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Abstract

Brain lesion segmentation plays a crucial role in clinical neuroimaging, aiding in
diagnosis, treatment planning, disease monitoring, and research. Accurate
identification of lesion location and extent empowers clinicians to make
informed decisions about patient care and provides researchers insights into
the mechanisms of these conditions. Magnetic resonance imaging (MRI) is the
primary modality for diagnosing and assessing brain lesions. A combination of
MRI sequences, known as multiparametric MRI (mpMRI), is often employed
to provide a comprehensive assessment of the lesion tissue under study. This
technique capitalizes on the unique tissue characteristics highlighted by each
sequence, offering a richer representation than any single sequence alone could
provide.

However, manual segmentation of brain lesions in mpMRI data is time-
consuming, costly, and subjective, with potential variability between observers.
Automated methods ensure consistent, reproducible results and eliminate both
inter- and intra-observer variability, which is essential for longitudinal studies and
multi-center trials. While deep learning models, particularly convolutional neural
networks (CNNs), have revolutionized image segmentation, several challenges
remain in their application to brain lesion segmentation in clinical practice.
These include data scarcity, variability, class imbalance, high computational
requirements, and the “black box” nature of deep learning models.

This thesis aims to develop efficient data-driven models for automated
segmentation and detection of brain lesions, specifically brain tumors, Multiple
Sclerosis (MS) lesions, and stroke lesions, using mpMRI. By fusing advanced
deep learning with low-rank factorization techniques, we introduce a diagnostic
tool that segments and detects brain lesions accurately and interpretably without
added computational complexity.

In the first part of this thesis, we focus on the application of CNNs for the
automated segmentation of new MS lesions in 3D FLAIR images. Our goal is to
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ii ABSTRACT

identify new lesions between two longitudinal MRI scans of an MS patient, which
is a key indicator of disease progression. We introduce Pre-U-Net, a 3D encoder-
decoder architecture consisting of pre-activation residual blocks. To mitigate
limited training data and class imbalance, we employ data augmentation and
deep supervision for optimal model training. Comparative analysis reveals that
Pre-U-Net outperforms both U-Net and Res-U-Net on the MSSEG-2 dataset.

The centerpiece of this thesis presents a novel method that integrates low-rank
factorization with deep learning for enhanced medical image segmentation.
Recognizing the limitations of CNNs in exploiting global context and the
quadratic complexity of attention in transformers, we introduce a family
of models, called Factorizer, which leverage the power of low-rank matrix
factorization to construct a scalable and interpretable segmentation model.
More specifically, we formulate nonnegative matrix factorization (NMF) as a
differentiable layer and incorporate it into a U-shaped architecture. Moreover,
we use the shifted window technique in combination with NMF to effectively
aggregate local information. Our results indicate that Factorizers outshine
CNNs and transformers in terms of accuracy, complexity, and interpretability,
setting new benchmarks on the BraTS and ISLES’22 datasets. Notably, our
experiments show that NMF components are highly meaningful, with each
component highlighting specific regions, offering Factorizers a unique edge in
interpretability over CNNs and Transformers. Moreover, our ablation studies
reveal a distinctive feature of Factorizers that allows a significant speed-up in
inference for a trained Factorizer model, without requiring additional steps or
significant accuracy trade-offs.

In the final part, we propose a method utilizing low-rank tensor networks to
enhance CNNs for brain tumor segmentation. Given that many effective 3D
CNNs are prone to overfitting due to their complexity and limited training data,
we introduce a 3D U-Net-like architecture integrated with residual blocks. By
imposing low-rank constraints on convolutional layer weights, we aim to avoid
overfitting. This approach allows the creation of networks with considerably
fewer parameters. We assess our method performance in the BraTS 2020
challenge data.



Beknopte samenvatting

Hersenletsel segmentatie speelt een cruciale rol in klinische neurobeeldvorming,
als ondersteuning bij diagnose, behandeling, ziektemonitoring en onderzoek.
Nauwkeurige identificatie van de locatie en omvang van het letsel stelt clinici
in staat geïnformeerde beslissingen te nemen over patiëntenzorg en biedt
onderzoekers inzicht in de mechanismen van deze aandoeningen. Magnetische
resonantie beeldvorming (MRI) is de primaire modaliteit voor het diagnosticeren
en beoordelen van hersenletsels. Een combinatie van MRI-sequenties, bekend als
multiparametrische MRI (mpMRI), wordt vaak gebruikt voor een uitgebreide
beoordeling van het weefsel van het letsel. Deze techniek maakt gebruik van de
unieke weefseleigenschappen die door elke sequentie worden benadrukt, wat een
rijker beeld biedt dan een enkele sequentie alleen zou kunnen bieden.

Echter, handmatige segmentatie van hersenletsels in mpMRI-gegevens is
tijdrovend, kostbaar en subjectief, met mogelijke variabiliteit tussen waarnemers.
Geautomatiseerde methoden zorgen voor consistente, reproduceerbare resultaten
en elimineren zowel inter- als intra-waarnemer variabiliteit, wat essentieel
is voor longitudinale studies en multicenterproeven. Hoewel modellen
voor diep leren, met name convolutionele neurale netwerken (CNN’s),
beeldsegmentatie hebben gerevolutioneerd, blijven er uitdagingen bestaan bij
hun toepassing op hersenletsel segmentatie in de klinische praktijk. Deze
omvatten gegevensschaarste, variabiliteit, klasse-onbalans, hoge computationele
vereisten en zwarte dooskarakteristieken van modellen voor diep leren.

Dit proefschrift beoogt efficiënte datagedreven modellen te ontwikkelen voor
geautomatiseerde segmentatie en detectie van hersenletsels, met name hersentu-
moren, Multiple Sclerose (MS) letsles en beroerteletsels, met behulp van mpMRI.
Door geavanceerd diep leren te combineren met lage-rang factorisatietechnieken
introduceren we een diagnostisch hulpmiddel dat hersenletsels nauwkeurig en
interpreteerbaar segmenteert en detecteert zonder toegevoegde computationele
complexiteit.

iii
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In het eerste deel van dit proefschrift richten we ons op de toepassing
van CNN’s voor de geautomatiseerde segmentatie van nieuwe MS-letsels
in 3D FLAIR-beelden. Ons doel is het identificeren van nieuwe letsels
tussen twee longitudinale MRI-scans van een MS-patiënt, wat een belangrijke
indicator is voor ziekteprogressie. We introduceren Pre-U-Net, een 3D encoder-
decoder architectuur bestaande uit pre-activatie restblokken. Om beperkte
trainingsgegevens en klasse-onbalans te verminderen, gebruiken we data-
augmentatie en diep toezicht voor optimale modeltraining. Vergelijkende analyse
toont aan dat Pre-U-Net zowel U-Net als Res-U-Net overtreft op de MSSEG-2
dataset.

Het centrale deel van dit proefschrift presenteert een nieuwe methode die
lage-rang factorisatie integreert met diep leren voor verbeterde medische
beeldsegmentatie. Gezien de beperkingen van CNN’s in het benutten van
globale context en de kwadratische complexiteit van aandacht in transformatoren,
introduceren we een familie van modellen, genaamd Factorizer, die de kracht van
lage-rang matrix factorisatie benutten om een schaalbaar en interpreteerbaar
segmentatiemodel te construeren. Meer specifiek formuleren we niet-negatieve
matrix factorisatie (NMF) als een differentieerbare laag en incorporeren
deze in een U-vormige architectuur. Bovendien gebruiken we de verschoven
venstertechniek in combinatie met NMF om effectief lokale informatie te
aggregeren. Onze resultaten geven aan dat Factorizers beter presteren dan
CNN’s en transformatoren qua nauwkeurigheid, complexiteit en interpretatie, en
zetten nieuwe benchmarks voor de BraTS en ISLES’22 datasets. Opmerkelijk is
dat onze experimenten aantonen dat NMF-componenten zeer betekenisvol zijn,
waarbij elk component specifieke regio’s belicht, waardoor Factorizers een uniek
voordeel hebben in interpretatie ten opzichte van CNN’s en Transformatoren.
Bovendien onthullen onze ablatiestudies een onderscheidend kenmerk van
Factorizers dat een aanzienlijke versnelling in inferentie voor een getraind
Factorizer model mogelijk maakt, zonder dat extra stappen of significante
nauwkeurigheidscompromissen nodig zijn.

In het laatste deel stellen we een methode voor die gebruik maakt van lage-
rang tensor netwerken om CNN’s te verbeteren voor hersentumor segmentatie.
Gezien het feit dat veel effectieve 3D CNN’s gevoelig zijn voor overfitting
vanwege hun complexiteit en beperkte trainingsgegevens, introduceren we een
3D U-Net-achtige architectuur geïntegreerd met restblokken. Door lage-rang
beperkingen op te leggen aan de gewichten van de convolutionele laag, willen
we overfitting vermijden. Deze aanpak maakt de creatie van netwerken met
aanzienlijk minder parameters mogelijk. We beoordelen de prestaties van onze
methode op de BraTS 2020 challenge data.



Résumé

La segmentation des lésions cérébrales joue un rôle crucial en neurologie et en
neurochirurgiemini, aidant au diagnostic, à la planification du traitement, à
la surveillance des maladies et à la recherche. Une identification précise de la
localisation et de l’étendue des lésions permet aux cliniciens de prendre des
décisions éclairées concernant les soins aux patients et offre aux chercheurs des
perspectives sur les mécanismes de ces conditions. L’imagerie par résonance
magnétique (IRM) est la modalité principale pour le diagnostic et l’évaluation
lésions cérébrales. Une combinaison de séquences IRM, connue sous le nom
d’IRM multiparamétrique (mpMRI), est souvent utilisée pour fournir une
évaluation complète du tissu lésionnel étudié. Cette technique tire parti des
caractéristiques uniques des tissus mises en évidence par chaque séquence, offrant
une représentation plus riche que ce qu’une seule séquence pourrait fournir.

Cependant, la segmentation manuelle des lésions cérébrales dans les données
mpMRI est chronophage, coûteuse et subjective, avec une variabilité potentielle
entre les observateurs. Les méthodes automatisées garantissent des résultats
cohérents et reproductibles et éliminent à la fois la variabilité inter- et intra-
observateur, ce qui est essentiel pour les études longitudinales et les essais
multicentriques. Bien que les modèles d’apprentissage profond, en particulier les
réseaux neuronaux convolutionnels (CNN), aient révolutionné la segmentation
d’images, plusieurs défis subsistent dans leur application à la segmentation des
lésions cérébrales en pratique clinique. Cela inclut la rareté des données, la
variabilité, le déséquilibre des classes, les exigences computationnelles élevées et
la nature "boîte noire" des modèles d’apprentissage profond.

Cette thèse vise à développer des modèles efficaces basés sur les données
pour la segmentation et la détection automatisées des lésions cérébrales, en
particulier des tumeurs cérébrales, des lésions de Sclérose en Plaques (SEP) et des
lésions d’accident vasculaire cérébral (AVC), en utilisant mpMRI. En fusionnant
l’apprentissage profond avancé avec des techniques de factorisation de rang
faible, nous introduisons un outil diagnostique qui segmente et détecte les lésions
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cérébrales de manière précise et interprétable sans complexité computationnelle
ajoutée.

Dans la première partie de cette thèse, nous nous concentrons sur l’application
des CNN pour la segmentation automatisée des nouvelles lésions de SEP dans les
images 3D FLAIR. Notre objectif est d’identifier de nouvelles lésions entre deux
scans IRM longitudinaux d’un patient atteint de SEP, ce qui est un indicateur clé
de la progression de la maladie. Nous introduisons Pre-U-Net, une architecture
encodeur-décodeur 3D composée de blocs résiduels pré-activation. Pour pallier le
manque de données d’entraînement et le déséquilibre des classes, nous utilisons
l’augmentation des données et la supervision profonde pour une formation
optimale du modèle. Une analyse comparative révèle que Pre-U-Net surpasse à
la fois U-Net et Res-U-Net sur le jeu de données MSSEG-2.

Le cœur de cette thèse présente une méthode novatrice qui intègre la factorisation
de rang faible à l’apprentissage profond pour améliorer la segmentation des
images médicales. Reconnaissant les limites des CNN à exploiter le contexte
global et la complexité quadratique de l’attention dans les transformateurs,
nous introduisons une famille de modèles, appelée "Factorizer", qui exploitent la
puissance de la factorisation matricielle de rang faible pour construire un modèle
de segmentation évolutif et interprétable. Plus précisément, nous formulons la
factorisation matricielle non négative (NMF) comme une couche différentiable
et l’intégrons dans une architecture en forme de U. De plus, nous utilisons
la technique de fenêtre décalée en combinaison avec la NMF pour agréger
efficacement les informations locales. Nos résultats indiquent que les Factorizers
surpassent les CNN et les transformateurs en termes de précision, de complexité
et d’interprétabilité, établissant de nouvelles références sur les jeux de données
BraTS et ISLES’22. Notamment, nos expériences montrent que les composants
NMF sont hautement significatifs, chaque composant mettant en évidence
des régions spécifiques, offrant aux Factorizers un avantage unique en matière
d’interprétabilité par rapport aux CNN et aux Transformateurs. De plus, nos
études d’ablation révèlent une caractéristique distinctive des Factorizers qui
permet une accélération significative de l’inférence pour un modèle Factorizer
formé, sans nécessiter d’étapes supplémentaires ou de compromis significatifs
en matière de précision.

Dans la dernière partie, nous proposons une méthode utilisant des réseaux
tensoriels de rang faible pour améliorer les CNN pour la segmentation des
tumeurs cérébrales. Étant donné que de nombreux CNN 3D efficaces sont
sujets au surajustement en raison de leur complexité et du manque de données
d’entraînement, nous introduisons une architecture de type U-Net 3D intégrée
avec des blocs résiduels. En imposant des contraintes de rang faible sur les poids
des couches convolutionnelles, nous visons à éviter le surajustement. Cette
approche permet de créer des réseaux avec nettement moins de paramètres.
Nous évaluons la performance de notre méthode sur les données du défi BraTS.
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Chapter 1

Introduction

1.1 Problem Statement and Scope

Brain lesions refer to abnormal changes or damages in brain tissue, which
can arise from various causes such as injuries, infections, tumors, strokes, or
neurological disorders like multiple sclerosis (MS). The prevalence of brain
lesions is alarming. According to the National Brain Tumor Society, nearly
95,000 new cases of brain tumors are expected to be diagnosed in the United
States in 2023, with over 20% deaths resulting from malignant brain tumors in
the same year. MS is estimated to affect nearly 2.8 million people worldwide.
MS is the most common disabling neurological disorder among young adults in
Europe and North America, with the highest incidence rates in northern Europe
[2]. Stroke remains a major cause of death and a the first cause of disability,
with an estimated 12.2 million new cases emerging each year [4].

Magnetic resonance imaging (MRI) is widely used to diagnose and assess brain
lesions in clinical practice. A combination of various types of MRI sequences
is often used for a more comprehensive and accurate assessment of the lesion
tissue under study. This technique, known as multiparametric MRI (mpMRI),
leverages the unique tissue characteristics highlighted by each sequence, offering
a more detailed picture of the lesion than a single sequence alone could provide.
mpMRI proves especially valuable when examining intricate structures like
the brain. It provides essential information about the presence, location, size,
and characteristics of various brain lesions. For instance, in the context of
brain tumors, T2-weighted images can highlight areas of edema, crucial for
tumor grading, while post-gadolinium T1-weighted images can expose enhancing
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2 INTRODUCTION

tumors, often indicating higher grades.

The process of identifying and delineating areas of brain lesions is called
brain lesion segmentation, which is a pivotal task in clinical neuroimaging,
with applications spanning diagnosis, treatment planning, disease monitoring,
and clinical research. By accurately identifying the location and
extent of the lesions, brain lesion segmentation particularly allows
clinicians to make informed decisions about patient care and helps
researchers better understand the underlying mechanisms of these
conditions. However, manual segmentation of brain lesions is tedious,
time-consuming, and costly, especially because experts must deal with 3D
images across possibly multiple modalities. Even with sufficient resources for
manual segmentation, certain applications, such as image-guided surgery and
radiotherapy, demand near real-time segmentation, making manual methods
impractical. As a result, there is a need for accurate computer-assisted
techniques that can automatically execute such tasks in a timely and cost-
effective manner. Moreover, manual segmentation is inherently subjective
and may vary between observers. Automated methods, on the other
hand, ensure reproducibility by providing consistent outcomes and
eliminating both inter- and intra-observer variability, essential for
longitudinal studies and multi-center trials.

Despite significant advances in medical imaging and computer-aided diagnosis,
the automated segmentation of brain lesions remains a formidable challenge.
Deep learning models, especially convolutional neural networks (CNNs) and
transformers, have shown remarkable performance in image segmentation and
have become the cornerstone in this field. However, several challenges persist
when applying deep learning models to brain lesion segmentation:

• Data Scarcity: Training deep learning models effectively requires large
amounts of data to prevent overfitting. Unlike natural images, acquiring
labeled brain lesion images is difficult due to the need for expert annotation,
the rarity of certain lesions, the high costs of data acquisition, and patient
privacy concerns.

• Variability: Medical images can vary significantly due to differences
in acquisition protocols, scanners, inherent patient-to-patient variations,
annotation inconsistencies, and the presence of artifacts. In particular,
brain lesions can vary dramatically in shape, structure, and location
across patients and even within the same patient over time. This makes
it challenging for a model to generalize across different scenarios.

• Class Imbalance: In many brain lesion segmentation tasks, the
region of interest (i.e., lesion) may only occupy a minor portion of the
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image, leading to class imbalance. Standard training techniques may
undesirably prioritize the majority class (i.e., background), leading to
poor segmentation of the region of interest.

• Computational Requirements: Deep learning models, especially
those processing 3D volumetric data, demand substantial computational
resources, which may not be readily available in all clinical setting.

• Interpretability: Deep learning models are often criticized for being
“black boxes.” In medical contexts, understanding why a model made a
particular decision can be important for clinician trust and safety.

In the context of machine learning, low-rank models, including nonnegative
matrix factorization (NMF) and tensor decomposition, initially proved highly
beneficial for data compression and mining. More recently, these low-rank
techniques have been adeptly utilized to compress and accelerate deep neural
networks for both vision [5], [6] and language [7], [8] tasks. In this thesis,
beyond the development of CNN- and transformer-based models, we introduce
innovative, seamless integrations of low-rank factorization techniques into deep
learning. This integration aims to address the aforementioned challenges, thereby
enhancing generalization, efficiency, and interpretability in the segmentation
of brain lesions. To the best of our knowledge, the research presented
in this thesis is among the pioneering efforts to combine low-rank
techniques with deep learning in the domain of medical imaging.

1.2 Research Objectives

1.2.1 General Objectives

The general goal of this thesis is to design computer-aided diagnostic tools for
the automated segmentation and detection of various brain lesions using mpMRI
data. More specifically, this work aims to develop deep learning models
capable of accurately, efficiently, and interpretably segmenting and
detecting brain tumors, MS lesions, and stroke lesions in mpMRI
images. To address the limitations of existing models, discussed in the
previous section, we integrate advanced deep learning with low-rank factorization
techniques. The core contributions of this thesis include the development of
novel deep learning methods for medical image segmentation. The objectives of
this thesis bifurcate into methodological objectives, which make a substantial
contribution to the field of deep learning, and medical application objectives,
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which potentially lead to improved diagnostic procedures for patients with brain
lesions.

1.2.2 Specific Objectives

Our general objective is translated into specific objectives as follows:

1. Objective 1: Improve the generalization capability of deep
learning models for brain lesion segmentation

In the pursuit of enhancing the efficacy of deep learning models for brain
lesion segmentation, our first objective is to improve their generalization
capability. Several challenges contribute to the difficulty in achieving this
goal. Primarily, data scarcity often limits the robustness of the model,
making it susceptible to overfitting. Additionally, class imbalance can
skew the model’s predictions, favoring the majority class and neglecting
the minority. Furthermore, the variability observed both between different
patients (inter-patient) and within the same patient over time or under
different conditions (intra-patient) complicates the training process. The
inconsistency in expert opinions, both among experts (inter-expert)
and from the same expert under varying circumstances (intra-expert),
adds another layer of complexity. To mitigate the effects of overfitting
caused by these challenges, this research proposes the use of data
augmentation techniques to artificially increase the dataset’s size and
diversity. Concurrently, the implementation of low-rank regularization
using tensor decomposition formats serves to constrain the model space,
ensuring it captures only the most salient features, thereby enhancing its
generalization capabilities.

2. Objective 2: Enhance scalability and efficiency of deep learning
models in context modeling for brain lesion segmentation

Existing deep neural networks for 3D medical images are characterized by
their vast size, often having millions of learnable parameters. As a result,
they can be too complex, requiring a significant amount of floating-point
operations (FLOPs) and computational resources. Specifically, CNNs
often exhibit slow inference times, while transformers do not scale linearly,
both demanding substantial memory. To mitigate these challenges, two
primary approaches are proposed in this thesis. The first involves the
development of lightweight or accelerated networks by reparametrizing
their weights using low-rank tensor networks, which effectively reduces the
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number of parameters. The second solution seeks to integrate low-rank
matrix factorization techniques into end-to-end deep learning models,
specifically tailored for context modeling in brain lesion segmentation.

3. Objective 3: Enhance interpretability of deep learning models
for brain lesion segmentation

The primary motivation for this objective stems from the inherent “black
box” nature of deep neural networks. Often, it remains ambiguous as to
why these models arrive at a particular decision, which can be a significant
concern, especially in critical applications like medical imaging. To address
this, we propose a solution that formulates NMF as a differentiable layer
that can be seamlessly integrated into the deep learning framework. This
approach results in highly interpretable NMF components, with each
component discriminating a distinct region of interest, thereby providing
clearer insights into the model’s decision-making process.

4. Objective 4: Achieve accurate segmentation of new MS lesions
in longitudinal images

New MS lesions present significant variability in terms of shape, size,
and location. Additionally, there is a notable class imbalance due to the
rarity of these new MS lesions, compounded by the limited availability
of extensive longitudinal datasets. These factors collectively contribute
to issues such as low segmentation accuracy, undersegmentation, and the
potential for model overfitting. To address these challenges, this research
proposes a multifaceted solution. Firstly, effective data augmentation
techniques are employed to enhance the robustness of the model. Secondly,
deep supervision is incorporated to guide the learning process more
effectively. Lastly, rather than training a cross-sectional segmentation
model and then subtracting the predictions at two time points, the model
is directly trained on longitudinal segmentation, ensuring a more tailored
and accurate representation of new lesions.

1.3 Thesis Structure

Figure 1.1 provides a schematic overview of the structural organization of the
chapters in this thesis. Chapters 2–5 provide an extensive review of the concepts
and methods essential for understanding our methodological contributions.
Chapters 6–8 present our scientific contributions to the development and
implementation of brain lesion segmentation models.
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Model Development

Background

Chapter 1
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Conclusion

Figure 1.1 Overview of the chapters in this PhD manuscript (MS: multiple sclerosis,
CNN: convolutional neural network)

Chapter 2 provides an overview of magnetic resonance imaging (MRI)
fundamentals, accompanied by an introductory explanation of MRI sequences
relevant to for the diagnosis of brain lesions, specifically: T1, T2, fluid-attenuated
inversion recovery (FLAIR), and diffusion-weighted imaging (DWI). This chapter
also touches upon foundational concepts related to the biology of brain lesions,
with an emphasis on glioma, multiple sclerosis (MS), and stroke. We further
discuss the imaging techniques most relevant for monitoring and diagnosing
each of these brain diseases.

Chapter 3 delves into the foundational concepts of machine learning, with a
primary emphasis on supervised learning and model fitting methods. These
form the basis of our approach to brain lesion segmentation using deep learning.
We also explore first-order optimization techniques, notably stochastic gradient
descent and Adam, which are essential for training deep models on a large scale.
The chapter concludes by examining linear models and kernel regression,shedding
light on their evolution into more complex, non-linear models, specifically deep
neural networks.

Chapter 4 expands on the previous chapter, presenting the foundations of deep
learning vital for medical image segmentation. We first explore convolutional
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neural networks (CNNs) and their key components. We then delve into models
that incorporate transformers and attention mechanisms, which have recently
emerged as effective methods in addressing computer vision challenges. The
chapter concludes with an overview of convolutional, attention-based, and hybrid
models with U-shaped architectures tailored for medical image segmentation.

Chapter 5 provides an overview of low-rank factorization techniques, which
are pivotal in the brain lesion segmentation models presented in Chapters
7 and 8. Initially, we delve into non-negative matrix factorization (NMF),
emphasizing the popular multiplicative update and hierarchical alternating least
squares (HALS) algorithms. This factorization can act as an efficient method
for global context modeling, presenting a viable alternative to the attention
mechanism. This foundation supports the methodology introduced in Chapter
7. Furthermore, we touch upon tensor networks, highlighting their importance
both as computational tools and in forming low-rank representations. Our
discussion is augmented by an examination of common tensor operators and
tensor decomposition formats. The chapter concludes with an exploration of
the different applications of tensor networks in machine learning, such as model
compression and acceleration, which form the basis of the approach presented
in Chapter 8.

Chapter 6 presents the application CNNs in automated segmentation of new
MS lesions in 3D FLAIR images. The main objective is to identify new lesions
between two consecutive MRI scans of an MS patient, serving as a crucial
marker monitoring and quantifying disease progression. In this chapter, we
propose Pre-U-Net, which ia a 3D encoder-decoder architecture enhanced with
pre-activation residual blocks, for the segmentation and detection of new MS
lesions. Given the constraints of a limited training set and the challenge of
class imbalance, we employ extensive data augmentation and deep supervision
to optimize our model training. We will see that while retaining the same
U-shaped architecture but incorporating distinct blocks, Pre-U-Net outperforms
both U-Net and Res-U-Net on the MSSEG-2 dataset.

Chapter 7 introduces the first method that integrates low-rank factorization
with deep learning for medical image segmentation. The inherent locality of
convolution causes CNNs to inadequately exploit the global context, which
is crucial for accurately recognizing structures like brain lesions. Recently,
transformers have demonstrated impressive performance in vision tasks,
including semantic segmentation, primarily due to their ability to model
long-range dependencies. However, the quadratic complexity of attention in
transformers necessitates the use of self-attention layers only after reducing
the image resolution. This compromises their capacity to capture global
contexts present at higher resolutions. To address this, this chapter presents
a family of models, termed Factorizer, that harness the potential of low-
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rank matrix factorization to construct an end-to-end segmentation model.
Specifically, we introduce a linearly scalable approach to context modeling
by formulating nonnegative matrix factorization (NMF) as a differentiable
layer within a U-shaped architecture. We also employ the shifted window
technique in tandem with NMF to aggregate local information effectively.
We will see that Factorizers outperform CNNs and transformers in terms
of accuracy, scalability, and interpretability, achieving state-of-the-art results
on the BraTS dataset for brain tumor segmentation and the ISLES’22 dataset
for stroke lesion segmentation. Highly meaningful NMF components give an
additional interpretability advantage to Factorizers over CNNs and transformers.
Furthermore, our ablation studies highlight a unique feature of Factorizers that
allows for a substantial acceleration in inference once trained, without requiring
additional steps or significant accuracy compromises.

Chapter 8 presents another method that leverages low-rank tensor networks to
improve CNNs for brain tumor segmentation. Most effective CNNs for 3D image
segmentation have millions of learnable parameters. Such complex models are
susceptible to overfitting, particularly when there is a limited amount of training
data–a common scenario in medical imaging. In this work, we introduce a
3D U-Net-inspired architecture integrated with residual blocks. By imposing
low-rank constraints on the weights of the convolutional layers, we aim to
mitigate overfitting. Within the same architecture, this approach allows for
the design of networks with significantly fewer parameters. We evaluate the
performance of our proposed method on the BraTS 2020 challenge data.

Chapter 9 summarizes the contributions and findings of this thesis and offers
insights into potential future developments.
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Chapter 2

A Primer on MRI and Its
Applications to Brain Lesion
Diagnosis

This chapter first provides an overview of the basics of magnetic resonance
imaging (MRI), along with a preliminary explanation of MRI sequences that
are relevant for diagnosing brain lesions explored in this thesis: T1, T2, fluid-
attenuated inversion recovery (FLAIR), and diffusion-weighted imaging (DWI).
We then proceed with some elementary concepts related to the biology of brain
lesions, such as the origins and symptoms. We primarily focus on glioma,
multiple sclerosis (MS), and stroke, discussing which imaging techniques can
play a significant role in monitoring and diagnosing each of these brain diseases.

11
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2.1 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a powerful diagnostic tool that utilizes
the principles of nuclear magnetic resonance, which involves the interaction
of atomic nuclei with an external magnetic field, to produce detailed images
of the internal structure of the body. The underlying principles of MRI were
first proposed by Bloch [9] and Purcell et al. [10] in the 1940s. Since then,
MRI has become an integral part of modern medical diagnostics, providing
valuable information about various diseases and conditions. MRI has a number
of advantages over other imaging modalities, including the ability to produce
images in any plane, excellent soft tissue contrast, and the lack of ionizing
radiation. MRI can be used to image a wide variety of tissues and organs,
including the brain, spine, liver, and heart. In this section, we briefly discuss
the basic principles and mechanism of MRI, along with common sequences and
their diagnostic applications.

2.1.1 MRI Principles
Nuclear spin. The concept of nuclear spin, which is intrinsic to all particles, is
essential to understanding MRI. Atomic nuclei with an odd number of protons
and/or neutrons, such as hydrogen (1H) and carbon (13C), have a quantum
mechanical property known as spin, which can be visualized as if the nucleus is
spinning about an axis. The overall spin of the nucleus is determined by the
spin quantum number, often denoted as I, which may take positive half-integer
values (e.g., I = 0, 1/2, 1, 3/2, 2, . . .) [11]. In MRI, we are typically imaging
hydrogen nuclei 1H (also referred to as protons) with a spin of 1

2 , which are
abundant in water and lipids in the human body [12].

Magnetic moment. A spinning nucleus creates a magnetic field, and therefore,
acts as a tiny magnet, results in a magnetic moment(µ), which is a vector
quantity that describes the magnetic properties of the nucleus and is proportional
to its nuclear spin [12]

µ = γI, (2.1)

where γ is the gyromagnetic ratio, a constant specific to the type of nucleus.
For hydrogen, γ ≈ 2.675× 108 (Rads−1T−1). MRI involves in four main steps
briefly explained in the following.

1. Polarization. In the absence of an external magnetic field, the nuclear spins
are randomly oriented. However, when placed in an external magnetic field
(B0), at equilibrium the magnetic moments of the nuclei align either parallel
(low energy state) or anti-parallel (high energy state) to the field (see Figure 2.1).
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The energy of a magnetic moment in a state is given by [12]

E = −µB0 = −γIB0, (2.2)

and hence, the energy difference between the two states is ∆E = 2µB0. By the
Planck’s relation, ∆E = ℏω, where ℏ is the reduced Planck constant, and ω is
the Larmor frequency (or precessional frequency), we can deduce the Larmor
equation [12]

ω = γB0, (2.3)

which means the spins precess about the axis of B0 (commonly taken as the
z-axis) at a frequency proportional to the magnitude of the external magnetic
field. The ratio between the number of nuclei in the two states (N+ and N−) is
determined by the Boltzmann distribution [13]

N+

N−
= exp

(∆E

kT

)
= exp

(γℏB0

kT

)
, (2.4)

where k ≈ 1.38× 10−23 is the Boltzmann constant and T is the temperature in
Kelvin. For an external magnetic field of 3 Tesla, at a body temperature of 37
◦C (or 310.15 Kelvin), the ratio will be

N+

N−
= 1.0000098826155204. (2.5)

This means spins in the low-energy state, N+, only slightly outnumbers spins in
the high-energy state. If we increase the magnetic field strength, we increase the
energy difference and hence also the population difference between the states.
Note that at equilibrium after the nuclei are placed in the magnetic field, the
number of nuclei in the low-energy state is greater than the number in the
high-energy state, resulting in the longitudinal (z-axis) magnetization M0.

An MR signal results from the difference between the energy absorbed by
the spins which make a transition from the lower-energy state to the higher-
energy state, and the energy emitted by the spins which simultaneously make a
transition from the higher energy state to the lower energy state. Therefore,
the signal is proportional to the population difference between the states. MRI
is rather sensitive since it is capable of detecting these very small population
differences.

2. Excitation. Once protons are polarized by an external magnetic field B0,
during excitation an RF pulse is applied perpendicular to the B0, which boosts
some of the protons from the lower-energy state to the higher-energy state (see
Figure 2.1). This causes the net magnetization vector to tip away from the
longitudinal position (along B0, i.e. z-axis) into the transverse (perpendicular
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Figure 2.1 When placed in a magnetic field B0, protons will fall into one of two
energy states: in the lower energy state, protons are lined parallel to B0, whereas in
the higher energy state they are anti-parallel to it. A radio frequency (RF) pulse can
boost some of the protons, flipping the spins from the lower energy state to the higher
energy state.

x
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(a) RF on (excitation)

x-y
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(b) RF off (relaxation)

Figure 2.2 Net magnetization during excitation and relaxation. (a) After the RF
pulse, the longitudinal magnetization vector is flipped into the x-y plane. (b) Once
the RF is turned off, the transverse magnetization vector begins to decay while the
longitudinal component begins to recover.

to B0, i.e. x-y) plane [12], as illustrated in Figure 2.2a. This only occurs when
the frequency of the RF pulse matches the Larmor frequency, a condition known
as resonance.

Two key parameters define an RF pulse: the repetition time (TR), which is the
time between two consecutive RF pulses, and the echo time (TE), which is the
time from the RF pulse to the peak of the echo signal induced in the receiver
coil.
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3. Relaxation. After excitation, the RF pulse is turned off, making the
system return to equilibrium, a process known as relaxation. Precisely, the net
magnetization vector returns from the transverse plane to the longitudinal axis
[12] (See Figure 2.2b). This behavior is described by the Bloch equations [9],
[14]:

dMz(t)
dt

= 1
T1

(M0 −Mz(t)),

dMxy(t)
dt

= − 1
T2

Mxy(t), (2.6)

where M0 is the equilibrium magnetization, Mz is the longitudinal magnetization,
and Mxy is the transverse magnetization. T1 and T2 are the longitudinal and
transverse relaxation times, respectively. The relaxation times are properties of
the tissue being imaged and influence the contrast in MRI images. Assuming
Mz(0) = 0 and Mxy(0) = M0 at the start of relaxation, the solution to (2.6) is:

Mz(t) = M0
(
1− exp

(
− t

T1

))
,

Mxy(t) = M0 exp
(
− t

T2

)
. (2.7)

Therefore, T1 is the time it takes for the longitudinal magnetization to recover
to about 63% of its initial value, and T2 is the time it takes for the transverse
magnetization to decay to about 37% of its initial value. In fact, both
longitudinal and transverse relaxation processes occur simultaneously with
the only restriction being that T2 is less than or equal to T1. In Figure 2.3,
magnetization components over the relaxation phase are plotted against time.

In an ideal situation, if we had a perfectly uniform magnetic field, the received
transverse signal would be Mxy(t) = M0 exp

(
− t

T2

)
. However, What really

happens in practice is that because of spin dephasing (namely, spin-spin
interactions and external magnetic field inhomogeneities), an RF receiver coil
receives a complex-valued function of time, called free induction decay (FID)
signal [12]:

s(t) = M0 exp
(
− t

T ∗
2

)
exp(−jωt) (2.8)

where T ∗
2 is the apparent transverse relaxation time that characterizes the decay

of the FID signal, and j is the imaginary unit. The T ∗
2 relaxation time is shorter

than the pure T2 relaxation time, as it takes into account additional decay
caused by inhomogeneities in the magnetic field [12]; that is

1
T ∗

2
= 1

T2
+ γ∆B, (2.9)
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(a) Longitudinal magnetization
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(b) Transverse magnetization

Figure 2.3 Net magnetization plotted against time during relaxation. (a) The plot
of recovery of longitudinal magnetization with a time constant of T1. (b) The plot of
transverse magnetization with a time constant of T2.

where ∆B represents the inhomogeneity in the magnetic field. These
inhomogeneities can arise from factors such as susceptibility variations, field
gradients, or local magnetic field distortions. If we have a perfect magnet that
does not introduce any inhomogeneity, then ∆B = 0 and hence T ∗

2 = T2. The
recent systems have less magnetic field inhomogeneity, thus making T ∗

2 effects
less strong; however, complete homogeneity is not possible.

4. Detection and reconstruction. The detection and reconstruction of the
MRI signal is a complex process beyond the scope of this thesis. Here, we
briefly sketch the big picture. As mentioned, the MRI signal is detected by
a receiver coil. This coil detects the changing magnetic field caused by the
precessing magnetization, which induces an electric current in the coil according
to Faraday’s law of electromagnetic induction

E = −dΦ

dt
(2.10)

where E is the induced voltage, Φ is the magnetic flux through the coil. This
induced voltage is commonly referred to as the MRI signal. In general, the MRI
signal from an individual RF coil can be modeled as [15]

s(t) =
∫

ρ(r)e−j2πk(t)·rdr, (2.11)

where r = (x, y, z) is the position in space, ρ(r) is the spin density (a measure
of the concentration of spins in a volume element), k(t) = (kx(t), ky(t), kz(t))
is the k-space trajectory representing spatial frequencies, and · denotes the
dot product of two vectors. To reconstruct the MRI image, the MRI signal is
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collected in k-space, a space defined by spatial frequencies rather than normal
spatial coordinates. Each signal sample fills a specific location in the spatial
frequency domain, known as k-space, to form the detected S(kx, ky, kz) in the
frequency domain. Therefore, the raw data obtained in MRI is in k-space and
must be transformed into the spatial domain to yield an image I(x, y, z). This
is accomplished through the inverse Fourier transform of the raw signal [15]

I(x, y, z) =
∫∫∫

S(kx, ky, kz)ej2π(kxx+kyy+kzz)dkxdkydkz. (2.12)

In simple terms, each point in k-space contributes to all points in the image,
and the Fourier transform makes it possible to combine these contributions into
a coherent image. In practice, the MRI signal is typically sampled on a grid
or spiral in k-space, and 2D inverse discrete Fourier transform (DFT) over the
slices is used to reconstruct the image [15].

2.1.2 MRI sequences
T1-weighted. T1-weighted images are obtained by adjusting the repetition
time (TR) and echo time (TE) parameters of the MRI sequence to emphasize
the differences in longitudinal relaxation times (T1) between tissues. Specifically,
a short TR and TE are used.

This means that the RF pulse is applied before the longitudinal magnetization
has fully recovered, creating a situation where tissues with shorter T1 times
recover more quickly and produce a stronger signal. Consequently, tissues
with shorter T1 times (e.g., fat) appear brighter (higher signal intensity) on
T1-weighted images, while those with longer T1 times (e.g., water) appear
darker (lower signal intensity). Notably, white matter in a T1 image appears
slightly brighter than gray matter. Table 2.1 provides a general guideline for
the intensities of different tissues in various MRI sequences.

T2-weighted. T2-weighted images are obtained by using a long TR and TE
to emphasize the differences in transverse relaxation times (T2) between tissues.
A long TR allows for full recovery of longitudinal magnetization, while a long
TE allows for more decay of the transverse magnetization. Therefore, tissues
with longer T2 times (e.g., water) appear brighter on T2-weighted images, while
those with shorter T2 times (e.g., fat) appear darker. Notably, gray matter in a
T2 image appears slightly brighter than white matter.

Fluid-attenuated inversion recovery. Fluid-attenuated inversion recovery
(FLAIR) [16] is a specific type of T2-weighted imaging that suppresses the signal
from fluids, such as cerebrospinal fluid (CSF). This is achieved by applying an
inversion recovery pulse to nullify the signal from fluids, followed by a delay
and then the usual T2 acquisition.



18 A PRIMER ON MRI AND ITS APPLICATIONS TO BRAIN LESION DIAGNOSIS

Table 2.1 General intensities of different tissues in various MRI sequences. Note
that the exact signal intensities can vary depending on the MRI scanner specifics, the
imaging protocol used, individual patient differences, and other factors ((Very) High:
The tissue appears (very) bright in the image. Medium: The tissue appears gray in
the image. (Very) Low: The tissue appears very dark in the image. Variable: The
signal can vary significantly depending on various factors).

Tissue T1 T2 FLAIR DWI
Water Very Low Very High Very Low Very Low
Fat High High Low Low
Cerebrospinal Fluid (CSF) Very Low Very High Very Low Very Low
White Matter Medium Low Medium Medium
Gray Matter Low Medium High Medium
Inflammation Variable High Very High High
Edema Low Very High Very High High
Necrosis Variable High Variable High
Gadolinium (contrast agent) Very High Low Low Low

FLAIR is particularly useful in brain imaging, as it allows the detection of white
matter lesions adjacent to the CSF that would otherwise be obscured due to the
high signal of the CSF on T2-weighted images [17]. In fact, fluid-filled tissues
(e.g., CSF) appear dark in a FLAIR image, and therefore, lesions that appear
bright on T2 images and are near fluid-filled areas are more easily visualized.

Diffusion-weighted. Diffusion-weighted imaging (DWI) provides an image
contrast that is sensitive the random (Brownian) motion of water molecules
and measures its within a voxel of tissue. The diffusion of water molecules is
influenced by factors such as temperature, viscosity, and structures that obstruct
the motion of water molecules, like cell membranes and macromolecules.This
sensitivity makes DWI particularly useful for detecting acute ischemic stroke
[18], abscesses, and other conditions where diffusion is restricted.

In DWI, a pair of strong magnetic field gradients are applied before and after the
180◦ refocusing pulse in a spin-echo sequence. These gradients are characterized
by their strength (G), duration (δ), and the time between them (∆). If no
diffusion is occurring, the gradients are perfectly balanced, and the signal is
refocused at the echo time. However, if diffusion is occurring, the movement of
water molecules during the time between the gradients causes a loss of signal
because the spins are no longer in phase. This signal loss is what gives DWI its
contrast and is described by the Stejskal-Tanner equation [19]

S = S0 exp (−b ·ADC), (2.13)
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where S is the measured signal intensity, S0 is the signal intensity without
the diffusion gradient, ADC is the apparent diffusion coefficient, and b is the
diffusion weighting factor, which depends on the gradient strength, the duration
of the gradient pulse (δ), and the time between the beginning of the two gradient
pulses (∆)

b = γ2G2δ2(∆− δ

3). (2.14)

Here, γ is the gyromagnetic ratio and G is the gradient strength. By adjusting
the b value, the sensitivity of the DWI sequence to diffusion can be modulated.
In practice, at least two images with different b values are acquired, often
one with b = 0 (no diffusion weighting) and another with a higher b value
(diffusion-weighted image). The ADC can then be calculated on a pixel-by-pixel
basis by rearranging the Stejskal-Tanner equation (2.13)

ADC = −1
b

ln
( S

S0

)
(2.15)

The resulting ADC map provides quantitative information about the diffusion
of water molecules in the tissue. Areas of restricted diffusion (e.g., ischemic
stroke and tumors) have lower ADC values, while areas of increased diffusion
(e.g., CSF and edema) have higher ADC values.

2.1.3 Multiparametric MRI for More Accurate Diagnosis

Multiparametric Magnetic Resonance Imaging (mpMRI) refers to the technique
that combines various types of MRI sequences, providing a more comprehensive
and accurate assessment of the specific area or tissue under study. This
approach exploits the different tissue characteristics highlighted by each sequence,
providing a more detailed picture of the lesion than a single sequence alone
would allow.

It is particularly useful for the evaluation of complex structures, such as the
brain, where it can provide critical information about the presence, location,
size, and characteristics of various lesions, particularly brain tumors, multiple
sclerosis, and ischemic stroke. In the following, we discuss which MRI sequences
are more relevant for diagnosing each of these lesions.

Brain tumors and gliomas. The diagnosis and characterization of brain tumors
and gliomas often involve several MRI sequences, among, each of which highlight
different aspects of the tumor. The most common sequences for brain tumors
are:
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1. T1-weighted provides information about the anatomy of the brain and
also reveal the general size and location of the tumor, as illustrated in
Figure 2.4a.

2. Gadolinium-enhanced T1-weighted (T1Gd) has been widely used
and become a standard technique in clinical practice for identifying
enhancing tumors as it is able to distinguish enhancing tumors from
necrotic and non-enhancing tumors more clearly than other imaging
techniques [20]. In fact, after the administration of gadolinium contrast,
enhancing tumors (which often indicates a high-grade glioma) often appear
brighter on T1 images [21], while necrotic and non-enhancing parts of the
tumor appear darker on T1Gd, as exemplified in Figure 2.4a and 2.4b.

3. T2-weighted/FLAIR are beneficial for identifying areas of edema (i.e.,
swelling surrounding the tumor and infiltrative tumor growth), which
is important for tumor grading. These regions typically appear hyper
(bright) on T2/FLAIR images [22], as exemplified in Figure 2.4c and 2.4d.
FLAIR is particularly useful when it comes to lesions near the ventricles,
making it easier to see them due to suppression of the signal from CSF.

4. DWI/ADC can help identify areas of high cellularity within tumors,
which often exhibit restricted diffusion, appearing hyperintense (bright)
in DWI and hypointense (dark) in ADC images. This particularly aids in
differentiating between high- and low-grade gliomas [23]. DWI and ADC
are not used in this thesis for brain tumor segmentation.

5. Perfusion-weighted imaging (PWI) is a technique that measures the
blood flow within the tumor, which can be helpful for grading tumor
aggressiveness and evaluating response to treatment [24]. PWI is not used
in this thesis.

Multiple Sclerosis. In the case of multiple sclerosis (MS), the most relevant
sequences include:

1. T2-weighted/FLAIR are commonly used to visualize and identify most
types of MS lesions, including white matter, gray matter, and juxtacortical
lesions, all of which appearing hyperintense, as exemplified in Figure 2.5c
and 2.5d. FLAIR is particularly sensitive to both inflammation and
demyelination, which allows it to effectively detect the overall lesion load.
However, they are unable to differentiate between active (recently formed
or actively inflamed) and inactive (older or chronic) lesions. In this thesis,
we use only FLAIR to segment and detect new white matter lesions.
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Necrosis & Non-enhancing Tumor Enhancing Tumor Edema

(a) T1 (b) T1Gd (c) T2 (d) FLAIR (e) Ground Truth

Figure 2.4 MRI sequences used in this thesis for glioma segmentation. The images
belong to a glioblastoma patient from the BraTS dataset [25]. (e) The ground truth
represents the tumor subregions segmentation map manually created by multiple
experts. The areas of necrosis and non-enhancing tumor are shown in red, enhancing
tumor in yellow, and edema in green.

(a) T1 (b) T1Gd (c) T2 (d) FLAIR (e) Ground Truth

Figure 2.5 MRI sequences for MS lesion segmentation. The images belong to a MS
patient from the MSSEG 2016 dataset [26]. (e) The ground truth represents the areas
of MS lesions (shown in red) manually created by multiple experts.

2. T1-weighted can highlight T1-hypointense lesions, known as "black
holes," which are chronic MS lesions that appear hypointense and represent
areas of severe tissue damage generally associated with disability in MS.

3. Gadolinium-enhanced T1-weighted (T1Gd) is the most useful
technique for identifying active lesions, which are new or enlarging
lesions indicative of ongoing inflammatory activity. These lesions appear
hyperintense on T1 images after the administration of gadolinium.

Ischemic Stroke. For ischemic stroke, the following sequences are typically
used:

1. DWI/ADC is the most sensitive and specific sequence for the early
detection of acute ischemic stroke since areas of restricted diffusion appear
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(a) DWI (b) ADC (c) FLAIR (d) Ground Truth

Figure 2.6 MRI sequences used in this thesis for ischemic stroke lesion segmentation.
The images belong to a ischemic stroke patient from the ISLES’22 dataset [18]. (e) The
ground truth represents the areas of stroke lesions (shown in red) manually created by
multiple experts.

hyperintense in DWI images and hypointense in ADC images, as illustrated
in Figure 2.6a and 2.6b.

2. T2-weighted/FLAIR can detect the presence of blood products, aiding
in the identification of hemorrhagic transformation, which can complicate
the treatment of ischemic stroke. Therefore, they can be useful in
distinguishing ischemic stroke from hemorrhagic stroke. However, it
is important to note that in the acute stages (referring to the early stages
of stroke diagnosis and treatment; often the first few hours or up to a few
days after a stroke occurs), it is generally less sensitive than DWI/ADC
in detecting stroke-related changes. Figure 2.6c shows the FLAIR image
of an ischemic stroke patient in the acute stages.

2.2 Brain Lesions

Brain lesions are abnormal areas of the brain resulting from an injury or disease,
including brain tumors, multiple sclerosis (MS), and ischemic strokes. These
prevalent conditions represent a significant health burden. Sections 2.2.1, 2.2.2,
and 2.2.3 delve into each of these, respectively.

2.2.1 Brain Tumors

Brain tumors are a complex and diverse group of neoplasms that originate
from various cells within the central nervous system (CNS). They are
characterized by uncontrolled growth and proliferation of abnormal cells within
the brain, leading to numerous clinical problems and complications. In the
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following, we seek to provide a general understanding of brain tumors, their
pathophysiology, prevalence, classification, specific types like gliomas and
glioblastomas, characteristics, symptoms, causes, diagnostic methods, prognosis,
and treatments.

Pathophysiology. Brain tumors are the result of genetic mutations in normal
cells, which lead to uncontrolled cell division. This genetic mutation disrupts
the normal cell cycle, making cells proliferate abnormally and form tumors.
This means that instead of dying and being replaced as healthy cells do, these
mutated cells accumulate and form a mass, known as tumor. As they grow,
brain tumors can compress, displace, and infiltrate the surrounding brain tissues,
causing a variety of symptoms and complications, depending on their location
and size. Importantly, the brain and spinal cord have a unique protective
barrier—the blood-brain barrier—which can prevent many systemic therapies
from reaching the tumor region.

Prevalence. Brain tumors are not as common as other malignancies but still
hold significant importance due to their serious outcomes. Brain tumors account
for approximately 1.6% of all new cancer cases and 2.5% of all cancer-related
deaths worldwide [27]. Malignant tumors account for nearly one-third of all
primary brain tumors, with glioblastoma being the most common primary
malignant brain tumour occurring in adults, accounting for nearly half of all
primary malignant tumours [28]. In the United States, approximately 700,000
people are living with primary brain tumors [29]. According to the National
Brain Tumor Society, around 94,390 new cases of primary brain tumors are
expected to be diagnosed in the United States in 2023, with an estimated 18,990
deaths resulting from malignant brain tumors in the same year.

Based on data from 2015 to 2019, the annual incidence rate of primary malignant
brain tumors in the United States is 7.02 per 100,000 population, with the rates
slightly being higher in males than females [1]. Glioblastoma has the highest
incidence rate (3.26 per 100,000 population) among all malignant brain tumors.
Incidence rates for specific brain tumor types vary by gender (See Figure 2.7
for detailed statistics). For example, meningioma is more common in females
while glioblastoma is more common in males.

Brain tumors can occur at any age, but certain types are more common in specific
age groups (See Figure 2.8 for detailed statistics). For example, glioblastomas
are more frequent in adults, while medulloblastomas are most often seen in
children. Notably, pediatric brain tumors are the most common malignancy
and the leading cause of cancer-related death among children and adolescents
ages (0-19 years) [1].
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Figure 2.7 Incidence rate ratios by gender (males:females) for primary brain tumors
[1]. ∗ indicates a significant difference between the groups with p-value < 0.05.

Prognosis. Prognosis varies greatly depending on the type and grade of the
tumor, the patient’s age and overall health, and the treatment’s success. For
example, patients with low-grade gliomas have a median survival of several
years, while those with glioblastoma have a median survival of 12-15 months
with optimal treatment [30]. The five-year relative survival rate for all patients
with primary brain tumors is 76% while this number for glioblastoma patients
is only 6.9% [1].

Classification. Brain tumors are classified based on several factors, including
their grade, whether they are primary or metastatic, the type of cell they
originate from, and their tissue of origin.

• Primary vs. Metastatic: Primary brain tumors originate in the brain
itself or in nearby tissues, such as brain-covering meninges or pituitary
gland. Metastatic brain tumors, on the other hand, start somewhere else
in the body (e.g., lung and breast) and spread to the brain.

• By Grade: The World Health Organization (WHO) [31] classifies brain
tumors from grade I (least malignant) to grade IV (most malignant).
Low-grade tumors (I and II) grow slowly but may become high-grade
tumors (III and IV) over time. Lower-grade tumors are less severe and
commonly associated with longer-term survival.
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Figure 2.8 Incidence rates of brain tumors by age [1].

• By Type of Cell: Tumors are also classified according to the type of
cells from which they originate. For instance, gliomas arise from glial
cells, meningiomas from the meninges, and pituitary adenomas from the
pituitary gland.

Gliomas and Glioblastoma. Gliomas are a category of brain tumors that arise
from glial cells, which provide support and protection for neurons. Gliomas
are further divided into astrocytomas, oligodendrogliomas, and ependymomas,
named after the specific type of glial cell from which they originate. Gliomas
account for approximately 30% of all brain tumors and 80% of malignant brain
tumors [28].

Glioblastoma, previously known as glioblastoma multiforme (GBM), represents
the Grade IV astrocytoma and is the most aggressive type of brain tumors.
Glioblastomas are characterized by rapid growth, extensive vascularization,
and a high degree of invasiveness. Despite modern treatments, the prognosis
for glioblastoma remains poor. Glioblastomas can either occur spontaneously,
known as primary glioblastomas, or evolve from lower-grade gliomas, known as
secondary glioblastomas.

Tumor Subregions. Brain tumors consist of several subregions with distinct
characteristics:

• Necrosis (NRC): This is an area of dead tumor cells resulting from a lack
of oxygen or insufficient blood supply. Necrosis is common in high-grade
gliomas, particularly glioblastomas.
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• Edema (ED): This is the swelling around the tumor, which is caused by
accumulation of excess fluid.

• Non-Enhancing Tumor (NET): This refers to parts of the tumor that do
not "light up" after the injection of a contrast agent during MRI, often
representing infiltrative tumor cells or lower-grade regions less aggressive
than enhancing regions.

• Enhancing Tumor (ET): This refers to the parts of the tumor that
surround NRC/NET and take up contrast during MRI, often reflecting a
blood-brain barrier disruption and aggressive, higher-grade tumor regions.

We evaluate our segmentation models based on three nested subregions: i)
enhancing tumor (ET), ii) tumor core (TC), which is the union of ED and
NCR/NET, and iii) whole tumor (WT), which entail all the tumor subregions.
Figure 2.4e shows a sample image with the annotation of tumor subregions.

Causes. The causes of brain tumors are largely unknown. While some risk
factors have been identified, most brain tumors occur sporadically, with no
clear triggering factor. Potential risk factors include exposure to ionizing
radiation, family history of brain tumors, and certain genetic disorders such as
neurofibromatosis or Li-Fraumeni syndrome.

Diagnosis. The diagnosis of brain tumors heavily relies on medical imaging
techniques, among which (mutiparametric) MRI the most sensitive for
identifying the extent and location of brain tumors, as explained in Section
2.1.3. The definitive diagnosis requires a biopsy or surgical resection of the
tumor to examine the tissue under a microscope and determine the tumor’s
histological grade and type.

2.2.2 Multiple Sclerosis Lesions
Pathophysiology. Multiple sclerosis (MS) is a chronic neurological disorder of
the central nervous system (CNS), characterized by inflammation, demyelination,
and subsequent axonal damage [32]. The pathophysiology of MS is centered
around an abnormal immune response that leads to inflammation and the
destruction of myelin, i.e., the insulating layer around nerve fibers in the CNS.
As illustrated in Figure 2.9, when myelin is damaged or destroyed (known as
demyelination), the ability of the nerves to transmit electrical impulses to and
from the brain is disrupted, leading to a wide range of symptoms.

Prevalence. MS affects around 2.8 million people worldwide and is the most
common neurological disorder and cause of disability in young adults. The
prevalence is 36 per 100,000 people although this varies widely by region (see
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Figure 2.9 Damaged myelin in multiple sclerosis. The image is taken from
https://acls123.com/what-is-multiple-sclerosis/.

Figure 2.10), with higher prevalence rates in North America and Europe and
lower rates in Asia and Africa. MS is most commonly diagnosed between the
ages of 20 and 40, and it is known to be more prevalent in colder climates
further from the equator. There are at least twice as many females with MS as
males [2].

Classification. MS is categorized into four types based on the disease
progression pattern [33]: Relapsing-Remitting MS (RRMS), Primary Progressive
MS (PPMS), Secondary Progressive MS (SPMS), and Progressive-Relapsing
MS (PRMS). RRMS, the most common type, characterized by clearly defined
relapses of worsening neurological function followed by periods of partial or
complete recovery. SPMS begins as RRMS before eventually transitioning into
a steadily progressive disease. PPMS involves a steady progression of disease
from onset, without relapses. PRMS, the least common type, involves a steady
progression of disease from onset with superimposed relapses. See Figure 2.11.

Multiple Sclerosis Lesions. MS lesions refer to the areas of damage caused by
demyelination and inflammation. The presence, number, and location of these

https://acls123.com/what-is-multiple-sclerosis/


28 A PRIMER ON MRI AND ITS APPLICATIONS TO BRAIN LESION DIAGNOSIS

Figure 2.10 The multiple sclerosis prevalence by region [2].

lesions can be indicative of the type and severity of MS a patient may have.
MS lesions can be classified based on several factors:

By Activity: MS lesions can be active or inactive (aka chronic). Active lesions
are areas of ongoing inflammation where demyelination is currently occurring,
usually associated with relapses. Inactive lesions are, on the other hand, areas
of old damage where there is no ongoing inflammation.

By MRI Image: MS lesions are sometimes classified into three types according
to the MRI image on which they appear:

• T1 Lesions: These are inactive lesions, known as “black holes,”
often appearing persistently hypointense on T1 images even after the
administration of gadolinium.

• Gadolinium-Enhancing Lesions: These are active inflammatory lesions
appearing brighter on T1 images after the administration of gadolinium.

• T2 Lesions: T2-weighted images on MRI reveal areas of high signal
intensity, indicating more recent disease activity. These lesions appear
hyperintense on T2 images, representing areas of demyelination and
inflammation. They can include both active (or new) and inactive (or old)
lesions.

By Location: MS lesions can be also classified based on their locations:
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Figure 2.11 Different multiple sclerosis types based on disease progression.

• Periventricular Lesions: These are lesions located around the ventricles
of the brain, which are fluid-filled spaces.

• Juxtacortical/Cortical Lesions: Juxtacortical lesions are located near the
cortex, while cortical lesions are located within the cortex itself. Cortical
lesions are more difficult to see on conventional MRI scans.

• Infratentorial Lesions: These are lesions found in the infratentorial region
of the brain, which includes the brainstem and cerebellum.

• Deep White Matter Lesions: These refer to lesions located deep within
the white matter, often in the deeper parts of the cerebral hemispheres.

Causes. MS is thought to be autoimmune in nature, meaning that the body’s
immune system mistakenly attacks the myelin sheath. However, the exact cause
of MS remains unknown although it is believed to be a combination of genetic
and environmental factors, including viral infections (like Epstein-Barr virus),
low vitamin D levels, and smoking [34].

Diagnosis. The diagnosis of MS involves the demonstration of lesion
dissemination in both time and space. This means lesions must be shown
to occur at different times and in different locations within the CNS. MRI plays
a crucial role in the diagnosis, as it provides clear visualization of demyelination
and inflammation in the brain and spinal cord. Moreover, MRI can distinguish
among various types of lesions and significantly assist in monitoring disease
progression.
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Prognosis. MS is a chronic condition with a variable prognosis. Most people
with MS have a normal or near-normal life expectancy, but MS can significantly
affect their quality of lives. People with MS live, on average, about 7-14 years
less than the general population [35]. Factors that may influence prognosis
include the type of MS, age at diagnosis, and individual response to treatment.

2.2.3 Stroke Lesions

Stroke is an acute neurological condition affecting millions worldwide [4]. Strokes
occur when blood flow to the brain is obstructed, causing brain cells to die
from lack of oxygen and essential nutrients. The ensuing cell death results in a
region of damage, known as a stroke lesion, which directly impacts the brain’s
function.

Pathophysiology and Classification. A stroke is classified into two primary
types [36]: ischemic and hemorrhagic. About 87% of strokes are ischemic [4],
which result from a blockage in the blood vessels supplying the brain. This
blockage often stems from a thrombus (blood clot) or an embolus (a clot that
travels from elsewhere in the body). Ischemic stroke lesions result from the
immediate and progressive death of brain cells deprived of oxygen and glucose.
The severity and location of these lesions dictate the symptoms experienced by
the patient.

Hemorrhagic stroke, a less common type, occurs when a blood vessel in the
brain ruptures, causing bleeding in the surrounding brain tissue and increasing
pressure on the brain [37]. The damage caused is twofold: from the direct effects
of bleeding and from the compression of brain tissue due to swelling.

Prevalence. According to the World Health Organization (WHO), strokes
are the second leading cause of death worldwide. Globally, one in four people
over age 25 will have a stroke in their lifetime. There are over 12.2 million new
strokes each year, with more than half of the incidents resulting in death while
another half resulting in permanent disability [4].

Causes. Several factors contribute to the risk of stroke, including modifiable
and non-modifiable factors. The primary non-modifiable risk factors include
age, sex, and family history. The modifiable risk factors include hypertension,
diabetes, smoking, obesity, physical inactivity, and poor diet. Other conditions
like atrial fibrillation, which can cause clots to form in the heart and subsequently
lodge in the cerebral arteries, can also lead to ischemic stroke.

Diagnosis. Diagnosis of a stroke is a medical emergency. Medical imaging is
a critical tool in diagnosing a stroke and determining its type, location, and
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extent. Computed tomography (CT) scan is usually the first imaging test to rule
out a hemorrhage, but magnetic resonance imaging (MRI) is more sensitive in
detecting ischemic stroke lesions, particularly in the early stage. As mentioned
in Section 2.1.3, diffusion-weighted imaging (DWI) can reveal ischemic lesions
within minutes of symptom onset, offering a significant advantage in initiating
early treatment.

Prognosis. Prognosis after stroke varies widely, depending on the extent of
brain injury and the patient’s general health status. While some patients recover
fully, others may have long-term or permanent disabilities. Stroke is the leading
cause of adult disability, with many survivors requiring extensive rehabilitation
to regain lost skills. Moreover, the risk of another stroke or a related medical
condition is elevated after a stroke.

2.3 Conclusion

In this chapter, we delved into the fundamental physics behind MRI and
discussed various MRI sequences, highlighting the potential of mpMRI as a
powerful imaging technique for diagnosing glioma, MS, and stroke. We examined
T1, T1Gd, T2, FLAIR, DWI, and ADC sequences, detailing the types of lesions
each can reveal. In Chapter 6, the FLAIR sequence will be employed to detect
MS white matter lesions. Chapters 7 and 8 will use T1, T1Gd, T2, and FLAIR
sequences for glioma segmentation. Chapter 7 will also incorporate DWI and
ADC sequences for segmenting stroke lesions.





Chapter 3

Machine Learning Essentials

In this chapter, we begin by reviewing the fundamental concepts of machine
learning. Our primary focus is on supervised learning and model fitting methods,
which form the basis of our approach to brain lesion segmentation using
deep learning. We also discuss first-order optimization techniques, including
stochastic gradient descent and Adam, which are essential for training deep
models on a large scale. Lastly, we delve into linear models and kernel
regression, shedding light on their evolution into more complex, non-linear
models, specifically deep neural networks.

33
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3.1 When Models Meet Data

Machine learning is a subfield of artificial intelligence that involves the
development of algorithms and models that enable machines to learn from
data and make predictions or decisions without being explicitly programmed
[38]. It seeks to extrapolate patterns and understand complex behaviors from
input data through a process that begins with feeding data into an algorithm,
and ends with the algorithm predicting unknown output or future behavior.

3.1.1 Learning Scenarios

Machine learning tasks are typically classified into four categories [39]: supervised
learning, unsupervised learning, semi-supervised learning, and reinforcement
learning. The first two types are the most commonly used and are discussed in
the following.

Supervised Learning. This is the most common paradigm of machine learning.
Suppose, we have a training set of N input-output pairs D = {(xn, yn)}N

n=1,
where xn ∈ X represents the input (also known as feature vector) of nth example
and yn ∈ Y is its corresponding output, know as label. Here, X is the input space,
and Y is the label space. The primary goal is to infer a function f : X→ Y that
maps inputs to their corresponding labels. This function can then be used for
mapping any valid unseen input to accurately predict its label. Depending on
the label space, supervised learning problems are classified into two categories:

• Classification: In classification problems, the label space is a discrete
set of K unordered and mutually exclusive classes, i.e., Y = {1, 2, . . . , K}.
If there are just two classes, Y = {0, 1} or {−1, +1}, it is called binary
classification. For example, a tissue can be classified as “normal” or
“abnormal”. The task is to predict the class of an input.

• Regression: In regression problems, the label space is continuous, i.e.,
Y ⊆ R. For example, a tumor can be labeled with its volume. The task is
to predict a real-valued output given an input.

Unsupervised Learning. In this paradigm, observed training inputs are not
paired with a corresponding output, which means that we just have an unlabeled
training set D = {xn}N

n=1. In contrast to supervised learning, the task is to try
to “make sense of” data often by discovering interesting structure in the data,
such as clusters, densities, or low-dimensional structures [39].
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3.1.2 Data and Models
Data as Tensors. In machine learning, data is typically represented as tensors,
which are a generalization of vectors and matrices to an arbitrary number of
dimensions (or indices). Tensors can be represented as multi-dimensional arrays
of numbers. For example, a 1st-order tensor is a vector, a 2nd-order tensor is a
matrix, and a 3rd-order tensor can be visualized as a cube of numbers.

In general, an Mth-order tensor can be represented as an M -dimensional array
X ∈ RI1×···×IM . The elements of this tensor are denoted by Xi1,...,iM

, with im

index running from 1 to Im. The order of a tensor refers to the dimension of its
corresponding array, which equals the total number of indices (M) required to
identify each element uniquely. Thus, an Mth-order tensor may be also referred
to as M -dimensional (or MD) tensor.

Tensors allow us to represent complex data structures in a uniform way. For
instance, a simple tabular dataset with N D-dimensional feature vectors,
{xn}N

n=1 ⊆ RD, is commonly stored in an N ×D data matrix [x1 | · · · | xN ]T,
in which each row represents an example, and each column represents a feature.
A grayscale image of size (H, W ) can be represented as a matrix I ∈ RH×W ,
where each element corresponds to the pixel intensity at a particular position,
while a color image can be represented as a 3D tensor I ∈ R3×H×W , with the
first dimension corresponding to the color channels (red, green, and blue).

Models as Functions. In supervised learning, a model can be a prediction
function that takes input data and transform it into output predictions. For
instance, in a problem of semantic segmentation of natural images, a model
could be a function f : [0, 1]3×H×W → {1, . . . , K}H×W that maps an image to
its mask, where K is the number of segmentation classes.

A prediction function f is typically parameterized by parameters θ, which are
learned from the data. We write f(x; θ) to denote a model with parameters θ.
In the simplest case, for example, a model can be a linear function:

f(x; θ) = wTx + b (3.1)

where x ∈ RD is the input, θ = (w, b) are all parameters, w ∈ RD are the
weights, and b ∈ R is the bias or intercept. More complex models include
nonlinear functions, such as those used in neural networks, where multiple linear
transformations and nonlinear activations are applied.

Models as Probability Distributions. In machine learning, particularly in
statistical modeling and Bayesian inference, the assumption is that a probability
distribution exists over the example space, and that training examples are drawn
independently and identically distributed (iid) from this distribution. As such,
it is logical to consider models as probability distributions.
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In supervised learning, we consider training examples (x1, y1), . . . , (xN , yN )
drawn iid from an unknown joint probability distribution p(x, y) over X and
Y. The statistical models seek to estimate the conditional distribution p(y | x),
which represent the probability of output y given input x. In the case of a
parametric model, this distribution falls within a parametric family {p(y |
x, θ) | θ ∈ Θ}. Here, Θ denotes the parameter space, and the parameters θ
are estimated based on the given data. Note that the assumption of a joint
probability distribution allows us to model uncertainty in predictions (e.g., from
noise in data) because y is not a deterministic function of x, but rather a random
variable with conditional distribution p(y | x; θ) for a fixed x and estimated
θ. We can also obtain a prediction function by computing the conditional
expectation

f(x; θ) = E[y | x, θ] =
∫

yp(y | x, θ)dy (3.2)

This probabilistic perspective holds particular benefits in situations where we
want to quantify the uncertainty of our predictions, incorporate prior knowledge,
or manage noise in the data. Instead of viewing a predictor as a deterministic
function, it can be more beneficial to consider predictors as statistical models.
For instance, in classification problems, the model might output a probability
distribution over class labels, which can be achieved using transformations like
the softmax function. This distribution indicates the probability of each class
label given an input, helping to express the level of confidence about a prediction
for a specific test data point.

3.1.3 Model Fitting

Once we have defined our data and models, the next step is to fit our models to
the data. Model fitting involves adjusting the model parameters to best match
the training data.

Empirical Risk Minimization

Consider a general supervised learning setting, where a joint distribution p(x, y)
generates the data. Our aim is to learn a parameterized function f : X×Θ → Ŷ,
where X is the input space, Θ is the parameter space, and Ŷ is the prediction
space. Note that while the prediction space often equals the label space Y, they
may differ in some cases.

Suppose we are provided with a loss function ℓ : Y× Ŷ→ R≥0, which measures
the discrepancy between the actual output and the model output. For instance,
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Table 3.1 Various loss functions used in supervised learning.

Loss Function (ℓ : Y× Ŷ→ R≥0) Label Space (Y) Prediction Space (Ŷ) Task
Binary Cross-Entropy
(aka Binary Log Loss):
−y ln(ŷ)− (1− y) ln(1− ŷ)

{0, 1} [0, 1] Binary
Classification

Multiclass Cross-Entropy
(aka Multiclass Log Loss):
−
∑K

c=1 1(y = k) ln(ŷk)

{1, 2, . . . , K}
K: # classes [0, 1] Multiclass

Classification

Hinge Loss:
max(0, 1− yŷ) {−1, 1} R Binary

Classification
Squared Error:

(y − ŷ)2 R R Regression

Dice Loss:

1− 2
∑M

m=1
ymŷm∑M

m=1
(ym+ŷm)

{0, 1}M

M : # pixels/voxels
0: background, 1: foreground

[0, 1]M
M : # pixels/voxels

Semantic
Segmentation

Soft Dice Loss:

1− 2
∑M

m=1
ymŷm∑M

m=1
(y2

m+ŷ2
m)

{0, 1}M

M : # pixels/voxels
0: background, 1: foreground

[0, 1]M
M : # pixels/voxels

Semantic
Segmentation

in regression tasks, a frequently used loss function is the squared error loss,
defined as:

ℓ(y, ŷ)se = (y − ŷ)2, y, ŷ ∈ R

Table 3.1 provides some common loss functions. The risk (also known as the
expected loss) of a function f(x; θ) is defined as the expectation of the loss over
the entire example space according to the joint distribution p(x, y) [39]

R(θ) ≜ Ex,y[ℓ(y, f(x; θ))] (3.3)

A lower risk means that the prediction function performs better on average
across all possible examples from the distribution. Therefore, the ultimate
goal of a learning algorithm is to find a parameter θ ∈ Θ that minimizes the
risk. However, since in practice the true distribution p(x, y) is unknown and
inaccessible, we cannot directly compute the risk. Instead, we have a dataset
D = {(xn, yn)}N

n=1 sampled iid from the distribution p(x, y) to estimate the
risk. By simply computing the average loss over this dataset D, we get an
unbiased estimation of the risk, referred to as the empirical risk, defined as:

R(θ;D) ≜ 1
N

N∑
n=1

ℓ(yn, f(xn; θ))] (3.4)

The law of large numbers guarantees that the empirical risk converges to the
risk as the number of examples N approaches infinity.

The empirical risk minimization (ERM) is a principle in statistical learning
that suggests choosing the parameters that minimize the empirical risk on the
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training set. Mathematically, ERM can be written as:

θ∗ = arg min
θ∈Θ

R(θ;D) (3.5)

The ERM strategy is most effective when we have a large number of training
examples so that the empirical risk is a good approximation of the true risk.
While ERM provides a theoretically grounded approach to learning, in practice,
it can lead to overfitting if the model space is too complex. This aspect will be
discussed further in Section 3.1.4.

Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is a method of estimating the parameters
of a statistical model. The goal of MLE is to find the parameter values that
maximize the “likelihood” of generating the observed data, under the given
model.

Let’s consider a dataset D = {xn}N
n=1 in unsupervised learning or D =

{(xn, yn)}N
n=1 in supervised learning. Assume we have a statistical model

with a set of parameters θ, which generates examples.

The likelihood function L(θ) is then defined as the probability of observing the
data given the parameters, that is

L(θ) ≜ p(D | θ). (3.6)

In unsupervised learning with the assumption of iid examples, the likelihood
function can be expressed as a product of probabilities of individual examples,
that is

p(D | θ) =
N∏

n=1
p(xn | θ). (3.7)

The MLE approach aims to find the parameters θ that maximize this likelihood
function

θ̂MLE ≜ arg max
θ∈Θ

L(θ), (3.8)

It is often more practical to work with the natural logarithm of the likelihood
function, called the log-likelihood, defined as

ℓ(θ) ≜ ln p(D | θ). (3.9)

Taking the logarithm does not change the parameter values that maximize the
likelihood due to the monotonicity of the log function, but it simplifies the
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expression and the calculation of the differentiation by transforming the product
into a sum when the iid assumption holds

ℓ(θ) ≜ ln p(D | θ) =
N∑

n=1
ln p(xn | θ). (3.10)

In supervised learning, where each input xn has a corresponding label yn, we
are interested in the conditional likelihood of the outputs given the inputs. The
conditional likelihood function is expressed as

L(θ) =
N∏

n=1
p(yn | xn, θ), (3.11)

and the conditional log-likelihood as

ℓ(θ) =
N∑

n=1
ln p(yn | xn, θ). (3.12)

Again, the MLE finds the parameter values θ that maximize these likelihoods,
in other words, the parameter values that make the observed outputs most
probable given the inputs.

The process of MLE often involves differentiating the log-likelihood and setting
the derivatives to zero, and then solving for the parameters, given the constraint
that the likelihood is maximized. In some cases, this can be done analytically,
but in many situations, especially in machine learning with complex models,
numerical methods must be used.

3.1.4 Generalization and Overfitting

Generalization refers to the ability of the model to perform well on new,
previously unseen data, drawn from the same distribution as the one used
to train the model [39]. In other words, a good learning algorithm should not
only perform well on the training data, but it should also generalize well to
new examples. Formally, generalization is related to the ability of a prediction
function f : X×Θ → Y with estimated parameters θ to have a small true risk
R(θ), which is often referred to as “generalization error" in this context. We
say a model generalizes well if the true risk R(θ) is small.

As explained earlier in Section 3.1.3, we can use the ERM principle to estimate
the parameters. However, the estimated parameters θ are based on a finite
dataset D, and thus the empirical risk R(θ;D) might not reflect the true
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risk R(θ). The difference between the true risk and the empirical risk, i.e.,
R(θ)−R(θ;D), is known as the generalization gap. In the ideal scenario, where
the dataset is sufficiently large, the generalization gap should be small for all θ,
implying that the empirical risk accurately estimates the true risk. However,
this is not always the case in reality, and we often experience a phenomenon
called overfitting.

In practice, we cannot compute the true risk R(θ) since we do not know the true
distribution that generates the data. However, we can partition the dataset we
have into two subsets, known as the training set (Dtrain) and the test set (Dtest).
Following the ERM principle, we first estimate the parameters by minimizing
the training empirical risk R(θ;Dtrain). Then we can approximate the true risk
using the test empirical risk [39]:

R(θ;Dtest) = 1
|Dtest|

∑
(x,y)∈Dtest

ℓ(y, f(x; θ)) (3.13)

Overfitting refers to the situation where a model performs very well on the
training data but performs poorly on unseen test data [39]. In terms of risk,
overfitting corresponds to a small empirical risk R(θ;Dtrain) but a large true
risk R(θ), which results in a large generalization gap. This typically happens
when the model is too complex and captures the noise in the training data. In
fact, with a suitably flexible model, we can drive the empirical risk to zero by
simply memorizing the correct output for each input.

As an example, let’s consider a polynomial regression problem where the training
examples are noisy observations of a quadratic function. In Figure 3.1, we fit
polynomials of different degrees and compare their performances. The plot in
Figure 3.1a shows that a linear function does not capture the quadratic nature
of the data. It is too simple to represent the data accurately, resulting in poor
performance. In contrast, Figure 3.1c illustrates that a polynomial of degree
20, which passes through every training point, might seem ideal. However, this
model is too complex and ends up learning the noise and outliers in the data.
Consequently, it performs poorly on new, unseen data, as it is tailored too
specifically to the training data. Finally, Figure 3.1b shows that a quadratic
function accurately matches the true function and the data. This model strikes
the right balance of complexity: it is complex enough to capture the underlying
pattern but not so complex that it absorbs the noise in the data.

In Figure 3.1d, we plot the mean squared error (MSE) of polynomial regression
as a function of degree for both the training and the test sets. We observe
that the training error diminishes to zero as the degree increases, and the
model becomes more complex. However, the test error displays a characteristic
U-shaped curve: on the left, where the degree is 1, the model is underfitting; on
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(a) Underfitting (Degree 1)
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(b) Good Fit (Degree 2)
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(c) Overfitting (Degree 20)
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Figure 3.1 Comparison of polynomial regression models of different degrees. The true
function is a quadratic polynomial f(x) = 12x2 − 16x + 10. The training examples are
derived from noisy observations of this function, specifically yn = f(xn) + rn, where
rn

iid∼ N (0, 0.5).

the right, where the degree is 20, the model is overfitting; and when the degree
is 2, the model complexity is "just right". Figure 3.2 illustrates the common
scenario observed in risk curves as the model complexity increases.

In practice, some form of regularization may be used to control the complexity
of the learned model and avoid overfitting. For instance, a regularization term
is sometimes added to the empirical risk to limit the complexity of the model,
resulting in

θ∗ = arg min
θ∈Θ

R(θ;D) + λC(θ) (3.14)

where C(θ) measures the complexity of the prediction function f(xn; θ), and λ
it the regularization hyperparameter that controls the strength of the complexity
penalty. Common examples of the complexity measure C(θ) include the L2
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Figure 3.2 Illustration of underfitting, optimal fitting, and overfitting in model
training. The figure shows how the training error decreases with model complexity,
while the test error initially decreases and then increases, indicating overfitting. The
area between the two curves represents the generalization gap. The shaded regions
represent underfitting (brown), optimal fitting (green), and overfitting (purple) areas.

norm (i.e., C(θ) = ∥θ∥2
2), which penalizes large parameter values, as seen in

ridge regression [40], and the L1 norm (i.e., C(θ) = ∥θ∥1), which encourages
sparsity in the parameters, as utilized in LASSO [41]. The choice of λ can
be crucial in balancing the trade-off between fitting the training data well
(minimizing R(θ;D)) and keeping the model simple (minimizing C(θ)). When
λ is too large, the model may become too simple and underfit the data, which
means the model does not capture the underlying structure of the data, resulting
in a large empirical risk R(θ;D) and a large true risk R(θ). Conversely, when λ
is too small, the model may become too complex and overfit the data, resulting
in a small R(θ;D) but a large R(θ).

3.1.5 Model Selection and Validation

After fitting various models to the data, we need to select the best model and
validate its performance. Model selection involves choosing the best model
from a set of candidate models based on their performance according to some
criterion. These models can be from different families or from the same family
but with different hyperparameters. Model validation, on the other hand, is
the process of estimating the generalization performance of the chosen model
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Figure 3.3 An illustration of the holdout method.

on unseen data. These two steps are crucial in preventing overfitting and in
developing a successful prediction model for any machine learning problem.

Note that we always assume there is an “available dataset” D which we can use
throughout training, selecting, and validating models, whereas the test set Dtest
is kept in a “vault" in all the stages of model development and brought out only
at the end of our data analysis to evaluate the performance of the final selected
model.

Cross-Validation

Cross-validation is the most common technique used for model selection and
validation. It provides a robust method to estimate the performance of a model
on unseen data. Cross-validation divides the dataset into subsets, iteratively
trains a candidate model on some of these subsets, and validates the model on
the remaining subsets.

Holdout Method. The simplest form of cross-validation is the holdout method,
where the available dataset D is, as illustrated in Figure 3.3, randomly split
into two disjoint subsets: a training set Dtrain and a validation set (or holdout
set) Dval. The model is trained on the training set, and its performance is then
evaluated on the validation set. If we are in a data-rich situation, this is the
best approach for both model selection and model validation.

The ratio between the training and test sets can vary depending on the size of
the dataset and the desired evaluation accuracy. A common practice is to use
70-80% of the data for training and the remaining 20-30% for validation. The
model’s performance is generally measured in terms of some metrics, such as
accuracy, F1 score, and Dice, providing an estimate of how well the model will
perform on unseen data.

The main advantage of the holdout method is its simplicity and speed, as
training is done once and validation is also done once. However, the major
drawback of this method is its high variance, meaning the evaluation may
depend heavily on which data points end up in the training set and which end
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Figure 3.4 Schematic of 5-fold cross validation.

up in the validation set. Furthermore, the holdout method does not utilize the
entire available dataset for both training and validation. This is where K-Fold
cross-validation comes into play.

K-fold Cross-Validation. To address the limitations of the holdout method,
K-fold cross-validation is often used. In this method, the dataset D is split
into K disjoint subsets of approximately equal size, referred to as “folds”. The
model is trained K times, with each fold serving as the validation set once while
the remaining K − 1 folds as the training set, as sketched in Figure 3.4. The
model’s performance is then estimated by averaging the scores obtained from
the K iterations. Figure 3.4 illustrates this method.

The value of K can vary depending on the size of the dataset and computational
resources. Common choices for K include 5 and 10. The advantage of this
method over the holdout method is that it matters less how the data gets
divided. Every data point appears in a validation set exactly once and appear
in a training set K − 1 times. By averaging the performance over multiple folds,
it also provides a more reliable estimate of the model’s performance compared
to the holdout method.

Nested Cross-Validation. To enhance the assessment of the model’s gener-
alizability, nested cross-validation can be implemented. In this approach, two
cross-validation processes are nested within one another. The outer cross-
validation splits all the data into training and testing sets, while the inner cross-
validation, executed within each training set of the outer loop, is responsible
for model selection and hyperparameter tuning. This nested structure ensures
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that the evaluation of the model’s performance is not biased by the selection of
hyperparameters, resulting in a more rigorous evaluation.

Conversely, non-nested cross-validation is a simpler approach where a single
set of folds is used for both model assessment and tuning. Although less
computationally intensive, it may result in a biased evaluation and overly
optimistic performance estimates due to the leakage of information. However,
for large datasets where computational efficiency is a concern, non-nested cross-
validation may still provide a reasonable estimate of the model’s ability to
generalize.

3.2 Optimization

Machine learning is inherently an optimization problem, as it seeks the optimal
parameter values that minimize a cost function, such as empirical risk or negative
log-likelihood. Generally, the optimization problem in machine learning can be
formulated as follows:

θ∗ ∈ arg min
θ∈Θ

J(θ), (3.15)

where J : Θ → R is the cost function that measures the error of our model, and
Θ ⊆ RD is the parameter space, comprising all possible values of the model’s
parameters. The parameters θ∗ that minimize the cost function are the solution
to our optimization problem. In this section, we provide a brief overview of the
common optimization methods used in machine learning to find local minima.

Definition 3.1 (Local Minima). θ∗ is a local minimum if there exists ϵ > 0
such that J(θ∗) ≤ J(θ) for all θ satisfying ∥θ − θ∗∥ ≤ ϵ.

Definition 3.2 (Global Minima). θ∗ is a global minimum if J(θ∗) ≤ J(θ) for
all θ ∈ Θ.

3.2.1 Gradient Descent

Gradient descent is an iterative optimization algorithm used to find a local
minimum of a differentiable function [42]. The idea is to start from an initial
guess and iteratively update the parameters in the direction opposite to the
gradient at the current point.
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Definition 3.3 (Gradient). The gradient of a function J : RD → R at a point
θ ∈ RD is defined as the vector of its first-order partial derivatives:

∇J(θ) ≜
[

∂J(θ)
∂θ1

,
∂J(θ)
∂θ2

, . . . ,
∂J(θ)
∂θD

]T
.

Definition 3.4 (Directional Derivative). The directional derivative of a function
J : RD → R at a point θ ∈ RD in the direction of a unit vector u is given by

∇uJ(θ) = lim
η→0

J(θ + ηu)− J(θ)
η

(3.16)

The motivation behind gradient descent is that the gradient of a function at a
point provides the direction of steepest ascent at that point. Therefore, moving
in the direction opposite to the gradient should locally decrease the function
value at the fastest rate. To understand this, let’s consider the first-order Taylor
expansion of the function J(θ + ηu) around the point θ:

J(θ + ηu) = J(θ) + ηuT∇J(θ) + o(η), (3.17)

where u is a unit vector indicating the direction of the step and o(η) is a term
that diminishes faster than the other terms as η → 0, that is limη→0

o(η)
η = 0.

By plugging equation (3.17) into the definition of the directional derivative
in equation (3.16), we obtain ∇uJ(θ) = uT∇J(θ). In other words, the local
change in the function value is represented by the dot product ηuT∇J(θ).
According to the Cauchy–Schwarz inequality, this dot product is minimized if
and only if

u = − ∇J(θ)
∥∇J(θ)∥ (3.18)

Therefore, the gradient gives the direction of steepest descent. Starting from
an initial guess θ0, gradient descent updates the parameters at each iteration t
using the following rule [42]:

θt+1 = θt − ηt∇J(θt), t ≥ 0, (3.19)

where ηt ∈ R+ is the step size or learning rate. For a sufficiently small ηt, we
have J(θt+1) ≤ J(θt). In machine learning, the sequence of step sizes ηt is
called the learning rate schedule, which plays a crucial role in the convergence
and performance of the optimization process. There are several widely used
methods for picking this, some of which we discuss below.

Fixed Learning Rate. For gradient descent with a fixed learning rate ηt = η,
convergence to a local minimum is guaranteed under mild conditions on the
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Figure 3.5 Comparison of different learning rate schedules over iterations. (i) Linear
Decay: ηt = η0(1 − t/T ), where T is total number of iterations. (ii) Step Decay: The
learning rate decreases by a constant factor after a fixed number of iterations. (iii)
Exponential decay: ηt = η0γt, where γ is the decay rate. (iv) Polynomial Decay:
ηt = η0(1 − t/T )p, where t is iteration number, T is total number of iterations and
p is the power parameter. (v) Cosine Annealing: ηt = η0

2 (cos(πt/T ) + 1), where t is
iteration number and T is total number of iterations.

function (specifically, Lipschitz continuous gradient) if η is small enough (See
[42] for the further details). However, choosing an appropriate fixed learning rate
can be challenging. If the learning rate is too large, it may lead to oscillations
or overshooting, failing to converge. On the other hand, if the learning rate is
too small, convergence to the optimal solution may be slow, requiring a large
number of iterations.

Decaying Learning Rate. To overcome the limitations of a fixed learning rate,
a prevalent approach in deep learning is to start with a high learning rate and
progressively decay it over time or after a certain number of iterations. This
allows the algorithm to take larger steps at the beginning and smaller steps as
it gets closer to the minimum [38]. Some common learning rate schedules are
plotted in Figure 3.5.
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Figure 3.6 Illustration of momentum. Here, g denotes the gradient ∇J .

Momentum

Gradient descent may converge slowly, especially in landscapes with high
curvature, noisy gradients, or saddle points. It may oscillate excessively
in steep, narrow ravines of the cost function—regions where the gradient
significantly changes direction, thereby slowing progress towards the minimum.
The momentum method [43] helps mitigate these issues by adding a fraction
of the update vector of the past time step to the current update vector. The
update rule for the momentum method is as follows:

vt+1 = µvt − ηt∇J(θt),

θt+1 = θt + vt+1. (3.20)

Here, vt+1 is the velocity at iteration t+1, which is a combination of the current
gradient ∇J(θt) and the previous velocity vt, as illustrated in Figure 3.6. This
tends to increase for dimensions whose gradients point in the same directions
and reduces updates for dimensions whose gradients change direction, thereby
dampening oscillations and accelerate convergence. µ ∈ [0, 1] is the momentum
coefficient which decides how much of the past gradients are to be stored. When
it is set to a high value, the updates will become more dependent on the past
gradients.

3.2.2 Stochastic Gradient Descent

Stochastic gradient descent (SGD) is a simple yet efficient optimization algorithm
for learning the parameters of a machine learning model. The primary advantage
of SGD is its efficiency, which is particularly beneficial when dealing with large
datasets [44].
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Many model fitting problems in machine learning, such as risk minimization,
involve stochastic optimization. The objective here is to minimize the expected
value of the cost over the distribution of examples [39]:

J(θ) = Ez[J(θ, z)], (3.21)

where z represents a random example from the data with the distribution p(z),
and J(θ, z) is the cost given the model parameters θ and example z. In the
case of risk as defined in equation (3.3), we have z = (x, y) and J(θ, z) =
ℓ(y, f(x; θ)). At each iteration t in SGD, we assume we observe J(θ, zt), where
zt ∼ p is a randomly drawn example. We also assume a way to compute an
unbiased estimate of the gradient of J . If the distribution p(z) is independent
of the parameters we are optimizing, we can use gt = ∇J(θt, zt). With this,
the SGD update rule can be written as follows:

θt+1 = θt − ηtgt. (3.22)

A related variant of gradient descent, called mini-batch gradient descent
(MBGD), makes use of a set of randomly chosen examples, known as mini-
batch, at each iteration instead of just one [38]. The gradient in MBGD is
approximated as the average gradient over a mini-batch Bt ⊆ {1, . . . , N}:

gt ≈
1
|Bt|

∑
m∈Bt

∇J(θt, zm), (3.23)

where |Bt| denotes the mini-batch size, typically much smaller than the total
number of examples N . Mini-batches help strike a balance between the
computational efficiency of SGD and the robustness of gradient descent.

When using SGD and MBGD, it is important to carefully select the learning
rate to ensure convergence. One heuristic for choosing an effective learning rate,
proposed by Smith [45], is to start with a small learning rate and gradually
increase it while evaluating performance using a small number of mini-batches.
As discussed earlier, instead of choosing a single constant learning rate, a learning
rate schedule can be used to adjust the step size over time. Theoretically, SGD
and MBGD are guaranteed to converge if the learning rate schedule satisfies
the Robbins-Monro conditions [39]:

∞∑
t=1

ηt =∞,

∞∑
t=1

η2
t <∞ (3.24)

This ensures that the learning rates are large enough to maintain progress, but
also small enough to avoid divergence.



50 MACHINE LEARNING ESSENTIALS

AdaGrad

AdaGrad (adaptive gradient), proposed by Duchi et al. [46], is a variant of SGD
with per-parameter learning rate. It adapts the learning rate to the parameters,
performing larger updates for sparser parameters and smaller updates for denser
ones. The update rule in AdaGrad looks as follows:

st+1 = st + g2
t ,

θt+1 = θt −
ηt√

st+1 + ϵ
⊙ gt, (3.25)

where st+1 is a variable that accumulates the past squared gradients, i.e.,
st+1 =

∑t
τ=0 g2

τ , and ϵ > 0 is a small smoothing term to avoid division by
zero. Here, all operations are applied element-wise; that is, 1√

u
has entries 1√

ui
,

u2 has entries u2
i , and u ⊙ v has entries uivj . While AdaGrad is effective in

settings where data is sparse and sparse parameters are more informative, its
learning rate is monotonically decreasing which might lead to premature and
excessive decrease of the learning rate, thereby making the algorithm converge
too early.

RMSProp

RMSProp (root mean square propagation) is an adaptive learning rate method
proposed by Tieleman, Hinton, et al. [47]. It was developed to address the
diminishing learning rates of AdaGrad for long-running tasks.

RMSProp is similar to AdaGrad, but changes the gradient accumulation into
an exponentially weighted moving average. RMSProp uses a decay factor to
discard history from the extreme past, which allows rapid converge after finding
a convex bowl, behaving as if it were an instance of the AdaGrad algorithm
initialized within that bowl. Here is the update rule:

st+1 = βst + (1− β)g2
t ,

θt+1 = θt −
ηt√

st+1 + ϵ
⊙ gt, (3.26)

where st+1 is the running weighted average of the squared gradient, decayed by
a factor β ∈ [0, 1) often set to 0.99. Expanding the definition of st+1 yields:

st+1 = (1− β)
t∑

τ=0
βτ g2

t−τ . (3.27)
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The weights {(1− β)βτ}t
τ=0 make up a geometric sequence, and hence, their

sum is computed as (1 − β)
∑t

τ=0 βτ = 1 − βt+1, which approaches 1 as t
approaches infinity. As such, after enough iterations, the sum of the weights
becomes normalized to 1.

Adam

Adam (adaptive moment estimation), proposed by Kingma and Ba [48], combines
the ideas of RMSProp and momentum. Adam computes adaptive learning rates
for different parameters. In addition to storing an exponentially decaying average
of past squared gradients like RMSProp, Adam also keeps an exponentially
decaying average of past gradients, similar to momentum. Adam’s update rule
looks like this:

mt+1 = β1mt + (1− β1)gt,

st+1 = β2st + (1− β2)g2
t ,

m̂t+1 = mt+1

1− βt
1

,

ŝt+1 = st+1

1− βt
2

,

θt+1 = θt −
ηt√

ŝt+1 + ϵ
⊙ m̂t. (3.28)

Here, mt and st are estimates of the first moment (the mean) and the second
moment (the uncentered variance) of the gradients respectively, and m̂t and
v̂t are bias-corrected versions of these estimates. β1 ∈ [0, 1) (e.g., 0.9) and
β2 ∈ [0, 1) (e.g., 0.999) are the forgetting factors for the first moment and second
moments of gradients, respectively.

3.2.3 Block Coordinate Descent

Block Coordinate Descent (BCD) [49] is a powerful optimization technique that
is especially useful when dealing with high-dimensional problems. Instead of
simultaneously updating all parameters, as is the case in methods like gradient
descent, BCD operates by dividing the parameters into different blocks and
then optimizing over one block at a time while keeping the others fixed. This
is done in a cyclic or randomized manner until a convergence criterion is met.
In many cases, BCD can lead to simpler subproblems and can thus be more
efficient than optimizing over all parameters at once.
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Algorithm 1: Block coordinate descent algorithm.
Input: Cost function J(θ1, . . . , θB)
Output: Parameters (θ∗

1 , . . . , θ∗
B) that minimizes J

1 Initialize parameters (θ0
1, . . . , θ0

B)
2 t = 0
3 while not converged do
4 for b = 1, . . . , B do
5 θt+1

b ← arg min
θb

J(θt+1
1 , . . . , θt+1

b−1, θb, θt
b+1, . . . , θt

B)

6 end
7 t← t + 1
8 end

Consider a cost function J(θ) to be minimized, where the parameters θ are
partitioned into B blocks of coordinates, i.e., θ = (θ1, . . . , θB). BCD cycles
through these blocks one by one and minimizes J over one block of parameters,
say θb, while fixing the other blocks. That is, starting with initial parameters
values (θ0

1, . . . , θ0
B), at each iteration t, the parameters are updated by iteratively

solving the single-block optimization subproblems

θt+1
b = arg min

θb

J(θt+1
1 , . . . , θt+1

b−1, θb, θt
b+1, . . . , θt

B) (3.29)

for each parameter block θb of θ, for b from 1 to B. The pseudocode of BCD is
outlined in Algorithm 1.

BCD is most effective in certain problem settings where optimizing over one
block of parameters at a time is much easier than jointly optimizing over all
the parameters [49]. This often occurs if the cost function is separable over the
different coordinate blocks, or if there is a structure in the problem that allows
for efficient optimization over individual blocks. Such scenarios typically arise
in machine learning problems, including LASSO, centroid-based clustering, and
matrix factorization, to name a few.

BCD guarantees a decrease in the cost function at each update, thereby
constantly improving the parameters. There may be cases where finding a
global minimum for a subproblem may not be possible through a closed-form
solution or a straightforward method. Nevertheless, if we can find a “good
minimum” or merely improve upon the current parameter block, we can still
ensure that the cost function decreases monotonically. In practice, this approach
also often converges to a satisfactory solution for the original problem.
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Figure 3.7 Illustration of the MM algorithm.

3.2.4 Majorization-Minimization Algorithm

Majorization-minimization (MM) algorithms [50] are a general class of
optimization algorithms that operate by iteratively solving simpler subproblems.
The main idea of the MM algorithm is to find optimal parameters of a non-
convex, difficult-to-minimize cost function by constructing and minimizing a
sequence of simpler surrogate functions that majorize (i.e., provide an upper
bound) the original one.

Given a cost function J(θ), the MM algorithm iterates the following two steps
until convergence [50]:

1. Majorization Step. Given the current parameters estimate θt at
iteration t, find a surrogate function Q(θ | θt) that satisfies two properties:

• Domination condition:

Q(θ | θt) ≥ J(θ), for all θ (3.30)

• Tangency condition:

Q(θt | θt) = J(θt) (3.31)

Together, these two properties ensure that the surrogate function Q(θ | θt)
forms an upper bound to the original cost function J(θ), but touches it
at the current parameters estimate θt, as illustrated in Figure 3.7.
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2. Minimization Step. Update the parameters by minimizing the surrogate
function. That is,

θt+1 = arg min
θ

Q(θ | θt). (3.32)

Theorem 3.1. The sequence {J(θt)} generated by the MM algorithm is non-
increasing. That is, J(θt+1) ≤ J(θt) for all t.

Proof From the domination property of the surrogate function, we have
J(θt+1) ≤ Q(θt+1 | θt). Since θt+1 minimizes Q(θ | θt), we have Q(θt+1 |
θt) ≤ Q(θt | θt), and from the tangency property, we have Q(θt | θt) = J(θt).
Therefore, by transitivity, J(θt+1) ≤ J(θt), which proves the theorem.

3.3 Learning Algorithms

3.3.1 Linear Regression

Linear regression is a simple yet widely-used model in statistics and machine
learning. The key property of this model is that the expected value of the
output is a linear function of the input, making it easy to interpret and fit data.

Let’s denote our training set as D = {(xn, yn)}N
n=1, where each input xn is a

D-dimensional real vector, and yn ∈ R is the corresponding real-valued output.
Linear regression assumes the model of the following form:

yn | xn, w
iid∼ N (b + wTxn, σ2), (3.33)

where θ = (b, w, σ2) are all parameters of the model, the vector of parameters
w is known as weights or regression coefficients, and b is the bias or intercept
term. In simpler terms, the output is a linear function of the inputs plus some
Gaussian noise. By convention, we extend a feature vector x to include a
constant 1, i.e., (1, x1, . . . , xD), to absorb the bias term w0 into the weight
vector w, simplifying the expression b + wTxn to wTxn.

We can use the MLE approach to fit a linear regression model to data,
maximizing the log-likelihood on the training set. The objective function
is given by

ℓ(w, σ2) = − 1
2σ2

∑
n=1

N(yn −wTxn)2

︸ ︷︷ ︸
residual sum of squares

−N

2 ln(2πσ2). (3.34)
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We see that this is equivalent to minimizing the residual sum of squares (RSS),
which can be expressed in matrix notation as

RSS(w) = ∥y −Xw∥2, (3.35)

where X ∈ RN×(D+1) is the data matrix with each row an input vector, and
y ∈ RN is the vector of all outputs. Setting the gradient of RSS(w) to zero, we
get the system XT(y −Xw) = 0, which are known as the normal equations
since (y −Xw) is normal(or orthogonal) to the range of x at the optimal
solution. If the Gram matrix XTX is invertible (or equivalently X has full
column rank), then the unique solution to this system is given by ordinary least
squares (OLS) estimator:

ŵ = (XTX)−1XTy, (3.36)

where X† = X(XTX)−1XT is the Moore–Penrose pseudoinverse of the (non-
square) matrix X.

However, the OLS solution can suffer from overfitting if the features are highly
correlated or the data is high-dimensional (D ≫ N). To address this, we can use
ridge regression, which adds a regularization term λ∥w∥2 to the cost function
to shrink the coefficients:

Jridge(w) = ∥y −Xw∥2 + λ∥w∥2, (3.37)

where λ > 0 is the regularization hyperparameter (in practice, we do not
penalize the bias term w0, since that only affects the global mean of the output
and does not contribute to overfitting).

3.3.2 Logistic Regression

Logistic regression is a widely used discriminative classification model p(y | x, θ),
where x ∈ RD is a fixed-dimensional input vector, y ∈ {1, . . . , C} is the class
label, and θ are the parameters. If C = 2, this is known as binary logistic
regression, and if C > 2, it is known as multiclass logistic regression. We
overview these models in the following.

Binary Logistic Regression

Binary logistic regression is a statistical model used for binary classification
tasks. It predicts the probability that a given input belongs to a specific class
(denoted as 1), as opposed to the alternative class (denoted as 0).



56 MACHINE LEARNING ESSENTIALS

Given a training set D = {(xn, yn)}N
n=1, where xn ∈ RD represents an input,

and yn ∈ {0, 1} is its corresponding output, binary logistic regression assumes
that the class label yn given an input vector xn follows a Bernoulli distribution

yn | xn, w
iid∼ Ber(σ(wTxn)), (3.38)

where the weights w ∈ RD are learnable parameters, and σ(·) is the sigmoid
function, defined as

σ(z) ≜ 1
1 + exp(−z) . (3.39)

This sigmoid function transforms the weighted sum of the inputs a = wTx,
known as the logit, into the (0, 1) interval, which can be interpreted as a
probability.

By utilizing MLE, we can estimate the weight vector w by maximizing the
log-likelihood of the data, given by

ℓ(w) =
N∑

n=1
ln
(
πyn

n (1− πn)(1−yn))

=
N∑

n=1
[yn ln(πn) + (1− yn) ln(1− πn)]

= −
N∑

n=1
Hbce(yn, πn) (3.40)

where πn = σ(wTxn), and Hbce(yn, πn) is the binary cross entropy loss. This
shows that maximizing this log-likelihood is equivalent to minimizing the average
of the binary cross-entropy loss over the training set.

Multiclass Logistic Regression

Multiclass logistic regression is an extension of the binary logistic regression
model to multiclass classification problems.
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Definition 3.5 (Categorical distribution). Let π = (π1, . . . , πC) be the
probabilities associated with C classes, i.e.,

∑C
c=1 πc = 1 and πc ≥ 0 for

all c = 1, . . . , C. Then, the Categorical distribution is a discrete probability
distribution over a finite set of classes, {1, . . . , C} with the probability mass
function defined as

Cat(y | π) ≜
C∏

c=1
π1(y=c)

c , y ∈ {1, 2, ..., C}. (3.41)

The Categorical distribution generalizes Bernoulli to more than two possible
outcomes (C > 2).

The multiclass logistic regression model assumes that the conditional probability
of a class label yn ∈ {1, . . . , C} given an input vector xn ∈ RD follows a
categorical distribution

yn | xn, w
iid∼ Cat(softmax(W Txn)), (3.42)

where the weight matrix W ∈ RD×C is the parameter to be learned. The
softmax function is an extension of the sigmoid function that normalizes a
C-dimensional vector of logits into a probability distribution over C classes.
Formally, it is defined as

softmax(z)c = exp(zc)∑C
c=1 exp(zc)

, for all c = 1, . . . , C. (3.43)

The weight matrix W in multiclass logistic regression is an extension of the
weight vector in binary logistic regression. Instead of learning a single weight
vector, we learn a different weight vector for each class. We can estimate the
weight matrix W by maximizing the log-likelihood function, given by

ℓ(W ) =
N∑

n=1
ln
( C∏

c=1
π1(yn=c)

nc )

=
N∑

n=1

N∑
n=1

1(yn = c) ln(πnc)

= −
N∑

n=1
Hmce(yn, πn) (3.44)

where πnc = softmax(W Txn)c, and Hmce(yn, πn) is the multi-class cross
entropy loss. This shows that maximizing this log-likelihood function is
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equivalent to minimizing the average of the multiclass cross-entropy loss over
the training set. In contrast to linear regression, there is no closed-form solution
for the MLE of binary or multiclass logistic regression. However, it can be
shown that the cost function (which is negative log-likelihood) is strictly convex,
and therefore, the global minimum can be found using optimization techniques
such as (stochastic) gradient descent.

3.3.3 Kernel Density Estimation

Kernel density estimation (KDE) [51], [52], aka Parzen–Rosenblatt window,
is a non-parametric method for estimating the probability density function
of a given dataset. It basically creates a smooth surface over the histogram
representation of the data by placing a kernel (essentially a smoothing function)
on each data point.

Given a training set D = {xn}N
n=1, where each data point xn ∈ RD is drawn

iid from an unknown true distribution p(·), the kernel density estimator pkde(x)
is defined as

pkde(x) ≜ 1
N

N∑
n=1

Kh(x− xn), (3.45)

where Kh(x) ≜ 1
hD K(x

h ) is the scaled version of the kernel K, and h > 0 is a
hyperparameter called the bandwidth, which controls the degree of smoothness
of our density estimator. The kernel K(·) can be any non-negative function
that integrates to one, i.e., K(x) ≥ 0 and

∫
K(x)dx = 1. An example of such

a kernel is the Gaussian kernel, defined as

ϕ(x) = 1
(2π)D/2 exp(−1

2∥x∥
2). (3.46)

Although Gaussian kernels are widely used, they have unbounded support.
Some alternative univariate kernels which have compact support (which can be
computationally faster), are listed in Table 3.2. See Figure 3.8 for a plot of these
kernel functions. In a general form of KDE, a scaled multivariate kernel can
be constructed from a univariate kernel K by a product of the same univariate
kernels scaled (possibly) with a different bandwidth for each dimension, that is

Kh(x) = 1
h1 · · ·hD

D∏
d=1

K(xd

hd
), (3.47)

where hd represents the bandwidth for the dth dimension.
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Table 3.2 List of some popular normalized kernels in 1D. Compact=1 means the
function is non-zero for a finite range of inputs. Smooth=1 means the function is
differentiable over the range of its support. Boundaries=1 means the function is also
differentiable at the boundaries of its support.

Kernel Definition Compact Smooth Boundaries

Gaussian (2π)− 1
2 e− x2

2 0 1 1
Boxcar 1

21(|x| ≤ 1) 1 0 0
Epanechnikov 3

4 (1− x2)1(|x| ≤ 1) 1 1 0
Tri-cube 70

81 (1− |x|3)31(|x| ≤ 1) 1 1 1

−2 −1 0 1 2
0.0

0.2

0.4

0.6

0.8
Gaussian
Boxcar
Epanechnikov
Tri-cube

Figure 3.8 A comparison of some popular kernels.

Definition 3.6 (Empirical distribution). Consider a set of N data points
{x1, x2, . . . , xN}, drawn iid from a distribution P (·) over the domain X. The
empirical distribution of this dataset is defined with the probability measure

Pemp(A) ≜ 1
N

N∑
n=1

1(xn ∈ A), (3.48)

where A represents any subset of X, and 1(·) denotes the indicator function.
The probability density function corresponding to the empirical distribution can
be expressed as

pemp(x) ≜ 1
N

N∑
n=1

δ(x− xn), (3.49)

where δ(x) denotes the Dirac delta function. In essence, the empirical
distribution assigns an equal probability mass to each observed data point.
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The KDE can also be viewed as the convolution of the scaled kernel and the
empirical probability density function, defined by equation (3.49):

pkde(x) = Kh(x) ∗ pemp(x). (3.50)

This shows that KDE is, in fact, the filtered and smoothed version of the
empirical distribution, with the bandwidth h controlling the bandwidth of this
(low-pass) filter defined in the frequency domain.

Bandwidth Selection. As illustrated in Figure 3.9, the bandwidth h regulates
the smoothness of the KDE and has a large impact on the quality of KDE.
A large h will result in a low-variance but high-bias estimate (underfitting).
In this case, the KDE will be too smooth and may fail to capture important
features of the data. A small h will lead to a high-variance but low-bias estimate
(overfitting). The KDE will follow the data very closely, which may capture the
noise in the data. There are two common approaches for bandwidth selection:

1. Plug-in Selectors: These methods compute the bandwidth directly from
the data. A widely used plug-in method is Silverman’s rule of thumb [53],
which provides a good initial guess for the bandwidth. For a univariate,
normally distributed dataset, this gives h = (4σ5/3N)1/5 ≈ 1.06σN−1/5,
where σ is the standard deviation of the samples. This is sometimes
empirically modified by replacing the standard deviation σ with the
parameter A = min(σ, IQR

1.34 ), where IQR is the interquartile range, and by
reducing the factor from 1.06 to 0.9. Then, the final formula would be

h = 0.9 min
(

σ,
IQR

1.34

)
N− 1

5 .

Note that, this rule assumes that the true underlying distribution of the
data is Gaussian, and it might underperform for distributions that are
significantly non-Gaussian.

2. Cross-validation Selectors: These selectors determine the bandwidth by
optimizing the predictive performance of the KDE estimated by some
sort of cross-validation. For instance, one common method is leave-one-
out cross-validation, where we remove one data point, fit the KDE, and
then evaluate the likelihood of the removed point [54], [55]. This process
is repeated for each data point and the bandwidth that maximizes the
average likelihood is selected.

Drawbacks. KDE suffers from the “curse of dimensionality,” performing poorly
when the dimensionality of the data is high (typically greater than 5). As the
dimension increases, the data becomes sparse and the amount of data KDE
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Figure 3.9 An example of kernel density estimate from 6 1D data points. We used a
Gaussian kernel with bandwidth of h = 1 (a) and h = 2 (b).

requires for a reliable density estimate more data grows exponentially with the
dimensionality of the data. Moreover, KDE can be computationally intensive
for large datasets because it requires computing the distance from each point
to every other point.

3.3.4 Kernel Regression

Kernel regression [56], [57] is a non-parametric technique to estimate the
conditional expectation of the output y ∈ R given the input x ∈ RD. The
objective is to find a relationship between the output y and the input x by
estimating the regression function

f(x) = E[y | x] =
∫

yp(y | x)dy =
∫

yp(x, y)dy∫
p(x, y)dy

(3.51)

It is especially useful in cases where this relationship is not assumed to be linear,
and when there is no specific model for this relationship.

We can use KDE to estimate the joint density p(x, y) as follows:

p̂(x, y) = 1
N

N∑
n=1

Kh(x− xn)Kh(y − yn) (3.52)

If we replace the joint densities in equation (3.51) with this estimate and move
the sums outside the integrals, we get

f̂(x) =
1
N

∑N
n=1 Kh(x− xn)

∫
yKh(y − yn)dy

1
N

∑N
n=1 Kh(x− xn)

∫
Kh(y − yn)dy

(3.53)
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Figure 3.10 Nadaraya-Watson kernel regression. The data are noisy samples of
the true function y = sin(x). From left to right: (a) Kernel regression with a large
bandwidth of 1, which leads to underfitting. (b) Kernel regression with a proper
bandwidth of 0.4, which gives a good fit. (c) Kernel regression with a small bandwidth
of 0.01, which leads to overfitting.

We can simplify the numerator using the fact that
∫

yKh(y) = 0dy, which in
turn implies

∫
yKh(y − yn)dy = 1. We can simplify the denominator using the

fact that kernels integrate to one, i.e.,
∫

Kh(y − yn)dy = 1. Hence, we have

f̂(x) =
∑N

n=1 Kh(x− xn)yn∑N
n=1 Kh(x− xn)

(3.54)

or equivalently

f̂(x) =
N∑

n=1
w(x, xn)yn, w(x, xn) ≜ Kh(x− xn)∑N

n′=1 Kh(x− xn′)
, (3.55)

which is known as kernel regression or Nadaraya–Watson estimator [56], [57].
This can be understood as a weighted average of yns, where the weights depend
on the distance between x and the xn’s. When x is close to a given xn, the
corresponding weight will be larger. In a general form of kernel regression,
Kh(x− x′) can be replaced by any similarity measure S : X× X→ R.

Just as with KDE, the choice of bandwidth is crucial in kernel regression as
it controls the trade-off between bias and variance. A small bandwidth will
result in low bias but high variance (overfitting), where the regression function
learns noise, while a large bandwidth will result in low variance but high bias
(underfitting), where the regression function is oversimplified and too smooth
to learn all the important patterns. The same bandwidth selection techniques
as that of KDE can be also used for kernel regression.

Figure 3.10 illustrates the impact of bandwidth on Kernel Regression with a
Gaussian kernel in learning from samples of the sinusoidal function. With a
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large bandwidth of 1 (Figure 3.10a), the model underfits, failing to capture
the data’s structure. A small bandwidth of 0.01 (Figure 3.10b) leads to
overfitting, capturing noise instead of true patterns. An optimal bandwidth of
0.4 (Figure 3.10c) strikes the best balance, effectively capturing the underlying
data structure.

3.4 Conclusion

In this chapter, we presented fundamental concepts of machine learning, with
a particular focus on supervised learning. We delved into model fitting using
empirical risk minimization and highlighted the importance of optimization
methods, e.g., stochastic gradient descent and Adam, in this process. From
a probabilistic perspective, we explored foundational models such as logistic
regression and kernel regression, which serve as the basis for more complex
models, particularly neural networks, presented in the next chapters. Notably,
logistic regression format is used as the final layer in our segmentation networks,
presented in Chapters 6, 7, and 8. Kernel regression offers insights into the
attention mechanism, which will be elaborated upon in Section 7.3.1.





Chapter 4

Deep Learning for Medical
Image Segmentation

Deep learning models have dominated the field of medical image segmentation,
underpinning our approach in this thesis. This chapter provides an insight into
the core principles of deep learning essential for medical image segmentation.
Specifically, we delve into convolutional neural networks and their key
components and also explore models that leverage transformers and attention
mechanisms, which have recently gained prominence in tackling computer vision
challenges. We conclude with a review of convolutional, attention-based, and
hybrid models that have U-shaped architectures designed specifically for medical
image segmentation.

65
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4.1 From Handcrafted Features to Hierarchical
Representations

Traditional machine learning involves manually designing and extracting features
from raw data. This often requires domain-specific knowledge to determine
what features are likely to be relevant for a specific task. These “handcrafted”
features are then used by machine learning algorithms, such as logistic regression
and random forests, to learn predictive models. The success of the model largely
depends on the quality and relevance of the “handcrafted” features.

Representation learning, on the other hand, is an approach in machine learning
that aims to automatically learn the features or representations needed for a
task directly from raw data [38]. Rather than requiring human experts to design
and extract features, representation learning algorithms identify and extract
high-level, abstract features themselves. The idea is to let the model discover
not only the mapping from representation to output but also the mapping from
input to the representation itself in an end-to-end fashion. It is often used in
tasks where handcrafting features would be challenging or impractical, such as
image recognition or natural language processing.

Deep learning is a subfield of machine learning characterized by the use of
artificial neural networks with numerous layers for representation learning [38].
These layers enable the model to automatically learn hierarchical representations
of data, progressively extracting higher-level features from the raw input. For
instance, in image recognition, shallower layers may identify edges, while deeper
layers may identify more complex structures or patterns. These models are
particularly effective at processing large volumes of complex, high-dimensional
data such as images, speech, and text, and they excel in tasks like image
and speech recognition, where manual feature engineering proves difficult or
impractical. For such tasks, they often outperform machine learning techniques
that rely on handcrafted features. In this section, we provide an overview of
the fundamental concepts and important methods in deep learning that are
relevant to our work on brain lesion segmentation.

4.2 Multilayer Perceptron

The most basic types of neural networks are known as multilayer perceptions
(MLPs) [58], which consist of multiple layers of neurons, each fully connected
with neurons in the adjacent layers. Specifically, each neuron receives input
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from the neurons in the previous layer and, in turn, influences the neurons in
the subsequent layer.

Before delving into a formal presentation of MLPs, let’s revisit logistic regression.
This model directly maps inputs to outputs by applying a single linear (affine)
transformation

f(x; W , b) = W Tx + b, (4.1)

subsequently followed by a softmax operation. If the relationship between our
labels and the input data were as simple as a basic affine transformation, then
this approach would be adequate. Nevertheless, the assumption of linearity in
affine transformations can be overly simplistic and restrictive. Linearity implies,
for example, the weaker assumption of monotonicity, i.e., that any increase in
a feature must either always cause an increase in the model’s output (if the
corresponding weight is positive), or always cause a decrease in our model’s
output (if the corresponding weight is negative). This may seem to be natural
property in some real scenarios, but it does not make sense in many cases, for
example, classifying images of cats and dogs. Should increasing the intensity of
the pixel at position (13, 17) always increase (or always decrease) the likelihood
that the image depicts a dog? Reliance on a linear model corresponds to the
implicit assumption that the only requirement for differentiating cats vs. dogs
is to assess the brightness of individual pixels. This approach is doomed to fail
in a world where inverting an image preserves the category.

We can overcome the limitations of linear models by incorporating one or more
hidden layers. The easiest way to do this is to stack many fully connected layers
on top of each other. Each layer feeds into its next layer until we generate
outputs. We can think of the first L−1 layers as our representation and the final
layer as our linear predictor. Formally, an MLP with L layers to approximate a
function f : RD → RC can be expressed as:

a(0) = x,

a(ℓ) = g(ℓ)
(

W (ℓ)T
a(ℓ−1) + b(ℓ)

)
, ℓ = 1, . . . , L

o = a(L), (4.2)

where x ∈ RD and o ∈ RC represent inputs and outputs, respectively. W (ℓ) ∈
RDℓ−1×Dℓ and b(ℓ) ∈ RDℓ are the weight and bias parameters of the ℓth layer,
respectively. Dℓ is the output dimension of the ℓth layer, with D0 = D and
DL = C. Here, the input layer corresponds to ℓ = 0, the hidden layers to
ℓ = 1, . . . , L − 1, and the output layer to ℓ = L. g(ℓ) is called an activation
function, which is the key ingredient to make MLP a nonlinear model, and the
outputs of the activation functions, a(ℓ) ∈ RDℓ , are referred to as feature maps or



68 DEEP LEARNING FOR MEDICAL IMAGE SEGMENTATION

x1

x2

x2

+1

bias

a
(1)
1

a
(1)
2

a
(1)
3

a
(1)
4

+1

bias

a
(2)
1

a
(2)
2

a
(2)
3

a
(2)
4

+1

bias

y1

y2

y3

Input Layer Hidden Layers Output Layer

Figure 4.1 An MLP with 2 hidden layers, each has 4 units.

activation maps. The activation functions of the hidden layers were traditionally
a sigmoid function or hyperbolic tangent on each node (coordinate), but today
the ReLU (rectified linear unit) activation function [59], σ(x) = max(0, x), is
a more popular choice. Table 4.1 present a list of some popular activation
functions. Note that these functions operate on their arguments element-wise.
The activation function of the last layer, g(L), is often the sigmoid function
for binary classification, softmax for multi-class classification, and the identity
function for regression.

As an example, Figure 4.1 illustrates an MLP with 3 inputs, 2 hidden layers,
and 3 outputs. Each hidden layer contains 4 neurons. Since the input layer
does not involve any calculations, producing outputs with this network requires
implementing the computations for both the hidden and output layers; thus,
the total number of layers in this MLP is 3. Note that both layers are fully
connected. Every input influences every neuron in the hidden layer, and each
of these in turn influences every neuron in the output layer.

Given a dataset and a loss function, we can construct the empirical risk and
minimize it using (stochastic) gradient descent. Training a neural network
is not much different from training any other parametric machine learning
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model with gradient descent. The largest difference between the linear models
we have seen so far and neural networks is that the nonlinearity of a neural
network causes most interesting loss functions to become non-convex. This
means that neural networks are usually trained by using iterative, gradient-
based optimizers that merely drive the cost function to a very low value, rather
than the linear equation solvers used to train linear regression models or the
convex optimization algorithms with global convergence guarantees used to
train logistic regression [38]. Stochastic gradient descent applied to non-convex
loss functions has no such convergence guarantee, and is sensitive to the values
of the initial parameters. For MLPs, it is important to initialize all weights to
small random values. The biases may be initialized to zero or to small positive
values.

To be able to apply any gradient-based optimization algorithm for training a
neural network, we first need the gradient of the loss function with respect to
the parameters. This can be done by the famous backpropagation algorithm
[58], which is a special case of automatic differentiation. Modern deep learning
frameworks such as PyTorch are equipped with automatic differentiation and
are able to efficiently calculate the gradient of almost any loss function. This
has profoundly simplified the implementation of deep learning algorithms as we
only need to implement the forward pass and leave the backward pass to be
taken care of by the framework. In the past, before automatic differentiation,
even small changes to complicated models required recalculating complicated
derivatives by hand.

4.3 Convolutional Neural Networks

The development of modern convolutional neural networks (CNNs) is primarily
attributed to the seminal work of Yann LeCun and his collaborators in the
late 1980s and early 1990s [64], [65]. Their work was originally designed for
handwriting and character recognition tasks, resulting in the creation of LeNet
[65], one of the earliest CNN architectures. LeNet, while relatively simple
by today’s standards, laid the groundwork for future advancements in the
field, introducing key elements of CNNs, including convolutional layers and
subsampling (now more commonly referred to as pooling).

A significant leap in the advancement of CNNs came in 2012 with the
introduction of AlexNet [66], designed to classify the 1.2 million high-resolution
images in the ImageNet database into 1000 different classes. AlexNet
significantly outperformed other methodologies in the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) that year. In fact, for much of the
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intervening time between the early 1990s and the watershed results of 2012 [66],
neural networks were often surpassed by other machine learning methods, such
as kernel methods [67] and random forests [68]. AlexNet’s deeper and wider
architecture, compared to LeNet, leveraged new techniques like rectified linear
units (ReLUs) [59] and dropout [69], and also utilized graphics processing units
(GPUs) for efficient training. This marked the advent of ’deep’ learning and
sparked a revolution in the application of CNNs for computer vision tasks.

MLPs, discussed in Section 4.2, are appropriate options when we are dealing
with tabular data, they have several shortcomings in image processing tasks.
Firstly, MLPs are incapable of exploiting the 2D (or 3D) spatial structure of
images since they flatten the images, irrespective of the spatial relation between
pixels. This lack of spatial awareness makes MLPs inefficient in learning
localized features, which are crucial in most vision-related tasks. Secondly,
MLPs encounter scalability issues due to their fully connected nature. This
means that the number of parameters grows significantly with the increase in
resolution, leading to computational inefficiencies and potential overfitting.

CNNs, on the other hand, are designed to overcome these limitations, making
them particularly suitable for computer vision tasks due to the following main
reasons:

• Local Receptive Fields: CNNs use filters or kernels that slide across the
input image, allowing them to recognize local patterns within different
regions. This mimics the way the human visual system operates and
enables CNNs to capture intricate details that MLPs often miss.

• Shared Weights: CNNs use shared weights, where the same filter is applied
across the entire image. This makes CNNs significantly reduce the number
of parameters and become more computationally efficient while less prone
to overfitting compared to their MLP counterparts.

• Translational Invariance: Shared weights together with pooling layers
also make CNNs translational invariance, enabling them to detect the
same pattern regardless of its position in the image, providing robustness
against changes in the position of objects.

• GPU-friendly Parallelization: The operations within CNNs are embarrass-
ingly parallel, enabling them to leverage the computational capabilities
of GPUs effectively. This leads to a significant reduction in training and
inference times.
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Figure 4.2 Illustration of 2D cross-correlation.

4.3.1 Convolutions for Images
Cross-Correlation. Cross-correlation is a fundamental operation in CNNs. It
is worth noting that the term “cross-correlation” in the context of CNNs is
often used interchangeably with “convolution,” as done in this thesis. However,
strictly speaking, the operation performed in CNNs is actually cross-correlation,
not convolution, as the latter involves flipping the kernel, which is not done in
CNNs.

Let’s denote a 2D input image as X ∈ RH×W and a kernel (or filter) as
V ∈ RM×N , where H and W represent the height and width of the input
respectively, and M and N denote the height and width of the kernel. We
always assume that the tensors representing images and kernels are zero-based,
where the indices for all the dimensions start at 0. The cross-correlation
operation works by sliding the kernel over the input, from left to right, top
to bottom, and at each position, the dot product between the kernel and the
portion of the input under the kernel is computed. See Figure 4.2 for an
illustration of this process. Formally, the cross-correlation output is a matrix
Y = X ∗ V ∈ R(H−M+1)×(W −N+1), defined as

Yh,w =
M−1∑
m=0

N−1∑
n=0

Xh+m,w+nVm,n

= ⟨Xh:h+M−1,w:w+N−1, V ⟩, (4.3)

where Yh,w represents the intensity value at position (h, w) in the output,
and Xh:h+M−1,w:w+N−1 denotes the slice of the input covered by the window
corresponding to the position (h, w). The key characteristics of the cross-
correlation operation include:

• Linearity: It behaves linearly with respect to both the input and the
kernel, allowing for the superposition of effects.
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Figure 4.3 Illustration of padding and strides in 2D convolution. The input is
zero-padded by 1 pixel on all sides and then convolved with a 2 × 2 kernel using strides
of (3, 2).

• Shift Invariance: If the input is shifted, the output will also be shifted by
the same amount, preserving the spatial relationship. This gives a model
the ability to recognize patterns irrespective of their spatial position in
the input.

• Locality: The kernel operates locally on the input, focusing on a specific
region at a time, enabling the extraction of local features, such as edges,
corners, or textures.

• Parameter Sharing: The same kernel is used across the entire image,
greatly reducing the number of parameters, promoting generalization, and
enabling the detection of the same feature regardless of its position.

Padding. In Figure 4.2, we see that convolving a 4 × 4 image with a 2 × 2
filter results in a 3 × 3 output. In general, convolving an M × N filter over
an image of size (H, W ) produces an output of size (H −M + 1, W −N + 1),
which reflects how the kernel’s size influences the output’s size, with larger
kernels resulting in smaller spatial dimensions for the output. This is sometimes
called valid convolution since we only apply the filter to “valid” parts of the
input, i.e., we do not let it “slide off the ends”. If we want the output to have
the same size as the input, we can use zero-padding, which means we add a
border of 0s to the image, as illustrated in Figure 4.3. This is sometimes called
same convolution. If we pad PH rows on both sides of the height and PW

columns on both sides of the width, then the convolution output will be of size
(H + 2PH −M + 1, W + 2PW −N + 1).

Stride. Since each output pixel is generated by a weighted combination of
inputs in its receptive field (based on the size of the filter), neighboring outputs
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will be very similar in value, since their inputs are overlapping. We can reduce
this redundancy (and speedup computation) by skipping every Sth input. This
is called strided convolution, which is illustrated in Figure 4.3, where we convolve
a 4 × 4 image with a 2 × 2 filter with a zero-padding of 1 pixel on all sides
and with strides of (3, 2) to obtain a 2 × 3 output. In general, if we pad PH

rows on both sides of the height and PW columns on both sides of the weight
and use strides of size (SH , SW ), then the convolution output will have the size
(Hout, Wout), computed as

Hout = ⌊H + 2PH −M + SH

SH
, ⌋

Wout = ⌊W + 2PW −N + SW

SH
⌋. (4.4)

Strided convolutions are commonly used in modern CNNs like ResNet [70] to
downsample the feature maps at the beginning of each stage.

Convolutional Layers. The convolutional layer forms the cornerstone of CNNs,
serving as the core component for feature extraction and pattern recognition in
spatial data. A convolutional layer consists of a set of learnable filters, which
are used to perform a cross-correlation operation on the input (recall that
strictly speaking, “convolutional layers” are a misnomer since the operations
they express, as mentioned earlier, are more accurately described as cross-
correlations). Unlike the layers of MLPs, where each neuron connects to all
neurons in the previous layer, neurons in a convolutional layer are connected
only to a small region of the input volume.

In image processing, input data typically have multiple channels (e.g., RGB
image has three channels: red, green, and blue), which necessitates the
adaptation of the convolutional layer to handle multiple channels. Let’s denote
a multi-channel 2D input as X ∈ RCin×H×W , where Cin is the number of input
channels, and H and W are the height and width of the input, respectively. The
kernel must also incorporate these multiple input channels and produce multiple
output channels. Therefore, we express a kernel as V ∈ RCout×Cin×M×N and a
bias as b ∈ RCout , where Cout is the number of output channels (or the number
of filters), and M and N are the height and width of the kernel. Here, Vcout,cin,:,:
is the filter associated with the coutth output channel and cinth input channel,
bcout

The cross-correlation operation in this general scenario is performed on the 2D
data of each input channel separately, and the results are summed up to yield
the final output for each output channel, as illustrated in Figure 4.4. Each
output channel has its own bias term, which is added to the output of the cross-
correlation before the activation function is applied. Formally, a convolutional
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Figure 4.4 Illustration of 2D convolution applied to an input with 2 channels.

layer can be described as follows:

Ycout,h,w = bcout +
Cin−1∑
cin=0

M−1∑
m=0

N−1∑
n=0
Xcin,h+m,w+nVcout,cin,m,n (4.5)

where Ycout,h,w represents the intensity value at position (h, w) in the coutth
output channel. The learnable parameters of the convolutional layer are the
kernel V and the bias b.

Computational Complexity. We can calculate the number of floating-point
operations (FLOPs) involved in a convolutional layer to understand its
computational complexity. As defined by equation (4.5), for every output
channel, we perform MN multiplications, and an equal number of additions, at
each position (h, w) in the output data. This process is repeated for each input
channel and output channel. Therefore, the total number of FLOPs for the entire
convolutional layer is O(2MNHoutWoutCinCout), where Hout and Wout can be
computed using equation (4.4). Note that this expression represents the raw
computation count and does not take into account any possible optimizations,
such as those achievable through fast Fourier transform (FFT). However, it
serves as a theoretical baseline for comparing the computational efficiency of
different convolutional layer configurations.

Pointwise Convolution. Sometimes we just want to take a weighted
combination of the features at a given position, rather than across positions.
This can be done using 1x1 convolution, known as pointwise convolution. This
can be thought of as a fully connected layer applied to each pixel in parallel.
While it might seem trivial at first glance, this operation serves some important
functions within a CNN. Indeed, pointwise convolutions mix the channels without
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Figure 4.5 Illustration of pointwise convolution. 1 × 1 convolution operates on a
3-channel input and yields a 2-channel output. The input and output have the same
height and width.

considering the spatial dimensions, allowing the modeling of the interactions
between different channels. Pointwise convolutions can be also used to reduce
the number of channels in the data, controlling the network’s complexity
and computational cost. See Figure 4.5 for an illustration of the pointwise
convolution on a 2D toy image.

4.3.2 Pooling Layers

Our ultimate task often involves answering a global question about an image,
such as whether it contains a cat. Therefore, the units of our final layer should
be sensitive to the entire input. This goal can be accomplished by gradually
reducing the spatial resolution using pooling layers in several stages to create
increasingly coarser maps, ultimately learning a global representation. This
way, the deeper we go in the network, the more the receptive field for each
hidden node grows relative to the input, as the convolution kernels cover a more
substantial effective area. Moreover, by downsampling the feature maps, the
pooling layers decrease the number of parameters and computations required in
subsequent layers.

Like convolutional layers, pooling operators consist of a fixed-shape window that
is slid over all regions in the input according to its stride, computing a single
output for each position traversed by the fixed-shape window. However, unlike
the convolutional layer, the pooling layer contains no parameters. Instead,
pooling operators are deterministic, typically calculating either the maximum
or the average value of the elements in the pooling window. These operations
are called max pooling (see Figure 4.6 for an illustration) and average pooling,
respectively. Max pooling, commonly used in intermediate stages, preserves the
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Figure 4.6 Illustration of max pooling with a 2 × 2 filter and a stride of (2, 2).

strongest features, providing robustness to small translations.

If we average over all the locations in a feature map, the method is called global
average pooling. This converts a C × H ×W feature map into a C × 1 × 1
feature map, which can be reshaped to a C-dimensional vector before entering
a fully connected layer, where it is then passed to softmax. The use of global
average pooling enables the classifier to handle images of any size, as the final
feature map will always be converted to a fixed-dimensional vector before being
mapped to a distribution over classes.

As an alternative to explicit pooling, strided convolutions can also be used to
downsample the feature maps. By employing a stride of 2, for instance, the
convolution layer will skip over one pixel at each step, effectively halving the
spatial dimensions of the output. Strided convolutions also incorporate learnable
parameters, which allows the network to learn the optimal downsampling
method.

4.3.3 Normalization Layers

Normalization layers have emerged as a fundamental building block in deep
learning, providing significant benefits in model training. These benefits are
motivated by the challenges in training deep neural networks, particularly
concerning convergence speed, stability, and model generalization.

The optimization landscape in deep learning can be fraught with challenges.
The inputs to each layer’s activation functions may vary dramatically in scale
throughout the training process, leading to problems known as internal covariate
shift [71]. This shifting can cause the gradients to vanish or explode, impeding
convergence and necessitating careful initialization and smaller learning rates.
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Figure 4.7 Illustration of different normalization methods for a CNN. Each subplot
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Normalization layers are meant to address these challenges by standardizing the
feature maps within a network, maintaining a mean close to zero and a standard
deviation close to one. This makes the optimization landscape smoother and
allows for larger learning rates, leading to faster convergence.

Batch Normalization. One of the most widely-used normalization techniques
is called Batch Normalization [71]. This ensures the distribution of a feature
map within a layer has zero mean and unit variance, when averaged across the
samples in a minibatch. More precisely, if {zn}n∈B are the values of a feature
map over the minibatch B, we replace the feature map zn with z̃n, computed
as follows:

µB = 1
|B|

∑
n∈B

zn, σ2
B = 1

|B|
∑
n∈B

(zn − µB)2,

ẑn = zn − µB√
σ2

B + ϵ
, z̃n = γẑn + β, (4.6)

where µB and σ2
B are the mean and variance of the batch, ẑn is the standardized

feature map, γ and β are learnable parameters to scale and shift it, and ϵ > 0
is a small constant to avoid division by zero.

BN can dramatically speed up and stabilize the training, especially for deep
CNNs. The exact reasons for this are still unclear, but BN seems to make
the optimization landscape significantly smoother [72]. BN also acts like a
regularizer that improves generalization [73].

Layer Normalization. Batch normalization often fails when the batch size is
small since the estimated mean and variance parameters can be unreliable. One
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solution is to compute the mean and variance by pooling statistics across other
dimensions of the tensor, but not across examples in the batch. In this regard,
layer normalization (LN) [75] was proposed as an alternative that normalizes
the feature maps across the feature dimensions for each individual example.
More precisely, if zn ∈ RD represent a vector of flattened feature maps in some
layer, then LN is defined as:

µn = 1
D

D∑
d=1

znd, σ2
n = 1

D

D∑
d=1

(znd − µd)2,

ẑnd = znd − µn√
σ2

n + ϵ
, z̃nd = γẑnd + β, (4.7)

where γ and β are learnable parameters, and ϵ > 0 is a small constant to avoid
division by zero.

Instance Normalization. Alternatively, we can normalize across spatial
dimensions for each channel in each example independently. This is known as
instance normalization (IN) [76]. Let Zn ∈ RC×S represent spatially-flattened
feature maps in some layer, where C is the number of channels and S is the
number of pixels. IN can then be expressed as:

µnc = 1
S

S∑
s=1

zncs σ2
nc = 1

S

S∑
s=1

(zncs − µnc)2,

ẑncs = zncs − µnc√
σ2

nc + ϵ
, z̃ncs = γẑncs + β. (4.8)

The strength of IN lies in its ability to remove example-specific contrast
information, which often leads to more stylized features in image generation
tasks.

Group Normalization. Group normalization (GN) [74] divides channels into
smaller groups and normalizes within each group independently. This is
illustrated in Figure 4.7. LN is a special case in which there is a single group,
containing all the channels. IN is a special case in which there are C groups,
one per channel. GN provides a good balance between LN and IN, offering
consistent performance in scenarios where BN performs poorly.
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4.3.4 Transposed Convolutional Layers

In (valid) convolution, we transform a large input X into a small output Y by
taking a weighted combination of the input pixels with the convolutional kernel
V . This concept is most easily explained in code:

def conv(X, V):
H, W = X.shape
M, N = V.shape
Y = torch.zeros((H - M + 1, W - N + 1))
for h in range(H):

for w in range(W):
Y[h, w] = torch.sum(X[h : h + M, w : w + N] * V)

return Y

In transposed convolution, we perform the reverse operation in order to produce
a larger output from a smaller input:

def trans_conv(X, V):
H, W = X.shape
M, N = V.shape
Y = torch.zeros((H + M - 1, W + N - 1))
for h in range(H):

for w in range(W):
Y[h : h + M, w : w + N] += X[h, w] * V

return Y

Here, the input image is first padded with (M − 1, N − 1) zeros on the bottom
right, where (M, N) represents the kernel size. Subsequently, a weighted copy
of the kernel is placed at each input position, with the weight being the
corresponding pixel value, and then summed. This process is illustrated in
Figure 4.8. We can think of the kernel as a “stencil” that is used to generate
the output, modulated by the weights in the input.

Transposed convolutional layers with strides of 2, which effectively double the
spatial dimensions, are commonly used in the decoder of segmentation models
such as U-Net [3]. These layers progressively upsample the feature maps to
eventually match the output size.
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Figure 4.8 Transposed convolution with 2 × 2 kernel.

4.3.5 Modern CNN Architectures

It is common to use CNNs to perform image classification, which is the task
of estimating the function f : RC×H×W → {0, 1}K , where C is the number
of input channels (e.g.,C = 3 for RGB images), and K is the number of class
labels. In this section, we briefly review various CNNs that have been developed
over the years to solve image classification tasks.

LeNet. LeNet [64], [65] is often considered the pioneer of CNNs. It was
designed for the task of digit recognition and was successfully applied to read
handwritten zip code digits on documents.

As illustrated in Figure 4.9a, LeNet’s architecture consists of two sets of
convolutional and average pooling layers, followed by an MLP classifier with
three fully connected layers (two of which are hidden). The input to LeNet is
a 32 × 32 grayscale image. The first convolutional layer uses six 5 × 5 filters
with stride 1, followed by an average pooling layer. The second convolutional
layer uses sixteen 5× 5 filters, followed by another average pooling layer. The
first and second fully connected layers are followed by sigmoid/tanh and have
120 and 84 neurons, respectively. The last fully connected layer is followed by
softmax and has 10 output neurons.

LeNet introduced the concept of local receptive fields, shared weights, and
pooling, which are foundational to all modern CNNs. However, it had limitations,
such as the use of average pooling which often resulted in loss of useful
information, and the use of tanh activation functions which led to the vanishing
gradient problem.

LeNet’s significance lies in its pioneering role in demonstrating the potential
of CNNs for image recognition tasks. It paved the way for subsequent
architectures by establishing the basic structure of CNNs, which includes
alternating convolutional and pooling layers followed by fully connected layers.

AlexNet. Having won the ImageNet challenge in 2012 by a significant margin,
AlexNet [66] was a breakthrough in the field of deep learning as it showed, for
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Figure 4.9 Modern CNNs for Image Recognition: The stems are depicted in red,
stages in blue, and heads in green. Blocks operating at the same resolution are grouped
together for ease of distinction between consecutive stages.

the first time, that the features extracted by learning can transcend hand-crafted
features, breaking the previous paradigm in computer vision.

AlexNet built upon the foundational concepts of LeNet but introduced several
key modifications. As illustrated in Figure 4.9b, AlexNet was significantly
deeper, with five convolutional layers, some of which follow max pooling layers,
and three fully connected layers. The network used the ReLU activation
function, which helped mitigate the vanishing gradient problem associated with
sigmoid/tanh activation functions used in LeNet.

AlexNet also introduced the use of GPU acceleration for training deep neural
networks. The original AlexNet was trained on two Nvidia GTX 580 GPUs for
about six days. This was a significant development, as it enabled the training
of much deeper networks on larger datasets. Another key innovation of AlexNet
was the use of dropout [69] after hidden fully connected layers. Dropout is
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a regularization technique to prevent overfitting. Dropout randomly sets a
fraction of input units to 0 at each update during training time, which helps
prevent units from co-adapting too much.

AlexNet’s contributions were transformative, as it demonstrated the feasibility
and effectiveness of training deep CNNs, leading to a resurgence of interest in
deep learning.

GoogLeNet. The ImageNet challenge in 2014 was won by GoogLeNet [77],
a CNN that innovatively combined pointwise convolutions, repeated blocks,
and a cocktail of convolution kernels. This approach effectively addressed
the challenge of increasing the network depth and width while maintaining a
consistent computational budget.

This network was arguably the first to make a clear distinction among the stem
(data ingest), body (data processing), and head (prediction) of a CNN. This
pattern has been used in the design of deep networks ever since. The stem
consists of the initial convolution, which has a larger kernel size and extracts
lower-level features from the images. This is followed by a body of convolutional
blocks, which extract higher-level features. Finally, the head maps these features
to solve the classification, segmentation, detection, or tracking problem at hand.

The core convolutional block in GoogLeNet, known as an Inception block, was
designed to address the issue of convolution kernel selection in a novel way.
While other methods sought to determine the ideal kernel size ranging from 1×1
to 11× 11, the Inception block simply concatenated multi-branch convolutions.
As illustrated in Figure 4.10a, Inception block consists of four parallel branches,
each using different types of operations. These include 1× 1, 3× 3, and 5× 5
convolutions, as well as a 3× 3 max pooling. The outputs of all the branches
are then concatenated and sent to the next layer. The use of 1× 1 convolutions
(pointwise convolutions) is a key aspect of the Inception block, as it allows for
dimensionality reduction, which helps control the computational cost.

As illustrated in Figure 4.9c, the stem (highlighted in red) consists of a 64-
channel 7× 7 convolutional layer, followed by a 3× 3 max pooling layer with
strides of 2. The main contribution of GoogLeNet was the design of the network
body (highlighted in blue), which is composed of four stages. In the first stage of
the body, a 64-channel 1×1 convolutional layer is followed by a 3×3 convolutional
layer that triples the number of channels. The second, third, and fourth stages
of the body each begin with a 3× 3 max pooling layer with strides of 2, halving
the resolution. Following this, there are stacks of 2, 5, and 2 Inception blocks in
the respective stages. The head (highlighted in green) of the network consists of
a global average pooling and a fully connected layer to generate the prediction.

GoogLeNet was much deeper than AlexNet (22 layers vs. 8 layers), but thanks to
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Figure 4.10 Blocks used in the modern CNNs for image recognition.

the Inception modules, it was still computationally efficient. It also introduced
the concept of auxiliary classifiers to combat the vanishing gradient problem.
These classifiers were attached to intermediate layers of the network, and their
loss was added to the total loss of the network with some weight, which provided
a regularization effect.

ResNet. The residual network (ResNet) [70] won the ImageNet challenge in
2015. This was a major breakthrough in the field of deep learning, as it enabled
the training of extremely deep networks with hundreds of layers without running
into the issue of vanishing and exploding gradients. This starkly contrasted
previous architectures, which struggled to train networks beyond a depth of 20
layers or so.

The core idea behind ResNet is the introduction of residual learning principle.
Instead of expecting each few stacked layers directly learn a desired underlying
mapping, say f(x), a ResNet explicitly lets these layers learn the residual
mapping g(x) ≜ f(x)− x, which is the difference between the desired output
and the input. The original mapping is, therefore, recast into g(x) + x, which
can be realized by neural networks with shortcut connections. As illustrated in
4.10b, a ResNet block has two 3 × 3 convolutional layers, each followed by a
batch normalization layer and a ReLU activation function. Importantly, there
is a shortcut connection that adds the input directly before the final ReLU
activation function.

He et al. [70] argued that optimizing the residual mapping is simpler than
optimizing the original, unreferenced mapping. For instance, if the desired
underlying mapping is the identity mapping f(x) = x, the residual mapping is



84 DEEP LEARNING FOR MEDICAL IMAGE SEGMENTATION

just g(x) = 0, which is easier to learn. We only need to adjust the weights and
biases of the convolutional layers to zero. Generally, this simple yet powerful idea
ensures that even if g(x) becomes very small, which can lead to the vanishing
gradients problem, the network can still carry forward a strong gradient via the
shortcut connection.

The architecture of ResNet-18 (a ResNet with 18 convolutional and fully
connected layers) is illustrated in Figure 4.9d. The stem and head of ResNet are
identical to those of GoogLeNet. The difference is the batch normalization layer
added after each convolutional layer in ResNet. Like GoogLeNet, ResNet also
has four stages, with the resolution becoming halved in the second, this, and
fourth stages. However, ResNet-18 uses two residual blocks at each stage. We
can create different ResNet models, such as the deeper ResNet-152. Although
the main architecture of ResNet is similar to that of GoogLeNet, ResNet’s
structure is simpler and easier to modify. All these factors have resulted in the
rapid and widespread use of ResNet.

Pre-activation ResNet. A later variant of ResNet introduced the concept
of pre-activation [78], where the order of the layers in the residual block was
modified. As depicted in Figure 4.10b, in the original ResNet block, the order
was convolution, batch normalization, and ReLU activation. Conversely, in the
pre-activation variant, the order is batch normalization, ReLU activation, and
convolution, as depicted in Figure 4.10c. The pre-activation design was found
to perform better, especially for extremely deep networks.

4.4 Transformers and Attention Mechanisms

Transformers were originally introduced by Vaswani et al. [79] as a model based
on the attention mechanism for machine translation. The attention, or attention
in short, is a mechanism to mix information from input tokens in a text to
learn its representation (in this context, a token refers to a numeric vector that
encodes a single unit of text, e.g., word). Since their inception, transformers
have demonstrated state-of-the-art performance on several natural language
processing (NLP) tasks.

Inspired by this, Dosovitskiy et al. [80] proposed vision transformers (ViTs),
which adapts the vanilla transformer to computer vision by breaking down
input images as a sequence of patches, turning them into vectors, and treating
them like tokens in a standard transformer. ViT is convolutional-free and solely
based on the attention mechanism and MLP. The attention mechanism, as the
core component of ViT, is able to capture long-range dependencies without
imposing any local locality inductive bias as the convolution operation does.
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This weak inductive bias enables ViT to outperform their state-of-the-art CNN
counterparts in image recognition when trained on larger datasets (for instance,
JFT-300M, which is 300 times larger than ImageNet) [80], [81]. In addition, ViT
also scales up more efficiently and has been proven more robust to corruption
[82]. Indeed, ViT continues the long-lasting trend of removing hand-crafted
visual features and inductive biases from models in an effort to leverage the
availability of larger datasets coupled with increased computational capacity.

Existing transformer-based models have demonstrated promising results
in medical image segmentation, prompting a surge of interest in further
development of such models. This section starts with an overview of ViT
and its notable variant, Swin Transformer. It then delves into transformer-
based models developed for medical image segmentation, highlighting their key
properties, advantages, and shortcomings.

4.4.1 Attention Mechanism

The success of transformers is often credited to the attention mechanism [83],
which is designed to capture the long-range internal correlations within a
sequence. Let (x1, . . . , xN ) be an input sequence of C-dimensional tokens,
represented by matrix X = [x1 | · · · | xN ]T. In an attention layer, each input
token xn is first transformed into query qn = W Qxn, key kn = W Kxn, and
value vn = W V xn vectors, where W Q, W K , W V ∈ RC×E are learnable weight
matrices with E being the embedding dimension. The queries, keys, and value
can be packed and represented by matrices Q, K, V ∈ RN×E , respectively. The
attention weights matrix A ∈ RN×N represents the pairwise similarity between
queries and keys:

A ≜ softmax
(

QKT
√

E

)
, (4.9)

where softmax is applied row-wise to ensure that the attention weights for a
query are nonnegative and sum to 1, i.e.,

∑N
n=1 Amn = 1 and Amn ≥ 0. The

output of scaled dot-product attention, or simply attention, is defined as [79]:

Attention(Q, K, V ) ≜ AV . (4.10)

See Figure 4.11a for an illustration. Note that attention operates in O(N2E)
time and requires O(N2) memory to store the attention weights. This quadratic
scaling with sequence length makes attention prohibitively expensive for large
inputs, such as high-resolution or 3D images.
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Figure 4.11 (a) Scaled dot product attention. (b) Multi-head attention, where
multiple heads are concatenated then linearly transformed.

4.4.2 Multi-Head Attention

Multi-head attention (MHA) is an extension of the attention mechanism that
allows the model to attend to different parts of the input sequence simultaneously
in multiple representational subspaces [79]. In MHA, the attention operation
is executed M times, referred to as “heads,” in parallel. Each head i has its
own set of learnable weight matrices W Q

i , W K
i , W Vi ∈ RE×E′ , consequently

generating a distinct attention output. The outputs from all these heads are then
concatenated and linearly transformed to yield the final multi-head attention
output. This process can be formally expressed as:

MHA(Q, K, V ) ≜
[

Head1 | · · · | HeadM

]
W O,

Headm = Attention(QW Q
m , KW K

m , V W V
m ), (4.11)

where W O ∈ RME′×E is a learnable output weight matrix that aggregates
information from different heads. To maintain a consistent computational load
and parameter count when varying M , the embedding dimension of each head is
often set to E′ = E/M . By allowing the model to attend to multiple aspects of
the input simultaneously, MHA leads to a richer representation of the input and
enhances the expressive power of the attention mechanism. See Figure 4.11b
for an illustration of MHA.
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4.4.3 Vision Transformer
Overview. A standard vision transformer (ViT) [80] architecture combines
a transformer encoder with a task-specific head, as illustrated in Figure 4.12.
When processing 2D images, the image X ∈ RC×H×W is first partitioned into
a sequence of N non-overlapping patches (X 1, X 2, . . . , X N ), where each patch
X n ∈ RC×P ×P . Here, C denotes the number of channels, (H, W ) the image
size, and (P, P ) the patch size. Each patch X n is then flattened into vector
xn ∈ RCP 2 and subsequently linearly transformed into tokens:

X ′ = [Ex1 | Ex2 | · · · | ExN ]T, E ∈ RCP 2×E , (4.12)

where E is the embedding dimension. To preserve the positional information of
the patches, a positional embedding, Epos, is added:

X = X ′ + Epos, Epos ∈ RN×D. (4.13)

As illustrated in Figure 4.12, these tokens are then fed into a transformer encoder
that consists of L sequentially stacked transformer base blocks. Each block
includes a multi-head attention (MHA) module and a multi-layer perceptron
(MLP) module. Each module is preceded by a layer normalization (LN) and
followed by a shortcut connection. The encoder can be formally described as:

Z0 = X, Z ′
ℓ = MHA(LN(Zℓ−1)) + Zℓ−1, ℓ = 1, . . . , L

Zℓ = MLP(LN(Z ′
ℓ)) + Z ′

ℓ, ℓ = 1, . . . , L (4.14)

The MHA modules are responsible for the mixing of tokens, while the MLP
modules are responsible for the mixing of channels.

Patch Embedding. ViT incorporates a standard transformer for vision tasks
with minimal modifications. Consequently, patches are generated in a non-
overlapping manner. While non-overlapping patches can disrupt the internal
structure of an image, MHA blocks help integrate information from different
patches to mitigate this effect. Additionally, using non-overlapping patches
avoids computational redundancy in the transformer. Common patch sizes (P )
are {8, 16, 32}, with P = 16 typically being the default choice.

Positional Encoding. In standard transformers, each patch is tokenized and
processed independently, potentially losing the positional context within the
entire image. This is undesirable as the position of each patch is vital for
understanding the overall image context. To address this, positional embeddings
have been introduced to encode positional information into each patch, ensuring
its preservation throughout the network. These embeddings also act as a
manually introduced inductive bias in transformers. ViT employs a learnable
positional embedding Epos, allowing the network to self-learn positional context.
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Figure 4.12 Overview of ViT. An image is partitioned into fixed-size patches, each of
which is linearly transformed. Position embeddings are then added to these embedded
patches, and the resulting sequence of vectors is fed into a standard transformer
encoder. For classification, an additional learnable “classification token” is appended
to the sequence. From Figure 1 of [80].

MLP. Both in the standard transformer [79] and ViT [80], an MLP follows
each attention module. The MLP is pivotal as it introduces inductive bias
into the transformer, an element missing in the attention mechanism. This
distinction arises because MLP operation is local and translation-equivariant, in
contrast to the global nature of the attention mechanism. The MLP comprises
two linear (fully connected) layers with GELU activation in between:

MLP(X) = GELU(XW1 + b1)W2 + b2, (4.15)

where X is the input, and Wi and bi denote the weight matrix and bias of
the corresponding linear layer, respectively. The weight matrices, W1 and
W2, typically have dimensions (E, 4E) and (4E, E) [79], [80]. Given the input
is a matrix of flattened and tokenized patches as defined in equation (4.13),
applying Wi to X is analogous to using a convolutional layer with a kernel
size of (1, 1). As a result, MLPs in transformers are both highly localized and
translation-equivariant.

4.4.4 Swin Transformer
Overview. Swin Transformer [81] is a popular variant of ViT that introduces
a hierarchical structure with shifted windows to better capture local and global
information and to address the scalability issues associated with ViT, especially
for high-resolution images. The architecture of Swin Transformer is illustrated
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Figure 4.13 Overview of the Swin Transformer. (a) Its Architecture. (b) Two
consecutive Swin Transformer blocks. W-MSA and SW-MSA represent local multi-head
self-attention modules with regular and shifted window configurations, respectively.
From Figure 3 of [81].

in Figure 4.13. Similar to ViT, Swin Transformer partitions an image into non-
overlapping patches. However, instead of processing all patches simultaneously
at a single scale, Swin Transformer processes them in local windows and
hierarchically merges these windows in subsequent layers. To ensure that
information is exchanged between adjacent windows, the windows are shifted
in subsequent layers, as illustrated in Figure 4.14. Swin Transformer has
demonstrated a superior capability to ViT for processing images, particularly in
scenarios with limited data and when dealing with diverse scales and contexts.

Hierarchical Structure. Swin Transformer employs a hierarchical structure
with multiple stages. In each stage, the resolution is halved, and the number of
channels is increased by a factor of 4. This is achieved by merging a 2× 2 patch
of tokens from the previous stage. The hierarchical nature allows the model to
focus on local features in the initial stages and gradually shift its attention to
more global features in the later stages.

Shifted Window Approach. At each stage, Swin Transformer divides the
image into fixed-size M ×M windows and processes them independently. To
capture the information between adjacent windows, the windows are shifted by
half of their size in the next layer (Figure 4.14). This approach ensures that each
patch in the new window has patches from different original windows, allowing
for the integration of local and global contexts. The shifted window mechanism
is a key innovation in Swin Transformer, enabling it to capture both fine-grained
and high-level features without increasing computational complexity.

Relative Positional Encoding. While ViT employs a fixed positional
embedding for each patch, Swin Transformer introduces a relative position
bias B ∈ RM2×M2 to each attention head when computing the similarities in
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Figure 4.14 Illustration of the shifted window approach for attention computation
in Swin Transformer. In layer ℓ (left), a standard window partitioning is used with
attention computed within each window. In layer ℓ+1 (right), the windows are shifted,
forming new partitions. This shift allows attention computation in layer ℓ + 1 to cross
the boundaries set in layer ℓ, enabling connections between them. From Figure 2 of
[81].

its local attention:

Attention(Q, K, V ) = softmax
(

QKT
√

E
+ B

)
V . (4.16)

Given that the relative position along each dimension spans the range [−M +
1, M − 1], a more compact bias matrix, B̂ ∈ R(2M−1)×(2M−1), is parameterized,
and the values in B are derived from B̂. This design choice is also motivated
by the shifted window approach, where the absolute position of a patch can
change across stages. The relative positional bias ensures that the model can
still capture the spatial relationship between patches despite their changing
positions.

MLP. Similar to ViT, Swin Transformer also incorporates an MLP after each
attention module. The structure and role of MLP remain consistent with that
described in the ViT section. However, due to the hierarchical structure of
Swin Transformer, MLP operates at different scales, adapting to the varying
resolutions and token counts at each stage.

4.4.5 Performer: Linear Complexity Transformer

The quadratic complexity of the standard attention mechanism poses a
significant challenge for processing long sequences, for example resulting from
high-resolution images. To address this limitation, Choromanski et al. [84]
introduced the Performer, a transformer variant that approximates the attention
using only linear time and space complexity without sacrificing much of the
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Figure 4.15 Approximation of the attention SV via (random) feature maps. Dashed
blocks indicate the order of computation with corresponding time complexities
attached.

expressive power of the original attention mechanism. To approximate the
attention, Performers use a fast attention via positive orthogonal random features
(FAVOR+) approach, which is briefly described in the following.

FAVOR+ leverages the fact that the attention weights matrix A can be
represented as a kernel matrix, i.e., Amn ∝ Smn = S(qm, kn), where
S : RE × RE → R+ is a positive kernel function that measures the similarity
between a query and a key. For the regular softmax attention, this kernel is
S(q, k) = exp(qTk/

√
E). Choromanski et al. [84] showed that such a kernel

function can be approximated as an inner product in the space of a specific
random feature map φ : RE → RR

+ (R≪ N):

S(q, k) ≈ ⟨φ(q), φ(k)⟩. (4.17)

For regular softmax attention, one possible feature map is:

φ(x) = 1√
E

exp(−∥x∥
2

2 )[exp(wT
1 x), . . . , exp(wT

Ex)], (4.18)

where we
iid∼ N (O, IE). Refer to Lemma 1 of [84] for further details.

Instead of directly computing the attention weights matrix A, FAVOR+
substitutes its approximation from equation (4.17) into the attention formula:

AV ∝ SV ≈ Q′(K ′TV ), (4.19)

where S = S(qm, kn) the kernel matrix representing the unnormalized attention
weights, and Q′ = [φ(q1) | · · · | φ(qN )]T and K ′ = [φ(k1) | · · · | φ(kN )]T
denote the feature maps of queries and keys, respectively. This results in the
factorization of the attention weights matrix into two smaller matrices. The
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parentheses indicate the order of computations, crucial for achieving linear-
time and linear-space complexity with respect to the sequence length. Such
a mechanism has a time complexity of O(NRE) and space complexity of
O(NR + RN + NE), contrasting with the O(N2E) time and O(N2 + NE)
space complexities of regular attention. This is further illustrated in Figure 4.15.

To further diminish the estimator’s variance, enabling the use of even
fewer random features R, FLAVOR+ ensures that different random samples
w1, . . . , wE are orthogonal. This is achieved while preserving unbiasedness
through the standard Gram-Schmidt orthogonalization procedure.

Remarkably, despite its approximation nature, the Performer has demonstrated
performance on par with, or even superior to, standard transformers across
various tasks, from language modeling to image classification, all while being
significantly more computationally efficient [84].

4.5 Medical Image Segmentation Models

Image segmentation, which involves partitioning an image into distinct regions,
is fundamental to numerous applications. A prime example is medical image
segmentation, which is a crucial step in computer-aided diagnosis. Automated
segmentation not only expedites data processing but also aids clinicians by
offering task-specific visualizations and measurements.

Image segmentation tasks are broadly categorized into two types: semantic
segmentation and instance segmentation. Semantic segmentation involves pixel-
level classification where each pixel in an image is assigned a specific category. On
the other hand, instance segmentation involves not only pixel-level classification
but also the differentiation of individual objects within the same category based
on semantic segmentation. This thesis focuses only on semantic segmentation
tasks, which hold greater relevance in medical imaging. Notably, there are
limited studies on instance segmentation in this field, given the distinct nature
of each organ or tissue.

Achieving accurate segmentation models that can identify organ or lesion pixels
is often realized through supervised learning. This requires task-specific image
data carefully annotated by experts. The prevalent medical imaging modalities
include X-ray, computed tomography (CT), magnetic resonance imaging (MRI),
and ultrasound. In this thesis, we use MRI data.

Early traditional approaches to medical image segmentation centered on
techniques such as edge detection, template matching techniques, region growing,
snakes, and machine learning. However, since the advent of deep learning in 2012,
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Figure 4.16 Generic forms of segmentation model architectures.

it has become the mainstay in image segmentation. The majority of deep models
for semantic segmentation adopt some form of an encoder-decoder architecture.
Here, the encoder extracts image features while the decoder restores these
features to the original image size and produces the final segmentation map.
Particularly, U-Net, introduced by [3] in 2015, is one of the pioneering CNNs
with this design, and it emerged as the most popular model for medical image
segmentation. Its versatility, modular design, and success across all medical
imaging modalities have made it the go-to model for medical image segmentation.
The U-shaped architecture with skip connections, as seen in U-Net, has proven
effective in leveraging hierarchical features for medical image segmentation.

We can classify existing architectures based on their building blocks into
three main categories: (i) CNNs (Figure 4.16a), (ii) hybrid architectures
(Figure 4.16b and Figure 4.16c), and (iii) pure transformers (Figure 4.16d).
Hybrid architectures, depending on the placement of a transformer, can be
further divided into: (a) those with a transformer in their bridge (Figure 4.16b),
and (b) those with a transformer in their encoder (Figure 4.16c). In the following,
we will delve into each type and highlight representative models.

4.5.1 CNNs

2D U-Net, introduced by Ronneberger et al. [3] in 2015, is a CNN designed
primarily for the segmentation of 2D medical images. As illustrated in
Figure 4.17, the architecture consists of a contracting path to capture context
and a symmetric expanding path that enables precise localization. It employs
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Figure 4.17 The U-Net architecture [3].

skip connections between mirrored layers in the encoder and decoder, allowing
for the fusion of high-level and low-level features. Initially applied to cell
segmentation tasks, 2D U-Net has since become a foundational model for
various medical imaging tasks.

Building on the success of 2D U-Net, Çiçek et al. [85] introduced 3D U-Net
to process volumetric data directly. By extending the 2D operations to 3D,
this model can capture spatial dependencies in three dimensions, making it
particularly suitable for tasks like brain lesion segmentation in MRI data.

Built on top of the 3D U-Net architecture with only minor modifications, nnU-
Net [93], [94] (no new net) is a self-adapting framework that automatically
configures itself, including preprocessing, network width and depth, training,
and post-processing for any new task. Without manual intervention, nnU-Net
demonstrated state-of-the-art performance on various medical segmentation
benchmarks. Notably, nnU-Net won the BraTS 2020 challenges on brain tumor
segmentation in mpMRI data [95].

SegResNet [86] integrates the 3D U-Net architecture with a pre-activation
residual block. This design is akin to what is depicted in Figure 4.10c, with the
exception that it employs group normalization in place of batch normalization.
As discussed in Section 4.3.5, residual blocks allow for better gradient flow
during training and can lead to improved segmentation accuracy.
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4.5.2 Hybrid Architectures

Initial attempts at leveraging the power of transformers for medical image
segmentation were to combine ViT and convolutional blocks into a U-Net-like
architecture.

Transformer as Bridge. TransUNet [87] combines the strengths of transformers
and U-Net for medical image segmentation. It feeds a transformer by the
tokenized image patches from a CNN encoder to capture global contexts.
A CNN decoder then upsamples the resulting feature maps to output the
final segmentation map. TransUNet proved effective for abdominal organ
segmentation in CT scans, where capturing both local and global contexts is
crucial. Nevertheless, TransUNet is a 2D network that processes the volumetric
3D medical image slice-by-slice and relies on ViT models pre-trained on large-
scale image datasets. TransBTS [88] addresses these restrictions by proposing a
similar 3D architecture that models local and global contexts in both spatial
and slice/depth dimensions.

Transformer as Encoder. There are also hybrid models in which an input
image is first encoded into features by a transformer before passing through a
CNN decoder. For instance, UNETR Hatamizadeh et al. [89] is a 3D network
that consists of a pure ViT as the encoder to learn sequence representations
of the input image. The encoder is connected to a CNN-based decoder via
skip connections to produce the final segmentation map. UNETR has shown
impressive performance in different medical image segmentation tasks. Swin
UNETR [90] is an adaptation of UNETR that employs Swin Transformer as
its hierarchical encoder. UNETR and Swin UNETR demonstrated competitive
performance in brain tumor segmentation.

4.5.3 Pure Transformers

Despite the significant success of CNNs in image segmentation, they often face
challenges in capturing long-range semantic information within images. As a
result, networks exclusively built on transformer blocks have been introduced
and demonstrated to be effective in global context modeling for medical image
segmentation.

For example, Cao et al. [91] introduced Swin-Unet, a purely transformer-
based U-shaped architecture tailored for 2D medical image segmentation. This
model employs a symmetric hierarchical encoder-decoder structure with skip
connections. Notably, Swin-Unet incorporates Swin Transformer blocks at
every stage of both the encoder and decoder. A distinctive feature of its
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architecture is the utilization of patch-merging layers for downsampling and
patch-expanding layers for upsampling. Experiments with abdominal organ and
cardiac segmentation tasks showcased the superior performance of Swin-UNet
to its CNN or hybrid counterparts. It is important to note that a limitation
of relying solely on transformers for segmentation is the quadratic complexity
of attention with respect to the number of tokens. This can limit the efficacy
of the standard ViT in segmenting high-resolution or large 3D medical images.
However, the Swin Transformer blocks within Swin-Unet compute attention
only within a localized window, ensuring linear complexity.

In a related work, Zhou et al. [92] proposed nnFormer, which incorporates the
local-global concept to refine the multi-head attention mechanism within the
transformer structure for 3D medical images. nnFormer is built on a hierarchical
U-shaped architecture, employing strided convolution for downsampling
and strided transposed convolution for upsampling. The model integrates
transformer blocks with local attention in both the encoder and decoder, as well
as transformer blocks with global (standard) attention in the bridge, effectively
representing 3D images at both local and global scales. The local attention
module extends the shifted window attention found in the Swin Transformer.
In place of the traditional skip connection, skip attention is used to bridge the
gap between the encoder and decoder. nnFormer is initially pre-trained on the
ImageNet dataset and leverages symmetrical initialization to repurpose the pre-
trained encoder weights in the decoder. Additionally, deep supervision within
the decoder layers is applied to improve performance. Experimental results
on various tasks, such as brain tumor segmentation, revealed that nnFormer
outperforms nnU-Net and earlier transformer-based models like TransUnet,
Swin-Unet, and UNETR.

4.6 Conclusion

In this chapter, building upon Chapter 3, we presented the fundamentals of deep
learning that underpin modern image segmentation models. We explained how
handcrafted features evolved into hierarchical representation learning based on
neural networks. We provided an overview of the core building blocks of CNNs,
discussing their limitations in capturing global context. We then discussed how
transformers can mitigate these challenges with their attention mechanisms. We
also highlighted that achieving accurate medical image segmentation models is
often accomplished through supervised learning. Based on their building blocks,
we classified existing architectures into three major categories: (i) CNNs, (ii)
hybrid architectures, and (iii) pure transformers. We emphasized the dominance
of the U-Net-like architectural design and reviewed the well-known CNNs,
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hybrid models, and pure transformers proposed for medical segmentation. All
the models we proposed, as detailed in Chapters 6, 7, and 8, follow a general
U-Net-like architecture. The models in Chapters 6 and 8 are based on CNN.
Meanwhile, our model and certain baselines in Chapter 7 incorporate elements
inspired by the transformer.
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Table 4.1 Some popular activation functions and their derivatives. Here, the
smoothness indicates the order of continuity measured by the number of continuous
derivatives, e.g., C1 is the class of functions with zeroth and first continuous derivatives.
erf(·) denotes the error function, and ϕ(·) and Φ(·) denote the PDF and CDF of the
standard normal distribution, respectively.
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Chapter 5

Low-Rank Factorization

Low-rank factorization techniques excel in data compression and mining, and
they play a central role in the deep neural networks introduced in this thesis
for brain lesion segmentation. This chapter begins with an overview of
non-negative matrix factorization (NMF), with a focus on the widely-used
multiplicative update (MU) and hierarchical alternating least squares (HALS)
algorithms. Such factorization can serve as an approach to global context
modeling, offering an efficient alternative to the attention mechanism. This
underpins the approach we introduce in Chapter 7. Additionally, we discuss
tensor networks, highlighting their significance as a computational tool and
in forming low-rank representations. This discussion is enriched by a review
of common tensor operators and tensor decomposition formats. This chapter
concludes with an exploration of the varied applications of tensor networks in
machine learning, including model compression and acceleration.

99
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5.1 Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) [96], [97]is a powerful technique for
decomposing a nonnegative matrix into the product of two nonnegative factor
matrices. The motivation behind NMF lies in its ability to interpret inherently
nonnegative data using a reduced number of components while preserving its
nonnegativity. Unlike methods such as singular value decomposition (SVD) and
principal component Analysis (PCA), which create factors with both positive
and negative elements, NMF guarantees that all elements in the factor matrices
are nonnegative, making it ideal for analyzing data where negativity does not
have a clear interpretation, such as pixel intensities in images or word counts in
document corpora.

Given a nonnegative matrix X ∈ RM×N
≥0 , NMF seeks an approximation

X ≈ F GT =
R∑

r=1
F:rG:r

T, (5.1)

where F ∈ RM×R
≥0 and G ∈ RN×R

≥0 are nonnegative factor matrices, and R ≤
min(M, N) is known as the rank. In practical applications, R is often much
less than min(M, N). This implies that the factor matrices F and G provide
a compressed representation of the original matrix, encapsulating the most
significant patterns in the data. Such a low-rank approximation can also reveal
hidden data structures, which often yield easily interpretable factors. Another
characteristic of NMF is its tendency to encourage sparsity, which is mainly
due to the nonnegativity constraint that can make many elements in the factor
matrices zero.

Definition 5.1 (Frobenius Norm). The Frobenius norm of a matrix A ∈ RM×N

is defined as the square root of the sum of the squares of its elements:

∥A∥F =

√√√√ M∑
i=1

N∑
j=1

A2
ij (5.2)

This can also be expressed as the square root of the trace of the product of A
and its transpose:

∥A∥F =
√

Tr(AAT). (5.3)
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5.1.1 NMF Problem

NMF can be framed as an optimization problem, aiming to minimize the
reconstruction error between the original matrix and the product of the two
factor matrices, under the constraint that these factor matrices are nonnegative.
Formally, the standard NMF problem can be expressed as:

min
F ,G
∥X − F GT∥2

F (5.4)

s.t. F ≥ 0, G ≥ 0

where ∥ · ∥F denotes the Frobenius norm. This optimization problem is non-
trivial to solve. The cost function is not convex with respect to both parameters
F and G simultaneously, but it is convex with respect to each parameter
individually when the other is fixed. This property motivates the application of
BCD, introduced in Section 3.2.3, to solve the NMF problem.

Note that the norm used above is the Frobenius norm, which is a standard
choice in many NMF variants. However, depending on the specific application,
other types of norms or dissimilarity measures can also be used to define the cost
function, such as the Kullback-Leibler divergence [98] or the beta-divergence
[99]. Furthermore, additional regularization terms can be added to the cost
function to enforce certain desirable properties, such as sparsity or smoothness,
on the factor matrices. In this thesis, we only use the standard NMF, presented
by problem (5.4).

The solution to the NMF problem provides two factor matrices, which can be
interpreted as the bases and the coefficients, respectively. As illustrated in
Figure 5.1, each column of the basis matrix F can be viewed as a basis vector
(or component), and each column of the coefficient matrix GT represents the
weights of the bases in approximating the corresponding column in the original
matrix. Thus, the original data matrix is represented as a linear combination
of the bases weighted by the coefficients, offering a parts-based representation
of the data. This ability to reveal the hidden, often interpretable, structure in
the data is one of the main attractive properties of NMF.

First-Order Optimality Conditions. Let’s denote the cost function by
J(F , G) = 1

2∥X − F GT∥2
F . We introduce the Lagrangian function

L(F , G, ΛF , ΛG) = J(F , G)− tr(ΛF F T)− tr(ΛGGT)

where the Lagrangian multipliers ΛF ∈ RM×R
≥0 and ΛG ∈ RN×R

≥0 enforce
nonnegative constraints F ≥ 0 and G ≥ 0, respectively. The zero gradient
condition gives ∇F L = ∇F J −ΛF = 0 and ∇GL = ∇GJ −ΛG = 0. From the
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Data Matrix X
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≈
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≈ + + +

Figure 5.1 An illustration of NMF. Each column of the data matrix X (a feature) is
represented as a linear combination of the basis vectors, i.e., the columns of F , with
their corresponding weights in G.

complementary slackness condition, we obtain F ⊙ΛF = F ⊙∇F J = 0 and
G⊙ΛG = F ⊙∇GJ = 0, where ⊙ denotes the element-wise product. Therefore,
the first-order optimality conditions for problem (5.4) can be summarized as:

F ≥ 0, ∇F J = F GTG−XG ≥ 0, F ⊙∇F J = 0,

G ≥ 0, ∇GJ = GF TF −XTF ≥ 0, G⊙∇GJ = 0. (5.5)

Any (F , G) satisfying these conditions is a stationary point of (5.4). It is
interesting to observe that these conditions give a more formal explanation of
why NMF naturally generates sparse solutions [51]. In fact, any stationary point
of (5.4) is expected to have zero entries because of the conditions F ⊙∇F J = 0
and G⊙∇GJ = 0 that is, the conditions that for all m, n either fmn is equal
to zero or the partial derivative of J with respect to fmn is, and similarly for G.
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Algorithm 2: General two-block coordinate descent scheme of most NMF
algorithms.
Input: Nonnegative matrix X ∈ RM×N

≥0 , factorization rank R

Output: Factor matrices F ∈ RM×R
≥0 and G ∈ RN×R

≥0 ; X ≈ F GT

1 Initialize F 0 ∈ RM×R
≥0 , G0 ∈ RN×R

≥0
2 t = 0
3 while stopping criterion not satisfied do
4 F t+1 = update(X, F t, Gt), typically such that

∥X − F t+1GtT∥F ≤ ∥X − F tGtT∥F

5 Gt+1 = update(XT, Gt, F t+1), typically such that

∥X − F t+1Gt+1T∥F ≤ ∥X − F t+1GtT∥F

6 t← t + 1
7 end
8 return (F t, Gt)

5.1.2 NMF Algorithms

A variety of algorithms have been developed to solve the NMF problem. These
algorithms often leverage the two-block coordinate descent (BCD) scheme due
to the separable nonnegative constraints and the convex nature of the cost
function in the NMF problem with respect to F and G individually when the
other is fixed.

The BCD scheme for NMF algorithms involves iterative updates of the factor
matrices F and G. More specifically, in each iteration, we fix one of the
matrices (e.g., G) and update the other matrix (e.g., F ) by either exactly or
approximately minimizing the cost function with respect to that matrix alone.
The roles of the factor matrices are then swapped in the subsequent step. This
process is repeated until a stopping criterion is met, such as the change in the
cost function value is below a predefined threshold or the maximum number of
iterations is reached. This approach is formally presented in Algorithm 2.

The factor matrices F and G can be initialized in various ways, such as
random initialization or nonnegative double singular value decomposition. The
update rule for F and G in lines 4 and 5 in Algorithm 2, respectively, are
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placeholders and can be replaced with specific update rules depending on
the particular NMF algorithm being implemented. Note that if we have an
update rule for F , we can also use that rule to update G due to the equality
∥X −F GT∥F = ∥XT−GF T∥F, by simply transposing the original matrix and
switching the roles of the factor matrices. Most NMF algorithms are monotone,
where the update rule monotonically decreases the cost function at every step,
i.e., F t+1 = update(X, F t, Gt) such that

∥X − F t+1GtT∥F ≤ ∥X − F tGtT∥F (5.6)

In the following, we will detail multiplicative updates (MU) [97] and hierarchical
alternating least squares (HALS) [100], [101], two representative monotonic
NMF solvers based on the BCD scheme.

Multiplicative Updates

The multiplicative updates (MU), proposed by Lee and Seung [97], is one of the
earliest and most well-known algorithms for Nonnegative Matrix Factorization
(NMF). The algorithm is based on an iterative scheme in which each factor
matrix is updated by element-wise multiplication with a ratio of two nonnegative
matrices. The multiplicative update rules can be formally written as:

F ← F ⊙ XG

F GTG
,

G← G⊙ XTF

GF TF
, (5.7)

where ⊙ and ·
· denote element-wise product and division, respectively. The

MU can be also interpreted as an adaptive gradient descent:

F ← F ⊙ XG

F GTG
= F − F

F GTG
⊙∇F J,

G← G⊙ XTF

GF TF
= G− G

GF TF
⊙∇GJ, (5.8)

where J(F , G) = 1
2∥X − F GT∥2

F is the cost function of NMF.

Theorem 5.1. The standard NMF cost function, ∥X − F GT∥2
F, is

monotonically decreasing (nonincreasing) under each of the multiplicative update
rules.
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Proof The proof is based on the majorization-minimization technique, discussed
in Section 3.2.4. Given the current solution F t, we fix G and consider the NMF
cost function

J(F ) = ∥X − F GT∥2
F =

M∑
m=1

N∑
n=1

(
Xmn −

R∑
r=1

FmrGnr

)2
, (5.9)

and define
At

mnr ≜
F t

mrGnr∑R
r′=1 F t

mr′Gnr′
, (5.10)

which satisfis
∑R

r=1At
mnr = 1 and At

mnr ≥ 0. Now, noting the fact that the
quadratic function ℓ(θ) = (Xmn − θ)2 is convex, we can derive a function
Q(F | F t) that majorizes J(F ) using Jensen’s inequality

J(F ) =
M∑

m=1

N∑
n=1

(
Xmn −

R∑
r=1

At
mnr

At
mnr

FmrGnr

)2

≤
M∑

m=1

N∑
n=1

R∑
r=1
At

mnr

(
Xmn −

FmrGnr

At
mnr

)2

= Q(F | F t). (5.11)

We can easily show that J(F t) = Q(F t | F t), and hence, Q(F | F t) serves as
a surrogate function to be minimized. To find the minimum of Q(F | F t), we
solve ∂Q(F |F t)

∂Fmr
= 0, which yields the multiplicative update rule for F .

Although MU guarantees the monotonic decrease of the cost function, it often
suffers from slow convergence. This is due to the nature of the multiplicative
updates, which do not allow a direct step towards the minimum of the cost
function, but rather a slower, proportional adjustment of the factor elements.

It is worth mentioning that the MU algorithm is a first-order method, which
means that each update involves the computation of the gradient. This can be
easily revealed by comparing ∇F J in (5.5) and the multiplicative update rule
for F in (5.7) and noticing that the multiplicative update rules require taking
the ratio of the two terms in the corresponding gradient.

Hierarchical Alternating Least Squares

Hierarchical Alternating Least Squares (HALS), proposed by Cichocki et al. [100]
and Cichocki and Phan [101], is another effective, popular algorithm for solving
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Algorithm 3: Hierarchical alternating least squares (HALS) for NMF.
Input: Nonnegative matrix X ∈ RM×N

≥0 , factorization rank R

Output: Factor matrices F ∈ RM×R
≥0 and G ∈ RN×R

≥0 ; X ≈ F GT

1 Initialize F 0 ∈ RM×R
≥0 , G0 ∈ RN×R

≥0
2 while stopping criterion not satisfied do
3 A←XG, B ← GTG
4 for r = 1, . . . , R do

5 F:r ← max
(

0,
A:r −

∑
s̸=r BsrF:s

∥G:r∥2

)
6 end
7 A←XTF ; B ← F TF
8 for r = 1, . . . , R do

9 G:r ← max
(

0,
A:r −

∑
s̸=r BsrG:s

∥G:r∥2

)
10 end
11 end
12 return (F , G)

the NMF problem. The HALS algorithm sequentially solves subproblems, each
focusing on updating a single column of F or G at a time. The subproblem for
updating the rth column of F can be expressed as:

min
F:r≥0

∥X − F:rGT
:r −

∑
s̸=r

F:sGs:
T∥2

F. (5.12)

This boils down to a single-variable quadratic optimization problem, where its
optimal solution can be easily found in a closed form. This simplifies the update
process and yields the following update rule:

F:r ← max
(

0,
A:r −

∑
s̸=r bsrF:s

∥G:r∥2

)
(5.13)

where A = XG, and B = GTG. A similar update rule can be derived for
columns of G. A pseudocode of HALS is presented in Algorithm 3.

Computational Complexity

We can estimate the number of floating point operations (FLOPs) for MU and
HALS. In our analyses, we assume the NMF gives a compressed representation.
This means that storing both F and G combined must require less space than
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Table 5.1 MU computational com-
plexity for the update of F .

Operation # FLOPs

A←XG 2MNR

B ← GTG 2NR2

C ← F B 2MR2

D ← A
C MR

F ← F ⊙D MR

Total R(2MN + 2NR + 2MR + 2M)

Table 5.2 HALS computational
complexity for the update of F .

Operation # FLOPs

A←XG 2MNR

B ← GTG 2NR2

c:r ←
∑

s̸=r bsrf:s 2MR(R− 1)
d:r ← a:r − c:r MR

e:r ← d:r
b:r

MR

f:r ← max(0, e:r) MR

Total R(2MN + 2NR + 2MR + M)

X, i.e., R(M + N) ≤MN . Table 5.1 and Table 5.2 list all the operations used
in a single update of F together with their corresponding number of FLOPs in
MU and HALS, respectively

We observe that both MU and HALS have the same computational complexity
of O(MNR) per update, which is linear in the size of the data matrix and
rank (HALS requires only MR fewer FLOPs, which is negligible). For both
algorithms, the first step, where XG is computed, is the most expensive one
under the assumption R(M + N) ≤MN .

Comparison

We compare the performance of the MU and HALS algorithms on the Olivetti
faces dataset [102], taken at AT&T Laboratories Cambridge (https://cam-
orl.co.uk/facedatabase.html). This dataset consists of 400 grayscale images of
size 64× 64. Figure 5.2a shows sample images from the dataset. Each image
was flattened into a row vector, and these vectors were then stacked row-wise
to create a 400 × 4096 data matrix. In our experiment, we set R = 20. The
reconstruction performance was evaluated using the relative error, defined as

RE = ∥X − F GT∥F

∥X∥F
(5.14)

Figure 5.3 illustrates the relative error plotted as a function of the number of
FLOPs. Under the same number of FLOPs, it is clear that the HALS algorithm
consistently achieves a lower relative error compared to the MU algorithm.
Figure 5.2b illustrates the NMF components, i.e., columns of the matrix G,
with HALS being used as the solver.

https://cam-orl.co.uk/facedatabase.html
https://cam-orl.co.uk/facedatabase.html
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(b)

Figure 5.2 Illustration of NMF components for the Olivetti faces dataset. (a) Sample
images from the Olivetti faces dataset. (b) NMF components obtained by HALS.
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Figure 5.3 Comparison of NMF algorithms. The experiments were conducted using
R = 20 on the Olivetti faces dataset, represented by a 400 × 4096 data matrix. Each
point on the curves corresponds to a certain number of iterations (ranging from 1 to
100). Within the same computational cost, HALS shows an improved relative error
compared to MU.

5.1.3 Choice of Rank

The rank R in NMF determines the number of components in the resulting
factorization, and thus, plays a crucial role in the interpretability of the
factorization. It is akin to selecting the number of clusters in clustering
algorithms or the number of latent factors in other factorization methods.
The appropriate choice of rank is dependent on the specific data and the
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purpose of the analysis, and it may significantly affect the outcomes of the
factorization. Unfortunately, there is no universal rule to select the best rank
due to the diversity of data and tasks, but several heuristic methods have been
proposed. Here, we describe one of such methods based on the elbow method
[103], which is also applicable in the context of NMF.

Elbow Method with the Kneedle Algorithm

The elbow method is a heuristic method widely used in statistics to determine
the number of clusters in a dataset and can be adapted to select the rank in
NMF. The underlying idea of the elbow method is to find a point in a curve,
often a cost or error curve, where the elbow or knee occurs. This elbow is the
point of inflection where the curve starts to flatten or the rate of decrease
significantly slows down, indicating diminishing returns. In the context of NMF,
the curve can represent the relative error as a function of the rank, where the
error decreases as the rank increases.

However, the elbow method is often criticized for its subjectivity since the
selection of the “elbow” is usually done visually and may vary depending on the
observer. To overcome this drawback, Satopaa et al. [103] proposed “Kneedle,”
which offers a simple algorithmic way to detect the elbow in a curve. Figure 5.4
illustrates how Kneedle can be used to find the rank of NMF in the example of
the Olivetti faces dataset. Here is a high-level overview of the Kneedle algorithm
applied to rank selection in NMF:

1. Compute the NMF for a range of ranks and record the corresponding
relative errors, as illustrated in Figure 5.4a.

2. Normalize and transform the rank and error values to [0, 1] to get a curve
starting from (0, 0) and ending with (1, 1), as illustrated in Figure 5.4c.

3. Form the line that connects the first and the last points of the normalized
error curve, as illustrated in Figure 5.4c.

4. Compute the difference curve, which is the difference between the
normalized error curve and the line formed in the previous step. See
Figure 5.4c and Figure 5.4d.

5. Calculate the “best” local maximum point on the difference curve. This
point corresponds to the elbow of the original curve. See Figure 5.4d.

Equivalently, Kneedle identifies the elbow point on the normalized error curve
as the point with the maximum perpendicular distance from the line represented
by y = x, as depicted in Figure 5.4b.
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Figure 5.4 Choosing rank of NMF using the Kneedle algorithm [103] for elbow
detection. Here, we experimented with the Olivetti faces dataset, represented by a
400 × 4096 data matrix (a) shows the original plot of relative error as a function of
rank, where the Kneedle algorithm yields the optimal rank of 20. (b) depicts the
normalized data used by Kneedle, with dashed bars indicating the perpendicular
distance from the line y = x with the maximum distance indicated. (c) shows the
same data, but this time the dashed bars are rotated 45 degrees. The magnitude of
these bars correspond to the difference values used in Kneedle. (c) shows the plot of
these difference values, with the elbow occurring at x = 0.2.

The rank corresponding to the elbow point found by the Kneedle algorithm
is chosen as the optimal rank for the NMF. This rank is expected to balance
between the complexity of the model (i.e., the number of basis vectors) and
the quality of the approximation (i.e., the reconstruction error). The elbow
method with the Kneedle algorithm provides an objective, automated, and
principled way to select the rank in NMF. It can be particularly useful when
the optimal rank is not known a priori and cannot be inferred from the context
of the application. However, it is worth noting that this method, like other
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heuristic methods, does not always guarantee the optimal solution and might
need to be combined with domain knowledge or other validation techniques for
robust rank selection.

5.2 Tensor Networks

5.2.1 Tensors, Tensor Networks, and Tensor Diagrams

As previously noted in Section 3.1.2, multi-dimensional data is ubiquitous in
machine learning and can be effectively represented by tensors. For our purposes,
a tensor can be seen as a multidimensional array of numbers. An Mth-order
tensor A ∈ RI1×I2×···×IM is a multi-dimensional array where the mth mode or
dimension has a size Im. Thus, a 0th-order tensor is scalar a ∈ R, a 1st-order
tensor is a vector a ∈ RD, and a 2nd-order tensor is a matrix A ∈ RM×N , and
so on.

An index contraction refers to the summation over all possible values of an
index for a set of tensors. A simple illustration of this is the matrix product

Cij =
K∑

k=1
AikBkj , (5.15)

which represents the contraction of index k, summing over its K possible values.
One can also have more complex contractions, such as this one:

Eijk =
R∑

ℓ,m,n,p,q=1
AiℓmBjℓnpCkpqDmnq, (5.16)

where we assume for simplicity that contracted indices ℓ, m, n, p, and q can
each take R different values. These examples illustrate how the contraction of
indices generates new tensors, akin to how the product of two matrices yields a
new matrix. Indices that are not contracted (i, j, and k in this example) are
termed open indices.

A tensor network (TN) is a set of tensors where some or all of the indices
are contracted according to some pattern. The above two equations serve as
instances of TNs. In equation (5.15), the TN is equivalent to a matrix product
and yields a new matrix with two open indices. In equation (5.16), the TN
involves contracting indices ℓ, m, n, p, and q in tensors A, B, C, and D to
produce a new 3rd-order tensor E with open indices i, j, and k.
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Figure 5.5 Basic symbols for tensor diagrams. (a) scalar, (b) vector, (c) matrix, and
(d) third-order tensor.

Upon reaching this point, it is beneficial to introduce a diagrammatic notation
for tensors and TNs, referred to as tensor diagrams. As illustrated in Figure 5.5,
these diagrams symbolize tensors as nodes and their indices as edges extending
from the nodes. For instance, a node with one edge represents a vector, a node
with two edges denotes a matrix, and a node with three edges denotes a tensor.
A TN is consequently represented by a network of nodes interconnected by
edges. The edges connecting certain tensors correspond to contracted indices,
while dangling edges, which do not link one tensor to another, represent open
indices within the TN.

Tensor diagrams simplify calculations involving TNs. As an illustration, the
contractions in equation (5.16) can be represented by the tensor diagram in
Figure 5.6a. As another example of complex calculations, the trace of the
product of six matrices can be represented by a simple ring-like diagram as
seen in Figure 5.6b. From this tensor diagram, the cyclic property of the
trace becomes clear. This is a simple example of why tensor diagrams are
advantageous. Unlike conventional equations, tensor diagrams visually handle
complex expressions, making properties like the cyclic property of the trace
of a matrix product more apparent. Indeed, understanding through tensor
diagrams is often more intuitive and visually engaging than processing lengthy
equations. As such, we will frequently employ tensor diagrams to represent
tensor operations and TNs.

Many matrix and tensor operations perform some form of TN contraction,
and hence, can be represented graphically using tensor diagrams. Figure 5.7
illustrates the tensor diagrams of some basic operations.

5.2.2 Basic Tensor Operations

Definition 5.2 (Fiber). A mode-m fiber of a tensor A ∈ RI1×I2×···×IM is a
vector obtained by fixing every index except the mth, i.e., Ai1···im−1:im+1···iM

.
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Figure 5.6 Tensor diagram for graphical representation of complex tensor contractions.
(a) an example of the complex TN. (b) trace of the product of six matrices.

Definition 5.3 (Matricization). The mode-m matricization (or unfolding)
of a tensor A ∈ RI1×I2×···×IM is defined as the matrix A(m) ∈
RIm×(I1···Im−1:Im+1···IM ) obtained by stacking all mode-m fibers of A along
the columns, arranged in lexicographical order.

Definition 5.4 (Element-wise Product). The element-wise product (or
Hadamard product) of two equally-sized tensors A ∈ RI1×I2×···×IM and
B ∈ RI1×I2×···×IM is the tensor C = A⊙B ∈ RI1×I2×···×IM with elements

Ci1i2···iM
= Ai1i2···iM

Bi1i2···iM
(5.17)

for all indices.
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≡ tr(A)
(a)

A

B

≡ A⊙B

(b)

A B
≡ AB

(c)

A B ≡ ⟨A, B⟩

(d)

≡ A⊗B

(e)

A U

≡ A×1 U

(f)

Figure 5.7 Tensor diagram of some basic tensor operations. (a) trace of a matrix,
(b) element-wise (Hadamard) of matrices, (c) matrix product, (d) dot product of two
3rd-order tensors, (e) outer product of two matrices, and (f) tensor-matrix product.

Figure 5.7b illustrates the tensor diagram for the element-wise product of two
matrices.

Definition 5.5 (Inner Product). The inner product of two equally-sized tensors
A ∈ RI1×I2×···×IM and B ∈ RI1×I2×···×IM is the scalar

⟨A, B⟩ ≜
∑

i1,i2,··· ,iM

Ai1i2···iM
Bi1i2···iM

. (5.18)

Figure 5.7d illustrates the tensor diagram for the inner product of two third-order
tensors.
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Definition 5.6 (Outer Product). The outer product (or tensor product) of
a tensor A ∈ RI1×I2×···×IM and a tensor B ∈ RJ1×J2×···×JN is the tensor
C = A⊗B ∈ RI1×I2×···×IM ×J1×J2×···×IN with elements

Ci1i2···iM j1j2···jN
= Ai1i2···iM

Bj1j2···jN
(5.19)

for all indices.

Figure 5.7e illustrates the tensor diagram for the outer product of two matrices.
Given two nonzero vectors a ∈ RI and b ∈ RJ , the outer product a ⊗ b is
an I × J matrix that always has rank 1. Indeed, the columns of the outer
product are all proportional to the first column. Therefore, they are all linearly
dependent on that one column, hence the matrix is rank-1. In general, the outer
product of M nonzero vectors a(1) ∈ RIm , m = 1, . . . , M , gives a rank-1 tensor:

A = a(1) ⊗ a(2) ⊗ · · · ⊗ a(M). (5.20)

Definition 5.7 (Tensor-Matrix Product). The mode-m product of a tensor
A ∈ RI1×I2×···×IM and a matrix U ∈ RJ×Im is the tensor

C = A×m U ∈ RI1×···×Im−1×J×Im+1×···×IM (5.21)

with elements Ci1i2···im−1jim+1iM
=
∑IM

im=1Ai1i2···iM
Ujim .

Figure 5.7f illustrates the tensor diagram representation for the mode-1 product
of a third-order tensor and a matrix. An equivalent matrix representation of
the mode-m product is C(m) = UA(m), which allows us to employ established
fast matrix-by-vector and matrix-by-matrix multiplications when dealing with
very large-scale tensors.

5.2.3 Contraction Order

The total number of operations required to compute the final result of a TN
contraction is heavily affected by the order in which the indices within the
TN are contracted, as exemplified in Figure 5.8. In Figure 5.8a, the matrix
A and the tensor C are contracted first (mode-m product), then the resulting
tensor is contracted with the matrix B. This process incurs O(R4) operations
overall. On the other hand, In Figure 5.8b, matrices A and B are contracted
(multiplied) first, yielding a matrix that is then contracted with tensor C. This
process incurs a total of O(R3) operations.
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Figure 5.8 Sequential contraction of a tensor network. All dimensions are of size R.
In (a), the matrix A and the tensor C are first contracted (mode-m product), then the
resulting tensor is contracted with the matrix B, requiring O(R4) operations in total.
In (b), the matrices A and B are first contracted (multiplied), then the resulting
matrix is contracted with the tensor C, requiring O(R3) operations in total.

This aspect is significant, particularly in TN methods that involve numerous
contractions. The goal is to perform the full contraction as efficiently as possible,
which necessitates identifying the optimal contraction order within a TN. This
step is particularly critical when it comes to implementing these methods for
large-scale applications. Minimizing the computational cost of a TN contraction
involves optimizing over the different possible orderings of pairwise contractions
to find the optimal case. While this task poses substantial mathematical
challenges, practical instances often allow for solutions via simple inspection.
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5.2.4 Tensor Decomposition Formats

Definition 5.8 (Canonical Polyadic Decomposition). Canonical polyadic (CP)
decomposition [104], [105] factorizes a higher-order tensor X ∈ RI1×I2×···×IM

into a finite sum of rank-1 tensors:

X ≈
R∑

r=1
u(1)

r ⊗ u(2)
r ⊗ · · · ⊗ u(M)

r , (5.22)

where u
(m)
r ∈ RIm , and R, referred to as the CP rank, is the minimal number

of rank-1 tensors. The matrix U (m) = [u(m)
1 | u(m)

2 | · · · | u(m)
R ] ∈ RIm×R is the

factor matrix corresponding to the mth mode.

From the definition of the outer product, the CP format can be expressed
element-wise as

X i1i2···iM
≈

R∑
r=1

M∏
m=1

U
(m)
imr , (5.23)

which aids in obtaining a tensor diagram for the CP decomposition, illustrated
in Figure 5.9a.

Definition 5.9 (Tucker Decomposition). Tucker decomposition [106] factorizes
a higher-order tensor X ∈ RI1×I2×···×IM into a core tensor multiplied by factor
matrices along all modes, that is

X ≈ G ×1 U (1) ×2 U (2) · · · ×M U (M), (5.24)

where G ∈ RR1×R2×···×RM is the core tensor, U (m) ∈ RIm×Rm is the factor
matrix corresponding to the mth mode, and (R1, R2, . . . , RM ) are referred to as
Tucker ranks.

The Tucker decomposition can be represented element-wise as

Xi1i2···iM
≈

R1∑
r1=1
· · ·

RM∑
rM =1

Gr1r2···rM

M∏
m=1

U
(m)
imrm

, (5.25)

by which we can obtain a tensor diagram for the Tucker decomposition,
illustrated in Figure 5.9b. The Tucker decomposition can be also represented
as a sum of rank-1 tensors:

X ≈
R1∑

r1=1
· · ·

RM∑
rM =1

Gr1r2···rM
u(1)

r1
⊗ u(2)

r2
⊗ · · · ⊗ u(M)

rM
, (5.26)
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Figure 5.9 Tensor diagrams of some popular tensor decompositions. (a) canonical
polyadic decomposition, (b) Tucker decomposition, and (c) tensor train decomposition.

where u
(m)
rm is the rmth column of the factor matrix U (m). The above equation

reveals that the core tensor G models the interactions between the different
components of the original tensor.
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Definition 5.10 (Tensor Train Decomposition). Tensor train (TT)
decomposition [107], also known as the matrix product state in quantum
mechanics, factorizes a higher-order tensor X ∈ RI1×I2×···×IM into a sequence
of third-order core tensors. Formally, it is expressed as

Xi1i2···iM
≈ G

(1)
i1

G
(2)
i2

. . . G
(M)
iM

, (5.27)

=
R1∑

r1=1
. . .

RM−1∑
rM−1=1

M∏
m=1
G(m)

rm−1,im,rm
(5.28)

where each G
(m)
im

= G(:, im, :) is a slice matrix of the corresponding third-order
core tensor G(m) ∈ RRm−1×Im×Rm , (R1, R2, . . . , RM−1) are referred to as TT
ranks, and R0 = RM = 1, which means G(1) and G(M) are actually two matrices.

Figure 5.9c illustrates a tensor diagram for the TT decomposition.

TNs and tensor decompositions provide a theoretical and computational
framework for the analysis of large volumes of data that are computationally
prohibitive by segregating the data into “relevant” and “irrelevant” information.
As such, TN representations often enable the super-compression of huge data to
affordable sizes [108]. Our particular focus is on low-rank TN representations,
which allow for huge higher-order tensors to be approximated (compressed)
by interconnected lower-order core tensors. We elaborate on this point in the
following.

Manipulating high-order tensors quickly becomes impractical as the order
increases. For an Mth-order tensor of size I × I × · · · × I, the number of
elements, IM , grows exponentially with the tensor order, M . Even for I = 2,
and M = 200, we end up with 2200 ≈ 1060 elements, which exceeds the total
number of atoms in the earth. Thus, storing such huge tensors is unfeasible, let
alone processing them with standard numerical algorithms. Nevertheless, if a
high-order tensor is represented or approximated as a sparsely connected TN,
i.e., low-rank representation, the TN can be stored and even used to implicitly
compute many tensor operations, without having to recover the entire original
tensor—an otherwise computationally intractable task.

As an example, consider the computation of the inner product of two Mth-order
tensors A and B of size I × I × · · · × I.Without making any assumption about
A and B, the explicit calculation of the inner product ⟨A, B⟩ using Equation
(5.18) typically involves O(IM ) operations, which is impossible for a large M .
However, when A and B are rank-1 tensors, i.e., A = a(1) ⊗ a(2) ⊗ · · · ⊗ a(M)
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and B = b(1) ⊗ b(2) ⊗ · · · ⊗ b(M), the inner product can be expressed as

⟨A, B⟩ =
I∑

i1,i2,··· ,iM =1
Ai1i2···iM

Bi1i2···iM
.

=
I∑

i1,i2,··· ,iM =1

[
M∏

m=1
a

(m)
im

][
M∏

m=1
b

(m)
im

]

=
M∏

m=1

[
I∑

im=1
a

(m)
im

b
(m)
im

]

=
M∏

m=1
⟨a(m), b(m)⟩,

which only requires O(MI) operations if we first calculate the inner products
⟨a(m), b(m)⟩ and then multiply the results. There are numerous practical
applications where the computational complexity can be significantly reduced
by representing high-order tensors with low-rank TNs, such as CP, Tucker, and
TT, and by executing efficient contractions in optimal orders. Examples of such
applications of TNs in machine learning will be discussed in the subsequent
section.

5.3 Tensor Networks Meet Machine Learning

The TNs methodology is a promising paradigm for analyzing extreme-scale
multidimensional data. TNs “super” compression abilities and the distributed
way in which they process data enable fruitful integration with machine learning
for tackling a wide range of large-scale problems. TNs are used in machine
learning in three common ways discussed in the following.

5.3.1 Network Compression and Acceleration

Deep neural networks (DNNs) are characterized by exceedingly high spatial
and temporal complexities, resulting from their deeply stacked layers which
contain large-scale matrix multiplications. Consequently, training DNNs can
require several days and considerable memory, and inference processes are time-
consuming. Furthermore, it has been proven that substantial weight redundancy
exists within DNNs [109], suggesting the feasibility of compressing DNNs
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without compromising their performance. This observation has motivated the
development of numerous techniques designed to compress and accelerate large
pre-trained DNNs. Among these, low-rank TN factorization stands out, as TNs
efficiently approximate original weights using far fewer parameters [5]. Numerous
studies in this vein have been conducted, notably regarding the reconstruction
of convolutional and linear layers using various tensor decomposition formats
[6], [110], [111]. The resulting “tensorial neural networks,” with their compact
architectures, can yield improved performance and less redundancy.

For instance, tensor decompositions can be utilized to reduce the number
of parameters in Transformers. To understand this, recall that a typical
Transformer comprises primarily multi-head self-attention (MHSA) and MLP
layers. The parameters of MHSA include W Q, W K , W V , and W O weight
matrices, and the main parameters of MLP consist of W in and W out weight
matrices. Therefore, the number of parameters in a Transformer is mainly
determined by its linear transformation matrices, i.e., W Q, W K , W V , W O,
W in, and W out, leading to most compression studies focusing on reducing the
parameters of these six matrices. Liu et al. [7] proposed decomposing each matrix
in a pre-trained Transformer, generating central tensors (which contain the
core information) and small auxiliary tensors. They further suggested a tuning
strategy to continue training the auxiliary tensors for performance improvement
while freezing the central tensor’s weight to preserve the original matrix’s
primary information. Tucker-BERT [8] implements Tucker decomposition to the
third-order tensor created by stacking all the weight matrices in the pre-trained
BERT model. This strategy significantly reduces the number of parameters,
allowing for extreme compression while maintaining comparable results.

5.3.2 Lightweight Parametrization

Low-rank TNs can be also used to re-parameterize the weights of a DNN to
achieve lightweight models with fewer parameters and lower computational
complexity. Unlike the previous approach, this method does not apply TN
decompositions to approximate the weights of a pre-trained model. Instead,
it leverages low-rank TNs, such as CP and Tucker format, to represent the
weights from the beginning before the training. This technique can substantially
reduce both training and inference times [112]. Additionally, imposing low-
rank constraints on parameters can regularize the model and limit overfitting.
Some reports even suggest significant improvements using CNNs with low-rank
regularization [113]. In Chapter 8, we present a CNN based on this concept for
brain tumor segmentation.
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Figure 5.10 Illustration of regression with tensor networks. (a) represents a tensor
diagram for the inner product of the input mapped high-dimensional space, Φ, and a
weight tensor W represented by a TT whose ranks are R. (b) represents the order
in which the indices are contracted. First, each mapped feature ϕ(xd) is contracted
with its adjacent core tensor in the TT, which requires O(DER2) operations, then
the resulting TT that has no dangling edges is contracted, which requires O(DR2)
operations. Therefore the overall computational complexity is linear with the dimension
D. In contrast, if we first compute Φ(x) and W and then the inner product ⟨W, Φ(x)⟩,
it requires O(MD) operations, which scales exponentially with the dimension D and
thus becomes computationally intractable as D increases.

5.3.3 Quantum-Inspired Learning

A series of machine learning models based on TNs exists [114]–[116], which
are inspired by the successful employment of TNs in quantum mechanics
for approximating exponentially large tensors while taking into account the
entanglement structure of a quantum system. We sketch this approach in the
following.

Consider a regression problem on the training set D = {(xn, yn)}N
n=1, where

xn ∈ RD represents an input vector and yn ∈ R its corresponding output.
Let x = (x1, . . . , xD) be a feature vector and ϕ : R → RE be a multi-valued
function. We can use the outer product to form a rank-1 feature map to a
high-dimensional space as follows [114]:

Φ(x) = ϕ(x1)⊗ ϕ(x2)⊗ · · · ⊗ ϕ(xD). (5.29)
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For instance, if ϕ(x) = [1 x]T, we obtain the feature map

Φ(x) =

 1

x1

⊗
 1

x2

⊗ · · · ⊗
 1

xD

 ,

which contains all the possible interactions of features. Another common choice
is ϕ(x) = [cos(πx/2), sin(πx/2)]T. We then apply a linear map to the feature
Φ(x) to get a nonlinear prediction function:

f(x; W) = ⟨W , Φ(x)⟩ (5.30)

where W is a Mth-order weight tensor of size E × E × · · · × E. Since W
is a high-order tensor, it becomes astronomically large as M increases. To
mitigate this, one strategy is to represent (or re-parametrize) the weight W
as a low-rank TN, which enables us to regularize and optimize this tensor
efficiently. For example, [114] proposed to use a TT-like structure for the weight.
Figure 5.10a shows a tensor diagram for the inner product ⟨W , Φ(x)⟩, assuming
a TT structure for W . As illustrated in Figure 5.10b, we can efficiently compute
this inner product ⟨W , Φ(x)⟩ with linear complexity in the dimension D by
first contracting each mapped feature ϕ(xd) with its adjacent core tensor in the
TT and then contracting the TT rank indices. The cost function we would like
to minimize could be

J(W(1), . . . , W(K)) =
N∑

n=1

(
yn − f(xn; W(1), . . . , W(K))

)2
, (5.31)

where (W(1), . . . , W(K)) are the core tensors of the TT that we seek to find.
Gradient descent-based algorithms [116] or alternating least squares [117] can
be used to solve the above problem.

5.4 Conclusion

In this chapter, we examined two prominent low-rank factorization techniques:
NMF and tensor networks, exploring their potential applications and integrations
in machine learning. NMF is the core of our model introduced in Chapter 7,
while tensor networks forms the basis of our approach presented in Chapter 8.

In the first section, we introduced the NMF problem and detailed its key
characteristics. We emphasized the ability of NMF factors to provide a
compressed representation of a data matrix, encapsulating the most significant
patterns within the data. It was observed that NMF factors are often highly
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interpretable and capable of revealing hidden data structures in real-world
scenarios. We detailed MU and HALS, two popular algorithms for addressing
the NMF problem. This part concluded with a discussion on the importance
of rank and an illustration of how rank can be effectively selected in practice
using the elbow method with the Kneedle algorithm.

In the second section, our focus shifted to tensor networks, highlighting
their dual significance both as a computational tool and in forming low-
rank representations. The relationship between tensor networks and tensor
contractions was explored, illustrating that various tensor operations can be
conceptualized as tensor networks. We introduced the diagrammatic notation
for tensor networks, emphasizing its importance in simplifying computations
involving such networks. We provided an overview of basic tensor operations
and tensor decomposition formats from both equational and tensor diagram
perspectives. The importance of selecting an optimal contraction order to
minimize computational overhead in large-scale applications was underscored.
The chapter concluded with an exploration of different ways that low-rank
tensor networks can be usefully applied in machine learning, including model
compression and acceleration.



Chapter 6

New Multiple Sclerosis Lesion
Segmentation and Detection
Using Pre-activation U-Net

ABSTRACT | Automated segmentation of new multiple sclerosis (MS) lesions
in 3D MRI data is an essential prerequisite for monitoring and quantifying MS
progression. Manual delineation of such lesions is time-consuming and expensive,
especially because raters need to deal with 3D images and several modalities.
In this chapter, we propose Pre-U-Net, a 3D encoder-decoder architecture with
pre-activation residual blocks, for the segmentation and detection of new MS
lesions. Due to the limited training set and the class imbalance problem, we
apply intensive data augmentation and use deep supervision to train our models
effectively. Following the same U-shaped architecture but different blocks, Pre-
U-Net outperforms U-Net and Res-U-Net on the MSSEG-2 dataset, achieving a
Dice score of 40.3% on new lesion segmentation and an F1 score of 48.1% on
new lesion detection. The codes and trained models are publicly available at
https://github.com/pashtari/xunet.

This chapter is an adapted version of [118] P. Ashtari, B. Barile, S. Van Huffel,
and D. Sappey-Marinier, “New Multiple Sclerosis Lesion Segmentation and Detection
Using Pre-Activation U-Net,” Frontiers in Neuroscience, vol. 16, Oct. 2022, doi:
10.3389/fnins.2022.975862
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6.1 Introduction

Multiple sclerosis (MS) is a common chronic, autoimmune demyelinating disease
of the central nervous system (CNS), which causes inflammatory lesions in
the brain, particularly in white matter (WM). Multiparametric MRI is widely
used to diagnose and assess MS lesions in clinical practice. Particularly, FLuid
Attenuated Inversion Recovery (FLAIR) images provide high contrast for white
matter lesions appearing as high-intensity regions. It is highly relevant to
monitor lesion activities, especially the appearance of new lesions and the
enlargement of existing lesions, for several purposes, including prognosis and
follow-up. More specifically, lesional changes between two longitudinal MRI
scans from an MS patient are the most important markers for tracking disease
progression and inflammatory changes. To this end, the accurate segmentation
of new lesions is an essential prerequisite to quantifying lesional changes and
measuring features, such as new lesion volumes and locations. However, manual
delineation of such lesions is tedious, time-consuming, and expensive, especially
because experts need to deal with 3D images and several modalities; therefore,
accurate computer-assisted methods are needed to automatically perform this
task.

Longitudinal MS lesion segmentation, however, remains very challenging since
MS images often change subtly over time within a patient, and new lesions can
be very small although they vary dramatically in shape, structure, and location
across patients. The MSSEG-2 MICCAI 2021 challenge [119], [120] aims to
develop effective data-driven algorithms for the segmentation of new MS lesions
by providing a dataset of 40 pairs of 3D FLAIR images acquired at two different
time points (with varying intervals) and registered in the intermediate space
between the two time points. For each pair, new lesions are manually annotated
by multiple raters, and the consensus ground truths are obtained through a
voxel-wise majority voting (see Figure 6.1).

Over the past decade, convolution neural networks (CNNs) with an encoder-
decoder architecture, known as U-Net [3], have dominated medical image
segmentation. In contrast to a hand-crafted approach, U-Net can automatically
learn high-level task-specific features for MS lesion segmentation. This work
extends our previous effort [121] in the MSSEG-2 and proposes Pre-U-Net, a 3D
U-Net architecture with pre-activation residual blocks [70], [78], for segmenting
new MS lesions. We use deep supervision [122] and perform intensive data
augmentation to effectively train our models. In contrast to the existing
methods, our models directly segment new MS lesions on longitudinal 3D FLAIR
images in an end-to-end fashion in contrast to the common two-step approach,
where cross-sectional segmentation is first performed individually for each
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FLAIR 1 FLAIR 2 Ground Truth U-Net Pre-U-NetRes-U-Net

51.9 36.9 61.1

49.1 43.1 53.3

66.6 57.9 68.3

Figure 6.1 Qualitative results on new MS lesion segmentation. The three examples
are from three different patients in the test set. The new lesions are shown in red in
the segmentation maps. The new lesions circled in yellow (rows 2-3 and column 6) are
successfully detected only by Pre-U-Net, while the new lesion circled in blue (row 3
and column 3) is not captured by any of the models, representing a very difficult case.
The patient-wise Dice score for each example is displayed on the segmentation map.

time point, and new lesions are then extracted by comparing the longitudinal
segmentation maps and applying further post-processing. Depending on the
metric used, the MSSEG-2 challenge has four leaderboards. Our Pre-U-Net
model achieved competitive scores, and our team, LYLE, was ranked first in
two of the leaderboards among 30 participating teams in the challenge.

The rest of this chapter is organized as follows: Section 6.2 briefly reviews
relevant semantic segmentation techniques. Section 6.3 presents our approach
to longitudinal MS lesion segmentation. Experiments are presented in Section
6.4.2. We conclude this chapter in Section 6.5.
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6.2 Related work

Over the past few years, considerable efforts have been made in the development
of fully convolutional neural networks for semantic segmentation. Encoder-
decoder architectures, in particular U-Net [3] and its variants, are dominant in
the segmentation of brain lesions. nnU-Net [93] makes minor modifications to the
standard 3D U-Net [85], automatically configuring the key design choices. It has
been successfully applied to many medical image segmentation tasks, including
longitudinal MS lesion segmentation [94]. McKinley et al. [123] proposed an
architecture, in which dense blocks [124] of dilated convolutions are embedded
in a shallow encoder-decoder network. Myronenko [86] proposed a U-Net-style
architecture with a heavier encoder but a lighter decoder for brain tumor
segmentation, taking a variational auto-encoder (VAE) approach by adding a
branch to the encoder endpoint. Ashtari et al. [125] proposed a lightweight
CNN for glioma segmentation, with low-rank constraints being imposed on
the kernel weights of the convolutional layers in order to reduce overfitting.
Aslani et al. [126] proposed a deep architecture made up of multiple branches
of convolutional encoder-decoder networks that perform slice-based MS lesion
segmentation. La Rosa et al. [127] proposed a U-Net-like model, to automatically
segment cortical and white matter lesions based on 3D FLAIR and MP2RAGE
images. These works and most of the MS research in medical imaging have
focused on the cross-sectional segmentation of lesions, while only a few efforts
have been made to detect and segment new lesions on longitudinal MRI scans.
For example, Gessert et al. [128] proposed a two-path CNN jointly processing
two FLAIR images from two time points to address longitudinal segmentation
of new and enlarged lesions. In contrast, this chapter proposes a single-path
U-shaped architecture whose input is the 2-channel image constructed simply
by concatenating two longitudinal FLAIR images which are co-registered.

6.3 Method

In this section, we describe the proposed encoder-decoder architecture, called
Pre-U-Net, and its building blocks.

6.3.1 Overall Architecture

The overall architecture, as shown in Figure 6.2, follows a U-Net-like style
made up of encoder and decoder parts. A 3× 3× 3 convolution is used as the
stem layer. The network takes a 2-channel image of size 128× 128× 128 and
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Figure 6.2 The proposed encoder-decoder architecture for new MS lesion segmentation.
The two lower-resolution auxiliary maps are only used in the training phase as deep
supervisions.

outputs a probability map with the same spatial size. The network has 4 levels,
at each of which in the encoder (decoder), the input tensor is downsampled
(upsampled) by a factor of two while the number of channels is doubled (halved).
Downsampling and upsampling are performed via strided convolution and
transposed convolution, respectively. The kernel size of all downsamplers and
upsamplers is 2×2×2. We use deep supervision at the three highest resolutions
in the decoder, applying pointwise convolutions (head blocks) to get three
auxiliary logit tensors.

6.3.2 Baseline Models

Depending on which block is used, we build and compare three baselines: i) U-
Net, ii) Res-U-Net, and iii) Pre-U-Net. All these variants follow the same overall
architecture as explained in Section 6.3.1 but differ in their encoder/decoder
blocks. The block for each model is detailed in the following.

U-Net block. The U-Net block used here is similar to that of nnU-Net [93]
except for some minor modifications. As shown in Figure 6.3a, this block is
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Figure 6.3 The proposed blocks.

composed of two convolutional layers with kernel sizes of 3× 3× 3. A Group
Normalization [74] layer (with a group size of 8) comes after each convolutional
layer and before LeakyReLU activation.

Res-U-Net block. Inspired by the basic ResNet block [70], a Res-U-Net block
is, as shown in Figure 6.3b, similar to U-Net block except that a shortcut
connection is used between the last Group Normalization layer and the last
LeakyReLU activation. A pointwise convolution (i.e. a kernel size of 1× 1× 1)
may be used in the shortcut connection to match the input dimension with the
output dimension of the residual mapping. As investigated by He et al. [70],
residual connections have been proven effective to avoid vanishing/exploding
gradients and speed up the convergence, especially in very deep networks.

Pre-U-Net block. Similar to the pre-activation residual block [78], a Pre-U-
Net block consists of two convolutional layers with kernel sizes of 3 × 3 × 3,
with LeakyReLU activation coming before each convolutional layer and after
Group Normalization (with a group size of 8). Note that the Pre-U-Net block,
in contrast to U-Net and Res-U-Net blocks, starts with normalization, applying
convolution-activation-normalization in reverse order (see Figure 6.3c). He
et al. [78] suggest that such a pre-activation design together with identity
mappings as the shortcut connections makes information propagate more
smoothly than the post-activation design (which is used in the basic ResNet
block). Through ablation experiments, they show that the pre-activation design
reduces overfitting more significantly, meaning that it leads to slightly higher
training loss at convergence but lower test error compared to the post-activation
design.

6.4 Experiments

All the models are implemented using PyTorch [129] and PyTorch Lighting [130]
frameworks and trained on NVIDIA P100 GPUs. We evaluate the performance
of Pre-U-Net for MS lesion segmentation on the MSSEG-2 dataset. We follow
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Table 6.1 An overview of the MSSEG-2 dataset. The third column indicates the
median value of voxel size for each axis. The fourth column indicates the median
number of voxels along each axis.

Data Modality Median voxel
size (mm)

Median shape # Total
cases

# With-new-
lesion cases

# Without-new-
lesion cases

Training FLAIR (0.53, 0.98, 0.98) (320, 256, 256) 40 29 11

Test FLAIR (0.65, 0.98, 0.98) (280, 256, 256) 60 32 28

All FLAIR (0.60, 0.98, 0.98) (297, 256, 256) 100 61 39

the same training workflow in all the experiments. In the following, we first
provide the details of this workflow, then present the evaluation protocol and
the results.

6.4.1 Setup.
Data. A total of 40 and 60 MS patients are represented in the MSSEG-2
training and test set, respectively. For each patient, two longitudinal 3D FLAIR
images are acquired at different time intervals (e.g. one year, three years)
and registered in the intermediate space between the two time points. New
lesions that a patient developed between the two time points were manually
delineated by multiple raters, and the consensus ground truths were obtained
through a voxel-wise majority voting (see Figure 6.1). The training (test)
set includes images that have no new lesions since, in real clinical practice,
many patients under treatment do not develop any new lesions during the time
interval. Further details on the MSSEG-2 dataset are reported in Table 6.1.
Note that both the training and test sets were fixed across our experiments
as well as for all the challengers. The instructions to access the MSSEG-2
dataset, used for this study, can be found in the MSSEG-2 challenge site
(https://portal.fli-iam.irisa.fr/msseg-2/).

Preprocessing. For each case, we first concatenate the two FLAIR images to
form a 2-channel 3D image as the input. This is valid since the two FLAIR
images are co-registered, and therefore, spatially aligned. The resulting image
and its ground truth are then cropped with a minimal box filtering out zero
regions. MSSEG-2 data are heterogeneous in the sense that the images may be
acquired with different protocols in multiple institutes using different scanners,
making intensity values greatly vary across patients and even across time points
within the same patient. Therefore, we normalize each image channel-wise using
a z-score to have intensities with zero mean and unit variance. Moreover, all
the images and their ground truths are then resampled to the same voxel size
of 1 mm3 using trilinear interpolation.

https://portal.fli-iam.irisa.fr/msseg-2/
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Data Augmentation. To reduce overfitting caused by data insufficiency and
heterogeneity, it is crucial to perform an effective data augmentation workflow
before feeding the data into the network. During training, the data preprocessing
and augmentation are integrated into a single pipeline operating on a batch of
2 samples at each step on the fly. From each sample, we first crop a random
128× 128× 128 patch whose center lies within the foreground (i.e., new lesions)
with a probability of 66%. Such an oversampling technique ensures that at
least 66% of the patches contain some lesion, which in turn alleviates the
class imbalance problem caused by the relatively small size of new lesions.
The patches then undergo spatial transforms, including random affine and
random flip along each spatial dimension, and intensity transforms, including
random additive Gaussian noise, random Gaussian smoothing, random intensity
scaling and shifting, random bias field, and random contrast adjusting. All the
preprocessing operations and augmentation transforms are computed on CPU
using the MONAI library [131].

Optimization. All networks are trained for 100000 steps with a batch size of 2
(each patch is processed on one GPU) using AdamW optimizer with an initial
learning rate of 1e−5, weight decay of 1e−2, and cosine annealing scheduler.
Therefore, each network in training is fed by a total of 200000 different patches
of size 128×128×128. It is worth mentioning that since the training set consists
of 40 subjects, there are 5000 = 200000/40 patches per subject, among which
around 3300 = 5000× 0.66 patches are expected to contain new lesions.

The loss Ltotal is computed by incorporating the three deep supervision outputs
and the corresponding downsampled ground truths, according to

Ltotal = λ0L(G0, P0) + λ1L(G1, P1) + λ2L(G2, P2), (6.1)

where λ0 = 1, λ1 = 0.5, and λ2 = 0.25; Gi and Pi correspond to the deep
supervision at resolution (128/(2i))3; and the loss function L(·, ·) is the sum of
soft Dice [132] and Focal loss [133], that is

L(G, P ) = LDice(G, P ) + LFocal(G, P ), (6.2)

where

LDice(G, P ) = 1− 2⟨G, P ⟩+ ϵ

∥G∥2 + ∥P ∥2 + ϵ
,

LFocal(G, P ) = − 1
N
⟨G, (1− P )γ log(P )⟩, (6.3)

where G ∈ {0, 1}J×N and P ∈ [0, 1]J×N represent the one-hot encoded ground
truth and the predicted probability map for each voxel, respectively, with J
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denoting the number of segmentation classes and N denoting the number of
voxels in the patch. The small constant ϵ = 10−5 is commonly used to smooth
the soft Dice loss and avoid division by zero. The focusing parameter γ = 2
smoothly controls the rate at which well-classified voxels are suppressed in
the Focal loss, and 1 denotes a J × N matrix of ones. The Focal loss has
proved effective in tackling the class imbalance problem, which is present in the
MSSEG-2 training set since the total volume of new lesions is generally much
smaller than that of the background, and nearly one-third of the patients have
no new lesions.

Inference. A test image in the inference is first subjected to z-score intensity
normalization and resampled to a voxel size of 1 mm3. The prediction is then
made using a sliding window approach with a 50% overlap and a window size
of 128 × 128 × 128 (which is equal to the patch size used in training). For a
given voxel from overlapping windows, the mean of the predictions is simply
taken as the final value (the SlidingWindowInferer module from MONAI was
used to perform the sliding window inference). The resulting probability map
is resampled back to the original voxel size and finally thresholded by 0.5 to
obtain a binary segmentation map.

Evaluation. The Dice score and Hausdorff Distance (HD) are used as metrics
to assess the performance of segmentation for the patients that have some new
lesions in their ground truths. The Dice score measures the voxel-wise overlap
between the ground truth and the prediction, defined as

Dice(g, y) = 2
∑N

n=1 gnyn∑N
n=1 gn +

∑N
n=1 yn

, (6.4)

where gn ∈ {0, 1} and yn ∈ {0, 1} represent the ground truth and the binary
prediction for a voxel, respectively, and N is the number of voxels. Symmetric
Hausdorff Distance (HD) evaluates the distance between the boundaries of
ground truth and prediction, computed according to

HD(G,Y) = max{max
g∈G

min
y∈Y

∥g − y∥, max
y∈Y

min
g∈G
∥y − g∥}, (6.5)

where G and Y denote the set of all voxels on the surface of ground truth and
prediction, respectively.

Lesion-wise sensitivity (SEN), positive predictive value (PPV), and F1 score
are used as metrics to quantify the detection rate of new lesions. Let G be the
ground truth and Y be the prediction. To compute these lesion level metrics,
we follow [26], according to which the connected components of G and Y (with
a 18-connectivity kernel) are first extracted, and all new lesions smaller than 3
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mm3 in size are removed, yielding new tensors G̃ and Ỹ . The metrics are then
defined as

SEN = TP
TP + FN ,

PPV = TP
TP + FP ,

F1 = 2TP
2TP + FP + FN , (6.6)

where TP, FP, and FN are the number of true positives, false positives, and
false negatives, respectively, in the detection of new lesions (i.e., connected
components). The rules by which a lesion is considered detected are explained
in [26].

For cases without any new lesions in their ground truths, we use the following
two metrics:

• The Number of new Lesions Predicted (NLP) by the algorithm. This
is obtained by counting the number of connected components in the
predicted segmentation.

• The Volume of new Lesions Predicted (VLP) by the algorithm. This
is obtained by simply multiplying the number of voxels in the predicted
segmentation by the voxel volume.

All the metrics mentioned above were computed using animaSegPerfAnalyzer
from the Anima toolbox (available at https://anima.irisa.fr/, RRID:
SCR_017017 and RRID: SCR_01707).

6.4.2 Results and Discussion
Quantitative Evaluation. We performed 5-fold cross-validation in all the
experiments to estimate how capable our models are in generalizing to unseen
data. The cross-validation results on the MSSEG-2 training set are reported in
Table 6.2. For each network, we used an ensemble of the five models trained
during the cross-validation on the training set for predicting the test set labels.
The test results are reported in Table 6.3 and illustrated by notched box plots
in Figure 6.4, where pairwise Wilcoxon signed-rank tests were used to identify
the significant differences in the test scores of baselines.

Pre-U-Net was superior to all the other models in terms of both segmentation and
detection performance for the test cases with some new lesions, achieving a Dice

https://anima.irisa.fr/
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Figure 6.4 Comparison of different models on the MSSEG-2 test set. (a), (b), and
(c) show box plots of Dice score (%), F1 score (%), and Hausdorff Distance (mm),
respectively. The asterisks indicate how significantly a model score differs from those of
the other baselines when using a pairwise Wilcoxon signed-rank test (*: p-value < 0.05,
**: p-value < 0.01).

Table 6.2 Results obtained by 5-fold cross-validation on the MSSEG-2 training set.
Symbols ↑ and ↓ indicate that a metric is desired to be higher and lower, respectively.
The mean and standard deviation (SD) of a score across the folds are reported as
“mean (SD)”. The best results are in boldface.

Model #Params FLOPs
With-new-lesion cases Without-new-lesion cases

Dice (%)↑ HD (mm)↓ SEN (%)↑ PPV (%)↑ F1 (%)↑ NLP↓ VLP (mm3)↓

U-Net 28.7M 1264.7G 45.2 (5.5) 39.0 (14.1) 51.0 (12.1) 52.9 (6.1) 48.9 (7.6) 0.1 (0.2) 9.2 (20.6)

Res-U-Net 28.9M 1280.8G 42.4 (11.4) 46.4 (15.9) 49.3 (22.9) 60.6 (6.6) 49.9 (14.8) 0.2 (0.4) 4.0 (9.0)

Pre-U-Net 28.9M 1280.8G 45.6 (9.5) 40.1 (13.2) 54.5 (13.8) 53.8 (6.8) 51.9 (11.3) 0.0 (0.0) 0.0 (0.0)

score of 40.3%, HD of 35.0, SEN of 47.5%, PPV of 53.6%, and F1 score of 48.1%.
While having almost the same number of parameters and the same computational
complexity (FLOPS), Pre-U-Net outperformed U-Net, the second-best baseline,
and significantly outperformed Res-U-Net, with p-value < 0.05 for the Dice
score, p-value < 0.01 for the F1 score, and p-value < 0.05 for HD. Overall,
Pre-U-Net proved more effective than the other models at segmentation and
detecting new lesions. Nevertheless, note that Pre-U-Net was only marginally
superior to U-Net, and there was no statistically significant difference between
the two models in terms of the segmentation or detection metrics.

Res-U-Net, with an NLP of 0.0 and VLP of 0.0, performed slightly better for the
test cases that have no new lesions whereas Pre-U-Net is the winner in terms of
validation scores. In fact, the differences in NLP and VLP scores are marginal,
and all of our models are sufficiently accurate to detect no lesions (i.e., produce
a segmentation map in which all elements are zero) for patients without any
new lesions. Our team, LYLE, with the Pre-U-Net model [121] was ranked first
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Table 6.3 Results on the MSSEG-2 test set. Predictions were made using the 5
models from the cross-validation as an ensemble. Symbols ↑ and ↓ indicate that
a metric is desired to be higher and lower, respectively. The mean and standard
deviation (SD) of a score across patients are reported as “mean (SD)”. The best results
are in boldface.

Model #Params FLOPs
With-new-lesion cases Without-new-lesion cases

Dice (%)↑ HD (mm)↓ SEN (%)↑ PPV (%)↑ F1 (%)↑ NLP↓ VLP (mm3)↓

U-Net 28.7M 1264.7G 38.9 (31.1) 43.1 (27.3) 45.2 (36.8) 51.2 (39.6) 45.3 (35.7) 0.0 (0.2) 0.4 (2.3)

Res-U-Net 28.9M 1280.8G 34.9 (29.5) 44.2 (29.0) 43.6 (38.4) 38.4 (38.5) 33.7 (33.1) 0.0 (0.0) 0.0 (0.0)

Pre-U-Net 28.9M 1280.8G 40.3 (30.5) 35.0 (22.3) 47.5 (37.9) 53.6 (38.3) 48.1 (34.8) 0.0 (0.2) 0.5 (2.5)

in the MSSEG-2 challenge in the two leaderboards based on the NLP and VLP
metrics. All the four leaderboards (based on Dice, F1 score, NLP, and VLP
metrics) and the patient-wise scores for each participating team can be found
on https://portal.fli-iam.irisa.fr/msseg-2/challenge-day/.

Qualitative Evaluation. Figure 6.1 presents qualitative comparisons of
baselines. The top row exemplifies a patient with a single lesion that is detected
by all the models. However, Pre-U-Net, with a patient-wise Dice score of
61.1%, yields a lesion that overlaps most with the lesion in the ground truth
compared to U-Net with a patient-wise Dice score of 51.9% and Res-U-Net with
a patient-wise Dice score of 36.9%.

Moreover, Pre-U-Net demonstrates superior performance in detecting new
lesions. This capability is evidenced in the middle and bottom rows, where
Pre-U-Net detects the two new lesions circled in yellow whereas U-Net and
Res-U-Net fail to capture them. Note that as observed in the bottom row, Pre-
U-Net, with a patient-wise Dice score of 68.3%, shows only a slight improvement
in the segmentation performance over U-Net, with a patient-wise Dice score
of 66.6%; however, Pre-U-Net indeed outperforms U-Net significantly when it
comes to new lesion detection. Nevertheless, some new lesions are extremely
challenging to detect even for experts, and all the models fail to capture them.
For example, the lesion circled in blue on the ground truth (row 3 and column
3 in Figure 6.1) is detected by none of the models including Pre-U-Net.

Future work aims at improving new MS lesion detection, especially in the
presence of such difficult lesions. This might include, for instance, incorporating
the individual delineations of raters into our models. Indeed, in cases where
there is more uncertainty due to a weaker consensus among raters (e.g., three
raters delineated a set of voxels differently than the other one), our models are
also more likely to result in false predictions. Moreover, we will investigate the
possibility of transfer learning from a simpler lesion segmentation task with a

https://portal.fli-iam.irisa.fr/msseg-2/challenge-day/
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bigger dataset for further tackling the data insufficiency and class imbalance
problems faced in this work.

6.5 Conclusion

We devised a U-Net-like architecture consisting of pre-activation blocks, called
Pre-U-Net, for longitudinal MS lesion segmentation. We successfully trained
our models by using data augmentation and deep supervision, alleviating the
problem of data insufficiency and class imbalance. The effectiveness of Pre-
U-Net was evaluated in segmenting and detecting new white matter lesions
in 3D FLAIR images on the MSSEG-2 dataset. Pre-U-Net achieved a Dice
score of 40.3% and F1 score of 48.1%, outperforming the baselines, U-Net and
Res-U-Net. In particular, Pre-U-Net is, as reflected by F1 scores, more effective
than the baselines at detecting new lesions, and it is competitive with U-Net in
terms of segmentation performance, as evidenced by Dice and HD scores.





Chapter 7

Factorizer: A Scalable
Interpretable Approach to
Context Modeling for Medical
Image Segmentation

ABSTRACT | Convolutional Neural Networks (CNNs) with U-shaped
architectures have dominated medical image segmentation, which is crucial for
various clinical purposes. However, the inherent locality of convolution makes
CNNs fail to fully exploit global context, essential for better recognition of some
structures, e.g., brain lesions. Transformers have recently proven promising
performance on vision tasks, including semantic segmentation, mainly due
to their capability of modeling long-range dependencies. Nevertheless, the
quadratic complexity of attention makes existing Transformer-based models
use self-attention layers only after somehow reducing the image resolution,
which limits the ability to capture global contexts present at higher resolutions.
Therefore, this work introduces a family of models, dubbed Factorizer, which
leverages the power of low-rank matrix factorization for constructing an end-to-
end segmentation model. Specifically, we propose a linearly scalable approach

This chapter is an adapted version of [134] P. Ashtari, D. M. Sima, L. De Lathauwer, D.
Sappey-Marinier, F. Maes, and S. Van Huffel, “Factorizer: A Scalable Interpretable Approach
to Context Modeling for Medical Image Segmentation,” Medical Image Analysis, vol. 84, p.
102706, Feb. 2023, doi: 10.1016/j.media.2022.102706
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to context modeling, formulating Nonnegative Matrix Factorization (NMF) as a
differentiable layer integrated into a U-shaped architecture. The shifted window
technique is also utilized in combination with NMF to effectively aggregate
local information. Factorizers compete favorably with CNNs and Transformers
in terms of accuracy, scalability, and interpretability, achieving state-of-the-art
results on the BraTS dataset for brain tumor segmentation and ISLES’22 dataset
for stroke lesion segmentation. Highly meaningful NMF components give an
additional interpretability advantage to Factorizers over CNNs and Transformers.
Moreover, our ablation studies reveal a distinctive feature of Factorizers that
enables a significant speed-up in inference for a trained Factorizer without any
extra steps and without sacrificing much accuracy. The code and models are
publicly available at https://github.com/pashtari/factorizer.

https://github.com/pashtari/factorizer
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7.1 Introduction

Medical image segmentation is an essential prerequisite for the analysis of
anatomical structures for various clinical purposes, including diagnosis and
treatment planning. In recent years, the vast majority of effective segmentation
models are based on Convolutional Neural Networks (CNNs), particularly,
U-Net [3], consisting of encoder and decoder parts with skip connections in
between. In a typical U-Net [3], [85], the encoder learns a low-resolution
contextual representation consisting of progressively downsampled feature maps,
while the decoder progressively upsamples the low-resolution feature maps to
propagate contextual information to the higher-resolution layers. Moreover,
skip connections between encoder and decoder layers of equal resolution help to
recover spatial information lost during downsampling.

Currently, U-Net models mostly rely on convolution operations with small
receptive fields, which are capable of exploiting only local context at each
resolution. Hence, they generally fail to effectively model long-range spatial
dependencies, often necessary, for example, for better recognition of brain lesions,
which can be very infiltrative, extensive, and thus dramatically vary in shape
and size. Moreover, capturing even small focal tumors within the receptive field
is extremely difficult without any notion about the global context of normal
brain anatomy since such tumors can occur anywhere in the brain. Several
works [135], [136] have employed dilated convolution for expanding the receptive
fields. Nevertheless, the learning capabilities of convolutional layers are still
limited due to their inherent locality. As a solution, integrating self-attention
modules into CNNs [137], [138] has been proposed to enhance the capability of
modeling non-local context.

Transformers [79] have achieved state-of-the-art performance on various natural
language processing tasks. The attention mechanism enables Transformers to
effectively model the pairwise interactions between the words in a sentence.
Recently, Transformer-based models have been applied to vision tasks and
demonstrated promising results. Specifically, Vision Transformer (ViT) [80]
outperformed state-of-the-art CNNs on image recognition by large-scale pre-
training and fine-tuning a pure Transformer. Unlike CNNs, ViT encodes images
as a sequence of 1D patch embeddings (known as tokens) and dynamically
highlights the important tokens using self-attention layers, which in turn
increases the capability of learning long-range dependencies. Due to lack
of locality inductive bias, ViT is data-hungry and generally requires a larger
dataset to perform as effectively as its CNN counterparts, leading to poor
performance when trained on insufficient data, which is usually the case in
medical imaging. Furthermore, the quadratic complexity of self-attention
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makes Transformers computationally intractable on long sequences of patches.
Therefore, existing models use self-attention layers only after somehow reducing
the image resolution, thereby failing to fully exploit the global context at the
higher resolution.

This work proposes a family of architectures, dubbed as Factorizer, which
leverages the power of low-rank matrix approximation (LRMA) to construct
an end-to-end medical image segmentation model. Among LRMA methods,
Nonnegative Matrix Factorization (NMF) has demonstrated a remarkable ability
to compress data and automatically extract easy-to-interpret sparse factors
[139], [140]. Hence, we propose a linearly scalable alternative to self-attention
by formulating an NMF algorithm as a differentiable layer. Moreover, a series
of matricization operations is introduced, which enables NMF to effectively
exploit both global and local contexts. The Factorizer block is constructed by
replacing the self-attention layer of a ViT block with our NMF-based modules
and then integrated into a U-shaped architecture with skip connections.

We evaluated the effectiveness of our approach for the segmentation of brain
tumors and stroke lesions in MRI data. Factorizers achieved competitive results
on the BraTS [25], [141] and ISLES’22 [18] datasets, having outperformed
state-of-the-art methods based on CNN and Transformer. Our experiments
showed that NMF components are highly meaningful, which gives a great
advantage to Factorizers over CNNs and Transformers in terms of interpretability.
Furthermore, our ablation studies revealed a distinctive interesting feature of
Factorizers that enables us to easily speed up the inference for a trained
Factorizer model with no extra steps and without sacrificing much accuracy.

Contributions. The main contributions of this work are as follows:

• To the best of our knowledge, this work presents the first end-to-end deep
model with matrix factorization layers for medical image segmentation.

• A differentiable NMF layer is constructed using a block coordinate descent
solver to efficiently model contextual information.

• Shifted Window (SW) Matricize operation is introduced and combined
with NMF to fully exploit local contexts.

• Scalable interpretable U-shaped segmentation models based on NMF are
proposed.

• The proposed models achieve state-of-the-art results on the BraTS and
ISLES’22 datasets.
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Notation. We denote vectors by boldface lower-case letters, e.g., x, matrices by
boldface upper-case letters, e.g., X, and tensors by boldface calligraphic letters,
e.g., X . Elements in a matrix (tensor) are denoted by Xi,j (Xi1,...,iN

). The ith
row and jth column of a matrix is denoted by Xi,: and X:,j , respectively. A
sequence of N vectors (or tokens) is denoted by (xn)N

n=1. We use [x1 | · · · | xN ]
to denote a matrix X created by stacking xns along the columns. We show the
inner product between matrices by ⟨X, Y ⟩ ≜

∑
i,j Xi,jYi,j and L2 norm of a

matrix by ∥X∥ ≜
√
⟨X, X⟩.

7.2 Related Work
CNN-based Segmentation Models. Convolutional neural networks (CNNs)
have dominated medical image segmentation. Particularly, following an encoder-
decoder architecture with skip connections, U-Net [3] has achieved state-of-the-
art on various medical image datasets. The simplicity and effectiveness of a
U-shaped architecture have led to the emergence of numerous U-Net variants
in the field. Çiçek et al. [85] extended U-Net by replacing all 2D operations
with their 3D counterparts. UNet++ [142] follows a deeply-supervised encoder-
decoder network consisting of sub-networks connected through a series of nested,
dense skip connections. nnU-Net [94] proved effective in various medical image
segmentation tasks by only making minor modifications to the standard 3D
U-Net [85] and defining a recipe to automatically configure key design choices.
Myronenko [86] proposed a U-Net-like architecture with ResNet blocks, aka
ResSegNet, which ranked first in the Brain Tumor Segmentation Challenge
(BraTS) 2018. Ashtari et al. [125] proposed a lightweight CNN for glioma
segmentation, with low-rank constraints being imposed on the kernel weights of
the convolutional layers in order to reduce overfitting.

Despite their success, these networks generally fail to effectively model long-
range spatial dependencies, often necessary for better recognition of some region
semantics such as tumors, since they rely on convolution operations with small
kernel sizes, aggregating only local information in an image.

Visual Transformers. Transformers with attention mechanisms [79], introduced
originally for language modeling, have recently proven promising on computer
vision tasks. Particularly, the pioneering Vision Transformer (ViT) model
[80] outperformed state-of-the-art CNNs on image recognition by large-scale
pre-training and fine-tuning a pure Transformer applied to sequences of image
patches. In contrast to CNNs, ViT lacks any inductive bias such as locality,
and therefore, generally shows poorer performance than its CNN counterparts
(e.g., ResNets [70]) when trained from scratch on small-size or mid-size datasets,
which is usually the case for medical imaging.
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Efforts have been made to mitigate this limitation. For example, Tokens-
to-Token ViT (T2T-ViT) [143] introduces a hierarchical architecture to
ViT by progressively combining neighboring tokens into a single token to
reduce the sequence length and aggregate local context. Liu et al. [81]
proposed a hierarchical Transformer, called Swin Transformer, adopting the
shifted windowing scheme, which brings more efficiency by limiting self-
attention computation to non-overlapping local windows while also allowing
for cross-window connection. As another exemplification of a hierarchical
Transformer, Pyramid vision Transformer (PvT) [144] significantly reduces
computational and memory overhead by reducing the sequence length at each
stage through non-overlapping patch embedding and learning low-resolution key-
value pairs via spatial-reduction attention (SRA) in each block. Convolutional
vision Transformer (CvT) [145] incorporates depthwise convolutions into self-
attention layers and uses strided convolution for simultaneously tokenizing and
downsampling the image, exploiting the excellent capability of convolution at
capturing low-level local features.

Transformer-based methods were recently proposed to deal with the task of
2D image segmentation. Segmentation Transformer (SETR) [146] uses a ViT
encoder and a decoder with progressive upsampling (which alternates Conv layers
and upsampling operations) and multi-level feature Aggregation. SegFormer
[147] consists of a PvT-based encoder and a lightweight Multilayer Perceptron
(MLP) decoder with upsampling operations. Chen et al. [87] proposed a model
for multi-organ segmentation by incorporating ViT into the bridge of a 2D
convolutional U-Net architecture. Zhang et al. [148] proposed to combine a
shallow CNN with a Transformer in a parallel style. Valanarasu et al. [149]
proposed a Transformer model with an axial attention mechanism for the
segmentation of 2D medical images. Cao et al. [91] proposed a U-shaped
architecture based purely on Swin Transformer.

For 3D medical image segmentation, Xie et al. [150] proposed a model comprising
a CNN backbone to extract features, a Transformer to model long-range
dependencies, and a CNN decoder to construct the segmentation map. More
recently, Hatamizadeh et al. [89] proposed UNETR, which utilizes ViT as the
main encoder but directly connects it to the convolutional decoder via skip
connections, as opposed to using a Transformer only in the bridge. nnFormer
[92] uses an initial convolutional tokenizer and interleaves local and global
self-attention blocks with convolutional downsamplers. Since self-attention is
prohibitively expensive on long sequences, all these models apply Transformer
on a low-resolution stage after either patch embedding or a CNN backbone,
making them fail to fully exploit the global context at the higher resolutions. In
contrast, our proposed approach based on NMF offers a scalable alternative to
the attention mechanism, which enables the exploitation of the global context
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at the highest-resolution stage of a 3D network.

Matrix Factorization Models. In the context of machine learning, low-rank
matrix factorization methods have proven extremely useful for representation
learning, dimensionality reduction, and collaborative filtering. NMF has been
used for unsupervised and semi-automated segmentation of brain tumors on
multiparametric MRI data [151], [152]. However, only a few works have
incorporated matrix factorization into an end-to-end deep model to perform a
computer vision task. Most notably, Geng et al. [153] proposed a framework,
called Hamburger, where the global context is modeled as solving a low-rank
matrix completion problem by suitable optimization algorithms that guide the
design of layers able to capture global information. They demonstrated the
effectiveness of a Hamburger model based on NMF with a multiplicative update
(MU) solver for semantic segmentation. Our approach to context modeling is
based on NMF with a Hierarchical Alternating Least Squares (HALS) solver and
introduces a series of matricization operations which enable NMF to effectively
exploit both global and local contexts. Moreover, our proposed block is inspired
by the overall design of the ViT block and incorporated into a U-shaped
architecture.

7.3 Method

7.3.1 Matrix Factorization for Context Modeling

Here we provide the motivation behind incorporating matrix factorization into
deep learning by first presenting an alternative view of the attention mechanism
and then showing how it relates to the matrix factorization approach to modeling
contextual information.

Revisiting Attention Mechanism. The attention mechanism is the key
component that enables Transformers to model complex dependencies between
the elements of a sequence. Consider an input sequence of C-dimensional
tokens (xn)N

n=1, stacked into the rows of matrix X = [x1 | · · · | xN ]T.
In a self-attention layer, the input is first projected onto three learnable
weight matrices W Q, W K , W V ∈ RC×E to get three different matrices: query
Q = [q1 | · · · | qN ]T = XW Q, Key K = [k1 | · · · | kN ]T = XW K , and value
V = [v1 | · · · | vN ]T = XW V . The output is then defined by

Attention(Q, K, V ) = softmax
(

QKT

√
E

)
V , (7.1)
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where softmax is taken row-wise. Note that attention takes O(N2E) time and
needs O(N2) memory to store the attention weights, scaling quadratically with
the sequence length, which is prohibitively expensive for large inputs, such as
high-resolution or 3D images.

Taking a closer look at equation (7.1), we notice that attention can be interpreted
as a special case of the Nadaraya-Watson kernel regression, discussed in
Section 3.3.4. To illuminate this relationship, consider the key-value pairs
D = {(kn, vn)}N

n=1 as a training dataset and the queries {qn}N
n=1 as a test

dataset. Here, the kns and qns are treated as feature vectors, while the vns
serve as labels for the keys. Based on equation (3.54), the predictions for the
queries using generalized kernel regression can be expressed as:

f̂(qn) =
∑N

m=1 S(qn, km)vm∑N
m=1 S(qn, km)

, (7.2)

where S(., .) is a similarity function. By setting the similarity function to
S(a, b) = exp(aTb/

√
E) and then rewriting it in matrix notation, we can easily

derive the attention formula.

Low-Rank Matrix Factorization. Formulating attention as a kernel regression
with softmax kernel suggests that we can probably use other regression methods
on queries, keys, and values to model interactions between the sequence elements.
Notably, one can take a matrix completion approach to regress on the queries
via low-rank approximation of a block matrix of queries, keys, and values with
missing entries, that is K V

Q ?

 ≈
 B

F

 G

H

T

, (7.3)

where B, F ∈ RN×R and G, H ∈ RE×R; and R ≤ min(N, E) is the rank. The
reconstructed matrix F HT then gives an estimation of the missing block as the
output. This can be viewed as a joint matrix factorization of Q, K, and V ,
i.e., K ≈ BGT, V ≈ BHT, Q ≈ F GT.

In this work, we further simplify the procedure by considering only a single
linear map to generate a single matrix Z = XW , where W ∈ RC×E is a
learnable weight matrix, and using a regular matrix factorization rather than a
joint one, that is Z ≈ F GT, then the output is the reconstructed matrix F GT.
Note that this is an unsupervised scheme, unlike the joint factorization, which
forms a regression model. Depending on the matrix factorization algorithm, a
suitable activation function may be applied before the factorization to constrain
the input. Particularly, in the case of NMF, ReLU of the matrix must be first
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Figure 7.1 The overall architecture of Factorizer.

taken to make all of the entries nonnegative. As we will see in Section 7.4, our
results suggest that NMF can potentially be an efficient yet effective alternative
to attention-based context modeling for medical image segmentation.

7.3.2 Overall Architecture

As shown in Figure 7.1, a Factorizer model follows a U-Net-style architecture
consisting of encoder and decoder parts with skip connections in between at equal
resolutions. Given an input image X ∈ RCin×H×W ×D with Cin channels and
resolution (H, W, D), the network outputs a logit map of size (Cout, H, W, D),
where Cout is the number of foreground classes. A single 3D convolution with a
kernel size of (3, 3, 3) is used as the stem to increase the number of channels to
C = 32. However, note that in contrast to ViT, Factorizer does not flatten the
spatial dimensions at the initial stage to generate a sequence of tokens.

The network has four stages, with the resolution decreasing to 1/16 in the
bridge. At each stage of the encoder (decoder), the input tensor is downsampled
(upsampled) by a factor of two while the number of channels is doubled (halved).
Convolution (transposed convolution) with a kernel size of (2, 2, 2) and stride
of 2 is used for downsampling (upsampling). In the bridge, learnable position
embeddings are added to the input right after downsampling. We use deep
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Figure 7.2 An overview of the Factorizer block and its components. (a) overall
Factorizer block (b) Wrapped NMF module (c) An illustration of SW Matricize on a
2D toy example.

supervision [122] at the three highest resolutions in the decoder, applying
pointwise convolutions (i.e., convolution with a kernel size of (1, 1, 1)) to get
the output and two auxiliary low-resolution logit tensors.

7.3.3 Factorizer Block

A Factorizer block is constructed by replacing the multi-head self-attention
module in a ViT block [80] with a Wrapped NMF module (described in Section
7.3.4). As shown in Figure 7.2a, a Factorizer block comprises NMF module
and MLP, each of which comes after Layer Normalization and before a residual
connection, that is,

Y = WrappedNMF(LayerNorm(X )) + X ,

Z = MLP(LayerNorm(Y)) + Y , (7.4)

where MLP has two linear layers with a Gaussian Error Linear Unit (GELU)
nonlinearity in between

MLP(X ) = PointwiseConv(GELU(PointwiseConv(X ))). (7.5)

The number of input and output channels are the same, but the number of
inner channels is double that of input channels.

7.3.4 Wrapped NMF Module

The major component of Factorizer is the Wrapped NMF module, which relies
on matricization (i.e., an operation that turns a tensor into a matrix) and NMF.
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As shown in Figure 7.2b, a Wrapped NMF subblock first applies a pointwise
convolution to linearly project each voxel. The output is then reshaped into
a batch of matrices using a Matricize operation, which is detailed later on in
Section 7.3.4. The resulting matrices are passed through ReLU to clamp all their
elements into nonnegative values and then low-rank approximated using NMF.
The reconstructed matrices are reshaped back to their original size using the
Dematricize operation, i.e., the inverse of Matricize. Finally, another pointwise
convolution is applied, yielding the output. More formally, Wrapped NMF can
be computed as follows:

X 1 = PointwiseConv(X ),

X 2 = Matricize(X 1),

X 3 = NMF(ReLU(X 2)),

X 4 = Dematricize(X 3),

WrappedNMF(X ) = PointwiseConv(X 4), (7.6)

where NMF(·) is the NMF layer, described in 7.3.4. Intermediate tensors X is
and the output have the same size as the input X .

Matricize

Before applying any matrix factorization method, an input batch of multi-
dimensional images, denoted by X ∈ RB×C×H×W ×D, must be turned into
a batch of matrices, say Z ∈ RB′×M×N . This operation is called Matricize.
In this work, we propose three Matricize operations: i) Global Matricize, ii)
Local Matricize, and iii) Shifted Window (SW) Matricize. Depending on which
operation is used, different variants for Factorizer are obtained: i) Global
Factorizer, ii) Local Factorizer, and iii) Shifted Window (Swin) Factorizer. The
Matricize operations are described in the following.

Global Matricize. This operation simply flattens the spatial dimensions and
divides the channels into multiple groups (analogous to heads of Multi-Head
Self-Attention). More specifically, Global Matricize reshapes a batch of C-
channel 3D images X ∈ RB×C×H×W ×D into a batch of matrices denoted by
a 3D tensor Z ∈ RB(C/E)×E×HW D, where E is called the head dimension,
i.e., the number of channels per head (or matrix). This operation is obviously
suitable for modeling global context and imposes no locality inductive bias.
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Local Matricize. Global Matricize lacks a notion of locality which is typically
useful for images, especially in low-data regimes. Local Matricize is proposed
to mitigate this shortcoming by splitting an input X ∈ RB×C×H×W ×D into a
grid of non-overlapping patches of size (E, P, P, P ). These patches are flattened
spatially and then concatenated along the batch dimension, yielding a batch
of matrices presented by the tensor Z ∈ RBCHW/(EP 3)×E×P 3 . The entire
procedure can be summarized by Einstein notation

Zbgcghgwgd,e,pepwpd
= Xb,gce,ghph,gwpw,gdpd

(7.7)

where (gc, gh, gw, gd) and (e, ph, pw, pd) indices correspond to grid and patch
dimensions, respectively. In PyTorch and TensorFlow, such Einstein operations
can be simply implemented using rearrange function from einops library.
Once NMF is applied to the resulting batch of matrices, the inverse operation
of Local Matricize, called Local Dematricize, must be applied to transform
them back to the initial shape. Local Dematricize can be easily obtained by
composing the inverses of sub-operations in reverse order. In practice, Local
Dematricize can also be formulated and implemented as an Einstein operation.
A PyTorch-style pseudocode of Local (De)matricize module is provided in
Algorithm 6.

Note that while Local Matricize seems to reshape an image in a similar way
to the input patchifier of ViT, it concatenates patches along batch dimension
rather than channel dimension. In fact, Local Matricize can be used when
modeling within-patch interactions is desirable, which is different from ViT-
based approaches, where interactions between embedded patches are typically
modeled.

Shifted Window Matricize. While Local Matricize introduces locality to a
model, voxels close to the boundaries of partitioning windows are not represented
effectively. Since patches are low-rank approximated independently later on in
an NMF layer, two neighboring boundary voxels from two adjacent patches are
very likely to end up having excessively different feature maps in the output
of the factorizer block, which in turn degrades the prediction performance for
such voxels. To mitigate this problem, we utilize a shifted window approach
proposed by Liu et al. [81] and introduce a Shifted Window (SW) Matricize
operation, making the output feature maps smoother around boundaries.

An illustration of SW Matricize is provided in Figure 7.2c. Here, in addition to
regular patches similar to those extracted by Local Matricize, shifted window
(SW) patches are also included. Let X ∈ RB×C×H×W ×D be the input and
(P, P, P ) the patch size. To extract SW patches, the input must be first shifted
by the offset of (P/2, P/2, P/2) along spatial dimensions such that voxels shifted
beyond the boundaries of the images are re-introduced at the first position,
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yielding a tensor of the same size (B, C, H, W, D). We call this operation Roll
(which can be implemented using roll function in PyTorch and TensorFlow).
The resulting rolled tensor is then reshaped by Local Matricize to get SW
patches. Finally, both the batches of regular and SW patches are concatenated
along the batch dimension. Formally, SW Matricize is computed as follows:

X 1 = LocalMatricizeP (X ),

X 2 = LocalMatricizeP (RollP/2(X )),

SWMatricize(X ) = Concatenate(X 1, X 2), (7.8)

where LocalMatricizeP denotes Local Matricize with a patch size of (P, P, P ),
and RollP/2 denotes the roll operator with a shift (P/2, P/2, P/2). To build
SW Dematricize, we need to reconstruct the image from both regular and SW
patches independently then compute their average to achieve smoother and
more accurate feature maps.

Further details are provided in Section 7.6.2, which includes a PyTorch
implementation of SW (De)matricize module presented in Algorithm 6.

Nonnegative Matrix Factorization

Once the input is somehow transformed into a batch of matrices, and its negative
elements are clipped to zero by ReLU, it is ready to be low-rank approximated
by Nonnegative Matrix Factorization (NMF). This is the main component of a
Factorizer model that contributes most to modeling local or global context in
an image.

NMF [98] seeks to approximate some given nonnegative matrix X ∈ RM×N
≥0 by

X ≈ F GT, (7.9)

where F ∈ RM×R
≥0 and G ∈ RN×R

≥0 are factor matrices, and the positive
integer R ≤ min(M, N) is the rank. Once the factors F and GT are somehow
approximated, the NMF layer in a Factorizer block outputs the reconstructed
matrix X̂ = F GT. Note that similar to self-attention, the NMF layer can
be viewed as an adaptive filter, meaning that the computation of factors
involves the input, as opposed to convolution, where kernel weights are fixed
and independent from the input and do not change after training. Various
loss functions have been used to form the objective function and measure the
quality of an approximation. Depending on the loss function, constraints, and
regularization, many variants of NMF have been proposed. In this work, we use
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Algorithm 4: Multiplicative update for NMF (⊙ and ·
· denote element-

wise matrix product and division, respectively).
Input: X ∈ RM×N

≥0 (input matrix), R (rank); T (# iterations)
Output: X̂ ∈ RM×N

≥0 (low-rank matrix approximation)
1 Initialize factors F ∈ RM×R

≥0 and G ∈ RN×R
≥0

2 for t = 1, . . . , T do

3 F ← F ⊙ XG

F GTG

4 G← G⊙ XTF

GF TF

5 return X̂ = F GT

a standard NMF with the squared error, which is the most widely used variant
for images, to find factors by solving the following problem

minimize
F ≥0,G≥0

∥X − F GT∥2. (7.10)

In general, problem (7.10) is nonconvex, and finding global minima is NP-
hard. However, numerous iterative algorithms have been proposed to find a
“good local minimum". The majority of existing methods are based on a block
coordinate descent (BCD) scheme (aka alternating optimization), where the
objective function is iteratively minimized with respect to one factor while the
other factor is kept fixed. That is, the convex subproblems

F ← arg min
F ≥0

∥X − F GT∥2, G← arg min
G≥0

∥XT −GF T∥2, (7.11)

are exactly or approximately solved alternately. This ensures that the objective
function value does not increase after each update and guarantees convergence
to a stationary point under some mild conditions [154].

Among numerous BCD-based algorithms for NMF, Multiplicative Update (MU)
[98] is the best-known due to the advantage of being easy-to-implement and
scalable. MU enforces a nonnegativity constraint by updating the previous
values of a factor matrix by multiplication with a nonnegative scale factor. The
pseudocode of MU is outlined in Algorithm 4. However, slow convergence of
MU has been pointed out [140, Chapter 8], and hence more effective algorithms
with faster convergence such as Hierarchical Alternating Least Squares (HALS)
[101] have been introduced. HALS updates a factor, say F = [f1 | · · · | fR],
with inner iterations, in which the columns frs are updated by solving the
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Algorithm 5: Hierarchical alternating least squares for NMF.
Input: X ∈ RM×N

≥0 (input matrix), R (rank); T (# iterations)
Output: X̂ ∈ RM×N

≥0 (low-rank matrix approximation)
1 Initialize factors F ∈ RM×R

≥0 and G ∈ RN×R
≥0

2 for t = 1, . . . , T do
3 A←XG, B ← GTG
4 for r = 1, . . . , R do

5 F:r ← max
(

0,
A:r −

∑
s̸=r BsrF:s

∥G:r∥2

)
6 A←XTF ; B ← F TF
7 for r = 1, . . . , R do

8 G:r ← max
(

0,
A:r −

∑
s̸=r BsrG:s

∥G:r∥2

)
9 return X̂ = F GT

following subproblem

fr ← arg min
fr≥0

∥Er − frgT
r ∥2, (7.12)

where Er = X −
∑R

ℓ̸=r fℓg
T
ℓ is the residual matrix, which is, in fact,

approximated by a rank-one matrix. An encouraging aspect of HALS is that
each subproblem (7.12) can be easily shown to have a closed-form solution

f∗
r ← max(0,

Ergr

∥gr∥2 ). (7.13)

Similarly, the update formula for columns of G can be derived. Note that HALS
is a 2R-block coordinate descent procedure, where at each outermost iteration,
first the columns of F and then the columns of G are updated. Algorithm 5
provides pseudocode of HALS (further details on MU and HALS can be found
in Section 5.1.2).

A special case of NMF is R = 1; i.e., X ≈ fgT, where f ∈ RM
≥0 and g ∈ RN

≥0;
for which one can easily derive that both MU and HALS are simplified to the
same update rule:

f ← Xg

∥g∥2 , g ← Xf

∥f∥2 . (7.14)

In this chapter, all Factorizer models are trained with R = 1, and compression
ratios (and indirectly reconstruction errors) are controlled by adjusting the
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head dimension (i.e., the number of rows in a matrix, as discussed in 7.3.4) to
sufficiently small values. This means that a matricize operation transforms an
image into a batch of such fat matrices (i.e., the number of columns is much
larger than the number of rows) that rank-one approximation would suffice in
practice. This greatly simplifies a factorizer model and improves interpretability
while yielding better segmentation performance. However, in one of our ablation
studies (see Section 7.4.5), we experimented with both MU and HALS for R > 1
to investigate the impact of rank in the inference phase. The computational
complexity of both MU and HALS is O(MNR) per iteration [140, Chapter 8],
making the Wrapped NMF layer scale linearly and be much cheaper than
self-attention with quadratic complexity (which is computationally intractable
on long sequences) and even than Performer [84], as an efficient approximation
of attention.

It is worth mentioning that not all NMF algorithms and their settings can
be used in the NMF layer of a Factorizer block. The selected algorithm must
have some properties so that we can ultimately train the Factorizer model
successfully in an end-to-end fashion using a gradient descent-based optimizer
on GPU(s) through an existing deep learning framework, such as PyTorch.
Firstly, the algorithm should be backpropagation-friendly and amenable to
automatic differentiation, that is ∂X̂

∂X should not only be well-defined and
somewhat smooth but also computable by means of an existing deep learning
framework, such as PyTorch, so that we can practically train the Factorizer
model in an end-to-end fashion using a gradient descent optimizer. Another
related aspect is that the gradient ∂X̂

∂X , as explained in [153], starts to vanish
during backpropagation after some iterations. Therefore, the number of outer
iterations T in an NMF algorithm should be limited in order to have stable
gradients. For MU and HALS, T = 5 is a reasonable choice in practice. Finally,
update rules should be also friendly to GPU parallel processing for exploiting
GPUs to train Factorizers in a reasonable amount of time. Taking all these
factors into account, MU and HALS are appropriate choices. While HALS has
better convergence properties, MU is more favorable for GPU training due to
unparallelizable inner iterations of HALS.

7.4 Experiments

7.4.1 Datasets

We evaluate the effectiveness of our models on the Brain Tumour Segmentation
(BraTS) dataset [25], [141] from Medical Segmentation Decathlon [155] and
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Ischemic Stroke Lesion Segmentation (ISLES) 2022 dataset [18] from a MICCAI
2022 challenge.

BraTS. This dataset consists of 484 multiparametric MRI (mpMRI) scans
from patients diagnosed with either low-grade glioma or high-grade glioma
(glioblastoma). Each scan comes with four 3D MRI sequences, namely T2
Fluid-Attenuated Inversion Recovery (FLAIR), native T1-weighted (T1), post-
Gadolinium contrast T1-weighted (T1Gd), and T2-weighted (T2). Once images
are preprocessed (i.e., rigidly co-registered to the same anatomical template,
resampled to the same voxel spacing 1mm3, and skull-stripped), the ground
truths are manually created by experts who label each voxel as enhancing
tumor (ET), edema (ED), necrotic and non-enhancing tumor (NCR/NET),
or everything else. However, for evaluation, the 3 nested subregions, namely
enhancing tumor (ET), tumor core (TC—i.e., the union of ED and NCR/NET),
and whole tumor (WT) are used (see the sample ground truths in Figure 7.5).

ISLES’22. This dataset is from the ISLES’22 challenge, which aims to evaluate
automated methods of acute and sub-acute stroke lesion segmentation in 3D
multiparametric MRI data, namely DWI, Apparent Diffusion Coefficient (ADC),
and FLAIR sequences. The DWI and ADC images of a patient are aligned
while the FLAIR image in its native space has a different voxel size and must
be registered to the DWI space. As DWI and ADC are the most informative
modalities for stroke lesions, FLAIR is ignored in this chapter to avoid the
complication of FLIAR-DWI registration and simplify the pipelines. The
dataset consists of 250 cases, each is skull-stripped and includes an expert-level
annotation of the stroke lesions.

7.4.2 Setup

All the models were implemented using PyTorch [129] and MONAI [131]
frameworks and trained on NVIDIA P100 GPUs. We followed the same training
workflow in all the experiments. In the following, we first provide the details of
this workflow and baseline models, then present the evaluation protocol and
the results.

Preprocessing. For each scan in a dataset, a multi-channel 3D image as the
input was first constructed by concatenating the modalities—i.e., FLAIR, T1,
T1Gd, and T2 for BraTS, and DWI and ADC for ISLES’22. The image and
its ground truth were then cropped with a minimal box filtering out zero
regions of the image. The image was normalized channel-wise using a z-score
to have intensities with zero mean and unit variance. Random patches of size
(128, 128, 128) for BraTS and (64, 64, 64) for ISLES’22 were extracted during
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training. To reduce overfitting, we used data augmentation techniques, including
random affine transform, random flip along each spatial dimension, additive
Gaussian noise, random Gaussian smoothing, random intensity scaling, random
intensity shifting, and random gamma transform. Further details are provided
in 7.6.1.

Training. All models were trained for 100000 steps with a batch size of 2 (one
sample per GPU) using AdamW optimizer with a base learning rate of 10−4,
weight decay of 10−2, warmup of 2000 steps, and cosine annealing scheduler.
The loss ℓtotal is computed by incorporating the three deep supervision outputs
and the corresponding downsampled ground truths according to

ℓtotal = λ1ℓ(G1, P1) + λ2ℓ(G2, P2) + λ3ℓ(G3, P3), (7.15)

where λ1 = 1, λ2 = 0.5, and λ3 = 0.25; Gi and Pi correspond to the deep
supervision at the ith highest resolution; and the loss function ℓ(·, ·) is a
combination of soft Dice loss [132] and cross-entropy loss, defined as

ℓ(G, P ) = ℓDice(G, P ) + ℓCE(G, P ), (7.16)

where

ℓDice(G, P ) = 1− 2⟨G, P ⟩+ ϵ

∥G∥2 + ∥P ∥2 + ϵ
, ℓCE(G, P ) = − 1

N
⟨G, log(P )⟩,

(7.17)

where G ∈ {0, 1}J×N and P ∈ [0, 1]J×N represent the one-hot encoded ground
truth and the predicted probability map for each voxel, respectively, with J
denoting the number of foreground classes and N denoting the number of voxels
in the patch. The small constant ϵ = 10−5 is commonly used to smooth the
soft Dice loss and avoid division by zero.

Inference. A test image in the inference was first subjected to z-score intensity
normalization, then the prediction was made using a sliding window approach
with a 50% overlap and a window size of 128× 128× 128 (same as the patch
size used in training). Finally, the resulting probabilities were thresholded by
0.5 to obtain a binary segmentation map.

Evaluation Metrics. The Dice score and Hausdorff Distance 95% (HD95)
were used as metrics to assess the performance of models in our experiments.
For each segmentation region, the Dice score measures the voxel-wise overlap
between the ground truth and the prediction, defined as

Dice(g, y) = 2
∑N

n=1 gnyn∑N
n=1 gn +

∑N
n=1 yn

(7.18)
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where gn ∈ {0, 1} and yn ∈ {0, 1} represent the ground truth and the binary
prediction for a voxel, respectively, and N is the number of voxels. If both the
ground truth and the prediction do not have any nonzero values, that is the
denominator of equation (7.18) is zero, the Dice score is defined as 1. Hausdorff
Distance (HD) evaluates the distance between the boundaries of ground truth
and prediction. HD is defined as follows

HD(G,Y) = max{max
g∈G

min
y∈Y

∥g − y∥, max
y∈Y

min
g∈G
∥y − g∥}, (7.19)

where G and Y denote the set of all voxels on the surface of ground truth
and prediction, respectively. HD95 is a more robust version to outliers, which
calculates the 95% quantile rather than the maximum of surface distances.

Models. In all the experiments, for Factorizer models with the overall
architecture illustrated in Figure 7.1, the number of output channels of the
stem was C = 32. For Local and Swin Factorizer, we used a large window
size of (8, 8, 8) and (4, 4, 4) on the BraTS and ISLES’22 datasets, respectively,
to aggregate local information, which is opposed to typical CNNs comprising
convolutions mostly with a small receptive field of size (3, 3, 3). For all Factorizer
models, a head dimension of E = 8 on BraTS and E = 4 on ISLES’22 was used.
In NMF modules, the factor matrices were initialized with uniform distribution
U(0, 1). In training, we used a rank-one approximation (R = 1) with T = 5
outer iterations of HALS (which is equivalent to MU for R = 1), as described
in Section 7.3.4.

We compare Factorizers against seven baseline models, among which nnU-Net,
Res-U-Net, and Performer follow the same overall architecture and setup as
those of Factorizers except that each has a different encoder/decoder block,
allowing us to better assess the impact of blocks rather than architectures by
eliminating the effect of architectural variability. These three baselines are
detailed below:

• nnU-Net: This model is based on nnU-Net [93], i.e., a standard 3D U-
Net [85] with minor modifications. Each encoder (and decoder) block
is composed of two convolutions with a kernel size of (3, 3, 3). Group
Normalization (with a group size of 8) is adopted right after each
convolution and before LeakyReLU nonlinearity. This model does not
have any positional embedding in its bridge since CNNs already have
some notion of position.

• Res-U-Net: ResNet block [70] is the cornerstone of Res-U-Net. This block
is similar to that of nnU-Net, except that it has a residual connection
after the last Group Normalization. This model is similar to SegResNet
[86].
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• Performer: The encoder and decoder blocks of this model are based
on ViT (note that the input is first flattened into a sequence of voxels
before feeding it to a ViT block). However, attention scales quadratically
with the number of voxels, hence is prohibitively expensive in our case,
where the input can have up to 1283 voxels. Therefore, we replace original
attention layers of a ViT block with FAVOR+ (Fast Attention Via positive
Orthogonal Random features) used in Performer, recently proposed by
Choromanski et al. [84] as a linearly scalable alternative to Transformer.
FAVOR+ gives an unbiased estimate of attention using only linear (as
opposed to quadratic) time and space complexity. Note that except for
the attention layers, the rest of the components of this baseline are the
same as those of Factorizer.

We also use four state-of-the-art Transformer-based baselines, namely TransBTS
[88], UNETR [89], Swin UNETR [90], and nnFormer [92], each of which has
a different overall architecture than that of Figure 7.1. These models follow
U-shaped architectures but apply Transformer blocks only to low-resolution
images after somehow downsizing the input using patchifying or convolutional
tokenizers, thereby avoiding the computational intractability of self-attention
on long sequences. In contrast, Global Factorizer and Performer exploit the
global context at all stages of their architectures, from the lowest to highest
resolution.

7.4.3 Results and Discussion

Brain Tumor Segmentation (BraTS)
Quantitative Evaluation. For all the experiments, we performed 5-fold cross-
validation to estimate how capable our models are in generalizing to unseen
data. The results on the BraTS dataset are reported in Table 7.1 and illustrated
by box plots in Figure 7.3a and 7.3b, where pairwise Wilcoxon signed-rank tests
were used for comparing the performance of our best model, Swin Factorizer,
with that of the baselines.

Swin Factorizer is the clear overall winner in the brain tumor segmentation task.
With an average Dice score of 84.21% and HD95 of 6.89 mm, Swin Factorizer
significantly outperformed Res-U-Net, the best CNN-based and second-best
overall baseline, with p-values of < 0.01 for the average Dice score and < 0.05 for
the average HD95, while requiring six times fewer computations. Swin Factorizer
was the best-performing model on ET and the second best-performing model
on TC and WT, particularly yielding the highest Dice score of 79.33% on ET.
Despite having over 95% fewer parameters and requiring over 60% fewer FLOPs,
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Table 7.1 Comparison of different models on the BraTS dataset. Scores are obtained
by 5-fold cross-validation. The best results are in boldface and second best ones are
underlined.

Model #Params FLOPs
Dice (%) ↑ HD95 (mm) ↓

ET TC WT Avg. ET TC WT Avg.

nnU-Net 28.7M 1152.8G 75.89 81.94 90.09 82.64 8.61 9.13 9.31 9.19

Res-U-Net 28.9M 1168.6G 77.95 82.49 90.39 83.61 6.08 8.18 8.06 7.52

Performer 6.7M 222.7G 78.43 82.34 88.72 83.16 6.72 9.78 12.93 10.21

TransBTS 33.0M 653.0G 73.46 80.00 85.42 79.63 15.48 13.77 20.73 17.12

UNETR 111.5M 1124.9G 76.40 82.06 89.37 82.61 8.09 9.41 10.59 9.56

Swin UNETR 62.2M 1549.8G 76.50 82.65 90.10 83.08 9.69 8.75 11.04 9.91

nnFormer 149.4M 489.9G 77.71 83.41 90.05 83.72 5.42 7.45 7.68 6.93

Global Factorizer 5.9M 170.0G 78.20 82.86 88.65 83.24 6.67 9.53 11.69 9.71

Local Factorizer 5.9M 170.0G 78.67 82.85 89.30 83.61 5.29 7.77 8.91 7.41

Swin Factorizer 5.9M 174.2G 79.33 83.14 90.16 84.21 4.91 7.31 8.23 6.89

Swin Factorizer still outperformed nnFormer, the best-performing baseline,
in terms of average Dice and HD95. With an average Dice score of 83.61%,
Local Factorizer yielded comparable results to Res-U-Net, and both Global and
Local Factorizer demonstrated improved performance compared to Performer,
nnU-Net, TransBTS, UNETR, and Swin UNETR. As shown in Figure 7.4, while
achieving competitive performance over the baselines, Factorizer models have
much fewer parameters and are significantly cheaper.

Performer is the Transformer-based counterpart of Global Factorizer in the
sense that they both follow the same overall architecture without imposing
any locality inductive bias in their blocks. However, while having lower
computational complexity, Global Factorizer, with an average Dice score of
83.24% and an average HD95 of 9.71 mm, marginally outperformed Performer,
with an average Dice score of 83.16% and an average HD95 of 10.21 mm. Local
Factorizer improved the performance of Global Factorizer by exploiting locality,
particularly with the average HD95 significantly dropping from 9.71 mm to 7.41
mm (p-value < 0.0001). As expected, Swin Factorizer improved all the scores of
Local Factorizer, which is consistent with the fact that Swin Factorizer modifies
Local Factorizer by better representing the boundary voxels in Local Matricize.

Qualitative Comparisons. Qualitative comparisons of glioma segmentation
models are presented in Figure 7.5. Swin Factorizer demonstrates superior
performance in segmenting TC and ET. This capability is evident in row 1 (row
2), where Swin Factorizer more successfully delineates TC compared to the
other models, which do not as accurately distinguish ED (normal tissues) from
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Figure 7.3 The Dice score and 95% Hausdorff distance of different models on the
BraTS dataset. The asterisks indicate statistical significance according to pairwise
Wilcoxon signed-rank test (*: p-value < 0.05; **: p-value < 0.01; ***: p-value < 0.001;
and ****: p-value < 0.0001).

TC. Particularly, nnU-Net misclassifies a significantly larger part of ED (normal
tissues) as NCR/NET (ET). Row 3 exemplifies a successful detection of TC by
Swin Factorizer, while the other models miss a fairly large NCR/NET region.

NMF Components Interpretability. One additional advantage of Factorizer
over Transformer and CNN models is its higher interpretability resulting from
meaningful components of NMF in the sense that each component represents
specific image semantics in practice. Note that both the first and last Factorizer
blocks (i.e., the high-resolution blocks of the encoder and the decoder, which
are just after the stem layer and just before the head layer, respectively) have
C = 32 channels, divided into groups of 8-channel heads during matricization,
where the NMF of each head has only a single rank-one term, i.e., R = 1. As
a result, in total, there are CR/8 = 4 components in both the first and last
blocks. Figure 7.6b and 7.6c show the components of the first and last NMF
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Figure 7.4 Performance of Factorizer models in terms of average Dice on BraTS,
versus the number of parameters (left) and versus their speed in terms of the number
of FLOPs (right).
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Figure 7.5 Qualitative results on brain tumor segmentation. All the examples
are from the validation sets of the 5-fold cross-validation. TC is the union of red
(NCR/NET) and yellow (ET) regions, and WT is the union of green (ED), red, and
yellow regions. The patient-wise average Dice score is presented for each case.

layers on a high-grade glioma case for Swin Factorizer and Global Factorizer.
More precisely, each component illustrates the factor matrix corresponding to
spatial dimensions after dematricization.
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Figure 7.6 NMF Components of Factorizer models on BraTS. The example is from
a validation set of the 5-fold cross-validation. Panel (a) shows the modalities and
ground truth for a high-grade glioma case. Panel (b) and (c) present the NMF spatial
components in the first and last block, respectively.

Interestingly, the components appear highly meaningful and interpretable in
the sense that each component gives an interpretation by differentiating one
region from another. For instance, as observed in Figure 7.6b, the first (row
1) and second (row 2) components discriminate roughly WT while the third
(row 3) and fourth (row 4) components capture TC. For Swin Factorizer, NCR
is distinguished more clearly in the third and fourth components whereas for
Global Factorizer NCR is more recognizable in the second component. As we
get to deeper layers, components become even more meaningful such that in the
last layer, each component clearly detects some regions. For example, as seen
in Figure 7.6c, the first (row 1) and second (row 2) components very clearly
discriminate WT while the third (row 3) and fourth (row 4) components also
capture TC and NCR.

Another interesting observation is that Global Factorizer yields more discrimi-
native and higher-level components in the first layer, which can be attributed
to the fact Global Factorizer models long-range dependencies through all of its
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blocks, including the first one; however, the receptive field of Swin Factorizer in
the first stage of the encoder is small but progressively increases as it passes
through downsampling layers. Therefore, Swin Factorizer extracts lower-level
features in shallower layers and higher-level ones in deeper layers in a similar
way to CNNs. Notice that the footprints of shifted windows, which appear as a
grid pattern, are also evident in all the components of Swin Factorizer.

Ischemic Stroke Lesion Segmentation (ISLES)
Quantitative Evaluation. Similarly to Section 7.4.3, 5-fold cross-validation was
performed, and pairwise Wilcoxon signed-rank tests were used for comparison
purposes. The results on the ISLES’22 dataset are reported in 7.2 and illustrated
by box plots in Figure 7.3c and 7.3d.

Swin Factorizer, with a Dice score of 76.49% and HD95 of 11.96 mm,
demonstrated the best performance, significantly outperforming nnU-Net and
all the Transformer-based models with a p-value of < 0.001 for the Dice
score and < 0.01 for the HD95 value. Moreover, Swin Factorizer showed
improved performance compared to Res-U-Net, which has over three times more
parameters and needs over four times more FLOPs.

Despite having over 95% fewer parameters and taking over 50% fewer FLOPs,
Local Factorizer yielded a Dice score of 74.28%, which is higher than that
of nnFormer, the best-performing Transformer-based model. Local Factorizer
also demonstrated a smaller HD95 value with 80% fewer FLOPs than Res-
U-Net, the best baseline overall. Finally, Global Factorizer outperformed its
Transformer-based model, Performer, by a large margin, whereas it still has the
advantage of lower computational cost. As a side note, our Factorizer-based
model trained on all the three modalities (i.e., DWI, ADC, and registered
FLAIR) and submitted to the ISLES’22 MICCAI challenge ranked among
the top three in the final leaderboard, which further verifies the potential of
Factorizer as an effective alternative for 3D medical image segmentation (please
see https://isles22.grand-challenge.org/isles22/).

Qualitative Comparisons. Qualitative comparisons of stroke lesion segmenta-
tion models are presented in Figure 7.7. Compared to UNETR and nnU-Net,
our Swin Factorizer and Global Factorizer models substantially reduce false
positives, as observed in row 1. Both UNETR and nnU-Net produce large
regions of incorrect lesions circled in green, but nnU-Net suffers from fewer false
positives than UNETR, as evident in row 2.

Although nnFormer seems to yield relatively small false positive regions
compared to UNETR and nnU-Net, Swin Factorizer not only produces even
slightly fewer false positives but also enjoys more favorable results when it

https://isles22.grand-challenge.org/isles22/
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Table 7.2 Comparison of different models on the ISLES22 dataset. Scores are obtained
by 5-fold cross-validation. The best results are in boldface and second best ones are
underlined.

Model #Params FLOPs Dice (%) ↑ HD95 (mm) ↓
nnU-Net 28.7M 143.1G 69.71 26.59
Res-U-Net 28.9M 145.1G 75.41 16.51
Performer 8.2M 33.0G 71.30 22.18
TransBTS 31.0M 66.1G 72.44 19.35
UNETR 104.8M 137.8G 61.43 41.62
Swin UNETR 62.2M 194.6G 70.41 31.67
nnFormer 149.2M 60.6G 73.79 12.99
Global Factorizer 7.4M 28.5G 72.51 18.06
Local Factorizer 7.4M 28.5G 74.28 16.14
Swin Factorizer 7.4M 29.1G 76.49 11.96

comes to false negatives. This is exemplified by row 3, where Swin Factorizer
successfully captures both the stroke lesions, whereas nnFormer fails to detect
the lesion circled in orange. Overall, Swin Factorizer displays very competitive
segmentation results, superior to those of UNETR, nnFormer, and nnU-Net in
most cases. These results verify the potential of Factorizer as an alternative to
state-of-the-art models, such as nnFormer and nnU-Net.

7.4.4 Ablation Studies: Training

We conducted ablation studies on Factorizer to further investigate the effects of
Factorizer subblocks and positional embedding. In this section, models with an
ablated layer were trained from scratch on the BraTS dataset.

Factorizer Subblock. Ablation results of subblocks on brain tumor segmen-
tation are reported in Table 7.3. When we removed NMF subblocks from
a Factorizer model, the performance substantially dropped while Factorizer
models without MLP subblocks demonstrated less deterioration in results.
Local Factorizer without MLP blocks yielded an average Dice of 82.67%, still
outperforming nnU-Net, and Swin Factorizer without MLP blocks yielded an
average Dice of 83.57%, which is significantly greater than that of nnU-Net and
comparable with that of Res-U-Net. These results indicate the effectiveness of
the NMF layer in improving the models.
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Figure 7.7 Qualitative results on stroke lesion segmentation. All the examples are
from the validation sets of the 5-fold cross-validation. UNETR and nnU-Net produce
the false positive lesions circled in green (row 1 and 2), and nnFormer fails to detect
the lesion circled in orange (row 3).

Table 7.3 The impact of each subblock on the performance of Factorizers on BraTS.

MLP Subblock NMF Subblock Matricize Dice (%) ↑ HD95 (mm) ↓
ET TC WT Avg. ET TC WT Avg.

✓ ✗ ✗ 77.02 80.89 87.36 81.76 6.55 8.90 11.29 9.02
✗ ✓ Global 77.51 80.78 87.85 82.05 8.82 11.24 16.18 12.33
✗ ✓ Local 77.79 81.67 88.56 82.67 5.50 8.67 9.44 8.04
✗ ✓ SW 78.60 82.61 89.51 83.57 5.00 7.47 7.86 6.87
✓ ✓ SW 79.33 83.14 90.16 84.21 4.91 7.31 8.23 6.89

Positional Embedding. Table 7.4 shows the results of the ablation study on
positional embedding. In all the cases, adding positional embedding to the
bridge of a network improved the performance. Particularly, the average Dice
score of Global Factorizer increased from 83.09% to 83.24% significantly with
p-value = 0.031, and the average HD95 fell from 10.12 mm to 9.71 mm although
this improvement is not statistically significant. Local and Swin Factorizers
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Table 7.4 The impact of positional embedding on the performance of Factorizers on
BraTS (the asterisks indicate p-value < 0.05 in the pairwise Wilcoxon signed-rank
test between a model with and without positional embedding).

Model Positional
Embedding

Dice (%) ↑ HD95 (mm) ↓
ET TC WT Avg. ET TC WT Avg.

Global Factorizer ✗ 77.98 82.54 88.76 83.09 7.57 9.91 11.73 10.12
Global Factorizer ✓ 78.20 82.86 88.65 83.24∗ 6.67 9.53 11.69 9.71
Local Factorizer ✗ 78.24 82.59 89.37 83.40 5.87 8.75 9.98 8.31
Local Factorizer ✓ 78.67 82.85 89.30 83.61 5.29 7.77 8.91 7.41
Swin Factorizer ✗ 78.63 83.18 90.16 83.99 5.50 7.24 8.03 6.97
Swin Factorizer ✓ 79.33 83.14 90.16 84.21 4.91 7.31 8.23 6.89

without positional embedding yielded an average Dice of 83.40% and 83.99%,
respectively, slightly underperforming compared to their counterparts with
positional embedding. Like Transformers, Factorizers lack any notion of voxel
position, and therefore typically benefit from a positional embedding mechanism,
which is generally consistent with our results.

7.4.5 Ablation Studies: Inference

Since the output of an NMF layer is a low-rank approximation of the input, it
makes sense to perform an ablation study in the inference phase, for instance
by short-circuiting an NMF layer. For all the experiments in this section, we
ablated some NMF layers or changed their settings in the inference phase after
training the model on the BraTS dataset.

NMF Layer. We investigated the impact of short-circuiting some NMF layers
of the pre-trained Swin Factorizer model in the inference phase. In Figure 7.8a,
the average Dice score on BraTS is shown when we kept the first NMF layers
and removed (or short-circuited) the rest. As expected, the more layers we
kept, the higher the Dice score was achieved. We observed that most of the
performance is achieved via the encoder, which includes the first five blocks.
Figure 7.8b shows the results of investigating the impact of each individual
layer, where we kept all the layers except one at a time. Interestingly, we
noticed that the NMF layer of the bridge block (layer 5) makes the greatest
contribution to the performance. In fact, if an NMF layer except that of the
bridge is ablated, the average Dice still stays above 80%. Particularly, if an
NMF layer in the decoder (layers 6 to 9) is ablated, the performance is still
better than that of nnU-Net. Note that removing an NMF layer, especially
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Figure 7.8 Inference-phase ablation experiments with Swin Factorizer pre-trained
on BraTS. Panel (a) shows the average Dice score when only the first NMF layers
are kept, while Panel (b) shows the Dice score plotted versus the NMF layer removed.
Panel (c) shows the plot of Dice against the number of outer iterations in HALS. Panel
(d) shows the impact of rank on performance in HALS and MU. The dashed orange
lines indicate the nnU-Net Dice score, while the dashed green lines correspond to the
pre-trained Swin Factorizer model.

those at higher-resolution stages of the network, can significantly reduce the
computational complexity and speed up the inference time.

NMF Solver Iterations. We investigate the effect of changing the number of
outer iterations (T ) in HALS. Recall that all the Factorizer models were originally
trained using HALS with T = 5. Figure 7.8c shows the results of experimenting
with T ∈ {1, . . . , 20} in the inference phase for the Swin Factorizer model
pre-trained with T = 5. We noticed that for T > 1, the performance is very
close to that of the original model (T = 5). Interestingly, T ∈ {2, 3, 4} yielded
even higher average Dice scores compared to the original model although the
improvement was not statistically significant. We attribute this to the possible
regularization effect of reducing T . Note that we proportionally decreased the
computational cost of NMF layers by reducing T while preserving the accuracy.
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In fact, by training a Factorizer, we also obtain lightweight yet accurate versions
of that for free without needing to re-train any model from scratch. All we
need is to reduce T or ablate some costly NMF layers in the inference phase.
When it comes to model speed-up, this brings a great advantage to Factorizers
over CNNs and Transformers, which require much more complex mechanisms
to achieve their faster versions.

Rank. We investigated the impact of changing the rank of the pre-trained
Swin Factorizer model in the inference phase. Recall that Swin Factorizers were
trained with R = 1, in which both HALS and MU lead to the same update
rule. Therefore, for R > 1 in inference, we experimented with both HALS and
MU in order to make a comparison. In Figure 7.8d, the average Dice score
on BraTS is plotted as a function of rank. As observed, the more the rank
deviated from R = 1 (the one used in training), the more significantly the Dice
score dropped. In comparison to HALS, MU demonstrated a less dramatic
reduction in performance as we increased the rank. This can be due to the
fact that within the same number of outer iterations, HALS typically makes a
larger decrease in the NMF objective (given in equation (7.10)), causing the
HALS-based model to deviate further from the original model than that of MU.

7.5 Conclusion and Future Work

Vision Transformers, particularly those with hierarchical architectures, have
recently achieved results comparable with state-of-the-art CNNs on various
computer vision tasks. Nevertheless, the lack of locality inductive bias makes
them underperform their CNN counterparts in low-data regimes, which is usually
the case in medical image segmentation. Moreover, the quadratic complexity
of attention makes existing Transformers apply self-attention layers only after
somehow reducing the image resolution, and thus, fail to fully capture long-
range contexts present at higher resolutions. Hence, this chapter introduces
a family of models, called Factorizer, which leverages the power of low-rank
approximation for developing a scalable interpretable approach to context
modeling by formulating NMF as a differentiable layer integrated into an end-
to-end U-shaped architecture. Built upon NMF and shifted window idea, Swin
Factorizer competed favorably with CNN and Transformer baselines in terms
of accuracy and scalability. Swin Factorizer yielded state-of-the-art results on
BraTS for brain tumor segmentation; with Dice scores of 79.33%, 83.14%, and
90.16% for enhancing tumor, tumor core, and whole tumor, respectively; and
on ISLES’22 for stroke lesion segmentation, with a Dice score of 76.49%. Our
experiments indicated that NMF components are highly meaningful, which
gives a great advantage to Factorizers over CNNs and Transformers in terms of
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interpretability. Moreover, our ablation studies revealed a distinctive feature of
Factorizers that allows the speed-up of inference for a pre-trained Factorizer
with no extra steps and without sacrificing much accuracy.

Matrix factorization models are very flexible and versatile. In this work, we
used an ordinary NMF model together with some matricization techniques
to model local or global contexts. One possible extension of this work is to
customize the NMF objective to simultaneously exploit both local and global
contexts. Moreover, it would be useful to explore some ideas for automated
selection of the rank hyperparameter, for example, by taking a greedy approach
to NMF, aka nonnegative matrix underapproximation, where the components
are constructed and added one by one (sequentially) until some criteria are
met. This can benefit especially Local Factorizer as different regions happen
to have different optimal ranks depending on their contexts. We will explore
the effectiveness of other NMF variants, such as Semi-NMF and Convex-NMF,
which work on mixed-signed data matrices and relax the need for the ReLU
activation function before factorization. Finally, while this chapter focuses on
the segmentation of 3D medical images, Factorizer may also potentially serve
as an effective approach for efficiently processing high-resolution 2D medical or
natural images, which can be further investigated in the future.

7.6 Appendix

7.6.1 Data Augmentation Pipeline

The MONAI library [131] was used for data augmentation. The following
random transforms were applied on the fly during training in the following
order:

1. Affine transform. An affine transform was applied with a probability of
0.15, where the angles of rotation (in degrees) and the scaling factor were
drawn from U(−30, 30) and U(0.7, 1.3), respectively.

2. Flip. All patches were flipped with a probability of 0.5 along each spatial
dimension.

3. Gaussian Noise. Each voxel of a patch was independently subject to
additive white Gaussian noise with a variance drawn from U(0, 0.1). This
augmentation was applied with a probability of 0.15.

4. Gaussian Smoothing. Each modality of a patch was filtered
independently via a symmetric Gaussian kernel whose width (in voxels) was
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drawn from U(0.5, 1.5). This augmentation was applied with a probability
of 0.15.

5. Scale Intensity. Voxel intensities were scaled with s ∼ U(0.7, 1.3) with
a probability of 0.15.

6. Shift Intensity. Voxel intensities were shifted with offsets drawn from
U(−0.1, 0.1) with a probability of 0.15.

7. Adjust Contrast. Gamma correction with γ ∼ U(0.7, 1.5) was applied
voxel-wise with a probability of 0.15.

7.6.2 Matricize Implementation Details

Algorithm 6 presents PyTorch implementations of Local and SW Matricize
modules. Here, we use the einops library to reshape tensors simply by declaring
the corresponding Einstein notations.
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Algorithm 6: PyTorch pseudocode of Local and SW Matricize modules.

1 import torch
2 from torch import nn
3 from einops.layers.torch import Rearrange
4

5

6 class LocalMatricize(nn.Module):
7 def __init__(self, size, head_dim=8, patch_size=(8, 8, 8)):
8 super().__init__()
9 C, H, W, D = size

10 c2, (h2, w2, d2) = head_dim, patch_size
11 c1, h1, w1, d1 = C // c2, H // h2, W // w2, D // d2
12 dims = dict(c1=c1, h1=h1, w1=w1, d1=d1, c2=c2, h2=h2, w2=w2, d2=d2)
13

14 eq = "b (c1 c2) (h1 h2) (w1 w2) (d1 d2) -> (b c1 h1 w1 d1) c2 (h2 w2 d2)"
15

16 self.unfold = Rearrange(eq, **dims)
17

18 eq = "(b c1 h1 w1 d1) c2 (h2 w2 d2) -> b (c1 c2) (h1 h2) (w1 w2) (d1 d2)"
19 self.fold = Rearrange(eq, **dims)
20

21 def forward(self, x):
22 # x: (B, C, H, W, D)
23 return self.unfold(x)
24

25 def inverse_forward(self, x):
26 # x: (B, C, L)
27 return self.fold(x)
28

29

30 class SWMatricize(nn.Module):
31 def __init__(self, size, head_dim=8, patch_size=(8, 8, 8), shifts=(4, 4, 4)):
32 super().__init__()
33 self.local_matricize = LocalMatricize(size, head_dim, patch_size)
34 self.shifts = shifts
35 self.shifts_inv = tuple(-s for s in patch_size)
36

37 def forward(self, x):
38 # x: (B, C, H, W, D)
39 out1 = self.local_matricize(x)
40 out2 = torch.roll(x, self.shifts, (2, 3, 4))
41 out2 = self.local_matricize(out2)
42 return torch.cat((out1, out2))
43

44 def inverse_forward(self, x):
45 # x: (B, C, L)
46 B = x.shape[0]
47 out1 = self.local_matricize.inverse_forward(x[: (B // 2)])
48 out2 = self.local_matricize.inverse_forward(x[(B // 2) :])
49 out2 = torch.roll(out2, self.shifts_inv, (2, 3, 4))
50 return 0.5 * (out1 + out2)





Chapter 8

Low-Rank Convolutional
Neural Networks for Brain
Tumor Segmentation

ABSTRACT | The automated segmentation of brain tumors is crucial for
various clinical purposes from diagnosis to treatment planning to follow-up
evaluations. The vast majority of effective models for tumor segmentation
are based on convolutional neural networks with millions of parameters being
trained. Such complex models can be highly prone to overfitting especially in
cases where the amount of training data is insufficient. In this work, we devise a
3D U-Net-style architecture with residual blocks, in which low-rank constraints
are imposed on weights of the convolutional layers in order to reduce overfitting.
Within the same architecture, this helps to design networks with several times
fewer parameters. We investigate the effectiveness of the proposed technique on
the BraTS 2020 challenge.

This chapter is an adapted version of [125] P. Ashtari, F. Maes, and S. Van Huffel, “Low-
Rank Convolutional Networks for Brain Tumor Segmentation,” in International MICCAI
Brainlesion Workshop: BrainLes 2020. Lecture Notes in Computer Science, 2021, pp. 470–480.
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8.1 Introduction

Gliomas are brain tumors with the highest mortality rate and prevalence.
They can be classified into two grades: low-grade glioma (LGG) and high-
grade glioma (HGG), with the former being less aggressive than the latter.
Multiparametric MRI is widely used to diagnose and assess gliomas in clinical
practice. The accurate segmentation of gliomas is crucial for various clinical
purposes, including diagnosis, treatment planning, image-guided surgery, and
follow-up evaluations. However, manual delineation of tumors is laborious,
time-consuming, and expensive especially because experts need to deal with 3D
images and several modalities; therefore, accurate computer-assisted methods
are needed to automatically perform this task. Despite considerable advances
in medical imaging, glioma segmentation is still a challenging task since tumors
can vary dramatically in shape, structure, and location across patients and over
time within a specific patient. Moreover, the growing tumor mass may displace
and deform the surrounding normal brain tissues, as do resection cavities that
are present after surgery.

The brain tumor segmentation challenge (BraTS) [25], [141], [156]–[158] aims
to develop effective data-driven algorithms for brain tumor segmentation by
providing a large dataset of annotated LGG and HGG 3D MRI scans, each with
four MRI modalities (T1 weighted, post-contrast T1-weighted, T2-weighted,
and FLAIR) rigidly co-registered, resampled to the voxel size 1mm3, and skull-
stripped. The BraTS 2020 training dataset consists of 369 cases, each of which
is manually annotated by up to 4 raters who label each voxel as enhancing
tumor (ET), edema (ED), necrotic and non-enhancing tumor (NCR/NET),
or everything else (see Figure 8.1). However, for evaluation, the 3 nested
subregions, namely whole tumor (WT), tumor core (TC—i.e., the union of ED
and NCR/NET), and enhancing tumor (ET), are used.

Recently, deep learning models, particularly convolutional neural networks
(CNN), surpassed traditional computer vision methods for semantic segmenta-
tion. In contrast to the conventional approach based on hand-crafted features,
CNNs are able to automatically learn high-level features adapted specifically to
the task of brain tumor segmentation. Currently, the vast majority of effective
CNNs for medical image segmentation are based on a U-Net [3] architecture
with millions of trainable parameters. However, such complex models can be
highly prone to overfitting especially in cases where the amount of training data
is insufficient, which is usually the case for medical imaging. In this work, we
introduce a new layer, called low-rank convolution, in which low-rank constraints
are imposed to regularize weights and thus reduce overfitting. We make use of a
3D U-Net [85] architecture with residual modules [70] and further improve it by
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Figure 8.1 The multimodal MRI images along with the corresponding ground truth
and prediction for a HGG (top row) and a LGG (bottom row) representative cases
(green: edema, yellow: enhancing tumor, red: necrosis and non-enhancing tumor).

replacing ordinary convolution layers with low-rank ones, achieving models with
several times fewer parameters than the initial ones. This leads to significantly
better performance especially because the amount of training data is limited.

The rest of this chapter is organized as follows: Section 8.2 briefly reviews
relevant semantic segmentation techniques. Section 8.3 presents our approach
to brain tumor segmentation using low-rank convolutional layer. Experiments
are presented in Section 8.4 . We conclude this chapter in Section 8.5 .

8.2 Related work

Over the past few years, considerable research efforts have been directed to the
development of fully convolutional neural networks for semantic segmentation.
Encoder-decoder architectures and their variants, in particular U-Net [3], are
probably the most successful ones in the segmentation of medical images.

In BraTS 2018 and 2019, all top solutions made use of such architectures in
their models one way or another. Isensee et al. [93] focused on the training
procedure instead of proposing a new network, winning second place in BraTS
2018 by making only minor modifications to the standard 3D U-Net [85], using
additional training data, and applying a simple post-processing technique.
McKinley et al. [123] proposed an architecture, in which dense blocks [124] of
dilated convolutions are embedded in a shallow U-Net-style network. Following
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an encoder-decoder CNN architecture, Myronenko [86] won first place in BraTS
2018 by adding a branch to the encoder endpoint and taking a variational
auto-encoder (VAE) approach. The winning model [159] in BraTS 2019, was
based on a similar architecture but further employed a two-stage cascaded
strategy.

CNNs are computationally demanding and memory-intensive. Since convolution
operations comprise the vast bulk of computations in a deep CNN during both
training and inference, methods have been proposed to speed up and compress
convolutional layers. MobileNet [160] exploits depthwise separable filters to
represent a standard convolution layer more compactly, leading to a substantial
reduction in computational complexity at the cost of a small loss of accuracy.
Inception [77] uses bottleneck architectures made of cheap 1x1 convolutions to
limit the network size. These methods suggest new architectures by factorizing
a convolution into smaller blocks.

An alternative approach is based on low-rank approximations [161], [162] and
tensor decompositions [112], [163], [164], where the weights in a convolution
layer are constrained to be low-rank. One advantage of this approach is that
for a fixed architecture we can easily control the number of parameters and the
computational complexity of the model by adjusting the rank. Furthermore,
imposing low-rank constraints can regularize the model and reduce overfitting.
In addition to speed-up, Tai et al. [113] achieved significant improvements in
some cases using CNNs with low-rank regularization. Note that although all
the mentioned techniques are only applied to the task of image classification,
they can be also deployed effectively in an encoder-decoder architecture for
image segmentation. The impact of low-rank regularization on the performance
is expected to be greater when less data is available for training.

8.3 Method

In this section, we present our approach to brain tumor segmentation. The
baseline architecture used is based on a 3D U-Net (Figure 8.2a) proposed in [85]
and customized for BraTS 2018 by [93], except that here convolutional blocks
at each level are replaced by ResNet blocks [70]. We also introduce a new layer,
called low-rank convolution, as a regularization technique to reduce overfitting.
By replacing ordinary convolution layers with low-rank ones, we can achieve
significantly better performance especially when the amount of training data is
insufficient, where the model is more prone to overfitting. In the following, we
describe the training procedure and the building blocks of our networks.
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Figure 8.2 The U-Net architecture (a) and the ResNet block (b) used for brain tumor
segmentation.

8.3.1 Data Preprocessing and Augmentation

The BraTS data is heterogeneous in the sense that it is multiparametric and
acquired with different protocols at multiple institutions using various scanners,
making intensity values nonstandardized. There is also high between-subject
variability in tumors due to the presence of both low- and high-grade gliomas.
To alleviate this heterogeneity and insufficiency of data, it is crucial to perform
an effective preprocessing workflow before feeding the data into the network.

For each scan, we first form a 4-channel 3D image as the input, where each
channel corresponds to one of the modalities (i.e. T1, post-contrast T1, T2, and
FLAIR). We crop each image with a minimal box containing the whole brain
region then resize it to the size 128×128×128. Each channel of each image is then
normalized independently using z-score to have intensities with zero mean and
unit variance. Three data augmentation techniques are also utilized to reduce
overfitting. Firstly, the input image is randomly flipped along the left-right axis.
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Secondly, we apply a random affine transform (scale ∼ U(0.9, 1.1), rotation ∼
U(−10, 10)). Finally, a Gaussian noise (µ = 0, σ ∼ U(0, 0.25)) is added to
intensities per-channel.

8.3.2 Network Architecture

As mentioned before, our network, as shown in Figure 8.2a, follows a U-Net-like
architecture made up of encoder and decoder parts. The network takes a
4-channel image of size 128× 128× 128 and outputs a probability map with the
same spatial size and with 4 channels that correspond to the 4 segmentation
labels. The network has 4 levels, at each of which in the encoder (decoder) part,
the input tensor is downscaled (upscaled) by a factor of two while the number
of channels is doubled (halved). Downscaling and upscaling are performed via
max-pooling and transposed convolution, respectively. In both the encoder and
decoder, we use ResNet blocks [70], where each block is composed of convolution,
Instance Normalization [76], and LeakyReLU activation layers (Figure 8.2b).
Two 3× 3× 3 convolutions are used in the residual mapping of each ResNet
block, and a 1× 1× 1 convolution is used in the shortcut connection in order to
match the number of input channels with the number of output channels of the
residual mapping. At the decoder endpoint, a 1× 1× 1 convolution followed by
a softmax layer is applied to get the segmentation probability map.

8.3.3 Low-rank Convolution

Convolutions form the backbone of a CNN. A typical U-Net has millions of
training parameters, the majority of which are the weights that correspond to
convolutional layers (this is true for any CNN with no fully-connected layers).
In practice, such a complex model is very likely to overfit in particular when
it comes to medical image segmentation applications, where the amount of
annotated data is typically limited. Common regularization techniques like
dropout [69] and weight decay can be used to mitigate this problem. However,
these methods do not decrease the total number of parameters while modern
CNNs are known to be heavily over-parameterized [165], i.e., the number of
parameters exceeds the size of training data and what is theoretically sufficient.
In this work, by imposing low-rank constraints on weights, we propose a new
operation, termed Low-Rank Convolution (LRCONV), enabling the design
of deep architectures with much fewer parameters but more robustness to
overfitting. It is noteworthy that this idea is unrelated but complementary to
other regularization techniques, such as dropout and weight decay.
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Let tensor X ∈ RCin×H×W ×D be the input of a 3D convolutional layer (for
simplicity, we assume unit stride and dilation, and a zero-padded input) with
the kernel tensor V ∈ RCout×Cin×H′×W ′×D′ and bias b ∈ RCout . The output
tensor X̃ ∈ RCout×H×W ×D is obtained as follows

X̃chwd = bc +
Cin∑

c′=1

H′∑
h′=1

W ′∑
w′=1

D′∑
d′=1
Xc′(h+h′)(w′+w)(d+d′)Vcc′h′w′d′ , (8.1)

where (H, W, D) is the resolution of the input image; Cin and Cout denote the
number of channels in the input and output, respectively; and (H ′, W ′, D′) is
the size of the convolution kernel. To define a low-rank convolution, we can use
a Canonical Polyadic [108] form and re-parameterize the weight as a sum of
rank-1 tensors

V =
R∑

r=1
u(1)

r ◦ u(2)
r ◦ u(3)

r ◦ u(4)
r ◦ u(5)

r , (8.2)

where “◦” denotes the vector outer product; u
(1)
r ∈ RCout , u

(2)
r ∈ RCin , u

(3)
r ∈

RH′ , u
(4)
r ∈ RW ′ , and u

(5)
r ∈ RD′ ; and R is the rank. Equivalently, the above

equation can be re-written elementwise as

Vcc′h′w′d′ =
R∑

r=1
U (1)

cr U
(2)
c′r U

(3)
h′rU

(4)
w′rU

(5)
d′r , (8.3)

where U (j) is a factor matrix whose columns are {u(j)
1 , . . . , u

(j)
R }. Since the

equation (8.3) can be treated as an Einstein summation, we can illustrate it
using a tensor network diagram [108] as shown in Figure 8.3. In this chapter,
we only use the Canonical Polyadic form, but other sparsely connected tensor
network like Tucker and tensor train can be also utilized. In a LRCONV layer,
the factor matrices and the bias are the parameters to be learned. The rank
R is a hyperparameter by which we can control the number of parameters
although, throughout the rest of this chapter, we tune the ratio α = R/Cin
rather than R for controlling the layer complexity. Obviously, the smaller α,
the fewer parameters the layer has.

It is worth noting that our approach exploits low-rank representations to
regularize a CNN before the training in contrast to methods compressing pre-
trained CNNs using low-rank approximations [161] and tensor decompositions
[112].
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Figure 8.3 Canonical Polyadic tensor network. The 5th-order weight tensor (left
panel) in a convolutional layer is represented with a Canonical Polyadic tensor network
(right panel). In the graphical notation of an Einstein summation, nodes and edges
denote the tensors and their corresponding indices, respectively.

8.3.4 Loss Function

The loss function used to train the network is the soft Dice loss [132], defined as

ℓDice(P , G) = 1− 2⟨P , G⟩+ 1
∥P∥2 + ∥G∥2 + 1 (8.4)

where ⟨·, ·⟩ denotes the dot product of tensors; ∥ · ∥ denotes the Frobenius norm
of a tensor; P is the predicted probability segmentation map (the out of the
softmax layer); and G is the one-hot binary mask encoding the corresponding
ground truth. Both P and G are 4×128×128×128 tensors, where the 4 channels
correspond to the 4 segmentation labels. We add 1 to both the numerator
and denominator (sometimes known as additive smoothing) to smooth the loss
and avoid division by zero. Although we optimize the Dice loss obtained by
the labels, e.g. enhancing tumor, edema, necrosis and non-enhancing, we also
monitor the Dice for the three overlapping regions, i.e., whole tumor, tumor
core, and enhancing tumor.

8.3.5 Optimization

All networks are trained for 50 epochs, with a batch size of one. We use Adam
optimizer with initial learning rate of 10−4 and regularize models with ℓ2 weight
decay of 10−5. The learning rate is scheduled to decrease by a factor of 5 if
the validation metric sees no improvement within 5 epochs. The training set
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is randomly split into 80% (298 cases) used for training and the rest 20% (73
cases) used for validation.

8.3.6 Postprocessing

For a given test image in the inference phase, the probability map from the
network output is resized to its original size. The map is then padded to have
the same size as it had before cropping in the preprocessing step. We need to
process the resulting probability map to obtain the final binary segmentation
mask. The most trivial way is to select the label with the highest probability for
each voxel. However, this does not exploit the fact that the tumor subregions,
i.e., necrosis, tumor core, and whole tumor, are nested within each other. To
overcome this shortcoming, we perform a hierarchical scheme, where the whole
tumor is first extracted by thresholding the probability map. Having restricted
to the voxels of the whole tumor, the edema channel of the probability map is
then thresholded to extract the tumor core. The final threshold is applied to
separate the necrosis and enhanced tumor within the tumor core. As shown
in the next section, this postprocessing improves the performance significantly,
with the Hausdorff distance of enhancing tumor decreasing by ≈ 15%.

8.4 Experiments and Results

All the models were implemented using PyTorch [129] and PyTorch Lighting
[130] frameworks and trained on a NVIDIA P100 SXM2 GPU. We experimented
with different values for the initial number of feature maps (denoted by F
in Figure 8.2) and found the larger values to perform better although the
GPU memory limitation did not allow us to try values greater than 60. We
noticed that low-rank convolution can improve the results particularly for larger
networks, roughly those with F > 40. We obtain the low-rank version of a
U-Net by replacing 3× 3× 3 ordinary convolutions with low-rank ones in all
except the first level (the number of parameters at the first level is already
relatively small). As seen in Figure 8.4, the networks with low-rank convolutions
converge faster, attributed to the fact that the number of training parameters
of the initial networks is dramatically reduced (see Table 8.1), resulting in
much less complex models and optimization problems. The impact of low-rank
regularization on convergence and performance is more substantial for the case
F = 60 (with 92 million parameters) compared to the case F = 50 (with 64
million parameters), which is somewhat expected since the former has far more
parameters.
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Figure 8.4 Validation metric plotted against epochs for two different values of F (the
initial number of feature maps). The low-rank convolutions with α = 0.5 are used.
For visualization purposes, the curves are smooth via LOESS [166].

The results on the BraTS 2020 validation set (125 cases) obtained by the BraTS
online evaluation framework are reported in Table 8.1. Our base model follows
the Res-U-Net architecture (with F = 60 initial feature maps) described in
Section 8.3.2. By postprocessing the probability maps using the hierarchical
scheme described in Section 8.3.6, we achieved an improvement, particularly
on the validation Dice of enhancing tumor. The results were further improved
by training the low-rank version (with α = 0.5) of the network, with the
Hausdorff distance of enhancing tumor falling from 32.22 to 25.01. The low-
rank network with 20.8 million parameters is far more memory efficient than the
initial network with 92.2 million parameters. Finally, an ensemble of 8 models,
including networks with F ∈ {30, 40, 50, 60} and their low-rank versions (with
α = 0.5), was used to reduce the variance in predictions. To build the ensemble
model, the probability maps were first averaged and then thresholded via the
hierarchical scheme. This further improved all the scores, leading to the Dice
score of over 90% for the whole tumor. The greatest improvement was observed
for the tumor core, with the Dice score increasing from 77.84% to 79.1% and
the Hausdorff distance dropping from 16.96 mm to 7.76 mm. Figure 8.1 shows
the results of this model on representative HGG and LGG cases.

Table 8.2 presents the performance of the method on the BraTS 2020 test set.
The average Dice scores for enhancing tumor core, whole tumor, and tumor
core are 77.73%, 87.37%, and 81.24%, respectively. The corresponding values of
Hausdorff distance are 16.21 mm, 6.28 mm, and 20.52 mm, respectively. Overall,
the test results are consistent with those of the validation set, which reflects
our model is neither biased towards the validation set nor has a high variance.
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Table 8.1 The average scores on the BraTS 2020 validation set (125 cases). They are
computed by the online evaluation platform (WT: whole tumor, TC: tumor core, and
ET: enhancing tumor).

Model #Params Dice (%) ↑ HD95 (mm) ↓
ET TC WT ET TC WT

Res-U-Net 92.2M 71.99 89.68 78.79 38.18 5.74 14.49
Res-U-Net + post 92.2M 73.32 89.84 78.77 32.22 5.75 14.46
Low-rank Res-U-Net + post 20.8M 74.82 89.12 77.84 25.01 7.61 16.94
Ensemble of 8 models — 75.06 90.37 79.1 25.61 5.23 7.76

Table 8.2 Summary statistics of the scores on the BraTS 2020 test set (166 cases).
They are computed by the online evaluation platform (WT: whole tumor, TC: tumor
core, and ET: enhancing tumor).

Dice (%) ↑ HD95 (mm) ↓
ET TC WT ET TC WT

Mean 77.73 87.37 81.24 16.21 6.28 20.52
StdDev 21.6 13.93 25.45 69.39 11.76 74.75
Median 83.97 91.58 91.05 2.0 3.25 2.83
25th quantile 75.08 86.60 82.82 1.41 2.0 1.49
75th quantile 89.59 94.54 94.92 3.0 5.72 5.34

8.5 Conclusion

In this chapter, we proposed a regularization technique for CNNs by re-
parameterizing convolutional layers as a low-rank structure, particularly
canonical polyadic form. We devised a U-Net architecture with ResNet blocks
consisting of low-rank convolutions. We examined the impact of this low-
rank regularization on performance, verifying its effectiveness for brain tumor
segmentation in multimodal MRI scans. The results on the BraTS 2020 data
show that despite having much fewer parameters, the low-rank networks can
outperform the unregularized versions especially in terms of Dice coefficients
and Hausdorff distances on the enhancing tumor.





Chapter 9

Conclusion

9.1 Contributions

The primary goal of this thesis was to develop accurate and efficient models for
the segmentation of brain lesions—specifically brain tumors, MS lesions, and
stroke lesions—in mpMRI scans. For each task, we introduced end-to-end deep
learning models that mostly incorporated low-rank factorization techniques into
their core components.

In Chapters 2–5, we extensively reviewed the literature, covering foundational
concepts in MRI physics, machine learning, deep learning, and low-rank
factorization techniques. This thorough background facilitated the introduction
and comprehension of our novel contributions, presented in Chapters 6, 7, and
8.

In Chapter 6, we dealt with the task of segmenting and detecting new white
matter lesions between two longitudinal 3D FLAIR images acquired from an
MS patient at two different time points. This is a crucial step in following-up
and quantifying disease progression in clinical practice. For this problem, we
developed a U-Net-inspired architecture with pre-activation blocks, termed
Pre-U-Net. To address the challenges of data scarcity and class imbalance, we
effectively trained our models using data augmentation and deep supervision
techniques. The performance of Pre-U-Net was assessed and evaluated on the
MSSEG-2 dataset. Pre-U-Net achieved a Dice score of 40.3% and an F1 score
of 48.1%, surpassing the baseline models, U-Net and Res-U-Net. Notably,
we observed that Pre-U-Net, as indicated by the F1 scores, proved
more effective in detecting new lesions than the baselines, while its
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segmentation performance was on par with U-Net, as suggested by
the Dice and HD scores.

In Chapter 7, which represents the core contribution of this thesis, we
introduced Factorizer, a novel approach to medical image segmentation that
synergizes deep neural networks with NMF. We noted that recent advancements
have demonstrated that ViTs with hierarchical structures can achieve results
comparable to leading CNNs across various computer vision tasks. However, the
inherent lack of locality inductive bias in ViTs often causes them to underperform
their CNN counterparts, particularly in low-data scenarios typical of medical
image segmentation. We also emphasized the quadratic complexity of attention
in these models, which necessitates the application of self-attention layers
after some reduction in image resolution. This limits their ability to fully
capture long-range contexts available at higher resolutions. To address these
challenges, we introduced Factorizer—a family of deep models that leverage
the power of low-rank approximation. By formulating NMF as a differentiable
GPU-friendly layer within a U-shaped architecture, we presented a scalable
and interpretable solution for context modeling. Grounded in NMF and
the shifted window concept, Swin Factorizer emerged as the most effective
variant of Factorizer, competing favorably with CNN and transformer baselines
in terms of accuracy and scalability. Specifically, Swin Factorizer achieved
state-of-the-art results on BraTS for brain tumor segmentation, with Dice
scores of 79.33%, 83.14%, and 90.16% for enhancing tumor, tumor core, and
whole tumor, respectively. It also excelled on ISLES’22 for stroke lesion
segmentation, achieving a Dice score of 76.49%. Our experiments on brain
tumor segmentation also revealed that NMF components are highly
meaningful, with each component offering a distinct interpretation by
differentiating certain tumor subregions from others. This provides a
significant interpretability advantage for Factorizers over both CNNs
and transformers. Furthermore, our ablation studies unveiled a
unique characteristic of Factorizers: by training a Factorizer model,
we also obtain lightweight yet accurate versions for free without the
need to re-train any model from scratch. This can be accomplished
by either reducing the number of iterations in the NMF algorithm or
by ablating some expensive NMF layers (e.g., those at high-resolution
stages) during the inference phase. In terms of model acceleration,
this presents an added benefit for Factorizers compared to CNNs and
transformers, which require more intricate mechanisms to produce
their faster variants.

In Chapter 8, we introduced a regularization technique for CNNs that re-
parameterizes convolutional layers using a low-rank tensor network, specifically
the canonical polyadic decomposition format. We developed a U-Net architecture
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integrated with ResNet blocks that employ these low-rank convolutions. Our
investigation into the impact of this low-rank regularization revealed
its efficacy for brain tumor segmentation in mpMRI scans. Results
from the BraTS 2020 dataset demonstrate that, even with significantly fewer
parameters, the low-rank networks can surpass their unregularized counterparts,
particularly in terms of Dice coefficients and Hausdorff distances for the
enhancing tumor.

In summary, this thesis integrates low-rank factorization into deep
learning to enhance medical image segmentation in two distinct ways:

• A differentiable NMF layer combined with matricization
operations, which transforms an input tensor into matrices.
This approach adeptly captures both local and global contexts.

• A low-rank convolutional layer that employs the CP format
to re-parameterize the convolution kernel. This results in
fewer parameters, aiding in model regularization and mitigating
overfitting.

Our NMF layer presents an efficient alternative to the attention
mechanism. Similarly, our low-rank convolution serves as a lightweight
substitute for standard convolution. We seamlessly integrated both
modules into a symmetric U-shaped architecture, which consist of a
downsampling encoder, an upsampling decoder, and intermediate skip
connections. Moreover, we have developed an open-source modular
package that facilitates brain lesion segmentation and allows users to
construct and tailor our proposed models for diverse applications.

To our knowledge, the research presented in this thesis represents
pioneering efforts in combining low-rank techniques, specifically NMF
and CP, into deep learning within the field of medical imaging. Both
the NMF layer and the low-rank convolution stand as low-complexity
building blocks for devising lightweight models adept at processing 3D
images. Notably, the NMF layer enhances model interpretability due
to the inherently meaningful components of NMF. This advancement
edges us closer to models that are less of a “black box,” a crucial
development for clinical practice. For instance, clinicians can examine
these components layer by layer, gaining insights into the evolution of
the final segmentation map across the layers of a Factorizer model.
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9.2 Future Perspectives

While this thesis represents a major step forward in integrating low-rank
techniques with deep learning for scalable and interpretable medical image
segmentation, related ideas still deserve exploration to address the unresolved
challenges associated with our work. In this section, we provide an overview of
these challenges and outline potential solutions to guide future research.

Novel Matrix Factorization Methods

The NMF layer in Factorizer requires nonnegative input, necessitating the
use of ReLU activation beforehand. Exploring other NMF variants, such as
Semi-NMF and Convex-NMF, which accommodate mixed-signed data matrices,
could eliminate the need for the ReLU activation function prior to factorization.

Our Factorizer approach utilized a consistent rank across all NMF layers and
inputs. However, the rank is intrinsically tied to the input data structure and
may differ between inputs. Investigating automated rank selection methods,
like a greedy NMF approach (aka nonnegative matrix underapproximation),
where components are sequentially added until specific criteria are satisfied,
could be beneficial. This can especially improve Local/Swin Factorizer, where
different windows might require varying optimal ranks based on context.

Another challenge with our NMF layer was the potential for vanishing or
exploding gradients when increasing the NMF algorithm iterations. This is
due to the lack of mechanisms like normalization or skip connections across
iterations. Addressing this might involve modifying the MU and HALS update
formulas to stabilize gradients.

Tensor Factorization Methods

While NMF was effective in our context model, its application is limited to
matrices. Given that images are 2D or 3D arrays, we employed matricization
operations in Factorizer, which unfortunately disrupt the multidimensional
data structure. A potential solution is to devise tensorization operations that
maintain the data’s structure. Implementing tensor factorization methods as a
differentiable layer could then fully leverage this structure for context modeling.
For instance, nonnegative tensor factorization using an algorithm akin to MU
could be a viable option.
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Towards Blind Deconvolution

The Local/SW matricize, as employed in the Local/Swin Factorizer, splits an
input tensor into non-overlapping patches. We observed that this results in
a discontinuous representation of voxels near the boundaries of partitioning
windows, often appearing as a grid pattern in NMF components.

A potential solution might involve gathering all possible patches. However,
this approach proved computationally intensive, and its substantial memory
requirements made it impractical for the 3D segmentation tasks addressed in
this thesis. A promising alternative we are exploring is the blind deconvolution
approach, which directly represents the input as the convolution of a source
with a filter. While certain blind deconvolution algorithms, such as the
Richardson–Lucy algorithm, bear similarities to the MU algorithm for NMF,
they are not expected to produce the grid effect seen in the Local/Swin Factorizer.
This is because they eliminate the need for (de)matrix methods. Moreover, the
main operation in the Richardson–Lucy update formula is convolution, which
involves sliding a window across the entire input tensor. This operation can be
executed efficiently with minimal memory footprint on modern GPUs.

Self-supervised Pre-training

One of the biggest challenges in medical imaging is the scarcity of labeled
data. Manual annotation of medical images is time-consuming, requires expert
knowledge, and can be expensive. Self-supervised learning can exploit the vast
amounts of unlabeled medical images by designing tasks where the model learns
by predicting parts of the data from other parts (e.g., predicting a missing patch
in an image).

Once a model is pre-trained using a self-supervised task, it can be fine-tuned
on a smaller labeled dataset specific to the segmentation task at hand. This
process of transfer learning can lead to better performance than training on
the small labeled dataset alone. In fact, self-supervised pre-training can act
as a form of regularization, reducing the risk of overfitting when the model
is subsequently fine-tuned on a small labeled dataset. The improvement is
expected to be more significant for transforms and Factorizers, which impose
less inductive bias compared to CNNs.

To conclude, we believe that this thesis can pave the way for marrying
more advanced low-rank factorization techniques with deep neural
networks in order to develop lightweight, interpretable models for
the more accurate segmentation of medical images.
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