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=SUME EN FRANCAIS

Introduction

Dans ce manuscrit on s’intéresse a deux probléemes de géométrie des surfaces.
o La compactification de Thurston de ’espace de Teichmiiller
o Les problemes de comptage sur les surfaces hyperboliques
L’objectif est de traiter ces problemes sous le prisme des courants géodésiques.

L’espace des courants géodésiques sur une surface de type fini et de caractéristique
d’Euler négative est une complétion de I'ensemble des multicourbes a poids de cette
surface. Cette notion a été introduite en 1986 [Bonl] par Bonahon notamment dans le
but d’étudier les bouts des 3-varitétés. Cette notion s’est depuis révélée fructueuse dans
I'étude des structures hyperboliques, plates ou & courbure négative sur les surfaces [Bon2;
BL; CFF; DLR; HP ; Otal, pour I’étude des courbes sur les surfaces [ES3; Erl; RS ; EPS],
et plus récemment pour I’étude des variétés de caracteres [MZ; Bur+2; Bur+1].

Le premier point qui nous intéresse est la preuve de Bonahon [Bon2| de la compactifi-
cation de Thurston de I’espace de Teichmiiller. Il utilise le fait que ’espace de Teichmiiller
peut étre réalisé comme un sous-espace de ’ensemble des courants géodésiques afin d’éta-
blir la compactification de Thurston dans cet espace pour les surfaces fermées. Dans le
Chapitre 2, on se place dans le cadre de surfaces non compactes d’aire finie ou la com-
pactification de Thurston est valable mais ou la preuve de Bonahon ne s’applique pas.
On construit alors les éléments nécessaires pour appliquer la preuve de Bonahon dans ce
contexte. L’idée consiste a approcher les éléments de 'espace de Teichmiiller par des suites
de courbes (des suites de géodésiques aléatoires) dont le comportement dans les cusps est
contrdolé afin d’adapter la preuve de Bonahon au cas des surfaces non-compactes d’aire

finie. Ce chapitre repose sur le résultat technique suivant qui est extrait du Théoréme 2.15.

Théoreme. Pour toute structure hyperbolique X sur une surface de type analytique fini

S de caractéristique d’Euler x(S) négative, il existe une suite (fy](VX)) Nen de géodésiques
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aléatoires telle que :

W W 1
lim 7 , = )
Vo Nk (n) Ex(R) ) mIXS))

Le deuxieme probleme traité dans ce manuscrit est le comptage d’arcs sur les surfaces
a bord. Considérons I' un sous-groupe d’indice fini du mapping class group d’une surface
de type fini compacte ¥ de genre g et a r composantes de bord. D’apres des résultats
de Mirzakhani [Mirl; Mir2] ensuite généralisés par Erlandsson-Souto [ES3], on sait que
pour toute mesure de complexité F' pour les courbes (typiquement une fonction longueur)
le nombre d’éléments de complexité au plus L dans une orbite donnée de 'action de I
sur les courbes de 3 croit comme L%975727 Sj I'on considére maintenant des arcs entre
bords de la surface plutdt que des courbes, on dispose de résultats de Bell [Bel2] similaire
a ceux de Mirzakhani. Ses résultats sont généralisés dans le Chapitre 3. On montre que
les arcs peuvent étre des courants géodésiques et que les familles de mesures de comptage

associées a 'orbite d’un arc convergent.

Théoréme 3.13. Si ¥ est une surface compacte, connexe, orientée a bords et de ca-
ractéristique d’Euler négative et qu’elle n’est pas une paire de pantalons alors, pour tout
multiarc & poids ag € An(X), et tout sous-groupe d’indice fini I' de Map(X), il existe
r

¢y (a0) > 0 telle que

1
r -5
[ 69—6-+2r ag:a 5%04 L —o00 cg,r(ao) Mrhy-
Qe

Ici, m%,, est une mesure de Radon sur C(DY) et la convergence a lieu pour la topologie

faible* sur les mesures de Radon sur C(DX).

On introduit ensuite une notion de mesure de complexité pour les arcs qui nous permet
d’obtenir un théoreme de comptage général pour les arcs d’'un méme type.

Le Chapitre 4 se concentre sur le comptage dans les orbites de sous-groupes monogenes
générés par un élément pseudo-Anosov ou un twist de Dehn. On montre que la croissance
du nombre d’éléments de complexité au plus L dans une orbite donnée est alors respecti-
vement logarithmique et linéaire en L. Ces premiers résultats nous permettent d’aboutir a
des conjectures et des pistes de travail pour traiter des cas plus généraux de sous-groupes
d’indice infini. D’une maniere générale, on développe dans ce chapitre les différentes ques-

tions qu’ouvre ce manuscrit.
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Compactification de Thurston de ’espace de Teichmiil-

ler pour les surfaces non-compactes

L’espace de Teichmiiller T(S) d'une surface S de type fini sans bord et de caractéris-
tique d’Euler x(S) négative est I'ensemble des classes d’isotopie des métriques rieman-
niennes (completes et de volume fini) de courbure constante —1 sur S. Cet espace est
non compact et admet de nombreuses compactifications. On s’intéresse ici a celle donnée
par Thurston pour laquelle le bord de ’espace de Teichmiiller est I’ensemble P, ML(S)

des laminations projectives mesurées de S. Le point de départ de la compactification de

¢(S)
Thurston est le plongement de T(.S) dans I'ensemble P (RE(OS )) = R>O\RZO des classes

projectives de fonctions a valeurs positives sur les courbes de S :

¢ T(S) = PR
X |—> R>0£X(').

Ici, si X est une structure hyperbolique sur S, on note £x la fonction longueur associée sur
¢(S). L’ensemble des courbes €(.5) est I'ensemble des classes d’homotopie libre de chemin
fermés primitifs essentiels sur S. La compactification de Thurston consiste & montrer que
I'image de ¢ est localement compacte et que le bord de T(S) dans IPLF(]Ri(S)) s’identifie a
P, ML(S).

Théoréme (Compactification de Thurston). Si S est une surface de type analytique fini et
de caractéristique d’Euler négative, alors les points d’accumulation de T(S) dans IPLF(IRE((;9 ))
sont les classes projectives de fonctions de la forme v — Rsgi(A,7y) ou A € ML(S) est

une lamination mesurée sur S.

La preuve de Thurtson est exposée dans [FLP], des versions utilisant les arbres réels
sont aussi données par Morgan-Shalen [MS], Bestvina [Bes] ou Paulin [Paul]. Un apercu
des différentes méthodes de compactification est aussi donné dans [Pau2] ou [Ohs|. On
s’intéressera ici a une méthode particulierement efficace, pour les surfaces fermées, due a
Bonahon [Bon2]. Exposons briévement sa preuve. Tout d’abord, rappelons qu’'un courant
géodésique est une mesure de Radon m(S)-invariante sur I'ensemble des géodésiques du
revetement universel de S, Bonahon plonge alors I’espace de Teichmiiller dans I’ensemble
des courants géodésiques sur S : & chaque élément X € T(S) de I'espace de Teichmiiller

l'auteur associe un courant Lx € C(S) appelé courant de Liouville. Pour chaque X € T(5)
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le courant de Liouville satisfait deux propriétés particulieres :

i(Lx,v) ={x(vy) pour toute courbe 7, et (1)
i(Lx, Lx) = *[x(S)I. (IT)

Ici, i : C(S) x C(S) — Ry est la forme d’intersection, une forme bilinéaire continue qui
étend le nombre d’intersections usuel entre les courbes, 'existence d’une telle extension
découle de la compacité de S. De plus, 'espace C(S) étant localement compact et P, C(S5)
compact, toute suite (X, ),eny d’éléments dans 'espace de Teichmiiller admet une sous-
suite, disons la suite entiere, qui converge projectivement vers un courant non-nul p. Plus
précisément, il existe une suite (&, ),en de réels strictement positifs telle que nh_}rgo enlx, =
. La continuité de la forme d’intersection et la propriété (I) assurent que la suite (£x, )nen
des fonctions longueur converge projectivement vers i(u, -) et que (g, )nen tend vers 0 des
lors que (X,)neny ne converge pas dans T(.S). Sachant que &, — 0, la propriété (II)

assure que i(u, 1) = 0, et donc que p est une lamination mesurée.

Soulignons que 'argument de Bonahon, malgré sa simplicité, ne s’applique qu’aux
surfaces fermées. Nous reviendrons plus loin sur cette spécificité et sur les obstacles a
une extension directe de son argument au cas non fermé. Récemment, Bonahon et Sarié
ont donné une autre preuve de ce théoreme en utilisant les courants géodésiques pour les
surfaces de type infini. Il est intéressant de noter que le fait de travailler dans un contexte

aussi général implique la perte de la simplicité de la premiere preuve de Bonahon.

Notre but dans ce manuscrit est d’adapter 'argument original de Bonahon afin de

pouvoir traiter des surfaces non compactes de type fini.

Examinons les difficultés qui empéchent ’extension de la preuve de Bonahon au cas
non compact. La forme d’intersection, en particulier sa continuité, est la clef de votte de la
preuve originale de Bonahon. Cependant, la continuité échoue lorsque la surface n’est pas
compacte, méme si elle a une aire finie. Cette obstruction est détaillée dans I’exemple 2.6.
Nous allons donc changer de point de vue pour bénéficier de la continuité de i. Pour ce
faire, deux possibilités s’offrent a nous : se restreindre a un compact de S ou travailler
dans une surface compacte. Dans le Chapitre 2 le choix est fait de travailler dans une
surface compacte (la derniére section explique comment les méme arguments s’appliquent
grace a la restriction & un compact de S). Nous considérons donc les courants sur ¥ au
lieu de S, ou X est une surface hyperbolique compacte a bords géodésiques dont 'intérieur
est homéomorphe a S, c’est-a-dire S = 3\ 9%.
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Le deuxieme ingrédient clef de la preuve de Bonahon est l'existence du courant de
Liouville mais, comme nous le verrons, lorsque 1'on travaille avec des courants sur 3, le
ce dernier n’est plus défini. Notons qu’en travaillant dans un compact de .S, le courant de
Liouville pose lui aussi probleme dans la mesure ou les géodésiques de son support ne se

projettent pas toutes dans ce compact.

Proposition 2.7. Soit ¥ une surface hyperbolique compacte da bord géodésique non vide
et X une structure hyperbolique sur S = X\ 0X. Il n’existe pas de courant Lx sur ¥ qui

satisfasse i(Lx,7y) = lx(y) pour toute courbe v € €(X).

L’objectif est alors de remplacer les courants de Liouville par des suites de courants
bien définis dans X. Pour ce faire, on utilise des suites de géodésiques aléatoires, c’est a
dire des suites de géodésiques fermées, primitives et essentielles, telles que les mesures de
probabilités associées sur le tangent unitaire convergent vers la mesure de Liouville pour
la topologie faible*. On choisira de telles suites de sorte a ce qu’elles satisfassent (I) et

(IT) de maniére asymptotique :

L Tn lx(7)
lim ¢ ,7) = pour toute courbe 7, 111
e (fx(%) m2[x(5)] (1D

R o\ 1
A (exmw em») = 2O V)

Comme souligné dans [ES3], toute suite de géodésiques aléatoires (7,)nen satisfait
la propriété (I1I). De plus, si la surface est compacte, alors (IV) est assurée pour toute
suite de géodésiques aléatoires. Cependant, pour une surface non compacte, des suites
arbitraires de géodésiques aléatoires ne satisfont pas nécessairement (IV), on pourra se
référer a 'exemple 2.12 ci-dessous. Ainsi une grande partie du chapitre 2 sera consacrée
a la construction de suites de géodésiques aléatoires satisfaisant cette propriété pour les
surfaces non compactes.

La stratégie de construction de telles suites repose sur le fait que seules les excursions
dans les cusps peuvent empécher (IV). Ainsi, on construit les suites souhaitées a partir
de suites de géodésiques aléatoires quelconques dont on contrdle les excursions dans les
voisinages des cusps : pour tout n, on demande a ce que 7, atteigne au plus la profondeur

¢, dans chaque cusp.

Théoréme. Pour toute structure hyperbolique X sur une surface S de type analytique

fini de caractéristique d’Euler x(S) négative, il existe une suite (’y](VX)) Nen de géodésiques
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aléatoires telle que :

W ) 1
lim 4 , =
"\ ON ) x (i) I

Le théoréme ci-dessus est extrait d’un résultat plus technique, le Théoreme 2.15. Le
principal contenu additionnel de ce théoréme est de garantir I'indépendance des taux de
convergence dans (III) et (IV) de la structure X et le contrdle du comportement des
suites de géodésiques aléatoires dans les voisinages des cusps. Ces deux éléments sont clés
dans l'extension de la preuve de la compactification de Thurston pour les surfaces non
compactes. On résume les éléments essentiels de cette preuve ci-dessous.

Soit une suite (Xg)reny d’éléments de T(S) ou S est une surface de type analytique
fini. On suppose que cette suite sort de tout compact de 'espace de Teichmiiller et que
la suite des fonctions longueur associée (¢x)ren converge simplement vers une fonction F’
dans P+(R§(6g)). On veut montrer que F est de la forme R.gi(A, ) ou A € ML(S).

16);1(') €2€);2(‘) k:g);k<> .. —3 Fe Rg((;g)
m2|x| m2|x| 72|x| =

En utilisant pour chaque structure hyperbolique X}, une suite de géodésiques aléatoires
(7)) pen issue du Théoréme 2.15, on approche (pour la convergence simple) les fonctions

longueur par des nombres d’intersection avec des courbes a poids.

£ (- L, (- Cx, (-

mxl 2] >
eli( 7D, ) (7@, .- k(gL
61@'(751)7 ) 622-(752)7 SIIEEE gkzi(%k)’ )
812’(7%1)’ ) 522-(752)’ SRS Eki(%k)’ )

En considérant les 7*) comme des courbes & poids de ¥ et donc comme des courants
de X, la compacité de P, C(X) nous assure que chaque suite (7)),cy tend (& extraction
pres), projectivement, vers un courant p,. Par ailleurs, la continuité du nombre d’inter-
sections sur X assure la convergence simple des (i(¥),-))ren. Les constantes issues de la

projectivisation peuvent étre ajustées de sorte a préserver I'approximation des fonctions

longueur.
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S

m2|x| 72| x| 72| x|
[?
i,y 6y o kAP, o — i(ue,) e € C(R)
sy AP,y e ) s — i) € C(R)

Le controle du comportement des suites de géodésiques aléatoires dans les voisinages
des cusps nous permet de prouver que pour chaque n le courant p, est une lamination
mesurée de S. Enfin, I'uniformité en k£ dans 'approximation des fonctions longueur permet
de conclure que i(p,, ) — F et que F est le nombre d’intersections avec une lamination

mesurée.

Comptage des arcs pour les surfaces a bord

Le mapping class group Map(X) d’une surface compacte connexe orientée ¥ de genre g
et a r composantes de bord agit sur les multicourbes a poids €,,(X) de cette surface. La
question du comptage des éléments dans une orbite donnée de cette action a été étudiée
par Mirzakhani, d’abord pour les courbes simples [Mirl] puis pour les multicourbes en
général [Mir2]. Elle montre que pour toute structure hyperbolique X sur 3 et toute
multicourbe vy € €,,(X), si I' est un sous groupe d’indice fini de Map(X) alors il existe

une constante c; (7o) > 0 telle que

. HyeTl wlx(y) <L
nggo { Lﬁgo—|6f2(r ) ) = Cg,r(%) ~m¥hu({€X(.) <1}),

oll m%,, est la mesure de Thurtson sur les laminations mesurées de Y.

Ces résultats ont été étendus pas Erlandsson-Souto [ES3] en une version plus générale,
ou la fonction longueur peut étre remplacée par d’autres notions de complexité pour les
courbes de Y. Cela s’applique par exemple a la longueur pour n’importe quelle métrique
riemannienne de courbure négative sur ¥ ou son intérieur [ES1], le nombre d’intersections
avec une courbe ou un courant remplissant [ES1][RS], la longueur de mot [Erl}, la longueur
de translation pour certaines actions de 7 (X) sur un espace métrique [EPS] ou encore la

longueur extrémale [MT1].

23



Maintenant, si > est de bord non-vide on peut s’intéresser a l’action du mapping
class group sur les multiarcs a poids de ¥. On appelle arc un chemin entre deux bords
de la surface. Dans ce contexte, Bell [Bel2] obtient des résultats semblables a ceux de

Mirzakhani. Si X est une structure hyperbolique sur ¥ et ay un multiarc a poids alors il

Map(X)

existe ¢

() telle que

lim A€ Map(2) - ol (M) S L} wany 2 ((0x() < 1), (V)

LS00 [ 69—6-+2r g

ol la longueur d'un arc est la longueur pour X de 'unique arc géodésique homotope a « et
orthogonal au bord de >. Le but principal du Chapitre 3 est d’obtenir une version générale
de (V) dans laquelle la longueur peut étre remplacée par d’autres notions de complexité
pour les arcs. Pour ce faire, on montrera un résultat de convergence pour des familles
de mesures construites a partir de ces arcs. En effet, les résultats de Erlandsson-Souto
portant sur la généralisation des résultats de Mirzakhani reposent sur la convergence de
familles de mesures de comptage vers la mesure de Thurston dans ’espace des mesures sur
les courants géodésiques de Y. Dans ce cadre, un élément clef est que les multicourbes a
poids peuvent étre vues comme des courants sur 2. Dans le but de voir les arcs de ¥ comme

des courants géodésiques on travaillera dans la surface correspondant au doublement D
de .

FIGURE 1 — De ¥ & DX

Dans ce contexte, si i et i~ correspondent aux deux plongements canoniques de %
dans DY alors on a le processus de doublement suivant :
T C(Y) = C(DY)
pooo i () i ()

T AR(E) = €, (DY) — C(DY)
— = Q.

Q)

«



Nous sommes ainsi dans la possibilité d’associer a chaque multiarc ag et tout sous-
groupe d’indice fini I' de Map(X) la famille de mesures de Radon sur C(DX) suivante :
I _ 1 5
Vao,L - L6g—6+27‘ Z %a
aclag
Le chapitre 3 consiste a prouver la convergence de cette famille quand L tend vers

I'infini et & identifier sa limite.

Théoréme 3.13. Si X est une surface compacte, connexe, orientée d bords et de caracté-
ristique d’Euler négative et que X n’est pas une paire de pantalon alors, pour tout multiarc
a poids o € A (), et tout sous-groupe I' d’indice fini de Map(X), il existe ¢y () > 0
telle que

: r _ . N
[}grolo Voo, L = Cg,r<&0> “Mrhy-

Ici, m%,,, est une mesure de Radon sur C(DX) et la convergence a lieu pour la topologie

faible* sur les mesures de Radon sur C(DX).

Remarque. Dans le théoréme ci-dessus la mesure W7, est une mesure sur €(DX) ob-
tenue a partir de la mesure de Thurtson sur ML(X), plus de détails sur sa construction

sont donnés dans la Section 3.1.

La preuve de ce théoréme repose sur une stratégie similaire a celle utilisée par [RS].
Les étapes essentielles de la preuve sont les suivantes.
— On commence par prouver une version de (V) pour laquelle la mesure de complexité
des arcs est donnée par le nombre d’intersections avec une courbe remplissante,
Théoréeme 3.7.

. . F
— On montre ensuite que toute sous suite (v, Jnen de (v,

b L)L>0 Ve Ly — 00

admet au moins une valeur d’adhérence en utilisant le Théoreme 3.7.
— On s’assure ensuite que les points d’accumulation de (v},

ML (). Cette étape repose elle aussi sur I'utilisation du Théoréme 3.7.

) >0 sont supportés par

— On prouve alors que ces points d’accumulation sont des multiples de m%,,, a I'aide
de la classification des mesures ergodiques pour l'action de Map(X) sur ML(X)
issue de [LM] ou [Ham].
— On conclut en montrant que ces éléments sont tous le méme multiple de Mm%,
On déduit de ce théoreme une version générale du théoréeme de comptage de Bell
pour les arcs : la fonction longueur peut étre remplacée par des fonctions particulieres

sur A,,(X). On dira qu’une fonction F' € Rg’g(z) est une mesure de complexité pour les
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arcs s’il existe une fonction continue et homogene F sur C(DX), qui soit positive sur les
courants symétriques ne donnant pas de poids a 0%, et une fonction continue et homogene
F sur C(X) telles que :

- VYaeAn(X), F(a)=2F(a),

- VpeC(X), F(p)=2F(u).

Corollaire 3.16. Soit > et I' comme dans le Théoréeme 3.15. Pour tout multiarc a poids

ap € A, (X) et toute mesure de complexité sur les arcs F,

I aplF <L r 5
jim HOEL OIS E) o (o) b, (P < 1))

Par exemple, la fonction F' peut étre une fonction longueur ou un nombre d’intersec-
tions avec une courbe ou un courant remplissant de ..

On terminera le Chapitre 3 avec une adaptation des résultats ci-dessus au cas des
orbifolds et leur application au comptage des arcs bi-infinis dans les surfaces a cusps pour

des notions adaptées de longueur.

Corollaire 3.21. Soit S une surface non-compacte de type analytique fini avec r > 0
cusps qui ne soit pas un pantalon. Pour toute structure hyperbolique X sur S, si ag est
un multiarc a poids bi-infini et T’ un sous-groupe d’indice fini de Map(S) alors

o HaeTl  ayllx(a) <L
Lh—I>Iolo { L690—|6f25’ ) } = cg,r<70) ’ mjs“hu({gX() S 1})

Ouvertures

Vers d’autres résultats de comptage

Les résultats de comptage du Chapitre 3 ainsi que les résultats de comptage de Mirza-
khani ou Erlandsson-Souto sont valables si I’on considére I'action du mapping class group
de la surface ou de 'un de ses sous-groupes d’indice fini. Qu’en est-il pour les orbites de

sous-groupes d’indice infini ?

Question 1. Soit Z une surface de type fini et vy une multicourbe de Z. Pour I' un

sous-groupe de Map(Z) et pour une mesure de complexité F fixée posons
AT (L) = {y €T qo|F(3) < L}.
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Comment jjA,FyO (L) croit-il quand L tend vers l'infini ? [ |

Pour I' d’indice fini, ce cardinal grandit comme L%9-5t2" D’apreés le Chapitre 3, si
7o est une courbe symétrique de DY et I' = Map(X) < Map(DX), alors la croissance
est de la forme L9 =6+2n(X) (alors que g(DY) = 2¢9(X) + n(X) — 1 donc 6g(DY) — 6 =
12¢g(X) — 12+ 6n(X)). On montre dans le Chapitre 4 que pour I' monogene généré par un
élément pseudo-Anosov ou un twist de Dehn la croissance de AEO(L) est, respectivement,

logarithmique et linéaire en L.

Théorémes 4.4, 4.7, 4.9. Soit Z une surface de type fini, F' une mesure de complexité
pour les courbes de Z et vy € €,,(Z) une multicourbe a poids. Si ® € Map(Z) est un
élément pseudo-Anosov de Map(Z) de facteur de dilatation \ et o une courbe simple telle

que i(vo, ) # 0, alors

H{ye< ® > y|F(y) <L} 2

gl—{go log(L) ~ log(N)’ (VD)
. H{rye< Ty > wlF(y) <L} 2
i L = (e, 0)Fla) (V1D

Dans la premiere section du dernier chapitre de ce manuscrit on développe ces deux
exemples et on souleve des pistes de réflexions permettant d’allier ces résultats et ceux du

Chapitre 3 pour aboutir a la conjecture suivante :

Conjecture. Soit S une surface de type fini fermée, soit I' un sous-groupe de Map(S) et
X une structure hyperbolique sur S. Il existe m,n > 0 et un nombre fini d’entiers positifs
ki, ...;km, 01, ..., 0, tels que, si le centre C(T') de T' est d’ordre infini dans Map(S) alors
pour toute multicourbe vy de S, il existe des entiers iy, ...,4; et ji, ..., Jr €t une constante

C tels que

t{y € C(T) - wllx(y) < L}
log(L)5j1+--+5jk Lkil-i-----i—kil L;)O C.

Points de vue géométrique et mesuré sur les problemes de comp-
tage

Comme souligné par le Chapitre 3 1’étude de mesures de comptage est un outil tres
efficace pour traiter les probléemes de comptage comme celui soulevé par la Question 1.

Cette premiere question entraine donc naturellement une deuxiéme question.
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Question 2. Soit Z une surface de type fini et o une multicourbe fixée de Z. Pour tout

sous-groupe I' de Map(Z), posons

mSmL =y (5%7 une mesure de Radon sur C(Z).
Y€l Y0
mb
FExiste-t-il une fonction Pr telle que ﬁ converge vers une mesure non-nulle quand L
r
tend vers linfini ? [ |

Pour un sous-groupe (d’indice infini) quelconque il semble compliqué de pouvoir iden-
tifier la mesure limite, méme lorsque 'on dispose de résultats de comptage. Cependant
on dispose d’exemples concrets pour lesquels cette mesure est explicite :

— Dans DY, pour g symétrique et I' = Map(X) on sait que pour Pr(L) = L#9*)=6+2r(%)

on obtient comme mesure limite un multiple de m%,,,,

— Dans une surface fermée S, pour 7y une courbe quelconque et I' généré par un
twist de Dehn le long de « telle que i(«, vy) # 0 alors, pour Pr(L) = L on obtient
comme mesure limite un multiple de la mesure de Lebesgue sur {ta|t > 0},

— Dans le méme contexte, si [' est généré par un pseudo-Anosov alors pour Pr(L) =

log(L), la mesure limite est une masse de Dirac en 0.

Ces interprétations des théoremes de comptage en termes de convergence de mesures
nous informe sur les objets sur lesquels s’accumule 'orbite d’une courbe pour l'action
de I'. L’orbite renormalisée d'une courbe sous 'action de Map(X) s’accumule sur ML(X).
De la méme maniere 1’orbite d’une courbe par un twist de Dehn s’accumule sur la courbe
le long de laquelle on effectue le twist. La question de la convergence des mesures de

comptage est donc associée a la question suivante.

Question 3. Sur quel espace l'orbite de vy sous laction de T' s’accumule-t-elle dans
P, ML ? [ |

On peut citer des cas particuliers pour lesquels cette question pourrait étre traitée.
Par exemple, si I' < Map est tel que F\S est un orbifold, sur quoi s’accumulent les orbites
de C(I')?

D’une maniere générale, il semble pertinent d’approcher les problemes précédents a

travers les propriétés géométriques des sous-groupes qui nous intéressent.
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Résultats asymptotiques pour les courbes

Les différents résultats de comptage sur les courbes nous donnent des outils pour
étudier les proportions d’apparition de chaque type de courbe. En effet, si vy et 7, sont

deux courbes d'une surface hyperbolique X, alors

#{y € Map -y |lx(y) < L} ¢ (70)
t{y € Map 71 [0x(y) < L} Lo 2P (vy)

Si k > 0 est fixé, on peut poser ¢;,(t < k) = ¥ ¢}!*P(y) et si o a au plus k
L’YO?’YOSk '

auto-intersections on peut s’intéresser a la quantité suivante :

(o) i Hy € Map yléx(7) < L}

Cor(t < k) Looo t{y[lx(y) < Lyu(v,7) < k)

Map
g?’r

Zograf-Zorich [Del+] ont prouvé que, en grand genre, la plupart des courbes simples sont

En étudiant la constante ¢ dans le cas de courbes simples, Delecroix-Goujard-

non-séparantes. La question se pose alors pour des courbes admettant des intersections.

Map
g7T

quelconque ? Qu’en apprend-on sur le comportement des courbes en grand genre ? [ |

Question 4. Peut-on exprimer de maniére tangible la constante ¢ pour une courbe

Les questions ci-dessus font entre autre partie d’un travail en cours avec M.Liu, K.Rafi
et J.Souto.
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TRODUCTION

This thesis is dedicated to the study of two aspects of geometry of surfaces:

e The Thurston compactification of Teichmiiller space,

« Counting problems on surfaces.

Our goal is to treat these problems through the lens of geodesic currents. The set of
geodesic currents of a finite type surface with negative Euler characteristic is a completion
of the set of weighted multicurves. Bonahon introduced this notion in 1986 [Bonl], mainly
to study the ends of 3-manifolds. This notion has since proved fruitful in the study of
hyperbolic, flat or negatively curved structures on surfaces [Bon2; BL; CFF; DLR; HP],
for the study of curves on surfaces [ES3; Erl; RS; EPS], and more recently for the study
of character varieties [Bur+2; Bur+1; MZ].

Let us describe the organization and the contributions of this manuscript. The first
chapter is dedicated to the introduction of the necessary backgound and notations and
also contains some useful computations of hyperbolic geometry. The second chapter is
based on [Tril]. In this chapter we extend Bonahon’s proof of the compactification of
Teichmiiller space to the case of non-compact finite type surfaces. To do so, a large amount
of the chapter is dedicated to the construction of "random" sequences of geodesics whose
behavior into the cusps is controlled. The third and fourth chapters are dedicated to
counting problems on surfaces. In the third chapter we prove that arcs on surfaces can be
seen as geodesic currents and that the arc-counting problem can be interpreted in terms
of convergence of families of measures. The key point of this chapter is that the counting
measures for arcs approximate the same measure as the counting measures for curves. In

the last chapter we explain and explore different questions raised by this document.

The following sections formulate the problems of interest and highlights the main

contributions.
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Thurston compactification of Teichmiiller spaces for

non-compact surfaces

The Teichmiiller space T(S) of a surface S of finite type, with no boundary and of
negative Euler characteristic x(S), is the space of isotopy classes of (complete and finite
volume) Riemannian metrics on S of constant curvature —1. Teichmiiller space is not com-
pact but Thurston showed in [Thu] how it can be compactified by the space P, ML(S) of

projective measured laminations on S. The starting point of Thurston’s compactification

¢(S)
is the embedding of T(.5) into the space P (Rgos )) =R \RZO of projective functions on
the curves of S:

>0
0TS - PLRYY)
X = Repoflx().
Here (x is the length function associated to the hyperbolic structure X on S and €(5)
is the set of free homotopy classes of essential closed curves of S. Thurston proved that
the image of ¢ is locally compact and identified the boundary of T(S) in IP’+(R§(OS )) with
P, ML(S). .

Theorem (Thurston compactification). If S is a finite analytic type surface with negative
Euler characteristic, then the accumulation points of T(S) in Py (]RSOS )) are the projective

classes of functions v +— i(X\, ) where A € ML(S) is a measured lamination on S.

Thurston’s original proof is explained in [FLP]. Alternative proofs using real-trees
are given by Morgan-Shalen [MS], Bestvina [Bes| or Paulin [Paul]. An overview of the
different compactification methods is available in [Pau2] or [Ohs|. A compactification for
the set of flat-structures and using geodesic currents is done in [DLR], note that this
article is interested in both compact and non-compact surfaces. Here, we will be mostly
interested in a very elegant argument, for closed surfaces, due to Bonahon [Bon2|. Let
us sketch the proof. Recall that geodesic currents are m(S)-invariant Radon measures on
the set of bi-infinite geodesics of the universal cover of S. Bonahon embeds T(.S) into the
space C(.5) of geodesic currents of S, sending each element X € T(S) of the Teichmiiller
space to the associated Liouville current Ly € €(S). The Liouville current satisfies two

important properties:

i(Lx,v) ={x(vy) for every curve v, and (1)
i(Lx, Lx) = *[x(S)I. (1)
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Here, 7 : C(S) x €(S) — R, is the intersection form, a continuous bilinear map extending
the usual geometric intersection number between curves. The space P C(S) being compact
each sequence (X, )nen in Teichmiiller space admits a subsequence, say the whole sequence,
which projectively converges to a non-zero current p, meaning that there are positive real
numbers &,, such that T}erolo enLx, = p. The continuity of ¢ and property (I) ensure that the
length functions ¢y, (-) converge projectively to i(u,-). Moreover, &, tends to zero unless
X,, converges in T(S). Knowing that &, —— 0, property (IT) ensures that i(u, ) = 0,
meaning that p is a measured lamination, as we needed to prove.

We stress that Bonahon’s argument, with all its simplicity, only applies to closed
surfaces. We will come back later to this specificity and to the obstructions to a direct
extension of his argument. Recently, Bonahon and Sari¢ have given another proof of
this theorem using geodesic currents. The arguments in [BS] are geared to infinite type
surfaces and it is worth noticing that working in such a general context implies the loss
of the simplicity of Bonahon’s original proof.

Our goal here is to adapt Bonahon’s original argument to be able to deal with non-
compact surfaces of finite analytic type.

Let us look at the difficulties that prevent the extension of Bonahon’s proof to the
non-compact case. The intersection form, especially its continuity, is the key ingredient of
Bonahon’s original proof. However, continuity fails when the surface is not compact, even
if it has finite area (see [Sas] or Example 2.6 below). We will therefore change our point of
view to allow us to benefit from the continuity of 7. We will consider currents on ¥ instead
of S, where ¥ is a compact hyperbolic surface with geodesic boundary whose interior is
homeomorphic to S, that is S = X\ 0X. The second key ingredient of Bonahon’s proof is
the existence of the Liouville current but, as we will see, when working with currents on

Y2, no Liouville current exists anymore.

Proposition 2.7. Let X be a compact hyperbolic surface with non-empty boundary and
X a hyperbolic structure on S = ¥\ 0. There is no current Lx on Y which satisfies
i(Lx,vy) = {x(7y) for every essential closed curve v € €(3).

In order to recover a version of properties (I) and (II), we will, for every hyper-

bolic structure X on S, replace the Liouville current Lx by specific sequences of ran-

(X)

dom geodesics (74*)),en, that is sequences of essential closed geodesics whose associated

n
probability measures in 7 X converge to the Liouville measure with respect to the weak*

topology. They will be chosen to satisfy (I) and (II) asymptotically, that is:
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lim ¢ ,7) = ———— for all essential closed curve =, (111
(5t) = sy )

S Tn Tn _ 1
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As discussed in [ES3], any sequence of random geodesics (v, )nen satisfies (I11). Moreover,
if the surface is compact then (IV) is ensured for every sequence of random geodesics.
However, for a non-compact surface, arbitrary sequences of random geodesics do not
necessarily satisfy (IV), see Example 2.12 below. Indeed, a large part of Chapter 2 will
be devoted to the construction of sequences of random geodesics satisfying this property

for non-compact surfaces.

Theorem. For every complete and finite area hyperbolic structure X on a finite analytic
type surface S of negative Euler characteristic x(S), there is a sequence (VJ(VX))HGN of

random geodesics such that:

() () )
lim z( N N )—

e oy e 0R) ) TSI

The Theorem above is actually part of a more technical result, Theorem 2.15. The main
additional content of Theorem 2.15 is to ensure that the convergence rates in (III) and
(IV) hold with no dependence on the structure X. This uniformity will be important to
achieve the proof of Thurston’s compactification. Moreover, the proof of the theorem also
ensures that we can control the behavior of sequences of random geodesics into the cusp’s

neighborhoods.

Counting arcs on surfaces with boundary

The mapping class group Map(X) of a connected oriented surface ¥ with genus g and
r boundary components acts on the set of weighted multicurves €,,(X). The question of
counting the elements in a given orbit has been studied by M. Mirzakhani for simple
curves [Mirl] and later for general curves [Mir2]. She proved that for any complete finite
area hyperbolic metric X on ¥, any weighted multicurve v € €,,(X) and any finite index

subgroup I' of Map(X), there is a constant ¢ (7o) such that

.ty el wlx(y) <L
ng{.lo { L690|6f2(r ) J = Cg,r(%) ~mZ,, ({0x(-) < 1}),
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where mZ%,  is the Thurston measure on the space ML () of measured geodesic lamina-
tions of X.

Erlandsson-Souto [ES3] have extended this theorem into a general version where the
hyperbolic length function can be replaced by other notions of complexity for the curves
of S. This applies for example to the length for any Riemannian metric on ¥ or its
interior [ES1], the intersection number with a filling curve or current [ES1][RS], the word
length for a finite generating set [Erl], or the translation length in 7;(¥) when acting on
a sufficiently nice metric space [EPS], to name a few.

Now, if ¥ is a compact connected oriented surface with non-empty boundary, then
one can consider the action of the mapping class group on the set A,,(3) of weighted
multiarcs, where an arc is a free homotopy class of paths whose endpoints belong to the
boundary of ¥. Note that arcs are not necessarily embedded. In this setting, Bell [Bel2]
proved a result close to Mirzakhani’s: if X is a complete hyperbolic metric with geodesic

boundary on ¥ then for every weighted multiarc ag there is a constant ¢;"?"(ay) such that

i A EMPE 0l B ivag) wh (0 S 1), ()

L—o0

where the length of an arc « is the length of the unique geodesic arc homotopic to «
which is orthogonal to the geodesic boundary, and the length of a weighted multiarc is
the weighted sum of the lengths of its components. The main goal of Chapter 3 is to
obtain a general version of eq. (V) by proving a convergence result for a certain family of
counting measures. Indeed, the Erlandsson-Souto generalization of Mirzakhani’s results
already relies on the convergence of certain measures on the space of geodesic currents.
Here it is key that curves can be seen as currents. To see arcs as currents, we will work
in the doubled surface DY of ¥. Denoting by & the curve in D3 corresponding to the
doubling of an arc « of ¥, we are able to define for any weighted multiarc «y and for any
finite index subgroup I' of Map(X) the Radon measures

1
r _
Voo, L = ,69—6+2r Z 0

aclaqg

(0.0.1)

~
«

=

on the space C(DX) of geodesic currents of DY. We prove that this family of measures

converges when L tends to infinity. The following is our main theorem.

Theorem 3.13. If X is a compact connected oriented surface of genus g with r > 0

boundary components and negative Fuler characteristic which is not a pair of pants, then
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for every weighted multiarc oy € A (), and every finite index subgroup I' of Map(X),
there is ¢ . (ag) > 0 such that

lim '

oo Q0,L = cg,r<a0) ’ I/ﬁ%hu

Here w%,, is a Radon measure on C(DY) and the convergence occurs with respect to the

weak™ topology on the set of Radon measures on C(DX).

Remark. In Theorem 3.13, the measure Mm%, is a specific measure on C(DX) obtained
from the Thurston measure on the space ML(X) of measured laminations on 33, see Section
2.2 for details.

We will get from Theorem 3.13 a rather general counting theorem for arcs. We will
count arcs with bounded complexity where the complexity of an arc is given by functions
on A,,(2). We will say that such a function F' is a measure of complexity for arcs if
there exist a continuous and homogeneous function F' on C(DX), positive on €7(DX) N
{1(0%) = 0}, and a continuous and homogeneous function, also called F, on C(X) such
that:

- VYa e An(X), F(a)=2F(a),
- Vp € C(R), F(m) = 2F(n).

Corollary 3.16. Let ¥ and I' be as in Theorem 3.13. For any weighted multiarc oy €

Am(2) and any measure of complezity for arcs F' we have

I ol F <L r 5
jim HOEL OIS E) o (o) b, (P < 1))

For example, F' can be the length function for any negatively curved Riemannian
metric with geodesic boundary on ¥ or the intersection number with a filling curve or

current of X.

Perspectives

The different perspectives associated to this manuscript are mainly related to counting
problems on surfaces. We develop in the last chapter the questions below and their answers

for some special cases. We also raise some ideas for their resolution.
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The results of Chapter 3 as well as Erlandsson-Souto’s or Mirzakhani’s results apply
for both the mapping class group and its finite index subgroups. This remark raises a first

natural question:

Question 1. Let Z be a finite type surface and vy a weighted multicurve of Z. For I" a

subgroup of Map(Z) and F' a measure of complexity for curves let us define

AL (L) ={yeT -|F(y) < L}.
How does ﬁAFm (L) grow when L goes to infinity? [ |

We develop in Section 4.2 the answer to this question for I' generated by a Dehn-twist
or a pseudo-Anosov mapping class. We also explain how the results from Chapter 3 could

be used to answer this question in a more general context.

Theorem 4.4, 4.7, 4.9. Let Z be a finite type surface, F' a measure of complexity for the
curves of Z and vy € €,,(Z) a weighted multicurve. If ® € Map(Z) is a pseudo-Anosov
of Map(Z) with stretch factor X\ and o a simple curve such that i(o, ) # 0, then

Hye<®>plF(y) <L} 2

Lh—1>r<>lo log(L) N log(\)’ (VD)
. H{ye<Ty> wlFly) <L} 2
Jim, I = @) P I

As emphasized in Chapter 3, the study of counting measures plays a key role in
the resolution of counting problems on surfaces. Hence, a natural problem associated to

Question 1 is the study of the counting measures associated to AL (L).

Question 2. Let Z be a finite type surface and vy a weighted multicurve. For I a subgroup
of Map(Z) let us define

mS{hL =y 01, a Radon measure over C(2).
Y€l Y0
mb
Is there a function Pr such that PV(OI’;) converges to a non-zero measure when L goes to
r
infinity? [ |
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In the same way as we will investigate Question 1 for cyclic subgroups generated by
a pseudo-Anosov or a Dehn-twist we will identify Pr and the limit measure in these two
special cases:
— If T is generated by a Dehn-twist along a curve o then Pr(L) = L and the limit
measure is a multiple of the Lebesgue measure on {talt > 0},
— If T is generated by a pseudo-Anosov then Pr(L) = log(L) and the limit is a Dirac
mass at 0.
The fact that counting measures over full orbits of arcs or curves tend to a multiple
of a Thurston measure traduces the fact that the given rescaled orbits accumulate on the

set of measured laminations. So, Question 2 induces a new question.

Question 3. On which subset of PL.ML does the orbit of vy under the action of I' accu-
mulate ¢ [ |

Finally the last question we raise in this manuscript is about the constant cg’r (70) which
appears in the different counting results. Indeed, the ratio of the number of elements of

type 71 and 7y, for two curves of different type is given by the ratio of ¢(v;) and ¢(7).

Map
g7r

learn from it about the asymptotic behavior of curves? [ |

Question 4. Can ¢ be expressed for any curve in a computable way? What do we
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OTATIONS

Hyperbolic plane H?2
Finite analytic type surface S p-45
Compact surface with boundary )y p.45
Boundary of ¥ ox
Double of ¥ DY p-91

Doubling operator from 3 to DY g p-92
Natural involution of DX o p-91
Finite type surface A p-45

Genus of Z 9(Z) p.45
Mapping class group of Z  Map(Z) p.53
Fundamental group of Z m(2)

Universal cover of Z Z
A lift of a geodesic v in Z vy
Total lift of v to Z 5

Euler characteristic of Z x(Z) p.46
X

Hyperbolic structure on Z p.46

Volume of K with respect to the metric X  volx(K)
Compact core of X bounded by the horocycles of length k X* p-48
Complementary in X of X* BE p.48

Teichmiiller space of Z T(2) p.67

Set of weighted multicurves of Z  €,,(Z)  p.47

Length of the (multi)curve v with respect to X lx(7) p.47
Compact length associated to X on a surface with cusps lx(+) p-105

Set of weighted multiarcs of ¥ A, (X)  p.90

Set of integral weighted simple multicurves of 2~ MZLz(Z) p.58

Set of measured laminations of Z ~ MXL(Z)  p.56

Set of projective measured laminations of Z P,ML(Z) p.b7
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Set of (geodesic currents) of X

Set of internal currents of ¥

Set of internal currents of > with support projecting into K
Set of projective currents of Z
Thurston measure on ML (Z) or C(Z)
Intersection form/number

Peripheral self intersection number of ~
Unit tangent bundle of X

Liouville measure associated to X
Liouville current associated to X
Cardinal of the set A

42

e(%)
Co(Z
Cr (2
P.C(2)
M7,
i+, )
iper(7,7)
T'X
Lx
Lx
1A

- —

p.60
p.60
p-60
p-60
p.58
p.62
p.H2

p-69
p-69
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CHAPTER 1

BACKGROUND

We begin by recalling the necessary definitions and properties of geometry of surfaces,

and also introduce the notations we will follow throughout the document.

1.1 (Hyperbolic) Surfaces

1.1.1 Topological surfaces

In this manuscript we are interested in the study of orientable surfaces, where a sur-
face is a connected 2-dimensionnal smooth manifold. We dispose of a classification of

surfaces that will allow us to consider surfaces up to homeomorphism.

Theorem (Classification Theorem for compact surfaces). Fvery compact connected ori-
entable surface ¥ is, up to homeomorphism, a connected sum of a sphere with g(¥) < oo
tori to which are removed b(X) < oo open disks with disjoint closure. The quantity g is

called the genus of ¥ and b is the number of boundary components.

A finite type surface Z is a compact connected and orientable surface minus a finite
number 7(Z) of points called punctures. We will no more specify it but all the surfaces
we will work with are of finite type. We will also sometimes consider finite analytic
type surfaces which are surfaces that can be seen as the interior of compact surfaces:
they are finite type surfaces with b = 0. If also » = 0 then the surface is said to be closed.

Regarding this elements, the Classification Theorem extends in the following way:

Theorem. A finite type surface Z is, up to homeomorphism, uniquely determined by
9(Z), b(Z) and r(Z).

In terms of notation, we will refer by S to finite analytic type surfaces and by X to

compact surfaces with boundary. The notation Z refers to a general finite type surface.

More than surfaces we will be interested in surfaces which admit hyperbolic structures,

for that considerations the Euler characteristic is a decisive object. Recall that the Euler
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characteristic x(Z) of a finite type surface Z is given by
\(Z) =2 - 2(2) - (b(Z) +(2)). (1)

Remark 1.1. From nowon we will only consider surfaces with either punctures or bound-
ary components, we will denote by r the number of ends of the surface, be they boundary

components or punctures.

1.1.2 Hyperbolic strcutures on surfaces

For Z a finite type surface, a hyperbolic stucture X on 7 is, equivalently,

1. an atlas on Z with charts on H? (or on H2 = {z + iy € H*|y > 0} if Z has
boundary) such that the transition maps are orientation preserving isometries of

H? (resp. H2) and the induced metric is complete,

2. a metric d on Z such that the metric space (Z, d) is complete and locally isometric
to H? (resp. H2),

3. a complete Riemannian stucture p on Z with totally geodesic boundary and con-

stant curvature —1,

4. an homeomorphism h : Z — F\Z where Z is ( a convex domain with geodesic
boundary of) H? and T a torsion free discret subgroup of orientation preserving

isometries of Z with a free, properly discontinuous and finite covolume action on

Z.

The third point together with Gauss-Bonnet Theorem ensure that a finite type surface
7 with Euler characteristic can admit hyperbolic structures. Regarding the third point,
if we lift the hyperbolic structure to the universal cover Z then it is isometric to Z
and the subgroup I' identifies with the fundamental group of the surface. Hence, the
parabolic isometries in I' generate the cusps in X around the punctures of Z. We will

talk indistinctly of cusps or punctures now.

1.2 Curves on surfaces

1.2.1 Definitions

Definition 1.2. Let Z be a finite type surface and v an unoriented closed loop in Z. The

loop v is essential if it is non-nulhomotopic and homotopic neither to a puncture nore
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to a boundary component.

Such a loop can be seen as an element of w(Z), a loop is primitive if it connot be
written as the power of another loop in 7 (Z).

A curve in Z is a free homotopy class of essential closed and primitive loops in Z
and €(Z) is the set of all curves of Z. A weighted multicurve is a formal finite sum

of distinct curves with positive weights and the set of all weighted multicurves is €,,(7).

If a hyperbolic structure X is fixed on Z then each curve v € €(Z) admits a unique
geodesic representative 7., hence, the set of curves can be seen as the set of essential
primitive closed geodesic in X. This property allows to define the length function on

curves.

Definition 1.3. For a hyperbolic structure X on Z and v a curve, the length {x () of vy
with respect to X is the path length of v.. The length function extends naturally on €,,(2)
by linearity.

Note that the length of a curve v can also be seen as the shortest path length among

the representatives of « for the metric associated to X on Z.

1.2.2 Intersection number

Definition 1.4. For v, and v two curves of a surface Z, the (geometric) intersection

number between v; and v, is defined by

i, 72) = min fa; Nyl
Q2€E7Y2

Where, if o and 3 are parametrized over St = [0, 1]/N then
an Nao| = ¢{(t,1) € [0,1]%|a(t) = B()}.
The definition extends to weighted multicurves by bilinearity.

For example, in Figure 1.1, i(y1,7%) = 1, i(71,71) = 2 and (72, 72) = 0.
Note that the intersection number is purely topological, meaning that it does not
depend on the Riemannian structure on the surface, however, when such a structure is

fixed, the minimum is reached by the geodesic representatives of the curves.
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Figure 1.1 — Examples for intersection number

Remark 1.5. For the self intersection number (ie. the intersection number between a

curve and itself) the following convention also exists:
d(,7) = min g{{t # '} € [0, ]a(t) = a(t)}.

The definition of (-, +) is a more natural way to define the self intersection of a curve
but to fit with the extensions of the notion of intersection that will follow we will not use

it, except for intermediate computations. Note that i(~y,v) = 2t(7, 7).

Definition 1.6. A multicurve v € €,,(Z) is simple if i(y,v) = 0.
A multicurve v is filling if it has positive intersection number with every curve or,
equivalently, if it cuts the surface into disks, punctured disks and annuli (where any an-

nulus has a boundary which is a boundary component of the surface).

Figure 1.2 — A filling multi-curve

1.2.3 Self intersections, lengths and cusps

In non-compact surfaces the behaviour of the curves into cus neighborhoods is fixed.
Hence, the length and the self intersection number are closely related.

We consider a finite analytic type surface S with 7(S) < oo punctures. If X is a
hyperbolic structure on S then we denote by H} the embedded horosphere of length 1/k
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around the i-th cusp. The horosphere Hj bounds the horoball Bj of area 1/k. We will
refer to H and Bj as the horosphere and horoball of depth %, the horoballs will also be
called cusp neighborhoods. We also set X* the compact core of X bounded by the

horospheres Hi and B* its complement:
X*=x\UB;,, B*=UB;.

There is a direct link between the number of times a curve turns around a cusp and the
depth the associated geodesic reaches [BPT, Prop. 3.4]. It follows that every curve that
goes deep into a cusp has a large self-intersection number. The next to paragraphs aim
to explore this link. More precisly, we compute the dependance between the length of a

cusps excursion and its number of self-intersections

Definition 1.7. Let X be a finite analytic type hyperbolic surface (with cusps). For 7 a
complete geodesic in X and C; the i-th cusps, a cusp excursion in the horoball at
depth k around C; is a sub-arc I of v included in Bj, and with end points along Hj.. The

depth reached by this excursion is
inf{k > 1|1 N B, = }.

More clearly, the depth reached by a cusp excursion represents the smallest horosphere

encountered by that excursion.

Remark 1.8. Note that the computations in the paragraphs below correspond to the def-

inition of intersection given in Remark 1.5.

Self intersection in the horoball of depth 1

Let us focus on a given cusp Cs of X, identify X with H? such that {z € C|S(z) >
1} = H.;, identifies with the universal cover of the neighborhood B¥ = H of C,, meaning
that if T: 2+ 2 + 1 then B 2 >k,

If I is an excursion between depth 1 and R around C4, then it can be lifted to an
arc based on H_;, noted J, comming from a circle centered in 0 and of (euclidean) radius
R > 1. Denote by a(J) and b(J) the roots of the lifted segments J. By the way, the self
intersection number «(7,I) of I in H is the number of lifts of I in H.; which intersect J.

See fig. 1.3 for precisions.
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Figure 1.3 — Computation of the intersection number of a cusp excursion

The lifts of I in H., are the T™(J) for n € Z*. If we note D = dg(a(J),b(J)) the
Euclidean distance between a(J) and b(J), then for n an integer, 7"(.J) intersects J if
and only if |n| < D. Since 2R —2 < D < 2R and (7, v) = #{n € Z*||n| < D},

AR —4 < u(v,7v) < A4R.

Since J joins the horospheres of depth 1 and R its length is at least twice the length
of the shortest path ¢ between these two horospheres: ¢ is the segment [¢,iR] in H and its
length is log(R).

7]

a(J) b(J)

Figure 1.4 — Computation of the length of a cusp excursion

Moreover, J is a geodesic path between a(J) and b(J) so its length is at most the
length of the path v where 7 goes from a(J) to the horosphere of depth R, follows the
horosphere until the abcissae of b(J) and joins b(.J) by a straight line. The length of such
a path is at most 2log(R)+2. As a consequence: 2log(R) < ly(J) = x(I) < 2log(R)+2.
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It follows that efx(/2-1 < R < x(/2 and thus

Letx (02 _ g < (1. 1) < 4etx 012,
e

Self intersection in the horoball of depth £

H_po

Figure 1.5 — Computation of the intersection number into the cusps

Now study a geodesic excusion [ which enters the horoball of depth k£ with angle 6.

Consider some lift J of I, 0 is the angle between J and the vertical line at a(J) (notation

consitant with the previous ones), this angle is between 0 and 7/2. We will denote by p(6)

the depth reached by J (equivalently by I).

The arc J admits C' : ¢t € [, 7 — 0] — p(f)e’ as a parametrization, let us compute the

length of the excursion:

T—6 ,
ta(J) = / gy

| 1
= In
tan?(%)
1
21In Sin(9)+c0tan(0) :



Considering that k& = p(#) sin(f) we obtain

1 7
ls(I) =2In <sin(9) + cotan(9)> and ex1)/2 = ps{;) + cotan(6).
Using the same reasoning as in the previous case, we obtain
2dg(ak(J),be(J)) —2 < o(I,I) < 2dg(ag(J),br(J))
and it is clear that the Euclidean distance dg(ag(J),bx(J)) between ax(J) and by(J)
is 2 cos(0)p(0) = 2k cotan(f) so

Ak <e’fx(f>/2 - p<]f)> —2< (I, 1) < 4k <ef><<f>/2 - pg?) .

Now, if 6 is small then sin(6) ~ 6 and so (x(I) ~ 2In(2), o(1,1) ~ 4% ~ 4p(9).

Peripheral self-intersection number

A natural tool to explicit the behaviour of cusps excursions is introduced in [ES3,
Def. 2.6]: the peripheral self-intersection number. The peripheral self-intersection
number i, (7y,7) of a geodesic v tells us how much each excursion of the curve into a
cusp intersects itself. That notion also allows to focus on curves turning around boundary

components for compact surfaces.

Definition 1.9. Let X be a hyperbolic surface (compact or not) and recall that a peripheral
subgroup of w1 (X) is nothing other than a cyclic subgroup generated by a non-essential
closed curve. The peripheral self-intersection number i,..(v,7) of a geodesic v is

the supremum over all mazimal peripheral subgroups G C m(X) of the mazimal number

of times that the image of a lift ¥ of v under X — G\X meets itself transversely. The

definition extends to multicurves by taking the mazximum over the components.

An important point regarding the peripheral self-intersection number is that it is a
topological invariant, in particular, for a given topological surface, the peripheral intersec-
tion number of a curve does not depend on the hyperbolic structure. Also, if v is a closed

curve in a compact surface X then its peripheral self-intersection number is the same in
> and X.
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For non-compact finite analytic type surfaces it follows from the previous sections that
the peripheral self-intersection number is linked to the depth reached by the excursions

of the geodesic we are interested in.

Lemma 1.10. Let X be a non-compact finite type hyperbolic surface with no boundary,
and v a geodesic in X. For all k > 1, the cusp excursions of v are of depth at most k if
and only if iper(7,7) < 4k.

This lemma is a direct consequence of the computations above but an independant
proof for the case of curves is given in the next chapter where this lemma appears as
Lemma 2.9.

If we consider now only closed geodesics then Theorem 1.10 can be generalized as

follow.

Proposition 1.11. ([ES3, Lemma 2.8]) Let X be a finite type hyperbolic surface, for
every N > 0 there is a compact subsurface Ky of X which contains all the closed geodesics

with peripheral self-intersection number less than N.

Remark 1.12. [t is clear that the peripheral self-intersection number of a geodesic vy is
bounded by its self-intersection number t(y,7), hence, all the geodesics with less than N

self intersections are included in Ky.

1.3 Mapping class groups

1.3.1 Definitions

In a finite type otientable surface of negative Euler characteristic Z homotopy and
isotopy (with respect to the boundary) between homeomorphisms correspond. Moreover,
every homeomorphism is isotopic to a diffeomorphism. So, we will talk indefferently of
homotopy and isotopy or homeomorphism and diffeomorphism. Hence, the mapping

class group of a finite analytic type orientable surface S is defined by

_ Diffeo(S)/ZSOtopy_

23



If we consider now ¥ a surface with boundary then its mapping class group is definied
as the mapping class group of its interior i For surfaces with boundary or punctures one
can ask the boundary components or punctures to be fixed, passing from a definition to
another is equivalent to taking a finite index subgroup.

Since curves are defined up to free homotopy the mapping class group naturally acts
on the set of curves, a part of this manuscript is dedidacted to counting problems in the

orbits of this action.

Definition 1.13. Two (weighted multi)curves are said to be of the same type if they

are in the same orbit for Map ~ €,,,.

To study elements of the same type we will regularly use the stability of the intersection

number through this action.

Proposition 1.14. For all 1,72 € €,,(Z) and ® € Map(Z)
i(,72) = U@ 71, @ - y2).

1.3.2 Classification of mapping classes

Mapping classses are classified into three non-exclusive categories. This classification
is known as the Nielson-Thurston classification.

The first type of elements are the periodic elements. They are the one with finite
order in Map(Z). One can think of the hyperelliptic involution or "rotations".

The second kind of elements are the reducible mapping classes, some mapping
classes can be both periodic and reducible. A mapping class is said to be reducible if it
fixes a simple multicurve. Hence, the main example of reducible mapping classes are the
Dehn twists along simple multicurves, we give more details about that maps in the next
subsection.

Mapping classes which are neither periodic nore reducible are called pseudo-Anosov.

1.3.3 Dehn-twists

An important class of reducible mapping classes are the Dehn-twists. Given a simple
curve « the Dehn-twist along vy consists in cutting an annuli around «, twisting this annuli

and gluing back its boundary. See fig. 1.6.

Theorem 1.15. The mapping class group is generated by finitely many Dehn-twists.
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Figure 1.6 — Dehn-twist along «

1.4 Measured laminations

The space of measured lamination is a completion of the set of

weighted simple multicurves

1.4.1 From laminations to measured laminations

Definition 1.16. A (geodesic) lamination A on a finite type hyperbolic surface X is a

compact subset of the interior of X foliated by disjoint simple complete geodesics.

T

Figure 1.7 — Examples of laminations
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Remark 1.17. The fact that laminations are included in a compact of the interior of X
avoids laminations to spiral around boundary components or to contain boundary leaves

in compact surfaces and to go from cusps to cusps in the non-compact case.

Figure 1.8 — Non-example of laminations

Proposition 1.18. There is a fized compact K of the interior or X such that the support

of every lamination is included in K.

Proof. This result is a direct consequence of the results for the peripheral self-intersection

number of geodesics page 53 [

The foliation of a lamination by geodesics is unique and the geodesics of the folliation
are the leaves of the lamination. The leaves can be either closed geodesics or bi-infinite
ones. Simple-multicurves are example of laminations with only closed leaves (second ex-
ample in fig. 1.7). By taking infinite geodesics that accumulate along closed geodesics,
we can build laminations with both infinite and closed leaves (first example in fig. 1.7).
There also exists laminations with infinitely many bi-infinite geodesics, see [Bon3] for an

example of construction.

Definition 1.19. A measured lamination is a lamination A endowed with a familly
of positive Radon measures {\,|T smooth arc transverse to the leaves of A} which statisfy
the following properties:
— if 7" is a subarc of T then Ay = A7,
— if T = hy is homotopic to 7' = hqg throught tranverse arcs and following the leaves
of the lamination then Ay = (h1).(Ar).

The \. are called transerve measures and they are supported by T N A.

Passing through the universal cover one can see that the set of measured lamination is

independant from the hyperbolic structure when a topological surface is fixed. Hence, if
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Z is a finite type surface we can talk about ML(Z) the set of measured laminations
of Z.

Requiring transverse measures to be Radon measures means that the closed leaves of a
measured lamination must be isolated. It implies that all laminations can not be endowed
with transverse measures to be seen as measured laminations: typically, lamination with
leaves accumulating on closed geodesics cannot be measured. An important example of
measured laminations are the weighted simple multicurves which correponding lamina-
tions are the simple multicurves: the measure of an arc is the number of intersections with

the leaves counted with weigths.

The set of measured laminations is in fact a topological space in which the weigthed
simple multicurves are dense, as a consequence, the notion of intersection extends to

measured laminations.

Theorem 1.20. If Z is a finite type surface the set of weighted simple multicurves is

dense in ML (Z) and the intersection number extends to a continuous bilinear function

A filling curve is a curve which fills the surface meaning that it meets every other
curves, in fact, it is enougth to meet every simple curves. Hence, we can define an analog of
filling curves for measured laminations. An ending measured lamination is a measured
lamination which has positive intersection with every simple curve. Equivalently, it means
that the complementary regions of the interior of ¥ are ideal, maybe once punctured,

polygons.

Remark 1.21. Since laminations are supported in the interior of the surface, the space
of measured laminations of a finite topological type surface with r cusps is the same as
the one of a compact surface with same genus and r boundary components. Moreover, we
have defined the mapping class group of a surface with boundary as the one of its interior,

so we can restrict ourselves to the compact setting.

Proposition 1.22. Let ¥ be a compact surface of genus g with r boundary components,
ML(X) is a piecewise linear space of dimension 6g—6+2r and P,ML(X) = ML(E)/R

is a sphere of dimension 6g — 7 + 2r.

>0
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1.4.2 Action of the mapping class group

The mapping class group naturally acts on measured laminations and this action will

play a key role in Chapters 3 and 4.

The Thurston measure

The action of Map(X) on ML (X) induces dynamical questions, the first of all being
to identify the stable and ergodic measures for this action. Here, we are interested in a
natural invariant measure on ML(X): the Thurston measure. If we consider the set
of measured laminations endowed with its piecewise linear stucture then the Thurston
measure corresponds to the Lebesgue measure. This measure is known to be ergodic
from works of Masur [Mas| but is defined up to a constant. Let us fix a normalization
[MT2; Aral. In the same way as the Lebesgue measure can be approximated by rescalling
counting measures on the integers we fix the renormalization of the Thurston measure

such that it can be seen as the limit of rescalled counting measures on the "integer points"
of ML(Y).

Proposition 1.23. Denote by MLz (X) the set of integral weighted simple multic-

urves, the Thurston measure on ML(X) is given by

S g
My, = lim T 69—6+2r > 0Ly,
e ~EMLZ(E)

The locally finite Map(X)-invariant measures on ML(X) have been totaly classified
independently by Lindenstrauss-Mirzakhani [LM] and Hamenstadt [Ham]. It appears that
the Thurston measure is special among the ergodic measures since it is the only one
which only gives weight to the ending measured laminations. A direct consequence of

[LM, Theorem 7.1] is the following characterization.

Theorem (Lindenstrauss-Mirzakhani). Let u be a locally finite Map(X)-invariant mea-
sure on ML(X). If for all simple closed curve vy of X

p{A € ML(Z)[i(A,7) = 0}) =0, (1.4.1)
then u is a multiple of the Thurston measure m7,,, .
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Pseudo-Anosov elements

Measured laminations also play a key role in the study of pseudo-anosov mapping

classes.

Theorem 1.24. If ® is a pseudo-Anosov then there exist two (up to normalization)
measured laminations A*, A" and a strectch factor \ > 1 such that ® - A* = AA® and
A" =1A".

The measured laminations A® and A" are the attracting and repelling measured

laminations of the pseudo-Anosov, they are both ending measured laminations.

Remark 1.25. Note that the attracting and repelling measured laminations are defined

up to a multiplicative factor.

Theorem 1.26. If ® is a pseudo-Anosov mapping class of a finite analytic type surface
S then @ acts on PLML(S) with a north-south dynamic with attractive point the class of
A% and repelling point the class of A".

1.5 Geodesic currents

Geodesic currents are the common thread of this thesis. They allow to put under the
same umbrella simple curves, non-simple curves, measured laminations and other geomet-
ric objects. They will be one of our main tool in this manuscript. For more information
on currents we refer to [Bonl], [Bon2], [AL] and, [ES3, Chap. 3]

The space of geodesic currents is a completion of the set of weighted

multicurves

1.5.1 Definition

There exist different equivalent definitions of geodesic currents, in this document we
will mainly use the following one and focus on compact surfaces. In that section, X is a

compact surface (with maybe no-boundary).
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Definition 1.27. Let ¥ be a compact finite type surface and S its universal cover. A
geodesic currents is a 7 (X)-invariant Radon measure on the set of bi-infinite and

unoriented geodesics of 3. The set of all geodesic currents is denoted by C(X).

Remark 1.28. Since the definition involves geodesics it needs an underliying hyperbolic
stucture on . However, if we have two distinct metrics on Y then there is a 7 -equivariant
bijective correspondence between the associated sets of geodesics in the universal cover,
hence, the definition of the set of geodesic currents is independant of the chosen hyperbolic

structure.

We give now an equivalent definition which will be usefull to build the so called

Liouville currents in Chapter 2.

Proposition 1.29. [ES3, Exercise 3.1][Bon2] The set of geodesic currents is in bijection
with the set of flip and (geodesic-)flow invariant Radon measures on TL 3. Where TLY is

the subset of the unit tangent bundle of X made of vector tangent to bi-infinite geodesics

of 3.

The set of geodesic currents is a set of Radon measures so we endow it with the weak*
topology. It is then Hausdorff, metrizable, second countable and has the Heine-Borel
property. It is also locally compact and, in particular, the space P, C(X) = e(x) - {0}/R>0
is a compact space. One can also define geodesic currents for cusped surfaces but some of
the above properties are then lost, in particular the local compacity. The last part of this
chapter is dedicated to this case.

We will at some point be interested in some specific subsets of €(3). The set Cy(X)
of internal currents which is the set of currents which give no weigth to the boundary
components of ¥, and for K a compact of XO], the set Ck(X) of currents whose supports
project into K. Note that for all compact K the space Cx(X) is locally compact and
P, Ck(X) is compact.

1.5.2 Curves and measured laminations as currents

The introduction of the notion of geodesic currents has be motivated by the study
of non-simple multicurves on surfaces: we want to see the set of geodesic currents as a

completion of the set of weighted muticurves.
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Curves as geodesic currents

A curve v of ¥ lifts to & into a m invariant discrete subset 5 of the set of bi-infinite
unoriented geodesics of 3. Hence, the counting measure on 5 is a geodesic current. We

will also denote by v the geodesic current associated to the curve.

Figure 1.9 — Total lift of a curve to the universal cover

Theorem 1.30. If ¥ is a compact finite type surface then €., () is a dense subset of
C(%).

Measured laminations

Since measured laminations are a completion of the set of simple weighted multicurves,
it is natural to want them to be geodesic currents.

Consider ¥ a compact finite type surface and fix, temporarily, a hyperbolic metric on
it. To see measured laminations as geodesic currents we have to understand the topology
of the set of bi-infinite unoriented geodesics of the universal cover: indeed, to define a
Radon measure is enough to define the measure of a basis of open sets. A geodesic is

uniquely determined by its end points, hence, the set of unoriented bi-infinite geodesics

Oso2o X Oso2a — A
h a,b) ~ (b,a)

The universal cover of ¥ identify with (a convex domain of) H2 and then 9,2 with ( a

is in bijection wit

subset of) S' . Hence, an open basis for the infinite geodesics of Z is given by the set of
geodesics with one endpoint in I N 0.3 and another one in J N 9% where I and J are

two non-overlapping open intervals of S*.
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A 71,

-
J
Figure 1.10 — Build a current from a measured lamination

Fixe a measured lamination A, it lifts to a 7 invariant set of geodesics of the universal
cover. Given an open set of geodesics Uy ; determined by the intervals I and J there exists
an arc 77,7 in the universal cover that crosses all the geodesics of the open sets and no lifts
of leaves of A which are not part of this open set. This arc descends to a transverse arc 7y ;
by projection to the surface. To see A as a gedesic currents we take A(Ur ;) = A, ,(71.7),
this is well defined by properties of the transverse measures and 7i-invariant by definition

of the covering map.

Remark 1.31. It follows from Theorem 1.18 that measured laminations are internal

currents, in particular there is a compact K such that ML(X) C Cx(X).

1.5.3 Intersection form for geodesic currents

In the same way as the intersection number extends from simple multicurves to mea-

sured laminations we expect it to extend to geodesic currents.

Theorem 1.32. If 3 is a compact finite type surface then the intersection number between

curves extends to a countinuous and bilinear form called the intersection form:
1 G(E) X G(E) — Rzo.

The mapping class group, which acts on curves and measured laminations, also acts
on geodesic currents and preserves the intersection form.
We saw in the last section that measured laminations have zero self intersection. In

fact, they are characterized by this property.
Property 1.33. ML(X) = {p € Co(X)|i(u, 1) = 0}.
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Measured laminations are exactly the geodesic currents which have no self-intersection
and which give no weigth to the boundary. Since measured laminations will play a special
role in the following chapters this characterization will be a key element later on.

If ¥ has some boundary components then the currents supported by the boundary

can also be characterised in terms of intersection number.

Property 1.34. Let i be a geodesic current of a compact finite type surface 33, the support
of u project into 0% if and only if i(u, v) = 0 for every geodesic current v.

1.5.4 Measures of complexity

In the part of this thesis which is dedicated to counting problems we will be interested

in measuring the complexity of curves.

Definition 1.35. A function F : €,(X) — Rsq is a measure of complexity (for
curves) if it admits a positive, continuous and homogeneous extension on Cx(X) for every

compact subset K of the interior of 3.

Theorem 1.36. ([ES3, Corollary 3.8]) For any two measures of complezityt Fy and Fy

and any compact K there is a constant Cx > 1 such that

C}Kpl(.) < Fy(+) < CpFi(Y)

on Ck(X).

One can refer to [MT1] for some criterion ensuring the extension of a functional on

curves to continuous and homogeneous function on currents.

Length functions

Theorem 1.37. ([Bon2/) Let 3 be a compact finite type surface and X be a hyperbolic
structure with geodesic boundary on X, the length function lx : €,,(3) — Rsq for curves

extends to a positive, linear and continuous function on geodesic currents.

In particular, the length is a measure of complexity for curves. The hyperbolic length
is not the only notion of length which extends to currents, here is a list of some other

examples:
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— The geodesic length for a hyperbolic metric [Bonl], for a negatively curved met-
ric [Otal, for a non-positively curved metric [CFF],or for a non-positively curved
Euclidean coned metric [BL], for example

— The word length in the fundamental group [Erl]

— The stable length [EPS]

— The extremal length [MT1]

Filling currents

Some of the functions mentioned above, especially the length functions for Riemannian

structures, can be written as the intersection with a specific current.

Definition 1.38. A filling current is a current whose intersection number with every

internal current is positive.

Theorem 1.39. The intersection number with a filling current is a measure of complexity

for curves.

The notion of filling currents allow to recover some of the examples of measure of
complexity mentioned above but also allow to indroduce some new ones. In particullar,
filling curves are filling currents and as a consequence the intersection number with a
filling curve is a measure of complexity for curves. Note that ending laminations are not

filling currents (it is why we use the word ending and not filling to characterize them).

1.5.5 (Geodesic currents in non-compact surfaces

Most of this manuscript focus on currents for compact surfaces. However, an alternative
proof of the main result of Chapter 2 and some results of Chapter 3 require currents on
non-compact surfaces so we introduce here the basic notions needed. One can refer to
[Bur+2] for more informations about currents on cusped surfaces.

Consider a finite analytic surface S and define the set of geodesic currents on S in the
same way as for compact surfaces. The reason why we do not work within this framework
is that C(5) is no longer locally compact and the intersection is no longer continuous.

As exposed in section 1.2.3, curves behave in a particular way into the cusps, this fea-
ture prevents the intersection from extending continuously to geodesic currents in cusped

surfaces.
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Figure 1.11 — Obstruction to the continuity of ¢

Example 1.40 (Discontinuity of the intersection form in the non-compact case). Take a
hyperbolic surface with at least two cusps, fix an embedded horocycle around each of them,
and a simple geodesic arc between those curves which meets them orthogonally. Note that
this arc is part of a cusps-to-cusps geodesic arc . Consider a sequence of closed curves
(Vn)nen, where 7y, is the geodesic homotopic to the closed curve which runs the geodesic
arc mentioned above, turns n times around the first cusp following the fixed horocycle,
goes back along the geodesic arc and turns n times around the second cusp as in fig. 2.1.
The self-intersection number of such a sequence tends to infinity when n goes to infinity.
On the other hand, it approaches the current 2y which has 0 self-intersection number (the
current associated to a cusp-to-cusp geodesic is defined in the same way as the one for a

closed geodesic).

See [Sas, Prop. 5.1] for a more detailed discussion on that obstruction to a continuous
extension of the intersection number on the space of currents for non-compact surfaces.
That paper also treat the problem of the non-denseness of curves in the space of currents
in the non-compact case.

Even if we lost a lot of properties when considering currents on non-closed surfaces

one can focus on compactly supported currents to recover them.

Theorem 1.41. (/Bur+2, Prop 2.6]) Let S be finite analytic type surface and K a
compact of its interior. The space Ck(S) is locally compact and P Ck(S) is compact.

Moreover, the intersection form i : C(S) x Cx(S) — Rxq is bilinear and continuous.

In the last section of Chapter 2, we will see how the results of this chapter can be

proved in a non-compact surface using the previous theorem.
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CHAPTER 2

THURSTON
COMPACTIFICATION VIA
GEODESIC CURRENTS

Sections 2, 8 and / of this chapter are extracted from [Tril]

In 1988, Bonahon gave a construction of Thurston compactification of Teichmiiller
space using geodesic currents. His argument only applies in the case of closed surfaces,
and there are good reasons for that. In this chapter, we present a variant which applies
to surfaces of finite area and to do so we prove a control theorem for sequences of random
geodesics. Note that this theorem may be of independant interest, especially when the

surface is non-compact.

2.1 Teichmiiller space

2.1.1 Definition

Given a finite analytic type surface S its Teichmiiller space is the set of all marked
hyperbolic structures on S up to isotopy, or equivalently of hyperbolic metrics on S
up to orientation preserving isometries homotopic to identity or, equivalently, up to the
action by push-forward of Diffeoy(.S). In the following we will denote by X the hyperbolic

strutures on surfaces as well as the associated Teichmiiller class.
Definition 2.1. The Teichmiiller space of a finite analytic type surface S of negative

Fuler characteristic is defined by

Y ked h bolic struct S
T(S) = {(Y, ¢) marked hyperbolic structure on }/N‘I

hyperbolic metric on S
{p hyp \orientation preserving isometry homotopic to id

_ {p hyperbolic metric on S}/Diffeoo(S)
where (Y, ¢) ~g (Y',¢') if ¢’ o ¢~ is homotopic to an isometry.
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The Teichmiiller space can be endowed with a topology, we will not describe it here,
but one can refer to [FM1] for more details. However, let us give some insigth of this

topology.

Theorem 2.2. The Teichmiiller space is homeomorphic to an open ball of dimension
6g — 6 + 2r.

The question of the compactification of this ball has been treated from various points
of view. An overview of the different compactification methods is availlable in [Pau2] or

[Ohs]. This chapter is interested in the one given by Thurston.

2.1.2 Length function and Thurston compactification

The length function play a key role in Thurston’s compactification of Teichmiiller

space but also in the understanding of this space.

¢ TS = RYY
Theorem 2.3. The length function (%) 20 s a well defined embeding.
(X] = x()
Two Teichmiiller classes cannot have all curves of the same length but neither can two
length functions fx, and fx, be multiple one of the other when X; and X, represent to

different Teichmiiller classes. Hence, the above embedding extends to an embedding of

T(S) into P, RS,

Theorem (Thurston’s compactification). If S is a finite analytic type surface with neg-
ative Euler characteristic, then the accumulation points of T(S) in ]P>+(R§(6€)) are the
projective classes of functions v +— i(X\,7y) where X € ML(S) is a measured lamination on

S. More precisely, T(S) UP,ML(S) is a compact ball of dimension 6g — 6 + 2r.

In the same way as the mapping class group acts on ML or on the set of geodesic
currents it also acts on Teichmiiller space. The Thurston compactification is of particular
interest since this action extends to the Thurston boundary and corresponds to the usual

action of the mapping class group on P, ML(S).

2.1.3 Teichmiiller classes as geodesic currents and Bonahon’s

strategy

A proof of the Thurston compactification is given in [FLP] but we are here interested in
a version given by Bonahon in [Bon2]. His proof is based on the embedding of Teichmiiller

space into the set of geodesic currents.
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Given a hyperbolic strcuture X on a finite analytic type surface S one can consider
the Liouville measure Ly in the unit tangent bundle 7' X (this measure can be seen
either as locally dyu, A df or as comming from the Haar measure on PSLy(R)). This
measure is flip (ée. time reversal) and flow invariant and is then a geodesic current by

Proposition 1.29, we will denote by Lx the associated Liouville current.

T(S) — €(S)

Theorem 2.4. [Bon?2] The map
[X} — Ly

is a well defined embeding.

Bonahon’s arguments rely on two main properties of the Liouville current.

Proposition 2.5. Let X be an element in T(5),

Vy € €(9),i(v, Lx) = x(7), (2.1.1)

If S is closed, i(Lx, Lx) = m*|x(S5)]|. (2.1.2)

Let us now focus on the case of a closed surface S. In the same way as the length
function induces an embedding into ]P’+]R§(DS), eq. (2.1.2) ensures that the function which
associates to a Teichmiiller class the associated Liouville current is an embedding into
P, C(S). Hence Bonahon’s version of the Thurston compactification can be expressed in

the following way.

Theorem. [Bon2] Let S be a closed surface of negative Euler characteristic, the accumu-
lation points of T(S) in PLC(S) are the elements of PLML(S) and T(S) U P, ML(S) is
a compact subspace of P, C(S5).

The key steps of the proof of this theorem are mentioned in the introduction and to-
gether with eq. (2.1.1) and eq. (2.1.2) the continuity of the intersection form is primordial.
However, we do not dispose of this continuity when S is non-compact, hence Bonahon’s
proof does not apply in this case. The end of this chapter is dedicated to the construction

of an alternative proof in this case.

2.2 Preliminaries

In order to recover continuity of the intersection form one has two possibilities : working
in a compact surface or considering currents of Cx () rather than €(.S). In both of these

cases we do not dispose of the Liouville current anymore. This chapter focuses on the first
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option but the same technical results allow to consider the second one. An overview of it

is described in the last section of this chapter.

2.2.1 From non-compact to compact

In the following S is a non-compact finite type surface. Let also > be a compact
hyperbolic surface with geodesic boundary whose interior is homeomorphic to S. We fix
a homeomorphism between S and ¥\ 93. This homeomorphism immediately induces a

correspondance between the essential closed curves of S and the ones of ¥, that is
¢(S) =¢e(X). (2.2.1)

The homeomorphism S = ¥\ 0% also gives an identification between measured laminations
of S and the ones of X :

ML(S) = ML(E) = {u € Co(E)]i(u, p) = 0} (2.2.2)

The identifications (2.2.1) and (2.2.2) will allow us to work on 3 rather than on S.
The main reason why we want to work in X rather than in S is the lack of continuity

of the intersection form on currents of S. Let us recall why this continuity is impossible
in S.

4\/>

Figure 2.1 — Obstruction to the continuity of ¢

Example 2.6 (Discontinuity of the intersection form in the non-compact case). Take a
hyperbolic surface with at least two cusps, fix an embedded horocycle around each of them,
and a simple geodesic arc between those curves which meet them orthogonally. Note that
this arc is part of a cusps-to-cusps geodesic arc . Consider a sequence of closed curves
(Vn)nen, where 7, is the geodesic homotopic to the closed curve which runs the geodesic

arc mentioned above, turns n times around the first cusp following the fixed horocycle,
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goes back along the geodesic arc and turns n times around the second cusp as in fig. 2.1.
The self-intersection number of such a sequence tends to infinity. On the other hand,
it approaches the current 27y which has 0 self-intersection number (where the current

associated to a cusp to cusp geodesic is defined in the same way as the one for curves).

See [Sas, Prop. 5.1] for a more detailed discussion on that obstruction to a continuous
extension of the intersection number on the space of currents for non-compact surfaces.

Working with the currents of the compact surface X instead of the currents on S =
¥\ 0% allows to recover continuity. However it raises a new problem: we won’t be able to

consider the Liouville current anymore.

Proposition 2.7. Let ¥ be a compact hyperbolic surface with non-empty boundary and
X a hyperbolic structure on S = ¥\ 0X. There is no current Lx on ¥ which satisfies
i(Lx,7v) =lx(7) for every essential closed curve v € €(X).

Proof. 1f v is a closed geodesic and p a weighted multicurve of > then

/ . . . .
~' piecewise geodesic homotopic to y
} , (2.2.3)

i(y, ) = min ¢ 4(y N p), _ .
in p-general position

where a piecewise geodesic homotopic to v is in u-general position if the set of geodesics

passing through the corners has vanishing p measure.

Figure 2.2 — Obstruction to the existence of the Liouville current

Now, consider b; and by two boundary components of 3, maybe the same, and v a non-
trivial geodesic arc joining them. For every k, we define =, as the unique closed geodesic
homotopic to the piecewise geodesic which follows v, turns k times around by, follows

back « and turns k times around by. We obtain from eq. (2.2.3) that for any weighted
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multicurve p,
(Vs 1) < kE(bL O ) + k(o N ) 4 28(y N ) = 28(y N p).

We want to extend the previous inequality for ;1 a current, to do so we need a well-
defined notion of intersection with +. For this purpose we can embed ¥ into the closed
doubled surface D3, for more details about how to pass from ¥ to DY the reader can
refer to the next chapter. Hence, C(X) is a subset of C(DX), the double 4 of v is a curve
and in C(DX) we have

for any p weighted multicurve of . Moreover, the weighted multicurves are dense in C(X)

and the intersection number is continuous in C(DY) so eq. (2.2.4) induces that
Vv e C(X), i(w,v) <2i(7,v) <. (2.2.5)

However,klim Cx () = oo for any hyperbolic structure X on S, so eq. (2.2.5) prevents
—00

any intersection with a fixed current to produce the length. O]

Section 2.3 is dedicated to built sequences of currents which are going to play the role
of the Liouville current. To do so, we need to recall some facts about the behavior of

curves into cusps neighborhood.

2.2.2 Cusps neighborhoods and intersection number

Everything in the next section relies on a good understanding of the behaviour of
geodesics in cusps. More precisely, if X is a hyperbolic structure on S then we denote
by Hj the embedded horosphere of length 1/k around the i-th cusp. The horosphere H},
bounds the horoball B, of area 1/k. We will refer to H}, and Bj, as the horosphere and
horoball of depth k. We also set X* the compact core of X bounded by the horospheres

H} and B* its complement:

Xr=x\UB, B"=UB.
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There is a direct link between the number of times a curve turns around a cusp and
the depth it reaches [BPT, Prop. 3.4]. It follows that every curve that goes deep into a
cusp has a large self-intersection number. To make this link more clear we recall a notion

introduced in [ES3, Def. 2.6]: the peripheral self-intersection number.

Definition 2.8. Let Z be a hyperbolic surface (compact or not) and recall that a peripheral
subgroup of m(Z) is nothing other than a cyclic subgroup generated by a non-essential
closed curve. The peripheral self-intersection number i,..(v,7) of v € €(Z) is the

supremum. over all mazximal peripheral subgroups G C m(Z) of the mazimal number of

times that the image of a lift 7 of v under Z — G\Z meets itself transversely.

The peripheral self-intersection number is a topological invariant. It is thus indepen-
dent of the metric on S, or more specifically, whether one considers the curves on S or
on Y. Moreover, for every compact subset K of Z \ 0Z there is a upper bound for the
peripheral self-intersection number of the closed geodesics contained in K. Conversely, for
every N > 0 there is a compact subset Ky of Z \ 0Z that contains all the geodesics ~y
with iper(7,7) < N [ES3, Lem. 2.7]. In the absence of boundary, one can easily quantify
this property.

Lemma 2.9. Let X be a non-compact finite type hyperbolic surface with no boundary,

and vy be an essential closed curve on X, this curve has support on X* if and only if
iper(7,77) < 4k

Proof. 1If we think of the curves of 71 (X) as deck transformations then a peripheral sub-
group of 7 (X) is a subgroup generated by a parabolic element. Let’s study a given cusp Cj,
we can assume that the correspondence between X and H? is such that an associated max-
imal parabolic element is z — z+1. In that case, H}, lifts to the horizontal line {S(2) = k}
and if v is a closed geodesic of X then the number of times that the image of a lift ¥
under X — _ ., . 41 >\X meets itself transversely is §{n € Z\ {0}|3N (¥ +n) # &}.
However, v stays in X* around C;, if and only if its lifts stay below the line {S(2) = k},
if and only if its lifts are half circles of radius at most k. Such a geodesic of H? meets at
most 4k translations of itself (n = +1,4+2... & 2k). The same process applies for every

cusps and then to every maximal parabolic subgroup and we obtain the lemma. O]
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2.3 Construction of controled sequences of random

geodesics

In this section we prove that for all non-compact hyperbolic surfaces of finite volume
with no boundary there are sequences (v, )nen of closed geodesics satisfying (2.1.2) and

(2.1.1) asymptotically:

. . Tn EX (7) .
lim ¢ ,7) = ———— for all essential closed curve 7, 2.3.1
i (1 57) = s 231

limi( T _Tn ): 21 .
n—oo EX(’Yn) gX(’Yn) T |X(S)|

(2.3.2)

2.3.1 Sequences of random geodesics

As we saw in Proposition 2.7, the Liouville current does not exist anymore in our
setting. However, for every (complete and finite area) hyperbolic structure X on S the
Liouville measure on 7'X still exists. Recall that the Liouville measure Ly is the
measure on the unit tangent bundle 7' X, obtained by pushing forward the Haar measure
on PSLy(R) and normalized so that Lx(T'X) = 27 volx(S) = 47%|x(S)|. We are going

to consider geodesics approximating the Liouville measure in the following sense.

Definition 2.10. A sequence (V,)nen of essential closed geodesics on X is a sequence
of random geodesics if the associated probability measures converge to Lx with respect

to the weak-x topology, meaning that:

’Yn dLX
Jrs Tty vt oo T

for every f € CX(T*X) continuous and compactly supported function on T*X .

Remark 2.11. We will generally use the notation % for the renormalisation )
The Birkhoff ergodic theorem, together with the ergodicity of the geodesic flow, implies
the existence of such sequences of geodesics. We refer to [ES3, Chap. 2] for some facts
about sequences of random geodesics that we will use here.
The construction of the Liouville measure ensures that for a compact subsurface K
of X we have £Lx(T'K) = 2w volx(K). Then, if the boundary of K is smooth, the Port-
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manteau Theorem implies that for every sequence of random geodesics (7, )nen We have

fx(’}/n N K) Vle(K)
_— — .
Cx(m) oo 27 x(9)]

Applying this property to our compact core X* we have

gx(")/nka) Vle<Xk) (233)
Ux () motee 2m[x(S)]
and hence,
Ox (7, N BF) volx (BF) (2.3.4)

—
Ux(yn)  motoo 27X (S))]
What is much more surprising is that sequences of random geodesics can also be used
to compute lengths. More concretely, we have
(Vs L Cx (1
1), 72X( ) (2.3.5)
Cx(yn) notoo w2 |x ()]
for every compact geodesic segment [ in X. This property is basically due to Bonahon
[Bon2, Prop. 14], we also refer the reader to [ES3, Prop. 2.4] for details. A direct conse-
quence of (2.3.5) is that we can use random geodesics (7, )neny to compute the length of
any essential geodesic v € €(S):
iy, 7) (x(7)

Ix(7n) 70 72X (S)] (2:36)

Note that in this equation the curve 7 is fixed. Meaning that a priori, equation (2.3.6)
does not say anything about i(7,, 7, ). However, for compact sets (2.3.5) holds uniformly.

As a consequence, cutting the geodesics 7, into geodesic segments we have

z( N ) ., (2.3.7)

Ux () Ux (Vi) ) nor+oe w2|x|

for K any fixed compact subsurface of X.

All those considerations about sequences of random geodesics apply to compact sur-
faces, hence, if S were compact, applying (2.3.7) to K = S, then we would immediatly
have that every sequence of random geodesics satisfies (2.3.2). However, that is not nec-

essarily true in general.
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Example 2.12. First, note that an excursion of length € into some BY has between ket/? —

2 and 4ke'’? self-intersections. Consider now a sequence of random geodesics (Yp)nen. Add
to v, an excursion of length 6log({x(v,)) at depth k, —— 00 and pull it tight into a
new geodesic v),. If we add the excursions in a well-chosen way (for example, gluing it at

the deepest point of an excursion) then the (v, )nen are still random geodesics and

o) o) + Enlx()* i, )
Cx(vn)* (Ex(m) + 61og(Lx (m)))* oo x(7n)”

One can can also refer to the arguments in Lemma 2.14 below to prove that such sequences

of random geodesics exist.

In [Lall] or [Lal2, Cor. 11.2], Lalley gives a construction of random geodesics that
justifies the use of the term 'random": if for all n the geodesic ~, is randomly chosen
among the geodesics of length at most n then (v, ),en is a sequence of random geodesics
with probability 1. Hence, we wonder which proportion of sequences of random geodesics
satisfies (2.3.2). This problem might be linked to the study of the length of cusp excursions
for random geodesics, see for example [Haa], [Pol] or [Sul] and the references therein.

Anyway, the above example makes clear that to obtain (2.3.2) in the non-compact
case we have to control the excursions of the sequences of random geodesics into cusps

neighborhoods. We will do it through the cutting process described below.

2.3.2 Cutting process

Suppose that X is a fixed complete and finite area hyperbolic structure for S. Recall
that X" denotes the compact core of X bounded by the horospheres of length 1/t around
the cusps of S and that B = X \ X' is its complement. Given two parameters k € N and
0 < 0 < /4, and a curve v we want to cut the excursions of  in B¥ in order to prevent
from leaving X*/5™(®) To do so, we will study ~ through its lifts in the universal cover X of
X. We focus here on a given cusp but we apply the same construction around each cusps
of X. For t > 1 we denote by H; the horosphere of depth ¢ around this cusp and B; the
horoball it bounds. Since X is a hyperbolic surface endowed with a complete hyperbolic
metric, its universal cover identifies with H?, and we can suppose that the parabolic
element associated to the cusp we are interested in is z — 2z + 1. With this normalization
H, lifts to the horizontal line {&(z) = t} and we have that if a curve enters H; with some

angle a € [0,7/2) then it reaches the horosphere Hy/gn(a) (We measure the non-oriented
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angle with the normal to the horosphere). We want to cut 7 in order to replace its long
excursions into By, (de. the ones which cross Hy/gn(g)) by short ones (excursions staying
between Hy/gin(26) and Hy, /sin(9)>. To make it explicit we make a description of the process

on the universal cover.

Hk/ sin(0)

Hk/ sin(20)

Hy,

Figure 2.3 — Cutting process

If v makes excursions in By we are going to modify v explaining the process on a fixed
lift 4 which makes an excursion in the horoball {&(z) > k} bounded by {J(z) = &k} but
the same process applies to all lifts of By. First, if 4 enters with an angle greater than 6
then we don’t change it. On the other hand, if it enters with an angle smaller than 6 then
we replace this arc by a geodesic arc I which enters with angle between 6 and 26 and
whose exit point coincides with the exit point of a different lift 4" of y (see fig. 2.3). This is
always possible as long as 2k cotan(0) — 2k cotan(260) > 1. If we apply the same process to

all the excursions of v around every cusp then 7 is replaced by a closed piecewise geodesic

/

~'.

Now, pulling ~" tight we obtain a closed geodesic v*: we refer to v* as the geodesic
obtained by cutting process of parameters k£ and 6 from . Note that if 6 is small
then +" and ~* have basically the same length, more precisely, they can be mapped one to
each other through a homotopy with small displacement and without disturbing to much

the lengths. For the lengths, it is easy to see that there is some ey ﬁ 0, independent
_>.
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from X, such that for every k£ > 1 and 6 small

Ix(7) < (1 +e)lx (") (2.3.8)

Here (x(7') refer to the arc length of 4/, we will use again this abuse of notation but its

meaning is clear from the context.

2.3.3 Construction of controled sequences of random geodesics

Lemma 2.13. There is some 0y > 0 such that if (7, )nen 5 a sequence of random geodesics
on X and (7})nen is obtained from the vy, applying the cutting process of parameters k > 1
and 0 < 0y then there is i, — 0 such that

S

VOIX (S)
volx (XF)

X(Vn)
Cx(v) —

1< (14 pin) (1+¢p),

for every n. Here, eg is as in (2.3.8).

Proof. We use the same notation as in the description of the cutting process, and, as
above, we denote by fx(7/,) the arc length of the piecewise geodesics.

We take 6 small enougth such that (2.3.8) occurs. The 7, being random geodesics,

(2.3.3) ensures that we can find a sequence pu, — 0 such that % = (1+
un)v‘;?ix(gf,z) The construction of 7;, ensures that 7, x» = 77’” +k, thus % < 1 and if
0 < 6y then % < (1 + eg). The upper bound follows from those three inequalities.
Now, v, and 7/, coincide on X* but v/ has shorter excursions than =, in B*, hence,
Z 82; > 1. The geodesic v, is the unique geodesic representative of the free homotopy
class of 7/ which proves that % > 1 and the lower bound follows. O

Lemma 2.14. Let (7,)nen be a sequence of random geodesics. If (7} )nen is obtained from
(Vn)nen applying the cutting processes of parameters ky, — and 6, — 0, then

(V2 )nen 15 a sequence of random geodesics.

Proof. In this proof, we denote by 4 the canonical lift of a geodesic v to the unit tangent
bundle of X.

Let f € CY(T'X) be a continuous and compactly supported function on T X, there
is K a compact core of X such that Supp(f) € T'K. Since k, — then there
is ng € N such that for all n > ng, ~ux = 75,k The homotopy between 7, and
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7, induces that the arcs of 7,k are freely homotopic to geodesic arcs of ;. Such a
homotopy induces a projection from v,k to 7; and lifts to W¥,, : 4,k — %,,, which is a
homeomorphism on its image. The homotopy can be chosen to have low displacement, that
is d(p, ¥, (p)) < e, — 0 for every p € 9, k, and not to distort too much the lengths.

Moreover, we can find ¢, : [0,¢x(Vnx)] = R4 a piecewise smooth reparametrization of
[0, £x (Ynjx)] such that for all t € [0, £x(nx)], Yn(Tnix(t)) = 7 (¢n(t)). The homotopy
between ~/ and 7 does not distort too much the lengths, hence, we have some 4, — 0
such that 1 — 6, < ¢!, <1+ 4, where it is defined.

Fix some p > 0. A compactly supported continuous function is uniformly continuous,
thus, there is €, > 0 such that if d(p, ¢) < ¢, then |f(p) — f(¢)| < u. We can suppose that

for every n > ny, €, < ,. We have
Lx (Un(Tn|K)) - Lx (Yn|K) . ,
| fai= | fordt= [ foRilpn(s)el(s)ds.
TiX
it follows that
lx (’7n|K) - "
=8 [ R Gur()ds < [ fan;

T'X

< a7 G )

= (1—19,) i/den MEX(’YHIK)) < /fdv;;

X T'X

< (1+6,) i/ Jdyn + ufx(vnm))
1X
Vﬂﬂiﬁm—ﬁ < J fav;
Lx(v}) 1/X TIX
< (14 6,) g/fdwru)

= (1 -0y,

—— 1, and passing to the limit in n
EX (,yn) n—o00

dl
/ f— —uéh@n/deZ
Tix ° 42 x(9)] Tix

Adapting the proof of Lemma 2.13 we have

we obtain

dl y
<T n/ / .
im fdy, < Tle47T2‘X( %) +

T X
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dl
This is true for all u, hence, lim / favy;, = / f — =X _ and we have proved that
noee ) T1x 42| x(9)]

(V5 )nen is a sequence of random geodesics. O

Now, for every hyperbolic structure X on S, we will be able to build sequences
(7)) en of random geodesics satisfying (2.3.2). Moreover, we will build them in such
a way that neither the converging rates in (2.3.2) and (2.3.6), nor the peripheral self-

intersection numbers 7, (75, 7X)) depend on X.

Theorem 2.15. For every complete and finite area hyperbolic structure X on a finite

analytic type surface of negative Euler characteristic S, there is a sequence (VY)),en of

random geodesics such that :

lim i ( i o ) 1

im ¢ , = .
oo éx(%(zx)) fx(%(zx)) 7‘-2’X<S>|
More precisely, they can be chosen such that

1 1
1. iAW) 5Oy <~ (1 ) Vn € N
Z(W/n ) n ) —_ 772 |X(S)| _'_ n ) n E )

o a1 3
i(709,0) (38) " =1 < 2, v 2 m,

2. Va € €(S), In, € N :

3' iper(q/?gX)af)/?("bX)) S CTH vn € N:
where C,, and n, do not depend on X.

(X)

) nen we start with an arbitrary sequence of

Proof. To obtain the desired sequence (v,
random geodesics (Y, )nen. For every p we set k, = e”/? and 6, = e P/2, if we apply
the cutting process with parameters k, and 6, to the sequence (7, )neny then we obtain
a sequence (37),en of piecewise geodesics and by pulling it tight a sequence (72),en of
geodesics. We will chose the (’y](\,X)) Nen among the 2.

First, study the self-intersection number of those 72. As 72 is the geodesic represen-
tative of AP, its self-intersection number is lower than the number of self-intersections of
4P. To count it, we divide X into two parts, the compact core X* and its complement
BE. On X*, the geodesic arcs ’~7Z|Xk and v, yx are identical so 4% has (v, xt,V.) self-
intersections. On the complement, we count the self-intersections of 42 considering its

different excursions in B*:

(2, 4E) <i(va N X", 7,) + > i(I,J).

1,J excursions in B¥
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We can distinguish two types of pairs (7, .J): the ones where at least one of the excursions
stays in BF N X* 520 and the ones where both I and J reach B*/ 5% In the first case,

I and J meet at most as many times as the corresponding excursions of 7, and then:

(8, AR) < il N XMIMED ) 4 3 i(1, ).
1,J excursions in B*
which reach Bk/ sin(26)

Moreover, an excursion of 42 in B* which reaches B*/s™(2%) has a length of at least In(1/6),
a lower bound for the length of the geodesic arc which enters with angle 26. It follows that

1 NB* . . . .
% such excursions. Also, the intersection number of two excursions

there is at most
reaching B* 5"(%) is at most 4k /6, the self-intersection number of the excursion which

enters with angle 6. All in all,

(x (Y mBk))Z Ak

(AP AP) < g X k/20 -

E
Applying equations (2.3.7) and (2.3.4) we have

KX (/Yn)EX (’Yn N Xk/29)

i N XK ) = (14€P and

( )= ) ]

Ux (v, N BF) = (1+ 52)%([%])? where C' is the number of cusps of S,
X

where e2 —— 0 and 0> —— 0 depend on X. As a consequence,
" p—oo " p—oo

Clx () )2 Ak
0

i(vﬁmﬁ)é(HﬁZ)gX(%) +<<1+5£>27rlxl-k-ln(1/9) 0

m2|x|

and we obtain a upper bound for the self-intersection number of the normalized curves:

. v 074 1 ) . 262& () 2
(et ) < s (0 v earfg) (205) - oo

We next study the intersection number of the 42 with closed curves. The set €(.5) is
infinite and can be enumerated with €(S) = {«,|¢ € N} in such a way that i, (ag, o) <
4q for every q. This enumeration is fixed whatever the structure X. Recall that for every

p we have k = k, = e”/? and § = 0, = e P/2. Hence, when p is big enough, for ¢ < p the
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curve o is included in X7 C X*. However in X* we have i(7,,-) = i(7%,-) thus

iV, aq) = KX(’YP)Z(im&q)' (2.3.10)

Now, applying Lemma 2.13, for every p there is p? — 0, depending on X, such
that

S

VOI_)((S)
vol y (X*)

X(’Yn)
fx(’)/g)

with e, = e,—»/» with the notation of (2.3.8).

Therefore, there are m, large enough such that Emp: 55%, ph, < 113 for every p, and

1<

< (1+42) (1+ep). (2.3.11)

W — 1| < I for every ¢ < p. Thus (2.3.11) and (2.3.9) give us
Ux(ag)/m*|x| g
gX(Vm ) Vle(S) 1
1< e < 14+ —-)(1 — 1 2.3.12
= Txh,) = volx(xh TP 2 (2:3:12)
i ) < ! <1+(1+ 1) 402) volx(S) (1+ 1)2(1+e )
1 Vm ”Ym = - -
S Y p P?Ix|) volx (X*)™  p g
1
P ] (2.3.13)

The terms on the right in inequalities (2.3.12) and (2.3.13) do not depend on X anymore

so, for N an integer there is py, independent from X and with py > py_1, such that

gX( Yp ) 1 - — 1 1
1< ﬁ <1+ ~ and Z(’)/qu\; ,Py”fi ) < 2y (1 + Tv)' As a consequence, we can take
X
’YJ(V ) = ”Yﬁfi,,

The previous constructions ensure that i(%@() ; 75\)7( )

) < = (1++), and we have proved

— x|
(1) in the statement of the theorem.

Applying Proposition 2.9 we have l.per(%(vx)’%(vx)) < 4ePN where py does not depend
on X, which gives us the third point.

At last, (2.3.10) and the choice of py and m, induces that

3 1 Z(WS\);),OZ(]) 1 2 3
l——<{l—-——) < — = ] (14+ =<1+ — Vg < N
NSO S gy SEE V) Sty Yash,

hence, we obtain the second point with n, = ¢ when a = a4,
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Moreover, up to passing to a subsequence, the (%(VX)) ~Nen are built from the sequence

(7n)nven of random geodesics through cutting processes of parameters ky = e?N/2 o
—00

oo and Oy = e PN/2 oo 0. As a consequence, Lemma 2.14 ensures that we have built
—00

a sequence of random geodesics. At last, for K a compact subsurface of X we have

[ _x) %(v)f}{ (X)) —(X) 1 1
NN | SN 5N < 1+ %),
gX(VMK)

and if we pass to the limit, using (2.3.7), we obtain that

1
lim (70 20y _
NILHOOZ(VN TN ) 772|X’

2.4 Proof of Thurston’s compactification

Armed with Theorem 2.15, we are now able to prove Thurston’s compactification. As

we already mentioned in the introduction, the starting point of this compactification is

the embedding of T(S) and PLML(S) into the space Py (RSOS )):

e T8 = PR
X — R>ng('),
Lo PAML(S) = Py (REY)
A — Raogi(), ).

The image of T(S) in P (RSOS )) is included into a compact set (use eq. (2.4.1) for instance),
thus, the closure T(S) of T(S) is compact. The boundary of this set is given by the

following theorem.

Theorem (Thurston’s compactification). If S is a finite analytic type surface with neg-
ative Euler characteristic then the accumulation points of T(S) in ]P’+(]R§(OS)) are the pro-

jective classes of functions v — i(\,y) where X\ € ML(S) is a measured lamination on

S.

Our arguments apply to the compact case, but for the sake of concreteness we will

focus on non-compact surfaces.
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Let X € T(S) be a sequence which converges in P (RE(OS)) and leaves all compact sets

of T(S), meaning that there are a non-zero element F' of ]R;%q ) and a sequence (ek)ren Of

positive real numbers such that klim erli(-) = F pointwise (we have written ¢ for lx, ).
—00

We will prove that F'is given by taking the intersection number with a suitable measured

lamination.

Fix a filling curve 8 on S, that is a closed curve such that the connected components
of §'\ B are balls and annular neighborhoods of the cusps. Such a curve gives us a bound

on the length of every curve v € €(.S), namely,

Cx(y) < Lx(B)i(v, B)(L +i(v,7)) (2.4.1)

for every hyperbolic structure X [SV, Lem. 2.1]. Since F' = hm 5k€k( ) is non-zero, there is

v € €(S) with F(v) # 0. We obtain from (2.4.1) that 0 < F( ) < F(B)(L+i(y,7))i(v, B)

and hence that F(5) # 0. Since we are only interested in convergence in ]Pg(Rg%g 1), we

can assume that F'(f) = 1, meaning that

lim & () _ =F

k=00 7r2|X|

m2|x|
f B

We will now prove that F' is of the form i(u,-) where p is a measured lamination on

where §F =

S.

Applying Theorem 2.15 to each X}, we obtain some sequences of essential closed
geodesics (7),cny = (Y%),en with nll_{gloz(’yr(f)/ﬁk( &)y ) = £,(-)/7%|x|. As all along,

let ¥ be a compact complete hyperbolic surface with boundary whose interior is home-
omorphic to S and let’s identify €(S) with €(X). In particular, we can consider the
weighted curves %) = ~() /¢, (v(K)) as currents of . The space P, C(X) being compact

each (7)) .en projectively converges to a non-zero current p, € C(X).

We first want to show that the pu, are measured laminations. Consider the sequence
(7% ren for n fixed, there are some £ > 0 such that #5*) tends to p,, up to a subsequence
in k. So, by diagonal extraction we can suppose that 5% 7 Hn for every n. What we
have to show is that kh_}rglo ek = 0 for every n. The sequence (X;)ren leaves every compact
set of T(.S) so there is a simple closed curve a such that kh_}rrolo lk(a) = co. Recall that to
prove Theorem 2.15 we have enumerated €(S) = {a,|n € N} such that ipe,(ay,, o) < 4n,

since « is a simple curve we can suppose that a = a;. The v*) come from Theorem 2.15
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thus

- 3
i7", ) (Zk(a)) b 1‘ < — whatever k and n. By hypothesis 4 («
n

n x| )
(k) be(@)\ 77 -
i7E, ) (H2) 1‘ < -
Fi(7®) a) thus

n

we can suppose, up to a shift in n, that for every n,

As a consequence i(F*) a) 0. However, co > i(u,, o) = khm £
—

ek — 0 for every n, moreover z( 7, 5k is bounded independently from k and n, hence,
H

(s o) = hm( £)2i(5®) 5*)) = 0. Moreover, by construction, iy, (y*), 7)) < C, for
every k and n, as mentioned earlier (or in [ES3, Lem. 2.7]) it ensures that for n fixed
the 7 are all included in the same compact subsurface of ¥\ 9%. It follows that u,, is
supported on a compact set of X\ 9% and by (2.2.2) they are measured laminations.
Recall that g is a filling curve of S, as a consequence, i(,, ) # 0 and hence, we can

suppose that i(u,, 3) = 1 for every n and we obtain
klim okx ) — 1, in @(X), (2.4.2)
—00

where §F = ﬁ is well-defined.
7 7’Y”L
To sum up, we have the following convergence diagram, where all the convergences

are pointwise.

7T2|><| 2| 2| T
?

Sy, ) 6%2‘(752%-) o oki m ,-> o — (e, )
S,y onEY, ) o M) - — i)

We want F' to be the pointwise limit of (i(iy, -))nen. To prove it, it is sufficient to show
that the convergence 6%i(7%), ~) — " €’§|  is uniform in & when v € €(55) is fixed.

—00

If v € €(5) is fixed then Theorem 2.15 ensures that

o (42)

for every k and for n large enough (n7 and ng do not depend on k) with ¢, n—> 0.
Li(y
7r2Ix\

<e,

—1' < g, and

k
_n
ok

Moreover, fixing v we know that &% — F(v) hence the sequence ((5”C i ‘)keN is
—00
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bounded by some d, and we obtain

, Ck(7)
ki:i(k) N _ sk‘k
0ui(Tns ) = 075 | S ndy S5 0

Hence, the convergence holds uniformly in &, and lim lim 6%i(3® ~) = lim lim §Fi(5®), 5),
NnN—00 k—o00 k—o00 N—00 )

which implies that F'(y) = Jim i(ftn, 7). Moreover, ML (S) is a closed subset of Rg(os hence
F() = lm i(pn,-) is of the form F(-) = i(y,-) where p € ML(S), which was what we

needed to prove. O

2.5 Another way to recover continuity

All the arguments above can be recovered in C(S) using Theorem 1.41. Let us sketch
quickly the arguments.

Let (Xi)ren be a sequence in T(S) and assume that the associated sequence of length
functions (€ )ren converges pointwise to F' in P+(R§(§ )). We want to show that F' is the

intersection number with a measured lamination.

Cx, (. Ux,(. lx, (.

1);1() 2 X;() Lk );k() . s FeRW
Xl 7 (x| -

For each k, use Theorem 2.15 to approximate, pointwise, the lengths by intersection

numbers with sequences of random geodesics (7%)),,cx.

O (. O (. O~ (.

el );1<> 2 );2() ok )gk() . FERSOS)
7|x| 7|x| m[x|

512‘(7511)’ ) 522‘(77(12)7 ) e Eki(ifzk)’ )

¥y ) ) e R, )

612(7?% ) 522(752)7 ) U 8k@(7£ )a )

For all n € N the sequence (7),cy is a sequence in some Cg, (S) by the third point
of Theorem 2.15, hence Theorem 1.41 ensures that (7*)),cy converges projectively (up to
extraction) to some current u, € Cg,(S) and the continuity of the intersection number

over Cg, (S) ensures that we have convergence of the intersection functions.
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(v, sHEP, )

5k:€Xk<‘)
2| x|

ri(yM, )

—
—

The same process as previously allow to conclude.

°(S
FeRYY

I

i(ftns *) pin € Cr, (S)

i(p2,-)  p2 € Ck,(S)
i(ul? ) H1 € GK1(5>

Remark 2.16. Note that this is a very brief summary of what could be done to work

directly in the non-compact case. Therefore, the same technical details as in the proof in

the previous section must be provided.
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CHAPTER 3

COUNTING ARCS OF THE
SAME TYPE

This chapter is based on [Tri2].

In this chapter, we prove a general counting result for arcs of the same type in compact
surfaces. We also apply our results to count cusp-to-cusp arcs in cusped surfaces and arcs
in orbifolds with boundary. These theorems are derived from a result that ensures the

convergence of certain measures on the space of geodesic currents.

3.1 Background

In this section, we describe some background on counting problems, arcs and geodesic
currents.
In the following, > is a compact connected oriented surface with » > 0 boundary

components and genus g such that 2 —2g —r < 0 and (g,7) # (0, 3).

3.1.1 Counting problems

The initial counting problem from which derives this chapter is the following. Given
a weighted-multicurve vy of ¥ and F' a notion of complexity for curves, how does the
number of curves of type 7 and complexity at most L grow when L goes to infinity? One
can also define the type for the action of any finite index subgroup I' of the mapping class

group. Then, we are interested in the growth of the following set:

{yel -ywlF(y) <L}

When the measure of complexity is a length function for a hyperbolic metric this
problem is known as Mirzakhani’s curves counting. She proved [Mirl; Mir2] that for any

complete finite area hyperbolic metric X on ¥, any weighted multicurve 7o € €,,(3) and
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any finite index subgroup I' of Map(X) there is a constant ¢, ,.(yo) such that

T ll L
jim FOEL OIS B o ) mb (0 <1 @)

where m%,, is the Thurston measure on the measured geodesic laminations of Y. The
same result has been obtained by Erlandsson-Souto [ES3] for any notion of complexity
for curves using the following principal. To study the cardinal of a given set one can study
the counting measure associated to this set. This strategy is also the one used in [Mirl]
for simple curves. The analog of eq. (3.1.1) in terms of measures is the following:
lim —— Yo bi, = (10) my, (3.1.2)
Lsoo [,69—6+2r A& 7 tgr u
where the convergence occurs for the weak™ topology in the set of Radon measures on
C(X). Hence, one can recover eq. (3.1.1) for a measure of complexity for curves F' by
applying eq. (3.1.2) to {p € C(X)|F () < 1}.
If we consider now arcs rather than curves (we define the notion of arcs in more detail in
the next subsection) Bell [Bel2; Bell] proved an analog of eq. (3.1.1) where the complexity
is the length function for arcs of the same type rather than curves. This chapter answer

the following question:

Can the counting problems for arcs be expressed in terms of con-

vergence of counting measures on geodesic currents 7

3.1.2 Arcs on surfaces

For technical reasons we need to fix a orientation in the surface and the notion of arcs

is defined taking into account this specificity.

Definition 3.1. An arc « in X is a free homotopy class of non-trivial oriented segments
based on boundary components and we identify two arcs which differ by changing the

orientation. A wetghted multiarc o is a finite sum of arcs with positive weights.
We will denote by A(X) the set of arcs and A,,(X) the set of weighted multiarcs.

90



Property 3.2. For any hyperbolic structure X on X, each arc a admits a unique otho-

geodesic representative .

Hence, in the same way as we define the length function for curves we dispose of a

notion of length for arcs:

éX : .A(E) — RZO
a = Ux(ay).

The intersection number between arcs or arc and curve is also defined in the same
way as for curves and we also have an action of the mapping class group on arcs which

preserves the intersection number.

Definition 3.3. Two arcs are said to be of the same type if they are in the same

mapping class group orbit.

3.1.3 Doubling the surface

In order to obtain a version of eq. (3.1.2) for arcs we need to be able to see arcs as
geodesic currents. However, achieving this interpretation using the same approach as for
curves is not feasible. This is why we will work on the doubled surface D>.. The surface D
is the closed oriented surface of genus g(DX) = 2¢g + r — 1 corresponding to the doubling
of ¥. In that setting, the arcs of ¥ will represent a specific subset of the symmetric curves
of DX.

y )

(=) 0

Figure 3.1 — From X to DX

We can embed two copies of ¥ into DY such that they cover DY and meet pointwise
along their boundary components. We will denote by X% and X~ these two copies, i+

and ¢~ the associated embeddings, and o : DY —— D3 the involution that exchanges
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Yt and X (it is an orientation reversing map which is the identity when restricted to
the boundary of XJ). The embeddings i* and ¢~ naturally extend to embeddings from the
geodesic currents of ¥ to the geodesic currents of DY; hence, for an element p in C(X)

we will denote by ji its doubled version:

T e(E) o e(DY)

. ., (3.1.3)
poooe () i ()

To obtain Theorem 3.13, we need to see the Thurston measure as a Radon measure
on C(DX). To do so, we pushfoward the measure through the hat operator to obtain a
mesure m%,, in €(DY) supported by ML(D).

We remark that the elements in the image of the hat operator are fixed by the in-
volution 0. More generally, we call the elements fixed by ¢ symmetric and denote by
¢7( DY) the symmetric curves of DY and ML (DY) the symmetric measured laminations.
We also note that the set of symmetric measured laminations is larger than the image
J\//[\L(Z) of ML(X) by the hat operator, for example, the embedded boundary components
of 3 are symmetric but are not represented by elements in the image of ML(X) by the
hat operator. We record the following characterization of ML (X) in ML (DY) for later

reference.

Proposition 3.4. A symmetric measured lamination A € ML (DY) is an element of
ML(X) if and only if

1. A does not have connected components of 0% as leaves,

2. i(A,0%) = 0, wherei(-,-) is the intersection form between currents.

At last, for any (multi)arc o € A(X) its two copies i* () and ¢~ («) into DY meet at
their endpoints and their union forms a symmetric (multi)curve of DY. We will denote by
a that curve: it is not an image by the above hat operator but this notation is consistant
with the one for curves or measured lamination as their image through ~ are the union
of their two copies (see fig. 3.1). The curves of DY, are geodesic currents of DY, so, the

doubling process implies that we are now able to see arcs as geodesic currents.

T An(E) o €7(DY) < (DY)

N N (3.1.4)
(0 = = Q.
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3.2 Counting problems with a bound on the inter-

section number

Our next goal is to prove solve a particular counting problems for arcs we will use as
a base for the proof of our main theorem. We want to show that we can count arcs when
we measure their complexity using the intersection number with a filling curve of ». Our
argument is inspired by those of Bell [Bel2; Bell]. Bell’s approach consists in associating to

L ay-a-ar, where ay and a; are the boundary components at

each arc a the curve v, = a~
the end and begining of & — whatever the chosen orientation for «, the associated curve
is the same. It turns out that o and 7, are closely related and we will be able to extend
the counting results for v, to results for a.

The above construction of v, for a given curve induces a map from the set of weighted

multiarcs to the set of weighted multicurves of X:

[0 A = e
DUEQ Y EiYay-

The first point to notice about the map [ is that it is equivariant with respect to the

mappping class group, meaning that for any ¢ € Map(X) and o € A,,, (%)

Secondly, we can prove that o and I(«) are nearby in the sense that they intersect

curves essentially in the same way.

Lemma 3.5. For any o € A, (X) there is d,, € N such that if p € €,,(X) is a weighted-

multicurve then

|i(1 (), ) = 2i(a, p)| < dai(p, 1) (3.2.1)

where i(-,-) is the geometric intersection number. Moreover, o — d,, is invariant under

the action of the mapping class group on A,,(%).

Proof. For any arc o € A(X) there is an immersion, unique up to homotopy, that sends a
pair of pants P into X in such a way that the image of the boundary components are a;,
ay and I(a), and such that « is the image of the unique simple arc between the preimage

of a; and as,.
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Figure 3.2 — Immersed and embedded pair of pants

Let H be the subgroup of m(X) given by the image of m1(P) under the immersion.
The group H is the free group of rank 2 and the pair of pants lifts homeomorphically to

2/ 77 as a compact subsurface. Surface groups being LERF [Sco], there is a finite index
subgroup K of m(X) containing H such that P is embedded into Z/ T~ This means that

there is a cover of ¥, of degree d, < oo, in which some well chosen lifts a;, a, and I/(E)
of ay, as, and I(«) are the three boundary components of an embedded pair of pants and
such that the unique simple arc between a; and as is a lift & of « (see fig. 3.2). If p is a
weighted multicurve of ¥ we denote by /i its preimage inside this cover.

In that setting, then there is a lift («) of I(«) equal to I(&). So, in the previous cover

we have the following relations between intersection numbers:

1. i(I(er), ) < 2i(cr, ) by construction of (),

2. i(I(&), 1) = i(I(c), p), i(&, fi) = i(a, p) and i(fi, fi) = dg - i (11, 1) by definition of a

covering map.

AN A
D
> |

Figure 3.3 — Pulling the intersections out of the pair of pants

By pulling outside of the pair of pants bounded by a;,ad, and I(&) = 7, the self

intersections of ji we obtain a curve i’ such that the arcs of 1/ N P are all of the type s,
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described in fig. 3.3 ie. An intersection with & corresponds to exactly two intersections
with 7v,. The opperation of pulling an intersection outside of P does change the number
of intersection with & but adds two intersections with 7,. Hence, we have the following

inequalities.

(i(L(@), f1) + 2(ji, 1)

DN | —

) =i(a, 1) = Si(l(a), 1) <

=

i(a,

All in all, it occurs that

=

0<2-i(a,p) —i(l(a),pn) = 2i(a, (3.2.2)

=
I
[\
=
Fzz
=
Il
ISH
Q
=
F
=

) —i(l(a),

and eq. (3.2.1) follows for a.
Moreover, since any mapping class ¢ induces a isomorphism ¢, : m(3) — m(X) we
can choose d, to be the same for every arc in a given orbit. We have proved the lemma

for arcs and the triangle inequality gives the results for weighted multiarcs. O]

Let T" be a subgroup of Map(X), we can consider the restriction of I to the orbit of a

given weighted multiarc o under the action of I

[|F'Oéo oy — I I(a0>
a = I(a),

equivariance under Map(X) and Lemma 3.5 imply that this map is finite-to-one.

Proposition 3.6. For all o € A, (3) and for any subgroup I' of Map(X), the map Ir.q,
is well defined and kgo—to—l for some k;go € N which depends only on the I'-type of ag. [

We are now able to count arcs with respect to the intersection number with a curve.
More precisely, we will count with respect to the intersection number with a filling mul-
ticurve — a curve that divides the surface into disks and annuli — A filling curve must be
taken in order to ensure that the limit obtained is finite as well as the intermediate sets

we count..

Theorem 3.7. If X is a compact connected oriented surface with non-empty boundary
and negative Fuler characteristic which is not a pair of pants, and I' is any finite index
subgroup of Map(X), then for any weighted multiarc ag on X and for any p € €,,(3)

filling multicurve we have

 HoeT agliwa) < 1) |
[}ggo L6gof6+27" = cg,r(ao) ’ m?hu({“lu? ) < 1})
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Here, ¢! (ap) is a constant fized by the type of oy, the group T and the topology of 3.

’ g7r

Proof. The intersection number with a filling multicurve is a measure of complexity for
curves, hence [ES3, Theo. 9.1] or [ES3, Ex. 9.1] ensure that there exists ¢ ,.(I(ag)) > 0
such that

jim FOEDTOOMIONSE) _or (100w ((i(n) < 1)), (323)

Hence, by Lemma 3.5 and eq. (3.2.3) we have

: tla eI~ aglifa, p) < L}
thsup ,69—6+2r

ro tH{y €T I(ao)li(p, ) < 2L + 2dayi(p, 1)}
< kg, - thsup oo 0

R 29552 i up tH{yel- I(ao)!i(u,w < 2L + 2dy,i(p, 1) } (1+ daoi(/ﬁaﬂ)>6g76+2r
‘ L (2L + 2dayi(p, pn))09-6+2r L

= kgo : 269_6+2T : cg,r(](ao)) ' m%hu({z(ﬂ7 ) S 1})7
where k} comes from Proposition 3.6. With the same computations

tH{a el - agli(a, u) < L}
[69—6+2r

lim inf > kD 29042 (I(ag)) - m, ({il, ) < 1)),

and we obtain Theorem 3.7 with ¢ (ag) = kL - 2% - ¢ (I(a)). O

3.3 Proof of the main theorem

In this section, ¥ is still a compact connected oriented surface, with genus g, and r > 0
boundary components, with negative Euler characteristic and such that (g,7) # (0, 3).
For technical reasons, ¥ is endowed with a hyperbolic structure with geodesic boundary.
Note that it induces a hyperbolic structure on DX. In the following, we fix a weighted
multiarc ay € A,,(X) and a finite index subgroup I' of Map(X). The doubling process
allows us to see ag as a current (see eq. (3.1.4)) and to define a familly (v, ;)r>0 of

Radon measures on C(DY) from aq by

1
I
Voo, = Togoiar > 015 VL >0. (3.3.1)

aclag
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The strategy to prove Theorem 3.13 is the following. We will prove that (1/507 1) L>0
has accumulation points and that they are all supported by 3\7[2(2) Afterwards, we will
use the characterisation of Map(X)-invariant measures on measured geodesic laminations
[LM; Ham] to show that these accumulation points are all multiples of the pushforward
by the hat operator of the Thurston measure on Y. We will conclude proving that they
are all the same multiple of m%, . Note that at each step Theorem 3.7 will play a key

role.

Proposition 3.8. The set (v} Vao.1)L>0 18 precompact, meaning that for every (Ly)nen € RY

with L, — oo, there is a Radon measure m on C(DX) and subsequence L., such that

Proof. The v} 0.L, are measures with support in €(DY) which is locally compact [Bon2].
Hence the set of Radon measures on €(DX) has the Heine-Borel property: to show that
each sequence has a convergent subsequence it suffices to show that {v} 0.Ly, J 15 bounded,
that is to show that for every continuous and compactly supported function f on C(DY),
lim supn/fdl/arO,Ln < 0.

Fix a continuous and compactly supported function f on C(DX). As f has compact
support, | f| is bounded by some b > 0 and there is some D > 0 such that i(y, 6y) < 2D

for every u in the support of f, where dy is a fixed filling curve of 3. Hence

[1lavs, o, <b-vh, L (Suwp() (3:32)
<b-vh 1, ({n € €(DY)i(u, d) < 2D}).

Moreover, we have

L (€ eDD)i(u, &) < 20}) = o€ aolﬁg(oggg) <2DL,}

ﬂ{a el a0| (cr,09) < DLn}
L6g 6+2r

Hence, Theorem 3.7 ensures that

Vo1, ({1t € €(DI)i(p1, 80) < 2D}) ——— D=+ ¢ (I(aq)) - mi,, (i(do, ) < 1),

n—00 9s
which together with eq. (3.3.2) ensures that lim sup,, / fdvl, ;. < oo.That concludes the
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proof. O]

We now want to show that every f as above is supported by ML(X) (meaning that

its complement has 0 measure). In some sense, this justifies the notation m.
Proposition 3.9. The measure m in Proposition 3.8 is supported by JV/[\L(E)
Proof. In light of Proposition 3.4, to show that m has support in W(E) there are three

points to prove. We need to prove that m is supported by symmetric measured laminations
— the fact that the elements of the support are symmetric comes from the construction
of the /! ao.L, SO We just need to show that they are measured laminations. The second
point to prove is that they do not cross the image of 9% in DY. Finally, we need to argue
that they do not have connected components of 0¥ as leaves.

Regarding this last point, note that if we assume that the support of m is made
of symmetric measured laminations then the elements in the support of v. o, are all
orthogonal to 0% so those in the support of m are all transversal to 0.

Let us now show the first two points. We know that m has support in the symmetric
currents so, to show that it is supported by ML? (DY) it suffices to show that for every
R >0,

i(p, p)dm =0
/{MGG(DE)i(u,Ao)SR} (ks 1)

where Aq is a filling multicurve of DY. We can assume that Ag decomposes into 30 —
where 9y is a filling curve of >— and a multicurve s of D3 that completes do to a filling
multicurve of DX.

For every L > 0 we have

1 a a
(1, p)d 3 < ) 3.3.3
/{HGG(DE)Z'(M,A())SR} iu, 1) Pao,L = [69—6+2r ael“ ‘e L’ L ( )
i(@,A0)<LR
< 1
= T6g—6+2r QEMO ( )
z(a 60)§LR
1 i(a, a)
= Too o2 EEF: 2=73
aclag
i(c,00)<LR/2
_ (R)69—6+27" 2@(050,0[0) {Oé el Oéo’ (Oé 50) < 7R}
2 L? (%)69 6+2r
R 6g—6-+2r . .
L—o0 2) -0 cg (o) - mpy, ({i(+, d0) < 1})
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However, there is some L, —— oo such that v ; ——— m. Hence, eq. (3.3.3) ensures
n—00 0:bn 500
that

i(p, p)dm = 0,
/{MGG(DE)IZ'(MA())SR} (k1)

meaning that the elements of the support of m have no self intersection: they are measured
laminations of D3 (see Theorem 1.33).

A similar computation allows us to obtain that for every R > 0,

i(p, OX)di = 0.
/{uEG(DE)Ii(u,Ao)SR} (1. 0%)

Hence the measured laminations in the support of m do not cross the boundary of ¥ and

that concludes the proof. O

Corollary 3.10. Any measure m as in Proposition 3.8 arises as the pushforward by the

hat operator of a measure m in ML(X) defined by
VYU € ML(E), m(U):=m({AX e U}). (3.3.4)

]

As in [RS], to show that the limit element is a multiple of the pulled-back Thurston

measure we will use the following theorem which comes from [LM].

Theorem (Lindenstrauss-Mirzakhani). Let p be a locally finite Map(X)-invariant mea-
sure on ML(X). If for all simple closed curve vy of X3

u({ € ML(D)]i(A, 7) = 0}) =0, (1.4.1)

then u is a multiple of the Thurston measure m%,,, . O

It is certainly known to experts that this theorem is also true for a I'-invariant measure

where I' is a finite index subgroup of Map(X). Still, let us give a proof.

Lemma 3.11. Let I" be a finite index subgroup of Map(X). If p is a locally finite T'-

invariant measure on ML (X) such that
p({A € ML(E)[i(A,7) = 0}) =0 (1.4.1)
for every simple closed curve v of 3, then p is a multiple of the Thurston measure mz, ..
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Proof. Since every finite index subgroup I' of Map(X) admits a finite index subgroup
which is normal in Map(X), we can suppose that I" is normal to begin with.

As the subgroup I is finite index, we can choose finitely many elements ¢, ..., ¢ of
Map(X) such that every element ¢ € Map(X) can be uniquely written as ¢ = g o ¢; with

g € I'. If p is a measure as in the statement then we define
S
o= Z Pis i
i=1

Since I' is normal and g is [-invariant, the definition is independant of the choice of
the ¢;.

Now, for ¢ € Map(X), [¢] € Map(X)/T — [t o ¢] € Map(X)/T is well-defined and
bijective S0 ,fi = f: Pyiuft = f: (Y o ¢;)spe = 1 and 1 is a Map(X)-invariant locally
finite measure on MzZl(E) -

Moreover, if v is a simple curve in X then

p{A € ML(E)[i(A,7) = 0}) = i%u({A € ML(E)[i(A,v) = 0})

i=1

= " p({A € ME(S)[i(6; '\, ) = 0})

=1

_ Z u({A € ML(R)[i(A, 1) = 0}).

As a consequence, [ satisfies (1.4.1) as soon as p does, and is therefore a multiple of the
Thurston measure by Lindenstrauss-Mirzakhani Theorem.

Moreover, we can suppose that ¢; = Idy hence yu = ¢, is absolutely continuous
with respect to i and to m%,,. However, the Thurston measure is I'-ergodic [Mas] so p is

a positive multiple of m%,,,. O

Lemma 3.12. If m is as in Proposition 3.8 then the associated measure m (see Corol-
lary 3.10) on ML(X) satisfies eq. (1.4.1).

Proof. Let v be a simple curve of ¥, we want to show that m({\ € ML(X)|i(\,v) = 0}) =
0. By inner regularity it suffices to show that for every R > 0,

m({A € ML()|i(\, ) < £,i(A, 6) < RY) — 0 (3.3.5)

e—0

where d is a filling curve of 3.
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Moreover, if L,, is such that v%

oo.L, —— m then the Portmanteau Theorem ensures
e n—o00
that

m({h € ML(D)[i(N, y) < &,i(\ d0) < R}) = m({A € ML()|i(\, ) < &,i(\, 6) < R})
= m({p € C(DY)]i(n,v) < 2e,i(p, d) < 2R})
< lim inf Vao.r, ({1 € C(DI) i1, ) < 2e,i(p, do) < 2R}).

Recall that by Proposition 3.6 Ijr.q, : @ € I'-ag = I(r) € I'-I(ay) is k} -to-1, and that
li(1(),0) —2i(cr,0)| < dayi(0,9) = Cs for every a € I' - ap and § € €,,(X) by Lemma 3.5,
and i(I(«),-) < 2i(q, ) by construction. Hence,

Veo.n, ({1 € C(DE) i, ) < 2¢,i(p, o) < 2R})
ﬁ{Oé € I a0|i(a’ ’7) < 5Lna i(O[, 50) < RLn}
= [09-6+2r

tHa el - apli(I(a),v) < 2eLy,,i(I(x),dy) < 2RL, + Cs,}
< [69-672r

. H{r el I(ag)|i(r,7y) < 2¢L,}

6g—6+2r
n

< Ky * Vi), ([N, 7) < 2¢}),

< ki,

where 1/50 L= W > 5%7 when 7y € €,,(3). We get from [ES3, Theo. 8.1 or Ex.
o YElv0
8.3] that (VIF(aO), L Jnen converges and then

n

limninf v o ({p € @(DY)|i(p, ) < 2e,i(u, do) < 2R}) < kgo -limninf VIF(QO)7Ln({)\]i(/\,’y) < 2e})

ao,Ln

< kgo ’ limnsup V}‘(ao),Ln({/\u()\?PY) < 25})

<KD oD (I(00) - M, (A € ME(S)[i(A, ) < 2¢}).
All in all,
m({\ € ML(D)|i(\, ) < &,i(N,0) < R}) < C-m¥,, ({N € ML(D)|i(\, ) < 2e})
and the characterisation of the Thurston measure proves eq. (3.3.5). ]

We are now able to prove our main theorem:

Theorem 3.13. If X is a compact connected oriented surface with non-empty boundary
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and negative Fuler characteristic which is not a pair of pants, then for every weighted
multiare ag € Am(X), and every finite index subgroup T' of Map(X), there is ¢, .(ag) > 0
such that

: _.r =
nggo Voo, L = cg,r<a0) “Mppy;

and the convergence occurs with respect to the weak™ topology on the set of Radon measures

on C(DY).
Remark 3.14. The constant ¢, . (ag) is the same as in Theorem 3.7.

Proof. First of all, consider m given by m = Jim Vho.r, for some sequence (Ly)nen.
Lemma 3.12 together with Lemma 3.11 ensures that the associated measure m on ML(X)
is a multiple of the Thurston measure on ¥ and hence m = ¢(L,,)-m%,,, where ¢((L,),) > 0
depends, a priori, on the sequence (Ly,)nen-

Let &y be a filling curve of 3, the function i(d,-) is continuous, homogenous and
positive on €(X) hence m%,, ({i(dy,-) = 1}) = 0. However, m3, ,({\ € ML(Z)|i(dy, \) =
1) = @3, (1% € ML(D)i((00), 3) = 1}) = @5, (0} € ME(D)]i(i* (3, A) < 1}) and
C(DY) is locally compact so by Portmanteau Theorem and Theorem 3.7 we obtain the

two following results

Vg, ({1 € QDI (60), 1) < 13) == e((Ln)a) - ®y, (1A € ME(D)[i(i*(50), A) < 1})
= c((Ln)n) - m7y, ({X € ML(D)]i(do, A) < 1})
= c((Ln)n) - 7y, ({i(do, ) < 1),

Vb, ({1 € DB (00): ) < 1) = ot € T olili*(80), ) < L)

tH{a eI - agli(dy, ) < L}
= 69—6+2r

— cg,r(@o) ’ m%hu({z<507 ) < 1})

n—oo

Hence, ¢((Ly)n) = ¢, (o) does not depend on the sequence (Ly)nen and whatever the

sequence L, —— oo, up to passing to a subsequence n;,
n—o0

: r _.r =~
}i}rgo Voe(),Lni - cg,r<a0) *Mppy-

, : .0 _ T 5
Since the previous convergence holds for any L, — 7, Lh—I>IOlO Veo.L = Cgr(0) Mgy, O
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3.4 Application to counting problems

Armed with Theorem 3.13 we are now able to focus on counting problems. In this
section we are interested in counting the elements in the orbit of a given arc for the action

of a finite index subgroup of the mapping class group.

3.4.1 Counting bounded arcs

For F' a function on arcs we want to count {a € I' | F(«) < L} using Theorem 3.13.
To do so, we have to be able to extend F' to the currents of DX.
The more natural examples for F' are
- the length function for any Riemannian metric with geodesic boundary on 3,
- the intersection number with a filling curve §y of X,
- the intersection number with a filling current pg of 3,
in those cases, the extension on (DY) is naturally given by
- the length function associated to the corresponding metric on DX,
- the intersection number with 5A0,
- the intersection number with fi.
To give a general context to these examples we introduce the notion of extension to

currents for functions on arcs.

Definition 3.15. A function F on A,,(X) is a measure of complexity for arcs
if there exist a continuous and homogeneous function F on C(DX), which is positive
on the space of symmetric currents which give no weight to 0%, and a continuous and
homogeneous function, also called F', on C(X) such that:

- Va € An(X), F(a)=2F(a),

vpeer), P()=2F().

Now, the same process as in the proof of [ES3, Theo 9.1] allows us to obtain the

following Corollary.

Corollary 3.16. Let > and I' be as in Theorem 3.13. For any weighted multiarc oy €

Am(2) and any measure of complexity for arcs F

I' ol Fo L
sim HOEL 0OV S B o (o) ((F() < 1))
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Proof. First of all, since F' is continuous on (DY),
0{p € C(D)|F(n) <2} C {p € C(DY)|F(n) = 2}

and as F' is continuous and homogeneous on C(X)

Wy, ({1 € C(DD)|F(n) = 2}) = @3, ({A € ML(D)|FQ) = 2}) (3.4.1)
= mp,, ({A € ML(E)F(V) = 2})
= m7, ({A € ML(X)|F(N) =1})
= mzy, ({1 € Cx(2)|F(p) =1})
0.

As a consequence, using the local compactness of C(DY) and the Portmanteau Theorem
and Theorem 3.13 we obtain that

Voot ({1 € C(DE)|F (i) < 2}) — ¢y (o) - My, ({p € C(DE)|F(u) < 2})  (34.2)

L—oo

= ¢y, (a0) - mz, ({A € ML(D)|F(N) < 1}).

g’r
Moreover, since F' is homogeneous we deduce that

T aplF L T ap|F(a) < 2L A
Hae LGOgéEL—i-Q(Ta) =1 = Ho L?go_’6+($) < 2L} = s, . ({n € C(DY)|F(p) < 23),

and eq. (3.4.2) concludes the proof.
The condition of positivity on F' ensures that all the spaces we count are finite as well
as the limit.
O

3.4.2 Counting bi-infinite arcs

We work now on a non-compact surface S of finite type. More concretely, S has finite
genus, finitely many punctures and empty boundary. A bi-infinite arc of S is a path
between to punctures, we will also call them "arcs" when the context is clear. If X is a
fixed finite area hyperbolic structure on S and g a bi-infinite arc between two cusps of
S we want to determine

t{a € Map(S) - ap|lx () < L}.
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To do so, we first have to choose a way to define £x(«). Indeed, with the natural notion
of length every bi-infinite arc has infinite length.

In a non-compact surface one can define the peripheral self-intersection number
iper(77,7y) of a geodesic . This number tells us how much each excursion of the geodesic
into a cusp intersects itself (see [ES3, Def. 2.6] for details on the peripheral self-intersection
number). The number of self intersections of an excursion being in direct link with the
depth reached by this excursion into a cusp [BPT], knowing the peripheral self-intersection
of a bi-infinite arc we know exactly the maximal depth reached by any finite excursion
(it is an excursion that does not leave all compact subsets of the surface) into a cusp’s

neighborhood.

Remark 3.17. For a weighted multiarc, we define the peripheral self-intersection number

as the maximal peripheral self-intersection number of its components.
Let us recall the following lemma.

Lemma 3.18. Let S be a finite type surface with negative Fuler characteristic, no bound-
ary components and finitely many cusps. If v is a bi-infinite arc of S with ipe,(7y,7) > 0
then the finite excursions of v stay in the compact core of S bounded by the horospheres
of length 1/k if and only if iper(y,7) < 4k.

Since the peripheral self-intersection number is stable through the action of Map(.S)
we have a natural way to associate a finite length to each infinite arc and that definition

will be relevant if we want to count the elements in a given orbit of the mapping class

group.

Remark 3.19. We need the notion of length we will define for bi-infinite arcs to be
compatible with the length of the measured laminations of the surface. To do so, note that
for any hyperbolic metric X on S the support of every A € ML(S) is included in X1, the
compact core of X bounded by the horospheres of length 1.

Definition 3.20. Let S be a finite type surface with negative Euler characteristic, no

boundary and finitely many cusps. For a fixed hyperbolic structure, we define the compact

length of a bi-infinite arc o of S by

Te(a) i | (XN X @) iy (e, @) /4> 1
a) =
* lx(yN X1 otherwise.
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Figure 3.4 — How to compute /.

Where for any k > 1, X* is the compact core of X bounded by the embedded horospheres
of length 1/k.

Theorem 3.21. Let S be a connected oriented surface with r > 0 punctures and negative
Fuler characteristic but not a pair of pants. For any hyperbolic structure X on S, if ag is
a weighted bi-infinite multiarc and I is a finite index subgroup of Map(S) then

. Hael aplx(a) <L
A { Legdaffr : }=c£,r<%>-m§~hu<{ex<-> <1).

Proof. If S has genus g and r cusps then we call > the compact surface of genus g with r
boundary components. From now on X is a fixed hyperbolic structure on S and we want
to construct a metric on ¥ from X.

Fix the bi-infinite multiarc ag, there is k > 0 such that lx(a) := lx(y N X%). If we
cut S along the embedded horospheres of length 1/k then we obtain a CAT(—1) metric
structure on X (see [BH, Ex. 1.16 p168]) for which the horosphere boundaries are geodesic,
hence the associated gluing metric on DY given by the corresponding length function ¢py;
is also CAT(—1) (see [BH, Theo. 11.1 p347]) on DY..

In a CAT(—1) space the length and the stable length coincide hence the length of
curves {py coming from X is equal to the stable length for the action 7 (D¥) ~ DY.
However, the stable length for any discrete and cocompact isometric action of a torsion-
free hyperbolic group on a geodesic metric space extends to a continuous, positive and
homogeneous function on currents (see [EPS, Theo. 1.5]). Hence, Corollary 3.16 applied
with F = x which extends to ¢ps. and for the measured laminations the different notions

of length coincide which concludes the proof. O]
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Remark 3.22. There are many ways to decide how to truncate an infinite arc in order
to define its length. See for example [Bel2] or [Par] for other ways to do so. For example,
0% is the length function on infinite arcs such that the length of a cusps-to-cusps arc is
the length of this arc beteween the first time it enters X' and the last time it leaves it.
The advantage of this definition is that it does not depend on the chosen arc and is more

visual in the universal cover (fig. 3.5 shows how to see % in the universal cover).

Uk

Figure 3.5 — How to compute /%

This notion of length differs from fx by a constant hence as an immediate corollary

of Theorem 3.21 we have that for allt > 1 and any infinite weighted multiarc o

1. Ha € Map(S) - aolti(a) < 1}
LEEO [ ,69—6+2r =

¢gr(0) - M7y, ({€x () < 13). (3.4.3)

3.4.3 Counting arcs on orbifolds

We now work on a compact orientable orbifold O rather than on ¥ or S. We denote by
g its genus and r the number of boundary components and singularities, assuming that it
has non-empty boundary. As for surfaces, we will assume that (g,7) # (0,3) and an arc
is free homotopy class of boundary to boundary paths.

One can define C°"(O) the set of geodesic currents for O, and a notion of Thurston
measure in € (0) (see [ES2]). In the line of the known results for curves it is shown
in [ES2] that for every 7y € €,,(0) and I' finite index subgroup of Map® (O) there is a
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positive constant ¢y (7o) such that

_ o
LILOO LGg 6+2r > 0Ly = 70) * My, (34.4)
Y€l
where the convergence occurs with respect to the weak™ topology on the set of Radon
measures on the set of geodesic currents of O. As a consequence, for every measure of

complexity for curves on C(0),

ot s FLJO'G{; EL ¢gr(70) - Py, ({F(-) < 1}). (3.4.5)

This naturally raises the question of applying the results of this paper to the case of

orbifolds with boundary components:

1. Fuchsian groups are LERF [Sco] so Lemma 3.5 is still true,
2. eq. (3.4.5) ensures that we still have Theorem 3.7 for orbifolds,

3. for a compact orbifold the set of geodesisc currents is still locally compact [ES2,
Section 4.1] so with the same proof as in the case of surfaces, Proposition 3.8

happens in the orbifold case,

4. the same caracterization of measured laminations as for surfaces holds for orbifolds

what ensures that Proposition 3.9 is still true,

5. the Thurston measure on O can be seen as the pushforward for some application
of the Thurston measure on the surface associated to O [ES2, Lem. 4.1], which
ensures that Lindenstrauss-Mirzakhani characterisation of the Thurston measure

and Lemma 3.11 are true for orbifolds,
6. finally, eq. (3.4.4) implies that we are able to prove Lemma 3.12 for O.

All the constructions of this paper apply in the orbifold case which gives us a version of
Theorem 3.13 and Corollary 3.16 for orbifolds.

Theorem 3.23. If O is a compact, connected, oriented orbifold with non-empty boundary
such that (g,r) # (0,3), and T is a finite index subgroup of Map® (O) then for every
ap € A, (0) weighted multiarc

: r _ .r ~ 0
Lh_I}(;lO Vao,L = cg,r(ao) T Mgy
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The convergence occurs with respect to the weak™ topology on the set of Radon measures

on C(DO) and ¢}, () is a constant comming from Theorem 3.7 and [ES2].

Corollary 3.24. With the same conditions as above, for any function measure of com-

plezity F on A,,(O)

Ha e Lol =L _ ot () ((F() < 1)),

lim

L—o0

Here, the notion of measure of complexity is the same as in Corollary 3.16.
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CHAPTER 4

PERSPECTIVES

4.1 Perspectives for counting problems

In this section we investigate the counting of elements in the orbits of subgroups of

the mapping class group. More specifically, we address the following question:

Question 4.1. Given I a subgroup of Map(Z), 70 € €,,(Z) and F' a measure of complezity

for curves. Let us define
AL (L) ={y €Tl lF(y) < L}. (4.1.1)
How does ﬁAFm (L) grow when L goes to infinity? [ |

Note that Mirzakhani and Erlandsson-Souto have answered this question for finite-
index subgroups, see eq. (3.1.1). Consequently, we focus here on infinite-index subgroups
of the mapping class group, in which cases we expect the counting results to depend
strongly on the choice of the group. For example, we develop below examples of subgroups
generated by a single Dehn-twist or a single pseudo-Anosov, in these cases the growth

rates are linear and logarithmic in L respectively.

4.1.1 Counting orbits of certain cyclic subgroups

The first infinite-index subgroups of the mapping class group we can think of are
the cyclic subgroups. In this section, we study cyclic subgroups generated by a pseudo-
Anosov or a Dehn-twist. As well as being fundamental examples of mapping classes, they
give us a glimpse of the kind of behavior we will encounter when working with infinite-
index subgroups: we can expect to obtain a (discrete) spectrum of possibilities between

logarithmic and polynomial asymptotics.
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Dehn twists

We work in a finite type surface (maybe with punctures or boundary components) Z
and are interested in the action of a Dehn-twist T,, along a simple curve a. on the weighted

multicurves of Z. A first point to work on, is the way this action changes the lengths.

Lemma 4.2. Let a be a simple curve and 8 a weighted multicurve of a finite type surface

Cx(T7
Z. For every hyperbolic structure X on Z lim x(Ta5) =i(a, f)lx ().

n—=4oo |n’
Proof. 1f B is a curve with i(«, 8) = 0 then 773 = § for al n and the result follows.
Otherwise, computations in the hyperbolic plane allow to show that the length of the
twisted [ is closer and closer to ni(a, ) times the length of a when f3 is a curve. It passes

to weighted multicurves by linearity.

_/
Figure 4.1 — Computations in the universal cover

]

Knowing how this action deforms lengths, we can study, from the point of view of
currents, the orbit of a curve under this action, which will allow us to easily obtain

counting results for the orbits.
Lemma 4.3. Let a be a simple curve and 5 a weighted multicurve such that i(c, 5) > 0,

. I9p
lim =

n—+o00 |n| o

i(a, B)a in Cx(Z). (4.1.2)

for K the compact core of Z determined par iye, (3, 5) (see Theorem 1.11) or a compact

of Z containing it.
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Proof. Let K be a compact subsurface as defined above. Theorem 1.11 ensures that all the

elements in < T, > -§ and « are, as currents, elements of Cx(Z). This space is metrizable,

50
n

so, we will show that (
is i(a, B)a.

Given a hyperbolic structure X on Z the length function ¢x : Cx(Z) — Rs¢ is con-

> is bounded and has only one accumulation point which
neN

tinuous from a locally compact space to a Haussdorff space, hence, it is proper. However,
n

T,
for all n € N, Ux(T5) < lx(B) + ni(a, 5)¢x(«) hence (x ( aﬁ) is bounded regardless
n
128

n

of n what ensures that ( ) is bounded in Cx(Z).
neN

n—oo

Tn
Consider now p € Cx(Z) an accumulation point of (ﬁ) . There is m,, —— oo
n neN

such that

Y ]
lim &— =

n—o0 mn

Lb.

Recall that ¢ : Cx x € — R, is continuous, the

; (T;nn/a T;nn/a> _i8.5)

My, My, m?L n—oo

hence i(u, u) = 0 and p is a measured lamination (it has zero self intersection and is an
element of Cx(Z) which is a subset of the internal currents).

Now, for any curve « in Z if i(y,a) = 0 then

\0’

7
mn n—oo

. (T;”"B’,O _ i(8,1) + maila, B)ifa, )

]
mp

and then i(u,v) = 0. As a consequence, the only possible leaf for p is @ and p = ¢ - a for
some ¢ > 0. Lemma 4.2 and the continuity of the length function in Cx(Z) ensure that

¢ =i(a, B), what concludes the proof. ]

Theorem 4.4. Let Z be a finite type surface and o € €(Z) a simple curve, we denote
by T,, the associated Dehn-twist. For any measure of complexity for curves F, and for all
weighted multicurve vy € €,,(Z) such that i(yy, ) # 0

Ly e<Ta > lF() S L} 2

| )
S L i, 70)F(a)

(4.1.3)
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Proof. In all the proof, a, F' and 7, are fixed, we are interested in the cardinal of AAfOT@ (L)
where the complexity of the curves is given by F. We fix K the compact core of Z given

by iper (70, Y0), all the elements in < T;, > - are currents of Cx(2).

By continuity and homogeneity of F' over Cx(Z) together with Lemma 4.3

F(Tyv) ~ Inli(a,v0)F(a).

n—+oo

Equivalently we have

de, — 0: VneN F(T" 7)) = (1+e,)ni(a,v)F(a) (4.1.4)
Jn ——=0: VneN F(T." ) = (1 + pn)ni(co, v0) F (). (4.1.5)

There is 0, —— 0 and v, —— 0 such that 1/(1+e,) =1—0pand 1/(14+p,) = 1—v,,.
Now, we can decompose A5T* (L) as follow:

1A (L) = #{y €< Ta > 0| F(y) < L}
= H{n = 0(1 + en)nia, o) F(a) < L}
+8{n > 0|(1 + pn)ni(er, 3) Fa) < L}

:ﬂ{ognlné (1—5n>mL)Fm>}

+ﬂ{0<n|n§(1—”")i(a,%€F(a))}.

Now, for any € > 0, there is n. > 0 such that for all n > n., d,,v, € [—¢,¢] and we
have

SAST> (L) = 4 {
ﬂ



what ensures that for all e > 0

2 o ALY _ 2 3
i@z = & SR @ T

When L goes to infinity we have

2) ﬁA<To‘>(L) L ]jA<T°‘>(L)
l—g)———<lim 2 " <]lm*>~—"2 " <(1+e)0———,
O er@ =2 M 1 U R
) ) ) <Ta>(L) 2
letting € tend to 0 we obtain that lim —2° = - . O
Lo L i(a, v0) F()

Pseudo-Anosov mapping classes

While the growth of the orbits of the mapping class group is polynomial and that of
orbits of a Dehn-twist is linear, we show here that the growth is logarithmic for orbits of
a pseudo-Anosov element.

We are interested in studying the action of a pseudo-Anosov mapping class on curves.
Let us a fix a finite type surface Z and a pseudo-Anosov mapping class ®. We denote by

A% and A" the attracting and repelling measured laminations.

Lemma 4.5. Let S be a finite analytic type surface and ® a pseudo-Anosov mapping
class, A* and A" its attracting and repellling measured laminations and A > 1 its stretch
factor. For every hyperbolic structure X on S and any multicurve o € €,,(3)

lx (D" - a)  i(A", a)lx(A%)

li = . 4.1.
nl—golo A" i(AT, Aa) ( 6)

Proof. All along the proof, ®, o and X are fixed. Let K be a compact subsurface such
that booth o and ML(S) are in Cx(S). Recall that Ly is the Liouville current associated
to X when seen as an element in T(S) and that the intersection number with Ly is the
length function.

For a finite analytic type surface the action of a pseudo-Anosov element on T(S) U
P, ML(S) has a north-south dynamic with A* as an attractive point and A" as repilling
point. As a consequence, there is (&,)nen such that nhalgo e, ® "Ly = A" and then

lim €,0x(®") =i(A",")

n—oo
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in Cx(S) by continuity of the intersection number. Recall also that for all n € Z, ®"A* =

A"A%, so, the result is immediat

lx(®"a)  i(Lx,®"a)i(Lx,A)
A (L, drA9)
(e, @ " Lx, a)i(Lx, A?)
(e, ® Ly, A%)
C (AT a)lx (AY)
n—00 i(AT,Aa) ’

Note that the attracting and repelling laminations are only defined up to multiplicative

factor but this choice has no incidence here.
O]

Based on this result, we can easily obtain a counting result for finite analytic type

surfaces with a length function as measure of complexity.

Theorem 4.6. Let S be a finite analytic type surface and & € Map(S) be a pseudo-
Anosov mapping class. Given a hyperbolic structure X on S, for all weighted multicurve

Yo € Q:m(S)

i AV E<®> llx(n) <L} 2

L—00 log(L) ~log(N\) (4.1.7)

Proof. In all the proof, ®, §y and X are fixed, we are interested in the cardinal of A§O¢>(L)
where the complexity of the curves is given by £x(-).
For ~ a curve we will use the following notations:

iA" Nx(AY) i(A", ) lx (A7)
C+('7) = i(Ar,Aa) , € (’7) = Z‘(Aa’Ar) )

Appliying Lemma 4.5 to ® and ®~! we obtain

lim &(20) _ ¢ (), lim &(@70) ¢ (70)-

n—00 A" n—oo A"

Equivalently we have

Jep ——= 00 YneN [x(P"-70) = (1+en) A" c" () (4.1.8)
Sn ——=0: Yn €N x(@7"-50) = (1+pn) - A" ¢ (70). (4.1.9)
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Hence, if we notice that {y €< ® > -y} = {®" - yy|n € Z} then

AT (L) = #{n > 0[(1 4+ 2,) - A"+ ¢¥(70) < L}
+#{n > 0[(1+ o) - A" ¢ (70) < L}
- o log(L/et(10)) — log(1 +.)
= {0 < nin < log() }
log(L/c™ (o)) — log(1 + pt) }
log(\) '

+ﬂ{0<n|n§

Now, eq. (4.1.8) and (4.1.9) ensure that there exists ng > 0 such that for all n > ng, we
have ¢, i, € [% — 1; VA — 1], equivalently
1 _log(l+en) log(1+p,) _ 1

Vn > —— < < -
= o 27 log(\) 7 log(\) T2

This gives us the following decomposition of ﬁA§O¢>(L):

A5 (L) = £{0 < n < no|(1 4+ ,) - A" - ¢* () < L}
+8{0 <n <mno|(1+ pn) - A" - ¢ () < L}
log(L/c* (7)) —log(1 +¢€,)
+ {no <nln < Tog () }
log(L/c™(0)) — log(1 + pn) }
log(A)

+ﬁ{n0§n|n§

from which we deduce that

a0y > 21 = o) o
FASO (L) < 4 | 2log(L) — log(c (%)10“g((A;) log(c"(70) (50))7
what allows us to conclude:
_fASPP(L) 2
B oDy Tog(n) (4.1.10)
O

Corollary 4.7. Let S be a finite topological type surface, for any measure of complexity
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F :C(S) = Rxq and for any ® € Map(S) pseudo-Anosov mapping class if o € €,(S) is

a weighted multicurve then

lim tH{re<®> lFy) <Ly 2
L—00 log(L) log(A)’

(4.1.11)

Proof. In addition to ®, F' and 7y let us fix a hyperbolic structure X on S.

The intersection number is stable under the action of Map(S), in particular all the
curves in the orbit < & > -7y has the same number of self intersection and by Theorem 1.11
they are all included in the same compact Ky of X. Now, F' and {x being two measures

of complexity, Theorem 1.36 ensures that there exists C' > 1 such that

égX(.) < F(:) < Clx (),

in GK(S)
Hence, for every L > 0

L
{re<é>llx(y) < 7} S{ve< o> lF(y) < L} S {y €< é > ollx(y) < OL}

However, Theorem 4.6 ensures that

log(L) — log(C)

Hye< o> llx(y) <L/C} ~ 2

log(A)
log(L) + log(C')
Hye< o> llx(y) <CL} ~ 2 oah)
what concludes the proof. O

Remark 4.8. Remark that the use of Theorem 1.36 to pass from a counting for a given
measure of complexity to the counting for another measure of complexity is made possible

by the logarithmic growth. We can not hope to use the same process for polynomial growth.

Corollary 4.9. Let Y be a finite type surface with boundary, for any measure of complexity
F:C(X) — Rxg and for any ® € Map(X) a pseudo-Anosov mapping class if vo € €,,,(X)

s a weighted multicurve then

iy AV E<®>lF(y) <L} 2
L=>00 log(L) log(\)’

(4.1.12)
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Proof. We know [ES3, Theorem 3.9] that the length for a hyperbolic metric in the interior
of ¥ is a measure of complexity for curves in ¥. Moreover, the mapping class group of
Y. is defined as the one of its interior. Hence, Corollary 4.9 ensures that we dispose of
eq. (4.1.12) for F a hyperbolic length function in the interior of ¥. Now, the same process

as above allows us to pass to a general measure of complexity. ]

4.1.2 Analog for arcs

Here we briefly explain how the techniques developed in Chapter 3 can be used to
obtain versions of Theorem 4.4 and Corollary 4.9 for arcs.
Let > be a compact and finite type surface with non-empty boundary, we use here the

same notations as in Chapter 3.

For Dehn-twists

For a a simple curve of ¥, if we use the same arguments as mentioned previously
n

we can show that lim ‘a‘ = i(c, f)a in C(DX) and then, with the same proof as for
n oo |n
Theorem 4.4, we obtain the following counting result.

Theorem 4.10. Let 3 be a finite type surface compact with boundary and o € €(X) a
simple curve, we denote by T, the associated Dehn-twist. For any measure of complexity
for arcs F, and for all weighted multiarc By € €, (Z) such that i(Sy, o) # 0

iy HBE<Ta > BolF(B) < L} _ 2
L00 L (e, Bo)F(a)

(4.1.13)

For pseudo-Anosov

In the case of a group generated by a pseudo-Anosov we will use the same strategy as in
[Bel2] we already used for Theorem 3.7. First of all, since pseudo-Anosov mapping classes
fix no curves, whatever the weighted-multiarc ag € A,,(X) the constant &} is equal to 1
when I' is generated by a pseudo-Anosov, see Proposition 3.6. Hence, using Lemma 3.5
or Bell’s equivalent for length functions [Bell, Lemma 2.2.1] we obtain a counting result

for arcs in the pseudo-Anosov case.

Theorem 4.11. Let X be a finite type surface with boundary, denote by F' a hyperbolic

length function or the intersection number with a filling curve. For any ® € Map(2)
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pseudo-Anosov mapping class, if oy € €, (X) is a weighted multiarc then

lim Haoe<® > o|F(a) <L}y 2

lim oaD) = Tl (4.1.14)

Remark 4.12. This results also allow to affirm that we have the same asymptotic when

working with a partial pseudo-Anosov (pseudo-Anosov of an embeded subsurface).

4.1.3 A step towards more general results

We expect the counting results for infinite-index subgroups to depend strongly on the
choice of the group. In addition, we think that the geometric origin of the group may help
us solve the associated counting problem. For a first study, let us focus on "algebraically
defined" subgroups, i.e. centralizers of groups or elements.

To do so, we dispose of an analog of the Nielson-Turston classification of mapping

classes for the subgroups of the mapping class group.

Definition 4.13. Let ¥ be a compact finite type surface. A subgroup I' of Map(X) is said
to be
— Reducible if it fizes a simple multicurve,

— Irreducible if it fixres no simple curve.

Knowing this classification, the subgroups of the mapping class group can be studied
through the way they decompose the surface, in the line of [Iva] or [BLM]. Indeed, the
reducible or irreducible characters pass to the centralizer. To go further, we need more

information about irreducible subgroups.

Theorem 4.14. ([Iva, Theorem 2]) Let I" be an infinite irreducible subgroup of Map(X).
Fither T' has a finite index infinite cyclic subgroup generated by a pseudo-Anosov or it

contains two independant pseudo-Anosov (ie they generate a free group).

Hence, the counting results for centralizers of infinite irreducible subgroups are the
following.
— If T" contains to independant pseudo-Anosovs then its centralizer is trivial.
— Otherwise, the centralizer also contains a finite index subgroup generated by a
pseudo-Anosov. However, passing to a finite index subgroup does not change the

asymptotic behavior of the counting then we have a logarithmic growth.
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Let us know focus on a reducible subgroup I' of a compact and finite type surface
Y. For a first approach assume that the subgroup we are interested in contains no finite
order element. In that case, there is a simple curve C' of ¥ such that the action of I'" on
each component of ¥ — C' is either trivial or infinite irreducible and all the curves of C'

are fixed. Hence, the action of the centralizer of I' will be given by the following elements:

— Denh-twists along the components of C',

— Action by the mapping class group of a subsurface on the components where the
action of I' is trivial,

— Action by, up to finite index, a cyclic subgroup generated by a pseudo-Anosov on
the parts where I' acts as a pseudo-Anosov,

— The action of the centralizer will be trivial on the components where I' acts by, at

least, two independant pseudo-Anosovs.

Moreover, we dispose of counting results for arcs in each of the cases described above:
by both Bell [Bell] and Chapter 3 for the second item and by the previous section for the
others. Now, for a given multicurve of 3, cutting the surface along C' we obtain a familly

of multiarcs and gluing them back together we have the following conjecture.

Conjecture. Let Y be a compact surface of finite type equipped with a hyperbolic structure
X. Let ' be a subgroup of Map(X) with infinite index centralizer C(I"). There exist m,n >
0 and positive integers ki, ..., kny, 01, ..., 0, such that for every weighted multicurve vy of S,

there is i1, ...,11, J1, .-, jx and a constant ¢(vy) such that

Hy € C) - yllx(v) < L}
log(L)%n+ 3 [Rut+hy e ¢(70)-

Remark 4.15. Note that this result may apply for general abelian subgroups since they

decompose in the same way as centralizers of reducible groups [Iva; BLM].

We mentioned earlier the existence of free groups generated by independant pseudo-
Anosovs, it is evident that Question 4.1 for such groups can not be treated using the
strategy above. However, Schottky subgroups or more generaly convex cocompact sub-
groups of the mapping class group [FM2] are subgroups of interest for which it should be

interesting to consider Question 4.1.
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4.2 Counting problems from the geometric and mea-

sured points of view

As we have seen throughout Chapter 3, the problem of counting elements of a given
type is closely linked to the study of certain counting measures. Consequently, the question

raised in the previous section is strongly related to the following one:

Question 4.16. Given I' an infinite index subgroup of Map(Z) and oy € €,,(Z), is there

a function Pr: Ry — Ry such that I/E,,YO tends to a non-zero Radon measure over C(Z)?

l/F = 1
VmL‘A'f%(L)

> 0, (4.2.1)

Y€l
|

Following the same strategy as for the counting results we develop bellow the cases of
subgroups generated by a Dehn-twist or a pseudo-Anosov mapping class. We hope these
two first examples, together with Theorem 3.13, to be useful to deal with the case of
abelian subgroups of the mapping class group. In all generality, it is not clear to what

extent we will be able to get a positive answer to Question 4.16 whatever the subgroup.

4.2.1 The special cases of Dehn-twists and pseudo-Anosov

Bearing in mind the idea raised before of using surgery processes to deal with reducible
subgroups, we deal here with the cases where I' is generated by a Pseudo-Anosov or a
Dehn-twist.

Theorem 4.17. Let ¥ be a compact finite type surface and o a simple curve of 3. For

any weighted multicurve o such that i(a, ) # 0

1 2
lim — 01, = - Leb,,.
Loeo L 'ye<;c;>~/o £ e, )

Where Leb,, is the Lebesgue measure over {ta|t > 0} and the convergence occurs for the

weak* topology.

Proof. Let us fix a hyperbolic strcuture X on ¥ and denote by I' the subgroup of Map(X)
generated by T,.

We will follow the same steps of proof as in Section 3.3.
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1. The familly (v} Vo.)L>0 18 precompact,
2. The support of every accumulation point is included in ML(Y),
3. All the measured laminations of the support have a unique leaf which is «,

4. We identify the limit thanks to the previous counting results.

Exactly the same arguments as in the proof of Proposition 3.8, but based on Theo-
rem 4.4 instead of Theorem 2.15 give us the precompacity.

With the same modifications, the same arguments as in the proof of Proposition 3.9
allow to conclude that every accumulation point m of (¢}, Vyo.)L>0 has its support included
in ML(X).

To identify the elements in the support let us use the following fact.

Fact. Let a be a simple curve and A a measured lamination. If for all curve v with

i(a,y) = 0 we also have i(A,~) = 0 then A is a multiple of a.

Let m be an accumulation point of (v} Voon)L>00 M = nhm VF 1, Where L, — . Let
0 be a curve of ¥ such that i(y,a) = 0. We need to show that for every R > 0,
i(p,0)dm = 0. Using the fact that 7 is a fixed point of < T, > and

/{HGG(E)fx(u)SR}
Theorem 4.4 we have

i(p,7)d 50Ln=i > i.9) (4.2.2)

7€l n
tx(M<LR

_ 2(7075)
L, ZF: L,
)<L
J)

/{uee@)wstm

ZX( nR
RZ(VO) {7 el 70|£X<7) S RLn}
L, RL,

2
>0 - - .
n—eo Z(’}/O’ Oé)gX(Oé)

Hence, for every A in the support of m, i(A,0) = 0 and m is supported by {ta|t > 0} =
Rzoa.

The support of m identify with the real line, for every 0 < a < b let us condider,
[a,b], = {taja <t <b} =Rian{uec CX)|alx(a) < lx(u) < lx(a)b},
and use consistant notations for open intervals.
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For every 0 < a < b be have,

Vo€ C(E)|alx(a) < bx () < blx(a)} (4.2.3)
_Hy e llx () < Lablx ()} H{y €T -0llx(v) < Lnalx(a)}
Ln Ln
< Hr el nllx(v) < Lablx (@)} 8y € T %0llx(v) < Lnalx (@)}
2(b—a)

via Theorem 4.4

n—ro0 Z(Oé, /70)

Vip,L, 11 € C(B)]alx (@) < lx(p) < blx(a)} (4.2.4)
_ Hy el -vllx(y) < Lablx(a)}  Hy € T-llx(7) < Lnalx ()}
Ln Ln
S Hy el qollx(0) < Lablx (@)} H{y €T - 50llx(7) < Lpalx(e)}
2(b—a)

\

. via Theorem 4.4
n—oo Z(Oé, 70)

We want to show that there is a constant ¢((Ly,)nen) such that m is equal to ¢((Ly )nen)
times the Lebesgue measure Leb, over R>ga. Equivalently, we need to show that for every
a < b non-negative m([a, b],) = ¢((Lp)nen) (b — a).

First of all, for any a > 0, by inner regularity of Radon measures we have m({a}) =
iggm((a —¢€,a+¢€),). Moreover, m being the weak™® limit of (v, 1, Jnen the Portmanteau
3

theorem ensures that

m((a—e,a+¢)a) < liminfuy, p, ({p € C(X)[(a — e)lx(a) < lx(p) < (a+e)lx(a)})
4e

< -
N Z(aa ’70)

by eq. (4.2.3).

Hence m({a}) = 0 and for every 0 < a < b, m([a, b],) = m((a,b),). Still by the Portman-

teau theorem we have

m((a, b)) < lim inf VI/‘O’LH{ILL € C(X)|alx(a) < lx(p) < blx(a)}
2
i, o)

<

(b—a) by eq. (4.2.3),
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m([a, o) = limsup vy, ;{1 € C(T)]alx(a) < Cx(p) < blx(a)}

2
> - b—a) byeq. (4.2.4),
Ko@) e 2D
2 . . . .
what ensures that m = ﬁLeba. This equality being true for every accumulation
0, %o
point we have
1 2
lim — 01, = - Leb,,.
L=500 L 7€<;a>% 7 (e, )

]

Remark 4.18. If we want to consider a surface of finite type with punctures, then the
same proof applies when working in a certain Cx(S) rather than in the entire space of

geodesic currents.

Theorem 4.19. Let 3 be a compact finite type surface and ® a pseudo-Anosov of 2. For

every weighted multicurve vy of X

1

li 2
Lo log(L)

"= Tog(n) "

>

YESDP>p

o

where &g is the Dirac mass in 0 and the convergence occurs for the weak* topology for

measures on C(X).

Proof. The proof follows the same strategy as for the previous theorem. The fact that the
limit measure is a Dirac mass follows from the independence of the counting results with

the chosen measure of complexity. O

Hence, if the action of a given subgroup of the mapping class group decomposed into
Dehn-twists, pseudo-Anosov and full mapping class groups of subsurfaces one can expect
to obtain at the limit a combination of Lebesgue measures, Dirac mass and Thurston
measures of subsurfaces. Especially, it seems that Question 4.16 can be answered positively

for every abelian subgroups of the mapping class group.

4.2.2 Geometric interpretation of measures convergence results

The weak* convergence of measures informes us about the behavior of the associated

supports. Indeed, if vy, qzei> v then Supp(v) C limLinf Supp(vp). In particular, the inter-
—00
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pretation of the counting results in terms of convergence of measures gives us information
about the accumulation points of the rescaled orbits.
If we consider Erlandsson-Souto’s measures convergence results then we have the fol-

lowing inclusion:
1
Supp(m3,,) C {u € C(X)|Vu € U open, 3Ly : VL > Ly, 7 Map -y NU # @} (4.2.5)

meaning that the rescaled orbits {%Map “Yo}r>0 accumulate on the ending measured
laminations. Then, the identification of the limit measure in Question 4.16 is closely
related to the identitification of its support and then to the answer to the following

question.

Question 4.20. For ' < Map and vy a weighted multicurve, where does I'-~yy accumulates
in P,ML? |

The answer to this question should also be related to the study of the limit sets of

subgroups of mapping class group done in [MP] or [KL] for example.

4.3 From counting results to asymptotics on curves

The questions raised in this section are part of an ongoing project with M. Liu, K.Rafi
and J.Souto

The different counting results on curves give us some tools to study the asymptotic
behavior of curves. Indeed, given two types of curves v; and 7, on a hyperbolic surface of
finite type X

Ji{,y I Map ’YO|£X(7) S L} clgv,[?p(fy())
27 € Map mi[lx(7) < L} 1m0 P ()

Map
g,r

which type of curve is most likely. For example, focussing on the case of simple curves,

So, for a given surface, if we are able to calculate ¢ then we may be able to say

Delecroix-Goujard-Zograf-Zorich [Del+] showed that in large genus, almost every simple
curves are non-separating and Mirzakhani [Mir1] showed that in the closed genus 2 surface

there is 48 times more non-separating than separating simple curves.

Map

oP(+) is the same as in eq. (3.1.1) according to Mirzakhani or Erlandsson-

The constant ¢

Map(.) — @

o = . Hence, the part we are
g"r

Souto, this constant can be devided into two parts: ¢
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exactly interested in is ¢(+). If v is a simple weighted multicurve then Mirzakhani gave an
expression of ¢(7p) in terms of some integrals over moduli space [Mirl], it is this expression
which is used in [Del+]. For general curves Rafi-Souto [ES3, Chapter 11] expressed it in
terms of the Thurston measure. Since the integrals over moduli space can be computed,
it is natural to wonder if ¢(-) can be expressed for general curves in the same way as for

simple curves and if results in the line of [Del+] exist for non-simple curves.

Question 4.21. Can c(y) be expressed for general multicurves in the same terms as for

simple curves? Can we deduce asymptotic results for the curves? [ |
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Résumé : Soit Z une surface de type fini et
de caractéristique d’Euler strictement néga-
tive. Un courant géodésique sur Z est une me-
sure de Radon stable par 7 (Z) sur les géo-
désiques non-orientées et bi-infinies du revé-
tement universel de Z. Cette notion a été in-
troduite par F. Bonhaon en 1986 et a depuis
eu de nombreuses applications a I'étude de la
géométrie des surfaces. On s’intéresse ici a
deux applications de cette notion : I'étude de
la compactification de I'espace de Teichmiller
et les problémes de comptage de courbes.

Le premier chapitre de ce manuscrit est
dédié aux définitions et propriétés fondamen-
tales nécessaires. Le chapitre 2 traite de la
compactification de Thurston de I'espace de

Teichmuller, en particulier, on prouve que la
méthode de Bonahon par les courants géo-
désiques peut étre adaptée aux surfaces non-
compactes d’aire finie. Ce chapitre démontre
aussi des résultats sur les suites de géodé-
siques aléatoires. Les deux chapitres suivant
sont dédiés a des problemes de comptage de
géodésiques. Dans le chapitre 3 on montre
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a bords a l'aide de familles convergentes de
mesures sur les courants géodésiques. Puis,
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étant le comptage des orbites pour I'action des
sous-groupes du mapping class group sur les
courbes.
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Abstract: Let Z be a finite surface with nega-
tive Euler characteristic. A geodesic current on
Z is a Radon measure stable through (%)
on the set of bi-infinite unoriented geodesics
of the universal cover of Z. This notion has
been introduced by F. Bonahon in 1986 and
has since proven to be a fertile concept in the
study of geometry of surfaces. In this thesis
we are interested in two main applications of
geodesic currents: the compactification of Te-
ichmuller space and counting problems in sur-
faces.

The first chapter is dedicated to the nec-
essary definitions and properties. Chapter 2
deals with Thurston compactification of Te-

ichmuller space. Especially, we will prove
that the method developed by Bonahon using
geodesic currents can be extended for non-
compact surfaces of finite area. This chapter
also contains some results about sequences
of random geodesics. The last two chapters
focus on counting problems. In chapter 3 we
prove that arcs in surfaces with boundary can
be counted thanks to families of measures on
geodesic currents. Hence, chapter 4 is dedi-
cated to the different perspectives associated
to this muniscipt. The main one being to count
elements in the orbits for the action of sub-
groups of mapping class groups on curves.
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