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1 Abstract

The integration of computer vision into Image-Guided interventions has the potential to change
our medical practice. This work lays some bricks for the future of autonomous interventions in our
specific field regarding cancer patients, addressing key components necessary for its realization. We
first explore the transformative impact of AI on the physical abilities of interventional radiologists.
We emphasize the need to navigate technical and ethical challenges. Interdisciplinary collabora-
tion and robust evaluation processes are highlighted as essential for the safe integration of AI into
clinical practice We then propose an organ agnostic method for detecting focal anomalies on volu-
metric cross-sectional imaging. Leveraging the Large Diffeomorphic Deformation Metric Mapping
(LDDMM) framework, this approach showcases enhanced object reconstruction and precise lesion
localization. In the same framework, we propose a classifier, where patient selection presents unique
challenges due to the complex benefice/risk ratios. To go beyond images, clinical data from tumor
DNA analysis is integrated into a prospective study specifically conducted for this work. Genera-
tive Adversarial Networks (GAN) and Modelling Atlases Using the Markov Chain Monte Carlo -
Stochastic Approximation Expectation-Maximization (MCMC-SAEM) Algorithms are used to pre-
dict patient trajectories. This approach enables the exploration of new trajectories, enhancing our
understanding of disease progression and treatment response in relationship of circulating tumor
DNA. Lastly, we explore advanced visualization techniques for in vivo and ex vivo 3D vasculature.
We propose a planar representation of undescribed anatomy, offering a promising avenue for further
exploration and understanding. Together, these sections offer solutions to parts of the realization
of autonomous interventions in our field.
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Figure 1: Stéphanie visiting our unit, with Pr Pellerin.

Figure 2: The interventional team.
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3 Why Interventional Radiology

This section was adapted from the following publications:
· Boeken, T., Dean, C., Pellerin, O. et al. How Artificial Intelligence will Reshape

our Interventional Units. Cardiovasc Intervent Radiol

· Seah J, Boeken T, Sapoval M, Goh GS. Prime Time for Artificial Intelligence in

Interventional Radiology. Cardiovasc Intervent Radiol.

· Boeken T, Feydy J, Lecler A, Soyer P, Feydy A, Barat M, Duron L. Artificial

intelligence in diagnostic and interventional radiology: Where are we now? Diagn

Interv Imaging.

Boeken T. Redefining challenging liver thermal ablation cases: present realities,

future prospects. Clin Res Hepatol Gastroenterol.

Computing science has already delivered on its promise to improve the quality of healthcare.
Computers are now playing a crucial role in clinical medicine by augmenting our intellectual abilities
in image-processing tasks like radiological interpretation or in extracting meaningful information
from large and complex datasets, such as those generated by genome sequencing, patient data
warehouses and epidemiological studies. Pitfalls aside, there is much promise.

This statement follows more than 70 years of research. Since the 1950’s, computer scientists have
been striving to enhance our cognitive abilities, such as visual perception and thought formation.
Today, Artificial Intelligence has become an integral part of our daily lives, making it possible for
everyone to experience its tangible benefits. Although computers are still far from possessing true
autonomous thinking, the notion that they can simulate human-like thought processes is widely
accepted.

At the forefront of attention is the potential for medicine augmented by AI to improve clinical

capabilities. Whether it is through assisting or replacing certain tasks, AI can help enhance diag-
nostic accuracy (of a disease, or an epidemiological outbreak), predict treatment outcomes (through
targeted therapies and patient clustering), and even facilitate clinical research. The potential of-
fered by data-driven approaches raises societal concerns about the level of automation we desire for
our healthcare system, and highlights the need to strike a balance between decision-making support
and decision-making itself.

However, the impact of AI on the physical abilities of physicians has been relatively underex-
plored. This is particularly relevant in the growing field of Interventional Radiology, where our
techniques based on dexterous hand manipulation could be revolutionized by contemporary data-
driven methods. By definition, autonomous robotics implies self-decision making, and as a result,
it might effectively further complexify the ongoing discussion around automated healthcare.

Automation in medicine shows great promise in delivering more precision, safety, consistency, en-
hanced ergonomics and even possibilities of remote interventions. With the prospect of autonomous
interventions, the field is poised for a major disruption. Interventional radiologists may have to
redefine the manual essence of their practice. In this specific field, artificial intelligence enabled
solutions have both the potential to aid doctors in their existing areas of expertise and open up
novel avenues for addressing unaddressed challenges.

In comparison with other interventional and procedural fields such as surgery or endoscopy,
IR is data-rich. IR is one of a few specialties where a record is kept of the entire procedure in
a standardized format (the DICOM format), is available retrospectively and these datasets are

mostly unexploited today.
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This is why the present work explores the possibilities of AI in our daily interven-

tional units.

4 Brief history of manual interventions

The extent to which physicians are willing to substitute their physical abilities with AI-powered
technology is uncertain. Considering the history of surgery, autonomous interventions may represent
a significant paradigm shift from the patterns of technological and medical advancements that have
been established for a long time. This history is marked by numerous ups-and-downs and turnovers
along the way, all related to the physical ability to improve (in best cases) patient health through
removing, restoring or replacing organs.

“Surgery was a desirable skill for a physician to acquire” in 13th century Southern Europe, Roy
Porter argues in The Greatest Benefit To Mankind, “elsewhere, the gap widened and surgery was
excluded from the academic curriculum”. With the creations of guilds, such as Paris’ surgeon’s
organization in 1210, London’s Fellowship of Surgeons in 1368, or the Company of Barbers in
1376, surgical schools evolved along and sometimes away from clinical medicine. In particular, the
Barbers had traditionally carried out minor surgical procedures, while the more educated surgeons
attempted to establish surgical principles, up until 1745 when a division between the two groups
occurred, leading the surgeons to form the Company of Surgeons.

In the mid-1800’s, surgery shifted from an experimental towards a rational therapeutic activity.
Anesthesia and asepsis “offered the unprecedented prospect of safe and virtually unlimited surgical
intervention”. In a 1933 issue of the Annals of Surgery, one of the founders of the American Board
of Surgery writes that the period from 1880 to 1890 proved to be in surgery the concretization of the
practice as a science, thanks to Lister’s “most important discovery in the development of scientific
surgery, antiseptis”. The description of early 1900’s operating rooms filled with sterile instruments
and surgeons covered in rubber gloves deeply resembles contemporary interventional medicine. As
dexterous physicians emerged throughout the medical scene, “fame and fortune awaited the surgical
pioneer who first laid the knife to some hitherto untouched part – perhaps he would be immortalized
by an eponymous operation”.

During this golden era for surgery, Theodor Billroth (1826-1894), sometimes regarded as the
founding father of cancer surgery and as a brilliant musician, wrote his classic textbook General

Surgical Pathology and Surgery in the same decade he crossed paths with compositor Brahms. The
latter would pay tribute to the surgeon-musician by dedicating two string quartets, which Siddharta
Mukherjee observed as no coincidence in A Biography of Cancer: “both push manual skill to its
limit; both depend on immediacy, precision, and opposable thumbs”. It is remarkable that even
with the rise of mass production and machinery away from hand manufacturing during the Second
Industrial Revolution, manual dexterity remained the uttermost requirement for quality surgery.
Treating patients with bare hands was never perceived as anachronic.

Technological advancements later resulted in less invasive therapies, with the first angiography
of blood vessels being reported in 1896 and the first cerebral angiography in 1927. Flexible endo-
scopes equipped with glass-fiber optics during the same period opened the door to a new realm of
interventional procedures.

In retrospect, one century later, there hasn’t been a solitary significant break-

through that has altered so deeply the trajectory of interventional medicine since the

golden 1880-1930 period. Interventional medicine, through surgery, endoscopy or interventional
radiology, has revolutionized healthcare, enabling less invasive and safer procedures for the diagnosis
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and treatment of various medical conditions. The integration of artificial intelligence and robotics
might further propel the growth of interventional medicine, bringing about novel applications and
improved patient outcomes.

5 How computer vision will help autonomous medicine

The potential clinical benefits of autonomous medicine are multiple. Improved accuracy and pre-
cision, reduced procedure times and augmented ergonomics are the key clinical findings in robot-
assisted procedures. Meta-analyses are now available for each subspecialty, for example in uro-
oncology, gastric surgery, rectal surgery, or thoracoscopic interventions. Though comparative data
differ in terms of clinical outcomes and complication rates, most studies show a trend towards
shorter hospital stays and lower conversion rates to open surgery.

Additional benefits of robotic assistance extend outside the scope of the operating room. Outer
space interventions are a niche but remote surgery capabilities can expand access to expert care
in underserved and rural areas, leading to better healthcare outcomes and reduced disparities.
Other benefits include simulation solutions, as offered by most manufacturers, and specific training
programs for physicians.

These surgery-specific robotic systems also face common limitations, including the consump-
tion of time, resources, and space. Another challenge is the absence of tactile feedback, with
human-machine interactions primarily being one-sided. Though some degree of force feedback is
available, algorithms that can effectively utilize the full tactile data from existing sensors are still
restricted in robotic systems. To address this limitation, multidisciplinary research teams are ex-
ploring bioinspired concepts such as dynamic bidirectional control and human-in-the-loop systems.
These approaches aim to transmit high-density tactile information from a robot to an operator,
replicating the natural tactile experience with enhanced fidelity.

Contemporary surgical robots are not equipped with the advanced perception and decision-
making capabilities required for full autonomy. They cannot independently perceive their environ-
ment, recognize potential complications, or adapt to unforeseen situations during surgery. This
level of autonomy would require significant advancements in AI, computer vision, and sensor tech-
nologies, detailed later in this work. The integration of such systems into clinical practice will need
to be accompanied by careful consideration of the ethical, legal, and technical challenges involved.

The present work focuses on the pre-requisites for full automation: how to select

patients prior to the intervention, and how to treat them using current devices.

There are two main pathways to use images for live guidance in interventional radiology:
- Endovascular approaches: by navigating directly within the vessels, including stenting,

thrombectomy, and embolization interventions.
- Percutaneous approaches: by targeting lesions through the skin with live image fusion

including biopsies, tumoral destruction via thermal ablation, bone cementoplasty and screw fixation.
Endovascular approaches enable physicians to navigate into the patient via the vessel network

and without requiring open surgery. Live images are retrieved using fluoroscopic technology and
radio-opaque devices such as catheters, guidewires, contrast media and stents. Most procedures are
performed by a manual operator who inserts these devices while analyzing the live images, using a
two-degree of freedom action: the push-pull action and the tork action.

Percutaneous approaches include all therapies that use a predefined trajectory to insert a needle
into a target organ under live imaging. This needle can be used for diagnostic interventions (biop-
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sies), or for treating tumors with thermal ablation (cryoablation, microwave or radiofrequency).
The same trajectory can be used for cementoplasty or screw fixation in bone diseases.

6 Challenges

The challenges and ethical implications in autonomous interventions include ensuring the respon-
sible development and deployment of AI technologies, addressing legal and regulatory concerns,
and maintaining the vital role of human oversight in healthcare delivery. Achieving full auton-
omy in interventional medicine requires overcoming technical challenges, such as robust perception,
decision-making, and control. Additionally, AI algorithms must be able to adapt to unforeseen sit-
uations and work effectively with human operators. As AI and robotics become more autonomous,
concerns regarding liability, patient consent, and the role of human oversight must be addressed.
Ensuring transparency, fairness, and robustness in AI algorithms is essential for public trust and
acceptance.

The integration of AI and robotics in interventional medicine is likely to continue, with more
advanced systems capable of performing complex tasks with minimal human intervention. This
collaboration will require interdisciplinary research, including the development of AI algorithms,
robotics hardware, and human-machine interfaces.

The evaluation of AI-integrated systems will demand rigorous preclinical testing, adapted clinical
trials, regulatory approval, post-market surveillance, health technology assessment, and proper
training and education for healthcare professionals. By addressing these stages and considerations,
AI-integrated systems can be safely and effectively incorporated into clinical practice, ultimately
improving patient care and outcomes.

7 Purpose of this work

The purpose of this work is to show how recent advancements in the Applied Mathematics field
enable to build those foundations towards autonomous interventional radiology.

As an illustration, we decided to focus on colorectal cancer patients, from selection (referred
from tumor boards) to live 2D and 3D-guided therapies.

The green projects refer to the detection and segmentation of tumors from pre-therapeutic
CT-scans. Then, the orange projects deal with predictive biomarkers based on imaging and
biological data and refer to patient selection. The purple projects explore the possibilities of
understanding live images stemming from our interventional units. The red projects explore how
this should help make our work more autonomous and how it will affect our basic understanding of
human anatomy.

Better patient selection is similar to the concept of precision medicine and is at the core of
interventional radiology. Decision support systems may help tailor treatment decisions based on
imaging phenotypes, yielding better clinical results. Interventional radiologists rely on multidisci-
plinary boards for oncological treatment strategies. These board discussions perform multipara-
metric risk-stratification, integrating the patient’s full data before a treatment is advised. Few
applications replicate or even outperform these discussions by predicting the outcome from data
available in each specialty (radiology, histology, molecular biology, etc.). The ability to incorporate
clinical information, imaging data and genetic information should improve the objectivity and accu-
racy of decision-making, and, down the streamline, patient outcome. These challenges are assessed
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Figure 3: PhD map.

in the orange and green projects. What happens next, in our interventional unit, is where we will
probably witness the most spectacular shift towards full autonomy. The purple projects assess
how modern methods will feed future robots with thorough understanding of the live environment.
Whether we desire the future to be shaped by these advances is another issue, not

explored here.
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Figure 1: PhD map.

1 Detection of focal anomalies

This section refers to the green projects.
This section was adapted from the following publications:
· Organ agnostic detection of focal anomalies on volumetric imaging using the large

deformation diffeomorphic metric mapping framework. Submitted in IEEE Transac-
tions on Medical Imaging

· Patent number 2023/247573. “Method implemented by computer means for char-
acterizing at least one observation of a subject”

Special thanks for this section: Vianney Debavelaere and Jean Feydy for making it accessible
throughout the years.

Abstract This section introduces a method for detecting focal anomalies on volumetric cross-
sectional imaging without requiring annotations or extensive training datasets. Leveraging the
Large Diffeomorphic Deformation Metric Mapping (LDDMM) framework, this method is exem-
plified using liver CT scans and brain MRIs. The presence of focal anomalies prevents us from
directly applying a deformation of a template towards a patient with an unknown number of focal
anomalies. We propose to use at our advantage this diffeometric constrain by modelling the resid-
uals (i.e. the difference between the deformed template and the observation) as a sparse matrix in
addition to an independent noise. We can use the residuals of the diffeomorphic deformation from
a control template to detect and segment lesions in any organ. What cannot be reconstructed as a
diffeomorphic deformation of the template is hence put in this matrix and classified as an anomaly.
We demonstrate that simultaneous estimation of deformations and anomalies enhances outcomes
by minimizing reconstruction errors. Applied to simulated data, our method yields improved object
reconstruction and accurate lesion localization. This adaptability extends to real data, where we
apply the approach to liver and brain datasets. In the liver dataset, our approach detected 94
percent of metastases, showcasing its effectiveness.
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Keywords Generative statistical model, Diffeomorphic deformation, sparse lesion detection, or-
gan agnostic detection
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funding from the French government under management of Agence Nationale de la Recherche as
part of the “Investissements d’avenir” program, reference ANR-19-P3IA-0001 (PRAIRIE 3IA Insti-
tute).

2 Introduction

This study introduces a geometrical approach for detecting and segmenting focal anomalies within
organs in cross-sectional volumetric medical imaging, such as CT and MRI data. Unlike traditional
methods, this approach does not require annotations or extensive training datasets. Leveraging the
Large Diffeomorphic Deformation Metric Mapping (LDDMM) framework (Trouvé, 1995; Dupuis
et al., 1998; Beg et al., 2005), this organ-agnostic method offers flexibility across various clinical
scenarios. To showcase its effectiveness, we present applications on a liver and a brain dataset.

The study objective is to identify focal anomalies from a healthy template, using an organ
agnostic approach. This differs from traditional semantic segmentation methods.

The proliferation of medical imaging and computational advancements has facilitated the cre-
ation of models for anomaly detection, classification, and segmentation. These models streamline
tasks, enhance reporting accuracy, and enable quantitative disease monitoring. The accurate detec-
tion and assessment of focal anomalies in medical imaging are especially crucial due to increasing
cancer rates and rising clinical workloads. Focal anomalies can be discovered incidentally or mon-
itored quantitatively during the disease’s progression. Most models rely on labelled training data
to learn to identify anomalies on images.

Deep-learning based segmentation methods contributed significantly to the specific requirements
of biomedical data, especially since the emergence of U-Nets architectures. Fully convolutional
neural networks are extensively evaluated for deep learning segmentation of anatomic structures,
including images with focal anomalies. Recently, Wasserthal et al (Wasserthal et al. (2023)) pub-
lished a model outperforming publicly available segmentation solutions, the ‘TotalSegmentator’,
trained on more than a thousand labelled CT scans and tested on four thousand CT scans yielding
a 0.943 Dice score. The model is based on a widely popular task-agnostic model proposed by Isensee
et al (Isensee et al. (2020)), the so-called nnU-Net, ‘no new UNet’ network, a biomedical domain
tool that automatically configures itself for various tasks, including preprocessing, network archi-
tecture, training, and post-processing. nnU-Net, and its comparable competitors’ performances are
attributed to systematizing the manual method configuration process, without proposing a new
neural network architecture.

Such methods still require large-scale datasets, and, in most cases, labelled anomalies. This
limitation will commonly provoke over fitting on a low sample size training set, and failure for the
model to recognize an unseen image. A recent shift towards generalizable solutions is best illustrated
by the Medical Segmentation Decathlon (Antonelli et al. (2022)) which hypothesizes that a method
capable of performing well on multiple tasks will generalize well to a previously unseen task. This
contrasts with the previous era of custom designed models for specific segmentation tasks. It is
noteworthy that more than 60 percent of the participants used a U-Net and that all methods were
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based on convolutional neural networks. Building on the specific segmentation task of 3D brain
tumors on MRI, recent techniques such as Hatamizadeh et al (Hatamizadeh et al. (2022)) include
tuning such networks. This team proposed a Swin UNet with Transformers, where the input,
comprising multiple modalities, undergoes transformation into a 1D sequence of embeddings. This
sequence serves as the input for a hierarchical Swin transformer functioning as the encoder, yielding
high performances.

Deep learning segmentation methods, such as Wasserthal et al.’s or Hatamizadeh et al’s, have
been tailored to biomedical data, achieving performance on tasks like anatomic structure segmen-
tation in images with focal anomalies. They emphasize on the importance of methods capable of
performing well across multiple tasks without the need for task-specific model designs, or prior
large labelled datasets. These approaches are bound to improve in performance with the availabil-
ity of large-scale datasets specifically labelled for multi-organ segmentation such as the CT-ORG
multi-organ set (Rister et al. (2020)). As demonstrated by a recently published foundation model
for medical imaging based on more than 1 million patients (Ma et al. (2024)), there is a clear shift
towards task-agnostic and organ-agnostic models.

Alongside the availability of large-scale datasets, the specific question of transferability – i.e.
the use of one single model to perform various segmenting tasks on various imaging modalities
– is being assessed with large-scale models. This is best illustrated by the works of Huang et al
(Huang et al. (2023)) who propose a scalable (to different parameter sizes), transferable U-Net with
parameters size ranging from several millions to one biliion. This model was also pre-trained on
the TotalSegmentator dataset, using the same nnU-net framework mentioned earlier.

Despite their success, U-Nets and their related solutions are not an all-encompassing solution.
Modern medical shape analysis might, however, combine neural networks with “classic” atlas-based
registration, paving the way towards more scalable and generalizable approaches. The convolution
product is at the heart of deep learning-based shape analysis, and was naturally at the center
of most studies on medical shape analysis. Such frameworks are, however, not the only high-
performing approaches to organ and lesion shape analysis. Feydy et al (Feydy (2020)) provided
robust implementations of fundamental geometric operations for medical shape analysis, including
optimal transport, nearest-neighbor search, and image deformation. Based on the observation
that CNNs remain biased towards texture, shape and pattern detection, this field proposes metric
structures that are medically – and anatomically – relevant. The packages involved in this research,
namely KeOps, GeomLoss, and Deformetrica, make topology-aware metrics available for processing
medical shapes based on Riemannian geometry (Marsland and Sommer (2020)).

The field was structured around the idea that shape metrics could be defined in relation to regis-
tration algorithms (Durrleman et al. (2014)), best illustrated by the LDDMM framework (Schiratti
et al. (2015)). Image registration can be used for the organ segmentation task, including diffeo-
morphic and graph-based methods. Registering consists in finding the transformation that will
map a source and a reference to the same coordinate system. The development of registration
methods depends on medical image data sets and frameworks specifically tuned for training and
validating 3D registration methods, such as the 2023 Learn2Reg challenge (Hering et al. (2023)) (in
association with MICCAI). Deep learning-based methods have emerged to address computational
time limitations (Dalca et al. (2018)) of atlas-based registration, enhancing the performances of
the models. Some limitations include the need for large-scale datasets to train the network and
the challenge of noisy transformations. In cases involving anatomies with irregularities, such as
tumor-affected areas, these techniques struggle to accurately capture volumes at specific locations
due to insufficient similarity between them. This particular aspect was studied by Estienne et al
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(Estienne et al. (2020)) who proposed a dual 3D CNN based architecture for joint brain registra-
tion and tumor segmentation. By computing both tasks simultaneously, they were able to use the
distortion challenge posed by focal anomalies as a means for segmenting tumors.

The present study investigates the potential of segmenting focal anomalies from low sample size
datasets, using a geometrical framework in an organ-agnostic detection model. This is particularly
relevant for clinicians who seek to tailor the model to their specific needs when pre-trained models
are unavailable.

The Large Diffeomorphic Deformation Metric Mapping (LDDMM) (Durrleman et al. (2012))
framework constructs a representative object (or template) of a population by modeling a subject as
a diffeomorphic deformation of this representative object. However, the presence of tumors prevents
us from directly applying it to account for deformations. Indeed, each subject can have a different
number of lesions which leads to a different topology. If we directly apply the LDDMM framework,
the reconstruction of each subject is obtained as a diffeomorphic deformation of the template. If
this template contains dark spots, each deformation will also have dark spots, even if the targeted
subject does not have this number of lesions. It may even force the model to try to make some
dark spots appear or disappear by using strong deformations in areas where the anatomical shape
should not change. Therefore, a model driven by a template with lesions may not be the right one.
One could rather propose a typical organ for the template and lesions as additional elements not
concerned by the global shape of each subject supporting the need to transform the model.

In this paper, we take advantage of this diffeomorphic constrain to automatically detect anoma-
lies on a set of images. More generally, we suppose that we have at our disposal a data set of
subjects without anomaly and another set with anomalies, each may be of low sample size. The
goal is to immediately detect the presence, or not, of these anomalies.

The method we propose does not require any annotation and is organ agnostic. We suppose
that we have a data set of control patients from which we are able to create a control template
using the LDDMM framework. In practice, obtaining a data set of control patients is often easier,
for example by considering images from patients suffering from any other pathology with no impact
on the organ considered. Moreover, to estimate an atlas, the LDDMM framework does not require
broad training data. Indeed, we are not estimating parameters of a blind neural network but
rather parameters of a hierarchical statistical model mimicking the data generation. This control
template will characterize a control population and hence, will have no anomaly. With this template
fixed, anomalies on a new subject are then defined as what cannot be obtained as a diffeomorphic
deformation of this control template.

To extract these anomalies, we model the residuals (i.e. the difference between the deformed
template and the observation) as a sparse matrix in addition to an independent noise. What cannot
be reconstructed as a diffeomorphic deformation of the template is hence put in this matrix and
classified as an anomaly. The goal is to obtain these anomalies in the matrix and separate them from
the noise. The idea to study the residuals is further motivated by Durrleman et al. (2011) where
the authors showed that the residuals still contain information on the variability of the population.
Another advantage of our model is that it retrieves the deformations from the control template
towards the patients. This deformation can be interesting in the prediction of the outcome of a
treatment where the environment around the anomalies sometimes plays a decisive role.

One could imagine to first estimate the deformation from the template towards the observation
and only at the end of the estimation, estimate the anomalies from the residuals. However, we
will show that estimating both deformations and anomalies at the same time improves the results
by reducing the error of reconstruction. Indeed, considering the possibility of having additional
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elements in the organ enables to see the organ globally and therefore to have a more accurate
deformation.

Although the method seems to rely on a template of control patients, it can actually be estimated
as well. We will propose a way to derive a template without anomaly from patients with anomalies
only using a single observation of a control patient, called hypertemplate.

In the present paper, we will first present the mathematical framework, the statistical model
and its estimation algorithm. Then, we apply the model on a simulated data set and show that we
obtain better reconstructions of our objects and an accurate localization of the lesions. We then
show its versatility by using it on two real data sets. Two distinct datasets are used to illustrate
this clinical need.

The first dataset consists of CT scans collected during a Phase 2 trial involving patients with
liver metastases from colorectal cancer. A considerable 80 percent of patients with colorectal cancer
liver metastases have unresectable disease. To address this challenge, intrahepatic arterial delivery
of chemotherapy has been suggested for patients with liver-only disease. This approach allows for
concentrated delivery of anticancer agents (irinotecan) to tumor cells while minimizing systemic
toxicity. In the context of this trial, intra-arterial therapies demonstrated improved treatment
efficacy compared with systemic therapies. However, a third of the patients did not respond to
the treatment. Detecting, segmenting, and characterizing the liver metastases could substantially
enhance patient selection and enable more accurate treatment targeting. Unfortunately, performing
these tasks manually is unfeasible due to their complexity. The dataset used in this study serves
to exemplify the proposed method. As part of the preprocessing phase, a liver segmentation was
performed, with unlabeled multiple focal anomalies corresponding to the liver metastases for all
patients. The trial is registered (clinical trial number NCT01839877) and the results were published
in 2020 Pernot et al. (2020).

The second dataset is derived from the publicly available Multimodal Brain Tumor Segmen-
tation Challenge 2018 (BRATS). It includes pre-operative multimodal MRI scans of glioblastoma
(GBM/HGG) and lower grade glioma (LGG), with pathologically confirmed diagnosis and available
overall survival. This dataset holds importance due to its potential to aid diagnosis and survival
prediction.

An example from set n°1 is given Figure 2. Tumors can be seen as slightly hypodense formations
within the liver after contrast injection. The livers are segmented in the pre-processing phase but
the focal anomalies are not, as shown in Figure 3 . An example from set n°2 is available here (Bakas
et al., 2017, 2018; Menze et al., 2014).
As a first step, we will just consider the first observation of each patient and interest ourselves in
the creation of a cross-sectional atlas.

3 Detection of anomalies using residuals

3.1 LDDMM elements : Deformation model and template estimation

Given a dataset (yi)1in of images of dimension d 2 {2, 3}, we want to create a template that is
representative of the population. To do so, we begin by creating a distance between observations
using diffeomorphic deformations.
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Figure 2: Example of a contrast-enhanced abdominal CT-scan, portal phase. The red arrows
indicate colorectal cancer metastases, referred as focal anomalies.

Figure 3: Segmented liver volume from initial CT scan of a patient with colorectal cancer metastases.
In this pre-processing, some tumors are visible as slightly whiter volumes.

Let V be a Reproducible Kernel Hilbert Space. For x 2 R
n, a vector field v is represented as:

v(x) =

ncp
X

i=1

KV (ci, x)αi (1)

where (ci)1incp
are called control points and (αi)1incp

are called momenta. v is thus represented
as the interpolation of the momenta at the control points using the kernel KV . In practice, we choose
KV to be a Gaussian kernel with variance σ2

V : for x, y 2 R
n,

KV (x, y) = exp

✓

�
||x� y||2

2σ2
V

◆

.

Let L
2([0, 1], V ) =

n

(vt)t2[0,1]
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�
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2
V dt < 1

o

.

Given v 2 L2([0, 1], V ), we set φv
1 the diffeomorphism obtained as the flow at time 1 of the
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vector field v:
(

∂tφ
v
t = vt � φ

v
t

φv
0 = Id .

(2)

We then set G = {φv
1|v 2 L

2([0, 1], V )} the group of such diffeomorphisms. It is now easy to
define a distance on G. For φ,φ0 2 G, we set:

dG(Id,φ) = inf

( 

Z 1

0

||vt||
2
V dt

◆1/2
�

�

�

�

�

v 2 L
2([0, 1], V ) and φv

1 = φ

)

and
dG(φ,φ

0) = dG(Id,φ
0
� φ�1) .

This exactly states that G is given the structure of a manifold on which distances are computed
as the length of minimal geodesic paths (φv

t )t2[0,1] connecting two elements.

It has been showed that this infimum is in fact a minimum and that the distance is right in-
variant (Trouvé, 1995; Younes, 2010; Durrleman, 2010). This infinite dimensional problem can be
approximated by a finite dimensional one where time and velocity vector field are parametrised.
This construction yields a formulation of the final diffeomorphism as a function of the initial configu-
ration of control points and related momenta (Durrleman, 2010). Therefore, a geodesic in G passing
through Id at the initial time is then uniquely defined by its initial velocity v0 given by initial control
points and momenta. In the following, we will write Expt(v0) the value of this geodesic at the time t.

Hence, for two images x and y 2 M , we set:

d(x, y) = inf

( 

Z 1

0

||vt||
2 dt

◆1/2
�

�

�

�

�

v 2 L
2([0, 1], V ) and φv

1.x = y

)

.

This distance measures the shortest length of the path relying x to y using the diffeormophisms φv.
It also allows to define a Riemannian structure on M . A geodesic on M will then be defined using
an initial image p0 and initial velocity v0 by t 7! Expt(v0)(p0).

Hence, we measure the distance between two images as the difficulty to deform one onto another.
Moreover, as φv

1 is a diffeomorphism, it is invertible and preserves the smoothness and structure of
the images.

We will use those geodesics to define a template of our data set, as well as the deformations
from this template towards each subject using inexact matching.

In a generalization of the usual Euclidian mean, we ensure that the mean still belongs to the Rie-
mannian space (Karcher, 1977). More precisely, we are looking for a template ȳ and the deformation
fields vi transforming ȳ onto an approximation of each observation:

J(ȳ, c0,αi) =
1

2σ2

n
X

i=1

||yi � Exp1(vi).ȳ||
2
2 +

n
X

i=1

d(ȳ, Exp1(vi).ȳ) .

vi is obtained using the control points c0 and momenta αi.
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The second term
Pn

i=1 d(ȳ, Exp1(vi).ȳ) is a regularization term while the parameter σ allows to
balance between the regularity and the attachment to the data desired

ȳ is then the template of our population and can be estimated using usual gradient descent
algorithms.

3.2 Presentation of the model

The model we propose aims at highlighting the anomalies of patients with respect to a control
template. As we are modeling anomalies, we make the assumption that these features are sparse
in the volume of the organ. Apart from these anomalies, the rest of the organ has to be similar to
a control one. Therefore, we propose the following model.

We write (yi)1in the n subjects and ȳ 2 R
d the template of control subjects obtained using

the methods of Section 3.1. We suppose that our images all have the same size
Qd

j=1 ni where d = 2
or 3 for 2d or 3d images.

The control points are chosen in this work along a fixed evenly spaced grid.
We assume that each observation can be written as:

yi = Exp1(vi)(ȳ) +Ai + εi ,

where the Riemannian exponential is defined Section 3.1. This equation means that we obtain
the subject yi as the diffeomorphic deformation of the template ȳ: Exp1(vi)(ȳ) to which we add a
matrix Ai containing the anomalies and a noise εi. As explained above, vi is a velocity field that we
obtain as the interpolation of momenta αi 2 (Rd)ncp at ncp 2 N control points ci 2 (Rd)ncp using
a Gaussian kernel as follows: 8x 2 R

d:

vi(x) =

ncp
X

j=1

exp(�
||ci,j � x||2

2σ2
)αi,j . (3)

In order to enforce the expected sparsity of the anomalies, we add a L1 regularization on Ai.
This is also a way to prevent it from including the noise, modeled as following a centered normal
distribution. Here we base the regularization on Lasso regression.

Given this model, our goal is to estimate jointly the deformations from the given template and
the anomaly matrices for each subject. Here, as the control template has already been estimated,
we can process each subject separately and we want to minimize the following functions:

Ji(ci,αi, Ai) =
1

2σ2
||yi � Exp1(vi)(ȳ)�Ai||

2
2 + λ||Ai||1 +

1

2
||vi||

2
V , (4)

where vi is obtained using equation (3). The first term of Ji measures the distance between the
observation and the reconstruction while the other terms measure the sparsity of Ai and the regu-
larity of the diffeomorphic deformation.

To minimize Ji, as ||.||1 is not differentiable, we implement a proximal gradient descent algo-
rithm, using the Pytorch package to automatically compute the gradients of the differentiable part
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of Ji.

3.3 Computation of the template using a hypertemplate

In some cases, it can be difficult to obtain a data set of control subjects, necessary to create the
control template ȳ. It is for instance the case for brains where we barely get a MRI scan from a
control patient. In that case, it is possible to create the template ȳ along the estimation of the
anomaly matrices using only the image of one control patient y0. To do so, we consider ȳ to be the
diffeomorphic deformation of a control hypertemplate y0:

ȳ = Exp1(w0)(y0) , (5)

where w0 is obtained as the interpolation of momenta β0 at control points c0, as explained above.
As y0 is a control subject, it has no anomaly, and its diffeomorphic deformation ȳ will have no
anomaly either.
Hence, in that case, we will not only estimate the velocities (wi)1in and sparse matrices (Ai)1in

but also the velocity w0 by minimizing:

J̃(c0, (βi)01n, (Ai)1in) =

n
X

i=1

✓

1

2σ2
||yi � Exp1(wi)(ȳ)�Ai||

2
2 + λ||Ai||1 +

1

2
||wi||

2
V

◆

+
1

2
||w0||

2
V ,

(6)

where ȳ is obtained using the velocity w0 and wi is obtained as the interpolation of the momenta
βi at the control points c0.
Note that, as the template is a reference image for the whole population, the energy to minimize is
not separable and involves the contributions of all subjects.
Once again, this optimization is done by proximal gradient descent.

Remark 3.1. Here, we use the same control points c0 for all velocity fields (wi)0in in order to

reduce the computation time.

Remark 3.2. In practice, we sometimes have a computational problem to estimate the parameters

of those models. Indeed, the gradient descent tends to stay blocked in local minima. By including

the errors of reconstruction in the anomaly matrix, the algorithm often chooses not to improve the

reconstruction and stays blocked in a local minimum. To solve this problem, we prevent the anomaly

matrix to take any value outside of the reconstruction of the object for the first 100 iterations. This

allows to improve the diffeomorphic reconstruction and to reach a more relevant area of interest of

the energy landscape.

3.4 Comparison to other models

In the following, we will compare this model to the usual cross-sectional atlas, estimating the
template ȳ and the deformations towards the subjects without the use of anomaly matrices nor
hypertemplate. This alternative method writes as minimizing the following energy:

F0(ȳ, c0, (αi)1in) =
1

2σ2

n
X

i=1

||yi � Exp1(vi)(ȳ)||
2
2 +

1

2

n
X

i=1

||vi||
2
V . (7)
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We will also compare it to the cross-sectional atlas when the template is obtained via a control
hypertemplate. As above, v0 will be obtained as the interpolation of momenta α0 at control points
c0. The functional to minimize is now:

F1(c0, (αi)0in) =
1

2σ2

n
X

i=1

||yi � Exp1(vi)(ȳ)||
2
2 +

1

2

n
X

i=0

||vi||
2
V , (8)

where ȳ is defined by equation (5).
The estimation of those two models can be done using a usual gradient descent.

4 Simulated example

4.1 Data set

To test the model, we create a simulated data set of 500 subjects deformed from a common template
to which we add a random number of dark spots (between 1 and 5) and some Gaussian noise. This
template is created as the deformation of an ellipse (hypertemplate). We also create a "control"
data set of 100 subjects without dark spot from the same template to be able to estimate a control
template ȳ and use it in the case of the model (4). The template and five subjects with dark spots
are presented on the first line of Figure 4.

4.2 Application of the models presented in section 3

We first apply the model where the template is directly estimated, without the use of a hyper-
template nor sparse matrices (Equation (7)). As can be seen on the second row of Figure 4, a
dark shadow is created on the estimated template. Similarly, this dark shadow is reported on the
reconstructions of each subject. Moreover, as can be seen on the last two columns, to minimize
J0 the algorithm sometimes badly estimates the deformed object in order not to include a dark spot.

On the third row of Figure 4, we apply the model where the template is obtained from an
ellipse hypertemplate but without any anomaly matrix (model (8)). This time, as expected, there
is no dark shadow on the template but the reconstruction of the last two subjects is still bad. The
model would rather erase one part of the shape so that the dark anomalies close to the border are
considered as background. Not only removing the inside anomalies, the overall shape of the organ
is badly reconstructed.

We also test the model (4). To do so, we begin by estimating a template from the 100 "control"
subjects. We then fix this template in the minimization of Equation (4). This estimated template
and some reconstructions are represented on the fourth line of figure 4. This time, the subjects are
better reconstructed and the dark spots retrieved. Their intensity is a bit weaker than initially due
to the proximal gradient descent applying a soft threshold on the residuals. However, the shapes of
the dark spots are well identified and so are their positions.

Then, we apply the model (6) where the template is estimated from a hypertemplate. The
results are presented on the last row of Figure 4. Once again, the subjects are well reconstructed
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and the dark spots are retrieved in the anomaly matrix. Shapes, positions and volumes of the dark
spots are captured.

Finally, we compare the four models by computing the mean error of registration when one
only considers the form (i.e. the error between the observations without their dark spots and the
reconstructions without their anomaly matrix) on Table 1. As expected, the error is smaller when
considering the models (4) and (6). One can notice that the previously estimated template enables
to achieve better results. This was expected as the template is better representing the control
population when estimated as a representative group of images. However, when not available, the
combined model reaches very interesting performances. This enhances the strength of this estima-
tion process both in terms of template shape and anomaly detection.

Model (7) Model (8) Model (4) Model (6)

Error of registration 19, 8%±0.06 16.5%±0.10 11.9%±0.07 12.9%±0.03

Table 1: Mean and standard deviation of the error of registration when one does not consider the
dark spots.

Figure 4: On the top line, the template and five observations. On the second line, the estimated
template and reconstructed subjects without the use of hypertemplate nor anomaly matrix (model
(7)). On the third line, the results when one uses the hypertemplate but no anomaly matrix (model
(8)). On the fourth line, we first estimate a template (first column) from control subjects and
then reconstruct the other subjects using an anomaly matrix (model (4)). On the last line, the
results with sparse matrices when the estimation of a template is done at the same time, from a
hypertemplate (model (6))
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Hence, we have been able to reconstruct the subjects and to retrieve their anomalies using the
models (4) and (6). Moreover, we have been able to highlight an improvement of reconstruction
when we estimate both anomaly matrix and deformations.

4.3 On the choice to estimate anomaly matrix and deformation at the

same time

The choice to estimate both the deformation vi and the anomaly matrix Ai at the same time, and
not one after the other, comes from an effort to improve the reconstruction of the object. Indeed,
we can see on the Table 1 that the errors of reconstruction are smaller when we estimate both at the
same time. It can particularly be seen on the third line of Figure 4 where, for the last two columns,
the residuals contain whole parts of the observations. Those parts would hence be retrieved in the
anomaly matrix.

We present a last example to emphasize this need to estimate both the deformation and the
anomaly matrix at the same time. The different images of that example can be seen Figure 5. This
time, we add a little black line on the control template, mimicking for example a vein in a liver or a
gyrus in a brain slice. From this template we create one subject to which we add a dark spot. We
try to reconstruct this subject from the template, either with or without anomaly matrix. Without
anomaly matrix, the model chooses to heavily deform the black line to create the dark spot. In par-
ticular, a part of the line would here be in the residual and the black spot would not entirely be in it.
The estimation of an anomaly matrix from this residual would hence be bad. However, if we choose
to estimate both deformation and anomaly matrix at the same time, the black line is well regis-
tered from the template to the individual and only the black spot is retrieved in the anomaly matrix.

Those two observations confirm the need to couple the estimation of anomaly matrices and
deformations.

Figure 5: From left to right, the fixed template, the subject, the reconstruction without anomaly
matrix and the reconstruction with anomaly matrix. Without anomaly matrix, the algorithm uses
the black line to recreate the dark spot, creating a fuzzy black zone.
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5 Application to a data set of brains with tumors

5.1 Presentation of the data set

We choose to first apply our model to a data set of brains with tumors obtained from the open
access BraTS 2018 data set (Bakas et al., 2017, 2018; Menze et al., 2014). More precisely, the data
set is composed of 50 post-contrast T1-weighted MRI scans of glioblastoma and lower grade glioma.
We do not dispose of a data set of control subjects but only of the observation of one control subject.
We will hence use the model (6) to estimate the template using this control subject as hypertemplate.

The goal is to reconstruct the brain of each subject from a control template and to obtain the
tumors in the anomaly matrix. Ideally, the diffeomorphic deformation will register the brain folds
(called gyri) and ventricles. What cannot be retrieved in the diffeomorphic deformation should
hence only be the tumors.

5.2 Results

We here present the results of our model applied to this data set. On Figure 6, we present the
template estimated by our algorithm.

Figure 6: The template estimated using a control patient as a hypertemplate.

On Figure 7, we show the results for four subjects. As can be seen, the lesions are retrieved
in the anomaly matrix with only small errors of reconstruction. In particular, we can see that the
gyri have been well registered and are not present in the anomaly matrix. As for the ventricles,
if a part of one is present in the bottom right image, they are also well registered for the other
images. In fact, for the bottom right patient, its right ventricle is quite different from the template,
causing our algorithm difficulties to register a part of it. But, in all cases, the use of the LDDMM
framework has allowed to register most of the parts of the brain without anomaly and so to obtain
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Figure 7: The results for four different subjects. Each time, we put on the left, the observation and
on the right, the anomaly matrix estimated. Each time, the lesions are well retrieved.

Figure 8: The patient and the anomaly matrix in a case where the tumor (red zone) is not detected.
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a clean anomaly matrix.

Note that the energies we optimize are parametric. This means that we need to calibrate both
σ2 and λ. σ2 is equivalent to the voxel noise variance if we transpose our energy to a log likelihood.
As for λ, it balances the weight of the sparsity matrix with reference to the data term penalized by
the smoothness of the diffeomorphism. Here, one important choice of parameter in Equation (6) is
in fact the sparsity constant λ. One could choose to take a smaller λ. This would allow to include
the peritumoral edema (dark area around the tumor) in the anomaly matrix. However, we would
then also include more reconstruction errors. Here, we have chosen λ in order to visually detect
the tumors but with as little reconstruction errors as possible, even if the whole tumor is not in
the anomaly matrix. It fulfils our goal as we wanted to be able to inform the doctors of possible
anomalies, which are indeed included in the anomaly matrix. We prefer to have less false positive
but with more accurate location.

For a quantitative evaluation we compute the detection ratio of the 62 tumors in the data set,
and we find that 59 are visible in the anomaly matrix (95%). As for the tumors not visible, they
are small lesions in a zone of high variability of the brain. We show such a case in Figure 8 where
the tumor is less easy to distinguish and in the middle of the brain gyri.

5.3 Application with only one control and one sick subject

Our approach here is particularly interesting as it does not require a large data set to be trained
on and there is no annotation on the position of the tumors required. To highlight this advantage,
we apply the exact same algorithm to only one brain with tumors. As for the template, it is fixed
as a brain without tumor. Hence, we only use two different brains to try to detect an anomaly.
In particular, we compare the results with the anomaly matrix estimated for this patient in the
previous section where a template was estimated alongside (see Figure 9).

The tumor is once again retrieved in the anomaly matrix with small errors of reconstruction,
particularly on the border and top of the brain. The errors on the top, in particular, are not present
when one estimates a template alongside the anomaly matrix. In fact, the variability between the
control subject and the one with tumor is bigger there, causing bigger errors of reconstruction. But,
estimating a template, even with few subjects as done section 5.2, prevents this issue.

Even if more errors are included in the sparse matrix, it must be emphasized that it has been
produced using only two subjects and that it shows that our method can yield usable results even
without access to more than a few subjects. It also shows that a relevant pre-estimated template of
control organs enables to refine the results as it takes into account a wider variability and is more
representative of a control population.
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Figure 9: On the left, the observation. In the center, the anomaly matrix estimated with the
template fixed as a control subject. On the right, when one estimates the template, as done section
5.2. The results are showed for two different slices: at the position of the tumor (top images) and
at the top of the brain (bottom images). In both cases, the tumor is retrieved. More reconstruction
errors are included when one does not estimate a template.

6 Application to the liver data set

6.1 Pre-processing

We now apply our algorithm to the liver data set provided by the Fédération Française de Can-
cérologie Digestive regarding the FFCD-1201 registered clinical trial number NCT01839877 with
specific data use agreement for the present work. Note that the full livers were manually segmented
for the trial. The goal is to reconstruct the liver of each patient while recovering the tumors in the
anomaly matrix. As we do not have access to a full data set of control patients, we cannot use
the model (4) and we need to estimate the template from a hypertemplate using model (6). The
hypertemplate is chosen as a patient, not in the database, and without tumor.
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Figure 10: Example of a segmented liver.

Two different structures to appear on the livers were tumors as dark spots and vessels as white
structures because tumors have lower density than normal liver parenchyma and vessels are en-
hanced by contrast medium. We expect to recover these separate structures in the anomaly matrix.
If one only wants to retrieve the tumors, it is easy to separate them from the vessels according to
their intensity. Moreover, from one subject to the other, the noise level can be totally different.
If we do not preprocess the data set, we would not be able to find a sparsity constant λ efficient
for each subject and, for those with the highest level of noise, this noise would be recovered in the
anomaly matrix. To prevent this phenomenon, we decide to first convolve our observations with
a Gaussian kernel. The resulting images can be seen Figure 11. This smoothing allows to have a
robust algorithm for this population.

Moreover, because all images do not have the same pixel spacing, we need to down-sample some
of the images. We also include all of them in a black box of the same size.
In the following, we present the results for different subjects.

We also choose, as post processing, to put the coefficients of the anomaly matrix to 0 outside of
the reconstructions and target shapes. If one does not make this choice, the errors of reconstruction
are reported in the anomaly matrix. In particular, one would find white zones in the anomaly
matrix at voxels where the diffeomorphic deformation has not been able to recreate a liver part and
black zones where the diffeomorphic deformation has created a liver part at a place there should
not be one.

6.2 Presentation of the results

We begin by presenting the estimated template ȳ in figure 13. Note that this template appears
smoothed. The reason comes from the low number of patients with reference to the high variability
in shape of this organ. Moreover, because it is derived from a particular control subject, the ves-
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Figure 11: On the left, the initial images. On the right, the same subjects after convolution with a
Gaussian kernel.

sels of this particular subject are still present in the final template. This may influence the future
estimation of the anomaly matrix by either using these structures to force the deformations or by
using the sparse matrix to erase them. A post-control should be done with this in mind. Having a
template of control subjects would reduce the errors of reconstruction and allow a better detection
of the anomalies.

Then, on Figure 14, we show the results for a subject without any vessel visible on the scanner.
The algorithm is able to retrieve the tumors in the anomaly matrix. We can remark that the
outline of the liver is also present in the anomaly matrix. It is in fact used to correct the small
errors of the diffeomorphic deformation from the template towards the image and obtain a better fi-
nal reconstruction. It is however easy to filter that outline to only keep the tumors using its intensity.

We then present a subject with vessels visible in Figure 15. As can be seen, not only the tumors
are retrieved but also the vessels. If one wants to only find the tumors, a first possibility is to look
at the negative values of the anomaly matrix. Further investigation on a post process would be
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Figure 12: Control patient.
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Figure 13: Template estimated as a diffeomorphic deformation of a control patient.

Figure 14: On the left, the observation. In the center, the reconstruction. On the right, the anomaly
matrix.

required to only retrieve the anomalies without the small errors of reconstruction.

Finally, we show the importance to apply a Gaussian convolution to the data set before esti-
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Figure 15: From left to right, the observation, the anomaly matrix, and the negative values of the
anomaly matrix.

mating the parameters of the model figure 16. If one does not perform this preprocessing, the noise
is retrieved in the anomaly matrix and the tumors are not visible. This problem is indeed solved
after convolution and the tumor (at the top left of the liver) is retrieved.

6.3 Quality of the detection

To measure the quality of the detection, we asked a MD Radiologist to segment the tumors of
10 patients. This led to a total number of 133 tumors segmented. As we focus only on tumor
lesions, we will only look at the negative coefficients of the sparse matrices to measure the quality
of detection as tumors are dark spots on the liver.

We choose not to evaluate the segmentation but the detection. In fact, here, the dice score would
be average as our algorithm rarely segments the whole tumor. However, as written previously, we
do not want to segment the exact tumor but only to inform the medical doctor of a possible anomaly
and particularly detect the location of very small lesions.

On the 133 tumors segmented, our algorithm detects 125 of them (94%). The detection was
defined a non-empty clusters from the anomaly matrix above a predefined threshold size for consid-
ering an anomaly. As for the tumors which are not detected, there are two possibilities. Sometimes,
the difference between the tumor intensity and the noise is really small and the algorithm is not
able to separate them, in particular for some subjects for which the noise is still high. The other
possibility is when the diffeomorphic registration of the liver is not perfect and the tumor is outside
of it. In that case, the tumor will in fact be in the anomaly matrix but it will be lost in the error
of reconstruction.
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Figure 16: On the top line, the results if we do not convolve the data set with a Gaussian kernel
beforehand. On the bottom, with preprocessing. On the left, the observation. In the center, the
reconstruction. On the right, the anomaly matrix.

Finally, not only the tumors are retrieved in the anomaly matrix. As showed above, small
errors of reconstruction can be present on the boundary. But our algorithm also plays its part by
detecting other anomalies than lesions. In particular, on several subjects, some slightly dark spots
are retrieved and are in fact due to a perfusion disorder.

7 Limitations to the detection of focal anomalies

In this section, we have demonstrated the efficacy of utilizing the residuals derived from diffeomor-
phic deformation from a control template for the purpose of detecting and segmenting lesions within
a given organ. Notably, our findings indicate that this approach not only facilitates lesion identi-
fication but also enhances the overall diffeomorphic reconstruction of observed data. An inherent
advantage of our method lies in its independence from extensive datasets of patient information
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or annotations from medical professionals, making it particularly well-suited for scenarios where
acquiring large datasets is challenging, such as in specific treatment protocols.

Our experimentation involved assessing the performance of this methodology on datasets featur-
ing brains afflicted with glioma and livers hosting colorectal cancer metastases. Notably, in the case
of glioma-afflicted brains, our algorithm successfully registered gyri and ventricles while accurately
identifying tumors within the anomaly matrix.

However, several challenges persist that warrant further attention. Firstly, while our method
effectively detects tumors, it also captures minor reconstruction errors. To address this, post-
processing steps are necessary to isolate and extract only the relevant lesions. An initial consid-
eration involves employing opening operations, although this approach carries the potential risk
of inadvertently discarding smaller anomalies during post-processing. Additionally, a more refined
strategy for handling reconstruction errors is imperative, as the absence of a tumor in the recon-
structed object may lead to its inadvertent exclusion. Further refinement through post-processing
of the anomaly matrix is essential to recover any overlooked anomalies and ensure the precision of
our detection method.

8 LDDM-based classifier from pre-therapeutic CT scans: to-

wards patient selection

This section refers to the orange projects. This section was adapted from the following publi-
cations:

Pellerin O, Boeken T, Guiu B. Chemoembolization of HCC: Time for Technical Standardization,
or Is It Too Late? Cardiovasc Intervent Radiol. 2019 Pellerin et al. (2019)

Boeken T, Gallois C, Douard R, Méatchi T, Martelli N, Sapoval M, Taieb J, Pellerin O. Bridge
to surgery after irinotecan-based liver chemoembolization for metastatic gastric adenocarcinoma:
Letter to the editor. Clin Res Hepatol Gastroenterol. 2021 Boeken et al. (2021)

Kedra A, Boeken T, Di Gaeta A, Querub C, Al Ahmar M, Déan C, Sapoval M, Pellerin O.
Exploring a Novel Technique to Tackle the Shortage of Devices for Hepatic Arterial Infusion
Chemotherapy: Early Results of an Alternate Approach for Percutaneous Arterial Port Catheter
Placement. Cancers (Basel). 2023 Kedra et al. (2023)

Boeken T, Moussa N, Pernot S, Abed A, Dean C, Taieb J, Sapoval M, Pellerin O. Does Bead Size
Affect Patient Outcome in Irinotecan-Loaded Beads Chemoembolization Plus Systemic Chemother-
apy Regimens for Liver-Dominant Colorectal Cancer? Results of an Observational Study. Cardio-
vasc Intervent Radiol. 2020 Boeken et al. (2020)

Boeken T, Sapoval M, Pellerin O. Stressing the need for prolonged immediate surveillance after
chemoembolization for liver metastases using drug-eluted beads with irinotecan. Diagn Interv
Imaging. 2020 Boeken et al. (2020)

8.1 Why selection matters

Colorectal cancer (CRC) ranks as the third most diagnosed cancer globally, with its incidence
projected to increase by 60% by 2030. The rapid rise in cases is attributed, at least in part, to
dietary changes and the increase in obesity. A causal relationship has been suggested by a 2017
analysis involving 68 million individuals.
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Figure 17: PhD map.

Metastatic colorectal cancer affects 40-60% of patients. Specifically, about 20-25% of patients
present with liver metastases during their initial assessment. The management of metastatic col-
orectal cancer to the liver (mhCRC) is a significant challenge, closely dependent on whether the
liver is the dominant site of involvement (liver-dominant disease) or if the disease is limited extra-
hepatically.

Despite the prevalence of mhCRC, consensus guidelines do not agree on a unified or standardized
approach. The role of intra-arterial therapies, such as those offered by interventional radiology,
remains unclear.

According to the 2020 French consensus, the management starts with clinical evaluation (World
Health Organization status, patient’s preference), morphological assessment (CT scan and/or MRI
as needed), and determination of tumor Kirsten rat sarcoma virus (KRAS), B-Raf sérine/thréonine
kinase (BRAF), and microsatellite instability (MSI) status. The Thesaurus emphasizes that only
resection (surgical or local ablation) can lead to complete remission. In addition to surgical and abla-
tive treatments, the current management of patients with mhCRC includes systemic chemotherapy
(5-FU, oxaliplatin, irinotecan), targeted therapies (Vascular and epithelial growth factors inhibitors,
anti-VEGF, anti-EGFR), and immunotherapy (notably programmed cell death 1 or anti PD1/PDL1
based on MSI status). As third-line options, trifluridine/tipiracil and regorafenib are also available.
More recently, tumor-specific characteristics have paved the way for the use of new targeted thera-
pies. These are currently under evaluation, including anti-BRAF (encorafenib), anti-HER2 (human
epidermal growth factor 2 and trastuzumab), anti-tropomyosin (NTRK) (larotrectinib, entrectinib),
and anti-KRAS (sotorasib).

These therapies have improved patient management, prolonging overall survival and offering the
possibility of secondary resection; this could be achieved in up to 50% of cases.

In addition, there are intra-arterial therapies proposed by interventional radiology (chemoem-
bolization, radioembolization, hepatic intra-arterial catheter). These are included in European
recommendations (ESMO) as "ablative" therapies.

Intra-arterial therapies are mentioned as Grade B or C options in the French recommendations

26



Figure 18: ESMO guidelines for CRC. High presence for IR therapies

without specific details. These recommendations state: "Whenever there are predominant hepatic
metastases from CRC that are not resectable initially, the question of intra-arterial treatment must
be systematically considered (approximately 15% of patients)." An international meta-analysis of
23 prospective studies highlights the challenge in establishing a unified strategy for intra-arterial
treatments of colorectal cancer.

Better selection means optimizing the current place for chemoembolization in the arsenal. The
approach studied here, the so-called ’DEBIRI’ treatment, is later detailed specifically.

8.2 Rationale for Chemoembolization

Hepatic chemoembolization’s fundamental principle rests on the liver’s dual vascularization – pri-
marily portal for healthy parenchyma and arterial for tumor lesions. As described by Bierman et
al. in 1951, liver neoplasms exhibit hyperarterialization, while non-tumor liver maintains a portal-
to-arterial network ratio close to 80%/20%. These findings still hold true after 70 years. The
first ligation of the hepatic artery to induce tumor necrosis was reported in 1966, and the first
chemoembolization likely occurred in 1974.

Chemoembolization addresses a triple challenge:
i) Achieving maximal intratumoral chemotherapy concentration
ii) Avoiding systemic toxicity peaks
iii) Inducing local embolization with necrotic intent.
This procedure typically employs an emulsion of chemotherapy and lipiodol, a synthetic oil

developed in 1901, with a ratio determining embolic potential and local treatment distribution.
The DEBIRI technique is an alternative to lipiodol-based chemoembolization, using drug-eluting

microspheres. These microspheres act as carriers, loaded during preparation and subsequently
releasing treatment closer to the target. In vitro and in vivo studies have detailed their properties
and action mechanism.

In vitro physicochemical analyses of doxorubicin- or irinotecan-loaded microspheres show that
these microspheres enable complete and rapid chemotherapy loading during preparation. Subse-
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Figure 19: Rationale for DEBIRI, explained by Lewis et al

quent release is sustained and influenced by local ionic balance. The rationale for in vivo use
of irinotecan-loaded microspheres (DEBIRI) builds upon the selective and specific tumor targeting
achievable via intrahepatic arterial injection, which spares non-tumor liver primarily supplied by the
portal system. Besides serving as chemotherapy carriers, these microspheres induce embolization
and necrosis in tissues predominantly vascularized by arteries.

The interest of chemotherapy in the DEBIRI process has been extensively studied due to irinote-
can’s status as a prodrug, theoretically necessitating metabolism by healthy hepatocytes to exert
its antitumor effects.

The theory is supported by two observations:
i) Concerning healthy hepatocytes: in essence, irinotecan is hydrolyzed into SN-38 by CES-

2, a protein present in hepatocytes. SN-38 exhibits a 1000-fold stronger affinity for TOPO-1,
the final target of chemotherapy and a crucial element in DNA replication. Unlike conventional
chemoembolization techniques, DEBIRI is administered lobularly to ensure these chemical reactions
by healthy hepatocytes.

ii) The second observation focuses on tumor cell pH: microspheres induce tumor hypoxia, leading
to acidosis that enhances SN-38 activity.

An animal study conducted in 2011 with 54 VX2 rabbits compared the pharmacokinetics of
intravenous irinotecan, intrahepatic arterial irinotecan, and doxorubicin-eluting microspheres (DE-
BIRI). Intra-tumoral irinotecan concentrations at 24 hours were significantly higher with micro-
spheres versus free injection. However, these results should be interpreted cautiously since VX2
rabbits’ CES-2 doesn’t exhibit the same enzymatic kinetics as in humans. Similar studies were
conducted for human pharmacokinetics. Intrahepatic arterial injection seems to increase systemic
concentrations of active irinotecan metabolites, although publications disagree on this point. CES
present in healthy hepatocytes likely explains this phenomenon. The intra-tumoral concentration
of metabolites, in the absence of CES, remains less studied.
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Figure 20: FFCD 1201 trial survival curve

8.3 The FFCD-1201 trial

Clinical studies on DEBIRI have evaluated treatment efficacy in palliative settings as well as in
earlier stages, as first-line or neoadjuvant therapy. Most studies are retrospective. Three randomized
trials were published in 2012, 2015, and 2019.

The most recent prospective study is the French FFCD 1201 phase II trial. The investigators

have granted us the access to the full data according to French law.
This study examined DEBIRI 100-300 um (+ chemotherapy) as first-line therapy for patients

with unresectable disease. The 9-month progression-free survival (PFS) was 53.6% (95% CI, 41.8-
65.1%), objective response according to RECIST 1.1 was 73.2%, and R0 secondary resection was
33%. Median overall survival was 37.4 months (95% CI, 25.7-45.8), and median PFS was 10.8
months (95% CI, 8.2-12.3). In other words, one third of the patients did not respond to this
treatment, while two thirds responded.

The 9-months progression-free survival was 54%: we used this to label retrospec-

tively patients as good-responders and poor-responders in order to try and select those

who would benefit most from the technique.

8.4 Classification based on the previous segmentation

Tumors were extracted using the previous organ agnostic model. The data was labelled according
to clinical outcomes at 9 months as good responders (objective response) and poor responders
(progression).

Good responders were also more precisely defined by the type of response and labelled accord-
ingly. The dataset consists of the 54 extracted tumors as mesh files, and the corresponding labels.
3 patients were dropped because of unavailable data.

The LDDMM framework can be used as a classifier. A quick example is provided here. Given
a set of hand-written digits ‘2’ (set A) and hand-written digits ‘3’ (set B), we re-create an atlas for
2 and an atlas for 3. A subset of the MNIST handwritten digits dataset was used.

The unknown class used here is a ‘2’ digit from outside the initial set (the subject 0). By
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Figure 21: Example of a poor responder (corresponding label: 9-months PFS). Segmented liver
and automatic detection of corresponding tumors.

Figure 22: Example of a good responder (corresponding label: 9-months PFS). Segmented liver,
automatic detection of tumors and cartography.

Figure 23: Distribution of responses in the FFCD-1201 trial.
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Figure 24: Digits set A and B from the MNIST dataset.

Figure 25: Template deformation towards unknown subject.

shooting the template towards this subject, we define its registration and related distance to the
atlas. For this, we use an ambient-space dimension of 2, a kernel-width of 2, and a noise-std of 0.1,
with a deterministic atlas model as presented before. Bayesian models can also be used (where, in
addition to the template and the registrations, the variability of the geometry and the data noise
are learned).

The estimation method used was composed of the loss function from the L-BFGS algorithm
with 100 iterations. The L-BFGS estimator converges faster, and is an alternative to the Gradient
Ascent estimator that might be useful in specific situations. The residuals are used here to evaluate
the distance between the targets and the reconstructed objects.

We can create a classifier based on the residuals and momenta vectors of each object from set
A and set B with a fixed template. We can estimate the probability of the template being closer
to set A than set B with a T Student test if the sets are big enough. The examples below show
an accurate classification of a ‘2’ digit and of a ‘3’ digit with a high probability. The residuals can
be interpreted as the difficulty to reconstruct the deformation from the template (non-deformable
portion of the template) and the momenta norms as the deformation costs.

By applying this to the liver sets, we can first compute the model with a fixed normal liver
template and estimate the registration (and distance) of each patient to this tumor-free liver. We
first pre-process the livers to create a surface mesh of 10.000 cells. We use an ambient-space
dimension of 3, a kernel-width of 20, and a sparse-constraint of 0.1, with a deterministic atlas
model with anomaly as previously described and a Proximal Gradient Ascent estimator for 1000
iterations.

The distribution of residuals to the template is provided below. The Kolmogorov-Smirnov test
did not provide conclusive results towards a class but the ANOVA test did under the assumption
that the distribution is normal (not confirmed here with the Shapiro test). The template used
here was not a pivotal liver that enabled a classification by residuals and vector norms using this
method.
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Figure 26: Residuals from subject ’2" to Set A and subject ’3" to Set B. Note that p-value<0.001.

Figure 27: Reconstruction of a ’2’ observation from ’3’ template.

Figure 28: Momenta norms of the deformations from template to set A and set B. Note that p-
value=0.0002.
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Figure 29: Preprocessed 10.000 cells mesh of a real liver with tumors.

Figure 30: Distribution of momenta norms of all patients with a real fixed normal liver template.
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Figure 31: Distribution by clinical response class from real data.

We can also use the subset of 50 simulated livers and randomly assign an overall response label
to each patient. We compute the model with a kernel-width of 10, and a deterministic atlas model
with anomaly as previously described and a Gradient Ascent estimator for 100 iterations. The
consistency of the transformations can be found in the results: deformations are equally distant to
both sets because of the random assignment of the labels concerning overall survival (p-value = 0.597
after Student-s T-Test). The LDDMM framework – and every other model – can only generate a
classifier if the information is in the image provided by the pre-interventional CT assessment. It will
not produce a classifier if the success rate is independent from this image, or randomly distributed.

In conclusion, we cannot conclude that the initial CT provides enough information to determine
whether the patient might benefit from our technique. We did not succeed in building a classifier
based on the shapes of the liver metastases. Further research should probably integrate peri-tumoral
normal liver parenchyma given the high importance of normal liver for the biological mechanisms
underlying irinotecan-based chemo embolization.
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Figure 32: Set A from simulated set.

Figure 33: Set B from simulated set.
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Figure 34: Distribution of residuals according to clinical response in the simulated random set.

Figure 35: Distribution of momenta norms according to clinical response in the simulated random
set.
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Figure 1: PhD map.

This section refers to the orange projects.

This section was adapted from the following publications:
Clinical value of sequential circulating tumor DNA analysis using next generation

sequencing and epigenetic modifications for guiding thermal ablation for colorectal

cancer metastases: a prospective study. Submitted Lancet Gastroenterology & Hepa-

tology

Boeken T, Blons H, Dean C, Sapoval M, Pellerin O. The potential of ctDNA in

locoregional therapies for colorectal cancer. Lancet Gastroenterol Hepatol.

Atlas Generation from Synthetic Data for Predicting Trajectories of Circulating

Tumor DNA in Thermal Ablation Referrals: Proof-of-concept study. To be submitted

Special thanks for this section: Professor Hélène Blons for the ongoing support in oncological
genetics, Clément Mantoux and Juliette Chevallier for their help in modelling circulating DNA
dynamics.

1 Including biological data?

A novel biological biomarker emerged as a breakthrough for the management of colorectal cancer:
circulating tumor DNA (ctDNA).

Circulating tumor DNA (ctDNA) consists of DNA from tumor cells circulating in the blood. De-
tected in minute quantities through sequencing techniques, this biomarker allows for more sensitive
and early estimation of tumor burden compared to conventional imaging methods. Its prognostic
relevance has been demonstrated not only in non-metastatic colorectal disease but also in selecting
patients for surgery in oligometastatic disease Boysen et al. (2020)

Our prospective ancillary project to this thesis aimed at clarifying the prognostic and
therapeutic value of repeated analysis of circulating tumor DNA before and after treatments by
interventional radiologists, such as ablation. We decided to collect and analyze samples from
our patients, and we believe to be the first to use ctDNA in such setting.

Interventional radiology provides a non-surgical alternative through percutaneous treatment. In
this project, only thermal ablation (using microwave or radiofrequency for heat-based destruction)
is considered. Data on hepatic metastases thermal ablation, driven by major randomized trials
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Figure 2: Circulating DNA collection, from Dasari et al.

such as the COLLISION trial Puijk et al. (2018), have positioned this technique in the therapeutic
arsenal. They showed increased overall survival in patients treated with thermal ablation com-
pared to systemic treatment alone. This treatment delayed progression and cured a fraction of
patients, although half of the treated patients ultimately succumbed to their disease within 5 years
of treatment. In comparison, after hepatic surgery, 70% of treated patients experience recurrence or
progression within two years. The optimal place of curative-intent thermal ablation in the patient’s
oncological journey, however, remains to be defined, especially in relation to overall disease control
through systemic treatments.

The oncology and biology teams at HEGP have been experts in the field of ctDNA for many
years, particularly through the Carpem project. This technique exhaustively searches for molecular
anomalies related to the studied genes. The panels target disease-specific genes; their reasonable
cost and rapid results enable routine clinical use at HEGP. Indeed, ctDNA is routinely measured
at HEGP in cases with ambiguous disease progression or stability.

Such a biomarker would be particularly suited for the clinical situation of patients undergoing
hepatic thermal ablation. New biomarkers—circulating tumor DNA, circulating tumor cells, circu-
lating extracellular vesicles, etc.—have introduced the concept of minimal residual disease (MRD),
and more broadly, new definitions of oligometastatic disease. Beyond semantics, these new clinical
entities have therapeutic implications. Based on the stage (single metastasis to multi-metastatic dis-
ease), treatment options evolve along with advancements in locally ablative techniques in the liver
(thermal ablation, electroporation, radiotherapy, intra-arterial therapies, and minimally invasive
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Figure 3: Stages definitions, from Dasari et al.

surgery).
Circulating tumor DNA (ctDNA) has been studied in several contexts throughout the onco-

logical history of colorectal cancer. In non-metastatic colorectal disease, publications agree on the
prognostic value of the biomarker Loft et al. (2023): patients with positive ctDNA before or after
surgery exhibited worse prognoses than patients without circulating tumor DNA. The presence of
ctDNA after surgery reflects residual disease and places the patient in a high-risk group for early
recurrence. Similarly, in metastatic disease, persistent circulating tumor DNA reflects inadequately
treated disease. It is detected in over 90% of cases.

Naturally, surgical teams have examined ctDNA in the perioperative setting or in potentially
resectable disease. The ancillary study of the Unicancer Prodige-14 trial Bidard et al. (2019) fo-
cused on 153 patients with potentially resectable disease. Among patients who underwent R0/R1
resection, those with ctDNA+ before surgery had significantly shorter overall survival. The study
concluded on the utility of ctDNA for patient selection before surgery in oligometastatic disease.
In 2019, the team at Memorial Sloan Kettering Cancer Center conducted a study on 60 patients
treated with curative-intent hepatic surgery Narayan et al. (2019). Two-year progression-free sur-
vival was 30%, and progression-free survival was associated with perioperative ctDNA detection.
The Melbourne team similarly utilized this principle in a 2021 prospective study involving 54 pa-
tients and 380 pre- and postoperative samples from hepatic surgery patients Tie et al. (2021). All
patients had upfront resectable disease and were treatment-naive at inclusion. ctDNA was de-
tected in 85% of patients at inclusion and 24% after surgery. The study detailed the importance
of ctDNA clearance (i.e., disappearance of detection under neo- or adjuvant systemic treatment).
Postoperative ctDNA+ patients were at higher risk of recurrence: (HR 6.3; 95% CI 2.58 to 15.2;
P < 0.001). Overall survival was also strongly associated with postoperative detectability: HR
4.2; 95% CI 1.5 to 11.8; P < 0.001. This study also highlighted the value of serial ctDNA mea-
surements after surgery, particularly during adjuvant treatment. All patients with postoperative
ctDNA+ after adjuvant chemotherapy had experienced recurrence during follow-up. Patients with
postoperative ctDNA+ that subsequently became negative during adjuvant chemotherapy had a
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Figure 4: Clinicl applications of ctDNA in colorectal cancer, from Loft et al.

better prognosis, suggesting that this biomarker could also reflect the effectiveness of postoperative
systemic treatment. This aligns with results from non-metastatic cancers and the role of adjuvant
therapies, tailored based on individual patient risk.

The results from these surgical series cannot be extrapolated to thermal ablation due to differing
biological and molecular mechanisms, even though the ultimate goal remains tumor clearance (i.e.,
complete reduction of tumor burden and negative ctDNA detection). During thermal ablation,
the tumor remains in place, and the thermal energy induces necrosis, ischemia, apoptosis, and/or
immunogenic cell death, generating intrinsic immunogenicity (priming concept).

Published data on thermal ablation and ctDNA are very limited. A preliminary
study including patients treated with thermal ablation and radiotherapy showed that
all five patients with postoperative ctDNA+ had a worse prognosis.

As of now, no publication has addressed different ctDNA evolutionary profiles fol-
lowing thermal ablation. Thus, we decided to add this feature to our work on patient
selection.

2 Why use ctDNA in thermal ablation

The field of precision medicine for patients with colorectal cancer metastatic disease is rapidly
expanding. Molecular profiling is now recommended by the latest guidelines to adequately select
systemic therapies Cervantes et al. (2023). Profiling for locoregional therapies, however, has not yet
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Figure 5: Opportunities as a biomarker, from Dasari et al.

been evaluated in practice. The clinical value of performing sequential assessments of circulating
tumor DNA (ctDNA) for patients who are referred to thermal ablation is not known.

Alongside the progress made in systemic treatments, interventional radiologists have customized
locoregional solutions for patients diagnosed with oligometastatic disease. Thermal ablation, when
technically feasible, has consistently shown to be a valid treatment option for patients with oligometastatic
disease, particularly in lung and liver target lesions. Despite these advances, the reported 5-year
overall survival of thermal ablation for colorectal metastases remains below 50%, even when using
the latest assisting technologies De. These results highlight the need for further research focused
on enhancing patient selection and monitoring responses to therapy.

Our team developed an accurate method to detect tumor mutations in plasma from Next-
Generation Sequencing (NGS) data based on the quantification of the error rate of each base position
using the panel (AmpliSeq™ Colon Lung V2 Panel, BPER) Pécuchet et al. (2016). This algorithm
was first validated in lung cancer and was successfully used in a prospective trial validating plasma
testing for routine analysis in colorectal cancer patients. For tumors that do not have mutations
in genes tested by the panel, we analyze plasma samples by using the detection of two methylated
markers (WIF1 and NPY) by digital droplet PCR accordingly to a method developed and validated
for colorectal cancer. Such liquid biopsies have the potential to serve as a surrogate for tumoral
burden and minimal residual disease (MRD), aiding in the evaluation of recurrence risk following
thermal ablation.

These methods are now available for use in routine care Moati et al. (2018), as demonstrated
by specialized centers, and can be used to guide therapies in colorectal cancer. As an example,
a recent significant randomized controlled trial demonstrated the successful ability of ctDNA to
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differentiate patients who would benefit from adjuvant therapies following the removal of stage II
colorectal cancer Tie et al. (2022). The ctDNA biomarker-driven prospective approach was non-
inferior to the standard approach, and could set a new standard of care for patients with stage II
colorectal cancer.

Unfortunately, the dynamics of ctDNA before and after thermal ablation are not known. The
serial analysis of ctDNA in thermal ablation could help understand the kinetics of tumor ctDNA
release and the impact of therapeutic thermal damage on ctDNA; more importantly, it could help
improve the overall patient management throughout the course of disease.

The hypothesized result is that ctDNA monitoring predicts early post thermal
ablation relapse.

This prospective study was therefore designed with the aim of determining the prognostic value
of ctDNA before thermal ablation in terms of recurrence-free survival using next-generation se-
quencing (NGS) combined with the assessment of epigenetic modifications.

3 Materials and methods for assessing ctDNA

3.1 Patient selection, thermal ablation and follow-up

This is a single-center single arm observational prospective study that was approved by IRB
#00011928 (CERAPHP Centre 2023-01-05). All consecutive patients treated between November
2021 and June 2022 with colorectal cancer liver, lung or bone metastases referred by the multidis-
ciplinary tumor board to curative-intent thermal ablation were screened.

Inclusion criteria were colorectal cancer metastases accessible to curative intent thermal ablation
as assessed by the tumor board, measurable disease burden (RECIST 1.1 base method), age abov
18years, ECOG 0 or 1, stable disease under systemic treatment, feasible follow-up, resected primary
colorectal tumor. Exclusion criteria were combined treatment with surgery or radiotherapy, unre-
sected primary tumor, impaired liver, lung or kidney function, refusal to participate in the study
and concomitant non-colorectal cancer.

The interventions were planned under general anesthesia during a two-day hospital stay and
bevacizumab was interrupted for a minimum of three weeks before any interventional procedure.
Tumor size, localization, molecular profile, primitive tumor localization, types and number of prior
treatment lines, ablation margins and post-interventional treatments were recorded. Thermal ab-
lation was microwave ablation for liver lesions or cryoablation or radiofrequency for lung or bone
lesions. Adverse events were scored according to CTCAE criteria. Radiological data, including CT
and MRI images before thermal ablation and at follow-up, were reviewed by an independent ob-
server. Routine clinical, biological and imaging were performed. Follow-up included a radiological
reevaluation at one month, two months, and every three months afterwards in collaboration with
the oncological team.

3.2 Next-generation sequencing of circulating tumor DNA and tumor

molecular analysis

Tumor molecular profiles were assessed as recommended for metastatic colorectal cancer in care
settings. Briefly, tumors are analyzed using a 29-genes targeted NGS panel including KRAS, NRAS,
BRAF, TP53, PIK3CA, CTNNB1, ERBB2 for the most frequently mutated in colorectal cancer.
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Figure 6: Study workflow: NGS refers to Next Generation Sequencing of circulating DNA and
WIF and NPY refer to the assessment of a hypermethylation of WNT inhibitory factor 1 (WIF1)
and neuropeptide T (NPY) using droplet PCR.

Tumor molecular profiles were known for 80% of the patients referred to thermal ablation, and were
unknown for 20% of the patients because they were referred from another center.

Blood collection was performed at the induction of the anesthesia (Hour 0 or H0), the emergence
(H2), the morning following the intervention (H24) and the first follow-up consultation (usually
on Day 30 or D30). Additional samples were analyzed according to the oncologist’s decision, as
represented in the Figure below. Blood collection was performed in a 10 mL blood Collection
EDTA tube. Upon receipt, the tubes were centrifuged 10 minutes at 1600 g, the plasma recovered
and a second centrifugation was carried out for 10 minutes at 6000 g. The plasma was then
transferred in LoBind tubes (Eppendorf) and stored at 80°C until ctDNA analysis. Time from
collection to storage was less than 6 hours as recommended in routine care settings in our institution.

ctDNA was extracted using the Maxwell® RSC ccfDNA Kit (Promega), quantified by Qubit
dsDNA HS Assay Kit. cfDNA was analyzed using the AmpliSeq™ Colon Lung Cancer Panel (Ther-
moFisher) and libraries were generated automatically on the ionchef (AmpliSeq™ Kit for Chef DL8)
from 15ul of cfDNA. NGS was performed using the Ion Proton with minimal depth of 3000 X. Se-
quencing data were analyzed using the BPER method as previously described. For patients with
no available data on tumor tissues or wild type tumors, negative plasma samples were assessed by
WIF and NPY methylation-ddPCR (met-ddPCR) to validate the absence of ctDNA as previously
described.

All presented mutations are known pathological tumor mutations. If multiple mutations were
identified, the most prevalent one was selected for subsequent statistical analysis.

3.3 Outcomes

The primary endpoint was recurrence-free survival, defined as the time from the intervention to
disease recurrence, according to RECIST version 1.1 criteria, or death (or the date of the last
follow-up if the patient was alive with no recurrence). Secondary endpoints were recurrence at any
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site (defined as the time from intervention until the first radiological recurrence at any site), and
local recurrence (defined as the time from intervention until the first radiological recurrence on a
targeted site).

All analyses are reported according to the STROBE statement. No sample size and power
calculation were done. Sample size was chosen based on the estimated enrolment rate and an
acceptable study period. Continuous variables were presented as means (± SD) for normally dis-
tributed data and otherwise as median and interquartile range (IQR). Categorical data are numbers
and percentages. No replacement of missing data was performed.

Recurrence-free survival were analyzed with a two-sided log-rank test, with the hazard ratio (HR)
and two-sided 95% CIs based on a Cox proportional-hazards model and the associated Kaplan-Meier
survival estimates. Patients alive and recurrence-free were censored on the date of the last evaluable
tumor assessment. The proportional-hazards assumption was assessed by testing the interaction
between covariates and time. Predominant clonal ratio pre-op (%) was dichotomized according to
its median value (=0% vs >0%).

4 Results

4.1 Patient characteristics and interventions

A total of 19 consecutive patients were screened between November 2021 and June 2022. Four
patients were not included in this study because of non-intent to cure thermal ablation (these
included three patients with primary tumor in place and one patient awaiting portal embolization).
Fifteen patients (mean age: 65.3 ± 13.4 years) were included and analyzed in this study.

Baseline patient characteristics are summarized in Table 1. All patients were previously treated
by systemic therapies, with a median number of lines of 1 [range 1-2]. Thermal ablation was
performed in a single session and targeted a median number of lesions of 1 [range 1-3]. Target
lesions were respectively located in the liver (for N = 12/15 patients, using microwave), the lung
(for N = 2/15 patients, using cryotherapy for one patient and radiofrequency for one patient), and
within the iliac bone (for N = 1/15 patient, using cryotherapy). The mean diameter of the largest
target was 19.2 mm ± 14 mm. Tumor characteristics are available in Table 2.

All thermal ablations were technically successful as evaluated by the interventional radiologist.
No early or late complication from the fifteen interventions were recorded and all patients were
discharged on the following day.

The median follow-up was 316 days. By the end of the study, 6 patients (N = 6/15, 40%)
remained disease free and 9 patients (N = 9/15, 60%) had recurred. The recurrence was both local
(on the treated site) and distant for 2 patients (N = 2/15, 13%) on day 29 for the first patient and
day 49 for the second patient. For 7 patients (46%) recurrence was exclusively distant (N = 7/15,
46%). No mortality was reported during follow-up. No patient had isolated local recurrence on the
targeted lesion. The median recurrence-free survival was 250 days.

4.2 Circulating tumor DNA analysis

For patients treated in our institution, tumor samples were available and analyzed by NGS. Molec-
ular profiles were concordant between plasma and tumor for patients with positive ctDNA. For
7/10 patients referred to our center for thermal ablation only, information on tumor molecular
profiles were available in medical records otherwise reported unknown. Five tumors were reported
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Figure 7: Table 1. Baseline characteristics. Continuous variables were presented as means (±SD)
for normally distributed data and otherwise as median and interquartile range (IQR). Categorical
data are numbers and percentages. No replacement of missing data was performed.
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Mutations involved the following genes: KRAS (NM_033360.3), PIK3CA (NM_006218.2), BRAF
(NM_004333.4) and TP53 (NM_000546.5)

Methylation assessment is indicated: WIF and NPY refer to the assessment of a hypermethylation
of WNT inhibitory factor 1 (WIF1) and neuropeptide T (NPY) using droplet PCR.

Patient 10 had 2 tumors designed T1 and T2 with different molecular profiles.
NA: missing data or unavailable

NP: not performed
N: negative
P: positive

NGS: next-generation sequencing
Mutations involved the following genes: KRAS (NM_033360.3), PIK3CA (NM_006218.2),

BRAF (NM_004333.4) and TP53 (NM_000546.5)
Methylation assessment is indicated: WIF and NPY refer to the assessment of a hypermethyla-

tion of WNT inhibitory factor 1 (WIF1) and neuropeptide T (NPY) using droplet PCR.
Patient 10 had 2 tumors designed T1 and T2 with different molecular profiles.
NA: missing data or unavailable
NP: not performed
N: negative
P: positive
NGS: next-generation sequencing
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Figure 9: Table 2 (continued)

KRAS mutated. For one patient, the KRAS mutation was detected in plasma, one patient had a
BRAF p.N581T mutation in plasma, one patient a PIK3CA mutation in plasma, one patient had
no ctDNA, and one was positive based on methylation only. One tumor was reported KRAS WT,
this patient had a TP53 & a BRAF p. D594G mutation, one tumor was reported KRAS&BRAF
WT and was KRAS and PIK3CA positive in plasma, as described in Table 2.

A median number of 4 [range: 3-9] successful DNA extractions were performed per patient,
resulting in the analysis of a total of 60 samples. Pathological mutations were detected for 9 patients
during the course of the study (N = 9/15, 60%) in 34 samples (N = 34/60, 57%). Mutations were
identified in the following gene sequences: KRAS, PIK3CA, TP53, BRAF and SMAD4. Circulating
tumor DNA characteristics are provided in Table 2. The assessment of a hypermethylation of WNT
inhibitory factor 1 (WIF1) and neuropeptide T (NPY) using droplet PCR was positive for two with
NGS-negative ctDNA, respectively with WIF/ NPY ratios of 2.71%/1.14% and 0.35%/0%. An
example is provided in the Figure below.

ctDNA was positive for 33% of the samples collected during the first 24 hours. The prognosis
value of baseline ctDNA was analyzed as follows. Patients were defined as ctDNA positive if
ctDNA was detected prior to the intervention. The ratio of ctDNA positive / negative patients at
baseline was 27% / 73%. The mean total plasma DNA concentration prior to the intervention was
15.53 ± 19.00 ng/mL and the mean mutation ratio of the predominant mutation when detected
was 4.70 ± 6.37. Up to three DNA mutations were simultaneously detected in the samples. The
median recurrence-free survival was respectively for the ctDNA+ population 46 days (IC 95%: 29-
not reached) and for the ctDNA- population not reached (CI 95%: 51-not reached) (p = 0.038).
The hazard ratio for progression according to the presence of baseline circulating tumor DNA was
estimated at 0.14 (CI 95%: 0.03-0.65, p = 0.019). The survival curves are provided in the Figure
below.

The impact of thermal ablation on the initial dynamics of ctDNA was described as follows. The
dynamics of ctDNA during the first 24 hours are provided in the Figure below. The Spearman
correlation coefficient between pre and post ablation ctDNA quantifications was estimated at 0.42
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Figure 10: Example of a patient with NGS ctDNA negative samples and positive hypermethylation
of WNT inhibitory factor 1 (WIF1) and neuropeptide T (NPY) using droplet PCR.

Figure 11: - Recurrence-free survival according to the baseline circulating tumor DNA. Progression-
free survival were analyzed with a two-sided log-rank test, with the hazard ratio (HR) and two-sided
95% CIs based on a Cox proportional-hazards model and the associated Kaplan-Meier survival
estimates. Patients alive and recurrence-free were censored on the date of the last evaluable tumor
assessment.

13



Figure 12: Evolution of the predominant clonal ratio (%) from circulating tumor DNA as assessed
before thermal ablation (H0), immediately after (H2) on the following day (H24), and up to the
last blood sample available.

(p=0.13), with 80% of patients presenting a positive change in clonal ratios between H0 and H2.
ctDNA at H2 was not predictive of recurrence. At H2, the median recurrence-free survival was
respectively for the ctDNA+ population 162 days (IC 95%: 49-not reached) and for the ctDNA-
population 278 (CI 95%: 30-not reached) (p = 0.92). ctDNA at H24 was not predictive of recurrence.
At H24, the median recurrence-free survival was respectively for the ctDNA+ population 103 days
(IC 95%: 29-not reached) and for the ctDNA- population not reached (CI 95%: 51-not reached)
(p = 0.06). All patients with no recurrence during follow-up were ctDNA negative at H24. At
the one-month follow-up, three patients remained ctDNA positive, and all three patients recurred
during the study follow-up.

5 Discussion to the prospective study

Our study demonstrated the feasibility of assessing circulating tumor DNA and epigenetic modi-
fications in routine care for patients undergoing thermal ablation of colorectal cancer metastases.
Our team developed a sensitive technique utilizing Next-Generation Sequencing of ctDNA, which
successfully detected ctDNA in more than half of the patients throughout the study. For patients
with no or unknown tumor mutations status we validated that NGS negative results were not a
false negative using colorectal cancer specific epigenetic modifications. Two negative samples were
positive for WIF and/or NYP markers showing that agnostic biomarkers are important to validate
negative NGS results. Methylation markers may rescue false negative NGS tests in some patients.

Our findings are particularly noteworthy as patients referred for thermal ablation typically
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exhibit minimal tumor burden and limited disease. Our study population presented with 1-3 target
lesions measuring an average of 2cm. In this oligometastatic context, we used a very low technical
threshold (<1%) for ctDNA detection, and the proposed method yielded a positive signal for ctDNA
as a predictive biomarker for early relapse after thermal ablation.

The median recurrence-free survival was 250 days, and no patient experienced exclusive local re-
currence. These results align with published data on thermal ablation as a therapy for locoregional
disease control. However, a majority of patients in our study experienced recurrence, emphasizing
the need for a deeper understanding of metastatic disease and the overall role of locoregional treat-
ments in the treatment algorithm. Notably, patients with detectable ctDNA before the intervention
experienced rapid recurrence compared with ctDNA negative patients. This result while based on
a small population, suggests the strong potential of ctDNA as a clinically relevant biomarker. Con-
ducting larger studies with greater statistical power may further elucidate whether patients with
positive ctDNA would benefit from locoregional therapies. Moreover, achieving total extinction of
ctDNA prior to thermal ablation could become an intermediary objective within systemic treatment.

While ctDNA detection at H2 did not predict early relapse, detection at H24 was found to be
related to recurrence suggesting that cell death induced by thermal ablation impacts ctDNA kinetics.
All patients with no recurrence during follow-up were ctDNA negative at H24, and the presence of
ctDNA at the one-month follow-up was a statistically significant hazard ratio for recurrence. This
suggests that achieving ctDNA extinction could also serve as an important treatment objective, in
addition to achieving a complete response based on radiological assessment.

The immediate dynamics of ctDNA before and after thermal ablation bring new data to this
expanding field. The initial description of cell-free DNA in human plasma was published in 1948
Mandel and Metais (1948). Since then, in vivo and in vitro studies have focused on better explaining
the origins of circulating DNA in patients. Theories relate to the release of ctDNA via necrosis and
apoptosis but also through oncosis (ischemic cell death), pyroptosis, phagocytosis, active secretion,
neutrophil extracellular trap release (NETosis), and excision repair A et al. (2019). Conversely,
while variations in ctDNA are typically attributed to the tumor burden, they might also reflect
tumor metabolism. These biological features might explain why some studies show an increase of
cell-free et ctDNA concentrations during the initial phase of radiation or systemic therapy Cheng
et al. (2009). The initial 24-hour period seems particularly prone to ctDNA dynamic changes that
could help predict long-term outcomes.

We also report genetic heterogeneity between plasma and tumor tissue. Technical issues, es-
pecially for patients screened in another institution, molecular switch for patients initially KRAS
wild type with KRAS positive ctDNA, second cancer or emergence of a tumor subclone are possible
explanation for these discrepancies.

There is no comparable data to date focusing on this specific situation. We provided valuable
additional information regarding patients with oligometastatic limited disease. Given the complex-
ity of the cell death induced by thermal ablation, results from the analysis of ctDNA dynamics
before and after surgery are not directly transposable. Thermal ablation has been shown to induce
coagulation necrosis and apoptosis through both direct and indirect mechanisms, and to activate
an antitumor immune response, all of which are distinct from the effects of surgical resection.

Our clinical study has several limitations. One limitation to our study was the use of recurrence-
free survival as a surrogate for overall survival, a method often employed in studies regarding
locoregional treatments. The underlying hypothesis is that our local treatment will delay the overall
recurrence and hence improve the overall survival. A recent meta-analysis assessed the correlation
between recurrence-free survival and overall survival after resection of colorectal liver metastases
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Figure 13: Three trajectories of plasma DNA concentrations from the real dataset.

for more than 3000 patients and found a minimal correlation Ecker et al. (2022). Future studies
on the role of ctDNA as a predictive factor for poor response should probably be designed with
overall survival as a primary outcome. Another limitation is the study size. As a proof-of-concept
feasibility study, and given the costs of the techniques used, we could not provide sufficient power
for yielding statistically significant differences in all measures. Conclusions are exploratory and
should only advocate further studies on the subject.

In conclusion, circulating tumor DNA may discern patients who are likely to benefit from thermal
ablation from those who may not. Its clinical utility in patient selection holds great promise and
warrants comprehensive investigation through extensive large-scale prospective studies.

6 Why we need data augmentation and clustering

The initial dataset is relatively small given the complexity of the study protocol and its imple-
mentation. We were quite thrilled by our ability to use ctDNA in routine thermal ablation, because
such a biomarker was never assessed before in the peri operative setteing.

Our proof-of-concept study provided valuable data regarding the preoperative prognostic value
of CTDNA but the trajectories (in terms of disease progression througout time) were not studied.

Can we generate an atlas for predicting clinical outcome based on trajectories of circulating
tumor DNA in thermal ablation referrals?

Following our published statement in the Lancet, we propose to generate synthetic data from
this proof-of-concept clinical evaluation that analyzing the genetics and epigenetics of the tumor
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Figure 14: Two clusters: dotted lines for progressive patients.

within the plasma for patients with colorectal cancer metastases referred to thermal ablation could
enhance patient selection.

This was the first clinical study conducted on thermal ablation and systematic ctDNA use, with
both next generation sequencing (using a proprietary gene panel) and specific hypermethylation
parameters (using ddPCR). However, because of the technicity of this analysis, and its current
financial cost, we lack large datasets that could provide sufficient significance for the results.

The objective of the current section is to compute two population trajectories from circulating
tumor DNA ratios, and to produce an atlas for good-outcome patients following thermal ablation
and an atlas for bad-outcome patients in terms of cancer recurrence. Such atlases could then be
confronted with the hypothetical kinetics of circulating tumor DNA in the peri-operative setting.

Gene mutations in cancer patient plasma throughout time can be treated as longitudinal data
that assume a correlation between observations, incorporating latent variables to capture inherent
variability. When using mixed-effects models, we combine fixed effects (consistent parameters across
individuals, or population trends) with random effects (varying parameters represented by latent
variables, or individual deviations).

The trajectory of each individual can be modeled as a piecewise affine trajectory. The population
trajectory is not obvious, but the hypothesis stemming from biological data was that thermal
ablation would initially release ctDNA between Hour 0 and Hour 2 immediately following the
thermal ablation, then decrease gradually to reach a low point before either perpetuate at negative
values (for good outcome patients), or augment in later stages (for bad outcome patients). Moreover,
time breaks are unknown: we arbitrarily chose to sample patients at fixed time points (H0, H2, H24
and D30) that do not reflect the natural time breaks in terms of disease response, disease recurrence
or ctDNA clearance. The present use of mixed-effects models adapted to longitudinal datasets has
the potential of revealing new time breaks involved in the biological mechanisms involved in thermal
ablation.
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6.1 Generating Synthetic Data Using Generative Adversarial Networks

For demonstration purposes, we propose to model each individual as a piecewise affine trajectory.
We can use data augmentation, generative models or resampling. One option is to use a Generative
Adversarial Network (GAN) 16 with two neural networks, the Generator and the Discriminator,
which are trained together in a game-theoretic framework. The two networks are implemented as
feedforward neural networks. We can generate the synthetic dataset from the real datasets with
good outcomes and bad outcomes and four time steps, or three time breaks.

The Generator takes a random noise vector as input and produces synthetic data. It consists
of three fully connected layers with ReLU activation functions. The first layer is a fully connected
(dense) layer that takes an input vector of size 100 and produces an output vector of size 128 (here
using the torch.nn library: nn.Linear(100, 128)). After each linear layer, a ReLU activation function
is applied. The second layer is nn.Linear(128, 256), that takes the 128-dimensional output from the
previous layer and produces a 256-dimensional output. The third layer is nn.Linear(256, 4): This
is the final fully connected layer of the Generator. It takes the 256-dimensional input and produces
a 4-dimensional output to match the dimension of our output data (4 time steps).

The Discriminator takes data as input and outputs a probability score indicating whether the
input is real or fake. We define the Discriminator as three fully connected layers with ReLU
activation functions and a sigmoid activation in the final layer to produce a probability score. The
first layer is a fully connected nn.Linear(4, 128) that takes an input vector of size 4 (for the 4 time
steps), and produces an output vector of size 128. A ReLU activation is applied. The second layer
is nn.Linear(128, 64), a ReLU function is applied, and the last layer is nn.Linear(64, 1) with a
sigmoid activation function for the probability of the input being real or fake.

We set standard hyperparameters for GAN structures: a learning rate of 0.0002, a batch size of
64 and 10.000 epochs. Both networks are set to use a Binary Cross-Entropy loss function and an
Adam optimizer. The training loop alternates between training the Discriminator and training the
Generator to ensure that the skill levels are similar. In each iteration, a random noise is generated
as input for the Generator, fake data is generated by passing the noise through the Generator. Real
patient data and fake data are used to train the Discriminator to correctly classify real as 1 and
fake as 0. The Generator is trained to produce data that the Discriminator classifies as real (aiming
for a loss close to 1). The “equilibrium” point in this min-max game occurs when the Generator
produces data that is indistinguishable from real data, and the Discriminator assigns a probability
of 0.5 to both real and generated data. We then generate 100 fake patients using the Generator
trained previously and plot the results for each cohort with standard noise. A subset of 20 patients
is illustrated in the figure below. Good outcome patients are also illustrated.

6.2 Modelling Atlases Using the MCMC-SAEM Algorithm

In this section, we propose to model the two population trajectories based on Mantoux et al’s
Mantoux (2022a) adaptation of mixed-effect models for longitudinal datasets of unknown time
breaks.

We define a hierarchical structure which decouples the average trajectory of the population
from the individual-level variability Mantoux et al. (2021). In particular, we are interested in
the structural breaks within the population dynamics that could correspond to either a treatment
response or an infra-clinical disease progression. The trajectory of each individual is modeled as a
piecewise affine trajectory.
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Figure 15: GAN generated good and bad outcome patients.

Our data is summarized by y and t. Here, we define y as the collection of all observations of
each individual, i.e. y is a vector of 4 ctDNA ratios (or values) for each patient. We define t as
the collection of observation times, which are H0, H2, H24 and D30 for the plasma samples. Fixed
and random effects are not obvious when plotting both individual trajectories. The framework
was previously adapted by Clément Mantoux Mantoux (2022b) Mantoux et al. (2022). The model
first defines an average population trajectory D(t). This trajectory is taken as a d-dimensional
continuous piecewise linear curve, which allows handling structural breaks in the disease progression
or changes in a treatment. In our case, the dimension is 1 and the collection of observation times
is time 0, 1, 2 and 3, where the thermal ablation was performed between time 0 and 1 before the
theoretical release of ctDNA.

The framework is particularly adapted to the clinical setting where the structural breaks (ther-
mal ablation disease recurrence) are not known.

This work is based on models published by Schiratti et al SCHIRATTI et al. (2015). In this
article, the authors proposed a Bayesian mixed-effects model designed for analyzing longitudinal
manifold-valued data. Their model allows for the estimation of a group-average trajectory in the
measurement space – the trajectory of ctDNA for good or bad outcomes patients in our case -
using Riemannian geometry tools. Using the tools of geometry allow us in this case to make no
assumption about the trajectories of ctDNA. Most importantly, individual trajectories derive from
the group average and are defined as a parallel to the group average. A stochastic version of the
EM (the SAEM) is used to estimate the parameters of the model.

Building on Juliette Chevallier’s thesis Chevallier (2019), adaptation is applied as follows: the
average population trajectory is parameterized by a reference point (p0, tB,0) in R and K breaks
with time breakpoints t1, t2, . . . tK-1. Each breakpoint has a corresponding position pi on the
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Figure 16: MCMC-SAEM algorithm applied to ctDNA, adapted from Juliette Chevallier

trajectory D(ti). The measurements of ctDNA at different points are modeled as noised obser-
vations of the hidden Di trajectory. Each trajectory is defined by both a space shift and a time
reparameterization of the average population trajectory D(t). Each trajectory can be defined by
its hidden latent variables, i.e. the parameters.

A population trajectory is fully defined by the list of break times and the list of trajectory values
at each break. The trajectory is hypothesized to be affine in between the breaks. These define the
first three parameters defined as p0_bar, the list of trajectory values at the first break, t0_bar is
the list of break times and v0_bar is the list of slopes for each coordinate and each piece of the
trajectory. We will then add a noise on the population trajectory. These population parameters
are stacked in the variable (x, y, ✓)

Each individual is defined by how its trajectory deviates from the average (p0, t0, v0) with
the following hidden parameters: ⌧ gives a temporal shift between individual i and the population
trajectory, ✏ [i,j] represents the logarithmic acceleration factor of individual i on the piece j of the
trajectory, � is the spatial shift between the population trajectory and the individual trajectory.
These individual parameters are stacked in the variable z.

No missing data were imputed in this section. The model parameters are computed using the
Maximum A posteriori estimator (MAP), which was computed with the MCMC-SAEM algorithm.

For feasibility purposes, we use the previously generated synthetic data as if we had enrolled 200
patients, with simple labels as ‘progressive’ (bad outcome) and ‘non-progressive’ (good outcome).

We aim to later test ctDNA in real-life settings through a multicentric clinical trial.
We apply the MCMC-SAEM and define the number of SAEM steps for the parameter estima-

tion : 1000000 ; the number of MCMC iterations to estimate the posterior mean of (z|y) : 10000 ;
the number of MCMC iterations used in the marginal likelihood computation : 100000. The pre-
vious work proposes to initialize the MCMC-SAEM by taking a linear regression of each feature
across time, and to use a Symmetric Random Walk Metropolis Hastings within Gibbs sampler with
Gaussian transitions. The variance of the proposal Gaussian transitions are tuned along the SAEM
steps to reach a desired Metropolis acceptance rate. The complete procedure for the marginal
likelihood estimation was summarized:

In the course of our clinical study, we embarked on a dual track of research aimed at both
helping us select patients prior to treatment and helping us better understand the biological effects
of thermal ablation. Circulating tumor DNA proved to be effective as a predictive biomarker prior to
the thermal ablation. Unfortunately, the four time points evaluated were insufficient for a thorough
understanding of the dynamics.

We hypothesized a pronounced increase in ctDNA levels following treatment due to cell de-
struction through necrosis, apoptosis, and exosome formation, along with the triggered immunity
reaction. We hypothesized that patients who would not respond in the long term were patients with
undiagnosed untreated disease, i.e. who would have a steap fall in ctDNA before a steap uptake.
In parallel, good outcome patients would have sustainability in the minimal residual ctDNA found

20



Figure 17: From Mantoux et al, bridge sampling procedure for the marginal likelihood estimation.

Figure 18: Outcomes and trajectories using the SAEM method.
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Figure 19: Parameters for K=0, 1 and 2 for good outcome (first line) and bad outcome (second
line) patients.

throughout time.
Both hypothesized trajectories were produced by the MCMC-SAEM algorithm, with, however,

some specifics. Trajectories aligned with our expectations, with a sharp increase observed among
patients with unfavorable outcomes and a steady maintenance of low levels among responders, and
even showed the small uptake following thermal ablation. Additionally, the detection of temporal
breaks, particularly around the 300/400 timepoints, presents an intriguing result for further in-
vestigation into the dynamics of untreated cancer progression. This timebreak, at approximately
two weeks after treatment, suggests a change in dynamics that is concordant with known timely
evolutions in colorectal cancer. Two weeks is typically the intercure delay between chemotherapy
and targeted therapies lines, and is also the delay for interrupting treatments in the peri operative
setting. Whether this result is artefactual or not could be the subject of a prospective study on a
broader cohort of patients treated with thermal ablation.

By marking a break at Hour 400, the model provides important insight into what we could
expect from tumor DNA dynamics in regards to the underlying biological phenomena induced by
thermal ablation.

6.3 Discussion

Using a GAN on 20 points in 4 dimensions seems like a rather complicated approach. GANs are
known to be unstable during the training process, stemming from the adversarial nature of the
training where both networks compete against each other. Since such networks are usually trained
on massive data, our GAN might fail to converge towards a plausible population trajectory for
both good outcome and bad outcome patients. It may mimic the statistical properties of our small
training data based on the clinical study conducted for this work, without capturing the complex
biological relationships between ctDNA, thermal ablation and disease recurrence. Recent research
is specifically aimed at the mode collapse issue with GANs, illustrated by examples such as the
Dynamic GAN framework proposed by Luo et al23. In this publication, they propose to address
the diversity of the generated samples (which is often lower than realistic), by detecting collapsed
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samples and training a dynamic model in parallel to the competition. These new frameworks could
be assessed on bioclinical data such as ctDNA. Simpler models could be explored, such as estimating
a multivariate Gaussian of dimension 4 for each class (good/bad outcome), and could be compared
with the GAN results. Nevertheless, this enabled us to have a virtual population to try the SAEM
model.

The model proposed by Juliette Chevallier and Clement Mantoux weren’t tested in this specific
context: on average, there were 1̃5 points in each individual’s trajectory. It’s uncertain if it works
with only 4 observations, especially when two of them (H0 and H2) are very close together in time.
It wouldn’t be surprising if the model treats the measurement gap between these two points as noise.
This could pose a significant obstacle to applying the model as-is in this situation. Adaptation might
be necessary (e.g., removing noise in observations by imposing a very small epsilon sigma, which
should be feasible via the prior on parameters), and/or considering how to detect slope changes if
the time scale changes (e.g., switching to a logarithmic time scale).

The mixed effect model might seem overly complex for the intended application, but we could
use it in a prospective study with more than 4 samples per patient. It is difficult to determine if
breakpoints occur at a specific point in the interval, for example, halfway, or at point H24. Placing
many breakpoints in this interval indicates that the model might be somewhat lost, especially since
the trajectory segments between two breakpoints in the interval [H24, D30] don’t seem to serve a
clear purpose. Additional information would be needed to extrapolate what happens in the middle
of the interval.

A suggestion is to create a simple mixed-effects model where the breakpoint dates are known and
fixed (namely, H0, H2, H24, D30). This should be easier to estimate than the current model and
doesn’t assume breakpoints between two points, which is difficult to verify. Comparing 4 models:
no breakpoint, breakpoint at H2, breakpoint at H24, breakpoint at H2 and H24 could provide
valuable insights.

In conclusion, we identify patients with bad outcome as patients who have a ascending ctDNA
after thermal ablation, and patients with good outcome as a steady low-value ctDNA throughout
follow-up. This could be used in clinical practice, and should be further investigated in large
prospective studies.
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Figure 1: PhD map.

1 Navigating within the patient’s vascular network

This section refers to the purple projects.
This section was adapted from the following publications:
How Artificial Intelligence will Reshape our Interventional Units published in Car-

diovasc Intervent Radiol (2023). Boeken et al. (2023a)
Automated catheter segmentation for endovascular radioscopy images with deep

[morphological] networks- To be submitted
Curvature-preserving arborescent representation of cerebral vasculature- To be sub-

mitted.
Special thanks for this section: for the ongoing collaborative work with Jean Feydy, Alisa

Kugusheva, Julien Nguyen Van, Philippine Cordelle.

1.1 Introduction to endovascular navigation

After patient selection, our work focused on the per-interventional data.
The first reported angiography of blood vessels was in 1896, in Vienna, performed on the hand

of a cadaver. The first cerebral angiography was performed in 1927, by Moniz. This was the
only diagnostic technique that allowed the investigation of vascular disorders until the computed
tomography was introduced in 1975. The pioneer work enabled to visualize cerebral vessels in live
patients, creating an “Arterial Encephalography”. The method of obtaining cerebral angiograms
has evolved over the years. In the 1960s, the procedure involved puncturing the carotid artery and
injecting a contrast medium. The advent of Digital Subtraction Angiography (DSA) in the 1980s
marked a major advancement in the field, and more recently, the use of 3D angiography has become
increasingly prevalent.

This technique allows ultra-high-resolution vascular images that have not yet been
used to navigate autonomously. Being able to interpret those live images is a prereq-
uisite for automation and robotic navigation.

Endovascular image-guided interventions have revolutionized the medical field, offering targeted
treatments within organs through vessel navigation. This minimally invasive approach relies on live
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Figure 2: 1927 arteriogram

Figure 3: Contemporary Unit
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fluoroscopic imaging and radio-opaque devices to guide physicians during procedures. Today, most
procedures are performed by a manual operator who inserts these devices while analyzing the live
images, using a two-degree of freedom action: the push-pull action and the torque action.

For example, uterine artery embolization, a well-established interventional radiology treatment,
has consistently demonstrated its efficacy in treating women with symptomatic fibroids Barat et al.
(2024). The procedure involves the precise injection of embolization particles directly into the
uterine arteries, navigating catheters through a single artery puncture site.

Robotic assistance holds the potential to change the manual aspect of these therapies Boeken
et al. (2023a). Due to the apparent simplicity of the fundamental actions involved (such as pushing
and twisting), endovascular approaches are particularly prone to shift towards teleoperated inter-
ventionsCrinnion et al. (2021). The technology promises to enhance precision, reduce radiation
exposure, and allow remote navigation within the vascular network. It is already being used in
complex and high-risk situations, such as the treatment brain aneurysms or carotid artery stenting,
where precise navigation and stability are crucial.

These solutions may benefit from recent advances in Artificial Intelligence and Computer Vision,
evolving from robotic assistance towards more autonomy. The concept of autonomous interventions
aims at developing systems that can analyze live images during the intervention and enable some
degree of feedback loop or decision process. Computer vision models have undergone significant
adaptation to cater to the immense interest in Diagnostic Imaging. In the realm of Interventional
Imaging, various AI-based models are readily available for live image analysis, offering valuable
insights like predicting vascular flow dynamics and minimizing misregistration artifactsNajafi et al.
(2023)Boeken et al. (2023b). A significant challenge that Computer Vision tackles is precisely
identifying guidewires, catheters, and contrast positions, effectively narrowing the gap between
robotic assistance and the interpretation of live images.

These robots are unable to integrate the live image at the core of image-guided therapies. Today,
they mostly integrate the manual aspect of the therapy without the visual perception guiding the
treatment. In this sense, such robots are similar to well-established surgical solutions for open or
laparoscopic approaches. Computer vision features such as automatic catheter detection could be
implemented in contemporary robotic solutions. As an example, one robotic software feature named
‘Rotate and Retract’ is an automated robotic movement that was FDA approved. Other automated
actions are currently being evaluated, including the ‘Spin’, ‘Wiggle’, Dotter’, and ‘Constant speed’
features.

Catheter tip detection and segmentation are two prerequisites to such live visual interpretation.
Previous solutions were recently proposed, including a temporary transformer network for guidewire
segmentation Zhang et al. (2021) and a tip detection model for cerebral angiography Ghosh et al.
(2023). Pelvic interventions, such as uterine artery embolization, could be an area of interest for
automation, in the context of remote treatment for patients from regions without interventional
radiologists or in the context of acute hemorrhage. Most published studies were performed on either
neurovascular or cardiovascular interventionsZhang et al. (2022).

In the present study, we propose to train and evaluate a deep morphological network
for live catheter segmentation in uterine artery embolization.

1.2 Material and method
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1.2.1 Patient selection

This study was IRB approved (IRB # #00011928). All consecutive patients who underwent uterine
artery embolization (UAE) between January 2022 and December 2022 were screened.

Inclusion criteria comprised all women who underwent UAE at our tertiary center and patients
were excluded if they refused to participate or if they were under 18 or under guardianship.

All procedures were performed by experienced radiologists from the interventional radiology
department and live radioscopic images were prospectively recorded. Standard parameters were
used without specific treatment changes due to the study. UAE was either performed for post-
partum hemorrhage, adenomyosis or symptomatic uterine fibroids. Post-procedure, patients were
hospitalized for pain management and discharged the following day with painkiller prescriptions. All
DICOM data were fully anonymized and images were retrieved and annotated by three independent
investigators using the GIMP software.

A total of 152 patients were included. For each patient, a randomly selected single image
stemming from the scopic video was retrieved containing the tip of the catheter and/or the micro-
catheter at the injection point. The full was included for further analysis. Individual images were
extracted from the DICOM metadata and subsequently converted into standard grayscale files to
facilitate analysis and processing. Grayscale images contain pixel values ranging from 0 (black) to
255 (white), representing the intensity of the image at each pixel location. The images vary in sizes
from 512x512 to 1024x1024.

The dataset was divided in a training set (period 1) of 112 images, a validation set of 20 images
(period 2) and an independent test dataset of 20 images (period 3) for performance analysis.

The corresponding segmentation masks were manually annotated for each image and represent a
binary image with background pixels as black (0) and a catheter/microcatheter mask as white (1).
Due to the limitation of data, and in order to avoid overfitting and to make the model more robust,
we performed several data augmentation techniques. The transforms included: random horizontal
flip, random perspective, random rotation, random brightness contrast, Gaussian noise, and a center
crop. The applied data augmentation algorithms provided more diversity to the datasets, giving
448 images in the training set and 80 images in the validation set. The result of data augmentation
is represented in the figure below. An example is provided in the figure below.

1.2.2 Deep learning model

The model used is a U-Net with grouped convolutions Cohen and Welling (2016). The model
used is a U-Net specifically adapted to annotated medical image segmentation tasks Ronneberger
et al. (2015). Briefly, the U-Net model architecture starts with an encoder part whose purpose is
to downscale the images while increasing the number of feature maps. The downscaling step is
repeated 4 times in total to reach the bottleneck. The second part, also called the decoder, is used
to upscale the images while decreasing the number of feature maps in a mirroring way compared
to the encoder. Skip connections between the similarly shaped feature maps of the encoder and
decoder make it possible for the network to pass useful information for performant upscaling.

As it was previously shown, the vanilla U-Net performs poorly on the catheter segmentation
task. Using grouped convolution instead of the classical one significantly increases the performance.
In this study, we show results for a model with grouped convolutions.

The mask retrieved in the output is compared to the ground truth mask with several loss
functions. Because the pixels involved in the segmentation task of the catheter are very rare
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Figure 4: Examples of transformations – Up :images, Down: corresponding mask - From left to
right : Original image, Random perspective, Random rotation, Horizontal Flip, Vertical Flip

Figure 5: Examples of transformations – Up :images, Down: corresponding mask - From left to
right : Original image, Random perspective, Random rotation, Horizontal Flip, Vertical Flip
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Figure 6: More transformations
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Figure 7: More transformations
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compared to the overall background pixels, such tasks are considered unbalanced problems. Specific
loss functions were proposed to address such class imbalance related issues, such as weighted cross-
entropy, Dice loss or Sensitivity-Specificity Sudre et al. (2017). All these functions use a binary
classification (catheter / background). The Dice loss function is based on the Sorensen-Dice Dice
(1945) Sørensen (1948) coefficient that measures the overlap between the prediction and the ground
truth, and was later developed as a generalized Dice loss function for multiple class segmentation.
The Dice was performed on A = catheter and B = background.

More recently, the centerline Dice, named shortly clDice loss function was introduced to pre-
serve the topology of tubular structures such as arteries and catheters Shit et al. (2021). In this
paper, Shit et al propose to assess the intersection between the mask and its morphological skeletal
representation and demonstrate topology preservation for 2D and 3D segmentation. While the
classical Dice score treats all pixels equally, in the task of catheter segmentation the connected
components on the image are subject to a specific focus in clDice score. We also train with the
active contour with elastica (ACE) loss function that incorporates elastica (curvature and length)
and region information as geometrically-natural constraints for the image segmentation tasks Chen
et al. (2020) .

Backpropagation is then performed across the network to update its weights. We used the Adam
optimizer and started with a learning rate of 0.01. The learning rate was gradually decreased, being
halved every 10 epochs. In total the model was trained on no more than 30 epochs as a plateau
was reached for the value of the loss function.

Dice Score =
2⇥ |A \B|

|A|+ |B|

where A and B are two distinct sets. (A = catheter and B = background).
For the clDICE score, we consider two binary masks: the ground truth mask (VL) and the

predicted segmentation masks (VP ) according to Shit et al. First, the skeletons SP and SL are
extracted from VP and VL respectively. Then the fraction of SP that lies within VL, which they call
Topology Precision or Tprec(SP , VL), and Topology Sensitivity or Tsens(SL, VP ) are defined below;

Tprec(SP , VL) =
|SP \ VL|

|SP |
; Tsens(SL, VP ) =

|SL \ VP |

|SL|
(1)

clDice(VP , VL) = 2⇥
Tprec(SP , VL)⇥ Tsens(SL, VP )

Tprec(SP , VL) + Tsens(SL, VP )
(2)

The model was trained on around 30 epochs (see the figure below) .
The model was trained on Tesla T4 GPUs. The images were center cropped to the size of

480x480 and their pixel values ranged from 0 to 1. The training was performed with a batch size
of 4.

1.3 Evaluation

We perform the evaluation of our model on a separate test set consisting of 20 images. We use IoU
(intersection over union) and clDice score as an evaluation metric. The results of the segmentation
are represented in the table below. This section is still under investigation. Performances are
provided for IoU (intersection over union), and clDICE are coming next as this is an
ongoing project.
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Figure 8: Loss using clDICE

Figure 9: Performance according to loss functions. Note that clDICE are still under investi-
gation.

Figure 10: Target / prediction on one patient.
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Figure 11: Neuro-Vascular Assist (iMed technologies, Tokyo, Japan), from Sakakura et al.

Note that Sakakura et al published the first case of carotid artery stenting using their proprietary
software tracking wires, guiding catheters, and embolic protection devices Sakakura et al. (2024).
The full segmentation of the device was not needed for this study, a bounding box was sufficient to
assist neuro-interventional radiologists in their procedure.

While this study is ongoing, understanding live images is paramount to automation. This will
bridge the gap between pre-therapeutic planification (notably from 3D images) to robotic assistance
(with motorized arms).
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2 Curvature-preserving arborescent representation of cere-

bral vasculature

2.1 Introduction

Motivation. Current imaging techniques for cerebral vasculature include mini-invasive high-
resolution selective three-dimensional subtracted angiographies. These three-dimensional contrast-
enhanced images are obtained prior to the treatment of several vascular disorders such as aneurysms,
malformations, fistulas, strokes and stenosis. They provide essential data for treatment planning,
especially regarding the vascular access route towards the target disorder.

Endovascular navigation is based on the insertion of several coaxial devices including guides,
micro-guides, sheaths, catheters and microcatheters. All of these devices present specific torque,
support and pushability characteristics that will determine the difficulties in accessing target points.
These challenges are inherently correlated to the curvature and length of the vessel route, and the
parietal friction along the way.

Specifications. Unfortunately, 3D rendering of the patient anatomy does not provide an under-
standable representation of possible endovascular routes and related challenges. This is the reason
why we aim at providing a simple planar arborescent representation of the full cerebral vasculature
that can help interventional radiologists to assess obstacles prior to endovascular treatment, using
a single snapshot of the patient anatomy. Our work is also motivated by pioneering anatomical
studies of the brain vasculature (Kahilogullari et al., 2012), performed via physical dissections of
dozens of human brains, that we would now like to automate in a mini-invasive way.

Starting from a 3D angiography, we intend to create a planar representation of the 3D vascular
structure that:

• Preserves the real length and diameter of the vessel segments.

• Approximates the angles and take-offs of the artery branches.

• Estimates the tortuosity of the artery segments through curvature.

• Estimates the accumulated torque of the device along the route.

• Optimizes the utilization of the available representation 2D-space efficiently.

• Ensures that there is no overlap in the two-dimensional (2D) representation of the arteries.

We note that the creation of blood vessel maps is an active field of research, and refer to Eulzer
et al. (2022) for a modern review. What sets our work apart is the attention paid to the
vessel lengths and curvatures, which are often discarded by other methods but play a
crucial role in endovascular interventions.

Cohort. Our study population consists of fifteen consecutive patients followed for unruptured
intracranial aneurysms in a single tertiary center. The procedures were performed with the patient
under general anesthesia. The first step in the process involves positioning the C-arm angiography
system around the patient’s head. This equipment consists of a C-shaped arm with an X-ray
source and detector that can rotate around the patient to capture images from multiple angles
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Figure 12: Real vascular anatomy from cadaveric dissection. This ressembles the current study’s
objectives.

(Cone Beam CT). The first cone-beam computed tomography (CBCT) acquisition is performed
without the injection of contrast material. This initial acquisition serves to create a baseline or
“mask” image of the patient’s head and intracranial structures. Following the acquisition of the
mask image, a contrast agent is injected in the carotid or vertebral artery providing enhanced
visualization of the vascular anatomy. Once both CBCT acquisitions are completed, the imaging
data is processed to generate a three-dimensional (3D) reconstruction of the intracranial vasculature
after subtracting the first acquisition from the first.

The present study introduces a full pipeline to build a curvature-preserving planar representa-
tion of a such a 3D arborescence. A major challenge in vessel navigation algorithms is to avoid
topological artifacts that are induced by the limitations of the voxel resolution. When arteries
overlap in the image, large voxels may not allow us to distinguish between them accurately, causing
“jumping arteries”. This occurs when the model incorrectly interprets overlapping or closely posi-
tioned arteries as a single vessel, causing the vessel representation to appear to jump or shift. This
is the reason why we chose to base our model on high-resolution invasive imaging techniques, such
as angiographies, rather than cross-sectional non-invasive images such as MRI or CT scans.

2.2 Pre-processing of the per operative 3D acquisition

Segmentation. As illustrated in Fig. 13.a, the raw data used in the present study consists of
contrast-enhanced subtracted volumes of intra- and extra- cranial vessels. As an intermediate step
to our 2-dimensional unfolding, we aim to convert this volume into a graph that represents the
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geometry and topology of the cerebral vasculature. This is a non-trivial task, since a basic thresh-
olding of the image (illustrated in Fig. 14.a) generates a binary mask or contour mesh with many
topological defects that include fused vessels, disconnected components and noisy reconstruction
artifacts.

To overcome these issues, we choose not to rely too much on the raw data intensity, which
presents fluctuations along the vessels due to variations of the concentration of the contrast agent.
Instead, we first apply a thresholding pass to extract a binary mask, and compute a truncated
signed distance function to its boundary. This scalar field, illustrated in Fig. 13.b, takes values that
range from 6mm (inside the thickest carotid artery) to -3mm (slightly outside of the vessel surface).

This operation is standard in image processing, but common implementations provided by e.g.
the scikit-image library are too slow and memory hungry to scale up to large volumes of 500 ⇥
500⇥ 500 voxels on modest hardware. Instead, we choose to implement the Jump Flood Algorithm
(Rong and Tan, 2006, 2007) using the Taichi librabry (Hu et al., 2019). This lets us focus on voxels
that belong to the blood vessels without wasting computation time on the empty regions of the
ambient space. We can then perform this distance computation in a couple of seconds on a typical
laptop. More generally, our code relies extensively on the NumPy, SciPy and PyTorch libraries for
computations (Harris et al., 2020; Virtanen et al., 2020; Paszke et al., 2017), as well as PyVista and
ParaView for visualizations (Sullivan and Kaszynski, 2019; Ayachit, 2015).

From volume to curves. To extract the centerlines of the blood vessels, we then apply a Frangi
vesselness filter (Frangi et al., 1998) on the signed distance volume. As in the previous step, we
implement this operation using Taichi and recover the high-resolution vesselness volume of Fig. 13.c
in a couple of seconds.

The scikit-image (van der Walt et al., 2014) and skan (Nunez-Iglesias et al., 2018) libraries
then allow us to turn this volume into a set of connected 3D curves using an Otsu thresholding
(Otsu et al., 1975), binary erosion, and a simple connectivity pattern between neighboring voxels.
These steps rely on Lee’s method (Lee et al., 1994) to build the skeleton via a surface axis thinning
algorithm that employs an octree data structure to examine the 3x3x3 neighborhood surrounding
each pixel. This iterative method progressively removes pixels while maintaining connectivity, until
the binary skeleton volume converges to a stable state.

After applying a small Laplacian smoothing on the point coordinates to remove aliasing artifacts,
we sample the distance volume of Fig. 13.b to estimate the pointwise vessel radii. Retaining only
the largest component of the graph, we obtain the tubular model of Fig. 13.d.

2.3 Graphical representation of the vascular network

Enforcing a cycle-free topology. In order to produce an overlap-free 2D visualization of the
brain artery network that preserves vessel lengths, we assume that our graph is a tree, without
cycles. This is consistent with common knowledge about the brain anatomy: with the exception of
the circle of Willis, a normal brain artery network should be cycle-free. Unfortunately, this strong
topological assumptions does not hold in practice for the graph of Fig. 13. Due to limits in the
voxel resolution, some vessels that run close to each other may be fused by our processing: our
processing hallucinates “shortcuts” and topological cycles that do not correspond to realistic paths
for endovascular interventions. Abnormal patient anatomies or vessel ruptures may also create
cycles that should be taken into account, but that could be identified as explicit “outlier” edges on
top of a normal tree structure.
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(a) Raw image. (b) Distance transform.

(c) Frangi vesselness filter. (d) Graph with estimated vessel radius.

(e) Topological simplification. (f) Geodesic distance to the root.

Figure 13: Main processing steps as we turn a raw 3D volume into a loop-free set of 3D curves.
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(a) Raw surface. (b) Graph reconstruction. (c) Graph simplification errors.

Figure 14: Assessment of the quality of our graph reconstruction.

Pruning. Some topological denoising is thus required. To this end, and for the sake of compu-
tational efficiency, we first collapse all nodes with two neighbors in order to get a lighter graph
that is illustrated in Fig. 13.e. This reduces the number of nodes from more than 25,000 to a mere
2,000 on average, while preserving the same topological structure. Then, we create a root node that
represents the pumping heart and connect it to all nodes at the bottom end of the volume. Finally,
we assign a cost to each directed edge of the graph with:

weight(a! b) = radius(b)� radius(a) . (3)

This weight encodes a sensible prior on artery trees, which is that the blood is likely to run from
wide to narrow vessels. Using the Edmonds algorithm (Edmonds et al., 1967) provided by the
minimum_spanning_arborescence method of the NetworkX library (Hagberg et al., 2008), we
then find a cycle-free subgraph of the vascular network that connects all the nodes of the simplified
network with minimal total weight, i.e. with minimal “upstream” flow going from thin to thick
vessels. We display the result of this topological pruning on the high-resolution graph in Fig. 13.f.
Cycle-inducing edges that have been pruned by the Edmonds algorithm are displayed in green,
while the other ones are colored according to their geodesic distances to the root node.

Successes and limitations. As illustrated in Fig. 14.a-b, our method is able to capture most of
the brain arterial network correctly. This includes challenging regions of the brain anatomy such
as the two anterior cerebral arteries that run parallel to each other, between the left and right
hemispheres, and are correctly modelled as distinct curves. In practice, we find that the topological
structure of the main arteries (with radius larger than 2mm) is well preserved. On the other hand,
two main sources of errors still remain:

• Some branches of the tree can be discarded, especially if they are thin and connected to the
rest of the network via a sharp turn that is not highly contrasted in the raw 3D volume, as
in the upper left corner of Fig. 14.b.

• Although our method deals effectively with vessels that run parallel to each other, it does not
handle “crossings” well. This is evident in Fig. 14.c, and is a consequence of the fact that our
topological cleaning procedure can only delete graph edges and is unable to split a “crossroad“
node with 4 neighbors into two separate curves.
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(a) Distance to the root. (b) Downstream volume. (c) XYZ to RGB color scheme.

Figure 15: Point features on our graph representation.

(a) Views of the 3D graph structure.

(b) Unfolding the graph on a 2D plane.

Figure 16: From 3D to 2D representations.
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Fortunately, these segmentation artifacts only affect a tiny portion of the brain artery network.
Errors typically occur in regions that are too remote to be accessible with current endovascular
devices anyway. Nevertheless, getting a reliable and precise network topology from our 3D images
is one of our main targets for future works.

Point features. For the sake of visualization, we enrich our graph with node features that are
computed recursively:

• The geodesic distance to the root, which is illustrated in Fig. 13.f and Fig. 15.a.

• The volume of downstream vessels, which is is illustrated in Fig. 15.b and computed by
identifying each edge with a truncated cone.

• The XYZ coordinates of the barycenter of downstream vessels, that we display directly as
RGB colors in Fig. 15.c and Fig. 16.

2.4 Planar graphical representation of the vascular network

Planar embedding of a graph. Over the past decades, many algorithms have been proposed
to draw graphs on a 2D plane (Battista et al., 1994). As illustrated in Fig. 17, standard methods
such as the Kamada–Kawai algorithm (Kamada and Kawai, 1989) force us to choose between
preserving path lengths are providing intersection-free visualizations. Although significant progress
has recently been made in the untangling of 3D knots and curves (Yu et al., 2021), we found that
existing force-directed drawing methods could not reliably display in 2D the complex topologies of
brain arterial networks.

In order to satisfy all of our constraints, we thus propose an original method for planar graph
representation that is tailored for the requirements of interventional radiologists. We aim at pro-
ducing aesthetically pleasing drawings of the neurovasculature that improve the graph readability,
without compromising anatomical considerations.

Recursive tree embedding. As a first step, we compute a planar representation of the tree
using a recursive algorithm:

1. The root node a is placed at the origin of the 2D plane (x(a), y(a)) = (0, 0) and is allocated
an angular “budget” or interval [✓min(a), ✓max(a)) that is equal to a full half-plane [0,⇡).

2. Consider the K children b1, . . . , bK of node a, and sort them according to the position of the
downstream barycenter along the front-to-back axis.

3. Compute the relative weight wk 2 [0, 1] of each child bk as the vessel volume downstream of
edge a! bk divided by the total volume downstream of node a. By construction, the weights
wk sum up to 1 and correspond to the relative importance of each branch flowing out of a.

4. Given an angle budget [✓min(a), ✓max(a)), split it into K consecutive intervals:

[✓min(b1), ✓max(b1)), . . . , [✓min(bK), ✓max(bK)) (4)

with lengths that are proportional to the weights w1, . . . , wK .
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Figure 17: Kamada-Kawai and log-linear representations of the vascular tree.

5. Define the angle ✓a!bk
as the midpoint 1

2 (✓min(bk) + ✓max(bk)), and the length `(a ! bk) as
the Euclidean length of the (small) corresponding segment in the original 3D graph.

6. Define the 2D positions of the children nodes with:

✓
x(bk)
y(bk)

◆
=

✓
x(a) + `(a! bk) cos(✓(a! bk))
y(a) + `(a! bk) sin(✓(a! bk))

◆
. (5)

7. Run the algorithm recursively on the children bk, with corresponding positions (x(bk), y(bk))
and angular budgets [✓min(bk), ✓max(bk)).

We perform this embedding at a high resolution, with the understanding that most nodes have
only one child and thus correspond to straight junctions between small articulated segments. By
construction, this method preserves the geodesic lengths of the blood vessels and creates no overlap
between branches. It also lets us sort the branches according to an arbitrary criterion – in our case,
along the front-to-back axis as in a slice along the sagittal plane. On the other hand, as illustrated
in the left panel of Fig. 16.b, it hardly allows a radiologist to identify individual vessels at a glance.

Electrostatic repulsion. To improve the readability of our representation, we then relax the
constraints on the angles ✓(a ! b) and progressively move the branches away from each other.
Using a modified electrostatic kernel:

k(a, b) =
10

ka� bkR2 + "
� ka� bk (6)

with gradient:

k0(a, b) = (a� b) ·

✓
10

(ka� bkR2 + ")3
+

1

ka� bk

◆
, (7)
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a simple electrostatic repulsion model is to consider, on each node a, a force:

Force(a) = �
X

nodes b

charge(b) k0(a, b) 2 R
2 . (8)

For the sake of performance, we restrict the sum to the 100-nearest neighbors b of each node a and
use constant charges equal to 1/100. As highlighted in (Yu et al., 2021), optimizing such an energy
with respect to node positions is a surprisingly complex endeavour. Instead, we choose to act on
the edge angles ✓a!b with updates:

✓a!b  ✓a!b +
∆t

`(a! b)

✓
� sin(✓a!b)
+ cos(✓a!b)

◆
·

1

#C(b)

X

c2C(b)

Force(c) , (9)

where C(b) denotes the set of all nodes downstream from b, including b itself, and “ ·” denotes
a dot product between a 2D vector that is orthogonal to the edge (a ! b) and the average force
downstream from b. This optimization on the edge angles guarantees that edge lengths are preserved
at all steps of the algorithm. Using a small enough time step ∆t = 0.1 to avoid collisions between
the 2D vessels, we then obtain at convergence the embedding that is displayed in the middle of
Fig. 16.b.

Displaying the curvature. As a final requirement, we bend the vessels to best reflect their local
curvature. To this end, we first fit a plane to each point of the 3D arterial network by performing
a Principal Component Analysis on geodesic neighborhoods of radius r = 100mm. Starting from
the root, we orient these planes consistently and compute, for each pair of consecutive 3D edges
(a! b) and (b! c), an oriented bending angle �a!b!c in the local 2D plane at point b.

This bending corresponds to a target curvature for our 2D embeddings. Starting from an angle
0 at the root, we integrate it along the tree edges to obtain a target orientation b✓a!b for each 2D
edge. Then, denoting by “Smooth” a Gaussian smoothing operator of radius r = 100mm on the
graph, we compute a new bending force for each edge (a! b) as:

Bending(a! b) = ✓a!b � b✓a!b � Smooth(✓ � b✓)a!b . (10)

The smoothing operator is required to avoid too much drift in the bending formula. To balance
this new bending force with the electrostatic repulsion, we then simply iterate until convergence
the following update on the angles of the 2D embedding edges:

✓a!b  ✓a!b +
∆t

`(a! b)

✓
� sin(✓a!b)
+ cos(✓a!b)

◆
·

1

#C(b)

X

c2C(b)

Force(c) � Bending(a! b) , (11)

where  = 0.002 is a small scaling factor. We end up with the planar representation in the right
panel of Fig. 16.b, that we find satisfying for our purposes. Going forward, we intend to work
on color codes that will highlight accessible zones for different types of endovascular devices, and
extend our method to other organs.

20



Figure 18: Red projects

3 Extension towards the origins of the vascular network: live

embryology

This section refers to the red projects. Special thanks to Pr Alain Chédotal, Eimad Shotar and
Armelle Lesaunier for this ongoing project.

3.1 Introduction

The expansion of endovascular therapies is driven by technological advancements in imaging and
navigation tools. Additionally, a deeper understanding of the anatomy relevant to vascular
procedures has contributed significantly to these advancements, enabling procedures to be tailored
to individual anatomies and reducing the risk of complications.

While new therapeutic procedures shed light on descriptive anatomy, comparative and evolu-
tionary anatomy offers unique insights into human anatomy. Embryology also contributes to our
understanding of adult anatomy. In the neurovascular field, the anatomical complexity of the
anterior communicating artery complex is a classic example of the interplay between embryology,
anatomy, and pathology. Developmental anomalies in this complex are linked to genetic poly-
morphisms identified in animal models, major risk factors for developing anterior communicating
artery aneurysms, and significant variations in tolerance to pathological or therapeutic internal
carotid artery occlusions.

Recent years have seen significant progress in understanding the microvascular embryology
of the central nervous system, particularly regarding the regulation of angiogenesis from perineural
to intraneural vascular plexuses. This is partly due to the emerging concept of the "neurovascular
link," suggesting shared guidance mechanisms between angiogenesis and axonal growth.

While embryology has shed light on human anatomy, the macroscopic neurovascular anatomy
remains relatively underexplored. Most of our knowledge in this area comes from Dorcas Hager
Padget’s articles published between 1948 and 1957, which have had a significant influence. However,
there are limitations to this knowledge, as it was purely descriptive and lacked information on
morphogenesis control. Additionally, the methodology of embryonic sectioning or dissection may
introduce deformations and biases in three-dimensional reconstructions.

The advent of endovascular therapies, the need for anatomical knowledge, and the development
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of new embryological tools provide an opportunity to reevaluate and enrich our understanding of
neurovascular morphogenesis.

Notably, recent advances in imaging techniques allow the exploration of entire organs at
cellular resolution during organogenesis, without the need to destroy the tissue. These
techniques involve rendering biological samples transparent through various methods like
delipidation, decolorization, and decalcification, which adjust the refractive index of the
sample to match its surroundings. These methods, combined with effective immunolabeling and
volumetric microscopy, enable the examination of entire organs, even whole rodent bodies.

3.2 Dataset and study objectives

Methods like 3DISCO (Three-dimensional imaging of solvent cleared organs) and its
derivatives iDISCO (immunolabeling-enabled three-dimensional imaging of solvent-
cleared organs), iDISCO+, uDISCO, or vDISCO are compatible with fluorescent im-
munolabeling of intact/whole organs and embryos. They make tissue optically transparent,
allowing the visualization of the microscopic organization of tissues throughout their thickness us-
ing a high-resolution laser scanning microscope. This approach presents a unique opportunity to
explore morphogenesis and has already been applied to various animal models to study axonal
guidance in mouse embryos, gonadal, renal, and retinal morphogenesis, and the development of the
enteric nervous system in chicken embryos. It has also provided an unparalleled description of the
development of many human embryonic organs.

The method was detailed in Cell Blain et al. (2023), detailing early developments of human head
embryos from over seventy specimens. The method included staining using conjugated antibodies
for labeling large human embryo and fetal samples and iDISCO/ iDISCO+ clearing. This study
detailed the development of the head skeleton, head muscles and innervation, salivary and lacrimal
glands, and head and neck arteries. No automatic classification process was proposed.

We are particularly interested in the arterial segmentation of different embryos. The staining
process used immunostaining for smooth muscle actin (SMA). The authors note that “Last, to
facilitate the visualization of fully annotated 3D image datasets and their use for outreach and
teaching purposes, inter- active 3D models of embryonic head arteries and skeleton were created by
exporting segmented meshes into Verge3D, a web- based interface and toolkit".

We aim to reproduce these results for the pelvic arteries using the planar repre-
sentation of the 3D vasculature described in the previous section. Using vessel-specific
coating, embryo vasculature was manually segmented and saved as blocks in a multiblock dataset.
Below is portrayed the specific segmentation task on pelvic arteries, an ongoing multidisciplinary
project with the Institut de la Vision (France).

In this ongoing collaboration with the Institut de la Vision, we aim to apply our
solution for generating planar representations of newly portrayed ultra high resolution
vascular segmentation at early stages of human development. We hope to generate
new ’classifications’ with higher legibility while preserving important morphological
parameters, as explained earlier.
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Figure 19: From Blain et al, analysis of developing cephalic arteries in human embryos, immunos-
tained for SMA
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Figure 20: 3D analysis of developing rectal arteries in human embryos, courtesy of
Armelle Lesaunier. All pictures are light sheet florescence microscopy images of solvent-cleared
immunostained human embryos at various stages of development. Embryos were immunostained
with SMA or CD31 antibodies. (A-D) Isolated segmented pelvic arterial vasculature. (A) shows a
lateral view of a PCW5.6 embryo. (B) shows a lateral view of a PCW7 embryo. (C) shows a lateral
view of a PCW 8.5 embryo. (D) shows a frontal view of a PCW11 embryo. The panel illustrate
the evolution of the rectal arterial blood supply from two main supplies (superior rectal artery and
sacral rectal arteries) to the adult pattern with persistent sacral rectal arteries. Ao, Aorta; IMA,
Inferior mesenteric artery; ISA, Intersegmental arteries; MSA, Median sacral artery; ScRA, Sacral
rectal arteries; MRA, Middle rectal arteries; IRA, Inferior rectal arteries; OA, Ombilical arteries;
PA, Pudendal arteries.
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Figure 21: Courtesy of Armelle Lesaunier. Light-sheet fluorescent microscopy images of
solvent-cleared immunostained human embryos at various stages of development. All panels show
segmented pelvic arteries and the raw signal of the immunostained embryos. (A) is a lateral view
of a PCW5.6 embryo immunostained with SMA and CD31 antibodies. (B) is a lateral view of a
PCW8.5 immunostained with SMA and Col2. (C) is a frontal oblique left view of a PCW11 embryo
immunostained with SMA.
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1 Partie I. Introduction

L’intégration de la vision dans les interventions guidées par l’image a le potentiel de transformer
notre pratique médicale. Ce travail pose les bases pour l’avenir des interventions autonomes dans
notre domaine spécifique concernant les patients atteints de cancer, en abordant des composants clés
nécessaires à sa réalisation. Nous explorons tout d’abord l’impact transformateur de l’intelligence
artificielle sur les capacités physiques des radiologues interventionnels. Nous soulignons la nécessité
de relever les défis techniques et éthiques. La collaboration interdisciplinaire et des processus
d’évaluation rigoureux sont mis en avant comme essentiels pour une intégration sûre de l’IA dans
la pratique clinique.

Nous proposons une méthode pour détecter les anomalies focales sur les images volumétriques en
coupe. En tirant parti du cadre du Large Diffeomorphic Deformation Metric Mapping (LDDMM),
cette approche démontre une reconstruction améliorée des objets et une localisation précise des
lésions. Dans le même cadre, nous proposons un classificateur, où la sélection des patients présente
des défis uniques en raison des rapports bénéfice/risque complexes. Pour aller au-delà des images,
les données cliniques issues de l’analyse de l’ADN tumoral sont intégrées dans une étude prospective
spécifiquement menée pour ce travail.

Les réseaux antagonistes génératifs (GAN) et la modélisation des atlas en utilisant les algo-
rithmes Markov Chain Monte Carlo - Stochastic Approximation Expectation-Maximization (MCMC-
SAEM) sont utilisés pour prédire les trajectoires des patients. Cette approche permet d’explorer
de nouvelles trajectoires, améliorant ainsi notre compréhension de la progression de la maladie et
de la réponse au traitement en relation avec l’ADN tumoral circulant.

Enfin, nous explorons des techniques avancées de visualisation pour la vascularisation 3D in
vivo et ex vivo. Nous proposons une représentation planaire d’une anatomie 3D, offrant une voie
prometteuse pour une exploration et une compréhension plus approfondies. Ensemble, ces sections
offrent des solutions pour la réalisation des interventions autonomes dans notre domaine.

Les raisons qui précèdent ce travail sont multiples. Aujourd’hui, l’intégration de l’IA et de la
robotique pourrait encore propulser la médecine interventionnelle vers de nouvelles applications et
de meilleurs résultats pour les patients. Bien que les bénéfices cliniques des procédures assistées
par robot soient multiples, y compris une meilleure précision et des temps de procédure réduits, des
limitations persistent, comme l’absence de retour tactile complet. La pleine autonomie des robots
chirurgicaux nécessitera des avancées majeures en IA, en vision par ordinateur et en technologies
de capteurs.

Ce travail se concentre sur les prérequis pour une automatisation complète, notamment la sélec-
tion des patients avant l’intervention et leur traitement avec les dispositifs actuels. Il explore deux
approches principales en radiologie interventionnelle : les approches endovasculaires et percutanées,
tout en abordant les défis éthiques et techniques associés à l’intégration de l’IA. La collaboration
interdisciplinaire, les tests précliniques rigoureux, et la formation adaptée seront essentiels pour une
intégration sûre et efficace de ces systèmes dans la pratique clinique.

Le but de ce travail est de montrer comment les avancées récentes en mathématiques appliquées
permettent de poser les bases pour une radiologie interventionnelle autonome, avec un focus partic-
ulier sur les patients atteints de cancer colorectal, depuis leur sélection jusqu’aux thérapies guidées
en 2D et 3D en direct. Les projets verts se concentrent sur la détection et la segmentation des
tumeurs à partir des scanners pré-thérapeutiques, les projets orange sur les biomarqueurs prédic-
tifs, et les projets violets sur la compréhension des images en temps réel pour l’autonomie future.
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2 Partie II. Détection d’anomalies focales en utilisant le LD-

DMM

Cette section présente une méthode pour détecter les anomalies focales sur des images volumétriques
en coupe transversale sans nécessiter d’annotations ou de jeux de données d’entraînement étendus.

En s’appuyant sur le cadre du Large Diffeomorphic Deformation Metric Mapping (LDDMM),
cette méthode est illustrée à l’aide de scanners du foie et d’IRM cérébrales. La présence d’anomalies
focales nous empêche d’appliquer directement une déformation d’un modèle vers un patient avec
un nombre inconnu d’anomalies focales. Nous proposons d’utiliser cette contrainte diffeomorphe
à notre avantage en modélisant les résidus (c’est-à-dire la différence entre le modèle déformé et
l’observation) comme une matrice clairsemée (sparse matrix), en plus d’un bruit indépendant.

Nous pouvons utiliser les résidus de la déformation diffeomorphe à partir d’un modèle de contrôle
pour détecter et segmenter les lésions dans n’importe quel organe. Ce qui ne peut être reconstruit
comme une déformation diffeomorphe du modèle est ainsi placé dans cette matrice et classé comme
une anomalie.

Nous démontrons que l’estimation simultanée des déformations et des anomalies améliore les
résultats en minimisant les erreurs de reconstruction. Appliquée à des données simulées, notre
méthode permet une meilleure reconstruction des objets et une localisation précise des lésions.
Cette adaptabilité s’étend aux données réelles, où nous appliquons l’approche aux ensembles de
données du foie et du cerveau. Dans le jeu de données du foie, notre approche a détecté 94 % des
métastases, démontrant ainsi son efficacité.

Plus précisément, cette étude présente une approche géométrique pour détecter et segmenter
des anomalies focales dans les organes à partir d’images médicales volumétriques. Contrairement
aux méthodes traditionnelles, cette approche ne nécessite ni annotations ni grands ensembles de
données d’entraînement.

Classiquement, les méthodes de segmentation basées sur l’apprentissage profond, telles que les
U-Nets, ont contribué aux besoins spécifiques des données biomédicales, mais nécessitent souvent
de grands ensembles de données annotées. Cependant, les solutions généralisables, capables de
bien fonctionner sur plusieurs tâches sans nécessiter de modèles spécifiques, gagnent en importance.
Cette étude explore donc la possibilité de segmenter les anomalies focales à partir de petits ensembles
de données, en utilisant un cadre géométrique dans un modèle de détection agnostique aux organes.

En pratique, la méthode proposée utilise un modèle de contrôle basé sur des patients sans
anomalies pour créer un modèle de référence. Les anomalies sont alors détectées comme des éléments
qui ne peuvent être reconstruits par une déformation diffeomorphe du modèle de contrôle. Cette
approche a été testée sur des ensembles de données simulées et réelles, montrant une meilleure
reconstruction des objets et une localisation précise des lésions. Des applications ont été réalisées
sur un ensemble de données de métastases hépatiques et un ensemble de données d’IRM cérébrales
pour illustrer la polyvalence et l’efficacité de cette méthode.

Dans cette section, nous avons démontré l’efficacité de l’utilisation des résidus dérivés de la
déformation diffeomorphe d’un modèle de contrôle pour détecter et segmenter les lésions au sein
d’un organe donné. Nos résultats indiquent que cette approche facilite non seulement l’identification
des lésions, mais améliore également la reconstruction diffeomorphe globale des données observées.
Un avantage inhérent à notre méthode réside dans son indépendance vis-à-vis de vastes ensembles
de données patient ou d’annotations de professionnels de la santé, ce qui la rend particulièrement
adaptée à des situations où l’acquisition de grandes bases de données est difficile, comme dans
certains protocoles de traitement spécifiques.

3



Nos expérimentations ont consisté à évaluer la performance de cette méthodologie sur des ensem-
bles de données comprenant des cerveaux atteints de gliome et des foies présentant des métastases
du cancer colorectal. Notamment, dans le cas des cerveaux atteints de gliome, notre algorithme a
réussi à enregistrer les gyri et les ventricules tout en identifiant avec précision les tumeurs dans la
matrice d’anomalies.

Cependant, plusieurs défis subsistent et méritent une attention particulière. Premièrement,
bien que notre méthode détecte efficacement les tumeurs, elle capture également de petites erreurs
de reconstruction. Pour y remédier, des étapes de post-traitement sont nécessaires pour isoler et
extraire uniquement les lésions pertinentes. Une première option consiste à utiliser des opérations
de fermeture, bien que cette approche comporte le risque potentiel d’éliminer par inadvertance
de plus petites anomalies lors du post-traitement. De plus, une stratégie plus affinée pour gérer
les erreurs de reconstruction est impérative, car l’absence d’une tumeur dans l’objet reconstruit
peut entraîner son exclusion accidentelle. Un affinage supplémentaire via le post-traitement de la
matrice d’anomalies est essentiel pour récupérer les anomalies éventuellement négligées et garantir
la précision de notre méthode de détection.

4



3 Partie III. Utilisation d’un marqueur biologique pour prédire

la réponse tumorale

Un nouveau biomarqueur biologique a émergé comme une percée dans la gestion du cancer colorectal
: l’ADN tumoral circulant (ADNc). L’ADNc est constitué d’ADN provenant de cellules tumorales
circulant dans le sang. Détecté en quantités infimes grâce à des techniques de séquençage, ce
biomarqueur permet une estimation plus sensible et précoce de la charge tumorale par rapport aux
méthodes d’imagerie conventionnelles. Sa pertinence pronostique a été démontrée non seulement
dans le cancer colorectal non métastatique, mais aussi dans la sélection des patients pour une
chirurgie dans les cas de maladie oligométastatique.

Notre projet prospectif complémentaire à cette thèse visait à clarifier la valeur pronostique et
thérapeutique de l’analyse répétée de l’ADNc avant et après les traitements par des radiologues
interventionnels, tels que l’ablation. Nous avons décidé de collecter et d’analyser des échantillons
de nos patients, et nous pensons être les premiers à utiliser l’ADNc dans un tel contexte.

La radiologie interventionnelle offre une alternative non chirurgicale par traitement percutané.
Dans ce projet, seule l’ablation thermique (utilisant des micro-ondes ou des radiofréquences pour
la destruction par la chaleur) est envisagée. Les données sur l’ablation thermique des métas-
tases hépatiques, issues d’essais randomisés majeurs, ont positionné cette technique dans l’arsenal
thérapeutique. Ils ont montré une survie globale accrue chez les patients traités par ablation ther-
mique par rapport au traitement systémique seul. Ce traitement a retardé la progression et guéri
une fraction des patients, bien que la moitié des patients traités aient finalement succombé à leur
maladie dans les cinq ans suivant le traitement. En comparaison, après une chirurgie hépatique, 70
% des patients traités connaissent une récidive ou une progression dans les deux ans. Cependant,
la place optimale de l’ablation thermique à visée curative dans le parcours oncologique du patient
reste à définir, notamment en relation avec le contrôle global de la maladie par les traitements
systémiques.

Les équipes d’oncologie et de biologie de l’HEGP sont des expertes dans le domaine de l’ADNc
depuis de nombreuses années, notamment à travers le projet Carpem. Cette technique recherche de
manière exhaustive les anomalies moléculaires liées aux gènes étudiés. Les panels ciblent des gènes
spécifiques à la maladie ; leur coût raisonnable et les résultats rapides permettent une utilisation
clinique de routine à l’HEGP. En effet, l’ADNc est mesuré de manière routinière à l’HEGP dans
les cas de progression ou de stabilité de la maladie ambigus.

Un tel biomarqueur serait particulièrement adapté à la situation clinique des patients subissant
une ablation thermique hépatique. De nouveaux biomarqueurs - ADN tumoral circulant, cellules
tumorales circulantes, vésicules extracellulaires circulantes, etc. - ont introduit le concept de mal-
adie résiduelle minimale, et plus largement, de nouvelles définitions de la maladie oligométastatique.
Au-delà de la sémantique, ces nouvelles entités cliniques ont des implications thérapeutiques. En
fonction du stade (d’une seule métastase à une maladie multi-métastatique), les options de traite-
ment évoluent parallèlement aux avancées des techniques ablatives locales dans le foie (ablation
thermique, électroporation, radiothérapie, thérapies intra-artérielles, et chirurgie mini-invasive).

L’ADN tumoral circulant (ADNc) a été étudié dans plusieurs contextes tout au long de l’histoire
oncologique du cancer colorectal. Dans le cancer colorectal non métastatique, les publications
s’accordent sur la valeur pronostique de ce biomarqueur (Loft et al., 2023) : les patients avec de
l’ADNc positif avant ou après la chirurgie présentent un pronostic moins favorable que les patients
sans ADN tumoral circulant. La présence d’ADNc après la chirurgie reflète une maladie résiduelle
et place le patient dans un groupe à haut risque de récidive précoce. De même, dans la maladie
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métastatique, la persistance de l’ADNc reflète une maladie insuffisamment traitée. Il est détecté
dans plus de 90 % des cas.

Naturellement, les équipes chirurgicales ont examiné l’ADNc dans le cadre périopératoire ou
dans la maladie potentiellement résécable. Les résultats de ces séries chirurgicales ne peuvent pas
être extrapolés à l’ablation thermique en raison de mécanismes biologiques et moléculaires différents,
même si l’objectif final reste l’élimination tumorale (c’est-à-dire la réduction complète de la charge
tumorale et la détection négative de l’ADNc). Lors de l’ablation thermique, la tumeur reste en place,
et l’énergie thermique induit la nécrose, l’ischémie, l’apoptose et/ou la mort cellulaire immunogène,
générant une immunogénicité intrinsèque (concept de "priming").

Les données publiées sur l’ablation thermique et l’ADNc sont très limitées. Une étude prélimi-
naire incluant des patients traités par ablation thermique et radiothérapie a montré que tous les cinq
patients avec de l’ADNc positif après l’opération avaient un pronostic défavorable. À ce jour, au-
cune publication n’a abordé les différents profils évolutifs de l’ADNc après une ablation thermique.
C’est pourquoi nous avons décidé d’ajouter cette caractéristique à notre travail sur la sélection des
patients.

Il s’agit d’une étude observationnelle prospective monocentrique à un seul bras, approuvée par
le comité d’éthique IRB #00011928 (CERAPHP Centre 2023-01-05). Tous les patients consécutifs
traités entre novembre 2021 et juin 2022 pour des métastases hépatiques, pulmonaires ou osseuses
du cancer colorectal, référés par la commission multidisciplinaire des tumeurs pour une ablation
thermique à visée curative, ont été sélectionnés.

Les critères d’inclusion comprenaient les métastases du cancer colorectal accessibles à une ab-
lation thermique à visée curative, telles qu’évaluées par la commission des tumeurs, une charge
tumorale mesurable (méthode RECIST 1.1), un âge supérieur à 18 ans, un score ECOG de 0 ou
1, une maladie stable sous traitement systémique, un suivi réalisable, et une tumeur colorectale
primitive réséquée. Les critères d’exclusion étaient un traitement combiné avec une chirurgie ou
une radiothérapie, une tumeur primitive non réséquée, une fonction hépatique, pulmonaire ou ré-
nale altérée, un refus de participer à l’étude, et la présence concomitante d’un autre cancer non
colorectal.

Les interventions étaient planifiées sous anesthésie générale lors d’une hospitalisation de deux
jours, et le bevacizumab était interrompu pendant au moins trois semaines avant toute procédure
interventionnelle. La taille, la localisation, le profil moléculaire de la tumeur, la localisation de la
tumeur primitive, les types et le nombre de lignes de traitement antérieures, les marges d’ablation et
les traitements post-interventionnels ont été enregistrés. L’ablation thermique comprenait l’ablation
par micro-ondes pour les lésions hépatiques ou la cryoablation ou la radiofréquence pour les lésions
pulmonaires ou osseuses. Les événements indésirables ont été évalués selon les critères CTCAE.
Les données radiologiques, y compris les images de CT et d’IRM avant l’ablation thermique et lors
du suivi, ont été examinées par un observateur indépendant. Des évaluations cliniques, biologiques
et d’imagerie de routine ont été effectuées. Le suivi comprenait une réévaluation radiologique à un
mois, deux mois, puis tous les trois mois en collaboration avec l’équipe oncologique.

Les profils moléculaires des tumeurs ont été évalués conformément aux recommandations pour
le cancer colorectal métastatique dans les milieux de soins. En résumé, les tumeurs sont analysées à
l’aide d’un panel NGS ciblé de 29 gènes, incluant KRAS, NRAS, BRAF, TP53, PIK3CA, CTNNB1,
et ERBB2, les plus fréquemment mutés dans le cancer colorectal. Les profils moléculaires des
tumeurs étaient connus pour 80 % des patients référés pour une ablation thermique, et inconnus
pour 20 % des patients car ils avaient été référés par un autre centre.

L’ADNc a été extrait en utilisant le Kit Maxwell® RSC ccfDNA (Promega), quantifié par le Kit
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Qubit dsDNA HS Assay. Le cfDNA a été analysé en utilisant le panneau AmpliSeqTM Colon Lung
Cancer (ThermoFisher) et les bibliothèques ont été générées automatiquement sur l’ionchef (Kit
AmpliSeqTM for Chef DL8) à partir de 15 µL de cfDNA. Le séquençage de nouvelle génération
(NGS) a été réalisé avec l’Ion Proton avec une profondeur minimale de 3000X. Les données de
séquençage ont été analysées en utilisant la méthode BPER telle que décrite précédemment. Pour
les patients sans données disponibles sur les tissus tumoraux ou avec des tumeurs de type sauvage,
les échantillons plasmatiques négatifs ont été évalués par méthylation WIF et NPY-ddPCR (met-
ddPCR) pour valider l’absence d’ADNc comme décrit précédemment.

Le ctDNA était positif pour 33 % des échantillons collectés au cours des premières 24 heures.
La valeur pronostique du ctDNA de base a été analysée comme suit. Les patients ont été définis
comme ctDNA positifs si du ctDNA était détecté avant l’intervention. Le ratio des patients ctDNA
positifs/négatifs au départ était de 27 % / 73 %. La concentration moyenne totale d’ADN plas-
matique avant l’intervention était de 15,53 ± 19,00 ng/mL, et le ratio moyen de mutation de la
mutation prédominante, lorsqu’elle était détectée, était de 4,70 ± 6,37. Jusqu’à trois mutations
d’ADN ont été détectées simultanément dans les échantillons. La médiane de survie sans récidive
était respectivement de 46 jours (IC 95 % : 29 - non atteinte) pour la population ctDNA+ et non
atteinte (IC 95 % : 51 - non atteinte) pour la population ctDNA- (p = 0,038). Le rapport de risque
pour la progression en fonction de la présence d’ADN tumoral circulant de base a été estimé à 0,14
(IC 95 % : 0,03 - 0,65, p = 0,019).

Puis, nous avons proposé de modéliser les trajectoires de deux populations en nous basant sur
l’adaptation des modèles à effets mixtes pour les ensembles de données longitudinales avec ruptures
temporelles inconnues. Nous définissons une structure hiérarchique qui découple la trajectoire
moyenne de la population de la variabilité individuelle. En particulier, nous nous intéressons aux
ruptures structurelles au sein des dynamiques de la population qui pourraient correspondre à une
réponse au traitement ou à une progression infra-clinique de la maladie. La trajectoire de chaque
individu est modélisée comme une trajectoire affine par morceaux. Cette trajectoire est considérée
comme une courbe linéaire par morceaux d-dimensionnelle continue, ce qui permet de gérer les
ruptures structurelles dans la progression de la maladie ou les changements de traitement. Dans
notre cas, la dimension est de 1 et l’ensemble des temps d’observation est composé des temps 0, 1,
2 et 3, où l’ablation thermique a été réalisée entre les temps 0 et 1 avant la libération théorique de
ctDNA.

Ce cadre est particulièrement adapté au contexte clinique où les ruptures structurelles (récidive
après ablation thermique) ne sont pas connues. Une trajectoire de population est entièrement
définie par la liste des temps de rupture et la liste des valeurs de trajectoire à chaque rupture. La
trajectoire est supposée affine entre les ruptures. Chaque individu est défini par la manière dont sa
trajectoire s’écarte de la moyenne Les paramètres du modèle sont calculés en utilisant l’estimateur
du Maximum A posteriori (MAP), qui a été calculé avec l’algorithme MCMC-SAEM. Pour des
raisons de faisabilité, nous utilisons les données synthétiques précédemment générées comme si nous
avions recruté 200 patients, avec des étiquettes simples comme « progressif » (mauvais résultat) et
« non-progressif » (bon résultat).

Dans le cadre de notre étude clinique, nous avons entrepris une double piste de recherche visant à
nous aider à sélectionner les patients avant le traitement et à mieux comprendre les effets biologiques
de l’ablation thermique. Le ctDNA s’est révélé efficace en tant que biomarqueur prédictif avant
l’ablation thermique. Malheureusement, les quatre points temporels évalués n’étaient pas suffisants
pour une compréhension approfondie des dynamiques.

Nous avons émis l’hypothèse d’une augmentation prononcée des niveaux de ctDNA après le
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traitement en raison de la destruction des cellules par nécrose, apoptose et formation d’exosomes,
ainsi que de la réaction immunitaire déclenchée. Nous avons supposé que les patients qui ne
répondraient pas à long terme étaient ceux avec une maladie non diagnostiquée et non traitée,
c’est-à-dire ceux qui auraient une forte baisse du ctDNA avant une forte augmentation. En par-
allèle, les patients ayant de bons résultats auraient une stabilité dans le faible niveau de ctDNA
résiduel tout au long du temps.

Les deux trajectoires hypothétiques ont été produites par l’algorithme MCMC-SAEM, avec
cependant quelques spécificités. Les trajectoires étaient en accord avec nos attentes, avec une forte
augmentation observée chez les patients avec des résultats défavorables et un maintien constant de
faibles niveaux chez les répondeurs, et ont même montré une légère hausse après l’ablation ther-
mique. De plus, la détection des ruptures temporelles, notamment autour des points temporels
300/400, présente un résultat intrigant pour une enquête plus approfondie sur les dynamiques de la
progression du cancer non traité. Cette rupture temporelle, environ deux semaines après le traite-
ment, suggère un changement dans les dynamiques qui est concordant avec les évolutions connues
du cancer colorectal. Deux semaines est typiquement le délai entre les lignes de chimiothérapie
et les thérapies ciblées, et c’est aussi le délai pour interrompre les traitements dans le cadre péri-
opératoire. Que ce résultat soit artefactuel ou non pourrait faire l’objet d’une étude prospective
sur une cohorte plus large de patients traités par ablation thermique.

En marquant une rupture à l’Heure 400, le modèle fournit un aperçu important de ce que nous
pourrions attendre des dynamiques de l’ADN tumoral par rapport aux phénomènes biologiques
sous-jacents induits par l’ablation thermique. Utiliser un GAN sur 20 points en 4 dimensions
semble être une approche plutôt compliquée. Les GAN sont connus pour être instables pendant le
processus d’entraînement, en raison de la nature antagoniste de l’entraînement où les deux réseaux
sont en compétition l’un contre l’autre. Comme ces réseaux sont généralement entraînés sur des
données massives, notre GAN pourrait ne pas converger vers une trajectoire plausible de population
pour les patients avec un bon ou un mauvais résultat. Il peut imiter les propriétés statistiques de
notre petite base d’entraînement basée sur l’étude clinique menée pour ce travail, sans capturer les
relations biologiques complexes entre ctDNA, ablation thermique et récidive de la maladie.

4 Partie IV. Représentation planaire de l’arborescence vas-

culaire 3D

La détection et la segmentation des cathéters dans l’image sont des prérequis à l’autonomie au
bloc. La présente étude a été approuvée par le comité d’éthique (IRB #00011928). Tous les
patients consécutifs ayant subi une embolisation de l’artère utérine (EAU) entre janvier 2022 et
décembre 2022 ont été examinés. Les critères d’inclusion comprenaient toutes les femmes ayant
subi une EAU dans notre centre tertiaire. Les patients ont été exclus s’ils refusaient de participer
ou s’ils étaient âgés de moins de 18 ans ou sous tutelle.

Toutes les procédures ont été réalisées par des radiologues expérimentés du service de radiologie
interventionnelle, et les images radioscopiques en direct ont été enregistrées prospectivement. Les
paramètres standard ont été utilisés sans modifications spécifiques du traitement dues à l’étude.
L’EAU a été réalisée soit pour une hémorragie post-partum, soit pour une adénomiose, soit pour
des fibromes utérins symptomatiques. Après la procédure, les patientes ont été hospitalisées pour
la gestion de la douleur et ont été sorties le lendemain avec des prescriptions de médicaments
antidouleur. Toutes les données DICOM ont été entièrement anonymisées, et les images ont été
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récupérées et annotées par trois enquêteurs indépendants à l’aide du logiciel GIMP.
Un total de 152 patientes a été inclus. Pour chaque patiente, une image unique sélectionnée

au hasard provenant de la vidéo scopique a été récupérée, contenant la pointe du cathéter et/ou le
microcathéter au point d’injection. L’image entière a été incluse pour une analyse ultérieure. Les
images individuelles ont été extraites des métadonnées DICOM et converties en fichiers en niveaux
de gris standard pour faciliter l’analyse et le traitement. Les images en niveaux de gris contiennent
des valeurs de pixels allant de 0 (noir) à 255 (blanc), représentant l’intensité de l’image à chaque
emplacement de pixel. Les tailles des images varient de 512x512 à 1024x1024.

Le jeu de données a été divisé en un ensemble d’entraînement (période 1) de 112 images, un
ensemble de validation de 20 images (période 2) et un jeu de données de test indépendant de 20
images (période 3) pour l’analyse des performances.

Les masques de segmentation correspondants ont été annotés manuellement pour chaque image
et représentent une image binaire avec les pixels de fond en noir (0) et le masque du cathéter/microcathéter
en blanc (1). En raison des limitations des données et afin d’éviter le surapprentissage et de ren-
dre le modèle plus robuste, nous avons effectué plusieurs techniques d’augmentation de données.
Les transformations incluaient : retournement horizontal aléatoire, perspective aléatoire, rotation
aléatoire, contraste de luminosité aléatoire, bruit gaussien et recadrage central. Les algorithmes
d’augmentation des données appliqués ont fourni plus de diversité aux ensembles de données, don-
nant 448 images dans l’ensemble d’entraînement et 80 images dans l’ensemble de validation. Le
résultat de l’augmentation des données est représenté dans la figure ci-dessous. Un exemple est
fourni dans la figure ci-dessous.

Nous effectuons l’évaluation de notre modèle sur un ensemble de test distinct composé de 20 im-
ages. Nous utilisons l’IoU (intersection sur union) et le score clDice comme métriques d’évaluation.
Les résultats de la segmentation sont représentés dans le tableau ci-dessous. Cette section est encore
en cours d’investigation. Les performances sont fournies pour l’IoU (intersection sur union), et les
résultats du clDICE seront disponibles prochainement, car il s’agit d’un projet en cours.

Puis nous nous sommes intéressés à l’anatomie 3D de l’arbre vasculaire. Les techniques d’imagerie
actuelles pour la vasculature comprennent des angiographies substractives en trois dimensions sélec-
tives et mini-invasives à haute résolution. Ces images en trois dimensions, rehaussées par contraste,
sont obtenues avant le traitement de divers troubles vasculaires tels que les anévrismes, les mal-
formations, les fistules, les AVC et les sténoses. Elles fournissent des données essentielles pour la
planification du traitement, notamment en ce qui concerne la voie d’accès vasculaire vers le trouble
cible.

La navigation endovasculaire repose sur l’insertion de plusieurs dispositifs coaxiaux, y compris
des guides, des micro-guides, des gaines, des cathéters et des micro-cathéters. Tous ces disposi-
tifs présentent des caractéristiques spécifiques en termes de couple, de support et de poussée, qui
détermineront les difficultés d’accès aux points cibles. Ces défis sont intrinsèquement corrélés à la
courbure et à la longueur du trajet vasculaire, ainsi qu’à la friction pariétale le long du chemin.

Malheureusement, le rendu 3D de l’anatomie du patient ne fournit pas une représentation com-
préhensible des voies endovasculaires possibles et des défis associés. C’est pourquoi nous visons à
fournir une représentation planaire simple et arborescente de l’ensemble de la vasculature cérébrale,
qui peut aider les radiologues interventionnels à évaluer les obstacles avant le traitement endovascu-
laire, en utilisant une seule vue de l’anatomie du patient. Notre travail est également motivé par des
études anatomiques pionnières de la vasculature cérébrale, réalisées via des dissections physiques
de dizaines de cerveaux humains, que nous souhaitons maintenant automatiser de manière mini-
invasive.
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À partir d’une angiographie 3D, nous avons l’intention de créer une représentation planaire de
la structure vasculaire 3D qui :

• Préserve la véritable longueur et le diamètre des segments vasculaires.

• Approxime les angles et les départs des branches artérielles.

• Estime la tortuosité des segments artériels par la courbure.

• Estime le couple accumulé du dispositif le long du trajet.

• Optimise l’utilisation de l’espace de représentation 2D disponible de manière efficace.

• Assure qu’il n’y a pas de chevauchement dans la représentation bidimensionnelle (2D) des
artères.

Nous notons que la création de cartes des vaisseaux sanguins est un domaine de recherche
actif. Ce qui distingue notre travail est l’attention portée aux longueurs et aux courbures des
vaisseaux, souvent négligées par d’autres méthodes mais jouant un rôle crucial dans les interventions
endovasculaires.

Notre population d’étude se compose de quinze patients consécutifs suivis pour des anévrismes
intracrâniens non rompus dans un centre tertiaire unique. Les procédures ont été réalisées sous
anesthésie générale. La première étape du processus consiste à positionner le système d’angiographie
en forme de C autour de la tête du patient. Cet équipement se compose d’un bras en forme de C
avec une source de rayons X et un détecteur qui peuvent pivoter autour du patient pour capturer
des images sous plusieurs angles (Cone Beam CT). La première acquisition de tomographie par
faisceau conique (CBCT) est effectuée sans injection de produit de contraste. Cette acquisition
initiale sert à créer une image de référence ou une "masque" de la tête du patient et des structures
intracrâniennes. Après l’acquisition de l’image de masque, un agent de contraste est injecté dans
l’artère carotidienne ou vertébrale, permettant une visualisation améliorée de l’anatomie vasculaire.
Une fois les deux acquisitions CBCT terminées, les données d’imagerie sont traitées pour générer
une reconstruction tridimensionnelle (3D) de la vasculature intracrânienne après soustraction de la
première acquisition de la seconde.

L’étude présente un pipeline complet pour construire une représentation planaire préservant la
courbure de cette arborescence 3D. Un défi majeur des algorithmes de navigation des vaisseaux est
d’éviter les artefacts topologiques induits par les limitations de la résolution des voxels. Lorsque
les artères se chevauchent dans l’image, de grands voxels peuvent ne pas permettre une distinction
précise entre elles, entraînant des "artères sautantes". Cela se produit lorsque le modèle interprète
incorrectement les artères chevauchantes ou étroitement positionnées comme un seul vaisseau, ce
qui fait que la représentation du vaisseau semble sauter ou se décaler. C’est pourquoi nous avons
choisi de baser notre modèle sur des techniques d’imagerie invasive à haute résolution, telles que
les angiographies, plutôt que sur des images non invasives en coupe transversale comme l’IRM ou
les tomodensitogrammes.

Afin de produire une visualisation 2D sans chevauchement du réseau artériel cérébral tout en
préservant les longueurs des vaisseaux, nous supposons que notre graphique est un arbre, sans cy-
cles. Cela est cohérent avec les connaissances courantes sur l’anatomie cérébrale : à l’exception du
cercle de Willis, un réseau artériel cérébral normal devrait être exempt de cycles. Malheureusement,
cette forte hypothèse topologique ne se vérifie pas en pratique. En raison des limites de la résolution
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des voxels, certains vaisseaux qui sont proches les uns des autres peuvent être fusionnés par notre
traitement : notre traitement hallucine des "raccourcis" et des cycles topologiques qui ne corre-
spondent pas à des chemins réalistes pour les interventions endovasculaires. Des anatomies patient
anormales ou des ruptures de vaisseaux peuvent également créer des cycles qui doivent être pris
en compte, mais qui pourraient être identifiés comme des arêtes "anormales" explicites au-dessus
d’une structure normale d’arbre.

Un certain débruitage topologique est donc nécessaire. À cette fin, et pour des raisons d’efficacité
computationnelle, nous fusionnons d’abord tous les nœuds ayant deux voisins afin d’obtenir un
graphique plus léger. Cela réduit le nombre de nœuds de plus de 25 000 à seulement 2 000 en
moyenne, tout en préservant la même structure topologique. Ensuite, nous créons un nœud racine
qui représente le cœur pompant et le connectons à tous les nœuds situés au bas du volume. Enfin,
nous assignons un coût à chaque arête orientée du graphique, ce poids encode une hypothèse sensible
sur les arbres artériels, à savoir que le sang a tendance à circuler des vaisseaux larges vers les
vaisseaux étroits. En utilisant l’algorithme d’Edmonds fourni par la méthode, nous trouvons alors
un sous-graphe sans cycle du réseau vasculaire qui connecte tous les nœuds du réseau simplifié
avec un poids total minimal, c’est-à-dire avec un flux "amont" minimal allant des vaisseaux fins
aux vaisseaux épais. Nous affichons le résultat de cet élagage topologique sur le graphique haute
résolution. Les arêtes induisant des cycles qui ont été éliminées par l’algorithme d’Edmonds sont
affichées en vert, tandis que les autres sont colorées en fonction de leurs distances géodésiques au
nœud racine.

Notre méthode est capable de capturer correctement la plupart du réseau artériel cérébral. Cela
inclut des régions difficiles de l’anatomie cérébrale telles que les deux artères cérébrales antérieures
qui courent parallèlement l’une à l’autre, entre les hémisphères gauche et droit, et sont correctement
modélisées en tant que courbes distinctes. En pratique, nous constatons que la structure topologique
des principales artères (avec un rayon supérieur à 2 mm) est bien préservée.

En revanche, deux principales sources d’erreurs persistent : • Certains branches de l’arbre
peuvent être rejetées, surtout si elles sont fines et connectées au reste du réseau par un tournant aigu
qui n’est pas très contrasté dans le volume 3D brut, c • Bien que notre méthode gère efficacement
les vaisseaux parallèles, elle ne gère pas bien les "croisements". C’est une conséquence du fait que
notre procédure de nettoyage topologique ne peut supprimer que des arêtes du graphique et ne peut
pas diviser un nœud de "carrefour" avec 4 voisins en deux courbes séparées.

Heureusement, ces artefacts de segmentation n’affectent qu’une infime portion du réseau artériel
cérébral. Les erreurs se produisent généralement dans des régions trop éloignées pour être accessibles
avec les dispositifs endovasculaires actuels. Néanmoins, obtenir une topologie de réseau fiable et
précise à partir de nos images 3D est l’un de nos principaux objectifs pour les travaux futurs.

Pour des raisons de visualisation, nous enrichissons notre graphique avec des caractéristiques de
nœuds qui sont calculées de manière récursive : • La distance géodésique à la racine, • Le volume
des vaisseaux en aval, et calculé en identifiant chaque arête avec un cône tronqué. • Les coordonnées
XYZ du barycentre des vaisseaux en aval, que nous affichons directement sous forme de couleurs
RGB.

Au cours des dernières décennies, de nombreux algorithmes ont été proposés pour dessiner des
graphes sur un plan 2D. Les méthodes standards telles que l’algorithme Kamada-Kawai nous obli-
gent à choisir entre préserver les longueurs de chemin ou fournir des visualisations sans intersections.
Bien que des progrès significatifs aient récemment été réalisés dans le démêlage des nœuds et courbes
en 3D, nous avons constaté que les méthodes de dessin basées sur les forces existantes ne pouvaient
pas afficher de manière fiable en 2D les topologies complexes des réseaux artériels cérébraux.

11



Afin de satisfaire toutes nos contraintes, nous proposons donc une méthode originale pour la
représentation planaire des graphes, spécialement adaptée aux besoins des radiologues interven-
tionnels. Nous visons à produire des dessins esthétiquement plaisants de la neurovasculature qui
améliorent la lisibilité du graphe, sans compromettre les considérations anatomiques.

En premier lieu, nous calculons une représentation planaire de l’arbre en utilisant un algorithme
récursif, puis nous courbons les vaisseaux pour mieux refléter leur courbure locale. À cet effet,
nous ajustons d’abord un plan à chaque point du réseau artériel 3D en effectuant une Analyse en
Composantes Principales sur des quartiers géodésiques. En partant de la racine, nous orientons ces
plans de manière cohérente et calculons, pour chaque paire de bords 3D consécutifs, un angle de
courbure orienté dans le plan local 2D. Cette courbure correspond à une courbure cible pour nos
encodages 2D. Enfin, l’opérateur de lissage est nécessaire pour éviter trop de dérive dans la formule
de courbure. Pour équilibrer cette nouvelle force de courbure avec la répulsion électrostatique,
nous itérons simplement jusqu’à convergence la mise à jour suivante sur les angles des bords de
l’encodage 2D.
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Titre : Modèles mathématiques pour la radiologie interventionnelle personnalisée : Application au
traitement du cancer

Mots clés :Modèles statistiques génératifs, détection d’anomalies, déformation difféomorphique

Résumé : Les méthodes statistiques contempo-
raines ont le potentiel de changer la pratique
médicale au sein même de nos blocs de radiologie
interventionnelle. Ce travail pose quelques jalons
pour l’avenir des interventions autonomes dans
notre domaine spécifique avec pour fil conduc-
teur la prise en charge des patients atteints de
cancer.
Nous explorons d’abord l’impact transformateur
de l’IA sur les capacités physiques des radio-
logues interventionnels. A terme, l’autonomie
au bloc passera par la robotisation et l’analyse
d’images produites en direct. L’intégration de la
vision au geste permettra d’avancer vers ce bloc
autonome.
Nous proposons ensuite une méthode de
détection d’anomalies ne dépendant pas de l’or-
gane exploré à partir d’une imagerie en coupe.
En exploitant le cadre du Large Diffeomorphic
Deformation Metric Mapping (LDDMM), cette ap-
proche met en valeur une reconstruction d’objet
améliorée et une segmentation de la lésion. Dans
le même cadre, nous proposons un classificateur,

permettant d’établir une nouvelle lecture de la
sélection des patients avant l’intervention.
Afin d’aller au-delà des images, des données cli-
niques issues de l’analyse de l’ADN tumoral cir-
culant sont intégrées dans une étude prospec-
tive spécifiquement menée pour ce travail. Des
réseaux antagonistes génératifs (GAN) et des al-
gorithmes d’approximation stochastique (MCMC-
SAEM) sont utilisés pour prédire les trajectoires
des patients. Cette approche permet d’explo-
rer de nouvelles trajectoires, améliorant notre
compréhension de la progression de la maladie et
de la réponse au traitement en relation avec l’ADN
tumoral circulant.
Enfin, nous explorons des techniques de vi-
sualisation avancée pour l’anatomie vasculaire
3D in vivo et ex vivo. Nous proposons une
représentation planaire de l’anatomie, offrant des
possibilités en termes de navigation et de classi-
fication de l’arbre vasculaire.
Ensemble, ces sections offrent des solutions à
certains défis menant vers la réalisation d’inter-
ventions autonomes guidées par l’image.
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Abstract : The integration of computer vision into
Image-Guided interventions has the potential to
change our medical practice. This work lays some
bricks for the future of autonomous interventions
in our specific field regarding cancer patients, ad-
dressing key components necessary for its rea-
lization. We first explore the transformative im-
pact of AI on the physical abilities of interventio-
nal radiologists. We emphasize the need to navi-
gate technical and ethical challenges. Interdisci-
plinary collaboration and robust evaluation pro-
cesses are highlighted as essential for the safe in-
tegration of AI into clinical practice We then pro-
pose an organ agnostic method for detecting fo-
cal anomalies on volumetric cross-sectional ima-
ging. Leveraging the Large Diffeomorphic Defor-
mation Metric Mapping (LDDMM) framework, this
approach showcases enhanced object recons-
truction and precise lesion localization. In the
same framework, we propose a classifier, where

patient selection presents unique challenges due
to the complex benefice/risk ratios. To go beyond
images, clinical data from tumor DNA analysis is
integrated into a prospective study specifically
conducted for this work. Generative Adversarial
Networks (GAN) and Modelling Atlases Using the
Markov Chain Monte Carlo - Stochastic Approxi-
mation Expectation-Maximization (MCMC-SAEM)
Algorithms are used to predict patient trajecto-
ries. This approach enables the exploration of new
trajectories, enhancing our understanding of di-
sease progression and treatment response in re-
lationship of circulating tumor DNA. Lastly, we
explore advanced visualization techniques for in
vivo and ex vivo 3D vasculature. We propose a
planar representation of undescribed anatomy, of-
fering a promising avenue for further exploration
and understanding. Together, these sections of-
fer solutions to parts of the realization of autono-
mous interventions in our field.
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