics

Objective evaluation computes systematic metrics on outputs of a given model, compared
eventually to a reference model or ground truth outputs. It can be applied model-wise, and
results can be comparable from one study to another, assuming the evaluation conditions
(hardware, test sets,...) are preserved.

The most intuitive metric for assessing instrument audio synthesis is to measure the
reconstruction of target audio recordings, given the same inputs. To this end, ground-
truth control and audio pairs have to be gathered into a test set, unseen during training,
which can be extracted beforehand from a dataset for data-driven methods. Several
audio similarity metrics have been proposed throughout the literature. There is no clear
consensus regarding the distance to be used, with the exception of disregarding waveform
similarity measures that penalize phase differences that are not perceptible.

Spectral-based distances are commonly used for objective evaluation, such as the
MSS distance (also used as a loss function, defined in Equation 3.3) (Défossez et al., 2018;
Barahona-Ŕıos and Collins, 2024; Han et al., 2023; Jonason et al., 2023), Joint Time-
Frequency Scattering (JTFS) (Han et al., 2023) or for a single DFT size, log-spectral
distance (Hayes et al., 2023; Torres et al., 2024), mel-spectral distance (Caillon and Esling,
2021), mel-cepstrum distortion (Masuda and Saito, 2023) and chroma features distance
(Shi et al., 2023). Pitch reconstructionmetrics, such as f0 and multi-pitch transcription
scores, evaluate the ability of the models to preserve the pitch content by comparing the
outputs of a pre-trained AMT model on real and synthesized recordings (Cooper et al.,
2021; Jonason et al., 2023; Hawthorne et al., 2022).

On the other hand, reference-free audio metrics evaluate audio quality without com-
paring individual pairs of synthesized and target audio. Instead, they are compared as a
whole by considering all synthesized outputs and all reference outputs as two distributions
to compare. Hayes et al. (2021); Caspe et al. (2022); Hawthorne et al. (2022); Barahona-
Ŕıos and Collins (2024) all used Fréchet Audio Distance (FAD) for instance. By
leveraging a VGGish model trained for audio classification (Hershey et al., 2017), they
extract embeddings on all synthesized and real test samples: two multivariate Gaussians

77

3.2. INSTRUMENT SYNTHESIS CHAPTER 3. STATE-OF-THE-ART

are fitted to the synthesized embeddings and real embeddings respectively, to be then
compared using the Fréchet distance. Several works have reported a correlation between
FAD and perceptual similarity (Hayes et al., 2021; Hawthorne et al., 2022), implying the
use of this metric as an objective proxy of listening tests.

Speed is also an important factor for the usability of an algorithm by end-users, espe-
cially in the context of music creation. Slow algorithms can hinder the creative process
for music production, and can even be unusable in the context of live performance. The
real-time factor is commonly used for quantifying the speed of an algorithm (whether
causal or not): it is the ratio between the time taken to process a certain amount of
data and the corresponding duration of the data. An algorithm is said to be real-time,
or capable of real-time, when its real-time factor is 1 or less, and non-real-time otherwise.
For online processing, it can be understood intuitively as the ability of the model to “keep
up” with controls being continuously inputted. This metric is highly dependent on the
hardware running the algorithm. For neural-based models, there is usually a clear dif-
ference of the real-time factor when the models run on a Central Procesing Unit (CPU)
or on a GPU. Neural network layers have efficient implementations for training and run-
ning on GPUs (using parallel processing and dedicated hardware architectures), which
makes the real-time factor on GPU almost always better than the real-time factor on
CPU. However, performances on CPU are more valuable as CPUs are always available in
end-user computers, while there is often a discrepancy between the GPU of an end-user
and those used by researchers for model training. In recent years, GPU-like processors,
which can execute neural models are becoming more accessible for the end-users (Apple M
series, Google Tensor chips, gaming PC), which makes the GPU real-time factor worthy
of consideration to some extent.

Lastly, model compactness is also sought after in musical applications, as one can
try to embed the synthesis models into low-memory processors, or reduce their Random
Access Memory (RAM) footprint in DAWs. Traditionally, sample-based synthesizers are
measured based on the size of their sound bank. As for neural-based models, the number
of model parameters is generally used for comparison.

Subjective Evaluation Metrics

Subjective evaluation is usually considered to provide a more insightful assessment of audio
quality, but they are more time-consuming to gather. Listening tests need to collect a
pool of listeners that evaluate different models according to a specific criterion. Careful
selection of inference samples is crucial to isolate the specific quality being assessed. In
instrument audio synthesis, all evaluated models should generate their synthesized outputs
from a common set of input controls, while ensuring uniform loudness levels to mitigate
any loudness-related biases. Each evaluation score is valid only for a single work, as a
model is evaluated in the context of other similar methods. The full evaluation process
on all methods has to be conducted when adding or removing a specific model, and
evaluators’ ratings may exhibit variability.

For audio synthesis tasks, the most commonly used measure gathered through lis-
tening tests is the Mean Opinion Score (MOS). Listeners are asked to rate each sample
individually on a 5-point Likert scale according to a property. For example, TTS evalu-

78

3.2. INSTRUMENT SYNTHESIS CHAPTER 3. STATE-OF-THE-ART

ations usually ask to independently rate the naturalness and intelligibility properties of
speech excerpts.

Another listening test format is the MUltiple Stimuli with Hidden Reference and
Anchor (MUSHRA). Originally developed for evaluating audio encodings, the listeners
are asked to rate the similarity of the inference samples with the real sample. Ratings
are given with a finer-grained scale than the 5-point Likert scale. Hidden anchors, being
the real sample itself and a purposely degraded version of the real sample, enable filtering
out evaluators with sub-optimal listening conditions.

Section summary - Instrument Audio Synthesis State-of-the-Art

Audio synthesis of musical instruments has a long history of proposed systems with
various methodologies, needs for knowledge and data, and ultimately, various real-
ism qualities. Given an input sequence x of notes/controls, the designed synthesis
model S aims to generate an audio signal ŷ that imitates the sound that would be
produced by the target instrument. In particular, synthesizing piano sounds from
MIDI inputs can be done through physical modeling, signal-based modeling, con-
catenative synthesis, or neural audio synthesis. The first two methodologies require
leveraging knowledge of the instrument in order to conceive a tailor-made model
but require extensive parameter retrieval in order to sound realistic. The last two
categories of techniques can mimic an instrument with minimal knowledge required
but demand large storage or model sizes to capture the full complexity of the in-
strument. Recently, Differentiable Digital Signal Processing (DDSP) offers a hybrid
approach by incorporating signal-based modeling knowledge into neural audio syn-
thesis. It leverages the advantages of both approaches, mainly the interpretability
of signal-based synthesis and the expressivity of neural-based synthesis. Although
it also raises new challenges in the optimization process, most notably for frequency
estimation. Audio reconstruction in time-frequency representations is usually used
to objectively evaluate audio synthesis models, but subjective evaluation through
listening tests better reflects the subjectivity of audio quality perception.

79

3.3. PERFORMANCE RENDERING CHAPTER 3. STATE-OF-THE-ART

Score

Performance
Rendering Model

Performance
(symbolic) (instrument controls)

Figure 3.5: The expressive performance rendering task. For the case of piano music, the
output instrument controls are usually encoded in MIDI.

3.3 Performance Rendering

As mentioned in Section 2.1.1, the music score is a compact, symbolic representation
of a musical piece made by a composer. Then, during a performance, musicians play
their instruments, following the score in order to make an audio rendition of the piece.
Similarly, as for the one-to-many relation between text and speech, there is not one, but a
plethora of valid interpretations that follow the score indications. Those usually produced
by musicians are expressive, in an attempt to bring out effective and emotional qualities
that can resonate with the listeners (Cancino-Chacón et al., 2018). On the contrary, the
simplest and most straightforward rendition of a score is usually perceived as unnatural
and emotionless.

As illustrated in Figure 3.5, the performance rendering task aims to imitate musicians
that imbue a music score with expressive features, through the control of their instrument
that is not entirely described by the written score. Formally, given a composition as a
sequence of N notes with score features X = {xn}n≤N , the performance rendering model
R aims to produce an expressive rendition X̃ = {x̃n}n≤N by modification or enhancement
of the composition with performance features:

X̃ = R(X). (3.4)

These expressive features can be organized into four dimensions:

• timing features include instantaneous tempo deviation, micro-displacement of note
onsets, and change of note duration (articulation).

• the loudness features denote the local deviations of dynamics from the global score
annotation. They encompass the individual note loudness in a chord and the evolv-
ing nuance of held notes.

• the pitch controls reflect micro-tonal deviation effects, such as vibrato and slides
between notes.

• one of several timbres offered by the instrument, elected through some playing tech-
niques (palm muting, sustain pedal,...)

80

3.3. PERFORMANCE RENDERING CHAPTER 3. STATE-OF-THE-ART

It can be seen that the expressive features are entailed in the available controls offered
by the playing instrument. For instance, on the contrary of violists, piano players cannot
modify note nuances beyond the onset velocity, nor modulate note pitches. Thus, a
piano performance can be more easily encoded through the MIDI protocol, than violin
performances. According to the instrument, the rendered performance can be represented
in the symbolic domain, but some works have also attempted to directly render the
performance audio signal. The following will briefly cover the different propositions for
tackling the piano performance rendering task. For continuously controlled monophonic
instruments, one can refer to the work of Wu et al. (2022b) that conceived a hierarchical
modeling approach to complete the insufficient MIDI inputs, through DDSP controls, and
render audio performances.

3.3.1 Traditional Approaches to Performance Rendering

Before the rise of deep neural networks, expressive performance rendering was tackled
using rule-based and less complex data-driven systems. They were notably fostered by the
RenCon competition (Hashida et al., 2008) that evaluated piano performance rendering
models. These computational models are discussed more extensively in the review of
Cancino-Chacón et al. (2018).

Rule-based approaches rely on manually designed performance rules, motivated by
musical hypotheses. Such systems include the KTH model (Friberg et al., 2006) that
derived rules from both experts and conducted listening tests.

Modeling the complex relationship between a score notation and its actual realization
has been more thoroughly explored from actual observations of score-performance pairs
and learned with data-driven probabilistic models. Such systems can leverage Hidden
Markov Models (Grindlay and Helmbold, 2006), Bayesian networks (Flossmann et al.,
2013) and switching Kalman filters (Gu and Raphael, 2012). Maximum entropy models
were also used by Kim et al. (2013).

3.3.2 Neural Approaches to Performance Rendering

The first modern work integrating deep neural networks for piano performance render-
ing is the Basis Mixer model of Chacón and Grachten (2016) that combined RNNs with
a Gaussian Mixture Model. For loudness prediction, Malik and Ek (2017) used genre-
specific RNNs to predict MIDI velocities from score piano rolls. For more expressive
renditions, Wang and Yang (2019) conceived a model that converts piano rolls directly
into performance spectrograms. While this model can generate more fine-grained loudness
features, they are entangled with the notes and the instrument timbre in the output spec-
trograms, which greatly limits the a posteriori manipulation of the rendered performance.
The Deep Performer model (Dong et al., 2022) also proposed a full audio performance
rendering pipeline by concatenating a transformer-based score-to-performance alignment
system with a TTS-inspired neural synthesizer. Each sub-model is trained separately, the
alignment model in particular changes the onset, duration, and velocity properties of the
notes, based on the score tempo and the pitch, onset, and duration of the input notes.

81

3.3. PERFORMANCE RENDERING CHAPTER 3. STATE-OF-THE-ART

The alignment model is solely trained on violin data but is used on piano pieces during
inference, making the underlying assumption that the interpretation process is instrument
ignorant.

As stated previously, performance rendering is a one-to-many task, as different valid
interpretations can be made from the same music score. Such variability can be observed
between musicians and for different performances of the same musician. Variational tech-
niques have proven to be relevant for learning a latent space of realistic playing styles
when conditioned on score features (Maezawa et al., 2019; Jeong et al., 2019a,b; Rhyu
et al., 2022; Borovik and Viro, 2023). The main difference between these works is how
they maintain performance coherence across the whole music: Maezawa et al. (2019)
autoregressively synthesize performance features using an internal hidden state, while
VirtuosoNet (Jeong et al., 2019a,b) and ScorePerformer (Borovik and Viro, 2023) employ
hierarchical approaches by encoding the score (and performances in ScorePerformer) at
the note, beat and measure levels. Rhyu et al. (2022) stands out by putting an empha-
sis towards the musicians’ personal intention instead of solely relying on the guidance
provided by the score: stylistic transfer of performer intent from one piece to another is
achievable in their work.

The performance features outputted by all previous approaches are defined as the dif-
ference in timing, articulation, and velocity of the played notes, compared to the exact
rendition of the score (Jeong et al., 2019c). The score features may vary, but they mainly
include note-wise pitch, tempo, positions in the measure, dynamic and articulation anno-
tations, and eventually high-level score markings such as slurs, positions in a chord, and
key and time signatures. Obtaining such features requires the collection of MIDI per-
formances with their associated digital scores and aligning them at note-level (Nakamura
et al., 2017; Foscarin et al., 2022; Peter et al., 2023). These requirements limit the amount
of available training data and call for scores in MusicXML format since MIDI does not
include high-level score markings (see Section 2.1).

Recent works have started addressing the task without these prerequisites. Tang
et al. (2023) circumvents the reliance on gathering matching scores and performances, by
using the performance-to-score transcription model of Liu et al. (2022) to get estimated
scores from the MIDI performances (also transcribed) of the ATEPP dataset (Zhang
et al., 2022). They then use a Transformer encoder to predict the performance features
from those estimated scores. Zhang and Dixon (2023) completely discards score data
by employing a Vector Quantized (VQ)-VAE with mutual information minimization for
disentangling the score content from the performing style in ATEPP performances. Still,
they require multiple performances of the same pieces in order to extract the different
performing styles from the common score content. Also, since they did not include raw
scores as a style in itself, they have not shown how the model behaves for making an
expressive rendition out of a style-deprived score.

3.3.3 Evaluating Expressivity

Evaluating performance rendering models is still an open question as it requires quanti-
fying musical and emotional qualities, which are highly subjective. Given a test score, a

82

3.3. PERFORMANCE RENDERING CHAPTER 3. STATE-OF-THE-ART

naive approach to objective evaluation would be to measure the difference between ren-
dered performance features from the real ones, with mean absolute error, mean squared
error, or Pearson correlation. However, this requires selecting a single performance per
score, which does not take the diversity of valid performances into account. Thus, this
metric is only relevant as a reconstruction metric for models encoding and regenerating
performances (with optional score input), such as the auto-encoder models from Jeong
et al. (2019a,b) and Rhyu et al. (2022).

To compare against a set of real performances of the same musical track, Jeong et al.
(2019b) proposed to measure the inter-set correlation between a rendered performance and
human performances, but only on pieces that have a strong intra-set correlation between
their test performances. Zhang and Dixon (2023) and Tang et al. (2023) both developed
proxy metrics for evaluating the reconstruction of performer styles, through a performer
identification model and performer-wise velocity distributions respectively.

In the end, the most widespread evaluation of performance rendering models is through
listening tests. To prevent any audio quality bias, performances rendered by different
methods have to be synthesized with the same audio synthesis model, which preferably
needs to be of sufficient quality. However, the rating criterion that is asked to be used
by the listeners has to be carefully chosen, as it can be subject to personal interpretation
(Cancino-Chacón et al., 2018).

• Listeners can be asked to rate the “naturalness” and “expressiveness” of perfor-
mances on a Likert-scale in order to get MOS, as done by Maezawa et al. (2019)
and Jeong et al. (2019a).

• A MUSHRA test can also be done by asking the listeners to quantify the “expressive
differences” of different methods compared to a human performance (Tang et al.,
2023).

• Pairwise evaluations have been done in Jeong et al. (2019b); Rhyu et al. (2022)
where two renditions of the same piece are presented and listeners have to elect
the one with “better musical quality”. Evaluated methods can be present in each
excerpt of a pair (Jeong et al., 2019b), or always presented against the raw rendition
of the score (Rhyu et al., 2022).

83

3.4. IN SHORT CHAPTER 3. STATE-OF-THE-ART

Section summary - State-of-the-art in Expressive Performance Rendering

The performance rendering task aims to produce an expressive rendition of a given
composition as if a musician injected an interpretation to communicate expressive
qualities. It translates through instrument-specific controls that are not entirely
described in the music score. For piano music, performers can inflect small varia-
tions of note onset timings, durations, and velocities. These performance features
are usually modeled by data-driven approaches, conditioned on features extracted
from the music score. Stochastic models, such as VAEs, have been popular because
they can reflect the diversity of valid performances for the same input score. Tra-
ditionally, the task has always been handled in a supervised fashion by providing
matching pairs of scores and performances, but very recent works have sparked an
interest in removing this prerequisite. Nonetheless, evaluating performance render-
ing models is non-trivial as expressive qualities are highly subjective: listening tests
are thus preferred for this end.

3.4 State-of-the-Art, in short

Chapter summary - State-of-the-art

This chapter reported on the available data and methods developed by the scien-
tific community for handling the tasks of musical audio synthesis and expressive
performance rendering. For piano music, large and high-quality datasets of audio
and symbolic performances are accessible, thanks to the Disklavier/piano player
technology. They enable the training of deep neural models S for the synthesis
of piano audio ŷ ∈ RNsamples from MIDI input performances x, implicitly modeling
the instrument from these input-output observation pairs. However, piano mod-
eling was tackled long before the democratization of deep learning, by leveraging
physical modeling to derive and predict characteristic behaviors of the instrument,
at the expense of laborious explicit modeling and/or parameter estimation diffi-
culties. DDSP democratized the integration of signal processing tools (that rely
on such audio modeling knowledge) into the deep neural optimization framework,
leading to the revitalization of signal processing and synthesis methods in the era
of deep learning, while alleviating the modeling difficulty for neural networks. As
for performance rendering, a model R should transform a music score X into an
expressive interpretation X̃ to communicate emotional features. The interpretation
manifests itself through specific instrument controls chosen by the performer. For
piano music, data-driven approaches have been popular for learning and reproduc-
ing performance features from provided pairs of scores and performances. Still, the
variety of plausible performances for the same score raises challenges in both the
modeling and evaluation stages.

84

Chapter 4
DDSP-Piano: a Neural Piano Synthesizer
informed by Instrument Knowledge

This chapter presents the main contribution of this thesis: a neural piano synthesizer
based on DDSP, with an architecture motivated by knowledge inherited from physical and
signal-based modeling of the instrument. The model is MIDI-controllable and extends
the original DDSP approach for handling polyphonic inputs and further incorporating
instrument modeling knowledge that was notably introduced in the previous chapters.

First, the model and its related experiments are presented in Section 4.1, as in the
published papers (Renault et al., 2022, 2023a). Then, in Section 4.2, several improvements
of DDSP-Piano are proposed in order to address the shortcomings revealed through the
analysis of the first version. Based on the presented work, Section 4.3 will extract some
guidelines for designing hybrid neural models and discuss future improvements of the
model. The chapter will be finally summarized in Section 4.4.

Completing this chapter, examples of audio synthesis1 and the source code2 for model
training and inference can be found online.

4.1 First Iteration of DDSP-Piano

4.1.1 Model architecture

The proposed synthesis model is a sines-plus-noise synthesizer (Section 2.2.4) with poly-
phonic controls and outputs. It separately generates the inharmonic and noisy components
yadditive ∈ RNsamples and ynoise ∈ RNsamples of up to P simultaneous notes. The synthesized
audio ŷ ∈ RNsamples is produced by summing all monophonic signals and by applying the
estimated LTI response IRi ∈ RNreverb of the recording environment i:

ŷ(t) = (IRi ∗
P∑

p=1

(yadditivep + ynoisep))(t). (4.1)

1http://renault.gitlab-pages.ircam.fr/thesis-support/chap_4-1
2https://github.com/lrenault/ddsp-piano

85

http://renault.gitlab-pages.ircam.fr/thesis-support/chap_4-1
https://github.com/lrenault/ddsp-piano

4.1. FIRST ITERATION OF DDSP-
PIANO

CHAPTER 4. DDSP-PIANO

Detuner

Context Network

Li
ne

ar

Additive
Synth

Filtered
Noise

Reverb

Multi-Scale Spectral Loss

Note Release

L1

Inharmonicity net

Linear exp

noise
magnitudes

amplitudes Dictionary
impulse

responses

Target audio Synthesized audio

Z-Encoder

Embedding

G
R
U

Li
ne

ar

Monophonic Network

Li
ne

ar

Li
ne

ar

Li
ne

ar

G
R
U

modifiers

L1

inharmonicity
extended
pitches

Note conditioning
(pitch, vel)

tanh

tanh

Linear

IR

Pedals

Instrument ID

Figure 4.1: Full architecture of the proposed piano sound synthesizer. The blue boxes
represent the trained modules for the control of the synthesis. Those with a thickened
border are applied along each monophonic voice. The synthesis modules from DDSP
are represented by yellow boxes (Additive, Filtered Noise, and Reverberation). Finally,
the Multi-Scale Spectral Loss compares the target signal (bottom left) and the output
synthesized sound (bottom right).

The following sections detail the sub-modules composing the full model architecture,
which is illustrated in Figure 4.1.

Input conditioning

DDSP-Piano is conditioned on all the controls pianists have over their instrument: the
sequence of notes being played (including their velocities), the action of the pedals, and
the recording environment.

The monophonic conditioning of a DDSP model (Section 3.2.3) is comprised of f0
and loudness control signals, which provide the instantaneous fundamental frequency and
intensity of a note sequence at a constant frame rate Fframe. In the proposed model, for
compatibility with MIDI inputs (see Section 2.1.2), the f0 control is substituted by an
active pitch control signal xpitch(τ) that indicates the MIDI pitch of the note at frame
τ , taking the sustain pedal effect into account for its duration. Note that xpitch(τ) = 0
means that no note is currently being played at frame τ . Likewise, the loudness control
is replaced by an onset velocity control xvel(τ) that specifies the note velocity (scaled to
the range [0, 1]) only at onset time. This encoding allows to disentangling of sustained
notes from repeated notes within an active sustain pedal, as explained in Section 2.1.3.
For an input MIDI control sequence spanning over T frames, the polyphonic conditioning
X ∈ RT×P×2 is obtained by allocating all input notes into P sequences of non-overlapping

86

4.1. FIRST ITERATION OF DDSP-
PIANO

CHAPTER 4. DDSP-PIANO

notes, or voices, and by stacking these monophonic conditionings, as in Kawamura et al.
(2022):

X(τ) = {xpitch
p (τ), xvel

p (τ)}p∈J1,P K. (4.2)

The pedal input controls xped(τ), including most notably the sustain pedal control,
are extracted from the MIDI data at the same frame rate as the conditioning input X(τ).

Finally, the piano model, the room reverberation, and the microphone choice and
placement are all entangled independently of the piano performance: each recording envi-
ronment is provided as a one-hot encoding i ∈ J1, IK, for I different recording environments
in the dataset.

Global model

Because the size and the tuning of physical pianos vary considerably, related parameters
like the timbre, the inharmonicity and the detuning profiles over the pitch range, described
in Section 2.3.4, have to be adapted accordingly. Thus, a Z-Encoder is used to store an
embedding vector zi ∈ RZ , an inharmonicity modifier bi ∈ R, and an instrument-specific
detuning δfi ∈ R for each recording environment i.

Also, as mentioned in Sections 2.3.2 and 2.3.4, the pedals and the mutual interaction
between simultaneous notes can change the timbre of an individual note. This effect is
modeled by a C-dimensional context signal control c ∈ RT×C computed by the RNN-
based context network C, from the piano embedding zi, the pedal controls x

ped(t) and
the conditioning X(t):

c(τ) = C({X(τ ′),xped(τ ′), zi}τ ′≤τ). (4.3)

This context signal is duplicated across all monophonic voices, which gives the subse-
quent monophonic layers (to be presented in Section 4.1.1) access to global and polyphonic
information and thus adjusts the computation of monophonic note properties accordingly.

Monophonic string model

Following Section 2.3.2, the attenuation of the string vibration by the damper is not
instantaneous, and higher notes do not even have dampers. Hence, in practice, the piano
strings still vibrate for a certain amount of time after the note offset. Inspired by the
release parameter of digital synthesizers, a Note Release module is implemented to
generate an extended pitch signal x̃pitch ∈ RT×1 by prolonging the active pitch component
of the conditioning signal xpitch by a learned duration Trelease ∈ R. Note that the extended
pitch conditioning signal x̃pitch does not replace the original pitch conditioning xpitch, as
we would lose the note offset information.

Furthermore, the explicit inharmonicity model adapts Equation 2.13 the get the in-
harmonicity coefficient Bp ∈ RT×1 of the p-th voice from the extended pitch x̃pitch

p and
the instrument-specific modifier bi:

Bp(τ) = exp (αT x̃
pitch
p (τ) + βT)

+ exp (αBx̃
pitch
p (τ) + βB + γBbi),

(4.4)

87

4.1. FIRST ITERATION OF DDSP-
PIANO

CHAPTER 4. DDSP-PIANO

with {αT , βT} (resp. {αB, βB}) the parameters of the linear asymptote in the treble (re-
spectively bass) range. According to Young (1952), the treble asymptotes are very similar
across all pianos, so bi only influences the bass asymptote, weighted by the parameter
γB ∈ R.

The partial beating produced by string duets and triplets is approximated by means
of constructing a monophonic note as the sum of nstring sub-strings, each detuned by a
detuning factor δf . The detuner sub-model gathers the per-string deviations predicted
by a time-distributed linear layer gδ from the pitch, and a global instrument-specific
detuning δfi:

δf p(τ) = tanh(gδ(x̃
pitch
p (τ)) + tanh(δfi). (4.5)

Each command contributing to the detuning is limited to a semitone range [−1, 1], as
in Wu et al. (2022b), using the tanh activation function.

Finally, the spectral envelopes of notes and their evolution are predicted by themono-
phonic networkM. It is implemented as a causal RNN that computes the remaining
synthesizer controls from the extended pitch x̃pitch, the conditioning vector X, and the
context vector c. This recurrent network is applied along each voice p ∈ J1, P K, in or-
der to learn a monophonic string model and to predict the monophonic notes amplitude
ap ∈ RT×1, the energy distribution h ∈ RT×K for K partials and noise filter magnitudes
ηp ∈ RT×Q, with Q the number of frequency filter bands:

ap(τ),hp(τ),ηp(τ) =M({Xp(τ
′), x̃pitch

p (τ ′), c(τ ′)}τ ′≤τ). (4.6)

Differentiable Synthesizers

The outputs of the neural network are used to control the differentiable synthesizers, which
generate and process audio signals following the spectral modeling paradigm. As in the
original DDSP auto-encoder (Section 3.2.3), controls are upsampled from the controls
frame rate Fframe to the audio sampling rate Faudio. Amplitude, energy distribution,
and noise filter magnitude controls are also scaled with the exponential sigmoid function
sigmoid† (defined in Equation 3.2) in order to be non-negative.

Along a monophonic voice p ∈ J1, P K, the additive synthesizer generates the inhar-
monic audio component yadditivep ∈ RNsamples of the piano notes. It sums multiple sinuses
at frequencies computed from the extended pitch x̃pitch

p , inharmonicity Bp and detuning
δfp controls, and with amplitudes provided by the global amplitude ap and harmonic
distribution hp:

yadditivep (t) =
ap(t)

nstrings

nstrings∑
n=1

K∑
k=1

hp,k(t) sin(Φp,n,k(t)), (4.7)

with Φp,n,k(t) the instantaneous phase of the k-th partial at timestep t:

Φp,n,k(t) = 2π
t∑

t′=0

fp,n,k(t
′). (4.8)

88

4.1. FIRST ITERATION OF DDSP-
PIANO

CHAPTER 4. DDSP-PIANO

The inharmonic frequencies {fp,n,k}k∈J1,KK are deduced from the fundamental frequency
fp,n,0 and the inharmonicity coefficient Bp with Equation 2.12. fp,n,0 are obtained by
converting the detuned pitch x̃pitch

p +δfn into frequencies with the MIDI note-to-frequency
formula defined in Equation 2.2.

The subtractive synthesizer generates the residual noises that happen during a perfor-
mance, mainly the hammer and key noise upon note onsets, the pedal noises, and even
the recording background noise. As in Engel et al. (2020a), a white noise STFT spec-
trum u ∈ RT×Q is filtered in the frequency domain with the LTV noise filter magnitudes
η ∈ RT×Q computed by the model, before being inverted in the audio domain:

ynoisep (t) = DFT−1
[
ηp(⌊t

Fframe

Faudio

⌋)u
]
(t). (4.9)

The room response in the piano recordings is modeled by a differentiable convolutional
reverb. A FIR IRi is learned for each recording environment i ∈ J1, IK and it is applied
to the sum of audio signals output by the bank of additive and subtractive synthesizers
(Equation 4.1).

4.1.2 Model Training

DDSP-Piano is trained and evaluated with MIDI-audio performances from the MAESTRO
dataset, which spans over I = 10 editions of the Piano e-competition (see Section 3.1).
The ground-truth audio performances are downsampled to Faudio = 16kHz and downmixed
to mono. The una corda, sostenuto and sustain pedal controls are available in the MIDI
recordings through the 64, 66, and 67 CC messages, which corresponds to the three pedals
of most grand pianos (Section 2.3.2). Conditioning and pedal controls are extracted at a
frame rate of Fframe = 250Hz, which is also the control rate in the original DDSP paper
(Engel et al., 2020a).

Tracks are split into 3-second long segments, with a 50% overlap between two con-
secutive segments. The input and output lengths are T = 750 and Nsamples = 48000.
Segments in which the maximum number of simultaneous notes is greater than the model
polyphonic capacity P are removed from the training set.

In the tradition of neural-based synthesis, the model is trained to minimize the MSS
loss, as defined in Equation 3.3, between the target audio y and the synthesized audio ŷ.

In preliminary experiments, it has been observed that the reverb module tried to model
the sustain and release behavior of the notes, which did result in abnormal reverberations
and unrealistic raw piano signals that were generated as input for the reverb module.
A L1 regularization loss ∥.∥1 is applied to the learned impulse responses to reduce the
reverb complexity thus discouraging the module from learning characteristics of the piano
tones (such as note sustains and releases) that can be modeled by the other unregularized
modules.

Furthermore, the correct placement of partials in frequency is decisive for training
stability, especially during early training. As partial frequencies in our system are deduced
from explicit sub-modules, a two-phase training procedure is proposed for separately
optimizing the pure DNN components and the explicit sub-models:

89

4.1. FIRST ITERATION OF DDSP-
PIANO

CHAPTER 4. DDSP-PIANO

1. During the first training phase, weights responsible for computing the partial fre-
quencies are frozen to their pre-defined initial values, which should be close to the
optimal ones. The concerned weights are those from the detuner, the inharmonicity
model and the model-specific detuning and inharmonicity modifiers of the Z-encoder.
The other modules can thus learn to reproduce the spectral envelopes of the notes,
the residual noises, and the reverberation without displacing the note partials. The
model is optimized using the Adam optimizer (see Section 2.4.1) with a learning
rate of 10−3 and a batch size of 6, with regard to the first phase loss function L1:

L1 = LMSS(y, ŷ) + λIR

I∑
i=1

∥IRi∥1, (4.10)

with λIR the balancing weight for the reverb regularization loss with regard to the
spectral loss, here set to 0.01.

2. During the second training phase, the trainability of the model weights is reversed
compared to the first training phase. In such a manner, the system is expected
to match the learned partial frequencies and beating for each piano specifically.
For stabilizing the training, an L1 regularization loss is applied to the deviation of
inharmonicity model parameters from their initial values. The total loss associated
with this second training phase can be expressed as:

L2 = LMSS(y, ŷ) + λB

∑
θ∈{αB ,βB ,αT ,βT }

|θ − θ0|, (4.11)

with λB = 0.1 the weight on the inharmonicity model regularization loss with regard
to the spectral loss. The parameters of the detuner, the inharmonicity model, and
the Z-Encoder model-specific modifiers are fine-tuned by Adam with a learning rate
of 10−5 and a batching size of 3.

The whole system is optimized and fine-tuned by successively alternating between
these two training phases. In our experiments, the system is trained with the first phase
formula for 2 full epochs on the 160h of training data, until note partials are correctly
generated by the additive synthesizer. It is then fine-tuned for 1 full epoch on the training
data with the second training phase. Finally, the model is further fine-tuned using the
first training phase again for 3 epochs, until the minimal validation loss value is reached.
The full model training takes about 340k steps, which corresponds to around 8 days of
training on a single Nvidia GeForce GTX 1080 Ti GPU.

4.1.3 Evaluation

Both objective and subjective evaluations have been conducted on DDSP-Piano. It is
compared with other sound synthesis methods and some ablated variants.

90

4.1. FIRST ITERATION OF DDSP-
PIANO

CHAPTER 4. DDSP-PIANO

Fframe Faudio Nsamples Nreverb T I P Z C nstring K Q

250 16000 48000 24000 750 10 16 16 32 2 96 64

Table 4.1: Hyper-parameters of the Default model configuration.

Baselines

The proposed DDSP-Piano model is evaluated against the piano sound synthesis methods
presented in Section 3.2. All samples synthesized with the following systems are also
downsampled to 16kHz and converted to mono.

The commercial software Pianoteq 73 with the default preset NY Steinway D Classical

is used as the physical-modeling-based baseline. Results from the physical modeling of
the instrument are synthesized in real-time using modal synthesis (Bank and Chabassier,
2019).

For the wavetable synthesizer benchmark, performances are obtained by stitching
isolated note recordings from the YDP Grand Piano 4 soundfont, using the open-source
software Fluidsynth 5.

Finally, Piano-TTS v1, the TTS-inspired model from Cooper et al. (2021) presented
in Section 3.2.2, is elected as the pure neural audio synthesis benchmark. Also trained on
MAESTRO, this model is a modified Tacotron-2 acoustic model followed by a simplified
NSF vocoder model. MIDI-filter-bank-based spectra are used as the intermediate repre-
sentation between the two sub-models, which has the advantage of being aligned with the
input piano rolls in the frequency/pitch axis.

Default and Ablated models

The Default configuration of DDSP-Piano is given in Table 4.1, with the architectures of
the context C and monophonic modelsM illustrated in Figures 4.2a and 4.2b respectively.

As for the initial values of the explicit layers, the release time of the Note Release
module is set to Trelease = 1 sec, which is longer than the observed attenuation time of piano
notes after key release (Lehtonen et al., 2009). The inharmonic model is initialized
with the parameters estimated in Rigaud et al. (2011): α0

B = −0.0847, β0
B = −5.82,

α0
T = 0.0926 and β0

T = −13.64. Initial detunings are set to zero in the linear model
gδ of the detuner, like the model-specific inharmonicity and detuning modifiers of the
Z-encoder, in order to first learn a generic piano model during early training. Finally,
the different reverb impulse responses are 1.5 seconds long at 16kHz (24k parameters for
each recording environment), with the same random initialization as in Hayes et al. (2021)
and the inference decay function from Wu et al. (2022b). The total number of training
parameters in this Default configuration is given in Table 4.2, against Piano-TTS v1,
the neural-based benchmark.

3https://www.modartt.com/pianoteq
4https://freepats.zenvoid.org/Piano/acoustic-grand-piano.html
5https://www.fluidsynth.org/

91

https://www.modartt.com/pianoteq
https://freepats.zenvoid.org/Piano/acoustic-grand-piano.html
https://www.fluidsynth.org/

4.1. FIRST ITERATION OF DDSP-
PIANO

CHAPTER 4. DDSP-PIANO

Context Network

D
en

se
 (

32
)

G
R
U

 (
64

)

La
ye

rN
or

m

Li
ne

ar
 (

32
)

co
nc

at

(a) Context Network C.

Monophonic Network

Li
ne

ar
(1

)
Li

ne
ar

(9
6)

Li
ne

ar
(6

4)La
ye

rN
or

m

D
en

se
 (

19
2)

G
R
U

 (
19

2)

D
en

se
 (

12
8)

co
nc

at

(b) Monophonic networkM.

Figure 4.2: Architectures of the Context and Monophonic networks. The Context network
computes a context signal c ∈ RT×C from the input conditioning X(t) ∈ RT×P×2, the
pedals input signal xped ∈ RT×3 and the instrument embedding zi ∈ RZ . The Monophonic
Network takes the context signal c ∈ RT×C , a voice conditioning input Xp ∈ RT×2 and
the extended pitch control x̃pitch

p ∈ RT×1 to predict the monophonic DDSP synthesizer
controls, being the global amplitude ap ∈ RT×1, the energy distribution of the partials
hp ∈ RT×K and the residual noise filter coefficients ηp ∈ RT×Nnoise . Numerical shapes
reflect the implementation of the Default version of DDSP-Piano.

Model Parameters

Piano-TTS v1 31.4M
- Tacotron-2 30.6M
- NSF 736.3k

DDSP-Piano 512.5k
- Sub-models 281.5k
- Reverb 240k

Table 4.2: Approximate number of parameters of the evaluated neural-based models and
their sub-models.

The relevance of the system sub-modules is evaluated by training ablated versions
of DDSP-Piano. All following variants are trained with the same procedure and hyper-
parameters (losses balance, number of training steps, learning rates, batch sizes) exposed
in Section 4.1.2:

• The Deep Inharmonicity variant replaces the explicit inharmonicity model from
Rigaud et al. (2011) with a DNN. Ideally, this DNN should reproduce equation 2.13:
we use a Multi-Layer Perceptron (MLP) with sinusoidal activation functions as in
Hayes et al. (2021). This model takes the same inputs as the explicit inharmonicity
model and it is composed of 3 dense layers with sinusoidal activation and a hidden
size of 8, followed by a linear layer with ReLU activation. The final output is
scaled in order to keep the estimated inharmonicity factor within a realistic range
B ∈ [0, 0.02].

• The Reduced-context variant imitates sampling-based synthesis by removing the
conditioning input X from the context control computation. Since the synthesizer

92

4.1. FIRST ITERATION OF DDSP-
PIANO

CHAPTER 4. DDSP-PIANO

controls are computed on all monophonic channels independently, a monophonic
note control would not have information on which other notes are also played, thus
preventing mutual interaction between notes.

• The No Fine-tuning variant is the Default configuration where the inharmonicity
model and the detuner sub-modules are reverted back to their initial values before
training. This variant is similar to a model trained solely with the first training
phase of Section 4.1.2.

• As stated in the original DDSP paper Engel et al. (2020a), the sound structure
priors inherent to the DDSP synthesizers enable full model training with a reduced
amount of data. In the same manner, we test DDSP-Piano on the simpler but also
less resourceful task of single piano modeling. The 2009-only variant is trained
by only keeping performances from the year 2009 in the MAESTRO dataset, which
amounts to about 20 hours of training data.

Objective Evaluation

Among the audio reconstruction metrics available that were presented in Section 3.2.4,
the MSS distance between the real and synthesized performances is selected. Figure 4.3
shows the reconstruction quality of the model variants on each recording environment in
the MAESTRO test set. One can notice significant spectral loss differences among the
different recording environments, implying that certain years were easier to model than
others.

• In all recording environments, the Deep Inharmonicity variant has higher loss
values than variants using the explicit inharmonicity model. This explicit sub-
module proves to be valuable for the overall reconstruction quality of the model,
as it allows it to control the additive synthesizer with better estimated spectral
envelopes.

• 2009-only seems to have slightly better reconstruction quality on the 2009 subset
compared to the Default configuration, although not significantly. If the difference
is confirmed perceptually, that would suggest that the piano model embedding in
the multi-instrument setting is not sufficient for achieving the same quality as for
single piano modeling. Nonetheless, if one wants to profile a single piano, training
on the full MAESTRO dataset is not necessary and smaller aligned datasets could
be used instead, such as MAPS (Emiya et al., 2010).

• Reducing the global context appears to have different consequences, as theReduced
Context variant can have similar, better, or worse reconstruction quality than
the Default configuration depending on the piano model. While mutual notes
interaction should be present in all performances, independently of the recording
year, the perceived effect may not be exhibited in the interpreted piano pieces.
If modeling such interaction is unnecessary, the Reduced Context variant, with
reduced complexity, can converge faster than the Default configuration and achieve

93

4.1. FIRST ITERATION OF DDSP-
PIANO

CHAPTER 4. DDSP-PIANO

2004 2006 2008 2009 2011 2013 2014 2015 2017 2018 Overall
Year

5.0

5.2

5.4

5.6

5.8

6.0

6.2

6.4

M
ul

ti-
Sc

al
e

Sp
ec

tra
l L

os
s

Model
Deep Inharmonicity
Default
No Fine-Tuning
Reduced Context
2009-only

Figure 4.3: Systems evaluation on the MAESTRO test set, broken down by recording
environments. Measured by mean and standard deviation values of the MSS difference
(Equation 3.3) with the original recordings. Lower loss values indicate better reconstruc-
tion quality.

better reconstruction quality for the same number of training epochs: this would be
the case for pieces of the years 2004 and 2009. On the contrary, if such effects are
significantly present in the training pieces, the ablated variant cannot reproduce it
and thus achieves worse reconstruction quality, which concerns the years 2006 and
2014. Mutual interaction between notes (sympathetic resonances) is more exploited
in contemporary music for instance: using such examples may help the system to
systematically learn this specificity.

• DDSP-Piano performs similarly with and without applying the fine-tuned inhar-
monicity and detuning parameters. This indicates that the second training phase
proposed in Section 4.1.2 could not successfully fine-tune the inharmonicity and de-
tuning parameters to match the target pianos. Otherwise, the note partials would
have been exactly matched in frequency and the model could better reproduce the
associated amplitude through the spectral loss, during the third training phase.

From the overall results, it seems that DDSP-Piano can be trained for single piano
modeling and only with the first training phase from Section 4.1.2, without significant
loss of reconstruction quality. Reducing the context may accelerate the training if mutual
note interactions are ignored in the modeling. Nevertheless, the explicit inharmonicity
model is crucial for reaching good reconstruction quality.

The real-time factor of the Default model was measured on the test data to assess
if the provided Tensorflow implementation 6 is real-time or not. For all 3-second long

6https://github.com/lrenault/ddsp-piano

94

https://github.com/lrenault/ddsp-piano

4.1. FIRST ITERATION OF DDSP-
PIANO

CHAPTER 4. DDSP-PIANO

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Score

Pianoteq
Ground Truth

2009-only
No Fine-Tuning

Reduced context
Default

Fluidsynth
Deep Inharmonicity

Piano-TTS

M
od

el ns

ns

ns

**

ns

Figure 4.4: Box plots of MOS for each system. The thickened bars indicate the median
values while the white triangles indicate the mean values. Two-sided Mann-Whitney
U tests with Holm-Bonferroni correction were conducted on relevant systems pairs at
α = 0.05. p-value annotation legend: ns for p > 0.05; * for p ≤ 0.05; ** for p ≤ 0.01; ***
for p ≤ 10−3 and **** for p ≤ 10−4.

segments of the test data, the average synthesis time is measured on the same hardware
as for GPU training (Nvidia GeForce GTX 1080 Ti), and on a 2.6GHz Intel Xeon E5-2623
v4 CPU processor. We report real-time factors of 0.6±0.1 on the GPU and 1.9±0.1 on the
CPU. This invalidates the usage of the current implementation for real-time applications
without relying on a GPU. However, model architecture design choices were made in order
to reduce the structural latency of the model: the GRU layers do not rely on future samples
as they are only causal, their hidden sizes are compatible for CPU computation in real-time
(Wright et al., 2019) and the model does not rely on non-causal convolution operations
that raise real-time applications challenges (Caillon and Esling, 2022). Therefore, by
exporting the learned model for inference into efficient frameworks dedicated to real-time
neural audio processing (Wright et al., 2019; Chowdhury, 2021; Stefani et al., 2022), the
real-time factor of DDSP-Piano on CPU can be improved.

Subjective Evaluation

A listening test was conducted for gathering MOS on all systems under evaluation. Eleven
performances were hand-picked from the test data, covering all recording environments
and with a diversity of composers, registers, and note densities. The first 9 seconds of the
performances were synthesized with all systems7, which, with the real recordings, gives 99
audio samples to evaluate. Listeners were asked to rate their overall quality on a 5-point
Likert scale, from “very annoying” to “real recording”. In each trial, 2 samples from each
of the 8 systems and 2 real recordings were randomly presented to the listener for rating.
We gathered 52 participants that are musicians or audio professionals: 14 among them
have notions of piano playing and 29 have been playing the instrument for several years.
Box-plot and mean values of the MOS ratings are reported in Figure 4.4, with statistical
tests following the evaluation procedure of Cooper et al. (2021).

7We would like to thank Erica Cooper, among the authors from Cooper et al. (2021), for kindly sharing
the test samples of their model for the listening test.

95

4.1. FIRST ITERATION OF DDSP-
PIANO

CHAPTER 4. DDSP-PIANO

Comparing the ratings of the model against its ablations:

• The quality difference between the Deep Inharmonicity variant and the models
including the explicit inharmonicity model is confirmed perceptually. Only the
Default-against-Deep Inharmonicity hypothesis is not statistically significant,
but the median and quartile values still suggest a slight advantage in favor of the
Default configuration.

• Ratings also confirm that the second training phase does not improve the perceived
quality, suggesting that the natural beating between simultaneous notes in harmony
may be sufficient for achieving realistic-sounding partial beatings during polyphonic
performances.

• Reducing the context also does not significantly hinder the perceived quality of the
DDSP-Piano model. It can be deduced that other components of the approach can
be improved before the lack of note interaction limits the perceived quality.

• Single piano modeling is still perceived as good sounding as variants trained on
several pianos simultaneously, which raises the question of the minimum amount
of training data required for achieving such quality. Note that previous neural-
based synthesis works did not report the model quality when trained on a single
environment of MAESTRO.

As for comparisons with the other piano synthesis methods:

• All variants of DDSP-Piano have a significant difference over the neural-based Piano-
TTS benchmark. Although this baseline is more versatile since it was developed for
speech synthesis at first, our approach is better suited for piano sound synthesis,
achieving better sound quality with significantly fewer training parameters, as shown
in Table 4.2.

• Only the physical-modeling-based method achieves sound quality comparable to
the real recordings (even slightly better, although not significantly, as also found
by Cooper et al. (2021)). Various unwanted noises and the recording quality of the
real samples may have been perceived as slightly annoying compared to the clean
sounds synthesized by the Pianoteq software. In this training setting, the data
represents an upper bound limit to the quality of the neural-based synthesizer: the
model can thus benefit from cleaner audio recordings, and/or from pre-processing
the data with a noise-filtering strategy as in Zhang et al. (2022).

• Nonetheless, there is still a significant gap in the perceived quality between the
synthesis offered by the DDSP-Piano model and the real recordings.

• As it stands, all variants of our approach are not significantly different from the
sampling-based synthesizer in terms of overall quality ratings, although with less
variability. Among all evaluated systems, the ratings given to the synthesis from
Fluidsynth are the most scattered: this may suggest that some listeners are more
sensitive than others to an unrealistic feature in this synthesis algorithm.

96

4.1. FIRST ITERATION OF DDSP-
PIANO

CHAPTER 4. DDSP-PIANO

4.1.4 Qualitative Results: Comparison with Known Behaviors

Since the synthesis relies on spectral modeling, it is possible to examine the behavior of the
model and interpret what it has learned more easily than with pure deep learning models.
To this end, the following section will relate different DDSP-synthesizer inputs and outputs
with the results expected according to signal-based and acoustic understanding.

Figure 4.5: Amplitude control input (in log scale) of the additive synthesizer predicted
by the Default model for a sustained A3 note with a MIDI velocity value of 100.

For a single input note, the note amplitude envelope ap(τ) predicted by the Default
configuration of DDSP-Piano is shown in Figure 4.5. In the logarithmic scale, one can
see that the amplitude decays at two distinct and successive rates: the piano note decays
faster right after the onset before settling down to an aftersound with a slower decay.
This corresponds to the “double decay” phenomenon mentioned in Section 2.3.2. No
prior knowledge of this effect was incorporated in the architecture of DDSP-Piano but
thanks to the recurrent layers, it has successfully captured it directly from the audio data.
Thus, explicitly modeling of the double decay is not necessary for improving the synthesis
quality, but it can help reducing the number of training parameters nonetheless, as it is
now done by Simionato et al. (2024).

The filtered noise output by the subtractive synthesizer from a real test performance
input is shown in Figure 4.6. The audio is represented with the MIDI-filter-bank-based
spectra proposed by Cooper et al. (2021), which has the advantage of being aligned
both in time and frequency with the piano roll representation of the MIDI input. Noise
is synthesized in all frequency bands during note onset times, which corresponds to the
impacts of the key on the keyboard base and the hammer on the string. However, the noise
spectrum also presents a correspondence between the played notes and the energy location
in frequency, which can coincide with the piano soundboard modes, as explained in Section
2.3.3. The model successfully replicated this relationship between the soundboard modes
and the input pitch by learning from the target audio data, without the need for explicit
modeling of the soundboard modes, which can be quite challenging (Chabassier et al.,
2013).

Several participants in the listening test have reported hearing a continuous back-
ground noise in the lower frequencies of the samples synthesized by the model. The

97

4.1. FIRST ITERATION OF DDSP-
PIANO

CHAPTER 4. DDSP-PIANO

0.0 0.5 1.0 1.5 2.0
Time

40

50

60

70

80

90

100

110

120
M

ID
I p

itc
h

Figure 4.6: MIDI-filter-bank-based spectra (Cooper et al., 2021) of the subtractive syn-
thesizer output. The active piano roll of the input performance is superposed over in
black. Both are zoomed around the MIDI range [40,120].

authors have found, empirically, that this noise is generated by the subtractive synthe-
sizer and it is different from one piano model to another. This behavior may reflect the
varying quality of the recordings in the MAESTRO dataset. Other participants have
also shared hearing an “initial impact” at the beginning of the samples synthesized by
DDSP-Piano, as if the piano soundboard was excited even before inputting any control.
We intuit this as an undesirable side-effect of segmenting the audio and MIDI recordings
into chunks, without providing the amount of time segmented notes were already play-
ing before the beginning of a chunk. Smooth transitions between consecutive segments
have been addressed by Hawthorne et al. (2022) through providing the previous output
segment as a context side-input. Similarly, encoding the previous input segment into the
context computation may benefit DDSP-Piano.

Spectrograms of real room impulse responses have been analyzed and demonstrated
to have high energy in all frequency bands during the early reflections, and only in the
lower frequency bands for the late reverberation (Valimaki et al., 2012). As it can be
seen in Figure 4.7, some impulse responses learned by the reverb module of DDSP-Piano
do not fully align with these expectations, since one can distinguish modes in the higher
frequencies in the late reverberation. When put into relation with the reconstruction
quality presented in Figure 4.3, the least well-modeled pianos (most notably from the
years 2006, 2004, and 2011) show such modes in their impulse responses estimated by
the model. These modes may correspond to either prevalent note partials in the training
data (as we observed before adding the L1 reverb regularization constraint) or soundboard
modes, which can also be simulated with reverberation algorithms (Bank et al., 2010).

In either case, such features should have been generated by other DDSP components

98

4.1. FIRST ITERATION OF DDSP-
PIANO

CHAPTER 4. DDSP-PIANO

0
512

1024
2048
4096

Hz
2004 2006 2008

0
512

1024
2048
4096

Hz

2009 2011 2013

0
512

1024
2048
4096

Hz

2014 2015 2017

0 0.5 1 1.5
Time

2018

-60 dB

-40 dB

-20 dB

+0 dB

Figure 4.7: Mel-spectrograms of the reverb impulse responses {IRi}i≤I learned by the
Default configuration for each recording year in the MAESTRO dataset.

instead. Despite the L1 regularization, the reverberation module remains too expressive
and does not achieve a realistic-sounding reverberation, as it also tries to model behaviors
not related to the recording environment.

99

4.1. FIRST ITERATION OF DDSP-
PIANO

CHAPTER 4. DDSP-PIANO

Section summary - First Iteration of DDSP-Piano

The presented DDSP-Piano model extends the original DDSP work for the task of
polyphonic piano audio synthesis from MIDI. It includes high-level modeling knowl-
edge, inherited from physical and signal modeling, to explicitly handle specificities
of the instrument, in conjunction with the expressivity of deep neural networks.
Through a subjective evaluation, the hybrid model, with significantly fewer pa-
rameters, achieves better synthesis quality than a reference neural model. Yet,
while the quality is on par with wavetable-based synthesis, it is less realistic than
physical-based synthesis. Thanks to its interpretability, further analysis of the
model behavior was conducted, revealing that some results found in acoustic mod-
eling works were reproduced by the model from the data. It has also been revealed
that the different sound components were not as well disentangled as intended when
designing the model architecture, which opens up perspectives for further integra-
tion of acoustic modeling knowledge as constraints, and for adapting the training
procedure with regard to such constraints.

100

4.2. IMPROVING DDSP-PIANO CHAPTER 4. DDSP-PIANO

Tuning model

Additive
Synth

Filtered
Noise

Reverb

Multi-Scale Spectral Loss

Note Release
Feedback

Delay Netwok

reverb params

Note conditioning
(pitch, vel)

Target audio

Monophonic Network

Li
ne

ar

Li
ne

ar

Li
ne

ar

G
R
U

Pedals

Synthesized audio

Context Network
Li
ne

ar

Li
ne

ar

Fi
LM

G
R
U

IR

Instrument ID

Figure 4.8: Full architecture of DDSP-Piano v2. The blue rounded boxes represent the
trained modules for the control of the synthesis. The weights of the grey Tuning Model
are optimized beforehand and are frozen during neural optimization. Modules with a
thickened border are applied along each monophonic voice. Differentiable signal processing
and synthesis layers are represented by yellow hexagons (Additive, Filtered Noise, and
Reverberation). Finally, the MSS loss compares the input target signal (bottom left) and
the output synthesized sound (bottom right).

4.2 Improving DDSP-Piano

The previous section presented the first proposition of a DDSP-based piano audio synthe-
sizer from MIDI. It combines expressive neural network layers with explicit modules that
embed modeling knowledge of the instrument: this modular approach allows for tackling
specificities of the piano sound in a targeted manner. However, while the overall synthesis
quality appears to be quite decent and surpasses a pure neural benchmark, some indi-
vidual modules did not converge as expected. This section will go over a few proposed
modifications to the model, addressing some of these concerns, along with early evaluation
results.

4.2.1 Architectural Changes

The full architecture of the updated DDSP-Piano is illustrated in Figure 4.8.

The most apparent issue with the first iteration of DDSP-Piano is its inability to
fine-tune the frequencies tuning parameters to the target pianos. A few modifications are
suggested for the inharmonicity model and the detuner, while their new optimization
strategy will be presented in the next section. The detuner is replaced by the parametric
tuning model of Rigaud et al. (2011), detailed in Equation 2.14 of Section 2.3.4, that

101

4.2. IMPROVING DDSP-PIANO CHAPTER 4. DDSP-PIANO

takes the explicit inharmonicity model into account for modeling the tuning devia-
tions from the equal temperament. Added parameters are the per-piano reference notes
{xpitch

ref,i }i≤I , bass asymptotes {βi}i≤I , and decrease slopes {αi}i≤I of the parametric octave
type model. Similarly for the inharmonicity model, the instrument-specific modifiers
{δi, bi}i≤I are removed in favor of instrument-specific bass and treble linear asymptotes
{αB,i}i≤I , {βB,i}i≤I , {αT,i}i≤I and {βT,i}i≤I .

Moreover, the memory bottleneck of the model lies in synthesizing all nstring × K
individual partials for all P voices. Since retrieving the correct partial beatings through
note duplication failed, we set nstring to 1 in order to spare some memory space.

Since the instrument-specific modifiers are removed, the Z-Encoder is simply inte-
grated into the Context Network. Its instrument embedding output is applied through
a Feature-wise Linear Modulation (FiLM) layer (Perez et al., 2018), which has notably
found usages for global conditioning (Hawthorne et al., 2022). Other modifications to
architectures of the context C and monophonic networks M are shown in Figures 4.9a
and 4.9b.

Context Network

D
en

se
(6
4)

G
R
U
(6
4)

D
en

se
(6
4)

co
nc
atD
en

se
(3
2)

D
en

se
(3
2)

D
en

se
(1
6)

D
en

se
(1
6)

Li
ne

ar
(3
2)

Li
ne

ar
(6
4x

2)

Fi
LM

D
en

se
(3
2)

D
en

se
(3
2)

Li
ne

ar
(3
2)

(a) Updated context Network C.

Monophonic Network

Li
ne

ar
(1

)
Li

ne
ar

(1
28

)
Li

ne
ar

(9
6)

M
LP

(6
4)

G
R
U

 (
19

2)

co
nc

at

co
nc

at

3x
 M

LP
(6

4)
3x

 M
LP

(6
4)

3x
 M

LP
(6

4)

(b) Updated monophonic network M.
MLP are stacks of 3 Dense layers.

Figure 4.9: Updated architectures of the Context and Monophonic networks. Their inputs
and outputs remain unchanged from their first version illustrated in Figure 4.2a and 4.2b.
Layer normalization is applied before applying the activation function of each Dense layer.
Numerical shapes reflect the implementation of the presented DDSP-Piano v2 model.

Another shortcoming of the first DDSP-Piano is its reverb module that has learned
unrealistic features for usual room reverberations. Despite an optimization constraint
through an L1 regularization, the module remained too expressive. Therefore, the explic-
itly learned FIRs are replaced by a differentiable Feedback Delay Network (FDN)-
based reverb module, with implementation and default parameters taken from Lee et al.
(2022)8. In the same manner as spectral modeling for instrument sound synthesis, the
FDN structure is motivated by modeling knowledge of natural reverberations, achieving
realistic reverb FIRs with fewer parameters. One can refer to the works of Lee et al.
(2022); Santo et al. (2023) for an in-depth explanation of the layer: notably, the early
reflections are still modeled by a short FIR filter while the late reverberation is modeled
by the FDN structure. The structural constraints inherent to the module should prevent

8The re-implementation of this module was done by Pierre-Hugo Vial in the context of the ANR
project AQUA-RIUS (ANR-22-CE23-0022).

102

4.2. IMPROVING DDSP-PIANO CHAPTER 4. DDSP-PIANO

it from learning unrealistic features and help to achieve better behavior disentanglement
between the DDSP components.

Here, the instrument-specific FDN parameters are jointly learned with the other layers
parameters of DDSP-Piano. Differentiable reverbs are usually optimized by providing dry
and wet audio signals, but we do not have access to the raw piano sound. However, the
reverberation is fixed for each recording environment, independently of the notes being
played: this signal chain is reproduced in the model architecture, and multiple recordings
in the same environments are available in the dataset. Learning through these recordings
should let the FDN module capture this invariant filtering of the environment.

Ultimately, to align with the Piano-TTS benchmark, the audio sampling rate is in-
creased to Faudio = 24kHz, which also requires an increase in the number of partials and
filter bands to K = 128 and Q = 96. Also, during inference, a 0.5 second warm-up is ap-
plied before synthesizing MIDI files. This warm-up aims to mitigate the “initial impact”
issue reported earlier, by running the RNN layers for a few steps with all-zero controls
inputted.

4.2.2 Revised Training Procedure

Compared to the initial training strategy presented in Section 4.1.2, we no longer alternate
between two phases. Instead, the estimation of frequency-related parameters (from the
parametric tuning model) is supposed to be completely done in a first stage, then the neu-
ral layers parameters are optimized afterward in a second stage. The tuning parameters
estimation is detailed afterward. As for the neural optimization phase, since the reverb
module was changed, the loss function is simply reduced to the MSS loss between the
target and synthesized signals. Other optimization parameters remain unchanged (Adam
learning rate, frame rate, segment duration, validation-based early stopping), with the
exception of the increased output length due to the audio sampling rate upgrade.

On the Estimation of Tuning Parameters with Gradient Descent

As exposed in Section 3.2.3, DDSP-based synthesizers suffer from convergence issues
when estimating partial frequencies from the MSS loss. DDSP-Piano is no exception to
this symptom: both the Deep Inharmonicity and the Default models do not surpass the
No Fine-Tuning ablated variant, implying that the optimization phase for tuning the
inharmonicity and detuning controls failed.

A logical approach to tackle this issue is to investigate if the neural optimization
can be improved with the recent propositions, mentioned in Section 3.2.3, which aim to
provide informative gradient direction for matching frequencies. Namely, we explored and
combined the surrogate synthesis method of Hayes et al. (2023), different variations
of the MSS loss in the manner of Schwär and Müller (2023) and an early adaptation of an
optimal transport-inspired loss (Latorre et al., 2023) in the spectral domain (similar
to the work of Torres et al. (2024)). They have been applied for our specific case of
piano note frequency estimation, where the partials can be matched by unconstrained
oscillators or by inharmonic-constrained oscillators: in the first case, each partial
frequency has to be estimated individually, while the latter case reduces the problem into

103

4.2. IMPROVING DDSP-PIANO CHAPTER 4. DDSP-PIANO

a {f0, B} parameters estimation. We also investigated a strategy inspired by progressive
growing and Hahn and Roebel (2013), where partials are introduced one at a time, to
iteratively refine the inharmonicity estimation. Furthermore, since the MIDI transcript
of the piano note is available, we also explored starting the f0 optimization from the
quantized MIDI frequency: initializing the learning from a starting point close to the
real target frequency should help the convergence. Finally, the configurations were tested
on synthetic inharmonic signals and on real piano signals (where partial amplitudes
have to be jointly estimated).

During the experiments, we noticed that the most robust configuration for matching
the partials of individual real piano notes is using inharmonic-constrained oscillators with
the first partial initialized at the quantized MIDI frequency. Other strategies (surrogate,
optimal transport, different MSS configuration, and the progressive growing) do not seem
to significantly improve the convergence and can be detrimental in some configurations.

However, while it seems feasible to use gradient descent techniques to fit the frequency
parameters for a single piano note, the framework fails to generalize on multiple notes to
estimate simultaneously. Indeed, given a trainable tuning model (either from Equation
4.4 or with a MLP), estimating the tuning and inharmonicity curves over the pitch range
fails when optimizing in the audio modality through the differentiable additive synthesize
and the MSS. We noticed that the convergence fails even on synthetic audio and when
initializing on the MIDI quantized frequencies. This calls for a two-step optimization
scheme, where detuning and inharmonicity coefficients have to be estimated on individual
notes, then a tuning model should fit on these estimated coefficients to get a generalized
model over the tessitura.

This subdivision of the detuning and inharmonicity curves estimation further reduces
the relevancy of using the full DL optimization scheme. Usually, the main advantage of
DNNs training is to model complex and implicit relationships in an end-to-end manner.
Yet, an ideal full end-to-end training of DDSP-Piano would require estimating the partial
frequencies of notes played simultaneously in the polyphonic recordings, which is an even
harder setting than the previous fitting on individual notes. Therefore, we leave the
neural optimization of the tuning parameters through audio on the full pitch range as
future work.

Back to Signal-based extraction

From the attempts at strengthening the neural estimation of the frequency-related layers,
we have concluded that the safest approach would be to first estimate the frequencies of
individual piano notes, then fit the tuning and inharmonicity models on those estimations,
rather than relying on matching through the audio modality. Even for individual notes,
neural optimization through DDSP synthesis does not seem reliable enough and we instead
employ a more traditional signal-based estimator designed for piano notes.

Thanks to the aligned MIDI data, we first extract all MAESTRO audio segments
where only a single note is being played. Redundant notes with extreme velocities (above
100 and below 60) are discarded in order to avoid too much residual noise level that may
hinder the peak selection step. Then, the method of Hahn and Roebel (2013) is used
for the joint estimation of the notes f0 and inharmonicity coefficient. The method has

104

4.2. IMPROVING DDSP-PIANO CHAPTER 4. DDSP-PIANO

10 4

10 3

10 2 2004 2006 2008

10 4

10 3

10 2 2009 2011 2013

10 4

10 3

10 2 2014 2015 2017

40 60 80 100

2018

MIDI pitch

In
ha

rm
on

ici
ty

 c
oe

ffi
cie

nt
 (l

og
)

Figure 4.10: Estimated inharmonicity curves over the pitch range on all pianos from
MAESTRO. Star points indicate the inharmonicity values extracted from certain notes,
while the full green line is the parametric model fitted on those values. In comparison,
the dark blue curve represents the inharmonicity curve with the initial parameters from
Rigaud et al. (2011).

proven to be more efficient for such estimations than other contemporary approaches.
When failing to estimate the inharmonicity coefficient, the method returns the value
obtained from the inharmonicity model of Rigaud et al. (2011) fitted on another piano:
we thus reject those default estimations. Subsequently, the parametric tuning models
presented in Equations 2.13 and 2.14 are fitted piano-wise to the extracted f0 and B of
the notes, using the conjugate gradient descent method, as recommended by Hahn and
Roebel (2013).

The estimated inharmonicity curves on the MAESTRO pianos are shown in Figure
4.10. Assuming that the f0, B extraction is correct, the curves show that the parametric

105

4.2. IMPROVING DDSP-PIANO CHAPTER 4. DDSP-PIANO

model needed to be adjusted in the bass range when comparing with the values from
Rigaud et al. (2011) used as initialization of the first iteration of DDSP-Piano. Also, they
confirm that the inharmonicity values in the treble range are similar between pianos.

Figure 4.11 shows the estimated detuning curves piano-wise: the individual coefficients
δf0 do not seem to follow a smooth curve, yet most of them follow the expected behavior
of tuning low notes slightly lower and high notes slightly higher. The noisy curves indicate
either a bad estimation of the f0 values or that the tuning of the MAESTRO pianos should
be considered note-wise rather than fitting a model over the tessitura.

4.2.3 Evaluation

Baseline updates

The updated DDSP-Piano v2 is compared against its first iteration DDSP-Piano
v1, retrained with increased number of partials and noise filter bands to account for the
updated sample rate at 24kHz. Since it does not improve the quality of DDSP-Piano v1,
the frequency fine-tuning step is not applied.

A Regularized variant of DDSP-Piano v2 is also trained, by adding a constraint to
the early reflections of the FDN reverb module, in the same manner as the regularization
applied for DDSP-Piano v1 (Equation 4.10). Like with the first iteration of the reverb
module, the early reflections are modeled through a learnable FIR filter: this ablation
study investigates whether further regularization of the reverb (on top of the late reflec-
tions simulated by the FDN model) can improve the disentanglement of the piano sound
components.

In the meantime, the Piano-TTS model of Cooper et al. (2021) was updated by Shi
et al. (2023): this Piano-TTS v2 model is retrieved from their public repository9 and
selected as the new neural benchmark.

Updated Model Parameters Model Parameters

Piano-TTS v2 31.5M Piano-TTS v1 31.4M
- Transformer-TTS 17.6M - Tacotron-2 30.6M
- HiFi-GAN 13.9M - NSF 736.3k

DDSP-Piano v2 344.5k DDSP-Piano 512.5k
- Sub-models 341.5k - Sub-models 281.5k
- Tuning Models 70 - Tuning Models 33
- FDN Reverb 2820 - Reverb 240k

Table 4.3: Approximate parameters count of the updated and previous models. Note that
the discriminator of HiFi-GAN has been left out (since it is not used during inference),
but it represents 70.7M additional parameters during training.

For assessing the reconstruction quality of the MAESTRO pianos, the Fluidsynth and
Pianoteq benchmarks are discarded since they do not reproduce the same piano model,

9https://github.com/nii-yamagishilab/midi-to-audio

106

https://github.com/nii-yamagishilab/midi-to-audio

4.2. IMPROVING DDSP-PIANO CHAPTER 4. DDSP-PIANO

0.990

0.995

1.000

1.005

1.010 2004 2006 2008

0.990

0.995

1.000

1.005

1.010 2009 2011 2013

0.990

0.995

1.000

1.005

1.010 2014 2015 2017

20 40 60 80 100

2018

MIDI pitch

De
tu

ni
ng

 c
oe

ffi
cie

nt
s (

f 0/
f 0,

ET
)

Figure 4.11: Estimated detuning curves over the pitch range on all pianos from MAE-
STRO. Star points indicate individual detuning values extracted note-wise, while the full
green line is the parametric tuning model fitted on those values. In comparison, the
dark blue curve represents the detuning curve with the initial parameters from Hahn and
Roebel (2013).

107

4.2. IMPROVING DDSP-PIANO CHAPTER 4. DDSP-PIANO

2004 2006 2008 2009 2011 2013 2014 2015 2017 2018 Overall
Year

5.00
5.25
5.50
5.75
6.00
6.25
6.50
6.75
7.00

M
ul

ti-
Sc

al
e

Sp
ec

tra
l L

os
s

Model
DDSP-Piano v1
DDSP-Piano v2
DDSP-Piano v2 Regularized
Piano-TTS v2

Figure 4.12: Systems re-evaluation on the MAESTRO test set, broken down by recording
environments. Measured by mean and standard deviation values of the MSS difference
(Equation 3.3) with the original recordings. Lower loss values indicate better reconstruc-
tion.

and are thus unrepresentative of sampling-based and physical-based modeling on the
MAESTRO pianos.

Objective Evaluation

Figure 4.12 shows the reconstruction quality of the updated DDSP-Piano and Piano-TTS
models.

Both the first and second iterations of DDSP-Piano outperform the updated pure
neural benchmark on every recording environment, implying that the hybrid approach
still holds better reconstruction quality than more advanced TTS techniques.

The second version of DDSP-Piano outperforms the first version on every recording
environment, suggesting that the changes made to the model did improve its overall
quality. Further ablation studies are necessary in order to pinpoint the most significant
improvement, among the slightly deeper neural modules, the revamped modeling and
estimation of the frequency tuning, and the modified reverberation layer.

As for regularizing the early reflections of the FDN reverb, the comparison between
DDSP-Piano v2 and its regularized variant shows that the reconstruction quality is in-
creased when the reverb is not constrained. As illustrated in Figure 4.13, several room
impulse responses modeled by DDSP-Piano v2 (notably from years 2008, 2009, 2011,
and 2018) display the expected behavior of real reverberations, with their high-frequency
content decaying faster than their low-frequency part. In comparison, the reverberations
learned by the Regularized variant, shown in Figure 4.14, have less excessive early re-
flection coefficients, but they are overall noisier during the late reverberation part. In

108

4.2. IMPROVING DDSP-PIANO CHAPTER 4. DDSP-PIANO

0

512

1024

2048

4096

8192

Hz
2004 2006 2008

0

512

1024

2048

4096

8192

Hz

2009 2011 2013

0

512

1024

2048

4096

8192

Hz

2014 2015 2017

0 0.5 1 1.5 2
Time

2018

-60 dB
-50 dB
-40 dB
-30 dB
-20 dB
-10 dB
+0 dB

Figure 4.13: Mel-spectrograms of the impulse responses modeled by the FDN reverb layer
in DDSP-Piano v2. Loudness values are capped at 0dB for color consistency with other
reverb visualizations, but the early part of all impulse responses exceeds +7dB.

both models, very distinct resonances can be seen in the learned reverberations, which is
unrealistic for real room responses and it is a known issue of FDN-based models (Valimaki
et al., 2012; Santo et al., 2023).

While these results are very encouraging, the improvements need to be confirmed with
perceptual tests, which have to be left for future work. Readers are still invited to listen
to some synthesis examples on the accompanying website10.

10http://renault.gitlab-pages.ircam.fr/thesis-support/chap_4-2

109

http://renault.gitlab-pages.ircam.fr/thesis-support/chap_4-2

4.2. IMPROVING DDSP-PIANO CHAPTER 4. DDSP-PIANO

0

512

1024

2048

4096

8192

Hz

2004 2006 2008

0

512

1024

2048

4096

8192

Hz

2009 2011 2013

0

512

1024

2048

4096

8192

Hz

2014 2015 2017

0 0.5 1 1.5 2
Time

2018

-60 dB
-50 dB
-40 dB
-30 dB
-20 dB
-10 dB
+0 dB

Figure 4.14: Mel-spectrograms of the impulse responses modeled by the Regularized FDN
reverb layer in the DDSP-Piano v2.

110

4.2. IMPROVING DDSP-PIANO CHAPTER 4. DDSP-PIANO

Section summary - Improving DDSP-Piano

The previous section showed several shortcomings of the DDSP-Piano model. Here,
multiple improvements are presented to address specifically some of these limita-
tions. The independent Detuner module is replaced by a parametric tuning model
that takes the inharmonicity into account for predicting the note deviations from
the equal temperament. It is optimized jointly with the inharmonicity model using
a more traditional signal-based method, by first extracting the tuning and inhar-
monicity coefficients from individual notes of the dataset, instead of relying on the
spectral reconstruction loss with gradient descent. The context and monophonic
neural networks are strengthened by slightly increasing their capacity, to account
for the increased audio sampling rate. Also, the reverb layer is changed for a dif-
ferentiable FDN reverb, whose architecture is motivated by room reverberation
modeling and uses less parameters. All the modifications lead to a DDSP-Piano
v2 model that displays better reconstruction quality than the first iteration and
an improved Piano-TTS neural benchmark, according to an objective evaluation.
Further ablation studies and a subjective evaluation still need to be conducted in
order to confirm these improvements.

111

4.3. DISCUSSION CHAPTER 4. DDSP-PIANO

4.3 Discussion

4.3.1 Some Takeaway Lessons

Training a neural piano synthesizer directly on polyphonic performance data enables the
reproduction of complex interactions between different sound sources in the instrument.
Previous work mainly focuses on achieving realistic-sounding synthesis by adapting generic
state-of-the-art NAS models. However, in order to better control the learned model, an-
other challenging issue can be raised in the form of correctly disentangling the sound
components; especially when the training data do not present these components sepa-
rately.

In the continuity of the original DDSP model (Engel et al., 2020a), the proposed
DDSP-Piano model further incorporates signal-based and acoustic-modeling knowledge
into the differentiable framework for handling multiple instrument specificities. Follow-
ing the taxonomy of knowledge-inclusion presented in Section 2.4.4, this knowledge is
integrated as architectural constraints through explicit sub-models (with the parametric
tuning and inharmonicity models), layers connections motivated by meaningful inputs
and outputs (by knowing which variable contributes to which phenomenon) and variable
processing (with the monophonic network being applied on each monophonic channel
for example). The full model successfully achieves better-sounding quality than a pure
neural-based synthesizer and shows promising results for disentangling the different sound
components.

Such a hybrid framework allows for targeted observation/evaluation of the learned
behaviors and puts them into perspective with properties inherited from acoustic and
signal-based modeling. This allows for targeted improvements on sub-models in order
for them to correctly match their expected behaviors, which was the core motivation
behind Section 4.2. Such improvements can be made by leveraging more flexible neu-
ral approaches that can reproduce behaviors difficult to model explicitly, such as the
soundboard modes in our case. Yet, they can also be responsible for the imperfect disen-
tanglement of sound components between each other. Hence, improvements can be made
instead by further including knowledge through more specialized or explicit sub-modules.
However, further structuring the architecture hinders the convenient neural optimization,
and intermediary optimization steps may be necessary, as it was done with the tuning
process in Section 4.2.2.

Finally, the integrated constraints require the data to fulfill associated assumptions:
here, DDSP-Piano would not be able to profile instruments with extreme properties, such
as highly detuned pianos. On the other hand, if the data fulfills the assumptions, less
training data will be required when compared to the case when models do not incorporate
any constraints. Future physics-informed models should thus balance the neural network
expressivity and the instrument knowledge constraints to the quantity of training data
available and the desired model flexibility.

112

4.3. DISCUSSION CHAPTER 4. DDSP-PIANO

4.3.2 Future works

As mentioned previously, the model and its components can either be improved by in-
cluding more advanced neural layers and optimization techniques for better flexibility and
expressiveness, or by leveraging more physical-modeling knowledge to further constrain
them to the specific instrument. Namely:

• the harmonic content would benefit from a more robust frequency estimation
method that would, ideally, train the frequency parameters jointly with the other
piano parameters. Also, more advanced string properties mentioned in 2.3.2 were
left out of the model and would help to reach a more realistic piano sound: in par-
ticular, the longitudinal modes and phantom partials have been partially included
in the differentiable piano model of Simionato et al. (2024). At last, the bank of
additive sinuses to generate is memory consuming, which calls for exploring other
differentiable operations synthesizing controllable inharmonic spectra.

• The main limitation regarding the current partials energy distribution is the
lack of a satisfactory model of the partial amplitude modulation. We would argue
that optimizing the partial beating with gradient descent techniques can suffer from
non-convexity issues in the same way frequency estimation fails with an additive
synthesizer and the spectral loss. Indeed, beatings occur regularly at a certain
rate that needs to be estimated: to this end, Berendes et al. (2023) have proposed
an auto-encoder structure for synthetic piano sounds, while Vahidi et al. (2023)
could retrieve modulation parameters leveraging the JTFS loss that exhibits higher
structures information than the regular MSS.

• the residual noise can also be refined by adding transient modeling, in the manner
of Shier et al. (2023), to account for faster percussive elements during note onsets.

• as for reverberationmodeling, the included FDN layer achieves better realism than
raw FIR modeling, but it still exhibits unnatural resonances that could possibly be
suppressed with the colorless variant of Santo et al. (2023).

Future works could also leverage the interpretability and the differentiability of DDSP-
Piano to address other polyphonic music-related tasks, such as source separation (Schulze-
Forster et al., 2023) and self-supervised multi-pitch transcription (Engel et al., 2020b).

113

4.4. IN SHORT CHAPTER 4. DDSP-PIANO

4.4 DDSP-Piano, in short

Chapter summary - DDSP-Piano

This chapter presented the main thesis contribution for the task of piano audio syn-
thesis: DDSP-Piano, a differentiable hybrid synthesizer expanding on the DDSP
framework for handling polyphonic MIDI inputs and audio output. In tandem
with the sound structure priors inherent to the differentiable spectral modeling
components of DDSP, the model further incorporates high-level knowledge of the
instrument to specifically tackle particularities of the piano sound. Namely, the
explicit tuning and inharmonicity sub-modules contribute to the quality of the
lightweight and interpretable model, which surpasses a pure neural benchmark ac-
cording to a conducted listening test. Quantitative and qualitative evaluation of
the approach trained on MAESTRO have revealed that the model has successfully
reproduced the global spectral envelopes and has produced perceptually convincing
residual noises, while the frequency estimation of the partials and the reverb were
identified as unsatisfying. To improve these shortcomings, a second iteration of
the model has been proposed: it leverages a structurally constrained differentiable
reverb layer, and a revised tuning and inharmonicity estimation procedure. The
frequency tuning step repurposed a more traditional signal-based method, since the
gradient descent-based estimation fails, as found in the literature of DDSP-based
models. Early objective evaluation of the revised approach shows that the overall
sound quality has improved thanks to these modifications, even in comparison with
a more refined neural benchmark. While subjective evaluation of this second iter-
ation of DDSP-Piano needs to be conducted, the model can still be improved on
multiple levels, whether on specific elements of the piano sound or the unsupervised
disentanglement of these elements, in order to reach the quality of real and physical-
based piano models. Nonetheless, the chapter has explored the hybridization of DL
with domain knowledge in the context of NAS, from which arise both welcomed in-
terpretability and efficiency properties, but also optimization and disentanglement
issues. The balance between the introduced knowledge and the flexibility of DNNs
has to be adjusted following the task at hand and the resources available.

114

Chapter 5
Piano Performance Rendering from Unpaired
Data

This chapter exposes the second main contribution of this thesis, which is a piano perfor-
mance rendering model trained from unpaired data in a low-informed setting. Through
adversarial training, the model can transfer expressive qualities found in real performances
into new compositions, without seeing how the real performances differ from their original
scores in the first place.

Section 5.1 will highlight the motivations behind using unpaired data and not relying
on high-level score markings. Section 5.2 will then present the model of Renault et al.
(2023b) that performs performance rendering only in the symbolic modality, in the conti-
nuity of previous works. Then, Section 5.3 will introduce a cross-modal extension of the
model that learns expressive qualities in the audio modality and transfers them to sym-
bolic compositions, leveraging the differentiability of DDSP-Piano. The models presented
are discussed in Section 5.4, before a chapter summary in Section 5.5.

Accompanying this chapter, audio examples of the performances rendered by the mod-
els can be found online1.

5.1 Motivation

Following the literature review for performance rendering depicted in Section 3.3, three
main requirements for handling the task can be exhibited:

1. Symbolic representation of performances. Piano performances are mostly
handled in the symbolic modality, usually with the MIDI format. This choice is
motivated by the fact that such mid-level encoding is sufficient for grasping all con-
trols inputted by the performers for making expressive interpretations. However,
retrieving performances in the symbolic modality requires either a dedicated instru-
ment (such as Disklaviers presented in Section 3.1 and various MIDI controllers) or
an audio-to-MIDI transcription model that may introduce transcription errors.

1http://renault.gitlab-pages.ircam.fr/thesis-support/chap_5-2

115

http://renault.gitlab-pages.ircam.fr/thesis-support/chap_5-2

5.1. MOTIVATION CHAPTER 5. UNPAIRED PER-
FORMANCE RENDERING

2. Align performances with scores. Piano performances are defined as the dif-
ference in timing, articulation, and velocity of the played notes compared to the
raw and unexpressive rendition of the score. Gathering such features necessitates
finding MIDI performances with their associated digital scores and aligning them at
note-level. These matching and alignment steps constrain the amount of training
data (as shown in the dataset comparison Table 3.1), especially in comparison with
the large number of piano audio recordings available.

3. Use score-specific markings. The majority of research is highly informed and
entailed to the digital score format, as they take different markings (such as rests,
position in measure, ornaments, slurs, beams, etc...) into account for guiding the
expressive rendering. This reliance on score-specific markings hinders their usage
in modern music production frameworks (DAWs, sequencers, live hardware) that
do not edit symbolic music on scores but rather manipulate MIDI data directly.
Considering simple MIDI sequences as scores can be misleading: for example, the
default MIDI tempo is 120 BPM, which may not correspond to the effective tempo
in the programmed composition.

These last two points have begun to be circumvented by Zhang and Dixon (2023),
which models latent spaces of scores and performance styles directly from performances
and ignores score features altogether. However, they still need multiple performances
of the same piece by different musicians in order to disentangle the score content from
the performing style. Also, while their model is capable of transferring style from one
performance to another while preserving the content, they have not included raw scores
as an unexpressive style and have not shown how the model behaves on scores deprived
of style.

Concurrently, GANs have been successfully applied for various tasks that transfer
data from one domain to another without aligned pairs, such as image-to-image trans-
lation (Pang et al., 2022), audio timbre matching (Wright et al., 2023) or music genre
transfer (Brunner et al., 2018). In light of such results, this work attempts to address
all three points by viewing expressive performance rendering as a domain transfer task.
To this end, an adversarial approach is employed to transform MIDI scores into human-
like performances without supervision of the performance features and reliance on score
markings. A first method that still uses symbolic performances is presented in Section 5.2
along with related experiments. Then, partially addressing Point 1., a cross-modal exten-
sion is made in Section 5.3 to learn expressive features from audio performances. Both
methods are trained on publicly available datasets that are larger than those eligible for
models requiring aligned score-performance pairs.

116

5.2. RENDER PERFORMANCES IN
THE SYMBOLIC MODALITY

CHAPTER 5. UNPAIRED PER-
FORMANCE RENDERING

Score

Real
Performance

N
2C

C
ho

rd
 D

ec
od

er

C
2N

Sc
or

e
En

co
de

r
Fake

Performance

m
ix

N
ot

e
D

ec
od

er

Figure 5.1: Training pipeline for the symbolic performance rendering model R: its final
mix function modifies the score X with modifying features output by the Note Decoder,
in order to deceive the discriminators Di. During training, the unaligned score X and
performance Y are drawn at random from their respective sets.

5.2 Render Performances in the Symbolic Modality

The proposed approach, illustrated in Figure 5.1, is composed of a performance rendering
model R that takes a score X as input and produces an expressive interpretation X̃
in the symbolic modality. The rendered performances are fed into a discriminator D,
among performances Y from a dataset of recorded human performances. The performance
rendering model and the discriminator have opposed objectives, as the discriminator D
aims to differentiate the real performances from the ones rendered by the model R, while
the latter tries to produce performances indistinguishable from the real ones.

5.2.1 Models Architecture

Both the scores X and real performances Y are encoded with the note-wise representation
mentioned in Section 5.2.1, with the minimal amount of features needed to describe them:

X = {xn}n∈J1,NK = {pn, on, dn, vn}n∈J1,NK. (5.1)

The N notes are ordered by their absolute onset time: for the n-th note, pn is its normal-
ized MIDI pitch, on its delta-time with the previous note onset, or relative Inter-Onset-
Interval (IOI), capped at 4 seconds, dn its duration in absolute time and vn its normalized
MIDI velocity. While this encoding is common for representing performances, using it
as well for encoding the scores ensures compatibility with any composition in the MIDI
format and allows the usage of domain transfer techniques.

Performance Rendering Model

The penultimate layer of the performance rendering model R predicts modifying features
∆X from the score note features in order to modify them into performance-like note

117

5.2. SYMBOLIC-ONLY CHAPTER 5. UNPAIRED PER-
FORMANCE RENDERING

features X̃ through the final mix function:

X̃ = R(X)

= mix(X,∆X)

= {pn, on + δon, dnδdn, vnδvn}n∈J1,NK,

(5.2)

with δon the micro-onset timing, δdn the articulation and δvn the expressive velocity of
the n-th performed note.

These modifying features are obtained by first processing the note-wise score features
with a MLP Score Encoder. The encoder is composed of two successive Dense layers with
Leaky ReLU activation and batch normalization, and a 15% dropout between them.

Then, the same hierarchical modeling from Rhyu et al. (2022) is applied: the note-wise
features are merged into chord-wise features, which enables a more coherent modeling of
the full sequence. This note-to-chord operation, or N2C, is performed by average pooling
the features of simultaneous notes into a common chord-wise feature. The inverse opera-
tion C2N can later convert chord-wise features into note-wise features by duplicating the
chord feature for each of its notes. Both operations require the note-to-chord alignment
matrix M ∈ RNchords×N , with Nchords the number of chords in the sequence. On the con-
trary of other hierarchical strategies employed in the literature (Jeong et al., 2019a,b), the
note-to-chord alignment matrix M can be directly extracted from our low-informed MIDI
data representation. Indeed, on = 0 indicates that the n-th note is played simultaneously
with the previous one, i.e. they belong to the same chord: Nchords is thus the number of
non-zero IOI in the note sequence, and M can be built from {on}n≤N since the notes are
ordered.

N2C(x) =
Mx∑N

n=1M1:C,n

C2N(x) = MTx

(5.3)

Before returning to the note-granularity, the chord-wise features are further processed
by a Convolutional Recurrent Neural Network (CRNN) Chord Decoder, composed of a
Dense layer with LeakyReLU activation, followed by three CNN layers with increasing
output dimensions (32, 64, 128), batch normalization, Leaky ReLU activations and inter-
mediary dropout, and finally a bidirectional GRU and a Dense layer with Leaky ReLU
activation. The choice of making the GRU layer bidirectional is motivated by the fact
that performers anticipate future notes to guide the expressive direction taken for the
notes being played.

Finally, fine-grained adjustments at the note-level are made with the Note Decoder
(composed of 3 CNN layers) and a skip connection from the note-wise score encoding.
The final micro-onset timing δon is obtained through a Dense layer with linear activa-
tion function, while the articulation δdn and the expressive velocity δvn are mapped to
the [0.25, 4] range with the scaled sigmoid function sigmoid† (Equation 3.2) after their
respective linear layer.

118

5.2. SYMBOLIC-ONLY CHAPTER 5. UNPAIRED PER-
FORMANCE RENDERING

Layer Output Dimension Other parameters

Dense 4
Conv1D 128 Q = 3, BN, dropout
Conv1D 128 Q = 3
Dense 128

bi-GRU 128 dropout
Conv1D 64 Q = 9, BN, dropout
Dense 32
Dense 64 BN
Linear 1

Table 5.1: Sequential architecture of a note-wise performance discriminator. All layers
have Leaky ReLU activation functions (except for the final linear layer). Q indicates the
kernel size of the convolutional filters. BN indicates that batch normalization is performed
before applying the activation function. Dropout of 15% is applied after the concerned
layers.

Discriminator

Taking inspiration from speech processing (Kumar et al., 2019), we use a multi-scale
discriminator with ND = 3 sub-discriminators Di with identical architectures. The ar-
chitecture, laid down in Table 5.1, is mirrored from the performance rendering model R,
with the exceptions of the N2C and C2N operations, as chords in real performances are
not as easily defined as in scores. Each discriminator is fed with a downsampled sequence
of (real or rendered) performance notes by average pooling with sizes {1, 3, 9}. Discrim-
inators with longer pool sizes look at features at higher levels in the performances and
thus, can help transferring such knowledge and long-term coherence to the performance
rendering model R. To stabilize the GAN training, Gaussian noise is added to the inputs
of the discriminators, as in Brunner et al. (2018).

5.2.2 Training Strategy

Loss functions

The unsupervised LS-GAN formulation (Equation 2.23) is used to train the discriminators
and the performance rendering model. Their respective loss functions LDi

and LR,GAN

are defined as:

LDi
= E

Y∼Pperf

[∥Di(Y)− 1∥2] + E
X∼Pscore

[∥Di(R(X))∥2] ,

LR,GAN = E
X∼Pscore

[
ND∑
i=1

∥Di(R(X))− 1∥2

]
.

(5.4)

We have observed that the instability of the vanilla adversarial training leads the
performance rendering model to displace the notes in extreme values, causing the original

119

5.2. SYMBOLIC-ONLY CHAPTER 5. UNPAIRED PER-
FORMANCE RENDERING

piece to be unrecognizable. To ensure that the performances remain fairly close to their
scores, an additional regularization term Lscore is added:

Lscore(X) = λscore∥
R(X)−X

X
∥2, (5.5)

with λscore a fixed vector weighting how much each performance component (timing,
articulation, velocity) can deviate from the score indication. Here, λscore = {1, 1, 0.1}.
Comparing the predicted deviations with the original score features with relative difference
instead of the absolute difference is musically more meaningful as large deviations are more
detrimental for fast passages (where IOI between notes are short) than in slow passages.

The total loss for the performance rendering model R is:

LR(X) = λGANLR,GAN(X) + Lscore(X), (5.6)

with λGAN the balance between the GAN objective and the score regularization loss. This
balance is decisive for the final behavior of R since the two loss components have opposite
influences on its training: Lscore prevents R from modifying the scores while LR,GAN

encourages exploring different interpretations in order to deceive the discriminator. In
our experiments, λGAN = 2.

Both models are trained simultaneously with their respective Adam optimizer and a
learning rate of 10−5.

Datasets

Training and evaluation were conducted using the scores available in ASAP and the MIDI
recorded performances of MAESTRO. At the time, ASAP was the largest dataset of piano
scores publicly available, while MAESTRO is still the largest dataset of recorded MIDI
performances in duration (ASAP surpasses it in terms of number of performances, as
shown in Table 3.1). Since the proposed method does not require aligned scores and
performance, the entirety of both datasets can be used, which amounts to 962 training
performances, 137 validation performances, 107 training scores, 15 validation scores, and
35 test scores (following the train-validation-test split of Liu et al. (2021)).

The velocity indications were kept from the ASAP scores in MIDI format, which can
either be constant throughout the piece or mapped from the score nuances and markings
using simple rules. The scores and performances are split into segments of 128 consecutive
notes, with random pitch shifting during training by±7 semi-tones for data augmentation,
as done by Maezawa et al. (2019). Validation data is used to monitor and avoid potential
over-fitting of the performance rendering model by reproducing the training performances
from their corresponding scores.

5.2.3 Results and Analysis

A short listening test has been conducted to evaluate the interpretation quality of the
performances rendered by the model. 7 scores from the ASAP test subset were selected,
covering 5 different composers. 4 MIDI performances were generated by different methods
for each score:

120

5.2. SYMBOLIC-ONLY CHAPTER 5. UNPAIRED PER-
FORMANCE RENDERING

1 2 3 4 5
Score

Liszt - Etude n°6

Beethoven - Sonata n°8

Beethoven - Sonata n°18

Schubert - Wanderer Fant.

Schubert - Sonata n°13

Bach - BWV 873

Chopin - Etude n°12

Human
VirtuosoNet
Proposed
Deadpan

Model
1

2

3

4

5

6

7

8

Sc
or

e

**
*

ns

Figure 5.2: Box-plot of the MOS of the different performance rendering methods: piece-
wise at the left and overall at the right, with Holm-Bonferroni corrected two-sided Mann-
Whitney U tests. The thickened bars indicate the median values while the white triangles
indicate the mean values. p-value annotation legend: ns for p > 0.05; * for p ≤ 0.05; **
for p ≤ 0.01; *** for p ≤ 10−3 and **** for p ≤ 10−4.

• Human is a corresponding human performance from the ASAP dataset.

• Deadpan is the direct export of the MIDI score.

• a rendition by our Proposed approach.

• a rendition from the graph-based variant of VirtuosoNet (Jeong et al., 2019b),
a highly-informed model using score markings in MusicXML format and is trained
with a private dataset of 226 scores matched and aligned with MAESTRO perfor-
mances, which is larger than ASAP.

The first 20s of each performance were synthesized using the Arturia Piano V3 software
2, a physical-based piano synthesizer. 19 professional audio and piano players were asked
to rate the naturalness of the presented performances, using a 5-point Likert scale (from
1 - Bad, to 5 - Excellent). Each trial randomly presented 3 different performances from
each method. Results are reported in Figure 5.2.

The Holm-Bonferroni corrected two-sided Mann-Whitney U tests indicate a statistical
difference at α = 0.05 between the Human rendition and each other methods, and between
VirtuosoNet and Deadpan. The overall results show that the proposed approach does
enhance the scores with expressive features in comparison to the raw rendition of the

2https://www.arturia.com/products/software-instruments/piano-v/overview

121

https://www.arturia.com/products/software-instruments/piano-v/overview

5.2. SYMBOLIC-ONLY CHAPTER 5. UNPAIRED PER-
FORMANCE RENDERING

piece, but still not with the same amount of naturalness as actual pianists and the highly-
informed VirtuosoNet. This was to be expected as our proposed unsupervised training
task without score markings is harder than the training objectives of VirtuosoNet, for
about the same quantity of training data.

By examining the ratings piece-wise, one can notice the poorer renditions of the pro-
posed method for slower tracks (Schubert’s 13th Sonata and Beethoven’s 18th Sonata).
This may suggest that the model lacks an understanding of the global musical content
of the scores and applies similar modifying features for every track, which renders inap-
propriate performances for slower-paced compositions. However, we have observed dur-
ing preliminary experiments that some other configurations of the model (with different
loss weightings for instance) do not exhibit such an issue, but they render less realistic
performances overall than the presented configuration. Such sensibility to training hyper-
parameters is typical of GANs and we hope strengthening the score understanding of the
model would reduce this instability.

Symbolic performance rendering with unpaired data

The presented model addresses piano performance rendering in a novel setting,
without learning from score-performance pairs and ignoring markings exclusive to
the music sheet format. Instead, it views the task as a domain transfer task in
the symbolic modality: using a multi-scale performance discriminator, the model
transforms sequences of notes from the unexpressive score domain into the expres-
sive performance domain. In this manner, a score dataset and a performance dataset
can be used for training without going through the endeavor of finding and align-
ing matching pairs. An early subjective evaluation shows that the model shows
expressive qualities in the performance renditions in comparison to the plain score,
although not with the same naturalness as a fully supervised approach and the
human interpretations.

122

5.3. CROSS-MODAL EXTENSION CHAPTER 5. UNPAIRED PER-
FORMANCE RENDERING

Sc
or

e
En

co
de

r

Fake MIDI
Performance

Fake Audio
Performance

DDSP-Piano

Synthesized
Audio

Performance

M
ID

I c
on

ve
rte

r

N
2C

C
ho

rd
 D

ec
od

er

C
2N m
ix

N
ot

e
D

ec
od

er

MIDI
Score Real MIDI

Performance
Real Audio
Performance

D
D

SP
 S

yn
th

s

G
lo

ba
l /

 M
on

o
ne

ts

Tu
ni

ng
 m

od
ul

es

Figure 5.3: Cross-modal extension of the unpaired performance rendering model. The
multi-scale audio discriminator is fed with real audio performances y, real symbolic per-
formances that were synthesized into audio S(Y), and fake performances S(R(X)) syn-
thesized by the performance rendering model R and DDSP-Piano S from scores X. Note
that all three inputs are unaligned. The pre-trained differentiable DDSP-Piano syn-
thesizer is frozen during the training of the performance rendering model: it allows to
transmit the gradient from the audio modality back to the symbolic modality.

5.3 Cross-Modal Extension

As stated in the motivations Section 5.1, the three usual requirements for training a
performance rendering model are 1) to get performances in the symbolic modality, 2)
to compare the performances with their original compositions and 3) to leverage music
sheet-exclusive markings. The model presented during the previous Section 5.2 sets aside
the last two requirements by using adversarial training to transfer simple MIDI scores
into MIDI performances.

In this section, a cross-modal extension of the method is proposed to remove the first
requirement to an extent, by learning expressive features from audio performances instead
of symbolic performances. This idea was already proposed in the work of Wang and
Yang (2019) that directly synthesizes audio performances from score inputs. However, its
controllability is limited since the obtained performances entangle the instrument timbre
with the underlying controls, and the users cannot modify them independently afterwards.

Instead, the proposed extension outputs piano performances both as audio waveforms
and as MIDI sequences, by inserting a frozen DDSP-Piano as a lightweight differentiable
bridge between the two modalities. The overall model architecture is depicted in Figure
5.3.

Due to time constraints, this idea has not been fully developed and evaluated, as the
results can still be improved, according to our informal listening.

123

5.3. CROSS-MODAL CHAPTER 5. UNPAIRED PER-
FORMANCE RENDERING

5.3.1 From note-wise to frame-wise Conditioning

As mentioned in Section 2.1.3, different encodings of symbolic music are possible and need
to be chosen efficiently for the task at hand. For piano performance rendering, Section 3.3
showed that encoding performances as sequences of notes is preferred, since they efficiently
embed the expressive modifications made to the score. On the other hand, while multiple
encodings of MIDI have been used for audio synthesis (Section 3.2), frame-wise encodings
are the most commonly used in the literature (the flagship being the piano rolls), since
their temporal relation with audio is a simple upsampling from the frame rate to the
sample rate.

In the continuity of these works, our proposed performance rendering model encodes
performances as note sequences, while DDSP-Piano takes frame-wise performance condi-
tioning inputs. Converting a MIDI sequence from a note-wise to a frame-wise encoding
necessitates finding in which quantized time frames each note is present, which calls for a
rounding operation. While the conversion is easily feasible offline, the non-differentiability
of the rounding operation prevents the seamless concatenation of our performance ren-
dering and audio synthesis models.

The problem is similar to the duration modeling task in TTS, where sequences of
words have to be adapted to the frame-wise representation of the acoustic model output
(often the mel-spectrogram). One can think of adapting their proposed methods (Elias
et al., 2021; Nguyen et al., 2023), but they assume that the words do not overlap since
the voice is monophonic. However, in our case of polyphonic piano performances, notes
can clearly overlap with each other.

Instead, we take inspiration from Mikkonen et al. (2023) that implemented a differen-
tiable delay line for magnetic tape modeling. Notably, they need to predict a time-varying
number of delayed samples between the recording and playback heads of the tape recorder.
To this end, they allow an input signal sample to “bleed” between two output samples
when the delay value is non-integer. This is done by converting the sequence of delay
values into an alignment matrix between the input and output time ranges: each delay
value is transformed into a “one-hot”-like vector where a value of 1 is located at the
corresponding output index and the rest of filled with zeros. The differentiability arises
through the fact that non-integer values are distributed between the two covered bins:
for example, a value of 1.2 is represented by a vector with values 0.8 at index 1, 0.2 at
index 2, and 0 elsewhere. The delayed output signal is obtained by matrix multiplication
between the input signal and the alignment matrix.

This soft one-hot encoding sOHD(x) ∈ [0, 1]Dof a value x ∈ R along a range of depth
D ∈ N∗ can be expressed as:

sOHD(x) := max(0, 1− |range(D)− x|), (5.7)

with range(D) := [0, 1, ..., D − 1] the range vector of length D.
Similarly, we define a soft ceiling encoding sCeilD(x) ∈ [0, 1]D for the same value x

and depth D, which gives 1 for indices lower than x and 0 for those higher, with the same
smoothing behavior as sOH:

sCeilD(x) := min(1,max(0, x− range(D))). (5.8)

124

5.3. CROSS-MODAL CHAPTER 5. UNPAIRED PER-
FORMANCE RENDERING

Data: Notes boundaries (onsets, offsets) {ONn,OFFn}n≤N ∈ RN×2

Result: Voice assignments {qn}n≤N ∈ J0, P JN×1

State ← [0, 0, ..., 0] ; /* of size P */

for n← 0 to N do
idx ← argmin(State) ; /* get the next available voice */

if ONn ≥ State(idx) then
qn ← idx ;
State[idx] ← OFFn ;

else
qn ← 0 ; /* the note is not assigned to any voice */

end

end
Algorithm 1: Assignment of the ordered MIDI notes among the P non-overlapping
voices of the DDSP-Piano conditioning input. It can be implemented as a RNN cell.

To convert a note sequence into the frame-wise conditioning of DDSP-Piano (Equation
4.2), we first need to assign each note into one of P parallel voices, such that notes in
each voice do not overlap. Algorithm 1 gives a pseudo-code for getting the sequence of
voice assignments3 {qn}n≤N given the notes onsets ONn :=

∑N
n=1 on × Fframe and offsets

OFFn := ONn + dn × Fframe.
Then, given a maximum length T of the frame-wise conditioning, the active pitch

component xpitch ∈ RT×P can be obtained through:

xpitch = [pn × (sCeilT (OFFn)− sCeilT (ONn))]
T
n≤N [sOHP (qn)]n≤N , (5.9)

and the onset velocity component xvel ∈ RT×P through:

xvel = [vn × sOHT (ONn)]
T
n≤N [sOHP (qn)]n≤N . (5.10)

These two formulas allow for a differentiable conversion of a note-wise MIDI sequence
into the frame-wise representation of DDSP-Piano. Note that a regular piano roll can
be obtained from the above operations by ignoring the voice assignment step. The notes
lost during the conversion are those that would exceed the polyphonic capacity of DDSP-
Piano (similarly to analog and digital synthesizers) and those that are played after the
maximum segment duration supported during training.

5.3.2 Training Setup

The adversarial training of our cross-modal performance rendering model is also extended
from the symbolic-only baseline presented previously in Section 5.2.2. The symbolic
performance discriminator is replaced by an audio performance discriminator, with also
a multi-scaling strategy. Notably, real symbolic performances are also included in the

3In this chapter, a monophonic voice is notated q instead of p in the previous chapters, to distinguish
it from a single note pitch.

125

5.3. CROSS-MODAL CHAPTER 5. UNPAIRED PER-
FORMANCE RENDERING

training to prevent the audio discriminator from identifying fake performances solely on
the piano timbre of DDSP-Piano, which can differ from the piano used in the real audio
recordings. The LS-GAN objectives are thus:

LDi
= E

y∼Pperf

[
1

2
∥Di(y)− 1∥2

]
+ E

Y∼Pperf

[
1

2
∥Di(S(Y))− 1∥2

]
+ E

X∼Pscore

[∥Di(S(R(X)))∥2] ,

LR = E
X∼Pscore

[
λGAN

ND∑
i=1

∥Di(S(R(X)))− 1∥2 + Lscore(X)

]
.

(5.11)

Namely, the CIPI dataset is selected as a representative of the input score distribution
Pscore. Following the first train-validation-split proposed by Ramoneda et al. (2024),
the compositions are still encoded as sequences of notes without score markings. ASAP
provides the real MIDI performances Y ∼ Pperf following the train-validation-test split
from Liu et al. (2021). Finally, the ATEPP dataset represents the distribution of audio
performances y ∼ Pperf . Since no train/validation/test split was provided, we created
our own split, stratifying along the composers (72% train, 8% validation, and 20% test).
Ideally, the split should follow the pieces split from ASAP, but matching the classical
piece titles is non-trivial (Zhang et al., 2022) and left for future works.

The symbolic scores and performances are segmented into sequences of 128 notes,
while the real audio performances are split into 10s chunks at Faudio = 8kHz. A high
audio sampling rate is not necessary as the piano timbre should not be considered by the
discriminators and note displacements during performances happen on larger time scales.
A smaller variant of DDSP-Piano at 8kHz is trained on the ENSTDkCl piano model from
MAPS, for which the default tuning parameters correspond.

According to the dataset comparison in Table 3.1, the size of ATEPP is an order of
magnitude larger than datasets with recorded symbolic performances (ASAP and MAE-
STRO). Other performance rendering works using this dataset need the symbolic tran-
scription through a large AMT model. They also require either a performance-to-score
transcription model (Tang et al., 2023) or rely on the multitude of performances from
the same pieces (Zhang and Dixon, 2023). The presented approach leverages instead a
lightweight audio synthesizer, but also an audio discriminator. While the auxiliary mod-
els required by these three approaches may be of similar sizes, our adversarial approach
does not rely on multiple performances per composition. To evaluate this property, we
would need to compare our cross-modal method to the model of Zhang and Dixon (2023)
on a subset of ATEPP where a single performance is kept per composition. Instead, the
comparison between using a side NAS model or an AMT model can be made by training
the symbolic-only variant of our approach on the provided transcriptions of ATEPP as
an ablation study.

5.3.3 Qualitative Analysis

Through informal listening, we found that the expressive quality of the performances
rendered by the cross-modal approach is not sufficient as of writing. Audio examples are

126

5.3. CROSS-MODAL CHAPTER 5. UNPAIRED PER-
FORMANCE RENDERING

(a) Deadpan/unexpressive rendition of the composition.

(b) Expressive rendition by the proposed cross-modal variant.

Figure 5.4: Excerpt of Beethoven’s 8th Sonata, 3rd Movement (Figure (a)) rendered into
a performance (Figure (b)) by the proposed cross-modal model. Each symbolic excerpt is
visualized by an active velocity piano roll (top) and a velocity plot (below), on the Logic
Pro X software.

publicly available and the readers are invited to them on the accompanying website4.
For instance, one can listen to the rendition of the second part of Beethoven’s 8th

Sonata, 3rd movement (also illustrated in Figure 5.4). In this example, the model has
reproduced several playing techniques that are found in realistic performances, namely:

• Nuances and loudness variations: despite a constant velocity from the composition
input, the rendered performance exhibits different velocity values for each note. This

4http://renault.gitlab-pages.ircam.fr/thesis-support/chap_5-3

127

http://renault.gitlab-pages.ircam.fr/thesis-support/chap_5-3

5.3. CROSS-MODAL CHAPTER 5. UNPAIRED PER-
FORMANCE RENDERING

behavior is realistic as human pianists cannot play successive notes at exactly the
same velocity. Also, accompanying an ascending (respectively descending) melody
line with an increase (respectively decrease) in loudness is also an artistic choice
commonly made by interpreters. Yet, voicings are not well reproduced by the model
as notes in the melody line do not have louder velocities than the accompanying
chords.

• Simultaneous notes spreading: upon chord onsets, the individual notes are not
played exactly at the same time, as a real pianist would do. Particularly in the
second half of the excerpt, the Bb/F chord is played in an arpeggiated fashion that
reinforces a “dramatic” effect.

• Tempo variations: changes in tempo can be heard throughout the rendered perfor-
mance. However, it has been analyzed that realistic tempo curves often fit to the
structure of the piece (Widmer and Tobudic, 2003), which is not the case in the
performance rendered by the model as there are too many tempo changes per mu-
sical phrase. Therefore, because of this expressive effect being wrongfully applied,
the full performance can be perceived as unrealistic (Cancino-Chacón et al., 2018).

As such, since the quality of the generated performances is not satisfying, and given
that perceptual evaluation is time and resource-consuming, the perceptual evaluation is
left for future work after improvements of the method.

Section summary - Cross-modal Extension

This section extends the previous unsupervised piano performance rendering model
to also learn expressive qualities from audio recordings. To this end, DDSP-Piano is
inserted as a differentiable bridge between the symbolic and audio modalities, and
the symbolic discriminator is changed into an audio performance discriminator.
The concatenation of the performance rendering model with the audio synthesizer
requires the conversion of the MIDI performances from a note-wise to a frame-wise
encoding (which are suited for their respective tasks). To the extent of our knowl-
edge, differentiable conversion between the different symbolic music encodings has
not been tackled in the literature: we propose a learning-free method to translate
note sequences into piano roll-like encodings. Consequently, the full cross-modal
approach can be trained using unpaired symbolic scores and audio performances
from the larger ATEPP dataset. However, some amount of symbolic performances
are still needed to prevent the discriminator from overfitting on the instrument tim-
bre. As of writing, the model quality can still be improved and evaluations are left
for future works.

128

5.4. DISCUSSION CHAPTER 5. UNPAIRED PER-
FORMANCE RENDERING

5.4 Discussion

As suggested by the subjective evaluation, the proposed performance rendering model
in the symbolic domain lacks an understanding of the musical content of a score and
can apply inappropriate performance features. This could be expected as high-level fea-
tures of the score, such as tempo, key, and time signatures, are not as explicit as using
score markings, like in previous works (Jeong et al., 2019b; Rhyu et al., 2022; Maezawa
et al., 2019). Choi et al. (2020) evaluate their performance generation model extracting
statistics, such as note densities, mean note durations and velocities, and pitch range.
Extracting and providing such statistics from the score may help our performance ren-
dering model in understanding the structure and style of the score without labeling or
markings. Moreover, transformer-based models have been popular for modeling both
symbolic compositions (Huang et al., 2019; Dong et al., 2023) and symbolic performances
(Borovik and Viro, 2023; Tang et al., 2023) as they can more efficiently model long-term
dependencies between sequence elements than RNN and CNN. Such architecture could
benefit our approach, especially with the increased amount of usable data offered by the
unsupervised training setting.

Another limitation of both variants of our performance rendering model is its lack
of controllability. While the cross-modal variant still lets the users access the symbolic
modality of the rendered performances, no high-level controls are available for guiding the
rendering process. Organizing the real performances into sub-domains (by providing com-
poser and/or performer labels for example) and employing an auxiliary classifier during
training (Odena et al., 2017) can provide a style control over the rendering. However, this
would diminish the purpose of the current unsupervised adversarial training that can be
fed with unlabeled real performances. Instead, self-supervised strategies can be consid-
ered by training the rendering model to also produce performances that match extractable
features, such as the symbolic statistics mentioned previously, or the mid-level perceptual
features from Chowdhury and Widmer (2021) that quantify expressive qualities in audio
recordings.

Moreover, the present work only focuses on classical piano music to be comparable with
previous supervised approaches. Yet, since it does not rely on training score-performance
pairs, it can be used for rendering performances for other music genres and instruments,
providing symbolic or audio datasets.

Finally, while the cross-modal variant alleviates the need to transcribe performances
from audio to MIDI, it instead uses an audio synthesizer and a discriminator to handle the
two modalities. As such, both methodologies are entailed to the quality of their auxiliary
model (for AMT or NAS). Also, while we leveraged a pre-trained DDSP-Piano model,
other learning-free but differentiable methods can be used instead, such as differentiable
sampling-based synthesis (Sumino et al., 2020).

129

5.5. IN SHORT CHAPTER 5. UNPAIRED PER-
FORMANCE RENDERING

5.5 Performance Rendering with Unpaired Data, in

short

Chapter summary - Performance Rendering with Unpaired Data

This chapter presented a new approach to piano performance rendering by address-
ing three training requirements systematically found in the literature: 1) gathering
performances in the symbolic modality, 2) comparing the performances with their
original compositions and 3) relying on music sheet-exclusive markings. The first
two points call for multiple pre-processing steps in order to gather adequate data,
while the third point limits the scope of application to music written as scores. Our
approach first circumvent the last two points by viewing performance rendering
as a domain transfer task from unexpressive score music to expressive interpreta-
tions. To this end, scores and performances are encoded in the same manner as
sequences of notes with minimal features, and an unsupervised adversarial training
is employed to learn expressive qualities without providing score-performance pairs.
Through a listening test, the approach demonstrates better expressive qualities than
the direct rendition of the scores, but not with the same amount of naturalness
than performances made by a supervised baseline and by humans. Nonetheless, a
cross-modal extension of the approach is proposed to also learn expressive features
from audio recordings, by including the DDSP-Piano synthesizer as a differentiable
bridge between the symbolic and audio modalities. The inclusion of DDSP-Piano
in the training pipeline requires a differentiable conversion of performances from a
note-wise encoding to a frame-wise encoding, which has been developed. Hereafter,
datasets of audio performances can be leveraged to train the performance rendering
model, which are larger than previous score-performance aligned symbolic datasets
and open up the possible usage of more powerful deep learning methods.

130

Chapter 6
Conclusion

In the context of music creation, the plethora of agents, techniques, and knowledge that
can be involved makes for a rich and diverse artistic endeavor. However, gaining access
to such expertise can be a time-consuming and/or resource-intensive endeavor, and the
application of these skills often involves undertaking non-creative but necessary tasks that
hinder the creative process. Therefore, numerous works and products aim to alleviate the
technical workload and automate portions of the musical creation process, with recent
Deep Learning (DL) approaches pushing the balance to a point where music practitioners
may feel excluded from the decision-making.

In this thesis, we explored the design of Deep Neural Network (DNN)s for seamless
integration into the music generation process while providing steerable results. They
were applied for the tasks of audio synthesis and expressive performance rendering, in the
specific case of piano music.

In order to outline the technical principles for manipulating piano music with DNNs,
Chapter 2 introduced the related scientific background. It notably presented the symbolic
encoding of music with the MIDI protocol, in the forms of note sequences or piano roll
images, and its manipulation as waveforms or spectrograms with audio signal processing.
Then, the piano was briefly described, with an emphasis on the inharmonicity of its strings
and its particular tuning as a polyphonic instrument. Afterward, the principles behind
DL were explained, with its ability to learn complex and non-linear relationships from
data observations, thanks to the principles of differentiable operations and gradient back-
propagation. The chapter concluded with insights on the inclusion of domain knowledge
to support the learning process of DNNs.

The thesis work is built upon the knowledge acquired from the literature of audio
synthesis and performance rendering, reported in Chapter 3. Several large and high-
quality datasets of piano performances were conceived, both in the symbolic and audio
modalities and eventually both. They allowed the training of DNN-based models for
synthesizing piano audio from MIDI inputs, implicitly modeling the instrument from these
input-output observation pairs. Yet, piano modeling was already tackled by physical-
based, signal-based, and sampling-based strategies, requiring various depths of explicit
modeling and parameter estimation. In a hybrid manner, the Differentiable Digital Signal
Processing (DDSP) approach combines signal processing and synthesis tools into DNNs,

131

CHAPTER 6. CONCLUSION

combining the expressivity of DL with the a priori knowledge of signal processing. As
for performance rendering, DNNs have also been employed to make expressive renditions
of musical scores, learning from note-aligned composition-performance pairs. Still, the
variety of plausible performances for the same score raises challenges in both, the modeling
and evaluation stages.

Neural Audio Synthesis informed by Instrument Knowledge. Chapter 4 pre-
sented the main contribution of the thesis for the task of piano audio synthesis: DDSP-
Piano, a differentiable hybrid synthesizer expanding on the DDSP framework for handling
polyphonic MIDI inputs and audio output. In tandem with the sound structure priors
inherent to the differentiable spectral modeling components of DDSP, the model further
incorporates high-level knowledge of the instrument to specifically tackle particularities of
the piano sound. Namely, the explicit tuning and inharmonicity sub-modules contribute
to the quality of the lightweight and interpretable model, which surpasses a pure neural
benchmark according to a conducted listening test. After quantitative and qualitative
evaluation revealing shortcomings in some module training and the overall disentangle-
ment of sound components, a second iteration of the model was proposed targeting these
limitations. The conducted work further explored the hybridization of DL with domain
knowledge in the context of neural audio synthesis, obtaining an efficient and interpretable
model that can be manipulated and has the potential to be implemented for real-world
usages.

Unsupervised Performance Rendering in a Low-Informed Setting. A novel
approach to performance rendering was proposed in Chapter 5 to circumvent the usual
training needs for gathering symbolic performances aligned with compositions with score
markings. By viewing performance rendering as a domain transfer task between unex-
pressive MIDI music and expressive interpretations, the proposal employs an adversar-
ial training that avoids the need to provide score-performance pairs or score markings.
Thanks to the chosen encoding, the model can make expressive renditions out of symbolic
music edited as in modern music production software, which has the potential to offer
more realistic feedback to composers. Still, a listening test has revealed that the expressive
qualities delivered by the approach needs to be improved in order to reach those from a
supervised benchmark and from real musicians. Expanding on the unsupervised training
setting, a cross-modal extension of the approach was proposed to also learn expressive
qualities from audio recordings. Following the development of a differentiable converter
between the representations of performances by the rendering model and DDSP-Piano,
the latter was included as a differentiable bridge between the symbolic and audio modal-
ities. This enables the usage of existing large datasets of audio performances for training
the symbolic performance rendering model, without fully transcribing them into MIDI.
Although the full experiments of this extended approach are still pending completion, the
design would allow for expressive audio renditions of compositions while still letting the
user manipulate and refine the intermediary MIDI performance.

Future works. Future technical work for each of the models presented have been
explained in greater detail in their respective chapters. Namely, DDSP-Piano calls for
a more flexible and robust frequency estimation method and for further exploration of
the DL and instrument modeling literature in order to achieve suitable disentanglement

132

CHAPTER 6. CONCLUSION

of the various factors contributing to the piano sound. As for the unsupervised perfor-
mance rendering model, the main improvements are expected to center on enhancing
the high-level understanding of music compositions and the emotional characteristics of
performances, without relying on score markings but rather on extracted features with
hand-crafted operations and/or with auxiliary models. Hence, self-supervised learning
seems suitable for improving and building around the work developed during this the-
sis. For performance rendering, steering the model training to match extracted high-level
emotional features would both increase the discriminator interpretability and the model
controllability for better interaction with the user. As for the piano audio synthesizer, in
a similar fashion to other DDSP works, it can serve as a data generator and augmentation
pipeline (by modifying specific control parameters) for training source separation mod-
els and audio-to-MIDI transcription model. In turn, such a transcription model could be
used for better estimation of the piano frequencies in a polyphonic context and would also
allow the modeling of piano instruments other than Disklaviers. Naturally, extending the
approaches to other instruments and music styles is conceivable: other polyphonic instru-
ments could be modeled with DDSP leveraging the polyphonic conditioning developed
for DDSP-Piano, while the cross-modal variant of the performance rendering model can
motivate the modeling of non-classical piano performances and eventually, to other MIDI-
controllable instruments. Notably, the developed differentiable MIDI converter opens up
the combination of multiple models dealing with symbolic music in order to achieve com-
plex and coherent modeling over multiple sub-tasks, while maintaining interpretability
and controllability thanks to the modular approach.

133

Bibliography

Agostinelli, A., Denk, T. I., Borsos, Z., Engel, J., Verzetti, M., Caillon, A., Huang, Q.,
Jansen, A., Roberts, A., Tagliasacchi, M., Sharifi, M., Zeghidour, N., and Frank, C.
(2023). Musiclm: Generating music from text. arXiv preprint arXiv:2301.11325.

Apel, W. (1997). The history of keyboard music to 1700, chapter 2. Indiana University
Press.

Askenfelt, A. and Jansson, E. V. (1990). From touch to string vibrations. I: Timing in
the grand piano action. The Journal of the Acoustical Society of America, 88(1):52–63.

Askenfelt, A. and Jansson, E. V. (1993). From touch to string vibrations. iii: String motion
and spectra. The Journal of the Acoustical Society of America, 93(4):2181–2196.

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. arXiv preprint
arXiv:1607.06450.

Badeau, R. (2005). Méthodes à haute résolution pour l’estimation et le suivi de sinusöıdes
modulées. Application aux signaux de musique. PhD thesis, Télécom ParisTech.

Bank, B. and Chabassier, J. (2019). Model-based digital pianos: From physics to sound
synthesis. IEEE Signal Processing Magazine, 36(1):103–114.

Bank, B., Zambon, S., and Fontana, F. (2010). A modal-based real-time piano synthesizer.
IEEE Transactions on Audio, Speech, and Language Processing, 18(4):809–821.

Barahona-Ŕıos, A. and Collins, T. (2024). Noisebandnet: Controllable time-varying neural
synthesis of sound effects using filterbanks. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 32:1573–1585.

Bazin, T. (2023). Designing Novel Time-Frequency Scales for Interactive Music Creation
with Hierarchical Statistical Modeling. Theses, Sorbonne Université.

Bengio, Y., Frasconi, P., and Simard, P. (1993). The problem of learning long-term de-
pendencies in recurrent networks. In Proceedings of the IEEE International Conference
on Neural Networks, volume 3, pages 1183–1188.

134

BIBLIOGRAPHY BIBLIOGRAPHY

Berendes, H.-U., Schwär, S., Schäfer, M., and Müller, M. (2023). Towards differentiable
piano synthesis based on physical modeling. In Late-Breaking Demos of the Interna-
tional Society for Music Information Retrieval Conference (ISMIR), Milano, Italy.

Bilbao, S. (2009). Numerical Sound Synthesis: Finite Difference Schemes and Simulation
in Musical Acoustics. John Wiley & Sons.

Bond-Taylor, S., Leach, A., Long, Y., and Willcocks, C. G. (2022). Deep generative mod-
elling: A comparative review of VAEs, GANs, Normalizing Flows, Energy-Based and
Autoregressive models. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 44(11):7327–7347.

Borovik, I. and Viro, V. (2023). Scoreperformer: Expressive piano performance rendering
with fine-grained control. In Proceedings of the International Society of Music Infor-
mation Retrieval Conference (ISMIR).

Boutillon, X. and Ege, K. (2013). Vibroacoustics of the piano soundboard: Reduced
models, mobility synthesis, and acoustical radiation regime. Journal of Sound and
Vibration, 332(18):4261–4279.

Brunner, G., Wang, Y., Wattenhofer, R., and Zhao, S. (2018). Symbolic music genre
transfer with CycleGAN. In International Conference on Tools with Artificial Intelli-
gence (ICTAI), pages 786–793. IEEE.

Caillon, A. and Esling, P. (2021). RAVE: A variational autoencoder for fast and high-
quality neural audio synthesis. arXiv preprint arXiv:2111.05011.

Caillon, A. and Esling, P. (2022). Streamable neural audio synthesis with non-causal
convolutions. In Proceedings of the International Conference on Digital Audio Effects
(DAFx), pages 320–327, Vienna, Austria.

Cancino-Chacón, C. E., Grachten, M., Goebl, W., and Widmer, G. (2018). Computational
models of expressive music performance: A comprehensive and critical review. Frontiers
in Digital Humanities, 5.

Carson, A., Valentini-Botinhao, C., King, S., and Bilbao, S. (2023). Differentiable grey-
box modelling of phaser effects using frame-based spectral processing. In Proceedings
of the International Conference on Digital Audio Effects (DAFx).

Caspe, F., McPherson, A., and Sandler, M. (2022). DDX7: Differentiable FM Synthesis
of Musical Instrument Sounds. In Proceedings of the International Society for Music
Information Retrieval Conference (ISMIR), pages 608–616, Bengaluru, India.

Castellon, R., Donahue, C., and Liang, P. (2020). Towards realistic MIDI instrument syn-
thesizers. In Proceedings of the NeurIPS Workshop on Machine Learning for Creativity
and Design.

Cazelles, E., Robert, A., and Tobar, F. (2021). The wasserstein-fourier distance for
stationary time series. IEEE Transactions on Signal Processing, 69:709–721.

135

BIBLIOGRAPHY BIBLIOGRAPHY

Chabassier, J. (2012). Modélisation et Simulation Numérique d’un Piano par Modèles
Physiques. PhD thesis, École Polytechnique X, Palaiseau, France.

Chabassier, J., Chaigne, A., and Joly, P. (2013). Modeling and simulation of a grand
piano. Journal of the Acoustical Society of America, 134(1):648–665.

Chacón, C. E. C. and Grachten, M. (2016). The basis mixer: a computational romantic
pianist. In Late-Breaking Demos of the 17th International Society for Music Information
Retrieval Conference (ISMIR).

Chen, N., Zhang, Y., Zen, H., Weiss, R. J., Norouzi, M., and Chan, W. (2021). Waveg-
rad: Estimating gradients for waveform generation. In Proceedings of the International
Conference on Learning Representations (ICLR).

Choi, K., Hawthorne, C., Simon, I., Dinculescu, M., and Engel, J. (2020). Encoding musi-
cal style with transformer autoencoders. In Proceedings of the International Conference
on Machine Learning (ICML), pages 1899–1908.

Chowdhury, J. (2021). Rtneural: Fast neural inferencing for real-time systems. arXiv
preprint arXiv:2106.03037.

Chowdhury, S. and Widmer, G. (2021). Towards explaining expressive qualities in pi-
ano recordings: Transfer of explanatory features via acoustic domain adaptation. In
Proceedings of the International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 561–565. IEEE.

Colonel, J. T., Comunità, M., and Reiss, J. (2022). Reverse engineering memoryless distor-
tion effects with differentiable waveshapers. In Audio Engineering Society Convention
153. Audio Engineering Society.

Colonel, J. T. and Reiss, J. (2021). Reverse engineering of a recording mix with differ-
entiable digital signal processing. The Journal of the Acoustical Society of America,
150(1):608–619.

Conklin, Harold A., J. (1996). Design and tone in the mechanoacoustic piano. part ii.
piano structure. The Journal of the Acoustical Society of America, 100(2):695–708.

Conklin, Harold A., J. (1999). Generation of partials due to nonlinear mixing in a stringed
instrument. The Journal of the Acoustical Society of America, 105(1):536–545.

Cooper, E., Wang, X., and Yamagishi, J. (2021). Text-to-Speech Synthesis Techniques
for MIDI-to-Audio Synthesis. In Proceedings of the ISCA Speech Synthesis Workshop
(SSW 11), pages 130–135, Budapest, Hungary.

Copet, J., Kreuk, F., Gat, I., Remez, T., Kant, D., Synnaeve, G., Adi, Y., and Défossez,
A. (2023). Simple and controllable music generation. In Proceedings of the Conference
on Neural Information Processing Systems (NIPS).

136

BIBLIOGRAPHY BIBLIOGRAPHY

Dash, T., Chitlangia, S., Ahuja, A., and Srinivasan, A. (2022). A review of some tech-
niques for inclusion of domain-knowledge into deep neural networks. Scientific Reports,
12(1):1040.

De Man, B., Reiss, J., and Stables, R. (2017). Ten years of automatic mixing. In Pro-
ceedings of the 3rd Workshop on Intelligent Music Production, Salford, UK.

Défossez, A., Copet, J., Synnaeve, G., and Adi, Y. (2023). High fidelity neural audio
compression. Transactions on Machine Learning Research. Featured Certification,
Reproducibility Certification.

Défossez, A., Zeghidour, N., Usunier, N., Bottou, L., and Bach, F. (2018). SING: Symbol-
to-instrument neural generator. In Proceedings of the International Conference on Neu-
ral Information Processing Systems (NIPS), page 9055–9065, Montréal, Canada. Curran
Associates Inc.

Dhariwal, P., Jun, H., Payne, C., Kim, J. W., Radford, A., and Sutskever, I. (2020).
Jukebox: A generative model for music. arXiv preprint arXiv:2005.00341. Accessed on
18/03/2024.

Diaz, R., Hayes, B., Saitis, C., Fazekas, G., and Sandler, M. (2023). Rigid-body sound
synthesis with differentiable modal resonators. In Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE.

Donahue, C., McAuley, J., and Puckette, M. (2019). Adversarial audio synthesis. In
Proceedings of the International Conference on Learning Representations (ICLR).

Dong, H.-W., Chen, K., Dubnov, S., McAuley, J., and Berg-Kirkpatrick, T. (2023). Mul-
titrack music transformer. In Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP).

Dong, H.-W., Zhou, C., Berg-Kirkpatrick, T., and McAuley, J. (2022). Deep performer:
Score-to-audio music performance synthesis. In Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 951–955, Sin-
gapore, Singapore. IEEE.

Douwes, C. (2023). On the Environmental Impact of Deep Generative Models for Audio.
Theses, Sorbonne Université.

Dudley, H. (1939). Remaking speech. The Journal of the Acoustical Society of America,
11(2):169–177.

Elias, I., Zen, H., Shen, J., Zhang, Y., Jia, Y., Skerry-Ryan, R., and Wu, Y. (2021). Paral-
lel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration
Modeling. In Proceedings of Interspeech 2021, pages 141–145.

Emiya, V., Bertin, N., David, B., and Badeau, R. (2010). MAPS - a Piano Database for
Multipitch Estimation and Automatic Transcription of Music. Research report, INRIA.

137

BIBLIOGRAPHY BIBLIOGRAPHY

Engel, J., Agrawal, K. K., Chen, S., Gulrajani, I., Donahue, C., and Roberts, A. (2019).
Gansynth: Adversarial neural audio synthesis. In Proceedings of the International
Conference on Learning Representations (ICLR), New Orleans, LA, USA.

Engel, J., Hantrakul, L. H., Gu, C., and Roberts, A. (2020a). DDSP: Differentiable
digital signal processing. In Proceedings of the International Conference on Learning
Representations (ICLR), Addis Abada, Ethiopia.

Engel, J., Resnick, C., Roberts, A., Dieleman, S., Norouzi, M., Eck, D., and Simonyan,
K. (2017). Neural audio synthesis of musical notes with wavenet autoencoders. In
Proceedings of the International Conference on Machine Learning (ICML), pages 1068–
1077, Sydney, NSW, Australia. PMLR, JMLR.org.

Engel, J., Swavely, R., Hantrakul, L. H., Roberts, A., and Hawthorne, C. (2020b). Self-
supervised pitch detection by inverse audio synthesis. In ICML Workshop on Self-
supervision in Audio and Speech, Online.

Esling, P., Chemla-Romeu-Santos, A., and Bitton, A. (2018). Bridging audio analy-
sis, perception and synthesis with perceptually-regularized variational timbre spaces.
In Proceedings of the International Society for Music Information Retrieval (ISMIR),
pages 175–181, Paris, France.

Esling, P., Masuda, N., Bardet, A., Despres, R., and Chemla-Romeu-Santos, A. (2020).
Flow synthesizer: Universal audio synthesizer control with normalizing flows. Applied
Sciences, 10.

Esqueda, F., Kuznetsov, B., and Parker, J. D. (2021). Differentiable white-box virtual
analog modeling. In Proceedings of the International Conference on Digital Audio Ef-
fects (DAFx), pages 41–48.

Fletcher, H. (1964). Normal vibration frequencies of a stiff piano string. Journal of the
Acoustical Society of America, 36:203–209.

Flossmann, S., Grachten, M., and Widmer, G. (2013). Expressive performance rendering
with probabilistic models. Guide to Computing for Expressive Music Performance,
pages 75–98.

Foscarin, F., Karystinaios, E., Peter, S. D., Cancino-Chacón, C., Grachten, M., and
Widmer, G. (2022). The match file format: Encoding alignments between scores and
performances. In Proceedings of the Music Encoding Conference, Halifax, Canada.

Foscarin, F., Mcleod, A., Rigaux, P., Jacquemard, F., and Sakai, M. (2020). ASAP: a
dataset of aligned scores and performances for piano transcription. In Proceedings of
the International Society for Music Information Retrieval (ISMIR), Montreal / Virtual,
Canada.

French, N. R. and Steinberg, J. C. (1947). Factors governing the intelligibility of speech
sounds. Journal of the Acoustical Society of America, 19(1):90–119.

138

BIBLIOGRAPHY BIBLIOGRAPHY

Friberg, A., Bresin, R., and Sundberg, J. (2006). Overview of the kth rule system for
musical performance. Advances in cognitive psychology, 2(2):145.

Frid, E., Gomes, C., and Jin, Z. (2020). Music creation by example. In Proceedings of the
2020 CHI Conference on Human Factors in Computing Systems, CHI ’20, page 1–13,
New York, NY, USA. Association for Computing Machinery.

Gardner, J. P., Simon, I., Manilow, E., Hawthorne, C., and Engel, J. (2022). MT3: Multi-
task multitrack music transcription. In Proceediings of the International Conference on
Learning Representations (ICLR).

Good, M. (2001). Musicxml: an internet-friendly format for sheet music. In Proceedigs
of XML, Boston, MA.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Ghahramani,
Z., Welling, M., Cortes, C., Lawrence, N., and Weinberger, K., editors, Advances in
Neural Information Processing Systems, volume 27. Curran Associates, Inc.

Gottlieb, D. and Shu, C.-W. (1997). On the gibbs phenomenon and its resolution. SIAM
Review, 39(4):644–668.

Grasser, C. (1995). Le piano romantique français de 1823 à 1867. In Le Pianoforte en
France: ses Descendants jusqu’aux Années Trente. Paris Bibliothèques.

Griffin, D. and Lim, J. (1984). Signal estimation from modified short-time fourier trans-
form. IEEE Transactions on Acoustics, Speech, and Signal Processing, 32(2):236–243.

Grindlay, G. and Helmbold, D. (2006). Modeling, analyzing, and synthesizing expressive
piano performance with graphical models. Machine Learning, 65(2):361–387.

Grumiaux, P.-A. and Lagrange, M. (2023). Efficient bandwidth extension of musical
signals using a differentiable harmonic plus noise model. EURASIP Journal on Audio,
Speech, and Music Processing, 2023(1):51.

Gu, Y. and Raphael, C. (2012). Modeling piano interpretation using switching kalman
filter. In Proceedings of the International Society of Music Information Retrieval (IS-
MIR), pages 145–150.

Hahn, H. and Roebel, A. (2013). Joint F0 and Inharmoncity Estimation using Second
Order Optimization. In SMC Sound and Music Computing Conference 2013, pages
695–700, Stockholm, Sweden.

Han, H., Lostanlen, V., and Lagrange, M. (2023). Perceptual–neural–physical sound
matching. In Proceedings of the IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP).

Harris, F. (1978). On the use of windows for harmonic analysis with the discrete fourier
transform. Proceedings of the IEEE, 66(1):51–83.

139

BIBLIOGRAPHY BIBLIOGRAPHY

Hashida, M., Nakamura, E., and Katayose, H. (2018). Crest-musepedb 2nd edition: Music
performance database with phrase information. In Proceedings of the 15th Sound and
Music Computing (SMC) Conference, Limassol, Cyrpus.

Hashida, M., Nakra, T., Katayose, H., Murao, T., Hirata, K., Suzuki, K., Kitahara,
T., et al. (2008). Rencon: Performance rendering contest for automated music sys-
tems. In Proceedings of the International Conference on Music Perception and Cogni-
tion (ICMPC), volume 5, Sapporo, Japan.

Hawthorne, C., Elsen, E., Song, J., Roberts, A., Simon, I., Raffel, C., Engel, J., Oore,
S., and Eck, D. (2018). Onsets and frames: Dual-objective piano transcription. In
Proceedings of the International Society for Music Information Retrieval Conference
(ISMIR), pages 50–57, Paris, France.

Hawthorne, C., Simon, I., Roberts, A., Zeghidour, N., Gardner, J., Manilow, E., and
Engel, J. (2022). Multi-instrument music synthesis with spectrogram diffusion. In
Proceedings of the International Society of Music Information Retrieval (ISMIR), pages
337–344, Bengaluru, India.

Hawthorne, C., Simon, I., Swavely, R., Manilow, E., and Engel, J. (2021). Sequence-
to-sequence piano transcription with transformers. In Proceedings of the International
Society for Music Information Retrieval Conference (ISMIR), pages 246–253, Online.

Hawthorne, C., Stasyuk, A., Roberts, A., Simon, I., Huang, C.-Z. A., Dieleman, S.,
Elsen, E., Engel, J., and Eck, D. (2019). Enabling factorized piano music modeling and
generation with the MAESTRO dataset. In Proceedings of the International Conference
on Learning Representations (ICLR), New Orleans, Louisiana, USA.

Hayes, B., Saitis, C., and Fazekas, G. (2021). Neural waveshaping synthesis. In Proceedings
of the International Society for Music Information Retrieval Conference (ISMIR), pages
254–261, Online.

Hayes, B., Saitis, C., and Fazekas, G. (2023). Sinusoidal frequency estimation by gradient
descent. In Proceedings of the IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP).

Hayes, B., Shier, J., Fazekas, G., McPherson, A., and Saitis, C. (2024). A review of
differentiable digital signal processing for music and speech synthesis. Frontiers in
Signal Processing, 3.

Hernandez-Olivan, C. and Beltrán, J. R. (2023). Music composition with deep learning:
A review. Advances in Speech and Music Technology: Computational Aspects and
Applications, pages 25–50.

Hershey, S., Chaudhuri, S., Ellis, D. P. W., Gemmeke, J. F., Jansen, A., Moore, R. C.,
Plakal, M., Platt, D., Saurous, R. A., Seybold, B., Slaney, M., Weiss, R. J., and Wilson,
K. (2017). Cnn architectures for large-scale audio classification. In Proceedings of the

140

BIBLIOGRAPHY BIBLIOGRAPHY

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 131–135.

Hoffmann, F. (2004). Midi (musical instrument digital interface). In Encyclopedia of
Recorded Sound, pages 1372–1374. Routledge.

Hsiao, W.-Y., Liu, J.-Y., Yeh, Y.-C., and Yang, y.-h. (2021). Compound word transformer:
Learning to compose full-song music over dynamic directed hypergraphs. Proceedings
of the AAAI Conference on Artificial Intelligence, 35:178–186.

Huang, C.-Z. A., Vaswani, A., Uszkoreit, J., Simon, I., Hawthorne, C., Shazeer, N., Dai,
A. M., Hoffman, M. D., Dinculescu, M., and Eck, D. (2019). Music transformer. In
Prroceedings of the International Conference on Learning Representations (ICLR).

Huang, Y.-S. and Yang, Y.-H. (2020). Pop music transformer: Beat-based modeling
and generation of expressive pop piano compositions. In Proceedings of the 28th ACM
International Conference on Multimedia, MM ’20, page 1180–1188, New York, NY,
USA. Association for Computing Machinery.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Proceedings of the International Conference on
Machine Learning (ICML), pages 448–456. pmlr.

Jeong, D., Kwon, T., Kim, Y., Lee, K., and Nam, J. (2019a). VirtuosoNet: A Hierarchical
RNN-based System for Modeling Expressive Piano Performance. In Proceedings of the
International Society for Music Information Retrieval Conference (ISMIR), pages 908–
915, Delft, The Netherlands.

Jeong, D., Kwon, T., Kim, Y., and Nam, J. (2019b). Graph neural network for music score
data and modeling expressive piano performance. In Proceedings of the International
Conference on Machine Learning (ICML), pages 3060–3070, Long Beach, California,
USA. PMLR.

Jeong, D., Kwon, T., Kim, Y., and Nam, J. (2019c). Score and performance features
for rendering expressive music performances. In Proceedings of the Music Encoding
Conference, Vienna, Austria.

Ji, S., Luo, J., and Yang, X. (2020). A comprehensive survey on deep music genera-
tion: Multi-level representations, algorithms, evaluations, and future directions. arXiv
preprint arXiv:2011.06801.

Ji, S., Yang, X., and Luo, J. (2023). A survey on deep learning for symbolic music
generation: Representations, algorithms, evaluations, and challenges. ACM Computing
Surveys, 56(1).

Jonason, N., Sturm, B., and Thomé, C. (2020). The control-synthesis approach for mak-
ing expressive and controllable neural music synthesizers. In Proceedings of the Joint
Conference on AI Music Creativity (AIMC), Stockholm, Sweden. AIMC.

141

BIBLIOGRAPHY BIBLIOGRAPHY

Jonason, N., Wang, X., Cooper, E., Juvela, L., L. T. Sturm, B., and Yamagishi, J. (2023).
DDSP-based neural waveform synthesis of polyphonic guitar performance from sting-
wise MIDI-input. arXiv preprint arXiv:2309.07658.

Jozefowicz, R., Vinyals, O., Schuster, M., Shazeer, N., and Wu, Y. (2016). Exploring the
limits of language modeling. arXiv preprint arXiv:1602.02410.

Karras, T., Laine, S., and Aila, T. (2021). A style-based generator architecture for gen-
erative adversarial networks. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 43(12):4217–4228.

Kawamura, M., Nakamura, T., Kitamura, D., Saruwatari, H., Takahashi, Y., and Kondo,
K. (2022). Differentiable digital signal processing mixture model for synthesis parameter
extraction from mixture of harmonic sounds. In Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 941–945, Sin-
gapore, Singapore. IEEE.

Keiler, F. and Marchand, S. (2002). Survey on extraction of sinusoids in stationary sounds.
In Proceedings of the International Conference on Digital Audio Effects (DAFx), pages
51–58.

Kim, J. W., Bittner, R., Kumar, A., and Bello, J. P. (2019). Neural music synthesis for
flexible timbre control. In Proceedings of the IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages 176–180, Brighton, UK. IEEE.

Kim, J. W., Salamon, J., Li, P., and Bello, J. P. (2018). Crepe: A convolutional repre-
sentation for pitch estimation. In Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 161–165.

Kim, T. H., Fukayama, S., Nishimoto, T., and Sagayama, S. (2013). Statistical approach
to automatic expressive rendition of polyphonic piano music. Guide to Computing for
Expressive Music Performance, pages 145–179.

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In
Proceedings of the International Conference for Learning Representations (ICLR), San
Diego, California, USA.

Knoblaugh, A. F. (1944). The clang tone of the pianoforte. The Journal of the Acoustical
Society of America, 16(Supplement):102–102.

Kong, J., Kim, J., and Bae, J. (2020). Hifi-gan: Generative adversarial networks for
efficient and high fidelity speech synthesis. In Larochelle, H., Ranzato, M., Hadsell, R.,
Balcan, M., and Lin, H., editors, Advances in Neural Information Processing Systems
(NIPS), volume 33, pages 17022–17033. Curran Associates, Inc.

Kong, Q., Li, B., Chen, J., and Wang, Y. (2022). Giantmidi-piano: A large-scale midi
dataset for classical piano music. Transactions of the International Society for Music
Information Retrieval (TISMIR).

142

BIBLIOGRAPHY BIBLIOGRAPHY

Kong, Q., Li, B., Song, X., Wan, Y., and Wang, Y. (2021). High-resolution piano tran-
scription with pedals by regressing onset and offset times. IEEE/ACM Transactions
on Audio, Speech, and Language Processing, 29:3707–3717.

Kosta, K., Bandtlow, O. F., and Chew, E. (2018). Mazurkabl: score-aligned loudness,
beat, expressive markings data for 2000 chopin mazurka recordings. In Proceedings of
the 4th International Conference on Technologies for Music Notation and Representa-
tion (TENOR), pages 85–94.

Kumar, K., Kumar, R., de Boissiere, T., Gestin, L., Teoh, W. Z., Sotelo, J., de Brébisson,
A., Bengio, Y., and Courville, A. C. (2019). Melgan: Generative adversarial networks
for conditional waveform synthesis. In Advances in Neural Information Processing
Systems (NIPS), volume 32. Curran Associates, Inc.

Kuznetsov, B., Parker, J. D., and Esqueda, F. (2020). Differentiable IIR filters for machine
learning applications. In Proceedings of the International Conference of Digital Audio
Effects (DAFx), pages 297–303.

Lagrange, M., Marchand, S., and Rault, J.-B. (2007). Enhancing the tracking of partials
for the sinusoidal modeling of polyphonic sounds. IEEE Transactions on Audio, Speech,
and Language Processing, 15(5):1625–1634.

Larsen, A. B. L., Sønderby, S. K., Larochelle, H., and Winther, O. (2016). Autoencoding
beyond pixels using a learned similarity metric. In Proceednigs of the International
Conference on Machine Learning (ICML), pages 1558–1566. PMLR.

Latorre, F., Liu, C., Sahoo, D., and Hoi, S. C. (2023). Otw: Optimal transport warping
for time series. In Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP).

LeCun, Y. and Bengio, Y. (1995). Convolutional networks for images, speech, and time
series. The Handbook of Brain Theory and Neural Networks, 3361(10).

Lee, S., Choi, H.-S., and Lee, K. (2022). Differentiable artificial reverberation. IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 30:2541–2556.

Lehtonen, H.-M., Askenfelt, A., and Välimäki, V. (2009). Analysis of the part-pedaling
effect in the piano. Journal of the Acoustical Society of America, 126(2):EL49–EL54.

Li, N., Liu, S., Liu, Y., Zhao, S., and Liu, M. (2019). Neural speech synthesis with
transformer network. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pages 6706–6713.

Liu, L., Kong, Q., Morfi, V., and Benetos, E. (2022). Performance midi-to-score con-
version by neural beat tracking. In Proceedings of the International Society for Music
Information Retrieval Conference (ISMIR), pages 395–402, Bengaluru, India.

143

BIBLIOGRAPHY BIBLIOGRAPHY

Liu, L., Morfi, V., and Benetos, E. (2021). ACPAS: a dataset of aligned classical pi-
ano audio and scores for audio-to-score transcription. In Late-Breaking Demos of the
International Society for Music Information Retrieval Conference (ISMIR).

Liu, Y., Jin, C., and Gunawan, D. (2023). Ddsp-sfx: Acoustically-guided sound
effects generation with differentiable digital signal processing. arXiv preprint
arXiv:2309.08060.

Maezawa, A., Yamamoto, K., and Fujishima, T. (2019). Rendering music performance
with interpretation variations using conditional variational RNN. In Proceedings of
the International Society for Music Information Retrieval Conference (ISMIR), pages
855–861, Delft, The Netherlands.

Malik, I. and Ek, C. H. (2017). Neural translation of musical style. In Workshop on
Machine Learning for Creativity and Design, Neural Information Processing Systems
(NIPS), Long Beach, California, USA.

Mallat, S. G. and Zhang, Z. (1993). Matching pursuits with time-frequency dictionaries.
IEEE Transactions on signal processing, 41(12):3397–3415.

Mao, X., Li, Q., Xie, H., Lau, R. Y., Wang, Z., and Paul Smolley, S. (2017). Least squares
generative adversarial networks. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV).

Masuda, N. and Saito, D. (2023). Improving semi-supervised differentiable synthesizer
sound matching for practical applications. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 31:863–875.

Mehri, S., Kumar, K., Gulrajani, I., Kumar, R., Jain, S., Sotelo, J., Courville, A., and
Bengio, Y. (2017). SampleRNN: An unconditional end-to-end neural audio generation
model. In Proceediings of the International Conference on Learning Representations
(ICLR).

Michelashvili, M. and Wolf, L. (2020). Hirearchical timbre-painting and articulation gen-
eration. In Proceedings of the International Society for Music Information Retrieval
(ISMIR).

Mikkonen, O., Wright, A., Moliner, E., and Välimäki, V. (2023). Neural modeling of
magnetic tape recorders. In Proceedings of the International Conference on Digital
Audio Effects (DAFx23), pages 196–203, Copenhagen, Denmark.

Mitcheltree, C., Steinmetz, C. J., Comunità, M., and Reiss, J. D. (2023). Modulation
extraction for lfo-driven audio effects. In Proceedings of the International Conference
on Digital Audio Effects (DAFx).

Müller, M., Konz, V., Bogler, W., and Arifi-Müller, V. (2011). Saarland music data (smd).
In Late-Breaking and Demo Session of the International Society for Music Information
Retrieval Conference (ISMIR).

144

BIBLIOGRAPHY BIBLIOGRAPHY

Nakamura, E., Yoshii, K., and Katayose, H. (2017). Performance error detection and
post-processing for fast and accurate symbolic music alignment. In Proceedings of the
International Society for Music Information Retrieval Conference (ISMIR), pages 347–
353, Suzhou, China.

Nercessian, S. (2020). Neural parametric equalizer matching using differentiable biquads.
In Proceedings of the International Conference on Digital Audio Effects (DAFx), pages
265–272, Online/Vienna, Austria.

Nguyen, B., Cardinaux, F., and Uhlich, S. (2023). AutoTTS: End-to-end text-to-speech
synthesis through differentiable duration modeling. In Proceedings of the IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP).

Nierhaus, G. (2009). Algorithmic composition: paradigms of automated music generation.
Springer Science & Business Media.

Odena, A., Olah, C., and Shlens, J. (2017). Conditional image synthesis with auxiliary
classifier GANs. In Proceedings of the International Conference on Machine Learning
(ICML), pages 2642–2651. PMLR.

Oord, A., Li, Y., Babuschkin, I., Simonyan, K., Vinyals, O., Kavukcuoglu, K., Driessche,
G., Lockhart, E., Cobo, L., Stimberg, F., et al. (2018). Parallel wavenet: Fast high-
fidelity speech synthesis. In Proceedings of the International Conference on Machine
Learning (ICML), pages 3918–3926. PMLR.

Oord, A. V. D., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbren-
ner, N., Senior, A., and Kavukcuoglu, K. (2016). Wavenet: A generative model for raw
audio. arXiv preprint arXiv:1609.03499.

Oore, S., Simon, I., Dieleman, S., Eck, D., and Simonyan, K. (2020). This time with
feeling: learning expressive musical performance. Neural Computing and Applications,
32(4):955–967.

Oxenham, A. J. (2012). Pitch perception. Journal of Neuroscience, 32(39):13335–13338.

Palmer, C. (1997). Music performance. Annual Review of Psychology, 48(1):115–138.
PMID: 9046557.

Pang, Y., Lin, J., Qin, T., and Chen, Z. (2022). Image-to-image translation: Methods
and applications. IEEE Transactions on Multimedia, 24:3859–3881.

Perez, E., Strub, F., de Vries, H., Dumoulin, V., and Courville, A. C. (2018). FiLM: Visual
reasoning with a general conditioning layer. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 3942–3951. AAAI press.

Peter, S. D., Cancino-Chacón, C. E., Foscarin, F., McLeod, A. P., Henkel, F., Karysti-
naios, E., and Widmer, G. (2023). Automatic note-level score-to-performance align-
ments in the ASAP dataset. Transactions of the International Society for Music Infor-
mation Retrieval (TISMIR).

145

BIBLIOGRAPHY BIBLIOGRAPHY

Platz, F. and Kopiez, R. (2012). When the Eye Listens: A Meta-analysis of How Audio-
visual Presentation Enhances the Appreciation of Music Performance. Music Percep-
tion, 30(1):71–83.

Prenger, R., Valle, R., and Catanzaro, B. (2019). Waveglow: A flow-based generative
network for speech synthesis. In Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 3617–3621. IEEE.

Railsback, O. L. (1938). Scale temperament as applied to piano tuning. The Journal of
the Acoustical Society of America, 9(Supplement):274–274.

Ramoneda, P., Jeong, D., Eremenko, V., Tamer, N. C., Miron, M., and Serra, X. (2024).
Combining piano performance dimensions for score difficulty classification. Expert Sys-
tems with Applications, 238:121776.

Rauhala, J., Laurson, M., Välimäki, V., Lehtonen, H.-M., and Norilo, V. (2008). A
parametric piano synthesizer. Computer Music Journal, 32(4):17–30.

Ren, P., Xiao, Y., Chang, X., Huang, P.-Y., Li, Z., Gupta, B. B., Chen, X., and Wang,
X. (2021a). A survey of deep active learning. ACM Computing Surveys, 54(9).

Ren, Y., Hu, C., Tan, X., Qin, T., Zhao, S., Zhao, Z., and Liu, T.-Y. (2021b). Fastspeech
2: Fast and high-quality end-to-end text to speech. In Proceedings of the International
Conference on Learning Representations (ICLR).

Renault, L., Mignot, R., and Roebel, A. (2022). Differentiable piano model for midi-to-
audio performance synthesis. In Proceedings of the International Conference on Digital
Audio Effects (DAFx20in22), pages 232–239, Vienna, Austria.

Renault, L., Mignot, R., and Roebel, A. (2023a). Ddsp-piano: a neural sound synthesizer
informed by instrument knowledge. Journal of the Audio Engeneering Society (JAES),
71:552–565.

Renault, L., Mignot, R., and Roebel, A. (2023b). Expressive piano performance rendering
from unpaired data. In Proceedings of the International Conference on Digital Audio
Effects (DAFx23), pages 355–358, Copenhagen, Denmark. Demo and Late-Breaking
Result Session.

Rhyu, S., Kim, S., and Lee, K. (2022). Sketching the expression: Flexible rendering
of expressive piano performance with self-supervised learning. In Proceedings of the
International Society for Music Information Retrieval Conference (ISMIR), Bengaluru,
India.

Richard, G., Chouteau, P., and Torres, B. (2024). A fully differentiable model for unsu-
pervised singing voice separation. In Proceednigs of the IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), Seoul, South Korea.

Richards, C. (2023). Wearable sound : integrative design for hearing and feeling vibrations.
Theses, Sorbonne Université.

146

BIBLIOGRAPHY BIBLIOGRAPHY

Rigaud, F. (2013). Models of music signals informed by physics.Application to piano
music analysis by non-negative matrix factorization. Theses, Télécom ParisTech.

Rigaud, F., David, B., and Daudet, L. (2011). A parametric model of piano tuning. In
Proceedings of the International Conference on Digital Audio Effects (DAFx), pages
394–399, Paris, France.

Roebel, A. and Bous, F. (2022). Neural vocoding for singing and speaking voices with
the multi-band excited wavenet. Information, 13(3).

Roy, R. and Kailath, T. (1989). ESPRIT-estimation of signal parameters via rotational
invariance techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing,
37(7):984–995.

Sai Vanka, S., Safi, M., Rolland, J.-B., and Fazekas, G. (2023). Adoption of ai technol-
ogy in music mixing workflow: An investigation. In Proceedings of the 154th Audio
Engineering Society Convention.

Santo, G. D., Prawda, K., Schlecht, S., and Välimäki, V. (2023). Differentiable feedback
delay network for colorless reverberation. In Proceedings of the International Conference
on Digital Audio Effects (DAFx23), pages 244–251.

Schulze-Forster, K., Doire, C. S., Richard, G., and Badeau, R. (2023). Unsupervised
audio source separation using differentiable parametric source models. IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 31:1276–1289.

Schwarz, D. (2006). Concatenative sound synthesis: the early years. Journal of New
Music Research, 35(1):3–22.

Schwär, S. and Müller, M. (2023). Multi-scale spectral loss revisited. IEEE Signal Pro-
cessing Letters, 30:1712–1716.

Serra, X. (1990). A System for Sound Analysis/Transformation/Synthesis based on a
Deterministic plus Stochastic Decomposition. PhD thesis, Stanford University.

Serra, X. and Smith, J. O. (1990). Spectral modeling synthesis: A sound analy-
sis/synthesis system based on a deterministic plus stochastic decomposition. Computer
Music Journal, 14(4):12–24.

Shan, S., Hantrakul, L., Chen, J., Avent, M., and Trevelyan, D. (2022). Differentiable
wavetable synthesis. In Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 4598–4602, Singapore, Singapore. IEEE.

Shannon, C. (1949). Communication in the presence of noise. Proceedings of the IRE,
37(1):10–21.

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System
Technical Journal, 27(3):379–423.

147

BIBLIOGRAPHY BIBLIOGRAPHY

Shen, J., Pang, R., Weiss, R. J., Schuster, M., Jaitly, N., Yang, Z., Chen, Z., Zhang,
Y., Wang, Y., Skerrv-Ryan, R., Saurous, R. A., Agiomvrgiannakis, Y., and Wu, Y.
(2018). Natural tts synthesis by conditioning wavenet on mel spectrogram predictions.
In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 4779–4783, Calgary, Canada. IEEE.

Shi, X., Cooper, E., Wang, X., Yamagishi, J., and Narayanan, S. (2023). Can knowledge
of end-to-end text-to-speech models improve neural midi-to-audio synthesis systems?
In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Rhodes Island, Greece.

Shier, J., Caspe, F., Robertson, A., Sandler, M., Saitis, C., and McPherson, A. (2023).
Differentiable modelling of percussive audio with transient and spectral synthesis. In
Proceeding of the 10th Convention of the European Acoustics Association.

Shlezinger, N., Whang, J., Eldar, Y. C., and Dimakis, A. G. (2023). Model-based deep
learning. Proceedings of the IEEE, 111(5):465–499.

Simionato, R., Fasciani, S., and Holm, S. (2024). Physics-informed differentiable method
for piano modeling. Frontiers in Signal Processing, 3.

Smith, D. and Wood, C. (1981). The USI, or universal synthesizer interface. In Audio
Engineering Society (AES) Convention 70. Audio Engineering Society.

Smith, J. O. and Serra, X. (1987). PARSHL: An analysis/synthesis program for non-
harmonic sounds based on a sinusoidal representation. In Proceedings of the Interna-
tional Computer Music Conference (ICMC), Champaign/Urbana, Illinois, USA. Michi-
gan Publishing.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting. The Journal of
Machine Learning Research (JMLR), 15(1):1929–1958.

Stefani, D., Peroni, S., and Turchet, L. (2022). A comparison of deep learning inference
engines for embedded real-time audio classification. In Proceedings of the International
Conference on Digital Audio Effects (DAFx), pages 256–263, Vienna, Austria.

Steinmetz, C. J., Bryan, N. J., and Reiss, J. D. (2022). Style transfer of audio effects
with differentiable signal processing. Journal of the Audio Engeneering Society (JAES),
pages 708–721.

Stylianou, Y. (1996). Harmonic plus noise models for speech, combined with statistical
methods, for speech and speaker modification. PhD thesis, Ecole Nationale Superieure
des Telecommunications.

Sumino, H., Bitton, A., Kawai, L., Esling, P., and Harada, T. (2020). Automatic music
transcription and instrument transposition with differentiable rendering. In Proceedings
of the 1st Joint Conference on AI Music Creativity (AIMC). AIMC.

148

BIBLIOGRAPHY BIBLIOGRAPHY

Tan, H. H. T., Luo, Y.-J., and Herremans, D. (2020). Generative modelling for controllable
audio synthesis of expressive piano performance. In Proceedings of the ICML Workshop
on Machine Learning for Media Discovery Workshop (ML4MD), Vienna, Austria.

Tang, J., Wiggins, G., and Fazekas, G. (2023). Reconstructing human expressiveness in
piano performances with a transformer network. In Proceedings of the 16th International
Symposium on Computer Music Multidisciplinary Research (CMMR).

Torres, B., Peeters, G., and Richard, G. (2024). Unsupervised harmonic parameter esti-
mation using differentiable dsp and spectral optimal transport. In Proceedings of the
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

Tsalakanidou, F., Papadopoulos, S., Mezaris, V., Kompatsiaris, I., Gray, B., Tsabouraki,
D., Kalogerini, M., Negro, F., Montagnuolo, M., de Vos, J., van Kemenade, P., Grav-
ina, D., Mignot, R., Ozerov, A., Schnitzler, F., Garcia-Saez, A., Yannakakis, G. N.,
Liapis, A., and Kostadinov, G. (2021). The AI4Media project: Use of Next-generation
Artificial Intelligence Technologies for Media Sector Applications. In Proceedings of
the International Conference on Artificial Intelligence Applications and Innovations
(AIAI). Zenodo.

Turian, J. and Henry, M. (2020). I’m sorry for your loss: Spectrally-based audio distances
are bad at pitch. In Proceedings of the ”I Can’t Believe It’s Not Better!” (ICBINB)
Workshop at the International Conference on Neural Information Processing Systems
(NeurIPS), Vancouver, Canada.

Ulyanov, D., Vedaldi, A., and Lempitsky, V. (2016). Instance normalization: the missing
ingredient for fast stylization. arXiv preprint arXiv:1607.08022.

Uzrad, N., Barkan, O., Elharar, A., Shvartzman, S., Laufer, M., Wolf, L., and Koenigstein,
N. (2024). Diffmoog: a differentiable modular synthesizer for sound matching. arXiv
preprint arXiv:2401.12570.

Vahidi, C., Han, H., Wang, C., Lagrange, M., Fazekas, G., and Lostanlen, V. (2023).
Mesostructures: Beyond spectrogram loss in differentiable time-frequency analysis.
Journal of the Audio Engineering Society (JAES), 71(9):577–585.

Valimaki, V., Parker, J. D., Savioja, L., Smith, J. O., and Abel, J. S. (2012). Fifty
years of artificial reverberation. IEEE Transactions on Audio, Speech, and Language
Processing, 20(5):1421–1448.

Van Den Oord, A., Kalchbrenner, N., and Kavukcuoglu, K. (2016). Pixel recurrent neural
networks. In Proceedings of the International Conference on Machine Learning (ICML),
pages 1747–1756. PMLR.

Wang, B. and Yang, Y.-H. (2019). Performancenet: Score-to-audio music generation with
multi-band convolutional residual network. Proceedings of the AAAI Conference on
Artificial Intelligence, 33(01):1174–1181.

149

BIBLIOGRAPHY BIBLIOGRAPHY

Wang, T.-C., Liu, M.-Y., Zhu, J.-Y., Tao, A., Kautz, J., and Catanzaro, B. (2018). High-
resolution image synthesis and semantic manipulation with conditional gans. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 8798–8807.

Wang, X., Takaki, S., and Yamagishi, J. (2019). Neural source-filter-based waveform
model for statistical parametric speech synthesis. In Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5916–
5920, Brighton, UK. IEEE.

Wang, Y., Skerry-Ryan, R. J., Stanton, D., Wu, Y., Weiss, R. J., Jaitly, N., Yang, Z.,
Xiao, Y., Chen, Z., Bengio, S., Le, Q. V., Agiomyrgiannakis, Y., Clark, R. A. J., and
Saurous, R. A. (2017). Tacotron: Towards end-to-end speech synthesis. In Proceedings
of Interspeech 2017.

Weinreich, G. (1977). Coupled piano strings. Journal of the Acoustical Society of America,
62(6):1474–1484.

West, M. L. (1994). The babylonian musical notation and the hurrian melodic texts.
Music and Letters, 75(2):161–179.

Widmer, G. and Tobudic, A. (2003). Playing mozart by analogy: Learning multi-level
timing and dynamics strategies. Journal of New Music Research, 32(3):259–268.

Wiggins, A. and Kim, Y. (2023). A differentiable acoustic guitar model for string-specific
polyphonic synthesis. In 2023 IEEE Workshop on Applications of Signal Processing to
Audio and Acoustics (WASPAA).

Wright, A., Damskägg, E.-P., and Välimäki, V. (2019). Real-time black-box modelling
with recurrent neural networks. In Proceedings of the International Conference on
Digital Audio Effects (DAFx), Birmingham, UK. University of Birmingham.

Wright, A., Välimäki, V., and Juvela, L. (2023). Adversarial guitar amplifier modelling
with unpaired data. In Proceedings of the International Conference on Acoustics, Speech
and Signal Processing (ICASSP), Rhodes Island, Greece. IEEE.

Wu, X., Xiao, L., Sun, Y., Zhang, J., Ma, T., and He, L. (2022a). A survey of human-in-
the-loop for machine learning. Future Generation Computer Systems, 135:364–381.

Wu, Y., Manilow, E., Deng, Y., Swavely, R. J., Kastner, K., Cooijmans, T., Courville,
A., Huang, A., and Engel, J. (2022b). MIDI-DDSP: Hierarchical modeling of music for
detailed control. In Proceedings of the International Conference on Learning Represen-
tations (ICLR), Online.

Xue, W. and Sandler, M. (2009). Notes on model-based non-stationary sinusoid estimation
methods using derivatives. In Proceedings of the International Conference on Digital
Audio Effects (DAFx). Citeseer.

150

BIBLIOGRAPHY BIBLIOGRAPHY

Yamamoto, R., Song, E., and Kim, J.-M. (2020). Parallel wavegan: A fast waveform
generation model based on generative adversarial networks with multi-resolution spec-
trogram. In Proceedings of the IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 6199–6203.

Ycart, A. and Benetos, E. (2018). A-maps: Augmented maps dataset with rhythm and
key annotations. In Proceedingns of the International Society for Music Information
Retrieval Conference (ISMIR), Paris, France.

Young, R. W. (1952). Inharmonicity of plain wire piano strings. Journal of the Acoustical
Society of America, 24(3):267–273.

Zeghidour, N., Luebs, A., Omran, A., Skoglund, J., and Tagliasacchi, M. (2021). Sound-
stream: An end-to-end neural audio codec. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 30:495–507.

Zhang, H. and Dixon, S. (2023). Disentangling the horowitz factor: Learning content and
style from expressive piano performance. In Proceedings of the IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece.

Zhang, H., Tang, J., Rafee, S. R. M., Dixon, S., and Fazekas, G. (2022). ATEPP: A
dataset of automatically transcribed expressive piano performance. In Proceedings of
the International Society for Music Information Retrieval (ISMIR), pages 446–453,
Bengaluru, India.

151

Appendix

This manuscript used the following icons from the Noun Project 1, under Creative Com-
mon License (CC BY 3.0):

• grand piano by Smashicons from Noun Project

• composer by Amethyst Studio from Noun Project

• sheet music by Rifai from Noun Project

• Violinist by ProSymbols from Noun Project

• bow by Valter Bispo from Noun Project

• Cello by Valter Bispo from Noun Project

• sound mixing board by Juicy Fish from Noun Project

• Ear by Alexander Skowalsky from Noun Project

All other icons were gathered from Freepik2.

1https://thenounproject.com/
2https://freepik.com/

152

https://thenounproject.com/
https://freepik.com/

	List of Acronyms
	List of Symbols
	Introduction
	Music Generation: a Multi-Stage Process
	Musical Composition
	Musical Performance
	Sound Synthesis
	Sound Processing
	Music Listening

	Automating and Assisting Music Production Frameworks
	Simulating and Automating Individual Stages
	Multi-layered Automation
	Adoption of the Tools by Practitioners

	Research Objectives and Contributions
	Main Research Objectives
	Contributions
	Thesis Structure

	Technical Background for Music Processing
	Symbolic Music Processing
	The Music Score
	The MIDI Protocol
	Efficient Representations of Symbolic Music

	Audio Digital Signal Processing basics
	Waveform representation
	Time-Frequency representation
	Linear Filtering
	The Spectral Modeling Paradigm

	Piano Mechanisms
	A Brief History of Piano Craftsmanship
	A Monophonic String Model
	Soundboard
	Polyphony

	Deep Learning for Music Processing
	Data-driven Optimization with Gradient Descent
	Neural Networks
	Generative Adversarial Networks
	Domain-knowledge inclusion in Deep Neural Networks

	In short

	State-of-the-Art
	Piano Performance Datasets
	Synthetic MIDI Performance Datasets
	MIDI Recorded Performance Datasets
	MIDI Transcribed Performance Datasets
	Other Piano Datasets

	Polyphonic Instrument Audio Synthesis
	Parametric models
	Data-driven models
	Differentiable Digital Signal Processing
	Evaluating Sound Synthesis

	Performance Rendering
	Traditional Approaches to Performance Rendering
	Neural Approaches to Performance Rendering
	Evaluating Expressivity

	In short

	DDSP-Piano: a Neural Piano Synthesizer informed by Instrument Knowledge
	First Iteration of DDSP-Piano
	Model architecture
	Model Training
	Evaluation
	Qualitative Results: Comparison with Known Behaviors

	Improving DDSP-Piano
	Architectural Changes
	Revised Training Procedure
	Evaluation

	Discussion
	Some Takeaway Lessons
	Future works

	In short

	Piano Performance Rendering from Unpaired Data
	Motivation
	Render Performances in the Symbolic Modality
	Models Architecture
	Training Strategy
	Results and Analysis

	Cross-Modal Extension
	From note-wise to frame-wise Conditioning
	Training Setup
	Qualitative Analysis

	Discussion
	In short

	Conclusion

