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Résumé

Résumé

Les contrôles myoélectriques pour les prothèses transhumérales entraînent souvent
un taux élevé d’abandon en raison de leurs performances insatisfaisantes. Inspirés
des progrès réalisés dans les contrôles exploitant les mouvements résiduels, nous
avons affiné une approche alternative utilisant un réseau de neurones artificiels en-
trainé sur les mouvements naturels de bras pour prédire la configuration des articula-
tions distales en fonction du mouvement des articulations proximales et d’information
sur l’objet à saisir. Des études antérieures ont montré que cette stratégie permet aux
amputés de contrôler un avatar de prothèse dans un environnement de réalité virtuelle
aussi bien qu’avec leur bras valide. Cependant, le déploiement de ce contrôle dans
des scénarios réels requiert des développements supplémentaires. Il est nécessaire
d’intégrer une caméra montée sur la tête et des algorithmes de vision par ordinateur
pour estimer en temps réel la position et l’orientation de l’objet. Dans ce contexte, les
informations sur l’objet ne seraient disponibles que dans un référentiel centré sur la tête
de l’utilisateur, alors que notre contrôle repose sur l’objet exprimé dans un référentiel
centré sur l’épaule.

Inspirés de la façon dont le cerveau exécute des transformations de coordonnées, nous
avons développé et testé des solutions pour effectuer la transformation tête-épaule à
partir des seules données d’orientation, disponibles en situation réelle. Pour dévelop-
per ces algorithmes, nous avons constitué une base de données incluant la relation
entre ces référentiels en demandant à vingt participants valides de saisir des objets
dans diverses positions et orientations dans un environnement virtuel. Cette base de
données comprenait les mouvements de la tête et du regard, ainsi que ceux du tronc,
des épaules et des bras, capturant l’ensemble de la chaîne cinématique entre le but
du mouvement et la main déplacée pour l’atteindre.

Ensuite, nous avons mis en œuvre deux méthodes pour obtenir la position de la tête
dans le référentiel de l’épaule. La première consiste en un réseau de neurones artifi-
ciels entraîné hors ligne sur la base de données pour prédire cette position en fonction
de la taille du participant et de l’orientation de sa tête et de son épaule. La seconde
méthode s’inspire des processus d’intégration multisensorielle du cerveau et déduit la
position de la tête dans le référentiel de l’épaule en comparant les données relatives
à la main prothétique obtenues dans le référentiel de l’épaule par cinématique directe
et simultanément dans le référentiel de la tête par la vision par ordinateur. Inspirés par
les mécanismes neuronaux du codage de l’espace péripersonnel, nous avons adapté
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Résumé

en ligne les poids d’un réseau de neurones pour coder cette différence dans une carte
spatiale.

Les résultats expérimentaux sur douze participants valides en réalité virtuelle ont dé-
montré des erreurs persistantes avec la première méthode, qui n’a pas réussi à pren-
dre en compte avec suffisamment de précision la spécificité de la morphologie de
l’utilisateur, entraînant ainsi un contrôle inefficace de la prothèse. En revanche, la sec-
onde méthode a réussi à coder efficacement la transition de la tête à l’épaule associée
à différentes cibles dans l’espace.

L’efficacité de la seconde méthode a également été testée sur six amputés en réalité
virtuelle, et une preuve de concept a été réalisée pour évaluer sa faisabilité en condi-
tions réelles. Cette démonstration a été réalisée en contrôlant la plateforme robotique
REACHY 2 en vision égocentrée, avec des marqueurs ArUco et un algorithme de vi-
sion artificielle pour détecter les objets à saisir et la main robotique. Les résultats sug-
gèrent que, malgré les difficultés rencontrées dans la détection des objets, notre carte
spatiale fonctionne efficacement dans des scénarios réels. Cette méthode pourrait
également gérer des scénarios complexes, impliquant des déplacements de caméra
ou des environnements perturbés.

Mots-clefs : Commande adaptative, changement de référentiel, contrôle de prothèse
transhumérale, interaction homme-robot, réseau de neurones artificiels
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Abstract

Abstract

Myoelectric controls for transhumeral prostheses often lead to high rates of device
abandonment due to their unsatisfactory performance. Grounded on advances in
movement-based prosthesis control, we refined an alternative approach using an ar-
tificial neural network trained on natural arm movements to predict the configuration
of distal joints based on proximal joint motion and movement goals. Previous studies
have shown that this control strategy enabled individuals with transhumeral limb loss
to control a prosthesis avatar in a virtual reality environment as well as with their valid
arm. Yet, deploying this control system in real-world requires further development. A
head-mounted camera and computer vision algorithms need to be integrated into the
system for real-time object pose estimation. In this setup, object information might only
be available in a head-centered reference frame, while our control relies on the object
expressed in a shoulder reference frame.

Taking inspiration from how the brain executes coordinate transformations, we devel-
oped and tested solutions to perform the required head-to-shoulder transformation
from orientation-only data, possibly available in real-life settings. To develop these
algorithms, we gathered a dataset reflecting the relationship between these reference
frames by involving twenty intact-limbs participants in picking and placing objects in
various positions and orientations in a virtual environment. This dataset included head
and gaze motion, along with movements of the trunk, shoulders, and arm joints, cap-
turing the entire kinematic chain between the movement goal and the hand moved to
reach it.

Following data collection, we implemented two methods to transform target informa-
tion from the head to the shoulder reference frame. The first is an artificial neural
network trained offline on the dataset to predict the head position in the shoulder ref-
erential given ongoing shoulder and head orientations and the participant height. The
second method draws inspiration from multisensory integration in the brain. It derives
the head position in the shoulder referential by comparing data about the prosthetic
hand obtained in the shoulder referential through forward kinematics and simultane-
ously in the head referential through computer vision. Inspired by brain’s mechanisms
for peripersonal space coding, we encoded this difference in a spatial map by adapting
the weights of a single-layer network of spatially tuned neurons online.

Experimental results on twelve intact-limbs participants controlling a prosthesis avatar
in virtual reality demonstrated persistent errors with the first method, which failed to
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adequately account for the specificity of the user’s morphology, resulting in significant
prediction errors and ineffective prosthesis control. In contrast, the second method
elicited much better results and effectively encoded the transition from the head to the
shoulder associated with different targets in space. Despite requiring an adaptation
period, subsequent performances on already explored targets were comparable to the
ideal scenario.

The effectiveness of the second method was also tested on six participants with tran-
shumeral limb loss in virtual reality, and a physical proof of concept was implemented
on a teleoperated robotic platform with simple computer vision to assess feasibility in
real-life settings. One intact-limbs participant controlled the robotic platform REACHY 2
to grasp cylinders on a board. ArUco markers on the robot’s end effector and cylinders
coupled with a gaze-guided computer vision algorithm enabled precise object pose es-
timation. The results of this proof of concept suggest that despite challenges in object
detection, our bio-inspired spatial map effectively operates in real-world scenarios. This
method also shows promise for handling complex scenarios involving errors in position
and orientation, such as moving a camera or operating in perturbed environments.

Key words: Adaptive control, reference frame transformation, transhumeral prosthesis
control, human-robot interaction, artificial neural network
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La perte de membres supérieurs affecte profondément la qualité de vie, réduisant
l’autonomie individuelle dans les activités quotidiennes. Les prothèses sont des dis-
positifs artificiels conçus pour remplacer tout ou une partie des membres supérieurs,
dans le but de restaurer les fonctionnalités essentielles et d’améliorer la qualité de
vie de l’utilisateur. Les prothèses actives, en particulier, comportent une ou plusieurs
articulations contrôlables, permettant aux utilisateurs de retrouver certaines fonctions
motrices du membre manquant. Le schéma de contrôle prédominant pour les pro-
thèses actives est le contrôle myoélectrique, qui repose sur des signaux recueillis à
partir des muscles résiduels dans le moignon pour actionner les moteurs du dispositif.

Cette thèse se concentre sur les systèmes de contrôle des prothèses transhumérales,
spécifiquement conçues pour les personnes à qui il manque une partie de leur membre
au niveau de l’humérus. Les stratégies myoélectriques existantes pour contrôler ces
dispositifs permettent principalement aux utilisateurs de manipuler séquentiellement la
flexion/extension du coude, la pronation/supination du poignet et l’ouverture/fermeture
de la main. Cependant, l’absence de contrôle sur les deux autres degrés de liberté
(DDL) du poignet (flexion/extension et déviation latérale) limite la capacité d’orienter
la main prothétique avec précision pour des tâches telles que la saisie d’objets. Par
conséquent, les utilisateurs expriment la nécessité de dispositifs capables d’effectuer
des actions de manière coordonnée avec tous les DDL manquants. Cette nécessité,
associée à l’effort cognitif et physique considérable requis pour faire fonctionner les dis-
positifs existants, contribue significativement aux taux élevés d’abandon de prothèses.

Des alternatives prometteuses aux systèmes de contrôle myoélectrique sont les ap-
proches basées sur le mouvement, dans lesquelles le membre prothétique est contrôlé
en fonction du mouvement du membre résiduel et de sa coordination naturelle avec les
articulations manquantes. En général, ces méthodes apprennent la coordination en-
tre les articulations proximales et distales grâce à des techniques de régression non
linéaire, telles que les réseaux de neurones artificiels (RNA), les réseaux de fonctions
à base radiale ou les régressions localement pondérées. Cependant, cartographier la
relation entre le mouvement de deux articulations proximales et le mouvement de cinq
articulations distales est intrinsèquement complexe. Pour relever ce défi, des informa-
tions contextuelles, telles que la position et l’orientation de l’objet à saisir, acquises
grâce à des algorithmes de vision par ordinateur, ont été intégrées en tant que signaux
d’entrée dans le système de contrôle. S’appuyant sur les avancées dans les con-
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trôles de prothèses à base de mouvements naturels et de vision par ordinateur, mes
collègues ont démontré qu’en ajoutant l’information sur l’objectif de mouvement aux
informations de mouvements des articulations proximales, un RNA peut prédire avec
précision la configuration des articulations distales nécessaire pour positionner et ori-
enter la main de manière précise pour saisir l’objet ciblé. Le RNA, appelé Proximo
Contextuel (PC), entraîné à partir des mouvements de bras de plusieurs participants,
exploite la coordination naturelle du bras pour prédire la configuration des articulations
distales. Cela se traduit par un contrôle plus naturel et intuitif du membre prothétique,
ce qui a permis aux personnes ayant subi une amputation transhumérale de contrôler
un avatar de prothèse et d’effectuer des tâches de prise et de placement d’objet dans
un large espace dans un environnement de réalité virtuelle (RV) comme ils le feraient
avec leur bras valide.

Malgré les résultats remarquables en RV, le déploiement du système de contrôle PC
RNA dans des applications réelles présente des défis importants. Alors que les envi-
ronnements de RV offrent un cadre idéal où toutes les informations nécessaires sont
facilement accessibles, les scénarios du monde réel introduisent des complexités qui
doivent être prises en compte. Par exemple, les utilisateurs peuvent porter une caméra
montée sur la tête et des unités de mesure inertielle (Inertial Measurement Units –
IMU en anglais) attachées à la caméra, au tronc et au membre résiduel. Dans ces
conditions, les informations sur les objectifs de mouvement (c’est-à-dire l’une des en-
trées du système de contrôle) peuvent n’être disponibles que dans un référentiel centré
sur la tête, grâce à la vision par ordinateur guidée par le regard. Cependant, le sys-
tème de contrôle PC RNA repose également sur la position et l’orientation de la cible,
exprimées dans un référentiel appelé armroot, dont l’origine se situe au niveau de
l’articulation de l’épaule et dont l’orientation est déterminée par un capteur fixé sur le
tronc de l’utilisateur. Par conséquent, les objectifs de mouvement, disponibles dans
un référentiel centré sur la tête grâce à la vision par ordinateur guidée par le regard,
doivent être transformés dans le référentiel armroot pour que le contrôle de la prothèse
basée sur le PC RNA fonctionne efficacement. Bien que l’orientation de la tête et de
l’armroot puisse être obtenues grâce aux IMU, les données de position ne sont pas
facilement disponibles pour effectuer cette transformation.

L’objectif de cette thèse était d’adapter le contrôle PC RNA à des situations réelles, en
abordant ce problème de transformation de référentiel. Plus précisément, l’objectif était
de développer des méthodes pour récupérer la position de la tête dans le référentiel
armroot.

Dans le domaine de la robotique, la résolution des problèmes de transformation des
coordonnées, tels que la récupération de données sur une partie spécifique du corps,
nécessite souvent l’utilisation de modèles cinématiques, qui décrivent analytiquement
les relations entre les différents référentiels au sein de la chaîne. Cependant, la con-
struction d’une chaîne cinématique de la tête à l’épaule représente un défi important en
raison de l’anatomie complexe et des interactions dynamiques inhérentes à la colonne
cervicale et à l’articulation de l’épaule. Par conséquent, les modèles cinématiques ex-
istants ont souvent recours à des simplifications au sein de la chaîne (par exemple,
en omettant les capacités de translation au niveau de l’épaule), ce qui résulte en une
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représentation partielle des mouvements complexes observés dans cette région.

Compte tenu de la complexité de la relation entre les deux référentiels, nous avons
préféré aborder le problème en considérant le système comme une boîte noire et en
apprenant son comportement entrée-sortie.

La première étape cruciale a consisté à collecter des données incluant la relation entre
les référentiels de la tête et de l’armroot. Nous avons donc recueilli une base de
données comprenant les performances de vingt participants valides effectuant des
tâches de prise et de déplacement d’objets dans un environnement de RV. L’espace
de travail dans lequel les participants ont exécuté la tâche a été maximisé grâce à
une procédure systématique. Dans un premier temps, l’espace de travail le plus large
possible a été déterminé par l’amplitude maximale des mouvements des participants,
puis une carte auto-organisatrice a été utilisée pour mieux représenter l’espace réel
couvert par les participants. De plus, un contrôle précis de la posture initiale du corps,
à partir de laquelle les mouvements du bras ont débuté, a été réalisé en guidant les
participants vers une posture neutre prédéterminée via des retours visuels du tronc et
des épaules.

Parce qu’elle inclue les mouvements de la tête et du regard, ainsi que les mouve-
ments du tronc, des épaules et des articulations des bras, notre base de données
représente également une ressource précieuse dans divers domaines tels que le con-
trôle sensorimoteur, le contrôle des prothèses basé sur le mouvement, les interactions
homme-robot, la robotique humanoïde, et surtout la vision par ordinateur guidée par
le regard. En plus de la base de données, nous avons développé un projet Unity ap-
pelé DataPlayer, conçu pour rejouer et visualiser des données en 3D. L’objectif de ce
DataPlayer était de créer un outil pour la recherche en vision par ordinateur, permet-
tant de concevoir et de tester des algorithmes efficaces d’estimation de la position et
l’orientation en 6D dérivés de la vision égocentrique avec les données du regard. Étant
donné que la vraie information de l’objet est connue par conception dans la RV, et que
l’environnement visuel peut être rejoué et manipulé à volonté, cette base de données
peut être utilisée pour générer des données synthétiques cohérentes avec les mouve-
ments physiologiques de la tête, du regard et du bras. Cette capacité est cruciale pour
développer et tester des algorithmes d’estimation de la pose 6D dans des contextes
réalistes.

Néanmoins, l’objectif premier de cet ensemble de données était de servir de base au
développement et à la validation de deux méthodes pour résoudre le problème de la
transformation de référentiel et déterminer la position de la tête dans le référentiel de
armroot. Contrairement aux stratégies traditionnelles basées sur des modèles, qui
impliquent la construction d’un modèle de la tête à l’armroot, nous avons abordé le
problème en considérant le système comme une boîte noire et en apprenant le com-
portement entrée-sortie sans dépendre explicitement de modèles prédéfinis. Cette
approche a permis de contourner les complexités associées à la construction de mod-
èles et a offert une flexibilité et une adaptabilité dans la résolution du problème de
transformation de référentiel.

La première approche, Armroot2Head (A2H), impliquait l’entraînement hors ligne d’un
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RNA utilisant la base de données pour effectuer cette transformation. Le RNA prédit
la position de la tête dans le référentiel de l’armroot en fonction des orientations de la
tête et de l’épaule et de la taille du participant.

La deuxième approche, la carte spatiale (SMAP), code spatialement la position de
la tête dans le référentiel de l’armroot dans une carte spatiale péripersonnelle bio-
inspirée. Inspiré par les processus d’intégration multisensorielle du cerveau, l’algorithme
SMAP calcule la position de la tête dans le référentiel de l’armroot en combinant des
informations provenant de modalités sensorielles multiples (à savoir, la vision par or-
dinateur à partir d’une caméra montée sur la tête, combinée à la proprioception arti-
ficielle du cou et du bras à partir de capteurs placés sur la tête, le tronc et le bras).
Plus précisément, le système peut calculer la position de la main prothétique dans le
référentiel de l’armroot grâce à la cinématique directe tout en détectant simultanément
la position de la main prothétique dans le référentiel de la tête à l’aide de la vision par
ordinateur. Comme la valeur de la position de la tête par rapport à l’épaule dépend
non seulement de la morphologie de l’utilisateur mais aussi de la posture spécifique
de son bras et de son corps lorsque celui-ci atteint des cibles dans l’espace, nous
avons opté pour la stocker dans une carte spatiale péripersonnelle. En s’inspirant de
l’encodage de l’espace péripersonnel dans le cerveau et en tirant parti des idées issues
de recherches antérieures menées par notre équipe sur les stratégies d’adaptation hu-
maine, nous avons mis en œuvre un mécanisme d’encodage spatial utilisant un réseau
de neurones d’une seule couche, disposés spatialement et accessible en fonction de
la cible sur laquelle l’utilisateur fixe son regard et qu’il vise à atteindre et à saisir.

Les évaluations hors ligne de RNA A2H ont révélé une erreur de prédiction moyenne
de 2 cm. En capitalisant sur la capacité du SMAP à apprendre des erreurs, nous avons
mis en œuvre et testé une troisième solution, qui combine RNA A2H avec le SMAP, en
utilisant ce dernier pour corriger les erreurs commises par le premier.

Nous avons mené deux expériences dans un environnement de RV impliquant des par-
ticipants valides et amputées au niveau transhuméral pour comparer la performance de
ces méthodes avec celle du scénario idéal PC, dans lequel le changement de référen-
tiel de la tête à armroot a été exécuté avec une grande précision en utilisant toutes les
informations disponibles dans le système de RV.

Les résultats expérimentaux sur douze participants valides ont démontré des erreurs
persistantes avec le A2H RNA, entraînant des mouvements compensatoires de grande
amplitude et des temps de mouvement plus longs. En revanche, la SMAP a présenté
des résultats positifs. Bien que le processus d’apprentissage ait nécessité une période
d’adaptation initiale, les performances sur des cibles déjà explorées ont été compa-
rables au scénario idéal. Cela souligne l’efficacité de la deuxième approche dans la
résolution du problème de transformation de référentiel et dans la détermination pré-
cise de la position de la tête dans le référentiel de l’armroot. La combinaison des deux
méthodes a également donné des résultats favorables. Néanmoins, la deuxième ap-
proche seule s’est avérée suffisante pour la tâche, comme en témoigne l’expérience
menée auprès de six participants amputés au niveau transhuméral. Ces derniers ont
contrôlé efficacement le bras virtuel, atteignant un taux de réussite dépassant 95%,
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tout en minimisant les mouvements compensatoires et en maintenant des temps de
mouvement comparables au scénario idéal. Ils ont exprimé une grande satisfaction
à l’égard du système de contrôle, manifestant un vif intérêt pour l’utilisation de ces
méthodes de contrôle naturelles avec de vraies prothèses.

Nous avons également démontré l’efficacité du SMAP dans la détermination de la
position de la tête dans le référentiel de l’armroot dans un scénario simple du monde
réel, dans lequel les informations sur les objets et la main provenaient véritablement
du référentiel de la tête grâce à la vision par ordinateur. En raison du manque de
prothèses commercialement disponibles pour tester nos méthodes, nous avons réalisé
une preuve de concept en téléopérant la plateforme robotique REACHY 2. En fixant
une caméra Zed Mini sur la tête du robot et en la connectant au casque de réalité
virtuelle, nous avons permis à l’utilisateur portant le casque de contrôler le robot depuis
un point de vue égocentrique. Les cibles et la main du robot ont été détectés à l’aide
de marqueurs ArUco et d’un algorithme de vision par ordinateur guidé par le regard.
Un seul participant ayant une expérience préalable a contrôlé le robot pour effectuer
des tâches de prise et de placement d’objet, alors que le SMAP a été utilisé pour
calculer la position de la tête du robot dans son référentiel de l’armroot. Malgré les
défis liés à l’absence de données visuelles, comme lorsque l’objet est hors champ de
vision ou obstrué, la mémoire associée à notre codage spatial dans le SMAP s’est
révélée robuste dans de telles situations, assurant un fonctionnement continu et fluide.
Les résultats positifs de cette preuve de concept soulignent l’efficacité de l’algorithme,
démontrant sa capacité à fonctionner efficacement dans des scénarios du monde réel.

Tout au long de cette thèse, nous avons utilisé l’algorithme SMAP pour calculer la posi-
tion de la tête dans le référentiel de l’armroot et effectuer la transformation de référen-
tiel de la tête à l’armroot. Les conclusions présentées ici contribuent non seulement
à l’avancement des mécanismes de contrôle de prothèses, mais offrent également
des perspectives précieuses sur les applications plus larges de l’algorithme SMAP.
Celles-ci incluent divers scénarios impliquant des transformations de référentiel, une
adaptation en ligne et des corrections d’erreurs tant en position qu’en orientation.

Le manuscrit est structuré comme suit :

Le Chapitre 1 offre une vue d’ensemble de la perte du membre supérieur, des pro-
thèses et des différentes stratégies de contrôle. Il présente les recherches antérieures
de l’équipe sur le contrôle des prothèses et les questions centrales abordées dans
cette thèse.

Le Chapitre 2 détaille le protocole expérimental et l’approche méthodologique utilisés
pour collecter la base de données des mouvements naturels de la tête et du bras, et
en présente le contenu ainsi que les premières analyses.

Le Chapitre 3 décrit en détail deux méthodes permettant d’effectuer la transforma-
tion tête-épaule nécessaire au déploiement de notre contrôle de prothèse basé sur le
mouvement dans le monde réel.

Le Chapitre 4 décrit deux expériences menées dans un environnement de RV avec
des participants valides et des amputés transhuméraux pour tester les méthodes pro-
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posées et les stratégies de contrôle qui y sont associées.

Le Chapitre 5 présente une démonstration de faisabilité pour valider le travail de notre
méthode dans un scénario réel en utilisant la plateforme robotique REACHY 2 et des
algorithmes de vision par ordinateur.

Le Chapitre 6 offre un résumé complet des conclusions et des résultats obtenus dans
le cadre de cette thèse et présente les bases de futures recherches, en soulignant la
pertinence du présent travail.
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Upper limb loss profoundly affects the quality of life, diminishing individual autonomy in
daily activities. Prostheses are artificial devices designed to replace all or part of the
upper extremities, aiming to restore essential functionalities and significantly enhance
overall user quality of life. Active prostheses, in particular, feature one or more con-
trollable joints, enabling users to regain some motor functions of the missing limb. The
predominant control scheme for active prostheses is myoelectric control, which relies
on signals collected from residual muscles in the stump to drive the device’s motors.

This thesis focuses on control systems for transhumeral prostheses, specifically de-
signed for individuals missing part of their limb from the humerus. Existing myoelectric
strategies for controlling these devices primarily focus on enabling users to sequen-
tially manipulate elbow flexion/extension, wrist pronation/supination, and hand open-
ing/closing. However, the lack of control over the remaining two degrees of freedom
(DOFs) of the wrist (flexion/extension and lateral deviation) hinders the ability to orient
the prosthetic hand accurately for tasks such as grasping objects. Consequently, users
express the necessity for devices that can perform actions in a coordinated manner
with all missing DOFs. This necessity, coupled with the considerable cognitive and
physical exertion required to operate existing devices, significantly contributes to the
high rates of prosthesis abandonment.

Promising alternatives to myoelectric control systems are movement-based approaches,
whereby the prosthetic limb is controlled based on the motion of the residual limb and
its natural coordination with the missing joints. Generally, these methods learn the co-
ordination between proximal and distal joints through nonlinear regression techniques,
such as artificial neural networks (ANNs), radial basis function networks, or locally
weighted regressions. However, mapping the relationship between the movement of
two proximal joints and the movement of five distal joints is inherently complex. To
address this challenge, contextual information, such as the position and the orientation
of the object to manipulate, acquired through computer vision algorithms, have been
integrated as input signals in the control system. On this basis, my colleagues have
demonstrated that integrating information regarding movement goals with proximal joint
motion enables an ANN to accurately predict the distal joint configuration necessary for
precise positioning and orientating of the hand to grasp the targeted object. The ANN,
named Proximo Contextual (PC), trained on data from multiple participants perform-
ing the task, leverages natural arm coordination to predict the distal joint configuration.
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This results in a more natural and intuitive control of the prosthetic limb, which has en-
abled individuals with transhumeral limb loss to control a prosthesis avatar and perform
pick-and-place tasks in a wide range of locations in a VR environment as well as with
their valid arm.

Despite the remarkable results in VR, deploying the PC ANN control system in real-
world applications presents significant challenges. While VR environments offer an
ideal setting where all necessary information is readily accessible, real-world scenarios
introduce complexities that must be addressed. For instance, users may wear a head-
mounted camera and Inertial Measurement Units (IMUs) attached to the camera, trunk,
and residual limb. In such conditions, information about movement goals (i.e., one of
the control system inputs) may only be available in a head-centered reference frame
through gaze-guided computer vision. Yet, the PC ANN control system relies on target
position and orientation expressed in a body reference frame known as armroot, with
its origin located at the shoulder articulation and orientation of a sensor attached to
the user’s trunk. Therefore, movement goals available in a head-centered reference
frame through gaze-guided computer vision need to be transformed into the armroot
reference frame for the prosthesis control based on PC ANN to operate effectively.
While orientation data can be obtained through IMUs, positional data may not be readily
available to perform this transformation.

The objective of this thesis was to adapt the PC ANN control to real-world settings,
addressing this reference frame transformation issue. Specifically, the goal was to
develop methods to retrieve the head position in the armroot reference frame.

In the realm of robotics, addressing coordinate transformation issues, such as retriev-
ing data about a specific body part, frequently necessitates the utilization of kinematic
models, which analytically describe the relationships between the different reference
frames within the chain. However, constructing a kinematic chain from the head to the
shoulder presents a significant challenge due to the intricate anatomy and dynamic
interactions inherent in the cervical spine and shoulder girdle. Consequently, existing
kinematic models often resort to simplifications within the chain (e.g., omitting trans-
lational capabilities at the shoulder level), resulting in a partial representation of the
complex movements observed in this region.

Given the complexity of the relationship between the two frames, we opted to approach
the problem as a black box by learning its input-output behavior.

The first crucial step involved gathering data that accurately reflects the relationship
between the head and armroot reference frames. To this end, we collected a dataset
comprising performances of twenty intact-limbs participants engaged in pick-and-place
tasks within a VR setting. The workspace in which participants executed the task was
maximized through a systematic procedure. Initially, the widest possible workspace
was determined by the maximal range of motion of the participants. Then, a self-
organizing map was employed to delineate the actual space covered by participants.
Additionally, precise control over the initial body posture, from which arm movements
were produced, was achieved by guiding participants to a predetermined neutral pos-
ture via visual feedback from the trunk and shoulders.
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Including head and gaze motion, alongside movements of the trunk, shoulders, and
arm joints, our dataset could represent a valuable resource across diverse domains
such as sensorimotor control, movement-based prosthesis control, human-robot inter-
actions, humanoid robotics, and foremost gaze-guided computer vision. In addition to
the dataset, we developed a Unity project named DataPlayer, designed for replaying
and visualizing data in 3D. The goal of this DataPlayer was to create a tool for com-
puter vision research, enabling the design and testing of efficient 6D pose estimation
algorithms derived from egocentric vision with gaze data. Since the ground truth of the
object position and orientation is known by design in VR, and the visual environment
can be replayed and manipulated at will, this dataset can be used to generate synthetic
data consistent with physiological head, gaze, and arm movements. This capability is
crucial for developing and testing 6D pose estimation algorithms in realistic contexts.

Nevertheless, the primary objective of this dataset was to serve as the basis for de-
veloping and validating two methods to solve the reference frame transformation issue
and determine the head position within the armroot reference frame. In contrast to
traditional model-based strategies, which entail constructing a model from the head
to the armroot, we addressed the problem by treating the system as a black box and
learning the input-output behavior without explicit reliance on predefined models. This
approach bypassed the complexities associated with model construction and offered
flexibility and adaptability in addressing the reference frame transformation issue.

The first approach, Armroot2Head (A2H), involved training offline an ANN using the
dataset to do this transformation. The ANN predicts the head position in the armroot
reference frame based on ongoing head and shoulder orientations and the partici-
pant’s height. The second approach, Space Map (SMAP), spatially encoded the head
position in the armroot reference frame within a bio-inspired peripersonal space map.
Inspired by the brain’s multisensory integration processes, the SMAP algorithm com-
putes the head position in the armroot reference frame by combining information from
multiple sensory modalities (i.e., computer vision from a head-mounted camera, com-
bined with artificial neck and arm proprioception from sensors on the head, trunk and
arm). Specifically, the system can compute the prosthetic hand position in the armroot
referential through forward kinematics while concurrently detecting the prosthetic hand
position in the head referential using computer vision. As the value of the head position
is contingent not only upon the user’s morphology but also on the specific posture of
their arm and body while reaching targets in space, we opted for storing it in a periper-
sonal space map. Drawing inspiration from the encoding of peripersonal space in the
brain and leveraging insights from previous research conducted by our team on human
adaptation strategies, we implemented a spatial encoding mechanism using a single-
layer network of spatially tuned neurons accessed based on the target the user gazes
at and aims to reach and grasp.

Offline assessments of the A2H ANN revealed a mean prediction error of 2cm. Capital-
izing on the SMAP’s capacity to learn from errors, we implemented and tested a third
solution, which combines the A2H ANN with the SMAP, employing the latter to correct
errors made by the former.
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We conducted two experiments within a VR environment involving participants with in-
tact limbs and with transhumeral limb loss to compare the performance of these meth-
ods with that of the ideal scenario PC, wherein the change of reference frame from the
head to the armroot was executed with high precision utilizing all available information
within the VR system.

Experimental results on twelve intact-limbs participants demonstrated persistent errors
with the first method, leading to extended compensatory movements and prolonged
movement times. In contrast, the second approach exhibited positive outcomes. Al-
though the learning process entailed an initial adaptation period, its subsequent per-
formance on previously explored targets demonstrated comparability to the ideal sce-
nario. This underscores the efficacy of the second approach in addressing the refer-
ence frame transformation issue and accurately determining the head position within
the armroot reference frame. The combination of both methods also yielded favor-
able results. Nevertheless, the second approach alone proved sufficient for the task,
as evidenced by the experiment involving six participants with transhumeral limb loss.
They effectively controlled the virtual arm, achieving a success rate exceeding 95%,
while minimizing compensatory movements and maintaining movement times compa-
rable to those of natural movements. They reported high satisfaction with the control
system, expressing a keen interest in utilizing such natural control methods with real
prostheses.

We also demonstrated the effectiveness of the SMAP in determining head position in
the armroot reference frame in a simple real-world scenario, in which the information
about the objects and the hand were genuinely coming in the head referential from
computer vision. Due to the lack of commercially available prostheses for testing our
methods, we conducted a proof of concept teleoperating the robotic platform REACHY
2. By mounting a Zed Mini camera on the head of the robot and connecting it to the
VR headset, we enabled the user wearing the headset to control the robot from an
egocentric point of view. The targets and the robot’s end effector were detected using
ArUco markers and a gaze-guided computer vision algorithm. While a single partic-
ipant with prior experience controlled the robot to perform pick-and-place tasks, the
SMAP computed the position of the robot’s head in its armroot reference frame. De-
spite challenges arising from missing visual data, such as when outside the field of
vision or obstructed, the memory associated with our spatial coding in SMAP proved
robust to such situations, ensuring continued smooth operation. The successful out-
comes of this proof of concept underscored the algorithm’s efficacy, showcasing its
ability to function effectively in real-world scenarios.

Throughout this thesis, we have leveraged the SMAP algorithm to compute the head
position within the armroot reference frame and perform the reference frame transfor-
mation from the head to the armroot. The findings presented here not only contribute
to the advancement of prosthesis control mechanisms but also offer valuable insights
into the broader applications of the SMAP algorithm. These include diverse scenarios
involving reference frame transformations, online adaptation, and error corrections in
both position and orientation.
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Extended abstract

The manuscript is structured as follows:

Chapter 1 provides a comprehensive overview of upper limb loss, prosthetic devices,
and various control strategies. It outlines the team’s previous research in prosthesis
control and the central issues addressed in this thesis.

Chapter 2 details the experimental protocol and the methodological approach em-
ployed for collecting the dataset of natural head and arm movements.

Chapter 3 extensively describes two methods to perform the head-to-shoulder trans-
formation necessary for deploying our movement-based prosthesis control in real-world
settings.

Chapter 4 outlines two experiments conducted within a VR environment involving par-
ticipants with intact limbs and with transhumeral limb loss to test the proposed methods
and their associated control strategies.

Chapter 5 presents a proof of concept to validate our method work in a real-life sce-
nario using the robotic platform REACHY 2 and computer vision algorithms.

Chapter 6 offers a comprehensive summary of the findings and results obtained in this
thesis and lays the groundwork for future investigations, emphasizing the relevance of
the present work.
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General introduction

Chapter 1

General introduction

This introductory chapter offers an overview of upper limb loss, prosthetics, and control
strategies, laying the groundwork for this thesis. It explores the implications of upper
limb loss and its physiological and societal impact, highlighting the crucial role of pros-
thetic technology in restoring autonomy. After examining the evolution of prosthetics
and control strategies, the chapter outlines the team’s previous research endeavors in
prosthesis control and the central issues addressed in this thesis.
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1.1 Upper limb prostheses

1.1.1 General information about upper limb amputation

Upper limb loss refers to the partial or complete absence of the upper limb. This condi-
tion profoundly impacts the quality of life for those affected by reducing their autonomy
in daily activities. As illustrated in Figure 1.1, there are seven levels of upper limb ampu-
tation (Cordella et al., 2016): fingers or partial hand (transcarpal), wrist disarticulation,
transradial amputation (below the elbow), elbow disarticulation, transhumeral amputa-
tion (above the elbow), shoulder disarticulation and forequarter amputation. The work
proposed in this thesis addresses the population with limb loss at the transhumeral
level (i.e., the absence of the limb from a portion of the humerus).

Figure 1.1: Upper limb amputation levels (Figure adapted from Figure I.1.1 in Ségas,
2023).

The population affected by upper limb loss can be categorized into two groups. The first
group includes individuals suffering from agenesis, meaning that all or part of the limb
did not form during embryonic development. The second group includes individuals
who have undergone an amputation, a surgical procedure to remove all or part of a
limb due to an accident, vascular diseases, or the presence of cancerous tumors.

In France, the Haute Autorité de Santé, 2010 documented that the number of individ-
uals in the first category was 0.15 per 100,000 inhabitants in 2010. Regarding limb
amputations, between 2011 and 2020, the "Scansanté.fr" database recorded 1616 up-
per limb amputations, with a majority occurring at the transhumeral level, averaging
76 amputations per year (Bruyant et al., 2023). While the overall number of people
suffering from limb loss may seem low compared to the general population, the impact
on the patient’s quality of life and autonomy is significant (Gallagher et al., 2011; Jo-
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hansen et al., 2018; Resnik et al., 2019). The higher the level of amputation, the more
significant these impacts become.

1.1.2 Types of upper limb prostheses

Prostheses are artificial devices designed to replace all or part of the upper extremities.
They play a crucial role in supporting individuals with upper limb loss by restoring es-
sential functionalities and significantly enhancing their overall quality of life. According
to the review by Ribeiro et al., 2019, upper limb prostheses can be classified into two
categories based on the type of interaction with the user: passive prostheses, subdi-
vided into aesthetic and functional, and active prostheses, subdivided into mechanical
and electric (see Figure 1.2).

Figure 1.2: Different types of upper limb prostheses (Figure adapted from Ribeiro et al.,
2019).

Passive prostheses are motionless and do not have active joints or degrees of freedom
(DOFs). Aesthetic prostheses aim to complete the wearer’s body image by closely
mimicking the missing limb. Meanwhile, functional prostheses enable the performance
of specific daily tasks by providing the ability to interface the prosthetic limb with tools,
such as utensils and toothbrushes.

Active prostheses have one or more controllable joints, allowing the user to restore at
least some motor functions of the missing limb. The activation of motors can result
from either a mechanical or an electrical action. In prostheses with mechanical action,
the motion of the prosthetic joints is triggered by the movement of another body part,
usually the shoulder of the sound limb, through the transfer of force produced via ca-
bles. This system aims to re-establish a connection between the motion of a body part
and an action in the prosthesis. However, since the mechanism of these prostheses
relies on a harness, users are required to have sufficient strength and range of motion
to manipulate the device effectively.

Prostheses with electrical action often employ motors controlled by buttons manipu-
lated by the sound limb or motors controlled by signals collected from residual muscles
in the stump.
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1.1.3 Controlling upper limb prostheses

While cosmetics, electronic components, and computational efforts have made signif-
icant advancements, the control strategies currently employed in prosthetic devices
have undergone relatively modest evolution since the 1960s, when myoelectric activity
was used for the first time as a source of information regarding voluntary movement
(Marinelli et al., 2023; Schmidl, 1965).

Electrically powered prostheses mainly rely on myoelectric activity recorded from sur-
face electrodes placed on the skin over two antagonistic muscles of the residual limb
(Farina and Sartori, 2016; Marinelli et al., 2023). These signals convey information
about neuromuscular activity, offering insights into the intentions of individuals and,
thus, a direct link between muscle contractions and prosthetic movements. Myoelec-
tric control mechanisms can be classified into two main categories: "on-off" and pro-
portional (Fougner et al., 2012). In the "on-off" control, signals exceeding a threshold
trigger a constant-speed movement along one direction, while proportional control ad-
justs joint movement speed based on muscle contraction intensity. Nevertheless, both
control types do not allow simultaneous control of more than one DOF. Joint movement
is achieved sequentially by switching from one joint to another through co-contraction
(simultaneous contraction of two antagonist muscles). For instance, in individuals with
transhumeral limb loss, the control system relies on just two residual muscles, the bi-
ceps and triceps, to sequentially manage the complex movements of all four missing
joints, along with the opening and closing of the hand. In such situations, myoelectric
controls face a dimensionality challenge, as the control system must support a higher
number of joints with two residual muscles. Moreover, since these muscles are not
naturally engaged in controlling certain joints, this complicates the learning process
and imposes a cognitive burden on the user. Additionally, issues like sweat, electrode
displacement, or muscle fatigue may affect skin electrode signals, introducing inconsis-
tencies between user commands and prosthesis responses (De Luca, 1997; Kyranou
et al., 2018).

Pattern recognition approaches have emerged as solutions to overcome these chal-
lenges. These approaches employ machine learning techniques to interpret and cat-
egorize muscle signals, assigning them to specific movement classes (Hahne et al.,
2014; Hudgins et al., 1993) and thus enabling simultaneous control of multiple DOFs
(Hahne et al., 2018; Ortiz-Catalan et al., 2014). Regarding transhumeral limb loss, a
promising strategy for achieving more intuitive prosthesis control involves integrating
pattern recognition approaches with Targeted Muscle Reinnervation (TMR), a nerve-
transfer surgery that redirects nerves from the amputated limb to nearby muscles
(Mereu et al., 2021). By generating more natural control signals, TMR enables the
simultaneous control of multiple DOFs, allowing actions such as flexing the elbow and
closing the hand concurrently (Hargrove et al., 2017; Mereu et al., 2021).

Despite these promising advancements in upper limb prosthetics technology, the rates
of device abandonment remain notably high (Salminger et al., 2022). According to a
meta-analysis covering articles published between 1982 and 2007, the rejection rate for
active prostheses in the adult population ranges between 20-30% (Biddiss and Chau,
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2007) due to lack of functionality, comfort, inability to perform actions in a coordinated
manner (simultaneous control of DOFs), and excessive visual attention requirements.
User expectations include basic grasping actions, additional wrist movements, and the
ability to control multiple joints simultaneously for the execution of Activities of Daily
Living (ADLs), as reported by Cordella et al., 2016 and by Atkins et al., 1996 over
three decades ago. Yet, most users rejecting the use of prostheses might reconsider
their choice if affordable technological improvements were available (Biddiss and Chau,
2007).

To overcome the limitations of myoelectric control, researchers have explored alterna-
tive approaches whereby the prosthetic limb is controlled based on the motion of the
residual limb and its natural coordination with the missing joints. In addition to being
non-invasive and independent of the number of residual muscles, these approaches
offer the advantage of restoring a connection between the movement of a body part
and the prosthesis’s interaction with the environment.

In 1998, D. Popovic and Popovic, 1998 demonstrated the feasibility of deriving elbow
flexion/extension speed from shoulder speed using a multiplicative factor for horizontal
pointing tasks. Successively, this factor was iteratively fine-tuned based on the spa-
tial zone selected by the user (M. Popovic and Popovic, 2001). Similarly, Iftime et al.,
2005 trained an Artificial Neural Network (ANN) to reconstruct existing synergies be-
tween the angular velocities of shoulder flexion/extension, elbow flexion/extension, and
forearm pronation/supination. Their study demonstrated that while the ANN effectively
captured the synergies for specific target movements, these relationships did not gen-
eralize across the entire workspace. This finding suggests that to achieve effective
control, synergies involving a broader range of joint angles and movements must be
exploited, highlighting the complexity and variability inherent in human arm control.

Building on this hypothesis, several research teams have proposed to enhance the
quantity of pertinent information provided as input to the system by including more
DOFs of the residual limb. The control scheme proposed by Kaliki et al. (Kaliki,
Davoodi, and Loeb, 2008; Kaliki, Davoodi, and Loeb, 2008; Kaliki et al., 2013) inte-
grated three ANNs to reconstruct elbow flexion/extension, wrist pronation/supination,
and hand opening/closing from shoulder rotations and translations. Participants em-
ployed this control strategy to control an avatar arm in a virtual reality (VR) environment
to reach an object placed on a table, grasp it, and bring it to the mouth. However, the
observed task completion time was twice as long as the natural time, even after ten
sessions of practice, and the proposed control scheme resulted in the non-natural use
of shoulder translations.

Along the same line of thinking, the model proposed by Merad et al., 2016, reconstruct-
ing the speed of a prosthetic elbow using the residual limb angular velocities, enabled
intact-limbs participants to use the prosthetic forearm attached to their upper arm to
reach real targets in a 3D workspace. The same model, trained on data from intact-
limbs participants, was then used by participants with limb loss to perform the same
task (Merad et al., 2019, 2020). Despite the movement time being twice as long as ex-
pected for a natural movement, it remained faster than that achieved with conventional
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myoelectric control. Furthermore, participants with limb loss reported that this control
method was more intuitive than myoelectric control strategies.

In a different approach, Legrand et al., 2022 proposed a control system that utilizes
compensatory movements executed by the user as an error signal to correct inaccu-
racies in the positioning of the prosthesis. This approach creates a coupling between
body compensations and prosthetic movements to simultaneously control elbow flex-
ion/extension and wrist pronation/supination. Four participants with transhumeral limb
loss tested the control system while performing the Refined Rolyan Clothespin Test with
an experimental prosthesis. The experiment demonstrated that the proposed method
restores simultaneity between prosthetic joints while maintaining the level of perfor-
mance of conventional myoelectric control without increasing compensatory motions
or cognitive load.

Another interesting proposal by Gloumakov et al., 2019 involved encapsulating natural
movement synergies observed during daily tasks into trajectory prototypes (i.e., a set
of joint movements) and employing these trajectory prototypes to control a prosthe-
sis (Gloumakov et al., 2020, 2022). In this method, users choose the prototype that
best aligns with the task to control prosthetic joints movements. Experimental results
demonstrated that task completion was faster using this simultaneous prosthesis con-
trol of the elbow and wrist than sequential myoelectric control. Despite exhibiting com-
parable compensatory movements, participants reported that the proposed method felt
more natural and required less mental load than myoelectric control. However, the au-
thors have not yet suggested an interface that is easy to use and can be integrated into
a prosthesis for selecting among the proposed trajectory prototypes.

In recent years, there have been significant developments in the field of computer vi-
sion, especially applied to robotics. Notably, these advancements have focused on
object pose estimation and identifying the optimal grip type necessary to reach and
manipulate a given object (Du et al., 2019; Moullet et al., 2023). Since the 1980s,
several studies have suggested that hand configurations for grasping an object or per-
forming a task could be deduced from the properties of these objects or tasks through
rule-based systems (Cutkosky, 1989) or ANNs (Iberall, 1988). On this basis, prosthesis
control strategies have been devised by integrating residual limb motion with informa-
tion about desired hand configuration, acquired through computer vision methods such
as decision trees (Došen and Popović, 2011; Došen et al., 2010), finite-state machines
(Markovic et al., 2014, 2015) and neural networks (DeGol et al., 2016; González-Díaz
et al., 2019; Pérez De San Roman et al., 2017). In particular, the application of deep
convolutional neural networks trained using egocentric videos and gaze data has ex-
hibited remarkable efficacy in real-time object recognition across intricate real-world
environments (González-Díaz et al., 2019; Pérez De San Roman et al., 2017).

Building on these advancements, my colleagues have developed a promising movement-
based control system for transhumeral prostheses, which integrates information about
movement goals with proximal joint motion, as explained in detail in the following sec-
tion.
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1.2 Intuitive movement-based prosthesis control

1.2.1 Control principle

The existing literature on movement-based approaches for transhumeral prostheses is
limited to controlling one or two missing joints. Notably, most efforts have focused on
reconstructing the elbow from the shoulder, aiming to place the end effector closer to
the movement target, but leaving achievements of a proper orientation essentially un-
addressed (Iftime et al., 2005; Merad et al., 2019, 2020; Merad et al., 2016; D. Popovic
and Popovic, 1998; M. Popovic and Popovic, 2001). However, grasping an object re-
quires positioning and orienting the hand in space appropriately. Without wrist mobility,
the hand’s orientation capabilities are severely restricted, necessitating compensatory
movements (Olsen et al., 2019) that add stress to the body and lead to overuse is-
sues in other joints (Mell et al., 2005; Spiers et al., 2018). Recognizing the importance
of wrist angles, which are at least as crucial as the hand DOFs in executing ADLs
(Kanitz et al., 2018; Montagnani et al., 2015b), several studies have attempted to re-
construct wrist pronation/supination, adding information to the control system, such as
non-natural shoulder or trunk movements deliberately executed by the user (Kaliki et
al., 2013; Legrand et al., 2022).

Grounded on the progress in movement-based approaches and computer vision tech-
niques, Mick et al., 2021 recently demonstrated the feasibility of training an ANN to re-
construct all distal joints (i.e., elbow flexion/extension, wrist pronation/supination, wrist
lateral deviation, and wrist flexion/extension) of an intact-limbs participant from prox-
imal joint angles (i.e., shoulder flexion/extension, shoulder abduction/adduction, and
humeral rotation) and information about the movement goal (i.e., the position and ori-
entation of the target; see Figure 1.3). Ten intact-limbs participants were engaged in
pick-and-place tasks in a VR environment, controlling the proximal joints of the virtual
arm, while ANN predictions were employed to control the distal joints. The results
of this experiment highlighted the effectiveness of the proposed control, with average
movement times (1.22s) only slightly longer than those observed in naturally controlled
movements (0.82s), along with comparable compensatory movements.

However, it is essential to acknowledge that the proposed control method has limi-
tations that prevent its applicability to individuals with transhumeral limb loss. These
limitations include the necessity for user-specific training data, which might be imprac-
ticable or time-consuming to collect, and the inability to measure the humeral rotation
accurately using only a sensor placed on the upper arm due to soft tissue sliding.

To overcome these limitations, E. Segas et al., 2023 successfully adapted the control
method to individuals with limb loss by designing a generic model, Proximo Contextual
(PC), trained on natural arm movements gathered from multiple individuals (see Figure
1.4). Recognizing the challenges associated with reliable measurement of humeral
rotation, this DOF was transferred as an output of the ANN, treating it as a predicted
output rather than a necessary input for the control system. To enhance the precision
and performance of the ANN, they increased the amount of training data by using the

8 / 98



General introduction

Figure 1.3: Overview of task and control strategy proposed by Mick et al., 2021. a.
The participant’s arm is reconstructed in the virtual environment using four HTC Vive
sensors. b-c. The task is to control the virtual arm to pick a cylindrical object and
place it on a platform. d-e. The targets are distributed over a grid of 5 X 5 X 2 (Width
X Height X Depth) for the Acquisition phase (green and yellow spheres) and 3 X 4 X
2 for the Test phases (green spheres only). f. The ANN was trained to reconstruct
the four distal joints from shoulder joint angles and information about the movement
goal (i.e., the position and orientation of the target). BRA and BPA indicate the rotation
and position of frame A expressed in the reference frame B (Figure adapted from Mick
et al., 2021).

entire trajectories of the recorded natural arm movements instead of using only arm
postures with the hand sufficiently close to the target. Furthermore, they expanded the
applicable workspace of the control. To this end, they started by defining the widest
possible workspace, determined by the maximal range of motion exhibited by partici-
pants, and then utilizing a self-organizing map (Fritzke, 1995) to represent the space
covered by participants while generating natural arm movements within this space.

Critically, the training data was expressed in a body reference frame called armroot,
which has its origin at the shoulder articulation and has the orientation of a sensor
attached to the trunk of the operator. Using a common reference frame linked to the
user’s body allowed the data to be adapted to the user’s morphology before training
the subject-specific ANN. This adaptation was achieved by reconstructing the informa-
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tion related to the movement goal (i.e., hand position and orientation) through forward
kinematics using a chain based on the limb dimensions of the participant.

Figure 1.4: Overview of the control strategy proposed by E. Segas et al., 2023. a.
Natural arm movements are recorded while participants pick and place a bottle in a
wide workspace in VR. b. The data is adapted to the user’s morphology by recon-
structing the information related to the movement goal through forward kinematics us-
ing a chain based on the limb dimensions of the participant. c. PC ANN is trained
to reconstruct distal joints (i.e., humeral rotation, elbow flexion/extension, wrist prona-
tion/supination, wrist lateral deviation, and wrist flexion/extension) from proximal joint
angles (i.e., shoulder flexion/extension and abduction/adduction) and information about
the movement goal (i.e., the position and orientation of the target).

Overall, all those features enabled intact-limbs participants and participants with tran-
shumeral limb loss to control a prosthesis avatar in VR and reach almost all targets
(>99%) with the proposed prosthesis control with movement times similar to those ob-
served in naturally controlled movements.

1.2.2 Adapting the control for real-world deployment

Despite the remarkable results achieved in VR, where the object position and orienta-
tion are perfectly known by design, deploying this control system in real-world settings
requires the integration of a camera and computer vision algorithms into the system
for real-time object pose detection and estimation. In this setup, information regarding
the detected object might only be available in a head (or camera) centered reference
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frame through gaze-guided computer vision (purple block in Figure 1.5). However, PC
relies on the target position and orientation expressed in the armroot reference frame
(blue block). Therefore, this information needs to be transformed from the head to the
armroot reference frame.

Figure 1.5: Problem definition. Computer vision algorithms retrieve information about
the target in the head reference frame (purple block). This information requires trans-
formation into the armroot reference frame (blue block) to be employed, along with the
residual limb angles (green block), by the PC ANN to predict the angles to apply to the
prosthesis (red block).

From a computational perspective, reference frame transformations require the knowl-
edge of the position and orientation of both initial and final frames. While orientation
data can be obtained from Inertial Measurement Units (IMUs) placed on the trunk and
head, positional data might not be available in real-world settings.

Interestingly, ongoing theories (Batista et al., 1999; Blohm and Crawford, 2009; Pouget
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et al., 2002; Salinas and Abbott, 2001; Snyder et al., 1998) suggest that reference
frame transformations are computational mechanisms performed by the brain, espe-
cially when planning target-directed movements. Illustrated schematically in Figure
1.6, the brain acts as a sophisticated information processor, converting sensory inputs
into motor commands to activate the muscles and coordinate the movement of differ-
ent limb joints to achieve specific tasks (Holmes and Spence, 2004). Moreover, as the
movement starts, the brain receives real-time sensory feedback, allowing for adjust-
ments and corrections. This closed-loop system ensures the adaptability and accuracy
of motor responses, especially in dynamic environments.

Figure 1.6: Schematic representation of how goal-directed movements are planned in
the central nervous system. The brain converts sensory inputs into motor commands
to coordinate the movement of different limb joints to achieve specific tasks.

Key brain regions involved in coordinate transformations include the lateral intrapari-
etal area (LIP), primarily encoding data relevant to saccadic eye movements (Ander-
sen et al., 1990), and the ventral intraparietal area (VIP), responsible for processing
both visual and somatosensory information (Duhamel et al., 1998; Sereno and Huang,
2006). Within these areas, encoding appears to occur in distinct reference frames: eye-
centered in LIP and head-centered in VIP (Duhamel et al., 1998; Mullette-Gillman et al.,
2005). The neuroscience community widely acknowledges that these areas achieve
coordinate transformations through mechanisms like gain fields and basis function rep-
resentations, which enable stimuli to be represented simultaneously in multiple refer-
ence frames (Duhamel et al., 1998; Pouget et al., 2002; Snyder et al., 1998). Conse-
quently, these areas are often modeled using neuron populations exhibiting gain fields
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(Makin et al., 2013; Pouget et al., 2002; Pugach et al., 2019; Schillaci et al., 2014). The
firing rate of these neurons depends on the position of the considered object relative
to specific reference frames, such as arm-, head-, hand-, or eye-centered. Typically,
these models comprise two input layers, each corresponding to a sensor modality and
centered on their respective natural reference frames, containing units with bell-shaped
activation functions.

Figure 1.7 illustrates the model proposed by Pouget et al., 2002 to emulate coordinate
transformations from eye-centered to head-centered reference frame. The first input
layer encodes the target in eye-centered coordinates, while the second encodes the
eyes’ position within the head reference frame. The intermediate layer combines the
activity of the two receptive fields: each basis function unit computes the product of a
pair of eye-centered and eye-position units. The output, the target in the head reference
frame, is computed as the weighted sum of the activities of the basis function units. The
network presented in this figure allows reference frame transformation in one direction
(i.e., from the eyes to the head) but has been subsequently adapted to perform direct
and inverse transformations.

Figure 1.7: Neural network proposed by Pouget et al., 2002 for coordinate transforma-
tions using basis functions. The network enables the transformation of target informa-
tion from eye-centered to head-centered coordinates.

In the realm of robotics, coordinate transformations are crucial for converting desired
end-effector poses, specified in Cartesian or visual space, into motor commands is-
sued in joint space, and vice versa. These transformations are often achieved through
kinematic models, derived analytically and relying on prior knowledge about the robot’s
geometry. However, challenges arise when these models need to adapt to changes
such as deformations of robotic parts or the integration of new tools. To address this
problem, bio-inspired methods have been integrated into the control system, allowing
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robots to autonomously learn the parameters of their kinematic model (Hoffmann et
al., 2010; Nabeshima et al., 2006). Inspired by the brain’s multisensory integration pro-
cesses, these methods derive the pose of a body part, such as the end effector, from
multiple sources like camera detection and forward kinematics. These poses are con-
verted to a shared reference frame and compared. By using this difference as an error
signal to iteratively adjust the parameters of their model, robots can progressively re-
fine their understanding of their kinematics and adapt to changes in their configuration
or environment. Commonly employed techniques include machine learning (Martinetz
et al., 1990), self-calibration of the kinematic chain (D. J. Bennett et al., 1991; Gatla
et al., 2007; Hollerbach and Wampler, 1996), or a hand/eye setup (Pachtrachai et al.,
2021; Tsai and Lenz, 1988; Wang et al., 2021). All these approaches rely on a sam-
pling period comprising various configurations, followed by an optimization procedure.
However, rather than solely depending on predefined sampling periods, there is a grow-
ing interest in developing methods capable of learning online and adapting in cases of
dynamic conditions (Hoffmann et al., 2010).

In particular, several approaches draw inspiration from the brain representation of our
surroundings, the peripersonal space. This space is encoded in a multisensory, body-
centered, and modular fashion (Farnè et al., 2005; Serino et al., 2015) and it continu-
ously adapts in response to body movements, changes in the surroundings (Brozzoli
et al., 2012; Di Pellegrino and Làdavas, 2015; Noel et al., 2015), and emotional states
(Cléry et al., 2015). Furthermore, it can extend as a result of tool use (Farnè et al.,
2005; Holmes and Spence, 2004; Maravita and Iriki, 2004; Maravita et al., 2002) or
shrink due to traumatic amputation (Canzoneri et al., 2013). Building upon these char-
acteristics, Nabeshima et al., 2006 employed an ANN to adapt the kinematic model
of a humanoid robot in response to changes resulting from the integration of a new
tool. The system learned to integrate visual and proprioceptive (joint angles) informa-
tion through tactile interactions. Similarly, Hersch et al., 2008 developed a gradient
descent algorithm enabling a 24-DOF humanoid robot (Hoap3) to learn the missing
parameters of its kinematic chain (joint positions and orientations) by observing its
body with a camera, and to adapt to changes, such as incorporating a stick as a body
extension, within two to three minutes. Successively, the system was enhanced by
employing optical flow to learn the neck-eyes kinematic chain and tested it on the iCub
humanoid robot (Hersch, 2008). Sturm et al., 2009 took a further step by employing
a flexible model based on Bayesian networks to enable a robotic manipulator arm to
autonomously learn its kinematic structure and the geometrical relationships between
its body parts through self-observation with a camera. Experiments conducted on both
real and simulated robotic manipulators validated the effectiveness of this approach in
addressing real-world challenges, including changes in the robot’s body due to factors
such as failure, repair, or material fatigue.

Within this context, a potential approach to obtain the head position within the armroot
reference frame needed for transforming target information from the head to the arm-
root frame might involve constructing a kinematic chain connecting the two reference
frames. Creating a model that accurately depicts the intricate relationship between
the head and the shoulder positions requires a deep understanding of the complex

14 / 98



General introduction

anatomy of these structures, shown in Figure 1.8.

Figure 1.8: Anatomy of shoulder girdle and cervical spine (Figure adapted from Krish-
nan et al., 2019 and Barker et al., 2015).

The cervical spine, whose motion defines the head pose, has a complex musculoskele-
tal structure consisting of over twenty muscles and seven vertebrae, the first of which
is the atlas (Standring, 2015). The vertebrae can be modeled as flexible springs, allow-
ing flexion/extension and lateral bending motion, whereas the atlas bone enables head
rotation and upper flexion/extension movements (translations). The range of move-
ment between individual vertebrae may be small; however, the overall mobility of the
cervical spine is extensive, as it depends on the cumulative effect of numerous small
movements occurring across the seven joints. On the other hand, the shoulder gir-
dle includes three synovial joints, the sternoclavicular, the acromioclavicular, and the
glenohumeral joint, allowing translation in all directions (Standring, 2015). The motion
of these joints depends on the scapulothoracic joint, a fictitious articulation responsible
for approximately one-third of the shoulder’s range of motion (Krishnan et al., 2019).
Researchers often model this joint as either a fixed structure (Sah and Wang, 2009) or
dynamic contact (Garner and Pandy, 1999; Maurel and Thalmann, 1999; Seth et al.,
2016).

Capturing and modeling the movements of the head and the shoulder pose several
challenges due to a combination of anatomical intricacies, functional complexities,
mathematical representations, and limitations in measurement techniques (Krishnan
et al., 2019; Rau et al., 2000). This results in the implementation of simplified kine-
matic models, which may lack a comprehensive representation of the diverse range of
movements observed in reality. For instance, the most common representation of the
kinematic chain between the head and the shoulder features 3 DOFs at the neck level,
3 DOFs at the trunk, and 3 DOFs at the shoulder, with only prismatic joints, enabling
rotation but not translation. Furthermore, when attempting to implement such a model,
for example, in a humanoid robot, additional simplifications are often necessary, such
as employing a 2-DOF serial mechanism for the neck. Although this mechanism offers
some mobility for the robot’s head, its capabilities are usually limited, allowing only a
partial scanning of the surrounding environment (Beira et al., 2006; Muñoz et al., 2024;
Penčić et al., 2017).
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The intricacy of the region between the head and the shoulder makes the interaction
between these body parts inherently dynamic, characterized by continuous adaptations
to accommodate various tasks and postures. The relative position between the two
frames varies depending on the location of the object to be reached relative to the
user’s body, as depicted in Figure 1.9.

Figure 1.9: Relationship between the head and the armroot reference frame while
grasping two different bottle poses.

Consider, for instance, the act of grasping an object situated above the user’s head.
In such instances, the individual instinctively raises their arm and shoulder girdle while
adjusting their head position to secure a clear view of the object. Conversely, when
the object lies below the level of the hip, the shoulder girdle lowers to facilitate the
reaching. In both scenarios, the relative distance between the head and shoulder
undergoes significant alterations, reflecting the human body’s adaptability in response
to varying tasks. Furthermore, the posture of the trunk and arms emerges as a pivotal
factor influencing the positioning of the shoulder joint and overall upper body dynamics.

Similar situations arise in robotics, where complex systems integrate sensor modali-
ties and flexible parts for which a kinematic model alone may not suffice to execute
all the required reference frame transformations. Instead of implementing a system to
learn these intricate models, such mappings can be acquired by treating the system
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as a black box and learning its input-output behavior through a system identification
process (De Barreto, 2003; Martinetz et al., 1990). For example, Chinellato et al.,
2011, inspired by the encoding of the peripersonal space (Di Pellegrino and Làdavas,
2015; Serino, 2019) and sensorimotor transformations (Makin et al., 2013; Pouget et
al., 2002), implemented a sensorimotor map with two radial basis function networks to
perform bidirectional transformations in a humanoid robot between stereo visual infor-
mation and oculomotor space, and between oculomotor and arm joint space, respec-
tively. Through active exploration by gazing and reaching actions, the networks learned
to execute proficiently direct and inverse transformations among different space repre-
sentations and to adapt to varying conditions, including visual distortions or modified
kinematic configurations. Likewise, Schillaci et al., 2014 proposed a biologically in-
spired model for coding internal representations of sensory maps (visual, auditory, and
tactile) in the humanoid robot Aldebaran Nao. Inspired by the self-organizing proper-
ties of areas in the human brain, the authors employed a dynamic self-organizing map
for online and continuous learning of static and dynamic data distributions.

In the same line of thought, Lallee and Dominey, 2013 introduced a novel approach
to controlling a humanoid robot using an artificial neural network model. Unlike previ-
ously cited works, this model emulates the brain’s multisensory integration processes
and provides explanations and predictions for findings in neurophysiology and neu-
ropsychology. By engaging in self-exploration, the model acquired a representation of
the robot’s body schema, integrating specific modalities such as arm proprioception,
gaze proprioception, and vision, along with their multimodal interactions. Experimental
results showcased that this method significantly enhances the robot’s adaptability and
functional performance, resulting in more efficient control.

In conclusion, a bio-inspired approach appears to be the most suitable for describing
the head position in the armroot reference frame. Before embarking on the develop-
ment of solutions to retrieve this information, it is crucial to gather data concerning the
relation between these two reference frames. The subsequent chapter will delve into
the experimental protocol and the methodological approach for collecting a dataset.
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Chapter 2

Dataset of natural arm and head
movements

Every object manipulation starts with a natural arm movement designed to reach and
grasp it. Most of the time, this object is recognized based on visual information gath-
ered during gaze-fixation. Understanding eye-hand coordination during reaching move-
ments is a great challenge in human sensorimotor control, with huge applications in
motor rehabilitation, humanoid robotics, human-robot interactions, and prosthesis con-
trol.

Regarding prosthesis control, we recently demonstrated that incorporating information
about movement goals alongside proximal joint motion allows an ANN trained on nat-
ural arm movements to predict distal joints missing to people with transhumeral limb
loss (Mick et al., 2021; E. Segas et al., 2023). Despite promising outcomes in a VR
environment, implementing this control in real-world scenarios necessitates the inte-
gration of computer vision algorithms to retrieve movement goal information, which will
be expressed in the head reference frame. Subsequently, this information must be
transformed into the armroot reference frame to be effectively utilized by the control
system. In this chapter, I introduce a dataset designed for collecting data about these
two reference frames (head and armroot). This dataset will be used in Chapter 3 and 4
to develop and evaluate algorithms aimed at performing the necessary transformations.

Although several public datasets exist that include head and arm movements suit-
able for modeling the relationship between the head and the armroot reference frame
(Averta et al., 2021; Huang et al., 2016; Mandery et al., 2015), the overall body pos-
tures from which arm movements were produced in those datasets were generally left
free or poorly controlled. Moreover, none of those datasets were designed to maximize
the workspace spanned by participants with their arms (i.e., the set of positions and
orientations reachable depending on their morphologies and ranges of motion).

Furthermore, although 6D pose estimation is a very active area of computer vision
(Labbé et al., 2020; Labbé et al., 2022; Liu, 2023; Nguyen et al., 2022) with appli-
cations far beyond prosthesis control (e.g., augmented reality, healthcare or industrial
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robotics), precise determination of object pose from first person view/egocentric videos
with gaze information acquired in natural context is still an open research issue (Ro-
gez et al., 2015). Several public datasets are available for training and testing object
6D pose estimation models (Calli et al., 2015; C. Li et al., 2022), but none of those
include realistic, egocentric visual information like gaze obtained in a functionally rel-
evant context (i.e., with natural arm movements that require reaching and displacing
objects).

The dataset outlined in this chapter was designed to overcome these aforementioned
limitations. First, the initial body posture, from which arm movements were produced,
was precisely controlled using visual feedback from the trunk and shoulders in a VR
environment. Second, the workspace was maximized throughout a procedure that
initially covers the widest possible workspace (i.e., set by the maximal range of motion
of participants) and then subsequently uses a self-organizing map to represent the
actual space covered by participants (i.e., producing natural arm movements within
this space; E. Segas et al., 2023). Third, the dataset captured head and gaze motion
alongside movements of the trunk, shoulders, and arm joints, providing comprehensive
data on the entire kinematic chain between the object the participant is aiming and
gazing at and the hand moved to reach it.

The work presented in this chapter was conducted with the assistance of a Master 1
student, Emeline Medan, who completed a two-month internship under my supervision.

The work presented in this chapter has been published (Lento, Segas, Leconte, Doat,
Danion, Péteri, Benois-Pineau, and De Rugy, 2024), Scientific Data - Nature. The
dataset and the codes for processing and analyzing the data are available as a Zenodo
repository (Lento, Segas, Leconte, Doat, Danion, Péteri, Benois-Pineau, and de Rugy,
2024).
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2.1 Materials and Methods

This section presents all the elements put in place to carry out the experiment pre-
sented in this chapter.

2.1.1 Participants

This study was conducted on twenty participants (six males and fourteen females)
aged 19-44 (mean 25.1; SD 6.46), all with normal vision or vision corrected to normal.
The Edinburgh Handedness Inventory (Oldfield, 1971; EHI) was administered to deter-
mine the participants handedness: they were all right-handed (mean EHI 81; SD 23).
None of the participants suffered from any mental or motor disorders that might have
affected their task performance. All participants provided informed consent, and the
study received approval from the local ethics committee (CPP Est II: n°2019-A02890-
57).

2.1.2 Experimental setup

The participant sat on a stool and wore the headset (ViveTM Pro, HTC Corporation)
and five motion trackers (ViveTM Tracker, HTC Corporation), attached to the trunk, the
main segments (upper arm, forearm, and hand) of the right arm and the upper arm of
the left arm, using straps, as shown in Figure 2.1a.

Figure 2.1: Experimental setup in VR. a. Participant wearing VR headset and trackers.
b. Estimated joint centers’ locations are represented by yellow and red spheres, the
pupil axis by blue dashed lines, and the direction of the gaze vector of each eye by a
blue arrow.
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Each tracker and the headset provided measurements for their 3D position and ori-
entation in relation to the reference frame of the virtual environment. Four cameras
were positioned at the room corners to capture signals from the trackers and headset
at a rate of 90 Hz (sampling rate), using SteamVR, developed by Valve Corporation,
as middleware. The virtual scene’s contents and interactions with the participant were
managed by the Unity simulation engine (Unity Technologies). The virtual environment
was scaled to match real-world dimensions: the ground plane was set at the same
height as the actual floor and centered on the stool where the participant sat.

2.1.3 Virtual arm calibration

After the participant was equipped with the trackers and the headset, the software for
eye tracking was calibrated throughout the method already included in SteamVR. Then,
a calibration procedure was carried out to associate the virtual arm with the trackers
and, therefore, with the participant’s real arm. The virtual arm, created using the open-
source software Make Human, consisted of three rigid segments (upper arm, forearm,
hand) connected by spherical joints at shoulder, elbow, and wrist levels. Its thickness
was adjusted according to the participant’s height by applying a factor depending on
its value.

The virtual arm calibration consisted of three steps: data recording, joint center esti-
mation, and association of virtual and real arms. During the first step, the participant
was instructed to perform slow movements using all the DOFs of both arms for 15s
and then of the head for 10s. Based on these data, the method described in O’Brien
et al., 2000 was employed to estimate the following joint centers’ locations: left shoul-
der, neck, right shoulder, elbow, and wrist, shown in Figure 2.1b as yellow spheres.
Additionally, the center of the trunk, represented by a red sphere in Figure 2.1b, was
estimated as the orthogonal projection of the neck joint center onto the line connecting
the right and left shoulders.

Figure 2.2: Final step of the virtual arm calibration. The participants overlay their
real arm, represented in the virtual environment as yellow spheres connected by white
segments, with the virtual arm (Figure II.1.4 in Ségas, 2023).
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The joint centers were linked in position to the sensors. The shoulders, left and right,
and elbow were associated with the corresponding upper arm sensors, while the wrist
joint was associated with the forearm sensor. The shoulder of the virtual limb (right
side) was positioned to coincide with the actual shoulder of the participant, and the
virtual arm dimensions resized according to the participant ones, computed as the
distance between estimated joint centers. In the last step, the virtual arm segments
were linked in orientation to their respective sensor. The participants saw their real
arm in the virtual environment as yellow spheres connected by white segments and
had to overlay it with the virtual arm locked in a reference posture in order to bind
them, as shown in Figure 2.2.

2.1.4 Range of motion determination

Following the calibration process, the headset was temporarily taken off to collect data
with the purpose of calculating the range of motion for each DOF of the participant’s
arm (shoulder flexion/extension, shoulder abduction/adduction, humeral rotation, el-
bow flexion/extension, wrist pronation/supination, wrist lateral deviation, and wrist flex-
ion/extension, see Figure 2.3).

Figure 2.3: 7-DOFs arm model. a. Relative position of frames of reference us-
ing Denavit-Hartenberg convention (Denavit and Hartenberg, 1955). b. Denavit-
Hartenberg parameters table. c. Elementary movements performed for each arm DOF
during the range of motion assessment phase (Figure adapted from Ségas, 2023; ref-
erence frames assigned using the distal DH method).

Participants were asked to slowly perform a few repetitions of an elementary move-
ment for each joint with maximal amplitude in each direction. For each movement, the
experimenter performed a demonstration that the participants were required to mimic
with their arm. This demonstration and movement recording lasted about 10s for each
movement, and included at least four complete back-and-forth excursions. Then, the
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joint angular limits were estimated as the extreme reached values (i.e., the minimum
and maximum angles reached during each joint repetition).

2.1.5 Task

Data were collected while the participant was engaged in a pick-and-place task involv-
ing picking a bottle from one platform (red disk visible at the base of the bottle) and
releasing it into another one.

Figure 2.4: Illustration of the task. After the participants have picked a bottle from a
previous platform, they will transport it toward the next platform, onto which they will
release it.

The task was defined as the action of either picking up a bottle (target) from the platform
or releasing it onto the next platform. The task did not involve directly the opening and
closing of the hand. Instead, participants were required to place the virtual hand within
a 2cm proximity of the bottle’s center and match the virtual hand orientation with the
bottle orientation within an angular tolerance of 5°. When these two criteria were met
(i.e., virtual hand in the target zone), the bottle turned red. After 0.6s of continuous red
coloring (validation time), the bottle was automatically grasped or released. A specific
time was allocated for reaching each target (5s). If not achieved within that time, the
task was considered failed, and a new target appeared, triggering a sound signal.

A shallow bottle was added on the target platform or in the virtual hand to help the
participant fit the bottle positioning within the target zone.

Participants were instructed to perform the task at a natural pace. An illustrative video
of an intact-limbs participant performing the task in the virtual environment is provided
in Appendix B (Illustrative Video 1).
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2.1.6 Return to Neutral Posture procedure

In most research focusing on a specific pattern of movement, it is a common procedure
to have participants return to a neutral posture between trials (or movements) in order
to maintain recording consistency and limit drifts or carry-over effects between trials
(Light et al., 2002; Major et al., 2014; Montagnani et al., 2015a). Instead of merely re-
lying on participants’ compliance with instruction to return to a neutral posture, or upon
the experimenter’s observation of it, we capitalized on our VR set-up to design and
apply a controlled procedure called Return to Neutral Posture (RNP). This was partic-
ularly suited for our purpose, which was to collect data about natural arm movements
issued from a comfortable posture, including shoulder and trunk.

Figure 2.5: Return to Neutral Posture (RNP) procedure. a. After the participant com-
pleted a task, the RNP procedure started and the cubes appeared. The green cubes
represented the neutral posture the participant had to return to, while the blue cubes
represented the actual participant’s shoulders and head positions. b. By overlapping
the blue cubes with the green cubes within a given tolerance, all cubes turned red to
indicate that the participant had successfully achieved the RNP.

This procedure was implemented using the display of two sets of three cubes (see
Figure 2.5), each cube corresponding either to a shoulder position (left or right) or to
the head position, projected 45cm forward in front of the participant. The green cubes
were fixed and represented the target posture the participant had to return to, while the
position of the blue cubes was updated according to the actual participant’s shoulders
and head positions (see Illustrative Video 1 in Appendix B). The RNP was achieved by
overlapping the blue cubes with the green ones within a given tolerance for a duration
of 0.6s. The specific tolerances used were determined empirically to be tight enough
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to ensure consistency in the given posture participants had to return to, while avoiding
control difficulties that would be associated with too small tolerance. This was achieved
with an angular tolerance of 5° for the head and shoulders, and a spatial tolerance of
2cm for the head and 3cm for the shoulders.

2.1.7 Protocol

The experimental protocol comprehended five phases: Familiarization, Initial acquisi-
tion, RNP familiarization, Test RNP after pauses, and Test RNP after target pairs.

Figure 2.6: Dataset collection protocol.

Different target sets were generated, as explained below, for the different phases of
the experiment. A target is defined as a position and orientation expressed in the initial
shoulder reference frame to be reached by the participant’s hand. All the targets were
filtered according to the following criteria:

• Exclude targets pointing downward, defined by an angle between the target’s axis
and the vertical axis that would exceed 100°.

• Exclude targets too close to the participant’s trunk, defined by a distance between
the target’s center and the participant’s frontal plane that would not exceed a third
of the participant’s arm length.

• Exclude targets too close to the participant’s legs, defined by a distance between
the target’s center and the horizontal plane passing through the participant’s
shoulder that would exceed two-thirds of the participant’s arm length.

To generate the first target set, 7-DOFs arm angular configurations were drawn at ran-
dom within the participant ranges of motion following a multivariate uniform probability
distribution. Then, forward kinematics was used to transform these configurations into
the target locations (i.e., positions and orientations), which were then filtered as indi-
cated above (see E. Segas et al., 2023 for more details). This target set contained
at least 300 targets, subsequently used in the Familiarization and Initial Acquisition
phase.

The first phase aimed at familiarizing the participant with the virtual environment and
the task. For this reason, the time to complete a task was extended to 10s. Once
the participant seemed comfortable with performing the task, after approximately 60-
100 targets, the experimenter could skip the remaining targets and proceed to the next
phase.

The second phase, Initial Acquisition (IA), was designed to record data used to sample
more accurately the reachable workspace, which is specific to each participant. This
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was achieved using an unsupervised self-organizing map (more specifically, a Growing
Neural Gas (GNG) algorithm; Fritzke, 1995), trained on all arm postures produced by
each participant during the IA phase, to generate a new set of 200 targets that best
represent those postures. This algorithm maps the space of the joint configurations
executed by the participants during the IA phase by placing nodes (or neurons) and
iteratively adjusting their positions based on the input data. By effectively learning the
distribution of joint configurations, it identifies the neurons that best represent the arm
configurations explored by the participant. These configurations are then transformed
into targets through forward kinematics. This step was necessary to circumvent prob-
lems inherent to the fact that anatomical joints’ limits are interdependent, which could
lead to impossible arm configurations, in particular when maximal excursion at multiple
joints is involved simultaneously. The resulting new set of 200 targets, which best rep-
resent the reachable workspace of each participant, was then used for all subsequent
phases.

In the third phase, RNP familiarization, the participants freely chose their neutral pos-
ture to return to and got familiar with the RNP procedure, which was introduced every
four targets. At any time, the participant could ask to reposition the cubes, defining
that neutral posture, as the goal was to ensure the most natural and comfortable pos-
ture. As for the Familiarization phase, when the participant seemed comfortable with
the neutral posture and the RNP procedure, the experimenter skipped the remaining
targets and proceeded to the next phase (typically after 60-80 targets).

Two Test RNP phases were then conducted: one in which the RNP procedure occurred
at the beginning of the phase and after each pause introduced every 50 targets (i.e.,
three pauses in a phase of 200 targets), and one in which the RNP procedure occurred
after each single pick-and-place movement (2 targets). This last phase, Test RNP after
target pairs (RNP ATP), was designed to prevent any change or drift in baseline posture
that might occur from movement to movement. The preceding phase, Test RNP after
pauses (RNP AP), aimed at testing whether a RNP procedure introduced only every
50 targets was sufficient to maintain a reliable neutral posture, as this would greatly
simplify and accelerate future protocols using this pick-and-place task. Furthermore,
to ensure that the arm movement between target pairs remained unaffected by the
RNP procedure, the target set of the phase Test RNP ATP was adjusted by repeating
the same target before and after the RNP procedure.

2.1.8 Data reduction and metrics

This subsection describes the filtering procedures applied to the data collected in
the experiment, along with the metrics employed to assess and compare the perfor-
mances.

2.1.8.1 Filtering

A filtering process was carried out to remove measurement errors associated with mo-
tion capture. As the sensors communicate via Bluetooth and the detection technique
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involves infrared, some data may have been lost during recording. Two filters were
employed: one for “freezing” behaviour, defined as a portion lasting at least 0.5s where
a sensor’s measurement has not changed value, and one for “jumping” behaviour, trig-
gered when a sensor’s measurement has jumped in position by at least 10cm between
two samples. On average, this filtering process led to the exclusion of 2.6% of targets
per participant and phase.

2.1.8.2 Metrics

The collected data were analyzed and subjected to statistical treatment in terms of:

• success rate, defined as percentage of successful tasks achieved,

• movement time, defined as the time taken to reach and validate each target from
the previous one,

• shoulder spread volume, defined as the volume of the ellipsoidal region contain-
ing 97% of the shoulder positions recorded while producing all movements of a
phase, as a proxy of postural stability and body compensation within a phase
(Mick et al., 2021).

Considering the high success rate obtained in all the phases (medians above 96%),
the movement time and the shoulder spread volume were calculated on successful
targets.

2.1.9 Statistical analysis

The statistical analysis was conducted using the R software with a significance level
(α) set at 0.05. A McNemar test was employed for evaluating success rate, whereas
for movement time and shoulder spread volume, either a paired t-test or a Wilcoxon
test was performed based on the normality test (Shapiro-Wilk) results.

2.2 Results

As illustrated in Figure 2.7, success rates were significantly lower and movement times
significantly longer in the IA phase than in the two following RNP phases (IA vs RNP
AP vs RNP ATP; n = 20; median success rates of 96.3% vs 98.2% vs 99.4%; Friedman
test chi.sq = 24.08, p < 0.001; IA vs RNP AP, p = 0.002; IA vs RNP ATP, p < 0.001;
median movement times of 1.61s vs 1.30s vs 1.22s; Friedman test chi.sq = 32.5, p <
0.001; IA vs RNP AP, p < 0.001; IA vs RNP ATP, p < 0.001). This is consistent with
the view that some targets, drawn randomly within the range of motion determined
individually at each joint of a participant, were difficult to reach, and that the set of
targets established on the basis of movements actually produced in the IA phase, and
used in the RNP phases, provides a better sample of the reachable space of each
participant. The difficulty to reach some targets of the IA phase is further corroborated
by four times difference in shoulder spread volume between this condition and the other
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RNP phases (IA vs RNP AP vs RNP ATP; n = 20; median shoulder spread volume of
0.76 vs 0.17 vs 0.21; Friedman test chi.sq = 25.2, p < 0.001; IA vs RNP AP, p = 0.001;
IA vs RNP ATP, p < 0.001).

When comparing the two RNP phases, none of the dependent variables exhibited a
significant difference. Pick-and-place movements were performed with similarly high
success rates (RNP AP vs RNP ATP; median success rates of 98.2% vs 99.4%; p
= 0.997), reliable movement times (RNP AP vs RNP ATP; movement times of 1.30s
vs 1.22s; p = 0.366) and led to similar shoulder spread volumes (RNP AP vs RNP
ATP; median shoulder spread volume of 0.17 vs 0.21; p = 1), whether the return to
a neutral posture procedure was introduced every 50 pick-and-place movements or
between each pick-and-place movement. This lack of difference across RNP phases
means that returning to a baseline posture only every 50 pick-and-place movements is
sufficient to prevent postural changes or drifts, thereby allowing the release of postural
constraints in future protocols using this task.

Figure 2.7: Dataset analysis results. Individual data are represented by hollow dots
and dotted lines. Stars represent significant differences with ** for p < 0.01 and *** for
p < 0.001. a. Success rate b. Movement time. c. Shoulder spread volume. The red
line represents a volume of 1 dm³ (=1 L).

2.2.1 Explored workspace

To provide an overview of the workspace effectively covered by our dataset, we com-
puted from all arm configurations outputted by the GNG algorithm the corresponding
targets (represented as red arrows in Figure 2.8) using forward kinematics with the limb
dimensions of the avatar depicted in the figure. From the initial workspace, defined by
the ranges of motion of the participants and represented by the targets selected within
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those ranges of motion for the Initial Acquisition phase, the workspace defined by the
GNG algorithm has shrunk by 13.74% (i.e., averaged reduction in the range of motion
at each angular joint). Although this might appear to contradict our goal of maximiz-
ing the workspace covered by participants, experimental results confirmed that this
was the price to pay to ensure high success rates with minimal postural adjustments,
thereby keeping the focus on natural arm movements.

Figure 2.8: Workspace explored in our dataset. Red arrows indicate all targets gener-
ated by the GNG algorithm and used in subsequent experimental phases. Data from all
participants are regrouped after proper scaling to the arm size of a single participant,
and displayed with a few examples of arm configurations.

2.3 DataPlayer

The following section outlines the implementation of a tool to replay the data collected
in this experiment, led principally by my colleague Vincent Leconte.

We developed a Unity project, named the DataPlayer, which enables the playback of
recorded data from the experiment. By selecting a file from the dataset, the DataPlayer
reproduces the arm movements executed by the participant during the pick-and-place
task. Additionally, it displays gaze data, including the pupil axis and the point of gaze,
computed using the method outlined in Bailakanavar et al., 2014. Figure 2.9 shows
the interface of the DataPlayer. At the bottom, a control panel allows users to adjust
replay speed, trigger pauses, or rewind as needed. In the upper-right corner, some text
displays essential information about the data, such as the time, the target number, and
if the tolerances for target validation are met (tgtRed). In the lower-left corner, a button
allows the user to switch between two viewing modes: egocentric and free. In the
egocentric view (Figure 2.9, left image), the perspective matches that of the participant
during the experiment, while in the free mode (Figure 2.9, right image), the user can
navigate around the scene, explore it from various angles and select a preferred view.
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Figure 2.9: DataPlayer interface. The left image displays the DataPlayer showing an
egocentric view from participant 8 reaching target 23 during the phase Test RNP AP.
The right image shows the same data from a different viewpoint, selected using the
free mode. The two white lines represent the pupil axis, and the white sphere indicates
the point the participant is looking at.

The DataPlayer, being a Unity project, offers extensive customization options, grant-
ing users the freedom to tailor every aspect of the virtual environment according to
their preferences and requirements. Users have the flexibility to modify various ele-
ments, including the shape, color, and dimensions of the target object. Furthermore,
they can manipulate the surrounding environment by adding or removing objects, and
adjust other parameters as needed (e.g., lighting conditions). Customization proves
particularly advantageous in applications where the environment must reflect specific
contexts. For instance, the ability to modify objects, attributes, and scenarios pro-
vides a fertile ground for computer vision scientists aiming to develop and test robust
6D pose estimation algorithms from egocentric vision with gaze (González-Díaz et al.,
2019; Labbé et al., 2020; Labbé et al., 2022; Liu, 2023; Nguyen et al., 2022; Pérez De
San Roman et al., 2017; Rogez et al., 2015). The project’s malleability allows for sim-
ulating diverse real-world scenarios, transforming, for example, the environment into a
kitchen setting, complete with culinary items, as shown in Figure 2.10 and in Illustrative
Video 2 in Appendix B.

Figure 2.10: Examples of how the DataPlayer can be customized to combine real data
about arm and gaze with various fictitious visual backgrounds and objects.

To facilitate this exploration and testing, we have integrated an option in the interface
enabling the generation and recording of synthetic data based on the recorded data.
This feature preserves the user’s movements, gaze data, and target object poses while
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allowing for modifications to all visual aspects of the environment. Consequently, re-
searchers can leverage this capability to develop and evaluate computer vision algo-
rithms for recognizing objects in complex environments, as the ground truth is known
by design.

2.4 Discussion

In this chapter, I presented the experimental protocol designed to create a dataset
that includes records of natural arm and head movements alongside visual and gaze
information. Participants were actively involved in picking and placing objects in various
positions and orientations in a virtual environment while ensuring a consistent seated
posture.

While initially designed to gather natural arm and head movements and explore adapta-
tion algorithms to perform reference frame transformations from orientation-only data,
this dataset could represent a valuable resource across diverse domains such as
sensorimotor control, movement-based prosthesis control, humanoid robotics, human-
robot interactions, and gaze-guided computer vision.

This dataset can be used to revisit several issues lying at the core of human sen-
sorimotor control. First, our 3D recordings of the entire kinematic chain (shoulder,
elbow, wrist) are relevant to assessing how multiple joints are coordinated in a system
exhibiting redundant DOFs. For instance, one may be interested in analyzing fluc-
tuations in hand and joint kinematics across trials (as we never performed twice the
same movement) and assessing to what extent a joint’s deviation from its mean be-
havior can be compensated by adjustments in other joints (Latash et al., 2002; Scholz
et al., 2000), so that the resulting hand position is minimally impacted. Additionally, the
dataset can contribute to ongoing discussions about the straightness and smoothness
of hand movements in 3D space (Atkeson and Hollerbach, 1985; Desmurget et al.,
1995; Desmurget and Prablanc, 1997; Flash and Hogan, 1985; Hagiwara et al., 2020;
Viviani and Flash, 1995).

As we recorded the maximal range of motion of each joint, this dataset can be used
to investigate to what extent arm configurations can be accounted for by cost functions
using postural comfort as a key variable (i.e., maximizing postures away from extreme
joint angles; Cruse et al., 1993; Rossetti et al., 1994).

On a more applied side, the dataset offers a benchmark of natural arm movements with
potential use in motor rehabilitation contexts (e.g., to generate assistance with upper
limb exoskeleton for stroke rehabilitation; Nann et al., 2021) or for arms control in hu-
manoid robotics (De Momi et al., 2016; Kim et al., 2006; Koskinopoulou and Trahanias,
2016). In the context of human-robot interactions, the dataset can be used either to
feed methods aiming at reproducing natural arm movement on robotic platforms or to
evaluate the human-likeness of these methods (see Gulletta et al., 2020 for a review of
methods for human-like arm motion generation).
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The incorporation of gaze recordings within the dataset can be leveraged to explore
issues related to eye-head-arm coordination (Henriques et al., 2003; Pelz et al., 2001;
Vercher et al., 1994) and 6D pose estimation from a first-person view or egocentric
videos (González-Díaz et al., 2019; Labbé et al., 2020; Labbé et al., 2022; Liu, 2023;
Nguyen et al., 2022; Pérez De San Roman et al., 2017; Rogez et al., 2015). More-
over, the DataPlayer allows users to replay and manipulate the visual environment as
desired, as demonstrated in Illustrative Video 2 in Appendix B. This tool offers the
opportunity to generate from the dataset new synthetic data that accurately reflects
natural head, gaze, and arm movements. Since the ground truth of the object pose
is known by design in VR, this synthetic dataset can be instrumental for the develop-
ment and assessment of 6D pose estimation algorithms tailored for egocentric vision
in real-world scenarios.
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Chapter 3

Two models for head to shoulder
reference frame transformation

As stated in Chapter 1.2, the prosthesis control previously developed by the team, PC
ANN, relies on the position and orientation of the object to reach expressed in the arm-
root reference frame, whereas in real-world scenarios, it might only be available in a
head-centered reference frame through gaze-guided computer vision. In this chapter,
I present two methodologies for addressing the problem of performing reference frame
transformation between the head and the armroot from incomplete, orientation-only
data from the head and armroot, possibly retrieved with IMUs. Instead of using a kine-
matic model of the biomechanically complex region of the human spine and shoulder
girdle, which would be hard to fine-tune for each participant (Krishnan et al., 2019), we
took inspiration from how the brain performs coordinate transformation and represents
peripersonal space (Chinellato et al., 2011; Hoffmann et al., 2010; Makin et al., 2013;
Pouget et al., 2002; Salinas and Abbott, 2001; Serino, 2019; Snyder et al., 1998).

The work presented in this chapter was conducted with the assistance of Lucas Bardis-
banian, who completed a six-month engineering internship under my supervision, de-
veloping the Armroot2Head ANN.

The work presented in this chapter is part of the following publication (Lento, Leconte,
et al., 2024), IEEE Robotics and Automation Letters.
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3.1 Armroot2Head Artificial Neural Network

Our first approach consisted in training offline an ANN, which we refer to as "Arm-
root2Head" (A2H), on the dataset collected in the previous experiment to predict the
head position in the armroot reference frame. The A2H architecture consists of seven
layers: an input linear layer, with different configurations tested as detailed later, two
hidden layers, each with 128 units and rectified linear unit activation functions, three
dropout layers with a dropout rate of 0.25 to prevent overfitting (one positioned after
each layer), and an output linear layer.

Recognizing that the relation between the head and the armroot depends on the user’s
morphology as well as the particular head, trunk, and arm postures assumed during
task execution, we explored diverse inputs for the ANN, ranging from head orientation
to proximal joint angles (shoulder abduction/adduction and shoulder flexion/extension),
participant height and segment dimensions between the shoulders, head, neck, and
trunk. To identify the inputs that could effectively capture the intricate interdependen-
cies within the data, we trained the ANN with various input combinations. The training
procedure involved training the ANN on our dataset with the data of one participant
excluded, and then testing the trained ANN on the data of the excluded participant.
This iterative process was repeated for each participant and each combination of in-
puts. The outcomes of these offline training sessions are detailed in Figure 3.1, provid-
ing a visual representation of the performance of each ANN input configuration under
evaluation and valuable insights into the impact of each input variable on the model’s
accuracy. As shown, removing proximal joint angles (SFE and SAA) increases the
variability of the model’s performance. In contrast, removing one segment dimension
(N2H, T2N, or S2S) or all of them seems to improve the ANN’s performance, sug-
gesting that the segment dimensions contain low or redundant information, leading to
overfitting. Therefore, we opted for the ANN with head orientation, participant height,
and proximal joint angles as inputs, as this configuration demonstrated the best perfor-
mance (refer to the ANN No Seg in the red rectangle in Figure 3.1).

Following the exclusion of segments between shoulders, head, trunk, and neck from
the inputs of the A2H ANN, the model underwent retraining with additional data de-
rived from a previous experiment conducted by the team (E. A. Segas et al., 2024). It
is worth emphasizing that the supplementary data lacked recorded information about
these segments, which prevented their inclusion in the previous evaluation. Figure 3.2a
illustrates the outcomes of the A2H ANN offline training, presenting a scatter plot of ac-
tual data against predicted data for the x, y, and z components of the head-to-shoulder
reference frame transformation. The coefficient of determination, denoted as R2, offers
insights into the model’s fitting performance to the data. It is evident that the A2H ANN
excels in determining positions along the y-axis but exhibits lesser accuracy along the
other two axes. Furthermore, Figure 3.2b illustrates the distribution of prediction er-
rors, showcasing a median prediction error of approximately 2cm. This value is lower
compared to the previous evaluation (around 4cm), likely attributed to the increased
volume of data.
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Figure 3.1: Training results for different input combinations of the A2H ANN. Each box
plot represents the distribution of training accuracy across different input combinations,
with whiskers indicating the range of accuracy values. The A2H ANN that exhibited the
best performance corresponds to the input configuration labeled "No Seg," marked by
a red rectangle. It demonstrated the lowest prediction error, as indicated by the blue
dashed line.

Our first solution for deploying PC ANN in real-life settings was to combine it with the
A2H ANN. Figure 3.3 illustrates the proposed control system, which integrates the PC
ANN (red block) with the A2H ANN (yellow block). In such scenarios, we assume that
the user will be wearing a head-mounted camera and that head and armroot orienta-
tions will be available from IMUs. Computer vision algorithms provide information about
the rotation (R) and position (P) of the target in the head reference frame (headRtgt,
headPtgt), which needs to be transformed into the armroot reference frame to be used
by the PC ANN. First, the target orientation is transformed from the head to the armroot
reference frame (rotation transform (RT) block). The same rotation is applied to the tar-
get position. Then, the A2H ANN predicts the head position in the armroot reference
frame, which is applied to the resulting target position to complete the change of refer-
ence frame (translation transform (TT) block). The target information, now expressed
in the armroot reference frame, is combined with the residual limb angles (armrootRshou)
and used by the PC ANN to predict the angles of the prosthesis.
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Figure 3.2: A2H ANN offline training results. a. Scatter plot comparing true data with
predicted data. The orange line represents the linear regression of the data, and the
green line represents the function y = x, indicating that the predicted data would be
identical to the true data if the model were perfect. b. Box plot of median error in
prediction of the ANN.

Figure 3.3: Control scheme of A2H ANN combined with PC ANN. The symbol P̂ stands
for predicted.

Recognizing that errors in the A2H ANN predictions might lead to ineffective prosthesis
control, causing participants to compensate by overusing their shoulder and trunk, we
proposed and tested another approach, described in the next section.

3.2 Space Map

Prior research by the team already explored co-adaptation strategies in a simplified my-
oelectric context (Couraud et al., 2018), combined with a perturbation for which human
adaptation is well characterized and modeled. As illustrated in Figure 3.4, participants
were tasked with reaching targets displayed on a computer screen by controlling a cur-
sor through myoelectric activity generated while producing isometric force at the wrist
joint. They implemented a system that integrates two levels of adaptation—human
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and machine—and tested it under both normal and perturbed conditions. The per-
turbed conditions involved constant directional error (visuomotor rotation), a scenario
well-studied in human sensorimotor adaptation contexts (De Rugy and Carroll, 2010;
Krakauer et al., 2000). The adaptation was achieved by dynamically adjusting the
weights of the two models based on the difference between the input and output of the
entire system.

Figure 3.4: Overview of task and co-adaptation process proposed by Couraud et al.,
2018. The adaptation was implemented in a network of directionally tuned neurons
that takes the target direction as input (a) and produces the intended movement di-
rection (b). Muscle tuning curves (c) were employed to extract the required muscular
activities (d), which were then multiplied by the corresponding muscle-pulling vectors
(e) to generate the resulting force vector. The force vector combined with noise defined
the reached position on the target (f). This direction was compared to the input target
direction (a) to estimate the angular error, which was used to adjust the direction of
the pulling vectors of the virtual biomechanics (machine co-adaptation; g) as well as
the weights of the network model that represents human adaptation (h; Figure adapted
from Couraud et al., 2018).

Based on their model of human adaptation, realized as a network of directionally tuned
neurons, I developed a similar algorithm with neurons distributed in a three-dimensional
space and weights designed to encode multidimensional errors. The motivation behind
this approach was to tackle the problem of head-to-shoulder reference frame transfor-
mation using a black box method while acknowledging that the relationship between
the two frames is influenced by factors such as the pose of the target object and, more
specifically, the posture of the arm, head, and upper body used to reach this object
pose.

The algorithm, which we refer to as Space Map (SMAP), draws inspiration from the
brain’s multisensory integration processes (Makin et al., 2013; Pouget et al., 2002; Pu-
gach et al., 2019; Salinas and Abbott, 2001; Snyder et al., 1998) and computes the
head position in the armroot reference frame by combining information from multiple
sensory modalities (i.e., computer vision from a head-mounted camera, combined with
artificial neck and arm proprioception from orientation sensors on the head, trunk and
arm). Specifically, the system can compute the prosthetic hand position in the armroot
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reference frame through forward kinematics while concurrently detecting the prosthetic
hand position in the head reference frame using computer vision. This hand position
in the head reference frame can be aligned with the orientation of the armroot (i.e.,
multiplied by the orientation of the head in the armroot reference frame and thus ex-
pressed in a mixed reference frame which has position of the head and orientation
of the armroot) and compared to the hand position in the armroot reference frame
obtained through forward kinematics. The difference between the two represents the
position of the head in the armroot reference frame. As this difference depends on
both the user’s morphology and the particular posture of their arm, head, and upper
body while reaching targets in space, we chose to encode it in a spatial map (SMAP),
the input of which is the target the user is reaching. Inspired by the brain’s encoding of
peripersonal space (Chinellato et al., 2011; Di Pellegrino and Làdavas, 2015; Hoffmann
et al., 2010; Serino, 2019), this spatial encoding was achieved by adapting online the
weights of a single-layer network of spatially tuned neurons, illustrated in Figure 3.5.
Each neuron is characterized by a 3D position in the input space and a bell-shaped
activation function centered on its position. When the target position is sent as input to
the SMAP, each neuron fires according to its distance from this input, and the output is
computed as the weighted sum of all firing rates.

Figure 3.5: SMAP algorithm structure.

The weights of the SMAP are updated online according to the following formula:

wi(t+ 1) = wi(t) + α · gi · error

error = (armrootPhand −PheadRarmroot Phand)−
N∑
i

gi · wi

in which wi is the weight of the i-th neuron, α is the learning rate, gi is the firing rate
of the i-th neuron (Gaussian activation function), N is the number of neurons, and∑N

i gi · wi(t) represents what the algorithm already learned.
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Figure 3.6 illustrates the proposed control system, integrating the SMAP with PC ANN
alongside the online adaptation process of the SMAP. Computer vision algorithms pro-
vide information about the target and the hand in the head reference frame. As in
Figure 3.3, we transform the target orientation from the head to the armroot reference
frame and apply the same rotation to the target and hand positions (rotation transform
(RT) block). The SMAP takes as input the resulting target position (PheadRarmrootPtgt) and
computes the head position in the armroot reference frame. The predicted head posi-
tion is then applied to the input to complete the change of reference frame (translation
transform (TT) block). Simultaneously, real-time weight updates occur based on the
difference between the hand position detected by computer vision and aligned with the
orientation of the armroot (PheadRarmrootPhand) and the hand position obtained through
forward kinematics (armrootPhand). The SMAP treats this difference as an error signal to
adapt its weights and cancel the error.

Figure 3.6: Control scheme of SMAP combined with PC ANN.

3.2.1 Tuning parameters

The algorithm’s tuning process involved three parameters: the learning rate (α), the
width of the Gaussian function (Σ), and the distance between neurons (nd). These
parameters determine the algorithm’s performance and efficiency.

The learning rate determines the magnitude of the error signal learned by the algorithm
in each iteration of its weights update. A higher learning rate may result in faster con-
vergence, but it might lead to unnatural behaviors of the virtual arm (e.g., movements
in unintended directions). Conversely, a lower learning rate may lead to slower con-
vergence but can offer more stable behaviors of the virtual arm. The Gaussian width
determines the spatial generalization property of the algorithm. If its value is set too
small, the algorithm becomes too specialized to the training data, resulting in reduced
performance when presented with new, unseen data. On the other hand, if it is set too
large, the algorithm may fail to capture essential patterns and variations in space. The
distance between neurons directly influences the resolution of the algorithm. A smaller
value results in higher precision, enabling more accurate corrections. However, it also
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entails a higher number of neurons, leading to increased computational complexity and
longer processing times.

In the tuning process, we explored different values for these three parameters of the
algorithm. We replayed the data of one participant from the dataset presented in Chap-
ter 2 while updating the weights of the SMAP as if it were operating in real-time. To
ensure consistency, we repeated this process for two additional participants. Moreover,
each participant’s data was replayed twice as they reached the same set of targets a
second time. This repetition provided insights into the algorithm’s memory capacity, as
explained in the next paragraph.

In the process of evaluating different sets of parameters, we took into account three
constraints. The first constraint involved ensuring that the product of the learning rate
and the sum of neuron firing rates remained equal to or less than 1 to prevent the algo-
rithm from attempting to learn beyond its intended capacity (i.e., the magnitude of the
error signal). The second constraint focused on the convergence rate, with the objec-
tive of ensuring that the participants could achieve the task successfully within a single
trial. The last constraint pertained to the algorithm’s capacity to memorize the required
corrections. We aimed for the algorithm to memorize at least 50% of the corrections
within a single trial. To evaluate this, we replayed the data twice and observed the con-
vergence curve upon encountering the same target for the second time. This provided
valuable insight into the extent to which the algorithm had assimilated the error. By
incorporating these constraints, we aimed to enhance the robustness and generaliza-
tion capability of our spatial encoding while mitigating issues such as overfitting and
instability.

The tuning process automatically filtered out parameter sets that did not meet the three
constraints described previously, retaining only sets that met the criteria and demon-
strated superior performance. From these sets, we empirically chose the one that
seemed to achieve the most natural and intuitive user experience. We set the learning
rate at 0.004, while the Gaussian width and the distance between neurons were both
determined to be 3cm, with this value representing the positional tolerance required for
grasping.

3.2.2 Convergence and stability analysis

In addition to the previously presented tuning procedures, offline tests were conducted
to evaluate the algorithm’s strengths and limitations. These tests aimed to assess its
ability to handle various error types and identify any inherent limits in learning capacity.

Findings from the tuning parameters process revealed that the algorithm effectively
adapts its weights to absorb positional errors that are more complex than a constant
offset. For instance, we tasked the algorithm with learning the head position in the
armroot reference frame, whose value is not static but dynamically varies based on the
specific head, body, and arm postures adopted when reaching various targets in space.
Therefore, we opted to simulate a more complex scenario where the user wore a head-
mounted camera whose pose could shift, introducing constant offsets in position and
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orientation. Similar to the tuning process, we replayed the data from the dataset, while
updating the weights of the SMAP as if it were working in real-time. Then, we examined
the convergence of the SMAP, computed as the difference between the target position
and orientation in the armroot reference frame corrected by the SMAP and its true
value.

We conducted our testing within a simplified framework, introducing a constant error in
orientation along one axis, which consequently induced a linear error in position along
the other two axes. The objective was for the algorithm to learn this error. Hence,
we did not take into account the reference frame transformation issue and assumed
the head position in the armroot reference frame was known (we utilized the dataset
from the VR experiment, where all data, including the recorded head position, was
available). However, it is crucial to note that the principles and methodologies applied
seamlessly extend to more intricate contexts involving multi-axial errors and, thus, more
complex frameworks without any fundamental alterations.

The initiation point of our evaluation was to define a reachable target pose, an initial
hand pose, and a constant angular error θ along the z-axis. This error, while being
a constant offset in the orientation space, induces a linear error in position along the
remaining two axes, which can be calculated using the following formula:[

xdet

ydet

]
=

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

] [
xtrue

ytrue

]
(3.1)

in which xdet, ydet are the coordinates of the target (or the hand) wrongly detected,
xtrue, ytrue are the coordinates of the true target (or hand) and θ is the error angle.

After computing the initially wrongly detected pose of the target and the hand, along
with the corresponding error, this data was utilized to adapt the weights of the SMAP
and correct the target pose. Assuming that the hand would precisely reach the cor-
rected target pose, we iterated this process and evaluated the loss function as the
difference between the actual and corrected target poses.

When analyzing the behavior of the algorithm during these offline tests, we encoun-
tered three distinct scenarios: convergence, infinite oscillation, and divergence, each
exemplified in Figure 3.7. For each error angle, 60°, 88°, and 90°, three plots are
presented in Figure 3.7: one depicting the algorithm’s loss in position (left column),
another showing the loss in orientation (middle column), and the third illustrating the
trajectory of the corrected target throughout the adaptation process (right column). This
trajectory begins from the initially wrongly detected position and should end at the final
corrected position (i.e., actual target position), indicated by the green point. Further-
more, a color bar is included to represent the dynamics of the target position update,
transitioning from yellow to dark purple.

Convergence occurred when the loss fell below the grasping constraint utilized during
the VR experiments, indicating successful error correction. This can be observed in
Figure 3.7 for an error angle of 60°, where both the position and orientation loss curves
steadily decrease towards the constraint. Conversely, for an error angle of 88°, the loss
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remained unchanged, resulting in a circular pattern in the position loss curve and fail-
ing to achieve convergence. This behavior suggests that the algorithm was stuck in an
oscillatory loop without making progress toward minimizing the loss. Lastly, divergence
occurred when the loss continued to increase over time, signifying the algorithm’s fail-
ure to correct errors and optimize performance. This behavior is evident in Figure 3.7
for an error angle of 90°, where the loss curve consistently rises.

Figure 3.7: SMAP convergence analysis for angular errors of 60°, 88°, and 90°. Plots
display the algorithm’s loss in position and orientation, along with the trajectory of the
corrected target from the initial wrongly detected position to the final corrected position
(i.e., the actual target position, represented by the green point). The dashed red lines
represent the tolerances on grasping used in the VR experiments (3cm and 10°).

The offline test results shown in Figure 3.7 revealed an inherent limitation in the algo-
rithm’s learning: it could not effectively correct a constant error in orientation larger than
88°. In such scenarios, the SMAP faces challenges in rectifying the errors, leading to
instability in the adaptation process.

The convergence and stability of the algorithm hinge primarily on the learning rate,
which determines the rate at which the model adapts its weights and assimilates the
error. Therefore, we conducted additional offline tests, varying the learning rate values,
to determine the angles at which the algorithm fails to learn the necessary corrections,
resulting in divergence instead. This comprehensive analysis led to the creation of a
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divergence curve, depicted in Figure 3.8, which offers valuable insights into the algo-
rithm’s learning limitations across various learning rates. The analysis demonstrates
that as the learning rate approaches zero, the divergence angle converges to 90°, re-
vealing that the algorithm can’t correct orientation errors when the resulting angular
error exceeds 90°.

Figure 3.8: SMAP divergence curve. It shows the angular error at which the algorithm
begins to diverge based on the learning rate. The circles denote data points acquired
from the analysis. The blue dashed line represents the specific learning rate value
chosen in the tuning process.

To summarize, the analysis of the convergence and stability of the algorithm revealed
a significant limitation: with the parameters chosen through the tuning process, the
SMAP cannot effectively correct orientation errors larger than 88°. Moreover, additional
tests varying the learning rate value demonstrated inherent limitations in the algorithm’s
ability to correct orientation errors exceeding 90°, resulting in divergence rather than
convergence. These findings highlight the limitations and boundaries of the algorithm’s
applicability in real-world scenarios.

3.3 Combination of Armroot2Head Artificial Neural
Network and Space Map

Our first approach, A2H ANN, revealed a prediction error of approximately 2cm. Recog-
nizing that this value might not align with our intended precision requirements and given
the SMAP’s ability to learn from errors, we implemented a third solution by combining
the first two methods, thereby using the SMAP to correct errors that would persist in
the A2H ANN predictions.
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Figure 3.9 illustrates the control scheme combining the A2H ANN (yellow block) with
the SMAP (blue block) and the PC ANN (red block). Computer vision algorithms pro-
vide information about the target and the hand in the head reference frame. First, we
transform the target orientation from the head to the armroot reference frame and apply
the same rotation to the target and hand positions (rotation transform (RT) block). The
A2H ANN predicts the position of the head in the armroot reference frame, which is
applied to the resulting target and hand position (first translation transform (TT) block).
The SMAP takes as input the resulting target position and computes the correction to
rectify the errors in the A2H prediction. This correction is applied to the SMAP input
(second translation transform (TT) block). Simultaneously, real-time weight updates
occur based on the difference between the resulting hand position translated by the
A2H prediction and the hand position obtained through forward kinematics. The SMAP
treats this difference as an error signal to adapt its weights and cancel the error.

Figure 3.9: Control scheme of SMAP and A2H combined with PC ANN.

To assess the effectiveness and adaptability of the proposed methods and their associ-
ated control systems, we conducted two experiments in VR involving participants with
intact limbs and those with transhumeral limb loss, as detailed in the following chapter.
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Chapter 4

Experimental validation in a virtual
environment

In the previous chapter, I presented three methods designed to retrieve the head posi-
tion in the armroot reference frame and, thus, perform the required transformation from
the head and armroot from reduced information that might be available in real-world
settings. In this chapter, I describe two experiments conducted within a VR environ-
ment involving participants with intact limbs and with transhumeral limb loss. In this
experimental setup, we simulated working with reduced information "as if" obtained
from computer vision and compared the performances of the proposed methods and
their associated control with those of the PC working in the ideal scenario, where target
information is directly acquired and transformed in the armroot reference frame, as all
information is readily available within the VR system.

The work presented in this chapter is part of the following publication (Lento, Leconte,
et al., 2024), IEEE Robotics and Automation Letters.
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4.1 Materials and Methods

This section outlines all the elements put in place to conduct the experiments presented
in this chapter.

4.1.1 Participants

Exp1 was conducted on twelve intact-limbs participants (four males and eight females)
aged 20-28 (mean 22.83; SD 1.92), whereas Exp2 was conducted on six participants
presenting a transhumeral amputation (five males), aged 34-64 (mean 49; SD 11.5).
Participants’ handedness was assessed using the EHI (Oldfield, 1971; participants
Exp1 mean 82; SD 17). The details regarding the amputation of each participant of
Exp2 are outlined in Table 4.1.

Table 4.1: Exp2 participants’ amputation description
Id Time since amputation EHI pre-amputation Amputated arm side
1 12 years Right-handed Right
2 14 years Ambidextrous Right
3 2 years Right-handed Right
4 37 years Right-handed Right
5 2 years Left-handed Right
6 25 years Right-handed Left

All participants gave their informed consent in accordance with the Declaration of
Helsinki and with the local ethics committee (CPP Est II: n°2019-A02890-57). None
of the participants suffered from any mental or motor disorder that could interfere with
the task performance (except limb difference in Exp2).

4.1.2 Methodological changes

The experimental setup and the core definition of the task remained unchanged from
those of the dataset, presented in Chapter 2. The target set was generated using the
dataset, specifically the data from the Initial Acquisition phases. From the joint configu-
rations produced by the participants, we computed angular limits for each joint, setting
the minimum value at the 5th percentile and the maximum at the 95th percentile. A
generator algorithm drew at random 7-DOFs arm angular configurations following a
multivariate uniform probability distribution. Then, the target positions and orientations
were obtained through forward kinematics, using a chain based on the participant limb
dimensions, and filtered according to the same criteria of the previous experiment,
excluding targets too close to the participant’s trunk or legs and targets pointing down-
ward. This process was iterated until a target set of 100 targets was obtained. For
Exp2, a supplementary filter was added, which considered the limits of the participant’s
residual limb.
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Beyond the teleoperation of the virtual arm, the participants tested the PC ANN, the
prosthesis control previously developed by E. Segas et al., 2023, and its combination
with A2H ANN and SMAP (cf Protocol). While the proximal joints of the virtual arm
continued mimicking the actual proximal joints of the participants, PC ANN predictions
were employed to operate on the distal joints. We conducted an offline evaluation of the
PC ANN’s grasping accuracy and adjusted the tolerances to 3cm and 10° accordingly
to test outcomes (see Appendix C).

Furthermore, when the grasping constraints were successfully met (i.e., virtual hand in
the target zone), the participant was required to press a key on the keyboard using their
opposite hand in Exp1 and their foot in Exp2 to grasp/release the bottle and complete
the task.

At the onset of each phase, the reference frame in which the target set is expressed
was readjusted based on the participant’s initial posture to ensure natural shoulder
movements.

In Exp2, the dimensions of the virtual arm on the side with limb difference were ad-
justed based on the participant’s height and the size/length ratios of standard segments
proposed in Herman, 2016.

4.1.3 Protocol

Experimental protocols are shown in Figure 4.1. The keyword "fam" stands for familiar-
ization, meaning that these phases were designed to familiarize the participants with
the environment and virtual arm controls. In these phases, the target set corresponded
to the second half of the main target set. The other keywords represent the control used
in that specific phase: "Nat" stands for natural, whereby all joints of the virtual arm fol-
low the user’s actual arm movements. "PC" stands for PC ANN, whereas "SMAP" and
"A2H" stand for the use of the SMAP and A2H algorithms and their associated control
systems (cf Chapter 3).

Figure 4.1: Protocols of experiment 1 and 2.

Exp 1 included nine phases and aimed to compare the performances of the three
methods with that of the ideal case PC, in which the change of reference frame from
the head to the armroot was performed with high precision from all the information
available in the VR system. A first block (PC 1) was conducted early in both protocols
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for participants to get used to this ideal control before being tested in our alternative
controls, and a second block (PC 2) was conducted at the end of both protocols to
ensure comparison with the ideal control once participants were fully accustomed to
the device and controls.

In the phase PC A2H, the position of the head in the armroot referential was predicted
by the A2H ANN. Despite offline tests revealing an average prediction error of approx-
imately 2cm, we aimed to assess how this error might affect the control and the task
performance. A “washout” phase, during which the participants reverted to using the
ideal PC control again (PC fam), was then included to wash out possible compensa-
tions associated with this control before testing other controls.

In the phases PC SMAP and PC A2H SMAP, the head position was computed by the
SMAP and the combination of the SMAP and A2H ANN, respectively. Recognizing
that the learning process would take time and that the initial performances might not
be optimal, we repeated the target set twice in these phases. We anticipated that the
second attempt would yield results closer to the ideal case, as the algorithm would
have assimilated the necessary corrections. Moreover, the order between PC SMAP
and PC A2H SMAP was counterbalanced among participants.

Exp2 included six phases: four involving the residual limb followed by two involving the
sound limb. Given the unsatisfactory results of A2H in Exp1, we chose to remove it
from the protocol and compare only the SMAP with the ideal case PC.

4.1.4 Data reduction and metrics

This section explains the data filtering methods applied to the data recorded in the
experiments described above and details the metrics used to evaluate and compare
the performance of the proposed control strategies.

4.1.4.1 Filtering

A filtering process was carried out to eliminate measurement errors associated with
motion capture, thus excluding compromised targets from the analysis. Two filters
were employed: one for "freezing" behavior, occurring when at least one sensor mea-
sure remained unchanged for a minimum of 0.5s, and another for "jumping" behavior,
meaning when a sensor measure had a position discontinuity of at least 1cm between
two consecutive samples. On average, this filtering process led to the exclusion of
2.52% targets per participant and phase in Exp1 and of 7.32% in Exp2.

4.1.4.2 Performances metrics

Success rate, movement time, and shoulder spread volume were computed for each
participant across the phases Nat, PC A2H, and PC 2. The phases PC SMAP and PC
A2H SMAP were divided into two blocks (1B and 2B), with each block representing a
repetition of the target set. Metrics were computed separately for each block. Given
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the high success rate, with all medians exceeding 90%, movement time and shoulder
spread volume were computed exclusively for successful targets across all phases.

4.1.4.3 Subjective metrics

Qualitative feedback from participants about their experiences with each control strat-
egy was assessed for a more comprehensive understanding of how the users perceive
the control system, the mental effort required to use it, and their overall satisfaction
with its usability. During the experiment, after testing for the first time each control
(excluding the familiarisation phases), two surveys, the System Usability Scale (SUS;
Gronier and Baudet, 2021) and the first part of the Prosthesis Task Load indeX (raw-
ProsTLX; Parr et al., 2023), were administered to the participants to evaluate usability
and cognitive load, respectively (see Appendix D and E).

The SUS assesses the usability of a system, defined as the user’s ability to success-
fully perform the task for which the system was created (i.e., effectiveness) without
overusing cognitive and physical resources (i.e., efficiency) and with a pleasant user
experience (i.e., satisfaction). In this survey, the users assess their experience with the
system by rating their agreement or disagreement with ten statements using a Likert
scale (i.e., a 5-point scale ranging from 1: "Strongly Disagree" to 5: "Strongly Agree").
The total SUS score, ranging from 0 to 100, is calculated using the following formula:

SUSscore =

(
5∑

I=1

(Iodd − 1) +
5∑

I=1

(5− Ieven)

)
∗ 2.5 (4.1)

in which Iodd and Ieven correspond to an odd or an even survey item, respectively. The
score is then associated with the corresponding adjective of the scale proposed in
Bangor, 2009. The higher the score, the better the participant perceives the system’s
usability.

In the first part of the ProsTLX, the participants rate eight categories from 0 to 20: men-
tal demands, physical demands, visual attention, frustration, situational stress, time
pressure, conscious processing, and uncertainty. The final score is the mean of the
eight sub-ratings. A lower score indicates that participants required less cognitive ef-
fort to use this control strategy.

4.1.5 Statistical analysis

The statistical analysis was conducted using the R software with a significance level
(α) set at 0.05, applying a Bonferroni correction for multiple comparisons. Following
the results of the normality test (Shapiro-Wilk) and the test for homogeneity of vari-
ances (Maulchy’s Test), either a repeated measures ANOVA or a Friedman test was
performed for movement time, shoulder spread volume, SUS score, and rawProsTLX
score. If a significant difference was detected at this stage, post-hoc tests were carried
out (Tukey’s test or Conover’s test, respectively). For success rate, a Cochran’s Q test
was performed, followed by a McNemar test if a significant difference was detected.

50 / 98



Experimental validation in a virtual environment

4.2 Results

Figure 4.2 illustrates the analysis results of Exp1. With PC A2H, the lower success
rates, longer movement times, and increased shoulder spread volumes (PC vs PC
A2H; n = 12; median success rates of 99% vs 91%; median movement times of 1.09s
vs 1.64s; median shoulder spread volumes of 0.28dm3 vs 1.41dm3) all indicate that the
error in the A2H predictions does affect the control.

In PC SMAP 1B, movement times and shoulder spread volumes are statistically higher
than in PC due to the initial learning phase of the SMAP algorithm, during which it
has to assimilate substantial errors (PC vs PC SMAP 1B; n = 12; median success
rates of 99% vs 99%; median movement times of 1.09s vs 1.38s; median shoulder
spread volumes of 0.28dm3 vs 0.83dm3). The longer movement times and increased
shoulder spread volumes probably reflect the adaptation period required for the system
to learn and memorize the necessary corrections. This is confirmed by the fact that
the performances of PC SMAP 2B (the second repetition of the same target set) are
drastically improved. The learning process required time, but once the corrections were
memorized, its performances closely resembled those of PC (PC vs PC SMAP 2B; n =
12; median success rates of 99% vs 99%; median movement times of 1.09s vs 1.18s;
median shoulder spread volumes of 0.28dm3 vs 0.47dm3).

The combination of A2H with SMAP exhibited performance similar to the ideal case PC.
As the A2H ANN prediction error is relatively small, this control system has proved to
be reliable and accurate in executing the reference frame transformation. Furthermore,
as the SMAP has to learn small corrections, there is no statistical difference between
the first and second repetitions of the target set (PC vs PC A2H SMAP 1B vs PC A2H
SMAP 2B; n = 12; median success rates of 99% vs 99% vs 99%; median movement
times of 1.09s vs 1.17s vs 1.14s; median shoulder spread volumes of 0.28dm3 vs
0.31dm3 vs 0.33dm3).

The results of the subjective assessments (SUS and rawProsTLX scores) corroborate
the objective metrics. In this context, the control Nat serves as the baseline, as the
virtual arm mimicked the participant’s actual arm movements. The only control strategy
exhibiting a significant difference from the baseline is PC A2H. As the error in prediction
did affect the control, participants necessitated additional physical and mental effort to
achieve the task. Control strategies involving SMAP were evaluated with scores similar
to the PC and Nat phases, suggesting that the algorithm does not significantly influence
the virtual arm’s behavior, thereby maintaining natural reaching movements (Nat vs PC
vs PC A2H vs PC SMAP vs PC A2H SMAP; n = 12; median SUS scores of 92.5 vs
78.75 vs 55 vs 88 vs 83.75; median raxProsTLX scores of 3.19 vs 5.62 vs 6.78 vs 4.62
vs 4.5).
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Figure 4.2: Results of objective (a-c) and subjective (d-e) metrics of Exp1 are pre-
sented for each phase. Individual data are represented by hollow dots and dotted
lines. Stars represent significant differences between control strategies with * for p
< 0.05, ** for p < 0.01 and *** for p < 0.001. a. Success rate (Cochran’s Q test Q
= 304.45, p < 0.001). b. Movement time (Friedman chi.sq = 56.57, p < 0.001). c.
Shoulder spread volume (Friedman chi.sq = 36.85, p < 0.001). The dashed red line
represents a volume of 1 dm³(=1L). d. SUS score (Friedman chi.sq = 19.68, p < 0.001).
e. rawProsTLX score (Friedman chi.sq = 18.02, p < 0.01). The detailed results of the
statistical analysis are available in Table F.1-5 of Appendix F.
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Figure 4.3: Results of objective (a-c) and subjective (d-e) metrics of Exp2 are pre-
sented for each phase. Individual data are represented by hollow dots and dotted
lines. Stars represent significant differences between control strategies with ** for p <
0.01 and *** for p < 0.001. a. Success rate (Cochran’s Q test Q = 45.57, p < 0.001).
b. Movement time (RM ANOVA DFn = 3, DFd = 15, F = 6.15, p = 0.006, ges = 0.277).
c. Shoulder spread volume (Friedman chi.sq = 1, p = 0.801). The dashed red line
represents a volume of 1 dm³(=1L). d. SUS score (Friedman chi.sq = 4.66, p = 0.097).
e. rawProsTLX score (Friedman chi.sq = 7, p = 0.03). The detailed results of the
statistical analysis are available in Table F.6-8 of Appendix F.
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Figure 4.3 illustrates the analysis results of Exp2. Movement times tended to be longer,
and shoulder spread volumes tended to be higher than in Exp1. Despite these ob-
served differences, when evaluating the control strategies, PC SMAP 2B exhibited
performances similar to PC across all metrics (PC vs PC SMAP 2B; n = 6; median
success rates of 95% vs 95%; median movement times of 1.63s vs 1.77s; median
shoulder spread volumes of 0.74dm3 vs 0.62dm3).

The longer movement times, increased shoulder spread volumes, and lower success
rates in PC SMAP 1B (PC vs PC SMAP 1B; n = 6; median success rates of 95% vs
89%; median movement times of 1.63s vs 2.38s; median shoulder spread volumes
of 0.74dm3 vs 0.76dm3) can be attributed to the initial adaptation period essential for
the algorithm to learn the necessary corrections, a phenomenon also observed in the
findings of Exp1.

The subjective evaluation carried out by participants with limb loss on the PC SMAP
control yielded scores similar to those of the PC and Nat phases (Nat vs PC vs PC
SMAP; n = 6; median SUS score of 97.5 vs 90 vs 88.75; median raxProsTLX score
of 2.53 vs 4 vs 5). This concordance of scores effectively validates the conclusions
drawn from the Exp1 results, indicating that the SMAP algorithm exerts minimal in-
fluence on the virtual arm’s behavior. Consequently, the natural reaching movements
remain largely unaffected by the integration of the SMAP control, solidifying its efficacy
in preserving the same arm behavior observed in the PC phases.

Illustrative Video 3 in Appendix B illustrates a participant with transhumeral limb loss
using PC ANN with SMAP. The orange and green virtual cylinders, not visible to the
participant, represent the object transformed from the camera to the armroot reference
frame without and with the correction applied by the SMAP. The green cylinder, there-
fore, acts as a dynamic representation of the convergence status of the SMAP. As the
algorithm learns the proper corrections, its position is progressively adjusted toward the
actual object position. In the second part of the video, leveraging its past learning, the
algorithm applies the corrections it has already acquired, resulting in the green cylinder
being already positioned closer to the actual object when a new object appears.

4.3 Discussion

In this chapter, I outlined two experiments conducted in VR involving participants with
intact limbs and with transhumeral limb loss. These experiments were designed to
evaluate the efficacy of the methods outlined in Chapter 3 in computing the head posi-
tion in the armroot reference frame from minimal information that might be available in
real-life settings. The performances of their respective control systems were compared
with that of the ideal scenario, wherein all the information necessary to transform the
target information from the head to the armroot frame is available to the system.

The first approach, A2H, proved ineffective in resolving this issue: the ANN, trained
offline on a dataset of natural movements from multiple participants, failed to encap-
sulate sufficiently well the specificity of the user’s morphology, resulting in a mean
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prediction error of 2cm which was found to affect the prosthesis control. The second
approach, SMAP, elicited much better results, as it effectively spatially encoded the
transition from the head to the armroot associated with different targets in space. This
bio-inspired spatial coding (Chinellato et al., 2011; Couraud et al., 2018; Hoffmann et
al., 2010; Makin et al., 2013; Pouget et al., 2002; Salinas and Abbott, 2001; Serino,
2019; Snyder et al., 1998) enabled to capture online features specific to the user’s
morphology, as well as to the particular head, body, and arm postures employed when
reaching various targets in space. Although the learning process required an adapta-
tion period, subsequent performances on already explored targets were comparable
to the ideal scenario, as observed from twelve participants with intact limbs testing in
a condition of simulated amputation in Exp1. While the combination of both methods
yields favorable results, the second approach alone suffices for the task, as shown on
six participants with transhumeral limb loss tested in Exp2, eliminating the need for
unnecessary complexity in the control system.

In addition, participants evaluated the proposed methods through two surveys assess-
ing usability and cognitive load, respectively. The outcomes revealed a correlation
between subjective and objective metrics. Notably, when employing the control system
incorporating the A2H ANN, participants required additional physical and mental effort
to complete the task. In contrast, the control systems integrating the SMAP had no
discernible impact on virtual arm control, leading to natural reaching movements and
lower cognitive load scores.

In this chapter, we employed the SMAP to perform an online "calibration" of the dis-
tance between the user’s head and armroot reference frames (i.e., the head position
in the armroot reference frame). Its value is determined by computing the differ-
ence between the hand pose acquired simultaneously in the armroot reference frame
through forward kinematics (i.e., artificial proprioception) and in the head reference
frame through computer vision (i.e., artificial vision). This difference is then stored in
a map representing the peripersonal space of the user and is leveraged to translate
target information from the head to the armroot reference frame, needed to deploy the
control methodology proposed by E. Segas et al., 2023 in real-world scenarios.

Our approach of utilizing the hand pose to calculate the distance between the head
and the armroot reference frame can be readily likened to self-observation methods
employed for self-calibrating the parameters of the kinematic chain in robotics (Her-
sch et al., 2008; Hoffmann et al., 2010; Nabeshima et al., 2006; Sturm et al., 2009).
Through self-observation, the robots learn the offsets in position and orientation be-
tween the different reference frames of their chain. Here, we refrain from defining a
chain, as outlined in Chapter 1.2, due to the inherent complexity in modeling the in-
tricate region between the head and the armroot. Furthermore, it is important to note
that the offset learned by the algorithm is neither between two consecutive reference
frames nor constant. Indeed, the head position in the armroot reference frame is influ-
enced by the user’s morphology and by the specific posture of the user’s arm, head,
and upper body produced while reaching targets in space. To account for this dynamic
aspect, we chose to encode it within a map of the peripersonal space, accessed based
on the target the user gazes at and endeavors to reach and grasp.
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The algorithm holds the potential for handling more complex scenarios involving simul-
taneous errors and corrections in both position and orientation, as could occur when
moving a camera on glasses or operating in perturbed environments. However, the re-
sults of these experiments alone do not demonstrate that the SMAP could be employed
in real-life settings where the hand must be detected by computer vision. Therefore,
we conducted a physical proof of concept in a simple real-world scenario, which will be
presented in the next chapter.
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Chapter 5

Proof of concept: from virtual reality
to a robotic platform

While Exp1 and Exp2 assessed conditions simulating reduced information "as if" ob-
tained from computer vision, they do not provide a basis for evaluating the feasibility of
employing SMAP in a real-world setting. VR is an ideal environment where the system
can consistently detect both the hand and the target and ensure flawless execution
of commands for the virtual arm. However, the algorithm’s functionality in conditions
closer to real-world scenarios has yet to be established.

Due to the lack of commercially available prostheses in which it could be possible
to test our methods, we conducted a proof of concept to demonstrate the possibility of
transferring the SMAP from VR to a real-world environment while controlling the robotic
platform REACHY 2. Designed by the company Pollen Robotics, this bio-inspired robot
ranked 2nd at ANA Avatar XPRIZE, an international competition challenging teams
to build a telerobotic avatar system to navigate and manipulate objects in a remote
environment (Hauser et al., 2024).

Although determining the head position in the armroot referential is straightforward with
a robot as its kinematic model is known, we aimed to verify that the SMAP is effective
in this context whereby the hand position and orientation needed for the algorithm gen-
uinely come in the head referential from computer vision. Selecting a robot as our
experimental subject allows us to capitalize on the solvability of the problem but ex-
pose the algorithm to a scenario that mirrors the complexity of real-world applications.
By focusing on retrieving the position of the robot’s head in the armroot referential and
learning its morphology, the involvement of multiple participants becomes unneces-
sary. Hence, we opted for a single participant with prior experience controlling the
robotic platform. This approach allows us to concentrate on assessing the algorithm’s
applicability to the robotic system without unnecessary complexity introduced by involv-
ing multiple operators. It ensures that any observed outcomes are directly attributable
to the algorithm’s interaction with the environment, enhancing the clarity and validity of
our evaluation.
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The work presented in this chapter is part of the following publication (Lento, Leconte,
et al., 2024), IEEE Robotics and Automation Letters.
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5.1 Materials and Methods

This section outlines all the elements put in place to conduct the proof of concept
presented in this chapter.

5.1.1 Robotic platform

Developed by the company Pollen Robotics, the robotic platform REACHY 2 consists
of a central body, a head, and two arms - right and left - with dimensions comparable
to those of a human arm. Each arm possesses 7 DOFs corresponding to shoulder
flexion/extension and adduction/abduction, humeral rotation, elbow flexion/extension,
wrist pronation/supination, lateral deviation, and flexion/extension. It is terminated by
an eighth DOF, the gripper or end effector, allowing it to grasp objects with a maximum
span of 10cm.

The wrist and neck joints are actuated by a mechanism known as Orbita (Lapeyre et
al., n.d.), illustrated in Figure 5.1b, which consists of three parallel brushless motors
forming a perfect ball joint. It enables the robotic head to move in 3D with a high
degree of mobility, mirroring the user’s head movements and offering a more realistic
egocentric view compared to traditional 2D (pan/tilt) robotic heads. The shoulder and
elbow joints are actuated by a 2-DOF version of Orbita (Figure 5.1a), ensuring a tight
correspondence between robotic and human arm movements.

Figure 5.1: Overview of the robotic platform REACHY 2. a. 2-DOF model of Orbita for
shoulder and elbow joints. b. 3-DOF model of Orbita for wrist and neck joints. c. 3D
model of REACHY 2. d. Geometric representation of the right arm with 7 DOFs and
gripper, accompanied by a descriptive table. Figure adapted from the Pollen Robotics
GitHub.

Illustrative Video 4 in Appendix B demonstrates the teleoperation of the head and right
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arm of REACHY 2.

The communication with the robotic platform, enabling control over the actuators of the
arms and the head, is facilitated with custom electronics and firmware written in Rust.
The software stack is built around ROS 2 with an additional abstraction layer in the
form of a Python SDK.

5.1.2 Experimental setup

The participant (intact-limbs, male, aged 26, EHI 100) sat on a stool beside the robot,
which was fixed on a table. He wore the headset and four motion trackers (trunk,
right upper arm, forearm, and hand). The experiment began with the same calibration
procedures used in the VR experiments to link the participant’s arm to a virtual reality
arm, which would then be used to control the robotic arm. The task was to control the
robot to reach and grasp a block of five polyethylene foam cylinders (with dimensions
r = 1.8cm, h = 11cm) placed on a wooden board in various positions and orientations,
as shown in Figure 5.2. The control mechanism employed was teleoperation, where
the participant’s arm and neck joint configurations were directly applied to manipulate
the corresponding joints of the robot.

Figure 5.2: Proof of concept: experimental setup and placement of the five cylinders
on the board.

We mounted a Zed Mini camera on the head of the robot and linked it to the VR
headset. This setup allowed the participant wearing the headset to look through the
Zed Mini camera and control the robot from an egocentric point of view.

ArUco boards, made of four ArUco markers each, were placed on the end effector
(frontal and lateral sides) and the cylinders to detect their position and orientation. We
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implemented a simple computer vision algorithm that used the point of gaze to discrim-
inate which cylinder the participant was looking at and wanted to grasp. The choice
behind opting for ArUco markers arises from the advantageous feature of enabling
real-time and highly accurate object pose estimation.

5.1.3 Protocol

The participant teleoperated the robotic platform to reach and grasp the block of five
cylinders. Visual feedback, presented as virtual cylinders, was provided to the partic-
ipant, as shown in Figure 5.3. The red cylinder, representing the object detected by
computer vision in the camera reference frame, was transformed in the armroot ref-
erential without and with the correction applied by the SMAP (the orange and green
cylinders, respectively). The green cylinder, therefore, acted as a dynamic represen-
tation of the convergence status of the SMAP. As the algorithm iteratively refined its
weights and learned the proper corrections to apply, this cylinder dynamically adapted
its position to converge toward the actual location of the target object.

Figure 5.3: Egocentric view of the robotic platform REACHY 2. The participant controls
the robotic platform REACHY 2 through teleoperation, operating from an egocentric
point of view. The red virtual cylinder represents the object detected by computer
vision in the camera reference frame, which is transformed in the armroot referential
without and with the correction applied by the SMAP (the orange and green virtual
cylinders, respectively).
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The protocol included two phases: reaching at a natural pace (Nat Pace) and Grasping
on Convergence (GoC), with the latter being recorded in Illustrative Video 5 in Ap-
pendix B. In Nat Pace, the participant performed the task at his natural pace. This
phase aimed to determine the movement time required to naturally complete the task
and assess whether the SMAP could assimilate the entire error within that timeframe,
as observed in the VR experiments. For instance, we were uncertain about the algo-
rithm’s convergence time in this new scenario. Unlike in VR, where the system reliably
receives data at 90Hz, in this setting, we were unsure about the rate at which the ArUco
markers would be detected, particularly those positioned on the end effector. As a re-
sult, determining the frequency at which the algorithm’s weights would be updated
remained unclear, potentially leading to convergence times longer than anticipated. To
address this uncertainty, we designed a second phase, GoC, in which the participant
executed the block twice (1B and 2B), grasping the object only once the algorithm had
converged (i.e. when he saw the virtual green cylinder on the object). By explicitly
instructing the participant to grasp the targets only once the SMAP had convergence,
we obtained the necessary data to address our uncertainty about convergence times.

5.1.4 Metrics

This section introduces the metrics used to assess the performances of the SMAP. No
filtering process was applied for this study. The data were analyzed in terms of:

• movement time, calculated as the time elapsed between the beginning of the trial
and the closing of the end effector on the target,

• algorithm’s loss, defined as the difference between the actual value of the head
position in the armroot referential and the output of the SMAP,

• algorithm’s convergence time as the time elapsed between the beginning of the
trial and the moment in which the loss of the algorithm was within the positional
tolerance.

The phase GoC was divided into two blocks (1B and 2B), with each block representing
a repetition of the target set. Metrics were computed separately for each block.

5.2 Results

Figure 5.4 illustrates the algorithm’s loss computed for each target (cylinder to grasp)
across different block repetitions. It demonstrates the SMAP’s effective operation in
real-world scenarios. Notably, it underwent an initial adaptation period, as exhibited in
phase GoC 1B, which aligns with findings from the VR experiments. However, once
the algorithm assimilated and memorized the necessary corrections, its performance
improved drastically, as observed by much lower loss early on in phase GoC 2B (cf
blue traces in Figure 5.4).

As previously discussed, we were uncertain whether the algorithm would converge in a
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single trial, as observed in the VR experiments. Indeed, within the Nat Pace phase, the
algorithm did not converge in a single trial, assimilating only 71% of the error (i.e., the
robot’s head position in the armroot reference frame) on average. The data analysis
from phase GoC 1B shows that the algorithm required a median time of 5 seconds to
converge and achieve a satisfactory solution. This is longer than the median task exe-
cution time of 2.75 seconds observed in Nat Pace, suggesting that the algorithm did not
have enough time to fully converge. As expected, the algorithm’s convergence times
and the rate of the weights update were slower in this new scenario compared to VR ex-
periments, primarily due to the utilization of the computer vision algorithm to detect the
end effector. Fine-tuning the algorithm parameters could enhance its performance and
ensure optimal adaptability to this application, thereby achieving convergence times
closer to actual movement times.

Figure 5.4: SMAP algorithm’s loss. Each subplot represents a target, each color a
different block repetition. The red dotted line represents the positional tolerance used
in the VR experiments.

5.3 Discussion

In this chapter, I presented a proof of concept that allowed us to test the SMAP for
deployment in practical, real-world applications. The experiment aimed to assess the
algorithm’s adaptability and feasibility in real-life settings in which the information about
the target and the end effector was obtained through a camera and gaze-guided com-
puter vision algorithm. The outcomes of this proof of concept highlighted the algo-
rithm’s effectiveness, showcasing its successful operation not only within a controlled
VR environment but also in a simple real-world scenario.

VR is an ideal and simulated environment where users have full knowledge and control
over the experimental conditions, such as the rate at which the system receives data.
This consistency enabled us to conduct a tuning process for the algorithm parameters
and meet specific requirements, such as achieving convergence times shorter than
movement times. In our real-world implementation, detailed here, information regard-
ing the target and the end effector, such as their position and orientation, was captured
by a camera utilizing ArUco markers in conjunction with a gaze-guided computer vision
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algorithm. Two challenges arose: firstly, uncertainty regarding the frequency at which
the system received data, and secondly, potential difficulties in detecting the end ef-
fector when it was located outside the field of vision or obstructed from view. Indeed,
experimental results revealed that the algorithm exhibited longer convergence times
compared to the time required by the user to complete the task. Despite these potential
complications, the algorithm incorporates a memory feature that has proven effective
in addressing such situations. When reaching already explored targets, the algorithm
leverages previously acquired knowledge, leading to rapid convergence. This mem-
ory feature contributes significantly to the algorithm’s robustness, ensuring its ability to
handle complex and dynamic scenarios.
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Chapter 6

Conclusions and perspectives

This chapter revisits the objectives of this thesis, summarizes the findings and results
obtained, and presents the conclusions drawn from the research. It lays the ground-
work for future investigations, highlighting the relevance of the present work.
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6.1 Conclusion

The objective of this thesis was to adapt the prosthesis control previously developed
by my colleagues to real-world settings. Building on the progress in movement-based
prosthesis controls (Iftime et al., 2005; Kaliki, Davoodi, and Loeb, 2008; Kaliki et al.,
2013; Legrand et al., 2022; Merad et al., 2019, 2020; Merad et al., 2016; D. Popovic
and Popovic, 1998; M. Popovic and Popovic, 2001) and computer vision algorithms
(DeGol et al., 2016; Došen and Popović, 2011; González-Díaz et al., 2019; Markovic
et al., 2015; Pérez De San Roman et al., 2017), my colleagues demonstrated that
incorporating information about movement goals with proximal joint motion enables
an ANN to precisely predict the distal joint configuration required for positioning and
orienting the hand to grasp the targeted object (Mick et al., 2021; E. Segas et al.,
2023). The ANN involved, named Proximo Contextual (PC ANN), trained on data from
multiple participants performing the task, leverages natural arm coordination to predict
the distal joint configuration. This results in a more natural and intuitive control of the
prosthetic limb, enabling individuals with transhumeral limb loss to perform pick-and-
place tasks in VR as well as with their natural arm (E. Segas et al., 2023).

While the PC ANN control system represents a significant advancement in control
strategies for transhumeral prostheses, its implementation in real-world scenarios still
presents challenges. VR provides an ideal environment for experimentation in which
all necessary information is readily available. In real-world scenarios, however, users
may wear a head-mounted camera and IMUs attached to the head, the trunk, and
the residual limb. In such conditions, information about movement goals (i.e., one of
the control system inputs) may only be available in a head-centered reference frame
through gaze-guided computer vision. This data requires transformation into the arm-
root reference frame for deployment by PC ANN. Yet, limitations may arise in perform-
ing this transformation as we might have access only to orientation data through IMUs,
lacking positional data.

The primary objective of this thesis was to address the reference frame transformation
issue by devising methodologies to accurately determine the head’s position within the
armroot reference frame.

In the field of robotics, coordinate transformation problems, such as retrieving data
about a specific body part, often involve the utilization of kinematic models. However,
building a kinematic chain from the head to the shoulder poses a significant challenge
due to the intricate anatomy and dynamic interactions of these body regions, as il-
lustrated in Figure 1.8 (Krishnan et al., 2019; Standring, 2015). As a result, existing
kinematic models frequently opt for simplifications within the chain leading to a par-
tial representation of the movements inherent in this region. Even if we were to de-
velop a precise kinematic model, challenges would arise in its implementation due to
the necessity of fine-tuning the model parameters for each participant and accurately
measuring the movements of these body parts. This would necessitate additional sen-
sors, each meticulously calibrated to capture even the slightest motion. Given those
difficulties associated with the complexity of the relationship between the two frames,
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we preferred to approach the problem as a black box, learning its input-output behav-
ior through a system identification process (Chinellato et al., 2011; De Barreto, 2003;
Martinetz et al., 1990; Schillaci et al., 2014).

The first crucial step was to collect data that accurately reflects the relationship be-
tween the head and armroot reference frames. In Chapter 2, I presented the exper-
imental protocol we designed to collect a dataset of twenty intact-limbs participants
performing pick-and-place tasks in VR. The workspace in which participants executed
the task was maximized through a systematic procedure. Initially, the widest possible
workspace was determined by the maximal range of motion of the participants. Sub-
sequently, a self-organizing map (Fritzke, 1995) was employed to delineate the actual
space covered by participants, capturing the natural arm movements within this refined
space (E. Segas et al., 2023). Concurrently, precise control over the initial body pos-
ture, from which arm movements originated, was achieved by guiding participants to a
predetermined neutral posture via visual feedback from the trunk and shoulders within
a VR environment.

As the dataset includes head and gaze motion, along with movements of the trunk,
shoulders, and arm joints, it could represent a valuable resource across diverse do-
mains such as sensorimotor control, movement-based prosthesis control, humanoid
robotics, human-robot interactions, and foremost gaze-guided computer vision. The
DataPlayer, the Unity project we developed to replay/visualize the data in 3D, enables
the generation of new video data with various fictitious visual backgrounds and vari-
ous objects. This last capability is particularly attractive to computer vision researchers
aiming to design and test efficient 6D pose estimation algorithms from egocentric vision
with gaze data.

The dataset served as the basis for developing and testing two methods to address
the reference frame transformation issue and determine the head position within the
armroot reference frame. Chapter 3 describes extensively these proposed methods.
Unlike model-based strategies, which would necessitate constructing a model from the
head to the armroot, our approaches were model-free, treating the system as a black
box and learning the input-output relationship. The first method, Armroot2Head (A2H),
involved training offline an ANN on the dataset to do this transformation. The ANN
predicts the head position in the armroot reference frame based on ongoing shoulder
and head orientations and the participant’s height. The second method, Space Map
(SMAP), spatially encoded the head position in the armroot reference frame within
a bio-inspired peripersonal space map. This approach involves computing the head
position in the armroot reference frame by comparing the hand positions captured si-
multaneously in both reference frames. Specifically, forward kinematics techniques
determine the hand position in the armroot reference frame, while computer vision al-
gorithms retrieve the hand position in the head reference frame. As the value of the
head position depends not only on the user’s morphology but also on the specific pos-
ture of their arm, head, and upper body while reaching targets in space, we opted for
storing it in a peripersonal space map. Inspired by the encoding of peripersonal space
in the brain (Chinellato et al., 2011; Di Pellegrino and Làdavas, 2015; Serino, 2019) as
well as by previous research conducted by our team on human adaptation strategies
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(Couraud et al., 2018), this spatial encoding was achieved through a single-layer net-
work of spatially tuned neurons and accessed based on the target the user gazes at
and aims to reach and grasp.

Chapter 4 outlines two experiments conducted to evaluate the efficacy of the proposed
methods while intact-limbs participants and individuals with limb loss controlled a pros-
thesis avatar in VR. Experimental results on twelve intact-limbs participants demon-
strated persistent errors with the first method, A2H ANN, leading to extended compen-
satory movements and prolonged movement times. In contrast, the second approach,
SMAP, exhibited more positive outcomes. While the learning process required an ini-
tial adaptation period, its subsequent performance on already explored targets proved
comparable to the ideal scenario, showcasing the effectiveness of this approach. Com-
bining both methods also yielded favorable results; however, the second approach
alone sufficed for the task, as shown on six participants with transhumeral limb loss,
eliminating unnecessary complexity in the control system.

Individuals with transhumeral limb loss effectively controlled the virtual arm, achieving
success rates exceeding 95% while minimizing compensatory movements and main-
taining movement times comparable to the ideal scenario. Additionally, they reported
high satisfaction with the control system, expressing a keen interest in utilizing such
natural control methods with real prostheses.

We demonstrated the effectiveness of SMAP in determining head position in the arm-
root reference frame not only within a VR environment but also in a simple real-world
scenario, whereby the hand position and orientation needed for the algorithm gen-
uinely come in the head referential from computer vision. Due to the lack of commer-
cially available prostheses for testing our methods, we conducted a proof of concept,
described in Chapter 5, teleoperating the robotic platform REACHY 2 from an egocen-
tric point of view. The targets and the robot’s end effector were detected using ArUco
markers and a gaze-guided computer vision algorithm. While a single participant with
prior experience controlled the robot to perform pick-and-place tasks, the SMAP was
tasked to compute the position of the robot’s head in its armroot reference frame. The
outcomes of this proof of concept highlighted the algorithm’s effectiveness, showcasing
its successful operation in a real-world scenario.

In this thesis, we employed the SMAP to compute the head position in the armroot
reference frame and complete the reference frame transformation from the head to the
armroot. The findings presented here not only contribute to the advancement of pros-
thesis control mechanisms but also offer insights into broader applications of the SMAP
across various scenarios involving reference frame transformations, online adaptation,
and error corrections. For instance, the algorithm can effectively handle reference
frame transformations from a camera mounted on glasses to the armroot or address
challenges such as camera misplacement or incorrect target detection, thereby allow-
ing corrections in both position and orientation.
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6.2 Future directions

In this thesis, we have made significant steps toward deploying the prosthesis control
proposed by E. Segas et al., 2023 in real-world contexts. Our primary focus has been
the development of an algorithm to determine the head’s position within the armroot
reference frame. This step is essential for converting target data from head-centric to
armroot-centric coordinates. Looking ahead, two additional challenges emerge as we
seek to deploy this control system in real-life contexts. First, we must integrate a robust
computer vision algorithm into the system to retrieve information about the movement
goal. Second, we need a suitable prosthetic device.

Grasping actions are typically preceded by visual fixations on the object of interest
(Goodale, 1998), making eye-tracking a natural fit for our prosthesis control system
(Corbett et al., 2012). However, achieving real-time estimation of both the position and
orientation of objects that users are fixated on and intend to grasp is still an open re-
search issue (Rogez et al., 2015). Experiments conducted by González-Díaz et al.,
2019 with healthy subjects in real-life scenarios revealed that gaze information is noisy
due to micro-saccades and distractors and that object recognition and localization re-
quire heavy preprocessing. To address this, recent computer vision models have in-
corporated two components: an algorithm for real-time object pose estimation, which
primarily relies on a 3D object model (Ammirato et al., 2020; Calandre et al., 2021;
Labbé et al., 2022; Y. Li et al., 2018; Liu, 2023; Nguyen et al., 2022; Xiang et al.,
2017), and an object detector such as Yolov8 (“YOLOv8”, 2022) or a filter based on
gaze fixation coordinates (Bertinetto et al., 2016; González-Díaz et al., 2019; Mayer
et al., 2022) to perform object recognition and optimize the object localization network.

To deploy our control system in a real-life scenario, the primary objective will be to
estimate the 6-DOF pose of the object of interest from the RGB video stream relative
to a reference frame attached to the glasses worn by the user. The dataset we col-
lected in Chapter 2 serves as a valuable starting point. Notably, the DataPlayer tool
developed for data replay features a functionality enabling the generation of synthetic
data based on the recorded data. While preserving the user’s movements, gaze data,
and target object poses, this tool, being a Unity project, offers extensive customization
options. Users can modify the shape and dimensions of the target object, alter the sur-
rounding environment by adding or removing objects, and adjust other parameters as
needed (e.g., lightness). This capability greatly facilitates the exploration and testing
of computer vision algorithms, as the ground truth is inherently known by design. It
allows for experimentation in diverse and complex scenarios, providing a reliable basis
for evaluating algorithm performance and refining methodologies.

First, attention will be directed towards the development of the 6-DOF pose estimation
algorithm under controlled conditions with known a priori information using the dataset
and the DataPlayer. Next, an assessment of the proposed methodology will be con-
ducted using the real-world corpus Grasping-InThe-Wild (“Grasping in the wild”, 2017),
which includes first-person videos and gaze maps captured in natural cluttered envi-
ronments such as various objects in real kitchens. Finally, the method will be adapted
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to address more challenging real-life scenarios where limited information is available
about the object to be grasped.

Concurrently with the development of such computer vision models, deploying the PC
ANN control system in real-life settings requires a prosthetic device with an actuated
elbow and actuated wrist, and thus, five active joints. Replicating the complexity of the
human wrist joint in artificial and prosthetic designs remains a challenge (Bajaj et al.,
2019; Fan et al., 2022). As a result, commercially available wrist prostheses provide
only a single active DOF, and, despite ongoing research efforts, devices featuring two
active DOF, such as the ToMPAW modular arm (Kyberd et al., 2007), DARPA Mod-
ular Prosthetic Limb (“Modular Prosthetic Limb (MPL) v1”, 2022), DEKA "Luke" Arm
(“Luke arm”, n.d.), and others (“Atom touch artificial arm”, n.d.; Boccardo et al., 2024;
Demofonti et al., 2023; Montagnani et al., 2015a), have yet to be made commercially
available for users.

In this thesis, due to the absence of commercially available transhumeral prostheses
with five active joints, we conducted our experiments using VR and the robotic plat-
form REACHY 2 as a physical proof of concept. One notable feature of this robot is its
3-DOF joint Orbita (Lapeyre et al., n.d.), which enables movement along all three direc-
tions at the neck and wrist level. Looking ahead, our project aims to advance toward
the development of a prosthetic device equipped with Orbita at the wrist level for indi-
viduals with transradial limb loss. This prosthetic system will be coupled with a control
mechanism similar to E. Segas et al., 2023, a camera and gaze-guided computer vi-
sion to detect objects of interest, along with the algorithm I developed, the Space Map,
for transforming target information from the head to the shoulder reference frame.

Once these developments are completed, testing in real-world scenarios will become
feasible. The final step will involve the integration of minimal sensors, such as IMUs
positioned on the trunk, the residual limb, and the camera/glasses, into the system.
Several studies on prosthesis control have utilized information from IMUs positioned
on the residual limb to measure shoulder joint movements (D. A. Bennett and Goldfarb,
2018; Blana et al., 2016; Merad et al., 2019, 2020; Merad et al., 2016). Indeed, the ac-
cumulation of errors due to measurement noise and calibration issues can lead to drift
in the signal integration process, ultimately reducing the reliability of measurements
over time (Zhou and Hu, 2008). To address this challenge, numerous research teams
are actively developing algorithms for drift reduction. These methods involve applying
constraints, modeling sensor biases, or merging data from several sensors using com-
plementary filters such as Kalman or particle filters (El-Gohary and McNames, 2015;
Miller et al., 2004; Peppoloni et al., 2013; Rong Zhu and Zhaoying Zhou, 2004).
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tober 2022: “Intuitive prosthesis control based on residual (stump) motion tested with
valid subjects and amputees on the robotic platform REACHY”

Poster presentation at Journée des Jeunes Chercheurs en Robotique 2023, Moliets-
et-Ma, 16 October 2023: “Biomimetic prosthesis control from natural movements: per-
sonalization of a generic model using co-adaptation”

Poster presentation at Journées Nationales de la Recherche en Robotique (JNRR),
Moliets-et-Ma, 17-20 October 2023: “Biomimetic prosthesis control from natural move-
ments: personalization of a generic model using co-adaptation”

Participation at the Forum Innovation Défense 2023 as an exhibitor, Paris, 23-25 Novem-
ber 2023

Participation in the competition Ma Thése en 180s 2024 (semifinals and finals of Uni-
versity of Bordeaux): https://www.youtube.com/watch?v=HQx8WFD4bAI

Oral presentation type MT180s at the “Journée de l’École doctorale Sociétés, politique,
santé publique 2024” (Doctoral School Day), 10 April 2024

Oral presentation at INCIA Data Blitz Talk, 12 June 2024: “Bioinspired head-to-shoulder
reference frame transformation for movement-based arm prosthesis control”

Oral presentation at 5th International NeuroErgonomics Conference (NEC’24), Bor-
deaux, 8-12 July 2024: “Bioinspired adaptive spatial map for prosthesis control”
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Appendix B

Videos

Illustrative Video 1 : https://youtu.be/4ZRYN6ljeCQ

A participant performing the RNP procedure and the pick-and-place task.

Illustrative Video 2 : https://www.youtube.com/watch?v=RZhN5IR34_c

Examples of new video data generated with the DataPlayer by combining real data
about arm and gaze with various fictitious visual backgrounds and objects.

Illustrative Video 3 : https://youtu.be/IsEasynQHkk

A participant with transhumeral limb loss using our Proximo Contextual prosthesis con-
trol with Space Map.

Illustrative Video 4 : https://youtu.be/7GQemjYP5rI

REACHY 2 teleoperated from an egocentric point of view.

Illustrative Video 5 : https://youtu.be/SQNKJrkQBXE

Space Map adaptation for head-shoulder transformation on REACHY 2 teleoperated
from egocentric vision.
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Appendix C

Offline evaluations of PC ANN
accuracy

Before carrying out the experiments detailed in Chapter 4, we conducted offline evalu-
ations to assess the ability of the PC ANN to position and orient accurately the virtual
hand. The objective was to determine the most suitable grasping constraints for us-
ing this control system. During these tests, we utilized data from the Initial Acquisition
phase of the experiment described in Chapter 2. We extracted joint configurations of
participants when their virtual hand was within the target zone. These configurations,
coupled with the segment dimensions of a designated test participant, were employed
in forward kinematics calculations to determine the positions and orientations of the
virtual hand in the armroot reference frame. Subsequently, the PC ANN, trained on the
segment dimensions of the designated test participant, received as input the obtained
virtual hand positions and orientations, along with the proximal joint angles, and pre-
dicted the distal joint angles. These newly predicted joint configurations, consisting of
the actual proximal joints and the predicted distal joints, were employed in forward kine-
matics calculations to determine the predicted virtual hand positions and orientations.
The prediction error was computed as the difference between the actual and predicted
virtual hand positions and orientations.

Figure C.1 illustrates the outcomes from the offline evaluations of the PC ANN accu-
racy. The graph displays the distribution of errors, showcasing the percentages falling
below each distinct value. Vertical lines correspond to specific percentiles (50, 90, and
99%), providing insights into the network’s performance. Concerning position errors, it
is worth noting that 99% of the values are below 5.7cm. A substantial portion, 90%, of
these errors falls below the 3cm threshold. Furthermore, half of the errors are below
1.3cm, highlighting a high level of precision in positioning the hand. Concerning orien-
tation errors, 99% of the values are below 18.9°. The network demonstrates enhanced
accuracy in orientation, with 90% of errors falling below 8.2° and 50% below 3.6°.
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Figure C.1: Error in prediction of PC ANN.
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Appendix D

Survey SUS

Évaluez chacune de ces affirmations en indiquant à l’aide de l’échelle à quel point vous
êtes en accord avec elles.

Item du F-SUS
1 (Pas
du tout
d’accord)

2 3 4
5 (Tout
à fait
d’accord)

1. Je voudrais utiliser ce contrôle de bras fréquem-
ment.
2. Ce contrôle de bras est inutilement complexe.
3. Ce contrôle de bras est facile à utiliser.
4. J’aurais besoin du soutien d’un technicien pour être
capable d’utiliser ce contrôle de bras.
5. Les différentes fonctionnalités de ce contrôle de
bras sont bien intégrées.
6. Il y a trop d’incohérences dans ce contrôle de bras.
7. La plupart des gens apprendront à utiliser ce con-
trôle de bras très rapidement.
8. Ce contrôle de bras est très lourd à utiliser.
9. Je me suis senti·e très en confiance en utilisant ce
contrôle de bras.
10. J’ai eu besoin d’apprendre beaucoup de choses
avant de pouvoir utiliser ce contrôle de bras.
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Appendix E

Survey rawProsTLX

Les 8 échelles de mesure suivantes ont été imaginées pour évaluer votre expérience
durant la tâche. Veuillez évaluer la procédure en indiquant le chiffre qui correspond
le plus à votre expérience dans chacune des 8 échelles présentées. Les échelles
vont de « Faible » à gauche à « Élevé » à droite. Veuillez écouter les descriptions
attentivement.

Charge mentale

À quel point était-il mentalement fatigant d’utiliser ce contrôle de bras durant cette
tâche ?

1
Faible 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Élevé

Demande physique

À quel point était-il physiquement fatigant d’utiliser ce contrôle de bras durant cette
tâche ?

1
Faible 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Élevé

Attention visuelle

À quel point deviez-vous regarder le bras virtuel alors que vous bougiez durant cette
tâche ?

1
Faible 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Élevé
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Traitement conscient

À quel point deviez-vous penser à votre façon de bouger durant cette tâche ?

1
Faible 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Élevé

Frustration

À quel point étiez-vous inquiet·iète, découragé·e, irrité·e. ou contrarié·e durant cette
tâche ?

1
Faible 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Élevé

Stress situationnel

À quel point vous sentiez-vous anxieux·se ou stressé·e durant cette tâche ?

1
Faible 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Élevé

Pression temporelle

À quel point vous sentiez-vous pressé.e ou précipité.e durant cette tâche ?

1
Faible 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Élevé

Incertitude

À quel point ce contrôle de bras était-il imprédictible durant la réalisation de cette
tâche ?

1
Faible 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Élevé
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Appendix F

Statistical analysis results of Exp1
and Exp2

Table F.1: Exp1 Success rate - Pairwise comparisons using McNemar’s test

Nat PC 2 PC A2H PC A2H
SMAP 1B

PC A2H
SMAP 2B

PC SMAP
1B

PC 2 9.56e-01 - - - - -
PC A2H 1.01e-19 6.20e-17 - - - -
PC A2H SMAP 1B 2.44e-01 1 5.71e-16 - - -
PC A2H SMAP 2B 6.09e-01 1 4.72e-17 1 - -
PC SMAP 1B 4.64e-04 3.57e-02 1.26e-11 3.32e-01 8.17e-02 -
PC SMAP 2B 1.60e-01 1 5.80e-17 1 1 1.96e-01

Table F.2: Exp1 Movement time - Pairwise comparisons using Conover’s all-pairs test

Nat PC 2 PC A2H PC A2H
SMAP 1B

PC A2H
SMAP 2B

PC SMAP
1B

PC 2 3.6e-05 - - - - -
PC A2H 1 7.3e-05 - - - -
PC A2H SMAP 1B 0.04123 0.98119 0.07114 - - -
PC A2H SMAP 2B 0.00207 1 0.00389 1 - -
PC SMAP 1B 1 0.00015 1 0.12034 0.00720 -
PC SMAP 2B 0.09276 0.51295 0.15532 1 1 0.25464
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Table F.3: Exp1 Shoulder spread volume - Pairwise comparisons using Conover’s all-
pairs test

Nat PC 2 PC A2H PC A2H
SMAP 1B

PC A2H
SMAP 2B

PC SMAP
1B

PC 2 1 - - - - -
PC A2H 0.00056 0.00530 - - - -
PC A2H SMAP 1B 1 1 0.05429 - - -
PC A2H SMAP 2B 1 1 0.00720 1 - -
PC SMAP 1B 0.00530 0.04123 1 0.32340 0.05429 -
PC SMAP 2B 1 1 0.15532 1 1 0.79509

Table F.4: Exp1 SUS score - Pairwise comparisons using Conover’s all-pairs test

Nat PC PC A2H PC A2H
SMAP

PC 0.5006 - - -
PC A2H 0.004 0.7559 - -
PC A2H SMAP 1 0.8625 0.0087 -
PC SMAP 0.9813 1 0.3753 1

Table F.5: Exp1 rawProsTLX score - Pairwise comparisons using Conover’s all-pairs
test

Nat PC PC A2H PC A2H
SMAP

PC 0.1046 - - -
PC A2H 0.0041 1 - -
PC A2H SMAP 1 1 0.0752 -
PC SMAP 0.4759 1 0.8145 1

Table F.6: Exp2 Success rate - Pairwise comparisons using McNemar’s test

Nat PC 2 PC SMAP
1B

PC 2 1 - -
PC SMAP 1B 1.53e-06 1.84e-05 -
PC SMAP 2B 1.10e-01 1 1.97e-03

Table F.7: Exp2 Movement time - Pairwise comparisons using Tukey’s test

Nat PC 2 PC SMAP
1B

PC 2 0.54738 - -
PC SMAP 1B 0.54341 0.06188 -
PC SMAP 2B 0.95269 0.84383 0.27089
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Table F.8: Exp2 rawProsTLX score - Pairwise comparisons using Conover’s all-pairs
test

Nat PC
PC 0.34 -
PC SMAP 0.08 1
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